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foreword
When we started TensorFlow.js (TF.js), formerly called deeplearn.js, machine learning
(ML) was done mostly in Python. As both JavaScript developers and ML practitioners
on the Google Brain team, we quickly realized that there was an opportunity to bridge
the two worlds. Today, TF.js has empowered a new set of developers from the extensive
JavaScript community to build and deploy ML models and enabled new classes of on-
device computation.

 TF.js would not exist in its form today without Shanqing, Stan, and Eric. Their con-
tributions to TensorFlow Python, including the TensorFlow Debugger, eager execu-
tion, and build and test infrastructure, uniquely positioned them to tie the Python
and JavaScript worlds together. Early on in the development, their team realized the
need for a library on top of deeplearn.js that would provide high-level building blocks
to develop ML models. Shanqing, Stan, and Eric, among others, built TF.js Layers,
allowing conversion of Keras models to JavaScript, which dramatically increased the
wealth of available models in the TF.js ecosystem. When TF.js Layers was ready, we
released TF.js to the world.

 To investigate the motivations, hurdles, and desires of software developers, Carrie
Cai and Philip Guo deployed a survey to the TF.js website. This book is in direct
response to the study’s summary: “Our analysis found that developers’ desires for ML
frameworks extended beyond simply wanting help with APIs: more fundamentally,
they desired guidance on understanding and applying the conceptual underpinnings
of ML itself.”1

Deep Learning with JavaScript contains a mix of deep learning theory as well as real-
world examples in JavaScript with TF.js. It is a great resource for JavaScript developers

1 C. Cai and P. Guo, (2019) “Software Developers Learning Machine Learning: Motivations, Hurdles, and
Desires,” IEEE Symposium on Visual Languages and Human-Centric Computing, 2019.
xiii

 



FOREWORDxiv
with no ML experience or formal math background, as well as ML practitioners who
would like to extend their work into the JavaScript ecosystem. This book follows the
template of Deep Learning with Python, one of the most popular applied-ML texts, writ-
ten by the Keras creator, François Chollet. Expanding on Chollet’s work, Deep Learning
with JavaScript does an amazing job building on the unique things that JavaScript has
to offer: interactivity, portability, and on-device computation. It covers core ML con-
cepts, but does not shy away from state-of-the-art ML topics, such as text translation,
generative models, and reinforcement learning. It even gives pragmatic advice on
deploying ML models into real-world applications written by practitioners who have
extensive experience deploying ML to the real world. The examples in this book are
backed by interactive demos that demonstrate the unique advantages of the JavaScript
ecosystem. All the code is open-sourced, so you can interact with it and fork it online.

 This book should serve as the authoritative source for readers who want to learn
ML and use JavaScript as their main language. Sitting at the forefront of ML and
JavaScript, we hope you find the concepts in this book useful and the journey in Java-
Script ML a fruitful and exciting one.

 —NIKHIL THORAT AND DANIEL SMILKOV,
 inventors of deeplearn.js 

and technical leads of TensorFlow.js
 



preface
The most significant event in the recent history of technology is perhaps the explo-
sion in the power of neural networks since 2012. This was when the growth in labeled
datasets, increases in computation power, and innovations in algorithms came
together and reached a critical mass. Since then, deep neural networks have made
previously unachievable tasks achievable and boosted the accuracies in other tasks,
pushing them beyond academic research and into practical applications in domains
such as speech recognition, image labeling, generative models, and recommendation
systems, just to name a few.

 It was against this backdrop that our team at Google Brain started developing
TensorFlow.js. When the project started, many regarded “deep learning in JavaScript”
as a novelty, perhaps a gimmick, fun for certain use cases, but not to be pursued with
seriousness. While Python already had several well-established and powerful frame-
works for deep learning, the JavaScript machine-learning landscape remained splin-
tered and incomplete. Of the handful of JavaScript libraries available back then, most
only supported deploying models pretrained in other languages (usually in Python).
For the few that supported building and training models from scratch, the scope of
supported model types was limited. Considering JavaScript’s popular status and its
ubiquity that straddles client and server sides, this was a strange situation.

 TensorFlow.js is the first full-fledged industry-quality library for doing neural net-
works in JavaScript. The range of capabilities it provides spans multiple dimensions.
First, it supports a wide range of neural-networks layers, suitable for various data types
ranging from numeric to text, from audio to images. Second, it provides APIs for load-
ing pretrained models for inference, fine-tuning pretrained models, and building and
training models from scratch. Third, it provides both a high-level, Keras-like API for
practitioners who opt to use well-established layer types, and a low-level, TensorFlow-
like API for those who wish to implement more novel algorithms. Finally, it is designed
xv

 



PREFACExvi
to be runnable in a wide selection of environments and hardware types, including the
web browser, server side (Node.js), mobile (e.g., React Native and WeChat), and desk-
top (electron). Adding to the multidimensional capability of TensorFlow.js is its status
as a first-class integrated part of the larger TensorFlow/Keras ecosystem, specifically its
API consistency and two-way model-format compatibility with the Python libraries.

 The book you have in your hands will guide your grand tour through this multi-
dimensional space of capabilities. We’ve chosen a path that primarily cuts through the
first dimension (modeling tasks), enriched by excursions along the remaining dimen-
sions. We start from the relatively simpler task of predicting numbers from numbers
(regression) to the more complex ones such as predicting classes from images and
sequences, ending our trip on the fascinating topics of using neural networks to gen-
erate new images and training agents to make decisions (reinforcement learning). 

 We wrote the book not just as a recipe for how to write code in TensorFlow.js, but
as an introductory course in the foundations of machine learning in the native lan-
guage of JavaScript and web developers. The field of deep learning is a fast-evolving
one. It is our belief that a firm understanding of machine learning is possible without
formal mathematical treatment, and this understanding will enable you to keep your-
self up-to-date in future evolution of the techniques. 

 With this book you’ve made the first step in becoming a member of the growing
community of JavaScript machine-learning practitioners, who’ve already brought
about many impactful applications at the intersection between JavaScript and deep
learning. It is our sincere hope that this book will kindle your own creativity and inge-
nuity in this space.

SHANQING CAI, STAN BILESCHI, AND ERIC NIELSEN

September 2019
Cambridge, MA
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about this book
Who should read this book
This book is written for programmers who have a working knowledge of JavaScript,
from prior experience with either web frontend development or Node.js-based back-
end development, and wish to venture into the world of deep learning. It aims to sat-
isfy the learning needs of the following two subgroups of readers:

 JavaScript programmers who aspire to go from little-to-no experience with
machine learning or its mathematical background, to a decent knowledge of
how deep learning works and a practical understanding of the deep-learning
workflow that is sufficient for solving common data-science problems such as
classification and regression

 Web or Node.js developers who are tasked with deploying pre-trained models in
their web app or backend stack as new features

For the first group of readers, this book develops the basic concepts of machine learn-
ing and deep learning in a ground-up fashion, using JavaScript code examples that
are fun and ready for fiddling and hacking. We use diagrams, pseudo-code, and con-
crete examples in lieu of formal mathematics to help you form an intuitive, yet firm,
grasp of the foundations of how deep learning works. 

 For the second group of readers, we cover the key steps of converting existing
models (e.g., from Python training libraries) into a web- and/or Node-compatible for-
mat suitable for deployment in the frontend or the Node stack. We emphasize practi-
cal aspects such as optimizing model size and performance, as well as considerations
for various deployment environments ranging from a server to browser extensions
and mobile apps.
xix

 



ABOUT THIS BOOKxx
 This book provides in-depth coverage of the TensorFlow.js API for ingesting and
formatting data, for building and loading models, and for running inference, evalua-
tion, and training for all readers.

 Finally, technically minded people who don’t code regularly in JavaScript or any
other language will also find this book useful as an introductory text for both basic
and advanced neural networks. 

How this book is organized: A roadmap
This book is organized into four parts. The first part, consisting of chapter 1 only,
introduces you to the landscape of artificial intelligence, machine learning, and deep
learning, and why it makes sense to practice deep learning in JavaScript.

 The second part forms a gentle introduction to the most foundational and
frequently encountered concepts in deep learning. In particular:

 Chapters 2 and 3 are your gentle on-ramp to machine learning. Chapter 2
works through a simple problem of predicting a single number from another
number by fitting a straight line (linear regression) and uses it to illustrate how
backpropagation (the engine of deep learning) works. Chapter 3 builds on
chapter 2 by introducing nonlinearity, multi-layered networks, and classification
tasks. From this chapter you will gain an understanding of what nonlinearity is,
how it works, and why it gives deep neural networks their expressive power.

 Chapter 4 deals with image data and the neural-network architecture dedicated
to solving image-related machine-learning problems: convolutional networks
(convnets). We will also show you why convolution is a generic method that has
uses beyond images by using audio inputs as an example.

 Chapter 5 continues the focus on convnets and image-like inputs, but shifts into
the topic of transfer learning: how to train new models based on existing ones,
instead of starting from scratch.

Part 3 of the book systematically covers more advanced topics in deep learning for
users who wish to build an understanding of more cutting-edge techniques, with a
focus on specific challenging areas of ML systems, and the TensorFlow.js tools to work
with them:

 Chapter 6 discusses techniques for dealing with data in the context of deep
learning.

 Chapter 7 shows the techniques for visualizing data and the models that process
them, an important and indispensable step for any deep-learning workflow.

 Chapter 8 focuses on the important topics of underfitting and overfitting in
deep learning, and techniques for analyzing and mitigating them. Through this
discussion, we condense what we’ve learned in this book so far into a recipe
referred to as “the universal workflow of machine learning.” This chapter pre-
pares you for the advanced neural-network architectures and problems in chap-
ters 9–11.
 



ABOUT THIS BOOK xxi
 Chapter 9 is dedicated to deep neural networks that process sequential data
and text inputs. 

 Chapters 10 and 11 cover the advanced deep-learning areas of generative mod-
els (including generative adversarial networks) and reinforcement learning,
respectively.

In the fourth and final part of the book, we cover techniques for testing, optimizing
and deploying models trained or converted with TensorFlow.js (chapter 12) and wrap
up the whole book by recapitulating the most important concepts and workflows
(chapter 13).

 Each chapter finishes with exercises to help you gauge your level of understanding
and hone your deep-learning skills in TensorFlow.js in a hands-on fashion.

About the code 
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accom-
pany many of the listings, highlighting important concepts. The code for the exam-
ples in this book is available for download from GitHub at https:/ /github.com/
tensorflow/tfjs-examples.

liveBook discussion forum
Purchase of Deep Learning with JavaScript includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To
access the forum, go to https://livebook.manning.com/#!/book/deep-learning-with-
javascript/discussion. You can also learn more about Manning’s forums and the rules
of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.
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Part 1

Motivation
and basic concepts

Part 1 consists of a single chapter that orients you to the basic concepts that
will form the backdrop for the rest of the book. These include artificial intelli-
gence, machine learning, and deep learning and the relations between them.
Chapter 1 also addresses the value and potential of practicing deep learning in
JavaScript. 
 



 



Deep learning
and JavaScript
All the buzz around artificial intelligence (AI) is happening for a good reason: the
deep-learning revolution, as it is sometimes called, has indeed happened. Deep-
learning revolution refers to the rapid progress made in the speed and techniques of
deep neural networks that started around 2012 and is still ongoing. Since then,
deep neural networks have been applied to an increasingly wide range of prob-
lems, enabling machines to solve previously unsolvable problems in some cases and
dramatically improving solution accuracy in others (see table 1.1 for examples). To
experts in AI, many of these breakthroughs in neural networks were stunning.

This chapter covers
 What deep learning is and how it is related to artificial 

intelligence (AI) and machine learning

 What makes deep learning stand out among various 
machine-learning techniques, and the factors that led to the 
current “deep-learning revolution”

 The reasons for doing deep learning in JavaScript using 
TensorFlow.js

 The overall organization of this book
3

 



4 CHAPTER 1 Deep learning and JavaScript
To engineers who use neural networks, the opportunities this progress has created are
galvanizing.

JavaScript is a language traditionally devoted to creating web browser UI and back-
end business logic (with Node.js). As someone who expresses ideas and creativity in
JavaScript, you may feel a little left out by the deep-learning revolution, which seems
to be the exclusive territory of languages such as Python, R, and C++. This book aims
at bringing deep learning and JavaScript together through the JavaScript deep-
learning library called TensorFlow.js. We do this so that JavaScript developers like
you can learn how to write deep neural networks without learning a new language;
more importantly, we believe deep learning and JavaScript belong together.

The cross-pollination will create unique opportunities, ones unavailable in any
other programming language. It goes both ways for JavaScript and deep learning.
With JavaScript, deep-learning applications can run on more platforms, reach a
wider audience, and become more visual and interactive. With deep learning, JavaS-
cript developers can make their web apps more intelligent. We will describe how later
in this chapter.

Table 1.1 lists some of the most exciting achievements of deep learning that we’ve
seen in this deep-learning revolution so far. In this book, we have selected a number
of these applications and created examples of how to implement them in Tensor-
Flow.js, either in their full glory or in reduced form. These examples will be covered
in depth in the coming chapters. Therefore, you will not stop at marveling at the
breakthroughs: you can learn about them, understand them, and implement them all
in JavaScript.

But before you dive into these exciting, hands-on deep-learning examples, we need
to introduce the essential context around AI, deep learning, and neural networks.

Table 1.1 Examples of tasks in which accuracy improved significantly thanks to deep-learning techniques
since the beginning of the deep-learning revolution around 2012. This list is by no means comprehensive.
The pace of progress will undoubtedly continue in the coming months and years.

Machine-learning 
task 

Representative 
deep-learning technology

Where we use TensorFlow.js 
to perform a similar task 

in this book

Categorizing the 
content of images

Deep convolutional neural networks 
(convnets) such as ResNeta and Incep-
tionb reduced the error rate in the Image-
Net classification task from ~25% in 
2011 to below 5% in 2017.c

Training convnets for MNIST 
(chapter 4); MobileNet inference 
and transfer learning (chapter 5)

a. Kaiming He et al., “Deep Residual Learning for Image Recognition,” Proc. IEEE Conference Computer Vision and Pattern 
Recognition (CVPR), 2016, pp. 770–778, http://mng.bz/PO5P.
b. Christian Szegedy et al., “Going Deeper with Convolutions,” Proc. IEEE Conference Computer Vision and Pattern 
Recognition (CVPR), 2015, pp. 1–9, http://mng.bz/JzGv.
c. Large Scale Visual Recognition Challenge 2017 (ILSVRC2017) results, http://image-net.org/challenges/LSVRC/ 
2017/results.
 

http://mng.bz/JzGv
http://mng.bz/PO5P
http://image-net.org/challenges/LSVRC/2017/results
http://image-net.org/challenges/LSVRC/2017/results
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Localizing objects and 
images

Variants of deep convnetsd reduced local-
ization error from 0.33 in 2012 to 0.06 in 
2017.

YOLO in TensorFlow.js
(section 5.2)

Translating one natu-
ral language to another

Google’s neural machine translation 
(GNMT) reduced translation error by 
~60% compared to the best traditional  
machine-translation techniques.e

Long Short-Term Memory (LSTM)-
based sequence-to-sequence 
models with attention mecha-
nisms (chapter 9)

Recognizing large-
vocabulary, continu-
ous speech

An LSTM-based encoder-attention-
decoder architecture achieves a lower 
word-error rate than the best non-deep-
learning speech recognition system.f

Attention-based LSTM small-
vocabulary continuous speech 
recognition (chapter 9)

Generating realistic-
looking images

Generative adversarial networks (GANs) 
are now capable of generating realistic-
looking images based on training data 
(see https://github.com/junyanz/ 
CycleGAN).

Generating images using varia-
tional autoencoders (VAEs) and 
GANs (chapter 9)

Generating music Recurrent neural networks (RNNs) and 
VAEs are helping create music scores 
and novel instrument sounds (see 
https://magenta.tensorflow.org/demos).

Training LSTMs to generate text 
(chapter 9)

Learning to play games Deep learning combined with reinforce-
ment learning (RL) lets machines learn to 
play simple Atari games using raw pixels 
as the only input.g Combining deep learn-
ing and Monte Carlo tree search, Alpha-
Zero reached a super-human level of Go 
purely through self-play.h

Using RL to solve the cart-pole 
control problem and a snake 
video game (chapter 11)

Diagnosing diseases 
using medical images

Deep convnets were able to achieve 
specificity and sensitivity comparable to 
trained human ophthalmologists in diag-
nosing diabetic retinopathy based on 
images of patients’ retinas.i

Transfer learning using a pre-
trained MobileNet image model 
(chapter 5).

d. Yunpeng Chen et al., “Dual Path Networks,” https://arxiv.org/pdf/1707.01629.pdf.
e. Yonghui Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine 
Translation,” submitted 26 Sept. 2016, https://arxiv.org/abs/1609.08144.
f. Chung-Cheng Chiu et al., “State-of-the-Art Speech Recognition with Sequence-to-Sequence Models,” submitted 5 Dec. 
2017, https://arxiv.org/abs/1712.01769.
g. Volodymyr Mnih et al., “Playing Atari with Deep Reinforcement Learning,” NIPS Deep Learning Workshop 2013, 
https://arxiv.org/abs/1312.5602.
h. David Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” 
submitted 5 Dec. 2017, https://arxiv.org/abs/1712.01815.
i. Varun Gulshan et al., “Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy 
in Retinal Fundus Photographs,” JAMA, vol. 316, no. 22, 2016, pp. 2402–2410, http://mng.bz/wlDQ.

Table 1.1 Examples of tasks in which accuracy improved significantly thanks to deep-learning techniques
since the beginning of the deep-learning revolution around 2012. This list is by no means comprehensive.
The pace of progress will undoubtedly continue in the coming months and years. (continued)

Machine-learning 
task 

Representative 
deep-learning technology

Where we use TensorFlow.js 
to perform a similar task 

in this book
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https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1712.01769
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://magenta.tensorflow.org/demos
https://arxiv.org/abs/1712.01815


6 CHAPTER 1 Deep learning and JavaScript
1.1 Artificial intelligence, machine learning, neural 
networks, and deep learning
Phrases like AI, machine learning, neural networks, and deep learning mean related but dif-
ferent things. To orient yourself in the dazzling world of AI, you need to understand
what they refer to. Let’s define these terms and the relations among them.

1.1.1 Artificial intelligence

As the Venn diagram in figure 1.1 shows, AI is a broad field. A concise definition of
the field would be as follows: the effort to automate intellectual tasks normally performed by
humans. As such, AI encompasses machine learning, neural networks, and deep learn-
ing, but it also includes many approaches distinct from machine learning. Early chess
programs, for instance, involved hard-coded rules crafted by programmers. Those
didn’t qualify as machine learning because the machines were programmed explicitly
to solve the problems instead of being allowed to discover strategies for solving the
problems by learning from the data. For a long time, many experts believed that

Artificial intelligence

Machine learning

Neural networks

Deep learning

Symbolic AI

Decision trees

... Kernel methods

...

Shallow
neural 
networks

Figure 1.1 Relations between AI, machine learning, neural networks, and deep learning. As this Venn 
diagram shows, machine learning is a subfield of AI. Some areas of AI use approaches different from 
machine learning, such as symbolic AI. Neural networks are a subfield of machine learning. There exist 
non-neural-network machine-learning techniques, such as decision trees. Deep learning is the science 
and art of creating and applying “deep” neural networks—neural networks with multiple “layers”—
versus “shallow” neural networks—neural networks with fewer layers.
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human-level AI could be achieved through handcrafting a sufficiently large set of
explicit rules for manipulating knowledge and making decisions. This approach is
known as symbolic AI, and it was the dominant paradigm in AI from the 1950s to the
late 1980s.1

1.1.2 Machine learning: How it differs from traditional programming

Machine learning, as a subfield of AI distinct from symbolic AI, arises from a question:
Could a computer go beyond what a programmer knows how to program it to per-
form, and learn on its own how to perform a specific task? As you can see, the
approach of machine learning is fundamentally different from that of symbolic AI.
Whereas symbolic AI relies on hard-coding knowledge and rules, machine learning
seeks to avoid this hard-coding. So, if a machine isn’t explicitly instructed on how to
perform a task, how would it learn how to do so? The answer is by learning from
examples in the data.

This opened the door to a new programming paradigm (figure 1.2). To give an
example of the machine-learning paradigm, let’s suppose you are working on a web
app that handles photos uploaded by users. A feature you want in the app is automatic
classification of photos into ones that contain human faces and ones that don’t. The
app will take different actions on face images and no-face images. To this end, you
want to create a program to output a binary face/no-face answer given any input
image (made of an array of pixels).

We humans can perform this task in a split second: our brains’ genetic hardwiring and
life experience give us the ability to do so. However, it is hard for any programmer, no
matter how smart and experienced, to write an explicit set of rules in a programming
language (the only practical way for humans to communicate with a computer) on
how to accurately decide whether an image contains a human face. You can spend
days poring over code that does arithmetic on the RGB (red-green-blue) values of pix-
els to detect elliptic contours that look like faces, eyes, and mouths, as well as devising
heuristic rules on the geometric relations between the contours. But you will soon
realize that such effort is laden with arbitrary choices of logic and parameters that are

1 An important type of symbolic AI is expert systems. See this Britannica article to learn about them: http://
mng.bz/7zmy.

Rules

Data
Answers

Rules

Data

Answers

Machine
learning

Classical
programming

Figure 1.2 Comparing the 
classical programming 
paradigm and the machine-
learning paradigm
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8 CHAPTER 1 Deep learning and JavaScript
hard to justify. More importantly, it is hard to make it work well!2 Any heuristic you
come up with is likely to fall short when facing the myriad variations that faces can
present in real-life images, such as differences in the size, shape, and details of the
face; facial expression; hairstyle; skin color; orientation; the presence or absence of
partial obscuring; glasses; lighting conditions; objects in the background; and so on.

In the machine-learning paradigm, you recognize that handcrafting a set of rules for
such a task is futile. Instead, you find a set of images, some with faces in them and some
without. Then you enter the desired (that is, correct) face or no-face answer for each
one. These answers are referred to as labels. This is a much more tractable (in fact, triv-
ial) task. It may take some time to label all the images if there are a lot of them, but the
labeling task can be divided among several humans and can proceed in parallel. Once
you have the images labeled, you apply machine learning and let machines discover the
set of rules on their own. If you use the correct machine-learning techniques, you will
arrive at a trained set of rules capable of performing the face/no-face task with an accu-
racy > 99%—far better than anything you can hope to achieve with handcrafted rules.

From the previous example, we can see that machine learning is the process of auto-
mating the discovery of rules for solving complex problems. This automation is benefi-
cial for problems like face detection, in which humans know the rules intuitively and
can easily label the data. For other problems, the rules are not known intuitively. For
example, consider the problem of predicting whether a user will click an ad displayed
on a web page, given the page’s and the ad’s contents and other information, such as
time and location. No human has a good sense about how to make accurate predic-
tions for such problems in general. Even if one does, the pattern will probably change
with time and with the appearance of new content and new ads. But the labeled train-
ing data is available from the ad service’s history: it is available from the ad servers’ logs.
The availability of the data and labels alone makes machine learning a good fit for
problems like this.

In figure 1.3, we take a closer look at the steps involved in machine learning. There
are two important phases. The first is the training phase. This phase takes the data and
answers, together referred to as the training data. Each pair of input data and the
desired answer is called an example. With the help of the examples, the training pro-
cess produces the automatically discovered rules. Although the rules are discovered
automatically, they are not discovered entirely from scratch. In other words, machine-
learning algorithms are not creative in coming up with rules. In particular, a human
engineer provides a blueprint for the rules at the outset of training. The blueprint is
encapsulated in a model, which forms a hypothesis space for the rules the machine may
possibly learn. Without this hypothesis space, there is a completely unconstrained and
infinite space of possible rules to search in, which is not conducive to finding good

2 In fact, such approaches have indeed been attempted before and did not work very well. This survey paper
provides good examples of handcrafting rules for face detection before the advent of deep learning: Erik
Hjelmås and Boon Kee Low, “Face Detection: A Survey,” Computer Vision and Image Understanding, Sept. 2001,
pp. 236–274, http://mng.bz/m4d2.
 

http://mng.bz/m4d2
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rules in a limited amount of time. We will describe in great detail the kinds of models
available and how to choose the best ones based on the problem at hand. For now, it
suffices to say that in the context of deep learning, models vary in terms of how many
layers the neural network consists of, what types of layers they are, and how they are
wired together.

With the training data and the model architecture, the training process produces
the learned rules, encapsulated in a trained model. This process takes the blueprint
and alters (or tunes) it in ways that nudge the model’s output closer and closer to the
desired output. The training phase can take anywhere from milliseconds to days,
depending on the amount of training data, the complexity of the model architecture,
and how fast the hardware is. This style of machine learning—namely, using labeled
examples to progressively reduce the error in a model’s outputs—is known as super-
vised learning.3 Most of the deep-learning algorithms we cover in this book are super-
vised learning. Once we have the trained model, we are ready to apply the learned
rules on new data—data that the training process has never seen. This is the second
phase, or inference phase. The inference phase is less computationally intensive than
the training phase because 1) inference usually happens on one input (for instance,
one image) at a time, whereas training involves going through all the training data;
and 2) during inference, the model does not need to be altered.

LEARNING REPRESENTATIONS OF DATA

Machine learning is about learning from data. But what exactly is learned? The
answer: a way to effectively transform the data or, in other words, to change the old
representations of the data into a new one that gets us closer to solving the problem at
hand.

3 Another style of machine learning is unsupervised learning, in which unlabeled data is used. Examples of unsu-
pervised learning are clustering (discovering distinct subsets of examples in a dataset) and anomaly detection
(determining if a given example is sufficiently different from the examples in the training set).

Training Rules
Data

Answers

Training phase

New data
Inference Answer

Inference phase

Model architecture

Figure 1.3 A more detailed view of the machine-learning paradigm than that in figure 1.2. The 
workflow of machine learning consists of two phases: training and inference. Training is the process 
of the machine automatically discovering the rules that convert the data into answers. The learned 
rules, encapsulated in a trained “model,” are the fruit of the training phase and form the basis of 
the inference phase. Inference means using the model to obtain answers for new data.
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Before we go any further, what is a representation? At its core, it is a way to look at
the data. The same data can be looked at in different ways, leading to different repre-
sentations. For example, a color image can have an RGB or HSV (hue-saturation-
value) encoding. Here, the words encoding and representation mean essentially the
same thing and can be used interchangeably. When encoded in these two different
formats, the numerical values that represent the pixels are completely different, even
though they are for the same image. Different representations are useful for solving
different problems. For example, to find all the red parts of an image, the RGB rep-
resentation is more useful; but to find color-saturated parts of the same image, the
HSV representation is more useful. This is essentially what machine learning is all
about: finding an appropriate transformation that turns the old representation of
the input data into a new one—one that is amenable to solving the specific task at
hand, such as detecting the location of cars in an image or deciding whether an
image contains a cat and a dog.

To give a visual example, we have a collection of white points and several black
points in a plane (figure 1.4). Let’s say we want to develop an algorithm that can take
the 2D (x, y) coordinates of a point and predict whether that point is black or white.
In this case,

 The input data is the two-dimensional Cartesian coordinates (x and y) of a
point.

 The output is the predicted color of the point (whether it’s black or white).

The data shows a pattern in panel A of figure 1.4. How would the machine decide the
color of a point given the x- and y-coordinates? It cannot simply compare x with a
number, because the range of the x-coordinates of the white points overlaps with the
range of the x-coordinates of the black ones! Similarly, the algorithm cannot rely on
the y-coordinate. Therefore, we can see that the original representation of the points
is not a good one for the black-white classification task.

What we need is a new representation that separates the two colors in a more
straightforward way. Here, we transform the original Cartesian x-y representation into
a polar-coordinate-system representation. In other words, we represent a point by 1)
its angle—the angle formed by the x-axis and the line that connects the origin with
the point (see the example in panel A of figure 1.4) and 2) its radius—its distance
from the origin. After this transformation, we arrive at a new representation of the
same set of data, as panel B of figure 1.4 shows. This representation is more amenable
to our task, in that the angle values of the black and white points are now completely
nonoverlapping. However, this new representation is still not an ideal one in that the
black-white color classification cannot be made into a simple comparison with a
threshold value (like zero).

Luckily, we can apply a second transformation to get us there. This transformation
is based on the simple formula

(absolute value of angle) - 135 degrees
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The resulting representation, as shown in panel C, is one-dimensional. Compared to
the representation in panel B, it throws away the irrelevant information about the dis-
tance of the points to the origin. But it is a perfect representation in that it allows a
completely straightforward decision process:

if the value < 0, the point is classified as white;
else, the point is classified as black

In this example, we manually defined a two-step transform of the data representation.
But if instead we tried automated searching for different possible coordinate trans-
forms using feedback about the percentage of points classified correctly, then we
would be doing machine learning. The number of transformation steps involved in
solving real machine-learning problems is usually much greater than two, especially in
deep learning, where it can reach hundreds. Also, the kind of representation transfor-
mations seen in real machine learning can be much more complex compared to
those seen in this simple example. Ongoing research in deep learning keeps discover-
ing more sophisticated and powerful transformations. But the example in figure 1.4
captures the essence of searching for better representations. This applies to all
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Figure 1.4 A toy example of the representation transformations that machine learning is about. Panel 
A: the original representation of a dataset consisting of black and white points in a plane. Panels B and 
C: two successive transformation steps turn the original representation into one that is more amenable 
to the color-classification task.
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machine-learning algorithms, including neural networks, decision trees, kernel meth-
ods, and so forth.

1.1.3 Neural networks and deep learning

Neural networks are a subfield of machine learning, one in which the transformation
of the data representation is done by a system with an architecture loosely inspired by
how neurons are connected in human and animal brains. How are neurons con-
nected to each other in brains? It varies among species and brain regions. But a fre-
quently encountered theme of neuronal connection is the layer organization. Many
parts of the mammalian brain are organized in a layered fashion. Examples include
the retina, the cerebral cortex, and the cerebellar cortex. 

At least on a superficial level, this pattern is somewhat similar to the general organi-
zation of artificial neural networks (simply called neural networks in the world of comput-
ing, where there is little risk of confusion), in which the data is processed in multiple
separable stages, aptly named layers. These layers are usually stacked on top of each
other, with connections only between adjacent ones. Figure 1.5 shows a simple (artifi-
cial) neural network with four layers. The input data (an image, in this case) feeds
into the first layer (on the left side of the figure), then flows sequentially from one
layer to the next. Each layer applies a new transformation on the representation of the
data. As the data flows through the layers, the representation becomes increasingly
different from the original and gets closer and closer to the goal of the neural net-
work—namely, applying a correct label to the input image. The last layer (on the right
side of the figure) emits the neural network’s final output, which is the result of the
image-classification task.

A layer of neural networks is similar to a mathematical function in that it is a map-
ping from an input value to an output value. However, neural network layers are dif-
ferent from pure mathematical functions in that they are generally stateful. In other
words, they hold internal memory. A layer’s memory is captured in its weights. What
are weights? They are simply a set of numerical values that belong to the layer and gov-
ern the details of how each input representation is transformed by the layer into an
output representation. For example, the frequently used dense layer transforms its
input data by multiplying it with a matrix and adding a vector to the result of the
matrix multiplication. The matrix and the vector are the dense layer’s weights. When
a neural network is trained through exposure to training data, the weights get altered
systematically in a way that minimizes a certain value called the loss function, which we
will cover in detail using concrete examples in chapters 2 and 3.

Although neural networks are inspired by the brain, we should be careful not to
overly humanize them. The purpose of neural networks is not to study or mimic how
the brain works. That is the realm of neuroscience, a separate academic discipline.
Neural networks are about enabling machines to perform interesting practical tasks
by learning from data. The fact that some neural networks show resemblance to some
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parts of the biological brain, both in structure and in function,4 is indeed remarkable.
But whether this is a coincidence is beyond the scope of this book. In any case, the
resemblance should not be overread. Importantly, there is no evidence that the brain
learns through any form of gradient descent, the primary way in which neural net-
works are trained (covered in the next chapter). Many important techniques in neu-
ral networks that helped usher in the deep-learning revolution were invented and
adopted not because they were backed by neuroscience, but instead because they
helped neural networks solve practical learning tasks better and faster.

Now that you know what neural networks are, we can tell you what deep learning is.
Deep learning is the study and application of deep neural networks, which are, quite sim-
ply, neural networks with many layers (typically, from a dozen to hundreds of layers).
Here, the word deep refers to the idea of a large number of successive layers of
representations. The number of layers that form a model of the data is called the
model’s depth. Other appropriate names for the field could have been “layered repre-
sentation learning” or “hierarchical representation learning.” Modern deep learning
often involves tens or hundreds of successive layers of representations—and they
are all learned automatically from exposure to training data. Meanwhile, other

4 For a compelling example of similarity in functions, see the inputs that maximally activate various layers of a
convolutional neural network (see chapter 4), which closely resemble the neuronal receptive fields of various
parts of the human visual system.
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Figure 1.5 The schematic diagram of a neural network, organized in layers. This neural network 
classifies images of hand-written digits. In between the layers, you can see the intermediate 
representation of the original data. Reproduced with permission from François Chollet, Deep 
Learning with Python, Manning Publications, 2017.
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approaches to machine learning tend to focus on learning only one or two layers of
representations of the data; hence, they are sometimes called shallow learning.

It is a misconception that the “deep” in deep learning is about any kind of deep
understanding of data—that is, “deep” in the sense of understanding the meaning
behind sentences like “freedom is not free” or savoring the contradictions and self-
references in M.C. Escher’s drawings. That kind of “deep” remains an elusive goal for
AI researchers.5 In the future, deep learning may bring us closer to this sort of depth,
but that will certainly be harder to quantify and achieve than adding layers to neural
networks.

5 Douglas Hofstadter, “The Shallowness of Google Translate,” The Atlantic, 30 Jan. 2018, http://mng.bz/5AE1.

INFO BOX 1.1 Not just neural networks: Other popular machine-learning
techniques
We went directly from the “machine learning” circle of the Venn diagram in figure 1.1
to the “neural network” circle inside. However, it is worthwhile for us to briefly visit
the machine-learning techniques that are not neural networks, not only because
doing so will give us a better historical context but also because you may run into
some of the techniques in existing code.

The Naive Bayes classifier is one of the earliest forms of machine learning. Put sim-
ply, Bayes’ theorem is about how to estimate the probability of an event given 1) the
a priori belief of how likely the event is and 2) the observed facts (called features)
relating to the event. This theorem can be used to classify observed data points into
one of many known categories by choosing the category with the highest probability
(likelihood) given the observed facts. Naive Bayes is based on the assumption that
the observed facts are mutually independent (a strong and naive assumption, hence
the name).

Logistic regression (or logreg) is also a classification technique. Thanks to its simple
and versatile nature, it is still popular and often the first thing a data scientist will try
in order to get a feel for the classification task at hand.

Kernel methods, of which support vector machines (SVMs) are the best-known exam-
ples, tackle binary (that is, two-class) classification problems by mapping the original
data into spaces of higher dimensionality and finding a transformation that maxi-
mizes a distance (called a margin) between two classes of examples.

Decision trees are flowchart-like structures that let you classify input data points or
predict output values given inputs. At each step of the flowchart, you answer a simple
yes/no question, such as, “Is feature X greater than a certain threshold?” Depending
on whether the answer is yes or no, you advance to one of two possible next ques-
tions, which is just another yes/no question, and so forth. Once you reach the end
of the flowchart, you will get the final answer. As such, decision trees are easy for
humans to visualize and iterpret.
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THE RISE, FALL, AND RISE OF NEURAL NETWORKS, AND THE REASONS BEHIND THEM

The core ideas of neural networks were formed as early as the 1950s. The key tech-
niques for training neural networks, including backpropagation, were invented in the
1980s. However, for a long period of time between the 1980s and the 2010s, neural
networks were almost completely shunned by the research community, partly because
of the popularity of competing methods such as SVMs and partly because of the lack
of an ability to train deep (many-layered) neural networks. But around 2010, a num-
ber of people still working on neural networks started to make important break-
throughs: the groups of Geoffrey Hinton at the University of Toronto, Yoshua Bengio
at the University of Montreal, and Yann LeCun at New York University, as well as
researchers at the Dalle Molle Institute for Artificial Intelligence Research (IDSIA) in
Switzerland. These groups achieved important milestones, including the first practical
implementations of deep neural networks on graphics processing units (GPUs) and
driving the error rate from about 25% down to less than 5% in the ImageNet com-
puter vision challenge.

Since 2012, deep convolutional neural networks (convnets) have become the go-to
algorithm for all computer-vision tasks; more generally, they work on all perceptual
tasks. Examples of non-computer-vision perceptual tasks include speech recognition.
At major computer vision conferences in 2015 and 2016, it was nearly impossible to
find presentations that didn’t involve convnets in some form. At the same time, deep
learning has also found applications in many other types of problems, such as natural
language processing. It has completely replaced SVMs and decision trees in a wide
range of applications. For instance, for several years, the European Organization for
Nuclear Research, CERN, used decision-tree-based methods to analyze particle data
from the ATLAS detector at the Large Hadron Collider; but CERN eventually
switched to deep neural networks due to their higher performance and ease of train-
ing on large datasets.

So, what makes deep learning stand out from the range of available machine-learning
algorithms? (See info box 1.1 for a list of some popular machine-learning techniques
that are not deep neural networks.) The primary reason deep learning took off so
quickly is that it offered better performance on many problems. But that’s not the only
reason. Deep learning also makes problem-solving much easier because it automates

Random forests and gradient-boosted machines increase the accuracy of decision
trees by forming an ensemble of a large number of specialized, individual decision
trees. Ensembling, also known as ensemble learning, is the technique of training a
collection (that is, an ensemble) of individual machine-learning models and using an
aggregate of their outputs during inference. Today, gradient boosting may be one of
the best algorithms, if not the best, for dealing with nonperceptual data (for example,
credit card fraud detection). Alongside deep learning, it is one of the most commonly
used techniques in data science competitions, such as those on Kaggle.
 



16 CHAPTER 1 Deep learning and JavaScript
what used to be the most crucial and difficult step in a machine-learning workflow: feature
engineering.

Previous machine-learning techniques—shallow learning—only involved trans-
forming the input data into one or two successive representation spaces, usually via
simple transformations such as high-dimensional nonlinear projections (kernel meth-
ods) or decision trees. But the refined representations required by complex problems
generally can’t be attained by such techniques. As such, human engineers had to go to
great lengths to make the initial input data more amenable to processing by these
methods: they had to manually engineer good layers of representations for their data.
This is called feature engineering. Deep learning, on the other hand, automates this
step: with deep learning, you learn all features in one pass rather than having to engi-
neer them yourself. This has greatly simplified machine-learning workflows, often
replacing sophisticated multistage pipelines with a single, simple, end-to-end deep-
learning model. Through automating feature engineering, deep learning makes
machine learning less labor-intensive and more robust—two birds with one stone.

These are the two essential characteristics of how deep learning learns from data:
the incremental, layer-by-layer way in which increasingly complex representations are
developed; and the fact that these intermediate incremental representations are
learned jointly, each layer being updated to follow both the representational needs of
the layer above and the needs of the layer below. Together, these two properties have
made deep learning vastly more successful than previous approaches to machine
learning.

1.1.4 Why deep learning? Why now?

If basic ideas and core techniques for neural networks already existed as early as the
1980s, why did the deep-learning revolution start to happen only after 2012? What
changed in the two decades in between? In general, three technical forces drive
advances in machine learning:

 Hardware
 Datasets and benchmarks
 Algorithmic advances

Let’s visit these factors one by one.

HARDWARE

Deep learning is an engineering science guided by experimental findings rather than
by theory. Algorithmic advances become possible only when appropriate hardware are
available to try new ideas (or to scale up old ideas, as is often the case). Typical deep-
learning models used in computer vision or speech recognition require orders of
magnitude more computational power than what your laptop can deliver.

Throughout the 2000s, companies like NVIDIA and AMD invested billions of dol-
lars in developing fast, massively parallel chips (GPUs) to power the graphics of
increasingly photorealistic video games—cheap, single-purpose supercomputers
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designed to render complex 3D scenes on your screen in real time. This investment
came to benefit the scientific community when, in 2007, NVIDIA launched CUDA
(short for Compute Unified Device Architecture), a general-purpose programming
interface for its line of GPUs. A small number of GPUs started replacing massive clus-
ters of CPUs in various highly parallelizable applications, beginning with physics mod-
eling. Deep neural networks, consisting mostly of many matrix multiplications and
additions, are also highly parallelizable.

Around 2011, some researchers began to write CUDA implementations of neural
nets—Dan Ciresan and Alex Krizhevsky were among the first. Today, high-end GPUs
can deliver hundreds of times more parallel computation power when training deep
neural networks than what a typical CPU is capable of. Without the sheer computa-
tional power of modern GPUs, it would be impossible to train many state-of-the-art
deep neural networks.

DATA AND BENCHMARKS

If hardware and algorithms are the steam engine of the deep-learning revolution,
then data is its coal: the raw material that powers our intelligent machines, without
which nothing would be possible. When it comes to data, in addition to the exponen-
tial progress in storage hardware over the past 20 years (following Moore’s law), the
game changer has been the rise of the internet, which has made it feasible to collect
and distribute very large datasets for machine learning. Today, large companies work
with image datasets, video datasets, and natural language datasets that couldn’t have
been collected without the internet. User-generated image tags on Flickr, for instance,
have been a treasure trove of data for computer vision. So are YouTube videos. And
Wikipedia is a key dataset for natural language processing.

If there’s one dataset that has been a catalyst for the rise of deep learning, it’s Image-
Net, which consists of 1.4 million images that have been hand annotated with 1,000
image categories. What makes ImageNet special isn’t just its large size; it is also the
yearly competition associated with it. As ImageNet and Kaggle have been demonstrat-
ing since 2010, public competitions are an excellent way to motivate researchers and
engineers to push the envelope. Having common benchmarks that researchers com-
pete to beat has greatly helped the recent rise of deep learning.

ALGORITHMIC ADVANCES

In addition to hardware and data, until the late 2000s, we were missing a reliable way
to train very deep neural networks. As a result, neural networks were still fairly shal-
low, using only one or two layers of representations; thus, they couldn’t shine against
more refined shallow methods such as SVMs and random forests. The key issue was
that of gradient propagation through deep stacks of layers. The feedback signal used
to train neural networks would fade away as the number of layers increased.

This changed around 2009 to 2010 with the advent of several simple but important
algorithmic improvements that allowed for better gradient propagation:

 Better activation functions for neural network layers (such as the rectified lin-
ear unit, or relu)
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 Better weight-initialization schemes (for example, Glorot initialization)
 Better optimization schemes (for example, RMSProp and ADAM optimizers)

Only when these improvements began to allow for training models with 10 or more
layers did deep learning start to shine. Finally, in 2014, 2015, and 2016, even more
advanced ways to help gradient propagation were discovered, such as batch normal-
ization, residual connections, and depthwise separable convolutions. Today we can
train from scratch models that are thousands of layers deep.

1.2 Why combine JavaScript and machine learning?
Machine learning, like other branches of AI and data science, is usually done with tra-
ditionally backend-focused languages, such as Python and R, running on servers or
workstations outside the web browser.6 This status quo is not surprising. The training
of deep neural networks often requires the kind of multicore and GPU-accelerated
computation not directly available in a browser tab; the enormous amount of data
that it sometimes takes to train such models is most conveniently ingested in the back-
end: for example, from a native file system of virtually unlimited size. Until recently,
many regarded “deep learning in JavaScript” as a novelty. In this section, we will pres-
ent reasons why, for many kinds of applications, performing deep learning in the
browser environment with JavaScript is a wise choice, and explain how combining the
power of deep learning and the web browser creates unique opportunities, especially
with the help of TensorFlow.js.

First, once a machine-learning model is trained, it must be deployed somewhere in
order to make predictions on real data (such as classifying images and text, detecting
events in audio or video streams, and so on). Without deployment, training a model is
just a waste of compute power. It is often desirable or imperative that the “somewhere”
is a web frontend. Readers of this book are likely to appreciate the overall importance
of the web browser. On desktops and laptops, the web browser is the dominant means
through which users access content and services on the internet. It is how desktop and
laptop users spend most of their time using those devices, exceeding the second place
by a large margin. It is how users get vast amounts of their daily work done, stay con-
nected, and entertain themselves. The wide range of applications that run in the web
browser provide rich opportunities for applying client-side machine learning. For the
mobile frontend, the web browser trails behind native mobile apps in terms of user
engagement and time spent. But mobile browsers are nonetheless a force to be reck-
oned with because of their broader reach, instant access, and faster development
cycles.7 In fact, because of their flexibility and ease of use, many mobile apps, such as
Twitter and Facebook, drop into a JavaScript-enabled web view for certain types of
content.

6 Srishti Deoras, “Top 10 Programming Languages for Data Scientists to Learn in 2018,” Analytics India Magazine,
25 Jan. 2018, http://mng.bz/6wrD.

7 Rishabh Borde, “Internet Time Spend in Mobile Apps, 2017–19: It’s 8x than Mobile Web,” DazeInfo, 12 Apr.
2017, http://mng.bz/omDr.
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Due to this broad reach, the web browser is a logical choice for deploying deep-
learning models, as long as the kinds of data the models expect are available in the
browser. But what kinds of data are available in the browser? The answer is, many!
Take, for example, the most popular applications of deep learning: classifying and
detecting objects in images and videos, transcribing speech, translating languages, and
analyzing text content. Web browsers are equipped with arguably the most comprehen-
sive technologies and APIs for presenting (and, with user permission, for capturing)
textual, image, audio, and video data. As a result, powerful machine-learning models
can be directly used in the browser, for example, with TensorFlow.js and straightfor-
ward conversion processes. In the later chapters of this book, we will cover many con-
crete examples of deploying deep-learning models in the browser. For example, once
you have captured images from a webcam, you can use TensorFlow.js to run MobileNet
to label objects, run YOLO2 to put bounding boxes around detected objects, run
Lipnet to do lipreading, or run a CNN-LSTM network to apply captions to images.

Once you have captured audio from the microphone using the browser’s WebAudio
API, TensorFlow.js can run models to perform real-time spoken-word recognition.
There are exciting applications with textual data as well, such as assigning sentiment
scores to user text like movie reviews (chapter 9). Beyond these data modalities, the
modern web browser can access a range of sensors on mobile devices. For example,
HTML5 provides API access to geolocation (latitude and longitude), motion (device
orientation and acceleration), and ambient light (see http://mobilehtml5.org). Com-
bined with deep learning and other data modalities, data from such sensors opens
doors to many exciting new applications.

Browser-based application of deep learning comes with five additional benefits:
reduced server cost, lowered inference latency, data privacy, instant GPU acceleration,
and instant access:

 Server cost is often an important consideration when designing and scaling web
services. The computation required to run deep-learning models in a timely
manner is often significant, necessitating the use of GPU acceleration. If models
are not deployed to the client side, they need to be deployed on GPU-backed
machines, such as virtual machines with CUDA GPUs from Google Cloud or
Amazon Web Services. Such cloud GPU machines are often costly. Even the
most basic GPU machines presently cost in the neighborhood of $0.5–1 per
hour (see https://www.ec2instances.info and https://cloud.google.com/ gpu).
With increasing traffic, the cost of running a fleet of cloud GPU machines gets
higher, not to mention the challenge of scalability and the added complexity of
your server stack. All these concerns can be eliminated by deploying the model
to the client. The overhead of client-side downloading of the model (which is
often several megabytes or more) can be alleviated by the browser’s caching
and local storage capabilities (chapter 2).

 Lowered inference latency—For certain types of applications, the requirement for
latency is so stringent that the deep-learning models must be run on the client
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side. Any applications that involve real-time audio, image, and video data fall
into this category. Consider what will happen if image frames need to be trans-
ferred to the server for inference. Suppose images are captured from a webcam
at a modest size of 400 × 400 pixels with three color channels (RGB) and an 8-bit
depth per color channel at a rate of 10 frames per second. Even with JPEG com-
pression, each image has a size of about 150 Kb. On a typical mobile network
with an approximately 300-Kbps upload bandwidth, it can take more than 500
milliseconds to upload each image, leading to a latency that is noticeable and
perhaps unacceptable for certain applications (for example, games). This calcu-
lation doesn’t take into account the fluctuation in (and possible loss of) network
connectivity, the additional time it takes to download the inference results, and
the vast amount of mobile data usage, each of which can be a showstopper.

Client-side inference addresses these potential latency and connectivity con-
cerns by keeping the data and the computation on the device. It is impossible to
run real-time machine-learning applications such as labeling objects and detect-
ing poses in webcam images without the model running purely on the client.
Even for applications without latency requirements, the reduction in model
inference latency can lead to greater responsiveness and hence an improved
user experience.

 Data privacy—Another benefit of leaving the training and inference data on the
client is the protection of users’ privacy. The topic of data privacy is becoming
increasingly important today. For certain types of applications, data privacy is an
absolute requirement. Applications related to health and medical data are a
prominent example. Consider a “skin disease diagnosis aid” that collects images
of a patient’s skin from their webcam and uses deep learning to generate possi-
ble diagnoses of the skin condition. Health information privacy regulations in
many countries will not allow the images to be transferred to a centralized
server for inference. By running the model inference in the browser, no data
needs to ever leave the user’s phone or be stored anywhere, ensuring the pri-
vacy of the user’s health data.

Consider another browser-based application that uses deep learning to pro-
vide users with suggestions on how to improve the text they write in the applica-
tion. Some users may use this application to write sensitive content such as legal
documents and will not be comfortable with the data being transferred to a
remote server via the public internet. Running the model purely in client-side
browser JavaScript is an effective way to address this concern.

 Instant WebGL acceleration—In addition to the availability of data, another pre-
requisite for running machine-learning models in the web browser is sufficient
compute power through GPU acceleration. As mentioned earlier, many state-of-
the-art deep-learning models are so computationally intensive that acceleration
through parallel computation on the GPU is a must (unless you are willing to
let users wait for minutes for a single inference result, which rarely happens in
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real applications). Fortunately, modern web browsers come equipped with the
WebGL API, which, even though it was originally designed for accelerated ren-
dering of 2D and 3D graphics, can be ingeniously leveraged for the kind of par-
allel computation required for accelerating neural networks. The authors of
TensorFlow.js painstakingly wrapped WebGL-based acceleration of the deep-
learning components in the library, so the acceleration is available to you
through a single line of JavaScript import.

WebGL-based acceleration of neural networks may not be perfectly on par
with native, tailored GPU acceleration such as NVIDIA’s CUDA and CuDNN
(used by Python deep-learning libraries such as TensorFlow and PyTorch), but
it still leads to orders of magnitude speedup of neural networks and enables
real-time inference such as what PoseNet extraction of a human-body pose
offers.

If performing inference on pretrained models is expensive, performing
training or transfer learning on such models is even more so. Training and
transfer learning enable exciting applications such as personalization of deep-
learning models, frontend visualization of deep learning, and federated learn-
ing (training the same model on many devices, then aggregating the results of
the training to obtain a good model). The WebGL acceleration of TensorFlow.js
makes it possible to train or fine-tune neural networks with sufficient speed,
purely inside the web browser.

 Instant access—Generally speaking, applications that run in the browser have
the natural advantage of “zero install:” all it takes to access the app is typing a
URL or clicking a link. This forgoes any potentially tedious and error-prone
installation steps, along with possibly risky access control when installing new
software. In the context of deep learning in the browser, the WebGL-based neu-
ral network acceleration that TensorFlow.js provides does not require special
kinds of graphics cards or installation of drivers for such cards, which is often a
nontrivial process. Most reasonably up-to-date desktop, laptop, and mobile
devices come with graphics cards available to the browser and WebGL. Such
devices, as long as they have a TensorFlow.js-compatible web browser installed
(a low bar), are automatically ready to run WebGL-accelerated neural networks.
This is an especially attractive feature in places where ease of access is vital—for
example, the education of deep learning.

INFO BOX 1.2 Accelerating computation using GPU and WebGL
It takes a massive number of math operations to train machine-learning models and
use them for inference. For example, the widely used “dense” neural network layers
involve multiplying a large matrix with a vector and adding the result to another vector.
A typical operation of this sort involves thousands or millions of floating-point oper-
ations. An important fact about such operations is that they are often parallelizable.
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(continued)
For instance, adding two vectors can be divided into many smaller operations, such
as adding two individual numbers. These smaller operations do not depend on each
other. For example, you don’t need to know the sum of the two elements of the two
vectors at index 0 to compute the sum of the two elements at index 1. As a result,
the smaller operations can be performed at the same time, instead of one at a time,
no matter how large the vectors are. Serial computation, such as a naive CPU imple-
mentation of vector addition, is known as Single Instruction Single Data (SISD). Par-
allel computation on the GPU is known as Single Instruction Multiple Data (SIMD). It
typically takes the CPU less time to compute each individual addition than a GPU
takes. But the total cost over this large amount of data leads the GPU’s SIMD to out-
perform the CPU’s SISD. A deep neural network can contain millions of parameters.
For a given input, it might take billions of element-by-element math operations to run
(if not more). The massively parallel computation that GPUs are capable of really
shines at this scale.

To be precise, modern CPUs are capable of certain levels of SIMD instructions, too.
However, a GPU comes with a much greater number of processing units (on the order
of hundreds or thousands) and can execute instructions on many slices of the input
data at the same time. Vector addition is a relatively simple SIMD task in that each
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In addition to the advantages we have described, web-based machine-learning applica-
tions enjoy the same benefits as generic web applications that do not involve machine
learning:

 Unlike native app development, the JavaScript application you write with Tensor-
Flow.js will work on many families of devices, ranging from Mac, Windows, and
Linux desktops to Android and iOS devices.

 With its optimized 2D and 3D graphical capabilities, the web browser is the rich-
est and most mature environment for data visualization and interactivity. In
places where people would like to present the behavior and internals of
neural networks to humans, it is hard to think of any environment that beats
the browser. Take TensorFlow Playground, for example (https://playground
.tensorflow.org). It is a highly popular web app in which you can interactively
solve classification problems with neural networks. You can tune the structure
and hyperparameters of the neural network and observe how its hidden layers
and outputs change as a result (see figure 1.6). If you have not played with it
before, we highly recommend you give it a try. Many have expressed the view
that this is among the most instructive and delightful educational materials
they’ve seen on the topic of neural networks. TensorFlow Playground is, in fact,
an important forebearer of TensorFlow.js. As an offspring of the Playground,
TensorFlow.js is powered by a far wider range of deep-learning capabilities and
far more optimized performance. In addition, it is equipped with a dedicated
component for visualization of deep-learning models (covered in chapter 7 in

step of computation looks at only a single index, and the results at different indices
are independent of each other. Other SIMD tasks seen in machine learning are more
complex. For example, in matrix multiplication, each step of computation uses data
from multiple indices, and there are dependencies between the indices. But the basic
idea of acceleration through parallelization remains the same.

It is interesting to note that GPUs were not originally designed for accelerating neural
networks. This can be seen in the name: graphics processing unit. The primary pur-
pose of GPUs is processing 2D and 3D graphics. In many graphical applications, such
as 3D gaming, it is critical that the processing be done in as little time as possible
so that the images on the screen can be updated at a sufficiently high frame rate for
smooth gaming experiences. This was the original motivation when the creators of
the GPU exploited SIMD parallelization. But, as a pleasant surprise, the kind of par-
allel computing GPUs are capable of also suits the needs of machine learning.

The WebGL library TensorFlow.js uses for GPU acceleration was originally designed
for tasks such as rendering textures (surface patterns) on 3D objects in the web
browser. But textures are just arrays of numbers! Hence, we can pretend that the
numbers are neural network weights or activations and repurpose WebGL’s SIMD tex-
ture operations to run neural networks. This is exactly how TensorFlow.js accelerates
neural networks in the browser.
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detail). No matter whether you want to build basic educational applications
along the lines of TensorFlow Playground or present your cutting-edge deep-
learning research in a visually appealing and intuitive fashion, TensorFlow.js will
help you go a long way toward your goals (see examples such as real-time tSNE
embedding visualization8).

1.2.1 Deep learning with Node.js

For security and performance reasons, the web browser is designed to be a resource-
constrained environment in terms of limited memory and storage quota. This means
that the browser is not an ideal environment for training large machine-learning mod-
els with large amounts of data, despite the fact that it is ideal for many types of infer-
ence, small-scale training, and transfer-learning tasks, which require fewer resources.
However, Node.js alters the equation entirely. Node.js enables JavaScript to be run out-
side the web browser, thus granting it access to all the native resources, such as RAM
and the file system. TensorFlow.js comes with a Node.js version, called tfjs-node. It binds
directly to the native TensorFlow libraries compiled from C++ and CUDA code, and so
enables users to use the same parallelized CPU and GPU operation kernels as used
under the hood by TensorFlow (in Python). As can be shown empirically, the speed of
model training in tfjs-node is on par with the speed of Keras in Python. So, tfjs-node is

8 See Nicola Pezzotti, “Realtime tSNE Visualizations with TensorFlow.js,” googblogs, http://mng.bz/nvDg.

Figure 1.6 A screenshot of TensorFlow Playground (https://playground.tensorflow.org), a popular 
browser-based UI for teaching how neural networks work from Daniel Smilkov and his colleagues at 
Google. TensorFlow Playground was also an important precursor of the later TensorFlow.js project.
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an appropriate environment for training large machine-learning models with large
amounts of data. In this book, you will see examples in which we use tfjs-node to train
the kind of large models that are beyond the browser’s capability (for example, the
word recognizer in chapter 5 and the text-sentiment analyzer in chapter 9).

But what are the possible reasons to choose Node.js over the more established
Python environment for training machine-learning models? The answers are 1) per-
formance and 2) compatibility with existing stack and developer skill sets. First, in
terms of performance, the state-of-the-art JavaScript interpreters, such as the V8
engine Node.js uses, perform just-in-time (JIT) compilation of JavaScript code, lead-
ing to superior performance over Python. As a result, it is often faster to train models
in tfjs-node than in Keras (Python), as long as the model is small enough for the lan-
guage interpreter performance to be the determining factor.

Second, Node.js is a very popular environment for building server-side applica-
tions. If your backend is already written in Node.js, and you would like to add
machine learning to your stack, using tfjs-node is usually a better choice than using
Python. By keeping code in a single language, you can directly reuse large portions of
your code base, including those bits for loading and formatting the data. This will
help you set up the model-training pipeline faster. By not adding a new language to
your stack, you also keep its complexity and maintenance costs down, possibly saving
the time and cost of hiring a Python programmer.

Finally, the machine-learning code written in TensorFlow.js will work in both the
browser environment and Node.js, with the possible exception of data-related code
that relies on browser-only or Node-only APIs. Most of the code examples you will
encounter in this book will work in both environments. We have made efforts to sepa-
rate the environment-independent, machine-learning-centric part of the code from
the environment-specific data-ingestion and UI code. The added benefit is that you
get the ability to do deep learning on both the server and client sides by learning only
one library.

1.2.2 The JavaScript ecosystem

When assessing the suitability of JavaScript for a certain type of application such as
deep learning, we should not ignore the factor that JavaScript is a language with an
exceptionally strong ecosystem. For years, JavaScript has been consistently ranked
number one among a few dozen programming languages in terms of repository count
and pull activities on GitHub (see http://githut.info). On npm, the de facto public
repository of JavaScript packages, there are more than 600,000 packages as of July
2018. This more than quadruples the number of packages in PyPI, the de facto public
repository of Python packages (www.modulecounts.com). Despite the fact that Python
and R have a better-established community for machine learning and data science,
the JavaScript community is building up support for machine-learning-related data
pipelines as well.
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Want to ingest data from cloud storage and databases? Both Google Cloud and
Amazon Web Services provide Node.js APIs. Most popular database systems today,
such as MongoDB and RethinkDB, have first-class support for Node.js drivers. Want to
wrangle data in JavaScript? We recommend the book Data Wrangling with Java-
Script by Ashley Davis (Manning Publications, 2018, www.manning.com/books/data-
wrangling-with-javascript). Want to visualize your data? There are mature and power-
ful libraries such as d3.js, vega.js, and plotly.js that outshine Python visualization librar-
ies in many regards. Once you have your input data ready, TensorFlow.js, the main
topic of this book, will take it from there and help you create, train, and execute your
deep-learning models, as well as save, load, and visualize them.

Finally, the JavaScript ecosystem is still constantly evolving in exciting ways. Its
reach is being extended from its traditional strongholds—namely, the web browser
and Node.js backend environments—to new territories such as desktop applications
(for example, Electron) and native mobile applications (for instance, React Native
and Ionic). It is often easier to write UIs and apps for such frameworks than to use
myriad platform-specific app creation tools. JavaScript is a language that has the
potential to bring the power of deep learning to all major platforms. We summarize
the main benefits of combining JavaScript and deep learning in table 1.2. 

Table 1.2 A brief summary of the benefits of doing deep learning in JavaScript

Consideration Examples

Reasons related to the client 
side

• Reduced inference and training latency due to the locality of data
• Ability to run models when the client is offline
• Privacy protection (data never leaves the browser)
• Reduced server cost
• Simplified deployment stack

Reasons related to the web 
browser

• Availability of multiple modalities of data (HTML5 video, audio, and 
sensor APIs) for inference and training

• The zero-install user experience
• The zero-install access to parallel computation via the WebGL API on 

a wide range of GPUs
• Cross-platform support
• Ideal environment for visualization and interactivity
• Inherently interconnected environment opens direct access to various 

sources of machine-learning data and resources

Reasons related to Java-
Script

• JavaScript is the most popular open source programming language by 
many measures, so there is an abundance of JavaScript talent and 
enthusiasm.

• JavaScript has a vibrant ecosystem and wide applications at both cli-
ent and server sides.

• Node.js allows applications to run on the server side without the 
resource constraints of the browser.

• The V8 engine makes JavaScript code run fast.
 

www.manning.com/books/data-wrangling-with-javascript
www.manning.com/books/data-wrangling-with-javascript
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1.3 Why TensorFlow.js?
To do deep learning in JavaScript, you need to select a library. TensorFlow.js is our
choice for this book. In this section, we will describe what TensorFlow.js is and the rea-
sons we selected it.

1.3.1 A brief history of TensorFlow, Keras, and TensorFlow.js

TensorFlow.js is a library that enables you to do deep learning in JavaScript. As its
name suggests, TensorFlow.js is designed to be consistent and compatible with Tensor-
Flow, the Python framework for deep learning. To understand TensorFlow.js, we need
to briefly examine the history of TensorFlow.

TensorFlow was made open source in November 2015 by a team of engineers work-
ing on deep learning at Google. The authors of this book are members of this team.
Since its open source debut, TensorFlow has gained immense popularity. It is now
being used for a wide range of industrial applications and research projects both at
Google and in the larger technical community. The name “TensorFlow” was coined to
reflect what happens inside a typical program written with the framework: data repre-
sentations called tensors flow through layers and other data-processing nodes, allowing
inference and training to happen on machine-learning models.

First off, what is a tensor? It is just a computer scientist’s way of saying “multidimen-
sional array” concisely. In neural networks and deep learning, every piece of data and
every computation result is represented as a tensor. For example, a grayscale image can
be represented as a 2D array of numbers—a 2D tensor; a color image is usually repre-
sented as a 3D tensor, with the extra dimension being the color channels. Sounds, vid-
eos, text, and any other types of data can all be represented as tensors. Each tensor has
two basic properties: the data type (such as float32 or int32) and the shape. Shape
describes the size of the tensor along all its dimensions. For instance, a 2D tensor may
have the shape [128, 256], and a 3D tensor may have the shape [10, 20, 128]. Once
data is turned into a tensor of a given data type and shape, it can be fed into any type
of layer that accepts that data type and shape, regardless of the data’s original mean-
ing. Therefore, the tensor is the lingua franca of deep-learning models.

But why tensors? In the previous section, we learned that the bulk of the computa-
tions involved in running a deep neural network are performed as massively paral-
lelized operations, commonly on GPUs, which require performing the same
computation on multiple pieces of data. Tensors are containers that organize our data
into structures that can be processed efficiently in parallel. When we add tensor A
with shape [128, 128] to tensor B with shape [128, 128], it is very clear that there
are 128 * 128 independent additions that need to take place.

How about the “flow” part? Imagine a tensor as a kind of fluid that carries data. In
TensorFlow, it flows through a graph—a data structure consisting of interconnected
mathematical operations (called nodes). As figure 1.7 shows, the node can be succes-
sive layers in a neural network. Each node takes tensors as inputs and produces ten-
sors as outputs. The “tensor fluid” gets transformed into different shapes and
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different values as it “flows” through the TensorFlow graph. This corresponds to the
transformation of representations: that is, the crux of what neural networks do, as we
have described in previous sections. Using TensorFlow, machine-learning engineers
can write all kinds of neural networks, ranging from shallow ones to very deep ones,
from convnets for computer vision to recurrent neural networks (RNNs) for sequence
tasks. The graph data structure can be serialized and deployed to run many types of
devices, from mainframes to mobile phones.

At its core, TensorFlow was designed to be very general and flexible: the operations
can be any well-defined mathematical functions, not just layers of neural networks.
For example, they can be low-level mathematical operations such as adding and multi-
plying two tensors—the kind of operations that happen inside a neural network layer.
This gives deep-learning engineers and researchers great power to define arbitrary
and novel operations for deep learning. However, for a large fraction of deep-learning
practitioners, manipulating such low-level machinery is more trouble than it’s worth.
It leads to bloated and more error-prone code and longer development cycles. Most
deep-learning engineers use a handful of fixed layer types (for instance, convolution,
pooling, or dense, as you will learn in detail in later chapters). Rarely do they need to
create new layer types. This is where the LEGO analogy is appropriate. With LEGOs,
there are only a small number of block types. LEGO builders don’t need to think
about what it takes to make a LEGO block. This is different from a toy like, say, Play-
Doh, which is analogous to TensorFlow’s low-level API. Yet the ability to connect
LEGO blocks leads to a combinatorially large number of possibilities and virtually

Layer 1 Layer 2 Layer 3

Tensor 1  Tensor 2  
Input:

Tensor 0 Prediction:
Tensor 3 

Figure 1.7 Tensors “flow” through a number of layers, a common scenario in TensorFlow and 
TensorFlow.js.
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infinite power. It is possible to build a toy house with either LEGOs or Play-Doh, but
unless you have very special requirements for the house’s size, shape, texture, or mate-
rial, it is much easier and faster to build it with LEGOs. For most of us, the LEGO
house we build will stand more stably and look nicer than the Play-Doh house we’d
make.

In the world of TensorFlow, the LEGO equivalent is the high-level API called
Keras.9 Keras provides a set of the most frequently used types of neural network layers,
each with configurable parameters. It also allows users to connect the layers together
to form neural networks. Furthermore, Keras also comes with APIs for

 Specifying how the neural network will be trained (loss functions, metrics, and
optimizers)

 Feeding data to train or evaluate the neural network or use the model for
inference

 Monitoring the ongoing training process (callbacks)
 Saving and loading models
 Printing or plotting the architecture of models

With Keras, users can perform the full deep-learning workflow with very few lines of
code. With the flexibility of the low-level API and the usability of the high-level API,
TensorFlow and Keras form an ecosystem that leads the field of deep-learning frame-
works in terms of industrial and academic adoption (see the tweet at http://
mng.bz/vlDJ). As a part of the ongoing deep-learning revolution, their role in making
deep learning accessible to a wider audience should not be underestimated. Before
frameworks such as TensorFlow and Keras, only those with CUDA programming skills
and extensive experience in writing neural networks in C++ were able to do practical
deep learning. With TensorFlow and Keras, it takes much less skill and effort to create
GPU-accelerated deep neural networks. But there was one problem: it was not possi-
ble to run TensorFlow or Keras models in JavaScript or directly in the web browser. To
serve trained deep-learning models in the browser, we had to do it via HTTP requests to
a backend server. This is where TensorFlow.js comes into the picture. TensorFlow.js was
an effort started by Nikhil Thorat and Daniel Smilkov, two experts in deep-learning-
related data visualization and human-computer interaction10 at Google. As we have
mentioned, the highly popular TensorFlow Playground demo of a deep neural
network planted the initial seed of the TensorFlow.js project. In September 2017, a
library called deeplearn.js was released that has a low-level API analogous to
the TensorFlow low-level API. Deeplearn.js championed WebGL-accelerated neural

9 In fact, since the introduction of TensorFlow, a number of high-level APIs have emerged, some created by
Google engineers and others by the open source community. Among the most popular ones are Keras,
tf.Estimator, tf.contrib.slim, and TensorLayers. For the readers of this book, the most relevant high-level API
to TensorFlow.js is Keras by far, because the high-level API of TensorFlow.js is modeled after Keras and
because TensorFlow.js provides two-way compatibility in model saving and loading with Keras.

10 As an interesting historical note, these authors also played key roles in creating TensorBoard, the popular
visualization tool for TensorFlow models.
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network operations, making it possible to run real neural networks with low inference
latencies in the web browser.

Following the initial success of deeplearn.js, more members of the Google Brain
team joined the project, and it was renamed TensorFlow.js. The JavaScript API under-
went significant revamping, boosting API compatibility with TensorFlow. In addition,
a Keras-like high-level API was built on top of the low-level core, making it much easier
for users to define, train, and run deep-learning models in the JavaScript library.
Today, what we said earlier about the power and usability of Keras is all true for
TensorFlow.js as well. To further enhance interoperability, converters were built so
that TensorFlow.js can import models saved from TensorFlow and Keras and export
models to them. Since its debut at the worldwide TensorFlow Developer Summit and
Google I/O in the spring of 2018 (see www.youtube.com/watch?v=YB-kfeNIPCE and
www.youtube.com/watch?v=OmofOvMApTU), TensorFlow.js has quickly become a
highly popular JavaScript deep-learning library, with currently the highest number of
stars and forks among similar libraries on GitHub.

Figure 1.8 presents an overview of the TensorFlow.js architecture. The lowest level
is responsible for parallel computing for fast mathematical operations. Although this
layer is not visible to most users, it is critical that it have high performance so that
model training and inference in higher levels of the API can be as fast as possible. In
the browser, it leverages WebGL to achieve GPU acceleration (see info box 1.2). In
Node.js, direct binding to the multicore CPU parallelization and CUDA GPU acceler-
ation are both available. These are the same math backends used by TensorFlow and
Keras in Python. Built on top of the lowest math level is the Ops API, which has good
parity with the low-level API of TensorFlow and supports loading SavedModels from
TensorFlow. On the highest level is the Keras-like Layers API. The Layers API is the
right API choice for most programmers using TensorFlow.js and will be the main focus
of this book. The Layers API also supports two-way model importing/exporting with
Keras.

Core API

Layers API

WebGL

Browser Node.js

TF
CPU

TF
GPU

TF
TPU

Keras
model

TensorFlow
SavedModel

Figure 1.8 The architecture of TensorFlow.js at a glance. Its relationship to Python 
TensorFlow and Keras is also shown.
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1.3.2 Why TensorFlow.js: A brief comparison with similar libraries

TensorFlow.js is not the only JavaScript library for deep learning; neither was it the
first one to appear (for example, brain.js and ConvNetJS have a much longer history).
So, why does TensorFlow.js stand out among similar libraries? The first reason is its
comprehensiveness—TensorFlow.js is the only currently available library that supports
all key parts of the production deep-learning workflow:

 Supports both inference and training
 Supports web browsers and Node.js
 Leverages GPU acceleration (WebGL in browsers and CUDA kernels in Node.js)
 Supports definition of neural network model architectures in JavaScript
 Supports serialization and deserialization of models
 Supports conversions to and from Python deep-learning frameworks
 Compatible in API with Python deep-learning frameworks
 Equipped with built-in support for data ingestion and with an API for visualization

The second reason is the ecosystem. Most JavaScript deep-learning libraries define
their own unique API, whereas TensorFlow.js is tightly integrated with TensorFlow and
Keras. You have a trained model from Python TensorFlow or Keras and want to use it
in the browser? No problem. You have created a TensorFlow.js model in the browser
and want to take it into Keras for access to faster accelerators such as Google TPUs?
That works, too! Tight integration with non-JavaScript frameworks not only boosts
interoperability but also makes it easier for developers to migrate between the worlds
of programming languages and infrastructure stacks. For example, once you have
mastered TensorFlow.js from reading this book, it will be smooth sailing if you want to
start using Keras in Python. The reverse journey is as easy: someone with good knowl-
edge of Keras should be able to learn TensorFlow.js quickly (assuming sufficient Java-
Script skills). Last but not least, the popularity of TensorFlow.js and the strength of its
community should not be overlooked. The developers of TensorFlow.js are committed
to long-term maintenance and support of the library. From GitHub star and fork
counts to number of external contributors, from the liveliness of the discussion to the
number of questions and answers on Stack Overflow, TensorFlow.js is shadowed by
none of the competing libraries.

1.3.3 How is TensorFlow.js being used by the world?

There is no more convincing testimony to the power and popularity of a library than
the way in which it is used in real-world applications. A few noteworthy applications of
TensorFlow.js include the following:

 Google’s Project Magenta uses TensorFlow.js to run RNNs and other kinds of
deep neural networks to generate musical scores and novel instrument sounds
in the browser (https://magenta.tensorflow.org/demos/).
 

https://magenta.tensorflow.org/demos/
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 Dan Shiffman and his colleagues at New York University built ML5.js, an easy-to-
use, higher-level API for various out-of-the-box deep-learning models for the
browser, such as object detection and image style transfer (https://ml5js.org).

 Abhishek Singh, an open source developer, created a browser-based interface
that translates American Sign Language into speech to help people who can’t
speak or hear use smart speakers such as Amazon Echo.11

 Canvas Friends is a game-like web app based on TensorFlow.js that helps users
improve their drawing and artistic skills (www.y8.com/games/canvas_friends).

 MetaCar, a self-driving car simulator that runs in the browser, uses Tensor-
Flow.js to implement reinforcement learning algorithms that are critical to its
simulations (www.metacar-project.com).

 Clinic doctor, a Node.js-based application that monitors the performance of
server-side programs, implemented a Hidden Markov Model with TensorFlow.js
and is using it to detect spikes in CPU usage.12

 See TensorFlow.js’s gallery of other outstanding applications built by the
open source community at https://github.com/tensorflow/tfjs/blob/master/
GALLERY.md.

1.3.4 What this book will and will not teach you about TensorFlow.js

Through studying the materials in this book, you should be able to build applications
like the following using TensorFlow.js:

 A website that classifies images uploaded by a user
 Deep neural networks that ingest image and audio data from browser-attached

sensors and perform real-time machine-learning tasks, such as recognition and
transfer learning, on them

 Client-side natural language AI such as a comment-sentiment classifier to assist
with comment moderation

 A Node.js (backend) machine-learning model trainer that uses gigabyte-scale
data and GPU acceleration

 A TensorFlow.js-powered reinforcement learner that can solve small-scale con-
trol and game problems

 A dashboard to illustrate the internals of trained models and the results of
machine-learning experiments

Importantly, not only will you know how to build and run such applications, but you
will also understand how they work. For instance, you will have practical knowledge of
the strategies and constraints involved in creating deep-learning models for various

11 Abhishek Singh, “Getting Alexa to Respond to Sign Language Using Your Webcam and TensorFlow.js,”
Medium, 8 Aug. 2018, http://mng.bz/4eEa.

12 Andreas Madsen, “Clinic.js Doctor Just Got More Advanced with TensorFlow.js,” Clinic.js blog, 22 Aug. 2018,
http://mng.bz/Q06w.
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types of problems, as well as the steps and gotchas in training and deploying such
models.

Machine learning is a wide field; TensorFlow.js is a versatile library. Therefore,
some applications are entirely doable with existing TensorFlow.js technology but are
beyond what is covered in the book. Examples are:

 High-performance, distributed training of deep neural networks that involve a
huge amount of data (on the order of terabytes) in the Node.js environment

 Non-neural-network techniques, such as SVMs, decision trees, and random
forests

 Advanced deep-learning applications such as text-summarization engines that
reduce large documents into a few representative sentences, image-to-text
engines that generate text summary from input images, and generative image
models that enhance the resolution of input images

This book will, however, give you foundational knowledge of deep learning with which
you will be prepared to learn about the code and articles related to those advanced
applications.

Like any other technology, TensorFlow.js has its limits. Some tasks are beyond what
it can do. Even though these limits are likely to be pushed in the future, it is good to
be aware of where the boundaries are at the time of writing:

 Running deep-learning models with memory requirements that exceed the
RAM and WebGL limits in a browser tab. For in-browser inference, this typically
means a model with a total weight size above ~100 MB. For training, more mem-
ory and compute power is required, so it is possible that even smaller models will
be too slow to train in a browser tab. Model training also typically involves larger
amounts of data than inference, which is another limiting factor that should be
taken into account when assessing the feasibility of in-browser training.

 Creating a high-end reinforcement learner, such as the kind that can defeat
human players at the game of Go.

 Training deep-learning models with a distributed (multimachine) setup using
Node.js.

Exercises
1 Whether you are a frontend JavaScript developer or a Node.js developer, based

on what you learned in this chapter, brainstorm a few possible cases in which
you can apply machine learning to the system you are working on to make it
more intelligent. For inspiration, refer to tables 1.1 and 1.2, as well as section
1.3.3. Some further examples include the following:
a A fashion website that sells accessories such as sunglasses captures images of

users’ faces using the webcam and detects facial landmark points using a
deep neural network running on TensorFlow.js. The detected landmarks are
then used to synthesize an image of the sunglasses overlaid on the user’s face
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to simulate a try-on experience in the web page. The experience is realistic
because the simulated try-on can run with low latency and at a high frame
rate thanks to client-side inference. The user’s data privacy is respected
because the captured facial image never leaves the browser.

b A mobile sports app written in React Native (a cross-platform JavaScript
library for creating native mobile apps) tracks users’ exercise. Using the
HTML5 API, the app accesses real-time data from the phone’s gyroscope and
accelerometer. The data is run through a TensorFlow.js-powered model that
automatically detects the user’s current activity type (for example, resting
versus walking versus jogging versus sprinting).

c A browser extension automatically detects whether the person using the
device is a child or an adult (by using images captured from the webcam at a
frame rate of once per 5 seconds and a computer-vision model powered by
TensorFlow.js) and uses the information to block or grant access to certain
websites accordingly.

d A browser-based programming environment uses a recurrent neural network
implemented with TensorFlow.js to detect typos in code comments.

e A Node.js-based server-side application that coordinates a cargo logistics ser-
vice uses real-time signals such as carrier status, cargo type and quantity,
date/time, and traffic information to predict the estimated time of arrival
(ETA) for each transaction. The training and inference pipelines are all writ-
ten in Node.js, using TensorFlow.js, simplifying the server stack.

Summary
 AI is the study of automating cognitive tasks. Machine learning is a subfield of

AI in which rules for performing a task such as image classification are discov-
ered automatically by learning from examples in the training data.

 A central problem in machine learning is how to transform the original repre-
sentation of data into a representation more amenable to solving the task.

 Neural networks are an approach in machine learning wherein the transforma-
tion of data representation is performed by successive steps (or layers) of mathe-
matical operations. The field of deep learning concerns deep neural networks—
neural networks with many layers.

 Thanks to enhancements in hardware, increased availability of labeled data,
and advances in algorithms, the field of deep learning has made astonishing
progress since the early 2010s, solving previously unsolvable problems and cre-
ating exciting new opportunities.

 JavaScript and the web browser are a suitable environment for deploying and
training deep neural networks.

 TensorFlow.js, the focus of this book, is a comprehensive, versatile, and power-
ful open source library for deep learning in JavaScript.
 



Part 2

A gentle introduction
to TensorFlow.js

Having covered the foundations, in this part of the book we dive into
machine learning in a hands-on fashion, armed with TensorFlow.js. We start in
chapter 2 with a simple machine-learning task—regression (predicting a single
number)—and work toward more sophisticated tasks such as binary and multi-
class classification in chapters 3 and 4. In lockstep with task types, you’ll also see
a gentle progression from simple data (flat arrays of numbers) to more complex
ones (images and sounds). The mathematical underpinning of methods such as
backpropagation will be introduced alongside concrete problems and the code
that solves them. We eschew formal math in favor of more intuitive explanations,
diagrams, and pseudo-code. Chapter 5 discusses transfer learning, an efficient
reuse of pretrained neural networks to adapt to new data, and presents an
approach especially suited to the deep-learning browser environment.
 



 



Getting started:
Simple linear regression

in TensorFlow.js
Nobody likes to wait, and it’s especially annoying to wait when we don’t know how
long we’ll have to wait for. Any user experience designer will tell you that if you
can’t hide the delay, then the next best thing is to give the user a reliable estimate
of the wait time. Estimating expected delays is a prediction problem, and the Ten-
sorFlow.js library can be used to build an accurate download-time prediction, sensi-
tive to the context and user, enabling us to build clear, reliable experiences that
respect the user’s time and attention.

In this chapter, using a simple download-time prediction problem as our moti-
vating example, we will introduce the main components of a complete machine-
learning model. We will cover tensors, modeling, and optimization from a practical

This chapter covers
 A minimal example of a neural network for the simple 

machine-learning task of linear regression

 Tensors and tensor operations

 Basic neural network optimization
37
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point of view so that you can build intuitions about what they are, how they work, and
how to use them appropriately.

A complete understanding of the internals of deep learning—the type a dedicated
researcher would build over years of study—requires familiarity with many mathemat-
ical subjects. For the deep-learning practitioner, however, expertise with linear alge-
bra, differential calculus, and the statistics of high-dimensional spaces is helpful but
not necessary, even to build complex, high-performance systems. Our goal in this
chapter, and throughout this book, is to introduce technical topics as necessary—
using code, rather than mathematical notation, when possible. We aim to convey an
intuitive understanding of the machinery and its purpose without requiring domain
expertise.

2.1 Example 1: Predicting the duration of a download 
using TensorFlow.js
Let’s jump right in! We will construct a bare-minimum neural network that uses the
TensorFlow.js library (sometimes shortened to tfjs) to predict download times given
the size of the download. Unless you already have experience with TensorFlow.js or
similar libraries, you won’t understand everything about this first example right away,
and that’s fine. Each subject introduced here will be covered in detail in the coming
chapters, so don’t worry if some parts look arbitrary or magical to you! We’ve got to
start somewhere. We will begin by writing a short program that accepts a file size as
input and outputs a predicted time to download the file.

2.1.1 Project overview: Duration prediction

When studying a machine-learning system for the first time, you may be intimidated
by the variety of new concepts and lingo. Therefore, it’s helpful to look at the entire
workflow first. The general outline of this example is illustrated in figure 2.1, and it is
a pattern that we will see repeated across our examples in this book.

First, we will access our training data. In machine learning, data can be read from
disk, downloaded over the network, generated, or simply hard-coded. In this example,
we take the last approach because it is convenient, and we are dealing with only a small
amount of data. Second, we will convert the data into tensors, so they can be fed to our
model. The next step is creating a model, which, as we saw in chapter 1, is akin to
designing an appropriate trainable function: a function mapping input data to things
we are trying to predict. In this case, the input data and the prediction targets are both
numbers. Once our model and data are available, we will then train the model, moni-
toring its reported metrics as it goes. Finally, we will use the trained model to make pre-
dictions on data we haven’t seen yet and measure the model’s accuracy.

We will proceed through each of these phases with copy-and-paste runnable code
snippets and explanations of both the theory and the tools.
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2.1.2 A note on code listings and console interactions

Code in this book will be presented in two formats. The first format, the code listing,
presents structural code that you will find in the referenced code repositories. Each
listing has a title and a number. For example, listing 2.1 contains a very short HTML
snippet that you could copy verbatim into a file—for example, /tmp/tmp.html—on
your computer and then open in your web browser at file:///tmp/tmp.html, though
it won’t do much by itself.

The second format of code is the console interaction. These more informal blocks are
intended to convey example interactions at a JavaScript REPL,1 such as the browser’s

1 Read-eval-print-loop, also known as an interactive interpreter or shell. The REPL allows us to interact actively
with our code to interrogate variables and test functions. 

Get training data

Convert data to tensors

Create model

Fit model to data

Use model on new data

Listings 2.3 and 2.4

Figure 2.1 Overview of the major steps involved in the download-time 
prediction system, our first example
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JavaScript console (Cmd-Opt-J, Ctrl+Shift+J, or F12 in Chrome, but your browser/OS
may be different). Console interactions are indicated with a preceding greater-than
sign, like what we see in Chrome or Firefox, and their outputs are presented on the next
line, just as in the console. For example, the following interaction creates an array and
prints the value. The output you see at your JavaScript console may be slightly different,
but the gist should be the same:

> let a = ['hello', 'world', 2 * 1009]
> a;
(3) ["hello", "world", 2018]

The best way to test, run, and learn from the code listings in this book is to clone the
referenced repositories and then play with them. During the development of this
book, we made frequent use of CodePen as a simple, interactive, shareable repository
(http://codepen.io). For example, listing 2.1 is available for you to play with at
codepen.io/tfjs-book/pen/VEVMbx. When you navigate to the CodePen, it should
run automatically. You should be able to see output printed to the console. Click Con-
sole at bottom left to open the console. If the CodePen doesn’t run automatically, try
making a small, inconsequential change, such as adding a space to the end, to kick-
start it.

The listings from this section are available in this CodePen collection: codepen
.io/collection/Xzwavm/. CodePen works well where there is a single JavaScript file,
but our larger and more structured examples are kept in GitHub repositories, which
you will see in later examples. For this example, we recommend reading through this
section and then playing with the associated CodePens in order.

2.1.3 Creating and formatting the data

Let’s estimate how long it will take to download a file on a machine, given only its size
in MB. We’ll first use a pre-created dataset, but, if you’re motivated, you can create a
similar dataset, modeling your own system’s network statistics.

<script src='https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest'></script>
<script>
const trainData = {
  sizeMB:  [0.080, 9.000, 0.001, 0.100, 8.000,
            5.000, 0.100, 6.000, 0.050, 0.500,
            0.002, 2.000, 0.005, 10.00, 0.010, 
            7.000, 6.000, 5.000, 1.000, 1.000],
  timeSec: [0.135, 0.739, 0.067, 0.126, 0.646, 
            0.435, 0.069, 0.497, 0.068, 0.116,
            0.070, 0.289, 0.076, 0.744, 0.083, 
            0.560, 0.480, 0.399, 0.153, 0.149]
};
const testData = {
  sizeMB:  [5.000, 0.200, 0.001, 9.000, 0.002, 
            0.020, 0.008, 4.000, 0.001, 1.000,
            0.005, 0.080, 0.800, 0.200, 0.050, 
            7.000, 0.005, 0.002, 8.000, 0.008],

Listing 2.1 Hard-coding the training and test data (from CodePen 2-a)
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  timeSec: [0.425, 0.098, 0.052, 0.686, 0.066, 
            0.078, 0.070, 0.375, 0.058, 0.136,
            0.052, 0.063, 0.183, 0.087, 0.066, 
            0.558, 0.066, 0.068, 0.610, 0.057]
};
</script>

In the previous HTML code listing, we’ve chosen to explicitly include the <script>
tags, illustrating how to load the most recent version of the TensorFlow.js library using
the @latest suffix (at the time of writing, this code ran with tfjs 0.13.5). We will go
into more detail later about different ways to import TensorFlow.js into your applica-
tion, but going forward, the <script> tags will be assumed. The first script loads the
TensorFlow package and defines the symbol tf, which provides a way to refer to
names in TensorFlow. For example, tf.add() refers to the TensorFlow add operation,
which adds two tensors. Going forward, we will assume that the tf symbol is loaded
and available in the global namespace by, for example, sourcing the TensorFlow.js
script as previously.

Listing 2.1 creates two constants, trainData and testData, each representing 20
samples of how long it took to download a file (timeSec) and the size of that file
(sizeMB). The elements in sizeMB and those in timeSec have one-to-one correspon-
dence. For example, the first element of sizeMB in trainData is 0.080 MB, and down-
loading that file took 0.135 seconds—that is, the first element of timeSec—and so
forth. Our goal in this example will be to estimate timeSec, given just sizeMB. In this
first example, we are creating the data directly by hard-coding it in our code. This
approach is expedient for this simple example but will become unwieldy very quickly
when the size of the dataset grows. Future examples will illustrate how to stream data
from external storage or over the network.

Back to the data. From the plot in figure 2.2, we can see that there is a very predict-
able, if imperfect, relationship between the size and download time. Data in real life is
noisy, but it looks like we should be able to make a pretty good linear estimate of the
duration given the file size. Judging by eye, the duration should be about 0.1 seconds
when the file size is zero and then grow at about 0.07 seconds for each additional MB. 
Recall from chapter 1 that each input-output pair is sometimes called an example. The
output is often referred to as the target, while the elements of the input are often
called the features. In our case here, each of our 40 examples has exactly one feature,
sizeMB, and a numeric target, timeSec.

In listing 2.1, you might have noticed that the data is split into two subsets, namely
trainData and testData. trainData is the training set. It contains the examples the
model will be trained on. testData is the test set. We will use it to judge how well the
model is trained after the training is complete. If we trained and evaluated using the
exact same data, it would be like taking a test after having already seen the answers. In
the most extreme case, the model could theoretically memorize the timeSec value for
each sizeMB in the training data—not a very good learning algorithm. The result
would not be a good judge of future performance because it is unlikely that the values
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of the future input features will all be exactly the same as the ones the model has been
trained on.

Therefore, the workflow will be as follows. First we’ll fit the neural network on the
training data to make accurate predictions of timeSec given sizeMB. Then, we’ll ask
the network to produce predictions for sizeMB using the testing data, and we’ll mea-
sure how close those predictions are to timeSec. But first, we’ll have to convert this
data into a format that TensorFlow.js will understand, and this will be our first exam-
ple usage of tensors. The code in listing 2.2 shows the first usage of functions under
the tf.* namespace you will see in this book. Here, we see methods for converting
data stored in raw JavaScript data structures into tensors.

Although the usage is pretty straightforward, those readers who wish to gain a
firmer grounding in these APIs should read appendix B, which covers not only tensor-
creation functions such as tf.tensor2d(), but also functions that perform operations
transforming and combining tensors, and patterns of how common real-world data
types, such as images and videos, are conventionally packed into tensors. We do not
dive deeply into the low-level API in the main text because the material is somewhat
dry and not tied to specific example problems.

const trainTensors = {
  sizeMB: tf.tensor2d(trainData.sizeMB, [20, 1]),
  timeSec: tf.tensor2d(trainData.timeSec, [20, 1])
};
const testTensors = {

Listing 2.2 Converting data into tensors  (from CodePen 2-b)
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Figure 2.2 Measured download duration versus file size. If you are interested, at this 
point, in how to create plots like this, the code is listed in CodePen codepen.io/tfjs-
book/pen/ dgQVze.

The [20, 1] here is the tensor’s “shape.” More will be explained
later, but here this shape means we want to interpret the list of
numbers as 20 samples, where each sample is 1 number. If the
shape is obvious from, for example, the structure of the data
array, this argument can be left out.
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  sizeMB: tf.tensor2d(testData.sizeMB, [20, 1]),
  timeSec: tf.tensor2d(testData.timeSec, [20, 1])
};

In general, all current machine-learning systems use tensors as their basic data struc-
ture. Tensors are fundamental to the field—so fundamental that TensorFlow and
TensorFlow.js are named after them. A quick reminder from chapter 1: at its core, a
tensor is a container for data—almost always numerical data. So, it can be thought of
as a container for numbers. You may already be familiar with vectors and matrices,
which are 1D and 2D tensors, respectively. Tensors are a generalization of matrices to
an arbitrary number of dimensions. The number of dimensions and size of each
dimension is called the tensor’s shape. For instance, a 3 × 4 matrix is a tensor with
shape [3, 4]. A vector of length 10 is a 1D tensor with shape [10].

In the context of tensors, a dimension is often called an axis. In TensorFlow.js, ten-
sors are the common representation that lets components communicate and work
with each other, whether on CPU, GPU, or other hardware. We will have more to say
about tensors and their common use cases as the need arises, but for now, let’s con-
tinue with our prediction project.

2.1.4 Defining a simple model

In the context of deep learning, the function from input features to targets is known as
a model. The model function takes features, runs a computation, and produces predic-
tions. The model we are building here is a function that takes a file size as input and
outputs durations (see figure 2.2). In deep-learning parlance, sometimes we use network
as a synonym for model. Our first model will be an implementation of linear regression.

Regression, in the context of machine learning, means that the model will output
real-valued numbers and attempt to match the training targets; this is opposed to clas-
sification, which outputs choices from a set of options. In a regression task, a model
that outputs numbers closer to the target is better than a model that outputs numbers
farther away. If our model predicts that a 1 MB file will take about 0.15 seconds, that’s
better (as we can see from figure 2.2) than if our model predicts that a 1 MB file will
take about 600 seconds.

Linear regression is a specific type of regression in which the output, as a function
of the input, can be illustrated as a straight line (or, by analogy, a flat plane in a
higher-dimensional space when there are multiple input features). An important
property of models is that they are tunable. This means that the input-output computa-
tion can be adjusted. We use this property to tune the model to better “fit” the data. In
the linear case, the model input-output relationship is always a straight line, but we
can adjust the slope and y-intercept.

Let’s build our first network to get a feel for this.

const model = tf.sequential();
model.add(tf.layers.dense({inputShape: [1], units: 1}));

Listing 2.3 Constructing a linear regression model (from CodePen 2-c)
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The core building block of neural networks is the layer, a data-processing module that
you can think of as a tunable function from tensors to tensors. Here, our network con-
sists of a single dense layer. This layer has a constraint on the shape of the input tensor,
as defined by the parameter inputShape: [1]. Here, it means that the layer is expect-
ing input in the form of a 1D tensor with exactly one value. The output from the dense
layer is always a 1D tensor for each example, but the size of that dimension is con-
trolled by the units configuration parameter. In this case, we want just one output
number because we are trying to predict exactly one number, namely the timeSec.

At its core, the dense layer is a tunable multiply-add between each input and each
output. Since there is only one input and one output, this model is the simple
y = m * x + b linear equation you may recall from high school math. The dense
layer internally calls m the kernel and b the bias, as illustrated in figure 2.3. In this case,
we have constructed a linear model for the relation between the input (sizeMB) and
the output (timeSec):

    timeSec = kernel * sizeMB + bias

There are four terms in this equation. Two of them are fixed as far as model training is
concerned: the values of sizeMB and timeSec are determined by the training data
(see listing 2.1). The other two terms, the kernel and bias, are the model’s parame-
ters. Their values are randomly chosen when the model is created. Those random val-
ues will not give good predictions of download duration. In order for decent
predictions to happen, we must search for good values of the kernel and bias by allow-
ing the model to learn from data. This search is the training process.

To find a good setting for the kernel and bias (collectively, the weights) we need two
things: 

 A measure that tells us how well we are doing at a given setting of the weights
 A method to update the weights’ values so that next time we will do better than

we currently are doing, according to the measure previously mentioned

Model

Dense layer

kernel

Bias

OutputTensor
shape: [1]
timeSec

InputTensor
shape: [1]
sizeMB

Figure 2.3 An illustration of our simple linear-regression model. The model has exactly one layer. 
The model’s tunable parameters (or weights), the kernel and bias, are shown within the dense layer.
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This brings us to the next step in solving the linear-regression problem. To make the
network ready for training, we need to pick the measure and the update method,
which correspond to the two required items listed previously. This is done as part of
what TensorFlow.js calls the model compilation step, which takes

 A loss function—An error measurement. This is how the network measures its
performance on the training data and steers itself in the right direction. Lower
loss is better. As we train, we should be able to plot the loss over time and see it
going down. If our model trains for a long while, and the loss is not decreasing,
it could mean that our model is not learning to fit the data. Over the course of
this book, you will learn to debug problems like this.

 An optimizer—The algorithm by which the network will update its weights (ker-
nel and bias, in this case) based on the data and the loss function.

The exact purpose of the loss function and the optimizer, and how to make good
choices for them, will be explored thoroughly throughout the next couple of chap-
ters. But for now, the following choices will do.

model.compile({optimizer: 'sgd', loss: 'meanAbsoluteError'});

We call the compile method on our model, specifying 'sgd' as our optimizer and
'meanAbsoluteError' as our loss. 'meanAbsoluteError' means that our loss function
will calculate how far our predictions are from the targets, take their absolute values
(making them all positive), and then return the average of those values:

meanAbsoluteError = average( absolute(modelOutput - targets) )

For example, given

modelOutput = [1.1, 2.2, 3.3, 3.6]
targets =     [1.0, 2.0, 3.0, 4.0]

then,

meanAbsoluteError = average([|1.1 - 1.0|, |2.2 - 2.0|, 
                             |3.3 - 3.0|, |3.6 - 4.0|])

                  = average([0.1, 0.2, 0.3, 0.4]) 

                  = 0.25

If our model makes very bad predictions that are very far from the targets, then the
meanAbsoluteError will be very large. In contrast, the best we could possibly do is to
get every prediction exactly right, in which case the difference between our model
output and the targets would be zero, and therefore the loss (the meanAbsolute-
Error) would be zero.

The sgd in listing 2.4 stands for stochastic gradient descent, which we will describe a bit
more in section 2.2. Briefly, it means that we will use calculus to determine what

Listing 2.4 Configuring training options: model compilation (from CodePen 2-c)
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adjustments we should make to the weights in order to reduce the loss; then we will
make those adjustments and repeat the process.

Our model is now ready to be fit to our training data.

2.1.5 Fitting the model to the training data 

Training a model in TensorFlow.js is done by calling the model’s fit() method. We fit
the model to the training data. Here, we pass in the sizeMB tensor as our input and
the timeSec tensor as our desired output. We also pass in a configuration object with
an epochs field that specifies that we would like to go through our training data
exactly 10 times. In deep learning, each iteration through the complete training set is
called an epoch.

(async function() {
  await model.fit(trainTensors.sizeMB,
                  trainTensors.timeSec,
                  {epochs: 10});
})();

The fit() method can often be long-running, lasting for seconds or minutes. There-
fore, we utilize the async/await feature of ES2017/ES8 so that this function can be
used in a way that does not block the main UI thread when running in the browser.
This is similar to other potentially long-running functions in JavaScript, such as async
fetch. Here, we wait for the fit() call to finish before going on, using the Immedi-
ately Invoked Async Function Expression2 pattern, but future examples will train in
the background while doing other work in the foreground thread.

Once our model has completed fitting, we will want to see whether it worked. Cru-
cially, we will evaluate the model on data that was not used during training. This
theme of separating test data from training data (and hence avoiding training on the
test data) is something that will come up over and over in this book. It is an important
part of the machine-learning workflow that you should internalize.

The model’s evaluate() method calculates the loss function as applied to the pro-
vided example features and targets. It is similar to the fit() method in that it calcu-
lates the same loss, but evaluate() does not update the model’s weights. We use
evaluate() to estimate the quality of the model on the test data, so as to get an idea
about how the model would perform in the future application:

> model.evaluate(testTensors.sizeMB, testTensors.timeSec).print();
Tensor
    0.31778740882873535

Here, we see that the loss, averaged across the test data, is about 0.318. Given that, by
default, models are trained from a random initial state, you will get a different value.

Listing 2.5 Fitting a linear regression model (from CodePen 2-c)

2 For more on Immediately Invoked Function Expressions, see http://mng.bz/RPOZ.
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Another way to say the same thing is that the mean absolute error (MAE) of this
model is just over 0.3 seconds. Is this good? Is it better than just estimating a constant?
One good constant we could choose is the average delay. Let’s see what kind of error
that would get, using TensorFlow.js’s support for mathematical operations on tensors.
First, we’ll compute the average download time, calculated over our training set:

> const avgDelaySec = tf.mean(trainData.timeSec);
> avgDelaySec.print();
Tensor
    0.2950500249862671 

Next, let’s calculate the meanAbsoluteError by hand. MAE is simply the average value
of how far our prediction was from the actual value. We’ll use tf.sub() to calculate
the difference between the test targets and our (constant) prediction and tf.abs()
to take the absolute value (since sometimes we’ll be too low and other times too
high), and then take the average with tf.mean: 

> tf.mean(tf.abs(tf.sub(testData.timeSec, 0.295))).print();
Tensor
    0.22020000219345093

See info box 2.1 for how to perform the same computation using the concise chaining
API.

It seems that the average delay is about 0.295 seconds and that always guessing the
average value gives a better estimate than our network does. This means our model’s
accuracy is even worse than that of a commonsense, trivial approach! Can we do bet-
ter? It’s possible that we haven’t trained for enough epochs. Remember that during
training, the values of the kernel and bias are updated step-by-step. In this case, each
epoch is a step. If the model is trained only for a small number of epochs (steps), the
parameter values may not have a chance to get close to the optimum. Let’s train our
model a few more cycles and evaluate again:

>  model.fit(trainTensors.sizeMB, 
             trainTensors.timeSec, 
             {epochs: 200});

>  model.evaluate(testTensors.sizeMB, testTensors.timeSec).print();

INFO BOX 2.1 Tensor chaining API
In addition to the standard API, in which tensor functions are available under the tf
namespace, most tensor functions are also available from the tensor objects them-
selves, allowing you to write in a chaining style if you prefer. The following code is
functionally identical to the meanAbsoluteError computation in the main text:

// chaining API pattern
> testData.timeSec.sub(0.295).abs().mean().print();  
Tensor
    0.22020000219345093

Be sure to wait for the promise 
returned from model.fit to resolve 
before executing model.evaluate.
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Tensor
    0.04879039153456688

Much better! It seems we were previously underfitting, meaning our model hadn’t been
adapted enough to the training data. Now our estimates are within 0.05 seconds, on
average. We are four times more accurate than naively guessing the mean. In this
book, we will offer guidance about how to avoid underfitting, as well as the more
insidious problem of overfitting, where the model is tuned too much to the training data
and doesn’t generalize well to data it hasn’t seen!   

2.1.6 Using our trained model to make predictions

OK, great! We now have a model that can make accurate predictions of download
time given an input size, but how do we use it? The answer is the model’s predict()
method:

> const smallFileMB = 1;
> const bigFileMB = 100;
> const hugeFileMB = 10000;
> model.predict(tf.tensor2d([[smallFileMB], [bigFileMB], 

[hugeFileMB]])).print();
Tensor
    [[0.1373825  ],
     [7.2438402  ],
     [717.8896484]]

Here, we see that our model predicts that a 10,000 MB file download will take about
718 seconds. Note that we didn’t have any examples in our training data near this size.
In general, extrapolating to values well outside the training data is very risky, but with
a problem this simple, it may be accurate . . . so long as we don’t run into new compli-
cations with memory buffers, input-output connectivity, and so on. It would be better
if we could collect more training data in this range.

We see also that we needed to wrap our input variables into an appropriately
shaped tensor. In listing 2.3, we defined the inputShape to be [1], so the model
expects each example to have that shape. Both fit() and predict() work with multi-
ple examples at a time. To provide n samples, we stack them together into a single
input tensor, which thus must have the shape [n, 1]. If we had forgotten, and instead
provided a tensor with the wrong shape to the model, we would have gotten a shape
error, like the following code:

> model.predict(tf.tensor1d([smallFileMB, bigFileMB, hugeFileMB])).print();
Uncaught Error: Error when checking : expected dense_Dense1_input to have 2 

dimension(s), but got array with shape [3]

Watch out for this type of shape mismatch because it is a very common type of error!
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2.1.7 Summary of our first example

For this small example, it’s possible to illustrate the model’s result. Figure 2.4 shows
the model’s output (timeSec) as a function of the input (sizeMB) for the models at
four points in the process, beginning with the underfit one at 10 epochs and the con-
verged one. We see that the converged model closely fits the data. If you are inter-
ested, at this point, in exploring how to plot data like that in figure 2.4, please visit the
CodePen at codepen.io/tfjs-book/pen/VEVMMd.

This concludes our first example. You just saw how you can build, train, and evaluate a
TensorFlow.js model in very few lines of JavaScript code (see listing 2.6). In the next
section, we’ll go a bit deeper into what’s going on inside of model.fit.

const model = tf.sequential([tf.layers.dense({inputShape: [1], units: 1})]);
model.compile({optimizer: 'sgd', loss: 'meanAbsoluteError'});
(async () => await model.fit(trainTensors.sizeMB,
                             trainTensors.timeSec,
                             {epochs: 10}))();
model.evaluate(testTensors.sizeMB, testTensors.timeSec);
model.predict(tf.tensor2d([[7.8]])).print();     

                                                                        

Listing 2.6 Model definition, training, evaluation, and prediction
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Figure 2.4 The linear model fit after training for 10, 20, 100, and 200 epochs
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2.2 Inside Model.fit(): Dissecting gradient descent 
from example 1
In the previous section, we built a simple model and fit it to some training data, show-
ing that we could make reasonably accurate predictions of download time given the
file size. It isn’t the most impressive neural network, but it works in precisely the same
way as the larger, much more complicated systems we’ll be building. We saw that fit-
ting it for 10 epochs wasn’t very good, but fitting it for 200 epochs produced a quality
model.3 Let’s go into a bit more detail to understand exactly what happens under the
hood when the model is trained.

2.2.1 The intuitions behind gradient-descent optimization

Recall that our simple, one-layer model is fitting a linear function f(input), defined as

output = kernel * input + bias

where the kernel and bias are tunable parameters (the weights) of the dense layer.
These weights contain the information learned by the network from exposure to the
training data.

Initially, these weights are filled with small random values (a step called random ini-
tialization). Of course, there’s no reason to expect that kernel * input + bias will
yield anything useful when the kernel and bias are random. Using our imagination,
we can picture how the value of the MAE will change across different choices of these
parameters. We expect that the loss will be low when they approximate the slope and
intercept of the line we perceive in figure 2.4, and that the loss will get worse as the
parameters describe very different lines. This concept—the loss as a function of all
tunable parameters—is known as the loss surface.

Since this is a tiny example, and we just have two tunable parameters and a single
target, it’s possible to illustrate the loss surface as a 2D contour plot, as figure 2.5
shows. This loss surface has a nice bowl shape, with a global minimum at the bottom
of the bowl representing the best parameter settings. In general, however, the loss sur-
face of a deep-learning model is much more complex than this one. It will have many
more than two dimensions and could have many local minima—that is, points that are
lower than anything nearby but not the lowest overall.

We see that this loss surface is shaped like a bowl, with the best (lowest) value some-
where around {bias: 0.08, kernel: 0.07}. This fits the geometry of the line
implied by our data, where the download time is about 0.10 seconds, even when the
file size is near zero. Our model’s random initialization starts us at a random parame-
ter setting, analogous to a random location on this map, from which we calculate our
initial loss. Next, we gradually adjust the parameters based on a feedback signal. This
gradual adjustment, also called training, is the “learning” in “machine learning.” This
happens within a training loop—illustrated in figure 2.6.

3 Note that for a simple linear model like this one, simple, efficient, closed-form solutions exist. However, this
optimization method will continue to work even for the more complicated models we introduce later.
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Figure 2.5 The loss surface illustrates loss, shown against the model’s tunable parameters, as a 
contour plot. With this birds-eye view, we see that a choice of {bias: 0.08, kernel: 0.07}
(marked with a white X) would be a reasonable choice for low loss. Rarely do we have the luxury of 
being able to test all the parameter settings to build a map like this, but if we did, optimization would 
be very easy; just pick the parameters corresponding to the lowest loss!
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Figure 2.6 A flowchart illustrating the training loop, which updates the 
model via gradient descent
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Figure 2.6 illustrates how the training loop iterates through these steps as long as
necessary:

1 Draw a batch of training samples x and corresponding targets y_true. A batch is
simply a number of input examples put together as a tensor. The number of
examples in a batch is called the batch size. In practical deep learning, it is often
set to be a power of 2, such as 128 or 256. Examples are batched together to
take advantage of the GPU’s parallel processing power and to make the calcu-
lated values of the gradients more stable (see section 2.2.2 for details).

2 Run the network on x (a step called the forward pass) to obtain predictions
y_pred.

3 Compute the loss of the network on the batch, a measure of the mismatch
between y_true and y_pred. Recall that the loss function is specified when
model.compile() is called.

4 Update all the weights (parameters) in the network in a way that slightly
reduces the loss on this batch. The detailed updates to the individual weights
are managed by the optimizer, another option we specified during the
model.compile() call.

If you can lower your loss at every step, you will eventually end up with a network with
low loss on the training data. The network has “learned” to map its inputs to correct
targets. From afar, it may look like magic, but when reduced to these elementary steps,
it turns out to be simple.

The only difficult part is step 4: how can you determine which weights should be
increased, which should be decreased, and by how much? We could simply guess and
check, and only accept updates that actually reduce the loss. Such an algorithm might
work for a simple problem like this one, but it would be very slow. For larger prob-
lems, when we are optimizing millions of weights, the likelihood of randomly select-
ing a good direction becomes vanishingly small. A much better approach is to take
advantage of the fact that all operations used in the network are differentiable and to
compute the gradient of the loss with regard to the network’s parameters.

What is a gradient? Instead of defining it precisely (which requires some calculus),
we can describe it intuitively as the following:

A direction such that if you move the weights by a tiny bit in that direction, you will
increase the loss function the fastest, among all possible directions

Even though this definition is not overly technical, there is still a lot to unpack, so let’s
try to break it down:

 First, the gradient is a vector. It has the same number of elements as the weights
do. It represents a direction in the space of all choices of the weight values. If
the weights of your model consist of two numbers, as is the case in our simple
linear-regression network, then the gradient is a 2D vector. Deep-learning mod-
els often have thousands or millions of dimensions, and the gradients of these
models are vectors (directions) with thousands or millions of elements. 
 



53Inside Model.fit(): Dissecting gradient descent from example 1
 Second, the gradient depends on current weight values. In other words, differ-
ent weight values will yield different gradients. This is clear from figure 2.5, in
which the direction that descends most quickly depends on where you are on
the loss surface. On the left edge, we must go right. Near the bottom, we must
go up, and so on.

 Finally, the mathematical definition of a gradient specifies a direction along
which the loss function increases. Of course, when training neural networks, we
want the loss to decrease. This is why we must move the weights in the direction
opposite the gradient.

Consider, by way of analogy, a hike in a mountain range. Imagine we wish to travel to a
place with the lowest altitude. In this analogy, we can change our altitude by moving in
any direction defined by the east-west and north-south axes. We should interpret the
first bullet point as saying that the gradient of our altitude is the direction most
steeply upward given the slope under our feet. The second bullet is somewhat obvi-
ous, stating that the direction most steeply upward depends on our current position.
Finally, if we wish to go to a low altitude, we should take steps in the direction opposite
the gradient. 

This training process is aptly named gradient descent. Remember in listing 2.4, when
we specified our model optimizer with the configuration optimizer: 'sgd'? The
gradient-descent portion of stochastic gradient descent should now be clear. The “sto-
chastic” part just means we draw random samples from the training data during each
gradient-descent step for efficiency, as opposed to using every training data sample at
every step. Stochastic gradient descent is simply a modification of gradient descent for
computational efficiency.

We now have tools for a more complete explanation of how optimization works,
and why 200 epochs were better than 10 for our download-time estimation model. Fig-
ure 2.7 illustrates how the gradient-descent algorithm follows a path down our loss
surface to find a weight setting that fits our training data nicely. The contour plot in
panel A of figure 2.7 shows the same loss surface as before, zoomed in a bit and now
overlaid with the path followed by the gradient-descent algorithm. The path begins at
the random initialization—a random place on the image. We have to pick somewhere
random to start since we don’t know the optimum beforehand! Several other points of
interest are called out along the path, illustrating the positions corresponding to the
underfit and the well-fit models. Panel B of figure 2.7 shows a plot of the model loss as
a function of the step, highlighting the analogous points of interest. Panel C illustrates
the models using the weights as snapshots at the steps highlighted in B.

Our simple linear-regression model is the only model in this book where we will
have the luxury to visualize the gradient-descent process this vividly. But when we
encounter more complex models later, keep in mind that the essence of gradient
descent remains the same: it’s just iteratively stepping down the slope of a complicated,
high-dimensional surface, hoping that we will end up at a place with very low loss. 
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In our initial effort, we used the default step size (determined by the default learning
rate), but in looping over our limited data only 10 times, there weren’t enough steps
to reach the optimum; 200 steps were enough. In general, how do you know how to
set the learning rate, or how to know when training is done? There are some helpful
rules of thumb, which we will cover over the course of this book, but there is no
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hard-and-fast rule that will always keep you out of trouble. If we use too small a learn-
ing rate and end up with too small a step, we won’t reach the optimum parameters
within a reasonable amount of time. Conversely, if we use too large a learning rate
and therefore too big of a step, we will completely skip over the minimum and may
even end up with higher loss than the place we left. This will cause our model’s
parameters to oscillate wildly around the optimum instead of approaching it quickly
in a straightforward way. Figure 2.8 illustrates what happens when our gradient step
is too large. In more extreme cases, large learning rates will cause the parameter val-
ues to diverge and go to infinity, which will in turn generate NaN (not-a-number) val-
ues in the weights, completely ruining your model.
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2.2.2 Backpropagation: Inside gradient descent

In the previous section, we explained how the step size of weight updates affects the
process of gradient descent. However, we haven’t discussed how the directions of the
updates are computed. The directions are critical to the neural network’s learning
process. They are determined by the gradients with respect to the weights, and the
algorithm for computing the gradients is called backpropagation. Invented in the 1960s,
backpropagation is one of the foundations of neural networks and deep learning. In
this section, we will use a simple example to show how backpropagation works. Note
that this section is for readers who wish to get an understanding of backpropagation.
It is not necessary if you only wish to apply the algorithm using TensorFlow.js, because
these mechanisms are all hidden nicely under the tf.Model.fit() API; you may skip
this section and continue reading at section 2.3.

Consider the simple model linear model

y’ = v * x, 

where x is the input feature and y’ is the predicted output, and v is the only weight
parameter of the model to be updated during backpropagation. Suppose we are using
the squared error as the loss function; we then have the following relation between
loss, v, x, and y (the actual target value):

loss = square(y’ - y) = square(v * x - y)

Let’s assume the following concrete values: the two inputs are x = 2 and y = 5, and
the weight value is v = 0. The loss can then be calculated as 25. This is shown step-by-
step in figure 2.9. Each gray square in panel A represents an input (that is, the x and
the y). Each white box is an operation. There are a total of three operations. The
edges connecting the operations (and the one that connects the tunable weight v with
the first operation) are labeled e1, e2, and e3. 

An important step of backpropagation is to determine the following quantity: 

Assuming everything else (x and y in this case) stays the same, how much change in the
loss value will we get if v is increased by a unit amount? 

This quantity is referred to as the gradient of loss with respect to v. Why do we need this
gradient? Because once we have it, we can alter v in the direction opposite to it, so we
can get a decrease in the loss value. Note that we do not need the gradient of loss with
respect to x or y, because x and y don’t need to be updated: they are the input data
and are fixed.

This gradient is computed step-by-step, starting from the loss value and going back
toward the variable v, as illustrated in panel B of figure 2.9. The direction in which the
computation is carried out is the reason why this algorithm is called “backpropaga-
tion.” Let’s walk through the steps. Each of the following steps corresponds to an
arrow in the figure:

 At the edge labeled loss, we start from a gradient value of 1. This is making the
trivial point, “a unit increase in loss corresponds to a unit increase in loss itself.”
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 At the edge labeled e3, we calculate the gradient of loss with respect to unit
change of the current value at e3. Because the intervening operation is a
square, and from basic calculus we know that the derivative (gradient in the
one-variable case) of (e3)2 with respect to e3 is 2 * e3, we get a gradient value of
2 * -5 = -10. The value -10 is multiplied with the gradient from before (that
is, 1) to obtain the gradient on edge e3: -10. This is the amount of increase in
loss we’ll get if e3 is increased by 1. As you may have observed, the rule that we
use to go from the gradient of the loss with respect to one edge to the one with
respect to the next edge is to multiply the previous gradient with the gradient
calculated locally at the current node. This rule is sometimes referred to as the
chain rule.

 At edge e2, we calculate the gradient of e3 with respect to e2. Because this is a
simple add operation, the gradient is simply 1, regardless of the other input
value (-y). Multiplying this 1 with the gradient on edge e3, we get the gradient
on edge e2, that is, -10. 
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Figure 2.9 Illustrating the backpropagation algorithm through a simple linear model with only one 
updatable weight (v). Panel A: forward pass on the model—the loss value is calculated from the 
weight (v) and the inputs (x and y). Panel B: backward pass—the gradient of loss with respect to 
v is calculated step-by-step, from the loss to v.
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 At edge e1, we calculate the gradient of e2 with respect to e1. The operation
here is a multiplication between x and v, that is, x * v. So, the gradient of e2
with respect to e1 (that is, with respect to v) is x, or 2. The value of 2 is multi-
plied with the gradient on edge e2 to get the final gradient: 2 * -10 = -20.

Up to this point, we have obtained the gradient of loss with respect to v: it is -20. In
order to apply gradient descent, we need to multiply the negative of this gradient with
the learning rate. Suppose the learning rate is 0.01. Then we get a gradient update of

-(-20) * 0.01 = 0.2

This is the update we will apply to v in this step of training:

v = 0 + 0.2 = 0.2

As you can see, because we have x = 2 and y = 5, and the function to be fit is y’ =
v * x, the optimal value of v is 5/2 = 2.5. After one step of training, the value of v
changes from 0 to 0.2. In other words, the weight v gets a little closer to the desired
value. It will get closer and closer in subsequent training steps (ignoring any noise in
the training data), which will be based on the same backpropagation algorithm previ-
ously described.

The prior example is made intentionally simple so that it’s easy to follow. Even
though the example captures the essence of backpropagation, the backpropagation
that happens in actual neural network training is different from it in the following
aspects:

 Instead of providing a simple training example (x = 2 and y = 5, in our case),
usually a batch of many input examples are provided simultaneously. The loss
value used to derive the gradient is an arithmetic mean of the loss values for all
the individual examples.

 The variables being updated generally have many more elements. So, instead of
doing a simple, one-variable derivative as we just did, matrix calculus is often
involved.

 Instead of having to calculate the gradient for only one variable, multiple vari-
ables are generally involved. Figure 2.10 shows an example, which is a slightly
more complex linear model with two variables to optimize. In addition to k, the
model has a bias term: y’ = k * x + b. Here, there are two gradients to com-
pute, one for k and one for b. Both paths of backpropagation start from the
loss. They share some common edges and form a tree-like structure.

Our treatment of backpropagation in this section is a casual and high-level one. If you
wish to gain a deeper understanding of the math and algorithms of backpropagation,
refer to the links in info box 2.2.

At this point, you should have a pretty good understanding of what happens when
fitting a simple model to training data, so let’s put away our tiny download-time pre-
diction problem and use TensorFlow.js to tackle something a bit more challenging. In
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the next section, we’ll build a model to accurately predict the price of real estate from
multiple input features simultaneously. 

2.3 Linear regression with multiple input features
In our first example, we had just one input feature, sizeMB, with which to predict our
target, timeSec. A much more common scenario is to have multiple input features, to
not know exactly which ones are the most predictive and which are only loosely
related to the target, and to use them all simultaneously and let the learning algo-
rithm sort it out. In this section, we will tackle this more complicated problem.
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Figure 2.10 Schematic drawing showing backpropagation from loss to two updatable weights 
(k and b).

INFO BOX 2.2 Further reading on gradient descent and backpropagation
The differential calculus behind optimizing neural networks is definitely interesting
and gives insight into how these algorithms behave; but beyond the basics, it is defi-
nitely not a requirement for the machine-learning practitioner, in the same way that
understanding the intricacies of the TCP/IP protocol is useful but not critical to under-
standing how to build a modern web application. We invite the curious reader to
explore the excellent resources here to build a deeper understanding of the mathe-
matics of gradient-based optimization in networks:

 Backpropagation demo scrollytelling illustration: http://mng.bz/2J4g
 Stanford CS231 lecture 4 course notes on backpropagation: http://cs231n

.github.io/optimization-2/ 
 Andrej Karpathy’s “Hacker’s Guide to Neural Nets:” http://karpathy.github

.io/neuralnets/
 

http://mng.bz/2J4g
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/
http://cs231n.github.io/optimization-2/
http://karpathy.github.io/neuralnets/
http://karpathy.github.io/neuralnets/
http://karpathy.github.io/neuralnets/
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By the end of this section, you will

 Understand how to build a model that takes in and learns from multiple input
features.

 Use Yarn, Git, and the standard JavaScript project packaging structure to build
and run a web app with machine learning.

 Know how to normalize data to stabilize the learning process.
 Get a feel for using tf.Model.fit() callbacks to update a web UI while training.

2.3.1 The Boston Housing Prices dataset

The Boston Housing Prices dataset4 is a collection of 500 simple real-estate records
collected in and around Boston, Massachusetts, in the late 1970s. It has been used as a
standard dataset for introductory statistics and machine-learning problems for
decades. Each independent record in the dataset includes numeric measurements of
a Boston neighborhood, including, for example, the typical size of homes, how far the
region is from the closest highway, whether the area has waterfront property, and so
on. Table 2.1 provides the precise ordered list of features, along with the average value
of each feature.

4 David Harrison and Daniel Rubinfeld, “Hedonic Housing Prices and the Demand for Clean Air,” Journal of
Environmental Economics and Management, vol. 5, 1978, pp. 81–102, http://mng.bz/1wvX.

Table 2.1 Features of the Boston-housing dataset

Index
Feature 

short name Feature description
Mean 
value

Range
(max – min)

0 CRIM Crime rate 3.62 88.9

1 ZN Proportion of residential land zoned for lots 
over 25,000 sq. ft.

11.4 100

2 INDUS Proportion of nonretail business acres (indus-
try) in town

11.2 27.3

3 CHAS Whether or not the area is next to the Charles 
River

0.0694 1.0

4 NOX Nitric oxide concentration (parts per 10 million) 0.555 0.49

5 RM Average number of rooms per dwelling 6.28 5.2

6 AGE Portion of owner-occupied units built before 
1940

68.6 97.1

7 DIS Weighted distances to five Boston employment 
centers

3.80 11.0

8 RAD Index of accessibility to radial highways 9.55 23.0
 

http://mng.bz/1wvX
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In this section, we will build, train, and evaluate a learning system to estimate the
median value of the house prices in a neighborhood (MEDV) given all the input fea-
tures from the neighborhood. You can imagine it as a system for estimating the price
of real estate from measurable neighborhood properties.

2.3.2 Getting and running the Boston-housing project from GitHub

Because this problem is a bit larger than the download-time prediction example and
has more moving pieces, we will begin by providing the solution in the form of a work-
ing code repository, and then guide you through it. If you are already an expert in the
Git source-control workflow and npm/Yarn package management, you may want to
just skim this subsection quickly. More about basic JavaScript project structure is pro-
vided in info box 2.3.

We will begin by cloning the project repository from its source on GitHub5 to get a
copy of the HTML, JavaScript, and configuration files required for the project. Except
the simplest ones, which are hosted on CodePen, all the examples in this book are col-
lected within one of two Git repositories and then separated by directory within the
repository. The two repositories are tensorflow/tfjs-examples and tensorflow/tfjs-
models, both hosted at GitHub. The following commands will clone the repository we
need for this example locally and change the working directory to the Boston-housing
prediction project:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/boston-housing

9 TAX Tax rate per US$10,000 408.0 524.0

10 PTRATIO Pupil-teacher ratio 18.5 9.40

11 LSTAT Percentage of working males without a high 
school education

12.7 36.2

12 MEDV Median value of owner-occupied homes in 
units of $1,000

22.5 45.0

5 The examples in this book are open source and are hosted at github.com and codepen.io. If you would like
a refresher on how to use Git source-control tooling, GitHhub has a well-made tutorial beginning at
https://help.github.com/articles/set-up-git. If you see a mistake or would like to help by clarifying something,
you are welcome to send in fixes via GitHub pull requests.

Table 2.1 Features of the Boston-housing dataset (continued)

Index
Feature 

short name Feature description
Mean 
value

Range
(max – min)
 

https://help.github.com/articles/set-up-git
https://github.com/tensorflow/tfjs-examples.git
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To run the demo, use Yarn:

yarn && yarn watch

This should open a new tab in your browser pointing to a port on localhost, which
will run the example. If your browser doesn’t automatically react, you can navigate to

INFO BOX 2.3 Basic JavaScript project structure of examples used in this
book
The standard project structure we will be using for the examples in this book includes
three important types of files. The first is HTML. The HTML files we will be using will
be bare bones and serve mostly as a basic structure to hold a few components. Typ-
ically, there will be just one HTML file, titled index.html, which will include a few div
tags, perhaps a few UI elements, and a source tag to pull in the JavaScript code, such
as index.js.

The JavaScript code will usually be modularized into several files in order to promote
good readability and style. In the case of this Boston-housing project, code dealing
with updating visual elements resides in ui.js, and code for downloading the data is
in data.js. Both are referenced via import statements from index.js.

The third important file type we will be working with is the metadata package .json file,
a requirement from the npm package manager (www.npmjs.com). If you haven’t
worked with npm or Yarn before, we recommend skimming the npm “getting started”
documentation at https://docs.npmjs.com/about-npm and becoming familiar enough
to be able to build and run the example code. We will be using Yarn as our package
manager (https://yarnpkg.com/en/), but you should be able to substitute npm for
Yarn if it better suits your needs.

Inside the repository, take note of the following important files:

 index.html—The root HTML file, which provides the DOM root and calls to the
JavaScript scripts

 index.js—The root JavaScript file, which loads the data, defines the model
and the training loop, and specifies the UI elements

 data.js—Implementation of the structures necessary for downloading and
accessing the Boston-housing dataset

 ui.js—Implementation of the UI hooks for connecting UI elements to actions;
specification of the plot configuration

 normalization.js—Numeric routines for, for example, subtracting the mean
from the data

 package.json—Standard npm package definition describing which dependen-
cies are necessary for building and running this demo (such as Tensor-
Flow.js!)

Note that we do not follow the standard practice of putting HTML files and JavaScript
files in type-specific subdirectories. This pattern, while best practice for larger repos-
itories, obscures more than it clarifies for smaller examples like we will be using for
this book or those you can find at github.com/tensorflow/tfjs-examples.
 

www.npmjs.com
https://docs.npmjs.com/about-npm
https://yarnpkg.com/en/
http://github.com/tensorflow/tfjs-examples
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the URL output on the command line. Clicking the button labeled Train Linear
Regressor will trigger the routine to build a linear model and fit it to the Boston-
housing data, and then output an animated graph of the loss on the training and
testing datasets after each epoch, as figure 2.11 illustrates.

The rest of this section will go through the important points in the construction of
this Boston-housing linear-regression web app demo. We will first review how the data
is collected and processed so as to work with TensorFlow.js. We will then focus on the
construction, training, and evaluation of the model; and, finally, we will show how to
use the model for live predictions on the web page.

2.3.3 Accessing the Boston-housing data

In our first project, in listing 2.1, we hard-coded our data as JavaScript arrays and con-
verted it into tensors using the tf.tensor2d function. Hard-coding is fine for a little
demo but clearly doesn’t scale to larger applications. In general, JavaScript developers
will find that their data is located in some serialized format at some URL (which may
be local). For instance, the Boston-housing data is publicly and freely available in CSV
format from the Google Cloud at the following URLs:
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Figure 2.11 The Boston-
housing linear-regression 
example from tfjs-examples
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 https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/
data/train-data.csv

 https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/
data/train-target.csv

 https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/
data/test-data.csv

 https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/
data/test-target.csv

The data has been presplit by randomly assigning samples into training and testing
portions. About two-thirds of the samples are in the training split, and the remaining
one-third are reserved for independently evaluating the trained model. Additionally,
for each split, the target feature has been separated into a CSV file apart from the
other features, resulting in the four file names listed in table 2.2.

In order to pull these into our application, we will need to be able to download this
data and convert it into a tensor of the appropriate type and shape. The Boston-hous-
ing project defines a class BostonHousingDataset in data.js for this purpose. This
class abstracts away the dataset streaming operation, providing an API to retrieve the
raw data as numeric matrices. Internally, the class uses the public open source Papa
Parse library (www.papaparse.com) to stream and parse the remote CSV files. Once
the file has been loaded and parsed, the library returns an array of arrays of num-
bers. It is then converted into a tensor using the same API as in the first example, as
per the following listing, a slightly trimmed-down sample from index.js focused on
the relevant bits.

// Initialize a BostonHousingDataset object defined in data.js.
const bostonData = new BostonHousingDataset(); 
const tensors = {};

// Convert the loaded csv data, of type number[][] into 2d tensors.
export const arraysToTensors = () => {
  tensors.rawTrainFeatures = tf.tensor2d(bostonData.trainFeatures);
  tensors.trainTarget = tf.tensor2d(bostonData.trainTarget);
  tensors.rawTestFeatures = tf.tensor2d(bostonData.testFeatures);
  tensors.testTarget = tf.tensor2d(bostonData.testTarget);
}

// Trigger the data to load asynchronously once the page has loaded.

Table 2.2 File names by split and contents for the Boston-housing dataset

Features (12 numbers) Target (1 number)

Train-test split Training train-data.csv train-target.csv

Testing test-data.csv test-target.csv

Listing 2.7 Converting the Boston-housing data to tensors in index.js             
 

https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/train-data.csv
https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/train-data.csv
https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/train-data.csv
https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/train-target.csv
www.papaparse.com
https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/test-data.csv
https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/test-target.csv
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let tensors;
document.addEventListener('DOMContentLoaded', async () => {
  await bostonData.loadData();
  arraysToTensors();
}, false);

2.3.4 Precisely defining the Boston-housing problem

Now that we have access to our data in the form we want it, it is a good time to clarify
our task more precisely. We said we would like to predict the MEDV from the other
fields, but how will we decide if we’re doing a good job? How can we distinguish a
good model from an even better one?

The metric we used in our first example, meanAbsoluteError, counts all mistakes
equally. If there were only 10 samples, and we made predictions for all 10, and we
were exactly correct on 9 of them but off by 30 on the 10th sample, the
meanAbsoluteError would be 3 (because 30/10 is 3). If, instead, our predictions were
off by 3 on each and every sample, the meanAbsoluteError would still be 3. This
“equality of mistakes” principle might seem like the only obviously correct choice, but
there are good reasons for picking loss metrics other than meanAbsoluteError.

Another option is to weight large errors more than small errors. We could, instead
of taking the average value of the absolute error, take the average value of the squared
error. 

Continuing the case study with the 10 samples, this mean squared error (MSE)
approach sees a lower loss in being off by 3 on every example (10 × 32 = 90) than
being off by 30 on just one example (1 × 302 = 900). Because of the sensitivity to large
mistakes, squared error can be more sensitive to sample outliers than absolute error.
An optimizer fitting models to minimize MSE will prefer models that systematically
make small mistakes over models that occasionally give very bad estimates. Obviously,
both error measures would prefer models that make no mistakes at all! However, if
your application might be sensitive to very incorrect outliers, MSE could be a better
choice than MAE. There are other technical reasons why you might select MSE or
MAE, but they aren’t important at this moment. In this example, we will use MSE for
variety, but MAE would also suffice.

Before we continue, we should find a baseline estimate of the loss. If we don’t know
the error from a very simple estimate, then we are not equipped to evaluate it from a
more complicated model. We will use the average real-estate price as a stand-in for our
“best naive guess” and calculate what the error would be from always guessing that value.

export const computeBaseline = () => {
  const avgPrice = tf.mean(tensors.trainTarget);
  console.log(`Average price: ${avgPrice.dataSync()[0]}`);

  const baseline =
      tf.mean(tf.pow(tf.sub(
          tensors.testTarget, avgPrice), 2));

Listing 2.8 Calculating baseline loss of guessing the mean price

Calculates the average price

Calculates the mean squared error 
on the test data. The sub(), pow, and 
mean() calls are the steps of 
calculating the mean squared error.
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  console.log(
      `Baseline loss: ${baseline.dataSync()[0]}`);
};

Because TensorFlow.js optimizes its computation by scheduling on the GPU, tensors
might not always be accessible to the CPU. The calls to dataSync in listing 2.8 tell
TensorFlow.js to finish computing the tensor and pull the value from the GPU into the
CPU, so it can be printed out or otherwise shared with a non-TensorFlow operation.

When executed, the code in listing 2.8 yields the following at the console:

Average price: 22.768770217895508
Baseline loss: 85.58282470703125

This tells us that the naive error rate is approximately 85.58. If we were to build a
model that always output 22.77, this model would achieve an MSE of 85.58 on the test
data. Again, notice that we calculate the metric on the training data and evaluate it on
the test data to avoid unfair bias.

The average squared error is 85.58, so we should take the square root to get the aver-
age error. The square root of 85.58 is about 9.25. Thus, we can say that we expect our
(constant) estimate to be off (above or below) by about 9.25 on average. Since the val-
ues, as per table 2.1, are in thousands of US dollars, estimating a constant means we
will be off by about US$9,250. If this were good enough for our application, we could
stop here! The wise machine-learning practitioner knows when to avoid unnecessary
complexity. Let’s assume that our price estimator application needs to be closer than
this. We will proceed by fitting a linear model to our data to see if we can achieve a
better MSE than 85.58.

2.3.5 A slight diversion into data normalization

Looking at the Boston-housing features, we see a broad range of values. NOX ranges
between 0.4 and 0.9, while TAX goes from 180 to 711. To fit a linear regression, the
optimizer will be attempting to find a weight for each feature such that the sum of the
features times the weights will approximately equal the housing price. Recall that to
find these weights, the optimizer is hunting around, following a gradient in the weight
space. If some features are scaled very differently from others, then certain weights
will be much more sensitive than others. A very small move in one direction will
change the output more than a very large move in a different direction. This can
cause instability and makes it difficult to fit the model.

To counteract this, we will first normalize our data. This means that we will scale our
features so that they have zero mean and unit standard deviation. This type of normal-
ization is common and may also be referred to as standard transformation or z-score nor-
malization. The algorithm for doing this is simple—we first calculate the mean of each
feature and subtract it from the original value so that the feature has an average value
of zero. We then calculate the feature’s standard deviation with the mean value sub-
tracted and do a division by that. In pseudo-code,

normalizedFeature = (feature - mean(feature)) / std(feature)

Prints out the 
value of the loss
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For instance, when the feature is [10, 20, 30, 40], the normalized version would be
approximately [-1.3, -0.4, 0.4, 1.3], which clearly has a mean of zero; by eye, the
standard deviation is about one. In the Boston-housing example, the normalization
code is factored out into a separate file, normalization.js, the contents of which are in
listing 2.9. Here, we see two functions, one to calculate the mean and standard devia-
tion from a provided rank-2 tensor and the other to normalize a tensor given the pro-
vided precalculated mean and standard deviation.

/**

 * Calculates the mean and standard deviation of each column of an array.
 *
 * @param {Tensor2d} data Dataset from which to calculate the mean and
 *                        std of each column independently.
 *
 * @returns {Object} Contains the mean and std of each vector
 *                   column as 1d tensors.
 */
export function determineMeanAndStddev(data) {
  const dataMean = data.mean(0);
  const diffFromMean = data.sub(dataMean);
  const squaredDiffFromMean = diffFromMean.square();
  const variance = squaredDiffFromMean.mean(0);
  const std = variance.sqrt();
  return {mean, std};
}

/**
 * Given expected mean and standard deviation, normalizes a dataset by
 * subtracting the mean and dividing by the standard deviation.
 *
 * @param {Tensor2d} data: Data to normalize.
 *    Shape: [numSamples, numFeatures].
 * @param {Tensor1d} mean: Expected mean of the data. Shape [numFeatures].
 * @param {Tensor1d} std: Expected std of the data. Shape [numFeatures]
 *
 * @returns {Tensor2d}: Tensor the same shape as data, but each column
 * normalized to have zero mean and unit standard deviation.
 */
export function normalizeTensor(data, dataMean, dataStd) {
  return data.sub(dataMean).div(dataStd);
}

Let’s dig into these functions a little. The function determineMeanAndStddev takes as
input data, which is a rank-2 tensor. By convention, the first dimension is the samples
dimension: each index corresponds to an independent, unique sample. The second
dimension is the feature dimension: its 12 elements corresponds to the 12 input fea-
tures (like CRIM, ZN, INDUS, and so on). Since we want to calculate the mean of
each feature independently, we call 

const dataMean = data.mean(0);

Listing 2.9 Data normalization: zero mean, unit standard deviation
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The 0 in this call means that the mean is to be taken over the 0th-index (first) dimen-
sion. Recall that data is a rank-2 tensor and thus has two dimensions (or axes). The
first axis, the “batch” axis, is the sample dimension. As we move from the first to the
second to the third element along that axis, we refer to different samples, or, in our
case, different pieces of real estate. The second dimension is the feature dimension.
As we move from the first to the second element in this dimension, we are referring to
different features, such as CRIM, ZN, and INDUS, from table 2.1. When we take the
mean along axis 0, we are taking the average over the sample direction. The result is a
rank-1 tensor with only the features axis remaining. We have the mean of each fea-
ture. If, instead, we took the mean over axis 1, we would still get a rank-1 tensor, but
the remaining axis would be the sample dimension. The values would correspond to
the mean value of each piece of real estate, which wouldn’t make sense for our appli-
cation. Be careful when working with your axes that you are making your calculations
in the right direction, as this is a common source of errors.

Sure enough, if we set a breakpoint6 here, we can use the JavaScript console to
explore the calculated mean values, and we see mean values pretty close to what we cal-
culated for the entire dataset. This means that our training sample was representative:

> dataMean.shape
[12]
> dataMean.print();

[3.3603415, 10.6891899, 11.2934837, 0.0600601, 0.5571442, 6.2656188, 
68.2264328, 3.7099338, 9.6336336, 409.2792969, 18.4480476, 12.5154343]

In the next line, we subtract (using tf.sub) the mean from our data to obtain a cen-
tered version of the data:

const diffFromMean = data.sub(dataMean);

If you weren’t paying 100% attention, this line might have hidden a delightful little
piece of magic. You see, data is a rank-2 tensor with shape [333, 12], while dataMean
is a rank-1 tensor with shape [12]. In general, it is not possible to subtract two tensors
with different shapes. However, in this case, TensorFlow uses broadcasting to expand
the shape of the second tensor by, in effect, repeating it 333 times, doing exactly what
the user intended without making them spell it out. This usability win comes in handy,
but sometimes the rules for which shapes are compatible for broadcasting can be a lit-
tle confusing. If you are interested in the details of broadcasting, dive right into info
box 2.4.

The next few lines of the determineMeanAndStddev function hold no new surprises:
tf.square() multiplies each element by itself, while tf.sqrt() takes the square root
of the elements. The detailed API for each method is documented at the TensorFlow.js

6 The instructions for setting a breakpoint in Chrome are here: http://mng.bz/rPQJ. If you need instructions
for breakpoints in Firefox, Edge, or another browser, you may simply search for “how to set a breakpoint”
using your favorite search engine.
 

http://mng.bz/rPQJ
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API reference, https://js.tensorflow.org/api/latest/. The documentation page also has
live, editable widgets that allow you to explore how the functions work with your own
parameter values, as illustrated in figure 2.12.

In this example, we’ve written our code prioritizing the clarity of the exposition,
but the determineMeanAndStddev function can be expressed much more concisely:

const std = data.sub(data.mean(0)).square().mean().sqrt();

You should be able to see that TensorFlow allows us to express quite a lot of numerical
computation without much boilerplate code.

Figure 2.12 The TensorFlow.js API documentation at js.tensorflow.org allows you to explore and 
interact with the TensorFlow API right within the documentation. This makes it simple and fast to 
understand functional uses and tricky edge cases.

INFO BOX 2.4 Broadcasting
Consider a tensor operation like C = tf.someOperation(A, B), where A and B are
tensors. When possible, and if there’s no ambiguity, the smaller tensor will be broad-
cast to match the shape of the larger tensor. Broadcasting consists of two steps:

1 Axes (called broadcast axes) are added to the smaller tensor to match the
rank of the larger tensor.

2 The smaller tensor is repeated alongside these new axes to match the full
shape of the larger tensor.
 

js.tensorflow.org
https://js.tensorflow.org/api/latest/
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2.3.6 Linear regression on the Boston-housing data

Our data is normalized, and we have done the due diligence data work to calculate a
reasonable baseline—the next step is to build and fit a model to see if we can outper-
form the baseline. In listing 2.10, we define a linear-regression model like we did in
section 2.1 (from index.js). The code is remarkably similar; the only difference we see
from the download-time prediction model is in the inputShape configuration, which
now accepts vectors of length 12 instead of 1. The single dense layer still has units: 1,
indicating that a single number is the output.

export const linearRegressionModel = () => {
  const model = tf.sequential();
  model.add(tf.layers.dense(
      {inputShape: [bostonData.numFeatures], units: 1}));
  return model;
};

Recall that after our model is defined, but before we begin training, we must specify
the loss and optimizer via a call to model.compile. In listing 2.11, we see that the
'meanSquaredError' loss is specified and that the optimizer is using a customized
learning rate. In our previous example, the optimizer parameter was set to the string
'sgd', but now it is tf.train.sgd(LEARNING_RATE). This factory function will return
an object representing the stochastic gradient descent optimization algorithm, but
parameterized with our custom learning rate. This is a common pattern in Tensor-
Flow.js, borrowed from Keras, and you will see it adopted for many configurable
options. For standard, well-known default parameters, a string sentinel value can
substitute for the required object type, and TensorFlow.js will substitute the string for

Listing 2.10 Defining a linear-regression model for Boston-housing

(continued)
In terms of implementation, no new tensor is actually created because that would be
terribly inefficient. The repetition operation is entirely virtual—it happens at the algo-
rithmic level rather than the memory level. But thinking of the smaller tensor being
repeated along the new axis is a helpful mental model.

With broadcasting, you can generally apply two-tensor, element-wise operations if one
tensor has shape (a, b, …, n, n + 1, … m) and the other has shape (n, n + 1,
… , m). The broadcasting will then automatically happen for axis a through n - 1. For
instance, the following example applies the element-wise maximum operation on two
random tensors of different shapes via broadcasting:

x = tf.randomUniform([64, 3, 11, 9]);

y = tf.randomUniform([11, 9]);

z = tf.maximum(x, y);

x is a random tensor with 
shape [64, 3, 11, 9].

y is a random tensor with shape [11, 9].
The output z has shape [64, 3, 11, 9] like x.
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the required object with good default parameters. In this case, 'sgd' would be
replaced with tf.train.sgd(0.01). When additional customizations are necessary,
the user can build the object via the factory function and provide the required custom
value. This allows code to be concise in most cases but allows the power user to over-
ride default behaviors when needed.

const LEARNING_RATE = 0.01;
model.compile({
    optimizer: tf.train.sgd(LEARNING_RATE),
    loss: 'meanSquaredError'});

Now we can train our model with the training dataset. In listings 2.12 through 2.14,
we’ll use some additional features of the model.fit() call, but essentially it’s doing
the same thing as in figure 2.6. At each step, it selects a number of new samples from
the features (tensors.trainFeatures) and targets (tensors.trainTarget), calcu-
lates the loss, and then updates the internal weights to reduce that loss. The process
will repeat for NUM_EPOCHS complete passes through the training data and will select
BATCH_SIZE samples at each step.

await model.fit(tensors.trainFeatures, tensors.trainTarget, {
  batchSize: BATCH_SIZE
  epochs: NUM_EPOCHS,
});

In the Boston-housing web app, we illustrate a graph of the training loss as the model
trains. This requires using the model.fit() callback feature to update the UI. The
model.fit() callback API allows the user to provide callback functions, which will be
executed at specific events. The complete list of callback triggers, as of version 0.12.0,
is onTrainBegin, onTrainEnd, onEpochBegin, onEpochEnd, onBatchBegin, and
onBatchEnd.

let trainLoss;
await model.fit(tensors.trainFeatures, tensors.trainTarget, {
  batchSize: BATCH_SIZE,
  epochs: NUM_EPOCHS,
  callbacks: {
    onEpochEnd: async (epoch, logs) => {
      await ui.updateStatus(
         `Epoch ${epoch + 1} of ${NUM_EPOCHS} completed.`);
      trainLoss = logs.loss;
      await ui.plotData(epoch, trainLoss);
    }
  }
});

Listing 2.11 Model compilation for Boston-housing (from index.js)

Listing 2.12 Training our model on the Boston-housing data

Listing 2.13 Callbacks in model.fit()     
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One last new customization introduced here is to make use of validation data. Valida-
tion is a machine-learning concept worth a bit of explanation. In the earlier download-
ing-time example, we separated our training data from our testing data because we
wanted an unbiased estimate of how our model will perform on new, unseen data. Typi-
cally what happens, though, is that there is another split called validation data. Validation
data is separate from both the training data and the testing data. What is validation data
used for? The machine-learning engineer will see the result on the validation data and
use that result to change certain configurations of the model7 in order to improve the
accuracy on the validation data. This is all well and good. However, if this cycle is done
enough times, then we are in effect tuning on the validation data. If we use the same val-
idation data to evaluate the model’s final accuracy, the result of the final evaluation will
no longer be generalizable, in the sense that the model has already seen the data, and
the result of the evaluation isn’t guaranteed to reflect how the model will perform on
unseen data in the future. This is the purpose of separating validation out from testing
data. The idea is that we will fit our model on the training data and adjust its hyper-
parameters based on assessments on the validation data. When we are all done and satis-
fied with the process, we will evaluate the model just one time on the testing data for a
final, generalizable estimate of performance. 

Let’s summarize what the training, validation, and testing sets are and how to use
them in TensorFlow.js. Not all projects will make use of all three types of data. Fre-
quently, quick explorations or research projects will use only training and validation
data and not reserve a set of “pure” data for the test. While less rigorous, this is some-
times the best use of limited resources:

 Training data—For fitting the model weights with gradient descent 
– Usage in TensorFlow.js: Typically, training data is employed using the main

arguments (x and y) for calls to Model.fit(x, y, config).
 Validation data—For selecting the model structure and hyperparameters 

– Usage in TensorFlow.js: Model.fit() has two ways of specifying validation data,
both as parameters to the config argument. If you, the user, have explicit
data to use for validation, this may be specified as config.validationData. If,
instead, you wish the framework to split some of the training data off and use
it as validation data, specify the fraction to use in config.validationSplit.
The framework will take care to not use the validation data to train the model,
so there is no overlap.

 Testing data—For a final, unbiased estimate of model performance 
– Usage in TensorFlow.js: Evaluation data is exposed to the system by passing it in

as the x and y arguments to Model.evaluate(x, y, config).

7 Examples of those configurations include the number of layers in the model, the sizes of the layers, the type
of optimizer and learning rate to use during training, and so forth. They are referred to as the model’s hyper-
parameters, which we will cover in greater detail in section 3.1.2 of the next chapter.
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In listing 2.14, validation loss is calculated along with training loss. The validation-
Split: 0.2 field instructs the model.fit() machinery to select the last 20% of the
training data to use as validation data. This data will not be used for training (it does
not affect gradient descent).

let trainLoss;
let valLoss;
await model.fit(tensors.trainFeatures, tensors.trainTarget, {
  batchSize: BATCH_SIZE,
  epochs: NUM_EPOCHS,
  validationSplit: 0.2,
  callbacks: {
    onEpochEnd: async (epoch, logs) => {
      await ui.updateStatus(
          `Epoch ${epoch + 1} of ${NUM_EPOCHS} completed.`);
      trainLoss = logs.loss;
      valLoss = logs.val_loss;
      await ui.plotData(epoch, trainLoss, valLoss);
    }
  }
});

Training this model to 200 epochs takes approximately 11 seconds in the browser on a
modern laptop. We can now evaluate the model on our test set to see if it’s any better
than the baseline. The next listing shows how to use model.evaluate() to collect the
performance of the model on our reserved test data and then call into our custom UI
routines to update the view.

await ui.updateStatus('Running on test data...');
const result = model.evaluate(
    tensors.testFeatures, tensors.testTarget, {batchSize: BATCH_SIZE});
const testLoss = result.dataSync()[0];
await ui.updateStatus(
    `Final train-set loss: ${trainLoss.toFixed(4)}\n` +
    `Final validation-set loss: ${valLoss.toFixed(4)}\n` +
    `Test-set loss: ${testLoss.toFixed(4)}`);

Here, model.evaluate() returns a scalar (recall, a rank-0 tensor) containing the loss
computed over the test set.

Because of the randomness involved in gradient descent, you might get different
results, but the following results are typical:

 Final train-set loss: 21.9864
 Final validation-set loss: 31.1396
 Test-set loss: 25.3206
 Baseline loss: 85.58

Listing 2.14 Including validation data in model.fit()

Listing 2.15 Evaluating our model on the test data and updating the UI (from index.js)
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We see from this that our final, unbiased estimate of our error is about 25.3, which is
much better than our naive baseline of 85.6. Recall that our error is being calculated
using meanSquaredError. Taking the square root, we see that the baseline estimate was
typically off by more than 9.2, while the linear model is off by only about 5.0. Quite a
large improvement! If we were the only ones in the world with access to this info, we
could be the best Boston real-estate investors in 1978! Unless, somehow, someone
were able to build an even more accurate estimate . . .

If you have let your curiosity get ahead of you and clicked Train Neural Network
Regressor, you already know that much better estimates are possible. In the next chap-
ter, we will introduce nonlinear deep models to show how such feats are possible.

2.4 How to interpret your model
Now that we’ve trained our model, and it’s able to make reasonable predictions, it’s
natural to wonder what it has learned. Is there any way to peek inside the model to see
how it understands the data?  When the model predicts a specific price for an input, is
it possible for you to find an understandable explanation for why it comes up with that
value?  For the general case of large deep networks, model understanding—also
known as model interpretability—is still an area of active research, filling many post-
ers and talks at academic conferences. But for this simple linear-regression model, it is
quite simple.

By the end of this section, you will

 Be able to extract the learned weights from a model.
 Be able to interpret those weights and weigh them against your intuitions for

what the weights should be.

2.4.1 Extracting meaning from learned weights

The simple linear model we built in section 2.3 contains 13 learned parameters, con-
tained in a kernel and a bias, just like our first linear model in section 2.1.3:

output = kernel · features + bias

The values of the kernel and bias are both learned while fitting the model. In contrast
to the scalar linear function learned in section 2.1.3, here, the features and the kernel
are both vectors, and the “·” sign indicates the inner product, a generalization of scalar
multiplication to vectors. The inner product, also known as the dot product, is simply
the sum of the products of the matching elements. The pseudo-code in listing 2.16
defines the inner product more precisely.

We should take from this that there is a relationship between the elements of the
features and the elements of the kernel. For each individual feature element, such as
“Crime rate” and “Nitric oxide concentration,” as listed in table 2.1, there is an associ-
ated learned number in the kernel. Each value tells us something about what the
model has learned about this feature and how the feature influences the output.
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function innerProduct(a, b) {
    output = 0;
    for (let i = 0 ; i < a.length ; i++) {
        output += a[i] * b[i];
    }
    return output;
}

For instance, if the model learns that kernel[i] is positive, it means that the output
will be larger if the feature[i] value is larger. Vice versa, if the model learns that
kernel[j] is negative, then a larger value of feature[j] reduces the predicted out-
put. A learned value that is very small in magnitude indicates that the model believes
the associated feature has little impact on the prediction, whereas a learned value with
a large magnitude indicates that the model places a heavy emphasis on the feature,
and small changes in the feature value will have a comparatively large impact on the
prediction.8

To make this concrete, the top five feature values, by absolute value, are printed in
figure 2.13 for one run in the output area of the Boston-housing example. Subse-
quent runs may learn different values due to the randomness of the initialization. We
can see that the values are negative for features we would expect to reflect negatively
on the price of real estate, such as the rate at which local residents drop out of school
and the distance of the real estate to desirable working locations. Learned weights are
positive for features we would expect to correlate directly with the price, such as the
number of rooms in the property.

2.4.2 Extracting internal weights from the model

The modular structure of the learned model makes it easy to extract the relevant
weights; we can access them directly, but there are a few API levels that need to be
reached through in order to get the raw values. It’s important to keep in mind that,
since the value may be on the GPU, and interdevice communication is costly, request-
ing such values is asynchronous. The boldface code in listing 2.17 is an addition to the

Listing 2.16 Inner product pseudo-code     

8 Note that comparing magnitudes in this way is only possible if the features have been normalized, as we have
done for the Boston-housing dataset.

School drop-out rate –3.8119

Distance to commute –3.7278

Number of rooms per house 2.8451

Distance to highway 2.2949

Nitric oxide concentration –2.1190

Figure 2.13 Ranked by absolute value, these 
are the top five weights learned in one run of the 
linear model on the Boston-housing prediction 
problem. Note the negative values for features 
that you would expect to reflect negatively on 
the price of housing.
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model.fit callbacks, extending listing 2.14 to illustrate the learned weights after each
epoch. We will walk through the API calls step-by-step.

Given the model, we first wish to access the correct layer. This is easy because there
is only one layer in this model, so we can get a handle to it at model.layers[0]. Now
that we have the layer, we can access the internal weights with getWeights(), which
returns an array of the weights. For the case of a dense layer, this will always contain
two weights, the kernel and the bias, in that order. Thus, we can access the correct ten-
sor at 

> model.layers[0].getWeights()[0]

Now that we have the right tensor, we can access its contents with a call to its data()
method. Due to the asynchronous nature of GPU  CPU communication, data() is
asynchronous and returns a promise of the tensor’s value, not the actual value. In list-
ing 2.17, a callback passed to the then() method of the promise binds the tensor val-
ues to a variable called kernelAsArr. If the console.log() statement is uncom-
mented, statements like the following, listing the values of the kernel, are logged to
the console once per each epoch:

> Float32Array(12) [-0.44015952944755554, 0.8829045295715332, 
0.11802537739276886, 0.9555914402008057, -1.6466193199157715, 
3.386948347091675, -0.36070501804351807, -3.0381457805633545, 
1.4347705841064453, -1.3844640254974365, -1.4223048686981201, 
-3.795234441757202]

let trainLoss;
let valLoss;
await model.fit(tensors.trainFeatures, tensors.trainTarget, {
  batchSize: BATCH_SIZE,
  epochs: NUM_EPOCHS,
  validationSplit: 0.2,
  callbacks: {
    onEpochEnd: async (epoch, logs) => {
      await ui.updateStatus(
          `Epoch ${epoch + 1} of ${NUM_EPOCHS} completed.`);
      trainLoss = logs.loss;
      valLoss = logs.val_loss;
      await ui.plotData(epoch, trainLoss, valLoss);
      model.layers[0].getWeights()[0].data().then(kernelAsArr => {
        // console.log(kernelAsArr);
        const weightsList = describeKerenelElements(kernelAsArr);
        ui.updateWeightDescription(weightsList);
      });
    }
  }
});

Listing 2.17 Accessing internal model values
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2.4.3 Caveats on interpretability

The weights in figure 2.13 tell a story. As a human reader, you might look at this and
say that the model has learned that the “Number of rooms per house” feature posi-
tively correlates with the price output or that the real-estate AGE feature, which is not
listed due to its lower absolute magnitude, is of lower importance than those first five
features. Because of the way our minds like to tell stories, it is common to take this too
far and imagine these numbers say more than the evidence supports. For instance,
one way that this sort of analysis can fail is if two input features are strongly correlated. 

Consider a hypothetical example in which the same feature is included twice, per-
haps by accident. Call them FEAT1 and FEAT2. Imagine the weights learned for the
two features are 10 and –5. You might be inclined to say that increasing FEAT1 leads
to larger outputs, while FEAT2 does the opposite. However, since the features are
equivalent, the model would output the exact same values if the weights were
reversed.

Another caveat to be aware of is the difference between correlation and causality.
Imagine a simple model in which we wish to predict how hard it is raining outside
from how wet our roof is. If we had a measure of roof wetness, we could probably
make a prediction of how much rain there had been in the past hour. We could not,
however, splash water on the sensor to make it rain!

Exercises
1 The hard-coded time estimation problem in section 2.1 was selected because the

data is roughly linear. Other datasets will have different loss surfaces and dynam-
ics during fitting. You may want to try substituting your own data here to explore
how the model reacts. You may need to play with the learning rate, initialization,
or normalization to get the model to converge to something interesting.

2 In section 2.3.5, we spent some time describing why normalization is important
and how to normalize the input data to have zero mean and unit variance. You
should be able to modify the example to remove the normalization and see that
the model no longer trains. You should also be able to modify the normaliza-
tion routine to have, for example, a mean of something other than 0 or a stan-
dard deviation that is lower, but not as low. Some normalizations will work, and
some will lead to a model that never converges.

3 It is well known that some features of the Boston Housing Prices dataset are
more predictive of the target than others. Some of the features are merely noise
in the sense that they don’t carry useful information for predicting housing
prices. If we were to remove all but one feature, which feature should we keep?
What if we were to keep two features: how can we select which ones? Play with
the code in the Boston-housing example to explore this.

4 Describe how gradient descent allows for the optimization of a model by updat-
ing weights in a better-than-random way.
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5 The Boston-housing example prints out the top five weights by absolute magni-
tude. Try modifying the code to print out the features associated with small
weights. Can you imagine why those weights are small? If someone were to ask
you why those weights were what they were, what could you tell them? What
sorts of cautions would you tell that person about how to interpret the values?

Summary
 It is simple to build, train, and evaluate a simple machine-learning model in five

lines of JavaScript using TensorFlow.js.
 Gradient descent, the basic algorithm structure behind deep learning, is con-

ceptually simple and really just means repeatedly updating model parameters
in small steps in the calculated direction that would most improve the model fit.

 A model’s loss surface illustrates how well the model fits for a grid of parame-
ter values. The loss surface is not generally calculable because of the high-
dimensionality of the parameter space, but it’s illustrative to think about and
gives intuition to how machine learning works.

 A single dense layer is sufficient to solve some simple problems and can achieve
reasonable performance on a real-estate pricing problem.
 



Adding nonlinearity:
Beyond weighted sums
In this chapter, you’ll build on the groundwork laid in chapter 2 to allow your neu-
ral networks to learn more complicated mappings, from features to labels. The pri-
mary enhancement we will introduce is nonlinearity—a mapping between input and
output that isn’t a simple weighted sum of the input’s elements. Nonlinearity
enhances the representational power of neural networks and, when used correctly,
improves the prediction accuracy in many problems. We will illustrate this
point by continuing to use the Boston-housing dataset. In addition, this chapter

This chapter covers
 What nonlinearity is and how nonlinearity in hidden layers of 

a neural network enhances the network’s capacity and 
leads to better prediction accuracies

 What hyperparameters are and methods for tuning them

 Binary classification through nonlinearity at the output layer, 
introduced with the phishing-website-detection example

 Multiclass classification and how it differs from binary 
classification, introduced with the iris-flower example
79
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will introduce a deeper look at over- and underfitting to help you train models that not
only perform well on the training data but also achieve good accuracy on data that the
models haven’t seen during training, which is what ultimately counts in terms of mod-
els’ quality.

3.1 Nonlinearity: What it is and what it is good for
Let’s pick up where we left off with the Boston-housing example from the last chapter.
Using a single dense layer, you saw trained models leading to MSEs corresponding to
misestimates of roughly US$5,000. Can we do better? The answer is yes. To make a bet-
ter model for the Boston-housing data, we add one more dense layer to it, as shown by
the following code listing (from index.js of the Boston-housing example).

export function multiLayerPerceptronRegressionModel1Hidden() {
  const model = tf.sequential();
  model.add(tf.layers.dense({
    inputShape: [bostonData.numFeatures],
    units: 50,
    activation: 'sigmoid',
    kernelInitializer: 'leCunNormal'
  }));
  model.add(tf.layers.dense({units: 1}));

  model.summary();
  return model;
};

To see this model in action, first run the yarn && yarn watch command as men-
tioned in chapter 2. Once the web page is open, click the Train Neural Network
Regressor (1 Hidden Layer) button in the UI in order to start the model’s training.

The model is a two-layer network. The first layer is a dense layer with 50 units. It is
also configured to have custom activation and a kernel initializer, which we will discuss
in section 3.1.2. This layer is a hidden layer because its output is not directly seen from
outside the model. The second layer is a dense layer with the default activation (the
linear activation) and is structurally the same layer we used in the pure linear model
from chapter 2. This layer is an output layer because its output is the model’s final out-
put and is what’s returned by the model’s predict() method. You may have noticed
that the function name in the code refers to the model as a multilayer perceptron (MLP).
This is an oft-used term that describes neural networks that 1) have a simple topology
without loops (what’s referred to as feedforward neural networks) and 2) have at least one
hidden layer. All the models you will see in this chapter meet this definition.

The model.summary() call in listing 3.1 is new. It is a diagnostic/reporting tool that
prints the topology of TensorFlow.js models to the console (either in the browser’s
developer tool or to the standard output in Node.js). Here’s what the two-layer model
generated:

Listing 3.1 Defining a two-layer neural network for the Boston-housing problem

Specifies how the kernel values should 
be initialized; see section 3.1.2 for a 
discussion of how this is chosen 
through hyperparameter optimization.

Adds a hidden layer

Prints a text summary of 
the model’s topology
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_________________________________________________________________
Layer (type)                 Output shape              Param #   
=================================================================
dense_Dense1 (Dense)         [null,50]                 650       
 _________________________________________________________________
dense_Dense2 (Dense)         [null,1]                  51        
=================================================================
Total params: 701
Trainable params: 701
Non-trainable params: 0

The key information in the summary includes

 The names and types of the layers (first column).
 The output shape for each layer (second column). These shapes almost always

contain a null dimension as the first (batch) dimension, representing undeter-
mined and variable batch size.

 The number of weight parameters for each layer (third column). This is a
count of all the individual numbers that make up the layer’s weights. For layers
with more than one weight, this is a sum across all the weights. For instance, the
first dense layer in this example contains two weights: a kernel of shape [12,
50] and a bias of shape [50], leading to 12 * 50 + 50 = 650 parameters.

 The total number of the model’s weight parameters (at the bottom of the sum-
mary), followed by a breakdown of how many of the parameters are trainable
and how many are nontrainable. The models we’ve seen so far contain only
trainable parameters, which belong to the model weights that are updated
when tf.Model.fit() is called. We will discuss nontrainable weights when we
talk about transfer learning and model fine-tuning in chapter 5.

The model.summary() output of the purely linear model from chapter 2 is as follows.
Compared with the linear model, our two-layer model contains about 54 times as
many weight parameters. Most of the additional weights come from the added hidden
layer:

_________________________________________________________________
Layer (type)                 Output shape              Param #   
=================================================================
dense_Dense3 (Dense)         [null,1]                  13        
=================================================================
Total params: 13
Trainable params: 13
Non-trainable params: 0

Because the two-layer model contains more layers and weight parameters, its training
and inference consumes more computation resources and time. Is this added cost
worth the gain in accuracy? When we train this model for 200 epochs, we end up with
final MSEs on the test set that fall into the range of 14–15 (variability due to random-
ness of initialization), as compared to a test-set loss of approximately 25 from the lin-
ear model. Our new model ends up with a misestimate of US$3,700–$3,900 versus the
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approximately $5,000 misestimates we saw with the purely linear attempts. This is a
significant improvement. 

3.1.1 Building the intuition for nonlinearity in neural networks

Why does the accuracy improve? The key is the model’s enhanced complexity, as fig-
ure 3.1 shows. First, there is an additional layer of neurons, which is the hidden layer.
Second, the hidden layer contains a nonlinear activation function (as specified by
activation: 'sigmoid' in the code), which is represented by the square boxes in
panel B of figure 3.1. An activation function1 is an element-by-element transform. The
sigmoid function is a “squashing” nonlinearity, in the sense that it “squashes” all real
values from –infinity to +infinity into a much smaller range (0 to +1, in this case). Its
mathematical equation and plot are shown in figure 3.2. Let’s take the hidden dense
layer as an example. Suppose the result of the matrix multiplication and addition with
the bias is a 2D tensor consisting of the following array of random values:

[[1.0], [0.5], …, [0.0]],

The final output of the dense layer is then obtained by calling the sigmoid (S) func-
tion on each of the 50 elements individually, giving

[[S(1.0)], [S(0.5)], …, [S(0.0)]] = [[0.731], [0.622], …, [0.0]]

Why is this function called nonlinear? Intuitively, the plot of the activation function is
not a straight line. For example, sigmoid is a curve (figure 3.2, left panel), and relu is
a concatenation of two line segments (figure 3.2, right panel). Even though sigmoid
and relu are nonlinear, one of their properties is that they are smooth and differentia-
ble at every point, which makes it possible to perform backpropagation2 through
them. Without this property, it wouldn’t be possible to train a model with layers that
contain this activation.

Apart from the sigmoid function, a few other types of differentiable nonlinear
functions are used frequently in deep learning. These include relu and hyperbolic
tangent (or tanh). We will describe them in detail when we encounter them in subse-
quent examples.

1 The term activation function originated from the study of biological neurons, which communicate with each
other through action potentials (voltage spikes on their cell membranes). A typical biological neuron receives
inputs from a number of upstream neurons via contact points called synapses. The upstream neurons fire
action potentials at different rates, which leads to the release of neurotransmitters and opening or closing of
ion channels at the synapses. This in turn leads to variation in the voltage on the recipient neuron’s mem-
brane. This is not unlike the kind of weighted sum seen for a unit in the dense layer. Only when the potential
exceeds a certain threshold will the recipient neuron actually produce action potentials (that is, be “acti-
vated”) and thereby affect the state of downstream neurons. In this sense, the activation function of a typical
biological neuron is somewhat similar to the relu function (figure 3.2, right panel), which consists of a “dead
zone” below a certain threshold of the input and increases linearly with the input above the threshold (at least
up to a certain saturation level, which is not captured by the relu function).

2 See section 2.2.2 if you need a refresher on backpropagation.
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B. Two-layer neural
network with
nonlinear internal
activation

A. Linear-regression
model

Figure 3.1 The linear-regression model (panel A) and two-layer neural 
network (panel B) created for the Boston-housing dataset. For the sake of 
clarity, we reduced the number of input features from 12 to 3 and the 
number of the hidden layer’s units from 50 to 5 in panel B. Each model has 
only a single output unit because the models solve a univariate (one-target-
number) regression problem. Panel B illustrates the nonlinear (sigmoid) 
activation of the model’s hidden layer.

Figure 3.2 Two frequently used nonlinear activation functions for deep neural networks. Left: the sigmoid 
function S(x) = 1 / (1 + e ^ -x). Right: the rectified linear unit (relu) function relu(x) = {0:x < 
0, x:x >= 0}
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NONLINEARITY AND MODEL CAPACITY

Why does nonlinearity improve the accuracy of our model? Nonlinear functions allow
us to represent a more diverse family of input-output relations. Many relations in the
real world are approximately linear, such as the download-time problem we saw in the
last chapter. But many others are not. It is easy to conceive examples of nonlinear rela-
tions. Consider the relation between a person’s height and their age. Height varies
roughly linearly with age only up to a certain point, where it bends and plateaus. As
another totally reasonable scenario, house prices can vary in a negative fashion with
the neighborhood crime rate only if the crime rate is within a certain range. A purely
linear model, like the one we developed in the last chapter, cannot accurately model
this type of relation, while sigmoid nonlinearity is much better suited to model this
relation. Of course, the crime-rate-house-price relation is more like an inverted
(decreasing) sigmoid function than the original, increasing one in the left panel of
figure 3.2. But our neural network has no issue modeling this relation because the sig-
moid activation is preceded and followed by linear functions with tunable weights.

But by replacing the linear activation with a nonlinear one like sigmoid, do we lose
the ability to learn any linear relations that might be present in the data? Luckily, the
answer is no. This is because part of the sigmoid function (the part close to the cen-
ter) is fairly close to being a straight line. Other frequently used nonlinear activations,
such as tanh and relu, also contain linear or close-to-linear parts. If the relations
between certain elements of the input and those of the output are approximately lin-
ear, it is entirely possible for a dense layer with a nonlinear activation to learn the
proper weights and biases to utilize the near-linear parts of the activation function.
Hence, adding nonlinear activation to a dense layer leads to a net gain in the breadth
of input-output relations it can learn.

Furthermore, nonlinear functions are different from linear ones in that cascading
nonlinear functions lead to richer sets of nonlinear functions. Here, cascading refers
to passing the output of one function as the input to another. Suppose there are two
linear functions,

f(x) = k1 * x + b1

and

g(x) = k2 * x + b2

Cascading the two functions amounts to defining a new function h:

h(x) = g(f(x)) = k2 * (k1 * x + b1) + b2 = (k2 * k1) * x + (k2 * b1 + b2)

As you can see, h is still a linear function. It just has a different kernel (slope) and a
different bias (intercept) from those of f1 and f2. The slope is now (k2 * k1), and
the bias is now (k2 * b1 + b2). Cascading any number of linear functions always
results in a linear function.

However, consider a frequently used nonlinear activation function: relu. In the bot-
tom part of figure 3.3, we illustrate what happens when you cascade two relu functions
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with linear scaling. By cascading two scaled relu functions, we get a function that
doesn’t look like relu at all. It has a new shape (something of a downward slope
flanked by two flat sections in this case). Further cascading the step function with
other relu functions will give an even more diverse set of functions, such as a “window”
function, a function consisting of multiple windows, functions with windows stacked
on top of wider windows, and so on (not shown in figure 3.3). There is a remarkably
rich range of function shapes that you can create by cascading nonlinearities such as
relu (one of the most commonly used activation functions). But what does this have to
do with neural networks? In essence, neural networks are cascaded functions. Each
layer of a neural network can be viewed as a function, and the stacking of layers
amounts to cascading these functions to form a more complex function that is
the neural network itself. This should make it clear why including nonlinear
activation functions increases the range of input-output relations the model is capable
of learning. This also gives you an intuitive understanding behind the oft-used trick of
“adding more layers to a deep neural network” and why it often (but not always!)
leads to models that can fit the dataset better.

f(x) = 2 * x g(x) = 1 – x h(x) = g(f(x)) = 1 – 2 * x

1

1

1

0.5

Cascading linear functions

Cascading relu functions

f(x) = relu(2 * x) g(x) = relu(1 – x)

1

1

h(x) = g(f(x)) = relu(1 – relu(2 * x))

1

0.5

Figure 3.3 Cascading linear functions (top) and nonlinear functions (bottom). Cascading linear 
functions always leads to linear functions, albeit with new slopes and intercepts. Cascading nonlinear 
functions (such as relu in this example) leads to nonlinear functions with novel shapes, such as the 
“downward step” function in this example. This exemplifies why nonlinear activations and the 
cascading of them in neural networks leads to enhanced representational power (that is, capacity).
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The range of input-output relations a machine-learning model is capable of learning
is often referred to as the model’s capacity. From the prior discussion about nonlin-
earity, we can see that a neural network with hidden layers and nonlinear activation
functions has a greater capacity compared to a linear regressor. This explains why
our two-layer network achieves a superior test-set accuracy compared to the linear-
regression model. 

You might ask, since cascading nonlinear activation functions leads to greater capac-
ity (as in the bottom part of figure 3.3), can we get a better model for the Boston-
housing problem by adding more hidden layers to the neural network? The multi-
LayerPerceptronRegressionModel2Hidden() function in index.js, which is wired to the
button titled Train Neural Network Regressor (2 Hidden Layers), does exactly that. See
the following code excerpt (from index.js of the Boston-housing example).

export function multiLayerPerceptronRegressionModel2Hidden() {
  const model = tf.sequential();
  model.add(tf.layers.dense({
    inputShape: [bostonData.numFeatures],
    units: 50,
    activation: 'sigmoid',
    kernelInitializer: 'leCunNormal'
  }));
  model.add(tf.layers.dense({
    units: 50,
    activation: 'sigmoid',
    kernelInitializer: 'leCunNormal'
  }));
  model.add(tf.layers.dense({units: 1}));

  model.summary();
  return model;
};

In the summary() printout (not shown), you can see that the model contains three lay-
ers—that is, one more than the model in listing 3.1. It also has a significantly larger
number of parameters: 3,251 as compared to 701 in the two-layer model. The extra
2,550 weight parameters are due to the inclusion of the second hidden layer, which
consists of a kernel of shape [50, 50] and a bias of shape [50].

Repeating the model training a number of times, we can get a sense of the range of
the final test-set (that is, evaluation) MSE of the three-layer networks: roughly 10.8–
13.4. This corresponds to a misestimate of $3,280–$3,660, which beats that of the two-
layer network ($3,700–$3,900). So, we have again improved the prediction accuracy of
our model by adding nonlinear hidden layers and thereby enhancing its capacity.

AVOIDING THE FALLACY OF STACKING LAYERS WITHOUT NONLINEARITY

Another way to see the importance of the nonlinear activation for the improved
Boston-housing model is to remove it from the model. Listing 3.3 is the same as listing
3.1, except that the line that specifies the sigmoid activation function is commented

Listing 3.2 Defining a three-layer neural network for the Boston-housing problem

Adds the first 
hidden layer

Adds another 
hidden layer

Prints a text summary of 
the model’s topology
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out. Removing the custom activation causes the layer to have the default linear activa-
tion. Other aspects of the model, including the number of layers and weight parame-
ters, don’t change.

export function multiLayerPerceptronRegressionModel1Hidden() {
  const model = tf.sequential();
  model.add(tf.layers.dense({
    inputShape: [bostonData.numFeatures],
    units: 50,
    // activation: 'sigmoid',
    kernelInitializer: 'leCunNormal'
  }));
  model.add(tf.layers.dense({units: 1}));

  model.summary();
  return model;
};

How does this change affect the model’s learning? As you can find out by clicking the
Train Neural Network Regressor (1 Hidden Layer) button again in the UI, the MSE
on the test goes up to about 25, as compared with the 14–15 range when the sigmoid
activation was included. In other words, the two-layer model without the sigmoid acti-
vation performs about the same as the one-layer linear regressor!

This confirms our reasoning about cascading linear functions. By removing the
nonlinear activation from the first layer, we end up with a model that is a cascade of
two linear functions. As we have demonstrated before, the result is another linear
function without any increase in the model’s capacity. Thus, it is no surprise that we
end up with about the same accuracy as the linear model. This brings up a common
“gotcha” in building multilayer neural networks: be sure to include nonlinear activations
in the hidden layers. Failing to do so results in wasted computation resources and time,
with potential increases in numerical instability (observe the wigglier loss curves in
panel B of figure 3.4). Later, we will see that this applies not only to dense but also to
other layer types, such as convolutional layers.

NONLINEARITY AND MODEL INTERPRETABILITY

In chapter 2, we showed that once a linear model was trained on the Boston-housing
dataset, we could examine its weights and interpret its individual parameters in a rea-
sonably meaningful way. For example, the weight that corresponds to the “average num-
ber of rooms per dwelling” feature had a positive value, and the weight that corresponds
to the “crime rate” feature had a negative value. The signs of such weights reflect the
expected positive or negative relation between house price and the respective features.
Their magnitudes also hint at the relative importance assigned to the various features by
the model. Given what you just learned in this chapter, a natural question is: with a non-
linear model containing one or more hidden layers, is it still possible to come up with
an understandable and intuitive interpretation of its weight values?

Listing 3.3 A two-layer neural network without nonlinear activation

Disables the nonlinear activation function
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The API for accessing weight values is exactly the same between a nonlinear model
and a linear model: you just use the getWeights() method on the model object or its
constituent layer objects. Take the MLP in listing 3.1, for example—you can insert the
following line after the model training is done (right after the model.fit() call): 

model.layers[0].getWeights()[0].print();

This line prints the value of the kernel of the first layer (that is, the hidden layer). This
is one of the four weight tensors in the model, the other three being the hidden
layer’s bias and the output layer’s kernel and bias. One thing to notice about the print-
out is that it has a larger size than the kernel we saw when printing the kernel of the
linear model:

Tensor
    [[-0.5701274, -0.1643915, -0.0009151, ..., 0.313205  , -0.3253246],
     [-0.4400523, -0.0081632, -0.2673715, ..., 0.1735748 , 0.0864024 ],
     [0.6294659 , 0.1240944 , -0.2472516, ..., 0.2181769 , 0.1706504 ],
     [0.9084488 , 0.0130388 , -0.3142847, ..., 0.4063887 , 0.2205501 ],
     [0.431214  , -0.5040522, 0.1784604 , ..., 0.3022115 , -0.1997144],
     [-0.9726604, -0.173905 , 0.8167523 , ..., -0.0406454, -0.4347956],
     [-0.2426955, 0.3274118 , -0.3496988, ..., 0.5623314 , 0.2339328 ],
     [-1.6335299, -1.1270424, 0.618491  , ..., -0.0868887, -0.4149215],
     [-0.1577617, 0.4981289 , -0.1368523, ..., 0.3636355 , -0.0784487],
     [-0.5824679, -0.1883982, -0.4883655, ..., 0.0026836 , -0.0549298],
     [-0.6993552, -0.1317919, -0.4666585, ..., 0.2831602 , -0.2487895],
     [0.0448515 , -0.6925298, 0.4945385 , ..., -0.3133179, -0.0241681]]
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Figure 3.4 Comparing the training results with (panel A) and without (panel B) the sigmoid activation. Notice 
that removing the sigmoid activation leads to higher final loss values on the training, validation, and evaluation 
sets (a level comparable to the purely linear model from before) and to less smooth loss curves. Note that the 
y-axis scales are different between the two plots.
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This is because the hidden layer consists of 50 units, which leads to a weight size of
[18, 50]. This kernel has 900 individual weight parameters, as compared to the 12 +
1 = 13 parameters in the linear model’s kernel. Can we assign a meaning to each of
the individual weight parameters? In general, the answer is no. This is because there is
no easily identifiable meaning to any of the 50 outputs from the hidden layer. These
are the dimensions of high-dimensional space created so that the model can learn
(automatically discover) nonlinear relations in it. The human mind is not very good at
keeping track of nonlinear relations in such high-dimensional spaces. In general, it is
very difficult to write down a few sentences in layman’s terms to describe what each of
the hidden layer’s units does or to explain how it contributes to the final prediction of
the deep neural network.

Also, realize that the model here has only one hidden layer. The relations become
even more obscure and harder to describe when there are multiple hidden layers
stacked on top of each other (as is the case in the model defined in listing 3.2). Even
though there are research efforts to find better ways to interpret the meaning of deep
neural networks’ hidden layers,3 and progress is being made for some classes of mod-
els,4 it is fair to say that deep neural networks are harder to interpret compared to
shallow neural networks and certain types of nonneural network machine-learning
models (such as decision trees). By choosing a deep model over a shallow one, we are
essentially trading some interpretability for greater model capacity.

3.1.2 Hyperparameters and hyperparameter optimization

Our discussion of the hidden layers in listings 3.1 and 3.2 has been focusing on the
nonlinear activation (sigmoid). However, other configuration parameters for this
layer are also important for ensuring a good training result from this model. These
include the number of units (50) and the kernel’s 'leCunNormal' initialization. The
latter is a special way to generate the random numbers that go into the kernel’s initial
value based on the size of the input. It is distinct from the default kernel initializer
('glorotNormal'), which uses the sizes of both the input and output. Natural ques-
tions to ask are: Why use this particular custom kernel initializer instead of the default
one? Why use 50 units (instead of, say, 30)? These choices are made to ensure a best-
possible or close-to-best-possible good model quality through trying out various com-
binations of parameters repeatedly.

Parameters such as number of units, kernel initializers, and activation are hyper-
parameters of the model. The name “hyperparameters” signifies the fact that these
parameters are distinct from the model’s weight parameters, which are updated auto-
matically through backpropagation during training (that is, Model.fit() calls). Once

3 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “Local Interpretable Model-Agnostic Explanations
(LIME): An Introduction,” O’Reilly, 12 Aug. 2016, http://mng.bz/j5vP.

4 Chris Olah et al., “The Building Blocks of Interpretability,” Distill, 6 Mar. 2018, https://distill.pub/2018/
building-blocks/.
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the hyperparameters have been selected for a model, they do not change during the
training process. They often determine the number and size of the weight parameters
(for instance, consider the units field for a dense layer), the initial values of the
weight parameters (consider the kernelInitializer field), and how they are
updated during training (consider the optimizer field passed to Model.compile()).
Therefore, they are on a level higher than the weight parameters. Hence the name
“hyperparameter.”

Apart from the sizes of the layers and the type of weight initializers, there are many
other types of hyperparameters for a model and its training, such as

 The number of dense layers in a model, like the ones in listings 3.1 and 3.2
 What type of initializer to use for the kernel of a dense layer
 Whether to use any weight regularization (see section 8.1) and, if so, the regu-

larization factor
 Whether to include any dropout layers (see section 4.3.2, for example) and, if

so, the dropout rate
 The type of optimizer used for training (such as 'sgd' versus 'adam'; see info

box 3.1)
 How many epochs to train the model for
 The learning rate of the optimizer
 Whether the learning rate of the optimizer should be decreased gradually as

training progresses and, if so, at what rate
 The batch size for training 

The last five examples listed are somewhat special in that they are not related to the
architecture of the model per se; instead, they are configurations of the model’s train-
ing process. Nonetheless, they affect the outcome of the training and hence are
treated as hyperparameters. For models consisting of more diverse types of layers
(such as convolutional and recurrent layers, discussed in chapters 4, 5, and 9), there
are even more potentially tunable hyperparameters. Therefore, it is clear why even a
simple deep-learning model may have dozens of tunable hyperparameters.

The process of selecting good hyperparameter values is referred to as hyperparame-
ter optimization or hyperparameter tuning. The goal of hyperparameter optimization is to
find a set of parameters that leads to the lowest validation loss after training. Unfortu-
nately, there is currently no definitive algorithm that can determine the best hyper-
parameters given a dataset and the machine-learning task involved. The difficulty lies
in the fact that many of the hyperparameters are discrete, so the validation loss value
is not differentiable with respect to them. For example, the number of units in a
dense layer and the number of dense layers in a model are integers; the type of opti-
mizer is a categorical parameter. Even for the hyperparameters that are continuous
and against which the validation loss is differentiable (for example, regularization
factors), it is usually too computationally expensive to keep track of the gradients
with respect to those hyperparameters during training, so it is not really feasible to
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perform gradient descent in the space of such hyperparameters. Hyperparameter
optimization remains an active area of research, one which deep-learning practi-
tioners should pay attention to.

Given the lack of a standard, out-of-the-box methodology or tool for hyperparameter
optimization, deep-learning practitioners often use the following three approaches.
First, if the problem at hand is similar to a well-studied problem (say, any of the exam-
ples you can find in this book), you can start with applying a similar model on your
problem and “inherit” the hyperparameters. Later, you can search in a relatively small
hyperparameter space around that starting point.

Second, practitioners with sufficient experience might have intuition and educated
guesses about what may be reasonably good hyperparameters for a given problem.
Even such subjective choices are almost never optimal—they form good starting
points and can facilitate subsequent fine-tuning.

Third, for cases in which there are only a small number of hyperparameters to opti-
mize (for example, fewer than four), we can use grid search—that is, exhaustively iter-
ating over a number of hyperparameter combinations, training a model to
completion for each of them, recording the validation loss, and taking the hyper-
parameter combination that yields the lowest validation loss. For example, suppose
the only two hyperparameters to tune are 1) the number of units in a dense layer and
2) the learning rate; you might select a set of units ({10, 20, 50, 100, 200}) and a
set of learning rates ({1e-5, 1e-4, 1e-3, 1e-2}) and perform a cross of the two sets,
which leads to a total of 5 * 4 = 20 hyperparameter combinations to search over. If
you were to implement the grid search yourself, the pseudo-code might look some-
thing like the following listing.

function hyperparameterGridSearch():
  for units of [10, 20, 50, 100, 200]:
    for learningRate  of [1e-5, 1e-4, 1e-3, 1e-2]:
       Create a model using whose dense layer consists of `units` units
       Train the model with an optimizer with `learningRate`
       Calculate final validation loss as validationLoss
       if validationLoss < minValidationLoss
         minValidationLoss := validationLoss
         bestUnits := units
         bestLearningRate := learningRate

  return [bestUnits, bestLearningRate]

How are the ranges of these hyperparameters selected? Well, there is another place
deep learning cannot provide a formal answer. These ranges are usually based on the
experience and intuition of the deep-learning practitioner. They may also be con-
strained by computation resources. For example, a dense layer with too many units
may cause the model to be too slow to train or to run during inference.

Oftentimes, there are a larger number of hyperparameters to optimize over, to the
extent that it becomes computationally too expensive to search over the exponentially

Listing 3.4 Pseudo-code for a simple hyperparameter grid search
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increasing number of hyperparameter combinations. In such cases, you should use
more sophisticated methods than grid search, such as random search5 and Bayesian6

methods. 

3.2 Nonlinearity at output: Models for classification
The two examples we’ve seen so far have both been regression tasks in which we try to
predict a numeric value (such as the download time or the average house price). How-
ever, another common task in machine learning is classification. Some classification
tasks are binary classification, wherein the target is the answer to a yes/no question. The
tech world is full of this type of problem, including

 Whether a given email is or isn’t spam
 Whether a given credit-card transaction is legitimate or fraudulent
 Whether a given one-second-long audio sample contains a specific spoken word
 Whether two fingerprint images match each other (come from the same per-

son’s same finger)

Another type of classification problem is a multiclass-classification task, for which exam-
ples also abound:

 Whether a news article is about sports, weather, gaming, politics, or other gen-
eral topics

 Whether a picture is a cat, dog, shovel, and so on
 Given stroke data from an electronic stylus, determining what a handwritten

character is
 In the scenario of using machine learning to play a simple Atari-like video

game, determining in which of the four possible directions (up, down, left, and
right) the game character should go next, given the current state of the game

3.2.1 What is binary classification?

We’ll start with a simple case of binary classification. Given some data, we want a
yes/no decision. For our motivating example, we’ll talk about the Phishing Website
dataset.7 The task is, given a collection of features about a web page and its URL, pre-
dicting whether the web page is used for phishing (masquerading as another site with
the aim to steal users’ sensitive information).

The dataset contains 30 features, all of which are binary (represented as the values –
1 and 1) or ternary (represented as –1, 0, and 1). Rather than listing all the individual

5 James Bergstra and Yoshua Bengio, “Random Search for Hyper-Parameter Optimization,” Journal of Machine
Learning Research, vol. 13, 2012, pp. 281–305, http://mng.bz/WOg1.

6 Will Koehrsen, “A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning,
Towards Data Science, 24 June 2018, http://mng.bz/8zQw.

7 Rami M. Mohammad, Fadi Thabtah, and Lee McCluskey, “Phishing Websites Features,” http://mng.bz/
E1KO.
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features like we did for the Boston-housing dataset, here we present a few representa-
tive features:

 HAVING_IP_ADDRESS—Whether an IP address is used as an alternative to a
domain name (binary value: {-1, 1})

 SHORTENING_SERVICE—Whether it is using a URL shortening service or not
(binary value: {1, -1})

 SSLFINAL_STATE—Whether 1) the URL uses HTTPS and the issuer is trusted,
2) it uses HTTPS but the issuer is not trusted, or 3) no HTTPS is used (ternary
value: {-1, 0, 1})

The dataset consists of approximately 5,500 training examples and an equal number
of test examples. In the training set, approximately 45% of the examples are positive
(truly phishing web pages). The percentage of positive examples is about the same in
the test set.

This is just about the easiest type of dataset to work with—the features in the data
are already in a consistent range, so there is no need to normalize their means and
standard deviations as we did for the Boston-housing dataset. Additionally, we have a
large number of training examples relative to both the number of features and the
number of possible predictions (two—yes or no). Taken as a whole, this is a good san-
ity check that it’s a dataset we can work with. If we wanted to spend more time investi-
gating our data, we might do pairwise feature-correlation checks to know if we have
redundant information; however, this is something our model can tolerate.

Since our data looks similar to what we used (post-normalization) for Boston-
housing, our starting model is based on the same structure. The example code for
this problem is available in the website-phishing folder of the tfjs-examples repo. You
can check out and run the example as follows:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/website-phishing
yarn && yarn watch

const model = tf.sequential();
model.add(tf.layers.dense({
  inputShape: [data.numFeatures],
  units: 100,
  activation: 'sigmoid'
}));
model.add(tf.layers.dense({units: 100, activation: 'sigmoid'}));
model.add(tf.layers.dense({units: 1, activation: 'sigmoid'}));
model.compile({
  optimizer: 'adam',
  loss: 'binaryCrossentropy',
  metrics: ['accuracy']
});

This model has a lot of similarities to the multilayer network we built for the Boston-
housing problem. It starts with two hidden layers, and both of them use the sigmoid

Listing 3.5 Defining a binary-classification model for phishing detection (from index.js)
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activation. The last (output) has exactly 1 unit, which means the model outputs a sin-
gle number for each input example. However, a key difference here is that the last
layer of our model for phishing detection has a sigmoid activation instead of the
default linear activation as in the model for Boston-housing. This means that our
model is constrained to output numbers between only 0 and 1, which is unlike the
Boston-housing model, which might output any float number.

Previously, we have seen sigmoid activations for hidden layers help increase model
capacity. But why do we use sigmoid activation at the output of this new model? This
has to do with the binary-classification nature of the problem we have at hand. For
binary classification, we generally want the model to produce a guess of the probabil-
ity for the positive class—that is, how likely it is that the model “thinks” a given exam-
ple belongs to the positive class. As you may recall from high school math, a
probability is always a number between 0 and 1. By having the model always output an
estimated probability value, we get two benefits:

 It captures the degree of support for the assigned classification. A sigmoid value
of 0.5 indicates complete uncertainty, wherein either classification is equally
supported. A value of 0.6 indicates that while the system predicts the positive
classification, it’s only weakly supported. A value of 0.99 means the model is
quite certain that the example belongs to the positive class, and so forth.
Hence, we make it easy and straightforward to convert the model’s output into
a final answer (for instance, just threshold the output at a given value, say 0.5).
Now imagine how hard it would be to find such a threshold if the range of the
model’s output may vary widely.

 We also make it easier to come up with a differentiable loss function, which,
given the model’s output and the true binary target labels, produces a number
that is a measure of how much the model missed the mark. For the latter point,
we will elaborate more when we examine the actual binary cross entropy used
by this model.

However, the question is how to force the output of the neural network into the range
of [0, 1]. The last layer of a neural network, which is often a dense layer, performs
matrix multiplication (matMul) and bias addition (biasAdd) operations with its input.
There are no intrinsic constraints in either the matMul or the biasAdd operation that
guarantee a [0, 1] range in the result. Adding a squashing nonlinearity like sigmoid
to the result of matMul and biasAdd is a natural way to achieve the [0, 1] range.

Another aspect of the code in listing 3.5 that’s new to you is the type of optimizer:
'adam', which is different from the 'sgd' optimizer used in previous examples. How
is adam different from sgd? As you may recall from section 2.2.2 in the last chapter, the
sgd optimizer always multiplies the gradients obtained through backpropagation with
a fixed number (its learning rate times –1) in order to calculate the updates to the
model’s weights. This approach has some drawbacks, including slow convergence
toward the loss minimum when a small learning rate is chosen and “zigzag” paths
in the weight space when the shape of the loss (hyper)surface has certain special
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properties. The adam optimizer aims at addressing these shortcomings of sgd by using
a multiplication factor that varies with the history of the gradients (from earlier train-
ing iterations) in a smart way. Moreover, it uses different multiplication factors for dif-
ferent model weight parameters. As a result, adam usually leads to better convergence
and less dependence on the choice of learning rate compared to sgd over a range of
deep-learning model types; hence it is a popular choice of optimizer. The Tensor-
Flow.js library provides a number of other optimizer types, some of which are also
popular (such as rmsprop). The table in info box 3.1 gives a brief overview of them.

INFO BOX 3.1 Optimizers supported by TensorFlow.js
The following table summarizes the APIs of the most frequently used types of opti-
mizers in TensorFlow.js, along with a simple, intuitive explanation for each of them.

Commonly used optimizers and their APIs in TensorFlow.js

Name API (string) API (function) Description

Stochastic 
gradient 
descent (SGD)

'sgd' tf.train.sgd The simplest optimizer, always 
using the learning rate as the 
multiplier for gradients

Momentum 'momentum' tf.train.momentum Accumulates past gradients in a 
way such that the update to a 
weight parameter gets faster 
when past gradients for the 
parameter line up more in the 
same direction and gets slower 
when they change a lot in direc-
tion

RMSProp 'rmsprop' tf.train.rmsprop Scales the multiplication factor 
differently for different weight 
parameters of the model by keep-
ing track of a recent history of 
each weight gradient’s root-mean-
square (RMS) value; hence its 
name

AdaDelta 'adadelta' tf.train.adadelta Scales the learning rate for each 
individual weight parameter in a 
way similar to RMSProp

ADAM 'adam' tf.train.adam Can be understood as a combina-
tion of the adaptive learning rate 
approach of AdaDelta and the 
momentum method

AdaMax 'adamax' tf.train.adamax Similar to ADAM, but keeps track 
of the magnitudes of gradients 
using a slightly different algorithm
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3.2.2 Measuring the quality of binary classifiers: Precision, recall, 
accuracy, and ROC curves

In a binary-classification problem, we emit one of two values—0/1, yes/no, and so on.
In a more abstract sense, we’ll talk about the positives and negatives. When our net-
work makes a guess, it is either right or wrong, so we have four possible scenarios for
the actual label of the input example and the output of the network, as table 3.1
shows.

The true positives (TPs) and true negatives (TNs) are where the model predicted the
correct answer; the false positives (FPs) and false negatives (FNs) are where the model
got it wrong. If we fill in the four cells with counts, we get a confusion matrix; table 3.2
shows a hypothetical one for our phishing-detection problem.

In our hypothetical results from our phishing examples, we see that we correctly iden-
tified four phishing web pages, missed two, and had one false alarm. Let’s now look at
the different common metrics for expressing this performance.

Table 3.1 The four types of classification results in a binary classification problem

Prediction

Positive Negative

Truth
Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

Table 3.2 The confusion matrix from a hypothetical binary classification problem

Prediction

Positive Negative

Truth
Positive 4 2

Negative 1 93

(continued)
An obvious question is which optimizer you should use given the machine-learning
problem and model you are working on. Unfortunately, there is no consensus in the
field of deep learning yet (which is why TensorFlow.js provides all the optimizers listed
in the previous table!). In practice, you should start with the popular ones, including
adam and rmsprop. Given sufficient time and computation resources, you can also
treat the optimizer as a hyperparameter and find the choice that gives you the best
training result through hyperparameter tuning (see section 3.1.2).
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Accuracy is the simplest metric. It quantifies what percentage of the examples are
classified correctly:

Accuracy = (#TP + #TN) / #examples = (#TP + #TN) / (#TP + #TN + #FP + #FN)

In our particular example, 

Accuracy = (4 + 93) / 100 = 97%

Accuracy is an easy-to-communicate and easy-to-understand concept. However, it can
be misleading—often in a binary-classification task, we don’t have equal distributions
of positive and negative examples. We’re often in a situation where there are consider-
ably fewer positive examples than there are negative ones (for example, most links
aren’t phishing, most parts aren’t defective, and so on). If only 5 in 100 links are
phishing, our network could always predict false and get 95% accuracy! Put that way,
accuracy seems like a very bad measure for our system. High accuracy always sounds
good but is often misleading. It’s a good thing to monitor but would be a very bad
thing to use as a loss function.

The next pair of metrics attempts to capture the subtlety missing in accuracy—preci-
sion and recall. In the discussion that follows, we’re also typically thinking about prob-
lems in which a positive implies further action is required—a link is highlighted, a
post is flagged for manual review—while a negative indicates the status quo. These
metrics focus on the different types of “wrong” that our prediction could be.

Precision is the ratio of positive predictions made by the model that are actually
positive:

precision = #TP / (#TP + #FP)

With our numbers from the confusion matrix, we’d calculate

precision = 4 / (4 + 1) = 80%

Like accuracy, it is usually possible to game precision. You can make your model very
conservative in emitting positive predictions, for example, by labeling only the input
examples with very high sigmoid output (say >0.95, instead of the default >0.5) as pos-
itive. This will usually cause the precision to go up, but doing so will likely cause the
model to miss many actual positive examples (labeling them as negative). The last cost
is captured by the metric that often goes with and complements precision, namely
recall.

Recall is the ratio of actual positive examples that are classified by the model as
positive:

recall = #TP / (#TP + #FN)

With the example data, we get a result of

recall = 4 / (4 + 2) = 66.7%

Of all the positives in the sample set, how many did the model find? It will normally be
a conscious decision to accept a higher false alarm rate to lower the chance of missing
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something. To game this metric, you’d simply declare all examples as positives;
because false positives don’t enter into the equation, you can score 100% recall at the
cost of decreased precision.

As we can see, it’s fairly easy to craft a system that scores very well on accuracy,
recall, or precision. In real-world binary-classification problems, it’s often difficult to
get both good precision and recall at the same time. (If it were easy to do so, you’d
have a simple problem and probably wouldn’t need to use machine learning in the
first place.) Precision and recall are about tuning the model in the tricky places where
there is a fundamental uncertainty about what the correct answer should be. You’ll see
more nuanced and combined metrics, such as Precision at X% Recall, X being some-
thing like 90%—what is the precision if we’re tuned to find at least X% of the posi-
tives? For example, in figure 3.5, we see that after 400 epochs of training, our
phishing-detection model is able to achieve a precision of 96.8% and a recall of 92.9%
when the model’s probability output is thresholded at 0.5.

As we have briefly alluded to, an important realization is that the threshold applied
on the sigmoid output to pick out positive predictions doesn’t have to be exactly 0.5.
In fact, depending on the circumstances, it might be better to set it to a value above
0.5 (but below 1) or to one below 0.5 (but above 0). Lowering the threshold makes
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TensorFlow.js: Classifying website URLs as phishy or normal
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Figure 3.5 An example result from a round of training the model for phishing web page detection. Pay attention 
to the various metrics at the bottom: precision, recall, and FPR. The area under the curve (AUC) is discussed in 
section 3.2.3.
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the model more liberal in labeling inputs as positive, which leads to higher recall but
likely lower precision. On the other hand, raising the threshold causes the model to
be more cautious in labeling inputs as positive, which usually leads to higher precision
but likely lower recall. So, we can see that there is a trade-off between precision and
recall, and this trade-off is hard to quantify with any one of the metrics we’ve talked
about so far. Luckily, the rich history of research into binary classification has given us
better ways to quantify and visualize this trade-off relation. The ROC curve that we will
discuss next is a frequently used tool of this sort.

3.2.3 The ROC curve: Showing trade-offs in binary classification

ROC curves are used in a wide range of engineering problems that involve binary clas-
sification or the detection of certain types of events. The full name, receiver operating
characteristic, is a term from the early age of radar. Nowadays, you’ll almost never see
the expanded name. Figure 3.6 is a sample ROC curve for our application.

As you may have noticed in the axis labels in figure 3.6, ROC curves are not exactly
made by plotting the precision and recall metrics against each other. Instead, they are
based on two slightly different metrics. The horizontal axis of an ROC curve is a false
positive rate (FPR), defined as

FPR = #FP / (#FP + #TN)
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Figure 3.6 A set of sample ROCs plotted during the training of the phishing-
detection model. Each curve is for a different epoch number. The curves show 
gradual improvement in the quality of the binary-classification model as the 
training progresses.
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The vertical axis of an ROC curve is the true positive rate (TPR), defined as

TPR = #TP / (#TP + #FN) = recall

TPR has exactly the same definition as recall; it is just a different name for the same
metric. However, FPR is something new. Its denominator is a count of all the cases in
which the actual class of the example is negative; its numerator is a count of all false
positive cases. In other words, FPR is the ratio of actually negative examples that are
erroneously classified as positive, which is the probability of something commonly
referred to as a false alarm. Table 3.3 summarizes the most common metrics you will
encounter in a binary-classification problem.

The seven ROC curves in figure 3.6 are made at the beginning of seven different train-
ing epochs, from the first epoch (epoch 001) to the last (epoch 400). Each one of
them is created based on the model’s predictions on the test data (not the training
data). Listing 3.6 shows the details of how this is done with the onEpochBegin callback
of the Model.fit() API. This approach allows you to perform interesting analysis and
visualization on the model in the midst of a training call without needing to write a
for loop or use multiple Model.fit() calls.

  await model.fit(trainData.data, trainData.target, {
    batchSize,
    epochs,
    validationSplit: 0.2,
    callbacks: {
    onEpochBegin: async (epoch) => {
        if ((epoch + 1)% 100 === 0 ||

Table 3.3 Commonly seen metrics for a binary-classification problem

Name of metric Definition
How it is used in ROCs or 
precision/recall curves

Accuracy (#TP + #TN) / (#TP + 
#TN + # FP + #FN)

(Not used by ROCs)

Precision #TP / (#TP + #FP) The vertical axis of a precision/recall 
curve

Recall/sensitivity/true 
positive rate (TPR)

#TP / (#TP + #FN) The vertical axis of an ROC curve (as in 
figure 3.6), or the horizontal axis of a pre-
cision/recall curve

False positive rate (FPR) #FP / (#FP + #TN) The horizontal axis of an ROC curve (see 
figure 3.6)

Area under the curve (AUC) Calculated through numerical 
integration under the ROC 
curve; see listing 3.7 for an 
example

(Not used by ROCs but is instead calcu-
lated from ROCs)

Listing 3.6 Using callback to render ROC curves in the middle of model training
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            epoch === 0 || epoch === 2 || epoch === 4) {
            
            const probs = model.predict(testData.data);
            drawROC(testData.target, probs, epoch);
        }
      },
      onEpochEnd: async (epoch, logs) => {
        await ui.updateStatus(

           `Epoch ${epoch + 1} of ${epochs} completed.`);
        trainLogs.push(logs);
        ui.plotLosses(trainLogs);
        ui.plotAccuracies(trainLogs);
      }
    }
  });

The body of the function drawROC() contains the details of how an ROC is made (see
listing 3.7). It does the following: 

 Varies the threshold on the sigmoid output (probabilities) of the neural net-
work to get different sets of classification results

 For each classification result, uses it in conjunction with the actual labels (tar-
gets) to calculate the TPR and FPR

 Plots the TPRs against the FPRs to form the ROC curve

As figure 3.6 shows, in the beginning of the training (epoch 001), as the model’s
weights are initialized randomly, the ROC curve is very close to a diagonal line con-
necting the point (0, 0) with the point (1, 1). This is what random guessing looks like.
As the training progresses, the ROC curves are pushed up more and more toward the
top-left corner—a place where the FPR is close to 0, and the TPR is close to 1. If we
focus on any given level of FPR, such as 0.1, we see a monotonic increase in the corre-
sponding TPR value as we move further along in the training. In plain words, this
means that as the training goes on, we can achieve a higher and higher level of recall
(TPR) if we are pinned to a fixed level of false alarm (FPR).

The “ideal” ROC is a curve bent so much toward the top-left corner that it becomes
a 8 shape. In this scenario, you can get 100% TPR and 0% FPR, which is the “Holy
Grail” for any binary classifier. However, with real problems, we can only improve the
model to push the ROC curve ever closer to the top-left corner—the theoretical ideal
at the top-left can never be achieved. 

Based on this discussion of the shape of the ROC curve and its implications, we can
see that it is possible to quantify how good an ROC curve is by looking at the area
under it—that is, how much of the space in the unit square is enclosed by the ROC
curve and the x-axis. This is called the area under the curve (AUC) and is computed by
the code in listing 3.7 as well. This metric is better than precision, recall, and accuracy
in the sense that it takes into account the trade-off between false positives and false

8 The Greek letter gamma.

Draws ROC every few epochs
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pr
negatives. The ROC for random guessing (the diagonal line) has an AUC of 0.5, while
the  -shaped ideal ROC has an AUC of 1.0. Our phishing-detection model reaches an
AUC of 0.981 after training. 

function drawROC(targets, probs, epoch) {
  return tf.tidy(() => {
    const thresholds = [
      0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
      0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,
      0.9, 0.92, 0.94, 0.96, 0.98, 1.0
    ];
    const tprs = [];  // True positive rates.
    const fprs = [];  // False positive rates.
    let area = 0;
    for (let i = 0; i < thresholds.length; ++i) {

      const threshold = thresholds[i];
      const threshPredictions =

          utils.binarize(probs, threshold).as1D();
      const fpr = falsePositiveRate(

          targets,
      threshPredictions).arraySync();
      const tpr = tf.metrics.recall(targets, threshPredictions).arraySync();
      fprs.push(fpr);
      tprs.push(tpr);

      if (i > 0) {
        area += (tprs[i] + tprs[i - 1]) * (fprs[i - 1] - fprs[i]) / 2;
      }
    }
    ui.plotROC(fprs, tprs, epoch);
    return area;
  });
}

Apart from visualizing the characteristics of a binary classifier, the ROC also helps us
make sensible decisions about how to select the probability threshold in real-world sit-
uations. For example, imagine that we are a commercial company developing the
phishing detector as a service. Do we want to do one of the following?

 Make the threshold relatively low because missing a real phishing website will
cost us a lot in terms of liability or lost contracts.

 Make the threshold relatively high because we are more averse to the com-
plaints filed by users whose normal websites are blocked because the model
classifies them as phishy.

Each threshold value corresponds to a point on the ROC curve. When we increase the
threshold gradually from 0 to 1, we move from the top-right corner of the plot (where
FPR and TPR are both 1) to the bottom-left corner of the plot (where FPR and TPR
are both 0). In real engineering problems, the decision of which point to pick on the

Listing 3.7 The code for calculating and rendering an ROC curve and the AUC

A manually 
selected set of 
probability 
thresholds

Converts the
obability into

predictions
through

thresholding

falsePositiveRate() 
calculates the false 
positive rate by 
comparing the 
predictions and actual 
targets. It is defined in 
the same file.

Accumulates to area
for AUC calculation
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ROC curve is always based on weighing opposing real-life costs of this sort, and it may
vary for different clients and at different stages of business development. 

Apart from the ROC curve, another commonly used visualization of binary classifi-
cation is the precision-recall curve (sometimes called a P/R curve, mentioned briefly in
table 3.3). Unlike the ROC curve, a precision-recall plots precision against recall.
Since precision-recall curves are conceptually similar to ROC curves, we won’t delve
into them here.

One thing worth pointing out in listing 3.7 is the use of tf.tidy(). This function
ensures that the tensors created within the anonymous function passed to it as argu-
ments are disposed of properly, so they won’t continue to occupy WebGL memory. In
the browser, TensorFlow.js can’t manage the memory of tensors created by the user,
primarily due to a lack of object finalization in JavaScript and a lack of garbage collec-
tion for the WebGL textures that underlie TensorFlow.js tensors. If such intermediate
tensors are not cleaned up properly, a WebGL memory leak will happen. If such mem-
ory leaks are allowed to continue long enough, they will eventually result in WebGL
out-of-memory errors. Section 1.3 of appendix B contains a detailed tutorial on mem-
ory management in TensorFlow.js. There are also exercises on this topic in section 1.5
of appendix B. If you plan to define custom functions by composing TensorFlow.js
functions, you should study these sections carefully.

3.2.4 Binary cross entropy: The loss function for binary classification

So far, we have talked about a few different metrics that quantify different aspects of
how well a binary classifier is performing, such as accuracy, precision, and recall (table
3.3). But we haven’t talked about an important metric, one that is differentiable and
can generate gradients that support the model’s gradient-descent training. This is the
binaryCrossentropy that we saw briefly in listing 3.5 and haven’t explained yet:

model.compile({
  optimizer: 'adam',
  loss: 'binaryCrossentropy',
  metrics: ['accuracy']
});

First off, you might ask, why can’t we simply take accuracy, precision, recall, or perhaps
even AUC and use it as the loss function? After all, these metrics are understandable.
Also, in the regression problems we’ve seen previously, we used MSE, a fairly under-
standable metric, as the loss function for training directly. The answer is that none of
these binary classification metrics can produce the gradients we need for training.
Take the accuracy metric, for example: to see why it is not gradient-friendly, realize
the fact that calculating accuracy requires determining which of the model’s predic-
tions are positive and which are negative (see the first row in table 3.3). In order to do
that, it is necessary to apply a thresholding function, which converts the model’s sigmoid
output into binary predictions. Here is the crux of the problem: although the thresh-
olding function (or step function in more technical terms) is differentiable almost
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everywhere (“almost” because it is not differentiable at the “jumping point” at 0.5),
the derivative is always exactly zero (see figure 3.7)! What happens if you try to do
backpropagation through this thresholding function? Your gradients will end up
being all zeros because at some point, upstream gradient values need to be multiplied
with these all-zero derivatives from the step function. Put more simply, if accuracy (or
precision, recall, AUC, and so on) is chosen as the loss, the flat sections of the under-
lying step function make it impossible for the training procedure to know where to
move in the weight space to decrease the loss value.

Therefore, using accuracy as the loss function doesn’t allow us to calculate useful gra-
dients and hence prevents us from getting meaningful updates to the weights of the
model. The same limitation applies to metrics including precision, recall, FPR, and
AUC. While these metrics are useful for humans to understand the behavior of a
binary classifier, they are useless for these models’ training process.

The loss function that we use for a binary classification task is binary cross entropy,
which corresponds to the 'binaryCrossentropy' configuration in our phishing-
detection model code (listings 3.5 and 3.6). Algorithmically, we can define binary
cross entropy with the following pseudo-code. 9

function binaryCrossentropy(truthLabel, prob):
  if truthLabel is 1:

   return -log(prob)
  else:
   return -log(1 - prob)

Listing 3.8 The pseudo-code for the binary cross-entropy loss function9

9 The actual code for binaryCrossentropy needs to guard against cases in which prob or 1 – prob is exactly
zero, which would lead to infinity if the value is passed directly to the log function. This is done by adding a
very small positive number (such as 1e-6, commonly referred to as “epsilon” or a “fudge factor”) to prob and
1 - prob before passing them to the log function.

Differentiable but gradient = 0 

0 10.5

1

p

step(p)

Figure 3.7 The step function used 
to convert the probability output of a 
binary-classification model is 
differentiable almost everywhere. 
Unfortunately, the gradient 
(derivative) at every differentiable 
point is exactly zero.
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In this pseudo-code, truthLabel is a number that takes the 0–1 values and indicates
whether the input example has a negative (0) or positive (1) label in reality. prob is
the probability of the example belonging to the positive class, as predicted by the
model. Note that unlike truthLabel, prob is expected to be a real number that can
take any value between 0 and 1. log is the natural logarithm, with e (2.718) as the
base, which you may recall from high school math. The body of the binaryCross-
entropy function contains an if-else logical branching, which performs different cal-
culations depending on whether truthLabel is 0 or 1. Figure 3.8 plots the two cases in
the same plot. 

When looking at the plots in figure 3.8, remember that lower values are better
because this is a loss function. The important things to note about the loss function
are as follows:

 If truthLabel is 1, a value of prob closer to 1.0 leads to a lower loss-function
value. This makes sense because when the example is actually positive, we want
the model to output a probability as close to 1.0 as possible. And vice versa: if
the truthLabel is 0, the loss value is lower when the probability value is closer
to 0. This also makes sense because in that case, we want the model to output a
probability as close to 0 as possible.

 Unlike the binary-thresholding function shown in figure 3.7, these curves have
nonzero slopes at every point, leading to nonzero gradients. This is why it is
suitable for backpropagation-based model training.
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Figure 3.8 The binary cross-entropy loss function. The two cases 
(truthLabel = 1 and truthLabel = 0) are plotted separately, 
reflecting the if-else logical branching in listing 3.8.
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One question you might ask is, why not repeat what we did for the regression model—
just pretend that the 0–1 values are regression targets and use MSE as the loss func-
tion? After all, MSE is differentiable, and calculating the MSE between the truth label
and the probability would yield nonzero derivatives just like binaryCrossentropy.
The answer has to do with the fact that MSE has “diminishing returns” at the boundar-
ies. For example, in table 3.4, we list the binaryCrossentropy and MSE loss values for
a number of prob values when truthLabel is 1. As prob gets closer to 1 (the desired
value), the MSE decreases more and more slowly compared to binaryCrossentropy.
As a result, it is not as good at “encouraging” the model to produce a higher (closer to
1) prob value when prob is already fairly close to 1 (for instance, 0.9). Likewise, when
truthLabel is 0, MSE is not as good as binaryCrossentropy in generating gradients
that push the model’s prob output toward 0 either.

This shows another aspect in which binary-classification problems are different
from regression problems: for a binary-classification problem, the loss (binaryCross-
entropy) and metrics (accuracy, precision, and so on) are different, while they are
usually the same for a regression problem (for example, meanSquaredError). As we
will see in the next section, multiclass-classification problems also involve different
loss functions and metrics.

3.3 Multiclass classification
In section 3.2, we explored how to structure a binary-classification problem; now we’ll do
a quick aside into how to handle nonbinary classification—that is, classification tasks involv-
ing three or more classes.10 The dataset we will use to illustrate multiclass classification is

Table 3.4 Comparing values of binary cross entropy and MSE for
hypothetical binary classification results

truthLabel prob
Binary cross 

entropy MSE

1 0.1 2.302 0.81

1 0.5 0.693 0.25

1 0.9 0.100 0.01

1 0.99 0.010 0.0001

1 0.999 0.001 0.000001

1 1 0 0

10 It is important not to confuse multiclass classification with multilabel classification. In multilabel classification, an
individual input example may correspond to multiple output classes. An example is detecting the presence of var-
ious types of objects in an input image. One image may include only a person; another image may include a per-
son, a car, and an animal. A multilabel classifier is required to generate an output that represents all the classes
that are applicable to the input example, no matter whether there is one or more than one such class. This section
is not concerned with multilabel classification. Instead, we focus on the simpler single-label, multiclass classifica-
tion, in which every input example corresponds to exactly one output class among >2 possible classes.
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the iris-flower dataset, a famous dataset with its origin in the field of statistics (see
https://en.wikipedia.org/wiki/Iris_flower_data_set). This dataset focuses on three spe-
cies of the iris flower, called iris setosa, iris versicolor, and iris virginica. These three species
can be distinguished from one another on the basis of their shapes and sizes. In the early
20th century, Ronald Fisher, a British statistician, measured the length and width of the
petals and sepals (different parts of the flower) of 150 samples of iris. This dataset is bal-
anced: there are exactly 50 samples for each target label.

In this problem, our model takes as input four numeric features—petal length,
petal width, sepal length, and sepal width—and tries to predict a target label (one of
the three species). The example is available in the iris folder of tfjs-examples, which
you can check out and run with these commands:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/iris
yarn && yarn watch

3.3.1 One-hot encoding of categorical data

Before studying the model that solves the iris-classification problem, we need to high-
light the way in which the categorical target (species) is represented in this multiclass-
classification task. All the machine-learning examples we’ve seen in this book so far
involve simpler representation of targets, such as the single number in the download-
time prediction problem and that in the Boston-housing problem, as well as the 0–1
representation of binary targets in the phishing-detection problem. However, in the
iris problem, the three species of flowers are represented in a slightly less familiar way
called one-hot encoding. Open data.js, and you will notice this line: 

const ys = tf.oneHot(tf.tensor1d(shuffledTargets).toInt(), IRIS_NUM_CLASSES);

Here, shuffledTargets is a plain JavaScript array consisting of the integer labels for
the examples in a shuffled order. Its elements all have values 0, 1, and 2, reflecting the
three iris species in the dataset. It is converted into a int32-type 1D tensor through the
tf.tensor1d(shuffledTargets).toInt() call. The resultant 1D tensor is then passed
into the tf.oneHot() function, which returns a 2D tensor of the shape [numExamples,
IRIS_NUM_CLASSES]. numExamples is the number of examples that targets contains,
and IRIS_NUM_CLASSES is simply the constant 3. You can examine the actual values of
targets and ys by adding some printing lines right below the previously cited line—
that is, something like

const ys = tf.oneHot(tf.tensor1d(shuffledTargets).toInt(), IRIS_NUM_CLASSES);
// Added lines for printing the values of `targets` and `ys`.
console.log('Value of targets:', targets);
ys.print();11

11 Unlike target, ys is not a plain JavaScript array. Instead, it is a tensor object backed by GPU memory. There-
fore, the regular console.log won’t show its value. The print() method is specifically for retrieving the values
from the GPU, formatting them in a shape-aware and human-friendly way, and logging them to the console.
 

https://en.wikipedia.org/wiki/Iris_flower_data_set
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Once you have made these changes, the parcel bundler process that has been started
by the Yarn watch command in your terminal will automatically rebuild the web files.
Then you can open the devtool in the browser tab being used to watch this demo and
refresh the page. The printed messages from the console.log() and print() calls
will be logged into the console of the devtool. The printed messages you will see will
look something like this:

Value of targets: (50) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0]

Tensor
    [[1, 0, 0],
     [1, 0, 0],
     [1, 0, 0],
     ...,
     [1, 0, 0],
     [1, 0, 0],
     [1, 0, 0]]

or

Value of targets: (50) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1]

Tensor
    [[0, 1, 0],
     [0, 1, 0],
     [0, 1, 0],
     ...,
     [0, 1, 0],
     [0, 1, 0],
     [0, 1, 0]]

and so forth. To describe this in words, for an example with the integer label 0, you
get a row of values [1, 0, 0]; for an example with integer label 1, you get a row of val-
ues [0, 1, 0], and so forth. This is a simple and clear example of one-hot encoding:
it turns an integer label into a vector consisting of all-zero values except at the index
that corresponds to the label, where the value is 1. The length of the vector equals the
number of all possible categories. The fact that there is a single 1 value in the vector is
precisely the reason why this encoding scheme is called “one-hot.”

This encoding may look unnecessarily complicated to you. Why use three numbers
to represent a category when a single number could do the job? Why do we choose
this over the simpler and more economical single-integer-index encoding? This can
be understood from two different angles.

First, it is much easier for a neural network to output a continuous, float-type value
than an integer one. It is not elegant to apply rounding on float-type output, either. A
much more elegant and natural approach is for the last layer of the neural network to
output a few separate float-type numbers, each constrained to be in the [0, 1] inter-
val through a carefully chosen activation function similar to the sigmoid activation
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function we used for binary classification. In this approach, each number is the
model’s estimate of the probability of the input example belonging to the correspond-
ing class. This is exactly what one-hot encoding is for: it is the “correct answer” for the
probability scores, which the model should aim to fit through its training process.

Second, by encoding a category as an integer, we implicitly create an ordering
among the classes. For example, we may label iris setosa as 0, iris versicolor as 1, and iris
virginica as 2. But ordering schemes like this are often artificial and unjustified. For
example, this numbering scheme implies that setosa is “closer” to versicolor than to virg-
inica, which may not be true. Neural networks operate on real numbers and are based
on mathematical operations such as multiplication and addition. Hence, they are sen-
sitive to the magnitude of numbers and their ordering. If the categories are encoded
as a single number, it becomes an extra, nonlinear relation that the neural network
must learn. By contrast, one-hot-encoded categories don’t involve any implied order-
ing and hence don’t tax the learning capability of a neural network in this fashion.

As we will see in chapter 9, one-hot encoding not only is used for output targets of
neural networks but also is applicable when categorical data form the inputs to neural
networks. 

3.3.2 Softmax activation

With an understanding of how the input features and output target are represented,
we are now ready to look at the code that defines our model (from iris/index.js).

  const model = tf.sequential();
  model.add(tf.layers.dense(
      {units: 10, activation: 'sigmoid', inputShape: [xTrain.shape[1]]}));
  model.add(tf.layers.dense({units: 3, activation: 'softmax'}));
  model.summary();

  const optimizer = tf.train.adam(params.learningRate);
  model.compile({
    optimizer: optimizer,
    loss: 'categoricalCrossentropy',
    metrics: ['accuracy'],
  });

The model defined in listing 3.9 leads to the following summary:

_________________________________________________________________
Layer (type)                 Output shape              Param #   
=================================================================
dense_Dense1 (Dense)         [null,10]                 50
________________________________________________________________
dense_Dense2 (Dense)         [null,3]                  33        
=================================================================
Total params: 83
Trainable params: 83
Non-trainable params:
________________________________________________________________

Listing 3.9 The multilayer neural network for iris-flower classification 
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As can be seen from the printed summary, this is a fairly simple model with a relatively
small (83) number of weight parameters. The output shape [null, 3] corresponds to
the one-hot encoding of the categorical target. The activation used for the last layer,
namely softmax, is designed specifically for the multiclass classification problem. The
mathematical definition of softmax can be written as the following pseudo-code:

softmax([x1, x2, …, xn]) =
    [exp(x1) / (exp(x1) + exp(x2) + … + exp(xn)),
     exp(x2) / (exp(x1) + exp(x2) + … + exp(xn)),
     …,
     exp(xn) / (exp(x1) + exp(x2) + … + exp(xn))]

Unlike the sigmoid activation function we’ve seen, the softmax activation function is
not element-by-element because each element of the input vector is transformed in a
way that depends on all other elements. Specifically, each element of the input is con-
verted to its natural exponential (the exp function, with e = 2.718 as the base). Then
the exponential is divided by the sum of all elements’ exponentials. What does this
do? First, it ensures that every number is in the interval between 0 and 1. Second, it is
guaranteed that all the elements of the output vector sum to 1. This is a desirable
property because 1) the outputs can be interpreted as probability scores assigned to
the classes, and 2) in order to be compatible with the categorical cross-entropy loss
function, the outputs must satisfy this property. Third, the definition ensures that a
larger element in the input vector maps to a larger element in the output vector. To
give a concrete example, suppose the matrix multiplication and bias addition in the
last dense layer produces a vector of

[-3, 0, -8]

Its length is 3 because the dense layer is configured to have 3 units. Note that the ele-
ments are float numbers unconstrained to any particular range. The softmax activa-
tion will convert the vector into

[0.0474107, 0.9522698, 0.0003195]

You can verify this yourself by running the following TensorFlow.js code (for example,
in the devtool console when the page is pointing at js.tensorflow.org):

const x = tf.tensor1d([-3, 0, -8]);
tf.softmax(x).print();

The three elements of the softmax function’s output 1) are all in the [0, 1] interval,
2) sum to 1, and 3) are ordered in a way that matches the ordering in the input vec-
tor. As a result of these properties, the output can be interpreted as the probability
values assigned (by the model) to all the possible classes. In the previous code snip-
pet, the second category is assigned the highest probability while the first is assigned
the lowest.

As a consequence, when using an output from a multiclass classifier of this sort, you
can choose the index of the highest softmax element as the final decision—that is, a
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decision on what class the input belongs to. This can be achieved by using the method
argMax(). For example, this is an excerpt from index.js:

const predictOut = model.predict(input);
const winner = data.IRIS_CLASSES[predictOut.argMax(-1).dataSync()[0]];

predictOut is a 2D tensor of shape [numExamples, 3]. Calling its argMax0 method
causes the shape to be reduced to [numExample]. The argument value –1 indicates
that argMax() should look for maximum values along the last dimension and return
their indices. For instance, suppose predictOut has the following value:

    [[0  , 0.6, 0.4],
     [0.8, 0  , 0.2]]

Then, argMax(-1) will return a tensor that indicates the maximum values along the
last (second) dimension are found at indices 1 and 0 for the first and second exam-
ples, respectively:

    [1, 0]

3.3.3 Categorical cross entropy: The loss function 
for multiclass classification

In the binary classification example, we saw how binary cross entropy was used as the
loss function and why other, more human-interpretable metrics such as accuracy and
recall couldn’t be used as the loss function. The situation for multiclass classification is
quite analogous. There exists a straightforward metric—accuracy—that is the fraction
of examples that are classified correctly by the model. This metric is important for
humans to understand how well the model is performing and is used in this code snip-
pet in listing 3.9:

    model.compile({
      optimizer: optimizer,
      loss: 'categoricalCrossentropy',
      metrics: ['accuracy'],
     });

However, accuracy is a bad choice for loss function because it suffers from the same
zero-gradient issue as the accuracy in binary classification. Therefore, people have
devised a special loss function for multiclass classification: categorical cross entropy. It is
simply a generalization of binary cross entropy into the cases where there are more
than two categories. 

function categoricalCrossentropy(oneHotTruth, probs):
  for i in (0 to length of oneHotTruth)
    if oneHotTruth(i) is equal to 1
      return -log(probs[i]);

Listing 3.10 Pseudo-code for categorical cross-entropy loss
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In the pseudo-code in the previous listing, oneHotTruth is the one-hot encoding of
the input example’s actual class. probs is the softmax probability output from the
model. The key takeaway from this pseudo-code is that as far as categorical cross
entropy is concerned, only one element of probs matters, and that is the element
whose indices correspond to the actual class. The other elements of probs may vary all
they like, but as long as they don’t change the element for the actual class, it won’t
affect the categorical cross entropy. For that particular element of probs, the closer it
gets to 1, the lower the value of the cross entropy will be. Like binary cross entropy,
categorical cross entropy is directly available as a function under the tf.metrics
namespace, and you can use it to calculate the categorical cross entropy of simple but
illustrating examples. For example, with the following code, you can create a hypo-
thetical, one-hot-encoded truth label and a hypothetical probs vector and compute
the corresponding categorical cross-entropy value:

const oneHotTruth = tf.tensor1d([0, 1, 0]);
const probs = tf.tensor1d([0.2, 0.5, 0.3]);
tf.metrics.categoricalCrossentropy(oneHotTruth, probs).print();

This gives you an answer of approximately 0.693. This means that when the probabil-
ity assigned by the model to the actual class is 0.5, categoricalCrossentropy has a
value of 0.693. You can verify it against the pseudo-code in listing 3.10. You may also
try raising or lowering the value from 0.5 to see how categoricalCrossentropy
changes (for instance, see table 3.5). The table also includes a column that shows the
MSE between the one-hot truth label and the probs vector. 

By comparing rows 1 and 2 or comparing rows 3 and 4 in this table, it should be clear
that changing the elements of probs that don’t correspond to the actual class doesn’t
alter the binary cross entropy, even though it may alter the MSE between the one-hot
truth label and probs. Also, like in binary cross entropy, MSE shows diminished return
when the probs value for the actual class approaches 1, and hence is not good at

Table 3.5 The values of categorical cross entropy under different probability
outputs. Without loss of generality, all the examples (row) are based on a case in
which there are three classes (as is the case in the iris-flower dataset), and the
actual class is the second one.

One-hot 
truth label

probs 
(softmax output)

Categorical 
cross entropy MSE

[0, 1, 0] [0.2, 0.5, 0.3] 0.693 0.127

[0, 1, 0] [0.0, 0.5, 0.5] 0.693 0.167

[0, 1, 0] [0.0, 0.9, 0.1] 0.105 0.006

[0, 1, 0] [0.1, 0.9, 0.0] 0.105 0.006

[0, 1, 0] [0.0, 0.99, 0.01] 0.010 0.00006
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encouraging the probability value of the correct class to go up as categorical entropy
in this regime. These are the reasons why categorical cross entropy is more suitable as
the loss function than MSE for multiclass-classification problems.

3.3.4 Confusion matrix: Fine-grained analysis 
of multiclass classification

By clicking the Train Model from Scratch button on the example’s web page, you can
get a trained model in a few seconds. As figure 3.9 shows, the model reaches nearly
perfect accuracy after 40 epochs of training. This reflects the fact that the iris dataset
is a small one with relatively well-defined boundaries between the classes in the fea-
ture space. 

The bottom part of figure 3.9 shows an additional way of characterizing the behav-
ior of a multiclass classifier, called a confusion matrix. A confusion matrix breaks down
the results of a multiclass classifier according to their actual classes and the model’s
predicted classes. It is a square matrix of shape [numClasses, numClasses]. The ele-
ment at indices [i, j] (row i and column j) is the number of examples that belong to
class i and are predicted as class j by the model. Therefore, the diagonal elements of
a confusion matrix correspond to correctly classified examples. A perfect multiclass
classifier should produce a confusion matrix with no nonzero elements outside the
diagonal. This is exactly the case for the confusion matrix in figure 3.9.

In addition to showing the final confusion matrix, the iris example also draws the
confusion matrix at the end of every training epoch, using the onTrainEnd() callback.

Iris-setosa

Confusion matrix (on validation set)

8

1.0
1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20

Iteration
25 30 35 40

Loss Accuracy

0.5V
al

u
e

V
al

u
e

0.0
0 5 10 15 20

Iteration
25 30 35 40

Series
loss
val_loss

Series
1.0000000.960317

acc
val_acc

0

0 0 8

0 0

8 0Iris-versicolor

Iris-virginica

L
ab

el

Prediction

Count
8

0

Ir
is

-s
et

os
a

Ir
is

-v
er

si
co

lo
r

Ir
is

-v
irg

in
ic

a Figure 3.9 A typical result from training 
the iris model for 40 epochs. Top left: the 
loss function plotted against epochs of 
training. Top right: the accuracy plotted 
against epochs of training. Bottom: the 
confusion matrix.
 



114 CHAPTER 3 Adding nonlinearity: Beyond weighted sums
In early epochs, you may see a less perfect confusion matrix than the one in figure 3.9.
The confusion matrix in figure 3.10 shows that 8 out of the 24 input examples were
misclassified, which corresponds to an accuracy of 66.7%. However, the confusion
matrix tells us about more than just a single number: it shows which classes involve the
most mistakes and which involve fewer. In this particular example, all flowers from the
second class are misclassified (either as the first or the third class), while the flowers
from the first and third classes are always classified correctly. Therefore, you can see
that in multiclass classification, a confusion matrix is a more informative measure-
ment than simply the accuracy, just like precision and recall together form a more
comprehensive measurement than accuracy in binary classification. Confusion matri-
ces can provide information that aids decision-making related to the model and the
training process. For example, making some types of mistakes may be more costly
than confusing other pairs of classes. Perhaps mistaking a sports site for a gaming site
is less of a problem than confusing a sports site for a phishing scam. In those cases,
you can adjust the model’s hyperparameters to minimize the costliest mistakes.

The models we’ve seen so far all take an array of numbers as inputs. In other words,
each input example is represented as a simple list of numbers, of which the length is
fixed, and the ordering of the elements doesn’t matter as long as they are consistent
for all examples fed to the model. While this type of model covers a large subset of
important and practical machine-learning problems, it is far from the only kind. In
the coming chapters, we will look at more complex input data types, including images
and sequences. In chapter 4, we’ll start from images, a ubiquitous and widely useful
type of input data for which powerful neural network structures have been developed
to push the accuracy of machine-learning models to superhuman levels.

Exercises
1 When creating neural networks for the Boston-housing problem, we stopped at

a model with two hidden layers. Given what we said about cascading nonlinear
functions leading to enhanced capacity of models, will adding more hidden lay-
ers to the model lead to improved evaluation accuracy? Try this out by modify-
ing index.js and rerunning the training and evaluation.
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a What is the factor that prevents more hidden layers from improving the eval-
uation accuracy?

b What makes you reach this conclusion? (Hint: look at the error on the train-
ing set.)

2 Look at how the code in listing 3.6 uses the onEpochBegin callback to calculate
and draw an ROC curve at the beginning of every training epoch. Can you fol-
low this pattern and make some modifications to the body of the callback func-
tion so that you can print the precision and recall values (calculated on the test
set) at the beginning of every epoch? Describe how these values change as the
training progresses.

3 Study the code in listing 3.7 and understand how it computes the ROC curve.
Can you follow this example and write a new function, called drawPrecision-
RecallCurve(), which, as its name indicates, computes and renders a precision-
recall curve? Once you are done writing the function, call it from the onEpoch-
Begin callback so that a precision-recall curve can be plotted alongside the
ROC curve at the beginning of every training epoch. You may need to make
some changes or additions to ui.js.

4 Suppose you are told the FPR and TPR of a binary classifier’s results. With those
two numbers, is it possible for you to calculate the overall accuracy? If not, what
extra piece(s) of information do you require?

5 The definitions of binary cross entropy (section 3.2.4) and categorical cross
entropy (section 3.3.3) are both based on the natural logarithm (the log of base
e). What if we change the definition so that they use the log of base 10? How
would that affect the training and inference of binary and multiclass classifiers?

6 Turn the pseudo-code for the hyperparameter grid search in listing 3.4 into
actual JavaScript code, and use the code to perform hyperparameter optimiza-
tion for the two-layer Boston-housing model in listing 3.1. Specifically, tune the
number of units of the hidden layer and the learning rate. Feel free to decide
on the ranges of units and learning rate to search over. Note that machine-
learning engineers generally use approximately geometric sequences (that is,
logarithmic) spacing for these searches (for example, units = 2, 5, 10, 20, 50,
100, 200, . . .).

Summary
 Classification tasks are different from regression tasks in that they involve mak-

ing discrete predictions.
 There are two types of classification: binary and multiclass. In binary classifica-

tion, there are two possible classes for a given input, whereas in multiclass classi-
fication, there are three or more.

 Binary classification can usually be viewed as detecting a certain type of event or
object of significance, called positives, among all the input examples. When
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viewed this way, we can use metrics such as precision, recall, and FPR, in addi-
tion to accuracy, to quantify various aspects of a binary classifier’s behavior.

 The trade-off between the need to catch all positive examples and the need to
minimize false positives (false alarms) is common in binary-classification tasks.
The ROC curve, along with the associated AUC metric, is a technique that helps
us quantify and visualize this relation.

 A neural network created for binary classification should use the sigmoid activa-
tion in its last (output) layer and use binary cross entropy as the loss function
during training.

 To create a neural network for multiclass classification, the output target is usu-
ally represented by one-hot encoding. The neural network ought to use softmax
activation in its output layer and be trained using the categorical cross-entropy
loss function.

 For multiclass classification, confusion matrices can provide more fine-grained
information regarding the mistakes made by the model than accuracy can.

 Table 3.6 summarizes recommended methodologies for the most common
types of machine-learning problems we have seen so far (regression, binary clas-
sification, and multiclass classification).

 Hyperparameters are configurations concerning a machine-learning model’s
structure, properties of its layer, and its training process. They are distinct from
the model’s weight parameters in that 1) they do not change during the
model’s training process, and 2) they are often discrete. Hyperparameter opti-
mization is the process in which values of the hyperparameters are sought in
order to minimize a loss on the validation dataset. Hyperparameter optimiza-
tion is still an active area of research. Currently, the most frequently used meth-
ods include grid search, random search, and Bayesian methods.   

Table 3.6 An overview of the most common types of machine-learning tasks, their suitable last-layer activation
function and loss function, as well as the metrics that help quantify the model quality

Type of task

Activation 
of output 

layer Loss function

Suitable metrics 
supported during 
Model.fit() calls

Additional 
metrics

Regression 'linear'
(default)

'meanSquaredError' or 
'meanAbsoluteError'

(same as loss)

Binary 
classification

'sigmoid' 'binaryCrossentropy' 'accuracy' Precision, recall, 
precision-recall 
curve, ROC curve, 
AUC

Single-label, 
multiclass 
classification

'softmax' 'categoricalCrossentropy' 'accuracy' Confusion matrix
 



Recognizing images
and sounds using convnets
The ongoing deep-learning revolution started with breakthroughs in image-
recognition tasks such as the ImageNet competition. There is a wide range of use-
ful and technically interesting problems that involve images, from recognizing
the contents of images to segmenting images into meaningful parts, and from

This chapter covers
 How images and other perceptual data, such as audio, are 

represented as multidimensional tensors

 What convnets are, how they work, and why they are 
especially suitable for machine-learning tasks involving 
images

 How to write and train a convnet in TensorFlow.js to solve 
the task of classifying hand-written digits

 How to train models in Node.js to achieve faster training 
speeds

 How to use convnets on audio data for spoken-word 
recognition
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localizing objects in images to synthesizing images. This subarea of machine learn-
ing is sometimes referred to as computer vision.1 Computer-vision techniques are
often transplanted to areas that have nothing to do with vision or images (such as
natural language processing), which is one more reason why it is important to study
deep learning for computer vision.2 But before delving into computer-vision prob-
lems, we need to discuss the ways in which images are represented in deep learning.

4.1 From vectors to tensors: Representing images
In the previous two chapters, we looked at machine-learning tasks involving numerical
inputs. For example, the download-duration prediction problem in chapter 2 took a
single number (file size) as the input. The input in the Boston-housing problem was
an array of 12 numbers (number of rooms, crime rate, and so on). What these prob-
lems have in common is the fact that each input example can be represented as a flat
(non-nested) array of numbers, which corresponds to a 1D tensor in TensorFlow.js.
Images are represented differently in deep learning.

To represent an image, we use a 3D tensor. The first two dimensions of the tensor
are the familiar height and width dimensions. The third one is the color channel. For
example, color is often encoded as RGB values. In this case, each of the three colors is
a channel, which leads to a size of 3 along the third dimension. If we have an RGB-
encoded color image of size 224 × 224 pixels, we can represent it as a 3D tensor of size
[224, 224, 3]. The images in some computer-vision problems are noncolor (for
example, grayscale). In those cases, there is only one channel, which, if represented as
a 3D tensor, will lead to a tensor shape of [height, width, 1] (see figure 4.1 for an
example).3

This mode of encoding an image is referred to as height-width-channel (HWC). To
perform deep learning on images, we often combine a set of images into a batch for
efficient parallelized computation. When batching images, the dimension of individ-
ual images is always the first dimension. This is similar to how we combined 1D tensors
into a batched 2D tensor in chapters 2 and 3. Therefore, a batch of images is a 4D ten-
sor, with the four dimensions being image number (N), height (H), width (W), and
color channel (C), respectively. This format is referred to as NHWC. There is an alter-
native format, resulting from a different ordering of the four dimensions. It is called
NCHW. As its name suggests, NCHW puts the channel dimension ahead of the height
and width dimensions. TensorFlow.js can handle both the NHWC and NCHW for-
mats. But we will only use the default NHWC format in this book, for consistency.

1 Note that computer vision is itself a broad field, some parts of which use non-machine-learning techniques
beyond the scope of this book.

2 Readers who are especially interested in deep learning in computer vision and want to dive deeper into the
topic can check out Mohamed Elgendy’s, Grokking Deep Learning for Computer Vision, Manning Publications, in
press.

3 An alternative is to “flatten” all the pixels of the image and their associated color values into a 1D tensor (a
flat array of numbers). But doing so makes it hard to exploit the association between the color channels of
each pixel and the 2D spatial relations between pixels.
 



119From vectors to tensors: Representing images
4.1.1 The MNIST dataset

The computer-vision problem we will focus on in this chapter is the MNIST4 handwritten-
digit dataset. This is such an important and frequently used dataset that it is often
referred to as the “hello world” for computer vision and deep learning. The MNIST data-
set is older and smaller than most datasets you will find in deep learning. Yet it is good to
be familiar with it because it is widely used as an example and often serves as a first test
for novel deep-learning techniques.

Each example in the MNIST dataset is a 28 × 28 grayscale image (see figure 4.1 for
an example). These images were converted from real handwriting of the 10 digits 0
through 9. The image size of 28 × 28 is sufficient for reliable recognition of these sim-
ple shapes, although it is smaller than the image sizes seen in typical computer-vision
problems. Each image is accompanied by a definitive label, which indicates which of
the 10 possible digits the image actually is. As we have seen in the download-time pre-
diction and Boston-housing datasets, the data is divided into a training set and a test
set. The training set consists of 60,000 images, while the test contains 10,000 images.
The MNIST dataset5 is approximately balanced, meaning that there are approxi-
mately equal numbers of examples for the 10 categories (that is, the 10 digits).

4 MNIST stands for Modified NIST. The “NIST” part of the name comes from the fact that the dataset origi-
nated from the US National Institute of Standards and Technology around 1995. The “modified” part of the
name reflects the modification made to the original NIST dataset, which included 1) normalizing images into
the same uniform 28 × 28 pixel raster with anti-aliasing to make the training and test subsets more homoge-
neous and 2) making sure that the sets of writers are disjoint between the training and test subsets. These mod-
ifications made the dataset easier to work with and more amenable to objective evaluation of model accuracy.

5 See Yann LeCun, Corinna Cortes, and Christopher J.C. Burges, “The MNIST Database of Handwritten Dig-
its,” http://yann.lecun.com/exdb/mnist/.
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0.00 0.00 0.10 0.24 0.40 0.40 0.32 0.00

0.00 0.00 0.46 0.88 0.60 0.27 0.08 0.00

0.00 0.00 0.00 0.45 0.26 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.54 0.44 0.00 0.00
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Figure 4.1 Representing an MNIST image as tensors in deep learning. For the sake of visualization, 
we downsized the MNIST image from 28 × 28 to 8 × 8. The image is a grayscale one, which leads 
to a height-width-channel (HWC) shape of [8, 8, 1]. The single color channel along the last 
dimension is omitted in this diagram.
 

http://yann.lecun.com/exdb/mnist/
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4.2 Your first convnet
Given the representation of the image data and the labels, we know what kind of input
a neural network that solves the MNIST dataset should take and what kind of output it
should generate. The input to the neural network is a tensor of the NHWC-format
shape [null, 28, 28, 1]. The output is a tensor of shape [null, 10], where the sec-
ond dimension corresponds to the 10 possible digits. This is the canonical one-hot
encoding of multiclass-classification targets. It is the same as the one-hot encoding of
the species of iris flowers we saw in the iris example in chapter 3. With this knowledge,
we can dive into the details of convnets (which, as a reminder, is short for convolu-
tional networks), the method of choice for image-classification tasks such as MNIST.
The “convolutional” part of the name may sound scary. It is just a type of mathemati-
cal operation, and we will explain it in detail.

The code is in the mnist folder of tfjs-examples. Like the previous examples, you
can access and run the code as follows:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/mnist
yarn && yarn watch

Listing 4.1 is an excerpt from the main index.js code file in the mnist example. It is a
function that creates the convnet we use to solve the MNIST problem. The number of
layers in this sequential model (seven) is significantly greater than in the examples we
have seen so far (between one and three layers).

function createConvModel() {
  const model = tf.sequential();

  model.add(tf.layers.conv2d({
    inputShape: [IMAGE_H, IMAGE_W, 1],
    kernelSize: 3,
    filters: 16,
    activation: 'relu'
  }));
  model.add(tf.layers.maxPooling2d({
    poolSize: 2,
      strides: 2
  }));

  model.add(tf.layers.conv2d({
    kernelSize: 3, filters: 32, activation: 'relu'}));
  model.add(tf.layers.maxPooling2d({poolSize: 2, strides: 2}));

  model.add(tf.layers.flatten());
  model.add(tf.layers.dense({
    units: 64,
    activation:'relu'
  }));
  model.add(tf.layers.dense({units: 10, activation: 'softmax'}));

Listing 4.1 Defining a convolutional model for the MNIST dataset

First conv2d layer

Pooling after convolution

Repeating “motif” of 
conv2d-maxPooling2d

Flattens tensor to prepare for dense layers

Uses softmax activation for
multiclass classification problem
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  model.summary();
  return model;
}

The sequential model constructed by the code in listing 4.1 consists of seven layers,
created one by one through the add() method calls. Before we examine the detailed
operations performed by each layer, let’s look at the model’s overall architecture,
which is shown in figure 4.2. As the diagram shows, the model’s first five layers include
a repeating pattern of conv2d-maxPooling2d layer groups, followed by a flatten layer.
The groups of conv2d-maxPooling2d layers are the working horse of feature
extraction. Each of the layers transforms an input image into an output one. A conv2d
layer operates through a convolutional kernel, which is “slid” over the height and width
dimensions of the input image. At each sliding position, it is multiplied with the input
pixels, and the products are summed and fed through a nonlinearity. This yields a
pixel in the output image. The maxPooling2d layers operate in a similar fashion but
without a kernel. By passing the input image data through the successive layers of con-
volution and pooling, we get tensors that become smaller and smaller in size and
more and more abstract in the feature space. The output of the last pooling layer is
transformed into a 1D tensor through flattening. The flattened 1D tensor then goes
into the dense layer (not shown in the diagram).

You can think of the convnet as an MLP built on top of convolutional and pooling
preprocessing. The MLP is exactly the same type as what we’ve seen in the Boston-
housing and phishing-detection problems: it’s simply made of dense layers with non-
linear activations. What’s different in the convnet here is that the input to the MLP is
the output of the cascaded conv2d and maxPooling2d layers. These layers are specifi-
cally designed for image inputs to extract useful features from them. This architecture
was discovered through years of research in neural networks: it leads to an accuracy
significantly better than feeding the pixel values of the images directly into an MLP. 

Prints a text summary of model

Input image

conv2d maxPooling2d conv2d maxPooling2d flatten

To
dense
layers
(MLP)

Convolution
result 2

Max
pooling
result 2

Flattening
result

Max
pooling
result

Convolutional
kernel 2Convolution

result 1

Convolutional
kernel 1

Figure 4.2 A high-level overview of the architecture of a simple convnet of the kind constructed by the code in 
listing 4.1. In this figure, the sizes of the images and intermediate tensors are made smaller than the actual sizes 
in the model defined by listing 4.1 for illustration’s sake. So are the sizes of the convolutional kernels. Also note 
that this diagram shows a single channel in each intermediate 4D tensor, whereas the intermediate tensors in 
the actual model have multiple channels.
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With this high-level understanding of the MNIST convnet, let’s now dive deeper
into the internal workings of the model’s layers.

4.2.1 conv2d layer

The first layer is a conv2d layer, which performs 2D convolution. This is the first con-
volutional layer you see in this book. What does it do? conv2d is an image-to-image
transform—it transforms a 4D (NHWC) image tensor into another 4D image tensor,
possibly with a different height, width, and number of channels. (It may seem strange
that conv2d operates on 4D tensors, but keep in mind that there are two extra dimen-
sions, one for batch examples and one for channels.) Intuitively, it can be understood
as a group of simple “Photoshop filters”6 that lead to image effects such as blurring
and sharpening. These effects are done with 2D convolution, which involves sliding a
small patch of pixels (the convolutional kernel, or simply kernel) over the input image. At
each sliding position, the kernel is multiplied with the small patch of the input image
that it overlaps with, pixel by pixel. Then the pixel-by-pixel products are summed to
form pixels in the resulting image.

Compared to a dense layer, a conv2d layer has more configuration parameters.
kernelSize and filters are two key parameters of the conv2d layer. To understand
their meaning, we need to describe how 2D convolution works on a conceptual level.

Figure 4.3 illustrates 2D convolution in greater detail. Here, we suppose the input
image (top left) tensor consists of a simple example so that we can draw it easily
on paper. We suppose the conv2d operation is configured as kernelSize = 3 and
filters = 3. Due to the fact that the input image has two color channels (a some-
what unusual number of channels just for illustration purposes), the kernel is a 3D
tensor of shape [3, 3, 2, 3]. The first two numbers (3 and 3) are the height and
width of the kernel, determined by kernelSize. The third dimension (2) is the num-
ber of input channels. What is the fourth dimension (3)? It is the number of filters,
which equals the last dimension of conv2d’s output tensor.

If the output is regarded as an image tensor (a totally valid way of looking at this!),
then filters can be understood as the number of channels in the output. Unlike the
input image, the channels in the output tensor don’t actually have to do with colors.
Instead, they represent different visual features of the input image, learned from the
training data. For example, some filters may be sensitive to straight-line boundaries
between bright and dark regions at a certain orientation, while others may be sensitive
to corners formed by a brown color, and so forth. More on that later.

The “sliding” action mentioned previously is represented as extracting small
patches from the input image. Each patch has height and width equal to kernelSize
(3 in this case). Since the input image has a height of 4, there are only two possible
sliding positions along the height dimension because we need to make sure that the

6 We owe this analogy to Ashi Krishnan’s talk titled “Deep Learning in JS” at JSConf EU 2018: http://mng.bz/
VPa0.
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3 × 3 window does not fall outside the bounds of the input image. Similarly, the width
(5) of the input image gives us three possible sliding positions along the width dimen-
sion. Hence, we end up with 2 × 3 = 6 image patches extracted.

At each sliding-window position, a dot-product operation occurs. Recall that the
convolutional kernel has a shape of [3, 3, 2, 3]. We can break up the 4D tensor
along the last dimension into three separate 3D tensors, each of which has a shape of
[3, 3, 2], as shown by the hash lines in figure 4.3. We take the image patch and one
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Figure 4.3 How a conv2D layer works, with an example. For simplicity, it is assumed that the input tensor (top 
left) contains only one image and is therefore a 3D tensor. Its dimensions are height, width, and depth (color 
channels). The batch dimension is omitted for simplicity. The depth of the input image tensor is set as 2 for 
simplicity. Note that the height and width of the image (4 and 5) are much smaller than those of a typical real 
image. The depth (2) is less than the more typical value of 3 or 4 (for example, for RGB or RGBA). Assuming that 
the filters property (the number of filters) of the conv2D layer is 3, kernelSize is [3, 3], and strides
is [1, 1], the first step in performing the 2D convolution is to slide through the height and width dimensions and 
extract small patches of the original image. Each patch has a height of 3 and a width of 3, matching the layer’s 
filterSize; it also has the same depth as the original image. In the second step, a dot product is calculated 
between every 3 × 3 × 2 patch and the convolutional kernel (that is, “filters”). Figure 4.4 gives more details on 
each dot-product operation. The kernel is a 4D tensor and consists of three 3D filters. The dot product between 
the image patch with the filter occurs separately for the three filters. The image patch is multiplied with the filter 
pixel-by-pixel, and the products are summed, which leads to a pixel in the output tensor. Because there are three 
filters in the kernel, each image patch is converted to a stack of three pixels. This dot-product operation is 
performed over all image patches, and the resulting stacks of three pixels are merged as the output tensor, which 
has a shape of [2, 3, 3] in this case.
 



124 CHAPTER 4 Recognizing images and sounds using convnets
of the 3D tensors, multiply them together pixel-by-pixel, and sum all the 3 * 3 * 2 = 18
values to get a pixel in the output tensor. Figure 4.4 illustrates the dot-product step in
greater detail. It is not a coincidence that the image patch and the slice of the convo-
lutional kernel have exactly the same shape—we extracted the image patches based
on the kernel’s shape! This multiply-and-add operation is repeated for all three slices
of the kernel, which gives a set of three numbers. Then this dot-product operation is
repeated for the remaining image patches, which gives the six columns of three cubes
in the figure. These columns are finally combined to form the output, which has an
HWC shape of [2, 3, 3]. 

Like a dense layer, a conv2d layer has a bias term, which is added to the result of the
convolution. Also, a conv2d layer is usually configured to have a nonlinear activation
function. In this example, we use relu. Recall that in the chapter 3 section “Avoiding
the fallacy of stacking layers without nonlinearity,” we warned that stacking two dense
layers without nonlinearity is mathematically equivalent to using a single dense layer.
A similar cautionary note applies to conv2d layers: stacking two such layers without a
nonlinear activation is mathematically equivalent to using a single conv2d layer with a
larger kernel and is hence an inefficient way of constructing a convnet that should be
avoided.

Whew! That’s it for the details of how conv2d layers work. Let’s take a step back and
look at what conv2d actually achieves. In a nutshell, it is a special way to transform an
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Figure 4.4 An illustration of the dot-product (that is, multiply-and-add) 
operation in the 2D convolution operation, a step in the full workflow 
outlined in figure 4.3. For the sake of illustration, it is assumed that the 
image patch (x) contains only one color channel. The image patch has a 
shape of [3, 3, 1], that is, the same as the size of the convolutional 
kernel slice (K). The first step is element-by-element multiplication, which 
yields another [3, 3, 1] tensor. The elements of the new tensor are 
added together (represented by the ), and the sum is the result.
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input image into an output image. The output image will usually have smaller height
and width compared to the input. The reduction in size is dependent on the kernel-
Size configuration. The output image may have fewer, more, or the same channels
than the input, which is determined by the filters configuration.

So conv2d is an image-to-image transformation. Two key features of the conv2d
transformation are locality and parameter sharing:

 Locality refers to the property that the value of a given pixel in the output image
is affected by only a small patch of the input image, instead of all the pixels in
the input image. The size of that patch is kernelSize. This is what makes
conv2d distinct from dense layers: in a dense layer, every output element is
affected by every input element. In other words, the input elements and output
elements are “densely connected” in a dense layer (hence its name). So, we can
say that a conv2d layer is “sparsely connected.” While dense layers learn global
patterns in the input, convolutional layers learn local patterns—patterns within
the small window of the kernel.

 Parameter sharing refers to the property that the way in which output pixel A is
affected by its small input patch is exactly the same as the way in which output
pixel B is affected by its input patch. This is because the dot product at every
sliding position uses the same convolutional kernel (figure 4.3).

Due to locality and parameter sharing, a conv2d layer is a highly efficient, image-to-
image transform in terms of the number of parameters required. In particular, the
size of the convolutional kernel does not change with the height or width of the input
image. Coming back to the first conv2d layer in listing 4.1, the kernel has a shape of
[kernelSize, kernelSize, 1, filter] (that is, [5, 5, 1, 8]), and therefore a
total of 5 * 5 * 1 * 8 = 200 parameters, regardless of whether the input MNIST images
are 28 × 28 or much larger. The output of the first conv2d layer has a shape of [24,
24, 8] (omitting the batch dimension). So, the conv2d layer transforms a tensor con-
sisting of 28 * 28 * 1 = 784 elements into another tensor of 24 * 24 * 8 = 4,608 ele-
ments. If we were to implement this transform with a dense layer, how many
parameters will be involved? The answer is 784 * 4,608 = 3,612,672 (not including the
bias), which is about 18 thousand times more than the conv2d layer! This thought
experiment shows the efficiency of convolutional layers.

The beauty of conv2d’s locality and parameter sharing is not only in its efficiency,
but also in the fact that it mimics (in a loose fashion) how biological visual systems
work. Consider neurons in the retina. Each neuron is affected by only a small patch in
the eye’s field of view, called the receptive field. Two neurons located at different loca-
tions of the retina respond to light patterns in their respective receptive fields in
pretty much the same way, which is analogous to the parameter sharing in a conv2d
layer. What’s more, conv2d layers prove to work well for computer-vision problems, as
we will soon appreciate in this MNIST example. conv2d is a neat neural network layer
that has it all: efficiency, accuracy, and relevance to biology. No wonder it is so widely
used in deep learning.
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4.2.2 maxPooling2d layer

Having examined the conv2d layer, let’s look at the next layer in the sequential
model—a maxPooling2d layer. Like conv2d, maxPooling2d is a kind of image-to-
image transform. But the maxPooling2d transform is simpler compared to conv2d. As
figure 4.5 shows, it simply calculates the maximum pixel values in small image patches
and uses them as the pixel values in the output. The code that defines and adds the
maxPooling2d layer is

model.add(tf.layers.maxPooling2d({poolSize: 2, strides: 2}));

In this particular case, the image patches have a height and width of 2 × 2 because of
the specified poolSize value of [2, 2]. The patches are extracted every two pixels,
along both dimensions. This spacing between patches results from the strides value
we use here: [2, 2]. As a result, the output image, with an HWC shape of [12, 12,
8], is half the height and half the width of the input image (shape [24, 24, 8]) but
has the same number of channels.

A maxPooling2d layer serves two main purposes in a convnet. First, it makes the
convnet less sensitive to the exact location of key features in the input image. For
example, we want to be able to recognize the digit “8” regardless of whether it has
shifted to the left or the right from the center in the 28 × 28 input image (or shifted
up or down, for that matter), a property called positional invariance. To understand
how the maxPooling2d layer enhances positional invariance, realize the fact that
within each image patch that maxPooling2d operates on, it doesn’t matter where the
brightest pixel is, as long as it falls into that patch. Admittedly, a single maxPooling2d
layer can do only so much in making the convnet insensitive to shifts because its pool-
ing window is limited. However, when multiple maxPooling2d layers are used in the
same convnet, they work together to achieve considerably greater positional invari-
ance. This is exactly what is done in our MNIST model—as well as in virtually all prac-
tical convnets—which contains two maxPooling2d layers.

12 14 8

7 21 25

2 10 15
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16

10

30 24 14 32

21 25

30 32

Figure 4.5 An example of how a maxPooling2D layer 
works. This example uses a tiny 4 × 4 image and assumes 
that the maxPooling2D layer is configured to have a 
poolSize of [2, 2] and strides of [2, 2]. The depth 
dimension is not shown, but the max-pooling operation 
occurs independently over the dimensions.
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As a thought experiment, consider what happens when two conv2d layers (called
conv2d_1 and conv2d_2) are stacked directly on top of each other without an inter-
mediate maxPooling2d layer. Suppose each of the two conv2d layers has a kernelSize
of 3; then each pixel in conv2d_2’s output tensor is a function of a 5 × 5 region in the
original input to conv2d_1. We can say that each “neuron” of the conv2d_2 layer has a
receptive field of size 5 × 5. What happens when there is an intervening maxPool-
ing2d layer between the two conv2d layers (as is the case in our MNIST convnet)? The
receptive field of conv2d_2’s neurons becomes larger: 11 × 11. This is due to the pool-
ing operation, of course. When multiple maxPooling2d layers are present in a con-
vnet, layers at higher levels can have broad receptive fields and positional invariance.
In short, they can see wider!

Second, a maxPooling2d layer also shrinks the size of the height and width dimen-
sions of the input tensor, significantly reducing the amount of compute required in
subsequent layers and in the entire convnet overall. For example, the output from the
first conv2d layer has an output tensor of shape [26, 26, 16]. After passing through
the maxPooling2d layer, the tensor shape becomes [13, 13, 16], which reduces the
number of tensor elements by a factor of 4. The convnet contains another max-
Pooling2d layer, which further shrinks the size of the weights in subsequent layers and
the number of elementwise mathematical operations in those layers.

4.2.3 Repeating motifs of convolution and pooling

Having examined the first maxPooling2d layer, let’s focus our attention on the next
two layers of the convnet, defined by these lines in listing 4.1:

model.add(tf.layers.conv2d(
    {kernelSize: 3, filters: 32, activation: 'relu'}));
model.add(tf.layers.maxPooling2d({poolSize: 2, strides: 2}));

These two layers are an exact repeat of the previous two layers (except that the conv2d
layer has a larger value in its filters configuration and does not possess an inputShape
field). This type of an almost-repeating “motif” consisting of a convolutional layer and a
pooling layer is seen frequently in convnets. It performs a critical role: hierarchical
extraction of features. To understand what it means, consider a convnet trained for the
task of classifying animals in images. At early stages of the convnet, the filters (that is,
channels) in a convolutional layer may encode low-level geometric features, such as
straight lines, curved lines, and corners. These low-level features are transformed into
more complex features, such as a cat’s eye, nose, and ear (see figure 4.6). At the top
level of the convnet, a layer may have filters that encode the presence of a whole cat.
The higher the level, the more abstract the representation and the more removed from
the pixel-level values the features are. But those abstract features are exactly what is
required to achieve good accuracy on the convnet’s task—for instance, detecting a cat
when it is present in the image. Moreover, these features are not handcrafted but are
instead extracted from the data in an automatic fashion through supervised learning.
This is a quintessential example of the kind of layer-by-layer representational transfor-
mation that we described as the essence of deep learning in chapter 1. 
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4.2.4 Flatten and dense layers

After the input tensor has passed through the two groups of conv2d-maxPooling2d
transformations, it becomes a tensor of the HWC shape [4, 4, 16] (without the
batch dimension). The next layer in the convnet is a flatten layer. This layer forms a
bridge between the previous conv2d-maxPooling2d layers and the following layers of
the sequential model.

The code for the flatten layer is simple, as the constructor doesn’t require any con-
figuration parameters:

model.add(tf.layers.flatten());

A flatten layer “squashes” a multidimensional tensor into a 1D tensor, preserving the
total number of elements. In our case, the 3D tensor of shape [3, 3, 32] is flattened
into a 1D tensor [288] (without the batch dimension). An obvious question for the
squashing operation is how to order the elements, because there is no intrinsic order
in the original 3D space. The answer is, we order the elements such that if you go
down the elements in the flattened 1D tensor and look at how their original indices
(from the 3D tensor) change, the last index changes the fastest, the second-to-last
index changes the second fastest, and so forth, while the first index changes the slow-
est. This is illustrated in figure 4.7.

“cat”

Figure 4.6 Hierarchical extraction of features from an input image by a 
convnet, using a cat image as an example. Note that in this example, the 
input to the neural network is at the bottom, and the output is at the top.
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What purpose does the flatten layer serve in our convnet? It sets the stage for the sub-
sequent dense layers. As we learned in chapters 2 and 3, a dense layer usually takes a
1D tensor (excluding the batch dimension) as its input due to how a dense layer
works (section 2.1.4).

The next two lines of the code in listing 4.1 add two dense layers to the convnet:

   model.add(tf.layers.dense({units: 64, activation: 'relu'}));
   model.add(tf.layers.dense({units: 10, activation: 'softmax'}));

Why two dense layers and not just one? The same reason as in the Boston-housing
example and phishing-URL-detection example we saw in chapter 3: adding layers with
nonlinear activation increases the network’s capacity. In fact, you can think of the con-
vnet as consisting of two models stacked on top of each other:

 A model that contains conv2d, maxPooling2d, and flatten layers, which extracts
visual features from the input images

 An MLP with two dense layers that uses the extracted features to make digit-
class predictions—this is essentially what the two dense layers are for

In deep learning, many models show this pattern of feature-extraction layers followed
by MLPs for final predictions. We will see more examples like this throughout the

Figure 4.7 How a flatten layer works. A 3D tensor input is assumed. For 
the sake of simplicity, we let each dimension have a small size of 2. The 
indices of the elements are shown on the “faces” of the cubes that 
represent the elements. The flatten layer transforms the 3D tensor into a 
1D tensor while preserving the total number of elements. The ordering of 
the elements in the flattened 1D tensor is such that when you go down the 
elements of the output 1D tensor and examine their original indices in the 
input tensor, the last dimension is the one that changes the fastest.
 



130 CHAPTER 4 Recognizing images and sounds using convnets
rest of this book, in models ranging from audio-signal classifiers to natural language
processing.

4.2.5 Training the convnet

Now that we’ve successfully defined the topology of the convnet, the next step is to
train it and evaluate the result of the training. This is what the code in the next listing
is for.

  const optimizer = 'rmsprop';
  model.compile({
    optimizer,
    loss: 'categoricalCrossentropy',
    metrics: ['accuracy']
  });

  const batchSize = 320;
  const validationSplit = 0.15;
  await model.fit(trainData.xs, trainData.labels, {
    batchSize,
    validationSplit,
    epochs: trainEpochs,
    callbacks: {
      onBatchEnd: async (batch, logs) => {
        trainBatchCount++;  
        ui.logStatus(
            `Training... (` +
            `${(trainBatchCount / totalNumBatches * 100).toFixed(1)}%` +
            ` complete). To stop training, refresh or close page.`);
        ui.plotLoss(trainBatchCount, logs.loss, 'train');
        ui.plotAccuracy(trainBatchCount, logs.acc, 'train');
      },
      onEpochEnd: async (epoch, logs) => {
        valAcc = logs.val_acc;
        ui.plotLoss(trainBatchCount, logs.val_loss, 'validation');
        ui.plotAccuracy(trainBatchCount, logs.val_acc, 'validation');
      }
    }
  });

  const testResult = model.evaluate(
      testData.xs, testData.labels);

Much of the code here is about updating the UI as the training progresses, for
instance, to plot how the loss and accuracy values change. This is useful for monitor-
ing the training process but not strictly essential for model training. Let’s highlight
the parts essential for training:

 trainData.xs (the first argument to model.fit()) contains the input MNIST
images represented as a tensor of NHWC shape [N, 28, 28, 1]

Listing 4.2 Training and evaluating the MNIST convnet

Uses callbacks to plot accuracy 
and loss during training

Evaluates the model’s accuracy 
using data the model hasn’t seen
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 trainData.labels (the second argument to model.fit()). This includes the
input labels, represented as a one-hot encoded 2D tensor of shape [N, 10].

 The loss function used in the model.compile() call, categoricalCross-
entropy, which is appropriate for multiclass-classification problems like MNIST.
Recall that we used the same loss function for the iris-flower-classification prob-
lem in chapter 3.

 The metric function specified in the model.compile() call: 'accuracy'. This
function measures what fraction of the examples are classified correctly, given
that the prediction is made based on the largest element among the 10 ele-
ments of the convnet’s output. Again, this is exactly the same metric we used for
the newswire problem. Recall the difference between the cross-entropy loss and
the accuracy metric: cross-entropy is differentiable and hence makes backprop-
agation-based training possible, whereas the accuracy metric is not differentia-
ble but is more easily interpretable.

 The batchSize parameter specified for the model.fit() call. In general, the
benefit of using larger batch sizes is that it produces a more consistent and less
variable gradient update to the model’s weights than a smaller batch size. But
the larger the batch size, the more memory is required during training. You
should also keep in mind that given the same amount of training data, a larger
batch size leads to a small number of gradient updates per epoch. So, if you use
a larger batch size, be sure to increase the number of epochs accordingly so you
don’t inadvertently decrease the number of weight updates during training.
Thus, there is a trade-off. Here, we use a relatively small batch size of 64 because
we need to make sure that this example works on a wide range of hardware.
Like other parameters, you can modify the source code and refresh the page so
as to experiment with the effect of using different batch sizes.

 The validationSplit used in the model.fit() call. This lets the training pro-
cess leave out the last 15% of trainData.xs and trainData.labels for valida-
tion during training. As you learned with the previous nonimage models,
monitoring validation loss and accuracy is important during training. It gives
you an idea of whether and when the model is overfitting. What is overfitting?
Put simply, it is a state in which the model pays too much attention to the fine
details of the data it has seen during training—so much so that its prediction
accuracy on data not seen during training is negatively affected. It is a critical
concept in supervised machine learning. Later in the book (chapter 8), we will
devote an entire chapter to how to spot and counteract overfitting.

model.fit() is an async function, so we need to use await on it if subsequent actions
depend on the completion of the fit() call. This is exactly what’s done here, as we
need to perform an evaluation on the model using a test dataset after the model is
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trained. The evaluation is performed using the model.evaluate() method, which is
synchronous. The data fed to model.evaluate() is testData, which has the same for-
mat as the trainData mentioned earlier, but has a smaller number of examples.
These examples were never seen by the model during the fit() call, ensuring that
the test dataset does not leak into the evaluation result and that the result of the eval-
uation is an objective assessment of the model’s quality.

With this code, we let the model train 10 epochs (specified in the input box),
which gives us the loss and accuracy curves in figure 4.8. As shown by the plots, the
loss converges toward the end of the training epochs, and so does the accuracy. The
validation loss and accuracy values do not deviate from their training counterparts too
much, which indicates that there is no significant overfitting in this case. The final
model.evaluate() call gives an accuracy in the neighborhood of 99.0% (the actual
value you get will vary slightly from run to run, owing to the random initialization of
weights and the implicit random shuffling of examples during training).

How good is 99.0%? It is passable from a practical point of view, but it is certainly not
the state of the art. With more convolutional layers, it is possible to achieve an accu-
racy reaching 99.5% by increasing the number of convolutional and pooling layers
and the number of filters in the model. However, training those larger convnets take
significantly longer in the browser—so long that it makes sense to do the training in a
less resource-constrained environment like Node.js. We will show you exactly how to
do that in section 4.3.

From a theoretical point of view, remember MNIST is a 10-way classification prob-
lem. So, the chance-level (pure guessing) accuracy is 10%; 99.0% is way better than
that. But chance level is not a very high bar. How do we show the value of the conv2d
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Figure 4.8 The MNIST convnet’s training curves. Ten epochs of training are performed, with each epoch 
consisting of approximately 800 batches. Left: loss value. Right: accuracy value. The values from the training 
and validation sets are shown by the different colors, line widths, and marker symbols. The validation curves 
contain fewer data points than the training ones because, unlike the training batches, validation is performed 
only at the end of every epoch.
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and maxPooling2d layers in the model? Would we have done as well if we stuck with
the good old dense layers?

To answer these questions, we can do an experiment. The code in index.js contains
another function for model creation called createDenseModel(). Unlike the create-
ConvModel() function we saw in listing 4.1, createDenseModel() creates a sequential
model made of only flatten and dense layers, that is, without using the new layer types
we learned in this chapter. createDenseModel() makes sure that the total number
of parameters is approximately equal between the dense model it creates and the
convnet we just trained—approximately 33,000, so it will be a fairer comparison. 

 function createDenseModel() {
  const model = tf.sequential();
  model.add(tf.layers.flatten({inputShape: [IMAGE_H, IMAGE_W, 1]}));
  model.add(tf.layers.dense({units: 42, activation: 'relu'}));
  model.add(tf.layers.dense({units: 10, activation: 'softmax'}));
  model.summary();
  return model;
}

The summary of the model defined in listing 4.3 is as follows:

_________________________________________________________________
Layer (type)                 Output shape              Param #   
=================================================================
flatten_Flatten1 (Flatten)   [null,784]                0         
_________________________________________________________________
dense_Dense1 (Dense)         [null,42]                 32970     
_________________________________________________________________
dense_Dense2 (Dense)         [null,10]                 430       
=================================================================
Total params: 33400
Trainable params: 33400
Non-trainable params: 0
_________________________________________________________________

Using the same training configuration, we obtain training results as shown in figure
4.9 from the nonconvolutional model. The final evaluation accuracy we get after 10
training epochs is about 97.0%. The difference of two percentage points may seem
small, but in terms of error rate, the nonconvolutional model is three times worse
than the convnet. As a hands-on exercise, try increasing the size of the nonconvolu-
tional model by increasing the units parameter of the hidden (first) dense layer in
the createDenseModel() function. You will see that even with greater sizes, it is
impossible for the dense-only model to achieve an accuracy on par with the convnet.
This shows you the power of a convnet: through parameter sharing and exploiting
the locality of visual features, convnets can achieve superior accuracy on computer-
vision tasks with an equal or fewer number of parameters than nonconvolutional
neural networks.

Listing 4.3 A flatten-and-dense-only model for MNIST, for comparison with convnet
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4.2.6 Using a convnet to make predictions

Now we have a trained convnet. How do we use it to actually classify images of hand-
written digits? First, you need to get hold of the image data. There are a number of
ways through which image data can be made available to TensorFlow.js models. We
will list them and describe when they are applicable.

CREATING IMAGE TENSORS FROM TYPEDARRAYS

In some cases, the image data you want are already stored as JavaScript TypedArrays.
This is the case in the tfjs-example/mnist example we are focusing on. The details are
in the data.js file, and we will not elaborate on the detailed machinery. Given a
Float32Array representing an MNIST of the correct length (say, a variable named
imageDataArray), we can convert it into a 4D tensor of the shape expected by our
model with7

let x = tf.tensor4d(imageDataArray, [1, 28, 28, 1]);

The second argument in the tf.tensor4d() call specifies the shape of the tensor to
be created. It is necessary because a Float32Array (or a TypedArray in general) is a
flat structure with no information regarding the image’s dimensions. The size of the
first dimension is 1 because we are dealing with a single image in imageDataArray. As
in previous examples, the model always expects a batch dimension during training,
evaluation, and inference, no matter whether there is only one image or more than
one. If the Float32Array contains a batch of multiple images, it can also be converted
into a single tensor, where the size of the first dimension equals the number of
images:

let x = tf.tensor4d(imageDataArray, [numImages, 28, 28, 1]);

7 See appendix B for a more comprehensive tutorial on how to create tensors using the low-level API in
TensorFlow.js.
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Figure 4.9 Same as figure 4.8, but for a nonconvolutional model for the MNIST problem, created by the 
createDenseModel() function in listing 4.3
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TF.BROWSER.FROMPIXELS: GETTING IMAGE TENSORS FROM HTML IMG, CANVAS, 
OR VIDEO ELEMENTS

The second way to get image tensors in the browser is to use the TensorFlow.js func-
tion tf.browser.fromPixels() on HTML elements that contain image data—this
includes img, canvas, and video elements. 

For example, suppose a web page contains an img element defined as

<img id="my-image" src="foo.jpg"></img>

You can obtain the image data displayed in the img element with one line:

let x = tf.browser.fromPixels(
    document.getElementById('my-image')).asType('float32');

This generates a tensor of shape [height, width, 3], where the three channels are
for RGB color encoding. The asType0 call at the end is necessary because
tf.browser.fromPixels() returns a int32-type tensor, but the convnet expects
float32-type tensors as inputs. The height and width are determined by the size of the
img element. If it doesn’t match the height and width expected by the model, you can
either change the height and width attributes of the img element (if that doesn’t make
the UI look bad, of course) or resize the tensor from tf.browser.fromPixels() by
using one of the two image-resizing methods provided by TensorFlow.js,
tf.image.resizeBilinear() or tf.image.resizeNearestNeigbor():

x = tf.image.resizeBilinear(x, [newHeight, newWidth]);

tf.image.resizeBilinear() and tf.image.resizeNearestNeighbor() have the
same syntax, but they perform image resizing with two different algorithms. The for-
mer uses bilinear interpolation to form pixel values in the new tensor, while the latter
performs nearest-neighbor sampling and is usually less computationally intensive than
bilinear interpolation.

Note that the tensor created by tf.browser.fromPixels() does not include a
batch dimension. So, if the tensor is to be fed into a TensorFlow.js model, it must be
dimension-expanded first; for example,

x = x.expandDims();

expandDims() takes a dimension argument in general. But in this case, the argument
can be omitted because we are expanding the first dimension, which is the default for
that argument. 

In addition to img elements, tf.browser.fromPixels() works on canvas and video
elements in the same way. Applying tf.browser.fromPixels() on canvas elements is
useful for cases in which the user can interactively alter the content of a canvas before the
content is used by a TensorFlow.js model. For example, imagine an online handwriting-
recognition app or an online hand-drawn-shape-recognition app. Apart from static
images, applying tf.browser.fromPixels() on video elements is useful for obtaining
frame-by-frame image data from a webcam. This is exactly what’s done in the Pac-Man
demo that Nikhil Thorat and Daniel Smilkov gave during the initial TensorFlow.js
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announcement (see http://mng.bz/xl0e), the PoseNet demo,8 and many other Ten-
sorFlow.js-based web apps that use a webcam. You can read the source code on GitHub
at http://mng.bz/ANYK.

As we have seen in the previous chapters, great care should be taken to avoid skew
(that is, mismatch) between the training data and the inference data. In this case, our
MNIST convnet is trained with image tensors normalized to the range between 0 and
1. Therefore, if the data in the x tensor has a different range, say 0–255, as is common
in HTML-based image data, we should normalize the data:

x = x.div(255);

With the data at hand, we are now ready to call model.predict() to get the predic-
tions. See the following listing.

  const testExamples = 100;
  const examples = data.getTestData(testExamples);

  tf.tidy(() => {
    const output = model.predict(examples.xs);

    const axis = 1;
    const labels = Array.from(examples.labels.argMax(axis).dataSync());
    const predictions = Array.from(
        output.argMax(axis).dataSync());

    ui.showTestResults(examples, predictions, labels);
  });

The code is written with the assumption that the batch of images for prediction is
already available in a single tensor, namely, examples.xs. It has a shape of [100, 28,
28, 1] (including the batch dimension), where the first dimension reflects the fact
that there are 100 images we are running a prediction on. model.predict() returns
an output 2D tensor of shape [100, 10]. The first dimension of the output corre-
sponds to the examples, while the second dimension corresponds to the 10 possible
digits. Every row of the output tensor includes the probability values assigned to the
10 digits for a given image input. To determine the prediction, we need to find out
the indices of the maximum probability values, image by image. This is done with the
lines

const axis = 1;
const labels = Array.from(examples.labels.argMax(axis).dataSync());

The argMax() function returns the indices of the maximum values along a given axis.
In this case, this axis is the second dimension, const axis = 1. The return value of
argMax() is a tensor of shape [100, 1]. By calling dataSync(), we convert the [100, 1]-
shaped tensor into a length-100 Float32Array. Then Array.from() converts the

8 Dan Oved, “Real-time Human Pose Estimation in the Browser with TensorFlow.js,” Medium, 7 May
2018, http://mng.bz/ZeOO.

Listing 4.4 Using the trained convnet for inference

Uses tf.tidy() to prevent 
WebGL memory leaks

Calls argMax() to get 
the class with the 
largest probability
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Float32Array into an ordinary JavaScript array consisting of 100 integers between 0
and 9. This predictions array has a very straightforward meaning: it is the classification
results made by the model for the 100 input images. In the MNIST dataset, the target
labels happen to match the output index exactly. Therefore, we don’t even need to
convert the array into string labels. The predictions array is consumed by the next
line, which calls a UI function that renders the results of the classification alongside
the test images (see figure 4.10).

4.3 Beyond browsers: Training models faster using Node.js
In the previous section, we trained a convnet in the browser, and it reached a test
accuracy of 99.0%. In this section, we will create a more powerful convnet that will
give us a higher test accuracy: around 99.5%. The improved accuracy comes at a cost,
though: a greater amount of memory and computation consumed by the model
during both training and inference. The increase in cost is more pronounced during
training because training involves backpropagation, which is more computationally
intensive compared to the forward runs that inference entails. The larger convnet will
be too heavy and too slow to train in most web browser environments.

4.3.1 Dependencies and imports for using tfjs-node

Enter the Node.js version of TensorFlow.js! It runs in a backend environment, unhin-
dered by any resource restriction like that of a browser tab. The CPU version of
Node.js of TensorFlow (tfjs-node for short hereafter) directly uses the multithreaded
math operations written in C++ and used by the main Python version of TensorFlow. If
you have a CUDA-enabled GPU installed on your machine, tfjs-node can also use the
GPU-accelerated math kernels written in CUDA, achieving even greater gains in
speed.

The code for our enhanced MNIST convnet is in the mnist-node directory of tfjs-
examples. As in the examples we have seen, you can use the following commands to
access the code:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/mnist-node

Figure 4.10 A few examples of predictions made by the model after training, shown alongside the 
input MNIST images
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What’s different from the previous examples is that the mnist-node example will run
in a terminal instead of a web browser. To download the dependencies, use the yarn
command.

If you examine the package.json file, you can see the dependency @tensorflow/
tfjs-node. With @tensorflow/tfjs-node declared as a dependency, yarn will auto-
matically download the C++ shared library (with the name libtensorflow.so, libtensorflw
.dylib, or libtensorflow.dll on Linux, Mac, or Windows systems, respectively) into your
node_ modules directory for use by TensorFlow.js.

Once the yarn command has finished running, you can kick off the model training
with

node main.js

We assume that the node binary is available on your path since you have already
installed yarn (see appendix A if you need more information on this).

The workflow just described will allow you to train the enhanced convnet on your
CPU. If your workstation and laptop have a CUDA-enabled GPU inside, you can also
train the model on your GPU. The steps involved are as follows:

1 Install the correct versions of the NVIDIA driver for your GPU.
2 Install the NVIDIA CUDA toolkit. This is the library that enables general-

purpose parallel computing on NVIDIA’s line of GPUs.
3 Install CuDNN, NVIDIA’s library for high-performance, deep-learning algo-

rithms built on top of CUDA (see appendix A for more details on steps 1–3).
4 In package.json, replace the @tensorflow/tfjs-node dependency with @tensor-

flow/tfjs-node-gpu, but keep the same version number because the two pack-
ages have synchronized releases.

5 Run yarn again, which will download the shared library that contains the
CUDA math operations for TensorFlow.js use.

6 In main.js, replace the line 

require('@tensorflow/tfjs-node');

with

require('@tensorflow/tfjs-node-gpu');

7 Start the training again with 

node main.js

If the steps are done correctly, your model will be roaring ahead on your CUDA GPU,
training at a speed that is typically five times the speed you can get with the CPU ver-
sion (tfjs-node). Training with either the CPU or GPU version of tfjs-node is signifi-
cantly faster compared to training the same model in the browser.

TRAINING AN ENHANCED CONVNET FOR MNIST IN TFJS-NODE

Once the training is complete in 20 epochs, the model should show a final test (or eval-
uation) accuracy of approximately 99.6%, which beats the previous result of 99.0% we
achieved in section 4.2. So, what are the differences between this node-based model
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and the browser-based model that lead to this boost in accuracy? After all, if you train
the same model in tfjs-node and the browser version of TensorFlow.js using the training
data, you should get the same results (except the effects or random weights initializa-
tion.) To answer this question, let’s look at the definition of the node-based model.
The model is constructed in the file model.js, which is imported by main.js.

const model = tf.sequential();
model.add(tf.layers.conv2d({
  inputShape: [28, 28, 1],
  filters: 32,
  kernelSize: 3,
  activation: 'relu',
}));
model.add(tf.layers.conv2d({
  filters: 32,
  kernelSize: 3,
  activation: 'relu',
}));
model.add(tf.layers.maxPooling2d({poolSize: [2, 2]}));
model.add(tf.layers.conv2d({
  filters: 64,
  kernelSize: 3,
  activation: 'relu',
}));
model.add(tf.layers.conv2d({
  filters: 64,
  kernelSize: 3,
  activation: 'relu',
}));
model.add(tf.layers.maxPooling2d({poolSize: [2, 2]}));
model.add(tf.layers.flatten());
model.add(tf.layers.dropout({rate: 0.25}));
model.add(tf.layers.dense({units: 512, activation: 'relu'}));
model.add(tf.layers.dropout({rate: 0.5}));
model.add(tf.layers.dense({units: 10, activation: 'softmax'}));

model.summary();
model.compile({
  optimizer: 'rmsprop',
  loss: 'categoricalCrossentropy',
  metrics: ['accuracy'],
});

The summary of the model is as follows:

_________________________________________________________________
Layer (type)                 Output shape              Param #   
=================================================================
conv2d_Conv2D1 (Conv2D)      [null,26,26,32]           320       
_________________________________________________________________
conv2d_Conv2D2 (Conv2D)      [null,24,24,32]           9248      
_________________________________________________________________

Listing 4.5 Defining a larger convnet for MNIST in Node.js

Adds dropout layers 
to reduce overfitting
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max_pooling2d_MaxPooling2D1  [null,12,12,32]           0         
_________________________________________________________________
conv2d_Conv2D3 (Conv2D)      [null,10,10,64]           18496     
_________________________________________________________________
conv2d_Conv2D4 (Conv2D)      [null,8,8,64]             36928     
_________________________________________________________________
max_pooling2d_MaxPooling2D2  [null,4,4,64]             0         
_________________________________________________________________
flatten_Flatten1 (Flatten)   [null,1024]               0         
_________________________________________________________________
dropout_Dropout1 (Dropout)   [null,1024]               0         
_________________________________________________________________
dense_Dense1 (Dense)         [null,512]                524800    
_________________________________________________________________
dropout_Dropout2 (Dropout)   [null,512]                0         
_________________________________________________________________
dense_Dense2 (Dense)         [null,10]                 5130      
=================================================================
Total params: 594922
Trainable params: 594922
Non-trainable params: 0
_________________________________________________________________

These are the key differences between our tfjs-node model and the browser-based model:

 The node-based model has four conv2d layers, one more compared to the
browser-based model.

 The hidden dense layer in the node-based model has more units (512) com-
pared to the counterpart in the browser-based model (100).

 Overall, the node-based model has about 18 times as many weight parameters
as the browser-based model.

 The node-based model has two dropout layers inserted between the flatten and
dense layers.

The first three differences in this list give the node-based model a higher capacity
than the browser-based model. They are also what make the node-based model too
memory- and computation-intensive to be trained with acceptable speed in the
browser. As we learned in chapter 3, with greater model capacity comes a greater risk
of overfitting. The increased risk of overfitting is ameliorated by the fourth difference,
namely, the inclusion of dropout layers. 

REDUCING OVERFITTING WITH DROPOUT LAYERS

Dropout is yet another new TensorFlow.js layer type you have encountered in this
chapter. It is one of the most effective and widely used ways to reduce overfitting in
deep neural networks. Its functionality can be described simply:

 During the training phase (during Model.fit() calls), it randomly sets a frac-
tion of the elements in the input tensor as zero (or “dropped”), and the result is
the output tensor of the dropout layer. For the purpose of this example, a drop-
out layer has only one configuration parameter: the dropout rate (for example,
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the two rate fields as shown in listing 4.5). For example, suppose a dropout
layer is configured to have a dropout rate of 0.25, and the input tensor is a 1D
tensor of value [0.7, -0.3, 0.8, -0.4]; the output tensor may be [0.7,
-0.3, 0.0, 0.4]—with 25% of the input tensor’s elements selected at random
and set to the value 0. During backpropagation, the gradient tensor on a drop-
out layer is affected similarly by this random zeroing-out. 

 During the inference phase (during Model.predict() and Model.evaluate()
calls), a dropout layer does not randomly zero-out elements in the input tensor.
Instead, the input is simply passed through as the output without change (that
is, an identity mapping).

Figure 4.11 shows an example of how a dropout layer with a 2D input tensor works at
training time and testing time.

It might seem strange that such a simple algorithm is one of the most effective ways of
fighting overfitting. Why does it work? Geoff Hinton, the inventor of the dropout
algorithm (among many other things in neural networks) says he was inspired by a
mechanism used by some banks to prevent fraud by employees. In his own words, 

I went to my bank. The tellers kept changing, and I asked one of them why. He said he
didn’t know, but they got moved around a lot. I figured it must be because it would
require cooperation between employees to successfully defraud the bank. This made me
realize that randomly removing a different subset of neurons on each example would
prevent conspiracies and thus reduce overfitting. 

To put this into the lingo of deep learning, introducing noise in the output values of a
layer breaks up happenstance patterns that aren’t significant with regard to the true
patterns in the data (what Hinton refers to as “conspiracies”). In exercise 3 at the end
of this chapter, you should try removing the two dropout layers from the node-based
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Figure 4.11 An example of how a dropout layer 
works. In this example, the input tensor is 2D and 
has a shape of [4, 2]. The dropout layer has its rate 
configured as 0.25, which leads to 25% (that is, two 
out of eight) elements of the input tensor being
randomly selected and set to zero during the training 
phase. During the inference phase, the layer acts as 
a trivial passthrough.
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convnet in model.js, train the model again, and see how the training, validation, and
evaluation accuracies change as a result.

Listing 4.6 shows the key code we use to train and evaluate the enhanced convnet.
If you compare the code here with that in listing 4.2, you can appreciate the similarity
between the two chunks of code. Both are centered around Model.fit() and
Model.evaluate() calls. The syntax and style are identical, except with regard to how
the loss value, accuracy value, and training progress are rendered or displayed on dif-
ferent user interfaces (terminal versus browser).

This shows an important feature of TensorFlow.js, a JavaScript deep-learning frame-
work that straddles the frontend and the backend:

As far as the creation and training of models is concerned, the code you write in
TensorFlow.js is the same regardless of whether you are working with the web browser or
with Node.js. 

  await model.fit(trainImages, trainLabels, {
    epochs,
    batchSize,
    validationSplit
  });

  const {images: testImages, labels: testLabels} = data.getTestData();
  const evalOutput = model.evaluate
      testImages, testLabels);
  console.log('\nEvaluation result:');
  console.log(
      `  Loss = ${evalOutput[0].dataSync()[0].toFixed(3)}; `+
      `Accuracy = ${evalOutput[1].dataSync()[0].toFixed(3)}`);

4.3.2 Saving the model from Node.js and loading it in the browser

Training your model consumes CPU and GPU resources and takes some time. You
don’t want to throw away the fruit of training. Without saving the model, you would
have to start from scratch the next time you run main.js. This section shows how to
save the model after training and export the saved model as files on the disk (called a
checkpoint or an artifact). We will also show you how to import the checkpoint in the
browser, reconstitute it as a model, and use it for inference. The final part of the
main() function in main.js consists of the model-saving code in the following listing.

  if (modelSavePath != null) {
    await model.save(`file://${modelSavePath}`);
    console.log(`Saved model to path: ${modelSavePath}`);
  }

The save() method of the model object is used to save the model to a directory on
your file system. The method takes a single argument, which is a URL string that begins

Listing 4.6 Training and evaluating the enhanced convnet in tfjs-node

Listing 4.7 Saving the trained model to the file system in tfjs-node

Evaluates the model using 
data the model hasn’t seen
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with the scheme file://. Note that it is possible to save the model on the file system
because we are using tfjs-node. The browser version of TensorFlow.js also provides the
model.save() API but cannot access the machine’s native file system directly because
the browser forbids that for security reasons. Non-file-system saving destinations (such
as the browser’s local storage and IndexedDB) will have to be used if we are using
TensorFlow.js in the browser. Those correspond to URL schemes other than file://. 

model.save() is an asynchronous function because it involves file or network
input-output in general. Therefore, we use await on the save() call. Suppose model-
SavePath has a value /tmp/tfjs-node-mnist; after the model.save() call completes,
you can examine the content of the directory,

ls -lh /tmp/tfjs-node-mnist 

which may print a list of files like the following:

-rw-r--r-- 1 user group 4.6K Aug 14 10:38 model.json
-rw-r--r-- 1 user group 2.3M Aug 14 10:38 weights.bin

There, you can see two files:

 model.json is a JSON file that contains the model’s saved topology. What’s
referred to as “topology” here includes the types of layers that form the model,
their respective configuration parameters (such as filters for a conv2d layer
and rate for a dropout layer), as well as the way in which the layers connect to
each other. The connections are simple for the MNIST convnet because it is a
sequential model. We will see models with less trivial connection patterns,
which can also be saved to disk with model.save().

 In addition to the model topology, model.json also contains a manifest of the
model’s weights. That part lists the names, shapes, and data types of all the
model’s weights, in addition to the locations at which the weight values are
stored. This brings us to the second file: weights.bin.

As its name indicates, weights.bin is a binary file that stores all the model’s
weight values. It is a flat binary stream without demarcation of where the indi-
vidual weights begin and end. That “metainformation” is available in the
weights-manifest part of the JSON object in model.json.

To load the model using tfjs-node, you can use the tf.loadLayersModel() method,
pointing to the location of the model.json file (not shown in the example code):

const loadedModel = await tf.loadLayersModel('file:///tmp/tfjs-node-mnist');

tf.loadLayersModel() reconstitutes the model by deserializing the saved topology
data in model.json. Then, tf.loadLayersModel() reads the binary weight values in
weights.bin using the manifest in model.json and force-sets the model’s weight to
those values. Like model.save(), tf.loadLayersModel() is asynchronous, so we use
await when calling it here. Once the call returns, the loadedModel object is, for all
intents and purposes, equivalent to the model created and trained using the Java-
Script code in listings 4.5 and 4.6. You can print a summary of the model by calling its
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summary() method, use it to perform inference by calling its predict() method, eval-
uate its accuracy by using the evaluate() method, or even retrain it using the fit()
method. If so desired, the model can also be saved again. The workflow of retraining
and resaving a loaded model will be relevant when we talk about transfer learning in
chapter 5.

What’s said in the previous paragraph applies to the browser environment as well.
The files you saved can be used to reconstitute the model in a web page. The reconsti-
tuted model supports the full tf.LayersModel() workflow, with the caveat that, if you
retrain the entire model, it will be especially slow and inefficient due to the large size
of the enhanced convnet. The only thing that’s fundamentally different between load-
ing a model in tfjs-node and in the browser is that you should use a URL scheme other
than file:// in the browser. Typically, you can put the model.json and weights.bin files
as static asset files on an HTTP server. Suppose your hostname is localhost and your
files are seen under the server path my/models/; you can use the following line to
load the model in the browser:

const loadedModel =
    await tf.loadLayersModel('http:///localhost/my/models/model.json');

When handling HTTP-based model loading in the browser, tf.loadLayersModel()
calls the browser’s built-in fetch function under the hood. Therefore, it has the follow-
ing features and properties:

 Both http:// and https:// are supported.
 Relative server paths are supported. In fact, if a relative path is used, the http://

or https:// part of the URL can be omitted. For example, if your web page is at
the server path my/index.html, and your model’s JSON file is at my/models/
model.json, you can use the relative path model/model.json:

const loadedModel = await tf.loadLayersModel('models/model.json');

 To specify additional options for the HTTP/HTTPS requests, the
tf.io.browserHTTPRequest() method should be used in lieu of the string
argument. For example, to include credentials and headers during model load-
ing, you can do something like

    const loadedModel = await tf.loadLayersModel(tf.io.browserHTTPRequest( 
      'http://foo.bar/path/to/model.json',
      {credentials: 'include', headers: {'key_1': 'value_1'}}));

4.4 Spoken-word recognition: 
Applying convnets on audio data
So far, we have shown you how to use convnets to perform computer-vision tasks. But
human perception is not just vision. Audio is an important modality of perceptual
data and is accessible via browser APIs. How to recognize the content and meaning of
speech and other kinds of sounds? Remarkably, convnets not only work for computer
vision, but also help audio-related machine learning in a significant way.
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In this section, you will see how we can solve a relatively simple audio task with a
convnet similar to the one we built for MNIST. The task is to classify short snippets of
speech recordings into 20 or so word categories. This task is simpler than the kind of
speech recognition you may see in devices such as Amazon Echo and Google Home.
In particular, those speech-recognition systems involve larger vocabularies than the
one used in this example. Also, they process connected speech consisting of multiple
words spoken in succession, whereas our example deals with words spoken one at a
time. Therefore, our example doesn’t qualify as a “speech recognizer;” instead, it is
more accurately described as a “word recognizer” or “speech-command recognizer.”
However, our example still has practical uses (such as hands-free UIs and accessibility
features). Also, the deep-learning techniques embodied in this example actually form
the basis of more advanced speech-recognition systems.9

4.4.1 Spectrograms: Representing sounds as images

As in any deep-learning application, if you want to understand how the model works,
you need to understand the data first. To understand how audio convnets work, we
need to first look at how sound is represented as tensors. Recall from high school
physics that sounds are patterns of air-pressure changes. A microphone picks up the
air-pressure changes and converts them to electrical signals, which can in turn be digi-
tized by a computer’s sound card. Modern web browsers feature the WebAudio API,
which talks to the sound card and provides real-time access to the digitized audio sig-
nals (with permission granted by the user). So, from a JavaScript programmer’s point
of view, sounds are arrays of real-valued numbers. In deep learning, such arrays of
numbers are usually represented as 1D tensors.

You might be wondering, how can the kinds of convnets we have seen so far work
on 1D tensors? Aren’t they supposed to operate on tensors that are at least 2D? The
key layers of a convnet, including conv2d and maxPooling2d, exploit spatial relations
in 2D spaces. It turns out that sounds can be represented as special types of images
called spectrograms. Spectrograms not only make it possible to apply convnets on
sounds but also have theoretical justifications beyond deep learning.

As figure 4.12 shows, a spectrogram is a 2D array of numbers, which can be shown
as grayscale images pretty much in the same way as MNIST images. The horizontal
dimension is time, and the vertical one is frequency. Each vertical slice of a spectro-
gram is the spectrum of the sound inside a short time window. A spectrum is a decom-
position of a sound into different frequency components, which can be roughly
understood as different “pitches.” Just as light can be divided by a prism into multiple
colors, sound can be decomposed by a mathematical operation called Fourier transform
into multiple frequencies. In a nutshell, a spectrogram describes how the frequency
content of sound changes over a number of successive, short time windows (usually on
the order of 20 milliseconds).

9 Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve, “Wav2Letter: An End-to-End ConvNet-based
Speech Recognition System,” submitted 13 Sept. 2016, https://arxiv.org/abs/1609.03193.
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Spectrograms are a suitable representation of sound for the following reasons.
First, they save space: the number of float numbers in a spectrogram is usually a few
times less than the number of float values in the raw waveform. Second, in a loose
sense, spectrograms correspond to how hearing works in biology. An anatomical struc-
ture inside the inner ear called the cochlea essentially performs the biological version
of Fourier transform. It decomposes sounds into different frequencies, which are then
picked up by different sets of auditory neurons. Third, spectrogram representation of
speech sounds makes different types of speech sounds easier to distinguish from each
other. This is shown by the example speech spectrograms in figure 4.12: vowels and
consonants all have different defining patterns in their spectrograms. Decades ago,
prior to the wide adoption of machine learning, people working on speech recogni-
tion actually tried to handcraft rules that detect different vowels and consonants from
spectrograms. Deep learning saves us the trouble and tears of such handcrafting.

Let’s stop and think for a moment. Looking at the MNIST images in figure 4.1 and
the speech spectrograms in figure 4.12, you should be able to appreciate the similarity
between the two datasets. Both datasets contain patterns in a 2D feature space, which
a pair of trained eyes should be able to distinguish. Both datasets show some random-
ness in the detailed location, size, and details of the features. Finally, both are multi-
category classification tasks. While MNIST contains 10 possible classes, our speech-
commands dataset contains 20 (the 10 digits from 0 to 9, “up,” “down,” “left,” “right,”
“go,” “stop,” “yes,” and “no,” in addition to the category of “unknown” words and
background noise). It is exactly these similarities in the essence of the datasets that
make convnets suitable for the speech-command-recognition task.

TimeTime

Frequency Frequency

5 kHz 5 kHz

0 01 sec 1 sec

“zero” “yes”

z i: r ou y e s

Figure 4.12 Example spectrograms of the isolated spoken words “zero” and “yes.” A spectrogram is a joint time-
frequency representation of sound. You can think of a spectrogram as a sound represented as an image. Each slice 
along the time axis (a column of the image) is a short moment (frame) in time; each slice along the frequency axis 
(a row of the image) corresponds to a particular narrow range of frequency (pitch). The value at each pixel of the 
image represents the relative energy of the sound in the given frequency bin at a given moment in time. The 
spectrograms in this figure are rendered such that a darker shade of gray corresponds to a higher amount of energy. 
Different speech sounds have different defining features. For example, sibilant consonants like “z” and “s” are 
characterized by a quasi-steady-state energy concentrated at frequencies above 2–3 kHz; vowel sounds like “e” 
and “o” are characterized by horizontal stripes (energy peaks) in the low end of the spectrum (< 3 kHz). These 
energy peaks are called formants in acoustics. Different vowels have different formant frequencies. All these 
distinctive features of different speech sounds can be used by a deep convnet for word recognition.
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But there are also some noticeable differences between the two datasets. First, the
audio recordings in the speech-command dataset are somewhat noisy, as you can see
from the speckles of dark pixels that don’t belong to the speech sound in the example
spectrograms in figure 4.12. Second, every spectrogram in the speech-command data-
set has a size of 43 × 232, which is significantly larger compared to the 28 × 28 size of
the individual MNIST images. The size of the spectrogram is asymmetric between the
time and frequency dimensions. These differences will be reflected by the convnet we
will use on the audio dataset.

The code that defines and trains the speech-commands convnet lives in the tfjs-
models repo. You can access the code with the following commands:

git clone https://github.com/tensorflow/tfjs-models.git
cd speech-commands/training/browser-fft

The creation and compilation of the model is encapsulated in the createModel()
function in model.ts.

function createModel(inputShape: tf.Shape, numClasses: number) {
  const model = tf.sequential();
  model.add(tf.layers.conv2d({
    filters: 8,
    kernelSize: [2, 8],
    activation: 'relu',
    inputShape
  }));
  model.add(tf.layers.maxPooling2d({poolSize: [2, 2], strides: [2, 2]}));
  model.add(      tf.layers.conv2d({
        filters: 32,
        kernelSize: [2, 4],
        activation: 'relu'
      }));
  model.add(tf.layers.maxPooling2d({poolSize: [2, 2], strides: [2, 2]}));
  model.add(
      tf.layers.conv2d({
        filters: 32,
        kernelSize: [2, 4],
        activation: 'relu'
      }));
  model.add(tf.layers.maxPooling2d({poolSize: [2, 2], strides: [2, 2]}));
  model.add(
      tf.layers.conv2d({
        filters: 32,
        kernelSize: [2, 4],
        activation: 'relu'
      }));
  model.add(tf.layers.maxPooling2d({poolSize: [2, 2], strides: [1, 2]}));
  model.add(tf.layers.flatten());
  model.add(tf.layers.dropout({rate: 0.25}));
  model.add(tf.layers.dense({units: 2000, activation: 'relu'}));
  model.add(tf.layers.dropout({rate: 0.5}));

Listing 4.8 Convnet for classifying spectrograms of speech commands

Repeating motifs of 
conv2d+maxPooling2d

Multilayer 
perceptron 
begins

Uses dropout to 
reduce overfitting
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  model.add(tf.layers.dense({units: numClasses, activation: 'softmax'}));

  model.compile({
    loss: 'categoricalCrossentropy',
    optimizer: tf.train.sgd(0.01),
    metrics: ['accuracy']
  });
  model.summary();
  return model;
}

The topology of our audio convnet looks a lot like the MNIST convnets. The sequen-
tial model begins with several repeating motifs of conv2d layers paired with max-
Pooling2d layers. The convolution-pooling part of the model ends at a flatten layer,
on top of which an MLP is added. The MLP has two dense layers. The hidden dense
layer has a relu activation, and the final (output) one has a softmax activation that
suits the classification task. The model is compiled to use categoricalCrossentropy
as the loss function and emit the accuracy metric during training and evaluation. This
is exactly the same as the MNIST convnets because both datasets involve multicate-
gory classification. The audio convnet also shows some interesting differences from
the MNIST one. In particular, the kernelSize properties of the conv2d layers are rect-
angular (for instance, [2, 8]) instead of square-shaped. These values are selected to
match the nonsquare shape of the spectrograms, which have a larger frequency
dimension than the temporal dimension.

To train the model, you need to download the speech-command dataset first. The
dataset originated from the speech-commands dataset collected by Pete Warden, an
engineer on the Google Brain team (see www.tensorflow.org/tutorials/sequences/
audio_recognition). It has been converted to a browser-specific spectrogram format:

curl -fSsL https://storage.googleapis.com/learnjs-data/speech-
commands/speech-commands-data- v0.02-browser.tar.gz  -o speech-commands-
data-v0.02-browser.tar.gz &&

tar xzvf speech-commands-data-v0.02-browser.tar.gz

These commands will download and extract the browser version of the speech-
command dataset. Once the data has been extracted, you can kick off the training
process with this command:

yarn
yarn train \
    speech-commands-data-browser/ \
    /tmp/speech-commands-model/

The first argument to the yarn train command points at the location of the training
data. The following arguments specify the path at which the model’s JSON file will be
saved, together with the weight file and the metadata JSON file. Just like when we
trained the enhanced MNIST convnet, the training of the audio convnet happens in
tfjs-node, with the potential to utilize GPUs. Because the sizes of the dataset and the
model are larger than the MNIST convnet, the training will take longer (on the order

Configures loss and metric for 
multicategory classification
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of a few hours). You can get a significant speedup of the training if you have a CUDA
GPU and change the command slightly to use tfjs-node-gpu instead of the default tfjs-
node (which runs on a CPU only). To do that, just add the flag --gpu to the previous
command:

      yarn train \
        --gpu \
        speech-commands-data-browser/ \
        /tmp/speech-commands-model/

When the training ends, the model should achieve a final evaluation (test) accuracy of
approximately 94%.

The trained model is saved at the path specified by the flag in the previous com-
mand. Like the MNIST convnet we trained with tfjs-node, the saved model can be
loaded in the browser for serving. However, you need to be familiar with the Web-
Audio API to be able to acquire data from the microphone and preprocess it into a
format that can be used by the model. For your convenience, we wrote a wrapper class
that not only loads a trained audio convnet, but also takes care of the data ingestion
and preprocessing. If you are interested in the mechanisms of the audio data input
pipeline, you can study the underlying code in the tfjs-model Git repository, in the
folder speech-commands/src. The wrapper is available via npm under the name
@tensorflow-models/speech-commands. Listing 4.9 shows a minimal example of how
the wrapper class can be used to perform online recognition of speech-command
words in the browser.

In the speech-commands/demo folder of the tfjs-models repo, you can find a less
barebones example of how to use the package. To clone and run the demo, run the
following commands under the speech-commands directory:

git clone https://github.com/tensorflow/tfjs-models.git
cd tfjs-models/speech-commands
yarn && yarn publish-local
cd demo
yarn && yarn link-local && yarn watch

The yarn watch command will automatically open a new tab in your default web
browser. In order to see the speech-command recognizer in action, make sure your
machine has a microphone ready (which most laptops do). Each time a word within
the vocabulary is recognized, it will be displayed on the screen along with the one-
second-long spectrogram that contains the word. So, this is browser-based, single-word
recognition in action, powered by the WebAudio API and a deep convnet. Surely it
doesn’t have the ability to recognize connected speech with grammar? That will
require help from other types of neural network building blocks capable of processing
sequential information. We will visit those in chapter 8.
 



150 CHAPTER 4 Recognizing images and sounds using convnets
import * as SpeechCommands from
    '@tensorflow-models/speech-commands';

const recognizer =
    SpeechCommands.create('BROWSER_FFT');

console.log(recognizer.wordLabels());

recognizer.listen(result => {
  let maxIndex;
  let maxScore = -Infinity;
  result.scores.forEach((score, i) => {
    if (score > maxScore) {
      maxIndex = i;
      maxScore = score;
    }
  });
  console.log(`Detected word ${recognizer.wordLabels()[maxIndex]}`);
}, {
  probabilityThreshold: 0.75
});

setTimeout(() => recognizer.stopStreaming(), 10e3);

Exercises
1 The convnet for classifying MNIST images in the browser (listing 4.1) has two

groups of conv2d and maxPooling2d layers. Modify the code to reduce the
number to only one group. Answer the following questions:
a How does that affect the total number of trainable parameters of the convnet?
b How does that affect the training speed? 
c How does that affect the final accuracy obtained by the convnet after

training?
2 This exercise is similar to exercise 1. But instead of playing with the number of

conv2d-maxPooling2d layer groups, experiment with the number of dense lay-
ers in the MLP part of the convnet in listing 4.1. How do the total number of
parameters, training speed, and final accuracy change if you remove the first
dense layer and keep only the second (output) one?

Listing 4.9 Example usage of the @tensorflow-models/speech-commands module

Imports the speech-commands 
module. Make sure it is listed as a 
dependency in package.json.

Creates an instance of the speech-
command recognizer that uses the 
browser’s built-in fast Fourier 
transform (FFT)

You can examine what word labels 
(including the “background-noise” 
and “unknown” labels) the model 
is capable of recognizing.

Starts online streaming recognition. The first 
argument is a callback, which will be invoked 
anytime a non-background-noise, non-unknown 
word is recognized with a probability above the 
threshold (0.75 in this case).

result.scores contains the 
probability scores that correspond 
to recognizer.wordLabels().

Finds the index of the word 
with the highest score

Stops the online 
streaming recognition 
in 10 seconds
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3 Remove dropout from the convnet in mnist-node (listing 4.5), and see what
happens to the training process and the final test accuracy. Why does that hap-
pen? What does that show?

4 As practice using the tf.browser.fromPixels() method to pull image data
from image- and video-related elements of a web page, try the following:
a Use tf.browser.fromPixels() to get a tensor representing a color JPG

image by using an img tag.
– What are the height and width of the image tensor returned by

tf.browser.fromPixels()? What determines the height and width?
– Resize the image to a fixed dimension of 100 × 100 (height × width) using

tf.image.resizeBilinear().

– Repeat the previous step, but using the alternative resizing function
tf.image.resizeNearestNeighbor() instead. Can you spot any differ-
ences between the results of these two resizing functions?

b Create an HTML canvas and draw some arbitrary shapes in it using functions
such as rect(). Or, if you wish, you can use more advanced libraries such as
d3.js or three.js to draw more complicated 2D and 3D shapes in it. Then, get
the image tensor data from the canvas using tf.browser.fromPixels().

Summary
 Convnets extract 2D spatial features from input images with a hierarchy of

stacked conv2d and maxPooling2d layers.
 conv2d layers are multichannel, tunable spatial filters. They have the properties

of locality and parameter sharing, which make them powerful feature
extractors and efficient representational transforms.

 maxPooling2d layers reduce the size of the input image tensor by calculating
the maximum within fixed-size windows, achieving better positional invariance.

 The conv2d-maxPooling2d “tower” of a convnet usually ends in a flatten layer,
which is followed by an MLP made of dense layers for classification or regres-
sion tasks.

 With its restricted resources, the browser is only suitable for training small mod-
els. To train larger models, it is recommended you use tfjs-node, the Node.js
version of TensorFlow.js; tfjs-node can use the same CPU- and GPU-parallelized
kernels used by the Python version of TensorFlow.

 With greater model capacities comes greater risks of overfitting. Overfitting can
be ameliorated by adding dropout layers in a convnet. Dropout layers randomly
zero-out a given fraction of the input elements during training.

 Convnets are useful not only for computer vision tasks. When audio signals are
represented as spectrograms, convnets can be applied on them to achieve good
classification accuracies as well.
 



Transfer learning: Reusing
pretrained neural networks
In chapter 4, we saw how to train convnets to classify images. Now consider the fol-
lowing scenario. Our convnet for classifying handwritten digits performs poorly
for a user because their handwriting is very different from the original training
data. Can we improve the model to serve the user better by using a small amount
of data (say, 50 examples) we can collect from them? Consider another scenario:

This chapter covers
 What transfer learning is and why it is better than training 

models from scratch for many types of problems

 How to leverage the feature-extraction power of state-of-the-
art pretrained convnets by converting them from Keras to 
TensorFlow.js

 The detailed mechanisms of transfer-learning techniques 
including layer freezing, creating new transfer heads, and 
fine-tuning 

 How to use transfer learning to train a simple object-
detection model in TensorFlow.js
152
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an e-commerce website wishes to automatically classify pictures of commodity items
uploaded by users. But none of the publicly available convnets (such as MobileNet1)
are trained on such domain-specific images. Is it possible to use a publicly available
image model to address the custom classification problem, given a modest number
(say, a few hundred) of labeled pictures?

Fortunately, a technique called transfer learning, the main focus of this chapter, can
help solve tasks like these. 

5.1 Introduction to transfer learning: 
Reusing pretrained models
In essence, transfer learning is about speeding up a new learning task by reusing the
results of previous learning. It involves using a model already trained on a dataset to
perform a different but related machine-learning task. The already-trained model is
referred to as the base model. Transfer learning sometimes involves retraining the base
model and sometimes involves creating a new model on top of the base model. We
refer to the new model as the transfer model. As figure 5.1 shows, the amount of data
used for this retraining process is usually much smaller compared to the data that went
into training the base model (as with the two examples given at the beginning of this
chapter). As such, transfer learning is often much less time- and resource-consuming
compared to the base model’s training process. This makes it feasible to perform trans-
fer learning in a resource-restricted environment like the browser using TensorFlow.js.
And thus transfer learning is an important topic for TensorFlow.js learners.

1 Andrew G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applica-
tions,” submitted 17 Apr. 2017, https://arxiv.org/abs/1704.04861.

New model

Initial
training

(long and heavy)
Large

dataset

Smaller
dataset

Base
model

Transfer
learning

(faster and lighter)

Figure 5.1 The general workflow of transfer learning. A large dataset goes into the training of the 
base model. This initial training process is often long and computationally heavy. The base model is 
then retrained, possibly by becoming part of a new model. The retraining process usually involves a 
dataset much smaller than the original one. The computation involved in the retraining is significantly 
less than the initial training and can happen on an edge device, such as a laptop or a phone running 
TensorFlow.js.
 

https://arxiv.org/abs/1704.04861
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The key phrase “different but related” in the description of transfer learning can
mean different things in different cases:

 The first scenario mentioned at the beginning of this chapter involves adapting
a model to the data from a specific user. Although the data is different from the
original training set, the task is exactly the same—classifying an image into the
10 digits. This type of transfer learning is referred to as model adaptation. 

 Other transfer-learning problems involve targets (labels) that are different from
the original ones. The commodity image-classification scenario mentioned at
the beginning of this chapter belongs to this category.

What is the advantage of transfer learning over training a new model from scratch?
The answer is two-fold:

 Transfer learning is more efficient in terms of both the amount of data it
requires and the amount of computation it takes.

 It builds on the gains of previous training by reusing the feature-extracting
power of the base model.

These points are valid regardless of the type of problem (for instance, classification
and regression). On the first point, transfer learning uses the trained weights from the
base model (or a subset of them). As a result, it requires less training data and training
time to converge to a given level of accuracy compared to training a new model from
scratch. In this regard, transfer learning is analogous to how humans learn new tasks:
once you have mastered a task (playing a card game, for example), learning similar
tasks (such as playing similar card games) becomes significantly easier and faster in
the future. The saved cost of training time may seem relatively small for a neural net-
work like the convnet we built for MNIST. However, for larger models trained on
larger datasets (such as industrial-scale convnets trained on terabytes of image data),
the savings can be substantial.

On the second point, the core idea of transfer learning is reusing previous training
results. Through learning from a very large dataset, the original neural network has
become very good at extracting useful features from the original input data. These
features will be useful for the new task as long as the new data in the transfer-learning
task is not too different from the original data. Researchers have assembled very large
datasets for common machine-learning domains. In computer vision, there is Image-
Net,2 which contains millions of labeled images from about a thousand categories.
Deep-learning researchers have trained deep convnets using the ImageNet dataset,
including ResNet, Inception, and MobileNet (the last of which we will soon lay our
hands on). Due to the large number and diversity of the images in ImageNet, convnets
trained on it are good feature extractors for general types of images. These feature
extractors will be useful for working with small datasets like those in the aforemen-
tioned scenarios, but training such effective feature extractors is impossible with small

2 Don’t be confused by the name. “ImageNet” refers to a dataset, not a neural network.
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datasets like those. Opportunities for transfer learning exist in other domains as well.
For example, in natural language processing, people have trained word embeddings
(that is, vector representation of all common words in a language) on large text cor-
pora consisting of billions of words. These embeddings are useful for language-under-
standing tasks where much smaller text datasets are available. Without further ado,
let’s see how transfer learning works in practice through an example.

5.1.1 Transfer learning based on compatible output shapes: 
Freezing layers

Let’s start by looking at a relatively simple example. We will train a convnet on only
the first five digits of the MNIST dataset (0 through 4). We will then use the resulting
model to recognize the remaining five digits (5 through 9), which the model never
saw during the original training. Although this example is somewhat contrived, it illus-
trates the basic workflow of transfer learning. The example can be checked out and
run with the following commands:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/mnist-transfer-cnn
yarn && yarn watch

In the demo web page that opens, start the transfer learning process by clicking the
Retrain button. You can see the process reach an accuracy of about 96% on the new set
of five digits (5 through 9), which takes about 30 seconds on a reasonably powerful lap-
top. As we will show, this is significantly faster than the non-transfer-learning alternative
(namely, training a new model from scratch). Let’s see how this is done, step-by-step.

Our example loads the pretrained base model from an HTTP server instead of
training it from scratch so as not to obscure the workflow’s key parts. Recall from sec-
tion 4.3.3 that TensorFlow.js provides the tf.loadLayersModel() method for loading
pretrained models. This is called in the loader.js file:

const model = await tf.loadLayersModel(url);
model.summary();

The printed summary of the model looks like figure 5.2. As you can see, this model
consists of 12 layers.3 All its 600,000 or so weight parameters are trainable, just like all
the TensorFlow.js models we have seen so far. Note that loadLayersModel() loads not
only the model’s topology but also all its weight values. As a result, the loaded model is
ready to predict the class of digits 0 through 4. However, this is not how we will use the
model. Instead, we will train the model to recognize new digits (5 through 9). 

3 You may not have seen the activation layer type in this model. Activation layers are simple layers that perform
only an activation function (such as relu and softmax) on the input. Suppose you have a dense layer with the
default (linear) activation; stacking an activation layer on top of it is equivalent to using a dense layer with the
nondefault activation included. The latter is what we did for the examples in chapter 4. But the former style
is also sometimes seen. In TensorFlow.js, you can get such a model topology by using code like the following:
const model = tf.sequential(); model.add(tf.layers.dense({untis: 5, inputShape}));
model.add(tf.layers.activation({activation: 'relu'}).
 

https://github.com/tensorflow/tfjs-examples.git
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Looking at the callback function for the Retrain button (in the retrainModel() func-
tion of index.js), you will notice a few lines of code that set the trainable property of
the first seven layers of the model to false if the option Freeze Feature Layers is
selected (it is selected by default).

What does that do? By default, the trainable property of each of the model’s lay-
ers is true after the model is loaded via the loadLayersModel() method or created
from scratch. The trainable property is used during training (that is, calls to the
fit() or fitDataset() method). It tells the optimizer whether the layer’s weights
should be updated. By default, the weights of all layers of a model are updated during
training. But if you set the property to false for some of the model’s layers, the
weights of those layers will not be updated during training. In TensorFlow.js terminol-
ogy, those layers become untrainable, or frozen. The code in listing 5.1 freezes the first
seven layers of the model, from the input conv2d layer to the flatten layer, while leav-
ing the last several layers (the dense layers) trainable.

    const trainingMode = ui.getTrainingMode();
    if (trainingMode === 'freeze-feature-layers') {
      console.log('Freezing feature layers of the model.');
      for (let i = 0; i < 7; ++i) {

Listing 5.1 “Freezing” the first several layers of the convnet for transfer learning

_________________________________________________________________ 
Layer (type)                 Output shape              Param #  
================================================================= 
conv2d_1 (Conv2D)            [null,26,26,32]           320 
_________________________________________________________________ 
activation_1 (Activation)    [null,26,26,32]           0 
_________________________________________________________________ 
conv2d_2 (Conv2D)            [null,24,24,32]           9248 
_________________________________________________________________ 
activation_2 (Activation)    [null,24,24,32]           0        
_________________________________________________________________ 
max_pooling2d_1 (MaxPooling2 [null,12,12,32]           0  
_________________________________________________________________ 

dropout_1 (Dropout)          [null,12,12,32]           0     
_________________________________________________________________ 
flatten_1 (Flatten)          [null,4608]               0 
_________________________________________________________________ 
dense_1 (Dense)              [null,128]                589952 
_________________________________________________________________ 
activation_3 (Activation)    [null,128]                0 
_________________________________________________________________ 
dropout_2 (Dropout)          [null,128]                0          
_________________________________________________________________ 
dense_2 (Dense)              [null,5]                  645 
_________________________________________________________________ 
activation_4 (Activation)    [null,5]                  0 

================================================================= 
Total params: 600165 
Trainable params: 600165 
Non-trainable params: 0 
_________________________________________________________________

Will be set as untrainable
(frozen) during
transfer learning

Figure 5.2 A printed summary of the convnet for recognition of MNIST images and transfer learning
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        this.model.layers[i].trainable = false;
      }
    } else if (trainingMode === 'reinitialize-weights') {
      const returnString = false ;
      this.model = await tf.models.modelFromJSON({
        modelTopology: this.model.toJSON(null, returnString)
      });

    }
    this.model.compile({
      loss: 'categoricalCrossentropy',
      optimizer: tf.train.adam(0.01),
      metrics: ['acc'],
    });

    this.model.summary();

However, setting the layers’ trainable property alone is not enough: if you just mod-
ify the trainable property and call the model’s fit() method right away, you will see
the weights of those layers still get updated during the fit() call. You need to call
Model.compile() before calling Model.fit() in order for the trainable property
changes to take effect, as is done in listing 5.1. We mentioned previously that
the compile() call configures the optimizer, loss function, and metrics. However, the
method also lets the model refresh the list of weight variables to be updated during
those calls. After the compile() call, we call summary() again to print a new summary
of the model. As you can see by comparing the new summary with the old one in fig-
ure 5.2, some of the model’s weights become nontrainable:

Total params: 600165
Trainable params: 590597
Non-trainable params: 9568

You can verify that the number of nontrainable parameters, 9,568, is the sum of
weight parameters in the two frozen layers with weights (the two conv2d layers). Note
that some of the layers we’ve frozen contain no weights (such as the maxPooling2d
layer and the flatten layer) and therefore don’t contribute to the count of nontrain-
able parameters when they are frozen. 

The actual transfer-learning code is shown in listing 5.2. Here, we use the same
fit() method that we’ve used to train models from scratch. In this call, we use the
validationData field to get a measure of how accurate the model is doing on data it
hasn’t seen during training. In addition, we connect two callbacks to the fit() call,
one for updating the progress bar in the UI and the other for plotting the loss and
accuracy curves using the tfjs-vis module (more details coming in chapter 7). This
shows an aspect of the fit() API that we haven’t mentioned before: you can give a
callback or an array of multiple callbacks to a fit() call. In the latter case, all the call-
backs will be invoked (in the order they are specified in the array) during training.

Freezes the layer

Makes a new model 
with the same topology
as the old one, but 
with reinitialized 
weight values

The freezing will not take effect 
during fit() calls unless you 
compile the model first.

Prints the model summary again 
after compile(). You should see that 
a number of the model’s weights 
have become nontrainable.
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    await this.model.fit(this.gte5TrainData.x, this.gte5TrainData.y, {
      batchSize: batchSize,
      epochs: epochs,
      validationData: [this.gte5TestData.x, this.gte5TestData.y],
      callbacks: [
        ui.getProgressBarCallbackConfig(epochs),
        
        tfVis.show.fitCallbacks(surfaceInfo, ['val_loss', 'val_acc'], {  
          zoomToFit: true,
          zoomToFitAccuracy: true,
          height: 200,
          callbacks: ['onEpochEnd'],
        }),
      ]
    });

How does the result of the transfer learning turn out? As you can see in panel A of fig-
ure 5.3, it reaches an accuracy of around 0.968 after 10 epochs of training, which takes
roughly 15 seconds on a relatively up-to-date laptop—not bad. But how does this com-
pare to training a model from scratch? One way in which we can demonstrate the
value of starting from a pretrained model over starting from scratch is to do an exper-
iment in which we randomly reinitialize the weights of the pretrained model right
before the fit() call. This is what happens if you select the Reinitialize Weights
option from the Training Mode drop-down menu before clicking the Retrain button.
The result is shown in panel B of the same figure.

As you can see by comparing panel B with panel A, the random reinitialization of
the model weights causes the loss to start at a significantly higher value (0.36 versus
0.30) and the accuracy to start from a significantly lower value (0.88 versus 0.91). The
reinitialized model also ends up with a lower final validation accuracy (~0.954) than
the model that reuses weights from the base model (~0.968). These differences reflect
the advantage of transfer learning: by reusing weights in the early layers (the feature-
extracting layers) of the model, the model gets a nice head start relative to learning
everything from scratch. This is because the data encountered in the transfer-learning
task is similar to the data used to train the original model. The images of digits 5
through 9 have a lot in common with those of digits 0 through 4: they are all grayscale
images with a black background; they have similar visual patterns (strokes of compara-
ble widths and curvatures). So, the features the model learned how to extract from
digits 0 through 4 turn out to be useful for learning to classifying the new digits (5
through 9), too.

What if we don’t freeze the weights of the feature layers? The Don’t Freeze Feature
Layers option of the Training Mode drop-down menu allows you to perform this
experiment. The result is shown in panel C of figure 5.3. There are a few noteworthy
differences from the results in panel A:

Listing 5.2 Using Model.fit() to perform transfer learning

Giving multiple callbacks to 
a fit() call is allowed.

Uses tfjs-vis to plot the
validation loss and accuracy

during transfer learning
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 With no feature-layer freezing, the loss value starts off higher (for instance,
after the first epoch: 0.37 versus 0.27); the accuracy starts off lower (0.87 versus
0.91). Why is this the case? When the pretrained model is first starting to be
trained on the new dataset, the predictions will contain a large number of
errors because the pretrained weights generate essentially random predictions
for the five new digits. As a result, the loss function will have very high values
and steep slopes. This causes the gradients calculated in the early phases of the
training to be very large, which in turn leads to large fluctuations in all the
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Figure 5.3 The loss and validation curves for transfer learning on the MNIST convnet. Panel A: the curves obtained 
with the first seven layers of the pretrained model frozen. Panel B: the curves obtained with all the weights of the 
model reinitialized randomly. Panel C: the curves obtained without freezing any layers of the pretrained model. Note 
that the y-axes differ among the three panels. Panel D: a multiseries plot that shows the loss and accuracy curves 
from panels A–C on the same axes to facilitate comparison.
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model’s weights. As a result, all layers’ weights will undergo a period of large
fluctuations, which leads to the higher initial loss seen in panel C. In the nor-
mal transfer-learning approach (panel A), the model’s first few layers are frozen
and are therefore “shielded” from these large initial weight perturbations. 

 Partly due to these large initial perturbations, the final accuracy achieved by the
no-freezing approach (~0.945, panel C) is not appreciably higher compared to
that from the normal transfer-learning approach with layer freezing (~0.968,
panel A). 

 The training takes much longer when none of the model’s layers are frozen.
For example, on one of the laptops that we use, training the model with frozen
feature layers takes about 30 seconds, whereas training the model without any
layer freezing takes approximately twice as long (60 seconds). Figure 5.4 illus-
trates the reason behind this in a schematic way. The frozen layers are taken out
from the equation during backpropagation, which causes each batch of the
fit() call to go much faster.

These points provide justification for the layer-freezing approach of transfer learning:
it leverages the feature-extracting layers from the base model and protects them from
large weight perturbations during the early phases of the new training, thereby achiev-
ing a higher accuracy in a shorter training period.

Two final remarks before we move on to the next section. First, model adaptation—
the process of retraining a model to make it work better on the input data from a par-
ticular user—uses techniques very similar to the ones shown here, that is, freezing the

v1

loss loss

Frozen layers 

A B

v4

v5

v2

v3

v4

v5

x

y

v1

v2

v3

x

y

Figure 5.4 A schematic explanation for why freezing some layers of a model speeds up training. In this figure, 
the backpropagation path is shown by the black arrows pointing to the left. Panel A: when no layer is frozen, all 
the model’s weights (v1–v5) need to be updated during each training step (each batch) and hence will be involved 
in backpropagation, represented by the black arrows. Note that the features (x) and targets (y) are never included 
in backpropagation because their values don’t need to be updated. Panel B: by freezing the first few layers of the 
model, a subset of the weights (v1–v3) are no longer a part of backpropagation. Instead, they become analogous 
to x and y, which are just treated as constants that factor into the computation of the loss. As a result, the  amount 
of computation it takes to perform the backpropagation decreases, and the training speed increases.
 



161Introduction to transfer learning: Reusing pretrained models
base layers while letting the weights of the top few layers be altered through training
on the user-specific data. This is despite the fact that the problem we solved in this sec-
tion didn’t involve data from a different user, but rather involved data with different
labels. Second, you might wonder how to verify that a weight of a frozen layer (the
conv2d layers, in this case) is indeed the same before and after a fit() call. It is not
very hard to do this verification. We leave it as an exercise for you (see exercise 2 at
the end of this chapter).

5.1.2 Transfer learning on incompatible output shapes: 
Creating a new model using outputs from the base model

In the example of transfer learning seen in the previous section, the base model had
the same output shape as the new output shape. This property doesn’t hold in many
other transfer-learning cases (see figure 5.5). For example, if you want to use the base
model trained initially on the five digits to classify four new digits, the approach previ-
ously described will not work. A more common scenario is the following: given a deep
convnet that has been trained on the ImageNet classification dataset consisting of
1,000 output classes, you have an image-classification task at hand that involves a
much smaller number of output classes (case B in figure 5.5). Perhaps it is a binary-
classification problem—whether the image contains a human face or not—or perhaps
it is a multiclass-classification problem with only a handful of classes—what kind of
commodity item a picture contains (recall the example at the beginning of this chap-
ter). In such cases, the base model’s output shape doesn’t work for the new problem.

In some cases, even the type of machine-learning task is different from the one the
base model has been trained on. For instance, you can perform a regression task (pre-
dict a number, as in case C in figure 5.5) by applying transfer learning on the base
model trained on a classification task. In section 5.2, you will see a still more intrigu-
ing use of transfer learning—predicting an array of numbers, instead of a single one,
for the purpose of detecting and localizing objects in images.

These cases all involve a desired output shape that differs from that of the base
model. This makes it necessary to construct a new model. But because we are doing
transfer learning, the new model will not be created from scratch. Instead, it will use
the base model. We will illustrate how to do this in the webcam-transfer-learning
example in the tfjs-examples repository.

To see this example in action, make sure your machine has a front-facing camera—
the example will collect the data for transfer learning from the camera. Most laptops
and tablet computers come with a built-in front-facing camera nowadays. If you are
using a desktop computer, however, you may need to find a webcam and attach it to
the machine. Similar to the previous examples, you can use the following commands
to check out and run the demo:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/webcam-transfer-learning
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This fun demo turns your webcam into a game controller by applying transfer learn-
ing on a TensorFlow.js implementation of MobileNet, and lets you play the Pac-Man
game with it. Let’s walk through the three steps it takes to run the demo: data collec-
tion, model transfer learning, and playing.4

The data for transfer learning is collected from your webcam. Once the demo is
running in your browser, you will see four black squares in the bottom-right part of
the page. They are arranged in a way similar to the four direction buttons on a Nin-
tendo Family Computer controller. They correspond to the four classes that the
model will be trained to recognize in real time. These four classes correspond to the

4 Pac-Man is a trademark of Bandai Namco Entertainment Inc.
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Figure 5.5 Transfer learning can be divided into three types according to whether the output shape 
and activation of the new model are the same as or different from those of the original model. Case 
A: the output shape and the activation function of the new model match those of the base model. The 
transfer of the MNIST model onto new digits in section 5.1.1 is an example of this type of transfer 
learning. Case B: the new model has the same activation type as the base model because the original 
task and the new task are of the same type (for example, both are multiclass classification). 
However, the output shapes are different (for instance, the new task involves a different number of 
classes). Examples of this type of transfer learning can be found in section 5.1.2 (controlling a video 
game in the style of Pac-ManTM 4 through a webcam) and 5.1.3 (recognizing a new set of spoken 
words). Case C: the new task is of a different type from the original one (such as regression versus 
classification). The object-detection model based on MobileNet is an example of this type.
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four directions in which Pac-Man will go. When you click and hold one of them,
images will be collected via the webcam at a rate of 20–30 frames per second. A num-
ber beneath the square tells you how many images have been collected for this con-
troller direction so far.

For the best transfer-learning quality, make sure you 1) collect at least 50 images
per class, and 2) move and wiggle your head and face around a little bit during the
data collection so that the training images contain more diversity, which benefits the
robustness of the model you’ll get from the transfer learning. In this demo, most peo-
ple turn their heads in the four directions (up, down, left, and right; see figure 5.6) to
indicate which way Pac-Man should go. But you can use any head positions, facial
expressions, or even hand gestures that you desire as the input images, as long as the
inputs are sufficiently visually distinct from one class to another.   5  

After collecting the training images, click the Train Model button, which will start the
transfer-learning process. Transfer learning should take only a few seconds. As it pro-
gresses, you should see the loss value displayed on the screen get smaller and smaller
until it reaches a very small positive value (such as 0.00010) and stops changing. At
this point, the transfer-learning model has been trained, and you can use it to play the
game. To start the game, just click the Play button and wait for game state to settle.
The model will then start performing real-time inference on the stream of images
from the webcam. At each video frame, the winning class (the class with the highest
probability score assigned by the transfer-learning model) will be indicated in the bot-
tom-right part of the UI with bright yellow highlighting. In addition, it will cause Pac-
Man to move in the corresponding direction (unless blocked by a wall).

5 The UI of this webcam-transfer-learning example is the work of Jimbo Wilson and Shan Carter. A video
recording of this fun example in action is available at https://youtu.be/YB-kfeNIPCE?t=941.

Figure 5.6 The UI of the webcam-transfer-learning example5
 

https://youtu.be/YB-kfeNIPCE?t=941
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This demo might look like magic to those unfamiliar with machine learning, but it
is based on nothing more than a transfer-learning algorithm that uses MobileNet to
perform a four-class classification task. The algorithm uses the small amount of image
data collected through the webcam. Those images are conveniently labeled through
the click-and-hold action you performed while collecting the images. Thanks to the
power of transfer learning, this process doesn’t need much data or much training
time (it even works on a smartphone). So, that is how this demo works in a nutshell. If
you wish to understand the technical details, dive deep with us into the underlying
TensorFlow.js code in the next section.

DEEP DIVE INTO WEBCAM TRANSFER LEARNING

The code in listing 5.3 (from webcam-transfer-learning/index.js) is responsible for
loading the base model. In particular, we load a version of MobileNet that can run
efficiently in TensorFlow.js. Info box 5.1 describes how this model is converted from
the Keras deep-learning library in Python. As soon as the model is loaded, we use the
getLayer() method to get hold of one of its layers. getLayer() allows you to specify a
layer by its name ('conv_pw_13_relu' in this case). You may recall another way to
access a model’s layers from section 2.4.2—that is, by indexing into the model’s
layers attribute, which holds all the model’s layers as a JavaScript array. This
approach is easy to use only when the model consists of a small number of layers. The
MobileNet model we are dealing with here has 93 layers, which makes that approach
fragile (for example, what if more layers get added to the model in the future?).
Therefore, the name-based getLayer() approach is more reliable, if we assume the
authors of MobileNet will keep the names of the key layers unchanged when they
release new versions of the model.

    async function loadTruncatedMobileNet() {
      const mobilenet = await tf.loadLayersModel(
        'https://storage.googleapis.com/' +
            'tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json');

      const layer = mobilenet.getLayer(
          'conv_pw_13_relu');
      return tf.model({
        inputs: mobilenet.inputs,
        outputs: layer.output
      });
    }

Listing 5.3 Loading MobileNet and creating a “truncated” model from it

URLs under
storage.google.com/tfjs-

models are designed to be
permanent and stable.

Gets an intermediate layer of the MobileNet. 
This layer contains features useful for the 
custom image-classification task.Creates a new model that is the same

as MobileNet except that it ends at
the 'conv_pw_13_relu' layer, that is,

with the last few layers (referred to as
the “head”) truncated
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INFO BOX 5.1 Converting models from Python Keras into the TensorFlow
.js format
TensorFlow.js features a high degree of compatibility and interoperability with Keras,
one of the most popular Python deep-learning libraries. One of the benefits that
stems from this compatibility is that you can utilize many of the so-called “applica-
tions” from Keras. These applications are a set of pretrained deep convnets (see
https://keras.io/applications/). The authors of Keras have painstakingly trained
these convnets on large datasets such as ImageNet and made them available via the
library so that they are ready for reuse, including inference and transfer learning, as
we are doing here. For those who use Keras in Python, importing an application takes
just one line of code. Due to the interoperability previously mentioned, it is also easy
for a TensorFlow.js user to use these applications. Here are the steps it takes:

1 Make sure that the Python package called tensorflowjs is installed. The
easiest way to install it is via the pip command:

pip install tensorflowjs

2 Run the following code through a Python source file or in an interactive Python
REPL such as ipython:

import keras
import tensorflowjs as tfjs
model = keras.applications.mobilenet.MobileNet(alpha=0.25)
tfjs.converters.save_keras_model(model, '/tmp/mobilnet_0.25')

The first two lines import the required keras and tensorflowjs modules. The third
line loads MobileNet into a Python object (model). You can, in fact, print a summary
of the model in pretty much the same way as you print the summary of a Tensor-
Flow.js model: that is, model.summary(). You can see that the last layer of the
model (the model’s output) indeed has a shape of (None, 1000) (equivalent to
[null, 1000] in JavaScript), reflecting the 1,000-class ImageNet classification task
that the MobileNet model was trained on. The keyword argument alpha=0.25 that
we specified for this constructor call chooses a version of MobileNet that is smaller
in size. You may choose larger values of alpha (such as 0.75, 1), and the same
conversion code will continue to work.

The last line in the previous code snippet saves the model to the specified directory
on the disk using a method from the tensorflowjs module. After the line finishes run-
ning, there will be a new directory at /tmp/mobilenet_0.25, with content that looks
like

group1-shard1of6
    group1-shard2of6
    ...
    group1-shard6of6 
    model.json
 

https://keras.io/applications/
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What do we do with the conv_pw_13_relu layer once we get hold of it? We create a
new model that contains the layers of the original MobiletNet model from its first
(input) layer to the conv_pw_13_relu layer. This is the first time you see this kind of
model construction in this book, so it requires some careful explanation. For that, we
need to introduce the concept of a symbolic tensor first.

Creating models from symbolic tensors

You have seen tensors so far. Tensor is the basic data type (also abbreviated as dtype) in
TensorFlow.js. A tensor object carries concrete numeric values of a given shape and
dtype, backed by storage on WebGL textures (if in a WebGL-enabled browser) or
CPU/GPU memory (if in Node.js). However, SymbolicTensor is another important
class in TensorFlow.js. Instead of holding concrete values, a symbolic tensor specifies
only a shape and a dtype. A symbolic tensor can be thought of as a “slot” or a “place-
holder,” into which an actual tensor value may be inserted later, given that the tensor
value has a compatible shape and dtype. In TensorFlow.js, a layer or model object
takes one or more inputs (so far, you’ve only seen cases of one input), and those are
represented as one or more symbolic tensors.

Let’s use an analogy that might help you understand a symbolic tensor. Consider a
function in a programming language like Java or TypeScript (or any other statically

(continued)
This is exactly the same format as the one we saw in section 4.3.3, when we showed
how to save a trained TensorFlow.js model to disk using its save() method in the
Node.js version of TensorFlow.js. Therefore, to the TensorFlow.js-based programs
that load this converted model from disk, the saved format is identical to a model
created and trained in TensorFlow.js: it can simply call the tf.loadLayersModel()
method and point at the path to the model.json file (either in the browser or in
Node.js), which is exactly what happens in listing 5.3.

The loaded MobileNet model is ready to perform the machine-learning task that the
model was originally trained on—classify input images into the 1,000 classes of the
ImageNet dataset. Note that this particular dataset has a heavy emphasis on ani-
mals, especially various breeds of cats and dogs (which is probably related to the
abundance of such images on the internet!). For those interested in this particular
usage, the MobileNet example in the tfjs-example repository illustrates how to do that
(https://github.com/tensorflow/tfjs-examples/tree/master/mobilenet). However, this
direct usage of MobileNet is not what we focus on in this chapter; instead, we explore
how to use the loaded MobileNet to perform transfer learning.

The tfjs.converters.save_keras_model() method shown previously is capable of
converting and saving not only MobileNet but also other Keras applications, such as
DenseNet and NasNet. In exercise 3 at the end of this chapter, you will practice con-
verting another Keras application (MobileNetV2) into the TensorFlow.js format and
loading it in the browser. Furthermore, it should be pointed out that tfjs.converters
.save_keras_model() is generally applicable to any model objects you have created
or trained in Keras, not just models from keras.applications.
 

https://github.com/tensorflow/tfjs-examples/tree/master/mobilenet
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typed language you are familiar with). The function takes one or more input argu-
ments. Each argument of a function has a type, which stipulates what kind of variables
may be passed in as the argument. However, the argument itself doesn’t hold any con-
crete values. By itself, the argument is just a placeholder. A symbolic tensor is analo-
gous to a function argument: it specifies what kind (combination of shape6 and dtype)
of tensors may be used in that slot. By parallel, a function in a statically typed language
has a return type. This is comparable to the output symbolic tensor of a model or layer
object. It is a “blueprint” for the shape and dtype of the actual tensor values that the
model or layer object will output. 

In TensorFlow.js, two important attributes of a model object are its inputs and out-
puts. Each of these is an array of symbolic tensors. For a model with exactly one input
and exactly one output, both arrays have a length of 1. Similarly, a layer object has two
attributes: input and output, each of which is a symbolic tensor. Symbolic tensors can
be used to create a new model. This is a new way of creating models in TensorFlow.js,
which is different from the approach you’ve seen before: namely, creating sequential
models with tf.sequential() and subsequent calls to the add() method. In the new
approach, we use the tf.model() function, which takes a configuration object with
two mandatory fields: inputs and outputs. The inputs field is required to be a
symbolic tensor (or, alternatively, an array of symbolic tensors), and likewise for the
outputs field. Therefore, we can obtain the symbolic tensors from the original
MobileNet model and feed them to a tf.model() call. The result is a new model that
consists of a part of the original MobileNet.

This process is illustrated schematically in figure 5.7. (Note that the figure reduces
the number of layers from the actual MobileNet model for the sake of a simple-looking
diagram.) The important thing to realize is that the symbolic tensors taken from the
original model and handed to the tf.model() call are not isolated objects. Instead,
they carry information about what layers they belong to and how the layers are con-
nected to each other. For readers familiar with graphs in data structure, the original
model is a graph of symbolic tensors, with the connecting edges being the layers. By
specifying the inputs and outputs of the new model as symbolic tensors in the original
model, we are extracting a subgraph of the original MobileNet graph. The subgraph,
which becomes the new model, contains the first few (in particular, the first 87) layers
of MobileNet, while the last 6 layers are left out. The last few layers of a deep convnet
are sometimes referred to as the head. What we are doing with the tf.model() call can
be referred to as truncating the model. The truncated MobileNet preserves the feature-
extracting layers while discarding the head. Why does the head contain six layers? This
is because those layers are specific to the 1,000-class classification task that the
MobileNet was originally trained on. The layers are not useful for the four-class classifi-
cation task we are facing.

6 A difference between a tensor’s shape and a symbolic tensor’s shape is that the former always has fully speci-
fied dimensions (such as [8, 32, 20]), while the latter may have undetermined dimensions (such as
[null, null, 20]). You have already seen this in the “Output shape” column of the model summaries.
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Transfer learning based on embeddings

The output of the truncated MobileNet is the activation of an intermediate layer of the
original MobileNet.7 But how is intermediate-layer activation from MobileNet useful to
us? The answer can be seen in the function that handles the events of clicking and
holding each of the four black squares (listing 5.4.) Every time an input image is avail-
able from the webcam (via the capture() method), we call the predict() method of

7 A frequently asked question about TensorFlow.js models is how to obtain the activations of intermediate lay-
ers. The approach we showed here is the answer.

Layer 1

Layer 2

Layer 3

SymbolicTensor1 SymbolicTensor2

inputs outputstf.model()
call

Original model

New model

Layer 1

Layer 2

SymbolicTensor1SymbolicTensor0
(input)

SymbolicTensor2
(output)

SymbolicTensor0
(input)

SymbolicTensor3
(output)

Figure 5.7 A schematic drawing that explains how the new (“truncated”) model is created from 
MobileNet. See the tf.model() call in listing 5.3 for the corresponding code. Each layer has an 
input and an output, both of which are SymbolicTensor instances. In the original model, 
SymbolicTensor0 is the input of the first layer and the input of the entire model. It is used as the 
input symbolic tensor of the new model. In addition, we take the output symbolic tensor of an 
intermediate layer (equivalent to conv_pw_13_relu) as the output tensor of the new model. 
Hence, we get a model that consists of the first two layers of the original model, shown in the bottom 
part of the diagram. The last layer of the original model, which is the output layer and sometimes 
referred to as the model’s head, is discarded. This is why approaches like this are sometimes referred 
to as truncating a model. Note that this diagram depicts models with small numbers of layers for the 
sake of clarity. What actually happens with the code in listing 5.3 involves a model with many more 
(93) layers compared to the one shown in this diagram.
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.

the truncated MobileNet and save the output in an object called controllerDataset,
which will be used for transfer learning later. 

But how to interpret the output of the truncated MobileNet? For every image
input, it is a tensor of shape [1, 7, 7, 256]. It is not the probabilities for any classifi-
cation problem, nor is it the values predicted for any regression problem. It is a repre-
sentation of the input image in a certain high-dimensional space. This space has
7 * 7 * 256, or approximately 12.5k, dimensions. Although the space has a lot of
dimensions, it is lower-dimensional compared to the original image, which, due to the
224 × 224 image dimensions and three color channels, has 224 * 224 * 3  150k
dimensions. So, the output from the truncated MobileNet can be viewed as an effi-
cient representation of the image. This kind of lower-dimension representation of
inputs is often referred to as an embedding. Our transfer learning will be based on the
embeddings of the four sets of images collected from the webcam.

ui.setExampleHandler(label => {
  tf.tidy(() => {
    const img = webcam.capture();
    controllerDataset.addExample(
        truncatedMobileNet.predict(img),
        label);

    ui.drawThumb(img, label);
  });
});

Now that we have a way to get the embeddings of the webcam images, how do we use
them to predict what direction a given image corresponds to? For this, we need a new
model, one that takes the embedding as its input and outputs the probability values
for the four direction classes. The code in the following listing (from index.js) creates
such a model.

  model = tf.sequential({
    layers: [
      tf.layers.flatten({
        inputShape: truncatedMobileNet.outputs[0].shape.slice(1)
      }),
      tf.layers.dense({
        units: ui.getDenseUnits(),
        activation: 'relu',
        kernelInitializer: 'varianceScaling',
        useBias: true
      }),
      tf.layers.dense({
        units: NUM_CLASSES,
        kernelInitializer: 'varianceScaling',
        useBias: false,

Listing 5.4 Obtaining image embeddings using a truncated MobileNet

Listing 5.5 Predicting controller direction using image embeddings

Uses tf.tidy() to clean up 
intermediate tensors such as img. 
See appendix B, section B.3 for a 
tutorial on TensorFlow.js memory 
management in the browser.

Gets MobileNet’s internal 
activation for the input image

Flattens the [7, 7, 256] embedding from
the truncated MobileNet. The slice(1)

operation discards the first (batch)
dimension, which is present in the output

shape but unwanted by the inputShape
attribute of the layer’s factory method, so

it can be used with a dense layer

A first (hidden)
dense layer with
nonlinear (relu)

activation

The number of units of the last layer 
should correspond to the number of 
classes we want to predict.
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        activation: 'softmax'
      })
    ]
  });

Compared to the truncated MobileNet, the new model created in listing 5.5 has a
much smaller size. It consists of only three layers:

 The input layer is a flatten layer. It transforms the 3D embedding from the trun-
cated model into a 1D tensor that subsequent dense layers can take. We have
seen similar uses of flatten layers in the MNIST convnets in chapter 4. We let its
inputShape match the output shape of the truncated MobileNet (without the
batch dimension) because the new model will be fed embeddings that come
out of the truncated MobileNet.

 The second layer is a hidden layer. It is hidden because it is neither the input
layer nor the output layer of the model. Instead, it is sandwiched between two
other layers in order to enhance the model’s capacity. This is very similar to the
MLPs you encountered in chapter 3. It is a hidden dense layer with a relu activa-
tion. Recall that in the chapter 3 section “Avoiding the fallacy of stacking layers
without nonlinearity,” we discussed the importance of using a nonlinear activa-
tion for hidden layers like this.

 The third layer is the final (output) layer of the new model. It has a softmax
activation that suits the multiclass classification problem we are facing (that is,
four classes: one for each Pac-Man direction).

Therefore, we have essentially built an MLP on top of MobileNet’s feature-extraction
layers. The MLP can be thought of as a new head for MobileNet, even though the fea-
ture extractor (the truncated MobileNet) and the head are two separate models in
this case (see figure 5.8). As a result of the two-model setup, it is not possible to train
the new head directly using the image tensors (of the shape [numExamples, 224,

224, 3]). Instead, the new head must be trained on the embeddings of the images—
the output of the truncated MobileNet. Luckily, we have already collected those
embedding tensors (listing 5.4). All we need to do to train the new head is call its
fit() method on the embedding tensors. The code that does that inside the train()
function in index.js is straightforward, and we won’t elaborate on that further. 

Once the transfer learning has finished, the truncated model and the new head will
be used together to obtain probability scores from input images from the webcam.
You can find the code in the predict() function in index.js, shown in listing 5.6. In
particular, two predict() calls are involved. The first call converts the image tensor
into its embedding using the truncated MobileNet; the second one converts the
embedding into the probability scores for the four directions using the new head
trained with transfer learning. Subsequent code in listing 5.6 obtains the winning
index (the index that corresponds to the maximum probability score among the four
directions) and uses it to steer the Pac-Man and update UI states. As in the previous

The number of units of the last layer 
should correspond to the number of 
classes we want to predict.
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examples, we don’t cover the UI part of the example because it is not central to the
machine-learning algorithms. You may study and play with the UI code at your own
pleasure using the code in the next listing.

async function predict() {
  ui.isPredicting();
  while (isPredicting) {
    const predictedClass = tf.tidy(() => {
      const img = webcam.capture();

      const embedding = truncatedMobileNet.predict(
          img);
      const predictions = model.predict(activation);
      return predictions.as1D().argMax();
    });

    const classId = (await predictedClass.data())[0];
    predictedClass.dispose();
    ui.predictClass(classId);
    await tf.nextFrame();
  }
  ui.donePredicting();
}

Listing 5.6 Getting the prediction from a webcam input image after transfer learning 

MobileNet

dense1

Truncated MobileNet

flatten dense2

New head (MLP)

Truncation

To Pac-Man
control logic

Shape:
[null,12544]

Shape:
[null,7,7,256]

Images
from webcam

Shape:
[null,4]

Figure 5.8 A schematic of the transfer-learning algorithm that underlies the webcam-transfer-
learning example

Captures a frame 
from the webcam

Gets the embedding from 
the truncatedMobileNet

Converts the embedding into 
the probability scores of the 
four directions using the new 
head model

Gets the index of the 
maximum probability score

Downloads the index 
from GPU to CPU

Updates the UI according to the 
winning direction: steers the Pac-Man 
and updates other UI states, such as 
the highlighting of the corresponding 
“button” on the controller
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This concludes our discussion of the part of the webcam-transfer-learning example
relevant to the transfer-learning algorithm. One interesting aspect of the method we
used in this example is that the training and inference process involves two separate
model objects. This is good for our educational purpose of illustrating how to get
embeddings from the intermediate layers of a pretrained model. Another advantage
of this approach is that it exposes the embeddings and makes it easier to apply
machine-learning techniques that make direct use of these embeddings. An example
of such techniques is k-nearest neighbors (kNN, discussed in info box 5.2). However,
exposing the embeddings directly may also be viewed as a shortcoming for the follow-
ing reasons:

 It leads to slightly more complex code. For example, the inference requires two
predict() calls in order to perform inference on a single image.

 Suppose we want to save the models for use in later sessions or for conversion to
a non-TensorFlow.js library. Then the truncated model and the new head
model need to be saved separately, as two separate artifacts.

 In some special cases, transfer learning will involve backpropagation over cer-
tain parts of the base model (such as the first few layers of the truncated
MobileNet). This is not possible when the base and the head are two separate
objects.

In the next section, we will show a way to overcome these limitations by forming a sin-
gle model object for transfer learning. It will be an end-to-end model in the sense that
it can transform input data in the original format into the final desired output. 

INFO BOX 5.2 k-nearest neighbors classification based on embeddings
There are non-neural network approaches to solving classification problems in
machine learning. One of the most famous is the k-nearest neighbors (kNN) algo-
rithm. Unlike neural networks, the kNN algorithm doesn’t involve a training step and
is easier to understand.

We can describe how the kNN classification works in a few sentences:

1 You pick a positive integer k (for instance, 3).
2 You collect a number of reference examples, each labeled with the true class.

Usually the number of reference examples collected is at least several times
larger than k. Each example is represented as a series of real-valued num-
bers, or a vector. This step is similar to the collection of training examples in
the neural network approach. 

3 In order to predict the class of a new input, you compute the distances
between the vector representation of the new input and those of all the refer-
ence examples. You then sort the distances. By doing so, you can find the k
reference examples that are the closest to the input in the vector space.
These are called the “k nearest neighbors” of the input (the namesake of the
algorithm).
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4 You look at the classes of the k nearest neighbors and use the most common
class among them as the prediction for the input. In other words, you let the
k nearest neighbors “vote” on the predicted class.

An example of this algorithm is shown in the following figure.

As you can see from the previous description, one of the key requirements of the kNN
algorithm is that every input example is represented as a vector. Embeddings like the
one we obtained from the truncated MobileNet are good candidates for such vector
representations for two reasons. First, they often have a lower dimensionality com-
pared to the original inputs and hence reduce the amount of storage and computation
required by the distance calculation. Second, the embeddings usually capture more
important features in the input (such as important geometric features in images; see
figure 4.5) and ignore less important ones (for example, brightness and size) owing
to the fact that they have been trained on a large classification dataset. In some
cases, embeddings give us vector representations for things that are not even origi-
nally represented as numbers (such as the word embeddings in chapter 9).

Compared to the neural network approach, kNN doesn’t require any training. In cases
where the number of reference examples is not too large, and the dimensionality of
the input is not too high, using kNN can be computationally more efficient than train-
ing a neural network and running it for inference.

An example of kNN classification in a 2D embedding space. In this case, k = 3, 
and there are two classes (triangles and circles). There are five reference 
examples for the triangle class and seven for the circle class. The input example 
is represented as a square. The three nearest neighbors to the input are 
indicated by the line segments that connect them with the input. Because two 
of the three nearest neighbors are circles, the predicted class for the input 
example will be a circle.
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5.1.3 Getting the most out of transfer learning through fine-tuning: An audio example

In the previous sections, the examples of transfer learning dealt with visual inputs. In
this example, we will show that transfer learning works on audio data represented as
spectrogram images as well. Recall that we introduced the convnet for recognizing
speech commands (isolated, short spoken words) in section 4.4. The speech-
command recognizer we built was capable of recognizing only 18 different words
(such as “one,” “two,” “up,” and “down”). What if you want to train a recognizer for
other words? Perhaps your particular application requires the user to say specific
words such as “red” or “blue,” or even words that are picked by the users themselves;
or perhaps your application is intended for users who speak languages other than
English. This is a classic example of transfer learning: with the small amount of data at
hand, you could try to train a model entirely from scratch, but using a pretrained
model as the base allows you to spend a smaller amount of time and computation
resources while getting a higher degree of accuracy. 

HOW TO DO TRANSFER LEARNING IN THE SPEECH-COMMAND EXAMPLE APP

Before we describe how transfer learning works in this example, it will be good for you
to get familiar with how to use the transfer-learning feature through the UI. To use
the UI, make sure your machine has an audio-input device (a microphone) attached
and that the audio-input volume is set to a nonzero value in your system settings. To
download the code of the demo and run it, do the following (the same procedure as
in section 4.4.1):

git clone https://github.com/tensorflow/tfjs-models.git
cd tfjs-models/speech-commands
yarn && yarn publish-local

(continued)
However, kNN inference doesn’t scale well with the amount of data. In particular,
given N reference examples, a kNN classifier must compute N distances in order to
make a prediction for every input.a When N gets large, the amount of computation
can get intractable. By contrast, the inference with a neural network doesn’t change
with the amount of training data. Once the network has been trained, it doesn’t mat-
ter how many examples went into the training. The amount of computation that the
forward pass on the network takes is only a function of the network’s topology.

If you are interested in using kNN for your applications, check out the WebGL-accelerated
kNN library built on top of TensorFlow.js: http://mng.bz/2Jp8.

a But see research efforts to design algorithms that approximate the kNN algorithm but run
faster and scale better than kNN: Gal Yona, “Fast Near-Duplicate Image Search Using Local-
ity Sensitive Hashing,” Towards Data Science, 5 May 2018, http://mng.bz/1wm1.
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cd demo
yarn && yarn link-local && yarn watch

When the UI starts up, answer Yes to the browser’s request for your permission to
access the microphone. Figure 5.9 shows an example screenshot of the demo. When it
starts up, the demo page will automatically load a pretrained speech-commands
model from the internet, using the tf.loadLayersModel() method pointing to an
HTTPS URL. After the model is loaded, the Start and Enter Transfer Words buttons
will be enabled. If you click the Start button, the demo will enter an inference mode
in which it detects the 18 basic words (as displayed on the screen) in a continuous
fashion. Each time a word is detected, the corresponding word box will light up on
the screen. However, if you click the Enter Transfer Words button, a number of addi-
tional buttons will appear on the screen. These buttons are created from the comma-
separated words in the text-input box to the right. The default words are “noise,”
“red,” and “green.” These are the words that the transfer-learning model will be
trained to recognize. But you are free to modify the content of the input box if you
want to train a transfer model for other words, as long as you preserve the “noise”
item. The “noise” item is a special one, for which you should collect background noise
samples—that is, samples without any speech sound in them. This allows the transfer
model to tell moments in which a word is spoken from moments of silence (back-
ground noise). When you click these buttons, the demo will record a 1-second audio
snippet from the microphone and display its spectrogram next to the button. The

Figure 5.9 An example screenshot of the 
transfer-learning feature of the speech-command 
example. Here, the user has entered a custom 
set of words for transfer learning: “feel,” “seal,” 
“veal,” and “zeal,” in addition to the always-
required “noise” item. Furthermore, the user has 
collected 20 examples for each of the word and 
noise categories.
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number in the word button keeps track of how many examples you have collected for
the particular word so far.

As is the general case in machine-learning problems, the more data you can collect
(as permitted by the time and resources available), the better the trained model will
turn out. The example app requires at least eight examples for every word. If you
don’t want to or cannot collect sound samples yourself, you can download a precol-
lected dataset from http://mng.bz/POGY (file size: 9 MB) and upload it by using the
Upload button in the Dataset IO section of the UI.

Once the dataset is ready, through either file uploading or your own sample collec-
tion, the Start Transfer Learning button will become enabled. You can click the but-
ton to kick off the training of the transfer model. The app performs a 3:1 split on the
audio spectrograms you have collected so that a randomly selected 75% of them will
be used for training, while the remaining 25% will be used for validation.8 The app
displays the training-set loss and accuracy values along with the validation-set values as
the transfer learning happens. Once the training is complete, you can click the Start
button to let the demo start a continuous recognition of the transfer words, during
which time you can assess the accuracy of the transfer model empirically.

You should experiment with different sets of words and see how they affect the
accuracy you can get after doing transfer learning on them. In the default set, “red”
and “green,” the words are fairly distinct from each other in terms of their phonemic
content. For example, their onset consonants are two very distinct sounds, “r” and
“g.” Their vowels also sound fairly distinct (“e” versus “ee”); so do their ending conso-
nants (“d” versus “n”). Therefore, you should be able to get near-perfect validation
accuracy at the end of the transfer training, as long as the number of examples you
collect for each word is not too small (say >= 8), and you don’t use an epoch number
that’s too small (which leads to underfitting) or too large (which leads to overfitting;
see chapter 8).

To make the transfer-learning task more challenging for the model, use a set con-
sisting of 1) more confusable words and 2) a larger vocabulary. This is what we did for
the screenshot in figure 5.9. There, a set of four words that sound similar to each
other are used: “feel,” “seal,” “veal,” and “zeal.” These words have identical vowel and
ending consonants, as well as four similar-sounding onset consonants. They might
even confuse a human listener not paying attention or someone listening over a bad
phone line. From the accuracy curve at the bottom-right part of the figure, you can
see that it is not an easy task for the model to reach an accuracy higher than 90%, for
which an initial phase of transfer learning has to be supplemented by an additional
phase of fine-tuning—that is, a transfer-learning trick.

8 This is the reason why the demo requires you to collect at least eight samples per word. With fewer words, the
number of samples for each word will be small in the validation set, leading to potentially unreliable loss and
accuracy estimates.
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DEEP DIVE INTO FINE-TUNING IN TRANSFER LEARNING

Fine-tuning is a technique that helps you reach levels of accuracy not achievable just
by training the new head of the transfer model. If you wish to understand how fine-
tuning works, this section explains it in greater detail. There will be a few technical
points to digest. But the deepened understanding of transfer learning and the related
TensorFlow.js implementation that you’ll get out of it will be worth the effort.

Constructing a single model for transfer learning

First, we need to understand how the speech transfer-learning app creates the model
for transfer learning. The code in listing 5.7 (from speech-commands/src/browser_
fft_recognizer.ts) creates a model from the base speech-command model (the one you
learned in section 4.4.1). It first finds the penultimate (the second-last) dense layer of
the model and gets its output symbolic tensor (truncatedBaseOutput in the code). It
then creates a new head model consisting of only one dense layer. The input shape of
this new head matches the shape of the truncatedBaseOutput symbolic tensor, and its
output shape matches the number of words in the transfer dataset (five, in the case of
figure 5.9). The dense layer is configured to use the softmax activation, which suits the
multiclass-classification task. (Note that unlike most of the other code listings in the
book, the following code is written in TypeScript. If you’re unfamiliar with TypeScript,
you can simply ignore the type notations such as void and tf.SymbolicTensor.)  9

  private createTransferModelFromBaseModel(): void {
    const layers = this.baseModel.layers;
    let layerIndex = layers.length - 2;
    while (layerIndex >= 0) {
      if (layers[layerIndex].getClassName().toLowerCase() === 'dense') {
        break;
      }
      layerIndex--;
    }
    if (layerIndex < 0) {
      throw new Error('Cannot find a hidden dense layer in the base model.');
    }
    this.secondLastBaseDenseLayer =
        layers[layerIndex];
    const truncatedBaseOutput = layers[layerIndex].output as 

tf.SymbolicTensor;
    

    this.transferHead = tf.layers.dense({
      units: this.words.length,
      activation: 'softmax',

Listing 5.7 Creating the transfer-learning model as a single tf.Model object9 

9 Two notes about this code listing: 1) The code is written in TypeScript because it is a part of the reusable
@tensorflow-models/speech-commands library. 2) Some error-checking code has been removed from this
code for the sake of simplicity.

Finds the second-last dense
layer of the base model

Gets the layer that will be unfrozen during 
fine-tuning later (see listing 5.8)

Finds the 
symbolic tensor

Creates the new head 
of the model
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      inputShape: truncatedBaseOutput.shape.slice(1)
    }));
    const transferOutput =
        this.transferHead.apply(truncatedBaseOutput) as tf.SymbolicTensor;
    this.model =
        tf.model({inputs: this.baseModel.inputs, outputs: transferOutput});
  }

The new head is used in a novel way: its apply() method is called using the
truncatedBaseOutput symbolic tensor as the input argument. apply() is a method
that’s available on every layer and model object in TensorFlow.js. What does the
apply() method do? As its name suggests, it “applies” the new head model on an
input and gives you an output. The important things to realize are as follows:

 Both the input and output involved here are symbolic—they are placeholders
for concrete tensor values. 

 Figure 5.10 shows a graphical illustration of this: the symbolic input (truncated-
BaseOutput) is not an isolated entity; instead, it is the output of the second-last
dense layer of the base model. The dense layer receives inputs from another
layer, which in turn receives inputs from its upstream layer, and so forth. There-
fore, truncatedBaseOutput carries with it a subgraph of the base model:
namely, the subgraph between the base model’s input and the second-last
dense layer’s output. In other words, it is the entire graph of the base model,
minus the part after the second-last dense layer. As a result, the output of the
apply() call carries a graph consisting of that subgraph plus the new dense
layer. The output and the original input are used together in a call to the
tf.model() function, which yields a new model. This new model is the same as
the base model except that its head has been replaced with the new dense layer
(see the bottom part of figure 5.10).

Note that the approach here is different from how we fused models in section 5.1.2.
There, we created a truncated base and a new head model as two separate model
instances. As a result, running inference on each input example involves two
predict() calls. Here, the inputs expected by the new model are identical to the
audio-spectrogram tensors expected by the base model. At the same time, the new
model directly outputs the probability scores for the new words. Every inference takes
only one predict() call and is therefore a more streamlined process. By encapsulat-
ing all the layers in a single model, our new approach has an additional advantage
important for our application: it allows us to perform backpropagation through any of
the layers involved in recognizing the new words. This enables us to perform the fine-
tuning trick. This is what we will explore in the next section.

Creates the new head 
of the model

“Applies” the new head on the output of 
the truncated base model’s output to 
get the final output of the new model as 
a symbolic tensor

Uses the tf.model() API to create a new
model for transfer learning, specifying the

original model’s inputs as its input and the
new symbolic tensor as the output
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New model (this.model)  

truncatedBaseOutput  transferOutput  

transferHead  Base model (this.baseModel)

tf.model()
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Figure 5.10 A schematic illustration of the way in which the new, end-to-end model is created for 
transfer learning. This figure should be read in conjunction with listing 5.7. Some parts of the figure 
that correspond to variables in listing 5.7 are labeled in fixed-width font. Step 1: the output symbolic 
tensor of the second-to-last dense layer of the original model is obtained (indicated by the thick 
arrow). It will later be used in step 3. Step 2: the new head model, consisting of a single output 
dense layer (labeled “dense 3”) is created. Step 3: the apply() method of the new head model is 
invoked with the symbolic tensor from step 1 as the input argument. The call connects the input to 
the new head model with the truncated base model from step 1. Step 4: the return value of the 
apply() call is used in conjunction with the input symbolic tensor of the original model during a 
call to the tf.model() function. This call returns a new model that contains all the layers of the 
original model from the first layer to the second-last dense layer, in addition to the dense layer in 
the new head. In effect, this swaps the old head of the original model with the new head, setting 
the stage for subsequent training on the transfer data. Note that some (seven) layers of the actual 
speech-command model are omitted in this diagram for the sake of visual simplicity. In this figure, 
the tinted layers are trainable, while the white-colored layers are untrainable.
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Fine-tuning through layer unfreezing

Fine-tuning is an optional step of transfer learning that follows an initial phase of
model training. In the initial phase, all the layers from the base model were frozen
(their trainable attribute was set to false), and weight updating happened only to
the head layers. We have seen this type of initial training in the mnist-transfer-cnn and
webcam-transfer-learning examples earlier in this chapter. During fine-tuning, some of
the layers of the base model are unfrozen (their trainable attribute is set to
true), and then the model is trained on the transfer data again. This layer unfreezing
is shown schematically in figure 5.11. The code in listing 5.8 (from speech-commands/
src/browser_fft_recognizer.ts) shows how that’s done in TensorFlow.js for the speech-
command example.

   10

async train(config?: TransferLearnConfig):
      Promise<tf.History|[tf.History, tf.History]> {
    if (config == null) {
      config = {};
    }
    if (this.model == null) {
      this.createTransferModelFromBaseModel();
    }

    this.secondLastBaseDenseLayer.trainable = false;
    this.model.compile({
      loss: 'categoricalCrossentropy',
      optimizer: config.optimizer || 'sgd',
      metrics: ['acc']
    });

Listing 5.8 Initial transfer learning, followed by fine-tuning10

10 Some error-checking code has been removed so as to focus on the key parts of the algorithm.

dense 1 dense 3conv2d flatten

...

Frozen layers

dense 1 dense 3conv2d flatten

...

Frozen layersTrainable layer Trainable layers

A. Initial phase B. Fine-tuning phase

Figure 5.11 Illustrating frozen and unfrozen (that is, trainable) layers during the initial (panel A) and fine-
tuning (panel B) phases of the transfer learning as done by the code in listing 5.8. Note that the reason dense1 
is followed immediately by dense3 is that dense2 (the original output of the base model) has been truncated 
as the first step of the transfer learning (see figure 5.10).

Makes sure all layers of 
the truncated base 
model, including the one 
that will be fine-tuned 
later, are frozen for the 
initial phase of transfer 
training

Compiles the model for 
the initial transfer training
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    const {xs, ys} = this.collectTransferDataAsTensors();
    let trainXs: tf.Tensor;
    let trainYs: tf.Tensor;
    let valData: [tf.Tensor, tf.Tensor];
    try {
      if (config.validationSplit != null) {
        const splits = balancedTrainValSplit(
            xs, ys, config.validationSplit);
        trainXs = splits.trainXs;
        trainYs = splits.trainYs;
        valData = [splits.valXs, splits.valYs];
      } else {
        trainXs = xs;
        trainYs = ys;
      }

      const history = await this.model.fit(trainXs, trainYs, {
        epochs: config.epochs == null ? 20 : config.epochs,
        validationData: valData,
        batchSize: config.batchSize,
        callbacks: config.callback == null ? null : [config.callback]
      });

      if (config.fineTuningEpochs != null && config.fineTuningEpochs > 0) {
        this.secondLastBaseDenseLayer.trainable =
            true;

        const fineTuningOptimizer: string|tf.Optimizer =
            config.fineTuningOptimizer == null ? 'sgd' :
                                                 config.fineTuningOptimizer;
        this.model.compile({
          loss: 'categoricalCrossentropy',
          optimizer: fineTuningOptimizer,
          metrics: ['acc']
        });

        const fineTuningHistory = await this.model.fit(trainXs, trainYs, {
          epochs: config.fineTuningEpochs,
          validationData: valData,
          batchSize: config.batchSize,
          callbacks: config.fineTuningCallback == null ?
              null :
              [config.fineTuningCallback]
        });
        return [history, fineTuningHistory];
      } else {
        return history;
      }
    } finally {
      tf.dispose([xs, ys, trainXs, trainYs, valData]);
    }
  }

There are several important things to point out about the code in listing 5.8:

 Each time you freeze or unfreeze any layers by changing their trainable attri-
bute, you need to call the compile() method of the model again in order for

If validationSplit is required, 
splits the transfer data into a 
training set and a validation set 
in a balanced way

Calls
Model.fit()
for initial
transfer
training

For fine-tuning, 
unfreezes the 
second-last 
dense layer of 
the base model 
(the last layer of 
the truncated 
base model)

Recompiles the model after 
unfreezing the layer (or the 
unfreezing won’t take effect)

Calls Model.fit()
for fine-tuning
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the change to take effect. We’ve already covered that when talking about the
MNIST transfer-learning example in section 5.1.1.

 We reserve a fraction of the training data for validation. This ensures that the
loss and accuracy we look at reflect how well the model works on inputs it hasn’t
seen during backpropagation. However, the way in which we split a fraction of
the collected data out for validation is different from before and deserves some
attention.

In the MNIST convnet example (listing 4.2 in chapter 4), we used the
validationSplit parameter to let the Model.fit() reserve the last 15–20% of
the data for validation. The same approach won’t work very well here. Why?
Because we have a much smaller training set here compared to the size of the
data in the earlier examples. As a result, blindly splitting the last several exam-
ples for validation may very well result in scenarios in which some words are
underrepresented in the validation subset. For example, suppose you have col-
lected eight examples for each of the four words “feel,” “seal,” “veal,” and “zeal”
and choose the last 25% of the 32 samples (8 examples) for validation. Then,
on average, there will be only two examples for each word in the validation sub-
set. Due to randomness, some of the words may end up having only one exam-
ple in the validation subset, and others may have no example there at all!
Obviously, if the validation set lacks certain words, it won’t be a very good set to
measure the model’s accuracy on. This is why we use a custom function
(balancedTrainValSplit in listing 5.8). This function takes into account the
true word label of the examples and ensures that all the different words get fair
representation in both the training and validation subsets. If you have a transfer-
learning application involving a similarly small dataset, it is a good idea to do
the same.

So, what does fine-tuning do for us? What added value does it provide on top of the
initial phase of transfer learning? To illustrate that, we plot the loss and accuracy
curves from the initial and fine-tuning phases concatenated as continuous curves in
panel A of figure 5.12. The transfer dataset involved here consists of the same four
words we saw in figure 5.9. The first 100 epochs of each curve correspond to the initial
phase, while the last 300 epochs correspond to fine-tuning. You can see that toward
the end of the 100 epochs of initial training, the loss and accuracy curves begin to flat-
ten out and start to enter regimes of diminishing returns. The accuracy on the valida-
tion subset levels off around 84%. (Notice how misleading it would be to look at only
the accuracy curve from the training subset, which easily approaches 100%.) However,
unfreezing the dense layer in the base model, recompiling the model, and starting the
fine-tuning phase of training, the validation accuracy gets unstuck and could go up to
90–92%, which is a very decent 6–8 percentage point gain in accuracy. A similar effect
can be seen in the validation loss curve.

To illustrate the value of fine-tuning over transfer learning without fine-tuning, we
show in panel B of figure 5.12 what happens if the transfer model is trained for an
 



183Introduction to transfer learning: Reusing pretrained models
equal number of (400) epochs without fine-tuning the top few layers of the base
model. There is no “inflection point” in the loss or accuracy curves that happened in
panel A at epoch 100 when the fine-tuning kicks in. Instead, the loss and accuracy
curves level off and converge to worse values.

So why does fine-tuning help? It can be understood as an increase in the model
capacity. By unfreezing some of the topmost layers of the base model, we allow the
transfer model to minimize the loss function in a higher-dimensional parameter space
than the initial phase. This is similar to adding hidden layers to a neural network. The
weight parameters of the unfrozen dense layer have been optimized for the original
dataset (the one consisting of words like “one,” “two,” “yes,” and “no”), which may not
be optimal for the transfer words. This is because the internal representations that
help the model distinguish between those original words may not be the representa-
tions that make the transfer words easiest to distinguish from one another. By allowing
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Figure 5.12 Panel A: example loss and accuracy curves from transfer learning and the subsequent fine-
tuning (FT in the plot legends). Notice the inflection point at the junction between the initial and fine-
tuning parts of the curves. Fine-tuning accelerates the reduction in the loss and gain in the accuracy, 
which is due to the unfreezing of the top few layers of the base model and the resulting increase in the 
model’s capacity, and its adaptation toward the unique features in the transfer-learning data. Panel B: the 
loss and accuracy curves from training the transfer model an equal number of epochs (400 epochs) 
without fine-tuning. Notice that without the fine-tuning, the validation loss converges to a higher value 
and the validation accuracy to a lower value compared to panel A. Note that while the final accuracy 
reaches about 0.9 with fine-tuning (panel A), it gets stuck at about 0.85 without the fine-tuning but with 
the same number of total epochs (panel B).
 



184 CHAPTER 5 Transfer learning: Reusing pretrained neural networks
those parameters to be optimized further (that is, fine-tuned) for the transfer words,
we allow the representation to be optimized for the transfer words. Therefore, we get
a boost in validation accuracy on the transfer words. Note that this boost is easier to
see when the transfer-learning task is hard (as with the four confusable words: “feel,”
“seal,” “veal,” and “zeal”). With easier tasks (more distinct words like “red” and
“green”), the validation accuracy may well reach 100% with only the initial transfer
learning.

One question you might want to ask is, here we unfreeze only one layer in the base
model, but will unfreezing more layers help? The short answer is, it depends, because
unfreezing even more layers gives the model even higher capacity. But as we men-
tioned in chapter 4 and will discuss in greater detail in chapter 8, higher capacity
leads to a higher risk of overfitting, especially when we are faced with a small dataset
like the audio examples collected in the browser here. This is not to mention the addi-
tional computation load required to train more layers. You are encouraged to experi-
ment with it yourself as a part of exercise 4 at the end of this chapter.

Let’s wrap up this section on transfer learning in TensorFlow.js. We introduced
three different ways to reuse a pretrained model on new tasks. In order to help you
decide which approach to use in your future transfer-learning projects, we summarize
the three approaches and their relative pros and cons in table 5.1.

Table 5.1 A summary of three approaches to transfer learning in TensorFlow.js and their relative
advantages and shortcomings

Approach Pros Cons

Use the original model and 
freeze its first several (feature-
extracting) layers 
(section 5.1.1).

• Simple and convenient • Works only if the output shape 
and activation required by the 
transfer learning match those 
of the base model

Obtain internal activations from 
the original model as embed-
dings for the input example, 
and create a new model that 
takes the embedding as the 
input (section 5.1.2).

• Applicable to transfer-learning 
cases that require an output 
shape different from the origi-
nal one

• Embedding tensors are directly 
accessible, making methods 
such as k-nearest neighbors 
(kNN, see info box 5.2) classifi-
ers possible

• Need to manage two separate 
model instances

• Difficult to fine-tune layers of 
the original model

Create a new model that con-
tains the feature-extracting lay-
ers of the original model and 
the layers of the new head 
(section 5.1.3).

• Applicable to transfer-learning 
cases that require an output 
shape different from the origi-
nal one

• Only a single model instance to 
manage

• Enables fine-tuning of feature-
extracting layers

• Internal activations (embed-
dings) that are not directly 
accessible
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5.2 Object detection through transfer learning on a convnet
The examples of transfer learning you have seen in this chapter so far have a com-
monality: the nature of the machine-learning task stays the same after the transfer. In
particular, they take a computer-vision model trained on a multiclass-classification task
and apply it on another multiclass-classification task. In this section, we will show that
this doesn’t have to be the case. The base model can be used on a task very different
from the original one—for example, when you want to use a base model trained on a
classification task to perform regression (fitting a number). This type of cross-domain
transfer is a good example of the versatility and reusability of deep learning, which is
one of the main reasons behind the success of the field.

The new task we will use to illustrate this point is object detection, the first nonclassifi-
cation computer-vision problem type you encounter in this book. Object detection
involves detecting certain classes of objects in an image. How is it different from classi-
fication? In object detection, the detected object is reported in terms of not only its
class (what type of object it is) but also some additional information regarding the
location of the object inside the image (where the object is). The latter is a piece of
information that a mere classifier doesn’t provide. For example, in a typical object-
detection system used by self-driving cars, a frame of input image is analyzed so that
the system outputs not only the types of interesting objects that are present in the
image (such as vehicles and pedestrians) but also the location, apparent size, and pose
of such objects within the image’s coordinate system.

The example code is in the simple-object-detection directory of the tfjs-examples
repository. Note that this example is different from the ones you have seen so far in
that it combines model training in Node.js with inference in the browser. Specifically,
the model training happens with tfjs-node (or tfjs-node-gpu), and the trained model
is saved to disk. A parcel server is then used to serve the saved model files, along with
the static index.html and index.js, in order to showcase the inference on the model
in the browser.

The sequence of commands you can use for running the example is as follows (with
some comment strings that you don’t need to include when entering the commands):

        git clone https://github.com/tensorflow/tfjs-examples.git
        cd tfjs-examples/simple-object-detection
        yarn
        # Optional step for training your own model using Node.js:
        yarn train \
            --numExamples 20000 \
            --initialTransferEpochs 100 \
            --fineTuningEpochs 200
        yarn watch  # Run object-detection inference in the browser.

The yarn train command performs model training on your machine and saves the
model inside the ./dist folder when it’s finished. Note that this is a long-running train-
ing job and is best handled if you have a CUDA-enabled GPU, which boosts the training
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speed by a factor of 3 to 4. To do this, you just need to add the --gpu flag to the yarn
train command:

        yarn train --gpu \
            --numExamples 20000 \
            --initialTransferEpochs 100 \
            --fineTuningEpochs 200

However, if you don’t have the time or resources to train the model on your own
machine, don’t worry: you can just skip the yarn train command and proceed
directly to yarn watch. The inference page that runs in the browser will allow you to
load a model we’ve already trained for you from a centralized location via HTTP.

5.2.1 A simple object-detection problem based on synthesized scenes

State-of-the-art object-detection techniques involve many tricks that are not suitable
for a beginning tutorial on the topic. Our goal here is to show the essence of how
object detection works without being bogged down by too many technical details. To
this end, we designed a simple object-detection problem that involves synthesized
image scenes (see figure 5.13). These synthesized images have a dimension of 224 ×
224 and color depth of 3 (RGB channels) and hence match the input specification of
the MobileNet model that will form the base of our model. As the example in figure
5.13 shows, each scene has a white background. The object to detect is either an equi-
lateral triangle or a rectangle. If the object is a triangle, its size and orientation are
random; if the object is a rectangle, its height and width vary randomly. If the scene
consisted of only the white background and the object of interest, the task would be
too easy to show the power of our technique. To add to the difficulty of the task, a
number of “noise objects” are randomly sprinkled in the scene. These include 10 cir-
cles and 10 line segments in every image. The locations and sizes of the circles are
generated randomly, and so are the locations and lengths of the line segments. Some
of the noise objects may lie on top of the target object, partially obscuring it. All the
target and noise objects have randomly generated colors.

With the input data fully characterized, we can now define the task for the model
we are about to create and train. The model will output five numbers, which are orga-
nized into two groups:

 The first group contains a single number, indicating whether the detected
object is a triangle or a rectangle (regardless of its location, size, orientation,
and color).

 The remaining four numbers form the second group. They are the coordinates
of the bounding box around the detected object. Specifically, they are the left x-
coordinate, right x-coordinate, top y-coordinate, and bottom y-coordinate of the
bounding box, respectively. See figure 5.13 for an example.

The nice things about using synthesized data are 1) the true label values are automati-
cally known, and 2) we can generate as much data as we want. Every time we generate
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a scene image, the type of the object and its bounding box are automatically available
to us from the generation process. So, there is no need for any labor-intensive labeling
of the training images. This very efficient process in which the input features and
labels are synthesized together is used in many testing and prototyping environments
for deep-learning models and is a technique you should be familiar with. However,
training object-detection models meant for real-life image inputs requires manually
labeled real scenes. Luckily, there are such labeled datasets available. The Common
Object in Context (COCO) dataset is one of them (see http://cocodataset.org). 

After the training completes, the model should be able to localize and classify the
target objects with reasonably good accuracy (as shown by the examples in figure
5.13). To understand how the model learns this object-detection task, dive with us into
the code in the next section.

5.2.2 Deep dive into simple object detection 

Now let’s build the neural network to solve the synthesized object-detection problem.
As before, we build our model on the pretrained MobileNet model in order to use the
powerful general visual feature extractor in the model’s convolutional layers. This is
what the loadTruncatedBase() method in listing 5.9 does. However, a new challenge
our new model faces is how to predict two things at the same time: determining what
shape the target object is and finding its coordinates in the image. We haven’t seen
this type of “dual-task prediction” before. The trick we use here is to let the model out-
put a tensor that encapsulates both predictions, and we will design a new loss function
that measures how well the model is doing in both tasks at once. We could train two

Inference time (ms): 36.7
True object class: triangle
Predicted object class: triangle

Inference time (ms): 26.0
True object class: rectangle
Predicted object class: rectangle

truetrue

predictedpredicted

true

predicted predictedpredicted

true

predicted

A B

Figure 5.13 An example of the synthesized scenes used by simple object detection. 
Panel A: a rotated equilateral triangle as the target object. Panel B: a rectangle as 
the target object. The boxes labeled “true” are the true bounding box for the object 
of interest. Note that the object of interest can sometimes be partially obscured by 
some of the noise objects (line segments and circles).
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separate models, one for classifying the shape and one for predicting the bounding
box. But compared with using a single model to perform both tasks, running two
models will involve more computation and more memory usage and doesn’t leverage
the fact that feature-extracting layers can be shared between the two tasks. (The fol-
lowing code is from simple-object-detection/train.js.)  11

const topLayerGroupNames = [
    'conv_pw_9', 'conv_pw_10', 'conv_pw_11'];
const topLayerName =
    `${topLayerGroupNames[topLayerGroupNames.length - 1]}_relu`;

async function loadTruncatedBase() {
  const mobilenet = await tf.loadLayersModel(
      'https://storage.googleapis.com/' +
          'tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json');

  const fineTuningLayers = [];
  const layer = mobilenet.getLayer(topLayerName);
  const truncatedBase =
      tf.model({
        inputs: mobilenet.inputs,
        outputs: layer.output
      }); 
  for (const layer of truncatedBase.layers) {
    layer.trainable = false;
    for (const groupName of topLayerGroupNames) {  
      if (layer.name.indexOf(groupName) === 0) {
        fineTuningLayers.push(layer);
        break;
      }
    }
  }
  return {truncatedBase, fineTuningLayers};
}

function buildNewHead(inputShape) {
  const newHead = tf.sequential();
  newHead.add(tf.layers.flatten({inputShape}));
  newHead.add(tf.layers.dense({units: 200, activation: 'relu'}));
  newHead.add(tf.layers.dense({units: 5}));
  return newHead;
}

async function buildObjectDetectionModel() {
  const {truncatedBase, fineTuningLayers} = await loadTruncatedBase();

  const newHead = buildNewHead(truncatedBase.outputs[0].shape.slice(1));
  const newOutput = newHead.apply(truncatedBase.outputs[0]);
  const model = tf.model({

Listing 5.9 Defining a model for simple object learning based on truncating MobileNet11

11 Some code for checking error conditions is removed for clarity.

Sets what layers to 
unfreeze for fine-tuning

Gets an intermediate 
layer: the last feature-
extraction layerForms the

truncated
MobileNet

Freezes all feature-
extraction layers for 
the initial phase of 
transfer learning

Keeps track of layers 
that will be unfrozen 
during fine-tuning

The length-5 output consists of a
length-1 shape indicator and a

length-4 bounding box (see figure 5.14).

Puts the new head model on top of the
truncated MobileNet to form the
entire model for object detection

s the new
ad model
he simple
-detection

task
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    inputs: truncatedBase.inputs,
    outputs: newOutput
  });

  return {model, fineTuningLayers};
}

The key part of the “dual-task” model is built by the buildNewHead() method in listing
5.9. A schematic drawing of the model is shown in the left part of figure 5.14. The new
head consists of three layers. A flatten layer shapes the output of the last convolutional
layer of the truncated MobileNet base so that dense layers can be added later on. The
first dense layer is a hidden one with a relu nonlinearity. The second dense layer is the
final output of the head and hence the final output of the entire object-detection
model. This layer has the default linear activation. It is the key to understanding how
this model works and therefore needs to be looked at carefully.

As you can see from the code, the final dense layer has an output unit count of 5.
What do the five numbers represent? They combine the shape prediction and the
bounding-box prediction. Interestingly, what determines their meaning is not the
model itself, but rather the loss function that will be used on it. Previously, you saw var-
ious types of loss functions that can be straightforward string names such as "mean-
SquaredError" and are suitable to their respective machine-learning tasks (for
example, see table 3.6 in chapter 3). However, this is only one of two ways to specify
loss functions in TensorFlow.js. The other way, which is what we are using here,

Puts the new head model on top of 
the truncated MobileNet to form the 
entire model for object detection

dense 1 dense 3flatten

...

Truncated MobileNet flatten dense1 dense2

meanSquaredError

New head Prediction

True labels

Input

Loss

Object-detection model
Custom loss function

x

224

Bounding
boxes

Shape
indicator

Figure 5.14 The object-detection model and the custom loss function that it is based on. See listing 5.9 for 
how the model (the left part) is constructed. See listing 5.10 for how the custom loss function is written.
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involves defining a custom JavaScript function that satisfies a certain signature. The
signature is as follows:

 Two input arguments: 1) the true labels of the input examples and 2) the corre-
sponding predictions of the model. Each of them is represented as a 2D tensor.
The shape of the two tensors ought to be identical, with the first dimension of
each tensor being the batch size.

 The return value is a scalar tensor (a tensor of shape []) whose value is the
mean loss of the examples in the batch.

Our custom loss function, written according to this signature, is shown in listing 5.10
and graphically illustrated in the right part of figure 5.14. The first input to custom-
LossFunction (yTrue) is the true label tensor, which has a shape of [batchSize, 5].
The second input (yPred) is the model’s output prediction, with exactly the same
shape as yTrue. Of the five dimensions along the second axis of yTrue (the five col-
umns, if we view it as a matrix), the first one is a 0–1 indicator for the shape of the tar-
get object (0 for triangle and 1 for rectangle). This is determined by how the data is
synthesized (see simple-object-detection/synthetic_images.js). The remaining four
columns are the target object’s bounding box—that is, its left, right, top, and bottom
values—each of which ranges from 0 to CANVAS_SIZE (224). The number 224 is the
height and width of the input images and comes from the input image size to
MobileNet, which our model is based on.

const labelMultiplier = tf.tensor1d([CANVAS_SIZE, 1, 1, 1, 1]);
function customLossFunction(yTrue, yPred) {
  return tf.tidy(() => {
    return tf.metrics.meanSquaredError(
        yTrue.mul(labelMultiplier), yPred);
  });
}

The custom loss function takes yTrue and scales its first column (the 0–1 shape indica-
tor) by CANVAS_SIZE, while leaving the other columns unchanged. It then calculates
the MSE between yPred and the scaled yTrue. Why do we scale the 0–1 shape label in
yTrue? We want the model to output a number that represents whether it predicts the
shape to be a triangle or a rectangle. Specifically, it outputs a number close to 0 for tri-
angle and a number close to CANVAS_SIZE (224) for rectangle. So, during inference
time, we can just compare the first value in the model’s output with CANVAS_SIZE/2
(112) to get the model’s prediction of whether the shape is more like a triangle or a
rectangle. The question is then how to measure the accuracy of this shape prediction
in order to come up with a loss function. Our answer is to compute the difference
between this number and the 0–1 indicator, multiplied by CANVAS_SIZE.

Listing 5.10 Defining the custom loss function for the object-detection task

The shape-indicator column of yTrue is scaled by CANVAS_SIZE
(224) to ensure approximately equal contribution to the loss by

shape prediction and bounding-box prediction.
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Why do we do this instead of using binary cross entropy as we did for the phishing-
detection example in chapter 3? We need to combine two metrics of accuracy here:
one for the shape prediction and one for the bounding-box prediction. The latter
task involves predicting continuous values and can be viewed as a regression task.
Therefore, MSE is a natural metric for bounding boxes. In order to combine the met-
rics, we just “pretend” that the shape prediction is also a regression task. This trick
allows us to use a single metric function (the tf.metric.meanSquaredError() call in
listing 5.10) to encapsulate the loss for both predictions.

But why do we scale the 0–1 indicator by CANVAS_SIZE? Well, if we didn’t do this
scaling, our model would end up generating a number in the neighborhood of 0–1 as
an indicator for whether it predicts the shape to be a triangle (close to 0) or a rectan-
gle (close to 1). The difference between numbers around the [0, 1] interval would
clearly be much smaller compared to the differences we get from comparing the true
bounding box and the predicted ones, which are in the range of 0–224. As a result,
the error signal from the shape prediction would be totally overshadowed by the error
signal from the bounding-box prediction, which would not help us get accurate shape
predictions. By scaling the 0–1 shape indicator, we make sure the shape prediction
and bounding-box prediction contribute about equally to the final loss value (the
return value of customLossFunction()), so that when the model is trained, it will
optimize both types of predictions at once. In exercise 4 at the end of this chapter, you
are encouraged to experiment with this scaling yourself.12

With the data prepared and the model and loss function defined, we are ready to
train our model! The key parts of the model training code are shown in listing 5.11
(from simple-object-detection/train.js). Like the fine-tuning we’ve seen before (sec-
tion 5.1.3), the training proceeds in two phases: an initial phase, during which only
the new head layers are trained, and a fine-tuning phase, during which the new head
layers are trained together with the top few layers of the truncated MobileNet base. It
should be noted that the compile() method must be invoked (again) right before the
fine-tuning fit() call in order for the changes to the trainable property of the layers
to take effect. If you run the training on your own machine, it’ll be easy to observe a
significant downward jump in the loss values as soon as the fine-tuning phase starts,
reflecting an increase in the capacity of the model and the adaptation of the unfrozen
feature-extraction layers to the unique features in the object-detection data as a result
of their unfreezing. The list of layers unfrozen during the fine-tuning is determined
by the fineTuningLayers array, which is populated when we truncate the MobileNet

12 An alternative to the scaling and meanSquaredError-based approach here is to take the first column of
yPred as the shape probability score and compute the binary cross entropy with the first column of yTrue.
Then the binary cross entropy value can be summed together with the MSE calculated on the remaining col-
umns of yTrue and yPred. But in this alternative approach, the cross entropy needs to be scaled properly to
ensure the balance with the bounding-box loss, just like in our current approach. The scaling involves a free
parameter whose value needs to be carefully selected. In practice, it becomes an additional hyperparameter
of the model and requires time and compute resources to tune, which is a downside of the approach. We
opted against the approach in favor of our current approach for simplicity.
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(see the loadTruncatedBase() function in listing 5.9). These are the top nine layers
of the truncated MobileNet. In exercise 3 at the end of the chapter, you can experi-
ment with unfreezing fewer or more top layers of the base and observe how they
change the accuracy of the model produced by the training process.

  const {model, fineTuningLayers} = await buildObjectDetectionModel();
  model.compile({
    loss: customLossFunction,
    optimizer: tf.train.rmsprop(5e-3)
  });

  await model.fit(images, targets, {
    epochs: args.initialTransferEpochs,
    batchSize: args.batchSize,
    validationSplit: args.validationSplit
  });

  // Fine-tuning phase of transfer learning.

  for (const layer of fineTuningLayers) {
    layer.trainable = true;
  }
  model.compile({
    loss: customLossFunction,
    optimizer: tf.train.rmsprop(2e-3)
  });

  await model.fit(images, targets, {
    epochs: args.fineTuningEpochs,
    batchSize: args.batchSize / 2,
    validationSplit: args.validationSplit
  });

After the fine-tuning ends, the model is saved to the disk and is then loaded during
the in-browser inference step (started by the yarn watch command). If you load a
hosted model, or if you have spent the time and compute resources to train a reason-
ably good model on your own machine, the shape and bounding-box prediction
you’ll see in the inference page should be fairly good (validation loss at <100 after 100
epochs of initial training and 200 epochs of fine-tuning). The inference results are
good but not perfect (see the examples in figure 5.13). When you examine the
results, keep in mind that the in-browser evaluation is a fair one and reflects the
model’s true generalization power because the examples the trained model is tasked
to solve in the browser are different from the training and validation examples that it
has seen during the transfer-learning process.

To wrap up this section, we showed how a model trained previously on image classifi-
cation can be applied successfully to a different task: object detection. In doing this, we
demonstrated how to define a custom loss function to fit the “dual-task” (shape classifi-
cation + bounding-box regression) nature of the object-detection problem and how to

Listing 5.11 Phase two of training the object-detection model

Uses a relatively high learning 
rate for the initial phase

Performs the initial phase 
of transfer learning

Fine-tuning phase starts
Unfreezes some layers for fine-tuning

Uses a slightly lower learning 
rate for the fine-tuning phase

During the fine-tuning phase, we reduce 
batchSize to avoid out-of-memory issues 
caused by the fact that backpropagation 
involves more weights and consumes 
more memory than the initial phase.Performs the fine-tuning phase
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use the custom loss during model training. This example not only illustrates the basic
principles behind object detection but also highlights the flexibility of transfer learning
and the range of problems it may be used on. Object-detection models used in produc-
tion applications are, of course, more complex and involve more tricks than the toy
example we built using a synthesized dataset here. Info box 5.3 briefly presents some
interesting facts about advanced object-detection models, and describes how they are
different from the simple example you just saw and how you can use one of them
through TensorFlow.js.

INFO BOX 5.3 Production object-detection models

Object detection is an important task of interest to many types of applications, such
as image understanding, industrial automation, and self-driving cars. The most well-
known state-of-the-art object-detection models include the Single-Shot Detectiona

(SSD, for which an example inference result is shown in the figure) and You Only Look
Once (YOLO).b These models are similar to the model we saw in our simple-object-
detection example in the following regards:

 They predict both the class and location of objects.
 They are built on pretrained image-classification models such as MobileNet

and VGG16c and are trained through transfer learning.

a Wei Liu et al., “SSD: Single Shot MultiBox Detector,” Lecture Notes in Computer Science
9905, 2016, http://mng.bz/G4qD.

b Joseph Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection,” Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.
779–788, http://mng.bz/zlp1.

c Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” submitted 4 Sept. 2014, https://arxiv.org/abs/1409.1556.

An example object-detection result from the 
TensorFlow.js version of the Single-Shot 
Detection (SSD) model. Notice the multiple 
bounding boxes and their associated object 
class and confidence scores.
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(continued)
However, they are also different from our toy model in many regards:

 Real object-detection models predict many more classes of objects than our
simple model (for example, the COCO dataset has 80 object categories; see
http://cocodataset.org/#home).

 They are capable of detecting multiple objects in the same image (see the
example figure).

 Their model architectures are more complex than the one in our simple
model. For example, the SSD model adds multiple new heads on top of a
truncated pretrained image model in order to predict the class confidence
score and bounding boxes for multiple objects in the input image.

 Instead of using a single meanSquaredError metric as the loss function, the
loss function of a real object-detection model is a weighted sum of two types
of losses: 1) a softmax cross-entropy-like loss for the probability scores pre-
dicted for object classes and 2) a meanSquaredError or meanAbsolute-
Error-like loss for bounding boxes. The relative weight between the two types
of loss values is carefully tuned to ensure balanced contributions from both
sources of error.

 Real object-detection models produce a large number of candidate bounding
boxes per input image. These bounding boxes are “pruned” so that the ones
with the highest object-class probability scores are retained in the final output.

 Some real object-detection models incorporate “prior knowledge” about the
location of object bounding boxes. These are educated guesses for where the
bounding boxes are in the image, based on analysis of a larger number of
labeled real images. The priors help speed up the training of the models by
starting from a reasonable initial state instead of from complete random
guesses (as is in our simple-object-detection example).

A few real object-detection models have been ported to TensorFlow.js. For example,
one of the best ones you can play with is in the coco-ssd directory of the tfjs-models
repository. To see it in action, do the following:

git clone https://github.com/tensorflow/tfjs-models.git
cd tfjs-models/coco-ssd/demo
yarn && yarn watch

If you are interested in learning more about real object-detection models, you can
read the following blog posts. They are for the SSD model and YOLO model, respec-
tively, which use different model architecture and postprocessing techniques:

 “Understanding SSD MultiBox—Real-Time Object Detection In Deep Learn-
ing” by Eddie Forson: http://mng.bz/07dJ.

 “Real-time Object Detection with YOLO, YOLOv2, and now YOLOv3” by Jona-
than Hui: http://mng.bz/KEqX.
 

http://mng.bz/KEqX
http://mng.bz/07dJ
http://cocodataset.org/#home
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So far in this book, we’ve tackled machine-learning datasets that are handed to us and
ready to be explored. They are well-formatted, having been cleaned up through the
painstaking work by data scientists and machine-learning researchers before us, to the
degree that we can focus on modeling without worrying too much about how to ingest
the data and whether the data is correct. This is true for the MNIST and audio data-
sets used in this chapter; it’s also certainly true for the phishing-website and iris-flower
datasets we used in chapter 3. 

We can safely say that this is never the case for real-world machine-learning prob-
lems you will encounter. Most of a machine-learning practitioner’s time is in fact spent
on acquiring, preprocessing, cleaning, verifying, and formatting the data.13 In the
next chapter, we’ll teach you the tools available in TensorFlow.js to make these data-
wrangling and ingestion workflows easier.

Exercises
1 When we visited the mnist-transfer-cnn example in section 5.1.1, we pointed out

that setting the trainable property of a model’s layers won’t take effect during
training, unless the model’s compile() method is called before the training.
Verify that by making some changes to the retrainModel() method in the
index.js file of the example. Specifically,
a Add a this.model.summary() call right before the line with this.model

.compile(), and observe the numbers of trainable and nontrainable param-
eters. What do they show? How are they different from the numbers you get
after the compile() call?

b Independent from the previous item, move the this.model.compile() call
to the part right before the setting of the trainable property of the feature
layers. In other words, set the property of those layers after the compile()
call. How does that change the training speed? Is the speed consistent with
only the last several layers of the model being updated? Can you find other
ways to confirm that, in this case, the weights of the first several layers of the
models are updated during training?

2 During the transfer learning in section 5.1.1 (listing 5.1), we froze the first two
conv2d layers by setting their trainable properties to false before starting the
fit() call. Can you add some code to the index.js in the mnist-transfer-cnn
example to verify that the weights of the conv2d layers are indeed unaltered by
the fit() call? Another approach we experimented with in the same section
was calling fit() without freezing the layers. Can you verify that the weight val-
ues of the layers are indeed altered by the fit() call in that case? (Hint: recall
that in section 2.4.2 of chapter 2, we used the layers attribute of a model
object and its getWeights() method to access the value of weights.)

13 Gil Press, “Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says,” Forbes,
23 Mar. 2016, http://mng.bz/9wqj.
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3 Convert the Keras MobileNetV214 (not MobileNetV1!—we already did that)
application into the TensorFlow.js format, and load it into TensorFlow.js in the
browser. Refer to info box 5.1 for detailed steps. Can you use the summary()
method to examine the topology of MobileNetV2 and identify its main differ-
ences from MobileNetV1?

4 One of the important things about the fine-tuning code in listing 5.8 is that the
compile() method of the model is called again after unfreezing the dense layer
in the base model. Can you do the following?
a Use the same method from exercise 2 to verify that the weights (kernel and

bias) of the dense layer are indeed not altered by the first fit() call (the one
for the initial phase of transfer learning) and that they indeed are by the sec-
ond fit() call (the one for the fine-tuning phase).

b Try commenting out the compile() call after the unfreezing line (the line
that changes the value of the trainable attribute) and see how that affects
the weight value changes you just observed. Convince yourself that the
compile() call is indeed necessary for letting changes in the frozen/unfrozen
states of the model take effect.

c Change the code and try unfreezing more weight-carrying layers of the base
speech-command model (for instance, the conv2d layer before the second-
last dense layer) and see how that affects the outcome of the fine-tuning.

5 In the custom loss function we defined for the simple object-detection task, we
scaled the 0–1 shape label so the error signal from the shape prediction could
match the error signal from the bounding-box prediction (see listing 5.10).
Experiment with what happens if this scaling is not done by removing the mul()
call in the code in listing 5.10. Convince yourself that this scaling is necessary
for ensuring reasonably accurate shape predictions. This can also be done by
simply replacing the instances of customLossFunction with meanSquaredError
during the compile() call (see listing 5.11). Also note that removal of the scal-
ing during training needs to be accompanied by a change in the thresholding
during inference time: change the threshold from CANVAS_SIZE/2 to 1/2 in the
inference logic (in simple-object-detection/index.js).

6 The fine-tuning phase in the simple object-detection example involved unfreez-
ing the nine top layers of the truncated MobileNet base (see how fineTuning-
Layers is populated in listing 5.9). A natural question to ask is, why nine? In
this exercise, change the number of unfrozen layers by including fewer or more
layers in the fineTuningLayers array. What do you expect to see in the follow-
ing quantities when you unfreeze fewer layers during fine-tuning: 1) the final
loss value and 2) the time each epoch takes in the fine-tuning phase? Does the

14 Mark Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” revised 21 Mar. 2019,
https://arxiv.org/abs/1801.04381.
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experiment result match your expectations? How about unfreezing more layers
during fine-tuning? 

Summary
 Transfer learning is the process of reusing a pretrained model or a part of it on

a learning task related to, but different from, the one that the model was origi-
nally trained for. This reusing speeds up the new learning task.

 In practical applications of transfer learning, people often reuse convnets that
have been trained on very large classification datasets, such as MobileNet
trained on the ImageNet dataset. Due to the sheer size of the original dataset
and the diversity of the examples it contains, such pretrained models bring with
them convolutional layers that are powerful, general-purpose feature extractors
for a wide variety of compute-vision problems. Such layers are difficult, if not
impossible, to train with the small amount of data that are available in typical
transfer-learning problems.

 We discussed several general approaches of transfer learning in TensorFlow.js,
which differ from each other in terms of 1) whether new layers are created as
the “new head” for transfer learning and 2) whether the transfer learning is
done with one model instance or two. Each approach has its pros and cons and
is suited for different use cases (see table 5.1).

 By setting the trainable attribute of a model’s layer, we can prevent its weights
from being updated during training (Model.fit() calls). This is referred to as
freezing and is used to “protect” the base model’s feature-extraction layers
during transfer learning.

 In some transfer-learning problems, we can boost the new model’s perfor-
mance by unfreezing a few top layers of the base model after an initial phase of
training. This reflects the adaptation of the unfrozen layers to the unique fea-
tures in the new dataset.

 Transfer learning is a versatile and flexible technique. The base model can help
us solve problems that are different from the one that it is originally trained on.
We illustrated this point by showing how to train an object-detection model
based on MobileNet.

 Loss functions in TensorFlow.js can be defined as custom JavaScript functions
that operate on tensor inputs and outputs. As we showed in the simple object-
detection example, custom loss functions are often needed to solve practical
machine-learning problems.
 



 



Part 3

Advanced deep learning
with TensorFlow.js

After reading parts 1 and 2, you should now be familiar with how basic
deep learning is done in TensorFlow.js. Part 3 is intended for users who want to
develop a firmer grasp of the techniques and gain a broader understanding of
deep learning. Chapter 6 covers techniques for ingesting, transforming, and
using data for machine learning. Chapter 7 presents tools for visualizing data
and models. Chapter 8 is concerned with the important phenomena of underfit-
ting and overfitting and how to deal with them effectively. Based on this discus-
sion, we introduce the universal workflow of machine learning. Chapters 9–11
are hands-on tours of three advanced areas: sequence-oriented models, genera-
tive models, and reinforcement learning, respectively. They will familiarize you
with some of the most exciting frontiers of deep learning.
 



 



Working with data
The wide availability of large volumes of data is a major factor leading to today’s
machine-learning revolution. Without easy access to large amounts of high-quality
data, the dramatic rise in machine learning would not have happened. Datasets are
now available all over the internet—freely shared on sites like Kaggle and OpenML,
among others—as are benchmarks for state-of-the-art performance. Entire
branches of machine learning have been propelled forward by the availability of
“challenge” datasets, setting a bar and a common benchmark for the community.1

If machine learning is our generation’s Space Race, then data is clearly our rocket

This chapter covers
 How to use the tf.data API to train models using large 

datasets

 Exploring your data to find and fix potential issues

 How to use data augmentation to create new “pseudo-
examples” to improve model quality

1 See how ImageNet propelled the field of object recognition or what the Netflix challenge did for collabo-
rative filtering.
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fuel;2 it’s potent, it’s valuable, it’s volatile, and it’s absolutely critical to a working
machine-learning system. Not to mention that polluted data, like tainted fuel, can
quickly lead to systemic failure. This chapter is about data. We will cover best practices
for organizing data, how to detect and clean out issues, and how to use it efficiently.

“But haven’t we been working with data all along?” you might protest. It’s true—in
previous chapters we worked with all sorts of data sources. We’ve trained image mod-
els using both synthetic and webcam-image datasets. We’ve used transfer learning to
build a spoken-word recognizer from a dataset of audio samples, and we accessed tab-
ular datasets to predict prices. So what’s left to discuss? Aren’t we already proficient in
handling data?

Recall in our previous examples the patterns of our data usage. We’ve typically
needed to first download our data from a remote source. Then we (usually) applied
some transformation to get our data into the correct format—for instance, by convert-
ing strings into one-hot vocabulary vectors or by normalizing the means and variances
of tabular sources. We have then always needed to batch our data and convert it into a
standard block of numbers represented as a tensor before connecting it to our model.
All this before we even ran our first training step.

This download-transform-batch pattern is very common, and TensorFlow.js comes
packaged with tooling to make these types of manipulations easier, more modular,
and less error prone. This chapter will introduce the tools in the tf.data namespace:
most importantly, tf.data.Dataset, which can be used to lazily stream data. The lazy-
streaming approach allows for downloading, transforming, and accessing data on an
as-needed basis rather than downloading the data source in its entirety and holding it
in memory as it is accessed. Lazy streaming makes it much easier to work with data
sources that are too large to fit in a single browser tab or even too large within the
RAM of a single machine.

We will first introduce the tf.data.Dataset API and show how to configure it and
connect it to a model. We will then introduce some theory and tooling to help you
review and explore your data and resolve problems you might discover. The chapter
wraps up by introducing data augmentation, a method for expanding a dataset to
improve model quality by creating synthetic pseudo-examples.

6.1 Using tf.data to manage data
How would you train a spam filter if your email database were hundreds of gigabytes
and required special credentials to access? How can you construct an image classifier
if your database of training images is too large to fit on a single machine?

Accessing and manipulating large volumes of data is a key skill for the machine-
learning engineer, but so far, we have been dealing with applications in which the data
could conceivably fit within the memory available to our application. Many applica-
tions require working with large, cumbersome, and possibly privacy-sensitive data

2 Credit for the analogy to Edd Dumbill, “Big Data Is Rocket Fuel,” Big Data, vol. 1, no. 2, pp. 71–72.
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sources that this technique is not suitable for. Large applications require technology
for accessing data from a remote source, piece by piece, on demand.

TensorFlow.js comes packaged with an integrated library designed just for this sort
of data management. It is built to enable users to ingest, preprocess, and route data in
a concise and readable way, inspired by the tf.data API in the Python version of
TensorFlow. Assuming your code imports TensorFlow.js using an import statement like 

import * as tf from '@tensorflow/tfjs';

this functionality will be available under the tf.data namespace.

6.1.1 The tf.data.Dataset object

Most interaction with tfjs-data comes through a single object type called Dataset.
The tf.data.Dataset object provides a simple, configurable, and performant way to
iterate over and process large (possibly unlimited) lists of data elements.3 In the coars-
est abstraction, you can imagine a dataset as an iterable collection of arbitrary ele-
ments, not unlike the Stream in Node.js. Whenever the next element is requested
from the dataset, the internal implementation will download it, access it, or execute a
function to create it, as needed. This abstraction makes it easy for the model to train
on more data than can conceivably be held in memory at once. It also makes it conve-
nient to share and organize datasets as first-class objects when there is more than one
dataset to keep track of. Dataset provides a memory benefit by streaming only the
required bits of data, rather than accessing the whole thing monolithically. The Data-
set API also provides performance optimizations over the naive implementation by
prefetching values that are about to be needed.

6.1.2 Creating a tf.data.Dataset

As of TensorFlow.js version 1.2.7, there are three ways to connect up tf.data .Dataset
to some data provider. We will go through each in some detail, but table 6.1 contains a
brief summary.

CREATING A TF.DATA.DATASET FROM AN ARRAY

The simplest way to create a new tf.data.Dataset is to build one from a JavaScript
array of elements. Given an array already in memory, you can create a dataset backed
by the array using the tf.data.array() function. Of course, it won’t bring any train-
ing speed or memory-usage benefit over using the array directly, but accessing an
array via a dataset offers other important benefits. For instance, using datasets makes
it easier to set up preprocessing and makes our training and evaluation easier through
the simple model.fitDataset() and model.evaluateDataset() APIs, as we will see in

3 In this chapter, we will use the term elements frequently to refer to the items in the Dataset. In most cases,
element is synonymous with example or datapoint—that is, in the training dataset, each element is an (x, y) pair.
When reading from a CSV source, each element is a row of the file. Dataset is flexible enough to handle
heterogeneous types of elements, but this is not recommended.
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section 6.2. In contrast to model.fit(x, y), model.fitDataset(myDataset) does not
immediately move all of the data into GPU memory, meaning that it is possible to
work with datasets larger than the GPU can hold. Realize that the memory limit of the
V8 JavaScript engine (1.4 GB on 64-bit systems) is usually larger than TensorFlow.js

Table 6.1 Creating a tf.data.Dataset object from a data source

How to get a new 
tf.data.Dataset API How to use it to build a dataset

From a JavaScript array of 
elements; also works for 
typed arrays like 
Float32Array

tf.data.array(items) const dataset = 
tf.data.array([1,2,3,4,5]);

See listing 6.1 for more. 

From a (possibly remote) 
CSV file, where each row is 
an element

tf.data.csv(
   source,
   csvConfig)

const dataset = 
tf.data.csv("https://path/to/my.csv");

See listing 6.2 for more.

The only required parameter is the URL from which 
to read the data. Additionally, csvConfig accepts 
an object with keys to help guide the parsing of the 
CSV file. For instance,
• columnNames—A string[] can be provided to 

set the names of the columns manually if they 
don’t exist in a header or need to be overridden.

• delimiter—A single character string can be 
used to override the default comma delimiter.

• columnConfigs—A map of string columnName
to columnConfig objects can be provided to 
guide the parsing and return type of the dataset. 
The columnConfig will inform the parser of the 
element’s type (string or int), or if the column is to 
be considered as the dataset label.

• configuredColumnsOnly—Whether to return 
data for each column in the CSV or only those col-
umns included in the columnConfigs object.

More detail is available in the API docs at 
js.tensorflow.org.

From a generic generator 
function that yields ele-
ments

tf.data.generator(
  generatorFunction)

function* countDownFrom10() {
  for (let i=10; i>0; i--) {
    yield(i);
  }
}

const dataset = 
tf.data.generator(countDownFrom10);

See listing 6.3 for more.

Note that the argument passed to 
tf.data.generator() when called with no argu-
ments returns a Generator object.
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can hold in WebGL memory at a time. Using the tf.data API is also good software
engineering practice, as it makes it easy to swap in another type of data in a modular
fashion without changing much code. Without the dataset abstraction, it is easy to let
the details of the implementation of the dataset source leak into its usage in the train-
ing of the model, an entanglement that will need to be unwound as soon as a different
implementation is used.

To build a dataset from an existing array, use tf.data.array(itemsAsArray), as
shown in the following listing.

  const myArray = [{xs: [1, 0, 9], ys: 10},
                   {xs: [5, 1, 3], ys: 11},
                   {xs: [1, 1, 9], ys: 12}];
  const myFirstDataset = tf.data.array(myArray);
  await myFirstDataset.forEachAsync(
       e => console.log(e));

// Yields output like
// {xs: Array(3), ys: 10}
// {xs: Array(3), ys: 11}
// {xs: Array(3), ys: 12}

We iterate over the elements of the dataset using the forEachAsync() function, which
yields each element in turn. See more details about the Dataset.forEachAsync func-
tion in section 6.1.3.

Elements of datasets may contain JavaScript primitives4 (such as numbers and
strings) as well as tuples, arrays, and nested objects of such structures, in addition to
tensors. In this tiny example, the three elements of the dataset all have the same struc-
ture. They are all objects with the same keys and the same type of values at those keys.
tf.data.Dataset can in general support a mixture of types of elements, but the com-
mon use case is that dataset elements are meaningful semantic units of the same type.
Typically, they should represent examples of the same kind of thing. Thus, except in
very unusual use cases, each element should have the same type and structure.

CREATING A TF.DATA.DATASET FROM A CSV FILE

A very common type of dataset element is a key-value object representing one row of
a table, such as one row of a CSV file. The next listing shows a very simple program
that will connect to and list out the Boston-housing dataset, the one we first used in
chapter 2.

Listing 6.1 Building a tf.data.Dataset from an array

4 If you are familiar with the Python TensorFlow implementation of tf.data, you may be surprised that
tf.data.Dataset can contain JavaScript primitives in addition to tensors.

Creates the tfjs-data dataset 
backed by an array. Note that 
this does not clone the array 
or its elements.

Uses the forEachAsync() method to iterate on all values 
provided by the dataset. Note that forEachAsync() is an 
async function, and hence you should use await with it. 
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  const myURL =

      "https://storage.googleapis.com/tfjs-examples/" +

          "multivariate-linear-regression/data/train-data.csv";

  const myCSVDataset = tf.data.csv(myURL);

  await myCSVDataset.forEachAsync(e => console.log(e));

// Yields output of 333 rows like 

// {crim: 0.327, zn: 0, indus: 2.18, chas: 0, nox: 0.458, rm: 6.998, 

// age: 45.8, tax: 222} 

// ...

Instead of tf.data.array(), here we use tf.data.csv() and point to a URL of a CSV
file. This will create a dataset backed by the CSV file, and iterating over the dataset will
iterate over the CSV rows. In Node.js, we can connect to a local CSV file by using a
URL handle with the file:// prefix, like the following:

> const data = tf.data.csv(
     'file://./relative/fs/path/to/boston-housing-train.csv');

When iterating, we see that each CSV row is transformed into a JavaScript object. The
elements returned from the dataset are objects with one property for each column of
the CSV, and the properties are named according to the column names in the CSV
file. This is convenient for interacting with the elements in that it is no longer neces-
sary to remember the order of the fields. Section 6.3.1 will go into more detail describ-
ing how to work with CSVs and will go through an example.

CREATING A TF.DATA.DATASET FROM A GENERATOR FUNCTION

The third and most flexible way to create a tf.data.Dataset is to build one from a
generator function. This is done using the tf.data.generator() method.
tf.data.generator() takes a JavaScript generator function (or function*)5 as its argu-
ment. If you are not familiar with generator functions, which are relatively new to
JavaScript, you may wish to take a moment to read their documentation. The purpose
of a generator function is to “yield” a sequence of values as they are needed, either
forever or until the sequence is exhausted. The values that are yielded from the gener-
ator function flow through to become the values of the dataset. A very simple genera-
tor function might, for instance, yield random numbers or extract snapshots of data
from a piece of attached hardware. A sophisticated generator may be integrated with a
video game, yielding screen captures, scores, and control input-output. In the follow-
ing listing, the very simple generator function yields samples of dice rolls.

Listing 6.2 Building a tf.data.Dataset from a CSV file

5 Learn more about ECMAscript generator functions at http://mng.bz/Q0rj.

Creates the tfjs-
data dataset 
backed by a 
remote CSV file

Uses the forEachAsync() method to iterate on
all values provided by the dataset. Note that

forEachAsync() is an async function.
    …
 

http://mng.bz/Q0rj
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  let numPlaysSoFar = 0;

  function rollTwoDice() {
    numPlaysSoFar++;
    return [Math.ceil(Math.random() * 6), Math.ceil(Math.random() * 6)];
  }

  function* rollTwoDiceGeneratorFn() {
    while(true) {
      yield rollTwoDice();
    }
  }

  const myGeneratorDataset = tf.data.generator(
      rollTwoDiceGeneratorFn);
  await myGeneratorDataset.take(1).forEachAsync(
      e => console.log(e));

// Prints to the console a value like 
// [4, 2]

A couple of interesting notes regarding the game-simulation dataset created in listing
6.3. First, note that the dataset created here, myGeneratorDataset, is infinite. Since
the generator function never returns, we could conceivably take samples from the
dataset forever. If we were to execute forEachAsync() or toArray() (see section
6.1.3) on this dataset, it would never end and would probably crash our server or
browser, so watch out for that. In order to work with such objects, we need to create
some other dataset that is a limited sample of the unlimited one using take(n). More
on this in a moment.

Second, note that the dataset closes over a local variable. This is helpful for log-
ging and debugging to determine how many times the generator function has been
executed.

Third, note that the data does not exist until it is requested. In this case, we only
ever access exactly one sample of the dataset, and this would be reflected in the value
of numPlaysSoFar.

Generator datasets are powerful and tremendously flexible and allow developers
to connect models to all sorts of data-providing APIs, such as data from a database
query, from data downloaded piecemeal over the network, or from a piece of con-
nected hardware. More details about the tf.data.generator() API are provided in
info box 6.1.

Listing 6.3 Building a tf.data.Dataset for random dice rolls

numPlaysSoFar is closed over by rollTwoDice(), 
which allows us to calculate how many times 
the function is executed by the dataset.

Defines a generator function (using 
function* syntax) that will yield the 
result of calling rollTwoDice() an 
unlimited number of times

The dataset is created here.

Takes a sample of exactly one element of
the dataset. The take() method will be

described in section 6.1.4.
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INFO BOX 6.1 tf.data.generator() argument specification
The tf.data.generator() API is flexible and powerful, allowing the user to hook the
model up to many sorts of data providers. The argument passed to tf.data.gener-
ator() must meet the following specifications:

 It must be callable with zero arguments.
 When called with zero arguments, it must return an object that conforms to

the iterator and iterable protocol. This means that the returned object must
have a method next(). When next() is called with no arguments, it should
return a JavaScript object {value: ELEMENT, done: false} in order to
pass forward the value ELEMENT.  When there are no more values to return, it
should return {value: undefined, done: true}.

JavaScript’s generator functions return Generator objects, which meet this spec and
are thus the easiest way to use tf.data.generator(). The function may close over
local variables, access local hardware, connect to network resources, and so on.

Table 6.1 contains the following code illustrating how to use tf.data.generator():

function* countDownFrom10() {
  for (let i = 10; i > 0; i--) {
    yield(i);
  }
}

const dataset = tf.data.generator(countDownFrom10);

If you wish to avoid using generator functions for some reason and would rather
implement the iterable protocol directly, you can also write the previous code in the
following, equivalent way:

function countDownFrom10Func() {
  let i = 10;
  return {
    next: () => {
      if (i > 0) {
        return {value: i--, done: false};
      } else {
        return {done: true};
      }
    }
  }
}

const dataset = tf.data.generator(countDownFrom10Func);
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6.1.3 Accessing the data in your dataset

Once you have your data as a dataset, inevitably you are going to want to access the
data in it. Data structures you can create but never read from are not really useful.
There are two APIs to access the data from a dataset, but tf.data users should only
need to use these infrequently. More typically, higher-level APIs will access the data
within a dataset for you. For instance, when training a model, we use the model.fit-
Dataset() API, described in section 6.2, which accesses the data in the dataset for us,
and we, the users, never need to access the data directly. Nevertheless, when debug-
ging, testing, and coming to understand how the Dataset object works, it’s important
to know how to peek into the contents.

The first way to access data from a dataset is to stream it all out into an array using
Dataset.toArray(). This function does exactly what it sounds like. It iterates through
the entire dataset, pushing all the elements into an array and returning that array to
the user. The user should use caution when executing this function to not inadver-
tently produce an array that is too large for the JavaScript runtime. This mistake is
easy to make if, for instance, the dataset is connected to a large remote data source or
is an unlimited dataset reading from a sensor.

The second way to access data from a dataset is to execute a function on each
example of the dataset using dataset.forEachAsync(f). The argument provided to
forEachAsync() will apply to each element in turn in a way similar to the forEach()
construct in JavaScript arrays and sets—that is, the native Array.forEach() and
Set.forEach().

It is important to note that Dataset.forEachAsync() and Dataset.toArray() are
both async functions. This is in contrast to Array.forEach(), which is synchronous, so
it might be easy to make a mistake here. Dataset.toArray() returns a promise and
will in general require await or .then() if synchronous behavior is required. Take
care that if await is forgotten, the promise might not resolve in the order you expect,
and bugs will arise. A typical bug is for the dataset to appear empty because the con-
tents are iterated over before the promise resolves.

The reason why Dataset.forEachAsync() is asynchronous while Array.forEach()
is not is that the data being accessed by the dataset might, in general, need to be cre-
ated, calculated, or fetched from a remote source. Asynchronicity here allows us to
make efficient use of the available computation while we wait. These methods are
summarized in table 6.2.
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6.1.4 Manipulating tfjs-data datasets 

It certainly is very nice when we can use data directly as it has been provided, without
any cleanup or processing. But in the experience of the authors, this almost never hap-
pens outside of examples constructed for educational or benchmarking purposes. In
the more common case, the data must be transformed in some way before it can be
analyzed or used in a machine-learning task. For instance, often the source contains
extra elements that must be filtered; or data at certain keys needs to be parsed, deseri-
alized, or renamed; or the data was stored in sorted order and thus needs to be ran-
domly shuffled before using it to train or evaluate a model. Perhaps the dataset must
be split into nonoverlapping sets for training and testing. Preprocessing is nearly inev-
itable. If you come across a dataset that is clean and ready-to-use out of the box,
chances are that someone already did the cleanup and preprocessing for you!

tf.data.Dataset provides a chainable API of methods to perform these sorts of
operations, described in table 6.3. Each of these methods returns a new Dataset
object, but don’t be misled into thinking that all the elements of the dataset are cop-
ied or that all the elements are iterated over for each method call! The tf.data
.Dataset API only loads and transforms elements in a lazy fashion. A dataset that was
created by chaining together several of these methods can be thought of as a small
program that will execute only once elements are requested from the end of the
chain. It is only at that point that the Dataset instance crawls back up the chain of
operations, possibly all the way to requesting data from the remote source.

Table 6.2 Methods that iterate over a dataset

Instance method of 
the tf.data.Dataset 

object What it does Example

.toArray() Asynchronously iter-
ates over the entire 
dataset and pushes 
each element into an 
array, which is 
returned

const a = tf.data.array([1, 2, 3, 4, 5, 6]);
const arr = await a.toArray();
console.log(arr);

// 1,2,3,4,5,6

.forEachAsync(f) Asynchronously iter-
ates over all the ele-
ments of the dataset 
and executes f on 
each

const a = tf.data.array([1, 2, 3]);
await a.forEachAsync(e => console.log("hi " + e));

// hi 1
// hi 2
// hi 3
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Table 6.3 Chainable methods on the tf.data.Dataset object

Instance method of the 
tf.data.Dataset object What it does Example

.filter(predicate) Returns a dataset con-
taining only elements for 
which the predicate evalu-
ates to true

myDataset.filter(x => x < 10);

Returns a dataset containing only values from 
myDataset that are less than 10.

.map(transform) Applies the provided func-
tion to every element in 
the dataset and returns a 
new dataset of the 
mapped elements

myDataset.map(x => x * x);

Returns a dataset of the squared values of the original 
dataset.

.mapAsync(
   asyncTransform)

Like map, but the provided 
function must be asyn-
chronous

myDataset.mapAsync(fetchAsync);

Assuming fetchAsync is an asynchronous function 
that yields the data fetched from a provided URL, will 
return a new dataset containing the data at each URL.

.batch(
   batchSize,
   smallLastBatch?)

Bundles sequential spans 
of elements into single-
element groups and con-
verts primitive elements 
into tensors

const a = tf.data.array(
    [1, 2, 3, 4, 5, 6, 7, 8])
    .batch(4);
await a.forEach(e => e.print());

// Prints:
//     Tensor [1, 2, 3, 4]
//     Tensor [5, 6, 7, 8]

.concatenate(
   dataset)

Concatenates the ele-
ments from two datasets 
together to form a new 
dataset

myDataset1.concatenate(myDataset2)

Returns a dataset that will iterate over all the values of 
myDataset1 first, and then over all the values of 
myDataset2.

.repeat(count) Returns a dataset that 
will iterate over the origi-
nal dataset multiple (pos-
sibly unlimited) times

myDataset.repeat(NUM_EPOCHS)

Returns a dataset that will iterate over all the values of 
myDataset NUM_EPOCHS times. If NUM_EPOCHS is 
negative or undefined, the result will iterate an unlimited 
number of times.

.take(count) Returns a dataset con-
taining only the first 
count examples

myDataset.take(10);

Returns a dataset containing only the first 10 elements 
of myDataset. If myDataset contains fewer than 10 
elements, then there is no change.

.skip(count) Returns a dataset that 
skips the first count
examples

myDataset.skip(10);

Returns a dataset that contains all the elements of 
myDataset except the first 10. If myDataset contains 
10 or fewer elements, this returns an empty dataset. 
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Tak

tr
These operations can be chained together to create simple but powerful processing
pipelines. For instance, to split a dataset randomly into training and testing datasets,
you can follow the recipe in the following listing (see tfjs-examples/iris-fitDataset/
data.js).

  const seed = Math.floor(
      Math.random() * 10000);
  const trainData = tf.data.array(IRIS_RAW_DATA)
       .shuffle(IRIS_RAW_DATA.length, seed);
       .take(N);
       .map(preprocessFn);
  const testData = tf.data.array(IRIS_RAW_DATA)
       .shuffle(IRIS_RAW_DATA.length, seed);
       .skip(N); 
       .map(preprocessFn);

There are some important considerations to attend to in this listing. We would like to
randomly assign samples into the training and testing splits, and thus we shuffle the
data first. We take the first N samples for the training data. For the testing data, we skip
those samples, taking the rest. It is very important that the data is shuffled the same way
when we are taking the samples, so we don’t end up with the same example in both
sets; thus we use the same random seed for both when sampling both pipelines.

It’s also important to notice that we apply the map() function after the skip opera-
tion. It would also be possible to call .map(preprocessFn) before the skip, but then the
preprocessFn would be executed even for examples we discard—a waste of computa-
tion. This behavior can be verified with the following listing.

.shuffle(
   bufferSize,
   seed?
)

Produces a dataset that 
shuffles the elements of 
the original dataset 

Be aware: this shuffling is 
done by selecting ran-
domly within a window of 
size bufferSize; thus, 
the ordering beyond the 
size of the window is pre-
served.

const a = tf.data.array(
    [1, 2, 3, 4, 5, 6]).shuffle(3);
await a.forEach(e => console.log(e));
// prints, e.g., 2, 4, 1, 3, 6, 5

Prints the values 1 through 6 in a randomly shuffled 
order. The shuffle is partial, in that not all orders are 
possible since the window is smaller than the total data 
size. For example, it is not possible that the last ele-
ment, 6, will now be the first in the new order, since the 
6 would need to move back more than bufferSize (3) 
spaces.

Listing 6.4 Creating a train/test split using tf.data.Dataset 

Table 6.3 Chainable methods on the tf.data.Dataset object (continued)

Instance method of the 
tf.data.Dataset object What it does Example

We use the same shuffle 
seed for the training and 
testing data; otherwise 
they will be shuffled 
independently, and some 
samples will be in both 
training and testing.

Skips the first N samples for 
the testing data

es the first
N samples

for the
aining data
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  let count = 0;

  // Identity function which also increments count.
  function identityFn(x) {
    count += 1;
    return x;
  }

  console.log('skip before map');
  await tf.data.array([1, 2, 3, 4, 5, 6])
    .skip(6)
    .map(identityFn)
    .forEachAsync(x => undefined);
  console.log(`count is ${count}`);

  console.log('map before skip');
  await tf.data.array([1, 2, 3, 4, 5, 6])
    .map(identityFn)
    .skip(6)
    .forEachAsync(x => undefined);
  console.log(`count is ${count}`);

// Prints:
// skip before map
// count is 0
// map before skip
// count is 6

Another common use for dataset.map() is to normalize our input data. We can imag-
ine a scenario in which we wish to normalize our input to be zero mean, but we have an
unlimited number of input samples. In order to subtract the mean, we would need to
first calculate the mean of the distribution, but calculating the mean of an unlimited
set is not tractable. We could also consider taking a representative sample and calculat-
ing the mean of that sample, but we could be making a mistake if we don’t know what
the right sample size is. Consider a distribution in which nearly all values are 0, but
every ten-millionth example has a value of 1e9. This distribution has a mean value of
100, but if you calculate the mean on the first 1 million examples, you will be quite off.

We can perform a streaming normalization using the dataset API in the following
way (listing 6.6). In this listing, we will keep a running tally of how many samples we’ve
seen and what the sum of those samples has been. In this way, we can perform a
streaming normalization. This listing operates on scalars (not tensors), but a version
designed for tensors would have a similar structure.

  function newStreamingZeroMeanFn() {
    let samplesSoFar = 0;
    let sumSoFar = 0;

    return (x) => {

Listing 6.5 Illustrating Dataset.forEach skip() and map() interactions

Listing 6.6 Streaming normalization using tf.data.map()

Skips then maps

Maps then skips

Returns a unary function, which 
will return its input minus the 
mean of all its input so far
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      samplesSoFar += 1;
      sumSoFar += x;
      const estimatedMean = sumSoFar / samplesSoFar;
      return x - estimatedMean;
    }
  }
  const normalizedDataset1 = 

unNormalizedDataset1.map(newStreamingZeroMeanFn());
  const normalizedDataset2 = 

unNormalizedDataset2.map(newStreamingZeroMeanFn());

Note that we generate a new mapping function, which closes over its own copy of the
sample counter and accumulator. This is to allow for multiple datasets to be normalized
independently. Otherwise, both datasets would use the same variables to count invoca-
tions and sums. This solution is not without its own limitations, especially with the possi-
bility of numeric overflow in sumSoFar or samplesSoFar, so some care is warranted.

6.2 Training models with model.fitDataset
The streaming dataset API is nice, and we’ve seen that it allows us to do some elegant
data manipulation, but the main purpose of the tf.data API is to simplify connecting
data to our model for training and evaluation. How is tf.data going to help us here?

Ever since chapter 2, whenever we’ve wanted to train a model, we’ve used the
model.fit() API. Recall that model.fit() takes at least two mandatory arguments—
xs and ys. As a reminder, the xs variable must be a tensor that represents a collection
of input examples. The ys variable must be bound to a tensor that represents a corre-
sponding collection of output targets. For example, in the previous chapter’s listing
5.11, we trained and fine-tuned on our synthetic object-detection model with calls like

model.fit(images, targets, modelFitArgs) 

where images was, by default, a rank-4 tensor of shape [2000, 224, 224, 3], repre-
senting a collection of 2,000 images. The modelFitArgs configuration object specified
the batch size for the optimizer, which was by default 128. Stepping back, we see that
TensorFlow.js was given an in-memory6 collection of 2,000 examples, representing the
entirety of the data, and then looped through that data 128 examples at a time to
complete each epoch.

What if this wasn’t enough data, and we wanted to train with a much larger dataset?
In this situation, we are faced with a pair of less than ideal options. Option 1 is to load
a much larger array and see if it works. At some point, however, TensorFlow.js is going
to run out of memory and emit a helpful error indicating that it was unable to allocate
the storage for the training data. Option 2 is for us to instead upload our data to the
GPU in separate chunks and call model.fit() on each chunk. We would need to per-
form our own orchestration of model.fit(), training our model on pieces of our
training data iteratively whenever it is ready. If we wanted to perform more than
one epoch, we would need to go back and re-download our chunks again in some

6 In GPU memory, which is usually more limited than the system RAM!
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(presumably shuffled) order. Not only is this orchestration cumbersome and error
prone, but it also interferes with TensorFlow’s own reporting of the epoch counter
and reported metrics, which we will be forced to stitch back together ourselves.

Tensorflow.js provides us a much more convenient tool for this task using the
model.fitDataset() API:

model.fitDataset(dataset, modelFitDatasetArgs) 

model.fitDataset() accepts a dataset as its first argument, but the dataset must meet
a certain pattern to work. Specifically, the dataset must yield objects with two proper-
ties. The first property is named xs and has a value of type Tensor, representing the
features for a batch of examples; this is similar to the xs argument to model.fit(),
but the dataset yields elements one batch at a time rather than the whole array at
once. The second required property is named ys and contains the corresponding tar-
get tensor.7 Compared to model.fit(), model.fitDataset() provides a number of
advantages. Foremost, we don’t need to write code to manage and orchestrate the
downloading of pieces of our dataset—this is handled for us in an efficient, as-needed
streaming manner. Caching structures built into the dataset allow for prefetching data
that is anticipated to be needed, making efficient use of our computational resources.
This API call is also more powerful, allowing us to train on much larger datasets than
can fit on our GPU. In fact, the size of the dataset we can train on is now limited only
by how much time we have because we can continue to train for as long as we are able
to get new training examples. This behavior is illustrated in the data-generator exam-
ple in the tfjs-examples repository.

In this example, we will train a model to learn how to estimate the likelihood of
winning a simple game of chance. As usual, you can use the following commands to
check out and run the demo:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/data-generator
yarn
yarn watch

The game used here is a simplified card game, somewhat like poker. Both players are
given N cards, where N is a positive integer, and each card is represented by a random
integer between 1 and 13. The rules of the game are as follows:

 The player with the largest group of same-valued cards wins. For example, if
player 1 has three of a kind, and player 2 has only a pair, player 1 wins.

 If both players have the same-sized maximal group, then the player with the
group with the largest face value wins. For example, a pair of 5s beats a pair of 4s.

 If neither player even has a pair, the player with the highest single card wins.
 Ties are settled randomly, 50/50.

7 For models with multiple inputs, an array of tensors is expected instead of the individual feature tensors. The
pattern is similar for models fitting multiple targets.
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It should be easy to convince yourself that each player has an equal chance of win-
ning. Thus, if we know nothing about our cards, we should only be able to guess
whether we will win or not half of the time. We will build and train a model that takes
as input player 1’s cards and predicts whether that player will win. In the screenshot in
figure 6.1, you should see that we were able to achieve approximately 75% accuracy
on this problem after training on about 250,000 examples (50 epochs * 50 batches per
epoch * 100 samples per batch). Five cards per hand were used in this simulation, but
similar accuracies are achieved for other counts. Higher accuracies are achievable by
running with larger batches and for more epochs, but even at 75%, our intelligent
player has a significant advantage over the naive player at estimating the likelihood
that they will win.

If we were to perform this operation using model.fit(), we would need to create
and store a tensor of 250,000 examples just to represent the input features. The data

Figure 6.1 The UI of the data-generator example. A description of the rules of the game and a button to run 
simulations are at top-left. Below that are the generated features and the data pipeline. The Dataset-to-Array 
button runs the chained dataset operations that will simulate the game, generate features, batch samples 
together, take N such batches, convert them to an array, and print the array out. At top-right, there are affordances 
to train a model using this data pipeline. When the user clicks the Train-Model-Using-Fit-Dataset button, the 
model.fitDataset() operation takes over and pulls samples from the pipeline. Loss and accuracy curves are 
printed below this. At bottom-right, the user may enter values for player 1’s hand and press a button to make 
predictions from the model. Larger predictions indicate that the model believes the hand is more likely to win. 
Values are drawn with replacement, so five of a kind can happen.
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in this example are pretty small—only tens of floats per instance—but for our object-
detection task in the previous chapter, 250,000 examples would have required 150 GB
of GPU memory,8 far beyond what is available in most browsers in 2019.

Let’s take a dive into relevant portions of this example. First, let’s look at how we
generate our dataset. The code in the following listing (simplified from tfjs-exam-
ples/data-generator/index.js) is similar to the dice-rolling generator dataset in listing
6.3, with a bit more complexity since we are storing more information.

  import * as game from './game';

  let numSimulationsSoFar = 0;

  function runOneGamePlay() { 
    const player1Hand = game.randomHand();
    const player2Hand = game.randomHand();
    const player1Win = game.compareHands(
        player1Hand, player2Hand);
    numSimulationsSoFar++;
    return {player1Hand, player2Hand, player1Win};
  }

  function* gameGeneratorFunction() {
    while (true) {
      yield runOneGamePlay();
    }
  }

  export const GAME_GENERATOR_DATASET = 
tf.data.generator(gameGeneratorFunction);

  await GAME_GENERATOR_DATASET.take(1).forEach(
      e => console.log(e));

// Prints 
// {player1Hand: [11, 9, 7, 8],
// player2Hand: [10, 9, 5, 1],
// player1Win: 1}

Once we have our basic generator dataset connected up to the game logic, we want to
format the data in a way that makes sense for our learning task. Specifically, our task is
to attempt to predict the player1Win bit from the player1Hand. In order to do so, we
are going to need to make our dataset return elements of the form [batchOf-
Features, batchOfTargets], where the features are calculated from player 1’s hand.
The following code is simplified from tfjs-examples/data-generator/index.js.

8 numExamples × width × height × colorDepth × sizeOfInt32 = 250,000 × 224 × 224 × 3 × 4 bytes .

Listing 6.7 Building a tf.data.Dataset for our card game 

The game library provides 
randomHand() and compareHands(), 
functions to generate a hand from a 
simplified poker-like card game and 
to compare two such hands to tell 
which player has won.

Simulates two players in a 
simple, poker-like card gameCalculates

the winner 
of the game Returns the two 

hands and who won
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  function gameToFeaturesAndLabel(gameState) {
     return tf.tidy(() => {
      const player1Hand = tf.tensor1d(gameState.player1Hand, 'int32');
      const handOneHot = tf.oneHot(
          tf.sub(player1Hand, tf.scalar(1, 'int32')),
          game.GAME_STATE.max_card_value);

      const features = tf.sum(handOneHot, 0);
      const label = tf.tensor1d([gameState.player1Win]);
      return {xs: features, ys: label};
    });
  }

  let BATCH_SIZE = 50;

  export const TRAINING_DATASET = 
GAME_GENERATOR_DATASET.map(gameToFeaturesAndLabel)

                                 .batch(BATCH_SIZE);

  await TRAINING_DATASET.take(1).forEach(
      e => console.log([e.shape, e.shape]));

// Prints the shape of the tensors: 
// [[50, 13], [50, 1]]

Now that we have a dataset in the proper form, we can connect it to our model
using model.fitDataset(), as shown in the following listing (simplified from tfjs-
examples/data-generator/index.js).

  // Construct model.
  model = tf.sequential();
  model.add(tf.layers.dense({
    inputShape: [game.GAME_STATE.max_card_value],
    units: 20,
    activation: 'relu'
  }));
  model.add(tf.layers.dense({units: 20, activation: 'relu'}));
  model.add(tf.layers.dense({units: 1, activation: 'sigmoid'}));

  // Train model
  await model.fitDataset(TRAINING_DATASET, {
    batchesPerEpoch: ui.getBatchesPerEpoch(),
    epochs: ui.getEpochsToTrain(),
    validationData: TRAINING_DATASET,

Listing 6.8 Building a dataset of player features

Listing 6.9 Building and training a model on the dataset

Takes the state of one complete
game and returns a feature
representation of player 1’s

hand and the win status

handOneHot has the shape 
[numCards, 
max_value_card]. This 
operation sums the 
number of each type of 
card, resulting in a tensor 
with the shape 
[max_value_card].

Converts each element from the game output 
object format to an array of two tensors: one for 
the features and one for the target

Groups together BATCH_SIZE
consecutive elements into a
single element. This would
also convert the data from

JavaScript arrays to tensors if
they weren't already tensors.

This call launches the training.
How many batches constitutes an epoch. Since our dataset
is unlimited, this needs to be defined to tell TensorFlow.js

when to execute the epoch-end callback.

We are using the training data as validation data. Normally this is bad, since
we will get a biased impression of how well we are doing. In this case, it is

not a problem since the data used for training and the data used for
validation are guaranteed to be independent by virtue of the generator.
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    validationBatches: 10,
    callbacks: {
      onEpochEnd: async (epoch, logs) => {
        tfvis.show.history(
            ui.lossContainerElement, trainLogs, ['loss', 'val_loss'])
        tfvis.show.history(
            ui.accuracyContainerElement, trainLogs, ['acc', 'val_acc'],
            {zoomToFitAccuracy: true})
      },
    }
  }

As we see in the previous listing, fitting a model to a dataset is just as simple as fitting a
model to a pair of x, y tensors. As long as our dataset yields tensor values in the right
format, everything just works, we get the benefit of streaming data from a possibly
remote source, and we don’t need to manage the orchestration on our own. Beyond
passing in a dataset instead of a tensor pair, there are a few differences in the configu-
ration object that merit discussion:

 batchesPerEpoch—As we saw in listing 6.9, the configuration for model.fit-
Dataset() takes an optional field for specifying the number of batches that
constitute an epoch. When we handed the entirety of the data to model.fit(),
it was easy to calculate how many examples there are in the whole dataset. It’s
just data.shape[0]! When using fitDataset(), we can tell TensorFlow.js when
an epoch ends in one of two ways. The first way is to use this configuration field,
and fitDataset() will execute onEpochEnd and onEpochStart callbacks after
that many batches. The second way is to have the dataset itself end as a signal
that the dataset is exhausted. In listing 6.7, we could change 

while (true) { ... }

to 

for (let i = 0; i<ui.getBatchesPerEpoch(); i++) { ... }

to mimic this behavior.
 validationData—When using fitDataset(), the validationData may be a

dataset also. But it doesn’t have to be. You can continue to use tensors for
validationData if you want to. The validation dataset needs to meet the same
specification with respect to the format of returned elements as the training
dataset does.

 validationBatches—If your validation data comes from a dataset, you need to
tell TensorFlow.js how many samples to take from the dataset to constitute a
complete evaluation. If no value is specified, then TensorFlow.js will continue to
draw from the dataset until it returns a done signal. Because the code in listing
6.7 uses a never-ending generator to generate the dataset, this would never hap-
pen, and the program would hang.

The rest of the configuration is identical to that of the model.fit() API, so no
changes are necessary.

We need to tell TensorFlow.js how many 
samples to take from the validation 
dataset to constitute one evaluation.

model.fitDataset() creates
history that is compatible with

tfvis, just like model.fit().
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6.3 Common patterns for accessing data
All developers need some solutions for connecting their data to their model. These
connections range from common stock connections, to well-known experimental
datasets like MNIST, to completely custom connections, to proprietary data formats
within an enterprise. In this section, we will review how tf.data can help to make
these connections simple and maintainable.

6.3.1 Working with CSV format data

Beyond working with common stock datasets, the most common way to access data
involves loading prepared data stored in some file format. Data files are often stored
in CSV (comma separated value) format9 due to its simplicity, human readability, and
broad support. Other formats have other advantages in storage efficiency and access
speed, but CSV might be considered the lingua franca of datasets. In the JavaScript
community, we typically want to be able to conveniently stream data from some HTTP
endpoint. This is why TensorFlow.js provides native support for streaming and manip-
ulating data from CSV files. In section 6.1.2, we briefly described how to construct a
tf.data.Dataset backed by a CSV file. In this section, we will dive deeper into the
CSV API to show how tf.data makes working with these data sources very easy. We
will describe an example application that connects to remote CSV datasets, prints
their schema, counts the elements of the dataset, and offers the user an affordance to
select and print the individual examples. Check out the example using the familiar
commands:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/data-csv
yarn && yarn watch

This should pop open a site that instructs us to enter the URL of a hosted CSV file or to
use one of the suggested four URLs by clicking, for example, Boston Housing CSV. See
figure 6.2 for an illustration. Underneath the URL entry input box, buttons are provided
to perform three actions: 1) count the rows in the dataset, 2) retrieve the column names
of the CSV, if they exist, and 3) access and print a specified sample row of the dataset.
Let’s go through how these work and how the tf.data API makes them very easy.

We saw earlier that creating a tfjs-data dataset from a remote CSV is very simple
using a command like

const myData = tf.data.csv(url);

where url is either a string identifier using the http://, https://, or file:// protocol, or
a RequestInfo. This call does not actually issue any requests to the URL to check
whether, for example, the file exists or is accessible, because of the lazy iteration. In
listing 6.10, the CSV is first fetched at the asynchronous myData.forEach() call. The

9 As of January 2019, the data science and machine-learning challenge site kaggle.com/datasets boasts 13,971
public datasets, of which over two-thirds are hosted in the CSV format.
 

https://kaggle.com/datasets
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function we call in the forEach() will simply stringify and print elements in the data-
set, but we could imagine doing other things with this iterator, such as generating UI
elements for every element in the set or computing statistics for a report.

  const url = document.getElementById('queryURL').value;
  const myData = tf.data.csv(url);
  await myData.take(10).forEach(
      x => console.log(JSON.stringify(x))));

// Output is like
// {"crim":0.26169,"zn":0,"indus":9.9,"chas":0,"nox":0.544,"rm":6.023, ...
// ,"medv":19.4}
// {"crim":5.70818,"zn":0,"indus":18.1,"chas":0,"nox":0.532,"rm":6.75, ...
// ,"medv":23.7}
// ...

CSV datasets often use the first row as a metadata header containing the names associ-
ated with each column. By default, tf.data.csv() assumes this to be the case, but it
can be controlled using the csvConfig object passed in as the second argument. If
column names are not provided by the CSV file itself, they can be provided manually
in the constructor like so:

const myData = tf.data.csv(url, {
     hasHeader: false,
     columnNames: ["firstName", "lastName", "id"]
   });

Listing 6.10 Printing the first 10 records in a remote CSV file

Figure 6.2 Web UI for our tfjs-data CSV example. Click one of the preset CSV buttons at the top or 
enter a path to your own hosted CSV, if you have one. Be sure to enable CORS access for your CSV if 
you go with your own hosted file.

Creates the tfjs-data dataset by 
providing the URL to tf.data.csv()

Creates a dataset consisting of the first 10 rows of the CSV dataset.  Then, uses the forEach() method to 
iterate over all values provided by the dataset. Note that forEach() is an async function. 
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If you provide a manual columnNames configuration to the CSV dataset, it will take
precedence over the header row read from the data file. By default, the dataset will
assume the first line is a header row. If the first row is not a header, the absence must
be configured and columnNames provided manually.

Once the CSVDataset object exists, it is possible to query it for the column names
using dataset.columnNames(), which returns an ordered string list of the column
names. The columnNames() method is specific to the CSVDataset subclass and is not
generally available from datasets built from other sources. The Get Column Names
button in the example is connected to a handler that uses this API. Requesting the
column names results in the Dataset object making a fetch call to the provided URL
to access and parse the first row; thus the async call in the following listing (condensed
from tfjs-examples/csv-data/index.js).

  const url = document.getElementById('queryURL').value;
  const myData = tf.data.csv(url); 

  const columnNames = await myData.columnNames();
  console.log(columnNames);
  // Outputs something like [
  //     "crim", "zn", "indus", ..., "tax", 
  //     "ptratio", "lstat"] for Boston Housing

Now that we have the column names, let’s get a row from our dataset. In listing 6.12,
we show how the web app prints out a single selected row of the CSV file, where the
user selects which row via an input element. In order to fulfill this request, we will first
use the Dataset.skip() method to create a new dataset the same as the original one,
but skipping the first n - 1 elements. We will then use the Dataset.take() method to
create a dataset that ends after one element. Finally, we will use Dataset.toArray() to
extract the data into a standard JavaScript array. If everything goes right, our request
will produce an array that contains exactly one element at the specified position. This
sequence is put together in the following listing (condensed from tfjs-examples/csv-
data/index.js).

  const url = document.getElementById('queryURL').value;
  const sampleIndex = document.getElementById(
      'whichSampleInput').valueAsNumber;
  const myData = tf.data.csv(url);
  const sample = await myData
                           .skip(sampleIndex)
                           .take(1)
                           .toArray();

Listing 6.11 Accessing column names from a CSV

Listing 6.12 Accessing a selected row from a remote CSV

Contacts the remote 
CSV to collect and 
parse the column 
headers

sampleIndex is a number 
returned by a UI element.

Creates the dataset myData, configured to read
from url, but does not actually connect yet

Creates a new 
dataset but skips 
over the first 
sampleIndex 
values

Creates a new dataset, but 
only keeps the first 1 element

s is the call that actually causes the Dataset
t to contact the URL and perform the fetch.
 that the return type is an array of objects,

his case, containing exactly one object, with
eys corresponding to the header names and

values associated with those columns.
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  console.log(sample);
  // Outputs something like: [{crim: 0.3237, zn: 0, indus: 2.18, ..., tax:
  // 222, ptratio: 18.7, lstat: 2.94}]
  // for Boston Housing.

We can now take the output of the row, which—as you can see from the output of the
console.log in listing 6.12 (repeated in a comment)—comes in the form of an object
mapping the column name to the value, and styles it for insertion into our document.
Something to watch out for: if we ask for a row that doesn’t exist, perhaps the 400th ele-
ment of a 300-element dataset, we will end up with an empty array.

It’s pretty common when connecting to remote datasets to make a mistake and use
a bad URL or improper credentials. In these circumstances, it’s best to catch the error
and provide the user with a reasonable error message. Since the Dataset object does
not actually contact the remote resource until the data is needed, it’s important to
take care to write the error handling in the right place. The following listing shows a
short snippet of how error handling is done in our CSV example web app (condensed
from tfjs-examples/csv-data/index.js). For more details about how to connect to CSV
files guarded by authentication, see info box 6.2.

  const url = 'http://some.bad.url';
  const sampleIndex = document.getElementById(
      'whichSampleInput').valueAsNumber;
  const myData = tf.data.csv(url);
  let columnNames;
  try {
    columnNames = await myData.columnNames();
  } catch (e) {
    ui.updateColumnNamesMessage(`Could not connect to ${url}`);
  }

In section 6.2, we learned how to use model.fitDataset(). We saw that the method
requires a dataset that yields elements in a very particular form. Recall that the form is
an object with two properties {xs, ys}, where xs is a tensor representing a batch of
the input, and ys is a tensor representing a batch of the associated target. By default,
the CSV dataset will return elements as JavaScript objects, but we can configure the
dataset to instead return elements closer to what we need for training. For this, we will
need to use the csvConfig.columnConfigs field of tf.data.csv(). Consider a CSV
file about golf with three columns: “club,” “strength,” and “distance.” If we wished to
predict distance from club and strength, we could apply a map function on the raw
output to arrange the fields into xs and ys; or, more easily, we could configure the
CSV reader to do this for us. Table 6.4 shows how to configure the CSV dataset to sep-
arate the feature and label properties, and perform batching so that the output is suit-
able for entry into model.fitDataset().

Listing 6.13 Handling errors arising from failed connections

Wrapping this line in a try block 
wouldn’t help because the bad 
URL is not fetched here.

The error from a bad connection 
will be thrown at this step.
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Table 6.4 Configuring a CSV dataset to work with model.fitDataset()

How the dataset is built 
and configured Code for building the dataset

Result of dataset.take(1).toArray()[0]
(the first element returned 

from the dataset)

Raw CSV default dataset = tf.data.csv(csvURL) {club: 1, strength: 45,
 distance: 200}

CSV with label configured 
in columnConfigs

columnConfigs = 
  {distance: {isLabel: true}};
dataset = tf.data.csv(csvURL,
  {columnConfigs});

{xs: {club: 1, strength: 45},
 ys: {distance: 200}}

CSV with 
columnConfigs and 
then batched

columnConfigs = 
  {distance: {isLabel: true}};
dataset = tf.data
  .csv(csvURL, 
{columnConfigs})
  .batch(128);

[xs: {club: Tensor, 
  strength: Tensor},
 ys: {distance:Tensor}]

Each of these three tensors has
shape = [128].

CSV with 
columnConfigs and 
then batched and mapped 
from object to array

columnConfigs = {distance: 
{isLabel: true}};
dataset = tf.data
  .csv(csvURL, 
{columnConfigs})
  .map(({xs, ys}) =>
       {
         return 
{xs:Object.values(xs),
                 
ys:Object.values(ys)};
       })
  .batch(128);

{xs: Tensor, ys: Tensor}

Note that the mapping function returned 
items of the form {xs: [number, 
number], ys: [number]}. The batch 
operation automatically converts numeric 
arrays to tensors. Thus, the first tensor 
(xs) has shape = [128,2]. The 
second tensor (ys) has shape = 
[128, 1].

INFO BOX 6.2 Fetching CSV data guarded by authentication
In the previous examples, we have connected to data available from remote files by
simply providing a URL. This works well both in Node.js and from the browser and is
very easy, but sometimes our data is protected, and we need to provide Request
parameters. The tf.data.csv() API allows us to provide RequestInfo in place of
a raw string URL, as shown in the following code. Other than the additional authori-
zation parameter, there is no change in the dataset:

  >  const url = 'http://path/to/your/private.csv'
  >  const requestInfo = new Request(url);
  >  const API_KEY = 'abcdef123456789'
  >  requestInfo.headers.append('Authorization', API_KEY);

  >  const myDataset = tf.data.csv(requestInfo);
 



225Common patterns for accessing data
6.3.2 Accessing video data using tf.data.webcam()

One of the most exciting applications for TensorFlow.js projects is to train and apply
machine-learning models to the sensors directly available on mobile devices. Motion
recognition using the mobile’s onboard accelerometer? Sound or speech understand-
ing using the onboard microphone? Visual assistance using the onboard camera?
There are so many good ideas out there, and we’ve just begun.

In chapter 5, we explored working with the webcam and microphone in the con-
text of transfer learning. We saw how to use the camera to control a game of Pac-Man,
and we used the microphone to fine-tune a speech-understanding system. While not
every modality is available as a convenient API call, tf.data does have a simple and
easy API for working with the webcam. Let’s explore how that works and how to use it
to predict from trained models.

With the tf.data API, it is very simple to create a dataset iterator yielding a stream of
images from the webcam. Listing 6.14 shows a basic example from the documentation.
The first thing we notice is the call to the tf.data.webcam(). This constructor returns a
webcam iterator by taking an optional HTML element as its input argument. The con-
structor works only in the browser environment. If the API is called in the Node.js envi-
ronment, or if there is no available webcam, then the constructor will throw an
exception indicating the source of the error. Furthermore, the browser will request per-
mission from the user before opening the webcam. The constructor will throw an
exception if the permission is denied. Responsible development should cover these
cases with user-friendly messages.

const videoElement = document.createElement('video');
videoElement.width = 100;
videoElement.height = 100;

onst webcam = await tf.data.webcam(videoElement);
const img = await webcam.capture();
img.print();
webcam.stop();

When creating a webcam iterator, it is important that the iterator knows the shape of
the tensors to be produced. There are two ways to control this. The first way, shown in
listing 6.14, uses the shape of the provided HTML element. If the shape needs to be
different, or perhaps the video isn’t to be shown at all, the desired shape can be pro-
vided via a configuration object, as shown in listing 6.15. Note that the provided

Listing 6.14 Creating a dataset using tf.data.webcam() and an HTML element

Element shows webcam video 
and determines tensor size

Constructor for the video Dataset object. The element
will display content from the webcam. The element also

configures the size of the created tensors.

Takes one frame from the video stream 
and offers the value as a tensor

Stops the video stream and pauses 
the webcam iterator
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HTML element argument is undefined, meaning that the API will create a hidden ele-
ment in the DOM to act as a handle to the video.

const videoElement = undefined;
const webcamConfig = {
    facingMode: 'user', 
    resizeWidth: 100,
   resizeHeight: 100};
const webcam = await tf.data.webcam(
    videoElement, webcamConfig);

It is also possible to use the configuration object to crop and resize portions of the
video stream. Using the HTML element and the configuration object in tandem, the
API allows the caller to specify a location to crop from and a desired output size. The
output tensor will be interpolated to the desired size. See the next listing for an exam-
ple of selecting a rectangular portion of a square video and then reducing the size to
fit a small model.

const videoElement = document.createElement('video');
videoElement.width = 300;
videoElement.height = 300;

const webcamConfig = {
    resizeWidth: 150,
    resizeHeight: 100,
    centerCrop: true
};

const webcam = await tf.data.webcam(
    videoElement, webcamConfig);

It is important to point out some obvious differences between this type of dataset and
the datasets we’ve been working with so far. For example, the values yielded from the
webcam depend on when you extract them. Contrast this with the CSV dataset, which
will yield the rows in order no matter how fast or slowly they are drawn. Furthermore,
samples can be drawn from the webcam for as long as the user desires more. The API
callers must explicitly tell the stream to end when they are done with it.

Data is accessed from the webcam iterator using the capture() method, which
returns a tensor representing the most recent frame. API users should use this tensor
for their machine-learning work, but must remember to dispose of it to prevent a
memory leak. Because of the intricacies involved in asynchronous processing of the
webcam data, it is better to apply necessary preprocessing functions directly to the
captured frame rather than use the deferred map() functionality provided by tf.data. 

Listing 6.15 Creating a basic webcam dataset using a configuration object

Listing 6.16 Cropping and resizing data from a webcam

Building a webcam dataset iterator using a 
configuration object instead of an HTML 
element. Here, we also specify which camera 
to use on a device featuring multiple cameras. 
‘user’ refers to the camera facing the user; as 
an alternative to ‘user,’ ‘environment’ refers 
to the rear camera.

Without the explicit configuration, the 
videoElement would control the output 
size, 300 × 300 here.

The user requests a 150 × 100 
extraction from the video.

The extracted data will be from 
the center of the original video.

Data captured from this webcam 
iterator depends on both the HTML 
element and the webcamConfig.
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That is to say, rather than processing data using data.map(),

// No:
    let webcam = await tfd.webcam(myElement)
    webcam = webcam.map(myProcessingFunction);
    const imgTensor = webcam.capture();
    // use imgTensor here.
    tf.dispose(imgTensor)

apply the function directly to the image:

// Yes:
    let webcam = await tfd.webcam(myElement);
    const imgTensor = myPreprocessingFunction(webcam.capture());
    // use imgTensor here.
    tf.dispose(imgTensor)

The forEach() and toArray() methods should not be used on a webcam iterator. For
processing long sequences of frames from the device, users of the tf.data.webcam()
API should define their own loop using, for example, tf.nextFrame() and call
capture() at a reasonable frame rate. The reason is that if you were to call forEach()
on your webcam, then the framework would draw frames as fast as the browser’s Java-
Script engine can possibly request them from the device. This will typically create ten-
sors faster than the frame rate of the device, resulting in duplicate frames and wasted
computation. For similar reasons, a webcam iterator should not be passed as an argu-
ment to the model.fit() method.

Listing 6.17 shows the abbreviated prediction loop from the webcam-transfer-learn-
ing (Pac-Man) example we saw in chapter 5. Note that the outer loop will continue for
as long as isPredicting is true, which is controlled by a UI element. Internally, the
rate of the loop is moderated by a call to tf.nextFrame(), which is pinned to the UI’s
refresh rate. The following code is from tfjs-examples/webcam-transfer-learn-
ing/index.js.

async function getImage() {
  return (await webcam.capture())
      .expandDims(0)
      .toFloat()
      .div(tf.scalar(127))
      .sub(tf.scalar(1));

while (isPredicting) {
  const img = await getImage();

  const predictedClass = tf.tidy(() => {
    // Capture the frame from the webcam.

    // Process the image and make predictions...
     ...

    await tf.nextFrame();
  }

Listing 6.17 Using tf.data.webcam() in a prediction loop

Captures a frame from the webcam and 
normalizes it between –1 and 1. Returns 
a batched image (1-element batch) of 
shape [1, w, h, c].

webcam here refers to an iterator 
returned from tfd.webcam; see init() in 
listing 6.18.

Draws the next frame 
from the webcam iterator

Waits until the next animation 
frame before performing another 
prediction
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One final note: when using the webcam, it is often a good idea to draw, process, and
discard an image before making predictions on the feed. There are two good reasons
for this. First, passing the image through the model ensures that the relevant model
weights have been loaded to the GPU, preventing any stuttering slowness on startup.
Second, this gives the webcam hardware time to warm up and begin sending actual
frames. Depending on the hardware, sometimes webcams will send blank frames while
the device is powering up. See the next listing for a snippet showing how this is done
in the webcam-transfer-learning example (from webcam-transfer-learning/index.js). 

async function init() {
  try {
    webcam = await tfd.webcam(
        document.getElementById('webcam'));
  } catch (e) {
    console.log(e);
    document.getElementById('no-webcam').style.display = 'block';
  }
  truncatedMobileNet = await loadTruncatedMobileNet();

  ui.init();

  // Warm up the model. This uploads weights to the GPU and compiles the 
  // WebGL programs so the first time we collect data from the webcam it 
  // will be quick.
  const screenShot = await webcam.capture();
  truncatedMobileNet.predict(screenShot.expandDims(0));
  screenShot.dispose();
}

6.3.3 Accessing audio data using tf.data.microphone()

Along with image data, tf.data also includes specialized handling to collect audio
data from the device microphone. Similar to the webcam API, the microphone API
creates a lazy iterator allowing the caller to request frames as needed, packaged neatly
as tensors suitable for consumption directly into a model. The typical use case here is
to collect frames to be used for prediction. While it’s technically possible to produce a
training stream using this API, zipping it together with the labels would be challenging.

Listing 6.19 shows an example of how to collect one second of audio data using the
tf.data.microphone() API. Note that executing this code will trigger the browser to
request that the user grant access to the microphone.

const mic = await tf.data.microphone({
  fftSize: 1024,  
  columnTruncateLength: 232, 

Listing 6.18 Creating a video dataset from tf.data.webcam() 

Listing 6.19 Collecting one second of audio data using the tf.data.microphone() API

Constructor for the video dataset 
object. The ‘webcam’ element is a 
video element in the HTML document.

The value returned from
webcam.capture() is a tensor. It must

be disposed to prevent a leak.

Makes a prediction on the first
frame returned from the webcam

to make sure the model is
completely loaded on the hardware

The microphone configuration allows 
the user to control some common 
audio parameters. We spell out 
some of these in the main text.
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  numFramesPerSpectrogram: 43, 
  sampleRateHz: 44100, 
  smoothingTimeConstant: 0,
  includeSpectrogram: true,  
  includeWaveform: true 
});
const audioData = await mic.capture();
const spectrogramTensor = audioData.spectrogram;
const waveformTensor = audioData.waveform;
mic.stop();

The microphone includes a number of configurable parameters to give users fine
control over how the fast Fourier transform (FFT) is applied to the audio data. Users
may want more or fewer frames of frequency-domain audio data per spectrogram, or
they may be interested in only a certain frequency range of the audio spectrum, such
as those frequencies necessary for audible speech. The fields in listing 6.19 have the
following meaning:

 sampleRateHz: 44100
– The sampling rate of the microphone waveform. This must be exactly 44,100

or 48,000 and must match the rate specified by the device itself. It will throw
an error if the specified value doesn’t match the value made available by the
device. 

 fftSize: 1024

– Controls the number of samples used to compute each nonoverlapping
“frame” of audio. Each frame undergoes an FFT, and larger frames give
more frequency sensitivity but have less time resolution, as time information
within the frame is lost.

– Must be a power of 2 between 16 and 8,192, inclusive. Here, 1024 means
that energy within a frequency band is calculated over a span of about 1,024
samples.

– Note that the highest measurable frequency is equal to half the sample rate,
or approximately 22 kHz.

 columnTruncateLength: 232

– Controls how much frequency information is retained. By default, each audio
frame contains fftSize points, or 1,024 in our case, covering the entire spec-
trum from 0 to maximum (22 kHz). However, we are typically interested in
only the lower frequencies. Human speech is generally only up to 5 kHz, and
thus we only keep the part of the data representing zero to 5 kHz. 

– Here, 232 = (5 kHz/22 kHz) * 1024. 

Executes the capture
of audio from the

microphone
The audio spectrum data 
is returned as a tensor of 
shape [43, 232, 1].

In addition to the spectrogram data, it is 
also possible to retrieve the waveform 
data directly. The shape of this data will be 
[fftSize * numFramesPerSpectrogram, 1] =
[44032, 1].

Users should call stop() to 
end the audio stream and 
turn off the microphone.
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 numFramesPerSpectrogram: 43

– The FFT is calculated on a series of nonoverlapping windows (or frames) of
the audio sample to create a spectrogram. This parameter controls how
many are included in each returned spectrogram. The returned spectro-
gram will be of shape [numFramesPerSpectrogram, fftSize, 1], or [43,
232, 1] in our case.

– The duration of each frame is equal to the sampleRate/fftSize. In our
case, 44 kHz * 1,024 is about 0.023 seconds.

– There is no delay between frames, so the entire spectrogram duration is
about 43 * 0.023 = 0.98, or just about 1 second.

 smoothingTimeConstant: 0

– How much to blend the previous frame’s data with this frame. It must be
between 0 and 1.

 includeSpectogram: True

– If true, the spectrogram will be calculated and made available as a tensor. Set
this to false if the application does not actually need to calculate the spectro-
gram. This can happen only if the waveform is needed.

 includeWaveform: True

– If true, the waveform is kept and made available as a tensor. This can be set to
false if the caller will not need the waveform. Note that at least one of
includeSpectrogram and includeWaveform must be true. It is an error if they
are both false. Here we have set them both to true to show that this is a valid
option, but in a typical application, only one of the two will be necessary.

Similar to the video stream, the audio stream sometimes takes some time to start, and
data from the device might be nonsense to begin with. Zeros and infinities are com-
monly encountered, but actual values and durations are platform dependent. The
best solution is to “warm up” the microphone for a short amount of time by throwing
away the first few samples until the data no longer is corrupted. Typically, 200 ms of
data is enough to begin getting clean samples.

6.4 Your data is likely flawed: Dealing with problems in your data
It’s nearly a guarantee that there are problems with your raw data. If you’re using your
own data source, and you haven’t spent several hours with an expert combing through
the individual features, their distributions, and their correlations, then there is a very
high chance that there are flaws that will weaken or break your machine-learning
model. We, the authors of this book, can say this with confidence because of our expe-
rience with mentoring the construction of many machine-learning systems in many
domains and building some ourselves. The most common symptom is that some
model is not converging, or is converging to an accuracy well below what is expected.
Another related but even more nefarious and difficult-to-debug pattern is when the
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model converges and performs well on the validation and testing data but then fails to
meet expectations in production. Sometimes there is a genuine modeling issue, or a
bad hyperparameter, or just bad luck, but, by far, the most common root cause for
these bugs is that there is a flaw in the data.

Behind the scenes, all the datasets we’ve used (such as MNIST, iris-flowers, and
speech-commands) went through manual inspection, pruning of bad examples, for-
matting into a standard and suitable format, and other data science operations that
we didn’t talk about. Data issues can arise in many forms, including missing fields, cor-
related samples, and skewed distributions. There is such a richness and diversity of
complexity in working with data, someone could write a book on it. In fact, please see
Data Wrangling with JavaScript by Ashley Davis for a fuller exposition!10

Data scientists and data managers have become full-time professional roles in many
companies. The tools these professionals use and best practices they follow are diverse
and often depend on the specific domain under scrutiny. In this section, we will touch
on the basics and point to a few tools to help you avoid the heartbreak of long model
debugging sessions only to find out that it was the data itself that was flawed. For a
more thorough treatment of data science, we will offer references where you can
learn more.

6.4.1 Theory of data

In order to know how to detect and fix bad data, we must first know what good data
looks like. Much of the theory underpinning the field of machine learning rests on
the premise that our data comes from a probability distribution. In this formulation, our
training data consists of a collection of independent samples. Each sample is described
as an (x, y) pair, where y is the part of the sample we wish to predict from the x part.
Continuing this premise, our inference data consists of a collection of samples from the
exact same distribution as our training data. The only important difference between the
training data and the inference data is that at inference time, we do not get to see y.
We are supposed to estimate the y part of the sample from the x part using the statisti-
cal relationships learned from the training data.

There are a number of ways that our real-life data can fail to live up to this platonic
ideal. If, for instance, our training data and inference data are samples from different
distributions, we say there is dataset skew. As a simple example, if you are estimating
road traffic based on features like weather and time of day, and all of your training data
comes from Mondays and Tuesdays while your test data comes from Saturdays and Sun-
days, you can expect that the model accuracy will be less than optimal. The distribution
of auto traffic on weekdays is not the same as the distribution of traffic on weekends. As
another example, imagine we are building a face-recognition system, and we train the
system to recognize faces based on a collection of labeled data from our home country.
We should not be surprised to find that the system struggles and fails when used in

10 Available from Manning Publications, www.manning.com/books/data-wrangling-with-javascript.
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locations with different demographics. Most data-skew issues you’ll encounter in real
machine-learning settings will be more subtle than these two examples.

Another way that skew can sneak into a dataset is if there was some shift during data
collection. If, for instance, we are taking audio samples to learn speech signals, and
then halfway through the construction of our training set, our microphone breaks, so
we purchase an upgrade, we can expect that the second half of our training set will
have a different noise and audio distribution than our first half. Presumably, at infer-
ence time, we will be testing using only the new microphone, so skew exists between
the training and test set as well.

At some level, dataset skew is unavoidable. For many applications, our training data
necessarily comes from the past, and the data we pass to our application necessarily
comes from right now. The underlying distribution producing these samples is bound
to change as cultures, interests, fashions, and other confounding factors change with
the times. In such a situation, all we can do is understand the skew and minimize the
impact. For this reason, many machine-learning models in production settings are
constantly retrained using the freshest available training data in an attempt to keep up
with continually shifting distributions.

Another way our data samples can fail to live up to the ideal is by failing to be inde-
pendent. Our ideal states that the samples are independent and identically distributed
(IID). But in some datasets, one sample gives clues to the likely value of the next. Sam-
ples from these datasets are not independent. The most common way that sample-to-
sample dependence creeps into a dataset is by the phenomenon of sorting. For access
speed and all sorts of other good reasons, we have been trained as computer scientists
to organize our data. In fact, database systems often organize our data for us without
us even trying. As a result, when you stream your data from some source, you have to
be very careful that the results do not have some pattern in their order.

Consider the following hypothetical. We wish to build an estimate of the cost of
housing in California for an application in real estate. We get a CSV dataset of housing
prices11 from around the state, along with relevant features, such as the number of
rooms, the age of the development, and so on. We might be tempted to simply begin
training a function from features to price right away since we have the data, and we
know how to do it. But knowing that data often has flaws, we decide to take a look first.
We begin by plotting some features versus their index in the array, using datasets and
Plotly.js. See the plots in figure 6.3 for an illustration12 and the following listing (sum-
marized from https://codepen.io/tfjs-book/pen/MLQOem) for how the illustrations
were made.

11 A description of the California housing dataset used here is available from the Machine Learning Crash Course
at http://mng.bz/Xpm6.

12 The plots in figure 6.3 were made using the CodePen at https://codepen.io/tfjs-book/pen/MLQOem.
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  const plottingData = {
    x: [],
    y: [],
    mode: 'markers',
    type: 'scatter',
    marker: {symbol: 'circle', size: 8}
  };
  const filename = 'https://storage.googleapis.com/learnjs-data/csv-

datasets/california_housing_train.csv';
  const dataset = tf.data.csv(filename);
  await dataset.take(1000).forEachAsync(row => {
    plottingData.x.push(i++);
    plottingData.y.push(row['longitude']);
  });

  Plotly.newPlot('plot', [plottingData], {
    width: 700,
    title: 'Longitude feature vs sample index',
    xaxis: {title: 'sample index'},
    yaxis: {title: 'longitude'}
  });

Imagine we were to construct a train-test split with this dataset where we took the first
500 samples for training and the remainder for testing. What would happen? It
appears from this analysis that we would be training with data from one geographic
area and testing with data from another. The Longitude panel in figure 6.3 shows the
crux of the problem: the first samples are from a higher longitude (more westerly)
than any of the others. There is still probably plenty of signal in the features, and the
model would “work” somewhat, but it would not be as accurate or high-quality as if
our data were truly IID. If we didn’t know better, we might spend days or weeks play-
ing with different models and hyperparameters before we figured out what was wrong
and looked at our data!  

What can we do to clean this up? Fixing this particular issue is pretty simple. In
order to remove the relationship between the data and the index, we can just shuffle
our data into a random order. However, there is something we must watch out for
here. TensorFlow.js datasets have a built-in shuffle routine, but it is a streaming window
shuffle routine. This means that samples are randomly shuffled within a window of
fixed size but no further. This is out of necessity because TensorFlow.js datasets stream
data, and they may stream an unlimited number of samples. In order to completely
shuffle a never-ending data source, you first need to wait until it is done.

So, can we make do with this streaming window shuffle for our longitude feature?
Certainly if we know the size of the datasets (17,000 in this case), we can specify the
window to be larger than the entire dataset, and we are all set. In the limit of very
large window sizes, windowed shuffling and our normal exhaustive shuffling are iden-
tical. If we don’t know how large our dataset is, or the size is prohibitively large (that
is, we can’t hold the whole thing at once in a memory cache), we may have to make do
with less.

Listing 6.20 Building a plot of a feature vs. index using tfjs-data

Takes the first 1,000 samples 
and collects their values and 
their indices. Don’t forget 
await, or your plot will 
(probably) be empty!
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Figure 6.4, created with https://codepen.io/tfjs-book/pen/JxpMrj, illustrates what
happens when we shuffle our data with four different window sizes using tf.data
.Dataset’s shuffle() method:

for (let windowSize of [10, 50, 250, 6000]) {
   shuffledDataset = dataset.shuffle(windowSize);
   myPlot(shuffledDataset, windowSize)
}

We see that the structural relationship between the index and the feature value
remains clear even for relatively large window sizes. It isn’t until the window size is
6,000 that it looks to the naked eye like the data can now be treated as IID. So, is 6,000
the right window size? Was there a number between 250 and 6,000 that would have
worked? Is 6,000 still not enough to catch distributional issues we aren’t seeing in
these illustrations? The right approach here is to shuffle the entire dataset by using a
windowSize >= the number of samples in the dataset. For datasets where this is not
possible due to memory limitations, time constraints, or possibly unlimited datasets,
you must put on your data scientist hat and examine the distribution to determine an
appropriate window size.

Figure 6.3 Plots of four dataset features vs. the sample index. Ideally, in a clean IID dataset, we would 
expect the sample index to give us no information about the feature value. We see that for some features, 
the distribution of y values clearly depends on x. Most egregiously, the “longitude” feature seems to be 
sorted by the sample index.
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6.4.2 Detecting and cleaning problems with data

In the previous section, we went through how to detect and fix one type of data prob-
lem: sample-to-sample dependence. Of course, this is just one of the many types of
problems that can arise in data. A full treatment of all the types of things that can go
wrong is far beyond the scope of this book, because there are as many things that can
go wrong with data as there are things that can go wrong with code. Let’s go through
a few here, though, so you will recognize the problems when you see them and know
what terms to search for to find more information.

OUTLIERS

Outliers are samples in our dataset that are very unusual and somehow do not belong
to the underlying distribution. For instance, if we were working with a dataset of
health statistics, we might expect the typical adult’s weight to be between roughly 40
and 130 kilograms. If, in our dataset, 99.9% of our samples were in this range, but
every so often we encountered a nonsensical sample report of 145,000 kg, or 0 kg, or
worse, NaN,13 we would consider these samples as outliers. A quick online search
reveals that there are many opinions about the right way to deal with outliers. Ideally,
we would have very few outliers in our training data, and we would know how to find

13 Ingesting a value of NaN in our input features would propagate that NaN throughout our model.

Figure 6.4 Four plots of longitude vs. the sample index for four shuffled datasets. The shuffle window size is 
different for each, increasing from 10 to 6,000 samples. We see that even at a window size of 250, there is still 
a strong relationship between the index and the feature value. There are more large values near the beginning. 
It isn’t until we are using a shuffle window size almost as large as the dataset that the data’s IID nature is nearly 
restored.
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them. If we could write a program to reject outliers, we could remove them from our
dataset and go on training without them. Of course, we would want to also trigger that
same logic at inference time; otherwise we would introduce skew. In this case, we
could use the same logic to inform the user that their sample constitutes an outlier to
the system, and that they must try something different.

Another common way to deal with outliers at the feature level is to clamp values by
providing a reasonable minimum and maximum. In our case, we might replace
weight with

weight = Math.min(MAX_WEIGHT, Math.max(weight, MIN_WEIGHT));

In such circumstances, it is also a good idea to add a new feature, indicating that the
outlier value has been replaced. This way, an original value of 40 kg can be distin-
guished from a value of –5 kg that was clamped to 40 kg, giving the network the
opportunity to learn the relationship between the outlier status and the target, if such
a relationship exists:

isOutlierWeight = weight > MAX_WEIGHT | weight < MIN_WEIGHT;

MISSING DATA

Frequently, we are confronted with situations in which some samples are missing some
features. This can happen for any number of reasons. Sometimes the data comes from
hand-entered forms, and some fields are just skipped. Sometimes sensors were broken
or down at the time of data collection. For some samples, perhaps some features just
don’t make sense. For example, what is the most recent sale price of a home that has
never been sold? Or what is the telephone number of a person without a telephone?

As with outliers, there are many ways to address the problem of missing data, and
data scientists have different opinions about which techniques are appropriate in
which situations. Which technique is best depends on a few considerations, including
whether the likelihood of the feature to be missing depends on the value of the fea-
ture itself, or whether the “missingness” can be predicted from other features in the
sample. Info box 6.3 outlines a glossary of categories of missing data.

INFO BOX 6.3 Categories of missing data

Missing at random (MAR):

 The likelihood of the feature to be missing does not depend on the hidden
missing value, but it may depend on some other observed value.

 Example: If we had an automated visual system recording automobile traffic,
it might record, among other things, license plate numbers and time of day.
Sometimes, if it’s dark, we are unable to read the license plate. The plate’s
presence does not depend on the license plate value, but it may depend on
the (observed) time-of-day feature. 
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When data is missing from our training set, we have to apply some corrections to be
able to turn the data into a fixed-shape tensor, which requires a value in every cell.
There are four important techniques for dealing with the missing data.

The simplest technique, if the training data is plentiful and the missing fields are
rare, is to discard training samples that have missing data. However, be aware that this
can introduce a bias in your trained model. To see this plainly, imagine a problem in
which there is missing data much more commonly from the positive class than the
negative class. You would end up learning an incorrect likelihood of the classes. Only
if your missing data is MCAR are you completely safe to discard samples.

  const filteredDataset = 
      tf.data.csv(csvFilename)
     .filter(e => e['featureName']);

Another technique for dealing with missing data is to fill the missing data in with
some value, also known as imputation. Common imputation techniques include replac-
ing missing numeric feature values with the mean, median, or mode value of that fea-
ture. Missing categorical features may be replaced with the most common value for
that feature (also mode). More sophisticated techniques involve building predictors
for the missing features from the available features and using those. In fact, using neu-
ral networks is one of the “sophisticated techniques” for the imputation of missing
data. The downside of using imputation is that the learner is not aware that the fea-
ture was missing. If there is information in the missingness about the target variable, it
will be lost in imputation.

Listing 6.21 Handling missing features by removing the data

Missing completely at random (MCAR)

 The likelihood of the feature to be missing does not depend on the hidden
missing value or any of the observed values.

 Example: Cosmic rays interfere with our equipment and sometimes corrupt
values from our dataset. The likelihood of corruption does not depend on the
value stored or on other values in the dataset.

Missing not at random (MNAR)

 The likelihood of the feature to be missing depends on the hidden value,
given the observed data.

 Example: A personal weather station keeps track of all sorts of statistics, like
air pressure, rainfall, and solar radiation. However, when it snows, the solar
radiation meter does not take a signal.

Keeps only those elements whose value of 
‘featureName’ is truthy: that is, not 0, null, 
undefined, NaN, or an empty string
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  async function calculateMeanOfNonMissing(
      dataset, featureName) {
    let samplesSoFar = 0;
    let sumSoFar = 0;
    await dataset.forEachAsync(row => {
      const x = row[featureName];
      if (x != null) {
        samplesSoFar += 1;
        sumSoFar += x;
      }
    });
    return sumSoFar / samplesSoFar;
  }

  function replaceMissingWithImputed(
      row, featureName, imputedValue)) {
    const x = row[featureName];
    if (x == null) {
      return {...row, [featureName]: imputedValue}; 
    } else {
      return row;
    }
  }

  const rawDataset tf.data.csv(csvFilename);
  const imputedValue = await calculateMeanOfNonMissing(
      rawDataset, 'myFeature');
  const imputedDataset = rawDataset.map(
      row => replaceMissingWithImputed(
          row, 'myFeature', imputedValue));

Sometimes missing values are replaced with a sentinel value. For instance, a missing
body weight value might be replaced with a –1, indicating that no weight was taken. If
this appears to be the case with your data, take care to handle the sentinel value before
clamping it as an outlier (for example, based on our prior example, replacing this –1
with 40 kg).

Conceivably, if there is a relationship between the missingness of the feature and
the target to be predicted, the model may be able to use the sentinel value. In prac-
tice, the model will spend some of its computational resources learning to distinguish
when the feature is used as a value and when it is used as an indicator.

Perhaps the most robust way to manage missing data is to both use imputation to fill
in a value and add a second indicator feature to communicate to the model when that
feature was missing. In this case, we would replace the missing body weight with a guess
and also add a new feature weight_missing, which is 1 when weight was missing and 0
when it was provided. This allows the model to leverage the missingness, if valuable,
and also to not conflate it with the actual value of the weight.

Listing 6.22 Handling missing features with imputation

Function to calculate the value to use for 
imputation. Remember to only include 
valid values when computing the mean.

Both undefined and null values are 
considered to be missing here. Some 
datasets might use sentinel values like 
–1 or 0 to indicate missingness. Be 
sure to look at your data!

Note that this will return NaN 
when all the data is missing.

Function to conditionally 
update a row if the value 
at featureName is missing

Uses the tf.data.Dataset map()
method to map the replacement

over all the elements
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s 
function addMissingness(row, featureName)) {
  const x = row[featureName];
  const isMissing = (x == null) ? 1 : 0;
  return {...row, [featureName + '_isMissing']: isMissing}; 
}

const rawDataset tf.data.csv(csvFilename);
const datasetWithIndicator = rawDataset.map(
      (row) => addMissingness(row, featureName);

SKEW

Earlier in this chapter, we described the concept of skew, a difference in distribution
from one dataset to another. It is one of the major problems machine-learning practi-
tioners face when deploying trained models to production. Detecting skew involves mod-
eling the distributions of the datasets and comparing them to see if they match. A simple
way to quickly look at the statistics of your dataset is to use a tool like Facets (https://pair-
code.github.io/facets/). See figure 6.5 for a screenshot. Facets will analyze and summa-
rize your datasets to allow you to look at per-feature distributions, which will help you to
quickly suss out problems with different distributions between your datasets.

Listing 6.23 Adding a feature to indicate missingness

Function to add a new 
feature to each row, 
which is 1 if the feature i
missing and 0 otherwise

Uses the tf.data.Dataset map() 
method to map the additional 
feature into each row

Figure 6.5 A screenshot of Facets showing per-feature value distributions for the training and test 
split of the UC Irvine Census Income datasets (see http://archive.ics.uci.edu/ml/datasets/ Census+ 
Income). This dataset is the default loaded at https://pair-code.github.io/facets/, but you can 
navigate to the site and upload your own CSVs to compare. This view is known as Facets Overview.
 

https://pair-code.github.io/facets/
https://pair-code.github.io/facets/
http://archive.ics.uci.edu/ml/datasets/Census+Income
http://archive.ics.uci.edu/ml/datasets/Census+Income
https://pair-code.github.io/facets/
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A simple, rudimentary skew-detection algorithm may calculate the mean, median, and
variance of each feature and check whether any differences across datasets are within
acceptable bounds. More sophisticated methods may attempt to predict, given sam-
ples, which dataset they are from. Ideally, this should not be possible since they are
from the same distribution. If it is possible to predict whether a data point is from
training or testing, this is a sign of skew.

BAD STRINGS

Very commonly, categorical data is provided as string-valued features. For instance,
when users access your web page, you might keep logs of which browser was used with
values like FIREFOX, SAFARI, and CHROME. Typically, before ingesting these values into a
deep-learning model, the values are converted into integers (either through a known
vocabulary or by hashing), which are then mapped into an n-dimensional vector space
(See section 9.2.3 on word embeddings). A common problem is where the strings
from one dataset have different formatting from the strings in a different dataset. For
instance, the training data might have FIREFOX, while at service time, the model
receives FIREFOX\n, with the newline character included, or "FIREFOX", with quotes.
This is a particularly insidious form of skew and should be handled as such.

OTHER THINGS TO WATCH OUT FOR IN YOUR DATA

In addition to the problems called out in the previous sections, here are a few more
things to be aware of when feeding your data to a machine-learning system:

 Overly unbalanced data—If there are some features that take the same value for
nearly every sample in your dataset, you may consider getting rid of them. It is
very easy to overfit with this type of signal, and deep-learning methods do not
handle very sparse data well.

 Numeric/categorical distinction—Some datasets will use integers to represent ele-
ments of an enumerated set, and this can cause problems when the rank order
of these integers is meaningless. For instance, if we have an enumerated set of
music genres, like ROCK, CLASSICAL, and so on, and a vocabulary that mapped
these values to integers, it is important that we handle the values like enumer-
ated values when we pass them into the model. This means encoding the values
using one-hot or embedding (see chapter 9). Otherwise, these numbers will be
interpreted as floating-point values, suggesting spurious relationships between
terms based on the numeric distance between their encodings.

 Massive scale differences—This was mentioned earlier, but it bears repeating in
this section on what can go wrong with data. Watch out for numeric features
that have large-scale differences. They can lead to instability in training. In gen-
eral, it’s best to z-normalize (normalize the mean and standard deviation of)
your data before training. Just be sure to use the same preprocessing at serving
time as you did during training. You can see an example of this in the tensor-
flow/tfjs-examples iris example, as we explored in chapter 3.

 Bias, security, and privacy—Obviously, there is much more to responsible machine-
learning development than can be covered in a book chapter. It is critical, if you
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are developing machine-learning solutions, that you spend the time to familiarize
yourself with at least the basics of the best practices for managing bias, security,
and privacy. A good place to get started is the page on responsible AI practices at
https://ai.google/education/responsible-ai-practices. Following these practices is
just the right thing to do to be a good person and a responsible engineer—
obviously important goals in and of themselves. In addition, paying careful atten-
tion to these issues is a wise choice from a purely selfish perspective, as even small
failures of bias, security, or privacy can lead to embarrassing systemic failures that
quickly lead customers to look elsewhere for more reliable solutions.

In general, you should aim to spend time convincing yourself that your data is as you
expect it to be. There are many tools to help you do this, from notebooks like Observ-
able, Jupyter, Kaggle Kernel, and Colab, to graphical UI tools like Facets. See figure 6.6

Figure 6.6 Another screenshot of Facets, this time exploring the State of New York, Campuses dataset from the 
data-csv example. Here, we see the Facets Dive view that allows you to explore the relationships between 
different features of a dataset. Each point shown is a data point from the dataset, and here we have it configured 
so that the point’s x-position is set to the Latitude1 feature, the y-position is the Longitude1 feature, the color is 
related to the Undergraduate Enrollment feature, and the words on the front are set to the City feature, which 
contains, for each data point, the name of the city the university campus is in. We can see from this visualization 
a rough outline of the state of New York, with Buffalo in the west and New York in the southeast. Apparently, the 
city of Selden contains one of the largest campuses by undergraduate enrollment.
 

https://ai.google/education/responsible-ai-practices
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for another way to explore your data in Facets. Here, we use Facets’ plotting feature,
known as Facets Dive, to view points from the State Universities of New York (SUNY)
dataset. Facets Dive allows the user to select columns from the data and visually express
each field in a custom way. Here, we’ve used the drop-down menus to use the Longi-
tude1 field as the x-position of the point, the Latitude1 field as the y-position of the
point, the City string field as the name of the point, and the Undergraduate Enroll-
ment as the color of the point. We expect the latitude and longitude, plotted on the 2D
plane, to reveal a map of New York state, and indeed that’s what we see. The correct-
ness of the map can be verified by comparing it to SUNY’s web page at www.suny
.edu/attend/visit-us/campus-map/.

6.5 Data augmentation
So, we’ve collected our data, we’ve connected it to a tf.data.Dataset for easy manip-
ulation, and we’ve scrutinized it and cleaned it of problems. What else can we do to
help our model succeed?

Sometimes, the data you have isn’t enough, and you wish to expand the dataset
programmatically, creating new examples by making small changes to existing data.
For instance, recall the MNIST hand-written digit-classification problem from chapter
4. MNIST contains 60,000 training images of 10 hand-written digits, or 6,000 per digit.
Is that enough to learn all the types of flexibility we want for our digit classifier? What
happens if someone draws a digit too large or small? Or rotated slightly? Or skewed?
Or with a thicker or thinner pen? Will our model still understand?

If we take an MNIST sample digit and alter the image by moving the digit one pixel
to the left, the semantic label of the digit doesn’t change. The 9 shifted to the left is
still a 9, but we have a new training example. This type of programmatically generated
example, created from mutating an actual example, is known as a pseudo-example, and
the process of adding pseudo-examples to the data is known as data augmentation.

Data augmentation takes the approach of generating more training data from
existing training samples. In the case of image data, various transformations such as
rotating, cropping, and scaling often yield believable-looking images. The purpose is
to increase the diversity of the training data in order to benefit the generalization
power of the trained model (in other words, to mitigate overfitting), which is espe-
cially useful when the size of the training dataset is small.

Figure 6.7 shows data augmentation applied to an input example consisting of an
image of a cat, from a dataset of labeled images. The data is augmented by applying
rotations and skew in such a way that the label of the example, that is, “CAT” does not
change, but the input example changes significantly.

If you train a new network using this data-augmentation configuration, the network
will never see the same input twice. But the inputs it sees are still heavily intercorrelated
because they come from a small number of original images—you can’t produce new
information, you can only remix existing information. As such, this may not be enough
 

www.suny.edu/attend/visit-us/campus-map/
www.suny.edu/attend/visit-us/campus-map/
www.suny.edu/attend/visit-us/campus-map/
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to completely get rid of overfitting. Another risk of using data augmentation is that the
training data is now less likely to match the distribution of the inference data, introduc-
ing skew. Whether the benefits of the additional training pseudo-examples outweigh
the costs of skew is application-dependent, and it’s something you may just need to test
and experiment with.

Listing 6.24 shows how you can include data augmentation as a dataset.map()
function, injecting allowable transformations into your dataset. Note that augmenta-
tion should be applied per example. It’s also important to see that augmentation
should not be applied to the validation or testing set. If we test on augmented data,
then we will have a biased measure of the power of our model because the augmenta-
tions will not be applied at inference time.

Figure 6.7 Generation of cat pictures via random data augmentation. A single 
labeled example can yield a whole family of training samples by providing random 
rotations, reflections, translations, and skews. Meow.
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  function augmentFn(sample) {
    const img = sample.image;
    const augmentedImg = randomRotate(
        randomSkew(randomMirror(img))));
    return {image: augmentedImg, label: sample.label};
  }

  const (trainingDataset, validationDataset} =
      getDatsetsFromSource();
  augmentedDataset = trainingDataset
     .repeat().map(augmentFn).batch(BATCH_SIZE);

  // Train model
  await model.fitDataset(augmentedDataset, {
    batchesPerEpoch: ui.getBatchesPerEpoch(), 
    epochs: ui.getEpochsToTrain(),
    validationData: validationDataset.repeat(),
    validationBatches: 10,
    callbacks: { ... },
    }
  }

Hopefully, this chapter convinced you of the importance of understanding your data
before throwing machine-learning models at it. We talked about out-of-the-box tools
such as Facets, which you can use to examine your datasets and thereby deepen your
understanding of them. However, when you need a more flexible and customized visu-
alization of your data, it becomes necessary to write some code to do that job. In the
next chapter, we will teach you the basics of tfjs-vis, a visualization module maintained
by the authors of TensorFlow.js that can support such data-visualization use cases.

Exercises
1 Extend the simple-object-detection example from chapter 5 to use tf.data

.generator() and model.fitDataset() instead of generating the full dataset
up front. What advantages are there to this structure? Does performance mean-
ingfully improve if the model is provided a much larger dataset of images to
train from?

2 Add data augmentation to the MNIST example by adding small shifts, scales,
and rotations to the examples. Does this help in performance? Does it make
sense to validate and test on the data stream with augmentation, or is it more
proper to test only on “real” natural examples?

Listing 6.24 Training a model on a dataset with data augmentation

The augmentation function takes a sample in {image, 
label} format and returns a new, perturbed sample in 
the same format.

Assume that randomRotate, 
randomSkew, and randomMirror are 
defined elsewhere by some library. 
The amount to rotate, skew, and so 
on is generated randomly for each 
call. The augmentation should 
depend only on the features, not the 
label of the sample.

This function returns two 
tf.data.Datasets, each with 
element type {image, label}.

The augmentation is 
applied to the individual 
elements before batching.

We fit the 
model on the 
augmented 
dataset.

IMPORTANT! Do not apply augmentation to
the validation set. Repeat is called on the

validationData here since the data won’t loop
automatically. Only 10 batches are taken per

validation measurement, as configured.
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3 Try plotting some of the features from some of the datasets we’ve used in other
chapters using the techniques in section 6.4.1. Does the data meet the expecta-
tions of independence? Are there outliers? What about missing values?

4 Load some of the CSV datasets we’ve discussed here into the Facets tool. What
features look like they could cause problems? Any surprises?

5 Consider some of the datasets we’ve used in earlier chapters. What sorts of data
augmentation techniques would work for those?

Summary 
 Data is a critical force powering the deep-learning revolution. Without access to

large, well-organized datasets, most deep-learning applications could not hap-
pen.

 TensorFlow.js comes packaged with the tf.data API to make it easy to stream
large datasets, transform data in various ways, and connect them to models for
training and prediction.

 There are several ways to build a tf.data.Dataset object: from a JavaScript
array, from a CSV file, or from a data-generating function. Building a dataset
that streams from a remote CSV file can be done in one line of JavaScript.

 tf.data.Dataset objects have a chainable API that makes it easy and conve-
nient to shuffle, filter, batch, map, and perform other operations commonly
needed in a machine-learning application.

 tf.data.Dataset accesses data in a lazy streaming fashion. This makes working
with large remote datasets simple and efficient but comes at the cost of working
with asynchronous operations.

 tf.Model objects can be trained directly from a tf.data.Dataset using their
fitDataset() method.

 Auditing and cleaning data requires time and care, but it is a required step for
any machine-learning system you intend to put to practical use. Detecting and
managing problems like skew, missing data, and outliers at the data-processing
stage will end up saving debugging time during the modeling stage.

 Data augmentation can be used to expand the dataset to include programmati-
cally generated pseudo-examples. This can help the model to cover known
invariances that were underrepresented in the original dataset.
 



Visualizing data and models
Visualization is an important skill for machine-learning practitioners because it is
involved in every phase of the machine-learning workflow. Before we build models,
we examine our data by visualizing it; during model engineering and training, we
monitor the training process through visualization; after the model is trained, we
use visualization to get a sense about how it works.

In chapter 6, you learned the benefits of visualizing and understanding data
before applying machine learning on it. We described how to use Facets, a browser-
based tool that helps you get a quick, interactive look at your data. In this chapter,
we will introduce a new tool, tfjs-vis, which helps you visualize your data in custom,
programmatic ways. The benefit of doing so, versus just looking at the data in its
raw format or using off-the-shelf tools such as Facets, is the more flexible and versa-
tile visualization paradigm and the deeper understanding of data that it leads to.

In addition to the visualization of data, we will show how visualization can be
used on deep-learning models after they are trained. We will use the fascinating
examples of peeking into the “black boxes” of neural networks by visualizing their

This chapter covers
 How to use tfjs-vis to perform custom data visualization

 How to peek at the internal workings of models after they 
are trained and gain useful insights
246
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internal activations and computing the patterns that maximally “excite” layers of a
convnet. This will complete the story of how visualization goes hand-in-hand with
deep learning in each and every stage of it.

By the end of this chapter, you should know why visualization is an indispensable
part of any machine-learning workflow. You should also be familiar with the standard
ways in which data and models are visualized in the framework of TensorFlow.js and
be able to apply them to your own machine-learning problems. 

7.1 Data visualization 
Let’s start from the visualization of data, because that’s the first thing a machine-learn-
ing practitioner does when laying hands on a new problem. We assume that the visual-
ization task is more advanced than what can be covered by Facets (for instance, the
data isn’t in a small CSV file). For that, we will first introduce a basic charting API that
helps you create simple and widely used types of plots, including line charts, scatter
plots, bar charts, and histograms, in the browser. After we’ve covered the basic exam-
ples using hand-coded data, we will put things together by using an example involving
the visualization of an interesting real dataset.

7.1.1 Visualizing data using tfjs-vis

tfjs-vis is a visualization library closely integrated with TensorFlow.js. Among its many
features that this chapter will cover is a lightweight charting API under its tfvis.ren-
der.* namespace.1 This simple and intuitive API allows you to make charts in the
browser, with a focus on the types of charts most frequently used in machine learning.
To help you get started with tfvis.render, we will give you a tour of the CodePen at
https://codepen.io/tfjs-book/pen/BvzMZr, which showcases how to use tfvis.ren-
der to create various types of basic data plots.

BASICS OF TFJS-VIS

First, note that tfjs-vis is separate from the main TensorFlow.js library. You can see this
from how the CodePen imports tfjs-vis with a <script> tag:

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@latest">
</script>

This is different from how the main TensorFlow.js library is imported:

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest">
</script>

The same distinction applies to the npm packages of tfjs-vis and TensorFlow.js (@ten-
sorflow/tfjs-vis and @tensorflow/tfjs, respectively). In a web page or JavaScript
program that depends on both TensorFlow.js and tfjs-vis, the two dependencies must
both be imported.

1 This charting API is built on top of the Vega visualization library: https://vega.github.io/vega/.
 

https://codepen.io/tfjs-book/pen/BvzMZr
https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@latest
https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@latest
https://arxiv.org/pdf/1602.04938.pdf
https://tensorspace.org/
https://vega.github.io/vega/
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Line charts

The most commonly used type of chart is perhaps the line chart (a curve that plots a
quantity against an ordered quantity). A line chart has a horizontal axis and a vertical
axis, which are often referred to as the x-axis and y-axis, respectively. This type of visu-
alization is seen everywhere in life. For example, we can plot how the temperature
changes over the course of a day with a line chart in which the horizontal axis is the
time of day and the vertical axis is the reading of a thermometer. The horizontal axis
of a line chart can also be something other than time. For instance, we can use a line
chart to show the relation between the therapeutic effect of a high-blood-pressure
medication (how much it reduces blood pressure) and the dose (how much of the
medication is used per day). Such a plot is referred to as a dose-response curve. Another
good example of a nontemporal line chart is the ROC curve we discussed in chapter
3. There, neither the x- nor y-axis has to do with time (they are the false and true pos-
itive rates of a binary classifier).

To create a line chart with tfvis.render, use the linechart() function. As the first
example in the CodePen (also listing 7.1) shows, the function takes three arguments:

1 The first argument is the HTML element in which the chart will be drawn. An
empty <div> element suffices.

2 The second argument is the values of the data points in the chart. This is a plain
old JavaScript object (POJO) with the value field pointing to an array. The
array consists of a number of x-y value pairs, each of which is represented by a
POJO with fields named x and y. The x and y values are, of course, the x- and y-
coordinates of the data points, respectively.

3 The third argument, which is optional, contains additional configuration fields
for the line chart. In this example, we use the width field to specify the width of
the resultant chart (in pixels). You will see more configuration fields in the
coming examples.2

let values = [{x: 1, y: 20}, {x: 2, y: 30}, 
              {x: 3, y: 5}, {x: 4, y: 12}];
tfvis.render.linechart(document.getElementById('plot1'),
                       {values},
                      {width: 400});

Listing 7.1 Making a simple line chart using tfvis.render.linechart()

2 https://js.tensorflow.org/api_vis/latest/ contains the full documentation of the tfjs-vis API, where you can
find information about other configuration fields of this function.

The data series is an 
array of x-y pairs.

The first argument is an HTML 
element in which the chart will 
be drawn. Here, ‘plot1’ is the ID 
of an empty div.

The second argument is an 
Object containing the key 
“value.”

Custom configuration is passed as 
the third argument. In this case, we 
configure only the width of the plot.
 

https://js.tensorflow.org/api_vis/latest/
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The line chart created by the code in listing 7.1 is shown in the left panel of figure 7.1.
This is a simple curve with only four data points. But the linechart() function can
support curves with many more data points (for example, thousands). However, you
will eventually run into the browser’s resource restrictions if you try to plot too many
data points at once. The limit is browser- and platform-dependent and should be dis-
covered empirically. In general, it is good practice to limit the size of the data to be
rendered in interactive visualizations for the sake of a smooth and responsive UI.

Sometimes you want to plot two curves in the same chart in order to show the relation
between them (for instance, to contrast them with each other). You can make these
sorts of plots with tfvis.render.linechart(). An example is shown in the right
panel of figure 7.1 and the code in listing 7.2. 

These are known as multiseries charts, and each line is called a series. To create a mul-
tiseries chart, you must include an additional field, series, in the first argument to
linechart(). The value of the field is an array of strings. The strings are the names
given to the series and will be rendered as a legend in the resulting chart. In the exam-
ple code, we call our series 'My series 1' and 'My series 2'. 

The value field of the first argument also needs to be specified properly for a mul-
tiseries chart. For our first example, we provided an array of points, but for multiseries
plots, we must provide an array of arrays. Each element of the nested array is the data
points of a series and has the same format as the values array we saw in listing 7.1 when
we plotted a single-series chart. Therefore, the length of the nested array must match
the length of the series array, or an error will occur.

The chart created by listing 7.2 is shown in the right panel of figure 7.1. As you can
see in the chart in electronic versions of this book, tfjs-vis has picked two different col-
ors (blue and orange) to render the two curves in. This default coloring scheme works
well in general because blue and orange are easy to tell apart. If there are more series
to render, other new colors will be selected automatically.

Figure 7.1 Line charts created using tfvis.render.linechart(). Left: a single series, made using the 
code in listing 7.1. Right: two series in the same axes, made using the code in listing 7.2.

30

20

10

0

y

0.0 1.0 2.0 3.0
x My x-axis label

M
y 

y-
ax

is
 la

b
el

Series 1 My series 1
My series 2

0

0.0

10

30

20

40

50

1.0 2.0 3.0
 



250 CHAPTER 7 Visualizing data and models
The two series in this example chart are a little special in the sense that they have
exactly the same set of x-coordinate values (1, 2, 3, and 4). However, in general, the x-
coordinate values of different series in a multiseries chart don’t have to be identical.
You are encouraged to try this in exercise 1 at the end of this chapter. But, be aware
that it is not always a good idea to plot two curves in the same chart. For example, if
the two curves have very different and nonoverlapping y-value ranges, plotting them
in the same line chart will make the variation in each curve harder to see. In such
cases, it is better to plot them in separate line charts.

Another thing worth pointing out in listing 7.2 is the custom labels for the axes.
We use the xLabel and yLabel fields in the configuration object (the third argu-
ment passed to linechart()) in order to label the x- and y-axis as custom strings of
our choice. In general, it is good practice to always label your axes, as it makes the
charts more self-explanatory. tfjs-vis will always label your axes as x and y if you don’t
specify xLabel and yLabel, which is what happened in listing 7.1 and the left panel
of figure 7.1.

  values = [
    [{x: 1, y: 20}, {x: 2, y: 30}, {x: 3, y: 5}, {x: 4, y: 12}],
    [{x: 1, y: 40}, {x: 2, y: 0}, {x: 3, y: 50}, {x: 4, y: -5}]
  ]; 
  let series = ['My series 1', 'My series 2'];
  tfvis.render.linechart(

      document.getElementById('plot2'), {values, series}, {
    width: 400,
    xLabel: 'My x-axis label',
    yLabel: 'My y-axis label'
  });

Scatter plots

Scatter plots are another type of chart you can create with tfvis.render. The most
salient difference between a scatter plot and a line chart is the fact that a scatter plot
doesn’t connect the data points with line segments. This makes scatter plots suitable
for cases in which the ordering among data points is unimportant. For example, a
scatter plot may plot the population of a few countries against their per-capita GDPs.
In such a plot, the primary piece of information is the relation between the x- and y-
values, not an ordering among the data points. 

In tfvis.render, the function that lets you create scatter plots is scatterplot().
As the example in listing 7.3 shows, scatterplot() can render multiple series, just
like linechart(). In fact, the APIs of scatterplot() and linechart() are practically
identical, as you can see by comparing listing 7.2 with listing 7.3. The scatter plot cre-
ated by listing 7.3 is shown in figure 7.2.

Listing 7.2 Making a line chart with two series using tfvis.render.linechart()

To show multiple series in the same 
axes, make values an array consisting of 
multiple arrays of x-y pairs.

Series names must be
provided when plotting

multiple series.
Overrides the default 
x- and y-axis labels
 



251Data visualization
  values = [
    [{x: 20, y: 40}, {x: 32, y: 0}, {x: 5, y: 52}, {x: 12, y: -6}],
    [{x: 15, y: 35}, {x: 0, y: 9}, {x: 7, y: 28}, {x: 16, y: 8}]
  ];
  series = ['My scatter series 1', 'My scatter series 2'];
  tfvis.render.scatterplot(
      document.getElementById('plot4'),
    {values, series}, 
     {
      width: 400,
      xLabel: 'My x-values',
      yLabel: 'My y-values'
    });

Bar charts

As its name indicates, a bar chart uses bars to show the magnitude of quantities. Such
bars usually start from zero at the bottom so that the ratios between the quantities can
be read from the relative heights of the bars. Therefore, bar charts are a good choice
when the ratio between quantities is of importance. For example, it is natural to use a
bar chart to show the annual revenue of a company over a few years. In this case, the
relative heights of the bars give the viewer an intuitive sense of how the revenue
changes from one quarter to another in terms of the ratio between them. This makes
bar charts distinct from line charts and scatter plots, in which the values are not neces-
sarily “anchored” at zero.

To create a bar chart with tfvis.render, use barchart(). You can find an example
in listing 7.4. The bar chart created by the code is shown in figure 7.3. The API of
barchart() is similar to those of linechart() and scatterplot(). However, an
important difference should be noted. The first argument passed to barchart() is not
an object consisting of a value field. Instead, it is a simple array of index-value pairs.
The horizontal values are not specified with a field called x, but are instead specified
with a field called index. Similarly, the vertical values are not specified with a field
called y, but are instead associated with a field called value. Why this difference? It is

Listing 7.3 Making a scatter plot using tfvis.render.scatterplot()

As in linechart(), uses an
array of x-y pair arrays to
show multiple series in a

scatter plot

Always remember 
to label your axes.
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Figure 7.2 A scatter plot that 
contains two series, made with 
the code in listing 7.3.
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because the horizontal values of a bar in a bar chart don’t have to have a number.
Instead, they can be either strings or numbers, as is shown by our example in figure 7.3.

const data = [
    {index: 'foo', value: 1},{index: 'bar', value: 7},
    {index: 3, value: 3},
    {index: 5, value: 6}];
  tfvis.render.barchart(document.getElementById('plot5'), data, {
    yLabel: 'My value',
    width: 400
  });

Histograms

The three types of plots described previously let you plot the values of a certain quantity.
Sometimes, the detailed quantitative values are not as important as the distribution of the
values. For example, consider an economist looking at the annual household income
data from the result of a national census. To the economist, the detailed income values
are not the most interesting piece of information. They contain too much information
(yes, sometimes too much information can be a bad thing!). Instead, the economist
wants a more succinct summary of the income values. They’re interested in how such
values are distributed—that is, how many of them fall below US$20,000, how many of
them are between $20,000 and $40,000, or between $40,000 and $60,000, and so forth.
Histograms are a type of chart suited for such a visualization task.

A histogram assigns the values into bins. Each bin is simply a continuous range for
the value, with a lower bound and an upper bound. The bins are chosen to be adja-
cent to each other so as to cover all possible values. In the prior example, the econo-
mist may use bins such as 0 ~ 20k, 20k ~ 40k, 40k ~ 60k, and so forth. Once such a set
of N bins is chosen, you can write a program to count the number of individual data
points that fall into each of the bins. Executing this program will give you N numbers
(one for each bin). You can then plot the numbers using vertical bars. This gives you a
histogram.

Listing 7.4 Creating a bar chart using tfvis.render.barchart()

Notice how the index of a bar chart can
be numeric or a string. Note that the

order of the elements matters.
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Figure 7.3 A bar chart consisting of 
both string- and numeric-named bars, 
made with the code in listing 7.4
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tfvis.render.histogram() does all these steps for you. This saves you the effort of
determining the bounds of the bins and counting the examples by the bins. To invoke
histogram(), simply pass an array of numbers, as shown in the following listing. These
numbers don’t need to be sorted in any order.

  const data = [1, 5, 5, 5, 5, 10, -3, -3];
  tfvis.render.histogram(document.getElementById('plot6'), data, {
    width: 400
  });

  // Histogram: with custom number of bins.
  // Note that the data is the same as above.
  tfvis.render.histogram(document.getElementById('plot7'), data, {
    maxBins: 3,
    width: 400
  });

In listing 7.5, there are two slightly different histogram() calls. The first call doesn’t
specify any custom options beyond the width of the plot. In this case, histogram()
uses its built-in heuristics to calculate the bins. This results in seven bins –4 ~ –2, –2 ~ 0,
0 ~ 2, . . ., 8 ~ 10, as shown in the left panel of figure 7.4. When divided among these
seven bins, the histogram shows the highest value in the bin 4 ~ 6, which contains a
count of 4 because four of the values in the data array are 5. Three bins of the histo-
gram (–2 ~ 0, 2 ~ 4, and 6 ~ 8) have zero value because none of the elements of the
data points falls into any of these three bins.

Hence, we can argue that the default heuristics end up with too many bins for our
particular data points. If there are fewer bins, then it will be less likely that any of them
will end up empty. You can use the configuration field maxBins to override the default
binning heuristics and limit the number of bins. This is what’s done by the second
histogram() call in listing 7.5, the result of which is shown on the right in figure 7.4.
You can see that by limiting the number of bins to three, all the bins become nonempty.

Listing 7.5 Visualizing a value distribution using tfvis.render.histogram()
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Figure 7.4 Histograms of the same data, plotted with the automatically calculated bins (left) and an explicitly 
specified number of bins (right). The code that generates these histograms is in listing 7.5.
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Heatmaps

A heatmap displays a 2D array of numbers as a grid of colored cells. The color of each
cell reflects the relative magnitude of the elements of the 2D array. Traditionally,
“cooler” colors such as blue and green are used to represent lower values, while
“warmer” colors such as orange and red are used to show higher ones. This is why
these plots are called heatmaps. Perhaps the most frequently encountered examples
of heatmaps in deep learning are confusion matrices (see the iris-flower example in
chapter 3) and attention matrices (see the date-conversion example in chapter 9). tfjs-
vis provides the function tfvis.render.heatmap() to support the rendering of this
type of visualization.

Listing 7.6 shows how to make a heatmap to visualize a made-up confusion matrix
involving three classes. The value of the confusion matrix is specified in the values
field of the second input argument. The names of the classes, which are used to label
the columns and rows of the heatmap, are specified as xTickLabels and yTickLabels.
Do not confuse these tick labels with xLabel and yLabel in the third argument, which
are for labeling the entire x- and y-axes. Figure 7.5 shows the resulting heatmap plot.

  tfvis.render.heatmap(document.getElementById('plot8'), {
    values: [[1, 0, 0], [0, 0.3, 0.7], [0, 0.7, 0.3]],
    xTickLabels: ['Apple', 'Orange', 'Tangerine'],
    yTickLabels: ['Apple', 'Orange', 'Tangerine']
  }, {
    width: 500,
    height: 300,
    xLabel: 'Actual Fruit',
    yLabel: 'Recognized Fruit',
    colorMap: 'blues'
  });

Listing 7.6 Visualizing 2D tensors using tfvis.render.heatmap()

The values
passed to

heatmap() can
be a nested

JavaScript array
(as shown here)

or a 2D tf.Tensor.

xTickLabels is used to label the
individual columns along the
x-axis. Don’t confuse it with

xLabel. Likewise, yTickLabels is
used to label the individual

rows along the y-axis.

xLabel and yLabel are used to 
label the entire axes, unlike 
xTickLabel and yTickLabel.

Apart from the ‘blues’ color map 
shown here, there are also 
‘greyscale’ and ‘viridian’.
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Figure 7.5 The heatmap 
rendered by the code in 
listing 7.6. It shows an 
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This concludes our quick tour of four major types of charts supported by tfvis.render.
If your future work involves data visualization using tfjs-vis, odds are that you will use
these charts a lot. Table 7.1 provides a brief summary of the chart types in order to help
you decide which one to use for a given visualization task. 

7.1.2 An integrative case study: Visualizing weather data with tfjs-vis

The CodePen examples in the previous section used small, hand-coded data. In this
section, we will show how to use the charting features of tfjs-vis on a much larger and
more interesting real dataset. This will demonstrate the true power of the API and
make a case for the value of such data visualization in the browser. This example will
also highlight some of the nuances and gotchas you may run into when using the
charting API on real problems.

The data we will use is the Jena-weather-archive dataset. It includes the measure-
ments collected with a variety of meteorological instruments at a location in Jena, Ger-
many, over a course of eight years (between 2009 and 2017). The dataset, which can
be downloaded from the Kaggle page (see www.kaggle.com/pankrzysiu/weather-
archive-jena), comes in a 42MB CSV file. It consists of 15 columns. The first column is

Table 7.1 A summary of the five major types of charts supported by tfjs-vis under the tfvis.render
namespace

Name of chart Corresponding function in tfjs-vis
Suitable visualization tasks 

and machine-learning examples

Line chart tfvis.render.linechart() A scalar (y-value) varying with another scalar (x-value) 
that has an intrinsic ordering (time, dose, and so on). 
Multiple series can be plotted in the same axes: for 
example, metrics from the training and validation sets, 
each of which is plotted against training-epoch number.

Scatter plot tfvis.render.scatterplot() x-y scalar value pairs that do not have an intrinsic 
ordering, such as the relation between two numeric 
columns of a CSV dataset. Multiple series can be plot-
ted in the same axes.

Bar chart tfvis.render.barchart() A set of values belonging to a small number of catego-
ries, such as accuracies (as percent numbers) 
achieved by several models on the same classification 
problem.

Histogram tfvis.render.histogram() A set of values of which the distribution is of primary 
interest, such as the distribution of parameter values 
in the kernel of a dense layer.

Heatmap tfvis.render.heathmap() A 2D array of numbers to be visualized as a 2D grid of 
cells, each element of which is color-coded to reflect 
the magnitude of the corresponding value: for exam-
ple, confusion matrix of a multiclass classifier (section 
3.3); attention matrix of a sequence-to-sequence 
model (section 9.3).
 

www.kaggle.com/pankrzysiu/weather-archive-jena
www.kaggle.com/pankrzysiu/weather-archive-jena


256 CHAPTER 7 Visualizing data and models
a timestamp, while the remaining columns are weather data such as temperature (T
deg(C)), air pressure (p (mbar)), relative humidity (rh (%s)), wind velocity (wv
(m/s)), and so on. If you examine the timestamps, you can see that they have a 10-
minute spacing, reflecting the fact that the measurements were made every 10 min-
utes. This is a rich dataset to visualize, explore, and try machine learning on. In the
following sections, we will try making weather forecasts using various machine-
learning models. In particular, we will predict the temperature of the next day using
the weather data from the 10 preceding days. But before we embark on this exciting
weather forecasting task, let’s follow the principle of “always look at your data before
trying machine learning on it” and see how tfjs-vis can be used to plot the data in a
clear and intuitive fashion.

To download and run the Jena-weather example, use the following commands:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/jena-weather
yarn
yarn watch

LIMITING THE AMOUNT OF DATA FOR EFFICIENT AND EFFECTIVE VISUALIZATION

The Jena-weather dataset is quite large. At a file size of 42 MB, it is bigger than all the
CSV or tabular datasets you’ve seen in this book so far. This leads to two challenges:

 The first challenge is for the computer: if you plot all the data from the eight
years at once, the browser tab will run out of resources, become unresponsive,
and probably crash. Even if you limit yourself to only 1 of the 14 columns, there
are still about 420,000 data points to show. This is more than what tfjs-vis (or any
JavaScript plotting library, for that matter) can safely render at a time.

 The second challenge is for the user: it is hard for a human to look at a large
amount of data at once and make sense out of it. For instance, how is someone
supposed to look at all 420,000 data points and extract useful information from
them? Just like the computer, the human brain has limited information-
processing bandwidth. The job of a visualization designer is to present the most
relevant and informative aspects of the data in an efficient way.

We use three tricks to address these challenges:

 Instead of plotting the data from the whole eight years at once, we let the user
choose what time range to plot using an interactive UI. This is the purpose of
the Time Span drop-down menu in the UI (see the screenshots in figures 7.6
and 7.7). The time-span options include Day, Week, 10 Days, Month, Year, and
Full. The last one corresponds to the whole eight years. For any of the other
time spans, the UI allows the user to go back and forth in time. This is what the
left-arrow and right-arrow buttons are for.

 For any time span longer than a week, we downsample the time series before
plotting them on the screen. For example, consider the time span Month (30
days). The full data for this time span contains about 30 * 24 * 6 = 4.32k data
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points. In the code in listing 7.7, you can see that we only plot every sixth data
point when showing the data from a month. This cuts the number of plotted
data points down to 0.72k, a significant reduction in the rendering cost. But to
human eyes, this six-fold reduction in the data-point count barely makes a dif-
ference.

 Similar to what we did with the Time Span drop-down menu, we include a drop-
down menu in the UI so that the user can choose what weather data to plot at
any given time. Notice the drop-down menus labeled Data Series 1 and Data
Series 2. By using them, the user may plot any 1 or any 2 of the 14 columns as
line charts on the screen, in the same axes.

Listing 7.7 shows the code responsible for making the charts like the ones in figure
7.6. Despite the fact that the code calls tfvis.render.linechart() just like the Code-
Pen example in the previous section, it is much more abstract compared to the code
in the previous listings. This is because in our web page, we need to defer the decision
of what quantities to plot according to the UI state.

function makeTimeSerieChart(
    series1, series2, timeSpan, normalize, chartContainer) {
  const values = [];
  const series = [];
  const includeTime = true;
  if (series1 !== 'None') {
    values.push(jenaWeatherData.getColumnData(
        series1, includeTime, normalize, currBeginIndex,
        TIME_SPAN_RANGE_MAP[timeSpan],
        TIME_SPAN_STRIDE_MAP[timeSpan]));
    series.push(normalize ? `${series1} (normalized)` : series1);
  }
  if (series2 !== 'None') {
    values.push(jenaWeatherData.getColumnData(
        series2, includeTime, normalize, currBeginIndex,
        TIME_SPAN_RANGE_MAP[timeSpan],
        TIME_SPAN_STRIDE_MAP[timeSpan]));
    series.push(normalize ? `${series2} (normalized)` : series2);
  }
  tfvis.render.linechart({values, series: series}, chartContainer, {
    width: chartContainer.offsetWidth * 0.95,
    height: chartContainer.offsetWidth * 0.3,
    xLabel: 'Time',
    yLabel: series.length === 1 ? series[0] : ''
  });
}

Listing 7.7 Weather data as a multiseries line chart (in jena-weather/index.js)

jenaWeatherData is an object that helps us 
organize and retrieve the weather data from 
the CSV file. See jena-weather/data.js.

Specifies
the time
span for

visualization

Chooses the 
appropriate 
stride 
(downsampling 
factor)

Takes advantage of the 
fact that tfjs-vis’s line 
chart supports multiple 
series

Always label the axes.
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You are encouraged to explore the data-visualization UI. It contains a lot of interest-
ing patterns you can discover about weather. For example, the top panel of figure 7.6
shows how the normalized temperature (T (degC)) and normalized air pressure
(p (mbar)) vary over a time period of 10 days. In the temperature curve, you can see a
clear daily cycle: the temperature tends to peak around the middle of the day and
bottom out shortly after midnight. On top of the daily cycle, you can also see a more
global trend (a gradual increase) over the 10-day period. By contrast, the air-pressure
curve doesn’t show a clear pattern. The bottom panel of the same figure shows the
same measurements over the time span of a year. There, you can see the annual cycle
of temperature: it peaks around August and reaches the bottom around January. The
air pressure again shows a less clear-cut pattern than temperature at this time scale.

Figure 7.6 Line charts of temperature (T (degC)) and air pressure (p (mbar)) from the Jena-
weather-archive dataset, plotted at two different time scales. Top: 10-day time span. Notice the 
daily cycle in the temperature curve. Bottom: 1-year time span. Notice the annual cycle in the 
temperature curve and the slight tendency for air pressure to be more stable during spring and 
summer than during other seasons.
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The pressure can vary in a somewhat chaotic fashion over the entire year, although
there appears to be a tendency for it to be less variable around summer than in winter.
By looking at the same measurements at different time scales, we can notice various
interesting patterns. All these patterns are nearly impossible to notice if we look at just
the raw data in the numerical CSV format.

One thing you might have noticed in the charts in figure 7.6 is that they show nor-
malized values of temperature and air pressure instead of their absolute values, which
is due to the fact that the Normalize Data check box in the UI was checked when we
made these plots. We briefly mentioned normalization when discussing the Boston-
housing model back in chapter 2. The normalization there involved subtracting the
mean and dividing the result by the standard deviation. We did this in order to
improve model training. The normalization we performed here is exactly the same.
However, it is not just for the accuracy of our machine-learning model (to be covered
in the next section) but is also for visualization. Why? If you try unchecking the Nor-
malize Data check box when the chart shows temperature and air pressure, you’ll
immediately see the reason. The temperature measurement varies in the range
between –10 and 40 (on the Celsius scale), while the air pressure resides in the range
between 980 and 1,000. When plotted in the same axes without normalization, the two
quantities with vastly different ranges force the y-axis to expand to a very large range,
causing both curves to look like basically flat lines with tiny variations. Normalization
avoids this problem by mapping all measurements to a distribution of zero mean and
unit standard deviation.

Figure 7.7 shows an example of plotting two weather measurements against each
other as a scatter plot, a mode you can activate by checking the Plot Against Each
Other check box and making sure that neither of the Data Series drop-down menus is
set to None. The code for making such scatter plots is similar to the make-
TimeSerieChart() function in listing 7.7 and is therefore omitted here for concise-
ness. You can study it in the same file (jena-weather/index.js) if you are interested in
the details.

The example scatter plot shows the relation between the normalized air density
(y-axis) and normalized temperature (x-axis). Here, you can spot a fairly strong neg-
ative correlation between the two quantities: the air density gets lower as the tem-
perature increases. This example plot uses the 10-day time span, but you can verify
that the trend largely holds at other time spans as well. This kind of correlation
between variables is easy to visualize with scatter plots but much harder to discover by
just looking at the text-format data. This is another example of the value afforded by
data visualization.
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7.2 Visualizing models after training
In the previous sections, we showed how visualization can be useful for data. In this
section, we will show you how to visualize various aspects of models after they are
trained in order to gain useful insight. To this end, we will focus primarily on convnets
that take images as inputs, because they are used widely and produce interesting visu-
alization results.

You may have heard the remark that deep neural networks are “black boxes.” Don’t
let this remark mislead you into thinking that it’s hard to get any information from
the inside of a neural network during its inference or training. To the contrary, it is
fairly easy to peek at what each layer is doing inside a model written in TensorFlow.js.3

3 What that remark really means is that the large number of mathematical operations that occur in a deep neu-
ral network, even if they can be accessed, are harder to describe in layperson’s terms as compared with certain
other types of machine-learning algorithms, such as decision trees and logistic regression. For example, with
a decision tree, you can walk down the branching points one by one and explain why a certain branch is cho-
sen by verbalizing the reason as a simple sentence like “because factor X is greater than 0.35.” That problem
is referred to as model interpretability and is a different matter from what we are covering in this section.

Figure 7.7 An example scatter plot from the Jena-weather demo. The plot shows 
the relation between air density (rho, vertical axis) and temperature (T, horizontal) 
over a time period of 10 days, where a negative correlation can be seen.
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Furthermore, as far as convnets are concerned, the internal representations they
learn are highly amenable to visualization, in large part because they are representa-
tions of visual concepts. Since 2013, a wide array of techniques has been developed for
visualizing and interpreting these representations. Since it’s impractical to cover all
the interesting techniques, we’ll cover three of the most basic and useful ones:

 Visualizing the outputs of intermediate layers (intermediate activations) of a convnet—
This is useful for understanding how successive convnet layers transform their
inputs, and for getting a first idea of the visual features learned by individual
convnet filters.

 Visualizing convnet filters by finding input images that maximally activate them—This
is useful for understanding what visual pattern or concept each filter is sensitive
to.

 Visualizing heatmaps of class activation in an input image—This helps in under-
standing which parts of an input image play the most important role in causing
the convnet to generate the final classification result, which can also be useful
for interpreting how a convnet reaches its output and for “debugging” incor-
rect outputs.

The code we will use to showcase these techniques is in the visualize-convnet example
from the tfjs-examples repo. To run the example, use these commands:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/visualize-convnet
yarn && yarn visualize

The yarn visualize command is different from the yarn watch command you’ve
seen in previous examples. In addition to building and launching the web page, it per-
forms some additional steps outside the browser. First, it installs some required
Python libraries, followed by downloading and converting the VGG16 model (a well-
known and widely used deep convnet) into TensorFlow.js format. The VGG16 model
has been pretrained on the large-scale ImageNet dataset and is available as a Keras
application. Once the model conversion is complete, yarn visualize performs a
series of analyses on the converted model in tfjs-node. Why are these steps carried out
in Node.js instead of the browser? Because VGG16 is a relatively large convnet.4 As a
result, several of the steps are computationally heavy and run much faster in the less
resource-restricted environment in Node.js. The computation can be further speeded
up if you use tfjs-node-gpu instead of the default tfjs-node (this requires a CUDA-
enabled GPU with the required driver and libraries installed; see appendix A):

yarn visualize --gpu

Once the computationally heavy steps are completed in Node.js, they will generate a
set of image files in the dist/ folder. As its last step, yarn visualize will compile and

4 To get an idea of how large VGG16 is, realize that its total weight size is 528 MB, as compared to the <10MB
weight size of MobileNet.
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launch a web server for a set of static web files including those images, in addition to
opening the index page in your browser.

The yarn visualize command contains a few additional configurable flags. For
example, by default, it performs computation and visualization on eight filters per con-
volutional layer of interest. You can change the number of filters by using the --filters
flag: for example, yarn visualize --filters 32. Also, the default input image used by
yarn visualize is the cat.jpg image that comes with the source code. You can use other
image files by using the --image flag.5 Now let’s look at the visualization results based on
the cat.jpg image and 32 filters.

7.2.1 Visualizing the internal activations of a convnet

Here, we compute and display the feature map generated by various convolutional
layers of the VGG16 model given an input image. These feature maps are called inter-
nal activation because they are not the model’s final output (the model’s final output
is a length-1,000 vector that represents the probability scores for the 1,000 ImageNet
classes). Instead, they are the intermediate steps of the model’s computation. These
internal activations give us a view into how the input is decomposed into different fea-
tures learned by the network.

Recall from chapter 4 that the output of a convolutional layer has the NHWC shape
[numExamples, height, width, channels]. Here, we are dealing with a single input
image, so numExamples is 1. We want to visualize the output of each convolutional
layer along three remaining dimensions: height, width, and channels. The height and
width of a convolutional layer’s output are determined by its filter size, padding, and
strides, as well as the height and width of the layer’s input. In general, they get smaller
and smaller as you go deeper into a convnet. On the other hand, the value of channels
generally gets larger as you go deeper, as the convnet extracts a larger and larger num-
ber of features through successive layers of representation transformation. These
channels of convolutional layers cannot be interpreted as different color components.
Instead, they are the learned feature dimensions. This is why our visualization breaks
them into separate panels and draws them in grayscale. Figure 7.8 shows the activa-
tions from five convolutional layers of VGG16 given the cat.jpg input image.

The first thing you may notice in the internal activations is that they look increas-
ingly different from the original input as you go deeper in the network. The earlier
layers (such as block1_conv1) appear to encode relatively simple visual features such
as edges and colors. For example, the arrow labeled “A” points at an internal activa-
tion that seems to respond to the yellow and pink colors. The arrow labeled “B” points
at an internal activation that seems to be about edges along certain orientations in the
input image. 

But the later layers (such as block4_conv2 and block5_conv3) show activation pat-
terns that are more and more removed from simple pixel-level features in the input

5 Most common image formats, including JPEG and PNG, are supported.
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image. For example, the arrow labeled “C” in figure 7.8 points at a filter in block4_
conv2 that seems to encode the cat’s facial features, including the ears, eyes, and nose.
This is a concrete example of the incremental feature extraction that we showed sche-
matically in figure 4.6 of chapter 4. However, note that not all filters in later layers can
be explained verbally in a straightforward way. Another interesting observation is that
the “sparsity” of the activation maps also increases with the depth of the layer: in the
first layer shown in figure 7.8, all filters are activated (show a nonconstant pixel pat-
tern) by the input image; however, in the last layer, some of the layers become blank
(constant pixel pattern; for example, see the last row in the right panel of figure 7.8).
This means the features encoded by those blank filters are absent from this particular
input image.

You just witnessed an important universal characteristic of the representations
learned by deep convnets: the features extracted by a layer become increasingly more
abstract with the depth of the layer. The activations of deeper layers carry less and less

BA

C

Figure 7.8 Internal activation from several convolutional layers of VGG16 performing inference on the cat.jpg 
image. The original input image is shown on the left, together with the top three classes output by the model and 
their associated probability scores. The five layers visualized are the layers named block1_conv1, 
block2_conv1, block3_conv2, block4_conv2, and block5_conv3. They are ordered by their depth in the 
VGG16 model from top to bottom. That is, block1_conv1 is the closest to the input layer, while block5_conv1
is the closest to the output layer. Note that all internal-activation images are scaled to the same size for 
visualization purposes, even though the activations have smaller sizes (lower resolution) in the later layers due to 
successive convolution and pooling. This can be seen in the coarse pixel patterns in the later layers.
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information about the details in the input, and more and more information about the
target (in this case, which of the 1,000 ImageNet classes the image belongs to). So, a
deep neural network effectively acts as an information distillation pipeline, with raw data
going in and being repeatedly transformed so that aspects in the input that are irrele-
vant to the task are filtered out, and aspects that are useful for the task are gradually
magnified and refined. Even though we showed this through a convnet example, this
characteristic holds for other deep neural networks (such as MLPs) as well.

The aspects of input images that a convnet finds useful might be different from
what the human visual system finds useful. The convnet training is driven by data and
hence is prone to biases in the training data. For instance, the paper by Marco Ribeiro
and colleagues listed in the “Materials for further reading and exploration” section at
the end of the chapter points out a case in which the image of a dog got misclassified
as a wolf due to the presence of snow in the background, presumably because the
training images contained instances of wolves against snowy backgrounds but no dogs
against similar backgrounds.

These are the useful insights we gained by visualizing the internal activation patterns
of a deep convnet. The following subsection describes how to write code in Tensor-
Flow.js to extract these internal activations.

DEEP DIVE INTO HOW INTERNAL ACTIVATIONS ARE EXTRACTED

The steps for extracting the internal activations are encapsulated in the writeInternal-
ActivationAndGetOutput() function (listing 7.8). It takes as its input a TensorFlow.js
model object that has already been constructed or loaded and the names of the layers
in question (layerNames). The key step is creating a new model object (composite-
Model) with multiple outputs, including the output of the specified layers and the out-
put of the original model. compositeModel is constructed with the tf.model() API, as
you saw in the Pac-Man and simple-object-detection examples in chapter 5. The nice
thing about compositeModel is that its predict() method returns all the layers’ activa-
tions, along with the model’s final prediction (see the const named outputs). The
rest of the code in listing 7.8 (from visualize-convnet/main.js) is about the more mun-
dane task of splitting the layers’ outputs into individual filters and writing them to files
on disk.

async function writeInternalActivationAndGetOutput(
    model, layerNames, inputImage, numFilters, outputDir) {
  const layerName2FilePaths = {};
  const layerOutputs =
      layerNames.map(layerName => model.getLayer(layerName).output);
  const compositeModel = tf.model(
      {
        inputs: model.input,
       outputs: layerOutputs.concat(model.outputs[0])
      });

Listing 7.8 Calculating the internal activation of a convnet in Node.js

Constructs a model that 
returns all the desired 
internal activations, in 
addition to the final output 
of the original model
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  const outputs = compositeModel.predict(inputImage);

  for (let i = 0; i < outputs.length - 1; ++i) {
    const layerName = layerNames[i];
    const activationTensors =
        tf.split(outputs[i],
                outputs[i].shape[outputs[i].shape.length – 1],
                -1);
    const actualNumFilters = filters <= activationTensors.length ?
        numFilters :
        activationTensors.length;
    const filePaths = [];
    for (let j = 0; j < actualNumFilters; ++j) {
      const imageTensor = tf.tidy(
          () => deprocessImage(tf.tile(activationTensors[j],
                              [1, 1, 1, 3])));
      const outputFilePath = path.join(
          outputDir, `${layerName}_${j + 1}.png`);
      filePaths.push(outputFilePath);
      await utils.writeImageTensorToFile(imageTensor, outputFilePath);
    }
    layerName2FilePaths[layerName] = filePaths;
    tf.dispose(activationTensors);
  }
  tf.dispose(outputs.slice(0, outputs.length - 1));
  return {modelOutput: outputs[outputs.length - 1], layerName2FilePaths};
}

7.2.2 Visualizing what convolutional layers are sensitive to: 
Maximally activating images

Another way to illustrate what a convnet learns is by finding the input images that its
various internal layers are sensitive to. What we mean by a filter being sensitive to a
certain input image is a maximal activation in the filter’s output (averaged across its
output height and width dimensions) under the input image. By looking at such max-
imally activating inputs for various layers of the convnet, we can infer what each layer
is trained to respond to.

The way in which we find the maximally activating images is through a trick that
flips the “normal” neural network training process on its head. Panel A of figure 7.9
shows schematically what happens when we train a neural network with
tf.Model.fit(). We freeze the input data and allow the weights of the model (such
as the kernels and biases of all the trainable layers) to be updated from the loss func-
tion6 via backpropagation. However, there is no reason why we can’t swap the roles of
the input and the weights: we can freeze the weights and allow the input to be updated
through backpropagation. In the meantime, we tweak the loss function so that it
causes the backpropagation to nudge the input in a way that maximizes the output of
a certain convolutional filter when averaged across its height and width dimensions.

6 This diagram can be viewed as a simplified version of figure 2.9, which we used to introduce backpropagation
back in chapter 2.

outputs is an array of 
tf.Tensor’s, including 
the internal activations 
and the final output.

Splits the 
activation 
of the 
convolutional 
layer by filter

Formats activation 
tensors and writes 
them to disk
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This process is schematically shown in panel B of figure 7.9 and is called gradient ascent
in input space, as opposed to the gradient descent in weight space that underlies typical
model training. The code that implements gradient descent in input space is shown in
the next subsection and can be studied by interested readers.

Figure 7.10 shows the result of performing the gradient-ascent-in-input-space pro-
cess on four convolutional layers of the VGG16 model (the same model that we used
to show internal activations). As in the previous illustration, the depth of the layers
increases from the top to the bottom of the figure. A few interesting patterns can be
gleaned from these maximally activating input images:

 First, these are color images instead of the grayscale internal activations like the
ones in the previous section. This is because they are in the format of the con-
vnet’s actual input: an image consisting of three (RGB) channels. Hence, they
can be displayed in color.

 The shallowest layer (block1_conv1) is sensitive to simple patterns such as
global color values and edges with certain orientations.

 The intermediate-depth layers (such as block2_conv1) respond maximally to
simple textures made from combining different edge patterns.

 The filters in deeper layers begin to respond to more complex patterns that
show some resemblance to visual features in natural images (from the Image-
Net training data, of course), such as grains, holes, colorful stripes, feathers,
waves, and so forth.

weightN

loss

...

Input

Model weight1

weight2

weight1

weight2

...

Input

Model

weightN

Custom
loss
that
maximizes
layer
activation

Updates through
backpropagation

B. Gradient ascent in input spaceA. Gradient descent in weight space

Updates through
backpropagation

Figure 7.9 A schematic diagram showing the basic idea behind how the maximally activating image for a 
convolutional filter is found through gradient ascent in input space (panel B) and how that differs from the normal 
neural network training process based on gradient descent in weight space (panel A). Note that this figure differs 
from some of the model diagrams shown previously in that it breaks the weights out from the model. This is for 
highlighting the two sets of quantities that can be updated through backpropagation: the weights and the input.
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In general, as the depth of the layer increases, the patterns get more and more
removed from the pixel level and become more and more large-scale and complex.
This reflects the layer-by-layer distillation of features by the deep convnet, composing
patterns of patterns. Looking at the filters of the same layer, even though they share
similar levels of abstraction, there is considerable variability in the detail patterns.
This highlights the fact that each layer comes up with multiple representations of the
same input in mutually complementary ways in order to capture the largest possible
amount of useful information for solving the task that the network is trained to solve.

DEEP DIVE INTO GRADIENT ASCENT IN INPUT SPACE

In the visualize-convnet example, the core logic for gradient ascent in input space is in
the inputGradientAscent() function in main.js and is shown in listing 7.9. The code
runs in Node.js due to its time- and memory-consuming nature.7 Note that even
though the basic idea behind gradient ascent in input space is analogous to model
training based on gradient descent in weight space (see figure 7.10), we cannot reuse

7 For convnets smaller than VGG16 (such as MobileNet and MobileNetV2), it is possible to run this algorithm
within a reasonable amount of time in the web browser.

Figure 7.10 Maximally activating input images for four layers of the VGG16 deep convnet. These images are 
computed through 80 iterations of gradient ascent in input space.
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tf.Model.fit() directly because that function is specialized to freeze the input and
update the weights. Instead, we need to define a custom function that calculates a
“loss” given an input image. This is the function defined by the line

const lossFunction = (input) =>
        auxModel.apply(input, {training: true}).gather([filterIndex], 3);

Here, auxModel is an auxiliary model object created with the familiar tf.model()
function. It has the same input as the original model but outputs the activation of a
given convolutional layer. We invoke the apply() method of the auxiliary model in
order to obtain the value of the layer’s activation. apply() is similar to predict() in
that it executes a model’s forward path. However, apply() provides finer-grained con-
trol, such as setting the training option to true, as is done in the prior line of code.
Without setting training to true, backpropagation would not be possible because the
forward pass disposes intermediate layer activations for memory efficiency by default.
The true value in the training flag lets the apply() call preserve those internal acti-
vations and therefore enable backpropagation. The gather() call extracts a specific
filter’s activation. This is necessary because the maximally activating input is calcu-
lated on a filter-by-filter basis, and the results differ between filters even of the same
layer (see the example results in figure 7.10).

Once we have the custom loss function, we pass it to tf.grad() in order to obtain a
function that gives us the gradient of the loss with respect to the input:

const gradFunction = tf.grad(lossFunction);

The important thing to realize here is that tf.grad() doesn’t give us the gradient val-
ues directly; instead, it gives us a function (gradFunction in the prior line) that will
return the gradient values when invoked.

Once we have this gradient function, we invoke it in a loop. In each iteration, we
use the gradient value it returns to update the input image. An important nonobvious
trick here is to normalize the gradient values before adding them to the input image,
which ensures that the update in each iteration has a consistent magnitude:

const norm = tf.sqrt(tf.mean(tf.square(grads))).add(EPSILON);
return grads.div(norm);

This iterative update to the input image is performed 80 times, giving us the results
shown in figure 7.10.

function inputGradientAscent(
    model, layerName, filterIndex, iterations = 80) {
  return tf.tidy(() => {
    const imageH = model.inputs[0].shape[1];
    const imageW = model.inputs[0].shape[2];
    const imageDepth = model.inputs[0].shape[3];

    const layerOutput = model.getLayer(layerName).output;

Listing 7.9 Gradient ascent in input space (in Node.js, from visualize-convnet/main.js)
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    const auxModel = tf.model({
      inputs: model.inputs,
     outputs: layerOutput
    });

    const lossFunction = (input) =>
        auxModel.apply(input, {training: true}).gather([filterIndex], 3);

    const gradFunction = tf.grad(lossFunction);

    let image = tf.randomUniform([1, imageH, imageW, imageDepth], 0, 1)
                    .mul(20).add(128);

    for (let i = 0; i < iterations; ++i) {
      const scaledGrads = tf.tidy(() => {
        const grads = gradFunction(image);
        const norm = tf.sqrt(tf.mean(tf.square(grads))).add(EPSILON);
        return grads.div(norm);
      });
      image = tf.clipByValue(

          image.add(scaledGrads), 0, 255);
    }
    return deprocessImage(image);
  });
}

7.2.3 Visual interpretation of a convnet’s classification result

The last post-training convnet visualization technique we will introduce is the class acti-
vation map (CAM) algorithm. The question that CAM aims to answer is “which parts of
the input image play the most important roles in causing the convnet to output its top
classification decision?” For instance, when the cat.jpg image was passed to the VGG16
network, we got a top class of “Egyptian cat” with a probability score of 0.89. But by
looking at just the image input and the classification output, we can’t tell which parts
of the image are important for this decision. Surely some parts of the image (such as
the cat’s head) must have played a greater role than other parts (for example, the
white background). But is there an objective way to quantify this for any input image? 

The answer is yes! There are multiple ways of doing this, and CAM is one of them.8

Given an input image and a classification result from a convnet, CAM gives you a heat
map that assigns importance scores to different parts of the image. Figure 7.11 shows
such CAM-generated heat maps overlaid on top of three input images: a cat, an owl,

8 The CAM algorithm was first described in Bolei Zhou et al., “Learning Deep Features for Discriminative Local-
ization,” 2016, http://cnnlocalization.csail.mit.edu/. Another well-known method is Local Interpretable
Model-Agnostic Explanations (LIME). See http://mng.bz/yzpq.

Creates an auxiliary model for which the input 
is the same as the original model, but the 
output is the convolutional layer of interest

This function calculates the value of the 
convolutional layer’s output at the 
designated filter index.

This function calculates the gradient of 
the convolutional filter’s output with 
respect to the input image.

Generates a random image
as the starting point of the

gradient ascent

Important trick: scales the
gradient with the magnitude

(norm) of the gradient

Performs one step of gradient
ascent: updates the image along

the direction of the gradient
 

http://mng.bz/yzpq
http://cnnlocalization.csail.mit.edu/
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and two elephants. In the cat result, we see that the outline of the cat’s head has the
highest values in the heat map. We can make the post hoc observation that this is
because the outline reveals the shape of the animal’s head, which is a distinctive fea-
ture for a cat. The heat map for the owl image also meets our expectation because it
highlights the head and wing of the animal. The result from the image with two ele-
phants is interesting because the image differs from the other two images in that it
contains two individual animals instead of one. The heat map generated by CAM
assigns high importance scores to the head regions of both elephants in the image.
There is a clear tendency for the heat map to focus on the trunks and ears of the ani-
mals, which may reflect the fact that the length of the trunk and the size of the ears
are important in telling African elephants (the top class from the network) apart from
Indian elephants (the third class from the network).

TECHNICAL SIDE OF THE CAM ALGORITHM

As powerful as the CAM algorithm is, the idea behind it is actually not complicated. In
a nutshell, each pixel in a CAM map shows how much the probability score of the win-
ning class will change if the pixel value is increased by a unit amount. To go into the
details a little more, the following steps are involved in CAM:

1 Find the last (that is, deepest) convolutional layer of the convnet. In VGG16,
this layer is named block5_conv3.

2 Compute the gradient of the network’s output probability for the winning class
with respect to the output of the convolutional layer.

3 The gradient has a shape of [1, h, w, numFilters], where h, w, and num-
Filters are the layer’s output height, width, and filter count, respectively. We
then average the gradient across the example, height, and width dimensions,
which gives us a tensor of shape [numFilters]. This is an array of importance
scores, one for each filter of the convolutional layer.

A B C

• Egyptian cat (p = 0.8856)
• tabby, tabby cat (p = 0.0425)
• lynx, catamount (p = 0.0125)

• great grey owl (p = 0.9850)
• marmoset (p = 0.0042)
• quail (p = 0.0040)

• African elephant (p = 0.6495)
• tusker (p = 0.2529)
• Indian elephant (p = 0.0971)

Figure 7.11 Class activation maps (CAMs) for three input images to the VGG16 deep 
convnet. The CAM heat maps are overlaid on the original input images.
 



271Materials for further reading and exploration
4 Take the importance-score tensor (of shape [numFilters]), and multiply it
with the actual output value of the convolutional layer (of shape [1, h, w,
numFilters]), with broadcasting (see appendix B, section B.2.2). This gives us
a new tensor of shape [1, h, w, numFilters] and is an “importance-scaled”
version of the layer’s output.

5 Finally, average the importance-scaled layer output across the last (filter)
dimension and squeeze out the first (example) dimension, which yields a gray-
scale image of shape [h, w]. The values in this image are a measure of how
important each part of the image is for the winning classification result. How-
ever, this image contains negative values and is of smaller dimensions than the
original input image (that is, 14 × 14 versus 224 × 224 in our VGG16 example).
So, we zero out the negative values and up-sample the image before overlaying
it on the input image. 

The detailed code is in the function named gradClassActivationMap() in visualize-
convnet/main.js. Although this function runs in Node.js by default, the amount of
computation it involves is significantly less than the gradient-ascent-in-input-space
algorithm that we saw in the previous section. So, you should be able to run the CAM
algorithm using the same code in the browser with acceptable speed.

We talked about two things in this chapter: how to visualize data before it goes into
training a machine-learning model and how to visualize a model after it’s trained. We
intentionally skipped the important step in between—that is, visualization of the
model while it’s being trained. This will be the focus of the next chapter. The reason
why we single out the training process is that it is related to the concepts and phenom-
ena of underfitting and overfitting, which are absolutely critical for any supervised-
learning tasks and therefore deserve special treatment. Spotting and correcting
underfitting and overfitting are made significantly easier by visualization. In the next
chapter, we’ll revisit the tfjs-vis library we introduced in the first part of the chapter
and see that it can be useful for showing how a model-training process is progressing,
in addition to its data-visualization power discussed in this chapter. 

Materials for further reading and exploration
 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin,  “Why Should I Trust

You? Explaining the Predictions of Any Classifier,” 2016, https://arxiv.org/
pdf/1602.04938.pdf.

 TensorSpace (tensorspace.org) uses animated 3D graphics to visualize the
topology and internal activations of convnets in the browser. It is built on top of
TensorFlow.js, three.js, and tween.js.

 The TensorFlow.js tSNE library (github.com/tensorflow/tfjs-tsne) is an effi-
cient implementation of the t-distributed Stochastic Neighbor Embedding
(tSNE) algorithm based on WebGL. It can help you visualize high-dimensional
datasets by projecting them to a 2D space while preserving the important struc-
tures in the data.
 

https://arxiv.org/pdf/1602.04938.pdf
https://arxiv.org/pdf/1602.04938.pdf
https://arxiv.org/pdf/1602.04938.pdf
https://tensorspace.org/
https://github.com/tensorflow/tfjs-tsne
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Exercises
1 Experiment with the following features of tfjs.vis.linechart():

a Modify the code in listing 7.2 and see what happens when the two series
being plotted have different sets of x-coordinate values. For example, try
making the x-coordinate values 1, 3, 5, and 7 for the first series and 2, 4, 6,
and 8 for the second series. You can fork and modify the CodePen from
https://codepen.io/tfjs-book/pen/BvzMZr.

b The line charts in the example CodePen are all made with data series with-
out duplicate x-coordinate values. Explore how the linechart() function
handles data points with identical x-coordinate values. For example, in a data
series, include two data points that both have x-value 0 but have different y-
values (such as –5 and 5).

2 In the visualize-convnet example, use the --image flag to the yarn visualize
command to specify your own input image. Since we used only animal images
in section 7.2, explore other types of image content, such as people, vehicles,
household items, and natural scenery. See what useful insights you can gain
from the internal activations and CAMs.

3 In the example in which we calculated the CAM of VGG16, we computed the
gradients of the probability score for the winning class with respect to the last
convolutional layer’s output. What if instead we compute the gradients for a
nonwinning class (such as that of the lower probability)? We should expect the
resulting CAM image to not highlight key parts that belong to the actual subject
of the image. Confirm this by modifying the code of the visualize-convnet exam-
ple and rerunning it. Specifically, the class index for which the gradients will be
computed is specified as an argument to the function gradClassActivation-
Map() in visualize-convnet/cam.js. The function is called in visualize-convnet/
main.js.

Summary
 We studied the basic usage of tfjs-vis, a visualization library tightly integrated

with TensorFlow.js. It can be used to render basic types of charts in the browser. 
 Visualizing data is an indispensable part of machine learning. Efficient and

effective presentation of data can reveal patterns and provide insights that are
otherwise hard to obtain, as we showed by using the Jena-weather-archive data.

 Rich patterns and insights can be extracted from trained neural networks. We
showed the steps and results of
– Visualizing the internal-layer activations of a deep convnet.
– Calculating what the layers are maximally responsive to.
– Determining which parts of an input image are most relevant to the con-

vnet’s classification decision. These help us understand what is learned by
the convnet and how it operates during inference.
 

https://codepen.io/tfjs-book/pen/BvzMZr


Underfitting, overfitting,
and the universal workflow

of machine learning
In the previous chapter, you learned how to use tfjs-vis to visualize data before you
start designing and training machine-learning models for it. This chapter will start
where that one left off and describe how tfjs-vis can be used to visualize the struc-
ture and metrics of models during their training. The most important goal in
doing so is to spot the all-important phenomena of underfitting and overfitting. Once
we can spot them, we’ll delve into how to remedy them and how to verify that our
remedying approaches are working using visualization.

This chapter covers
 Why it is important to visualize the model-training process 

and what the important things are to look for

 How to visualize and understand underfitting and overfitting

 The primary way of dealing with overfitting: regularization, 
and how to visualize its effect

 What the universal workflow of machine learning is, what 
steps it includes, and why it is an important recipe that 
guides all supervised machine-learning tasks
273
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8.1 Formulation of the temperature-prediction problem
To demonstrate underfitting and overfitting, we need a concrete machine-learning
problem. The problem we’ll use is predicting temperature based on the Jena-weather
dataset you’ve just seen in the previous chapter. Section 7.1 showed the power of visu-
alizing data in the browser and the benefits of doing so using the Jena-weather data-
set. Hopefully, you’ve formed an intuition of the dataset through playing with the
visualization UI in the previous section. We are now ready to start applying some
machine learning to the dataset. But first, we need to define the problem.

The prediction task can be thought of as a toy weather-forecast problem. What we
are trying to predict is the temperature 24 hours after a certain moment in time. We
try to make this prediction using the 14 types of weather measurements taken in the
10-day period leading up to that moment.

Although the problem definition is straightforward, the way we generate the training
data from the CSV file requires some careful explanation because it is different from the
data-generation procedures in the problems seen in this book so far. In those problems,
every row in the raw data file corresponded to a training example. That was how the iris-
flower, Boston-housing, and phishing-detection examples worked (see chapters 2 and
3). However, in this problem, each example is formed by sampling and combining mul-
tiple rows from the CSV file. This is because a temperature prediction is made not just
by looking at one moment in time, but instead by looking at the data over a time span.
See figure 8.1 for a schematic illustration of the example-generation process.

To generate the features of a training example, we sample a set of rows over a time
span of 10 days. Instead of using all the data rows from the 10 days, we sample every
sixth row. Why? For two reasons. First, sampling all the rows would give us six times as
much data and lead to a bigger model size and longer training time. Second, the data
at a time scale of 1 hour has a lot of redundancy (the air pressure from 6 hours ago is
usually close to that from 6 hours and 10 minutes ago). By throwing away five-sixths of
the data, we get a more lightweight and performant model without sacrificing much
predictive power. The sampled rows are combined into a 2D feature tensor of shape
[timeSteps, numFeatures] for our training example (see figure 8.1). By default,
timeSteps has a value of 240, which corresponds to the 240 sampling times evenly dis-
tributed across the 10-day period. numFeatures is 14, which corresponds to the 14
weather-instrument readings available in the CSV dataset.

Getting the target for the training example is easier: we just move forward a certain
time delay from the last row that goes into the feature tensor and extract the value
from the temperature column. Figure 8.1 shows how only a single training example is
generated. To generate multiple training examples, we simply start from different
rows of the CSV file.

You may have noticed something peculiar about the feature tensor for our tempera-
ture-prediction problem (see figure 8.1): in all the previous problems, the feature ten-
sor of a single example was 1D, which led to a 2D tensor when multiple examples were
batched. However, in this problem, the feature tensor of a single example is already
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2D, which means that we’ll get a 3D tensor (of shape [batchSize, timeSteps, num-
Features]) when we combine multiple examples into a batch. This is an astute obser-
vation! The 2D feature-tensor shape originates from the fact that the features come
from a sequence of events. In particular, they are the weather measurements taken at 240
points in time. This distinguishes this problem from all the other problems you’ve seen
so far, in which the input features for a given example do not span multiple moments
in time, be it the flower size measurements in the iris-flower problem or the 28 × 28
pixel values of an MNIST image.1

1 The speech-command recognition problem in chapter 4 did, in fact, involve a sequence of events: namely,
the successive frames of audio spectra that formed the spectrogram. However, our methodology treated the
entire spectrogram as an image, thereby ignoring the temporal dimension of the problem by treating it as a
spatial dimension.

p T Tpot wd...

...

...
...

...

Step = 6

Step = 6

numFeatures

timeSteps

jena_climate_2009_2016.csv

Feature tensor
of a single example

Shape: [timeSteps,
numFeatures]

Used to
predict

Target tensor
of a single example

Shape: [1]
Delay
= 144

Figure 8.1 Schematic diagram showing how a single training example is generated from the tabular 
data. To generate the feature tensor of the example, the CSV file is sampled every step rows (for 
example, step = 6) up to timeSteps such rows (for example, timeSteps = 240). This forms a 
tensor of shape [timeSteps, numFeatures], where numFeatures (default: 14) is the number 
of feature columns in the CSV file. To generate the target, sample the temperature (T) value at the 
row delay (for example, 144) step after the last row that went into the feature tensor. Other examples 
can be generated by starting from a different row in the CSV file, but they follow the same rule. This 
forms the temperature-prediction problem: given the 14 weather measurements for a certain period of 
time (such as 10 days) until now, predict the temperature a certain delay (such as 24 hours) from 
now. The code that does what’s shown in this diagram is in the getNextBatchFunction() function 
in jena-weather/data.js.
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This is the first time you encounter sequential input data in this book. In the next
chapter, we will dive deeper into how to build specialized and more powerful models
(RNNs) for sequential data in TensorFlow.js. But here, we will approach the problem
using two types of models we already know: linear regressors and MLPs. This forms a
buildup to our study of RNNs and gives us a baseline that can be compared with the
more advanced models.

The actual code that performs the data-generation process illustrated in figure 8.1
is in jena-weather/data.js, under the function getNextBatchFunction(). This is an
interesting function because instead of returning a concrete value, it returns an object
with a function called next(). The next() function returns actual data values when
it’s called. The object with the next() function is referred to as an iterator. Why do we
use this indirection instead of writing an iterator directly? First, this conforms to the
generator/iterator specification of JavaScript.2 We will soon pass it to the tf.data
.generator() API in order to create a dataset object for model training. The API
requires this function signature. Second, our iterator needs to be configurable; a func-
tion that returns the iterator is a good way to enable the configuration.

You can see the possible configuration options from the signature of getNext-
BatchFunction():

getNextBatchFunction(
      shuffle, lookBack, delay, batchSize, step, minIndex, maxIndex,
          normalize,
      includeDateTime)

There are quite a few configurable parameters. For example, you can use the look-
Back argument to specify how long a period to look back when making a temperature
prediction. You can also use the delay argument to specify how far in the future the
temperature prediction will be made for. The arguments minIndex and maxIndex
allow you to specify the range of rows to draw data from, and so forth.

We convert the getNextBatchFunction() function into a tf.data.Dataset object
by passing it to the tf.data.generator() function. As we described in chapter 6, a
tf.data.Dataset object, when used in conjunction with the fitDataset() method of
a tf.Model object, enables us to train the model even if the data is too large to fit into
WebGL memory (or any applicable backing memory type) as a whole. The Dataset
object will create a batch of training data on the GPU only when it is about to go into
the training. This is exactly what we do for the temperature-prediction problem here.
In fact, we wouldn’t be able to train the model using the model’s ordinary fit()
method due to the large number and size of the examples. The fitDataset() call can
be found in jena-weather/models.js and looks like the following listing.

2 See “Iterators and Generators,” MDN web docs, http://mng.bz/RPWK.
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    const trainShuffle = true;
    const trainDataset = tf.data.generator(
        () => jenaWeatherData.getNextBatchFunction(
          trainShuffle, lookBack, delay, batchSize, step, TRAIN_MIN_ROW,
          TRAIN_MAX_ROW, normalize, includeDateTime)).prefetch(8);
    const evalShuffle = false;
    const valDataset = tf.data.generator(
      () => jenaWeatherData.getNextBatchFunction(
          evalShuffle, lookBack, delay, batchSize, step, VAL_MIN_ROW,
          VAL_MAX_ROW, normalize, includeDateTime));

      await model.fitDataset(trainDataset, {
      batchesPerEpoch: 500,
      epochs,
      callbacks: customCallback,
      validationData: valDataset
    });

The first two fields of the configuration object for fitDataset() specify how many
epochs to train the model for and how many batches to draw for every epoch. As you
learned in chapter 6, they are the standard configuration fields for a fitDataset()
call. However, the third field (callbacks: customCallback) is something new. It is
how we visualize the training process. Our customCallback takes different values
depending on whether the model training occurs in the browser or, as we’ll see in the
next chapter, in Node.js.

In the browser, the function tfvis.show.fitCallbacks() provides the value of
customCallback. The function helps us visualize the model training in the web page
with just one line of JavaScript code. It not only saves us all the work of accessing and
keeping track of batch-by-batch and epoch-by-epoch loss and metric values, but it also
removes the need to manually create and maintain the HTML elements in which the
plots will be rendered:

  const trainingSurface =
      tfvis.visor().surface({tab: modelType, name: 'Model Training'});
   const customCallback = tfvis.show.fitCallbacks(trainingSurface, 
      ['loss', 'val_loss'], {
     callbacks: ['onBatchEnd', 'onEpochEnd']
   }));

The first argument to fitCallbacks() specifies a rendering area created with the
tfvis.visor().surface() method. It is called a visor surface in the terminology of
tfjs-vis. A visor is a container that helps you conveniently organize all the visualization
related to your in-browser machine-learning tasks. Structurally, a visor is organized on
two levels of hierarchy. At the higher level, there can be one or more tabs that the user
can navigate using clicks. At the lower level, every tab contains one or more surfaces.

Listing 8.1 Visualizing the fitDataset-based model training with tfjs-vis 

The first Dataset object will 
generate the training data.

The second Dataset
object will generate
the validation data.

The validationData config for fitDataset() 
accepts either a Dataset object or a set of 
tensors. Here, the first option is used.
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The tfvis.visor().surface() method, with its tab and name configuration fields,
lets you create a surface in a designated visor tab with a designated name. A visor sur-
face is not limited to rendering loss and metric curves. In fact, all the basic charts we
showed with the CodePen example in section 7.1 can be rendered on visor surfaces.
We leave this as an exercise for you at the end of this chapter.

The second argument for fitCallbacks() specifies what losses and metrics will be
rendered in the visor surface. In this case, we plot the loss from the training and vali-
dation datasets. The third argument contains a field that controls the frequency at
which the plots are updated. By using both onBatchEnd and onEpochEnd, we will get
updates at the end of every batch and every epoch. In the next section, we will exam-
ine the loss curves created by fitCallbacks() and use them to spot underfitting and
overfitting.

8.2 Underfitting, overfitting, and countermeasures
During the training of a machine-learning model, we want to monitor how well our
model is capturing the patterns in the training data. A model that doesn’t capture the
patterns very well is said to be underfit ; a model that captures the patterns too well, to
the extent that what it learns generalizes poorly to new data, is said to be overfit. An
overfit model can be brought back on track through countermeasures such as regular-
ization. In this section, we’ll show how visualization can help us spot these model
behaviors and the effects of the countermeasures.

8.2.1 Underfitting

To solve the temperature-prediction problem, let’s first try the simplest possible
machine-learning model: a linear regressor. The code in listing 8.2 (from jena-
weather/index.js) creates such a model. It uses a dense layer with a single unit and the
default linear activation to generate the prediction. However, compared with the lin-
ear regressor we built for the download-time prediction problem in chapter 2, this
model has an extra flatten layer. This is because the shape of the feature tensor in this
problem is 2D, which must be flattened into 1D to meet the requirement of the dense
layer used for linear regression. This flattening process is illustrated in figure 8.2. It is
important to note is that this flattening operation discards the information about the
sequential (temporal) ordering in the data.

function buildLinearRegressionModel(inputShape) {
  const model = tf.sequential();
  model.add(tf.layers.flatten({inputShape}));
  model.add(tf.layers.dense({units: 1}));
  return model;

}

Listing 8.2 Creating a linear-regression model for the temperature-prediction problem

Flattens the [batchSize, 
timeSteps, numFeatures] input 
shape to [batchSize, timeSteps * 
numFeatures] in order to apply 
the dense layer

A single-unit dense layer with
the default (linear) activation

is a linear regressor.
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Once the model is constructed, we compile it for training with

model.compile({loss: 'meanAbsoluteError', optimizer: 'rmsprop'});

Here, we use the loss function meanAbsoluteError because our problem is predicting a
continuous value (the normalized temperature). Unlike in some of the previous prob-
lems, no separate metric is defined,
because the MAE loss function itself
serves as the human-interpretable
metric. However, beware that since
we are predicting the normalized
temperature, the MAE loss has to
be multiplied with the standard
deviation of the temperature col-
umn (8.476 degrees Celsius) to be
converted into a prediction error in
absolute terms. For example, if we
get an MAE of 0.5, it translates to
8.476 * 0.5 = 4.238 degrees Celsius
of prediction error.

In the demo UI, choose Linear
Regression in the Model Type drop-
down menu and click Train Model
to kick off the training of the linear
regressor. Right after the training
starts, you’ll see a tabular summary
of the model in a “card” that pops
up on the right-hand side of the
page (see the screenshot in figure
8.3). This model-summary table is

...

numFeatures

timeSteps ...

timeSteps  numFeatures
flatten To

linear regressor
or MLP

Feature tensor
of a single example

Shape: [timeSteps,
numFeatures]

Figure 8.2 Flattening the 2D feature tensor of shape [timeSteps, numFeatures] into a 1D tensor of shape 
[timeSteps × numFeatures], as done by both the linear regressor in listing 8.2 and the MLP model in listing 8.3

Figure 8.3 The tfjs-vis visor visualizing the training of a 
linear-regression model. Top: a summary table for the 
model. Bottom: the loss curves over 20 epochs of 
training. This chart is created with tfvis.show 
.fitCallbacks() (see jena-weather/index.js).
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somewhat similar to the text output of a model.summary() call but is rendered graphi-
cally in HTML. The code that creates the table is as follows:

    const surface = tfvis.visor().surface({name: 'Model Summary', tab});
    tfvis.show.modelSummary(surface, model);

With the surface created, we draw a model-summary table in it by passing the surface
to tfvis.show.modelSummary(), as in the second line of the previous code snippet.

Under the Model Summary part of the linear-regression tab is a plot that displays
the loss curves from the model training (figure 8.3). It is created by the fitCall-
backs() call that we described in the last section. From the plot, we can see how well
the linear regressor does on the temperature-prediction problem. Both the training
and validation losses end up oscillating around 0.9, which corresponds to 8.476 * 0.9 =
7.6 degrees Celsius in absolute terms (recall that 8.476 is the standard deviation of the
temperature column in the CSV file). This means that after training, our linear
regressor makes a prediction error of 7.6 degrees Celsius (or 13.7 degrees Fahren-
heit) on average. These predictions are pretty bad. No one would want to trust the
weather forecast based on this model! This is an example of underfitting.

Underfitting is usually a result of using an insufficient representational capacity
(power) to model the feature-target relationship. In this example, our linear regressor
is structurally too simple and hence is underpowered to capture the relation between
the weather data of the previous 10 days and the temperature of the next day. To over-
come underfitting, we usually increase the power of the model by making it bigger.
Typical approaches include adding more layers (with nonlinear activations) to the
model and increasing the size of the layers (such as the number of units in a dense
layer). So, let’s add a hidden layer to the linear regressor and see how much improve-
ment we can get from the resultant MLP.

8.2.2 Overfitting

The function that creates MLP models is in listing 8.3 (from jena-weather/index.js).
The MLP it creates includes two dense layers, one as the hidden layer and one as the
output layer, in addition to a flatten layer that serves the same purpose as in the linear-
regression model. You can see that the function has two more arguments compared to
buildLinearRegressionModel() in listing 8.2. In particular, the kernelRegularizer
and dropoutRate parameters are the ways in which we’ll combat overfitting later. For
now, let’s see what prediction accuracy an MLP that doesn’t use kernelRegularizer
or dropoutRate is capable of achieving.

function buildMLPModel(inputShape, kernelRegularizer, dropoutRate) {
  const model = tf.sequential();
  model.add(tf.layers.flatten({inputShape}));
  model.add(tf.layers.dense({
    units: 32,
    kernelRegularizer
    activation: 'relu',
  }));

Listing 8.3 Creating an MLP for the temperature-prediction problem

If specified by the caller, add 
regularization to the kernel of 
the hidden dense layer.
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  if (dropoutRate > 0) {
    model.add(tf.layers.dropout({rate: dropoutRate}));
  }
  model.add(tf.layers.dense({units: 1}));
  return model;
}

Panel A of figure 8.4 shows the loss curves from the MLP. Compared with the loss
curves of the linear regressor, we can see a few important differences:

 The training and validation loss curves show a divergent pattern. This is differ-
ent from the pattern in figure 8.3, where two loss curves show largely consistent
trends.

 The training loss converges toward a much lower error than before. After 20
epochs of training, the training loss has a value of about 0.2, which corresponds
to an error of 8.476 * 0.2 = 1.7 degrees Celsius—much better than the result
from linear regression. 

 However, the validation loss decreases briefly in the first two epochs and then
starts to go back up slowly. At the end of epoch 20, it has a significantly higher
value than the training loss (0.35, or about 3 degrees Celsius).

The more than four-fold decrease in training loss relative to the previous result is due
to the fact that our MLP has a higher power than the linear-regression model thanks
to one more layer and several times more trainable weight parameters. However, the
increased model power has a side effect: it causes the model to fit the training data sig-
nificantly better than the validation data (data the model doesn’t get to see during
training). This is an example of overfitting. It is a case in which a model “pays too much
attention” to the irrelevant details in the training data, to the extent that the model’s
predictions start to generalize poorly to unseen data. 

If specified by the caller, add a dropout 
layer between the hidden dense layer 
and the output dense layer.
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Figure 8.4 The loss curves from applying two different MLP models on the temperature-prediction problem. Panel 
A: from an MLP model without any regularization. Panel B: from an MLP model of the same layer size and count 
as the model in panel A, but with L2 regularization of the dense layers’ kernels. Notice that the y-axis ranges differ 
slightly between the two panels.
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8.2.3 Reducing overfitting with weight regularization and visualizing it working

In chapter 4, we reduced overfitting in a convnet by adding dropout layers to the
model. Here, let’s look at another frequently used overfitting-reduction approach:
adding regularization to weights. In the Jena-weather demo UI, if you select the model
type MLP with L2 Regularization, the underlying code will create an MLP by calling
buildMLPModel() (listing 8.3) in the following manner:

model = buildMLPModel(inputShape, tf.regularizers.l2());

The second argument—the return value of tf.regularizers.l2()—is an L2 regular-
izer. By plugging the previous code into the buildMLPModel() function in listing 8.3,
you can see that the L2 regularizer goes into the kernelRegularizer of the hidden
dense layer’s configuration. This attaches the L2 regularizer to the kernel of the dense
layer. When a weight (such as the kernel of a dense layer) has an attached regularizer,
we say that the weight is regularized. Similarly, when some or all of a model’s weights
are regularized, we say the model is regularized.

What does the regularizer do to the dense-layer kernel and the MLP that it belongs
to? It adds an extra term to the loss function. Consider how the loss of the unregular-
ized MLP is calculated: it’s defined simply as the MAE between the targets and the
model’s predictions. In pseudo-code, it can be expressed as

loss = meanAbsoluteError(targets, predictions)

With a regularized weight, the loss of the model includes an extra term. In pseudo-code,

loss = meanAbsoluteError(targets, prediciton) + 12Rate * 12(kernel)

Here, l2Rate * l2(kernel) is the extra L2-regularization term of the loss function.
Unlike the MAE, this term does not depend on the model’s predictions. Instead, it
depends only on the kernel (a weight of the layer) being regularized. Given the value
of the kernel, it outputs a number associated only with the kernel’s values. You can
think of the number as a measure of how undesirable the current value of the kernel is.

Now let’s look at the detailed definition of the L2-regularization function: l2(ker-
nel). It calculates the summed squares of all the weight values. For example, pretend
our kernel has a small shape of [2, 2] for the sake of simplicity, and suppose its values
are [[0.1, 0.2], [-0.3, -0.4]]; then,

l2(kernel) = 0.1^2 + 0.2^2 + (-0.3)^2 + (-0.4)^2 = 0.3

Therefore, l2(kernel) always returns a positive number that penalizes large weight
values in kernel. With the term included in the total loss, it encourages all elements
of kernel to be smaller in absolute value, everything else being equal.

Now the total loss includes two different terms: the target-prediction mismatch and
a term related to kernel’s magnitudes. As a result, the training process will try to not
only minimize the target-prediction mismatch but also reduce the sum of the squares
of the kernel’s elements. Oftentimes, the two goals will conflict with each other. For
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example, a reduction in the magnitude of the kernel’s elements may reduce the sec-
ond term but increase the first one (the MSE loss). How does the total loss balance the
relative importance of the two conflicting terms? That’s where the l2Rate multiplier
comes into play. It quantifies the importance of the L2 term relative to the target-
prediction-error term. The larger the value of l2Rate, the more the training process
will tend to reduce the L2-regularization term at the cost of increased target-prediction
error. This term, which defaults to 1e-3, is a hyperparameter whose value can be tuned
through hyperparameter optimization.

So how does the L2 regularizer help us? Panel B of figure 8.4 shows the loss curves
from the regularized MLP. By comparing it with the curves from the unregularized
MLP (panel A of the same figure), you can see that the regularized model yields less
divergent training and validation loss curves. This means that the model is no longer
“paying undue attention” to idiosyncratic patterns in the training dataset. Instead, the
pattern it learns from the training set generalizes well to unseen examples in the vali-
dation set. In our regularized MLP, only the first dense layer incorporated a regular-
izer, while the second dense layer didn’t. But that turned out to be sufficient to
overcome the overfitting in this case. In the next section, we will look deeper at why
smaller kernel values lead to less overfitting.

VISUALIZING THE EFFECT OF REGULARIZATION ON WEIGHT VALUES

Since the L2 regularizer works by encouraging the kernel of the hidden dense layer to
have smaller values, we ought to be able to see that the post-training kernel values are
smaller in the regularized MLP than in the unregularized one. How can we do that in
TensorFlow.js? The tfvis.show.layer() function from tfjs-vis makes it possible to
visualize a TensorFlow.js model’s weights with one line of code. Listing 8.4 is a code
excerpt that shows how this is done. The code is executed when the training of an
MLP model ends. The tfvis.show.layer() call takes two arguments: the visor sur-
face on which the rendering will happen and the layer being rendered.

function visualizeModelLayers(tab, layers, layerNames) {
  layers.forEach((layer, i) => {
    const surface = tfvis.visor().surface({name: layerNames[i], tab});
    tfvis.show.layer(surface, layer);
  });
}

The visualization made by this code is shown in figure 8.5. Panels A and B show the
results from the unregularized and regularized MLPs, respectively. In each panel,
tfvis.show.layer() displays a table of the layer’s weights, with details about the
names of the weights, their shape and parameter count, min/max of the parameter
values, and counts of zero and NaN parameter values (the last of which can be useful
for diagnosing problematic training runs). The layer visualization also contains Show

Listing 8.4 Visualizing the weight distribution of layers (from jena-weather/index.js)
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Values Distribution buttons for each of the layer’s weights, which, when clicked, will
create a histogram of the values in the weight.

Comparing the plots for the two flavors of MLP, you can see a clear difference: the
values of the kernel are distributed over a considerably narrower range with the L2
regularization than without. This is reflected in both the min/max values (the first
row) and in the value histogram. This is regularization at work!

But why do smaller kernel values result in reduced overfitting and improved gener-
alization? An intuitive way to understand this is that L2 regularization enforces the
principle of Occam’s razor. Generally speaking, a larger magnitude in a weight param-
eter tends to cause the model to fit to fine-grained details in the training features that
it sees, and a smaller magnitude tends to let the model ignore such details. In the
extreme case, a kernel value of zero means the model doesn’t attend to its corre-
sponding input feature at all. The L2 regularization encourages the model to be more
“economical” by avoiding large-magnitude weight values, and to retain those only
when it is worth the cost (when the reduction in the target-prediction mismatch term
outweighs the regularizer loss).

L2 regularization is but one of the weapons against overfitting in the machine-
learning practitioner’s arsenal. In chapter 4, we demonstrated the power of dropout
layers. Dropout is a powerful countermeasure to overfitting in general. It helps us
reduce overfitting in this temperature-prediction problem as well. You can see that
yourself by choosing the model type MLP with Dropout in the demo UI. The quality
of training you get from the dropout-enabled MLP is comparable to the one you get
from the L2-regularized MLP. We discussed how and why dropout works in section
4.3.2 when we applied it to an MNIST convnet, so we won’t repeat it here. However,

B
Dense Layer 1

A
Dense Layer 1

Figure 8.5 Distribution of the values in the kernel with (panel A) and without (panel B) L2 regularization. The 
visualization is created with tfvis.show.layer(). Note that the x-axes of the two histograms have different 
scales.
 



285Underfitting, overfitting, and countermeasures
table 8.1 provides a quick overview of the most widely used countermeasures to over-
fitting. It includes an intuitive description of how each of them works and the corre-
sponding API in TensorFlow.js. The question as to which countermeasure to use for a
particular problem is usually answered through 1) following well-established models
that solve similar problems and 2) treating the countermeasure as a hyperparameter
and searching for it through hyperparameter optimization (section 3.1.2). In addi-
tion, each overfitting-reducing method itself contains tunable parameters that can
also be determined through hyperparameter optimization (see the last column of
table 8.1.)

Table 8.1 An overview of commonly used methods for reducing overfitting in TensorFlow.js

Name of 
method How the method works

Corresponding API in 
TensorFlow.js Main free parameter(s)

L2 regularizer Assigns a positive loss 
(penalty) to the weight by 
calculating the summed 
squares of parameter val-
ues of the weight. It 
encourages the weight to 
have smaller parameter 
values.

tf.regularizers.l2()

See the “Reducing overfitting with 
weight regularization” section, for 
example.

L2-regularization rate

L1 regularizer Like L2 regularizers, 
encourages the weight 
parameters to be smaller. 
However, the loss it 
assigns to a weight is 
based on the summed 
absolute values of the 
parameters, instead of 
summed squares. This 
definition of regulariza-
tion loss causes more 
weight parameters to 
become zero (that is, 
“sparser weights”).

tf.regularizers.l1() L1-regularization rate

Combined L1-L2 
regularizer

A weighted sum of L1 and 
L2 regularization losses.

tf.regularizers.l1l2() L1-regularization rate
L2-regularization rate

Dropout Randomly sets a fraction 
of the inputs to zero 
during training (but not 
during inference) in order 
to break spurious correla-
tions (or “conspiracy” in 
Geoff Hinton’s words) 
among weight parame-
ters that emerge during 
training.

tf.layers.dropout()

See section 4.3.2, for example.

Dropout rate
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To wrap up this section on visualizing underfitting and overfitting, we provide a sche-
matic diagram as a quick rule of thumb for spotting those states (figure 8.6). As panel
A shows, underfitting is when the model achieves a suboptimal (high) loss value,
regardless of whether it’s on the training or validation set. In panel B, we see a typical
pattern of overfitting, where the training loss looks fairly satisfactory (low), but the val-
idation loss is worse (higher) in comparison. The validation loss can plateau and even
start to edge up, even when the training-set loss continues to go down. Panel C is the
state we want to be in—namely, a state where the loss value doesn’t diverge too much
between the training and validation sets so that the final validation loss is low. Be
aware that the phrase “sufficiently low” can be relative, especially for problems that no
existing models can solve perfectly. New models may come out in the future and lower
the achievable loss relative to what we have in panel C. At that point, the pattern in
panel C would become a case of underfitting, and we would need to adopt the new
model type in order to fix it, possibly by going through the cycle of overfitting and
regularization again.

Batch 
normalization

Learns the mean and 
standard deviation of its 
input values during train-
ing and uses the learned 
statistics to normalize 
the inputs to zero mean 
and unit standard devia-
tion as its output.

tf.layers
.batchNormalization()

Various (see https://js 
.tensorflow.org/api/latest/
#layers.batchNormaliza-
tion)

Early stopping of 
training based on 
validation-set loss

Stops model training as 
soon as the epoch-
end loss value on the 
validation set stops 
decreasing.

tf.callbacks
.earlyStopping()

minDelta: The threshold 
below which changes will 
be ignored
patience: How many con-
secutive epochs of no 
improvement are tolerated 
at most

Table 8.1 An overview of commonly used methods for reducing overfitting in TensorFlow.js (continued)

Name of 
method How the method works

Corresponding API in 
TensorFlow.js Main free parameter(s)

A. Underfitting B. Overfitting
C. Border between

under- and overfitting
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Figure 8.6 A schematic diagram showing the loss curves from simplified cases of underfitting (panel A), 
overfitting (panel B), and just-right fitting (panel C) in model training.
 

https://js.tensorflow.org/api/latest/#layers.batchNormalization
https://js.tensorflow.org/api/latest/#layers.batchNormalization
https://js.tensorflow.org/api/latest/#layers.batchNormalization
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Finally, note that visualization of training is not limited to the losses. Other metrics are
often visualized to aid in monitoring the training process as well. Examples of this are
sprinkled throughout the book. For example, in chapter 3, we plotted the ROC curves
when training a binary classifier for phishing websites. We also rendered the confu-
sion matrix when training the iris-flower classifier. In chapter 9, we’ll show an example
of displaying machine-generated text during the training of a text generator. That
example won’t involve a GUI but will nonetheless provide useful and intuitive real-
time information about the state of the model’s training. Specifically, by looking at the
text generated by the model, you can get an intuitive sense of how good the text gen-
erated by the model currently is.

8.3 The universal workflow of machine learning
Up to this point, you have seen all the important steps in designing and training a
machine-learning model, including acquiring, formatting, visualizing, and ingesting
data; choosing the appropriate model topology and loss function for the dataset; and
training the model. You’ve also seen some of the most important failure modes that
may appear during the training process: underfitting and overfitting. So, this is a
good place for us to look back at what we’ve learned so far and reflect on what’s com-
mon among the machine-learning model processes for different datasets. The result-
ing abstraction is what we refer to as the universal workflow of machine learning. We’ll list
the workflow step-by-step and expand on the key considerations in each step:

1 Determine if machine learning is the right approach. First, consider if machine learn-
ing is the right approach to your problem, and proceed to the next steps only if
the answer is yes. In some cases, a non-machine-learning approach will work
equally well or perhaps even better, at a lower cost. For example, given enough
model-tuning efforts, you can train a neural network to “predict” the sum of
two integers by taking the integers as text input data (for example, the addition-
rnn example in the tfjs-examples repository). But this is far from the most effi-
cient or reliable solution to this problem: the good old addition operation on
the CPU suffices in this case.

2 Define the machine-learning problem and what you are trying to predict using the data.
In this step, you need to answer two questions:
– What sort of data is available? In supervised learning, you can only learn to pre-

dict something if you have labeled training data available. For example, the
weather-prediction model we saw earlier in this chapter is possible only
because the Jena-weather dataset is available. Data availability is usually a lim-
iting factor in this stage. If the available data is insufficient, you may need to
collect more data or hire people to manually label an unlabeled dataset. 

– What type of problem are you facing? Is it binary classification, multiclass classifi-
cation, regression, or something else? Identifying the problem type will
guide your choice of model architecture, loss function, and so forth.
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You can’t move on to the next step until you know what the inputs and outputs
are and what data you’ll use. Be aware of the hypotheses you’ve made implicitly
at this stage:
– You hypothesize that the outputs can be predicted given the inputs (the

input alone contains enough information for a model to predict the output
for all possible examples in this problem).

– You hypothesize that the data available is sufficient for a model to learn this
input-output relationship.

Until you have a working model, these are just hypotheses waiting to be vali-
dated or invalidated. Not all problems are solvable: just because you’ve assem-
bled a large labeled dataset that maps from X to Y doesn’t mean that X contains
enough information for the value of Y. For instance, if you’re trying to predict
the future price of a stock based on the history of the stock’s price, you’ll likely
fail because the price history doesn’t contain enough predictive information
about the future price. 

One class of unsolvable problems you should be aware of is nonstationary
problems, in which the input-output relation changes with time. Suppose
you’re trying to build a recommendation engine for clothes (given a user’s
clothes purchase history), and you’re training your model on only one year’s
data. The big issue here is that people’s tastes for clothes change with time. A
model that works accurately on the validation data from last year isn’t guaran-
teed to work equally accurately this year. Keep in mind that machine learning
can only be used to learn patterns that are present in the training data. In this
case, getting up-to-date data and continuously training new models will be a via-
ble solution.

3 Identify a way to reliably measure the success of a trained model on your goal. For simple
tasks, this may be just prediction accuracy, precision and recall, or the ROC
curve and the AUC value (see chapter 3). But in many cases, it will require
more sophisticated domain-specific metrics, such as customer retention rate
and sales, which are better aligned with higher-level goals, such as the success of
the business.

4 Prepare the evaluation process. Design the validation process that you’ll use to eval-
uate your models. In particular, you should split your data into three homoge-
neous yet nonoverlapping sets: a training set, a validation set, and a test set. The
validation- and test-set labels ought not to leak into the training data. For
instance, with temporal prediction, the validation and test data should come
from time intervals after the training data. Your data preprocessing code should
be covered by tests to guard against bugs.

5 Vectorize the data. Turn the data into tensors, also known as n-dimensional arrays,
the lingua franca of machine-learning models in frameworks such as Tensor-
Flow.js and TensorFlow. Note the following guidelines for data vectorization:
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– The numeric values taken by the tensors should usually be scaled to small
and centered values: for example, within the [-1, 1] or [0, 1] interval.

– If different features (such as temperature and wind speed) take values in
different ranges (heterogeneous data), then the data ought to be normal-
ized, usually z-normalized to zero mean and unit standard deviation for
each feature.

Once your tensors of input data and target (output) data are ready, you can
begin to develop models.

6 Develop a model that beats a commonsense baseline. Develop a model that beats a
non-machine-learning baseline (such as predicting the population average for a
regression problem or predicting the last data point in a time-series prediction
problem), thereby demonstrating that machine learning can truly add value to
your solution. This may not always be the case (see step 1). 

Assuming things are going well, you need to make three key choices to build
your first baseline-beating, machine-learning model:
– Last-layer activation—This establishes useful constraints for the model’s out-

put. This activation should suit the type of problem you are solving. For exam-
ple, the phishing-website classifier in chapter 3 used the sigmoid activation for
its last (output) layer due to the binary-classification nature of the problem,
and the temperature-prediction models in this chapter used the linear activa-
tion for the layer owing to the regression nature of the problem. 

– Loss function—In a way similar to last-layer activation, the loss function should
match the problem you’re solving. For instance, use binaryCrossentropy for
binary-classification problems, categoricalCrossentropy for multiclass-
classification problems, and meanSquaredError for regression problems.

– Optimizer configuration—The optimizer is what drives the updates to the neu-
ral network’s weights. What type of optimizer should be used? What should
its learning rate be? These are generally questions answered by hyperparam-
eter tuning. But in most cases, you can safely start with the rmsprop optimizer
and its default learning rate. 

7 Develop a model with sufficient capacity and to overfit the training data. Gradually
scale up your model architecture by manually changing hyperparameters. You
want to reach at a model that overfits the training set. Remember that the uni-
versal and central tension in supervised machine learning is between optimiza-
tion (fitting the data seen during training) and generalization (being able to
make accurate predictions for unseen data). The ideal model is one that stands
right at the border between underfitting and overfitting: that is, between
under-capacity and over-capacity. To figure out where this border is, you must
first cross it.

In order to cross it, you must develop a model that overfits. This is usually
fairly easy. You may
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– Add more layers
– Make each layer bigger
– Train the model for more epochs
Always use visualization to monitor the training and validation losses, as well as
any additional metrics that you care about (such as AUC) on both the training
and validation sets. When you see the model’s accuracy on the validation set
begin to degrade (figure 8.6, panel B), you’ve achieved overfitting.

8 Add regularization to your model and tune the hyperparameters. The next step is to
add regularization to your model and further tune its hyperparameters (usually
in an automated way) to get as close as possible to the ideal model that neither
underfits nor overfits. This step will take the most time, even though it can be
automated. You’ll repeatedly modify your model, train it, evaluate it on the vali-
dation set (not the test set at this point), modify it again, and repeat until the
model is as good as it can get. These are the things you should try in terms of
regularization:
– Add dropout layers with different dropout rates.
– Try L1 and/or L2 regularization.
– Try different architectures: add or remove a small number of layers.
– Change other hyperparameters (for example, the number of units of a dense

layer).
Beware of validation-set overfitting when tuning hyperparameters. Because the
hyperparameters are determined based on the performance on the validation
set, their values will be overspecialized for the validation set and therefore may
not generalize well to other data. It is the purpose of the test set to obtain an
unbiased estimate of the model’s accuracy after hyperparameter tuning. So, you
shouldn’t use the test set when tuning the hyperparameters.

This is the universal workflow of machine learning! In chapter 12, we’ll add two more
practically oriented steps to it (an evaluation step and a deployment step). But for
now, this is a recipe for how to go from a vaguely defined machine-learning idea to a
model that’s trained and ready to make some useful predictions.

With this foundational knowledge, we’ll start exploring more advanced types of
neural networks in the upcoming part of the book. We’ll start from models designed
for sequential data in chapter 9.

Exercises
1 In the temperature-prediction problem, we found that the linear regressor sig-

nificantly underfit the data and produced poor prediction results on both the
training and validation sets. Would adding L2 regularization to the linear
regressor help improve the accuracy of such an underfitting model? It should
be easy to try it out yourself by modifying the buildLinearRegressionModel()
function in the file jena-weather/models.js.
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2 When predicting the temperature of the next day in the Jena-weather example,
we used a look-back period of 10 days to produce the input features. A natural
question is, what if we use a longer look-back period? Is including more data
going to help us get more accurate predictions? You can find this out by modify-
ing the const lookBack in jena-weather/index.js and running the training in
the browser (for example, by using the MLP with L2 regularization). Of course,
a longer look-back period will increase the size of the input features and lead to
longer training time. So, the flip side of the question is, can we use a shorter
look-back period without sacrificing the prediction accuracy significantly? Try
this out as well.

Summary
 tfjs-vis can aid the visualization of a machine-learning model’s training process

in the browser. Specifically, we showed how tfjs-vis can be used to
– Visualize the topology of TensorFlow.js models.
– Plot loss and metrics curves during training.
– Summarize weight distributions after training. 

We showed concrete examples of these visualization workflows.
 Underfitting and overfitting are fundamental behaviors of machine-learning

models and should be monitored and understood in every machine-learning
problem. They can both be seen by comparing the loss curves from the training
and validation sets during training. The built-in tfvis.show.fitCallbacks()
method helps you visualize these curves in the browser with ease.

 The universal workflow of machine learning is a list of common steps and best
practices of different types of supervised learning tasks. It goes from deciding
the nature of the problem and the requirements on the data to finding a model
that sits nicely on the border between underfitting and overfitting.
 



Deep learning for
sequences and text
This chapter focuses on problems involving sequential data. The essence of sequen-
tial data is the ordering of its elements. As you may have realized, we’ve dealt with
sequential data before. Specifically, the Jena-weather data we introduced in chapter
7 is sequential. The data can be represented as an array of arrays of numbers.

This chapter covers
 How sequential data differs from nonsequential data

 Which deep-learning techniques are suitable for problems 
that involve sequential data

 How to represent text data in deep learning, including with 
one-hot encoding, multi-hot encoding, and word embedding

 What RNNs are and why they are suitable for sequential 
problems

 What 1D convolution is and why it is an attractive alternative 
to RNNs

 The unique properties of sequence-to-sequence tasks and 
how to use the attention mechanism to solve them
292
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Order certainly matters for the outer array because the measurements come in over
time. If you reverse the order of the outer array—for instance, a rising air-pressure
trend becomes a falling one—it has completely different implications if you are trying
to predict future weather. Sequential data is everywhere in life: stock prices, electro-
cardiogram (ECG) readings, strings of characters in software code, consecutive frames
of a video, and sequences of actions taken by a robot. Contrast those with nonsequen-
tial data such as the iris flowers in chapter 3: it doesn’t matter if you alter the order of
the four numeric features (sepal and petal length and width).1

The first part of the chapter will introduce a fascinating type of model we men-
tioned in chapter 1—RNNs, or recurrent neural networks, which are designed specifi-
cally to learn from sequential data. We will build the intuition for what special features
of RNNs make these models sensitive to the ordering of elements and the information
it bears.

The second part of the chapter will talk about a special kind of sequential data:
text, which is perhaps the most ubiquitous sequential data (especially in the web envi-
ronment!). We will start by examining how text is represented in deep learning and
how to apply RNNs on such representations. We will then move on to 1D convnets and
talk about why they are also powerful at processing text and how they can be attractive
alternatives to RNNs for certain types of problems.

In the last part of the chapter, we will go a step further and explore sequence-based
tasks that are slightly more complex than predicting a number or a class. In particular,
we will venture into sequence-to-sequence tasks, which involve predicting an output
sequence from an input one. We will use an example to illustrate how to solve basic
sequence-to-sequence tasks with a new model architecture called the attention mecha-
nism, which is becoming more and more important in the field of deep-learning-based
natural language processing.

By the end of this chapter, you should be familiar with common types of sequential
data in deep learning, how they are presented as tensors, and how to use Tensor-
Flow.js to write basic RNNs, 1D convnets, and attention networks to solve machine-
learning tasks involving sequential data.

The layers and models you will see in this chapter are among the most complex in
this book. This is the cost that comes with their enhanced capacity for sequential-
learning tasks. You may find some of them hard to grasp the first time you read about
them, even though we strive to present them in a fashion that’s as intuitive as possible,
with the help of diagrams and pseudo-code. If that’s the case, try playing with the
example code and working through the exercises provided at the end of the chapter.
In our experience, the hands-on experience makes it much easier to internalize com-
plex concepts and architectures like the ones that appear in this chapter.

1 Convince yourself that this is indeed the case in exercise 1 at the end of the chapter.
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9.1 Second attempt at weather prediction: Introducing RNNs
The models we built for the Jena-weather problem in chapter 8 threw away the order
information. In this section, we will tell you why that’s the case and how we can bring
the order information back by using RNNs. This will allow us to achieve superior pre-
diction accuracies in the temperature-prediction task.

9.1.1 Why dense layers fail to model sequential order

Since we described the Jena-weather dataset in detail in the previous chapter, we will
go over the dataset and the related machine-learning task only briefly here. The task
involves predicting the temperature 24 hours from a certain moment in time by using
readings from 14 weather instruments (such as temperature, air pressure, and wind
speed) over a 10-day period leading up to the moment. The instrument readings are
taken at regular intervals of 10 minutes, but we downsample them by a factor of 6 to
once per hour for the sake of manageable model size and training time. So, each
training example comes with a feature tensor of shape [240, 14], where 240 is the
number of time steps over the 10-day period, and 14 is the number of different
weather-instrument readings.

When we tried a linear-regression model and an MLP on the task in the previous
chapter, we flattened the 2D input features to 1D by using a tf.layers.flatten layer
(see listing 8.2 and figure 8.2). The flattening step was necessary because both the lin-
ear regressor and the MLP used dense layers to handle the input data, and dense lay-
ers require the input data to be 1D for each input example. This means that the
information from all the time steps is mixed together in a way that erases the signifi-
cance of which step comes first and which one next, which time step follows which
other one, how far apart two time steps are, and so forth. In other words, it doesn’t
matter how we order the 240 time steps when we flatten the 2D tensor of shape [240,
14] into the 1D tensor of shape [3360] as long as we are consistent between training
and inference. You can confirm this point experimentally in exercise 1 at the end of
this chapter. But from a theoretical point of view, this lack of sensitivity to the order of
data elements can be understood in the following way. At the core of a dense layer is a
set of linear equations, each of which multiplies every input feature value [x1, x2, …,
xn] with a tunable coefficient from the kernel [k1, k2, …, kn]:

Figure 9.1 provides a visual representation of how a dense layer works: the paths lead-
ing from the input elements to the output of the layer are graphically symmetric with
one another, reflecting the mathematical symmetry in equation 9.1. The symmetry is
undesirable when we deal with sequential data because it renders the model blind to
the order among the elements.

y f k1 x1 k2 x2 ... kn xn+ ++ = (Equation 9.1)
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In fact, there is an easy way to show that our dense-layer-based approach (the MLPs,
even with regularization) did not provide a very good solution to the temperature-
prediction problem: comparing its accuracy with the accuracy we can obtain from a
commonsense, non-machine-learning approach.

What is the commonsense approach we are speaking of? Predict the temperature as
the last temperature reading in the input features. To put this simply, just pretend that
the temperature 24 hours from now will be the same as the temperature right now!
This approach makes “gut sense” because we know from everyday experience that the
temperature tomorrow tends to be close to the temperature today (that is, at exactly
the same time of day). It is a very simple algorithm and gives a reasonable guess that
should beat all other similarly simple algorithms (such as predicting the temperature
as the temperature from 48 hours ago).

The jena-weather directory of tfjs-examples that we used in chapter 8 provides a
command for you to assess the accuracy of this commonsense approach:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/jena-weather
yarn
yarn train-rnn --modelType baseline

The yarn train-rnn command calls the script train-rnn.js and performs computation
in the Node.js-based backend environment.2 We will come back to this mode of opera-
tion when we explore RNNs shortly. The command should give you the following
screen output:

Commonsense baseline mean absolute error: 0.290331

So, the simple non-machine-learning approach yields a mean absolute prediction error
of about 0.29 (in normalized terms), which is about equal to (if not slightly better

2 The code that implements this commonsense, non-machine-learning approach is in the function named
getBaselineMeanAbsoluteError() in jena-weather/models.js. It uses the forEachAsync() method of
the Dataset object to iterate through all batches of the validation subset, compute the MAE loss for each
batch, and accumulate all the losses to obtain the final loss.
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k3 · x3

k3 · x3
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Figure 9.1 The internal architecture of a 
dense layer. The multiplication and 
addition performed by a dense layer is 
symmetric with respect to its inputs. 
Contrast this with a simpleRNN layer 
(figure 9.2), which breaks the symmetry 
by introducing step-by-step computation. 
Note that we assume the input has only 
four elements and omit the bias terms for 
simplicity. Also, we show the operations 
for only one output unit of the dense layer. 
The remaining units are represented as 
the stack of obscured boxes in the 
background.
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than) the best validation error we got from the MLP in chapter 8 (see figure 8.4). In
other words, the MLP, with or without regularization, wasn’t able to beat the accuracy
from the commonsense baseline method reliably!

Such observations are not uncommon in machine learning: it’s not always easy for
machine learning to beat a commonsense approach. In order to beat it, the machine-
learning model sometimes needs to be carefully designed or tuned through hyperpa-
rameter optimization. Our observation also underlines how important it is to create a
non-machine-learning baseline for comparison when working on a machine-learning
problem. We certainly want to avoid wasting all the effort on building a machine-
learning algorithm that can’t even beat a much simpler and computationally cheaper
baseline! Can we beat the baseline in the temperature-prediction problem? The
answer is yes, and we will rely on RNNs to do that. Let’s now take a look at how RNNs
capture and process sequential order.

9.1.2 How RNNs model sequential order

Panel A of figure 9.2 shows the internal structure of an RNN layer by using a short,
four-item sequence. There are several variants of RNN layers out there, and the dia-
gram shows the simplest variant, which is referred to as simpleRNN and is available in
TensorFlow.js as the tf.layers.simpleRNN() factory function. We will talk about
more complicated RNN variants later in this chapter, but for now we will focus on
simpleRNN. 

f(W � x + U � y)  x y

x1

x2

x3

x4

y1

y0

y2

y3

y4

Time

f(W � x1 + U � y0)  

f(W � x2 + U � y1)  

f(W � x3 + U � y2)  

f(W � x4 + U � y3)  

A. SimpleRNN layer:
unrolled representation

B. SimpleRNN layer:
rolled representation

Figure 9.2 The “unrolled” (panel A) and “rolled” (panel B) representations of the internal structure of simpleRNN. 
The rolled view (panel B) represents the same algorithm as the unrolled one, albeit in a more succinct form. It 
illustrates simpleRNN’s sequential processing of input data in a more concise fashion. In the rolled representation 
in panel B, the connection that goes back from output (y) into the model itself is the reason why such layers are 
called recurrent. As in figure 9.1, we display only four input elements and omit the bias terms for simplicity.
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The diagram shows how the time slices of the input (x1, x2, x3, …) are processed step-
by-step. At each step, xi is processed by a function (f()), represented as the rectangular
box at the center of the diagram. This yields an output (yi) that gets combined with the
next input slice (xi+1) as the input to the f() at the next step. It is important to note that
even though the diagram shows four separate boxes with function definitions in them,
they in fact represent the same function. This function (f()) is called the cell of the
RNN layer. It is used in an iterative fashion during the invocation of the RNN layer.
Therefore, an RNN layer can be viewed as “an RNN cell wrapped in a for loop.”3

Comparing the structure of simpleRNN and that of the dense layer (figure 9.1), we
can see two major differences:

 SimpleRNN processes the input elements (time steps) one step at a time. This
reflects the sequential nature of the inputs, something a dense layer can’t do.

 In simpleRNN, the processing at every input time step generates an output (yi).
The output from a previous time step (for example, y1) is used by the layer
when it processes the next time step (such as x2). This is the reason behind the
“recurrent” part of the name RNN: the output from previous time steps flows
back and becomes an input for later time steps. Recurrence doesn’t happen in
layer types such as dense, conv2d, and maxPooling2d. Those layers don’t
involve output information flowing back and hence are referred to as feedfor-
ward layers.

Due to these unique features, simpleRNN breaks the symmetry between the input ele-
ments. It is sensitive to the order of the input elements. If you reorder the elements of
a sequential input, the output will be altered as a result. This distinguishes simpleRNN
from a dense layer.

Panel B of figure 9.2 is a more abstract representation of simpleRNN. It is referred to
as a rolled RNN diagram, versus the unrolled diagram in panel A, because it “rolls” all time
steps into a single loop. The rolled diagram corresponds nicely to a for loop in pro-
gramming languages, which is actually how simpleRNN and other types of RNNs are
implemented under the hood in TensorFlow.js. But instead of showing the real code,
let’s look at the much shorter pseudo-code for simpleRNN in the following listing,
which you can view as the implementation of the simpleRNN architecture shown in fig-
ure 9.2. This will help you focus on the essence of how the RNN layer works.

y = 0
for x in input_sequence:
  y = f(dot(W, x) + dot(U, y))

3 Quote attributed to Eugene Brevdo.

Listing 9.1 Pseudo-code for the internal computation of simpleRNN

y corresponds to the y in figure 9.2. The 
state is initialized to zeros in the 
beginning.

x corresponds to the x in figure 
9.2. The for loop iterates over all 
time steps of the input sequence.

W and U are the weight matrices for the input and 
the state (that is, the output that loops back and 
becomes the recurrent input), respectively. This is 
also where the output for time step i becomes the 
state (recurrent input) for time step i + 1.
 

https://machinelearningmastery.com/beam-search-decoder-natural-language-processing/
https://machinelearningmastery.com/beam-search-decoder-natural-language-processing/
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In listing 9.1, you can see that the output at time step i becomes the “state” for the
next time step (next iteration). State is an important concept for RNNs. It is how an
RNN “remembers” what happened in the steps of the input sequence it has already
seen. In the for loop, this memory state gets combined with future input steps and
becomes the new memory state. This gives the simpleRNN the ability to react to the
same input element differently depending on what elements have appeared in the
sequence before. This type of memory-based sensitivity is at the heart of sequential
processing. As a simple example, if you are trying to decode Morse code (made of
dots and dashes), the meaning of a dash depends on the sequence of dots and dashes
that go before (and after) it. As another example, in English, the word last can have
completely different meanings depending on what words go before it.

SimpleRNN is appropriately named because its output and state are the same
thing. Later, we will explore more complex and powerful RNN architectures. Some of
these have output and state as two separate things; others even have multiple states.

Another thing worth noting about RNNs is that the for loop enables them to pro-
cess input sequences made of an arbitrary number of input steps. This is something
that can’t be done through flattening a sequential input and feeding it to a dense
layer because a dense layer can only take a fixed input shape.

Furthermore, the for loop reflects another important property of RNNs: parameter
sharing. What we mean by this is the fact that the same weight parameters (W and U)
are used in all time steps. The alternative is to have a unique value of W (and U) for
every time step. That would be undesirable because 1) it limits the number of time
steps that can be processed by the RNN, and 2) it leads to a dramatic increase in the
number of tunable parameters, which will increase the amount of computation and
the likelihood of overfitting during training. Therefore, the RNN layers are similar to
conv2d layers in convnets in that they use parameter sharing to achieve efficient com-
putation and protect against overfitting—although the recurrent and conv2d layers
achieve parameter sharing in different ways. While conv2d layers exploit the transla-
tional invariance along spatial dimensions, RNN layers exploit translational invariance
along the time dimension.

Figure 9.2 shows what happens in a simpleRNN during inference time (the forward
pass). It doesn’t show how the weight parameters (W and U) are updated during train-
ing (the backward pass). However, the training of RNNs follows the same backpropa-
gation rules that we introduced in section 2.2.2 (figure 2.8)—that is, starting from the
loss, backtracking the list of operations, taking their derivatives, and accumulating
gradient values through them. Mathematically, the backward pass on a recurrent net-
work is basically the same as that on a feedforward one. The only difference is that the
backward pass of an RNN layer goes backwards in time, on an unrolled graph like the
one in panel A of figure 9.2. This is why the process of training RNNs is sometimes
referred to as backpropagation through time (BPTT).
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SIMPLERNN IN ACTION

That’s enough abstract musing about simpleRNN and RNNs in general. Let’s now
look at how to create a simpleRNN layer and include it in a model object, so we can
use it to predict temperatures more accurately than before. The code in listing 9.2
(excerpted from jena-weather/train-rnn.js) is how this is done. For all the internal
complexity of the simpleRNN layer, the model itself is fairly simple. It has only two lay-
ers. The first one is simpleRNN, configured to have 32 units. The second one is a
dense layer that uses the default linear activation to generate continuous numerical
predictions for the temperature. Note that because the model starts with an RNN, it is
no longer necessary to flatten the sequential input (compare this with listing 8.3 in
the previous chapter, when we created MLPs for the same problem). In fact, if we put
a flatten layer before the simpleRNN layer, an error would be thrown because RNN
layers in TensorFlow.js expect their inputs to be at least 3D (including the batch
dimension).

function buildSimpleRNNModel(inputShape) {
  const model = tf.sequential();
  const rnnUnits = 32;
  model.add(tf.layers.simpleRNN({
    units: rnnUnits,
    inputShape
  }));
  model.add(tf.layers.dense({units: 1}));
  return model;
}

To see the simpleRNN model in action, use the following command:

yarn train-rnn --modelType simpleRNN --logDir /tmp/
  jean-weather-simpleRNN-logs

The RNN model is trained in the backend environment using tfjs-node. Due to the
amount of computation involved in the BPTT-based RNN training, it would be much
harder and slower, if not impossible, to train the same model in the resource-
restricted browser environment. If you have a CUDA environment set up properly,
you can add the --gpu flag to the command to get a further boost in training speed.

The --logDir flag in the previous command causes the model-training process to
log the loss values to the specified directory. You can load and plot the loss curves in
the browser using a tool called TensorBoard. Figure 9.3 is a screenshot from Tensor-
Board. At the level of JavaScript code, this is achieved by configuring the tf.Layers-
Model.fit() call with a special callback that points to the log directory. Info box 9.1
contains further information on how this is done.

Listing 9.2 Creating a simpleRNN-based model for the temperature-prediction problem 

The hard-coded unit count of the 
simpleRNN layer is a value that works 
well, determined through hand-tuning 
of the hyperparameter.

The first layer of the model is a 
simpleRNN layer. There is no need to 
flatten the sequential input, which 
has a shape of [null, 240, 14].

We end the model with a dense layer 
with a single unit and the default linear 
activation for the regression problem.
 



300 CHAPTER 9 Deep learning for sequences and text
INFO BOX 9.1 Using the TensorBoard callbacks to monitor long-running
model training in Node.js
In chapter 8, we introduced callbacks from the tfjs-vis library that help you monitor
tf.LayersModel.fit() calls in the browser. However, tfjs-vis is a browser-only
library and is not applicable to Node.js. By default, tf.LayersModel.fit() in tfjs-
node (or tfjs-node-gpu) renders progress bars and displays loss and timing metrics
in the terminal. While this is lightweight and informative, text and numbers are often
a less intuitive and less visually appealing way to monitor long-running model train-
ing than a GUI. For example, small changes in the loss value over an extensive
period of time, which is often what we are looking for during late stages of model
training, are much easier to spot in a chart (with properly set scales and grids) than
in a body of text.

Luckily, a tool called TensorBoard can help us in the backend environment. Tensor-
Board was originally designed for TensorFlow (Python), but tfjs-node and tfjs-node-gpu
can write data in a compatible format that can be ingested by TensorBoard. To log loss
and metric values to TensorBoard from a tf.LayersModel.fit() or tf.Layers-
Model.fitDataset() call, follow this pattern:

  import * as tf from '@tensorflow/tfjs-node';
 // Or '@tensorflow/tfjs-node-gpu'

      // ...
  await model.fit(xs, ys, {
    epochs,
    callbacks: tf.node.tensorBoard('/path/to/my/logdir')
  });

       // Or for fitDataset():
  await model.fitDataset(dataset, {
    epochs,
    batchesPerEpoch,
    callbacks: tf.node.tensorBoard('/path/to/my/logdir')
  });

These calls will write the loss values, along with any metrics configured during the
compile() call, to the directory /path/to/my/logdir. To view the logs in the browser,

1 Open a separate terminal.
2 Install TensorBoard with the following command (unless it’s already installed):

pip install tensorboard

3 Start the backend server of TensorBoard, and point it to the log directory
specified during the callback creation:
tensorboard --logdir /path/to/my/logdir

4 In the web browser, navigate to the http:// URL displayed by the TensorBoard
process. Then the loss and metric charts such as those shown in figures 9.3
and 9.5 will appear in the beautiful web UI of TensorBoard.
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The text summary of the simpleRNN model created by listing 9.2 looks like the
following:

Layer (type)                 Output shape              Param #   
     =================================================================
     simple_rnn_SimpleRNN1 (Simpl [null,32]                 1504      
     _________________________________________________________________
     dense_Dense1 (Dense)         [null,1]                  33        
     =================================================================
Total params: 1537
     Trainable params: 1537
     Non-trainable params: 0
     _________________________________________________________________

It has significantly fewer weight parameters than the MLP we used before (1,537 ver-
sus 107,585, or a reduction by a factor of 70), but it achieves a lower validation MAE
loss (that is, more accurate predictions) than the MLP during training (0.271 versus
0.289). This small but solid reduction in the temperature-prediction error highlights
the power of parameter sharing based on temporal invariance and the advantages of
RNNs in learning from sequence data like the weather data we are dealing with.

You might have noticed that even though simpleRNN involves a relatively small
number of weight parameters, its training and inference take much longer compared
to feedforward models such as MLP. This is a major shortcoming of RNNs, one in
which it is impossible to parallelize the operations over the time steps. Such paral-
lelization is not achievable because subsequent steps depend on the state values com-
puted in previous steps (see figure 9.2 and the pseudo-code in listing 9.1). If we use
the Big-O notation, the forward pass on an RNN takes an O(n) amount of time, where
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Figure 9.3 MAE loss curves from the simpleRNN model built for the 
Jena-temperature-prediction problem. This chart is a screenshot from 
TensorBoard serving the logs from the Node.js-based training of the 
simpleRNN model.
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n is the number of input time steps. The backward pass (BPTT) takes another O(n)
amount of time. The input future of the Jena-weather problem consists of a large
number of (240) time steps, which leads to the slow training time seen previously.
This is the main reason why we train the model in tfjs-node instead of in the browser.

This situation of RNNs is in contrast to feedforward layers such as dense and
conv2d. In those layers, computation can be parallelized among the input elements
because the operation on one element does not depend on the result from another
input element. This allows such feedforward layers to take less than O(n) time (in
some cases close to O(1)) to execute their forward and backward passes with the help
of GPU acceleration. In section 9.2, we will explore some more parallelizable sequen-
tial modeling approaches such as 1D convolution. However, it is still important to be
familiar with RNNs because they are sensitive to sequential positions in a way that 1D
convolution isn’t (more on that later).

GATED RECURRENT UNIT: A MORE SOPHISTICATED TYPE OF RNN
SimpleRNN isn’t the only recurrent layer available in TensorFlow.js. There are two
others: Gated Recurrent Unit (GRU4) and LSTM (which you’ll recall stands for Long
Short-Term Memory5). In most practical use cases, you’ll probably want to use one of
these two. SimpleRNN is too simplistic for most real problems, despite the fact that it
is computationally much cheaper and has an easier-to-understand internal mecha-
nism than GRU and LSTM. There is a major issue with simpleRNN: although it is the-
oretically able to retain at time t information about inputs seen many time steps
before, such long-term dependencies are hard to learn in practice.

This is due to the vanishing-gradient problem, an effect similar to what is observed in
feedforward networks that are many layers deep: As you keep adding layers to a net-
work, the size of the gradients backpropagated from the loss function to the early lay-
ers gets smaller and smaller. Henceforth, the updates to the weights get smaller and
smaller, to the point where the network eventually becomes untrainable. For RNNs,
the large number of time steps plays the role of the many layers in this problem. GRU
and LSTM are RNNs designed to solve the vanishing-gradient problem, and GRU is
the simpler of the two. Let’s look at how GRU does that.

Compared to simpleRNN, GRU has a more complex internal structure. Figure 9.4
shows a rolled representation of a GRU’s internal structure. Compared with the same
rolled representation of simpleRNN (panel B of figure 9.2), it contains more nuts and
bolts. The input (x) and the output/state (referred to as h by the convention in the
RNN literature) pass through four equations to give rise to the new output/state. Com-
pare this with simpleRNN, which involves only one equation. This complexity is also
reflected in the pseudo-code in listing 9.3, which can be viewed as an implementation of
the mechanisms of figure 9.4. We omit the bias terms in the pseudo-code for simplicity.

4 Kyunghyun Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation,” 2014, https://arxiv.org/abs/1406.1078.

5 Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8,
1997, pp. 1735–1780.
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h = 0
for x_i in input_sequence:
  z = sigmoid(dot(W_z, x) + dot(U_z, h))
  r = sigmoid(dot(W_r, x) + dot(W_r, h))
  h_prime = tanh(dot(W, x) + dot(r, dot(U, h)))
  h = dot(1 - z, h) + dot(z, h_prime)

Of all the internal details of GRU, we highlight the two most important ones:

1 GRU makes it easy to carry information across many time steps. This is achieved
by the intermediate quantity z, which is referred to as the update gate. Because of
the update gate, GRU can learn to carry the same state across many time steps
with minimal changes. In particular, in the equation (1  z) ⋅ h + z ⋅ h ', if the
value of z is 0, then the state h will simply be copied from the current time step
to the next. The ability to perform wholesale carrying like this is an important
part of how GRU combats the vanishing-gradient problem. The reset gate z is
calculated as a linear combination of the input x and the current state h, fol-
lowed by a sigmoid nonlinearity.

2 In addition to the update gate z, another “gate” in GRU is the so-called reset gate,
r. Like the update gate z, r is calculated as a sigmoid nonlinearity operating on a

Listing 9.3 Pseudo-code for a GRU layer

z

r

h'

x
h

Update gate

Reset gate

GRU layer:
rolled representation

(1 � z) · h + z · h'σ(Wz · x + Uz · h)

σ(Wr · x + Ur · h)

tanh(W · x + r · U · h)

Figure 9.4 A rolled representation of the GRU cell, a more complex and powerful RNN layer type than simpleRNN. 
This is a rolled representation, comparable to panel B of figure 9.2. Note that we omit the bias terms in the 
equations for simplicity. The dashed lines indicate feedback connections from the output of the GRU cell (h) to 
the same cell in subsequent time steps.

This is the h in figure 9.4. As in 
simpleRNN, the state is initialized 
to zero in the beginning.

This for loop iterates over all time 
steps of the input sequence.

z is called the update gate.
r is called the reset gate.

h_prime is the temporary state 
of the current state.

h_prime (current temporary state) 
and h (previous state) are combined in 
a weighted fashion (z being the 
weight) to form the new state.
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linear combination of the input and the current state h. The reset gate controls
how much of the current state to “forget.” In particular, in the equation tanh(W⋅ x + r ⋅ U ⋅ h), if the value of r becomes 0, then the effect of the current state h
gets erased; and if (1  z) in the downstream equation is close to zero as well,
then the influence of the current state h on the next state will be minimized. So,
r and z work together to enable the GRU to learn to forget the history, or a part
of it, under the appropriate conditions. For instance, suppose we’re trying to
classify a movie review as positive or negative. The review may start by saying “this
movie is pretty enjoyable,” but halfway through the review, it then reads “how-
ever, the movie isn’t as good as other movies based on similar ideas.” At this
point, the memory regarding the initial praise should be largely forgotten,
because it is the later part of the review that should weigh more in determining
the final sentiment-analysis result of this review. 

So, that’s a very rough and high-level outline of how GRU works. The important thing
to remember is that the internal structure of GRU allows the RNN to learn when to
carry over old state and when to update the state with information from the inputs.
This learning is embodied by updates to the tunable weights, Wz, Uz, Wr, Wr, W, and U
(in addition to the omitted bias terms).

Don’t worry if you don’t follow all the details right away. At the end of the day, the
intuitive explanation for GRU we wrote in the last couple of paragraphs doesn’t matter
that much. It is not the human engineer’s job to understand how a GRU processes
sequential data at a very detailed level, just like it is not the human engineer’s job to
understand the fine-grained details of how a convnet converts an image input to out-
put class probabilities. The details are found by the neural network in the hypothesis
space delineated by the RNN’s structure data through the data-driven training process.

To apply GRU on our temperature-prediction problem, we construct a Tensor-
Flow.js model that contains a GRU layer. The code we use to do this (excerpted from
jena-weather/train-rnn.js.) looks almost identical to what we used for the simpleRNN
model (listing 9.2). The only difference is the type of the model’s first layer (GRU ver-
sus simpleRNN). 

function buildGRUModel(inputShape) {
  const model = tf.sequential();
  const rnnUnits = 32;
  model.add(tf.layers.gru({
    units: rnnUnits,
    inputShape
  }));
  model.add(tf.layers.dense({units: 1}));
  return model;
}

Listing 9.4 Creating a GRU model for the Jena-temperature-prediction problem

The hard-coded unit count is a number 
that works well, discovered through 
hand-tuning of the hyperparameter.

The first layer of the model is a GRU layer.

The model ends with a dense layer with 
a single unit and the default linear 
activation for the regression problem.
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To start training the GRU model on the Jena-weather dataset, use

yarn train-rnn --modelType gru

Figure 9.5 shows the training and validation loss curves obtained with the GRU model.
It gets a best validation error of approximately 0.266, which beats the one we got from
the simpleRNN model in the previous section (0.271). This reflects the greater capac-
ity of GRU in learning sequential patterns compared to simpleRNN. There are indeed
sequential patterns hidden in the weather-instrument readings that can help improve
the accuracy of predicting the temperature; this information is picked up by GRU but
not simpleRNN. This comes at the cost of greater training time. For example, on one
of our machines, the GRU model trains at a speed of 3,000 ms/batch, as compared to
the simpleRNN’s 950 ms/batch.6 But if the goal is to predict temperature as accurately
as possible, this cost will most likely be worth it.

9.2 Building deep-learning models for text
The weather-prediction problem we just studied dealt with sequential numerical data.
But the most ubiquitous kinds of sequential data are probably text instead of num-
bers. In alphabet-based languages such as English, text can be viewed as either a
sequence of characters or a sequence of words. The two approaches are suitable for
different problems, and we will use both of them for different tasks in this section.

6 These performance numbers are obtained from tfjs-node running on the CPU backend. If you use tfjs-node-
gpu and the CUDA GPU backend, you’ll get approximately proportionate speedups for both model types. 
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Figure 9.5 The loss curves from training a GRU model on the 
temperature-prediction problem. Compare this with the loss curves 
from the simpleRNN model (figure 9.3), and notice the small but real 
reduction in the best validation loss achieved by the GRU model.
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The deep-learning models for text data we’ll introduce in the following sections can
perform text-related tasks such as

 Assigning a sentiment score to a body of text (for instance, whether a product
review is positive or negative)

 Classifying a body of text by its topic (for example, whether a news article is
about politics, finance, sports, health, weather, or miscellaneous)

 Converting a text input into a text output (for instance, for standardization of
format or machine translation)

 Predicting the upcoming parts of a text (for example, smart suggestion features
of mobile input methods) 

This list is just a very small subset of interesting machine-learning problems that
involve text, which are systematically studied in the field of natural language process-
ing. Although we will only scratch the surface of neural-network-based natural lan-
guage processing techniques in this chapter, the concepts and examples introduced
here should give you a good starting point for further exploration (see the “Materials
for further reading” section at the end of this chapter).

Keep in mind that none of the deep neural networks in this chapter truly under-
stand text or language in a human sense. Rather, these models can map the statistical
structure of text to a certain target space, whether it is a continuous sentiment score, a
multiclass-classification result, or a new sequence. This turns out to be sufficient for
solving many practical, text-related tasks. Deep learning for natural language process-
ing is nothing more than pattern recognition applied to characters and words, in
much the same way that deep-learning-based computer vision (chapter 4) is pattern
recognition applied to pixels.

Before we dive into the deep neural networks designed for text, we need to first
understand how text is represented in machine learning.

9.2.1 How text is represented in machine learning: 
One-hot and multi-hot encoding

Most of the input data we’ve encountered in this book so far is continuous. For exam-
ple, the petal length of an iris flower varies continuously in a certain range; the
weather-instrument readings in the Jena-weather dataset are all real numbers. These
values are represented straightforwardly as float-type tensors (floating-point numbers).
However, text is different. Text data comes in as a string of characters or words, not real
numbers. Characters and words are discrete. For instance, there is no such thing as a
letter between “j” and “k” in the same sense as there is a number between 0.13 and
0.14. In this sense, characters and words are similar to classes in multiclass classification
(such as the three iris-flower species or the 1,000 output classes of MobileNet). Text
data needs to be turned into vectors (arrays of numbers) before it can be fed into deep-
learning models. This conversion process is called text vectorization.

There are multiple ways to vectorize text. One-hot encoding (as we’ve introduced in
chapter 3) is one of the options. In English, depending on where you draw the line,
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there are about 10,000 most frequently used words. We can collect these 10,000 words
and form a vocabulary. The unique words in the vocabulary may be sorted in a certain
order (for example, descending order of frequency) so that any given word can be
given an integer index.7 Then every English word can be represented as a length-
10,000 vector, in which only the element that corresponds to the index is 1, and all
remaining elements are 0. This is the one-hot vectorization of the word. Panel A of figure
9.6 presents this graphically. 

What if we have a sentence instead of a single word? We can get the one-hot vec-
tors for all the words that make up the sentence and put them together to form a 2D

7 An obvious question is: what if we get a rare word that falls out of the 10,000-word vocabulary? This is a prac-
tical problem that any text-oriented deep-learning algorithm is faced with. In practice, we solve this problem
by adding a special item called OOV to the vocabulary. OOV stands for out-of-vocabulary. So, all rare words that
do not belong to the vocabulary are lumped together in that special item and will have the same one-hot
encoding or embedding vector. More sophisticated techniques have multiple OOV buckets and use a hash
function to assign rare words to those buckets.

on

A
One-hot encoding of a word

B
One-hot encoding of a sequence of words

C
Multi-hot representation of words in the sequence

Size of vocabulary
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mat
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Figure 9.6 One-hot encoding (vectorization) of a word (panel A) and of a sentence as a sequence of words (panel 
B). Panel C shows a simplified, multi-hot encoding of the same sentence as in panel B. It is a more succinct and 
scalable representation of the sequence, but it discards the order information. For the sake of visualization, we 
assume that the size of the vocabulary is only 14. In reality, the vocabulary size of English words used in deep 
learning is much larger (on the order of thousands or tens of thousands, for example, 10,000).
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representation of the words of the sentence (see panel B of figure 9.6). This
approach is simple and unambiguous. It perfectly preserves the information about
what words appear in the sentence and in what order.8 However, when text gets long,
the size of the vector may get so big that it is no longer manageable. For instance, a
sentence in English contains about 18 words on average. Given that our vocabulary
has a size of 10,000, it takes 180,000 numbers to represent just a single sentence,
which already takes a much larger space than the sentence itself. This is not to men-
tion that some text-related problems deal with paragraphs or whole articles, which
have many more words and will cause the size of the representation and the amount
of computation to explode.

One way to deal with this problem is to include all the words in a single vector so
that each element in the vector represents whether the corresponding word has
appeared in the text. Panel C of figure 9.6 illustrates. In this representation, multiple
elements of the vector can have the value 1. This is why people sometimes refer to it as
multi-hot encoding. Multi-hot encoding has a fixed length (the size of the vocabulary)
regardless of how long the text is, so it solves the size-explosion problem. But this
comes at the cost of losing the order information: we can’t tell from the multi-hot vec-
tor which words come first and which words come next. For some problems, this
might be okay; for others, this is unacceptable. There are more sophisticated repre-
sentations that take care of the size-explosion problem while preserving the order
information, which we will explore later in this chapter. But first, let’s look at a con-
crete, text-related machine-learning problem that can be solved to a reasonable accu-
racy using the multi-hot approach.

9.2.2 First attempt at the sentiment-analysis problem

We will use the Internet Movie Database (IMDb) dataset in our first example of apply-
ing machine learning to text. The dataset is a collection of approximately 25,000 tex-
tual movie reviews on imdb.com, each of which has been labeled as positive or
negative. The machine-learning task is binary classification: that is, whether a given
movie review is positive or negative. The dataset is balanced (50% positive reviews and
50% negative ones). Just like what you expect from online reviews, the examples vary
in word length. Some of them are as short as 10 words, while others can be as long as
2,000 words. The following is an example of what a typical review looks like. This
example is labeled as negative. Punctuation is omitted in the dataset:

the mother in this movie is reckless with her children to the point of neglect i wish i wasn’t
so angry about her and her actions because i would have otherwise enjoyed the flick what
a number she was take my advise and fast forward through everything you see her do
until the end also is anyone else getting sick of watching movies that are filmed so dark
anymore one can hardly see what is being filmed as an audience we are impossibly
involved with the actions on the screen so then why the hell can’t we have night vision

8 This assumes there are no OOV words.
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The data is divided into a training set and an evaluation set, both of which are auto-
matically downloaded from the web and written to your tmp directory when you issue
a model-training command such as

    git clone https://github.com/tensorflow/tfjs-examples.git
    cd tfjs-examples/sentiment
    yarn
    yarn train multihot

If you examine sentiment/data.js carefully, you can see that the data files it downloads
and reads do not contain the actual words as character strings. Instead, the words are
represented as 32-bit integers in those files. Although we won’t cover the data-loading
code in that file in detail, it’s worthwhile to call out a part that performs the multi-hot
vectorization of the sentences, shown in the next listing. 

const buffer = tf.buffer([sequences.length, numWords]);
sequences.forEach((seq, i) => {

  seq.forEach(wordIndex => {
    if (wordIndex !== OOV_INDEX) {
      buffer.set(1, i, wordIndex);
    }
  });
});

The multi-hot-encoded features are represented as a 2D tensor of shape [numExamples,
numWords], where numWords is the size of the vocabulary (10,000 in this case). This
shape isn’t affected by the length of the individual sentences, which makes this a simple
vectorization paradigm. The targets loaded from the data files have a shape of [num-
Examples, 1] and contain the negative and positive labels represented as 0s and 1s,
respectively. 

The model that we apply to the multi-hot data is an MLP. In fact, with the sequen-
tial information lost with the multi-hot encoding, there is no way to apply an RNN
model to the data even if we wanted to. We will talk about RNN-based approaches in
the next section. The code that creates the MLP model is from the buildModel()
function in sentiment/train.js, with simplification, and looks like the following listing.

const model = tf.sequential();
model.add(tf.layers.dense({
  units: 16,
  activation: 'relu',

Listing 9.5 Multi-hot vectorization of sentences from the loadFeatures() function

Listing 9.6 Building an MLP model for the multi-hot-encoded IMDb movie reviews

Creates a TensorBuffer instead of 
a tensor because we will be 
setting its element values next. 
The buffer starts from all-zero.

Iterates over all examples, 
each of which is a sentence

Each sequence (sentence) is 
an array of integers.

Skips out-of-vocabulary (OOV) 
words for multi-hot encoding

Sets the corresponding index in the buffer to 1. Note 
that every index i may have multiple wordIndex 
values set to 1, hence the multi-hot encoding.

Adds two hidden dense layers with 
relu activation to enhance the 
representational power
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  inputShape: [vocabularySize]
}));
model.add(tf.layers.dense({
  units: 16,
  activation: 'relu'
}));
model.add(tf.layers.dense({
  units: 1,
  activation: 'sigmoid'
}));

By running the yarn train multihot --maxLen 500 command, you can see that the
model achieves a best validation accuracy of approximately 0.89. This accuracy is okay,
and is significantly higher than chance (0.5). This shows that it is possible to achieve a
reasonable degree of accuracy in this sentiment-analysis problem by looking at just
what words appear in the review. For example, words such as enjoyable and sublime are
associated with positive reviews, and words such as sucks and bland are associated with
negative ones with a relatively high degree of reliability. Of course, there are plenty of
scenarios in which looking just at what words there are will be misleading. As a con-
trived example, understanding the true meaning of a sentence like “Don’t get me
wrong, I hardly disagree this is an excellent film” requires taking into account sequen-
tial information—not only what the words are but also in what order they appear. In
the next section, we will show that by using a text vectorization that doesn’t discard
the sequential information and a model that can utilize the sequential information,
we can beat this baseline accuracy. Let’s now look at how word embeddings and 1D
convnets work.

9.2.3 A more efficient representation of text: Word embeddings

What is word embedding? Just like one-hot encoding (figure 9.6), word embedding is a
way to represent a word as a vector (a 1D tensor in TensorFlow.js). However, word
embeddings allow the values of the vector’s elements to be trained, instead of hard-
coded according to a rigid rule such as the word-to-index map in one-hot encoding.
In other words, when a text-oriented neural network uses word embedding, the
embedding vectors become trainable weight parameters of the model. They are
updated through the same backpropagation rule as all other weight parameters of
the model.

This situation is illustrated schematically in figure 9.7. The layer type in Tensor-
Flow.js that allows you to perform word embedding is tf.layer.embedding(). It con-
tains a trainable weight matrix of shape [vocabularySize, embeddingDims], where
vocabularySize is the number of unique words in the vocabulary and embeddingDims
is the user-selected dimensionality of the embedding vectors. Every time you are given
a word, say the, you find the corresponding row in the embedding matrix using a word-
to-index lookup table, and that row is the embedding vector for your word. Note that
the word-to-index lookup table is not part of the embedding layer; it is maintained as
a separate entity from the model (see listing 9.9, for example).

The input shape is the size of the 
vocabulary due to the multi-hot 
vectorization we are dealing with here.

Uses sigmoid activation for 
the output layer to suit the 
binary-classification task
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If you have a sequence of words, like a sentence as shown in figure 9.7, you repeat this
lookup process for all the words in the correct sequential order and stack the resulting
embedding vectors into a 2D tensor of shape [sequenceLength, embeddingDims],
where sequenceLength is the number of words in the sentence.9 What if there are
repeating words in the sentence (such as the word the in the example in figure 9.7)? It
doesn’t matter: just let the same embedding vector appear repeatedly in the resulting
2D tensor.

Word embedding gives us the following benefits:

 It addresses the size problem with one-hot encodings. embeddingDims is usually
much smaller than vocabularySize. For example, in the 1D convnet we are
about to use on the IMDb dataset, vocabularySize is 10,000, and embedding-
Dims is 128. So, with a 500-word review from the IMDb dataset, representing the
example requires 500 * 128 = 64k float numbers, instead of 500 * 10,000 = 5M
numbers, as in one-hot encoding—a much more economical vectorization.

 By not being opinionated about how to order the words in the vocabulary and
by allowing the embedding matrix to be trained via backpropagation just like
all other neural network weights, word embeddings can learn semantic rela-
tions between words. Words with similar meanings should have embedding vec-
tors that are closer in the embedding space. For example, words with similar

9 This multiword embedding lookup process can be done effectively using the tf.gather() method, which is
how the embedding layer in TensorFlow.js is implemented under the hood.
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Figure 9.7 A schematic illustration of how an embedding matrix works. Each row of the embedding 
matrix corresponds to a word in the vocabulary, and each column is an embedding dimension. The 
values of the embedding matrix’s elements, represented as shades of gray in the diagram, are 
chosen at random.
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meanings, such as very and truly should have vectors that are closer together
than words that are more different in meaning, such as very and barely. Why
should this be the case? An intuitive way to understand it is to realize the follow-
ing: suppose you replace a number of words in a movie-review input with words
with similar meaning; a well-trained network ought to output the same classifi-
cation result. This could happen only if the embedding vectors for each pair of
words, which are the input to the downstream part of the model, are close to
each other.

 Also, the fact that the embedding space has multiple dimensions (for example,
128) should allow the embedding vectors to capture different aspects of words.
For example, there can be a dimension that represents part of speech, along
which an adjective like fast is closer to another adjective (such as warm) than to a
noun (such as house). There might be another dimension that encodes the gen-
der aspect of a word, one along which a word like actress is closer to another fem-
inine-meaning word (such as queen) than to a masculine-meaning one (such as
actor). In the next section (see info box 9.2), we will show you a way to visualize
the word embeddings and explore their interesting structures after they emerge
from training an embedding-based neural network on the IMDb dataset.

Table 9.1 gives a more succinct summary of the differences between one-/multi-hot
encoding and word embedding, the two most frequently used paradigms for word
vectorization.

9.2.4 1D convnets

In chapter 4, we showed the key role played by 2D convolutional layers in deep neural
networks for image inputs. conv2d layers learn to represent local features in small 2D
patches in images. The idea of convolution can be extended to sequences. The result-
ing algorithm is called 1D convolution and is available through the tf.layers
.conv1d() function in TensorFlow.js. The ideas underlying conv1d and conv2d are

Table 9.1 Comparing two paradigms of word vectorization: one-hot/multi-hot encoding and word
embedding

One-hot or multi-hot encoding Word embedding

Hard-coded or 
learned?

Hard-coded. Learned: the embedding matrix is a trainable 
weight parameter; the values often reflect 
the semantic structure of the vocabulary 
after training.

Sparse or 
dense?

Sparse: most elements are zero; 
some are one.

Dense: elements take continuously varying 
values.

Scalability Not scalable to large vocabularies: 
the size of the vector is proportional 
to the size of the vocabulary.

Scalable to large vocabularies: the embed-
ding size (number of embedding dimensions) 
doesn’t have to increase with the number of 
words in the vocabulary.
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the same: they are both trainable extractors of translationally invariant local features.
For instance, a conv2d layer may become sensitive to corner patterns of a certain ori-
entation and of a certain color change after training on an image task, while a conv1d
layer may become sensitive to a pattern of “a negative verb followed by a praising
adjective” after training on a text-related task.10

Figure 9.8 illustrates how a conv1d layer works in greater detail. Recall from figure
4.3 in chapter 4 that a conv2d layer involves sliding a kernel over all possible locations
in the input image. The 1D convolution algorithm also involves sliding a kernel, but is
simpler because the sliding movement happens in only one dimension. At each slid-
ing position, a slice of the input tensor is extracted. The slice has the length kernel-
Size (a configuration field for the conv1d layer), and in the case of this example, it
has a second dimension equal to the number of embedding dimensions. Then a dot
(multiply-and-add) operation is performed between the input slice and the kernel of
the conv1d layer, which yields a single slice of the output sequence. This operation is
repeated for all valid sliding positions until the full output is generated. Like the input
tensor of the conv1d layer, the full output is a sequence, albeit with a different length
(determined by the input sequence length, the kernelSize, and other configurations
of the conv1d layer) and a different number of feature dimensions (determined by
the filters configuration of the conv1d layer). This makes it possible to stack multi-
ple conv1d layers to form a deep 1D convnet, just as stacking multiple conv2d layers is
a frequently used trick in 2D convnets.

10 As you might have guessed, there is indeed 3D convolution, and it is useful for deep-learning tasks that involve
3D (volumetric) data, such as certain types of medical images and geological data.
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Figure 9.8 Schematic illustration of how 1D convolution (tf.layers.conv1d()) works. For the sake of 
simplicity, only one input example is shown (on the left side of the image). We suppose that the input sequence 
has a length of 12 and the conv1d layer has a kernel size of 5. At each sliding window position, a length-5 slice of 
the input sequence is extracted. The slice is dot-multiplied with the kernel of the conv1d layer, which generates 
one slide of the output sequence. This is repeated for all possible sliding-window positions, which gives rise to the 
output sequence (on the right side of the diagram).
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SEQUENCE TRUNCATION AND PADDING

Now that we have conv1d in our arsenal for text-oriented machine learning, are we
ready to train a 1D convnet on the IMDb data? Not quite yet. There is one more thing
to explain: truncating and padding of sequences. Why do we need to do truncation
and padding? TensorFlow.js models require the inputs to fit() to be a tensor, and a
tensor must have a concrete shape. Therefore, although our movie reviews don’t have
a fixed length (recall that they vary between 10 and 2,400 words), we have to pick a spe-
cific length as the second dimension of the input feature tensor (maxLen), so that the
full shape of the input tensor is [numExamples, maxLen]. No such problem existed
when we used multi-hot encoding in the previous section because tensors from multi-
hot encoding had a second tensor dimension unaffected by sequence length.

The considerations that go into choosing the value of maxLen are as follows:

 It should be long enough to capture the useful part of most of the reviews. If we
choose maxLen to be 20, it will perhaps be so short that it will cut out the useful
part for most reviews.

 It should not be so large that a majority of the reviews are much shorter than
that length, because that would lead to a waste of memory and computation
time.

The trade-off of the two leads us to pick a value of 500 words per review (at maximum)
for this example. This is specified in the flag --maxLen in the command for training
the 1D convnet:

yarn train --maxLen 500 cnn

Once the maxLen is chosen, all the review examples must be molded into this particu-
lar length. In particular, the ones that are longer are truncated; the ones that are
shorter are padded. This is what the function padSequences() does (listing 9.7).
There are two ways to truncate a long sequence: cut off the beginning part (the 'pre'
option in listing 9.7) or the ending part. Here, we use the former approach, based on
the reasoning that the ending part of a movie review is more likely to contain informa-
tion relevant to the sentiment than the beginning part. Similarly, there are two ways to
pad a short sequence to the desired length: adding the padding character (PAD_CHAR)
before (the 'pre' option in listing 9.7) or after the sentence. Here, we arbitrarily
choose the former option as well. The code in this listing is from sentiment/
sequence_utils.js.

export function padSequences(
    sequences, maxLen, 

    padding = 'pre',
    truncating = 'pre',
     value = PAD_CHAR) {

  return sequences.map(seq => {
    if (seq.length > maxLen) {

Listing 9.7 Truncating and padding a sequence as a step of loading text features

Loops over all the 
input sequences

This particular sequence is 
longer than the prescribed 
length (maxLen): truncate 
it to that length.
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      if (truncating === 'pre') {
        seq.splice(0, seq.length - maxLen);
      } else {
        seq.splice(maxLen, seq.length - maxLen);
      }
    }

    if (seq.length < maxLen) {
      const pad = [];
      for (let i = 0; i < maxLen - seq.length; ++i) {
        pad.push(value);
      }
      if (padding === 'pre') {
        seq = pad.concat(seq);
      } else {
        seq = seq.concat(pad);
      }
    }

    return seq;
  });
}

BUILDING AND RUNNING A 1D CONVNET ON THE IMDB DATASET

Now we have all the pieces ready for the 1D convnet; let’s put them together and see if
we can get a higher accuracy on the IMDb sentiment-analysis task. The code in listing
9.8 creates our 1D convnet (excerpted from sentiment/train.js, with simplification).
The summary of the resulting tf.Model object is shown after that.

const model = tf.sequential();
model.add(tf.layers.embedding({
  inputDim: vocabularySize,
  outputDim: embeddingSize,
  inputLength: maxLen
}));
model.add(tf.layers.dropout({rate: 0.5}));
model.add(tf.layers.conv1d({
  filters: 250,
  kernelSize: 5,
  strides: 1,
  padding: 'valid',
  activation: 'relu'
}));
model.add(tf.layers.globalMaxPool1d({}));
model.add(tf.layers.dense({

  units: 250,
  activation: 'relu'
}));

model.add(tf.layers.dense({units: 1, activation: 'sigmoid'}));

Listing 9.8 Building a 1D convnet for the IMDb problem

There are two ways to truncate 
a sequence: cut off the 
beginning ('pre') or the end

The sequence is shorter 
than the prescribed length: 
it needs to be padded.

Generates the 
padding sequence

Like truncation, there are two ways to 
pad the sublength sequence: from the 
beginning ('pre') or from behind.

Note: if the length of seq is 
exactly maxLen, it will be 
returned without change.

The model begins with an embedding layer, 
which turns the input integer indices into 
the corresponding word vectors.

The embedding layer needs to know the size 
of the vocabulary. Without this, it can’t 
determine the size of the embedding matrix.

Adds a dropout layer 
to combat overfitting

Here comes the 
conv1D layer. The globalMaxPool1d layer collapses 

the time dimension by extracting the 
maximum element value in each filter. 
The output is ready for the upcoming 
dense layers (MLP).

Adds a two-layer MLP at 
the top of the model
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________________________________________________________________
Layer (type)                 Output shape              Param #   
=================================================================
embedding_Embedding1 (Embedd [null,500,128]            1280000   
_________________________________________________________________
dropout_Dropout1 (Dropout)   [null,500,128]            0         
_________________________________________________________________
conv1d_Conv1D1 (Conv1D)      [null,496,250]            160250    
_________________________________________________________________
global_max_pooling1d_GlobalM [null,250]                0         
_________________________________________________________________
dense_Dense1 (Dense)         [null,250]                62750     
_________________________________________________________________
dense_Dense2 (Dense)         [null,1]                  251       
=================================================================
Total params: 1503251
Trainable params: 1503251
Non-trainable params: 0
_________________________________________________________________

It is helpful to look at the JavaScript code and the text summary together. There are a
few things worth calling out here:

 The model has a shape of [null, 500], where null is the undetermined batch
dimension (the number of examples) and 500 is the maximally allowed word
length of each review (maxLen). The input tensor contains the truncated and
padded sequences of integer word indices.

 The first layer of the model is an embedding layer. It turns the word indices into
their corresponding word vectors, which leads to a shape of [null, 500, 128].
As you can see, the sequence length (500) is preserved, and the embedding
dimension (128) is reflected as the last element of the shape.

 The layer that follows the embedding layer is a conv1d layer—the core part of
this model. It is configured to have a kernel size of 5, a default stride size of 1,
and “valid” padding. As a result, there are 500 – 5 + 1 = 496 possible sliding posi-
tions along the sequence dimension. This leads to a value of 496 in the second
element of the output shape ([null, 496, 250]). The last element of the shape
(250) reflects the number of filters the conv1d layer is configured to have.

 The globalMaxPool1d layer that follows the conv1d layer is somewhat similar
to the maxPooling2d layer we’ve seen in image convnets. However, it does a
more dramatic pooling, one in which all elements along the sequence dimen-
sion are collapsed to a single maximum value. This leads to the output shape
of [null, 250].

 Now that the tensor has a 1D shape (ignoring the batch dimension), we can
build two dense layers on top of it to form an MLP as the top of the entire
model.
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Start training the 1D convnet with the command yarn train --maxLen 500 cnn. After
two to three training epochs, you can see the model reach a best validation accuracy of
about 0.903, which is a small but solid gain relative to the accuracy we got from the
MLP based on the multi-hot vectorization (0.890). This reflects the sequential order
information that our 1D convnet managed to learn but that was impossible to learn by
the multi-hot MLP.

So how does a 1D convnet capture sequential order? It does this through its convo-
lutional kernel. The dot product of the kernel is sensitive to the ordering of the ele-
ments. For example, if an input consists of five words, I like it so much, the 1D
convolution will output one particular value; however, if the order of the words is
altered to be much so I like it, it will cause a different output from the 1D convolution,
even though the set of elements is exactly the same.

However, it needs to be pointed out that a conv1d layer by itself is not able to learn
sequential patterns beyond its kernel size. For instance, suppose the ordering of two
far-apart words affects the meaning of the sentence; a conv1d layer with a kernel size
smaller than the distance won’t be able to learn the long-range interaction. This is an
aspect in which RNNs such as GRU and LSTM outshine 1D convolution.

One way in which 1D convolution can ameliorate this shortcoming is to go deep—
namely, stacking up multiple conv1d layers so that the “receptive field” of the higher-
level conv1d layers is large enough to capture such long-range dependencies. However,
in many text-related machine-learning problems, such long-range dependencies don’t
play important roles, so that using a 1D convnet with a small number of conv1d layers
suffices. In the IMDb sentiment example, you can try training an LSTM-based model
based on the same maxLen value and embedding dimensions as the 1D convnet:

yarn train --maxLen 500 lstm

Notice that the best validation accuracy from the LSTM (similar to but slightly more
complex that GRU; see figure 9.4) is about the same as that from the 1D convnet. This
is perhaps because long-range interactions between words and phrases don’t matter a
lot for this body of movie reviews and the sentiment-classification task.

So, you can see that 1D convnets are an attractive alternative to RNNs for this type
of text problem. This is especially true considering the much lower computational
cost of 1D convnets compared to that of RNNs. From the cnn and lstm commands,
you can see that training the 1D convnet is about six times as fast as training the LSTM
model. The slower performance of LSTM and RNNs is related to their step-by-step
internal operations, which cannot be parallelized; convolutions are amenable to par-
allelization by design.
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INFO BOX 9.2 Using the Embedding Projector to visualize learned 
embedding vectors

Do any interesting structures emerge in the word embeddings of the 1D convnet after
training? To find this out, you can use the optional flag --embeddingFilesPrefix of
the yarn train command:

yarn train --maxLen 500 cnn --epochs 2 --embeddingFilesPrefix 
/tmp/imdb_embed

This command will generate two files:

 /tmp/imdb_embed_vectors.tsv—A tab-separated-values file for the numeric
values of the word embeddings. Each line contains the embedding vector
from a word. In our case, there are 10,000 lines (our vocabulary size), and
each line contains 128 numbers (our embedding dimensions).

 /tmp/imdb_embed_labels.tsv—A file consisting of the word labels that corre-
spond to the vectors in the previous file. Each line is a word.

Positive words such as:
excellent, inspiring,
delightful,
impressed, brilliant 

Negative words such as:
sucks, gross, pretentious,
worthless, nonsense

Visualizing the trained word embeddings from the 1D convnet using t-SNE dimension reduction 
in the Embedding Projector
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USING THE 1D CONVNET FOR INFERENCE IN A WEB PAGE

In sentiment/index.js, you can find the code that deploys the model trained in
Node.js to use at the client side. To see the client-side app in action, run the command
yarn watch just like in most other examples in this book. The command will compile
the code, start a web server, and automatically pop open a browser tab to display the
index.html page. In the page, you can click a button to load the trained model via
HTTP requests and use the loaded model to perform sentiment analysis on movie
reviews in a text box. The movie review sample in the text box is editable, so you can

These files can be uploaded to the Embedding Projector (https://projector.tensorflow
.org) for visualization (see the previous figure). Because our embedding vectors
reside in a high-dimensional (128D) space, it is necessary to reduce their dimension-
ality to three or fewer dimensions so that they can be understood by a human. The
Embedding Projector tool provides two algorithms for dimension reduction: t-distrib-
uted stochastic neighbor embedding (t-SNE) and principal component analysis (PCA),
which we won’t discuss in detail. But briefly, these methods map the high-dimensional
embedding vectors to 3D while ensuring minimal loss in the relations between the vec-
tors. t-SNE is the more sophisticated and computationally more intensive method
between the two. The visualization it produces is shown in the figure.

Each dot in the dot cloud corresponds to a word in our vocabulary. Move your mouse
cursor around and hover it above the dots to see what words they correspond to. Our
embedding vectors, trained on the smallish sentiment-analysis dataset, already show
some interesting structure related to the semantics of the words. In particular, one
end of the dot cloud contains a large proportion of words that appear frequently in
positive movie reviews (such as excellent, inspiring, and delightful), while the oppo-
site end contains many negative-sounding words (sucks, gross, and pretentious).
More interesting structures may emerge from training larger models on larger text
datasets, but this small example already gives you a hint of the power of the word-
embedding method.

Because word embeddings are an important part of text-oriented deep neural net-
works, researchers have created pretrained word embeddings that machine-learning
practitioners can use out-of-the-box, forgoing the need to train their own word embed-
dings as we did in our IMDb convnet example. One of the best known pretrained word-
embedding sets is GloVe (for Global Vectors) by the Stanford Natural Language Pro-
cessing Group (see https://nlp.stanford.edu/projects/glove/).

The advantage of using pretrained word embeddings such as GloVe is two-fold. First,
it reduces the amount of computation during training because the embedding layer
doesn’t need to be trained further and hence can simply be frozen. Second, pre-
trained embeddings such as GloVe are trained from billions of words and hence are
much higher-quality than what would be possible by training on a small dataset, such
as the IMDb dataset here. In these senses, the role played by pretrained word
embeddings in natural language processing problems is similar to the role of pre-
trained deep convnet bases (such as MobileNet, which we saw in chapter 5) in com-
puter vision.
 

https://projector.tensorflow.org
https://projector.tensorflow.org
https://projector.tensorflow.org
https://nlp.stanford.edu/projects/glove/
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Keep
how m
is sp
make arbitrary edits to it and observe how that affects the binary prediction in real
time. The page comes with two stock example reviews (a positive one and a negative
one) that you may use as the starting point of your fiddling. The loaded 1D convnet
runs fast enough that it can generate the sentiment score on the fly as you type in the
text box. 

The core of the inference code is straightforward (see listing 9.9, from senti-
ment/index.js), but there are several interesting things to point out:

 The code converts all the input text to lowercase, discards punctuation, and
erases extra whitespace before converting the text to word indices. This is
because the vocabulary we use contains only lowercase words.

 Out-of-vocabulary words—words that fall outside the vocabulary—are repre-
sented with a special word index (OOV_INDEX). These include rare words and
typos.

 The same padSequences() function that we used for training (see listing 9.7)
is used here to make sure that the tensor input to the model has the correct
length. This is achieved through truncation and padding, as we’ve seen previ-
ously. This is an example of a benefit of using TensorFlow.js for machine-
learning tasks like this: you get to use the same data-preprocessing code for the
backend training environment and the frontend serving environment, reduc-
ing the risk of data skew (see chapter 6 for a more in-depth discussion of the
risks of skew).

predict(text) {
  const inputText =
      text.trim().toLowerCase().replace(/(\.|\,|\!)/g, '').split(' ');
  const sequence = inputText.map(word => {
    let wordIndex =

        this.wordIndex[word] + this.indexFrom;
    if (wordIndex > this.vocabularySize) {
      wordIndex = OOV_INDEX;
    }
    return wordIndex;
  });
  const paddedSequence =

      padSequences([sequence], this.maxLen);
  const input = tf.tensor2d(

      paddedSequence, [1, this.maxLen]);

  const beginMs = performance.now();
  const predictOut = this.model.predict(input);
  const score = predictOut.dataSync()[0];
  predictOut.dispose();
  const endMs = performance.now();

  return {score: score, elapsed: (endMs - beginMs)};
}

Listing 9.9 Using the trained 1D convnet for inference in the frontend

Converts to lowercase; removes punctuation
and extra whitespace from the input text

Maps all the words to 
word indices. 
this.wordIndex has been 
loaded from a JSON file.Words that fall out of the 

vocabulary are represented 
as a special word index: 
OOV_INDEX.

Truncates long reviews 
and pads short ones to the 
desired length

Converts the data to a tensor 
representation, so it can be 
fed into the model

The actual inference 
(forward pass on the 
model) happens here.

s track of
uch time

ent on the
model’s

inference
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9.3 Sequence-to-sequence tasks with attention mechanism
In the Jena-weather and IMDb sentiment examples, we showed how to predict a single
number or a class from an input sequence. However, some of the most interesting
sequential problems involve generating an output sequence based on an input one.
These types of tasks are aptly named sequence-to-sequence (or seq2seq, for short) tasks.
There is a great variety of seq2seq tasks, of which the following list is just a small subset:

 Text summarization—Given an article that may contain tens of thousands of
words, generate a succinct summary of it (for example, in 100 or fewer words).

 Machine translation—Given a paragraph in one language (such as English), gen-
erate a translation of it in another (such as Japanese).

 Word prediction for autocompletion—Given a few first words in a sentence, predict
what words will come after them. This is useful for autocompletion and sugges-
tion in email apps and UIs for search engines.

 Music composition—Given a leading sequence of musical notes, generate a mel-
ody that begins with those notes.

 Chat bots—Given a sentence entered by a user, generate a response that fulfills
some conversational goal (for instance, a certain type of customer support or
simply chatting for fun).

The attention mechanism11 is a powerful and popular method for seq2seq tasks. It is
often used in conjunction with RNNs. In this section, we will show how we can use
attention and LSTMs to solve a simple seq2seq task, namely, converting a myriad of
calendar-date formats into a standard date format. Even though this is an intentionally
simple example, the knowledge you’ll gain from it applies to more complex seq2seq
tasks like the ones listed previously. Let’s first formulate the date-conversion problem.

9.3.1 Formulation of the sequence-to-sequence task

If you are like us, you have been confused (or even mildly annoyed) by the large num-
ber of possible ways to write calendar dates, especially if you have traveled to different
countries. Some people prefer to use the month-day-year order, some adopt the day-
month-year order, and still others use the year-month-day order. Even within the same
order, there are variations with regard to whether the month is written as a word (Janu-
ary), an abbreviation (Jan), a number (1), or a zero-padded two-digit number (01).
The options for the day include whether you prepad it with a zero and whether you
write it as an ordinal number (4th versus 4). As for the year, you can write the full four
digits or only the last two. What’s more, the year, month, and day parts can be
concatenated with spaces, commas, periods, or slashes, or they may be concatenated

11 See Alex Graves, “Generating Sequences with Recurrent Neural Networks, submitted 4 Aug. 2013,
https://arxiv.org/abs/1308.0850; and Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, “Neural
Machine Translation by Jointly Learning to Align and Translate,” submitted 1 Sept. 2014, https://arxiv.org/
abs/1409.0473.
 

https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
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without any intervening characters at all! All these options come together in a combi-
natorial way, which gives rise to at least a few dozen ways to write the same date. 

So, it will be nice to have an algorithm that can take a calendar-date string in these
formats as the input, and output the corresponding date string in the ISO-8601 format
(for instance, 2019-02-05). We could solve this problem in a non-machine-learning way
by writing a traditional program. But given the large number of possible formats, this is
a somewhat cumbersome and time-consuming task, and the resulting code can easily
reach hundreds of lines. Let’s try a deep-learning approach—in particular, with an
LSTM-based attention encoder-decoder architecture.

To limit the scope of this example, we start from the 18 commonly seen date for-
mats shown by the following examples. Note that all these are different ways to write
the same date:

"23Jan2015", "012315", "01/23/15", "1/23/15",
"01/23/2015", "1/23/2015", "23-01-2015", "23-1-2015",
"JAN 23, 15", "Jan 23, 2015", "23.01.2015", "23.1.2015",
"2015.01.23", "2015.1.23", "20150123", "2015/01/23",
"2015-01-23", "2015-1-23"

Of course, there are other date formats.12 But adding support for additional formats
will basically be a repetitive task once the foundation of the model training and infer-
ence has been laid. We leave the part of adding more input date formats as an exer-
cise for you at the end of this chapter (exercise 3).

First, let’s get the example running. Like the sentiment-analysis example earlier,
this example consists of a training part and an inference part. The training part runs
in the backend environment using tfjs-node or tfjs-node-gpu. To kick off the training,
use the following commands:

    git clone https://github.com/tensorflow/tfjs-examples.git
    cd tfjs-examples/sentiment
    yarn
    yarn train

To perform the training using a CUDA GPU, use the --gpu flag with the yarn train
command:

    yarn train --gpu

The training runs for two epochs by default, which should be sufficient to bring the
loss value close to zero and the conversion accuracy close to perfect. In the sample
inference results printed at the end of the training job, most, if not all, of the results
should be correct. These inference samples are drawn from a test set that is non-
overlapping with the training set. The trained model is saved to the relative path

12 Another thing you might have noticed is that we use a set of date formats without any ambiguity. If we
included both MM/DD/YYYY and DD/MM/YYYY in our set of formats, then there would be ambiguous date
strings: that is, ones that can’t be interpreted with certainty. For instance, the string “01/02/2019” can be
interpreted as either as January 2, 2019 or February 1, 2019.
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dist/model and will be used during the browser-based inference stage. To bring up
the inference UI, use

yarn watch

In the web page that pops up, you can type dates into the Input Date String text box,
hit Enter, and observe how the output date string changes accordingly. In addition,
the heatmap with different shades displays the attention matrix used during the con-
version (see figure 9.9). The attention matrix contains some interesting information
and is central to this seq2seq model. It’s especially amenable to interpretation by
humans. You should get yourself familiar with it by playing with it.

Let’s take the result shown in figure 9.9 as an example. The output of the model
("2034-07-18") correctly translates the input date ("JUL 18, 2034"). The rows of the
attention matrix correspond to the input characters ("J", "U", "L", " ", and so forth),
while the columns correspond to the output characters ("2", "0", "3", and so forth).
So, each element of the attention matrix indicates how much attention is paid to the
corresponding input character when the corresponding output character is gener-
ated. The higher the element’s value, the more attention is paid. For instance, look at
the fourth column of the last row: that is, the one that corresponds to the last input
character ("4") and the fourth output character ("4"). It has a relatively high value, as
indicated by the color scale. This makes sense because the last digit of the year part of
the output should indeed depend primarily on the last digit of the year part in the

Figure 9.9 The attention-based encoder-decoder for date conversion at work, with the attention matrix for the 
particular input-output pair displayed at the bottom-right
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input string. By contrast, other elements in that column have lower values, which indi-
cates that the generation of the character "4" in the output string did not use much
information from other characters of the input string. Similar patterns can be seen in
the month and day parts of the output string. You are encouraged to experiment with
other input date formats and see how the attention matrix changes.

9.3.2 The encoder-decoder architecture and the attention mechanism

This section helps you develop intuition for how the encoder-decoder architecture
solves the seq2seq problem and what role the attention mechanism plays in it. An in-
depth discussion of the mechanisms is presented alongside with the code in the fol-
lowing deep-dive section.

Up to this point, all the neural networks we’ve seen output a single item. For a regres-
sion network, the output is just a single number; for a classification network, it’s a single
probability distribution over a number of possible categories. But the date-conversion
problem we are faced with is different: instead of predicting a single item, we need to
predict a number of them. Specifically, we need to predict exactly 10 characters for the
ISO-8601 date format. How should we achieve this using a neural network?

The solution is to create a network that outputs a sequence of items. In particular,
since the output sequence is made of discrete symbols from an “alphabet” with exactly
11 items (0 through 9, as well as the hyphen), we let the output tensor shape of the
network have a 3D shape: [numExamples, OUTPUT_LENGTH, OUTPUT_VOCAB_ SIZE].
The first dimension (numExamples) is the conventional example dimension that
enables batch processing like all other networks we’ve seen in this book. OUTPUT_
LENGTH is 10—that is, the fixed length of the output date string in the ISO-8601 for-
mat. OUTPUT_VOCAB_SIZE is the size of the output vocabulary (or more accurately,
“output alphabet”), which includes the digits 0 through 9 and the hyphen (-), in addi-
tion to a couple of characters with special meanings that we’ll discuss later.

So that covers the model’s output. How about the model’s inputs? It turns out the
model takes two inputs instead of one. The model can be divided roughly into two
parts, the encoder and the decoder, as is shown schematically in figure 9.10. The first
input of the model goes into the encoder part. It is the input date string itself, repre-
sented as a sequence of character indices of shape [numExamples, INPUT_LENGTH].
INPUT_LENGTH is the maximum possible length among the supported input date for-
mats (which turns out to be 12). Inputs shorter than that length are padded with zeros
at the end. The second input goes into the decoder part of the model. It is the conver-
sion result shifted to the right by one time step, and it has a shape of [numExamples,
OUTPUT_LENGTH].

Wait, the first input makes sense because it’s the input date string, but why does the
model take the conversion result as an additional input? Isn’t that meant to be the out-
put of the model? The key lies in the shifting of the conversion result. Note that the
second input is not exactly the conversion result. Instead, it is a time-delayed version of
the conversion result. The time delay is by exactly one step. For example, if during
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training, the desired conversion result is "2034-07-18", then the second input to the
model will be "<ST>2034-07-1", where <ST> is a special start-of-sequence symbol. This
shifted input lets the decoder be aware of the output sequence that has been gener-
ated so far. It makes it easier for the decoder to keep track of where it is in the conver-
sion process.

This is analogous to how humans speak. When you put a thought into words, your
mental effort is spent on two things: the concept itself and what you’ve said so far. The
latter part is important to ensure coherent, complete, and nonrepetitive speech. Our
model works in a similar fashion: to generate every output character, it uses the infor-
mation from both the input date string and the output characters that have been gen-
erated so far.

The time-delaying of the conversion result works during the training phase because
we already know what the correct conversion result is. But how does it work during
inference? The answer can be seen in the two panels of figure 9.10: we generate the
output characters one by one.13 As panel A of the figure shows, we start by sticking an
ST symbol at the beginning of the decoder’s input. Through one step of inference
(one Model.predict() call), we obtain a new output item (the "2" in the panel). This
new output item is then appended to the decoder input. Then the next step of con-
version ensues. It sees the newly generated output character "2" in the decoder input
(see panel B of figure 9.10). This step involves another Model.predict() call and gen-
erates a new output character ("0"), which is again appended to the decoder input.

13 The code that implements the step-by-step conversion algorithm is the function runSeq2SeqInference()
in date-conversion-attention/model.js.
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Figure 9.10 How the encoder-decoder architecture converts an input date string into an output one. ST is the 
special starting token for the decoder’s input and output. Panels A and B show the first two steps of the 
conversion, respectively. After the first conversion step, the first character in the output ("2") is generated. 
After the second step, the second character ("0") is generated. The remaining steps follow the same pattern 
and are hence omitted.
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This process repeats until the desired length of the output (10 in this case) is reached.
Notice that the output doesn’t include the ST item, so it can be used directly as the
final output of the entire algorithm.

THE ROLE OF THE ATTENTION MECHANISM

The role of the attention mechanism is to enable each output character to “attend” to
the correct characters in the input sequence. For example, the "7" part of the output
string "2034-07-18" should attend to the "JUL" part of the input date string. This is
again analogous to how humans generate language. For instance, when we translate a
sentence from language A to language B, each word in the output sentence is usually
determined by a small number of words from the input sentence.

This may seem like a no-brainer: it’s hard to imagine what other approaches might
work better. But the introduction of the attention mechanism introduced by deep-
learning researchers around 2014–2015 was a major advancement in the field. To
understand the historical reason behind this, look at the arrow that connects the
Encoder box with the Decoder box in panel A of figure 9.10. This arrow represents
the last output of an LSTM in the encoder part of the model, which is passed to an
LSTM in the decoder part of the model as its initial state. Recall that the initial state of
RNNs is typically all-zero (for example, the simpleRNN we used in section 9.1.2); how-
ever, TensorFlow.js allows you to set the initial state of an RNN to any given tensor
value of the correct shape. This can be used as a way to pass upstream information to
an LSTM. In this case, the encoder-to-decoder connection uses this mechanism to let
the decoder LSTM access the encoded input sequence.

However, the initial state is an entire input sequence packed into a single vector. It
turns out that this representation is a little too condensed for the decoder to unpack,
especially for longer and more complex sequences (such as the sentences seen in typ-
ical machine-translation problems). This is where the attention mechanism comes
into play.

The attention mechanism expands the “field of view” available to the decoder.
Instead of using just the encoder’s final output, the attention mechanism accesses the
entire sequence of the encoder’s output. At each step of the conversion process, the
mechanism attends to specific time steps in the encoder’s output sequence in order to
decide what output character to generate. For example, the first conversion step may
pay attention to the first two input characters, while the second conversion step pays
attention to the second and third input characters, and so forth (see figure 9.10 for a
concrete example of such an attention matrix). Just like all weight parameters of the
neural network, an attention model learns the way in which it allocated attention,
instead of hard-coding a policy. This makes the model flexible and powerful: it can
learn to attend to different parts of the input sequence depending on both the input
sequence itself and what has been generated in the output sequence so far.

This is as far as we can go in talking about the encoder-decoder mechanism without
looking at the code or opening the black boxes that are the encoder, decoder, and
attention mechanism. If this treatment sounds too high-level or too vague to you, read
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the next section, where we’ll dive a little deeper into the nuts and bolts of the model.
This is worth the mental effort for those who wish to get a deeper understanding of the
attention-based encoder-decoder architecture. To motivate you to read it, realize that
the same architecture underlies systems such as state-of-the-art machine-translation
models (Google Neural Machine Translation, or GNMT), even though these produc-
tion models employ more layers of LSTMs and are trained on much larger amounts of
data than the simple date-conversion model we are dealing with here.

9.3.3 Deep dive into the attention-based encoder-decoder model

Figure 9.11 expands the boxes in figure 9.10 and provides a more detailed view of their
internal structures. It is most illustrative to view it in conjunction with the code that
builds the model: createModel() function in date-conversion-attention/model.js.
We’ll next walk through the important aspects of the code.

First, we define a couple of constants for the embedding and LSTM layers in the
encoder and decoder:

  const embeddingDims = 64;
  const lstmUnits = 64;
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Figure 9.11 Deep dive into the attention-based encoder-decoder model. You can think of this figure as an 
expanded view of the encoder-decoder architecture outlined in figure 9.10, with finer-grained details depicted.
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The model we will construct takes two inputs, so we must use the functional model
API instead of the sequential API. We start from the model’s symbolic inputs for the
encoder input and the decoder input, respectively:

  const encoderInput = tf.input({shape: [inputLength]});
  const decoderInput = tf.input({shape: [outputLength]});

The encoder and decoder both apply an embedding layer on their respective input
sequences. The code for the encoder looks like

  let encoder = tf.layers.embedding({
    inputDim: inputVocabSize,
    outputDim: embeddingDims,
    inputLength,
    maskZero: true
  }).apply(encoderInput);

This is similar to the embedding layers we used in the IMDb sentiment problem, but it
embeds characters instead of words. This shows that the embedding method is not lim-
ited to words. In fact, it is flexible enough to be applied on any finite, discrete set, such
as music genres, articles on a news website, airports in a country, and so forth. The
maskZero: true configuration of the embedding layer instructs the downstream LSTM
to skip steps with all-zero values. This saves unnecessary computation on sequences that
have already ended. 

LSTM is an RNN type we haven’t covered in detail yet. We won’t go into its internal
structure here. It suffices to say that it is similar to GRU (figure 9.4) in that it addresses
the vanishing-gradient problem by making it easier to carry a state over multiple time
steps. Chris Olah’s blog post “Understanding LSTM Networks,” for which a pointer is
provided in “Materials for further reading” at the end of the chapter, presents an
excellent review and visualization of the structure and mechanisms of LSTMs. Our
encoder LSTM is applied on the character-embedding vectors:

  encoder = tf.layers.lstm({
    units: lstmUnits,
    returnSequences: true
  }).apply(encoder);

The returnSequences: true configuration lets the output of the LSTM be a sequence
of output vectors instead of the default output of a single vector that’s the final output
(as we did in the temperature-prediction and sentiment-analysis models). This step is
required by the downstream attention mechanism. 

The GetLastTimestepLayer layer that follows the encoder LSTM is a custom-
defined layer:

  const encoderLast = new GetLastTimestepLayer({
    name: 'encoderLast'
  }).apply(encoder);

It simply slices the time-sequence tensor along the time dimension (the second
dimension) and outputs the last time step. This allows us to send the final state of the
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encoder LSTM to the decoder LSTM as its initial state. This connection is one of the
ways in which the decoder gets information about the input sequence. This is illus-
trated in figure 9.11 with the arrow that connects h12 in the green encoder block to
the decoder LSTM layer in the blue decoder block.

The decoder part of the code begins with an embedding layer and an LSTM layer
reminiscent of the encoder’s topology:

  let decoder = tf.layers.embedding({
    inputDim: outputVocabSize,
    outputDim: embeddingDims,
    inputLength: outputLength,
    maskZero: true
  }).apply(decoderInput);
  decoder = tf.layers.lstm({
    units: lstmUnits,
    returnSequences: true
  }).apply(decoder, {initialState: [encoderLast, encoderLast]});

In the last line of this code snippet, notice how the final state of the encoder is used as
the initial state of the decoder. In case you wonder why the symbolic tensor encoder-
Last is repeated in the last line of code here, it is because an LSTM layer contains two
states, unlike the one-state structure we’ve seen in simpleRNN and GRU.

The additional, and more powerful, way in which the decoder gets a view at the
input sequences is, of course, the attention mechanism. The attention is a dot product
(element-by-element product) between the encoder LSTM’s output and the decoder
LSTM’s output, followed by a softmax activation:

  let attention = tf.layers.dot({axes: [2, 2]}).apply([decoder, encoder]);
  attention = tf.layers.activation({
    activation: 'softmax',
    name: 'attention'
  }).apply(attention);

The encoder LSTM’s output has a shape of [null, 12, 64], where 12 is the input
sequence’s length and 64 is the LSTM’s size. The decoder LSTM’s output has a shape
of [null, 10, 64], where 10 is the output sequence’s length and 64 is the LSTM’s size.
A dot product between the two is performed along the last (LSTM features) dimen-
sion, which gives rise to a shape of [null, 10, 12] (that is, [null, inputLength,
outputLength]). The softmax applied on the dot product turns the values into proba-
bility scores, which are guaranteed to be positive and sum to 1 along each column of
the matrix. This is the attention matrix that’s central to our model. Its value is what’s
visualized in the earlier figure 9.9.

The attention matrix is then applied on the sequential output from the encoder
LSTM. This is how the conversion process learns to pay attention to different ele-
ments of the input sequence (in its encoded form) at each step. The result of applying
the attention on the encoder’s output is called the context:

  const context = tf.layers.dot({
    axes: [2, 1],
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    name: 'context'
  }).apply([attention, encoder]);

The context has a shape of [null, 10, 64] (that is, [null, outputLength, lstm-
Units]). It is concatenated with the decoder’s output, which also has a shape of
[null, 10, 64]. So, the result of the concatenation has a shape of [null, 10, 128]:

  const decoderCombinedContext =
      tf.layers.concatenate().apply([context, decoder]);

decoderCombinedContext contains the feature vectors that go into the final stage of
the model, namely, the stage that generates the output characters. 

The output characters are generated using an MLP that contains one hidden layer
and a softmax output layer:

  let output = tf.layers.timeDistributed({
    layer: tf.layers.dense({
      units: lstmUnits,
      activation: 'tanh'
    })
  }).apply(decoderCombinedContext);
  output = tf.layers.timeDistributed({
    layer: tf.layers.dense({
      units: outputVocabSize,
      activation: 'softmax'
    })
  }).apply(output);

Thanks to the timeDistributed layer, all steps share the same MLP. The time-
Distributed layer takes a layer and calls it repeatedly over all steps along the time
dimension (that is, the second dimension) of its input. This converts the input feature
shape of [null, 10, 128] to [null, 10, 13], where 13 corresponds to the 11 possi-
ble characters of the ISO-8601 date format, as well as the 2 special characters (pad-
ding and start-of-sequence).

With all the pieces in place, we assemble them together into a tf.Model object with
two inputs and one output:

  const model = tf.model({
    inputs: [encoderInput, decoderInput],
    outputs: output
  });

To prepare for training, we call the compile() method with a categorical cross-
entropy loss function. The choice of this loss function is based on the fact that the
conversion problem is essentially a classification problem—at each time step, we
choose a character from the set of all possible characters:

  model.compile({
    loss: 'categoricalCrossentropy',
    optimizer: 'adam'
  });
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At inference time, an argMax() operation is applied on the model’s output tensor to
obtain the winning output character. At every step of the conversion, the winning out-
put character is appended to the decoder’s input, so the next conversion step can use
it (see the arrow on the right end of figure 9.11). As we mentioned before, this itera-
tive process eventually yields the entire output sequence.

Materials for further reading
 Chris Olah, “Understanding LSTM Networks,” blog, 27 Aug. 2015, http://mng

.bz/m4Wa.
 Chris Olah and Shan Carter, “Attention and Augmented Recurrent Neural Net-

works,” Distill, 8 Sept. 2016, https://distill.pub/2016/augmented-rnns/.
 Andrej Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Net-

works,” blog, 21 May 2015, http://mng.bz/6wK6.
 Zafarali Ahmed, “How to Visualize Your Recurrent Neural Network with Atten-

tion in Keras,” Medium, 29 June 2017, http://mng.bz/6w2e.
 In the date-conversion example, we described a decoding technique based on

argMax(). This approach is often referred to as the greedy decoding technique
because it extracts the output symbol of the highest probability at every step. A
popular alternative to the greedy-decoding approach is beam-search decoding,
which examines a larger range of possible output sequences in order to deter-
mine the best one. You can read more about it from Jason Brownlee, “How to
Implement a Beam Search Decoder for Natural Language Processing,”
5 Jan. 2018, https://machinelearningmastery.com/beam-search-decoder-natural-
language-processing/.

 Stephan Raaijmakers, Deep Learning for Natural Language Processing, Manning
Publications, in press, www.manning.com/books/deep-learning-for-natural-
language-processing.

Exercises
1 Try rearranging the order of the data elements for various nonsequential data.

Confirm that such reordering has no effect on the loss-metric values (for exam-
ple, accuracy) of the modeling (beyond random fluctuation caused by random
initialization of the weight parameters). You can do this for the following two
problems:
a In the iris-flower example (from chapter 3), rearrange the order of the four

numeric features (petal length, petal width, sepal length, and sepal width) by
making changes to the line

  shuffledData.push(data[indices[i]]);

in the iris/data.js file of the tfjs-examples repo. In particular, alter the order
of the four elements in data[indices[i]]. This can be done through calls
to the slice() and concat() methods of the JavaScript array. Note that the
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order rearrangement ought to be the same for all examples. You may write a
JavaScript function to perform the reordering.

b In the linear regressor and MLP that we developed for the Jena-weather
problem, try reordering the 240 time steps and the 14 numeric features
(weather-instrument measurements). Specifically, you can achieve this by
modifying the nextBatchFn() function in jena-weather/data.js. The line
where it is the easiest to implement the reordering is 
samples.set(value, j, exampleRow, exampleCol++);

where you can map the index exampleRow to a new value using a function
that performs a fixed permutation and map exampleCol in a similar manner.

2 The 1D convnet we built for the IMDb sentiment analysis consisted of only one
conv1d layer (see listing 9.8). As we discussed, stacking more conv1d layers on
top of it may give us a deeper 1D convnet capable of capturing order informa-
tion over a longer span of words. In this exercise, practice modifying the code
in the buildModel() function of sentiment/train.js. The goal is to add another
conv1d layer after the existing one, retrain the model, and observe if there is
any improvement in its classification accuracy. The new conv1d layer may use
the same number of filters and kernel size as the existing one. Also, read the
output shapes in the summary of the modified model and make sure you
understand how the filters and kernelSize parameters lead to the output
shape of the new conv1d layer.

3 In the date-conversion-attention example, try adding a couple more input date
formats. Following are the new formats you can choose from, sorted in order of
increasing coding difficulty. You can also come up with your own date formats:
a The YYYY-MMM-DD format: for example, “2012-MAR-08” or “2012-MAR-18.”

Depending on whether single-digit day numbers are prepadded with a zero
(as in 12/03/2015), this can actually be two different formats. However,
regardless of the padding, the maximum length of this format is less than 12,
and all the possible characters are already in the INPUT_VOCAB in date-
conversion-attention/date_format.js. Therefore, all it takes is to add a func-
tion or two to the file, and those functions can be modeled after existing
ones, such as dateTupleToMMMSpaceDDSpaceYY(). Make sure you add the
new function(s) to the INPUT_FNS array in the file, so they can be included in
the training. As a best practice, you should also add unit tests for your new
date-format functions to date-conversion-attention/date_format_test.js.

b A format with ordinal numbers as the day part, such as “Mar 8th, 2012.” Note
that this is the same as the existing dateTupleToMMMSpaceDDComma-

SpaceYYYY() format, except that the day number is suffixed with the ordinal
suffices ("st", "nd", and "th"). Your new function should include the logic
to determine the suffix based on the day value. In addition, you need to
revise the INPUT_LENGTH constant in date_format_test.js to a larger value
because the maximum possible length of the date string in this format
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exceeds the current value of 12. Furthermore, the letters "t" and "h" need
to be added to INPUT_VOCAB, as they do not appear in any of the three-letter
month strings.

c Now consider a format with the full English name of the month spelled out,
such as “March 8th, 2012.” What is the maximum possible length of the
input date string? How should you change INPUT_VOCAB in date_format.js
accordingly?

Summary
 By virtue of being able to extract and learn information contained in the

sequential order of things, RNNs can outperform feedforward models (for
example, MLPs) in tasks that involve sequential input data. We see this through
the example of applying simpleRNN and GRU to the temperature-prediction
problem.

 There are three types of RNNs available from TensorFlow.js: simpleRNN, GRU,
and LSTM. The latter two types are more sophisticated than simpleRNN in that
they use a more complex internal structure to make it possible to carry memory
state over many time steps, which mitigates the vanishing-gradient problem.
GRU is computationally less intensive than LSTM. In most practical problems,
you’ll probably want to use GRU and LSTM.

 When building neural networks for text, the text inputs need to be represented
as vectors of numbers first. This is called text vectorization. Most frequently
used methods of text vectorization include one-hot and multi-hot encoding, as
well as the more powerful embedding method.

 In word embedding, each word is represented as a nonsparse vector, of which
the element values are learned through backpropagation, just like all other
weight parameters of the neural network. The function in TensorFlow.js that
performs embedding is tf.layers.embedding().

 seq2seq problems are different from sequence-based regression and classifica-
tion problems in that they involve generating a new sequence as the output.
RNNs can be used (together with other layer types) to form an encoder-
decoder architecture to solve seq2seq problems.

 In seq2seq problems, the attention mechanism enables different items of the
output sequence to selectively depend on specific elements of the input
sequence. We demonstrate how to train an attention-based encoder-decoder
network to solve a simple date-conversion problem and visualize the attention
matrix during inference.
 



Generative deep learning
Some of the most impressive tasks demonstrated by deep neural networks have
involved generating images, sounds, and text that look or sound real. Nowadays,
deep neural networks are capable of creating highly realistic human face images,1

synthesizing natural-sounding speech,2 and composing compellingly coherent

This chapter covers
 What generative deep learning is, its applications, and how 

it differs from the deep-learning tasks we’ve seen so far

 How to generate text using an RNN

 What latent space is and how it can form the basis of 
generating novel images, through the example of variational 
autoencoders

 The basics of generative adversarial networks

1 Tero Karras, Samuli Laine, and Timo Aila, “A Style-Based Generator Architecture for Generative Adver-
sarial Networks,” submitted 12 Dec. 2018, https://arxiv.org/abs/1812.04948. See a live demo at
https://thispersondoesnotexist.com/.

2 Aäron van den Oord and Sander Dieleman, “WaveNet: A Generative Model for Raw Audio,” blog, 8 Sept.
2016, http://mng.bz/MOrn.
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text,3 just to name a few achievements. Such generative models are useful for a number
of reasons, including aiding artistic creation, conditionally modifying existing con-
tent, and augmenting existing datasets to support other deep-learning tasks.4

Apart from practical applications such as putting makeup on the selfie of a poten-
tial cosmetic customer, generative models are also worth studying for theoretical rea-
sons. Generative and discriminative modeling are two fundamentally different types
of models in machine learning. All the models we’ve studied in this book so far are dis-
criminative models. Such models are designed to map an input into a discrete or con-
tinuous value without caring about the process through which the input is generated.
Recall the classifiers for phishing websites, iris flowers, MNIST digits, and speech
sounds, as well as the regressor for housing prices we’ve built. By contrast, generative
models are designed to mathematically mimic the process through which the exam-
ples of different classes are generated. But once a generative model has learned this
generative knowledge, it can perform discriminative tasks as well. So generative mod-
els can be said to “understand” the data better compared to discriminative models.

This section covers the foundations of deep generative models for text and images.
By the end of the chapter, you should be familiar with the ideas behind RNN-based
language models, image-oriented autoencoders, and generative adversarial networks.
You should also be familiar with the pattern in which such models are implemented in
TensorFlow.js and be capable of applying these models to your own dataset.

10.1 Generating text with LSTM
Let’s start from text generation. To do that, we will use RNNs, which we introduced in
the previous chapter. Although the technique you’ll see here generates text, it is not
limited to this particular output domain. The technique can be adapted to generate
other types of sequences, such as music—given the ability to represent musical notes
in a suitable way and find an adequate training dataset.5 Similar ideas can be applied
to generate pen strokes in sketching so that nice-looking sketches6 or even realistic-
looking Kanjis7 can be generated.

10.1.1 Next-character predictor: A simple way to generate text

First, let’s define the text-generation task. Suppose we have a corpus of text data of
decent size (at least a few megabytes) as the training input, such as the complete
works of Shakespeare (a very long string). We want to train a model to generate

3 “Better Language Models and Their Implications,” OpenAI, 2019, https://openai.com/blog/better-
language-models/.

4 Antreas Antoniou, Amos Storkey, and Harrison Edwards, “Data Augmentation Generative Adversarial Net-
works,” submitted 12 Nov. 2017, https://arxiv.org/abs/1711.04340.

5 For example,  see Performance-RNN from Google’s Magenta Project: https://magenta.tensorflow.org/
performance-rnn.

6 For example, see Sketch-RNN by David Ha and Douglas Eck: http://mng.bz/omyv.
7 David Ha, “Recurrent Net Dreams Up Fake Chinese Characters in Vector Format with TensorFlow,” blog, 28

Dec. 2015, http://mng.bz/nvX4.
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new texts that look like the training data as much as possible. The key phrase here is,
of course, “look like.” For now, let’s be content with not precisely defining what
“look like” means. The meaning will become clearer after we show the method and
the results.

Let’s think about how to formulate this task in the paradigm of deep learning. In
the date-conversion example covered in the previous chapter, we saw how a precisely
formatted output sequence can be generated from a casually formatted input one.
That text-to-text conversion task had a well-defined answer: the correct date string in
the ISO-8601 format. However, the text-generation task here doesn’t seem to fit this
bill. There is no explicit input sequence, and the “correct” output is not well-defined;
we just want to generate something that “looks real.” What can we do?

A solution is to build a model to predict what character will come after a sequence
of characters. This is called next-character prediction. For instance, a well-trained model
on the Shakespeare dataset should predict the character “u” with a high probability
when given the character string “Love looks not with the eyes, b” as the input. How-
ever, that generates only one character. How do we use the model to generate a
sequence of characters? To do that, we simply form a new input sequence of the same
length as before by shifting the previous input to the left by one character, discarding
the first character, and sticking the newly generated character (“u”) at the end. This
gives us a new input for our next-character predictor, namely, “ove looks not with the
eyes, bu” in this case. Given this new input sequence, the model should predict the
character “t” with a high probability. This process, which is illustrated in figure 10.1,
can be repeated as many times as necessary to generate a sequence as long as desired.
Of course, we need an initial snippet of text as the starting point. For that, we can just
sample randomly from the text corpus.

This formulation turns the sequence-generation task into a sequence-based classifi-
cation problem. This problem is similar to what we saw in the IMDb sentiment-analysis
problem in chapter 9, in which a binary class was predicted from an input of a fixed
length. The model for text generation does essentially the same thing, although it is a
multiclass-classification problem involving N possible classes, where N is the size of the
character set—namely, the number of all unique characters in the text dataset. 

This next-character-prediction formulation has a long history in natural language
processing and computer science. Claude Shannon, the pioneer of information theory,
conducted an experiment in which human participants were asked to guess the next
letter after seeing a short snippet of English text.8 Through this experiment, he was
able to estimate the average amount of uncertainty in every letter of the typical English
texts, given the context. This uncertainty, which turned out to be about 1.3 bits of
entropy, tells us the average amount of information carried by every letter in English. 

8 The original 1951 paper is accessible at http://mng.bz/5AzB.
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The 1.3 bits result is less than the number of bits if the 26 letters appeared in a com-
pletely random fashion, which would be log2(26) = 4.7 bits. This matches our intu-
ition because we know letters do not appear randomly in English. Instead, they follow
patterns. At a lower level, only certain sequences of letters are valid English words. At
a higher level, only a certain ordering of words satisfies English grammar. At an even
higher level, only a subset of grammatically valid sentences actually make real sense.

If you think about it, this is what our text-generation task is fundamentally about:
learning these patterns on all these levels. Realize that our model is essentially trained
to do what Shannon’s subjects did—that is, guess the next character. Let’s now take a
look at the example code and how it works. Keep Shannon’s result of 1.3 bits in mind
because we’ll come back to it later.

10.1.2 The LSTM-text-generation example

The lstm-text-generation example in the tfjs-examples repository involves training an
LSTM-based next-character predictor and using it to generate new text. The training
and generation steps both happen in JavaScript using TensorFlow.js. You can run the
example either in the browser or in the backend environment with Node.js. While the
former approach provides a more visual and interactive interface, the latter gives you
faster training speed.

Figure 10.1 A schematic illustration of how an RNN-based next-character predictor can be used to generate a 
sequence of text from an initial input snippet of text as the seed. At each step, the RNN predicts the next 
character using the input text. Then, the input text is concatenated with the predicted next character and 
discards the first character. The result forms the input for the next step. At each step, the RNN outputs the 
probability scores for all possible characters in the character set. To determine the actual next character, a 
random sampling is carried out.

Love looks not with the eyes, b u

ove looks not with the eyes, bu

L u+–

t

...

Initial seed text

RNN
next-character

predictor

RNN
next-character

predictor

Random
sampling

Probability
scores

Random
sampling

Probability
scores
 



338 CHAPTER 10 Generative deep learning
To see the example running in the browser, use these commands:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/lstm-text-generation
yarn && yarn watch

In the page that pops up, you can select and load one of four provided text datasets to
train the model on. We will use the Shakespeare dataset in the following discussion.
Once the data is loaded, you can create a model for it by clicking the Create Model
button. A text box allows you to adjust the number of units that the created LSTM will
have. It is set to 128 by default. But you can experiment with other values, such as 64.
If you enter multiple numbers separated by commas (for example, 128,128), the
model created will contain multiple LSTM layers stacked on top of each other.

To perform training on the backend using tfjs-node or tfjs-node-gpu, use the com-
mand yarn train instead of yarn watch: 

yarn train shakespeare \
      --lstmLayerSize 128,128 \
      --epochs 120 \
      --savePath ./my-shakespeare-model

If you have a CUDA-enabled GPU set up properly, you can add the --gpu flag to the
command to let the training happen on your GPU, which will further increase the train-
ing speed. The flag --lstmLayerSize plays the same role as the LSTM-size text box in
the browser version of the example. The previous command will create and train a
model consisting of two LSTM layers, both with 128 units, stacked on top of each other.

The model being trained here has a stacked-LSTM architecture. What does stacking
LSTM layers mean? It is conceptually similar to stacking multiple dense layers in an
MLP, which increases the MLP’s capacity. In a similar fashion, stacking multiple
LSTMs allows an input sequence to go through multiple stages of seq2seq representa-
tional transformation before being converted into a final regression or classification
output by the final LSTM layer. Figure 10.2 gives a schematic illustration of this archi-
tecture. One important thing to notice is the fact that the first LSTM has its return-
Sequence property set to true and hence generates a sequence of output that
includes the output for every single item of the input sequence. This makes it possible
to feed the output of the first LSTM into the second one, as an LSTM layer expects a
sequential input instead of a single-item input.

Listing 10.1 contains the code that builds next-character prediction models with the
architecture shown in figure 10.2 (excerpted from lstm-text-generation/model.js).
Notice that unlike the diagram, the code includes a dense layer as the model’s final
output. The dense layer has a softmax activation. Recall that the softmax activation nor-
malizes the outputs so that they have values between 0 and 1 and sum to 1, like a prob-
ability distribution. So, the final dense layer’s output represents the predicted
probabilities of the unique characters.
 

https://github.com/tensorflow/tfjs-examples.git
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The lstmLayerSize argument of the createModel() function controls the number of
LSTM layers and the size of each. The first LSTM layer has its input shape configured
based on sampleLen (how many characters the model takes at a time) and charSet-
Size (how many unique characters there are in the text data). For the browser-based
example, sampleLen is hard-coded to 40; for the Node.js-based training script, it is
adjustable via the --sampleLen flag. charSetSize has a value of 71 for the Shake-
speare dataset. The character set includes the upper- and lowercase English letters,
punctuation, the space, the line break, and several other special characters. Given
these parameters, the model created by the function in listing 10.1 has an input shape
of [40, 71] (ignoring the batch dimension). This shape corresponds to 40 one-hot-
encoded characters. The model’s output shape is [71] (again, ignoring the batch
dimension), which is the softmax probability value for the 71 possible choices of the
next character. 

export function createModel(sampleLen,
                            charSetSize,
                            lstmLayerSizes) {
  if (!Array.isArray(lstmLayerSizes)) {
    lstmLayerSizes = [lstmLayerSizes];
  }

  const model = tf.sequential();
  for (let i = 0; i < lstmLayerSizes.length; ++i) {
    const lstmLayerSize = lstmLayerSizes[i];
    model.add(tf.layers.lstm({
      units: lstmLayerSize,
      returnSequences: i < lstmLayerSizes.length - 1,

Listing 10.1 Building a multilayer LSTM model for next-character prediction

Figure 10.2 How stacking multiple LSTM layers works 
in a model. In this case, two LSTM layers are stacked 
together. The first one has its returnSequence
property set to true and hence outputs a sequence of 
items. The sequential output of the first LSTM is 
received by the second LSTM as its input. The second 
LSTM outputs a single item instead of a sequence of 
items. The single item could be regression prediction or 
an array of softmax probabilities, which forms the final 
output of the model.
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      inputShape: i === 0 ? 
          [sampleLen, charSetSize] : undefined
    }));
  }
  model.add(
      tf.layers.dense({
        units: charSetSize,
        activation: 'softmax'
  }));

  return model;
}

To prepare the model for training, we compile it with the categorical cross-entropy
loss, as the model is essentially a 71-way classifier. For the optimizer, we use RMSProp,
which is a popular choice for recurrent models:

const optimizer = tf.train.rmsprop(learningRate);
model.compile({optimizer: optimizer, loss: 'categoricalCrossentropy'});

The data that goes into the model’s training consists of pairs of input text snippets and
the characters that follow each of them, all encoded as one-hot vectors (see figure 10.1).
The class TextData defined in lstm-text-generation/data.js contains the logic to gener-
ate such tensor data from the training text corpus. The code there is somewhat tedious,
but the idea is simple: randomly sample snippets of fixed length from the very long
string that is our text corpus, and convert them into one-hot tensor representations. 

If you are using the web-based demo, the Model Training section of the page allows
you to adjust hyperparameters such as the number of training epochs, the number of
examples that go into each epoch, the learning rate, and so forth. Click the Train
Model button to kick off the model-training process. For Node.js-based training, these
hyperparameters are adjustable through the command-line flags. For details, you can
get help messages by entering the yarn train --help command.

Depending on the number of training epochs you specified and the size of the
model, the training should take anywhere between a few minutes to a couple of hours.
The Node.js-based training job automatically prints a number of sample text snippets
generated by the model after every training epoch (see table 10.1). As the training
progresses, you should see the loss value go down continuously from the initial value
of approximately 3.2 and converge in the range of 1.4–1.5. As the loss decreases after
about 120 epochs, the quality of the generated text should improve, such that toward
the end of the training, the text should look somewhat Shakespearean, and the valida-
tion loss should approach the neighborhood of 1.5—not too far from the 1.3
bits/character information uncertainty from Shannon’s experiment. But note that
given our training paradigm and model capacity, the generated text will never look
like the actual Shakespeare’s writing.

The first LSTM layer is 
special in that it needs to 
specify its input shape.

The model ends with a dense layer with a 
softmax activation over all possible 
characters, reflecting the classification nature 
of the next-character prediction problem.
 



341Generating text with LSTM
Table 10.1 Samples of text generated by the LSTM-based next-character prediction model. The generation is
based on the seed text. Initial seed text: " in hourly synod about thy particular prosperity, and lo".a Actual text
that follows the seed text (for comparison): "ve thee no worse than thy old father Menenius does! ...".
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loss T = 0 T = 0.25 T = 0.5 T = 0.75
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Table 10.1 shows some texts sampled under four different temperature values, a parame-
ter that controls the randomness of the generated text. In the samples of generated
text, you may have noticed that lower temperature values are associated with more
repetitive and mechanical-looking text, while higher values are associated with less-
predictable text. The highest temperature value demonstrated by the Node.js-based
training script is 0.75 by default, and it sometimes leads to character sequences that
look like English but are not actually English words (such as “stratter” and “poins” in
the samples in the table). In the next section, we’ll examine how temperature works
and why it is called temperature.

10.1.3 Temperature: Adjustable randomness in the generated text

The function sample() in listing 10.2 is responsible for determining which character will
be chosen based on the model’s output probabilities at each step of the text-generation
process. As you can see, the algorithm is somewhat complex: it involves calls to three
low-level TensorFlow.js operations: tf.div(), tf.log(), and tf.multinomial(). Why do
we use this complicated algorithm instead of simply picking the choice with the highest
probability score, which would take a single argMax() call?

If we did that, the output of the text-generation process would be deterministic. That
is, it would give you exactly the same output if you ran it multiple times. The deep
neural networks we’ve seen so far are all deterministic, in the sense that given an input
tensor, the output tensor is completely determined by the network’s topology and the
values of its weights. If so desired, you can write a unit test to assert its output value
(see chapter 12 for a discussion of testing machine-learning algorithms). This deter-
minism is not ideal for our text-generation task. After all, writing is a creative process.
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a. From Shakespeare’s Coriolanus, act 5, scene 2. Note that the sample includes line breaks and stops in the middle of a word (love).

Table 10.1 Samples of text generated by the LSTM-based next-character prediction model. The generation is
based on the seed text. Initial seed text: " in hourly synod about thy particular prosperity, and lo".a Actual text
that follows the seed text (for comparison): "ve thee no worse than thy old father Menenius does! ...". (continued)
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It is much more interesting to have some randomness in the generated text, even
when the same seed text is given. This is what the tf.multinomial() operation and
the temperature parameter are useful for. tf.multinomial() is the source of random-
ness, while temperature controls the degree of randomness.

export function sample(probs, temperature) {
  return tf.tidy(() => {
    const logPreds = tf.div(
        tf.log(probs),
        Math.max(temperature, 1e-6));
    const isNormalized = false;
    return tf.multinomial(logPreds, 1, null, isNormalized).dataSync()[0];
  });
}

The most important part of the sample() function in listing 10.2 is the following line: 

const logPreds = tf.div(tf.log(probs),
                        Math.max(temperature, 1e-6));

It takes the probs (the probability outputs from the model) and converts them into
logPreds, the logarithms of the probabilities scaled by a factor. What do the logarithm
operation (tf.log()) and the scaling (tf.div()) do? We’ll explain that through an
example. For the sake of simplicity, let’s assume there are only three choices (three
characters in our character set). Suppose our next-character predictor yields the fol-
lowing three probability scores given a certain input sequence:

[0.1, 0.7, 0.2]

Let’s see how two different temperature values alter these probabilities. First, let’s look
at a relatively lower temperature: 0.25. The scaled logits are

log([0.1, 0.7, 0.2]) / 0.25 = [-9.2103, -1.4267, -6.4378]

To understand what the logits mean, we convert them back to actual probability scores
by using the softmax equation, which involves taking the exponential of the logits and
normalizing them:

exp([-9.2103, -1.4267, -6.4378]) / sum(exp([-9.2103, -1.4267, -6.4378]))
= [0.0004, 0.9930, 0.0066]

Listing 10.2 The stochastic sampling function, with a temperature parameter

The dense layer of the model outputs 
normalized probability scores; we use log() 
to convert them to unnormalized logits 
before dividing them by the temperature.

We protect against division-by-
zero errors with a small positive 
number. The result of the division 
is logits with adjusted uncertainty.

tf.multinomial() is a stochastic sampling function. It’s like
a multisided die with unequal per-side probabilities as

determined by logPreds—the temperature-scaled logits.
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As you can see, our logits from temperature = 0.25 correspond to a highly concen-
trated probability distribution in which the second choice has a much higher proba-
bility compared to the other two choices (see the second panel in figure 10.3).

What if we use a higher temperature, say 0.75? By repeating the same calculation,
we get

log([0.1, 0.7, 0.2]) / 0.75 = [-3.0701, -0.4756, -2.1459]
exp([-3.0701, -0.4756, -2.1459]) / sum([-3.0701, -0.4756, -2.1459])
= [0.0591, 0.7919 0.1490]

This is a much less “peaked” distribution compared to the one from before, when the
temperature was 0.25 (see the fourth panel in figure 10.3). But it is still more peaked
compared to the original distribution. As you might have realized, a temperature of 1 will
give you exactly the original probabilities (figure 10.3, fifth panel). A temperature higher
than 1 leads to a more “equalized” probability distribution among the choices (figure
10.3, sixth panel), while the ranking among the choices always remains the same.

Figure 10.3 The probability scores after scaling by different values of temperature 
(T). A lower value of T leads to a more concentrated (less stochastic) distribution; 
a higher value of T causes the distribution to be more equal among the classes 
(more stochastic). A T-value of 1 corresponds to the original probabilities (no 
change). Note that the relative ranking of the three choices is always preserved 
regardless of the value of T.
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These converted probabilities (or rather, the logarithms of them) are then fed to the
tf.multinomial() function, which acts like a multifaced die, with unequal probabili-
ties of the faces controlled by the input argument. This gives us the final choice of the
next character.

So, this is how the temperature parameter controls the randomness of the gener-
ated text. The term temperature has its origin in thermodynamics, from which we know
that a system with a higher temperature has a higher degree of chaos inside it. The
analogy is appropriate here because when we increase the temperature value in our
code, we get more chaotic-looking text. There is a “sweet medium” for the tempera-
ture value. Below it, the generated text looks too repetitive and mechanical; above it,
the text looks too unpredictable and wacky.

This concludes our tour of the text-generating LSTM. Note that this methodology
is very general and is applicable to many other sequences with proper modifications.
For instance, if trained on a sufficiently large dataset of musical scores, an LSTM can
be used to compose music by iteratively predicting the next musical note from the
ones that come before it.9

10.2 Variational autoencoders: Finding an efficient and 
structured vector representation of images
The previous section gave you a quick tour of how deep learning can be used to gen-
erate sequential data such as text. In the remaining parts of this chapter, we will look
at how to build neural networks to generate images. We will examine two types of
models: variational autoencoder (VAE) and generative adversarial network (GAN).
Compared to a GAN, the VAE has a longer history and is structurally simpler. So, it
forms a good on-ramp for you to get into the fast-moving world of deep-learning-
based image generation.

10.2.1 Classical autoencoder and VAE: Basic ideas

Figure 10.4 shows the overall architecture of an autoencoder schematically. At first
glance, an autoencoder is a funny model because its input and output models are
images of the same size. At the most basic level, the loss function of an autoencoder is
the MSE between the input and output. This means that, if trained properly, an auto-
encoder will take an image and output an essentially identical image. What on earth
would a model like that be useful for?

In fact, autoencoders are an important type of generative model and are far from
useless. The answer to the prior question lies in the hourglass-shaped architecture
(figure 10.4). The thinnest, middle part of an autoencoder is a vector with a much
smaller number of elements compared to the input and output images. Hence, the
image-to-image transformation performed by an autoencoder is nontrivial: it first

9 Allen Huang and Raymond Wu, “Deep Learning for Music,” submitted 15 June 2016, https://arxiv.org/
abs/1606.04930.
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turns the input image into a highly compressed representation and then reconstructs
the image from that representation without using any additional information. The
efficient representation at the middle is referred to as the latent vector, or the z-vector.
We will use these two terms interchangeably. The vector space in which these vectors
reside is called the latent space, or the z-space. The part of the autoencoder that con-
verts the input image to the latent vector can be called the encoder; the later part that
converts the latent vector back to an image is called the decoder.

The latent vector can be hundreds of times smaller compared to the image itself, as
we’ll show through a concrete example shortly. Therefore, the encoder portion of a
trained autoencoder is a remarkably efficient dimensionality reducer. Its summariza-
tion of the input image is highly succinct yet contains enough essential information to
allow the decoder to reproduce the input image faithfully without using any extra bits
of information. The fact that the decoder can do that is also remarkable.

We can also look at an autoencoder from an information-theory point of view. Let’s
say the input and output images each contain N bits of information. Naively, N is the
number of pixels multiplied by the bit depth of each pixel. By contrast, the latent vec-
tor in the middle of the autoencoder can hold only a very small amount of information
because of its small size (say, m bits). If m were smaller than N, it would be theoretically
impossible to reconstruct the image from the latent vector. However, pixels in images
are not completely random (an image made of completely random pixels looks like
static noise). Instead, the pixels follow certain patterns, such as color continuity and
characteristics of the type of real-world objects being depicted. This causes the value of
N to be much smaller than the naive calculation based on the number and depth of the
pixels. It is the autoencoder’s job to learn this pattern; this is also the reason why auto-
encoders can work.

Encoder Decoder

Latent vector
(z-vector)

Output
image

Input
image

Figure 10.4 The architecture 
of a classical autoencoder
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After an autoencoder is trained, its decoder part can be used without the encoder.
Given any latent vector, it can generate an image that conforms to the patterns and
styles of the training images. This fits the description of a generative model nicely.
Furthermore, the latent space will hopefully contain some nice, interpretable struc-
ture. In particular, each dimension of the latent space may be associated with a mean-
ingful aspect of the image. For instance, suppose we’ve trained an autoencoder on
images of human faces; perhaps one of the latent space’s dimensions will be associ-
ated with the degree of smiling. When you fix the values in all other dimensions of a
latent vector and vary only the value on the “smile dimension,” the images produced
by the decoder will be exactly the same face but with varying degrees of smiling (see,
for example, figure 10.5). This will enable interesting applications, such as changing
the degree of smiling of an input face image while leaving all other aspects
unchanged. This can be done through the following steps. First, obtain the latent vec-
tor of the input by applying the encoder. Then, modify only the “smile dimension” of
the vector; finally, run the modified latent vector through the decoder.

Unfortunately, classical autoencoders of the architecture shown in figure 10.4 don’t lead
to particularly useful or nicely structured latent spaces. They are not very good at com-
pression, either. For these reasons, they largely fell out of fashion by 2013. VAEs—dis-
covered almost simultaneously by Diederik Kingma and Max Welling in December
201310 and Danilo Rezende, Shakir Mohamed, and Daan Wiestra in January 201411—
augment autoencoders with a little bit of statistical magic, which forces the models to
learn continuous and highly structured latent spaces. VAEs have turned out to be a
powerful type of generative image model.

A VAE, instead of compressing its input image into a fixed vector in the latent
space, turns the image into the parameters of a statistical distribution—specifically,
those of a Gaussian distribution. As you may recall from high school math, a Gaussian
distribution has two parameters: the mean and the variance (or, equivalently, the stan-
dard deviation). A VAE maps every input image into a mean. The only additional com-

10 Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes,” submitted 20 Dec. 2013,
https://arxiv.org/abs/1312.6114.

11 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra, “Stochastic Backpropagation and Approxi-
mate Inference in Deep Generative Models,” submitted 16 Jan. 2014, https://arxiv.org/abs/1401.4082.

Figure 10.5 The “smile dimension.” An example of desired structure in latent spaces learned by 
autoencoders.
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plexity is that the mean and the variance can be higher than one-dimensional if the
latent space is more than 1D, as we’ll see in the following example. Essentially, we are
assuming that the images are generated via a stochastic process and that the random-
ness of this process should be taken into account during encoding and decoding. The
VAE then uses the mean and variance parameters to randomly sample one vector
from the distribution and decode that element back to the size of the original input
(see figure 10.6). This stochasticity is one of the key ways in which VAE improves
robustness and forces the latent space to encode meaningful representations every-
where: every point sampled in the latent space should be a valid image output when
decoded by the decoder.

Next, we will show you a VAE in action by using the Fashion-MNIST dataset. As its name
indicates, Fashion-MNIST12 is inspired by the MNIST hand-written digit dataset, but
contains images of clothing and fashion items. Like the MNIST images, the Fashion-
MNIST images are 28 × 28 grayscale images. There are exactly 10 classes of clothing
and fashion items (such as T-shirt, pullover, shoe, and bag; see figure 10.6 for an exam-
ple). However, the Fashion-MNIST dataset is slightly “harder” for machine-learning

12 Han Xiao, Kashif Rasul, and Roland Vollgraf, “Fashion-MNIST: A Novel Image Dataset for Benchmarking
Machine Learning Algorithms,” submitted 25 Aug. 2017, https://arxiv.org/abs/1708.07747.

Latent space

Encoder Decoder

Encoder

Decoder

Latent space

Random
sampling

Gaussian distribution
in latent space

z-vector

B. How a variational autoencoder works

A. How a classical autoencoder works

Figure 10.6 Comparing how a classical autoencoder (panel A) and a VAE (panel B) work. A classical 
autoencoder maps an input image to a fixed latent vector and performs decoding using that vector. 
By contrast, a VAE maps an input image to a distribution, described by a mean and a variance, draws 
a random latent vector from this distribution, and generates the decoded image using that random 
vector. The T-shirt image is an example from the Fashion-MNIST dataset.
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algorithms compared to the MNIST dataset, with the current state-of-the-art test-set
accuracy standing at approximately 96.5%, much lower compared to the 99.75% state-
of-the-art accuracy on the MNIST dataset.13 We will use TensorFlow.js to build a VAE
and train it on the Fashion-MNIST dataset. We’ll then use the decoder of the VAE to
sample from the 2D latent space and observe the structure inside that space.

10.2.2 A detailed example of VAE: The Fashion-MNIST example

To check out the fashion-mnist-vae example, use the following commands:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/fashion-mnist-vae
yarn
yarn download-data

This example consists of two parts: training the VAE in Node.js and using the VAE
decoder to generate images in the browser. To start the training part, use

yarn train

If you have a CUDA-enabled GPU set up properly, you can use the --gpu flag to get a
boost in the training speed:

yarn train --gpu

The training should take about five minutes on a reasonably update-to-date desktop
equipped with a CUDA GPU, and under an hour without the GPU. Once the training
is complete, use the following command to build and launch the browser frontend:

yarn watch

The frontend will load the VAE’s decoder, generate a number of images by using a 2D
grid of regularly spaced latent vectors, and display the images on the page. This will
give you an appreciation of the structure of the latent space.

In technical terms, here is a how a VAE works:

1 The encoder turns the input samples into two parameters in a latent space:
zMean and zLogVar, the mean and the logarithm of the variance (log variance),
respectively. Each of the two vectors has the same length as the dimensionality
of the latent space.14 For example, our latent space will be 2D, so zMean and
zLogVar will each be a length-2 vector. Why do we use log variance (zLogVar)
instead of the variance itself? Because variances are by definition required to be
nonnegative, but there is no easy way to enforce that sign requirement on a
layer’s output. By contrast, log variance is allowed to have any sign. By using
the logarithm, we don’t have to worry about the sign of the layers’ outputs. Log

13 Source: “State-of-the-Art Result for All Machine Learning Problems,” GitHub, 2019, http://mng.bz/6w0o.
14 Strictly speaking, the covariance matrix of the length-N latent vector is an N × N matrix. However, zLogVar is

a length-N vector because we constrain the covariance matrix to be diagonal—that is, there is no correlation
between two different elements of the latent vector.
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variance can be easily converted to the corresponding variance through a sim-
ple exponentiation (tf.exp()) operation.

2 The VAE algorithm randomly samples a latent vector from the latent normal
distribution by using a vector called epsilon—a random vector of the same
length as zMean and zLogVar. In simple math equations, this step, which is
referred to as reparameterization in the literature, looks like
z = zMean + exp(zLogVar * 0.5) * epsilon

The multiplication by 0.5 converts the variance to the standard deviation, which
is based on the fact that the standard deviation is the square root of the vari-
ance. The equivalent JavaScript code is

z = zMean.add(zLogVar.mul(0.5).exp().mul(epsilon));

(See listing 10.3.) Then, z will be fed to the decoder portion of the VAE so that
an output image can be generated.

In our implementation of VAE, the latent-vector-sampling step is performed by a cus-
tom layer called ZLayer (listing 10.3). We briefly saw a custom TensorFlow.js layer in
chapter 9 (the GetLastTimestepLayer layer that we used in the attention-based date
converter). The custom layer used by our VAE is slightly more complex and deserves
some explanation.

The ZLayer class has two key methods: computeOutputShape() and call(). compute-
OutputShape() are used by TensorFlow.js to infer the output shape of the Layer
instance given the shape(s) of the input. The call() method contains the actual
math. It contains the equation line introduced previously. The following code is
excerpted from fashion-mnist-vae/model.js.

class ZLayer extends tf.layers.Layer {
  constructor(config) {
    super(config);
  }

  computeOutputShape(inputShape) {
    tf.util.assert(inputShape.length === 2 && Array.isArray(inputShape[0]),
        () => `Expected exactly 2 input shapes. ` +
              `But got: ${inputShape}`);
    return inputShape[0];
  }

  call(inputs, kwargs) {
    const [zMean, zLogVar] = inputs;
    const batch = zMean.shape[0];
    const dim = zMean.shape[1];

    const mean = 0;
    const std = 1.0;
    const epsilon = tf.randomNormal(
        [batch, dim], mean, std);

Listing 10.3 Sampling from the latent space (z-space) with a custom layer

Checks to make sure that 
we have exactly two inputs: 
zMean and zLogVar

The shape of the output (z) will be 
the same as the shape of zMean.

Gets a random batch of epsilon from 
the unit Gaussian distribution
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    return zMean.add(
        zLogVar.mul(0.5).exp().mul(epsilon));
  }

  static get ClassName() {
    return 'ZLayer';
  }
}
tf.serialization.registerClass(ZLayer);

As listing 10.4 shows, ZLayer is instantiated and gets used as a part of the encoder. The
encoder is written as a functional model, instead of the simpler sequential model,
because it has a nonlinear internal structure and produces three outputs: zMean,
zLogVar, and z (see the schematic in figure 10.7). The encoder outputs z because it
will get used by the decoder, but why does the encoder include zMean and zLogVar in
the outputs? It’s because they will be used to calculate the loss function of the VAE, as
you will see shortly. 

In addition to ZLayer, the encoder consists of two one-hidden-layer MLPs. They are
used to convert the flattened input Fashion-MNIST images into the zMean and zLog-
Var vectors, respectively. The two MLPs share the same hidden layer but use separate
output layers. This branching model topology is also made possible by the fact that
the encoder is a functional model.

This is where the sampling of 
z-vectors happens: zMean + 
standardDeviation * epsilon.

The static className 
property is set in case the 
layer is to be serialized.

Registers the class to 
support deserialization

Dense
Dense

Dense

zMean

zLogVar ZLayer

z

Dense Dense

Encoder

Decoder

KL divergence

Mean squared error

vaeLoss

Training step

Flattened
output
image

Flattened
input
image

optimizer
.minimize()

Figure 10.7 Schematic illustration of the TensorFlow.js implementation of VAE, including the internal details 
of the encoder and decoder parts and the custom loss function and optimizer that support VAE training.
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function encoder(opts) {
  const {originalDim, intermediateDim, latentDim} = opts;

  const inputs = tf.input({shape: [originalDim], name: 'encoder_input'});
  const x = tf.layers.dense({units: intermediateDim, activation: 'relu'})
                .apply(inputs);
  const zMean = tf.layers.dense({units: latentDim, name: 'z_mean'}).apply(x);
  const zLogVar = tf.layers.dense({
        units: latentDim,
        name: 'z_log_var'
      }).apply(x);
  const z =
      new ZLayer({name: 'z', outputShape: [latentDim]}).apply([zMean, 

zLogVar]);

  const enc = tf.model({
    inputs: inputs,
    outputs: [zMean, zLogVar, z],
    name: 'encoder',
  })
  return enc;
}

The code in listing 10.5 builds the decoder. Compared to the encoder, the decoder
has a simpler topology. It uses an MLP to convert the input z-vector (that is, the latent
vector) into an image of the same shape as the encoder’s input. Note that the way in
which our VAE handles images is somewhat simplistic and unusual in that it flattens
the images into 1D vectors and hence discards the spatial information. Image-
oriented VAEs typically use convolutional and pooling layers, but due to the simplicity
of our images (their small size and the fact that there is only one color channel), the
flattening approach works well enough for the purpose of this example.

function decoder(opts) {
  const {originalDim, intermediateDim, latentDim} = opts;

  const dec = tf.sequential({name: 'decoder'});
  dec.add(tf.layers.dense({
    units: intermediateDim,
    activation: 'relu',
    inputShape: [latentDim]
  }));
  dec.add(tf.layers.dense({
    units: originalDim,
    activation: 'sigmoid'
  }));
  return dec;
}

Listing 10.4 The encoder part of our VAE (excerpt from fashion-mnist-vae/model.js)

Listing 10.5 The decoder part of our VAE (excerpt from fashion-mnist-vae/model.js)

At the base of the encoder is a 
simple MLP with one hidden layer.

Unlike a normal MLP, we put two layers
downstream from the hidden dense
layer to predict zMean and zLogVar,
respectively. This is also the reason

why we use a functional model instead
of the simpler sequential model type.

Instantiates our custom ZLayer and
uses it to draw random samples

that follow the distribution
specified by zMean and zLogVar

The decoder is a simple MLP 
that converts a latent (z) vector 
into a (flattened) image.

Sigmoid activation is a good choice for 
the output layer because it makes sure 
that the pixel values of the output image 
are bounded between 0 and 1.
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To combine the encoder and decoder into a single tf.LayerModel object that is the
VAE, the code in listing 10.6 extracts the third output (z-vector) of the encoder and
runs it through the decoder. Then the combined model exposes the decoded image
as its output, along with three additional outputs: the zMean, zLogVar, and z-vectors.
This completes the definition of the VAE model’s topology. In order to train the
model, we need two more things: the loss function and an optimizer. The code in the
following listing was excerpted from fashion-mnist-vae/model.js.

function vae(encoder, decoder) {
  const inputs = encoder.inputs;
  const encoderOutputs = encoder.apply(inputs);
  const encoded = encoderOutputs[2];
  const decoderOutput = decoder.apply(encoded);
  const v = tf.model({
    inputs: inputs,
    outputs: [decoderOutput, ...encoderOutputs],
    name: 'vae_mlp',
  })
  return v;
}

When we were visiting the simple-object-detection model in chapter 5, we described
the way in which custom loss functions can be defined in TensorFlow.js. Here, a cus-
tom loss function is needed to train the VAE. This is because the loss function will be
the sum of two terms: one that quantifies the discrepancy between the input and out-
put and one that quantifies the statistical properties of the latent space. This is remi-
niscent of the simple-object-detection model’s custom loss function, which was a sum
of a term for object classification and another for object localization.

As you can see from the code in listing 10.7 (excerpted from fashion-mnist-vae/
model.js), defining the input-output discrepancy term is straightforward. We simply
calculate the MSE between the original input and the decoder’s output. However, the
statistical term, called the Kullbach-Liebler (KL) divergence, is more mathematically
involved. We will spare you the detailed math,15 but on an intuitive level, the KL diver-
gence term (klLoss in the code) encourages the distributions for different input
images to be more evenly distributed around the center of the latent space, which
makes it easier for the decoder to interpolate between the images. Therefore, the
klLoss term can be thought of as a regularization term added on top of the main
input-output discrepancy term of the VAE.

Listing 10.6 Putting the encoder and decoder together into the VAE

15 This blog post by Irhum Shafkat includes a deeper discussion of the math behind the KL divergence:
http://mng.bz/vlvr.

The input to the VAE is the same 
as the input to the encoder: the 
original input image.

Of all three outputs of the 
encoder, only the last one (z) 
goes into the decoder.

We use the functional model API due to the 
model’s nonlinear topology.

The output of the VAE model
object includes the decoded
image in addition to zMean,

zLogVar, and z.
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function vaeLoss(inputs, outputs) {
  const originalDim = inputs.shape[1];
  const decoderOutput = outputs[0];
  const zMean = outputs[1];
  const zLogVar = outputs[2];

  const reconstructionLoss =
      tf.losses.meanSquaredError(inputs, decoderOutput).mul(originalDim);

  let klLoss = zLogVar.add(1).sub(zMean.square()).sub(zLogVar.exp());
  klLoss = klLoss.sum(-1).mul(-0.5);
  return reconstructionLoss.add(klLoss).mean();
}

Another missing piece for our VAE training is the optimizer and the training step that
uses it. The type of optimizer is the popular ADAM optimizer (tf.train .adam()).
The training step for the VAE differs from all other models we’ve seen in this book in
that it doesn’t use the fit() or fitDataset() method of the model object. Instead, it
calls the minimize() method of the optimizer (listing 10.8). This is because the KL-
divergence term of the custom loss function uses two of the model’s four outputs, but
in TensorFlow.js, the fit() and fitDataset() methods work only if each of the
model’s outputs has a loss function that doesn’t depend on any other output. 

As listing 10.8 shows, the minimize() function is called with an arrow function as
the only argument. This arrow function returns the loss under the current batch of
flattened images (reshaped in the code), which is closed over by the function.
minimize() calculates the gradient of the loss with respect to all the trainable weights
of the VAE (including the encoder and decoder), adjusts them according to the
ADAM algorithm, and then applies updates to the weights in directions opposite to
the adjusted gradients. This completes a single step of training. This step is performed
repeatedly, over all images in the Fashion-MNIST dataset, and constitutes an epoch of
training. The yarn train command performs multiple epochs of training (default: 5
epochs), after which the loss value converges, and the decoder part of the VAE is
saved to disk. The reason the encoder part isn’t saved is that it won’t be used in the fol-
lowing, browser-based demo step.

  for (let i = 0; i < epochs; i++) {
    console.log(`\nEpoch #${i} of ${epochs}\n`)
    for (let j = 0; j < batches.length; j++) {
      const currentBatchSize = batches[j].length
      const batchedImages = batchImages(batches[j]);

Listing 10.7 The loss function for the VAE

Listing 10.8 The training loop of the VAE (excerpt from fashion-mnist-vae/train.js)

Computes a “reconstruction loss” term.
The goal of minimizing this term is to make

the model outputs match the input data.

Computes the KL-divergence between zLogVar and 
zMean. Minimizing this term aims to make the 
distribution of the latent variable more normally 
distributed around the center of the latent space.

Sums the image 
reconstruction loss and 
the KL-divergence loss 
into the final VAE loss

Gets a batch of (flattened) 
Fashion-MNIST images
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      const reshaped =
          batchedImages.reshape([currentBatchSize, vaeOpts.originalDim]);

      optimizer.minimize(() => {
        const outputs = vaeModel.apply(reshaped);
        const loss = vaeLoss(reshaped, outputs, vaeOpts);
        process.stdout.write('.');
        if (j % 50 === 0) {
          console.log('\nLoss:', loss.dataSync()[0]);
        }
        return loss;
      });
      tf.dispose([batchedImages, reshaped]);
    }
    console.log('');
    await generate(decoderModel, vaeOpts.latentDim);
  }

The web page brought up by the yarn watch command will load the saved decoder and
use it to generate a grid of images similar to what’s shown in figure 10.8. These images
are obtained from a regular grid of latent vectors in the 2D latent space. The upper and
lower limit along each of the two latent dimensions can be adjusted in the UI.

The grid of images shows a completely continuous distribution of different types of
clothing from the Fashion-MNIST dataset, with one clothing type morphing gradually
into another type as you follow a continuous path through the latent space (for exam-
ple, pullover to T-shirt, T-shirt to pants, boots to shoes). Specific directions in the latent
space have a meaning inside a subdomain of the latent space. For example, near
the top section of the latent space, the horizontal dimension appears to represent

A single step of VAE 
training: makes a 
prediction with the VAE 
and computes the loss so 
that optimizer.minimize 
can adjust all the 
trainable weights of the 
model

Since we are not using the stock fit() method, we 
cannot use the built-in progress bar and hence 
must print status updates to the console ourselves.

At the end of every training epoch,
generates an image using the decoder

and prints it to the console for preview

Figure 10.8 Sampling the latent space of the 
VAE after training. This figure shows a 20 × 20 
grid of decoder outputs. This grid corresponds 
to a regularly spaced grid of 20 × 20 2D latent 
vectors, of which each dimension is in the 
interval of [–4, 4].
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“bootness versus shoeness;” around the bottom-right corner of the latent space, the
horizontal dimension seems to represent “T-shirtness versus pantsness,” and so forth.

In the next section, we will cover another major type of model for generating
images: GANs.

10.3 Image generation with GANs
Since Ian Goodfellow and his colleagues introduced GANs in 2014,16 the technique
has seen rapid growth in interest and sophistication. Today, GANs have become a pow-
erful tool for generating images and other modalities of data. They are capable of out-
putting high-resolution images that in some cases are indistinguishable from real ones
to human eyes. See the human face images generated by NVIDIA’s StyleGANs in fig-
ure 10.9.17 If not for the occasional artifact spots on the face and the unnatural-
looking scenes in the background, it would be virtually impossible for a human viewer
to tell these generated images apart from real ones. 

Apart from generating compelling images “out of the blue,” the images generated by
GANs can be conditioned on certain input data or parameters, which leads to a variety
of more task-specific and useful applications. For example, GANs can be used to gen-
erate a higher-resolution image from a low-resolution input (image super-resolution),
fill in missing parts of an image (image inpainting), convert a black-and-white image
into a color one (image colorization), generate an image given a text description, and
generate the image of a person in a given pose given an input image of the same per-
son in another pose. In addition, new types of GANs have been developed to generate
nonimage outputs, such as music.18 Apart from the obvious value of generating an
unlimited amount of realistic-looking material, which is desired in domains such as

16 Ian Goodfellow et al., “Generative Adversarial Nets,” NIPS Proceedings, 2014, http://mng.bz/4ePv.
17 Website at https://thispersondoesnotexist.com. For the academic paper, see Tero Karras, Samuli Laine, and

Timo Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks,” submitted 12 Dec.
2018, https://arxiv.org/abs/1812.04948.

18 See the MuseGAN project from Hao-Wen Dong et al.: https://salu133445.github.io/musegan/.

Figure 10.9 Example human-face images generated by NVIDIA’s StyleGAN, sampled from 
https://thispersondoesnotexist.com in April 2019
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art, music production, and game design, GANs have other applications, such as assist-
ing deep learning by generating training examples in cases where such examples are
costly to acquire. For instance, GANs are being used to generate realistic-looking
street scenes for training self-driving neural networks.19

Although VAEs and GANs are both generative models, they are based on different
ideas. While VAEs ensure the quality of generated examples by using an MSE loss
between the original input and the decoder output, a GAN makes sure its outputs are
realistic by employing a discriminator, as we’ll soon explain. In addition, many variants
of GANs allow inputs to consist of not only the latent-space vector but also condition-
ing inputs, such as a desired image class. The ACGAN we’ll explore next is a good
example of this. In this type of GAN with mixed inputs, latent spaces are no longer
even continuous with respect to the network inputs.

In this section, we will dive into a relatively simple type of GAN. Specifically, we will
train an auxiliary classifier GAN (ACGAN)20 on the familiar MNIST hand-written digit
dataset. This will give us a model capable of generating digit images that look just like
the real MNIST digits. At the same time, we will be able to control what digit class (0
through 9) each generated image belongs to, thanks to the “auxiliary classifier” part
of ACGAN. In order to understand how ACGAN works, let’s do it one step at a time.
First, we will explain how the base “GAN” part of ACGAN works. Then, we will
describe the additional mechanisms by which ACGAN makes the class identity
controllable.

10.3.1 The basic idea behind GANs

How does a GAN learn to generate realistic-looking images? It achieves this
through an interplay between two subparts that it comprises: a generator and a dis-
criminator. Think of the generator as a counterfeiter whose goal is to create high-
quality fake Picasso paintings; the discriminator is like an art dealer whose job is to
tell fake Picasso paintings apart from real ones. The counterfeiter (generator)
strives to create better and better fake paintings in order to fool the art dealer (the
discriminator), while the art dealer’s job is to become a better and better critiquer
of the paintings so as not to be fooled by the counterfeiter. This antagonism
between our two players is the reason behind the “adversarial” part of the name
“GAN.” Intriguingly, the counterfeiter and art dealer end up helping each other
become better, despite apparently being adversaries.

In the beginning, the counterfeiter (generator) is bad at creating realistic-looking
Picassos because its weights are initialized randomly. As a result, the art dealer (dis-
criminator) quickly learns to tell real and fake Picassos apart. Here is an important
part of how all of this works: every time the counterfeiter brings a new painting to the

19 James Vincent, “Nvidia Uses AI to Make it Snow on Streets that Are Always Sunny,” The Verge, 5 Dec. 2017,
http://mng.bz/Q0oQ.

20 Augustus Odena, Christopher Olah, and Jonathon Shlens, “Conditional Image Synthesis with Auxiliary Clas-
sifier GANs,” submitted 30 Oct. 2016, https://arxiv.org/abs/1610.09585.
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art dealer, they are provided with detailed feedback (from the art dealer) about which
parts of the painting look wrong and how to change the painting to make it look more
real. The counterfeiter learns and remembers this so that next time they come to the
art dealer, their painting will look slightly better. This process repeats many times. It
turns out, if all the parameters are set properly, we will end up with a skillful counter-
feiter (generator). Of course, we will also get a skillful discriminator (art dealer), but
we usually need only the generator after the GAN is trained.

Figure 10.10 provides a more detailed look at how the discriminator part of a
generic GAN model is trained. In order to train the discriminator, we need a batch of
generated images and a batch of real ones. The generated ones are generated by the
generator. But the generator can’t make images out of thin air. Instead, it needs to be
given a random vector as the input. The latent vectors are conceptually similar to the
ones we used for VAEs in section 10.2. For each image generated by the generator, the
latent vector is a 1D tensor of shape [latentSize]. But like most training procedures
in this book, we perform the step for a batch of images at a time. Therefore, the latent
vector has a shape of [batchSize, latentSize]. The real images are directly drawn
from the actual MNIST dataset. For symmetry, we draw batchSize real images
(exactly the same number as the generated ones) for each step of training.

The generated images and real ones are then concatenated into a single batch of
images, represented as a tensor of shape [2 * batchSize, 28, 28, 1]. The discrim-
inator is executed on this batch of combined images, which outputs predicted proba-
bility scores for whether each image is real. These probability scores can be easily
tested against the ground truth (we know which ones are real and which ones are gen-
erated!) through the binary cross-entropy loss function. Then, the familiar backprop-
agation algorithm does its job, updating the weight parameters of the discriminator

Generator

0
0
...
0
1
1
...
1

Realness labels:
[2 * batchSize, 28, 28, 1]

Discriminator Predictions

[batchSize, latentSize]

[batchSize, 28, 28, 1]

[batchSize, 28, 28, 1]

[2 * batchSize, 28, 28, 1]

[2 * batchSize, 1]

Training the discriminator

Fake
images
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Figure 10.10 A schematic diagram illustrating the algorithm by which the discriminator part of a GAN is trained. 
Notice that this diagram omits the digit-class part of the ACGAN for the sake of simplicity. For a complete diagram 
of generator training in ACGAN, see figure 10.13.
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with the help of an optimizer (not shown in the figure). This step nudges the discrim-
inator a bit toward making correct predictions. Notice that the generator merely
participates in this training step by providing generated samples, but it’s not updated
by the backpropagation process. It is the next training step that updates the generator
(figure 10.11).

Figure 10.11 illustrates the generator-training step. We let the generator make
another batch of generated images. But unlike the discriminator-training step, we
don’t need any real MNIST images. The discriminator is given this batch of generated
images along with a batch of binary realness labels. We pretend that the generated
images are real by setting the realness labels to all 1s. Pause for a moment and let that
sink in: this is the most important trick in GAN training. Of course the images are all
generated (not real), but we let the realness label say they are real anyway. The dis-
criminator may (correctly) assign low realness probabilities to some or all of the input
images. But if it does so, the binary cross-entropy loss will end up with a large value,
thanks to the bogus realness labels. This will cause the backpropagation to update the
generator in a way that nudges the discriminator’s realness scores a little higher. Note
that the backpropagation updates only the generator. It leaves the discriminator
untouched. This is another important trick: it ensures that the generator ends up
making slightly more realistic-looking images, instead of the discriminator lowering its
bar for what’s real. This is achieved by freezing the discriminator part of the model, an
operation we’ve used for transfer learning in chapter 5.

To summarize the generator-training step: we freeze the discriminator and feed an
all-1 realness label to it, despite the fact that it is given generated images generated by
the generator. As a result, the weight updates to the generator will cause it to generate

Generator Predictions

[batchSize, 1]

1
1
1
1

Training the generator

[batchSize, latentSize]
[batchSize, 28, 28, 1]

[batchSize, 1]

Latent
vectors

Fake
images

Discriminator
(frozen)

Updates through
backpropagation

Binary cross-
entropy loss

Realness labels
(“pretend” images are real!)

Figure 10.11 A schematic diagram illustrating the algorithm by which the generator part of a GAN is trained. 
Notice that this diagram omits the digit-class part of the ACGAN for the sake of simplicity. For a complete 
diagram of ACGAN’s generator-training process, see figure 10.14.
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images that look slightly more real to the discriminator. This way of training the gen-
erator will work only if the discriminator is reasonably good at telling what’s real and
what’s generated. How do we ensure that? The answer is the discriminator-training
step we already talked about. Therefore, you can see that the two training steps form
an intricate yin-and-yang dynamic, in which the two parts of the GAN counter and
help each other at the same time.

That concludes our high-level overview of generic GAN training. In the next sec-
tion, we will look at the internal architecture of the discriminator and generator and
how they incorporate the information about image class.

10.3.2 The building blocks of ACGAN

Listing 10.9 shows the TensorFlow.js code that creates the discriminator part of the
MNIST ACGAN (excerpted from mnist-acgan/gan.js). At the core of the discriminator
is a deep convnet similar to the ones we saw in chapter 4. Its input has the canonical
shape of MNIST images, namely [28, 28, 1]. The input image passes through four
2D convolutional (conv2d) layers before being flattened and processed by two dense
layers. One dense layer outputs a binary prediction for the realness of the input image,
while the other outputs the softmax probabilities for the 10 digit classes. The discrimi-
nator is a functional model that has both dense layers’ outputs. Panel A of figure 10.12
provides a schematic view of the discriminator’s one-input-two-output topology.

function buildDiscriminator() {
  const cnn = tf.sequential();

  cnn.add(tf.layers.conv2d({
    filters: 32,
    kernelSize: 3,
    padding: 'same',
    strides: 2,
    inputShape: [IMAGE_SIZE, IMAGE_SIZE, 1]
  }));
  cnn.add(tf.layers.leakyReLU({alpha: 0.2}));
  cnn.add(tf.layers.dropout({rate: 0.3}));

  cnn.add(tf.layers.conv2d(
      {filters: 64, kernelSize: 3, padding: 'same', strides: 1}));
  cnn.add(tf.layers.leakyReLU({alpha: 0.2}));
  cnn.add(tf.layers.dropout({rate: 0.3}));

  cnn.add(tf.layers.conv2d(
      {filters: 128, kernelSize: 3, padding: 'same', strides: 2}));
  cnn.add(tf.layers.leakyReLU({alpha: 0.2}));
  cnn.add(tf.layers.dropout({rate: 0.3}));

  cnn.add(tf.layers.conv2d(
      {filters: 256, kernelSize: 3, padding: 'same', strides: 1}));
  cnn.add(tf.layers.leakyReLU({alpha: 0.2}));

Listing 10.9 Creating the discriminator part of ACGAN

The discriminator takes only one 
input: images in the MNIST format.

Dropout layers are used to 
counteract overfitting.
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  cnn.add(tf.layers.dropout({rate: 0.3}));

  cnn.add(tf.layers.flatten());

  const image = tf.input({shape: [IMAGE_SIZE, IMAGE_SIZE, 1]});
  const features = cnn.apply(image);

  const realnessScore =
      tf.layers.dense({units: 1, activation: 'sigmoid'}).apply(features);
  const aux = tf.layers.dense({units: NUM_CLASSES, activation: 'softmax'})
                  .apply(features);

  return tf.model({inputs: image, outputs: [realnessScore, aux]});
}

The code in listing 10.10 is responsible for creating the ACGAN generator. As we’ve
alluded to before, the generator’s generation process requires an input called a latent
vector (named latent in the code). This is reflected in the inputShape parameter of
its first dense layer. However, if you examine the code more carefully, you can see that
the generator actually takes two inputs. This is illustrated in panel B of figure 10.12. In
addition to the latent vector, which is a 1D tensor of shape [latentSize], the genera-
tor requires an additional input, which is named imageClass and has a simple shape
of [1]. This is the way in which we tell the model which MNIST digit class (0 to 9) it is
commanded to generate. For example, if we want the model to generate an image for
digit 8, we should feed a tensor value of tf.tensor2d([[8]]) to the second input
(remember that the model always expects batched tensors, even if there is only one
example). Likewise, if we want the model to generate two images, one for the digit 8
and one for 9, then the fed tensor should be tensor2d([[8], [9]]).

The first of the discriminator’s two
outputs: the probability score from

the binary realness classification

The second output is the
softmax probabilities for the

10 MNIST digit classes.

Input 
image

conv2d conv2d conv2d conv2d

Realness

conv2dTranspose Realness

Latent

embedding

multiply conv2dTranspose conv2dTransposereshape

A. Discriminator’s internal topology

B. Generator’s internal topology

Dense
sigmoid

Dense
softmax

Digit
class

Digit
class

Figure 10.12 Schematic diagrams of the internal topology of the discriminator (panel A) and generator (panel 
B) parts of ACGAN. Certain details (the dropout layers in the discriminator) are omitted for simplicity. See 
listings 10.9 and 10.10 for the detailed code.
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As soon as the imageClass input enters the generator, an embedding layer trans-
forms it into a tensor of the same shape as latent ([latentSize]). This step is mathe-
matically similar to the embedding-lookup procedure we used in the sentiment-analysis
and date-conversion models in chapter 9. The desired digit class is an integer quantity
analogous to the word indices in the sentiment-analysis data and the character indices
in the date-conversion data. It is transformed into a 1D vector in the same way that
word and character indices were transformed into 1D vectors. However, we use embed-
ding lookup on imageClass here for a different purpose: to merge it with the latent
vector and form a single, combined vector (named h in listing 10.10.) This merging is
done through a multiply layer, which performs element-by-element multiplication
between the two vectors of identical shapes. The resultant tensor has the same shape as
the inputs ([latentSize]) and goes into later parts of the generator.

The generator immediately applies a dense layer on the combined latent vector (h)
and reshapes it into a 3D shape of [3, 3, 384]. This reshaping yields an image-like
tensor, which can then be transformed by the following parts of the generator into an
image that has the canonical MNIST shape ([28, 28, 1]).

Instead of using the familiar conv2d layers to transform the input, the generator
uses the conv2dTranspose layer to transform its image tensors. Roughly speaking,
conv2dTranspose performs the inverse operation to conv2d (sometimes referred to as
deconvolution). The output of a conv2d layer generally has smaller height and width
compared to its input (except for the rare cases in which the kernelSize is 1), as you
can see in the convnets in chapter 4. However, a conv2dTranspose layer generally has
a larger height and weight in its output than its input. In other words, while a conv2d
layer typically shrinks the dimensions of its input, a typical conv2dTranspose layer
expands them. This is why, in the generator, the first conv2dTranspose layer takes an
input with height 3 and width 3, but the last conv2dTranspose layer outputs height 28
and width 28. This is how the generator turns an input latent vector and a digit index
into an image in the standard MNIST image dimensions. The code in the following
listing is excerpted from mnist-acgan/gan.js; some error-checking code is removed for
clarity.

function buildGenerator(latentSize) {
  const cnn = tf.sequential();

  cnn.add(tf.layers.dense({
    units: 3 * 3 * 384,
    inputShape: [latentSize],
    activation: 'relu'
  }));
  cnn.add(tf.layers.reshape({targetShape: [3, 3, 384]}));

  cnn.add(tf.layers.conv2dTranspose({
    filters: 192,
    kernelSize: 5,

Listing 10.10 Creating the generator part of ACGAN

The number of units is chosen so that when the 
output is reshaped and fed through the 
subsequent conv2dTranspose layers, the tensor 
that comes out at the end has the exact shape 
that matches MNIST images ([28, 28, 1]).

Upsamples from [3, 3, ...] 
to [7, 7, ...]
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    strides: 1,
    padding: 'valid',
    activation: 'relu',
    kernelInitializer: 'glorotNormal'
  }));
  cnn.add(tf.layers.batchNormalization());

  cnn.add(tf.layers.conv2dTranspose({
    filters: 96,
    kernelSize: 5,
    strides: 2,
    padding: 'same',
    activation: 'relu',
    kernelInitializer: 'glorotNormal'
  }));
  cnn.add(tf.layers.batchNormalization());

  cnn.add(tf.layers.conv2dTranspose({
    filters: 1,
    kernelSize: 5,
    strides: 2,
    padding: 'same',
    activation: 'tanh',
    kernelInitializer: 'glorotNormal'
  }));

  const latent = tf.input({shape: [latentSize]});

  const imageClass = tf.input({shape: [1]});

  const classEmbedding = tf.layers.embedding({
    inputDim: NUM_CLASSES,
    outputDim: latentSize,
    embeddingsInitializer: 'glorotNormal'
  }).apply(imageClass);

  const h = tf.layers.multiply().apply(

      [latent, classEmbedding]);

  const fakeImage = cnn.apply(h);
  return tf.model({
   inputs: [latent, imageClass],
   outputs: fakeImage
  });
}

10.3.3 Diving deeper into the training of ACGAN

The last section should have given you a better understanding of the internal struc-
ture of ACGAN’s discriminator and generator and how they incorporate the digit-class
information (the “AC” part of ACGAN’s name). With this knowledge, we are ready to
expand on figures 10.10 and 10.11 in order to form a thorough understanding of how
ACGAN is trained. 

Upsamples to [14, 14, ...]

Upsamples to [28, 28, ...]

This is the first of the two 
inputs of the generator: the 
latent (z-space) vector that 
is used as the “seed” of the 
fake-image generation.

The second input of the 
generator: class labels that 
control which of the 10 MNIST 
digit classes the generated 
images should belong to

Converts the desired 
label to a vector of length 
latentSize through 
embedding lookup

Combines the latent vector and 
the class conditional embedding 
through multiplication

The model is finally created, with 
the sequential convnet as its core.
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Figure 10.13 is an expanded version of figure 10.10. It shows the training of
ACGAN’s discriminator part. Compared to before, this training step not only
improves the discriminator’s ability to tell real and generated (fake) images apart but
also hones its ability to determine which digit class a given image (including real and
generated) belongs to. To make it easier to compare with the simpler diagram from
before, we grayed out the parts already seen in figure 10.10 and highlighted the new
parts. First, note that the generator now has an additional input (Digit Class), which
makes it possible to specify what digits the generator should generate. In addition, the
discriminator outputs not only a realness prediction but also a digit-class prediction.
As a result, both output heads of the discriminator need to be trained. The training of
the realness-predicting part remains the same as before (figure 10.10); the training of
the class-predicting part relies on the fact that we know what digit classes the gener-
ated and real images belong to. The two heads of the model are compiled with differ-
ent loss functions, reflecting the different nature of the two predictions. For the
realness prediction, we use the binary cross-entropy loss, but for the digit-class predic-
tion, we use the sparse categorical cross-entropy loss. You can see this in the following
line from mnist-acgan/gan.js:

  discriminator.compile({
    optimizer: tf.train.adam(args.learningRate, args.adamBeta1),
    loss: ['binaryCrossentropy', 'sparseCategoricalCrossentropy']
  });

As the two curved arrows in figure 10.13 show, the gradients backpropagated from
both losses are added on top of each other when updating the discriminator’s weights. 
Figure 10.14 is an expanded version of figure 10.11 and provides a detailed schematic
view of how ACGAN’s generator portion is trained. This diagram shows how the gen-
erator learns to generate correct images given a specified digit class, in addition to
learning how to generate real-looking images. Similar to figure 10.13, the new parts
are highlighted, while the parts that already exist in figure 10.11 are grayed out. From
the highlighted parts, you can see that the labels we feed into the training step now
include not only the realness labels but also the digit-class labels. As before, the real-
ness labels are all intentionally bogus. But the newly added digit-class labels are more
honest, in the sense that we indeed gave these class labels to the generator. 

Previously, we’ve seen that any discrepancies between the bogus realness labels and
the discriminator’s realness probability output are used to update the generator of
ACGAN in a way that makes it better at “fooling” the discriminator. Here, the digit-class
prediction from the discriminator plays a similar role. For instance, if we tell the gener-
ator to generate an image for the digit 8, but the discriminator classifies the image as 9,
the value of the sparse categorical cross entropy will be high, and the gradients associ-
ated with it will have large magnitudes. As a result, the updates to the generator’s
weights will cause the generator to generate an image that looks more like an 8
(according to the discriminator.) Obviously, this way of training the generator will work
only if the discriminator is sufficiently good at classifying images into the 10 MNIST
 



365Image generation with GANs
Generator

0
0
...
0
1
1
...
1

Discriminator

0
1
3
6
7
4
...
5

Digit class

[2 * batchSize, 1]

[batchSize, 1]
[2 * batchSize, 10]

Training the discriminator
(with digit-class information)

Latent
vectors

Real
images

Fake
images

Combined
images

Realness
predictions

Binary
cross-entropy loss

Multiclass
cross-entropy loss

Class
predictions

Updates through
backpropagation

Updates through
backpropagation

Realness
labels

Combined class labels

Figure 10.13 A schematic diagram illustrating the algorithm by which the discriminator part of ACGAN is trained. 
This diagram adds to the one in figure 10.10 by showing the parts that have to do with the digit class. The 
remaining parts of the diagram, which have already appeared in figure 10.10, are grayed out.
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digit classes. This is what the previous discriminator training step helps to ensure.
Again, we are seeing the yin-and-yang dynamics between the discriminator and genera-
tor portions at play during the training of ACGAN. 

GAN TRAINING: A BAG OF TRICKS

The process of training and tuning GANs is notoriously difficult. The training scripts
you see in the mnist-acgan example are the crystallization of a tremendous amount of
trial-and-error by researchers. Like most things in deep learning, it’s more like an art
than an exact science: these tricks are heuristics, not backed by systematic theories. They
are supported by a level of intuitive understanding of the phenomenon at hand, and
they are known to work well empirically, although not necessarily in every situation. 

The following is a list of noteworthy tricks used in the ACGAN in this section:

 We use tanh as the activation of the last conv2dTranspose layer in the generator.
The tanh activation is seen less frequently in other types of models.

 Randomness is good for inducing robustness. Because GAN training may result
in a dynamic equilibrium, GANs are prone to getting stuck in all sorts of ways.
Introducing randomness during training helps prevent this. We introduce ran-
domness in two ways: by using dropout in the discriminator and by using a “soft
one” value (0.95) for the realness labels for the discriminator.

 Sparse gradients (gradients in which many values are zero) can hinder GAN
training. In other types of deep learning, sparsity is often a desirable property,
but not so in GANs. Two things can cause sparsity in gradients: the max pooling
operation and relu activations. Instead of max pooling, strided convolutions are
recommended for downsampling, which is exactly what’s shown in the genera-
tor-creating code in listing 10.10. Instead of the usual relu activation, it’s recom-
mended to use the leakyReLU activation, of which the negative part has a small
negative value, instead of strictly zero. This is also shown in listing 10.10.

10.3.4 Seeing the MNIST ACGAN training and generation

The mnist-acgan example can be checked out and prepared with the following
commands:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/mnist-acganyarn

Running the example involves two stages: training in Node.js and generation in the
browser. To start the training process, simply use the following command:

yarn train

The training uses tfjs-node by default. However, like in the examples involving con-
vnets we’ve seen before, using tfjs-node-gpu can significantly improve the training
speed. If you have a CUDA-enabled GPU set up properly on your machine, you can
append the --gpu flag to the yarn train command to achieve that. Training the
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ACGAN takes at least a couple of hours. For this long-running training job, you can
monitor the progress with TensorBoard by using the --logDir flag:

yarn train --logDir /tmp/mnist-acgan-logs

Once the TensorBoard process has been brought up with the following command in a
separate terminal,

tensorboard --logdir /tmp/mnist-acgan-logs

you can navigate to the TensorBoard URL (as printed out by the TensorBoard server
process) in your browser to look at the loss curves. Figure 10.15 shows some example
loss curves from the training process. One distinct feature of loss curves from GAN
training is the fact that they don’t always trend downward like the loss curves of most
other types of neural networks. Instead, the losses from the discriminator (dLoss in
the figure) and the generator (gLoss in the figure) both change in nonmonotonic
ways and form an intricate dance with one another. 

Figure 10.15 Sample loss curves from the ACGAN training job. dLoss is the 
loss from the discriminator training step. Specifically, it is the sum of the 
binary cross entropy from the realness prediction and the sparse categorical 
cross entropy from the digit-class prediction. gLoss is the loss from the 
generator training step. Like dLoss, gLoss is the sum of the losses from the 
binary realness classification and the multiclass digit classification.
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Toward the end of the training, neither loss gets close to zero. Instead, they just level
out (converge). At that point, the training process ends and saves the generator part
of the model to the disk for serving during the in-browser generation step:

await generator.save(saveURL);

To run the in-browser generation demo, use the command yarn watch. It will com-
pile mnist-acgan/index.js and the associated HTML and CSS assets, after which it will
pop open a tab in your browser and show the demo page.21 

The demo page loads the trained ACGAN generator saved from the previous stage.
Since the discriminator is not really useful for this demo stage, it is neither saved nor
loaded. With the generator loaded, we can construct a batch of latent vectors, along
with a batch of desired digit-class indices, and call the generator’s predict() with
them. The code that does this is in mnist-acgan/index.js:

    const latentVectors = getLatentVectors(10);
    const sampledLabels = tf.tensor2d(
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 1]);
    const generatedImages =
        generator.predict([latentVectors, sampledLabels]).add(1).div(2);

Our batch of digit-class labels is always an ordered vector of 10 elements, from 0 to 9.
This is why the batch of generated images is always an orderly array of images from 0
to 9. These images are stitched together with the tf.concat() function and rendered
in a div element on the page (see the top image in figure 10.16). Compared with ran-
domly sampled real MNIST images (see the bottom image in figure 10.16), these
ACGAN-generated images look just like the real ones. In addition, their digit-class
identities look correct. This shows that our ACGAN training was successful. If you
want to see more outputs from the ACGAN generator, click the Generator button on
the page. Each time the button is clicked, a new batch of 10 fake images will be gener-
ated and shown on the page. You can play with that and get an intuitive sense of the
quality of the image generation.

Materials for further reading
 Ian Goodfellow, Yoshua Bengio, and Aaron Courville, “Deep Generative Mod-

els,” Deep Learning, chapter 20, MIT Press, 2017.
 Jakub Langr and Vladimir Bok, GANs in Action: Deep Learning with Generative

Adversarial Networks, Manning Publications, 2019.
 Andrej Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Net-

works,” blog, 21 May 2015, http://karpathy.github.io/2015/05/21/rnn-
effectiveness/.

21 You can also skip the training and building step entirely and directly navigate to the hosted demo page at
http://mng.bz/4eGw.
 

http://mng.bz/4eGw
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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 Jonathan Hui, “GAN—What is Generative Adversary Networks GAN?” Medium,
19 June 2018, http://mng.bz/Q0N6.

 GAN Lab, an interactive, web-based environment for understanding and
exploring how GANs work, built using TensorFlow.js: Minsuk Kahng et al.,
https://poloclub.github.io/ganlab/.

Exercises
1 Apart from the Shakespeare text corpus, the lstm-text-generation example has a

few other text datasets configured and ready for you to explore. Run the train-
ing on them, and observe the effects. For instance, use the unminified Tensor-
Flow.js code as the training dataset. During and after the model’s training,
observe if the generated text exhibits the following patterns of JavaScript source
code and how the temperature parameter affects the patterns:
a Shorter-range patterns such as keywords (for example, “for” and “function”)
b Medium-range patterns such as the line-by-line organization of the code
c Longer-range patterns such as pairing of parentheses and square brackets,

and the fact that each “function” keyword must be followed by a pair of
parentheses and a pair of curly braces

2 In the fashion-mnist-vae example, what happens if you take the KL divergence
term out of the VAE’s custom loss? Test that by modifying the vaeLoss() func-

Fake images (generation took 68.33 ms)

Real images for comparison (10 examples per class)

Figure 10.16 Sample generated images 
(the 10 x 1 top panel) from the generator 
part of a trained ACGAN. The bottom panel, 
which contains a 10 x 10 grid of real MNIST 
images, is shown for comparison. By 
clicking the Show Z-vector Sliders button, 
you can open a section filled with 100 
sliders. These sliders allow you to change 
the elements of the latent vector (the z-
vector) and observe the effects on the 
generated MNIST images. Note that if you 
change the sliders one at a time, most of 
them will have tiny and unnoticeable effects 
on the images. But occasionally, you’ll be 
able to find a slider with a larger and more 
noticeable effect.
 

http://mng.bz/Q0N6
https://poloclub.github.io/ganlab/
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tion in fashion-mnist-vae/model.js (listing 10.7). Do the sampled images from
the latent space still look like the Fashion-MNIST images? Does the space still
exhibit any interpretable patterns?

3 In the mnist-acgan example, try collapsing the 10 digit classes into 5 (0 and 1
will become the first class, 2 and 3 the second class, and so forth), and observe
how that changes the output of the ACGAN after training. What do you expect
to see in the generated images? For instance, what do you expect the ACGAN to
generate when you specify that the first class is desired?

Hint: to make this change, you need to modify the loadLabels() function in
mnist-acgan/data.js. The constant NUM_CLASSES in gan.js needs to be modified
accordingly. In addition, the sampledLabels variable in the generateAnd-
VisualizeImages() function (in index.js) also needs to be revised.

Summary
 Generative models are different from the discriminative ones we’ve studied

throughout earlier chapters of this book in that they are designed to model the
process in which examples of the training dataset are generated, along with
their statistical distributions. Due to this design, they are capable of generating
new examples that conform to the distributions and hence appear similar to
the real training data.

 We introduce one way to model the structure of text datasets: next-character
prediction. LSTMs can be used to perform this task in an iterative fashion to
generate text of arbitrary length. The temperature parameter controls the sto-
chasticity (how random and unpredictable) the generated text is.

 Autoencoders are a type of generative model that consists of an encoder and a
decoder. First, the encoder compresses the input data into a concise representa-
tion called the latent vector, or z-vector. Then, the decoder tries to reconstruct
the input data by using just the latent vector. Through the training process, the
encoder becomes an efficient data summarizer, and the decoder is endowed
with knowledge of the statistical distribution of the examples. A VAE adds some
additional statistical constraints on the latent vectors so that the latent spaces
comprising those vectors display continuously varying and interpretable struc-
tures after the VAE is trained.

 GANs are based on the idea of a simultaneous competition and cooperation
between a discriminator and a generator. The discriminator tries to distinguish
real data examples from the generated ones, while the generator aims at gener-
ating fake examples that “fool” the discriminator. Through joint training, the
generator part will eventually become capable of generating realistic-looking
examples. An ACGAN adds class information to the basic GAN architecture to
make it possible to specify what class of examples to generate.
 



Basics of deep
reinforcement learning
Up to this point in this book, we have focused primarily on a type of machine learn-
ing called supervised learning. In supervised learning, we train a model to give us the
correct answer given an input. Whether it’s assigning a class label to an input image
(chapter 4) or predicting future temperature based on past weather data (chapters
8 and 9), the paradigm is the same: mapping a static input to a static output. The
sequence-generating models we visited in chapters 9 and 10 were slightly more
complicated in that the output is a sequence of items instead of a single item. But
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those problems can still be reduced to one-input-one-output mapping by breaking the
sequences into steps.

In this chapter, we will look at a very different type of machine learning called rein-
forcement learning (RL). In RL, our primary concern is not a static output; instead, we
train a model (or an agent in RL parlance) to take actions in an environment with the
goal of maximizing a metric of success called a reward. For example, RL can be used to
train a robot to navigate the interior of a building and collect trash. In fact, the envi-
ronment doesn’t have to be a physical one; it can be any real or virtual space that an
agent takes actions in. The chess board is the environment in which an agent can be
trained to play chess; the stock market is the environment in which an agent can be
trained to trade stocks. The generality of the RL paradigm makes it applicable to a
wide range of real-world problems (figure 11.1). Also, some of the most spectacular
advances in the deep-learning revolution involve combining the power of deep learn-
ing with RL. These include bots that can beat Atari games with superhuman skill and
algorithms that can beat world champions at the games of Go and chess.1

1 David Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algo-
rithm,” submitted 5 Dec. 2017, https://arxiv.org/abs/1712.01815.

Figure 11.1 Example real-world applications of reinforcement learning. Top left: Solving board 
games such as chess and Go. Top right: algorithmic trading of stocks. Bottom left: automated 
resource management in data centers. Bottom right: control and action planning in robotics. All 
images are free license and downloaded from www.pexels.com.
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The fascinating topic of RL differs from the supervised-learning problems we saw in
the previous chapters in some fundamental ways. Unlike learning input-output map-
pings in supervised learning, RL is about discovering optimal decision-making pro-
cesses by interacting with an environment. In RL, we are not given labeled training
datasets; instead, we are given different types of environments to explore. In addition,
time is an indispensable and foundational dimension in RL problems, unlike in many
supervised-learning problems, which either lack a time dimension or treat time more
or less like a spatial dimension. As a result of RL’s unique characteristics, this chapter
will involve a vocabulary and way of thinking very different from the previous chap-
ters. But don’t worry. We will use simple and concrete examples to illustrate the basic
concepts and approaches. In addition, our old friends, deep neural networks and
their implementations in TensorFlow.js, will still be with us. They will form an import-
ant pillar (albeit not the only one!) of the RL algorithms that we’ll encounter in this
chapter.

By the end of the chapter, you should be familiar with the basic formulation of RL
problems, understand the basic ideas underlying two commonly used types of neural
networks in RL (policy networks and Q-networks), and know how to train such net-
works using the API of TensorFlow.js.

11.1 The formulation of reinforcement-learning problems
Figure 11.2 lays out the major components of an RL problem. The agent is what we
(the RL practitioners) have direct control over. The agent (such as a robot collecting
trash in a building) interacts with the environment in three ways: 

 At each step, the agent takes an action, which changes the state of the environ-
ment. In the context of our trash-collecting robot, for instance, the set of
actions to choose from may be {go forward, go backward, turn left, turn
right, grab trash, dump trash into container}.

 Once in a while, the environment provides the agent with a reward, which can
be understood in anthropomorphic terms as a measurement of instantaneous
pleasure or fulfillment. But in more abstract terms, a reward (or rather, a sum
of rewards over time, as we’ll see later) is a number that the agent tries to maxi-
mize. It is an important numeric value that guides RL algorithms in a way simi-
lar to how loss values guide supervised-learning algorithms. A reward can be
positive or negative. In the example of our trash-collecting robot, a positive
reward can be given when a bag of trash is dumped successfully into the robot’s
trash container. In addition, a negative reward should be given when the robot
knocks over a trash can, bumps into people or furniture, or dumps trash out-
side its container.

 Apart from the reward, the agent can observe the state of the environment
through another channel, namely, observation. This can be the full state of the
environment or only the part of it visible to the agent, possibly distorted
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through a certain imperfect channel. For our trash-collecting robot, observa-
tions are the streams of images and signals from cameras and various types of
sensors on its body.

The formulation just defined is somewhat abstract. Let’s look at some concrete RL
problems and get a sense of the range of possibilities the formulation encompasses. In
this process, we will also glance at the taxonomy of all the RL problems out there. First
let’s consider actions. The space from which the agent can choose its actions can be
discrete or continuous. For example, RL agents that play board games usually have
discrete action spaces because in such problems, there are only a finite set of moves to
choose from. However, an RL problem that involves controlling a virtual humanoid
robot to walk bipedally2 involves a continuous action space because torques on the
joints are continuous-varying quantities. The example problems we’ll cover in this
chapter will be about discrete action spaces. Note that in some RL problems, continu-
ous action spaces can be turned into discrete ones through discretization. For exam-
ple, DeepMind’s StarCraft II game agent divides the high-resolution 2D screen into
coarser rectangles to determine where to move units or launch attacks.3

Rewards, which play a centric role in RL problems, also show variations. First, some
RL problems involve only positive rewards. For example, as we’ll see shortly, an RL
agent whose goal is to balance a pole on a moving cart gets only positive rewards. It
gets a small positive reward for every time step it keeps the pole standing. However,
many RL problems involve a mix of positive and negative rewards. Negative rewards

2 See the Humanoid environment in OpenAI Gym: https://gym.openai.com/envs/Humanoid-v2/.
3 Oriol Vinyals et al., “StarCraft II: A New Challenge for Reinforcement Learning,” submitted 16 Aug. 2017,

https://arxiv.org/abs/1708.04782.

Figure 11.2 A schematic diagram of the basic formulation of RL problems. At 
each time step, an agent selects an action from the set of possible actions, which 
causes a change in the state of the environment. The environment provides the 
agent with a reward according to its current state and the action selected. The 
state of the environment is fully or partially observed by the agent, which will use 
that state to make decisions about future actions.

Agent

Environment

Reward

Action
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can be thought of as “penalties” or “punishment.” For instance, an agent that learns to
shoot a basketball at the hoop should receive positive rewards for goals and negative
ones for misses.

Rewards can also vary in the frequency of occurrence. Some RL problems involve a
continuous flow of rewards. Take the aforementioned cart-pole problem, for example:
as long as the pole is still standing, the agent receives a (positive) reward at each and
every time step. On the other hand, consider a chess-playing RL agent—the reward
comes only at the end, when the outcome of the game (win, lose, or draw) is deter-
mined. There are also RL problems between these two extremes. For instance, our
trash-collecting robot may receive no reward at all in the steps between two successful
trash dumps—that is, when it’s just moving from place A to place B. Also, an RL agent
trained to play the Atari game Pong doesn’t receive a reward at every step (frame) of
the video game; instead, it is rewarded positively once every few steps, when the bat it
controls hits the ball and bounces back toward the opponent. The example problems
we’ll visit in this chapter contain a mix of RL problems with high and low reward fre-
quencies of occurrence.

Observation is another important factor in RL problems. It is a window through
which the agent can glance at the state of the environment and form a basis on which
to make decisions apart from any reward. Like actions, observations can be discrete
(such as in a board or card game) or continuous (as in a physical environment). One
question you might want to ask is why our RL formulation separates observation and
reward into two entities, even though they can both be viewed as feedback provided by
the environment to the agent. The answer is conceptual clarity and simplicity.
Although the reward can be regarded as an observation, it is what the agent ultimately
“cares” about. Observation may contain both relevant and irrelevant information,
which the agent needs to learn to filter and make smart use of.

Some RL problems reveal the entire state of the environment to the agent through
observation, while others make available only parts of their states. Examples of the
first kind include board games such as chess and Go. For the latter kind, good exam-
ples are card games like poker, in which you cannot see your opponent’s hand, as well
as stock trading. Stock prices are determined by many factors, such as the internal
operations of the companies and the mindset of other stock traders on the market.
But very few of these states are directly observable by the agent. As a result, the agent’s
observations are limited to the moment-by-moment history of stock prices, perhaps in
addition to publicly available information such as financial news. 

This discussion sets up the playground in which RL happens. An interesting thing
worth pointing out about this formulation is that the flow of information between the
agent and the environment is bidirectional: the agent acts on the environment; the
environment, in turn, provides the agent with rewards and state information. This dis-
tinguishes RL from supervised learning, in which the flow of information is largely
unidirectional: the input contains enough information for an algorithm to predict the
output, but the output doesn’t act on the input in any significant way. 
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Another interesting and unique fact about RL problems is that they must happen
along the time dimension in order for the agent-environment interaction to consist of
multiple rounds or steps. Time can be either discrete or continuous. For instance, RL
agents that solve board games usually operate on a discrete time axis because such
games are played out in discrete turns. The same applies to video games. However, an
RL agent that controls a physical robotic arm to manipulate objects is faced with a
continuous time axis, even though it may still choose to take actions at discrete points
in time. In this chapter, we will focus on discrete-time RL problems.

This theoretical discussion of RL should be enough for now. In the next section, we
will start exploring some actual RL problems and algorithms hands-on.

11.2 Policy networks and policy gradients: The cart-pole example
The first RL problem we’ll solve is a simulation of a physical system in which a cart car-
rying a pole moves on a one-dimensional track. Aptly named the cart-pole problem, it
was first proposed by Andrew Barto, Richard Sutton, and Charles Anderson in 1983.4

Since then, it has become a benchmark problem for control-systems engineering
(somewhat analogous to the MNIST digit-recognition problem for supervised learn-
ing), owing to its simplicity and well-formulated physics and math, as well as to the fact
that it is not entirely trivial to solve. In this problem, the agent’s goal is to control the
movement of a cart by exerting leftward or rightward forces in order to keep a pole
standing in balance for as long as possible.

11.2.1 Cart-pole as a reinforcement-learning problem

Before going further, you should play with the cart-pole example to get an intuitive
understanding of the problem. The cart-pole problem is simple and lightweight
enough that we perform the simulation and training entirely in the browser. Figure
11.3 offers a visual depiction of the cart-pole problem, which you can find in the page
opened by the yarn watch command. To checkout and run the example, use

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/cart-pole
yarn && yarn watch

Click the Create Model button and then the Train button. You should then see an ani-
mation at the bottom of the page showing an untrained agent performing the cart-
pole task. Since the agent’s model has its weights initialize random values (more on
the model later), it will perform quite poorly. All time steps from the beginning of a
game to the end are sometimes referred to collectively as an episode in RL terminology.
We will use the terms game and episode interchangeably here.

4 Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson, “Neuronlike Adaptive Elements that Can
Solve Difficult Learning Control Problems,” IEEE Transactions on Systems, Man, and Cybernetics, Sept./Oct.
1983, pp. 834–846, http://mng.bz/Q0rG.
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As panel A in figure 11.3 shows, the position of the cart along the track at any time
step is captured by a variable called x. Its instantaneous velocity is denoted x '. In addi-
tion, the tilt angle of the pole is captured by another variable called . The angular
velocity of the pole (how fast  changes and in what direction) is denoted '. Together,
the four physical quantities (x, x ', , and ') are completely observed by the agent at
every step and constitute the observation part of this RL problem.

The simulation ends when either of two conditions is met:

 The value of x goes out of a prespecified bound, or, in physical terms, the cart
bumps into one of the walls on the two ends of the track (panel B in figure
11.3).

 The absolute value of  exceeds a certain threshold, or, in physical terms, the
pole tilts too much away from the upright position (panel C in figure 11.3).

The environment also terminates an episode after the 500th simulation step. This pre-
vents the game from lasting too long (which can happen once the agent gets very good
at the game through learning). This upper bound on the number of steps is adjustable
in the UI. Until the game ends, the agent gets a reward of a unit (1) at every step of the
simulation. Therefore, in order to achieve a higher cumulative reward, the agent needs
to find a way to keep the pole standing. But how does the agent control the cart-pole
system? This brings us to the action part of this RL problem.

Figure 11.3 Visual rendering of the cart-pole problem. Panel A: four physical quantities (cart position 
x, cart velocity x', pole tilt angle , and pole angular velocity ') make up the environment state and 
observation. At each time step, the agent may choose a leftward-force action or a rightward-force one, 
which will change the environment state accordingly. Panels B and C: the two conditions that will cause 
a game to end—either the cart goes too much to the left or to the right (B) or the pole tilts too much 
from the upright position (C).
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As the Force arrows in panel A of figure 11.3 show, the agent is limited to two possi-
ble actions at every step: exerting a force to the left or to the right on the cart. The
agent must choose one of the two force directions. The magnitude of the force is
fixed. Once the force is exerted, the simulation will enact a set of mathematical equa-
tions to compute the next state (new values of x, x ', , and ') of the environment. The
details involve familiar Newtonian mechanics. We won’t cover the detailed equations,
as understanding them is not essential here, but they are available in the cart-
pole/cart_pole.js file under the cart-pole directory if you are interested.

Likewise, the code that renders the cart-pole system in an HTML canvas can be
found in cart-pole/ui.js. This code underlines an advantage of writing RL algorithms
in JavaScript (in particular, in TensorFlow.js): the UI and the learning algorithm can
be conveniently written in the same language and be tightly integrated with each
other. This facilitates the visualization and intuitive understanding of the problem and
speeds up the development process. To summarize the cart-pole problem, we can
describe it in the canonical RL formulation (see table 11.1).

11.2.2 Policy network

Now that the cart-pole RL problem is laid out, let’s look at how to solve it. Historically,
control theorists have devised ingenious solutions to this problem. Their solutions are
based on the underlying physics of this system.5 That’s not how we will approach the
problem in this book. In the context of this book, doing that would be somewhat anal-
ogous to writing heuristics to parse edges and corners in MNIST images in order to
classify the digits. Instead, we will ignore the physics of the system and let our agent
learn through repeated trial and error. This jibes with the spirit of the rest of this

Table 11.1 Describing the cart-pole problem in the canonical RL formulation

Abstract RL concept Realization in the cart-pole problem

Environment A cart carrying a pole and moving on a one-dimensional track.

Action (Discrete) Binary choice between a leftward force and a rightward one at 
each step. The magnitude of the force is fixed.

Reward (Frequent and positive-only) For each step of the game episode, the agent 
receives a fixed reward (1). The episode ends as soon as the cart hits a wall 
at one end of the track, or the pole tilts too much from the upright position.

Observation (Complete state, continuous) At each step, the agent can access the full 
state of the cart-pole system, including the cart position (x) and velocity (x'), 
in addition to the pole tilt angle () and angular velocity (').

5 If you are interested in the traditional, non-RL approach to the cart-pole problem and are not scared of the
math, you can read the open courseware of a control-theory course at MIT by Russ Tedrake: http://mng
.bz/j5lp.
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book: instead of hard-coding an algorithm or manually engineering features based on
human knowledge, we design an algorithm that allows the model to learn on its own.

How can we let the agent decide the action (leftward versus rightward force) to
take at each step? Given the observations available to the agent and the decision the
agent has to make at every step, this problem can be reformulated as a simple input-
output mapping problem like the ones in supervised learning. A natural solution is to
build a neural network to select an action based on the observation. This is the basic
idea behind the policy network.

This neural network takes a length-4 observation vector (x, x ', , and ') and out-
puts a number that can be translated into a left-versus-right decision. The network
architecture is similar to the binary classifier we built for the phishing websites in
chapter 3. Abstractly, at each step, we will look at the environment and use our net-
work to decide which action to take. By letting our network play a number of rounds,
we will collect some data with which to evaluate those decisions. Then, we will invent a
way to assign quality to those decisions so that we can adjust the weights of our net-
work so that it will make decisions more like the “good” ones and less like the “bad”
ones in the future.

The details of this system are different from our previous classifier work in the fol-
lowing aspects:

 The model is invoked many times in the course of a game episode (at every
time step).

 The model’s output (the output from the Policy Network box in figure 11.4) is
logits instead of probability scores. The logits are subsequently converted into
probability scores through a sigmoid function. The reason we don’t include the
sigmoid nonlinearity directly in the last (output) layer of the policy network is
that we need the logits for training, as we’ll see shortly.

Figure 11.4 How the policy network fits into our solution to the cart-pole problem. The policy network is a 
TensorFlow.js model that outputs the probability of the leftward-force action by using the observation vector 
(x, x', , and ') as the input. The probability is converted to an actual action through random sampling.
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 The probability output by the sigmoid function must be converted to a con-
crete action (left versus right). This is done through the random-sampling
tf.multinomial() function call. Recall that we used tf.multinomial() in the
lstm-text-generation example in chapter 10, when we sampled the next character
using softmax probabilities over letters of the alphabet to sample the next charac-
ter. The situation here is slightly simpler because there are only two choices.

The last point has deeper implications. Consider the fact that we could convert the out-
put of the tf.sigmoid() function directly into an action by applying a threshold (for
example, selecting the left action when the network’s output is greater than 0.5 and
the right action otherwise). Why do we prefer the more complicated random-
sampling approach with tf.multinomial() over this simpler approach? The answer is
that we want the randomness that comes with tf.multinomial(). In the early phase of
the training, the policy network is clueless about how to select the direction of the
force because its weights are initialized randomly. By using random sampling, we
encourage it to try random actions and see which ones work better. Some of the ran-
dom trials will end up being bad, while others will give good results. Our algorithm
will remember the good choices and make more of them in the future. But these
good choices won’t become available unless the agent is allowed to try randomly. If we
had chosen the deterministic threshold approach, the model would be stuck with its
initial choices.

This brings us to a classical and important topic in RL called exploration versus
exploitation. Exploration refers to random tries; it is the basis on which good actions are
discovered by the RL agent. Exploitation means making the optimal solutions that the
agent has learned in order to maximize the reward. The two are incompatible with
each other. Finding a good balance between them is critical to designing working RL
algorithms. In the beginning, we want to explore a diverse array of possible strategies,
but as we converge on better strategies, we want to fine-tune those strategies. So, there
is generally a gradual ramping down of exploration with training in many algorithms.
In the cart-pole problem, the ramping is implicit in the tf.multinomial() sampling
function because it gives more and more deterministic outcomes when the model’s
confidence level increases with training.

Listing 11.1 (excerpted from cart-pole/index.js) shows the TensorFlow.js calls that
create the policy network. The code in listing 11.2 (also excerpted from cart-
pole/index.js) converts the policy network’s output into the agent’s action, in addi-
tion to returning the logits for training purposes. Compared to the supervised-learn-
ing models we encountered in the previous chapters, the model-related code here is
not much different.

However, what’s fundamentally different here is the fact that we don’t have a set of
labeled data that can be used to teach the model which action choices are good and
which are bad. If we had such a dataset, we could simply call fit() or fitDataset()
on the policy network in order to solve the problem, like we did for the models in the
previous chapters. But the fact is that we don’t, so the agent has to figure out which
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actions are good by playing the game and looking at the rewards it gets. In other
words, it has to “learn swimming by swimming,” a key feature of RL problems. Next,
we’ll look at how that’s done in detail.

createModel(hiddenLayerSizes) {
    if (!Array.isArray(hiddenLayerSizes)) {
      hiddenLayerSizes = [hiddenLayerSizes];
    }
    this.model = tf.sequential();
    hiddenLayerSizes.forEach((hiddenLayerSize, i) => {
      this.model.add(tf.layers.dense({
        units: hiddenLayerSize,
        activation: 'elu',
        inputShape: i === 0 ? [4] : undefined
      }));
    });
    this.model.add(tf.layers.dense({units: 1}));
  }
}

getLogitsAndActions(inputs) {
  return tf.tidy(() => {
    const logits = this.policyNet.predict(inputs);

    const leftProb = tf.sigmoid(logits);
    const leftRightProbs = tf.concat(
        [leftProb, tf.sub(1, leftProb)], 1);
    const actions = tf.multinomial(
        leftRightProbs, 1, null, true);
    return [logits, actions];
  });
}

11.2.3 Training the policy network: The REINFORCE algorithm

Now the key question becomes how to calculate which actions are good and which are
bad. If we can answer this question, we’ll be able to update the weights of the policy
network to make it more likely to pick the good actions in the future, in a way similar
to supervised learning. What quickly comes to mind is that we can use the reward to
measure how good the actions are. But the cart-pole problem involves rewards that 1)

Listing 11.1 Policy network MLP: selecting actions based on observations 

Listing 11.2 Getting the logits and actions from the output of the policy network 

hiddenLayerSize controls the sizes 
of all the policy network’s layers 
except the last one (output layer).

inputShape is needed 
only for the first layer.

The last layer is hard-coded to have one unit. The
single output number will be converted to a

probability of selecting the leftward-force action.

Converts the logits to the 
probability values of the 
leftward action

Calculates the probability values 
for both actions, as they are 
required by tf.multinomial()

Randomly samples actions based on the 
probability values. The four arguments 
are probability values, number of 
samples, random seed (unused), and a 
flag that indicates that the probability 
values are normalized.
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always have a fixed value (1) and 2) happen at every step as long as the episode hasn’t
ended. So, we can’t simply use the step-by-step reward as a metric, or we’ll end up
labeling all actions as equally good. We need to take into account how long each epi-
sode lasts.

A naive approach is to sum all the rewards in an episode, which gives us the length
of the episode. But can the sum be a good assessment of the actions? It is not hard to
realize that it won’t work. The reason is the steps at the end of an episode. Suppose in
a long episode, the agent balances the cart-pole system quite well all the way until near
the end, when it makes a few bad choices that cause the episode to finally end. The
naive summing approach will assign equally good assessment to the bad actions at the
end and the good ones from before. Instead, we want to assign higher scores to the
actions in the early and middle parts of the episode and assign lower ones to the
actions near the end.

This brings us to the idea of reward discounting, a simple but important idea in RL
that the value of a certain step should equal the immediate reward plus the reward
that is expected for the future. The future reward may be equally as important as the
immediate reward, or it may be less important. The relative balance can be quantified
with a discounting factor called  (gamma).  is usually set to a value close to but
slightly less than 1, such as 0.95 or 0.99. We write this in a mathematical equation as

In equation 11.1, vi is the total discounted reward of the state at step i, which can be
understood as the value of that particular state. It is equal to the immediate reward
given to the agent at that step (ri), plus the reward from the next step (ri+1) dis-
counted by , plus a further discounted reward from two steps later, and so forth, up
to the end of the episode (step N).

To illustrate reward discounting, we show how this equation transforms our origi-
nal rewards to a more useful value metric in figure 11.5. The top plot in panel A dis-
plays the original rewards from all four steps from a short episode. The bottom plot
shows the discounted rewards (based on equation 11.1). Panel B shows the original
and discounted total rewards from a longer episode (length = 20) for comparison.
From the two panels, we can see that the discounted total reward value is higher in the
beginning and lower at the end, which makes sense because we want to assign lower
values to actions toward the end of an episode, which causes the game to end. Also,
the values at the beginning and middle parts of the longer episode (panel B) are
higher than those at the beginning of the shorter one (panel A). This also makes intu-
itive sense because we want to assign higher values to the actions that lead to longer
episodes.

The reward-discounting equation gives us a set of values that make more sense than
the naive summing before. But we are still faced with the question of how to use these

vi ri  ri 1+ 2 ri 2+ ... N i– rN+ +++= (Equation 11.1)
 



383Policy networks and policy gradients: The cart-pole example
discounted reward values to train the policy network. For that, we will use an algo-
rithm called REINFORCE, invented by Ronald Williams in 1992.6 The basic idea
behind REINFORCE is to adjust the weights of the policy network to make it more
likely to make good choices (choices assigned higher discounted rewards) and less
likely to make bad choices (the ones assigned lower discounted rewards).

To this end, we need to calculate the direction in which to change the parameters
to make an action more likely given the observation inputs. This is done with the code
in listing 11.3 (excerpted from cart-pole/index.js). The function getGradientsAnd-
SaveActions() is invoked at every step of the game. It compares the logits (unnormal-
ized probability scores) and the actual action selected at the step and returns the
gradient of the discrepancy between the two with respect to the policy network’s
weights. This may sound complicated, but intuitively, it’s fairly straightforward. The
returned gradient tells the policy network how to change its weights so as to make the
choices more like the choices that were actually selected. The gradients, together with
the rewards from the training episodes, form the basis of our RL method. This is why
this method belongs to the family of RL algorithms called policy gradients.

  getGradientsAndSaveActions(inputTensor) {
    const f = () => tf.tidy(() => {
      const [logits, actions] =
          this.getLogitsAndActions(inputTensor);
      this.currentActions_ = actions.dataSync();

6 Ronald J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement
Learning,” Machine Learning, vol. 8, nos. 3–4, pp. 229–256, http://mng.bz/WOyw.

Listing 11.3 Comparing logits and actual actions to obtain gradients for weights

Figure 11.5 Panel A: applying reward discounting (equation 11.1) on rewards from an episode with four 
steps. Panel B: same as panel A, but from an episode with 20 steps (that is, five times longer than the one 
in panel A). As a result of the discounting, higher values are assigned to the actions in the beginning of each 
episode compared to the actions near the end.
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      const labels =
          tf.sub(1, tf.tensor2d(this.currentActions_, actions.shape));
      return tf.losses.sigmoidCrossEntropy(
          labels, logits).asScalar();
    });
    return tf.variableGrads(f);
  }

During training, we let the agent play a number of games (say, N games) and collect
all the discounted rewards according to equation 11.1, as well as the gradients from all
the steps. Then, we combine the discounted rewards and gradients by multiplying the
gradients with a normalized version of the discounted rewards. The reward normaliza-
tion here is an important step. It linearly shifts and scales all the discounted rewards
from the N games so that they have an overall mean value of 0 and overall standard
deviation of 1. An example of applying this normalization on the discounted rewards
is shown in figure 11.6. It illustrates the normalized, discounted rewards from a short
episode (length = 4) and a longer one (length = 20). From this figure, it should be
clear what steps are favored by the REINFORCE algorithm: they are the actions made
in the early and middle parts of longer episodes. By contrast, all the steps from the
shorter (length-4) episode are assigned negative values. What does a negative normal-
ized reward mean? It means that when it is used to update the policy network’s
weights later, it will steer the network away from making a similar choice of actions

The sigmoid cross-entropy loss 
quantifies the discrepancy between the 
actual action made during the game 
and the policy network’s output logits.

Calculates the gradient of the loss with 
respect to the policy network’s weights

Figure 11.6 Normalizing the discounted rewards from the two episodes with lengths 4 (panel A) and 
20 (panel B). We can see that the normalized, discounted rewards have the highest values at the 
beginning of the length-20 episode. The policy gradient method will use these discounted reward 
values to update the weights of the policy network, which will make the network less likely to make 
the action choices that resulted in the bad rewards in the first case (length = 4) and more likely to 
make the choices that resulted in the good rewards in the beginning part of the second case (length 
= 20) (given the same state inputs as before, that is).
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given similar state inputs in the future. This is in contrast to a positive normalized
reward, which will steer the policy network toward choosing similar actions given simi-
lar inputs in the future. 

The code for the normalization of the discounted rewards, and using it to scale the
gradients, is somewhat tedious but not complicated. It is in the scaleAndAverage-
Gradients() function in cart-pole/index.js, which is not listed here for the sake of
brevity. The scaled gradients are used to update the policy network’s weights. With the
weights updated, the policy network will output higher logits for the actions from
the steps assigned higher discounted rewards and lower logits for the actions from the
steps assigned lower ones.

That is basically how the REINFORCE algorithm works. The core training logic of
the cart-pole example, which is based on REINFORCE, is shown in listing 11.4. It is a
reiteration of the steps described previously:

1 Invoke the policy network to get logits based on current agent observation.
2 Randomly sample an action based on the logits.
3 Update the environment using the sampled action.
4 Remember the following for updating weights later (step 7): the logits and the

selected action, as well as the gradients of the loss function with respect to the
policy network’s weights. These gradients are referred to as policy gradients.

5 Receive a reward from the environment, and remember it for later (step 7).
6 Repeat steps 1–5 until numGames episodes are completed.
7 Once all numGames episodes have ended, discount and normalize the rewards

and use the results to scale the gradients from step 4. Then update the policy
network’s weights using the scaled gradients. (This is where the policy network’s
weights get updated.)

8 (Not shown in listing 11.4) Repeat steps 1–7 numIterations times.

Compare these steps with the code in the listing (excerpted from cart-pole/index.js)
to make sure you can see the correspondence and follow the logic.

  async train(
      cartPoleSystem, optimizer, discountRate, numGames, maxStepsPerGame) {
    const allGradients = [];
    const allRewards = [];
    const gameSteps = [];
    onGameEnd(0, numGames);
    for (let i = 0; i < numGames; ++i) {
      cartPoleSystem.setRandomState();
      const gameRewards = [];
      const gameGradients = [];
      for (let j = 0; j < maxStepsPerGame; ++j) {
        const gradients = tf.tidy(() => {
          const inputTensor = cartPoleSystem.getStateTensor();

Listing 11.4 Cart-pole example’s training loop implementing the REINFORCE algorithm

Loops over specified 
number of episodes

Randomly initializes 
a game episode

Loops over 
steps of the 
game
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          return this.getGradientsAndSaveActions(
              inputTensor).grads;
        });

        this.pushGradients(gameGradients, gradients);
        const action = this.currentActions_[0];
        const isDone = cartPoleSystem.update(action);

        await maybeRenderDuringTraining(cartPoleSystem);

        if (isDone) {
          gameRewards.push(0);
          break;
        } else {
          gameRewards.push(1);
        }
      }
      onGameEnd(i + 1, numGames);
      gameSteps.push(gameRewards.length);
      this.pushGradients(allGradients, gameGradients);
      allRewards.push(gameRewards);
      await tf.nextFrame();
    }

    tf.tidy(() => {
      const normalizedRewards =
          discountAndNormalizeRewards(allRewards, discountRate);
      optimizer.applyGradients(
          scaleAndAverageGradients(allGradients, normalizedRewards));
    });
    tf.dispose(allGradients);
    return gameSteps;
  }

To see the REINFORCE algorithm in action, specify 25 epochs on the demo page and
click the Train button. By default, the state of the environment is displayed in real
time during training so that you can see repeated tries by the learning agent. To speed
up the training, uncheck the Render During Training check box. Twenty-five epochs
of training will take a few minutes on a reasonably up-to-date laptop and should be
sufficient to achieve ceiling performance (500 steps per game episode in the default
setting). Figure 11.7 shows a typical training curve, which plots the average episode
length as a function of the training iteration. Notice that the training progress shows
some dramatic fluctuation, with the mean number of steps changing in a nonmono-
tonic and highly noisy fashion over the iterations. This type of fluctuation is not
uncommon in RL training jobs.

After the training completes, click the Test button, and you should see the agent do
a good job keeping the cart-pole system balanced over many steps. Since the testing
phase doesn’t involve a maximum number of steps (500 by default), it is possible that
the agent can keep the episode going for over 1,000 steps. If it continues too long, you
can click the Stop button to terminate the simulation.

Keeps track of the 
gradients from every 
step for later 
REINFORCE training

The agent takes 
an action in the 
environment.

As long as the game hasn’t 
ended, the agent receives a 
unit reward per step.

Discounts and
normalizes the rewards

(key step of REINFORCE)

Updates the policy network’s
weights using the scaled
gradients from all steps
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To wrap up this section, figure 11.8 recapitulates the formulation of the problem and
the role of the REINFORCE policy-gradient algorithm. All major parts of the solution
are depicted in this figure. At each step, the agent uses a neural network called the pol-
icy network to estimate the likelihood that the leftward action (or, equivalently, the
rightward one) is the better choice. This likelihood is converted into an actual action
through a random sampling process that encourages the agent to explore early on
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Figure 11.7 A curve showing the average 
number of steps the agent survives in the 
cart-pole episodes as a function of the 
number of training iterations. The perfect 
score (500 steps in this case) is attained at 
around iteration 20. This result is obtained 
with a hidden layer size of 128. The highly 
nonmonotonic and fluctuating shape of the 
curve is not uncommon among RL problems.

Figure 11.8 A schematic diagram illustrating the REINFORCE algorithm-based solution to the cart-pole problem. 
This diagram is an expanded view of the diagram in figure 11.4.
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and obeys the certainty of the estimates later. The action drives the cart-pole system in
the environment, which in turn provides the agent with rewards until the end of the
episode. This process repeats a number of episodes, during which the REINFORCE
algorithm remembers the reward, the action, and the policy network’s estimate at
every step. When it’s time for REINFORCE to update the policy network, it distin-
guishes good estimates from the network from bad ones through reward discounting
and normalization, and then uses the results to nudge the network’s weights in the
direction of making better estimates in the future. This process iterates a number of
times until the end of the training (for instance, when the agent reaches a threshold
performance).

All the elegant technical details aside, let’s take a step back and look at the bigger
picture of RL embodied in this example. The RL-based approach has clear advantages
over non-machine-learning methods such as traditional control theory: the generality
and the economy of human effort. In cases where the system has complex or
unknown characteristics, the RL approach may be the only viable solution. If the char-
acteristics of the system change over time, we won’t have to derive new mathematical
solutions from scratch: we can just re-run the RL algorithm and let the agent adapt
itself to the new situation.

The disadvantage of the RL approach, which is still an unsolved question in the
field of RL research, is that it requires many repeated trials in the environment. In
the case of the cart-pole example, it took about 400 game episodes to reach the tar-
get level of proficiency. Some traditional, non-RL approaches may require no trial at
all. Implement the control-theory-based algorithm, and the agent should be able to
balance the pole from episode 1. For a problem like cart-pole, RL’s hunger for
repeated trials is not a major problem because the computer simulation of the envi-
ronment is simple, fast, and cheap. However, in more realistic problems, such as self-
driving cars and object-manipulating robot arms, this problem of RL becomes a
more acute and pressing challenge. No one can afford crashing a car or breaking
a robotic arm hundreds or thousands of times in order to train an agent, not to
mention the prohibitively long time it would take to run the RL training algorithm in
such real-world problems.

This concludes our first RL example. The cart-pole problem has some special char-
acteristics that don’t hold in other RL problems. For example, many RL environments
don’t provide a positive reward to the agent at every step. In some situations, the agent
may need to make dozens of decisions, if not more, before it can be rewarded posi-
tively. In the gaps between the positive rewards, there may be no reward, or there may
be only negative rewards (it can be argued that many real-world endeavors, such as
studying, exercising, and investing, are like that!). In addition, the cart-pole system is
“memoryless” in the sense that the dynamics of the system don’t depend on what the
agent did in the past. Many RL problems are more complex than that, in that the
agent’s action changes certain aspects of the environment. The RL problem we’ll
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study in the next section will show both sparse positive rewards and an environment
that changes with action history. To tackle the problem, we’ll introduce another useful
and popular RL algorithm, called deep Q-learning.

11.3 Value networks and Q-learning: The snake game example
We will use the classic action game called snake as our example problem to cover deep
Q-learning. As we did in the last section, we’ll first describe the RL problem and the
challenge it poses. In doing so, we’ll also discuss why policy gradients and REIN-
FORCE won’t be very effective on this problem.

11.3.1 Snake as a reinforcement-learning problem

First appearing in 1970s arcade games, snake has become a well-known video game
genre. The snake-dqn directory in tfjs-examples contains a JavaScript implementation
of a simple variant of it. You can check out the code with

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/snake-dqn
yarn
yarn watch

In the web page opened by the yarn watch command, you can see a board of the
snake game. You can load a pretrained and hosted deep Q-network (DQN) model
and observe it play the game. Later, we’ll talk about how you can train such a model
from scratch. For now, you should be able to get an intuitive sense of how this game
works through observing. In case you aren’t already familiar with the snake game, its
settings and rules can be summarized as follows.

First, all actions happen in a 9 × 9 grid world (see an example in figure 11.9). The
world (or board) can made be larger, but 9 × 9 is the default size in our example.
There are three types of squares on the board: the snake, the fruit, and the empty
space. The snake is represented by blue squares, except the head, which is colored
orange with a semicircle representing the snake’s mouth. The fruit is represented by a
green square with a circle inside. The empty squares are white. The game happens in
steps—or, in video game terminology, frames. At each frame, the agent must choose
from three possible actions for the snake: go straight, turn left, or turn right (staying
put is not an option). The agent is rewarded positively when the head of the snake
comes into contact with a fruit square, in which case the fruit square will disappear
(get “eaten” by the snake), and the length of the snake will increase by one at the tail.
A new fruit will appear in one of the empty squares. The agent will be rewarded nega-
tively if it doesn’t eat a fruit at a step. The game terminates (the snake “dies”) when
the head of the snake goes out of bounds (as in panel B of figure 11.9) or runs into its
own body (as in panel C).
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One key challenge in the snake game is the snake’s growth. If not for this rule, the
game would be much simpler. Simply navigate the snake to the fruit over and over,
and there’s no limit to the reward the agent can get. With the length-growth rule,
however, the agent must learn to avoid bumping into its own body, which gets harder
as the snake eats more fruit and grows longer. This is the nonstatic aspect of the snake
RL problem that the cart-pole environment lacks, as we mentioned at the end of the
last section.

Table 11.2 describes the snake problem in the canonical RL formulation. Com-
pared with the formulation of the cart-pole problem (table 11.1), the biggest differ-
ence is in the reward structure. In the snake problem, the positive rewards (+10 for
each fruit eaten) come infrequently—that is, only after a number of negative rewards
due to the movement the snake needs to reach the fruit. Given the size of the board,
two positive rewards may be spaced out by as much as 17 steps even if the snake moves
in the most efficient manner. The small negative reward is a penalty that encourages
the snake to move in a more straightforward path. Without this penalty, the snake can
move in a meandering and indirect way and still receive the same rewards, which will
make the gameplay and training process unnecessarily long. This sparse and complex
reward structure is also the main reason why the policy gradient and REINFORCE
method will not work well on this problem. The policy-gradient method works better
when the rewards are frequent and simple, as in the cart-pole problem.

Figure 11.9 The snake game: a grid world in which the player controls a snake to eat fruit. The 
snake’s “goal” is to eat as many fruits as possible through an efficient movement pattern (panel A). 
The length of the snake grows by 1 every time a fruit is eaten. The game ends (the snake “dies”) as 
soon as the snake goes out of bounds (panel B) or bumps into its own body (panel C). Note that in 
panel B, the snake’s head reaches the edge position, and then an upward motion (a go-straight 
action) ensues that causes the game to terminate. Simply reaching the edge squares with the 
snake’s head won’t result in termination. Eating every fruit leads to a large positive reward. Moving 
one square without eating a fruit incurs a negative reward that is smaller in magnitude. Game 
termination (the snake dying) also incurs a negative reward.

A B C
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THE JAVASCRIPT API OF SNAKE

Our JavaScript implementation of snake can be found in the file snake-dqn/snake_
game.js. We will describe only the API of the SnakeGame class and spare you the imple-
mentation details, which you can study at your own pleasure if they are of interest to
you. The constructor of the SnakeGame class has the following syntax:

const game = new SnakeGame({height, width, numFruits, initLen});

Here, the size parameters of the board, height and width, have default values of 9.
numFruits is the number of fruits present on the board at any given time; it has a
default value of 1. initLen, the initial length of the snake, defaults to 2.

The step() method exposed by the game object allows the caller to play one step in
the game:

const {state, reward, done, fruitEaten} = game.step(action);

The argument to the step() method represents the action: 0 for going straight, 1 for
turning left, and 2 for turning right. The return of the step() value has the following
fields:

 state—The new state of the board immediately after the action, represented as
a plain JavaScript object with two fields:
– s—The squares occupied by the snake, as an array of [x, y] coordinates.

The elements of this array are ordered such that the first element corre-
sponds to the head and the last element to the tail.

– f—The [x, y] coordinates of the square(s) occupied by the fruit(s).

Note that this representation of the game state is designed to be efficient, which
is necessitated by the Q-learning algorithm’s storage of a large number (for
example, tens of thousands) of such state objects, as we will soon see. An alter-
native is to use an array or nested array to record the status of every square of
the board, including the empty ones. This would be much less space-efficient.

 reward—The reward given to the snake at the step, immediately after the
action takes place. This is a single number.

Table 11.2 Describing the snake-game problem in the canonical RL formulation

Abstract RL concept Realization in the snake problem

Environment A grid world that contains a moving snake and a self-replenishing fruit.

Action (Discrete) Ternary choice: go straight, turn left, or turn right.

Reward (Frequent, mixed positive negative rewards)
• Eating fruit—Large positive reward (+10)
• Moving without eating fruit—Small negative reward (–0.2)
• Dying—Large negative reward (–10)

Observation (Complete state, discrete) At each step, the agent can access the full 
state of the game: that is, what is in every square of the board.
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 done—A Boolean flag indicating whether the game is over immediately after
the action takes place.

 fruitEaten—A Boolean flag indicating whether a fruit was eaten by the snake
in the step as a result of the action. Note that this field is partly redundant with
the reward field because we can infer from reward whether a fruit was eaten. It
is included for simplicity and to decouple the exact values of the rewards
(which may be tunable hyperparameters) from the binary event of fruit eaten
versus fruit not eaten.

As we will see later, the first three fields (state, reward, and done) will play important
roles in the Q-learning algorithm, while the last field (fruitEaten) is mainly for
monitoring.

11.3.2 Markov decision process and Q-values

To explain the deep Q-learning algorithm we will apply on the snake problem, it is
necessary to first go a little abstract. In particular, we will introduce the Markov decision
process (MDP) and its underlying math at a basic level. Don’t worry: we’ll use simple
and concrete examples and tie the concepts to the snake problem we have at hand.

From the viewpoint of MDP, the history of an RL environment is a sequence of
transitions through a finite set of discrete states. In addition, the transitions between
the states follow a particular type of rule:

The state of the environment at the next step is determined completely by the state and the
action taken by the agent at the current step.

The key is that the next state depends on only two things: the current state and the
action taken, and nothing more. In other words, MDP assumes that your history (how
you got to your current state) is irrelevant to deciding what you should do next. It is a
powerful simplification that makes the problem more tractable. What is a non-Markov
decision process? That would be a case in which the next state depends on not only the
current state and the current action but also the states or actions at earlier steps,
potentially going all the way back to the beginning of the episode. In the non-Markov
scenario, the math would be much more complex, and a much greater amount of
computational resources would be required to solve the math.

The MDP requirement makes intuitive sense for a lot of RL problems. A game of
chess is a good example of this. At any step of the game, the board configuration
(plus which player’s turn it is) fully characterizes the game state and provides all the
information the player needs for calculating the next move. In other words, it is pos-
sible to resume a chess game from the board configuration without knowing the pre-
vious moves. (Incidentally, this is why newspapers can post chess puzzles in a very
space-efficient way.) Video games such as snake are also consistent with the MDP for-
mulation. The positions of the snake and the fruit on the board fully characterize the
game state and are all it takes to resume the game from that point or for the agent to
decide the next action.
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Even though problems such as chess and snake are fully compatible with MDP, they
each involve an astronomical number of possible states. In order to present MDP in
an intuitive and visual fashion, we need a simpler example. In figure 11.10, we show a
very simple MDP problem in which there are only seven possible states and two possi-
ble agent actions. The transition between the states is governed by the following rules:

 The initial state is always s1.
 From state s1, if the agent takes action a1, the environment will enter state s2. If

the agent takes action a2, the environment will enter state s3.
 From each of the states s2 and s3, the transition into the next state follows a sim-

ilar set of bifurcating rules.
 States s4, s5, s6, and s7 are terminal states: if any of the states is reached, the epi-

sode ends.

So, each episode in this RL problem lasts exactly three steps. How should the agent in
this RL problem decide what action to take at the first and second steps? Given that we
are dealing with an RL problem, the question makes sense only if the rewards are con-
sidered. In MDP, each action not only causes a state transition but also leads to a reward.
In figure 11.10, the rewards are depicted as the arrows that connect actions with the
next states, labeled with r = <reward_value>. The agent’s goal is, of course, to maxi-
mize the total reward (discounted by a factor). Now imagine we are the agent at the first
step. Let’s examine the thought process through which we’ll decide which of a1 or a2 is
the better choice. Let’s suppose the reward discount factor () has a value of 0.9.

The thought process goes like this. If we pick action a1, we will get an immediate
reward of –3 and transition to state s2. If we pick action a2, we will get an immediate
reward of 3 and transition to state s3. Does that mean a2 is a better choice because 3 is
greater than –3? The answer is no, because 3 and –3 are just the immediate rewards,
and we haven’t taken into account the rewards from the following steps. We should
look at the best possible outcome from each of s2 and s3. What is the best outcome from
s2? It is the outcome engendered by action a2, which gives a reward of 11. That leads
to the best discounted reward we can expect if we take the action a1 from state s1:

Similarly, the best outcome from state s3 is if we take action a1, which gives us a reward
of –4. Therefore, if we take action a2 from state s1, the best discounted reward for us is

Best reward from state s1 taking action a1 = immediate reward + discounted future reward
= –3 +  * 10
= –3 + 0.9 * 10
= 6

Best reward from state s1 taking action a2 = immediate reward + discounted future reward
= 3 +  * –4
= 3 + 0.9 * –4
= 0.6
 



394 CHAPTER 11 Basics of deep reinforcement learning
The discounted rewards we calculated here are examples of what we refer to as a
Q-values. A Q-value is the expected total cumulative reward (with discounting) for an
action at a given state. From these Q-values, it is clear that a1 is the better choice at
state s1—a different conclusion from what we’d reach if we considered only the imme-
diate reward caused by the first action. Exercise 3 at the end of the chapter guides you
through the Q-value calculation for more realistic scenarios of MDP that involve sto-
chasticity.

The example thought process described may seem trivial. But it leads us to an
abstraction that plays a central role in Q-learning. A Q-value, denoted Q(s, a), is a
function of the current state (s) and the action (a). In other words, Q(s, a) is a func-
tion that maps a state-action pair to the estimated value of taking the particular action
at the particular state. This value is farsighted, in the sense that it accounts for best
future rewards, under the assumption of optimal actions at all future steps.

Thanks to its farsightedness, Q(s, a) is all we need to decide on the best action at
any given state. In particular, given that we know what Q(s, a) is, the best action is the
one that gives us the highest Q-value among all possible actions:

Figure 11.10 A very simple concrete example of the Markov decision 
process (MDP). States are represented as gray circles labeled with sn, while 
actions are represented as gray circles labeled with am. The reward 
associated with each state transition caused by an action is labeled with r = x.
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where N is the number of all possible actions. If we have a good estimate of Q(s, a), we
can simply follow this decision process at every step, and we’ll be guaranteed to get
the highest possible cumulative reward. Therefore, the RL problem of finding the
best decision-making process is reduced to learning the function Q(s, a). This is why
this learning algorithm is called Q-learning.

Let’s stop for a moment and look at how Q-learning differs from the policy-gradient
method we saw in the cart-pole problem. Policy gradient is about predicting the best
action; Q-learning is about predicting the values of all possible actions (Q-values).
While policy gradient tells us which action to choose directly, Q-learning requires an
additional “pick-the-maximum” step and is hence slightly more indirect. The benefit
afforded by this indirection is that it makes it easier to form a connection between the
rewards and values of successive steps, which facilitates learning in problems that
involve sparse positive rewards like snake.

What are the connections between rewards and values of successive steps? We have
already gotten a glimpse of this when solving the simple MDP problem in figure 11.10.
This connection can be written mathematically as

where snext is the state we’ll reach after choosing action a from state si. This equation,
known as the Bellman equation,7 is an abstraction for how we got the numbers 6 and –0.6
for the actions a1 and a2 in the simple earlier example. In plain words, the equation
says

The Q-value of taking action a at state si is a sum of two terms:

1. The immediate reward due to a, and
2. The best possible Q-value from that next state multiplied by a discounting factor

(“best” in the sense of optimal choice of action at the next state)

The Bellman equation is what makes Q-learning possible and is therefore important
to understand. The programmer in you will immediately notice that the Bellman
equation (equation 11.3) is recursive: all the Q-values on the right-hand side of the
equation can be expanded further using the equation itself. The example in figure
11.10 we worked through ends after two steps, while real MDP problems usually
involve a much larger number of steps and states, potentially even containing cycles in
the state-action-transition graph. But the beauty and power of the Bellman equation is

7 Attributed to American applied mathematician Richard E. Bellman (1920–1984). See his book Dynamic Pro-
gramming, Princeton University Press, 1957.

The a1 that gives us the maximum value among 
Q si s1  Q si a2  ... Q si aN    (Equation 11.2)

Q si a  r  The maximum value among 
Q snext a1  Q snext a2  ... Q snext aN   




+=

(Equation 11.3)
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that it allows us to turn the Q-learning problem into a supervised learning problem,
even for large state spaces. We’ll explain why that’s the case in the next section.

11.3.3 Deep Q-network

Hand-crafting the function Q(s, a) can be difficult, so we will instead let the function
be a deep neural network (the DQN mentioned earlier in the section) and train its
parameters. This DQN receives an input tensor that represents the complete state of
the environment—that is, the snake board configuration—which is available to the
agent as the observation. As figure 11.11 shows, the tensor has a shape [9, 9, 2]
(excluding the batch dimension). The first two dimensions correspond to the height
and width of the game board. Hence, the tensor can be viewed as a bitmap representa-
tion of all squares on the board. The last dimension (2) is two channels that represent
the snake and the fruit, respectively. In particular, the snake is encoded in the first
channel, with the head labeled as 2 and the body labeled as 1. The fruit is encoded in
the second channel, with a value 1. In both channels, empty squares are represented
by 0s. Note that these pixel values and the number of channels are more or less arbi-
trary. Other value arrangements (such as 100 for the snake’s head and 50 for the
snake’s body, or separating the snake’s head and body into two channels) will likely
also work, as long as they keep the three types of entities (snake head, snake body, and
fruit) distinct.

Note that this tensor representation of the game state is much less space-efficient
than the JSON representation consisting of the fields s and f that we described in the
previous section, because it always includes all the squares of the board regardless
of how long the snake is. This inefficient representation is used only when we use

Figure 11.11 How the snake game’s board state is represented as a 3D tensor of shape [9, 9, 2]

Slice 1 of 2: Snake

Slice 2 of 2: Fruit

Observation
(game state)

Convert to
tensor

representation

Reward=60.6; Fruits=9

Θ

1 1
1

1
1

2

11
Θ Θ Θ Θ Θ Θ Θ Θ

Θ

Θ

Θ

1

Θ Θ Θ Θ Θ Θ
Θ

Θ

Θ

Θ

 



397Value networks and Q-learning: The snake game example
back-propagation to update the DQN’s weights. In addition, only a small number
(batchSize) of game states are present in this way at any given time, due to the batch-
based training paradigm we will soon visit.

The code that converts an efficient representation of the board state into the kind
of tensors illustrated in figure 11.11 can be found in the getStateTensor() function
in snake-dqn/snake_game.js. This function will be used a lot during the DQN’s train-
ing, but we omit its details here because it is just mechanically assigning values to the
elements of a tensor buffer based on where the snake and fruit are.

You might have noticed that this [height, width, channel] input format is exactly
what convnets are designed to process. The DQN we use is of the familiar convnet
architecture. The code that defines the topology of the DQN can be found in listing
11.5 (excerpted from snake-dqn/dqn.js, with some error-checking code removed for
clarity). As the code and the diagram in figure 11.12 show, the network consists of a
stack of conv2d layers followed by an MLP. Additional layers including batchNormal-
ization and dropout are inserted to increase the generalization power of the DQN.
The output of the DQN has a shape of [3] (excluding the batch dimension). The
three elements of the output are the predicted Q-values of the corresponding actions
(turn left, going straight, and turn right). Thus our model of Q(s, a) is a neural net-
work that takes a state as the input and outputs the Q-values for all possible actions
given that state.

export function createDeepQNetwork(h, w, numActions) {
  const model = tf.sequential();
  model.add(tf.layers.conv2d({
    filters: 128,
    kernelSize: 3,

Listing 11.5 Creating the DQN for the snake problem

Figure 11.12 A schematic illustration of the DQN that we use as an approximation to the function Q(s, a) for 
the snake problem. In the “Online DQN” box, “BN” stands for BatchNormalization.
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    strides: 1,
    activation: 'relu',
    inputShape: [h, w, 2]
  }));
  model.add(tf.layers.batchNormalization());
  model.add(tf.layers.conv2d({
    filters: 256,
    kernelSize: 3,
    strides: 1,
    activation: 'relu'
  }));
  model.add(tf.layers.batchNormalization());
  model.add(tf.layers.conv2d({
    filters: 256,
    kernelSize: 3,
    strides: 1,
    activation: 'relu'
  }));
  model.add(tf.layers.flatten());
  model.add(tf.layers.dense({units: 100, activation: 'relu'}));
  model.add(tf.layers.dropout({rate: 0.25}));
  model.add(tf.layers.dense({units: numActions}));
  return model;
}

Let’s pause for a moment and think about why it makes sense to use a neural network
as the function Q(s, a) in this problem. The snake game has a discrete state space,
unlike the continuous state space in the cart-pole problem, which consisted of four
floating-point numbers. Therefore, the Q(s, a) function could in principle be imple-
mented as a lookup table—that is, one that maps every single possible combination of
board configuration and action into a value of Q. So why do we prefer a DQN over
such a lookup table? The reason: there are far too many possible board configurations
with even the relatively small board size (9 × 9),8 which leads to two major shortcom-
ings of the lookup table approach. First, the system RAM is unable to hold such a
huge lookup table. Second, even if we manage to build a system with sufficient RAM,
it will take a prohibitively long time for the agent to visit all the states during RL. The
DQN addresses the first (memory space) problem thanks to its moderate size (about 1
million parameters). It addresses the second (state-visit time) problem because of

8 A back-of-the-envelope calculation leads to the rough estimate that the number of possible board configura-
tions is on the order of at least 1015, even if we limit the snake length to 20. For example, consider the partic-
ular snake length of 20. First, pick a location for the head of the snake, for which there are 9 * 9 = 81
possibilities. Then there are four possible locations for the first segment of the body, followed by three possi-
ble locations for the second segment, and so forth. Of course, in some body-pose configurations, there will be
fewer than three possibilities, but that shouldn’t significantly alter the order of magnitude. Hence, we can esti-
mate the number of possible body configurations of a length-20 snake to be approximately 81 * 4 * 318  1012.
Considering that there are 61 possible fruit locations for each body configuration, the estimate for possible
joint snake-fruit configurations goes up to 1014. Similar estimations can be applied to shorter snake lengths,
from 2 to 19. Summing all the estimated numbers from the lengths from 2 to 20 gives us the order of magni-
tude of 1015. Video games such as Atari 2600 games involve a much larger number of pixels compared to the
number of squares on our snake board, and are therefore even less amenable to the lookup-table approach.
This is one of the reasons why DQNs are a suitable technique for solving such video games using RL, as
demonstrated in the landmark 2015 paper by DeepMind’s Volodymyr Mnih and colleagues. 

The input shape matches the tensor representation of 
the agent’s observation, as shown in figure 11.11.

batchNormalization layers are 
added to counter overfitting 
and improve generalization

The MLP portion of the DQN 
begins with a flatten layer.

Like batchNormalization, 
the dropout layer is added 
to counter overfitting.
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neural networks’ generalization power. As we’ve seen ample evidence for in the previ-
ous chapters, a neural network doesn’t need to see all the possible inputs; it learns to
interpolate between training examples through generalization. Therefore, by using
DQN, we kill two birds with one stone.

11.3.4 Training the deep Q-network

Now we have a DQN that estimates the Q-values of all three possible actions at every
step of the snake game. To achieve the greatest possible cumulative reward, all we
have to do is run the DQN using the observation at every step and pick the action with
the highest Q-value. Are we done yet? No, because the DQN is not trained yet! With-
out proper training, the DQN will contain only randomly initialized weights, and the
actions it gives us will be no better than random guesses. Now the snake RL problem
has been reduced to the question of how to train the DQN, a topic we’ll cover in this
section. The process is somewhat involved. But don’t worry: we’ll use plenty of dia-
grams, accompanied by code excerpts, to spell out the training algorithm step-by-step.

INTUITION BEHIND THE DEEP Q-NETWORK’S TRAINING

We will train our DQN by pressuring it to match the Bellman equation. If all goes well,
this means that our DQN will reflect both the immediate rewards and the optimal dis-
counted future rewards.

How can we do that? What we will need is many samples of input-output pairs, the
input being the state and action actually taken and the output being the “correct”
(target) value of Q. Computing samples of input requires the current state si and the
action we took at that state, aj, both of which are directly available in the game history.
Computing the target value of Q requires the immediate reward ri and the next state
si+1, which are also available from game history. We can use ri and si+1 to compute the
target Q-value by applying the Bellman equation, the details of which will be covered
shortly. We will then calculate the difference between Q-value predicted by the DQN
and the target Q-value from the Bellman equation and call that our loss. We will
reduce the loss (in a least-squares sense) using standard backpropagation and gradi-
ent descent. The machinery making this possible and efficient is somewhat compli-
cated, but the intuition is rather straightforward. We want an estimate of the Q
function so we can make good decisions. We know our estimate of Q must match the
environmental rewards and the Bellman equation, so we will use gradient descent to
make it so. Simple!

REPLAY MEMORY: A ROLLING DATASET FOR THE DQN’S TRAINING

Our DQN is a familiar convnet implemented as an instance of tf.LayersModel in
TensorFlow.js. With regard to how to train it, the first thing that comes to mind is to
call its fit() or fitDataset() method. However, we can’t use that usual approach
here because we don’t have a labeled dataset that contains observed states and the
corresponding Q-values. Consider this: before the DQN is trained, there is no way to
know the Q-values. If we had a method that gave us the true Q-values, we would just
use it in our Markov decision process and be done with it. So, if we confine ourselves
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to the traditional supervised-learning approach, we will face a chicken-and-egg prob-
lem: without a trained DQN, we can’t estimate the Q-values; without a good estimate
of Q-values, we can’t train the DQN. The RL algorithm we are about to introduce will
help us solve this chicken-and-egg problem.

Specifically, our method is to let the agent play the game randomly (at least ini-
tially) and remember what happened at every step of the game. The random-play part
is easily achieved using a random-number generator. The remembering part is
achieved with a data structure known as replay memory. Figure 11.13 illustrates how the
replay memory works. It stores five items for every step of the game:

1 si, observation of the current state at step i (the board configuration).
2 ai, action actually performed at the current step (selected either by the DQN as

depicted in figure 11.12 or through random selection).
3 ri, the immediate reward received at this step. 
4 di, a Boolean flag indicating whether the game ends immediately after the cur-

rent step. From this, you can see the fact that the replay memory is not just for a
single episode of the game. Instead, it concatenates the results from multiple
game episodes. Once a previous game is over, the training algorithm simply
starts a new one and keeps appending the new records to the replay memory.

5 si+1, the observation from the next step if di is false. (If di is true, a null is stored
as the placeholder.)

These pieces of data will go into the backpropagation-based training of the DQN. The
replay memory can be thought of as a “dataset” for the DQN’s training. However, it’s
different from the kind of datasets in supervised learning, in the sense that it keeps
getting updated as the training goes on. The replay memory has a fixed length
M (M = 10,000 by default in the example code). When a record (si, ai, ri, di, si+1) is
pushed to its end after a new game step, an old record is popped out from its begin-
ning, which maintains a fixed replay-memory length. This ensures that the replay

Figure 11.13 The replay memory used during the training of the DQN. Five pieces of data are pushed to the 
end of the replay memory at every step. These data are sampled during the DQN’s training.
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memory keeps track of what happened in the most recent M steps of the training, in
addition to avoiding out-of-memory problems. It is beneficial to always train the DQN
using the latest game records. Why? Consider the following: once the DQN has been
trained for a while and starts to “get the hang of” the game, we won’t want to teach it
using old game records like the ones from the beginning of the training because
those may contain naive moves that are no longer relevant or conducive to the further
training of the network.

The code that implements the replay memory is very simple and can be found in
the file snake-dqn/replay_memory.js. We won’t describe the details of the code,
except its two public methods, append() and sample():

 append() allows the caller to push a new record to the end of the replay memory.
 sample(batchSize) selects batchSize records from the replay memory ran-

domly. The records are sampled completely uniformly and will in general
include records from multiple different episodes. The sample() method will be
used to extract training batches during the calculation of the loss function and
the subsequent backpropagation, as we will see shortly.

THE EPSILON-GREEDY ALGORITHM: BALANCING EXPLORATION AND EXPLOITATION

An agent that keeps trying random things will stumble onto some good moves (eat a
fruit or two in a snake game) by pure luck. This is useful for kickstarting the agent’s
early learning process. In fact, it is the only way because the agent is never told the
rules of the game. But if the agent keeps behaving randomly, it won’t make it very far
in the learning process, both because random choices lead to accidental deaths and
because some advanced states can be achieved only through streaks of good moves.

This is the manifestation of the exploration-versus-exploitation dilemma in the
snake game. We’ve seen this dilemma in the cart-pole example, where the policy-
gradient method addresses the problem thanks to the gradual increase in the deter-
minism of the multinomial sampling with training. In the snake game, we do not have
this luxury because our action selection is based not on tf.multinomial() but on
selecting the maximum Q-value among the actions. The way in which we address the
dilemma is by parameterizing the randomness of the action-selection process and
gradually reducing the parameter of randomness. In particular, we use the so-called
epsilon-greedy policy. This policy can be expressed in pseudo-code as

    x = Sample a random number uniformly between 0 and 1.
    if x < epsilon:
      Choose an action randomly
    else:
      qValues = DQN.predict(observation)
      Choose the action that corresponds to the maximum element of qValues

This logic is applied at every step of the training. The larger the value of epsilon (the
closer it is to 1), the more likely the action will be chosen at random. Conversely, a
smaller value of epsilon (closer to 0) leads to a higher probability of choosing the
action based on the Q-values predicted by the DQN. Choosing actions at random can
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be viewed as exploring the environment (“epsilon” stands for “exploration”), while
choosing actions to maximize the Q-value is referred to as greedy. Now you understand
where the name epsilon-greedy comes from.

As shown in listing 11.6, the actual TensorFlow.js code that implements the epsilon-
greedy algorithm in the snake-dqn example has a close one-to-one correspondence
with the previous pseudo-code. This code is excerpted from snake-dqn/agent.js.

let action;
const state = this.game.getState();
if (Math.random() < this.epsilon) {
  action = getRandomAction();
} else {
  tf.tidy(() => {
    const stateTensor =
        getStateTensor(state,
                       this.game.height,
                       this.game.width);
    action = ALL_ACTIONS[
        this.onlineNetwork.predict(
            stateTensor).argMax(-1).dataSync()[0]];
  });
}

The epsilon-greedy policy balances the early need for exploration and later need for
stable behavior. It does so through gradually ramping down the value of epsilon from
a relative large value to a value close to (but not exactly) zero. In our snake-dqn exam-
ple, epsilon is ramped down in a linear fashion from 0.5 to 0.01 over the first 1 × 105
steps of the training. Note that we don’t decrease the epsilon all the way to zero
because we need a moderate degree of exploration even at advanced stages of the
agent’s training in order to help the agent discover smart new moves. In RL problems
based on the epsilon-greedy policy, the initial and final values of epsilon are tunable
hyperparameters, and so is the time course of epsilon’s down-ramping.

With the backdrop of our deep Q-learning algorithm set by the epsilon-greedy pol-
icy, next let’s examine the details of how the DQN is trained.

EXTRACTING PREDICTED Q-VALUES

Although we are using a new approach to attack the RL problem, we still want to mold
our algorithm into supervised learning because that will allow us to use the familiar
backpropagation approach to update the DQN’s weights. Such a formulation requires
three things:

 Predicted Q-values.
 “True” Q-values. Note that the word “true” is in quotes here because there isn’t

really a way to obtain the ground truths for Q-values. These values are merely
the best estimates of Q(s, a) that we can come up with at a given stage of the
training algorithm. For this reason, we’ll refer to them as the target Q-values
instead.

Listing 11.6 The part of snake-dqn code that implements the epsilon-greedy algorithm

Exploration: picks 
actions randomly

Represents the game 
state as a tensor

Greedy policy: gets predicted 
Q-values from the DQN and 
finds the index of the action 
that corresponds to the 
highest Q-value
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 A loss function that takes the predicted and target Q-values and outputs a num-
ber that quantifies the mismatch between the two.

In this subsection, we’ll look at how the predicted Q-values can be obtained from the
replay memory. The following two subsections will talk about how to obtain the target
Q-values and the loss function. Once we have all three, our snake RL problem will
basically become a straightforward backpropagation problem.

Figure 11.14 illustrates how the predicted Q-values are extracted from the replay
memory in a step of the DQN’s training. The diagram should be viewed in conjunc-
tion with the implementing code in listing 11.7 to facilitate understanding.

In particular, we sample batchSize (N = 128 by default) records randomly from the
replay memory. As described before, each record has five items. For the purpose of
getting the predicted Q-values, we need only the first two. The first items, consisting of
the N state observations, are converted together into a tensor. This batched observa-
tion tensor is processed by the online DQN, which gives the predicted Q-values (qs in
both the diagram and the code). However, qs includes the Q-values for not only the
actually selected actions but also the nonselected ones. For our training, we want to
ignore the Q-values for the nonselected actions because there isn’t a way to know their
target Q-values. This is where the second replay-memory item comes in.

The second items contain the actually selected actions. They are formatted into a
tensor representation (actionTensor in the diagram and code). actionTensor is then
used to select the elements of qs that we want. This step, illustrated in the box labeled
Select Actual Actions in the diagram, is achieved using three TensorFlow.js functions:
tf.oneHot(), mul(), and sum() (see the last line in listing 11.7). This is slightly more

Figure 11.14 How the predicted Q-values are obtained from the replay memory and the online DQN. This is the 
first of the two parts that go into the supervised-learning portion of the DQN training algorithm. The result of this 
workflow, actionQs—that is, the Q-values predicted by the DQN—is one of the two arguments that will go into 
the calculation of the MSE loss together with targetQs. See figure 11.15 for the workflow in which targetQs
is calculated.
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complex than slicing a tensor because different actions can be selected at different
game steps. The code in listing 11.7 is excerpted from the SnakeGameAgent.trainOn-
ReplayBatch() method in snake-dqn/agent.js, with minor omissions for clarity.

const batch = this.replayMemory.sample(batchSize);
const stateTensor = getStateTensor(
    batch.map(example => example[0]),
    this.game.height, this.game.width);
const actionTensor = tf.tensor1d(
    batch.map(example => example[1]),
    'int32');
const qs = this.onlineNetwork.apply(
    stateTensor, {training: true})  
    .mul(tf.oneHot(actionTensor, NUM_ACTIONS)).sum(-1);

These operations give us a tensor called actionQs, which has a shape of [N], N being
the batch size. This is the predicted Q-value that we sought—that is, the predicted
Q(s, a) for the state s we were in and the action a we actually took. Next, we’ll examine
how the target Q-values are obtained.

EXTRACTING TARGET Q-VALUES: USING THE BELLMAN EQUATION

It is slightly more involved to obtain the target Q-values than the predicted ones. This
is where the theoretical Bellman equation will be put to practical use. Recall that the
Bellman equation describes the Q-value of a state-action pair in terms of two things:
1) the immediate reward and 2) the maximum Q-value available from the next step’s
state (discounted by a factor). The former is easy to obtain. It is directly available as
the third item of the replay memory. The rewardTensor in figure 11.15 illustrates this
schematically.

To calculate the latter (maximum next-step Q-value), we need the state observation
from the next step. Luckily, the next-step observation is stored in the replay memory
as the fifth item. We take the next-step observation of the randomly sampled batch,
convert it to a tensor, and run it through a copy of the DQN called the target DQN (see
figure 11.15). This gives us the estimated Q-values for the next-step states. Once we
have these, we perform a max() call along the last (actions) dimension, which leads to
the maximum Q-values achievable from the next-step state (represented as nextMax-
QTensor in listing 11.8). Following the Bellman equation, this maximum value is mul-

Listing 11.7 Extracting a batch of predicted Q-values from the replay memory

Gets a batch of batchSize randomly chosen 
game records from the replay memory The first element of every game 

record is the agent’s state 
observation (see figure 11.13). It is 
converted from a JSON object into 
a tensor by the getStateTensor() 
function (see figure 11.11).

The second element of the game record 
is the actually selected action. It’s 
represented as a tensor as well.

The apply() method is similar to the 
predict() method, but the “training: 
true” flag is specified explicitly to 
enable backpropagation.

We use tf.oneHot(), mul(), and sum() 
to isolate the Q-values for only the 
actually selected actions and discard 
the ones for the actions not selected.
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tiplied by the discount factor ( in figure 11.15 and gamma in listing 11.8) and
combined with the immediate reward, which yields the target Q-values (targetQs in
both the diagram and the code).

Note that the next-step Q-value exists only when the current step is not the last step
of a game episode (that is, it doesn’t cause the snake to die). If it is, then the right-
hand side of the Bellman equation will include only the immediate-reward term, as
shown in figure 11.15. This corresponds to the doneMask tensor in listing 11.8. The
code in this listing is excerpted from the SnakeGameAgent.trainOnReplayBatch()
method in snake-dqn/agent.js, with minor omissions for clarity.

const rewardTensor = tf.tensor1d(
    batch.map(example => example[2]));
const nextStateTensor = getStateTensor(
    batch.map(example => example[4]),
    this.game.height, this.game.width);

Listing 11.8 Extracting a batch of target (“true”) Q-values from the replay memory 

Figure 11.15 How the target Q-values (targetQs) are obtained from the replay memory and the target DQN. 
This figure shares the replay-memory and batch-sampling parts with figure 11.14. It should be examined in 
conjunction with the code in listing 11.8. This is the second of the two parts that goes into the supervised-
learning portion of the DQN training algorithm. targetQs plays a role similar to the truth labels in supervised-
learning problems seen in the previous chapters (for example, known true labels in the MNIST examples or known 
true future temperature values in the Jena-weather example). The Bellman equation plays a critical role in the 
calculation of targetQs. Together with the target DQN, the equation allows us to calculate the values of 
targetQs through forming a connection between the Q-values of the current step and the Q-values of the 
ensuing step.
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const nextMaxQTensor =
    this.targetNetwork.predict(nextStateTensor)
    .max(-1);
const doneMask = tf.scalar(1).sub(
    tf.tensor1d(batch.map(example => example[3]))
        .asType('float32'));
const targetQs =
    rewardTensor.add(nextMaxQTensor.mul(
        doneMask).mul(gamma));

As you may have noticed, an important trick in the deep Q-learning algorithm here is
the use of two instances of DQNs. They are called the online DQN and the target DQN,
respectively. The online DQN is responsible for calculating the predicted Q-values
(see figure 11.14 in the previous subsection). It is also the DQN that we use to choose
the snake’s action when the epsilon-greedy algorithm decides on the greedy (no-
exploration) approach. This is why it’s called the “online” network. By contrast, the
target DQN is used only to calculate the target Q-values, as we’ve just seen. This is why
it’s called the “target” DQN. Why do we use two DQNs instead of one? To break up
undesirable feedback loops, which can cause instabilities in the training process.

The online DQN and target DQN are created by the same createDeepQNetwork()
function (listing 11.5). They are two deep convnets with identical topologies. There-
fore, they have exactly the same set of layers and weights. The weight values are copied
from the online DQN to the target one periodically (every 1,000 steps in the default
setting of snake-dqn). This keeps the target DQN up-to-date with the online DQN.
Without this synchronization, the target DQN will go out-of-date and hamper the
training process by producing poor estimates of the best next-step Q-values in the
Bellman equation.

LOSS FUNCTION FOR Q-VALUE PREDICTION AND BACKPROPAGATION

With both predicted and target Q-values at hand, we use the familiar meanSquared-
Error loss function to compute the discrepancy between the two (figure 11.16). At
this point, we’ve managed to turn our DQN training process into a regression prob-
lem, not unlike previous examples such as Boston-housing and Jena-weather. The
error signal from the meanSquareError loss drives the backpropagation; the resulting
weight updates are used to update the online DQN.

The schematic diagram in figure 11.16 includes parts we’ve already shown in fig-
ures 11.12 and 11.13. It puts those parts together and adds the new boxes and arrows
for the meanSquaredError loss and the backpropagation based on it (see the bottom-
right of the diagram). This completes the full picture of the deep Q-learning algo-
rithm we use to train our snake-game agent.

The code in listing 11.9 has a close correspondence with the diagram in figure
11.16. It is the trainOnReplayBatch() method of the SnakeGameAgent class in snake-

The target DQN is used on the 
next-state tensor, which yields 
the Q-values for all actions at 
the next step.

Uses the max() function to extract 
the highest possible reward at the 
next step. This is on the right-hand 
side of the Bellman equation.

doneMask has the value 0 for 
the steps that terminate the 
game and 1 for other steps.

Uses the Bellman equation to 
calculate the target Q-values.
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dqn/agent.js, which plays a central role in our RL algorithm. The method defines a
loss function that calculates the meanSquaredError between the predicted and target
Q-values. It then calculates the gradients of the meanSquaredError with respect to the
online DQN’s weights using the tf.variableGrads() function (appendix B, section
B.4 contains a detailed discussion of TensorFlow.js’s gradient-computing functions
such as tf.variableGrads()). The calculated gradients are used to update the DQN’s
weights with the help of an optimizer. This nudges the online DQN in the direction of
making more accurate estimates of the Q-values. Repeated over millions of iterations,
this leads to a DQN that can guide the snake to a decent performance. For the fol-
lowing listing, the part of the code responsible for calculating the target Q-values
(targetQs) has already been shown in listing 11.8.

trainOnReplayBatch(batchSize, gamma, optimizer) {
  const batch = 

this.replayMemory.sample(batchSize);
  const lossFunction = () => tf.tidy(() => {
    const stateTensor = getStateTensor(
        batch.map(example => example[0]),
                  this.game.height,
                  this.game.width);

Listing 11.9 The core function that trains the DQN 

Figure 11.16 Putting the actionQs and targetQs together in order to calculate the online DQN’s 
meanSquaredError prediction error and thereby use backpropagation to update its weights. Most 
parts of this diagram have already been shown in figures 11.12 and 11.13. The newly added parts are the 
meanSquaredError loss function and the backpropagation step based on it, located in the bottom-right part 
of the diagram.
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    const actionTensor = tf.tensor1d(
        batch.map(example => example[1]), 'int32');
    const qs = this.onlineNetwork
        .apply(stateTensor, {training: true})  
        .mul(tf.oneHot(actionTensor, NUM_ACTIONS)).sum(-1);

    const rewardTensor = tf.tensor1d(batch.map(example => example[2]));
    const nextStateTensor = getStateTensor(
        batch.map(example => example[4]),
                  this.game.height, this.game.width);
    const nextMaxQTensor =
        this.targetNetwork.predict(nextStateTensor).max(-1);
    const doneMask = tf.scalar(1).sub(
        tf.tensor1d(batch.map(example => example[3])).asType('float32'));
    const targetQs =
        rewardTensor.add(nextMaxQTensor.mul(doneMask).mul(gamma));
    return tf.losses.meanSquaredError(targetQs, qs);
  });

  const grads = tf.variableGrads(
      lossFunction, this.onlineNetwork.getWeights());  
  optimizer.applyGradients(grads.grads);
  tf.dispose(grads);
}

That’s it for the internal details of the deep Q-learning algorithm. The training
based on this algorithm can be started with the following command in the Node.js
environment: 

yarn train --logDir /tmp/snake_logs

Add the --gpu flag to the command to speed up the training if you have a CUDA-
enabled GPU. This --logDir flag lets the command log the following metrics to the
TensorBoard log directory during training: 1) the running average of the cumulative
rewards from the 100 most recent game episodes (cumulativeReward100); 2) the run-
ning average of the number of fruits eaten in the 100 most recent episodes (eaten-
100); 3) the value of the exploration parameter (epsilon); and 4) the training speed
in number of steps per second (framesPerSecond). These logs can be viewed by
launching TensorBoard with the following commands and navigating to the HTTP
URL of the TensorBoard frontend (by default: http://localhost:6006):

pip install tensorboard tensorboard --logdir /tmp/snake_logs

Figure 11.17 shows a set of typical log curves from the training process. As seen frequently
in RL training, the cumulativeReward100 and eaten100 curves both show fluctuation.
After a few hours of training, the model is able to reach a best cumulativeReward100 of
70–80 and a best eaten100 of about 12.

The training script also saves the model to the relative path ./models/dqn every
time a new best cumulativeReward100 value has been achieved. The saved model is
served from the web frontend when the yarn watch command is invoked. The frontend
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the Bellman equation
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the discrepancy between 
the predicted and target 
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displays the Q-values predicted by the DQN at every step of the game (see figure
11.18). The epsilon-greedy policy used during training is replaced with the “always-
greedy” policy during the post-training gameplay. The action that corresponds to the
highest Q-value (for example, 33.9 for going straight in figure 11.18) is always chosen
as the snake’s action. This gives you an intuitive understanding of how the trained
DQN plays the game.

There are a couple of interesting observations from the snake’s behavior. First, the
number of fruits actually eaten by the snake in the frontend demo (~18) is on average
greater than the eaten100 curve from the training logs (~12). This is because of the
removal of the epsilon-greedy policy, which abolishes random actions in the game-
play. Recall that epsilon is maintained as a small but nonzero value throughout the
late stage of the DQN’s training (see the third panel of figure 11.17). The random
actions caused by this lead to premature deaths occasionally, and this is the cost of
exploratory behavior. Second, the snake has devel-
oped an interesting strategy of going to the edges
and corners of the board before approaching the
fruit, even when the fruit is located near the center
of the board. This strategy is effective in helping the
snake reduce the likelihood of bumping into itself
when its length is moderately large (for example, in
the range of 10–18). This is not bad, but it is not per-
fect either because there are smarter strategies that
the snake hasn’t developed. For example, the snake
frequently traps itself in a circle when its length gets
above 20. This is as far as the algorithm in the snake-
dqn can take us. To improve the snake agent further,
we need to tweak the epsilon-greedy algorithm to
encourage the snake to explore better moves when
its length is long.9 In the current algorithm, the

9 For example, see https://github.com/carsonprindle/OpenAIExam2018.

Figure 11.17 Example logs from a snake-dqn training process in tfjs-node. The panels show 
1) cumulativeReward100, a moving average of the cumulative reward obtained in the most recent 
100 games; 2) eaten100, a moving average of the number of fruits eaten in the most recent 100 games; 
3) epsilon, the value of epsilon, from which you can see the time course of the epsilon-greedy policy; 
and 4) framesPerSecond, a measure of the training speed.
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degree of exploration is too low once the snake grows to a length that calls for skillful
maneuvering around its own body.

This concludes our tour of the DQN technique for RL. Our algorithm is modeled
after the 2015 paper “Human-Level Control through Deep Reinforcement Learn-
ing,”10 in which researchers at DeepMind demonstrated for the first time that combin-
ing the power of deep neural networks and RL enables machines to solve many Atari
2600-style video games. The snake-dqn solution we’ve demonstrated is a simplified
version of DeepMind’s algorithm. For instance, our DQN looks at the observation
from only the current step, while DeepMind’s algorithm combines the current obser-
vation with observations from the previous several steps as the input to the DQN. But
our example captures the essence of the groundbreaking technique—namely, using a
deep convnet as a powerful function approximator to estimate the state-dependent
values of actions, and training it using MDP and the Bellman equation. Subsequent
feats by RL researchers, such as conquering the games of Go and chess, are based on a
similar wedding between deep neural networks and traditional non-deep-learning RL
methods. 

Materials for further reading
 Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction,

A Bradford Book, 2018.
 David Silver’s lecture notes on reinforcement learning at University College

London: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html.
 Alexander Zai and Brandon Brown, Deep Reinforcement Learning in Action, Man-

ning Publications, in press, www.manning.com/books/deep-reinforcement-
learning-in-action.

 Maxim Laplan, Deep Reinforcement Learning Hands-On: Apply Modern RL Methods,
with Deep Q-networks, Value Iteration, Policy Gradients, TRPO, AlphaGo Zero, and
More, Packt Publishing, 2018.

Exercises
1 In the cart-pole example, we used a policy network consisting of a hidden dense

layer with 128 units, as it was the default setting. How does this hyperparameter
affect the policy-gradient-based training? Try changing it to a small value such
as 4 or 8 and comparing the resulting learning curve (mean steps per game ver-
sus iteration curve) with the one from the default hidden-layer size. What does
that tell you about the relation between model capacity and its effectiveness in
estimating the best action? 

2 We mentioned that one of the advantages of using machine learning to solve
a problem like cart-pole is the economy of human effort. Specifically, if the

10 Volodymyr Mnih et al., “Human-Level Control through Deep Reinforcement Learning,” Nature, vol. 518,
2015, pp. 529–533, www.nature.com/articles/nature14236/.
 

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
www.manning.com/books/deep-reinforcement-learning-in-action
www.manning.com/books/deep-reinforcement-learning-in-action
https://www.nature.com/articles/nature14236/
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environment unexpectedly changes, we don’t need to figure out how it has
really changed and rework the physical equations. Instead, we can just let the
agent re-learn the problem on its own. Prove to yourself that this is the case by
following these steps. First, make sure that the cart-pole example is launched
from source code and not the hosted web page. Train a working cart-pole pol-
icy network using the regular approach. Second, edit the value of this
.gravity in cart-pole/cart_pole.js and change it to a new value (say, 12, if you
want to pretend that we’ve moved the cart-pole setup to an exoplanet with a
higher gravity than Earth!). Launch the page again, load the policy network
you’ve trained in the first step, and test it. Can you confirm that it performs sig-
nificantly worse than before, just because of the gravity change? Finally, train
the policy network a few more iterations. Can you see the policy getting better
at the game again (adapting to the new environment)?

3 (Exercise on MDP and Bellman equation) The example of MDP we presented
in section 11.3.2 and figure 11.10 was simple in the sense that it was fully deter-
ministic because there is no randomness in the state transitions and the associ-
ated rewards. But many real-world problems are better described as stochastic
(random) MDPs. In a stochastic MDP, the state the agent will end up in and the
reward it will get after taking an action follows a probabilistic distribution. For
instance, as figure 11.19 shows, if the agent takes action A1 at state S1, it will end
up in state S2 with a probability of 0.5 and in state S3 with a probability of 0.5.
The rewards associated with the two state transitions are different. In such sto-
chastic MDPs, the agent must take into account the randomness by calculating
the expected future reward. The expected future reward is a weighted average of
all possible rewards, with weights being the probabilities. Can you apply this
probabilistic approach and estimate the Q-values for a1 and a2 at s1 in the fig-
ure? Based on the answer, is a1 or a2 the better action at state s1?

Figure 11.19 The diagram for the MDP 
in the first part of exercise 3
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Now let’s look at a slightly more complicated stochastic MDP, one that involves
more than one step (see figure 11.20). In this slightly more complex case, you
need to apply the recursive Bellman equation in order to take into account the
best possible future rewards after the first action, which are themselves stochas-
tic. Note that sometimes the episode ends after the first step, and sometimes it
will last another step. Can you decide which action is better at s1? For this prob-
lem, you can use a reward discount factor of 0.9.

4 In the snake-dqn example, we used the epsilon-greedy policy to balance the
needs for exploration and exploitation. The default setting decreases epsilon
from an initial value of 0.5 to a final value of 0.01 and holds it there. Try chang-
ing the final epsilon value to a large value (such as 0.1) or a smaller one (such
as 0), and observe the effects on how well the snake agent learns. Can you
explain the resulting difference in terms of the role epsilon plays?

Figure 11.20 The diagram for the MDP in the second part of exercise 3
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Summary
 As a type of machine learning, RL is about learning to make optimal decisions.

In an RL problem, an agent learns to select actions in an environment to maxi-
mize a metric called the cumulative reward.

 Unlike supervised learning, there are no labeled training datasets in RL.
Instead, the agent must learn what actions are good under different circum-
stances by trying out random actions.

 We explored two commonly used types of RL algorithms: policy-based methods
(using the cart-pole example) and Q-value-based methods (using the snake
example).

 A policy is an algorithm by which the agent picks an action based on the cur-
rent state observation. A policy can be encapsulated in a neural network that
takes state observation as its input and produces an action selection as its out-
put. Such a neural network is called a policy network. In the cart-pole problem,
we used policy gradients and the REINFORCEMENT method to update and
train a policy network.

 Unlike the policy-based methods, Q-learning uses a model called Q-network to
estimate the values of actions under a given observed state. In the snake-dqn
example, we demonstrated how a deep convnet can serve as the Q-network and
how it can be trained by using the MDP assumption, the Bellman equation, and
a construct called replay memory.
 



 



Part 4

Summary and closing words

The final part of this book consists of two chapters. Chapter 12 addresses
concerns that TensorFlow.js users may have when deploying models into produc-
tion environments. It discusses best practices that help developers gain higher
confidence in model correctness, techniques that make models smaller and help
them run more efficiently, and the range of deployment environments that Ten-
sorFlow.js models support. Chapter 13 is a summary of the entire book, provid-
ing a review of the key concepts, workflows, and techniques.
 



 



Testing, optimizing,
and deploying models

—WITH CONTRIBUTIONS FROM 
YANNICK ASSOGBA, PING YU, 
AND NICK KREEGER
As we mentioned in chapter 1, machine learning differs from traditional software
engineering in that it automates the discovery of rules and heuristics. The previous
chapters of the book should have given you a solid understanding of this unique-
ness of machine learning. However, machine-learning models and the code sur-
rounding them are still code; they run as a part of your overall software system. In
order to make sure that machine-learning models run reliably and efficiently, prac-
titioners need to take similar precautions as they do when managing non-machine-
learning code.

This chapter covers
 The importance of and practical guidelines for testing and 

monitoring machine-learning code

 How to optimize models trained in TensorFlow.js or 
converted to TensorFlow.js for faster loading and inference

 How to deploy TensorFlow.js models to various platforms 
and environments, ranging from browser extensions to 
mobile apps, and from desktop apps to single-board 
computers
417
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This chapter is devoted to the practical aspects of using TensorFlow.js for machine
learning as a part of your software stack. The first section explores the all-important
but oft-neglected topic of testing and monitoring machine-learning code and models.
The second section presents tools and tricks that help you reduce the size and compu-
tation footprint of your trained models, accelerating downloading and execution,
which is a critical consideration for both client- and server-side model deployment. In
the final section, we will give you a tour of the various environments in which models
created with TensorFlow.js can be deployed. In doing so, we will discuss the unique
benefits, constraints, and strategies that each of the deployment options involves.

By the end of this chapter, you will be familiar with the best practices surrounding
the testing, optimization, and deployment of deep-learning models in TensorFlow.js.

12.1 Testing TensorFlow.js models
So far, we’ve talked about how to design, build, and train machine-learning models.
Now we’re going to dive into some of the topics that arise when you deploy your
trained models, starting with testing—of both the machine-learning code and the
related non-machine-learning code. Some of the key challenges you face when you’re
seeking to surround your model and its training process with tests are the size of the
model, the time required to train, and nondeterministic behavior that happens
during training (such as randomness in the initialization of weights and certain neu-
ral network operations such as dropout). As we expand from an individual model to a
complete application, you’ll also run across various types of skew or drift between
training and inference code paths, model versioning issues, and population changes
in your data. You’ll see that testing needs to be complemented by a robust monitoring
solution in order to achieve the reliability and confidence that you want in your entire
machine-learning system.

One key consideration is, “How is your model version controlled?” In most cases,
the model is tuned and trained until a satisfactory evaluation accuracy is reached, and
then the model needs no further tweaking. The model is not rebuilt or retrained as
part of the normal build process. Instead, the model topology and trained weights
should be checked into your version-control system, more similar to a binary large
object (BLOB) than a text/code artifact. Changing the surrounding code should not
cause an update of your model version number. Likewise, retraining a model and
checking it in shouldn’t require changing the non-model source code.

What aspect of a machine-learning system should be covered by tests? In our opin-
ion, the answer is “every part.” Figure 12.1 explains this answer. A typical system that
goes from raw input data to a trained model ready for deployment consists of multiple
key components. Some of them look similar to non-machine-learning code and are
amenable to coverage by traditional unit testing, while others show more machine-
learning-specific characteristics and hence require specially tailored testing or moni-
toring treatments. But the important take-home message here is never to ignore or
underestimate the importance of testing just because you are dealing with a machine-
learning system. Instead, we’d argue that unit testing is all the more important for
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machine-learning code, perhaps even more so than testing is for traditional software
development, because machine-learning algorithms are typically more opaque and
harder to understand than non-machine-learning ones. They can fail silently in the
face of bad inputs, leading to issues that are hard to notice and debug, and the
defense against such issues is testing and monitoring. In the following subsections, we
will expand on various parts of figure 12.1.

12.1.1 Traditional unit testing

Just as with non-machine-learning projects, reliable and lightweight unit tests should
form the foundation of your test suites. However, special considerations are required
to set up unit tests around machine-learning models. As you’ve seen in previous chap-
ters, metrics such as accuracy on an evaluation dataset are often used to quantify the
final quality of the model after successful hyperparameter tuning and training. Such
evaluation metrics are important for monitoring by human engineers but are not suit-
able for automated testing. It is tempting to add a test that asserts that a certain evalu-
ation metric is better than a certain threshold (for example, AUC for a binary-
classification task is greater than 0.95, or MSE for a regression task is less than 0.2).
However, these types of threshold-based assertions should be used with caution, if not
completely avoided, because they tend to be fragile. The model’s training process con-
tains multiple sources of randomness, including the initialization of weights and the
shuffling of training examples. This leads to the fact that the result of model training
varies slightly from run to run. If your datasets change (for instance, due to new data
being added regularly), this will form an additional source of variability. As such,
picking the threshold is a difficult task. Too lenient a threshold wouldn’t catch real

Data

Example
validator

Traditional
unit testing

Traditional
unit testing

Traditional
unit testing

Traditional
unit testing

Size and speed
monitoring

Model
validator

and
evaluator

Training
process

Trained
model

Postprocessing
code

Prediction
outputs

Preprocessing
code

Model
code

Figure 12.1 The coverage of a production-ready machine-learning system by testing and monitoring. The top 
half of the diagram includes the key components of a typical pipeline for machine-learning model creation and 
training. The bottom half shows the testing practice that can be applied to each of the components. Some of 
the components are amenable to traditional unit testing practice: the code that creates and trains the code, 
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problems when they occur. Too stringent a threshold would lead to a flaky test—that
is, one that fails frequently without a genuine underlying issue. 

The randomness in a TensorFlow.js program can usually be disabled by calling the
Math.seedrandom() function prior to creating and running the model. For example,
the following line will seed the random state of weight initializers, data shuffler, and
dropout layers with a determined seed so that subsequent model training will yield
deterministic results:

Math.seedrandom(42);

This is a useful trick in case you need to write tests that make assertions about the loss
or metric values. 

However, even with deterministic seeding, testing only model.fit() or similar calls
is not sufficient for good coverage of your machine-learning code. Like other hard-to-
unit-test sections of code, you should aim to fully unit test the surrounding code that is
easy to unit test and explore alternative solutions for the model portion. All your code
for data loading, data preprocessing, postprocessing of model outputs, and other util-
ity methods should be amenable to normal testing practices. Additionally, some non-
stringent tests on the model itself—its input and output shapes, for instance—along
with an “ensure model does not throw an exception when trained one step” style test
can provide the bare minimum of a test harness around the model that allows confi-
dence during refactoring. (As you might have noticed when playing with the example
code from the previous chapters, we use the Jasmine testing framework for testing in
tfjs-examples, but you should feel free to use whatever unit test framework and runner
you and your team prefer.)

For an example of this in practice, we can look at the tests for the sentiment-
analysis examples we explored in chapter 9. As you look through the code, you should
see data_test.js, embedding_test.js, sequence_utils_test.js, and train_test.js. The first
three of these files are covering the non-model code, and they look just like normal
unit tests. Their presence gives us heightened confidence that the data that goes into
the model during training and inference is in the expected source format, and our
manipulations on it are valid.

The final file in that list concerns the machine-learning model and deserves a bit
more of our attention. The following listing is an excerpt from it.

describe('buildModel', () => {
 it('flatten training and inference', async () => {
    const maxLen = 5;
    const vocabSize = 3;
    const embeddingSize = 8;
    const model = buildModel('flatten', maxLen, vocabSize, embeddingSize);
    expect(model.inputs.length).toEqual(1);
    expect(model.inputs[0].shape).toEqual([null, maxLen]);
    expect(model.outputs.length).toEqual(1);
    expect(model.outputs[0].shape).toEqual([null, 1]);

Listing 12.1 Unit tests of a model’s API—its input-output shapes and trainability

42 is just an arbitrarily-selected,                          
fixed random seed.

Ensures that the
input and output of
the model have the

expected shape
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    model.compile({
      loss: 'binaryCrossentropy',
      optimizer: 'rmsprop',
      metrics: ['acc']
    });
    const xs = tf.ones([2, maxLen])
    const ys = tf.ones([2, 1]);
    const history = await model.fit(xs, ys, {
      epochs: 2,
      batchSize: 2
    });
    expect(history.history.loss.length).toEqual(2);
    expect(history.history.acc.length).toEqual(2);

    const predictOuts = model.predict(xs);
    expect(predictOuts.shape).toEqual([2, 1]);
    const values = predictOuts.arraySync();
    expect(values[0][0]).toBeGreaterThanOrEqual(0);
    expect(values[0][0]).toBeLessThanOrEqual(1);
    expect(values[1][0]).toBeGreaterThanOrEqual(0);
    expect(values[1][0]).toBeLessThanOrEqual(1);
  });
});

This test is covering a lot of ground, so let’s break it down a little bit. We first build a
model using a helper function. For this test, we don’t care about the structure of the
model and will treat it like a black box. We then make assertions on the shape of the
inputs and outputs:

    expect(model.inputs.length).toEqual(1);
    expect(model.inputs[0].shape).toEqual([null, maxLen]);
    expect(model.outputs.length).toEqual(1);
    expect(model.outputs[0].shape).toEqual([null, 1]);

These tests can catch problems in terms of misidentifying the batch dimension—
regression versus classification, output shape, and so on. Next, we compile and train
the model on a very small number of steps. Our goal is simply to ensure that the model
is trainable—we’re not worried about accuracy, stability, or convergence at this point:

    const history = await model.fit(xs, ys, {epochs: 2, batchSize: 2})
    expect(history.history.loss.length).toEqual(2);
    expect(history.history.acc.length).toEqual(2);

This snippet also checks that training reported the required metrics for analysis: if we
trained for real, would we be able to inspect the progress of the training and the accu-
racy of the resulting model? Finally, we try a simple:

    const predictOuts = model.predict(xs);
    expect(predictOuts.shape).toEqual([2, 1]);
    const values = predictOuts.arraySync();
    expect(values[0][0]).toBeGreaterThanOrEqual(0);
    expect(values[0][0]).toBeLessThanOrEqual(1);

Trains the
model very
briefly; this

should be
fast, but it

won’t be
accurate.

Checks that training is 
reporting metrics for 
each training step as a 
signal that training 
occurred

Makes sure the prediction is in the range of possible
answers; we don’t want to check for the actual

value, as the training was exceptionally brief and
might be unstable.

Runs a prediction through the model 
focused on verifying the API is as expected
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    expect(values[1][0]).toBeGreaterThanOrEqual(0);
    expect(values[1][0]).toBeLessThanOrEqual(1);

We’re not checking for any particular prediction result, as that might change based
on the random initialization of weight values or possible future revisions to the model
architecture. What we do check is that we get a prediction and that the prediction is in
the expected range, in this case, between 0 and 1.

The most important lesson here is noticing that no matter how we change the
inside of the model’s architecture, as long we don’t change its input or its output API,
this test should always pass. If the test is failing, we have a problem in our model.
These remain lightweight and fast tests that provide a strong degree of API correct-
ness, and they are suitable for inclusion in whatever commonly run test hooks you use. 

12.1.2 Testing with golden values

In the previous section, we talked about the unit testing we can do without asserting
on a threshold metric value or requiring a stable or convergent training. Now let’s
explore the types of testing people often want to run with a fully trained model, start-
ing with checking predictions of particular data points. Perhaps there are some “obvi-
ous” examples that you want to test. For instance, for an object detector, an input
image with a nice big cat in it should be labeled as such; for a sentiment analyzer, a
text snippet that’s clearly a negative customer review should be classified as such.
These correct answers for given model inputs are what we refer to as golden values. If
you follow the mindset of traditional unit testing blindly, it is easy to fall into the trap
of testing trained machine-learning models with golden values. After all, we want a
well-trained object detector to always label the cat in an image with a cat in it, right?
Not quite. Golden-value-based testing can be problematic in a machine-learning set-
ting because we’re usurping our training, validation, and evaluation data split.

Assuming you had a representative sample for your validation and test datasets, and
you set an appropriate target metric (accuracy, recall, and so on), why is any one
example required to be right more than another? The training of a machine-learning
model is concerned with accuracy on the entire validation and test sets. The predic-
tions for individual examples may vary with the selection of hyperparameters and ini-
tial weight values. If there are some examples that must be classified correctly and are
easy to identify, why not detect them before asking the machine-learning model to
classify them and instead use a non-machine-learning code to handle them? Such
examples are used occasionally in natural language processing systems, where a subset
of query inputs (such as frequently encountered and easily identifiable ones) are
automatically routed to a non-machine-learning module for handling, while the
remaining queries are handled by a machine-learning model. You’ll save on compute
time, and that portion of the code is easier to test with traditional unit testing. While
adding a business-logic layer before (or after) the machine-learning predictor might
seem like extra work, it gives you the hooks to control overrides of predictions. It’s
also a place where you can add monitoring or logging, which you’ll probably want as
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your tool becomes more widely used. With that preamble, let’s explore the three com-
mon desires for golden values separately.

One common motivation of this type of golden-value test is in service to a full end-
to-end test—given an unprocessed user input, what does the system output? The
machine-learning system is trained, and a prediction is requested through the normal
end-user code flow, with an answer being returned to the user. This is similar to our
unit test in listing 12.1, but the machine-learning system is in context with the rest of
the application. We could write a test similar to listing 12.1 that doesn’t care about the
actual value of the prediction, and, in fact, that would be a more stable test. However,
it’s very tempting to combine it with an example/prediction pair that makes sense and
is easily understood when developers revisit the test. 

This is when the trouble enters—we need an example whose prediction is known
and guaranteed to be correct or else the end-to-end test fails. So, we add a smaller-scale
test that tests that prediction through a subset of the pipeline covered by the end-to-
end test. Now if the end-to-end test fails, and the smaller test passes, we’ve isolated the
error to interactions between the core machine-learning model and other parts of the
pipeline (such as data ingestion or postprocessing). If both fail in unison, we know our
example/prediction invariant is broken. In this case, it’s more of a diagnostic tool, but
the likely result of the paired failure is picking a new example to encode, not retraining
the model entirely.

The next most common source is some form of business requirement. Some identi-
fiable set of examples must be more accurate than the rest. As mentioned previously,
this is the perfect setting for adding a pre- or post-model business-logic layer to handle
these predictions. However, you can experiment with example weighting, in which some
examples count for more than others when calculating the overall quality metrics. It
won’t guarantee correctness, but it will bias the model toward getting those correct. If
a business-logic layer is difficult because you can’t easily pre-identify the properties of
the input that trigger the special case, you might need to explore a second model—
one that is purely used to determine if override is needed. In this case, you’re using an
ensemble of models, and your business logic is combining the predictions from two
layers to do the correct action.

The last case here is when you have a bug report with a user-provided example that
gave the wrong result. If it’s wrong for business reasons, we’re back in the immediately
preceding case. If it’s wrong just because it falls into the failing percent of the model’s
performance curve, there’s not a lot that we should do. It’s within the accepted per-
formance of the trained algorithm; all models are expected to make some mistakes.
You can add the example/correct prediction pair to your train/test/eval sets as appro-
priate to hopefully generate a better model in the future, but it’s not appropriate to
use the golden values for unit testing.

An exception to this is if you’re keeping the model constant—you have the model
weights and architecture checked into version control and are not regenerating them
in the tests. Then it can be appropriate to use golden values to test the outputs of an
inference system that uses the model as its core, as neither the model nor the examples
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are subject to change. Such an inference system contains parts other than the model,
such as parts that preprocess the input data before feeding it to the model and ones
that take the model’s outputs and transform them into forms more suitable for use by
downstream systems. Such unit tests ensure the correctness of such pre- and postpro-
cessing logic.

Another legitimate use of golden values is outside unit testing: the monitoring of
the quality of a model (but not as unit testing) as it evolves. We will expand on this
when we discuss the model validator and evaluator in the next section.

12.1.3 Considerations around continuous training

In many machine-learning systems, you get new training data at fairly regular intervals
(every week or every day). Perhaps you’re able to use your logs for the previous day to
generate new, more timely training data. In such systems, the model needs to be
retrained frequently, using the latest data available. In these cases, there is a belief that
the age or staleness of the model affects its power. As time goes on, the inputs to the
model drift to a different distribution than it was trained on, so the quality characteris-
tics will get worse. As an example, you might have a clothing-recommendation tool
that was trained in the winter but is making predictions in the summer.

Given the basic idea, as you begin to explore systems that require continuous train-
ing, you’ll have a wide variety of extra components that create your pipeline. A full dis-
cussion of these is outside the scope of this book, but TensorFlow Extended (TFX)1 is an
infrastructure to look at for more ideas. The pipeline components it lists that have the
most relevance in a testing arena are the example validator, model validator, and model eval-
uator. The diagram in figure 12.1 contains boxes that correspond to these components.

The example validator is about testing the data, an easy-to-overlook aspect of test-
ing a machine-learning system. There is a famous saying among machine-learning
practitioners: “garbage in, garbage out.” The quality of a trained machine-learning
model is limited by the quality of the data that goes into it. Examples with invalid fea-
ture values or incorrect labels will likely hurt the accuracy of the trained model when
deployed for use (that is, if the model-training job doesn’t fail because of the bad
examples first!). The example validator is used to ensure that properties of the data
that go into model training and evaluation always meet certain requirements: that you
have enough data, that its distribution appears valid, and that you don’t have any odd
outliers. For instance, if you have a set of medical data, the body height (in centime-
ters) should be a positive number no larger than 280; the patient age should be a pos-
itive number between 0 and 130; the oral temperature (in degrees Celsius) should be
a positive number between roughly 30 and 45, and so forth. If certain data examples
contain features that fall outside such ranges or have placeholder values such as
“None” or NaN, we know something is wrong with those examples, and they should
be treated accordingly—in most cases, excluded from the training and evaluation.

1 Denis Baylor et al., “TFX: A TensorFlow-Based Production-Scale Machine Learning Platform,” KDD 2017,
www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform.
 

https://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform
https://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform
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Typically, errors here indicate either a failure of the data-collection process or that the
“world has changed” in ways incompatible with the assumptions you held when build-
ing the system. Normally, this is more analogous to monitoring and alerting than inte-
gration testing.

A component like an example validator is also useful for detecting training-serving
skew, a particularly nasty type of bug that can arise in machine-learning systems. The
two main causes are 1) training and serving data that belongs to different distribu-
tions and 2) data preprocessing involving code paths that behave differently during
training and serving. An example validator deployed to both the training and serving
environments has the potential to catch bugs introduced via either path.

The model validator plays the role of the person building the model in deciding if
the model is “good enough” to use in serving. You configure it with the quality metrics
you care about, and then it either “blesses” the model or rejects it. Again, like the
example validator, this is more of a monitor-and-alert-style interaction. You’ll also typi-
cally want to log and chart your quality metrics over time (accuracy and so on) in
order to see if you’re having small-scale, systematic degradations that might not trig-
ger an alert by themselves but might still be useful for diagnosing long-term trends
and isolating their causes.

The model evaluator is a sort of deeper dive into the quality statistics of the
model, slicing and dicing the quality along a user-defined axis. Often, this is used to
probe if the model is behaving fairly for different user populations—age bands, edu-
cation bands, geographic, and so on. A simple example would be looking at the iris-
flower examples we used in section 3.3 and checking if our classification accuracy is
roughly similar among the three iris species. If our test or evaluation sets are unusu-
ally biased toward one of the populations, it is possible we are always wrong on the
smallest population without it showing up as a top-level accuracy problem. As with
the model validator, the trends over time are often as useful as the individual point-
in-time measurement.

12.2 Model optimization
Once you have painstakingly created, trained, and tested your model, it is time to put
it to use. This process, called model deployment, is no less important than the previous
steps of model development. Whether the model is to be shipped to the client side for
inference or executed at the backend for serving, we always want the model to be fast
and efficient. Specifically, we want the model to

 Be small in size and hence fast to load over the web or from disk
 Consume as little time, compute, and memory as possible when its predict()

method is called

This section describes techniques available in TensorFlow.js for optimizing the size
and inference speed of trained models before they are released for deployment.
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The meaning of the word optimization is overloaded. In the context of this section,
optimization refers to improvements including model-size reduction and computation
acceleration. This is not to be confused with weight-parameter optimization tech-
niques such as gradient descent in the context of model training and optimizers. This
distinction is sometimes referred to as model quality versus model performance. Perfor-
mance refers to how much time and resources the model consumes to do its task.
Quality refers to how close the results are to an ideal.

12.2.1 Model-size optimization through post-training weight quantization

The need to have small files that are swift to load over the internet should be abun-
dantly clear to web developers. It is especially important if your website targets a very
large user base or users with slow internet connections.2 In addition, if your model is
stored on a mobile device (see section 12.3.4 for a discussion of mobile deployment
with TensorFlow.js), the size of the model is often constrained by limited storage
space. As a challenge for model deployment, neural networks are large and still get-
ting larger. The capacity (that is, predictive power) of deep neural networks often
comes at the cost of increased layer count and larger layer sizes. At the time of this
writing, state-of-the-art image-recognition,3 speech-recognition,4 natural language
processing,5 and generative models6 often exceed 1 GB in the size of their weights.
Due to the tension between the need for models to be both small and powerful, a
highly active area of research in deep learning is model-size optimization, or how to
design a neural network with a size as small as possible that can still perform its tasks
with an accuracy close to that of a larger neural network. Two general approaches are
available. In the first approach, researchers design a neural network with the aim of
minimizing model size from the outset. Second, there are techniques through which
existing neural networks can be shrunk to a smaller size.

MobileNetV2, which we visited in the chapters on convnets, is produced by the first
line of research.7 It is a small, lightweight image model suitable for deployment on

2 In March 2019, Google launched a Doodle featuring a neural network that can compose music in Johann
Sebastian Bach’s style (http://mng.bz/MOQW). The neural network runs in the browser, powered by Ten-
sorFlow.js. The model is quantized as 8-bit integers with the method described in this section, which cuts the
model’s over-the-wire size by several times, down to about 380 KB. Without this quantization, it would be
impossible to serve the model to an audience as wide as that of Google’s homepage (where Google Doodles
appear).

3 Kaiming He et al., “Deep Residual Learning for Image Recognition,” submitted 10 Dec. 2015, https://arxiv
.org/abs/1512.03385.

4 Johan Schalkwyk, “An All-Neural On-Device Speech Recognizer,” Google AI Blog, 12 Mar. 2019, http://mng
.bz/ad67.

5 Jacob Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,”
submitted 11 Oct. 2018, https://arxiv.org/abs/1810.04805.

6 Tero Karras, Samuli Laine, and Timo Aila, ”A Style-Based Generator Architecture for Generative Adversarial
Networks,” submitted 12 Dec. 2018, https://arxiv.org/abs/1812.04948.

7 Mark Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018, pp. 4510–4520, http://mng.bz/NeP7.
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resource-restricted environments such as web browsers and mobile devices. The accu-
racy of MobileNetV2 is slightly worse compared to that of a larger image trained on
the same tasks, such as ResNet50. But its size (14 MB) is a few times smaller in compar-
ison (ResNet50 is about 100 MB in size), which makes the slight reduction in accuracy
a worthy trade-off.

Even with its built-in size-squeezing, MobileNetV2 is still a little too large for most
JavaScript applications. Consider the fact that its size (14 MB) is about eight times the
size of an average web page.8 MobileNetV2 offers a width parameter, which, if set to a
value smaller than 1, reduces the size of all convolutional layers and hence provides
further shrinkage in the size (and further loss in accuracy). For example, the version
of MobileNetV2 with its width set to 0.25 is approximately a quarter of the size of the
full model (3.5 MB). But even that may be unacceptable to high-traffic websites that
are sensitive to increases in page weight and load time. 

Is there a way to further reduce the size of such models? Luckily, the answer is yes.
This brings us to the second approach mentioned, model-independent size optimiza-
tion. The techniques in this category are more generic in that they do not require
changes to the model architecture itself and hence should be applicable to a wide vari-
ety of existing deep neural networks.The technique we will specifically focus on here is
called post-training weight quantization. The idea is simple: after a model is trained, store
its weight parameters at a lower numeric precision. Info box 12.1 describes how this is
done for readers who are interested in the underlying mathematics.

8 According to HTTP Archive, the average page weight (total transfer size of HTML, CSS, JavaScript, images, and
other static files) is about 1,828 KB for desktop and 1,682 KB for mobile as of May 2019: https://httparchive
.org/reports/page-weight.

INFO BOX 12.1 The mathematics behind post-training weight quantization
The weight parameters of a neural network are represented as 32-bit floating-point
(float32) numbers during training. This is true not only in TensorFlow.js but also in
other deep-learning frameworks such as TensorFlow and PyTorch. This relatively
expensive representation is usually okay because model training typically happens in
environments with unrestricted resources (for example, the backend environment of
a workstation equipped with ample memory, fast CPUs, and CUDA GPUs). However,
empirical findings indicate that for many inference use cases, we can lower the pre-
cision of weights without causing a substantial decrease in accuracy. To reduce the
representation precision, we map each float32 value onto an 8-bit or 16-bit integer
value that represents the discretized location of the value within the range of all val-
ues in the same weight. This process is what we call quantization.
 

https://httparchive.org/reports/page-weight
https://httparchive.org/reports/page-weight
https://httparchive.org/reports/page-weight
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Post-training quantization provides considerable reduction in model size: 16-bit quan-
tization cuts the model size by approximately 50%, 8-bit quantization by 75%. These
percentages are approximate for two reasons. First, a fraction of the model’s size is
devoted to the model’s topology, as encoded in the JSON file. Second, as stated in the
info box, quantization requires the storage of two additional floating-number values
(wMin and wScale), along with a new integer value (the bits of quantization). However,
these are usually minor compared to the reduction in the number of bits used to rep-
resent the weight parameters. 

Quantization is a lossy transformation. Some information in the original weight val-
ues is lost as a result of the decreased precision. It is analogous to reducing the bit
depth of a 24-bit color image to an 8-bit one (the kind you may have seen on Nin-
tendo’s game consoles from the 1980s), the effect of which is easily visible to human
eyes. Figure 12.2 provides intuitive comparisons of the degree of discretization that
16-bit and 8-bit quantization lead to. As you might expect, 8-bit quantization leads to a
more coarse-grained representation of the original weights. Under 8-bit quantization,
there are only 256 possible values over the entire range of a weight’s parameters, as
compared with 65,536 possible values under 16-bit quantization. Both are dramatic
reductions in precision compared to the 32-bit float representation. 

Practically, does the loss of precision in weight parameters really matter? When it
comes to the deployment of a neural network, what matters is its accuracy on test data.

(continued)
In TensorFlow.js, weight quantization is performed on a weight-by-weight basis. For
example, if a neural network consists of four weight variables (such as the weights
and biases of two dense layers), each of the weights will undergo quantization as a
whole. The equation that governs quantization of a weight is

In this equation, B is the number of bits that the quantization result will be stored in.
It can be either 8 or 16, as currently supported by TensorFlow.js. wMin is the minimum
value of the parameters of the weight. wScale is the range of the parameters (the dif-
ference between the minimum and the maximum). The equation is valid, of course,
only when wScale is nonzero. In the special cases where wScale is zero—that is, when
all parameters of the weight have the same value—quantize(w) will return 0 for all w’s.

The two auxiliary values wMin and wScale are saved together with the quantized weight
values to support recovery of the weights (a process we refer to as dequantization)
during model loading. The equation that governs dequantization is as follows:

This equation is valid whether or not wScale is zero. 

quantize w  floor w wMin–  wScale 2B = (Equation 12.1)

dequantize v  v 2B wScale wMin+= (Equation 12.2)
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To answer this question, we compiled a number of models covering different types of
tasks in the quantization example of tfjs-examples. You can run the quantization
experiments there and see the effects for yourself. To check out the example, use

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/quantization
yarn

The example contains four scenarios, each showcasing a unique combination of a
dataset and the model applied on the dataset. The first scenario involves predicting
average housing prices in geographic regions of California by using numeric features
such as median age of the properties, total number of rooms, and so forth. The model
is a five-layer network that includes dropout layers for the mitigation of overfitting. To
train and save the original (nonquantized model), use this command:

yarn train-housing

The following command performs 16- and 8-bit quantization on the saved model and
evaluates how the two levels of quantization affect the model’s accuracy on a test set (a
subset of the data unseen during the model’s training):

yarn quantize-and-evaluate-housing

This command wraps a lot of actions inside for ease of use. However, the key step that
actually quantizes the model can be seen in the shell script at quantization/quantize_
evaluate.sh. In the script, you can see the following shell command that quantizes a
model at the path MODEL_JSON_PATH with 16-bit quantization. You can follow the exam-
ple of this command to quantize your own TensorFlow.js-saved models. If the option flag
--quantization_bytes is set to 1 instead, 8-bit quantization will be performed:

tensorflowjs_converter \
      --input_format tfjs_layers_model \

A. B. C.

Figure 12.2 Examples of 16-bit and 8-bit weight quantization. An original identity function (y = x, panel A) is 
reduced in size with 16-bit and 8-bit quantization; the results are shown in panels B and C, respectively. In order 
to make the quantization effects visible on the page, we zoom in on a small section of the identity function in the 
vicinity of x = 0.
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      --output_format tfjs_layers_model \
      --quantization_bytes 2 \
    "${MODEL_JSON_PATH}" "${MODEL_PATH_16BIT}"

The previous command shows how to perform weight quantization on a model
trained in JavaScript. tensorflowjs_converter also supports weight quantization
when converting models from Python to JavaScript, the details of which are shown in
info box 12.2.

The detailed accuracy values you get will vary slightly from run to run due to the ran-
dom initialization of weights and the random shuffling of data batches during train-
ing. However, the general conclusion should always hold: as shown by the first row of
table 12.1, 16-bit quantization on weights leads to miniscule changes in the MAE of
the housing-price prediction, while 8-bit quantization leads to a relatively larger (but
still tiny in absolute terms) increase in the MAE.

Table 12.1 Evaluation accuracies for four different models with post-training weight quantization

Dataset and model

Evaluation loss and accuracy under no-quantization and 
different levels of quantization

32-bit full precision 
(no quantization)

16-bit quantization 8-bit quantization

California housing: MLP 
regressor

MAEa = 0.311984 MAE = 0.311983 MAE = 0.312780

MNIST: convnet Accuracy = 0.9952 Accuracy = 0.9952 Accuracy = 0.9952

Fashion-MNIST:  convnet Accuracy = 0.922 Accuracy = 0.922 Accuracy = 0.9211

ImageNet subset of 1,000:
MobileNetV2

Top-1 accuracy = 0.618
Top-5 accuracy = 0.788

Top-1 accuracy = 0.624
Top-5 accuracy = 0.789

Top-1 accuracy = 0.280
Top-5 accuracy = 0.490

a. The MAE loss function is used on the California-housing model. Lower is better for MAE, unlike accuracy.

INFO BOX 12.2 Weight quantization and models from Python
In chapter 5, we showed how models from Keras (Python) can be converted to a format
that can be loaded and used by TensorFlow.js. During such Python-to-JavaScript conver-
sion, you can apply weight quantization. To do that, use the same --quantization_
bytes flag as described in the main text. For example, to convert a model in the HDF5
(.h5) format saved by Keras with 16-bit quantization, use the following command:

tensorflowjs_converter \
      --input_format keras \
      --output_format tfjs_layers_model \
      --quantization_bytes 2 \
      "${KERAS_MODEL_H5_PATH}" "${TFJS_MODEL_PATH}"

In this command, KERAS_MODEL_H5_PATH is the path to the model exported by Keras,
while TFJS_MODEL_PATH is the path to which the converted and weight-quantized
model will be generated.
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The second scenario in the quantization example is based on the familiar MNIST
dataset and deep convnet architecture. Similar to the housing experiment, you can
train the original model and perform evaluation on quantized versions of it by using
the following commands:

yarn train-mnistyarn quantize-and-evaluate-mnist

As the second row of table 12.1 shows, neither the 16-bit nor 8-bit quantization leads
to any observable change in the model’s test accuracy. This reflects the fact that the
convnet is a multiclass classifier, so small deviations in its layer output values may not
alter the final classification result, which is obtained with an argMax() operation.

Is this finding representative of image-oriented multiclass classifiers? Keep in mind
that MNIST is a relatively easy classification problem. Even a simple convnet like the
one used in this example achieves near-perfect accuracy. How does quantization affect
accuracies when we are faced with a harder image-classification problem? To answer
this question, look at the two other scenarios in the quantization example.

Fashion-MNIST, which you encountered in the section on variational autoencoders
in chapter 10, is a harder problem that MNIST. By using the following commands, you
can train a model on the Fashion-MNIST dataset and examine how 16- and 8-bit quan-
tization affects its test accuracy:

yarn train-fashion-mnist
yarn quantize-and-evaluate-fashion-mnist

The result, which is shown in the third row of table 12.1, indicates that there is a small
decrease in the test accuracy (from 92.2% to 92.1%) caused by 8-bit quantization of
the weights, although 16-bit quantization still leads to no observable change.

An even harder image-classification problem is the ImageNet classification prob-
lem, which involves 1,000 output classes. In this case, we download a pretrained
MobileNetV2 instead of training one from scratch, like we do in the other three sce-
narios in this example. The pretrained model is evaluated on a sample of 1,000
images from the ImageNet dataset, in its nonquantized and quantized forms. We
opted not to evaluate the entire ImageNet dataset because the dataset itself is huge
(with millions of images), and the conclusion we’d draw from that wouldn’t be much
different. 

To evaluate the model’s accuracy on the ImageNet problem in a more comprehen-
sive fashion, we calculate both the top-1 and top-5 accuracies. Top-1 accuracy is the
ratio of correct predictions when only the highest single logit output of the model is
considered, while top-5 accuracy counts a prediction as right if any of the highest five
logits includes the correct label. This is a standard approach in evaluating model accu-
racies on ImageNet because—due to the large number of class labels, some of which
are very close to each other—models often show the correct label not in the top logit,
but in one of the top-5 logits. To see the MobileNetV2 + ImageNet experiment in
action, use

yarn quantize-and-evaluate-MobileNetV2
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Unlike the previous three scenarios, this experiment shows a substantial impact of
8-bit on the test accuracy (see the fourth row of table 12.1). Both the top-1 and top-5
accuracies of the 8-bit quantized MobileNet are way below the original model, making
8-bit quantization an unacceptable size-optimization option for MobileNet. However,
16-bit quantized MobileNet still shows accuracies comparable to the nonquantized
model.9 We can see that the effect of quantization on accuracy depends on the model
and the data. For some models and tasks (such as our MNIST convnet), neither 16-bit
nor 8-bit quantization leads to any observable reduction in test accuracy. In these
cases, we should by all means use the 8-bit quantized model during deployment to
enjoy the reduced download time. For some models, such as our Fashion-MNIST con-
vnet and our housing-price regression model, 16-bit quantization leads to no observed
deterioration in accuracy, but 8-bit quantization does lead to a slight worsening of
accuracy. In such cases, use your judgment as to whether the additional 25% reduc-
tion in model size outweighs the decrease in accuracy. Finally, for some types of mod-
els and tasks (such as our MobileNetV2 classification of ImageNet images), 8-bit
quantization causes a large decrease in accuracy, which is probably unacceptable in
most cases. For such problems, you need to stick with the original model or the 16-bit
quantized version of it.

The cases in the quantization example are stock problems that may be somewhat
simplistic. The problem you have at hand may be more complex and very different
from those cases. The take-home message is that whether to quantize your model
before deploying it and to what bit depth you should quantize it are empirical ques-
tions and can be answered only on a case-by-case basis. You need to try out the quanti-
zation and test the resulting models on real test data before making a decision.
Exercise 1 at the end of this chapter lets you try your hand on the MNIST ACGAN we
trained in chapter 10 and decide whether 16-bit or 8-bit quantization is the right deci-
sion for such a generative model.

WEIGHT QUANTIZATION AND GZIP COMPRESSION

An additional benefit of 8-bit quantization that should be taken into account is the
additional over-the-wire model-size reduction it provides under data-compression
techniques such as gzip. gzip is widely used to deliver large files over the web. You
should always enable gzip when serving TensorFlow.js model files over the web. The
nonquantized float32 weights of a neural network are usually not very amenable to
such compression due to the noise-like variation in the parameter values, which con-
tains few repeating patterns. It is our observation that gzip typically can’t get more
than 10–20% size reduction out of nonquantized weights for models. The same is true
for models with 16-bit weight quantization. However, once a model’s weights undergo
8-bit quantization, there is often a considerable jump in the ratio of compression (up
to 30–40% for small models and about 20–30% for larger ones; see table 12.2). 

9 In fact, we can see small increases in accuracy, which are attributable to the random fluctuation on the rela-
tively small test set that consists of only 1,000 examples.
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This is due to the small number of bins available under the drastically reduced pre-
cision (only 256), which causes many values (such as the ones around 0) to fall into
the same bin, and hence leads to more repeating patterns in the weight’s binary repre-
sentation. This is an additional reason to favor 8-bit quantization in cases where it
doesn’t lead to unacceptable deterioration in test accuracy.

In summary, with post-training weight quantization, we can substantially reduce the
size of the TensorFlow.js models transferred over the wire and stored on disk, espe-
cially with help from data-compression techniques such as gzip. This benefit of
improved compression ratios requires no code change on the part of the developer, as
the browser performs the unzipping transparently for you when it downloads the
model files. However, it doesn’t change the amount of computation involved in exe-
cuting the model’s inference calls. Neither does it change the amount of CPU or GPU
memory consumption for such calls. This is because the weights are dequantized after
they are loaded (see equation 12.2 in info box 12.1). As regards the operations that
are run and the data types and shapes of the tensors output by the operations, there is
no difference between a nonquantized model and a quantized model. However, for
model deployment, an equally important concern is how to make a model that runs as
fast as possible, as well as make it consume as little memory as possible when it’s run-
ning, because that improves user experience and reduces power consumption. Are
there ways to make an existing TensorFlow.js model run faster when deployed, without
loss of prediction accuracy and on top of model-size optimization? Luckily, the answer
is yes. In the next section, we will focus on inference-speed optimization techniques
that TensorFlow.js provides. 

Table 12.2 The gzip compression ratios of model artifacts under different levels of quantization

Dataset and model

gzip compression ratioa

32-bit full precision 
(no quantization)

16-bit quantization 8-bit quantization

California-housing: MLP 
regressor

1.121 1.161 1.388

MNIST: convnet 1.082 1.037 1.184

Fashion-MNIST:  convnet 1.078 1.048 1.229

ImageNet subset of 1,000:
MobileNetV2

1.085 1.063 1.271

a. (total size of the model.json and weight file)/(size of gzipped tar ball)
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12.2.2 Inference-speed optimization using GraphModel conversion

This section is organized as follows. We will first present the steps involved in optimiz-
ing the inference speed of a TensorFlow.js model using the GraphModel conversion.
We will then list detailed performance measurements that quantify the speed gain
provided by this approach. Finally, we will explain how the GraphModel conversion
approach works under the hood.

Suppose you have a TensorFlow.js model saved at the path my/layers-model; you
can use the following command to convert it to a tf.GraphModel:

tensorflowjs_converter \
      --input_format tfjs_layers_model \
      --output_format tfjs_graph_model \
      my/layers-model my/graph-

model

This command creates a model.json file under the output directory my/graph-model
(the directory will be created if it doesn’t exist), along with a number of binary weight
files. Superficially, this set of files may appear to be identical in format to the files in
the input directory that contains the serialized tf.LayersModel. However, the output
files encode a different kind of model called tf.GraphModel (the namesake of this
optimization method). In order to load the converted model in the browser or
Node.js, use the TensorFlow.js method tf.loadGraphModel() instead of the familiar
tf.loadLayersModel(). Once the tf.GraphModel object is loaded, you can
perform inference in exactly the same way as a tf.LayersModel by invoking the
object’s predict() method. For example,

const model = await tf.loadGraphModel('file://./my/graph-model/model.json');
   const ys = model.predict(xs);  

The enhanced inference speed comes with two limitations: 

 At the time of this writing, the latest version of TensorFlow.js (1.1.2) does not
support recurrent layers such as tf.layers.simpleRNN(), tf.layers.gru(),
and tf.layers.lstm() (see chapter 9) for GraphModel conversion. 

 The loaded tf.GraphModel object doesn’t have a fit() method and hence
does not support further training (for example, transfer learning). 

Table 12.3 compares the inference speed of the two types of models with and without
GraphModel conversion. Since GraphModel conversion does not support recurrent layers
yet, only the results from an MLP and a convnet (MobileNetV2) are presented. To cover
different deployment environments, the table presents results from both the web
browser and tfjs-node running in the backend environment. From this table, we can see
that GraphModel conversion invariably speeds up inference. However, the ratio of the
speedup depends on model type and deployment environment. For the browser
(WebGL) deployment environment, GraphModel conversion leads to a 20–30%
speedup, while the speedup is more dramatic (70–90%) if the deployment environment

Or use an http:// or https:// URL if 
loading the model in the browser.

Perform inference using 
input data 'xs'.
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is Node.js. Next, we will discuss why GraphModel conversion speeds up inference, as
well as the reason why it speeds up the inference more for Node.js than for the browser
environment.

HOW GRAPHMODEL CONVERSION SPEEDS UP MODEL INFERENCE

How does GraphModel conversion boost TensorFlow.js models’ inference speed? It’s
achieved by leveraging TensorFlow (Python)’s ahead-of-time analysis of the model’s
computation graph at a fine granularity. The computation-graph analysis is followed by
modifications to the graph that reduce the amount of computation while preserving
the numeric correctness of the graph’s output result. Don’t be intimidated by terms
such as ahead-of-time analysis and fine granularity. We will explain them in a bit. 

To give a concrete example of the sort of graph modification we are talking about,
let’s consider how a BatchNormalization layer works in a tf.LayersModel and a
tf.GraphModel. Recall that BatchNormalization is a type of layer that improves conver-
gence and reduces overfitting during training. It is available in the TensorFlow.js API as
tf.layers.batchNormalization() and is used by popular pretrained models such as
MobileNetV2. When a BatchNormalization layer runs as a part of a tf.LayersModel,
the computation follows the mathematical definition of batch normalization closely:

Six operations (or ops) are needed in order to generate the output from the input
(x), in the rough order of

1 sqrt, with var as input
2 add, with epsilon and the result of step 1 as inputs

Table 12.3 Comparing the inference speed of two model types (an MLP and MobileNetV2) with and without
GraphModel conversion optimization, and in different deployment environmentsa

Model 
name and 
topology

predict() time (ms; lower is better)
(Average over 30 predict() calls preceded by 20 warm-up calls)

Browser WebGL tfjs-node (CPU only) tfjs-node-gpu

LayersModel GraphModel LayersModel GraphModel LayersModel GraphModel

MLPb 13 10 (1.3x) 18 10 (1.8x) 3 1.6 (1.9x)

Mobile-
NetV2 
(width = 
1.0)

68 57 (1.2x) 187 111 (1.7x) 66 39 (1.7x)

a. The code with which these results were obtained is available at https://github.com/tensorflow/tfjs/tree/master/tfjs/integration_
tests/.
b. The MLP consists of dense layers with unit counts: 4,000, 1,000, 5,000, and 1. The first three layers have relu activation; the last 
has linear activation.

output x mean–  sqrt var  epsilon+  gamma beta+=
(Equation 12.3)
 

https://github.com/tensorflow/tfjs/tree/master/tfjs/integration_tests/
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3 sub, with x and means as inputs
4 div, with the results of steps 2 and 3 as inputs
5 mul, with gamma and the result of step 4 as inputs
6 add, with beta and the result of step 5 as inputs

Based on simple arithmetic rules, it can be seen that equation 12.3 can be simplified sig-
nificantly, as long as the values of mean, var, epsilon, gamma, and beta are constant (do
not change with the input or with how many times the layer has been invoked). After a
model comprising a BatchNormalization layer is trained, all these variables indeed
become constant. This is exactly what GraphModel conversion does: it “folds” the
constants and simplifies the arithmetic, which leads to the following mathematically
equivalent equation:

The values of k and b are calculated during GraphModel conversion, not during
inference: 

Therefore, equations 12.5 and 12.6 do not factor into the amount of computation
during inference; only equation 12.4 does. Contrasting equations 12.3 and 12.4, you
can see that the constant folding and arithmetic simplification cut the number of
operations from six to two (a mul op between x and k and an add op between b and the
result of that mul operation), which leads to considerable speedup of this layer’s exe-
cution. But why does tf.LayersModel not perform this optimization? It’s because it
needs to support training of the BatchNormalization layer, during which the values of
mean, var, gamma, and beta are updated at every step of the training. GraphModel con-
version takes advantage of the fact that these updated values are no longer required
once the model training is complete.

The type of optimization seen in the BatchNormalization example is only possible
if two requirements are met. First, the computation must be represented at a suffi-
ciently fine granularity—that is, at the level of basic mathematical operations such as
add and mul, instead of the coarser, layer-by-layer granularity at which the Layers API
of TensorFlow.js resides. Second, all the computation is known ahead of time, before
the calls to the model’s predict() method are executed. GraphModel conversion goes
through TensorFlow (Python), which has access to a graph representation of the
model that meets both criteria.

Apart from the constant-folding and arithmetic optimization discussed previously,
GraphModel conversion is capable of performing another type of optimization called
op fusion. Take the frequently used dense layer type (tf.layers.dense()), for exam-
ple. A dense layer involves three operations: a matrix multiplication (matMul) between
the input x and the kernel W, a broadcasting addition between the result of the

output x *k b+= (Equation 12.4)

k gamma sqrt(var) epsilon+ = (Equation 12.5)

b mean– sqrt var  epsilon+  gamma beta+= (Equation 12.6)
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matMul and the bias (b), and the element-wise relu activation function (figure 12.3,
panel A). The op fusion optimization replaces the three separate operations with a
single operation that carries out all the equivalent steps (figure 12.3, panel B). This
replacement may seem trivial, but it leads to faster computation due to 1) the reduced
overhead of launching ops (yes, launching an op always involves a certain amount of
overhead, regardless of the compute backend), and 2) more opportunity to perform
smart tricks for speed optimization within the implementation of the fused op itself. 

How is op fusion optimization different from the constant folding and arithmetic sim-
plification we just saw? Op fusion requires that the special fused op (Fused
matMul+relu, in this case) be defined and available for the compute backend being
used, while constant folding doesn’t. These special fused ops may be available only for
certain compute backends and deployment environments. This is the reason why we
saw a greater amount of inference speedup in the Node.js environment than in the
browser (see table 12.3). The Node.js compute backend, which uses libtensorflow
written in C++ and CUDA, is equipped with a richer set of ops than TensorFlow.js’s
WebGL backend in the browser. 

Apart from constant folding, arithmetic simplification, and op fusion, TensorFlow
(Python)’s graph-optimization system Grappler is capable of a number of other kinds
of optimizations, some of which may be relevant to how TensorFlow.js models are opti-
mized through GraphModel conversion. However, we won’t cover those due to space
limits. If you are interested in finding out more about this topic, you can read the
informative slides by Rasmus Larsen and Tatiana Shpeisman listed at the end of this
chapter.

In summary, GraphModel conversion is a technique provided by tensorflowjs_
converter. It utilizes TensorFlow (Python)’s ahead-of-time graph-optimization capa-
bility to simplify computation graphs and reduce the amount of computation
required for model inference. Although the detailed amount of inference speedup
varies with model type and compute backend, it usually provides a speedup ratio of
20% or more, and hence is an advisable step to perform on your TensorFlow.js models
before their deployment.
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INFO BOX 12.3 How to properly measure a TensorFlow.js model’s 
inference time
Both tf.LayersModel and tf.GraphModel provide the unified predict() method
to support inference. This method takes one or more tensors as input and returns
one or more tensors as the inference result. However, it is important to note that in
the context of WebGL-based inference in the web browser, the predict() method
only schedules operations to be executed on the GPU; it does not await the comple-
tion of their execution. As a result, if you naively time a predict() call in the follow-
ing fashion, the result of the timing measurement will be wrong:

console.time('TFjs inference');
const outputTensor = model.predict(inputTensor);
console.timeEnd('TFjs inference');

When predict() returns, the scheduled operations may not have finished executing.
Therefore, the prior example will lead to a time measurement shorter than the actual
time it takes to complete the inference. To ensure that the operations are completed
before console.timeEnd() is called, you need to call one of the following methods
of the returned tensor object: array() or data(). Both methods download the tex-
ture values that hold the elements of the output tensor from GPU to CPU. In order to
do so, they must wait for the output tensor’s computation to finish. So, the correct
way to measure the timing looks like the following:

console.time('TFjs inference');
const outputTensor = model.predict(inputTensor);
await outputTensor.array();
console.timeEnd('TFjs inference');

Another important thing to bear in mind is that like all other JavaScript programs, the
execution time of a TensorFlow.js model’s inference is variable. In order to obtain a
reliable estimate of the inference time, the code in the previous snippet should be
put in a for loop so that the measurement can be performed multiple times (for
example, 50 times), and the average time can be calculated based on the accumu-
lated individual measurements. The first few executions are usually slower than the
subsequent ones due to the need to compile new WebGL shader programs and set
up initial states. So, performance-measuring code often omits the first few (such as
the first five) runs, which are referred to as burn-in or warm-up runs.

If you are interested in a deeper understanding of these performance-benchmarking
techniques, work through exercise 3 at the end of this chapter.

Incorrect way of measuring 
inference time!

The array() call won’t return until the 
scheduled computation of outputTensor has 
completed, hence ensuring the correctness of 
the inference-time measurement.
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12.3 Deploying TensorFlow.js models on various platforms 
and environments
You’ve optimized your model, it’s fast and lightweight, and all your tests are green.
You’re good to go! Hooray! But before you pop that champagne, there’s a bit more
work to do.

It’s time to put your model into your application and get it out in front of your user
base. In this section, we will cover a few deployment platforms. Deploying to the web
and deploying to a Node.js service are well-known paths, but we’ll also cover a few
more exotic deployment scenarios, like deploying to a browser extension or a single-
board embedded hardware application. We will point to simple examples and discuss
special considerations important for the platforms.

12.3.1 Additional considerations when deploying to the web

Let’s begin by revisiting the most common deployment scenario for TensorFlow.js
models, deploying to the web as part of a web page. In this scenario, our trained, and
possibly optimized, model is loaded via JavaScript from some hosting location, and
then the model makes predictions using the JavaScript engine within the user’s
browser. A good example of this pattern is the MobileNet image-classification exam-
ple from chapter 5. The example is also available to download from tfjs-examples/
mobilenet. As a reminder, the relevant code for loading a model and making a predic-
tion can be summarized as follows:

const MOBILENET_MODEL_PATH =
    'https://storage.googleapis.com/tfjs-

models/tfjs/mobilenet_v1_0.25_224/model.json';
const mobilenet = await tf.loadLayersModel(MOBILENET_MODEL_PATH);
const response = mobilenet.predict(userQueryAsTensor);

This model is hosted from a Google Cloud Platform (GCP) bucket. For low-traffic,
static applications like this one, it is easy to host the model statically alongside the rest
of the site content. Larger, higher-traffic applications may choose to host the model
through a content delivery network (CDN) alongside the other heavy assets. One
common development mistake is to forget to account for Cross-Origin Resource Shar-
ing (CORS) when setting up a bucket in GCP, Amazon S3, or other cloud services. If
CORS is set incorrectly, the model will fail to load, and you should get a CORS-related
error message delivered to the console. This is something to watch out for if your web
application works fine locally but fails when pushed to your distribution platform.

After the user’s browser loads the HTML and JavaScript, the JavaScript interpreter
will issue the call to load our model. The process of loading a small model takes a few
hundred milliseconds on a modern browser with a good internet connection, but
after the initial load, the model can be loaded much faster from the browser cache.
The serialization format ensures that the model is sharded into small enough pieces
to support the standard browser cache limit.
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One nice property of web deployment is that prediction happens directly within
the browser. Any data passed to the model is never sent over the wire, which is good
for latency and great for privacy. Imagine a text-input prediction scenario where the
model is predicting the next word for assistive typing, something that we see all the
time in, for example, Gmail. If we need to send the typed text to servers in the cloud
and wait for a response from those remote servers, then prediction will be delayed,
and the input predictions will be much less useful. Furthermore, some users might
consider sending their incomplete keystrokes to a remote computer an invasion of
their privacy. Making predictions locally in their own browser is much more secure
and privacy sensitive.

A downside of making predictions within the browser is model security. Sending
the model to the user makes it easy for the user to keep the model and use it for other
purposes. TensorFlow.js currently (as of 2019) does not have a solution for model
security in the browser. Some other deployment scenarios make it harder for the user
to use the model for purposes the developer didn’t intend. The distribution path with
the greatest model security is to keep the model on servers you control and serve pre-
diction requests from there. Of course, this comes at the cost of latency and data pri-
vacy. Balancing these concerns is a product decision. 

12.3.2 Deployment to cloud serving

Many existing production systems provide machine-learning-trained prediction as a
service, such as Google Cloud Vision AI (https://cloud.google.com/vision) or Micro-
soft Cognitive Services (https://azure.microsoft.com/en-us/services/ cognitive-ser-
vices). The end user of such a service makes HTTP requests containing the input
values to the prediction, such as an image for an object-detection task, and the
response encodes the output of the prediction, such as the labels and positions of
objects in the image.

As of 2019, there are two routes to serving a TensorFlow.js model from a server.
The first route has the server running Node.js and performing the prediction using
the native JavaScript runtime. Because TensorFlow.js is so new, we are not aware of
production use cases that have chosen this approach, but proofs of concept are simple
to build.

The second route is to convert the model from TensorFlow.js into a format that can
be served from a known existing server technology, such as the standard TensorFlow
Serving system. From the documentation at www.tensorflow.org/tfx/guide/serving:

TensorFlow Serving is a flexible, high-performance serving system for machine-learning
models, designed for production environments. TensorFlow Serving makes it easy to
deploy new algorithms and experiments, while keeping the same server architecture and
APIs. TensorFlow Serving provides out-of-the-box integration with TensorFlow models,
but can be easily extended to serve other types of models and data.

The TensorFlow.js models we have serialized so far have been stored in a JavaScript-
specific format. TensorFlow Serving expects models to be packaged in the TensorFlow
 

https://cloud.google.com/vision
https://azure.microsoft.com/en-us/services/cognitive-services
https://azure.microsoft.com/en-us/services/cognitive-services
www.tensorflow.org/tfx/guide/serving
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standard SavedModel format. Fortunately, the tfjs-converter project makes it easy to
convert to the necessary format.

In chapter 5 (transfer learning) we showed how SavedModels built with the Python
implementation of TensorFlow could be used in TensorFlow.js. To do the reverse, first
install the tensorflowjs pip package:

pip install tensorflowjs

Next, you must run the converter binary, specifying the input:

tensorflowjs_converter \
    --input_format=tfjs_layers_model \
    --output_format=keras_saved_model \
    /path/to/your/js/model.json \
    /path/to/your/new/saved-model

This will create a new saved-model directory, which will contain the required topology
and weights in a format that TensorFlow Serving understands. You should then be able
to follow the instructions for building the TensorFlow Serving server and make gRPC
prediction requests against the running model. Managed solutions also exist. For
instance, Google Cloud Machine Learning Engine provides a path for you to upload
your saved model to Cloud Storage and then set up serving as a service, without need-
ing to maintain the server or the machine. You can learn more from the documenta-
tion at https://cloud.google.com/ml-engine/docs/tensorflow/deploying-models. 

The advantage of serving your model from the cloud is that you are in complete
control of the model. It is easy to perform telemetry on what sorts of queries are being
performed and to quickly detect problems. If it is discovered that there is some
unforeseen problem with a model, it can be quickly removed or upgraded, and there
is little risk of other copies on machines outside of your control. The downside is the
additional latency and data privacy concerns, as mentioned. There is also the addi-
tional cost—both in monetary outlay and maintenance costs—in operating a cloud
service, as you are in control of the system configuration.

12.3.3 Deploying to a browser extension, like Chrome Extension

Some client-side applications may require your application to be able to work across
many different websites. Browser extension frameworks are available for all the major
desktop browsers, including Chrome, Safari, and FireFox, among others. These
frameworks enable developers to create experiences that modify or enhance the
browsing experience itself by adding new JavaScript and manipulating the DOM of
websites.

Since the extension is operating on top of JavaScript and HTML within the
browser’s execution engine, what you can do with TensorFlow.js in a browser exten-
sion is similar to what is possible in a standard web page deployment. The model secu-
rity story and data privacy story are identical to the web page deployment. By
performing prediction directly within the browser, the users’ data is relatively secure.
The model security story is also similar to that of web deployment. 
 

https://cloud.google.com/ml-engine/docs/tensorflow/deploying-models
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As an example of what is possible using a browser extension, see the chrome-
extension example within tfjs-examples. This extension loads a MobileNetV2 model
and applies it to images on the web, selected by the user. Installing and using the
extension is a little different from the other examples we have seen, since it is an
extension, not a hosted website. This example requires the Chrome browser.10

First, you must download and build the extension, similar to how you might build
one of the other examples:

git clone https://github.com/tensorflow/tfjs-examples.git
cd tfjs-examples/chrome-extension
yarn
yarn build

After the extension has finished building, it is possible to load the unpacked exten-
sion in Chrome. To do so, you must navigate to chrome://extensions, enable devel-
oper mode, and then click Load Unpacked, as shown in figure 12.4. This will bring up
a file-selection dialog, where you must select the dist directory created under the
chrome-extension directory. That’s the directory containing manifest.json. 

Once the extension is installed, you should be able to classify images in the browser.
To do so, navigate to some site with images, such as the Google image search page for
the term tiger used here. Then right-click the image you wish to classify. You should see
a menu option for Classify Image with TensorFlow.js. Clicking that menu option should
cause the extension to execute the MobileNet model on the image and then add some
text over the image, indicating the prediction (see figure 12.5.)

10 Newer versions of Microsoft Edge also offer some support for cross-browser extension loading.

Figure 12.4 Loading the TensorFlow.js MobileNet Chrome extension in developer mode
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To remove the extension, click Remove on the Extensions page (see figure 12.4), or use the
Remove from Chrome menu option when right-clicking the extension icon at top-right.

Note that the model running in the browser extension has access to the same hard-
ware acceleration as the model running in the web page and, indeed, uses much of
the same code. The model is loaded with a call to tf.loadGraphModel(...) using a
suitable URL, and predictions are made using the same model.predict(...) API
we’ve seen. Migrating technology or a proof of concept from a web page deployment
into a browser extension is relatively easy.

12.3.4 Deploying TensorFlow.js models in JavaScript-based mobile applications

For many products, the desktop browser does not provide enough reach, and the
mobile browser does not provide the smoothly animated customized product experi-
ence that customers have come to expect. Teams working on these sorts of projects
are often faced with the dilemma of how to manage the codebase for their web app
alongside repositories for (typically) both Android (Java or Kotlin) and iOS (Objec-
tive C or Swift) native apps. While very large groups can support such an outlay, many
developers are increasingly choosing to reuse much of their code across these deploy-
ments by leveraging hybrid cross-platform development frameworks.

Figure 12.5 The TensorFlow.js MobileNet Chrome extension helps classify images in a web page.
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Cross-platform app frameworks, like React
Native, Ionic, Flutter, and Progressive Web-
Apps, enable you to write the bulk of an appli-
cation once in a common language and then
compile that core functionality to create native
experiences with the look, feel, and perfor-
mance that users expect. The cross-platform
language/runtime handles much of the busi-
ness logic and layout, and connects to native
platform bindings for the standardized affor-
dance visuals and feel. How to select the right
hybrid app development framework is the
topic of countless blogs and videos on the web,
so we will not revisit that discussion here, but
will rather focus on just one popular frame-
work, React Native. Figure 12.6 illustrates a min-
imal React Native app running a MobileNet
model. Notice the lack of any browser top bar.
Though this simple app doesn’t have UI ele-
ments, if it did, you would see that they match
the native Android look and feel. The same
app built for iOS would match those elements.

Happily, the JavaScript runtime within
React Native supports TensorFlow.js natively
without any special work. The tfjs-react-native
package is still in alpha release (as of Decem-
ber 2019) but provides GPU support with
WebGL via expo-gl. The user code looks like
the following:

import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-react-native';

The package also provides a special API for assisting with loading and saving model
assets within the mobile app.

import * as tf from '@tensorflow/tfjs';
import {asyncStorageIO} from '@tensorflow/tfjs-react-native';

async trainSaveAndLoad() {
   const model = await train();
   await model.save(asyncStorageIO(
       'custom-model-test'))
   model.predict(tf.tensor2d([5], [1, 1])).print();

Listing 12.2 Loading and saving a model within a mobile app built with React-Native

Saves the model to AsyncStorage—a simple 
key-value storage system global to the app

Figure 12.6 A screenshot from a sample 
native Android app built with React Native. 
Here, we are running a TensorFlow.js 
MobileNet model within the native app.
 



445Deploying TensorFlow.js models on various platforms and environments
   const loadedModel =
     await tf.loadLayersModel(asyncStorageIO(
         'custom-model-test'));
   loadedModel.predict(tf.tensor2d([5], [1, 1])).print();
 }

While native app development through React Native still requires learning a few new
tools, such as Android Studio for Android and XCode for iOS, the learning curve is
shallower than diving straight into native development. That these hybrid app devel-
opment frameworks support TensorFlow.js means that the machine-learning logic can
live in a single codebase rather than requiring us to develop, maintain, and test a sep-
arate version for each hardware surface—a clear win for developers who wish to sup-
port the native app experience! But what about the native desktop experience?

12.3.5 Deploying TensorFlow.js models in JavaScript-based 
cross-platform desktop applications

JavaScript frameworks such as Electron.js allow desktop applications to be written in a
cross-platform manner reminiscent of cross-platform mobile applications written in
React Native. With such frameworks, you need to write your code only once, and it can
be deployed and run on mainstream desktop operating systems, including macOS,
Windows, and major distributions of Linux. This greatly simplifies the traditional
development workflow of maintaining separate codebases for largely incompatible
desktop operating systems. Take Electron.js, the leading framework in this category,
for example. It uses Node.js as the virtual machine that undergirds the application’s
main process; for the GUI portion of the app, it uses Chromium, a full-blown and yet
lightweight web browser that shares much of its code with Google Chrome.

TensorFlow.js is compatible with Electron.js, as is demonstrated by the simple
example in the tfjs-examples repository. This example, found in the electron direc-
tory, illustrates how to deploy a TensorFlow.js model for inference in an Electron.js-
based desktop app. The app allows users to search the filesystem for image files that
visually match one or more keywords (see the screenshot in figure 12.7). This search
process involves applying a TensorFlow.js MobileNet model for inference on a direc-
tory of images.

Despite its simplicity, this example app illustrates an important consideration in
deploying TensorFlow.js models to Electron.js: the choice of the compute backend.
An Electron.js application runs on a Node.js-based backend process as well as a
Chromium-based frontend process. TensorFlow.js can run in either of those environ-
ments. As a result, the same model can run in either the application’s node-like back-
end process or the browser-like frontend process. In the case of backend deployment,
the @tensorflow/tfjs-node package is used, while the @tensorflow/tfjs package is used
for the frontend case (figure 12.8). A check box in the example application’s GUI
allows you to switch between the backend and frontend inference modes (figure
12.7), although in an actual application powered by Electron.js and TensorFlow.js, you

Loads the model 
from AsyncStorage
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would normally decide on one environment for your model beforehand. We will next
briefly discuss the pros and cons of the options.

As figure 12.8 shows, different choices of the compute backend cause the deep-
learning computation to happen on different computation hardware. Backend
deployment based on @tensorflow/tfjs-node assigns the workload to the CPU, lever-
aging the multithreaded and SIMD-enabled libtensorflow library. This Node.js-based
model-deployment option is usually faster than the frontend option and can accom-
modate larger models due to the fact that the backend environment is free of
resource restrictions. However, their major downside is the large package size, which
is a result of the large size of libtensorflow (for tfjs-node, approximately 50 MB with
compression).

The frontend deployment dispatches deep-learning workloads to WebGL. For
small-to-medium-sized models, and in cases where the latency of inference is not of
major concern, this is an acceptable option. This option leads to a smaller package
size, and it works out of the box for a wide range of GPUs, thanks to the wide support
for WebGL. 

As figure 12.8 also illustrates, the choice of compute backend is a largely separate
concern from the JavaScript code that loads and runs your model. The same API
works for all three options. This is clearly demonstrated in the example app, where
the same module (ImageClassifier in electron/image_classifier.js) subserves the

Figure 12.7 A screenshot from the example Electron.js-based desktop 
application that utilizes a TensorFlow.js model, from tfjs-examples/electron
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inference task in both the backend and frontend environments. We should also point
out that although the tfjs-examples/electron example shows only inference, you can
certainly use TensorFlow.js for other deep-learning workflows, such as model creation
and training (for example, transfer learning) in Electron.js apps equally well.

12.3.6 Deploying TensorFlow.js models on WeChat and 
other JavaScript-based mobile app plugin systems

There are some places where the main mobile-app-distribution platform is neither
Android’s Play Store nor Apple’s App Store, but rather a small number of “super
mobile apps” that allow for third-party extensions within their own first-party curated
experience.

A few of these super mobile apps come from Chinese tech giants, notably Tencent’s
WeChat, Alibaba’s Alipay, and Baidu. These use JavaScript as their main technology to
enable the creation of third-party extensions, making TensorFlow.js a natural fit for
deploying machine learning on their platform. The set of APIs available within these
mobile app plugin systems is not the same as the set available in native JavaScript, how-
ever, so some additional knowledge and work is required to deploy there.

GPUCPU

Chromium browser

WebGL

Electron.js
application layer 

TensorFlow.js
API layer

TensorFlow.js
backend layer

Compute hardware
layer

TensorFlow.js
WebGL backend

tfjs-node
libtensorflow

Shared TensorFlow.js
user code

Main process
(backend)

Renderer process
(Chromium)

Figure 12.8 The architecture of an Electron.js-based desktop application that utilizes 
TensorFlow.js for accelerated deep learning. Different compute backends of TensorFlow.js can 
be invoked, from either the main backend process or the in-browser renderer process. Different 
compute backends cause models to be run on different underlying hardware. Regardless of the 
choice of compute backend, the code that loads, defines, and runs deep-learning models in 
TensorFlow.js is largely the same. The arrowheads in this diagram indicate invocation of library 
functions and other callable routines.
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Let’s use WeChat as an example. WeChat is the most widely used social media app
in China, with over 1 billion monthly active users. In 2017, WeChat launched Mini
Program, a platform for application developers to create JavaScript mini-programs
within the WeChat system. Users can share and install these mini-programs inside the
WeChat app on-the-fly, and it’s been a tremendous success. By Q2 2018, WeChat had
more than 1 million mini-programs and over 600 million daily active mini-program
users. There are also more than 1.5 million developers who are developing applica-
tions on this platform, partly because of the popularity of JavaScript. 

WeChat mini-program APIs are designed to provide developers easy access to
mobile device sensors (the camera, microphone, accelerometer, gyroscope, GPS, and
so on). However, the native API provides very limited machine-learning functionality
built into the platform. TensorFlow.js brings several advantages as a machine-learning
solution for mini-programs. Previously, if developers wanted to embed machine learn-
ing in their applications, they needed to work outside the mini-program development
environment with a server-side or cloud-based machine-learning stack. Doing so
makes the barrier high for the large number of mini-program developers to build and
use machine learning. Standing up an external serving infrastructure is outside of the
scope of possibilities for most mini-program developers. With TensorFlow.js, machine-
learning development happens right within the native environment. Furthermore,
since it is a client-side solution, it helps reduce network traffic and improves latency,
and it takes advantage of GPU acceleration using WebGL. 

The team behind TensorFlow.js has created a WeChat mini-program you can use to
enable TensorFlow.js for your mini-program (see https://github.com/tensorflow/tfjs-
wechat). The repository also contains an example mini-program that uses PoseNet to
annotate the positions and postures of people sensed by the mobile device’s camera.
It uses TensorFlow.js accelerated by a newly added WebGL API from WeChat. Without
access to the GPU, the model would run too slowly to be useful for most applications.
With this plugin, a WeChat mini-program can have the same model execution perfor-
mance as a JavaScript app running inside mobile browsers. In fact, we have observed
that the WeChat sensor API typically outperforms the counterpart in the browser.

As of late 2019, developing machine-learning experiences for super app plugins is
still very new territory. Getting high performance may require some help from the
platform maintainers. Still, it is the best way to deploy your app in front of the hun-
dreds of millions of people for whom the super mobile app is the internet.

12.3.7 Deploying TensorFlow.js models on single-board computers

For many web developers, deploying to a headless single-board computer sounds very
technical and foreign. However, thanks to the success of the Raspberry Pi, developing
and building simple hardware devices has never been easier. Single-board computers
provide a platform to inexpensively deploy intelligence without depending on net-
work connections to cloud servers or bulky, costly computers. Single-board computers
can be used to back security applications, moderate internet traffic, control irriga-
tion—the sky’s the limit.
 

https://github.com/tensorflow/tfjs-wechat
https://github.com/tensorflow/tfjs-wechat
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Many of these single-board computers provide general-purpose input-output
(GPIO) pins to make it easy to connect to physical control systems, and include a full
Linux install to allow educators, developers, and hackers to develop a wide range of
interactive devices. JavaScript has quickly become a popular language for building on
these types of devices. Developers can use node libraries such as rpi-gpio to interact
electronically at the lowest level, all in JavaScript.

To help support these users, TensorFlow.js currently has two runtimes on these
embedded ARM devices: tfjs-node (CPU11) and tfjs-headless-nodegl (GPU). The
entire TensorFlow.js library runs on these devices through those two backends. Devel-
opers can run inference using off-the-shelf models or train their own, all on the device
hardware!

The release of recent devices such as the NVIDIA Jetson Nano and Raspberry Pi 4
brings a system-on-chip (SoC) with a modern graphics stack. The GPU on these
devices can be leveraged by the underlying WebGL code used in core TensorFlow.js.
The headless WebGL package (tfjs-backend-nodegl) allows users to run TensorFlow.js
on Node.js purely accelerated by the GPU on these devices (see figure 12.9). By dele-
gating the execution of TensorFlow.js to the GPU, developers can continue to utilize
the CPU for controlling other parts of their devices.

11 If you are looking to utilize the CPU with ARM NEON acceleration, you should use the tfjs-node package on
these devices. This package ships support for both ARM32 and ARM64 architectures.

Figure 12.9 TensorFLow.js executing MobileNet using headless WebGL on a Raspberry Pi 4
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Model security and data security are very strong for the single-board computer deploy-
ment. Computation and actuation are handled directly on the device, meaning data
does not need to go to a device outside of the owner’s control. Encryption can be used
to guard the model even if the physical device is compromised. 

Deployment to single-board computers is still a very new area for JavaScript in gen-
eral, and TensorFlow.js in particular, but it unlocks a wide range of applications that
other deployment areas are unsuitable for.

12.3.8 Summary of deployments

In this section, we’ve covered several different ways to get your TensorFlow.js machine-
learning system out in front of the user base (table 12.4 summarizes them). We hope
we’ve kindled your imagination and helped you dream about radical applications of
the technology! The JavaScript ecosystem is vast and wide, and in the future, machine-
learning-enabled systems will be running in areas we couldn’t even dream of today. 

Materials for further reading
 Denis Baylor et al., “TFX: A TensorFlow-Based Production-Scale Machine

Learning Platform,” KDD 2017, www.kdd.org/kdd2017/papers/view/tfx-a-
tensorflow-based-production-scale-machine-learning-platform.

 Raghuraman Krishnamoorthi, “Quantizing Deep Convolutional Networks
for Efficient Inference: A Whitepaper,” June 2018, https://arxiv.org/pdf/
1806.08342.pdf.

 Rasmus Munk Larsen and Tatiana Shpeisman, “TensorFlow Graph Optimiza-
tion,” https://ai.google/research/pubs/pub48051.

Table 12.4 Target environments to which TensorFlow.js models can be deployed, and the hardware
accelerator each environment can use

Deployment Hardware accelerator support

Browser WebGL

Node.js server CPU with multithreading and SIMD support; CUDA-
enabled GPU

Browser plugin WebGL

Cross-platform desktop app (such as Electron) WebGL, CPU with multithreading and SIMD support, or 
CUDA-enabled GPU

Cross-platform mobile app (such as React 
Native)

WebGL

Mobile-app plugin (such as WeChat) Mobile WebGL

Single-board computer (such as Raspberry Pi) GPU or ARM NEON
 

www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform
www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform
www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform
https://arxiv.org/pdf/1806.08342.pdf
https://arxiv.org/pdf/1806.08342.pdf
https://arxiv.org/pdf/1806.08342.pdf
https://ai.google/research/pubs/pub48051
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Exercises
1 Back in chapter 10, we trained an Auxiliary Class GAN (ACGAN) on the MNIST

dataset to generate fake MNIST digit images by class. Specifically, the example
we used is in the mnist-acgan directory of the tfjs-examples repository. The gen-
erator part of the trained model has a total size of about 10 MB, most of which
is occupied by the weights stored as 32-bit floats. It’s tempting to perform post-
training weight quantization on this model to speed up the page loading. How-
ever, before doing so, we need to make sure that no significant deterioration in
the quality of the generated images results from such quantization. Test 16- and
8-bit quantization and determine whether either or both of them is an accept-
able option. Use the tensorflowjs_converter workflow described in section
12.2.1. What criteria will you use to evaluate the quality of the generated
MNIST images in this case?

2 Tensorflow models that run as Chrome extensions have the advantage of being
able to control Chrome itself. In the speech-commands example in chapter 4,
we showed how to use a convolutional model to recognize spoken words. The
Chrome extension API gives you the ability to query and change tabs. Try
embedding the speech-commands model into an extension, and tune it to rec-
ognize the phrases “next tab” and “previous tab.” Use the results of the classifier
to control the browser tab focus.

3 Info box 12.3 describes the correct way to measure the time that a TensorFlow.js
model’s predict() call (inference call) takes and the cautionary points it
involves. In this exercise, load a MobileNetV2 model in TensorFlow.js (see the
simple-object-detection example in section 5.2 if you need a reminder of how to
do that) and time its predict() call:
a As the first step, generate a randomly valued image tensor of shape [1, 224,

224, 3] and the model’s inference on it by following the steps laid out in
info box 12.3. Compare the timing result with and without the array() or
data() call on the output tensor. Which one is shorter? Which one is the cor-
rect time measurement?

b When the correct measurement is done 50 times in a loop, plot the individ-
ual timing numbers using the tfjs-vis line chart (chapter 7) and get an intui-
tive appreciation of the variability. Can you see clearly that the first few
measurements are significantly different from the rest? Given this observa-
tion, discuss the importance of performing burn-in or warm-up runs during
performance benchmarking.

c Unlike tasks a and b, replace the randomly generated input tensor with a
real image tensor (such as one obtained from an img element using
tf.browser.fromPixels()), and then repeat the measurements in step b.
Does the content of the input tensor affect the timing measurements in any
significant way?
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d Instead of running inference on a single example (batch size = 1), try
increasing the batch size to 2, 3, 4, and so forth until you reach a relatively
large number, such as 32. Is the relation between the average inference time
and batch size a monotonically increasing one? A linear one?

Summary
 Good engineering discipline around testing is as important to your machine-

learning code as it is to your non-machine-learning code. However, avoid the
temptation to focus strongly on “special” examples or make assertions on
“golden” model predictions. Instead, rely on testing the fundamental proper-
ties of your model, such as its input and output specifications. Furthermore,
remember that all the data-preprocessing code before your machine-learning
system is just “normal” code and should be tested accordingly.

 Optimizing the speed of downloading and inference is an important factor to the
success of client-side deployment of TensorFlow.js models. Using the post-training
weight quantization feature of the tensorflowjs_converter binary, you
can reduce the total size of a model, in some cases without observable loss of infer-
ence accuracy. The graph-model conversion feature of tensorflowjs_ converter
helps to speed up model inference through graph transformations such as op
fusion. You are highly encouraged to test and employ both model-optimization
techniques when deploying your TensorFlow.js models to production.

 A trained, optimized model is not the end of the story for your machine-learning
application. You must find some way to integrate it with an actual product. The
most common way for TensorFlow.js applications to be deployed is within web
pages, but this is just one of a wide variety of deployment scenarios, each with its
own strengths. TensorFlow.js models can run as browser extensions, within
native mobile apps, as native desktop applications, and even on single-board
hardware like the Raspberry Pi.
 



Summary, conclusions,
and beyond
This is the final chapter of this book. Previous chapters have been a grand tour of
the current landscape of deep learning, enabled by the vehicles of TensorFlow.js
and your own hard work. Through this journey, you have hopefully gained quite a
few new concepts and skills. It is time to step back and look at the big picture

This chapter covers
 Looking back at the high-level concepts and ideas about AI 

and deep learning

 A quick overview of the different types of deep-learning 
algorithms we’ve visited in this book, when they are useful, 
and how to implement them in TensorFlow.js

 Pretrained models from the ecosystem of TensorFlow.js

 Limitations of deep learning as it currently stands; and an 
educated prediction for trends in deep learning that we will 
see in the coming years

 Guidance for how to further advance your deep-learning 
knowledge and stay up-to-date with the fast-moving field
453
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again, as well as get a refresher on some of the most important concepts you’ve
learned. This last chapter will summarize and review core concepts while expanding
your horizons beyond the relatively basic notions you’ve learned so far. We want to
make sure you realize this and are properly equipped to take the next steps of the
journey on your own.

We’ll start with a bird’s-eye view of what you should take away from this book. This
should refresh your memory regarding some of the concepts you’ve learned. Next,
we’ll present an overview of some key limitations of deep learning. To use a tool prop-
erly, you should not only know what it can do but also what it can’t do. The chapter
ends with a list of resources and strategies for furthering your knowledge and skills
about deep learning and AI in the JavaScript ecosystem and staying up-to-date with
new developments.

13.1 Key concepts in review
This section briefly synthesizes the key takeaways from this book. We will start from the
overall landscape of the AI field and end with why bringing deep learning and Java-
Script together introduces unique and exciting opportunities. 

13.1.1 Various approaches to AI

First of all, deep learning is not synonymous with AI or even with machine learning.
Artificial intelligence is a broad field with a long history. It can generally be defined as
“all attempts to automate the cognitive process”—in other words, the automation of
thought. This can range from very basic tasks, such as an Excel spreadsheet, to very
advanced endeavors, such as a humanoid robot that can walk and talk.

Machine learning is one of the many subfields of AI. It aims at automatically develop-
ing programs (called models) purely from exposure to training data. This process of
turning data into a program (the model) is called learning. Although machine learn-
ing has been around for a long time (at least several decades), it only started to take
off in practical applications in the 1990s.

Deep learning is one of many forms of machine learning. In deep learning, models
consist of many steps of representation transformation, applied one after another
(hence the adjective “deep”). These operations are structured into modules called lay-
ers. Deep-learning models are typically stacks of many layers or, more generally, graphs
of many layers. These layers are parameterized by weights, numeric values that help
transform a layer’s input into its output and are updated during the training process.
The “knowledge” learned by a model during training is embodied in its weights. The
training process is primarily about finding a good set of values for these weights.

Even though deep learning is just one among many approaches to machine learn-
ing, it has proven to be a breakout success compared to other approaches. Let’s
quickly review the reasons behind deep learning’s success.
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13.1.2 What makes deep learning stand out among the subfields of machine learning

In the span of only a few years, deep learning has achieved tremendous break-
throughs in multiple tasks that have been historically thought of as extremely difficult
for computers, especially in the area of machine perception—namely, extracting use-
ful information from images, audio, video, and similar modalities of perceptual data
with a sufficiently high accuracy. Given sufficient training data (in particular, labeled
training data), it is now possible to extract from perceptual data almost anything that
humans can extract, sometimes with an accuracy that exceeds that of humans. Hence,
it is sometimes said that deep learning has largely “solved perception,” although this is
true only for a fairly narrow definition of perception (see section 13.2.5 for the limita-
tions of deep learning).

Due to its unprecedented technical success, deep learning has single-handedly
brought about the third and by far the largest-so-far AI summer, also referred to as the
deep-learning revolution, which is a period of intense interest, investment, and hype in
the field of AI. Whether this period will end in the near future, and what happens to it
afterward, are topics of speculation and debate. But one thing is certain: in stark con-
trast with previous AI summers, deep learning has provided enormous value to a large
number of technology companies, enabling human-level image classification, object
detection, speech recognition, smart assistants, natural language processing, machine
translation, recommendation systems, self-driving cars, and more. The hype may
recede (rightfully), but the sustained technological impact and economic value of
deep learning will remain. In that sense, deep learning could be analogous to the
internet: it may be overly hyped for a few years, causing unreasonable expectations
and overinvestment, but in the long term, it will remain a major revolution that will
impact many areas of technology and transform our lives.

We are particularly optimistic about deep learning because even if we were to make
no further academic progress in it in the next decade, putting the existing deep-
learning techniques to every applicable practical problem would still be a game
changer for many industries (online advertisement, finance, industrial automation,
and assistive technologies for people with disabilities, just to list a few). Deep learning
is nothing short of a revolution, and progress is currently happening at an incredibly
fast pace due to an exponential investment in resources and headcount. From where
we stand, the future looks bright, although short-term expectations may be somewhat
overly optimistic; deploying deep learning to the full extent of its potential will take
well over a decade.

13.1.3 How to think about deep learning at a high level

One of the most surprising aspects of deep learning is how simple it is, given how well
it works and how more complicated machine-learning techniques that came before it
didn’t work quite as well. Ten years ago, nobody expected that we could achieve such
amazing results on machine-perception problems by using only parametric models
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trained with gradient descent. Now it turns out that all you need is sufficiently large
parametric models trained with gradient descent and sufficiently many labeled exam-
ples. As Richard Feynman once said about his understanding of the universe, “It’s not
complicated, it’s just a lot of it.”1

In deep learning, everything is represented as a series of numbers—in other words,
a vector. A vector can be viewed as a point in a geometric space. Model inputs (tabular
data, images, text, and so on) are first vectorized, or turned into a set of points in the
input vector space. In a similar way, the targets (labels) are also vectorized and turned
into their corresponding set of points in the target vector space. Then, each layer in a
deep neural network performs one simple geometric transformation on the data that
goes through it. Together, the chain of layers in the neural network forms a complex
geometric transformation, made of a series of simple geometric transformations. This
complex transformation attempts to map the points in the input vector space to those
in the target vector space. This transformation is parameterized by the weights of the
layers, which are iteratively updated based on how good the transformation currently
is. A key characteristic of this geometric transformation is that it is differentiable: this is
what makes gradient descent possible.

13.1.4 Key enabling technologies of deep learning

The deep-learning revolution that’s currently unfolding didn’t start overnight.
Instead, like any other revolution, it’s the product of an accumulation of several
enabling factors—slowly at first, and then suddenly accelerating once critical mass is
reached. In the case of deep learning, we can point out the following key factors:

 Incremental algorithmic innovations, first spread over two decades2 and then
accelerating as more research effort was poured into deep learning after 2012.3

 The availability of large amounts of labeled data, spanning many data modali-
ties, including perceptual (images, audio, and video), numeric, and text, which
enables large models to be trained on sufficient amounts of data. This is a
byproduct of the rise of the consumer internet, spurred by the popularization
of mobile devices, as well as Moore’s law applied to storage media.

 The availability of fast, highly parallelized computation hardware at a low cost,
especially the GPUs produced by NVIDIA—first gaming GPUs repurposed for
parallel computing and then chips designed ground-up for deep learning.

 A complex stack of open source software that makes this computational power
available to many human developers and learners, while hiding the enormous
amount of complexity underneath: the CUDA language, the web browser’s

1 Richard Feynman, interview, “The World from Another Point of View,” Yorkshire Television, 1972.
2 Starting with the invention of backpropagation by Rumelhart, Hinton, and Williams, convolutional layers by

LeCun and Bengio, and recurrent networks by Graves and Schmidthuber.
3 For example, improved weight initialization methods, new activation functions, dropout, batch normaliza-

tion, residual connections.
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WebGL shader languages, and frameworks such as TensorFlow.js, TensorFlow,
and Keras, which perform automatic differentiation and provide easy-to-use,
high-level building blocks such as layers, loss functions, and optimizers. Deep
learning is changing from the exclusive domain of specialists (researchers,
graduate students in AI, and engineers with an academic background) into a
tool for every programmer. TensorFlow.js is an exemplary framework in this
front. It brings two rich and vibrant ecosystems together: the cross-platform eco-
system of JavaScript and the fast-advancing deep-learning ecosystem. 

A manifestation of the wide and deep impact of the deep-learning revolution is its
fusion with technological stacks different from the one in which it originated (the C++
and Python ecosystem and the numeric computation field). Its cross-pollination with
the JavaScript ecosystem, the main theme of the book, is a prime example of that. In
the next section, we will review the key reasons why bringing deep learning to the
world of JavaScript unlocks exciting new opportunities and possibilities.

13.1.5 Applications and opportunities unlocked by deep learning in JavaScript

The main purpose of training a deep-learning model is to make it available for users
to use. For many types of input modalities, such as images from the webcam, sounds
from the microphone, and text and gesture input by the user, the data is generated
and directly available on the client. JavaScript is perhaps the most mature and ubiqui-
tous language and ecosystem for client-side programming. The same code written in
JavaScript can be deployed as web pages and UIs on a wide range of devices and plat-
forms. The web browser’s WebGL API enables cross-platform parallel computation on
a variety of GPUs, which is leveraged by TensorFlow.js. These factors make JavaScript
an attractive option for the deployment of deep-learning models. TensorFlow.js offers
a converter tool that allows you to convert models trained with popular Python frame-
works such as TensorFlow and Keras into a web-friendly format and deploy them into
web pages for inference and transfer learning.

Apart from the ease of deployment, there are also a number of additional advan-
tages to serving and fine-tuning deep-learning models using JavaScript:

 Compared to server-side inference, client-side inference foregoes the latency of
two-way data transfer, benefiting availability and leading to a smoother user
experience.

 By performing computation at the edge using on-device GPU acceleration,
client-side deep learning removes the need to manage server-side GPU
resources, significantly reducing the complexity and maintenance costs of your
technology stack.

 By virtue of keeping the data and inference results on the client, the user’s
data privacy is protected. This is important for domains such as healthcare and
fashion.
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 The visual and interactive nature of the browser and other JavaScript-based UI
environments provides unique opportunities for visualization, aided under-
standing, and teaching of neural networks.

 TensorFlow.js supports not only inference but also training. This opens the
door to client-side transfer learning and fine-tuning, which leads to better per-
sonalization of machine-learning models. 

 In the web browser, JavaScript provides a platform-independent API for access
to on-device sensors, such as webcams and microphones, which accelerates the
development of cross-platform applications that use inputs from these sensors.

In addition to its client-side eminence, JavaScript extends its prowess to the server
side. In particular, Node.js is a highly popular framework for server-side applications
in JavaScript. Using the Node.js version of TensorFlow.js (tfjs-node), you can train and
serve deep-learning models outside the web browser and hence without resource con-
straints. This taps into the vast ecosystem of Node.js and simplifies the tech stack for
members of the community. All of this can be achieved by using essentially the same
TensorFlow.js code that you write for the client side, which brings you closer to the
vision of “write once, run everywhere,” as has been demonstrated by several examples
throughout the book. 

13.2 Quick overview of the deep-learning workflow and algorithms in 
TensorFlow.js
With the historical overview out of the way, let’s now visit the technical aspects of Ten-
sorFlow.js. In this section, we will review the general workflow you should follow when
approaching a machine-learning problem and highlight some of the most important
considerations and common pitfalls. We will then go over the various neural network
building blocks (layers) that we’ve covered in the book. In addition, we’ll survey the
pretrained models in the TensorFlow.js ecosystem, which you can use to accelerate
your development cycle. To wrap up this section, we will present the range of
machine-learning problems you can potentially address by using these building
blocks, stimulating you to imagine how deep neural networks written in TensorFlow.js
can assist you in addressing your own machine-learning problems.

13.2.1 The universal workflow of supervised deep learning

Deep learning is a powerful tool. But perhaps somewhat surprisingly, the most diffi-
cult and time-consuming part of the machine-learning workflow is often everything
that comes before designing and training such models (and for models deployed to
production, what comes after it, too). These difficult steps include understanding the
problem domain well enough to be able to determine what sort of data is needed,
what sort of predictions can be made with reasonable accuracy and generalization
power, how the machine-learning model fits into the overall solution that addresses a
practical problem, and how to measure the degree to which the model succeeds at
doing its job. Although these are prerequisites for any successful application of
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machine learning, they aren’t something that a software library such as TensorFlow.js
can automate for you. As a reminder, what follows is a quick summary of the typical
supervised-learning workflow:

1 Determine if machine learning is the right approach. First, consider if machine learn-
ing is the right approach to your problem, and proceed with the following steps
only if the answer is yes. In some cases, a non-machine-learning approach will
work equally well or perhaps even better, at a lower cost. 

2 Define the machine-learning problem. Determine what sort of data is available and
what you are trying to predict using the data. 

3 Check if your data is sufficient. Determine if the amount of data you already have
is sufficient for model training. You may need to collect more data or hire peo-
ple to manually label an unlabeled dataset. 

4 Identify a way to reliably measure the success of a trained model on your goal. For simple
tasks, this may be just prediction accuracy, but in many cases, it will require
more sophisticated, domain-specific metrics.

5 Prepare the evaluation process. Design the validation process that you’ll use to eval-
uate your models. In particular, you should split your data into three homoge-
neous yet nonoverlapping sets: a training set, a validation set, and a test set. The
validation- and test-set labels ought not to leak into the training data. For
instance, with temporal prediction, the validation and test data should come
from time intervals after the training data. Your data-preprocessing code should
be covered by tests to guard against bugs (section 12.1).

6 Vectorize the data. Turn your data into tensors, or n -dimensional arrays—the lin-
gua franca of machine-learning models in frameworks such as TensorFlow.js
and TensorFlow. You often need to preprocess the tensorized data in order to
make it more amenable to your models (for example, through normalization).

7 Beat the commonsense baseline. Develop a model that beats a non-machine-learning
baseline (such as predicting the population average for a regression problem or
predicting the last datapoint in a time-series prediction problem), thereby
demonstrating that machine learning can truly add value to your solution. This
may not always be the case (see step 1).

8 Develop a model with sufficient capacity. Gradually refine your model architecture
by tuning hyperparameters and adding regularization. Make changes based on
the prediction accuracy on the validation set only, not the training set or the
test set. Remember that you should get your model to overfit the problem
(achieve a better prediction accuracy on the training set than on the validation
set), thus identifying a model capacity that’s greater than what you need. Only
then should you begin to use regularization and other approaches to reduce
overfitting.

9 Tune hyperparameters. Beware of validation-set overfitting when tuning hyperpa-
rameters. Because hyperparameters are determined based on the performance
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on the validation set, their values will be overspecialized for the validation set
and therefore may not generalize well to other data. It is the purpose of the test
set to obtain an unbiased estimate of the model’s accuracy after hyperparame-
ter tuning. So, you shouldn’t use the test set when tuning the hyperparameters.

10 Validate and evaluate the trained model. As we discussed in section 12.1, test your
model with an up-to-date evaluation dataset, and decide if the prediction accu-
racy meets a predetermined criterion for serving actual users. In addition, per-
form a deeper analysis of the model’s quality on different slices (subsets) of the
data, aiming at detecting any unfair behaviors (such as vastly different accura-
cies on different slices of the data) or unwanted biases.4 Proceed to the final
step only if the model passes these evaluation criteria.  

11 Optimize and deploy the model. Perform model optimization in order to shrink its
size and boost its inference speed. Then deploy the model into the serving envi-
ronment, such as a web page, a mobile app, or an HTTP service endpoint (sec-
tion 12.3).

This recipe is for supervised learning, which is encountered in many practical prob-
lems. Other types of machine-learning workflows covered in this book include (super-
vised) transfer learning, RL (reinforcement learning), and generative deep learning.
Supervised transfer learning (chapter 5) shares the same workflow as nontransfer
supervised learning, with the slight difference that the model design and training
steps build on a pretrained model and may require a smaller amount of training data
than training a model from scratch. Generative deep learning has a different type of
goal from supervised learning—that is, to create fake examples that look as real as
possible. In practice, there are techniques that turn the training of generative models
into supervised learning, as we saw in the VAE and GAN examples in chapter 9. RL,
on the other hand, involves a fundamentally different problem formulation and con-
sequently a dramatically different workflow—one in which the primary players are the
environment, the agent, the actions, the reward structure, and the algorithm or
model types employed to solve the problem. Chapter 11 provided a quick overview of
the basic concepts and algorithms in RL.

13.2.2 Reviewing model and layer types in TensorFlow.js: A quick reference

All the numerous neural networks covered in this book can be divided into three fam-
ilies: densely connected networks (also referred to as MLPs, or multilayer percep-
trons), convnets (convolutional networks), and recurrent networks. These are the
three basic families of networks that every deep-learning practitioner should be famil-
iar with. Each type of network is suitable for a specific type of input: a network archi-
tecture (MLP, convolutional, or recurrent) encodes assumptions about the structure
of the input data—a hypothesis space within which the search for a good model via

4 Fairness in machine learning is a nascent field of study; see the following link for more discussion
http://mng.bz/eD4Q.
 

http://mng.bz/eD4Q
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backpropagation and hyperparameter tuning occurs. Whether a given architecture
will work for a given problem depends entirely on how well the structure in the data
matches the assumption of the network architecture.

These different network types can easily be combined in a LEGO-like fashion to
form more complex and multimodal networks. In a way, deep-learning layers are
LEGO bricks for differentiable information processing. We provide a quick overview
of the mapping between the modality of input data and the appropriate network
architecture: 

 Vector data (without temporal or serial order)—MLPs (dense layers)
 Image data (black-and-white, grayscale, or color)—2D convnets
 Audio data as spectrograms—2D convnets or RNNs
 Text data—1D convnets or RNNs
 Time-series data—1D convnets or RNNs
 Volumetric data (such as 3D medical images)—3D convnets
 Video data (sequence of images)—either 3D convnets (if you need to capture

motion effects) or a combination of a frame-by-frame 2D convnet for feature
extraction followed by either an RNN or a 1D convnet to process the resulting
feature sequence

Now let’s dive a little deeper into each of the three major architecture families, the
tasks they are good at, and how to use them through TensorFlow.js.

DENSELY CONNECTED NETWORKS AND MULTILAYER PERCEPTRONS

The terms densely connected networks and multilayer perceptron are largely exchangeable,
with the caveat that a densely connected network can contain as little as one layer,
while an MLP must consist of at least a hidden layer and an output layer. We will use
the term MLP to refer to all models built primarily with dense layers for the sake of
succinctness. Such networks are specialized for unordered vector data (for example,
the numeric features in the phishing-website-detection problem and the housing-
price-prediction problem). Each dense layer attempts to model the relation between
all possible pairs of input features and the layer’s output activations. This is achieved
through a matrix multiplication between the dense layer’s kernel and the input vector
(followed by addition with a bias vector and an activation function). The fact that
every output activation is affected by every input feature is the reason such layers and
the networks built on them are referred to as densely connected (or referred to as fully
connected by some authors). This is in contrast to other types of architecture (convnets
and RNNs) in which an output element depends only on a subset of the elements in
the input data.

MLPs are most commonly used for categorical data (for example, where the input
features are a list of attributes, such as in the phishing-website-detection problem).
They are also often used as the final output stages of most neural networks for classifi-
cation and regression, which may contain convolutional or recurrent layers as feature
extractors that feed feature inputs to such MLPs. For instance, the 2D convnets we
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covered in chapters 4 and 5 all end with one or two dense layers, and so do the recur-
rent networks we visited in chapter 9.

Let’s briefly review how to select the activation of the output layer of an MLP for
different types of tasks in supervised learning. To perform binary classification, the
final dense layer of your MLP should have exactly one unit and use the sigmoid activa-
tion. The binaryCrossentropy loss function should be used as the loss function
during the training of such a binary-classifier MLP. The examples in your training
data should have binary labels (labels of 0 or 1). Specifically, the TensorFlow.js code
looks like

import * as tf from '@tensorflow/tfjs';

const model = tf.sequential();
model.add(tf.layers.dense({units: 32, activation: 'relu', inputShape: 

[numInputFeatures]}));
model.add(tf.layers.dense({units: 32, activation: 'relu'}));
model.add(tf.layers.dense({units: 1: activation: 'sigmoid'}));
model.compile({loss: 'binaryCrossentropy', optimizer: 'adam'});

To perform single-label multiclass classification (where each example has exactly one
class among multiple candidate classes), end your stack of layers with a dense layer
that contains a softmax activation and a number of units equal to the number of
classes. If your targets are one-hot encoded, use categoricalCrossentropy as the loss
function; if they are integer indices, use sparseCategoricalCrossentropy. For
instance,

const model = tf.sequential();
model.add(tf.layers.dense({units: 32, activation: 'relu', inputShape: 

[numInputFeatures]});
model.add(tf.layers.dense({units: 32, activation: 'relu'});
model.add(tf.layers.dense({units: numClasses: activation: 'softmax'});
model.compile({loss: 'categoricalCrossentropy', optimizer: 'adam'});

To perform multilabel multiclass classification (where each example can have several
correct classes), end your stack of layers with a dense layer that contains a sigmoid
activation and a number of units equal to the number of all candidate classes. Use
binaryCrossentropy for the loss function. Your targets should be k-hot encoded:

const model = tf.sequential();
model.add(tf.layers.dense({units: 32, activation: 'relu', inputShape: 

[numInputFeatures]}));
model.add(tf.layers.dense({units: 32, activation: 'relu'}));
model.add(tf.layers.dense({units: numClasses: activation: 'sigmoid'}));
model.compile({loss: 'binaryCrossentropy', optimizer: 'adam'});

To perform regression toward a vector of continuous values, end your stack of layers
with a dense layer with the number of units equal to the number of values you are try-
ing to predict (often only one number, such as the price of housing or a temperature
value) and the default linear activation. Several loss functions can be suitable for
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regression. The most commonly used ones are meanSquaredError and meanAbsolute-
Error:

const model = tf.sequential();
model.add(tf.layers.dense({units: 32, activation: 'relu', inputShape: 

[numInputFeatures]}));
model.add(tf.layers.dense({units: 32, activation: 'relu'}));
model.add(tf.layers.dense({units: numClasses}));
model.compile({loss: 'meanSquaredError', optimizer: 'adam'});

CONVOLUTIONAL NETWORKS

Convolutional layers look at local spatial patterns by applying the same geometric
transformation to different spatial locations (patches) in an input tensor. This results
in representations that are translation-invariant, making convolutional layers highly
data efficient and modular. This idea is applicable to spaces of any dimensionality: 1D
(sequences), 2D (images or similar representation of nonimage quantities, such as
sound spectrograms), 3D (volumes), and so forth. You can use the tf.layers.conv1d
layer to process sequences, the conv2d layer to process images, and the conv3d layer
to process volumes.

Convnets consist of stacks of convolutional and pooling layers. The pooling layers
let you spatially downsample the data, which is required to keep feature maps to a rea-
sonable size as the number of features grows, and to allow subsequent layers to “see” a
greater spatial extent of the convnet’s input images. Convnets are often terminated
with a flatten layer or a global pooling layer, turning spatial feature maps into vectors,
which can in turn be processed by a stack of dense layers (an MLP) to achieve classifi-
cation or regression outputs.

It is highly likely that regular convolution will soon be mostly (or completely)
replaced by an equivalent but faster and more efficient alternative: depthwise separa-
ble convolution (tf.layers.separableConv2d layers). When you are building a net-
work from scratch, using depthwise separable convolution is highly recommended.
The separableConv2d layer can be used as a drop-in replacement for tf.layers
.conv2d, resulting in a smaller and faster network that performs equally well or better
on its task. Following is a typical image-classification network (single-label multiclass
classification, in this case). Its topology contains repeating patterns of convolution-
pooling layer groups:

const model = tf.sequential();
model.add(tf.layers.separableConv2d({
    filters: 32, kernelSize: 3, activation: 'relu',
    inputShape: [height, width, channels]}));
model.add(tf.layers.separableConv2d({

    filters: 64, kernelSize: 3, activation: 'relu'}));
model.add(tf.layers.maxPooling2d({poolSize: 2}));

model.add(tf.layers.separableConv2d({
    filters: 64, kernelSize: 3, activation: 'relu'}));

model.add(tf.layers.separableConv2d({
    filters: 128, kernelSize: 3, activation: 'relu'}));
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model.add(tf.layers.maxPooling2d({poolSize: 2}));

model.add(tf.layers.separableConv2d({
    filters: 64, kernelSize: 3, activation: 'relu'}));
model.add(tf.layers.separableConv2d({
    filters: 128, kernelSize: 3, activation: 'relu'}));
model.add(tf.layers.globalAveragePooling2d());
model.add(tf.layers.dense({units: 32, activation: 'relu'}));
model.add(tf.layers.dense({units: numClasses, activation: 'softmax'}));

model.compile({loss: 'categoricalCrossentropy', optimizer: 'adam'});

RECURRENT NETWORKS

RNNs work by processing sequences of inputs one timestamp at a time and maintain-
ing a state throughout. A state is typically a vector or a set of vectors (a point in a geo-
metric space). RNNs should be used preferentially over 1D convnets in the case of
sequences in which the patterns of interest are not temporally invariant (for instance,
time-series data in which the recent past is more important than the distant past).

Three RNN layer types are available in TensorFlow.js: simpleRNN, GRU, and
LSTM. For most practical purposes, you should use either GRU or LSTM. LSTM is the
more powerful of the two, but it is also computationally more expensive. You can
think of GRU as a simpler and cheaper alternative to LSTM.

In order to stack multiple RNN layers on top of each other, every layer except the
last one needs to be configured to return the full sequence of its outputs (each input
timestep will correspond to an output timestep). If no stacking of RNN layers is
required, usually the RNN layer needs to return only the last output, which in itself
contains information about the entire sequence.

The following is an example of using a single RNN layer together with a dense layer
to perform binary classification of a vector sequence:

const model = tf.sequential();
model.add(tf.layers.lstm({
  units: 32,
  inputShape: [numTimesteps, numFeatures]
}));
model.add(tf.layers.dense({units: 1, activation: 'sigmoid'}));
model.compile({loss: 'binaryCrossentropy', optimizer: 'rmsprop'});

Next is a model with a stack of RNN layers for single-label multiclass classification of a
vector sequence:

const model = tf.sequential();
model.add(tf.layers.lstm({
  units: 32,
  returnSequences: true,
  inputShape: [numTimesteps, numFeatures]
}));
model.add(tf.layers.lstm({units: 32, returnSequences: true}));
model.add(tf.layers.lstm({units: 32}));
model.add(tf.layers.dense({units: numClasses, activation: 'softmax'}));
model.compile({loss: 'categoricalCrossentropy', optimizer: 'rmsprop'});
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LAYERS AND REGULARIZERS THAT HELP MITIGATE OVERFITTING AND IMPROVE CONVERGENCE 
Apart from the aforementioned mainstay layer types, some other types of layers are
applicable across a wide range of model and problem types and assist the training pro-
cess. Without these layers, the state-of-the-art accuracies on many machine-learning
tasks wouldn’t be as high as they are today. For instance, the dropout and batch-
Normalization layers are often inserted in MLPs, convnets, and RNNs to help the
model converge faster during training and to reduce overfitting. The following exam-
ple shows a regression MLP with dropout layers included:

const model = tf.sequential();
model.add(tf.layers.dense({
  units: 32,
  activation: 'relu',
  inputShape: [numFeatures]
}));
model.add(tf.layers.dropout({rate: 0.25}));
model.add(tf.layers.dense({units: 64, activation: 'relu'}));
model.add(tf.layers.dropout({rate: 0.25}));
model.add(tf.layers.dense({units: 64, activation: 'relu'}));
model.add(tf.layers.dropout({rate: 0.25}));
model.add(tf.layers.dense({
  units: numClasses,
  activation: 'categoricalCrossentropy'
}));
model.compile({loss: 'categoricalCrossentropy', optimizer: 'rmsprop'});

13.2.3 Using pretrained models from TensorFlow.js

When the machine-learning problem you aim to solve is specific to your application
or dataset, building and training a model from scratch is the right way to go, and
TensorFlow.js empowers you to do that. However, in some cases, the problem you face
is a generic one for which there exist pretrained models that either match your
requirement exactly or can satisfy your needs with only minor tweaking. A collection
of pretrained models is available from TensorFlow.js and third-party developers who
build on them. Such models provide clean and easy-to-use APIs. They are also pack-
aged nicely as npm packages that you can conveniently depend on in your JavaScript
applications (including web apps and Node.js projects). 

Using such pretrained models in appropriate use cases can substantially accelerate
your development. Since it’s impossible to list all the TensorFlow.js-based pretrained
models out there, we will survey only the most popular ones that we are aware of. The
packages with the name prefix @tensorflow-models/ are first-party and maintained by
the TensorFlow.js team, while the rest are the work of third-party developers.

@tensorflow-models/mobilenet is a lightweight image-classification model. It out-
puts the probability scores for the 1,000 ImageNet classes given an input image. It is
useful for labeling images in web pages and for detecting specific contents from the
webcam input stream, as well as for transfer-learning tasks involving image inputs.
While @tensorflow-models/mobilenet is concerned with generic image classes, there
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are third-party packages for more domain-specific image classification. For instance,
nsfwjs classifies images into those that contain pornographic and other inappropriate
content versus safe content, which is useful for parental control, safe browsing, and
similar applications.

As we discussed in chapter 5, object detection differs from image classification in
that it outputs not only what objects an image contains but also where they are in the
coordinate system of the image. @tensorflow-models/coco-ssd is an object-detection
model capable of detecting 90 classes of objects. For each input image, it can detect
multiple target objects with potentially overlapping bounding boxes, if they exist (fig-
ure 13.1, panel A).

For web applications, certain types of objects are of especially high interest due to
their potential for enabling novel and fun computer-human interactions. These
include the human face, the hands, and the whole body. For each of the three, there
are specialized third-party models based on TensorFlow.js. For the face, face-api.js
and handsfree both support real-time face tracking and detection of facial land-
marks (such as the eyes or mouth; figure 13.1, panel B). For the hands, handtrack.js
can track the location of one or both hands in real time (figure 13.1, panel C). For
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Figure 13.1 Screenshots from several pretrained, npm-package models built with TensorFlow.js. Panel A: 
@tensorflow-models/coco-ssd is a multitarget object detector. Panel B: face-api.js is for real-time face and facial-
key-point detection (reproduced from https://github.com/justadudewhohacks/face-api.js with permission by 
Vincent Mühler). Panel C: handtrack.js tracks the location of one or both hands in real time (reproduced from 
https://github.com/victordibia/handtrack.js/ with permission by Victor Dibia). Panel D: @tensorflow-
models/posenet detects skeletal key points of the human body using image input in real time. Panel E: 
@tensorflow-models/toxicity detects and labels seven types of inappropriate content in any English text input.
 

https://www.npmjs.com/package/@tensorflow-models/coco-ssd
https://github.com/justadudewhohacks/face-api.js
https://github.com/justadudewhohacks/face-api.js
https://www.npmjs.com/package/handsfree
https://www.npmjs.com/package/handtrackjs
https://github.com/justadudewhohacks/face-api.js?files=1
https://github.com/victordibia/handtrack.js/
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the whole body, @tensorflow-models/posenet enables high-precision, real-time
detection of skeletal key points (such as shoulders, elbows, hips, and knees; figure
13.1, panel D). 

For the audio input modality, @tensorflow-models/speech-commands offers a pre-
trained model that detects 18 English words in real time, directly utilizing the
browser’s WebAudio API. Although this is not as powerful as large-vocabulary continu-
ous speech recognition, it nonetheless enables a range of voice-based user interac-
tions in the browser.

There are also pretrained models for text input. For instance, the model from
@tensorflow-models/toxicity determines how toxic given English input texts are along
several dimensions (for example, threatening, insulting, or obscene), which is useful
for aided content moderation (figure 13.1, panel E). The toxicity model is built on top
of a more generic natural language processing model called @tensorflow-models/
universal-sentence-encoder, which maps any given English sentence into a vector that
can then be used for a wide range of natural language processing tasks, such as intent
classification, topic classification, sentiment analysis, and question answering.

It needs to be emphasized that some of the models mentioned not only support
simple inference but also can form the basis for transfer learning or downstream
machine learning, which lets you apply the power of these pretrained models to your
domain-specific data without a lengthy model-building or training process. This is
partly due to the LEGO-like composability of layers and models. For example, the out-
put of the universal sentence encoder is primarily intended to be used by a down-
stream model. The speech-commands model has built-in support for you to collect
voice samples for new word classes and train a new classifier based on the samples,
which is useful for voice-command applications that require custom vocabulary or
user-specific voice adaptation. In addition, outputs from models such as PoseNet and
face-api.js regarding the moment-by-moment location of the head, hands, or body
posture can be fed into a downstream model that detects specific gestures or move-
ment sequences, which is useful for many applications, such as alternative communi-
cation for accessibility use cases.

Apart from the input modality-oriented models mentioned previously, there are
also TensorFlow.js-based third-party pretrained models oriented toward artistic creativ-
ity. For instance, ml5.js includes a model for fast style transfer between images and a
model that can draw sketches automatically. @magenta/music features a model that
can transcribe piano music (“audio-to-score”) and MusicRNN, a “language model for
melodies” that can “write” melodies based on a few seeding notes, along with other
intriguing pretrained models.

The collection of pretrained models is large and continues to grow. The JavaScript
community and the deep-learning community both have an open culture and sharing
spirit. As you go further on your deep-learning journey, you may come across interesting
new ideas that are potentially useful to other developers, at which point you are encour-
aged to train, package, and upload your models to npm in the form of the pretrained
 

https://www.npmjs.com/package/@tensorflow-models/toxicity
https://www.npmjs.com/package/@tensorflow-models/universal-sentence-encoder
https://www.npmjs.com/package/@tensorflow-models/universal-sentence-encoder
https://www.npmjs.com/package/@tensorflow-models/universal-sentence-encoder
https://www.npmjs.com/package/@tensorflow-models/posenet
https://www.npmjs.com/package/@tensorflow-models/speech-commands
https://www.npmjs.com/package/@magenta/music
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models we’ve mentioned, followed by interaction with users and making iterative
improvements to your package. Then you’ll truly become a contributing member of the
JavaScript deep-learning community.

13.2.4 The space of possibilities

With all these layers and pretrained modules as building blocks, what useful and fun
models can you build? Remember, building deep-learning models is like playing with
LEGO bricks: layers and modules can be plugged together to map essentially anything
to anything, as long as the inputs and outputs are represented as tensors, and the lay-
ers have compatible input and output tensor shapes. The resulting stack of layers that
is the model performs a differentiable geometric transformation, which can learn the
mapping relation between the input and the output as long as the relation is not
overly complex given the model’s capacity. In this paradigm, the space of possibilities
is infinite. This section offers a few examples to inspire you to think beyond the basic
classification and regression tasks that we’ve emphasized in this book.

We have sorted the suggestions by input and output modalities. Note that quite a
few of them stretch the limits of what is possible. Although a model could be trained
on any of the tasks, given that a sufficient amount of training data is available, in some
cases, such a model probably wouldn’t generalize well far from its training data:

 Mapping vector to vector
– Predictive healthcare—Mapping patient medical records to predicted treat-

ment outcomes
– Behavioral targeting—Mapping a set of website attributes to a potential

viewer’s behavior on the website (including page views, clicks, and other
engagements)

– Product quality control—Mapping a set of attributes related to a manufactured
product to predictions about how well the product will perform on the mar-
ket (sales and profits in different areas of the market)

 Mapping image to vector
– Medical image AI—Mapping medical images (such as X-rays) to diagnostic

results
– Automatic vehicle steering—Mapping images from cameras to vehicle control

signals, such as wheel-steering actions
– Diet helper—Mapping images of foods and dishes to predicted health effects

(for example, calorie counts or allergy warnings)
– Cosmetic product recommendation—Mapping selfie images to recommended

cosmetic products
 Mapping time-series data to vector

– Brain-computer interfaces—Mapping electroencephalogram (EEG) signals to
user intentions
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– Behavioral targeting—Mapping past history of product purchases (such as
movie or book purchases) to probabilities of purchasing other products in
the future

– Prediction of earthquakes and aftershocks—Mapping seismic instrument data
sequences to the predicted likelihoods of earthquakes and ensuing after-
shocks

 Mapping text to vector
– Email sorter—Mapping email content to generic or user-defined labels (for

example, work-related, family-related, and spam)
– Grammar scorer—Mapping student writing samples to writing-quality scores
– Speech-based medical triaging—Mapping a patient’s description of illness to the

medical department that the patient should be referred to
 Mapping text to text

– Reply-message suggestion—Mapping emails to a set of possible response mes-
sages

– Domain-specific question answering—Mapping customer questions to auto-
mated reply texts

– Summarization—Mapping a long article to a short summary
 Mapping images to text

– Automated alt-text generation—Given an image, generating a short snippet of
text that captures the essence of the content

– Mobility aids for the visually impaired—Mapping images of interior or exterior
surroundings to spoken guidance and warnings about potential mobility haz-
ards (for example, locations of exits and obstacles)

 Mapping images to images
– Image super-resolution—Mapping low-resolution images to higher-resolution

ones
– Image-based 3D reconstruction—Mapping ordinary images to images of the

same object but viewed from a different angle
 Mapping image and time-series data to vector

– Doctor’s multimodal assistant—Mapping a patient’s medical image (such as an
MRI) and history of vital signs (blood pressure, heart rate, and so on) to pre-
dictions of treatment outcomes

 Mapping image and text to text
– Image-based question answering—Mapping an image and a question related to

it (for instance, an image of a used car and a question about its make and
year) to an answer

 Mapping image and vector to image
– Virtual try-on for clothes and cosmetic products—Mapping a user’s selfie and a

vector representation of a cosmetic or garment to an image of the user wear-
ing that product
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 Mapping time-series data and vector to time-series data
– Musical style transfer—Mapping a musical score (such as a classical piece rep-

resented as a timeseries of notes) and a description of the desired style (for
example, jazz) to a new musical score in the desired style

As you may have noticed, the last four categories in this list involve mixed modalities
in input data. At this point in our technological history, where most things in life have
been digitized and can hence be represented as tensors, what you can potentially
achieve with deep learning is limited only by your own imagination and the availability
of training data. Although almost any mapping is possible, not every mapping is. We’ll
discuss in the next section what deep learning cannot do yet.

13.2.5 Limitations of deep learning

The space of applications that can be implemented with deep learning is nearly
infinite. As a result, it is easy to overestimate the power of deep neural networks and
be overly optimistic about what problems they can solve. This section briefly talks
about some of the limitations that they still have. 

NEURAL NETWORKS DO NOT SEE THE WORLD IN THE SAME WAY HUMANS DO

A risk we face when trying to understand deep learning is anthropomorphization—that
is, the tendency to misinterpret deep neural networks as mimicking perception and
cognition in humans. Anthropomorphizing deep neural networks is demonstrably
wrong in a few regards. First, when humans perceive a sensory stimulus (such as an
image with a girl’s face in it or an image with a toothbrush), they not only perceive the
brightness and color patterns of the input but also extract the deeper and more
important concepts represented by those superficial patterns (for example, the face
of a young, female individual or a dental hygiene product, and the relation between
the two). Deep neural networks, on the other hand, don’t work this way. When you’ve
trained an image-captioning model to map images to text output, it is wrong to
believe that the model understands the image in a human sense. In some cases, even
the slightest departure from the sort of images present in the training data can cause
the model to generate absurd captions (as in figure 13.2).

In particular, the peculiar, nonhuman way in which deep neural networks process
their inputs is highlighted by adversarial examples, which are samples purposefully
designed to trick a machine-learning model into making classification mistakes. As we
demonstrated by finding the maximally activating images for convnet filters in section
7.2, it’s possible to do gradient ascent in the input space to maximize the activation of
a convnet filter. The idea can be extended to output probabilities, so we can perform
gradient ascent in the input space to maximize the model’s predicted probability for
any given output class. By taking a picture of a panda and adding a “gibbon gradient”
to it, we can cause a model to misclassify the image as a gibbon (figure 13.3). This is
despite the fact that the gibbon gradient is noise-like and small in magnitude, so that
the resulting adversarial image looks indistinguishable from the original panda image
to humans.
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“The boy is holding a baseball bat.”

Figure 13.2 Failure of an 
image-captioning model 
trained with deep learning

Panda

Panda

Gibbon!

Adversarial example

f(x) f(x)

Gibbon
class gradient

Figure 13.3 Adversarial example: changes imperceptible to human eyes can throw 
off a deep convnet’s classification result. See more discussion on adversarial attacks 
of deep neural networks at http://mng.bz/pyGz.
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So, deep neural networks for computer vision don’t possess a real understanding of
images—at least not in a human sense. Another area in which human learning stands
in sharp contrast with deep learning is how the two types of learning generalize from a
limited number of training examples. Deep neural networks can do what can be
called local generalization. Figure 13.4 illustrates a scenario in which a deep neural net-
work and a human are tasked to learn the boundary of a single class in a 2D paramet-
ric space by using only a small number of (say, eight) training examples. The human
realizes that the shape of the class boundary should be smooth and the region should
be connected, and quickly draws a single closed curve as the “guesstimated” boundary.
A neural network, on the other hand, suffers from a lack of abstraction and prior
knowledge. Therefore, it may end up with an ad hoc irregular boundary severely over-
fit to the few training samples. The trained model will generalize very poorly beyond
the training samples. Adding more samples can help the neural network but is not
always practically possible. The main problem is that the neural network is created
from scratch, just for this particular problem. Unlike a human individual, it doesn’t
have any prior knowledge to rely on and hence doesn’t know what to “expect.”5 This is
the fundamental reason behind a major limitation of current deep-learning algo-
rithms: namely, a large number of human-labeled training data is usually required to
train a deep neural network to decent generalization accuracy. 

5 There are research efforts to train a single deep neural network on many different and seemingly unrelated
tasks to facilitate cross-domain knowledge sharing (see, for example, Lukasz Kaiser et al., “One Model To
Learn Them All,” submitted 16 Jun. 2017, https://arxiv.org/abs/1706.05137). But such multitask models
have not received wide adoption yet.

The same set of
data points

or experience

Local generalization:
generalization power of

machine learning

Extreme generalization:
generalization power

of humans

Figure 13.4 Local generalization 
in deep-learning models vs. 
extreme generalization in human 
intelligence
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13.3 Trends in deep learning
As we’ve discussed, deep learning has made amazing progress in recent years, but it
still suffers from some limitations. But the field is not static; it keeps advancing at a
breathtaking velocity, so it’s likely that some of the limitations will be ameliorated in
the near future. This section contains a set of educated guesses about what important
breakthroughs in deep learning we’ll witness in the coming years:

 First, unsupervised or semisupervised learning could see significant advance-
ments. This will have a profound impact on all forms of deep learning because
even though labeled datasets are costly to construct and hard to come across,
there is an abundance of unlabeled datasets in all sorts of business domains. If
we can invent a way to use a small amount of labeled data to guide the learning
from a vast amount of unlabeled data, it will unlock many new applications for
deep learning.

 Second, hardware for deep learning may continue to be improved, ushering in
more and more powerful neural network accelerators (such as the future gen-
erations of the Tensor Processing Unit6). This will allow researchers to train
ever more powerful networks with ever larger datasets and thereby continue to
push forward the state-of-the-art accuracy on many machine-learning tasks,
such as computer vision, speech recognition, natural language processing, and
generative models.

 Designing model architecture and tuning model hyperparameters will likely
become more and more automated. We are already seeing a trend in this area,
as exemplified by technologies such as AutoML7 and Google Vizier.8

 The sharing and reuse of neural network components will likely continue to
grow. Transfer learning based on pretrained models will gain further momen-
tum. State-of-the-art deep-learning models are getting increasingly powerful and
generic by the day. They are increasingly trained on larger and larger datasets,
sometimes with huge amounts of computation power for the sake of automated
architectural search and hyperparameter tuning (see the first and second pre-
dictions). As a consequence, it’s becoming more sensible and economical to
reuse such pretrained models, for either direct inference or transfer learning,
than to train them from scratch over and over again. In a way, this makes the
field of deep learning more similar to traditional software engineering, in which
high-quality libraries are depended on and reused regularly, to the benefit of
standardization and the development velocity of the field as a whole.

6 Norman P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit™,” 2017,
https://arxiv.org/pdf/1704.04760.pdf.

7 Barret Zoph and Quoc V. Le, “Neural Architecture Search with Reinforcement Learning,” submitted 5 Nov.
2016, https://arxiv.org/abs/1611.01578.

8 Daniel Golovin, “Google Vizier: A Service for Black-Box Optimization,” Proc. 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2017, pp. 1487–1495, http://mng.bz/O9yE.
 

http://mng.bz/O9yE
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 Deep learning may be deployed to new areas of application, improving many
existing solutions and opening up new practical use cases. In our opinion, the
potential areas of application are truly limitless. Fields including agriculture,
finance, education, transportation, healthcare, fashion, sports, and entertain-
ment present countless opportunities waiting to be explored for deep-learning
practitioners.

 As deep learning penetrates more application domains, there will likely be a
growing emphasis on deep learning at the edge because edge devices are clos-
est to where the users are. As a result, the field will likely invent smaller and
more power-efficient neural network architectures that achieve the same pre-
diction accuracy and speed as existing, larger models.

All these predictions will affect deep learning in JavaScript, but the last three predic-
tions are especially relevant. Expect more powerful and efficient models to become
available to TensorFlow.js in the future.

13.4 Pointers for further exploration
As final parting words, we want to give you some pointers about how to keep learning
and updating your knowledge and skills after you’ve turned the last page of this book.
The field of modern deep learning as we know it today is only a few years old, despite a
long, slow prehistory stretching back decades. With an exponential increase in finan-
cial resources and research headcount since 2013, the field as a whole is now moving at
a frenetic pace. Many of the things you learned in this book won’t stay relevant for very
long. It is the core ideas of deep learning (learning from data, reducing manual fea-
ture engineering, layer-by-layer transformation of representation) that will likely stick
around for a longer time. More importantly, the foundation of knowledge you devel-
oped by reading this book will hopefully prepare you to learn about new developments
and trends in the field of deep learning on your own. Fortunately, the field has an open
culture in which most cutting-edge advances (including many datasets!) are published
in the form of openly accessible and free preprints, accompanied by public blog posts
and tweets. Here are a few top resources you should be familiar with. 

13.4.1 Practice real-world machine-learning problems on Kaggle

An effective way to acquire real-world experience in machine learning (and especially
deep learning) is to try your hand at competitions on Kaggle (https://kaggle.com).
The only real way to learn machine learning is through actual coding, model build-
ing, and tuning. That’s the philosophy of the book, as reflected in its numerous code
examples ready for you to study, tweak, and hack. But nothing is as effective in teach-
ing you how to do machine learning as building your models and machine-learning
systems in a ground-up fashion, using a library such as TensorFlow.js. On Kaggle, you
can find an array of constantly renewed data-science competitions and datasets, many
of which involve deep learning.
 

https://kaggle.com/
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Although most Kaggle users use Python tools (such as TensorFlow and Keras) to
solve the competitions, most of the datasets on Kaggle are language-agnostic. So, it is
entirely feasible to solve most Kaggle problems using a non-Python deep-learning
framework like TensorFlow.js. By participating in a few competitions, maybe as a part
of a team, you’ll become familiar with the practical side of some of the advanced best
practices described in this book, especially hyperparameter tuning and avoiding vali-
dation-set overfitting.

13.4.2 Read about the latest developments on arXiv

Deep-learning research, in contrast with some other academic fields, takes place
almost completely in the open. Papers are made publicly and freely accessible as soon
as they are finalized and pass review, and a lot of related software is open source.
ArXiv (https://arxiv.org)—pronounced “archive” (the X stands for the Greek letter
chi)—is an open-access preprint server for mathematics, physics, and computer sci-
ence papers. It has become the de facto way to publish cutting-edge work in the field
of machine learning and deep learning, and hence is also the de facto way to stay up-
to-date with the field. This allows the field to move extremely fast: all new findings and
inventions are instantly available for all to see, to critique, and to build on.

An important downside of ArXiv is the sheer quantity of new papers posted every
day, which makes it impossible to skim them all. The fact that many of the papers on
ArXiv aren’t peer-reviewed makes it difficult to identify which ones are important and
of high quality. The community has built tools to help with these challenges. For
example, a website called ArXiv Sanity Preserver (arxiv-sanity.com) serves as a recom-
mendation engine for new ArXiv papers and can help you keep track of new develop-
ments in specific vertical domains of deep learning (such as natural language
processing or object detection). Additionally, you can use Google Scholar to keep
track of publications in your areas of interest and by your favorite authors.

13.4.3 Explore the TensorFlow.js Ecosystem

TensorFlow.js has a vibrant and growing ecosystem of documentation, guides, tutori-
als, blogosphere, and open source projects:

 Your main reference for working with TensorFlow.js is the official online docu-
mentation at www.tensorflow.org/js/. The detailed, up-to-date API documenta-
tion is available at https://js.tensorflow.org/api/latest/.

 You can ask questions about TensorFlow.js on Stack Overflow using the tag “ten-
sorflow.js”: https://stackoverflow.com/questions/tagged/tensorflow.js.

 For general discussion about the library, use the Google Group: https://groups
.google.com/a/tensorflow.org/forum/#!forum/tfjs.

 You can also follow members of the TensorFlow.js team who have an active pres-
ence on Twitter, including
– https://twitter.com/sqcai
– https://twitter.com/nsthorat
 

https://groups.google.com/a/tensorflow.org/forum/#!forum/tfjs
https://groups.google.com/a/tensorflow.org/forum/#!forum/tfjs
https://groups.google.com/a/tensorflow.org/forum/#!forum/tfjs
https://arxiv.org/
http://arxiv-sanity.com/
https://www.tensorflow.org/js/
https://js.tensorflow.org/api/latest/
https://stackoverflow.com/questions/tagged/tensorflow.js
https://twitter.com/sqcai
https://twitter.com/nsthorat
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– https://twitter.com/dsmilkov
– https://twitter.com/tensorflow

Final words
This is the end of Deep Learning with JavaScript! We hope you’ve learned a thing or two
about AI, deep learning, and how to perform some basic deep-learning tasks in Java-
Script using TensorFlow.js. Like any interesting and useful topic, learning about AI
and deep learning is a life-long journey. The same can be said for the application of AI
and deep learning to practical problems. This is true for professionals and amateurs
alike. For all the progress made in deep learning so far, most of the fundamental ques-
tions remain unanswered, and most of the practical potential of deep learning has
barely been tapped. Please keep learning, questioning, researching, imaging, hack-
ing, building, and sharing! We look forward to seeing what you build using deep
learning and JavaScript!
 

https://twitter.com/dsmilkov
https://twitter.com/tensorflow


appendix A
Installing tfjs-node-gpu

and its dependencies

To use the GPU-accelerated version of TensorFlow.js (tfjs-node-gpu) in Node.js, you
need to have CUDA and CuDNN installed on your machine. First of all, the
machine should be equipped with a CUDA-enabled NVIDIA GPU. To check
whether the GPU in your machine meets that requirement, visit https://developer
.nvidia.com/cuda-gpus.

Next, we list the detailed steps of the driver and library installation for Linux
and Windows, as these are the two operating systems on which tfjs-node-gpu is cur-
rently supported.

A.1 Installing tfjs-node-gpu on Linux
1 We assume you have installed Node.js and npm on your system and that the

paths to node and npm are included in your system path. If not, see
https://nodejs.org/en/download/ for downloadable installers.

2 Download the CUDA Toolkit from https://developer.nvidia.com/cuda-
downloads. Be sure to choose the suitable version for the version of tfjs-node-
gpu you intend to use. At the time of this writing, the latest version of tfjs-
node-gpu is 1.2.10, which works with CUDA Toolkit version 10.0. In addition,
be sure to select the correct operating system (Linux), architecture (for
example, x86_64 for machines with mainstream Intel CPUs), Linux distribu-
tion, and version of the distribution. You will have the option to download
several types of installers. Here, we assume you download the “runfile
(local)” file (as opposed to, for example, the local .deb package) for use in
the subsequent steps.

3 In your downloads folder, make the just-downloaded runfile executable. For
example,
chmod +x cuda_10.0.130_410.48_linux.run
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4 Use sudo to run the runfile. Note that the CUDA Toolkit installation process
may need to install or upgrade the NVIDIA driver if the version of the NVIDIA
driver already installed on your machine is too old or if no such driver has been
installed. If this is the case, you need to stop the X server by dropping to the
shell-only model. On Ubuntu and Debian distributions, you can enter the shell-
only model with the shortcut key Ctrl-Alt-F1. 

Follow the prompts on the screen to install the CUDA Toolkit installation,
followed by a reboot of the machine. If you are in shell-only mode, you can
reboot back to the normal GUI mode.

5 If step 3 completed correctly, the nvidia-smi command should now be avail-
able on your path. You can use it to check the status of your GPUs. It provides
information such as the name, temperature-sensor reading, fan speed, proces-
sor, and memory usage of the NVIDIA GPUs installed on your machine, in addi-
tion to the current NVIDIA driver version. It is a handy tool for real-time
monitoring of your GPU when you are using tfjs-node-gpu to train deep neural
networks. A typical printed message from nvidia-smi looks like the following
(note this machine has two NVIDIA GPUs):

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.111                Driver Version: 384.111                   |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Quadro P1000        Off  | 00000000:65:00.0  On |                  N/A |
| 41%   53C    P0   ERR! /  N/A |    620MiB /  4035MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Quadro M4000        Off  | 00000000:B3:00.0 Off |                  N/A |
| 46%   30C    P8    11W / 120W |      2MiB /  8121MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      3876      G   /usr/lib/xorg/Xorg                           283MiB |
+-----------------------------------------------------------------------------+

6 Add the path to the 64-bit CUDA library files to your LD_LIBRARY_PATH environ-
ment variable. Assuming that you are using the bash shell, you can add the fol-
lowing line to your .bashrc file:

export LD_LIBRARY_PATH="/usr/local/cuda/lib64:${PATH}"

tfjs-node-gpu uses the LD_LIBRARY_PATH environment variable to find the
required dynamic library files when starting up.

7 Download CuDNN from https://developer.nvidia.com/cudnn. Why do you
need CuDNN in addition to CUDA? This is because CUDA is a generic computa-
tion library with uses in fields other than deep learning (for example, fluid
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dynamics). CuDNN is NVIDIA’s library for accelerated deep neural network
operations built on top of CUDA.

NVIDIA may require you to create a login account and answer some survey
questions in order to download CuDNN. Be sure to download the version of
CuDNN that matches the version of CUDA Toolkit installed in the previous
steps. For example, CuDNN 7.6 goes with CUDA Toolkit 10.0.

8 Unlike CUDA Toolkit, the downloaded CuDNN doesn’t come with an execut-
able installer. Instead, it is a compressed tarball that contains a number of
dynamic library files and C/C++ headers. These files should be extracted and
copied into the appropriate destination folders. You can use a sequence of com-
mands like the following to achieve this:

tar xzvf cudnn-10.0-linux-x64-v7.6.4.38.tgz
cp cuda/lib64/* /usr/local/cuda/lib64
cp cuda/include/* /usr/local/cuda/include

9 Now that all the required drivers and libraries have been installed, you can
quickly verify CUDA and CuDNN by importing tfjs-node-gpu in node:

npm i @tensorflow/tfjs @tensorflow/tfjs-node-gpu
node

Then, at the Node.js command-line interface,

> const tf = require('@tensorflow/tfjs');
> require('@tensorflow/tfjs-node-gpu');

If everything went well, you should see a number of logging lines confirming
the discovery of a GPU (or multiple GPUs, depending on your system configu-
ration) ready for use by tfjs-node-gpu:

2018-09-04 13:08:17.602543: I 
tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 
with properties: 
name: Quadro M4000 major: 5 minor: 2 memoryClockRate(GHz): 0.7725
pciBusID: 0000:b3:00.0
totalMemory: 7.93GiB freeMemory: 7.86GiB
2018-09-04 13:08:17.602571: I 
tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible 
gpu devices: 0
2018-09-04 13:08:18.157029: I 
tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device 
interconnect StreamExecutor with strength 1 edge matrix:
2018-09-04 13:08:18.157054: I 
tensorflow/core/common_runtime/gpu/gpu_device.cc:971]      0 
2018-09-04 13:08:18.157061: I 
tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0:   N 
2018-09-04 13:08:18.157213: I 
tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created 
TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 
7584 MB memory) -> physical GPU (device: 0, name: Quadro M4000, pci bus 
id: 0000:b3:00.0, compute capability: 5.2)
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10 Now you are all set to use the full features of tfjs-node-gpu. Just make sure you
include the following dependencies in your package.json (or their later versions):
  ...
  "dependencies": {
    "@tensorflow/tfjs": "^0.12.6",
    "@tensorflow/tfjs-node": "^0.1.14",
    ...
  }
  ...

In your main .js file, make sure you import the basic dependencies, including
@tensorflow/tfjs and @tensorflow/tfjs-node-gpu. The former gives you the
general API of TensorFlow.js, while the latter wires TensorFlow.js operations to the
high-performance computation kernels implemented on CUDA and CuDNN:
const tf = require('@tensorflow/tfjs');
require('@tensorflow/tfjs-node-gpu');

A.2 Installing tfjs-node-gpu on Windows
1 Make sure that your Windows meets the system requirements of CUDA Toolkit.

Certain Windows releases and 32-bit machine architectures are not supported
by CUDA Toolkit. See https://docs.nvidia.com/cuda/cuda-installation-guide-
microsoft-windows/index.html#system-requirements for more details.

2 We assume you have installed Node.js and npm on your system and that the
paths of Node.js and npm are available in your system’s environment variable
Path. If not, see https://nodejs.org/en/download/ for downloadable installers.

3 Install Microsoft Visual Studio, as it is required by the installation of CUDA
Toolkit. See the same link as in step 1 for which version of Visual Studio to
install.

4 Download and install CUDA Toolkit for Windows. At the time of this writing,
CUDA 10.0 is required for running tfjs-node-gpu (latest version: 1.2.10). Be sure
to select the correct installer for your Windows release. Installers for Windows 7
and Windows 10 are available. The step requires administrator privileges.

5 Download CuDNN. Make sure that the version of CuDNN matches the version
of CUDA. For example, CuDNN 7.6 matches CUDA Toolkit 10.0. NVIDIA may
require you to create a login for its website and answer some survey questions
before you can download CuDNN.

6 Unlike the CUDA Toolkit installer, the CuDNN you just downloaded is a zip
file. Extract it, and you will see three folders within: cuda/bin, cuda/include,
and cuda/lib/x64. Locate the directory in which your CUDA Toolkit is installed
(by default, it is something like C:/Program Files/NVIDIA CUDA Toolkit
10.0/cuda). Copy the extracted files to the corresponding subfolders with the
same name there. For example, the files in cuda/bin of the extracted zip
archive should be copied to C:/Program Files/NVIDIA CUDA Toolkit
10.0/cuda/bin. This step may also require administrator privileges.
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7 After installing CUDA Toolkit and CuDNN, restart your Windows system. We
found this to be necessary for all the newly installed libraries to be properly
loaded for tfjs-node-gpu use. 

8 Install the npm package window-build-tools. This is necessary for the installa-
tion of the npm package @tensorflow/tfjs-node-gpu in the next step:

npm install --add-python-to-path='true' --global windows-build-tools

9 Install the packages @tensorflow/tfjs and @tensorflow/tfjs-node-gpu with
npm:
npm -i @tensorflow/tfjs @tensorflow/tfjs-node-gpu

10 To verify that the installation succeeded, open the node command line and run

> const tf = require('@tensorflow/tfjs');
> require('@tensorflow/tfjs-node-gpu');

See that both commands finish without errors. After the second command, you
should see some logging lines in the console printed by the TensorFlow GPU
shared library. Those lines will list details of the CUDA-enabled GPUs that tfjs-
node-gpu has recognized and will use in subsequent deep-learning programs.
 



appendix B
A quick tutorial of tensors

and operations in
TensorFlow.js

This appendix focuses on the parts of the TensorFlow.js API that are not tf.Model.
Although tf.Model provides a complete set of methods for training and evaluating
models and using them for inference, you often need to use non-tf.Model parts of
TensorFlow.js in order to work with tf.Model objects. The most common cases are

 Converting your data into tensors that can be fed to tf.Model objects
 Marshalling the data out of the predictions made by tf.Model, which are in

the format of tensors, so they can be used by other parts of your program

As you will see, getting data into and out of tensors is not hard, but there are some
customary patterns and cautionary points worth pointing out.

B.1 Tensor creation and tensor axis conventions
Remember that a tensor is simply a data container. Every tensor has two fundamen-
tal properties: data type (dtype) and shape. dtype controls what kinds of values are
stored within the tensor. A given tensor can store only one kind of value. At the
time of this writing (version 0.13.5), the supported dtypes are float32, int32, and
bool.

The shape is an array of integers indicating how many elements are in the tensor
and how they are organized. It can be thought of as the “shape and size” of the con-
tainer that is the tensor (see figure B.1).

The length of the shape is known as the tensor’s rank. For example, a 1D tensor,
also known as a vector, has rank 1. The shape of a 1D tensor is an array containing
one number, and that number tells us how long the 1D tensor is. Increasing rank
482
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by one, we get a 2D tensor, which can be visualized as a grid of numbers in a 2D plane
(like a grayscale image). The shape of a 2D tensor has two numbers, which tell us how
tall and how wide the grid is. Further increasing the rank by one, we get a 3D tensor.
As shown in the example in figure B.1, you can visualize a 3D tensor as a 3D grid of
numbers. The shape of a 3D tensor consists of three integers; they tell us the size of
the 3D grid along the three dimensions. So, you see the pattern. Tensors of rank 4 (4D
tensors) are harder to visualize directly because the world we live in has only three spa-
tial dimensions. 4D tensors are frequently used in many models, such as deep conv-
nets. TensorFlow.js supports tensors up to rank 6. In practice, rank-5 tensors are used
only in some niche cases (for example, those involving video data), while rank-6 ten-
sors are encountered even more rarely.

B.1.1 Scalar (rank-0 tensor)

A scalar is a tensor whose shape is an empty array ([]). It has no axes and always con-
tains exactly one value. You can create a new scalar using the tf.scalar() function.
At the JavaScript console (again, assuming TensorFlow.js is loaded and available at the
tf symbol), do the following:

> const myScalar = tf.scalar(2018);1

> myScalar.print();
Tensor
    2018
> myScalar.dtype;
"float32"
> myScalar.shape;

1 Note that for space and clarity, we will skip the JavaScript console output lines that result from assignments,
as they are not illustrative to the issue at hand. 

scalar
(rank-0)

Shape: []

tensor1d
(rank-1)

Shape: [3]

tensor2d
(rank-2)

Shape: [3, 3]

tensor4d
(rank-4)

Shape: [3, 3, 3, 3]

tensor3d
(rank-3)

Shape: [3, 3, 3]

Figure B.1 Examples of tensors of rank 0, 1, 2, 3, and 4
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[]
> myScalar.rank;
0

We have created a scalar tensor holding just the value 2018. Its shape is the empty list,
as expected. It has the default dtype ("float32"). To force the dtype to be an integer,
provide 'int32' as an additional argument when calling tf.scalar():

> const myIntegerScalar = tf.scalar(2018, 'int32');
> myIntegerScalar.dtype;
"int32"

To get the data back out of the tensor, we can use the async method data(). The
method is async because, in general, the tensor may be hosted out of the main mem-
ory, such as on GPUs, as a WebGL texture. Retrieving the value of such tensors
involves operations that are not guaranteed to resolve immediately, and we don’t want
those operations to block the main JavaScript thread. This is why the data() method
is async. There is also a synchronous function that retrieves the values of tensors
through polling: dataSync(). This method is convenient but blocks the main Java-
Script thread, so it should be used sparingly (for example, during debugging). Prefer
the async data() method whenever possible:

> arr = await myScalar.data();
Float32Array [2018]
> arr.length
1
> arr[0]
2018

To use dataSync():

> arr = myScalar.dataSync();
Float32Array [2018]
> arr.length
1
> arr[0]
2018

We see that for float32-type tensors, the data() and dataSync() methods return the
values as a JavaScript Float32Array primitive. This may be a little surprising if you
expected a plain old number, but it makes more sense when considering that tensors
of other shapes may need to return a container of multiple numbers. For int32-type
and bool-type tensors, data() and dataSync() return Int32Array and Uint8Array,
respectively.

Note that even though a scalar always contains exactly one element, the converse is
not true. A tensor whose rank is greater than 0 may have exactly one element as well,
as long as the product of the numbers in its shape is 1. For example, a 2D tensor of
shape [1, 1] has only one element, but it has two axes.
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B.1.2 tensor1d (rank-1 tensor)

A 1D tensor is sometimes called a rank-1 tensor or a vector. A 1D tensor has exactly
one axis, and its shape is a length-1 array. The following code will create a vector at the
console:

> const myVector = tf.tensor1d([-1.2, 0, 19, 78]);
> myVector.shape;
[4]
> myVector.rank;
1
> await  myVector.data();
Float32Array(4) [-1.2, 0, 19, 78]

This 1D tensor has four elements and can be called a 4-dimensional vector. Don’t con-
fuse a 4D vector with a 4D tensor! A 4D vector is a 1D tensor that has one axis and con-
tains exactly four values, whereas a 4D tensor has four axes (and may have any
number of dimensions along each axis). Dimensionality can denote either the num-
ber of elements along a specific axis (as in our 4D vector) or the number of axes in a
tensor (for example, a 4D tensor), which can be confusing at times. It’s technically
more correct and less ambiguous to refer to a rank-4 tensor, but the ambiguous nota-
tion 4D tensor is common regardless. In most cases, this shouldn’t be a problem, as it
can be disambiguated based on the context.

As in the case of scalar tensors, you can use the data() and dataSync() methods to
access the values of the 1D tensor’s elements; for example,

> await myVector.data()
Float32Array(4) [-1.2000000476837158, 0, 19, 78]

Alternatively, you can use the synchronous version of data()—namely, dataSync()—but
be aware that dataSync() may block the UI thread and should be avoided if possible:

> myVector.dataSync()
Float32Array(4) [-1.2000000476837158, 0, 19, 78]

In order to access the value of a specific element of the 1D tensor, you can simply
index into the TypedArray returned by data() or dataSync(); for example,

> [await myVector.data()][2]
19

B.1.3 tensor2d (rank-2 tensor)

A 2D tensor has two axes. In some cases, a 2D tensor is referred to as a matrix, and its
two axes can be interpreted as the row and column indices of the matrix, respectively.
You can visually interpret a matrix as a rectangular grid of elements (see the third
panel of figure B.1). In TensorFlow.js,

> const myMatrix = tf.tensor2d([[1, 2, 3], [40, 50, 60]]);
> myMatrix.shape;
[2, 3]
> myMatrix.rank;
2
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The entries from the first axis are called the rows, and the entries from the second axis
are the columns. In the previous example, [1, 2, 3] is the first row, and [1, 40] is the
first column. It is important to know that when returning the data, using data() or
dataSync(), the data will come as a flat array in row-major order. In other words, the
elements of the first row will appear in the Float32Array first, followed by elements of
the second row, and so forth:2

> await myMatrix.data();
Float32Array(6) [1, 2, 3, 40, 50, 60]

Previously, we mentioned that the data() and dataSync() methods, when followed by
indexing, can be used to access the value of any element of a 1D tensor. When used on
2D tensors, the indexing operation becomes tedious because the TypedArray
returned by data() and dataSync() flattens the elements of the 2D tensor. For
instance, in order to determine the element of the TypedArray that corresponds to
the element in the second row and second column of the 2D tensor, you’d have to
perform arithmetic like the following:

> (await myMatrix.data())[1 * 3 + 1];
50

Fortunately, TensorFlow.js provides another set of methods to download values from
tensors into plain JavaScript data structures: array() and arraySync(). Unlike
data() and dataSync(), these methods return nested JavaScript arrays that properly
preserve the rank and shape of the original tensors. For example,

> JSON.stringify(await myMatrix.array())
 "[[1,2,3],[40,50,60]]"

To access an element at the second row and second column, we can simply perform
indexing into the nested array twice:

> (await myMatrix.array())[1][1]
 50

This gets rid of the need to perform index arithmetic and will be especially conve-
nient for higher-dimensional tensors. arraySync() is the synchronous version of
array(). Like dataSync(), arraySync() may block the UI thread and should be used
with caution.

In the tf.tensor2d() call, we provided a nested JavaScript array as the argument.
The argument consists of rows of arrays nested within another array. This nesting
structure is used by tf.tensor2d() to infer the shape of the 2D tensor—that is, how
many rows and how many columns there are, respectively. An alternative way to create
the same 2D tensor with tf.tensor2d() is to provide the elements as a flat (non-
nested) JavaScript array and accompany it by a second argument that specifies the
shape of the 2D tensor:

2 This is different from the column-major ordering seen in some other numerical frameworks such as MATLAB
and R.
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> const myMatrix = tf.tensor2d([1, 2, 3, 40, 50, 60], [2, 3]);
> myMatrix.shape;
[2, 3]
> myMatrix.rank;
2

In this approach, the product of all the numbers in the shape argument must match
the number of elements in the float array, or else an error will be thrown during the
tf.tensor2d() call. For tensors of ranks higher than 2, there are also two analogous
approaches to tensor creation: using either a single nested array as the argument or a
flat array accompanied by a shape argument. You will see both approaches used in dif-
ferent examples throughout this book. 

B.1.4 Rank-3 and higher-dimensional tensors

If you pack several 2D tensors into a new array, you will get a 3D tensor, which you can
imagine as a cube of elements (the fourth panel in figure B.1). Rank-3 tensors can be
created in TensorFlow.js following the same pattern as previously:

> const myRank3Tensor = tf.tensor3d([[[1, 2, 3], 
                                      [4, 5, 6]],
                                      [[10, 20, 30], 
                                      [40, 50, 60]]]);
> myRank3Tensor.shape;
[2, 2, 3]
> myRank3Tensor.rank;
3

Another way to do the same thing is to provide a flat (non-nested) array of values,
together with an explicit shape:

> const anotherRank3Tensor = tf.tensor3d(
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 
    [2, 2, 3]);

The tf.tensor3d() function in this example can be replaced with the more generic
tf.tensor() function. This allows you to generate tensors of any rank up to 6. In the
following, we create a rank-3 and a rank-6 tensor:

> anotherRank3Tensor = tf.tensor(
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], 
    [2, 2, 3]);
> anotherRank3Tensor.shape;
[2, 2, 3]
> anotherRank3Tensor.rank;
3

> tinyRank6Tensor = tf.tensor([13], [1, 1, 1, 1, 1, 1]);
> tinyRank6Tensor.shape;
[1, 1, 1, 1, 1, 1]
> tinyRank6Tensor.rank;
6
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B.1.5 The notion of data batches

In practice, the first axis (axis 0, because indexing starts at 0) in all tensors you’ll come
across in deep learning will almost always be the batch axis (sometimes called the sam-
ples axis or batch dimension). Therefore, an actual tensor taken by a model as input has
a rank that exceeds the rank of an individual input feature by 1. This is true through-
out the TensorFlow.js models in this book. The size of the first dimension equals the
number of examples in the batch, known as batch size. For instance, in the iris-flower-
classification example in chapter 3 (listing 3.9), the input feature of every example
consists of four numbers represented as a length-4 vector (a 1D tensor of shape [4]).
Hence the input to the iris-classification model is 2D and has a shape [null, 4],
where the first null value indicates a batch size that will be determined at the model’s
runtime (see figure B.2). This batching convention also applies to the output of mod-
els. For example, the iris-classification model outputs a one-hot encoding for the
three possible types of iris for every individual input example, which is a 1D tensor of
shape [3]. However, the model’s actual output shape is 2D and has a shape of [null,
3], where the null-valued first dimension is the to-be-determined batch size. 

B.1.6 Real-world examples of tensors

Let’s make tensors more concrete with a few examples similar to what you’ll encoun-
ter in the book. The data you’ll manipulate will almost always fall into one of the fol-
lowing categories. In the previous discussion, we follow the batching convention and
always included the number of examples in the batch (numExamples) as the first axis:

 Vector data—2D tensors with shape [numExamples, features]
 Time-series (sequence) data—3D tensors with shape [numExamples, timesteps,

features]

Shape: [3]
Shape: [null, 3]

Example 1

Example 2

Example N

Tensor for
batched examples

(rank-2)
Tensor for individual

example
(rank-1)

Figure B.2 Tensor shapes for individual examples (left) and batched examples (right). The tensor 
for batched examples has a rank one greater than the tensor for an individual example and is the 
format accepted by the predict(), fit(), and evaluate() methods of tf.Model objects. 
The null in the shape of the tensor for batch examples indicates that the first dimension of the 
tensor has an undetermined size, which can be every positive integer during actual calls to the 
aforementioned methods.
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 Images—4D tensors with shape [numExamples, height, width, channels]
 Video—5D tensors with shape [numExamples, frame, height, width, 

channels]

VECTOR DATA

This is the most common case. In such a dataset, each single data sample can be
encoded as a vector, and thus a batch of data will be encoded as a rank-2 tensor, where
the first axis is the samples axis, and the second axis is the features axis.

Let’s take a look at two examples:

 An actuarial dataset of people, in which we consider each person’s age, ZIP
code, and income. Each person can be characterized as a vector of 3 values, and
thus an entire dataset of 100,000 people can be stored in a 2D tensor with shape
[100000, 3].

 A dataset of text documents, where we represent each document by the counts
of how many times each word appears in it (for example, out of an English dic-
tionary of the 20,000 most common words). Each document can be encoded as
a vector of 20,000 values (one count per word in the dictionary), and thus a
batch of 500 documents can be stored in a tensor of shape [500, 20000].

TIME-SERIES OR SEQUENCE DATA

Whenever time matters in your data (or the
notion of sequence order), it makes sense to
store it in a 3D tensor with an explicit time
axis. Each sample is encoded as a sequence
of vectors (a 2D tensor), and thus a batch of
samples will be encoded as a 3D tensor (see
figure B.3).

The time axis is almost always the second
axis (axis of index 1) by convention, as in
the following examples:

 A dataset of stock prices. Every minute we store the current price of the stock,
the highest price in the past minute, and the lowest price in the past minute.
Thus, each minute is encoded as a vector of three values. Since there are 60
minutes in an hour, an hour of trading is encoded as a 2D tensor of shape [60,
3]. If we have a dataset of 250 independent hours of sequences, the shape of
the dataset will be [250, 60, 3].

 A dataset of tweets in which we encode each tweet as a sequence of 280 charac-
ters out of an alphabet of 128 unique characters. In this setting, each character
can be encoded as a binary vector of size 128 (all zeros except a 1 entry at the
index corresponding to the character). Then each can be considered as a rank-
2 tensor of shape [280, 128]. A dataset of 1 million tweets can be stored in a
tensor of shape [1000000, 280, 128].
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Figure B.3 A 3D time-series data tensor
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IMAGE DATA

The data of an image typically has three dimen-
sions: height, width, and color depth. Although
grayscale images have only a single color channel,
by convention, image tensors are always rank 3, with
a 1-dimensional color channel for grayscale images.
A batch of 128 grayscale images of size 256 × 256
would thus be stored in a tensor of shape [128,
256, 256, 1], and a batch of 128 color images
would be stored in a tensor of shape [128, 256,
256, 3] (see figure B.4). This is called the NHWC
convention (see chapter 4 for more details).

Some frameworks put the channels dimension before the height and width, using
the NCHW convention. We don’t use this convention in this book, but don’t be sur-
prised to see an image tensor of a shape such as [128, 3, 256, 256] elsewhere.

VIDEO DATA

Raw video data is one of the few types of common real-world data for which you’ll
need rank-5 tensors. A video can be understood as a sequence of frames, each frame
being a color image. Since each frame can be stored in a rank-3 tensor [height,
width, colorChannel], a sequence of frames can be stored in a 4D tensor [frames,
height, width, colorChannel], and thus a batch of different videos would be stored
in a 5D tensor of shape [samples, frames, height, width, colorChannel].

For instance, a 60-second, 144 × 256 YouTube video clip sampled at 4 frames per
second would have 240 frames. A batch of four such video clips would be stored in a
tensor of shape [4, 240, 144, 256, 3]. That’s a total of 106,168,320 values! If the
dtype of the tensor were 'float32', then each value would be stored in 32 bits, so the
tensor would represent 405 MB. This is a heavy amount of data! Videos you encounter
in real life are much lighter because they aren’t stored in float32, and they’re typically
compressed by a large factor (such as in the MPEG format).

B.1.7 Creating tensors from tensor buffers

We’ve shown how to create tensors from JavaScript arrays using functions such as
tf.tensor2d() and tf.tensor(). To do so, you must have determined the values of
all the elements and set them in the JavaScript arrays beforehand. In some cases, how-
ever, it is somewhat tedious to create such a JavaScript array from scratch. For
instance, suppose you want to create a 5 × 5 matrix in which all the off-diagonal ele-
ments are zero, and the diagonal elements form an increasing series that equals the
row or column index plus 1:

[[1, 0, 0, 0, 0],
 [0, 2, 0, 0, 0],
 [0, 0, 3, 0, 0],
 [0, 0, 0, 4, 0],
 [0, 0, 0, 0, 5]]
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Figure B.4 A 4D image data tensor
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If you were to create a nested JavaScript array to meet this requirement, the code
would look something like the following:

const n = 5;
const matrixArray = [];
for (let i = 0; i < 5; ++i) {
  const row = [];
  for (let j = 0; j < 5; ++j) {
    row.push(j === i ? i + 1 : 0);
  }
  matrixArray.push(row);
}

Finally, you can convert the nested JavaScript array matrixArray into a 2D tensor:

> const matrix = tf.tensor2d(matrixArray);

This code looks a little tedious. It involves two nested for loops. Is there a way to sim-
plify it? The answer is yes: we can use the tf.tensorBuffer() method to create a
TensorBuffer. A TensorBuffer object allows you to specify its elements by indices and
change their values by using the set() method. This is different from a tensor object
in TensorFlow.js, whose element values are immutable. When you have finished setting
the values of all the elements of a TensorBuffer you wish to set, the TensorBuffer can
be conveniently converted to an actual tensor object through its toTensor() method.
Hence, if we use tf.tensorBuffer() to achieve the same tensor-creation task as the
previous code, the new code will look like

const buffer = tf.tensorBuffer([5, 5]);
for (let i = 0; i < 5; ++i) {
  buffer.set(i +  1, i, i);
}
const matrix = buffer.toTensor();

Therefore, by using tf.tensorBuffer(), we reduced the lines of code from 10 to 5.

B.1.8 Creating all-zero and all-one tensors

It is often desirable to create a tensor of a given shape with all elements equal to zero.
You can use the tf.zeros() function to achieve this. To call the function, provide the
desired shape as the input argument; for example,

> const x = tf.zeros([2, 3, 3]);
> x.print();
Tensor
    [[[0, 0, 0],
      [0, 0, 0],
      [0, 0, 0]],
      [[0, 0, 0],
      [0, 0, 0],
      [0, 0, 0]]]

Specifies the tensor shape when 
creating a TensorBuffer. A TensorBuffer 
has all-zero values after creation.

The first arg is the desired values, 
while the remaining args are the 
indices of the element to be set.Gets an actual tensor object

from the TensorBuffer
 



492 APPENDIX B A quick tutorial of tensors and operations in TensorFlow.js
The tensor created has the default dtype (float32). To create all-zero tensors of other
dtypes, specify the dtype as the second argument to tf.zeros().

A related function is tf.zerosLike(), which lets you create an all-zero tensor of
the same shape and dtype as an existing tensor. For example, 

> const y = tf.zerosLike(x);

is equivalent to 

> const y = tf.zeros(x.shape, x.dtype);

but is more succinct.
Analogous methods allow you to create tensors of which all elements are equal to

one: tf.ones() and tf.onesLike().

B.1.9 Creating randomly valued tensors

Creating randomly valued tensors is useful in many cases, such as the initialization of
weights. The most frequently used functions for creating randomly valued tensors are
tf.randomNormal() and tf.randomUniform(). The two functions have similar syntax
but lead to different distributions in element values. As its name suggests, tf.random-
Normal() returns tensors in which the element values follow a normal (Gaussian) dis-
tribution.3 If you invoke the function with only a shape argument, you will get a tensor
whose elements follow the unit normal distribution: a normal distribution with mean
= 0 and standard deviation (SD) = 1. For example,

> const x = tf.randomNormal([2, 3]);
> x.print():
Tensor
    [[-0.2772508, 0.63506  , 0.3080665],
     [0.7655841 , 2.5264773, 1.142776 ]]

If you want the normal distribution to have a no-default mean or SD, you may provide
them as the second and third input arguments, respectively. For instance, the following
call creates a tensor in which the elements follow a normal distribution of mean = 20
and SD = 0.6:

> const x = tf.randomNormal([2, 3], -20, 0.6);
> x.print();
Tensor
    [[-19.0392246, -21.2259483, -21.2892818],
     [-20.6935596, -20.3722878, -20.1997948]]

tf.randomUniform() lets you create random tensors with uniformly distributed ele-
ment values. By default, the uniform distribution is a unit one—that is, with lower
bound 0 and upper bound 1:

> const x = tf.randomUniform([3, 3]);
> x.print();
Tensor

3 For readers familiar with statistics, the element values are independent from each other.
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    [[0.8303654, 0.3996494, 0.3808384],
     [0.0751046, 0.4425731, 0.2357403],
     [0.4682371, 0.0980235, 0.7004037]]

If you want to let the element value follow a non-unit uniform distribution, you can
specify the lower and upper bounds as the second and third arguments to tf.random-
Uniform(), respectively. For example, 

> const x = tf.randomUniform([3, 3], -10, 10);

creates a tensor with values randomly distributed in the [-10, 10) interval:

> x.print();
Tensor
    [[-7.4774652, -4.3274679, 5.5345411 ],
     [-6.767087 , -3.8834026, -3.2619202],
     [-8.0232048, 7.0986223 , -1.3350322]]

tf.randomUniform() can be used to create randomly valued int32-type tensors. This is
useful for cases in which you want to generate random labels. For example, the follow-
ing code creates a length-10 vector in which the values are randomly drawn from the
integers 0 through 100 (the interval [0, 100)): 

> const x = tf.randomUniform([10], 0, 100, 'int32');
> x.print();
Tensor
    [92, 16, 65, 60, 62, 16, 77, 24, 2, 66]

Note that the 'int32' argument is the key in this example. Without it, the tensor you
get will contain float32 values instead of int32 ones.

B.2 Basic tensor operations
Tensors wouldn’t be of much use if we couldn’t perform operations on them. Tensor-
Flow.js supports a large number of tensor operations. You can see a list of them, along
with their documentation, at https://js.tensorflow.org/api/latest. Describing every
single one of them would be tedious and redundant. Therefore, we will highlight
some of the most frequently used operations as examples. Frequently used operations
can be categorized into two types: unary and binary. A unary operation takes one ten-
sor as input and returns a new tensor, while a binary operation takes two tensors as its
inputs and returns a new tensor. 

B.2.1 Unary operations

Let’s consider the operation of taking the negative of a tensor—that is, using the neg-
ative value of every element of the input tensor—and forming a new tensor of the
same shape and dtype. This can be done with tf.neg(): 

> const x = tf.tensor1d([-1, 3, 7]);
> const y = tf.neg(x);
> y.print();
Tensor
    [1, -3, -7]
 

https://js.tensorflow.org/api/latest
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FUNCTIONAL API VS. CHAINING API
In the previous example, we invoked the function tf.neg() with the tensor x as the
input argument. TensorFlow.js provides a more concise way to perform the mathemat-
ically equivalent operation: using the neg() method, which is a method of the tensor
object itself, instead of a function under the tf.* namespace:

> const y = x.neg();

In this simple example, the amount of saved typing due to the new API may not seem
that impressive. However, in cases where a number of operations need to be applied
one after another, the second API will show considerable advantages over the first
one. For instance, consider a hypothetical algorithm in which you want to take the
negative of x, calculate the reciprocal (1 divided by every element), and apply the
relu activation function on it. This is the code it takes to implement the algorithm in
the first API:

> const y = tf.relu(tf.reciprocal(tf.neg(x)));

By contrast, in the second API, the implementing code looks like

> const y = x.neg().reciprocal().relu();

The second implementation outshines the first one in these aspects:

 There are fewer characters, less typing, and hence a smaller chance of making
mistakes.

 There is no need to balance the nested pairs of opening and closing parenthe-
ses (although most modern code editors will help you do this).

 More importantly, the order in which the methods appear in the code matches
the order in which the underlying mathematical operations happen. (Notice
that in the first implementation, the order is reversed.) This leads to better
code readability in the second implementation.

We will refer to the first API as the functional API because it is based on calling func-
tions under the tf.* namespace. The second API will be referred to as the chaining
API, owing to the fact that operations appear in a sequence like a chain (as you can
see in the previous example). Most operations in TensorFlow.js are accessible as both
the functional version under the tf.* namespace and the chaining version as a
method of tensor objects. You can choose between the two APIs based on your needs.
Throughout this book, we use both APIs in different places, with a preference for the
chaining API for cases that involve serial operations.

ELEMENT-WISE VS. REDUCTION OPERATIONS

The examples of unary operations we mentioned (tf.neg(), tf.reciprocal(), and
tf.relu()) have the common property that the operation happens on individual
elements of the input tensor independently. As a result, the returned tensor of such
an operation preserves the shape of the input tensor. However, other unary opera-
tions in TensorFlow.js lead to a tensor shape smaller than the original one. What does
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“smaller” mean in the context of tensor shape? In some cases, it means a lower rank.
For example, a unary operation may return a scalar (rank-0) tensor given a 3D (rank-
3) tensor. In other cases, it means the size of a certain dimension is smaller than the
original one. For instance, a unary operation may return a tensor of shape [3, 1]
given an input of shape [3, 20]. Regardless of how the shape shrinks, these opera-
tions are referred to as reduction operations. 

tf.mean() is one of the most frequently used reduction operations. It appears as
the mean() method of the Tensor class in the chaining API. When invoked without
any additional arguments, it computes the arithmetic mean of all elements of the
input tensor, regardless of its shape, and returns a scalar. Its usage in the chaining API
looks like

> const x = tf.tensor2d([[0, 10], [20, 30]]);
> x.mean().print();
Tensor
    15

Sometimes, we require the mean to be calculated separately over the rows of the 2D
tensor (matrix) instead of over the whole tensor. This can be achieved by providing an
additional argument to the mean() method:

> x.mean(-1).print();
Tensor
    [5, 25]

The argument -1 indicates that the mean() method should calculate the arithmetic
means along the last dimension of the tensor.4 This dimension is referred to as the
reduction dimension, as it will be “reduced away” in the output tensor, which becomes a
rank-1 tensor. An alternative way to specify the reduction dimension is to use the
actual index of the dimension:

> x.mean(1).print();

Note that mean() also supports multiple reduction dimensions. For example, if you
have a 3D tensor of shape [10, 6, 3], and you want the arithmetic mean to be calcu-
lated over the last two dimensions, yielding a 1D tensor of shape [10], you can call
mean() as x.mean([-2, -1]) or x.mean([1, 2]). We leave this as an exercise at the
end of this appendix. 

Other frequently used reduction unary operations include

 tf.sum(), which is almost identical to tf.mean(), but it computes the sum,
instead of the arithmetic mean, over elements.

 tf.norm(), which computes the norm over elements. There are different kinds
of norms. For example, a 1-norm is a sum of the absolute values of elements. A
2-norm is calculated by taking the square root of the sum over the squared ele-
ments. In other words, it is the length of a vector in a Euclidean space.

4 This follows the indexing convention of Python. 
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tf.norm() can be used to calculate the variance or the standard deviation of a
list of numbers. 

 tf.min() and tf.max(), which calculate the minimum and maximum value
over elements, respectively.

 tf.argMax(), which returns the index of the maximum element over a reduc-
tion axis. This operation is frequently used to convert the probability output of
a classification mode into the winning class’s index (for example, see the iris-
flower classification problem in section 3.3.2). tf.argMin() provides similar
functionality for finding the minimum value.

We mentioned that element-wise operations preserve the shape of the input tensor.
But the converse is not true. Some shape-preserving operations are not element-wise.
For instance, the tf.transpose() operation can perform matrix transpose, in which
the element at indices [i, j] in the input 2D tensor is mapped onto the indices [j,
i] in the output 2D tensor. The input and output shapes of tf.transpose() will be
identical if the input is a square matrix, but this is not an element-wise operation, as
the value at [i, j] of the output tensor does not depend only on the value at [i, j]
in the input tensor, but instead depends on values at other indices.

B.2.2 Binary operations

Unlike unary operations, a binary operation requires two input arguments. tf.add()
is perhaps the most frequently used binary operation. It is perhaps also the simplest,
as it simply adds two tensors together. For example,

> const x = tf.tensor2d([[0, 2], [4, 6]]);
> const y = tf.tensor2d([[10, 20], [30, 46]]);
> tf.add(x, y).print();
Tensor
    [[10, 22],
     [34, 52]]

Similar binary operations include 

 tf.sub() for subtracting two tensors
 tf.mul() for multiplying two tensors
 tf.matMul() for computing the matrix product between two tensors
 tf.logicalAnd(), tf.logicalOr(), and tf.logicaXor() for performing

AND, OR, and XOR operations on bool-type tensors, respectively. 

Some binary operations support broadcasting, or operating on two input tensors of dif-
ferent shapes and applying an element in the input of a smaller shape over multiple
elements in the other input according to a certain rule. See info box 2.4 in chapter 2
for a detailed discussion. 
 



497Basic tensor operations
B.2.3 Concatenation and slicing of tensors

Unary and binary operations are tensor-in-tensor-out (TITO), in the sense that they
take one or more tensors as the input and return a tensor as the output. Some fre-
quently used operations in TensorFlow.js are not TITO because they take a tensor,
along with another nontensor argument, as their inputs. tf.concat() is perhaps the
most frequently used function in this category. It allows you to concatenate multiple
tensors of compatible shape into a single tensor. Concatenation is possible only if the
shape of the tensors satisfies certain constraints. For example, it is possible to combine
a [5, 3] tensor and a [4, 3] tensor along the first axis to get a [9, 3] tensor, but it
isn’t possible to combine the tensors if their shapes are [5, 3] and [4, 2]! Given
shape compatibility, you can use the tf.concat() function to concatenate tensors.
For example, the following code concatenates an all-zero [2, 2] tensor with an all-
one [2, 2] tensor along the first axis, which gives a [4, 2] tensor in which the “top”
half is all-zero and the “bottom” half is all-one:

> const x = tf.zeros([2, 2]);
> const y = tf.ones([2, 2]);
> tf.concat([x, y]).print();
Tensor
    [[0, 0],
     [0, 0],
     [1, 1],
     [1, 1]]

Because the shapes of the two input tensors are identical, it is possible to concatenate
them differently: that is, along the second axis. The axis can be specified as the second
input argument to tf.concat(). This will give us a [2, 4] tensor in which the left half
is all-zero and the right half is all-one:

> tf.concat([x, y], 1).print();
Tensor
    [[0, 0, 1, 1],
     [0, 0, 1, 1]]

Apart from concatenating multiple tensors into one, sometimes we want to perform
the “reverse” operation, retrieving a part of a tensor. For example, suppose you have
created a 2D tensor (matrix) of shape [3, 2],

> const x = tf.randomNormal([3, 2]);
> x.print();
Tensor
    [[1.2366893 , 0.6011682 ],
     [-1.0172369, -0.5025602],
     [-0.6265425, -0.0009868]]

and you would like to get the second row of the matrix. For that, you can use the
chaining version of tf.slice():

> x.slice([1, 0], [1, 2]).print();
Tensor
     [[-1.0172369, -0.5025602],]
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The first argument to slice() indicates that the part of the input tensor we want
starts at index 1 along the first dimension and index 0 of the second dimension. In
other words, it should start from the second row and the first column, since the 2D
tensor we are dealing with here is a matrix. The second argument specifies the shape
of the desired output: [1, 2] or, in matrix language, 1 row and 2 columns.

As you can verify by looking at the printed values, we have successfully retrieved the
second row of the 3 × 2 matrix. The shape of the output has the same rank as the
input (2), but the size of the first dimension is 1. In this case, we are retrieving the
entirety of the second dimension (all columns) and a subset of the first dimension (a
subset of the rows). This is a special case that allows us to achieve the same effect with
a simpler syntax:

> x.slice(1, 1).print();
Tensor
     [[-1.0172369, -0.5025602],]

In this simpler syntax, we just need to specify the starting index and the size of the
requested chunk along the first dimension. If 2 is passed instead of 1 as the second
input argument, the output will contain the second and third rows of the matrix:

> x.slice(1, 2).print();
Tensor
    [[-1.0172369, -0.5025602],
     [-0.6265425, -0.0009868]]

As you may have guessed, this simpler syntax is related to the batching convention. It
makes it easier to get the data for individual examples out of a batched tensor.

But what if we want to access columns of the matrix instead of rows? In this case, we
would have to use the more complex syntax. For example, suppose we want the sec-
ond column of the matrix. It can be achieved by

> x.slice([0, 1], [-1, 1]).print();
Tensor
    [[0.6011682 ],
     [-0.5025602],
     [-0.0009868]]

Here, the first argument ([0, 1]) is an array representing the beginning indices of
the slice we want. It is the first index along the first dimension and the second index
along the second dimension. Put more simply, we want our slice to begin at the first
row and the second column. The second argument ([-1, 1]) specifies the size of the
slice we want. The first number (–1) indicates that we want all indices along the first
dimension (we want all rows starting), while the second number (1) means we want
only one index along the second dimension (we want only one column). The result is
the second column of the matrix. 

Looking at the syntax of slice(), you may have realized that slice() is not limited
to retrieving just rows or columns. In fact, it is flexible enough to let you retrieve any
“submatrix” of the input 2D tensor (any consecutive rectangular area within the
matrix), if the beginning indices and size array are specified properly. More generally,
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for tensors of any rank greater than 0, slice() allows you to retrieve any consecutive
subtensor of the same rank inside the input tensor. We leave this as an exercise for you
at the end of this appendix.

Apart from tf.slice() and tf.concat(), two other frequently used operations
that split a tensor into parts or combine multiple tensors into one are tf.unstack()
and tf.stack(). tf.unstack() splits a tensor into multiple “pieces” along the first
dimension. Each of those pieces has a size of 1 along the first dimension. For exam-
ple, we can use the chaining API of tf.unstack(): 

> const x = tf.tensor2d([[1, 2], [3, 4], [5, 6]]);
> x.print();
Tensor
    [[1, 2],
     [3, 4],
     [5, 6]]
> const pieces = x.unstack();
> console.log(pieces.length);
  3 
> pieces[0].print();
Tensor
    [1, 2]
> pieces[1].print();
Tensor
    [3, 4]
> pieces[2].print();
Tensor
    [5, 6]

As you can notice, the “pieces” returned by unstack() have a rank one less than that
of the input tensor.

tf.stack() is the reverse of tf.unstack(). As its name suggests, it “stacks” a num-
ber of tensors with identical shapes into a new tensor. Following the prior example
code snippet, we stack the pieces back together:

> tf.stack(pieces).print();
Tensor
    [[1, 2],
     [3, 4],
     [5, 6]]

tf.unstack() is useful for getting the data corresponding to individual examples
from a batched tensor; tf.stack() is useful for combining the data for individual
examples into a batched tensor.

B.3 Memory management in TensorFlow.js: 
tf.dispose() and tf.tidy()
In TensorFlow.js, if you deal directly with tensor objects, you need to perform memory
management on them. In particular, a tensor needs to be disposed after creation and
use, or it will continue to occupy the memory allocated for it. If undisposed tensors
become too many in number or too large in their total size, they will eventually cause
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the browser tab to run out of WebGL memory or cause the Node.js process to run out
of system or GPU memory (depending on whether the CPU or GPU version of tfjs-
node is being used). TensorFlow.js does not perform automatic garbage collection of
user-created tensors.5 This is because JavaScript does not support object finalization.
TensorFlow.js provides two functions for memory management: tf.dispose() and
tf.tidy(). 

For example, consider an example in which you perform repeated inference on a
TensorFlow.js model using a for loop:

const model = await tf.loadLayersModel(
    'https://storage.googleapis.com/tfjs-models/tfjs/iris_v1/model.json');
const x = tf.randomUniform([1, 4]);
for (let i = 0; i < 3; ++i) {
  const y = model.predict(x);
  y.print();
  console.log(`# of tensors: ${tf.memory().numTensors}` );
}

The output will look like

Tensor
     [[0.4286409, 0.4692867, 0.1020722],]
# of tensors: 14
Tensor
     [[0.4286409, 0.4692867, 0.1020722],]
# of tensors: 15
Tensor
     [[0.4286409, 0.4692867, 0.1020722],]
# of tensors: 16

As you can see in the console log, every time model.predict() is called, it generates
an additional tensor, which doesn’t get disposed after the iteration ends. If the for
loop is allowed to run for enough iterations, it will eventually cause an out-of-memory
error. This is because the output tensor y is not disposed properly, leading to a tensor
memory leak. There are two ways to fix this memory leak.

In the first approach, you can call tf.dispose() on the output tensor when it is no
longer needed:

for (let i = 0; i < 3; ++i) {
  const y = model.predict(x);
  y.print();
  tf.dispose(y);
  console.log(`# of tensors: ${tf.memory().numTensors}` );
}

In the second approach, you can wrap the body of the for loop with tf.tidy():

5 However, the tensors created inside TensorFlow.js functions and object methods are managed by the library
itself, so you don’t need to worry about wrapping calls to such functions or methods in tf.tidy(). Examples
of such functions include tf.confusionMatrix(), tf.Model.predict(), and tf.Model.fit().

Creates a dummy 
input tensor

Loads a pretrained
model from the web

Checks the number 
of currently 
allocated tensors

Disposes the output 
tensor after its use
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for (let i = 0; i < 3; ++i) {
  tf.tidy(() => { 
    const y = model.predict(x);
    y.print();
    console.log(`# of tensors: ${tf.memory().numTensors}` );
  });
}

With either approach, you should see the number of allocated tensors become con-
stant over the iterations, indicating that there is no tensor memory leak anymore.
Which approach should you prefer? In general, you should use tf.tidy() (the sec-
ond approach), because it gets rid of the need to keep track of what tensors to dis-
pose. tf.tidy() is a smart function that disposes all tensors created within the
anonymous function passed to it as the argument (except those that are returned by
the function—more on that later), even for the tensors not bound to any JavaScript
objects. For example, suppose we modify the previous inference code slightly in order
to obtain the index of the winning class using argMax():

const model = await tf.loadLayersModel(
    'https://storage.googleapis.com/tfjs-models/tfjs/iris_v1/model.json');
const x = tf.randomUniform([1, 4]);
for (let i = 0; i < 3; ++i) {
  const winningIndex =

      model.predict(x).argMax().dataSync()[0];
  console.log(`winning index: ${winningIndex}`);
  console.log(`# of tensors: ${tf.memory().numTensors}` );
}

When this code runs, you will see that instead of leaking one tensor per iteration, it
leaks two:

winning index: 0
# of tensors: 15
winning index: 0
# of tensors: 17
winning index: 0
# of tensors: 19

Why are two tensors leaked per iteration? Well, the line

   const winningIndex = 
       model.predict(x).argMax().dataSync()[0];

generates two new tensors. The first is the output of model.predict(), and the sec-
ond is the return value of argMax(). Neither of the tensors is bound to any JavaScript
object. They are used immediately after creation. The two tensors are “lost” in the
sense that there are no JavaScript objects you can use to refer to them. Hence,
tf.dispose() cannot be used to clean up the two tensors. However, tf.tidy() can
still be used to fix the memory leak, as it performs bookkeeping on new tensors
regardless of whether they are bound to JavaScript objects:

const model = await tf.loadLayersModel(
    'https://storage.googleapis.com/tfjs-models/tfjs/iris_v1/model.json');

tf.tidy() automatically disposes all tensors 
created within the function passed to it except 
the tensors that are returned by the function.
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const x = tf.randomUniform([1, 4]);
for (let i = 0; i < 3; ++i) {
  tf.tidy(() => {
    const winningIndex = model.predict(x).argMax().dataSync()[0];
    console.log(`winning index: ${winningIndex}`);
    console.log(`# of tensors: ${tf.memory().numTensors}` );
  });
}

The example usages of tf.tidy() operate on functions that do not return any tensors.
If the function returns tensors, you do not want them to be disposed because they need
to be used afterward. This situation is encountered frequently when you write custom
tensor operations by using the basic tensor operations provided by TensorFlow.js. For
example, suppose we want to write a function that calculates the normalized value of
the input tensor—that is, a tensor with the mean subtracted and the standard devia-
tion scaled to 1:

function normalize(x) {
  const mean = x.mean();
  const sd = x.norm(2);
  return x.sub(mean).div(sd);
}

What is the problem with this implementation?6 In terms of memory management, it
leaks a total of three tensors: 1) the mean, 2) the SD, and 3) a more subtle one: the
return value of the sub() call. To fix the memory leak, we wrap the body of the func-
tion with tf.tidy():

function normalize(x) {
  return tf.tidy(() => {
    const mean = x.mean();
    const sd = x.norm(2);
    return x.sub(mean).div(sd);

  });
}

Here, tf.tidy() does three things for us:

 It automatically disposes the tensors that are created in the anonymous func-
tion but not returned by it, including all three leaks mentioned. We have seen
this in the previous examples.

 It detects that the output of the div() call is returned by the anonymous func-
tion and hence will forward it to its own return value.

 In the meantime, it will avoid disposing that particular tensor, so it can be used
outside the tf.tidy() call. 

6 There are other problems with this implementation. For instance, it doesn’t perform sanity checks on the
input tensor to make sure it has at least two elements so SD won’t be zero, which would lead to division by
zero and infinite results. But those problems are not directly related to the discussion here.

tf.tidy() automatically disposes tensors created in the body
of an anonymous function passed to it as the argument, even

when those tensors are not bound to JavaScript objects.
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As we can see, tf.tidy() is a smart and powerful function for memory management.
It is used extensively in the TensorFlow.js code base itself. You will also see it many
times throughout the examples in this book. However, it has the following important
limitation: the anonymous function passed to tf.tidy() as the argument must not be
async. If you have some async code that requires memory management, you should
use tf.dispose() and keep track of the to-be-disposed tensors manually instead. In
such cases, you can use tf.memory().numTensor to check the number of leaked ten-
sors. A good practice is to write unit tests that assert on the absence of memory leaks.

B.4 Calculating gradients
This section is for readers who are interested in performing derivative and gradient
calculation in TensorFlow.js. For most deep-learning models in this book, the calcula-
tion of derivatives and gradients is taken care of under the hood by model.fit() and
model.fitDataset(). However, for certain problem types, such as finding maximally
activating images for convolution filters in chapter 7 and RL in chapter 11, it is neces-
sary to calculate derivatives and gradients explicitly. TensorFlow.js provides APIs to
support such use cases. Let’s start from the simplest scenario—namely, a function that
takes a single input tensor and returns a single output tensor:

const f = x => tf.atan(x);

In order to calculate the derivative of the function (f) with respect to the input (x),
we use the tf.grad() function:

const df = tf.grad(f);

Note that tf.grad() doesn’t give you the derivative’s value right away. Instead, it gives
you a function that is the derivative of the original function (f). You can invoke that
function (df) with a concrete value of x, and that’s when you get the value of df/dx.
For example,

const x = tf.tensor([-4, -2, 0, 2, 4]);
df(x).print();

which gives you an output that correctly reflects the derivative of the atan() function
at x-values of –4, –2, 0, 2, and 4 (see figure B.5):

Tensor
    [0.0588235, 0.2, 1, 0.2, 0.0588235]

tf.grad() is limited to a function with only one input tensor. What if you have a func-
tion with multiple inputs? Let’s consider an example of h(x, y), which is simply the
product of two tensors:

const h = (x, y) => x.mul(y);

tf.grads() (with the “s” in the name) generates a function that returns the partial
derivative of the input function with respect to all the arguments:
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const dh = tf.grads(h);
const dhValues = dh([tf.tensor1d([1, 2]), tf.tensor1d([-1, -2])]);
dhValues[0].print();
dhValues[1].print();

which gives the results

Tensor
    [-1, -2]
Tensor
    [1, 2]

These results are correct because the partial derivative of x * y with respect to x is y and
that with respect to y is x. 

The functions generated by tf.grad() and tf.grads() give you only the deriva-
tives, not the return value of the original function. In the example of h(x, y), what if
we want to get not only the derivatives but also the value of h? For that, you can use the
tf.valueAndGrads() function:

const vdh = tf.valueAndGrads(h);
const out = vdh([tf.tensor1d([1, 2]), tf.tensor1d([-1, -2])]);

The output (out) is an object with two fields: value, which is the value of h given the
input values, and grads, which has the same format as the return value of the function
generated by tf.grads()—namely, an array of partial-derivative tensors:

out.value.print();
out.grads[0].print();
out.grads[1].print();

Tensor
    [-1, -4]
Tensor
    [-1, -2]
Tensor
    [1, 2]
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Figure B.5 A plot of the 
function atan(x)
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The APIs discussed are all about calculating the derivatives of functions with respect
to their explicit arguments. However, a common scenario in deep learning involves
functions that use weights in their calculation. Those weights are represented as
tf.Variable objects and are not explicitly passed to the functions as arguments. For
such functions, we often need to calculate their derivatives with respect to the weights
during training. This workflow is served by the tf.variableGrads() function, which
keeps track of what trainable variables are accessed by the function being differenti-
ated and automatically calculates the derivatives with respect to them. Consider the
following example:

const trainable = true;
const a = tf.variable(tf.tensor1d([3, 4]), trainable, 'a');
const b = tf.variable(tf.tensor1d([5, 6]), trainable, 'b');
const x = tf.tensor1d([1, 2]);

const f = () => a.mul(x.square()).add(b.mul(x)).sum();
const {value, grads} = tf.variableGrads(f);

The value field of tf.variableGrads()’s output is the return value of f given the cur-
rent values of a, b, and x. The grads field is a JavaScript object that carries the deriva-
tives with respect to the two variables (a and b) under the corresponding key names.
For example, the derivative of f(a, b) with respect to a is x ^ 2, and the derivative of
f(a, b) with respect to b is x,

grads.a.print();
grads.b.print();

which correctly gives

Tensor
    [1, 4]
Tensor
    [1, 2]

Exercises
1 Use tf.tensorBuffer() to create an “identity 4D tensor” satisfying the follow-

ing properties. Its shape should be [5, 5, 5, 5]. It should have 0 values every-
where, except for the elements whose indices are four identical numbers (for
example, [2, 2, 2, 2]), which should have the value 1. 

2 Create a 3D tensor of shape [2, 4, 5] using tf.randomUniform() and the
default [0, 1) interval. Using tf.sum(), write a line of code to perform a
reduce-sum over the second and third dimensions. Examine the output. It
should have a shape of [2]. What do you expect the values of the elements to
be, approximately? Does the output match your expectations?

(Hint: what is the expected value of a number distributed randomly in the
[0, 1) interval? What is the expected value of the sum of two such values, given
statistical independence?)

f(a, b) = a * x ^ 2 + b
The sum() method is ca
because tf.variableGrad
requires the function be
differentiated to return
scalar.
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3 Use tf.randomUniform() to create a 4 × 4 matrix (a 2D tensor of shape [4,
4]). Get the 2 × 2 submatrix located at the center using tf.slice().

4 Use tf.ones(), tf.mul(), and tf.concat() to create such a 3D tensor: its
shape should be [5, 4, 3]. The first slice along the first axis (the tensor of
shape [1, 4, 3]) should have element values that are all 1; the second slice
along the first axis should have element values that are all 2; and so forth.
a Extra points: The tensor has many elements, so it is hard to test its correct-

ness just by looking at the text output of print(). How can you write a unit
test to check its correctness? (Hint: use data(), dataSync(), or array-
Sync()).

5 Write a JavaScript function that performs the following operations on two input
2D tensors (matrices) of identical shapes. First, sum the two matrices. Second,
the resultant matrix is divided by 2, element by element. Third, the matrix is
transposed. The result of the transpose operation is returned by the function.
a What TensorFlow.js functions do you use to write this function?
b Can you implement the function twice, once using the functional API and

once using the chaining API? Which implementation looks cleaner and
more readable?

c Which steps involve broadcasting?
d How do you ensure that this function doesn’t leak memory?
e Can you write a unit test (using the Jasmine library at https://jasmine.github

.io/) to assert on the absence of memory leak?
 

https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/


glossary
Activation function The function at the last stage of a neural network layer. For example, a

rectified linear unit (relu) function may be applied on the result of the matrix multi-
plication to generate the final output of a dense layer. An activation function can be
linear or nonlinear. Nonlinear activation functions can be used to increase the repre-
sentational power (or capacity) of a neural network. Examples of nonlinear activa-
tions include sigmoid, hyperbolic tangent (tanh), and the aforementioned relu.

Area under the curve (AUC) A single number used to quantify the shape of an ROC curve. It is
defined as the definite integral under the ROC curve, from false positive rate 0 to 1.
See ROC curve.

Axis In the context of TensorFlow.js, when we talk about a tensor, an axis (plural axes) is
one of the independent keys indexing into the tensor. For example, a rank-3 tensor
has three axes; an element of a rank-3 tensor is identified by three integers that corre-
spond to the three axes. Also known as a dimension.

Backpropagation The algorithm that traces back from the loss value of a differentiable
machine-learning model to the gradients on the weight parameters. It is based on the
chain rule of differentiation and forms the basis of training for most neural networks
in this book.

Backpropagation through time (BPTT) A special form of backpropagation in which the steps
are not over the operations for the successive layers of a model, but instead over the
operations for the successive time steps. It underlies the training of recurrent neural
networks (RNNs).

Balance (dataset) A quality of a dataset with categorical labels. The more equal the num-
bers of examples from different categories are, the more balanced a dataset is.

Batch During the training of neural networks, multiple input examples are often aggre-
gated to form a single tensor, which is used to calculate the gradients and updates to
the network’s weights. Such an aggregation is called a batch. The number of examples
in the batch is called the batch size.
507
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Bellman equation In reinforcement learning, a recursive equation that quantifies the value of
a state-action pair as a sum of two terms: 1) the reward the agent is expected to get
immediately after the action and 2) the best expected reward the agent can get in the
next state, discounted by a factor. The second term assumes optimal selection of action
in the next state. It forms the basis of reinforcement-learning algorithms such as deep
Q-learning.

Binary classification A classification task in which the target is the answer to a yes/no question,
such as whether a certain X-ray image indicates pneumonia or whether a credit card
transaction is legitimate or fraudulent.

Broadcasting TensorFlow allows for pairwise operations between tensors with different but com-
patible shapes. For instance, it is possible to add a tensor of shape [5] to a tensor of shape
[13, 5]. In effect, the smaller tensor will be repeated 13 times to compute the output. The
details for the rules of when broadcasting is allowed are in info box 2.4 in chapter 2.

Capacity The range of input-output relations that a machine-learning model is capable of
learning. For example, a neural network with a hidden layer with a nonlinear activation
function has a greater capacity than a linear-regression model.

Class activation map An algorithm that can visualize the relative importance of different parts
of an input image for the classification output of a convolutional neural network. It is
based on computing the gradient of the final probability score of the winning class with
respect to the output of the last internal convolutional layer of the network. It is dis-
cussed in detail in section 7.2.3.

Computer vision The study of how computers can understand images and videos. It is an import-
ant part of machine learning. In the context of machine learning, common computer-
vision tasks include image recognition, segmentation, captioning, and object detection.

Confusion matrix A square matrix (a 2D tensor) of the shape [numClasses, numClasses]. In
multiclass classification, a confusion matrix is used to quantify how many times examples
of a given truth class are classified as each of the possible classes.  The element at indices
[i, j] is the number of times examples from the true class i are classified as class j. The
elements on the diagonal line correspond to correct classification results.

Constant folding A type of computation-graph optimization in which a subgraph that contains
only predetermined constant nodes and deterministic operations among them is
reduced to a single constant node. The GraphModel conversion technique in Tensor-
Flow.js leverages constant folding.

Convolutional kernel In convolution operations, a tensor that operates on the input tensor to
generate the output tensor. Take image tensors, for example: the kernel is usually
smaller in its height and width dimensions compared to the input image. It is “slided”
over the height and width dimensions of the input image and undergoes a dot product
(multiply and add) at every sliding position. For a convolutional layer of TensorFlow.js
(such as conv2d), the kernel is its key weight.
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Data augmentation The process of generating more training data from existing training sam-
ples (x, y) by creating mutations of the training samples via a family of programmatic
transformations that yield valid inputs x' without changing the target. This helps expose
the model to more aspects of the data and thus generalize better without the engineer
having to manually build invariance to these types of transformations into the model.

Deep learning The study and application of deep neural networks (that is, using a large num-
ber of successive representational transformations to solve machine-learning problems). 

Deep neural network A neural network with a large number (anywhere between two and thou-
sands) of layers.

Dimension In the context of a tensor, synonymous with axis. See axis.

Dot product See inner product.

Embedding In deep learning, a representation of a certain piece of data in an n-dimensional vec-
tor space (n being a positive integer). In other words, it is a representation of a piece of
data as an ordered, length-n array of floating-point numbers. Embedding representations
can be created for many types of data: images, sounds, words, and items from a closed set.
An embedding is usually from an intermediate layer of a trained neural network.

Ensemble learning The practice of training a number of individual machine-learning models
and using them together for inference on the same problem. Even though each individ-
ual model may not be very accurate, the ensemble model can have a much higher accu-
racy. Ensemble models are often used by the winning entries of data science competitions,
such as Kaggle competitions.

Epoch When training a model, one complete pass through the training data.

Epsilon-greedy policy In reinforcement learning, an action-selection method that parametrizes
the balance between random exploratory behavior and optimal behavior on the part of
the agent. The value of epsilon is constrained between 0 and 1. The higher it is, the more
likely the agent is to select random actions.

Example In the context of machine learning, an individual instance of input data (for exam-
ple, an image of the appropriate size for a computer-vision model), for which a machine-
learning model will generate an output prediction (such as a label for the image).

Feature One aspect of the input data for a machine-learning model. A feature can be in any
of the following forms:

 A number (for example, the monetary amount of a credit card transaction)
 A string from an open set (name of transaction)
 A piece of categorical information (such as the brand name of the credit card)
 A one- or multidimensional array of numbers (for instance, a grayscale image of

the credit card customer’s signature represented as a 2D array)
 Other types of information (for example, date-time)

An input example can consist of one or multiple features.
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Feature engineering The process of transforming the original features in input data into a rep-
resentation more amenable to solving the machine-learning problem. Before deep learn-
ing, feature engineering was performed by engineers with domain-specific knowledge
through trial and error. It was often a labor-intensive and brittle process, without any
guarantee of finding the optimal solution. Deep learning has largely automated feature
engineering.

Fine-tuning In transfer learning, a phase of model training during which the weights in some
layers of the base model are allowed to be updated. It usually follows an initial phase of
model training during which all weights in the base model are frozen to prevent large
initial gradients from perturbing the pretrained weights too much. When used properly,
fine-tuning can boost the capacity of the transfer-learning model, thereby achieving
superior accuracy while consuming significantly less computation resources than train-
ing an entire model from scratch.

Generative adversarial network (GAN) A type of generative machine-learning model that involves
two parts called the discriminator and the generator. The discriminator is trained to distin-
guish real examples from a training set from fake ones, while the generator is trained to
output examples that cause the discriminator to output high realness scores (that is, to
“fool” the discriminator into “thinking” that the fake examples are real). After proper
training, the generator is capable of outputting highly realistic fake examples.

Golden value In the context of testing a machine-learning system, the correct output a model
should generate for a given input. An example is the “classical” label for a neural net-
work that classifies audio recordings into genres of music when given a recording of Bee-
thoven’s Fifth Symphony.

Gradient descent The process of minimizing the numerical output value of a system by itera-
tively changing the parameters of the system along the direction of the gradients (that
is, derivatives of the parameters with respect to the output value). It is the primary way
in which neural networks are trained. In the context of neural network training, the sys-
tem is formed by the neural network and a loss function selected by the engineer. The
parameters of the system are the weights of the neural network’s layers. The iteration
process happens batch-by-batch over the training data.

Graphics processing unit (GPU) Parallel-computing chips equipped with a much larger number
(hundreds or thousands) of cores than typical CPUs. GPUs were originally designed to
accelerate the computation and rendering of 2D and 3D graphics. But they turned out to
be useful for the kind of parallel computing involved in running deep neural networks as
well. GPUs are an important contributing factor to the deep-learning revolution and
continue to play critical roles in the research and applications of deep learning today.
TensorFlow.js harnesses the parallel-computing power of GPUs through two conduits:
1) the WebGL API of the web browser and 2) binding to the TensorFlow CUDA kernels
in Node.js.
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GraphModel In TensorFlow.js, a model converted from TensorFlow (Python) and loaded into
JavaScript. GraphModel has the potential to undergo TensorFlow-internal performance
optimizations such as Grappler’s arithmetic optimization and op fusion (see section
12.2.2 for details).

Hidden layer A neural network that consists of a layer whose output is not exposed as an out-
put of the network but is instead consumed only by other layers of the network. For
example, in a neural network defined as a TensorFlow.js sequential model, all layers
except the last one are hidden layers.

Hyperparameter optimization Sometimes also called hyperparameter tuning ; the process of search-
ing for the set of hyperparameters that gives the lowest validation loss on a given
machine-learning task.

Hyperparameters Tunable parameters of the model and optimizer that are not tunable with
backpropagation. Typically, the learning rate and model structure are common example
hyperparameters. Hyperparameters may be tuned by grid search or more sophisticated
hyperparameter-tuning algorithms.

Hypothesis space In the context of machine learning, the set of possible solutions to a
machine-learning problem. The training process involves searching for a good solution
in such a space. The hypothesis space is determined by the type and the architecture of
the machine-learning model chosen to solve the problem.

ImageNet A large-scale public dataset of labeled colored images. It is an important training set
and benchmark for computer-vision-oriented deep neural networks. ImageNet was
instrumental in ushering in the beginning of the deep-learning revolution.

Imputation A technique for filling in missing values from a dataset. For instance, if we had a
dataset of cars, and some cars were missing their “weight” feature, we might simply guess
the average weight for those features. More sophisticated imputation techniques are also
possible.

Inception A type of deep convolutional neural network featuring a large number of layers and
a complex network structure.

Independent and identically distributed (IID) A statistical property of data samples. If we assume
that data is sampled from an underlying distribution, then the samples are identically
distributed if each sample comes from the same distribution. Samples are independent if
knowing the value of one sample gives you no additional information about the next
sample.

A sample of dice rolls is an example of an IID collection of samples. If the dice rolls
are sorted, the samples are identically distributed but not independent. Training data
should be IID, or there is likely to be convergence or other issues during training. 

Inference Using a machine-learning model on input data to generate an output. It is the ulti-
mate purpose of training the model.
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Inner product Also known as dot product ; a mathematical operation on two vectors of equivalent
shape, yielding a single scalar value. To calculate the inner product between vectors a
and b, sum up all a[i] * b[i] for all valid values of i. In geometric terms, the inner
product of two vectors is equal to the product of their magnitudes and the cosine of the
angle between them.

Keras A popular library for deep learning. Today, it is the most frequently used deep-learning
library in Kaggle competitions. François Chollet, currently a software engineer at Goo-
gle, is its original author. Keras is a Python library. The high-level API of TensorFlow.js,
which is a main focus of this book, is modeled after and compatible with Keras.

Label The desired answer for an input example given the task at hand. A label can be a Bool-
ean (yes/no) answer, a number, a text string, a category among a number of possible cat-
egories, a sequence of numbers, or more complex data types. In supervised machine
learning, a model aims at generating outputs that closely match the labels.

Layer In the context of neural networks, a transformation of the data representation. It
behaves like a mathematical function: given an input, it emits an output. A layer can have
state captured by its weights. The weights can be altered during the training of the neu-
ral network.

LayersModel A model built using the Keras-like high-level API of TensorFlow.js. It can also be
loaded from a converted Keras (Python) model. A LayersModel supports inference (with
its predict() method) and training (with its fit() and fitDataset() methods).

Learning rate During gradient descent, model weights are modified to reduce loss. The exact
change in the weights is a function not only of the gradient of the loss but also of a
parameter. In the standard gradient-descent algorithm, the weight update is calculated
by multiplying the gradient by the learning rate, which is typically a small positive con-
stant. The default learning rate for the 'sgd' optimizer in tensorflow.js is 0.01.

Local minimum When optimizing the parameters of a model, a setting of the parameters for
which any sufficiently small change in the parameters always increases the loss. Similar to
a marble at the bottom of a bowl, there is no small movement that is even lower. A local
minimum is distinguished from a global minimum in that a local minimum is the lowest
point in the local neighborhood, but the global minimum is the lowest point overall. 

Logit In machine learning, an unnormalized probability value. Unlike probabilities, logits are
not limited to the [0, 1] interval or required to sum to 1. Hence, they can be more easily
output by a neural network layer. A set of logits can be normalized to probability values
through an operation called softmax.

Machine learning A subfield of artificial intelligence (AI) that automates the discovery of rules
for solving complex problems by using data labeled with the desired answers. It differs
from classical programming in that no handcrafting of the rules is involved.

Markov decision process (MDP) In reinforcement learning, a decision process in which the cur-
rent state and the action selected by the agent completely determine the next state that
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the agent will end up with and the reward the agent will receive at the step. It is an import-
ant simplification that enables learning algorithms such as Q-learning.

Model In machine learning and deep learning, an object that transforms input data (such as
an image) into the desired output (such as a text label for the image) through a number
of successive mathematical operations. A model has parameters (called weights) that can
be tuned during training.

Model adaptation The process of training a pretrained model or a part of it in order to make
the model achieve better accuracy during inference on the input data from a specific
user or specific use case. It is a type of transfer learning, one in which the types of the
input features and the type of the target don’t differ from the original model.

Model deployment The process of packaging a trained model to the place where it can be used
for making predictions. Similar to “pushing to production” for other software stacks,
deployment is how users can get to use models “for real.”

MobileNet A pretrained deep convolutional neural network. It is typically trained on the
ImageNet image-classification dataset and can be used for transfer learning. Among sim-
ilar pretrained convolutional neural networks, it has a relatively small size and involves
less computation to perform inference, and is therefore more suitable to run in a
resource-restricted environment such as the web browser, with TensorFlow.js.

Multiclass classification A classification problem in which the target may take more than two
discrete labels. Examples are what kind of animal a picture contains or what (natural)
language a web page is in given its content.

Multi-hot encoding A way to represent the words in a sentence (or, in general, the items in a
sequence) as a vector by setting the elements that correspond to the words to 1 and leav-
ing the rest as 0. This can be viewed as a generalization of one-hot encoding. It discards the
information regarding the order of the words.

Multilayer perceptron (MLP) A neural network consisting of feedforward topology and at least
one hidden layer.

Natural language processing The subfield of computer science that studies how to use comput-
ers to process and understand natural language, most prominently text and speech.
Deep learning finds many applications in natural language processing.

Neural network A category of machine-learning models inspired by the layered organization
seen in biological neural systems. The layers of a neural network perform multistep, sep-
arable transformations of the data representation.

Nonlinearity An input-output relation that does not meet the definition of linearity (linear
combinations of inputs lead to a linear combination of the outputs, up to a constant-
term difference). In neural networks, nonlinear relations (such as sigmoid and relu acti-
vations in layers) and the cascading of multiple such relations can increase the capacity
of the neural networks.
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Object detection A computer-vision task that involves detecting certain classes of objects and
their location in an image.

One-hot encoding The scheme of encoding categorical data as a vector of length N consisting
of all zeros except at the index that corresponds to the actual class.

Op fusion A computation-graph optimization technique in which multiple operations (or
ops) are replaced with a single equivalent op. Op fusion reduces the op-dispatching over-
head and can lead to more opportunities for further intra-op memory and performance
optimization.

Out-of-vocabulary (OOV) In the context of deep learning, when a vocabulary is used on a set of
discrete items, the vocabulary sometimes doesn’t include all possible items. When an
item outside the vocabulary is encountered, it is mapped to a special index called out-of-
vocabulary, which can then be mapped to a special element in the one-hot encoding or
embedding representation. See vocabulary.

Overfitting When a model is fit to the training data in such a way that the model has sufficient
capacity to memorize the training data, we see the training loss continue to go down, but
the testing or validation loss starts to rise. Models with this property begin to lose their
ability to generalize and perform well only on the exact samples in the training data. We
say models in this circumstance are overfit.

Policy gradients A type of reinforcement-learning algorithm that computes and utilizes the
gradients of certain measures (such as logits) of selected actions with respect to the
weights of a policy network in order to cause the policy network to gradually select better
actions.

Precision A metric of a binary classifier, defined as the ratio of the examples labeled by the
classifier as positive that are actually positive. See recall.

Pseudo examples Additional examples based on known valid mutations of input training
examples, used to supplement the training data. For instance, we might take the MNIST
digits and apply small rotations and skews. These transformations do not change the
image label.

Q-network In reinforcement learning, a neural network that predicts the Q-values of all pos-
sible actions given the current state observation. The Q-learning algorithm is about
training a Q-network using data from the agent’s experience.

Q-value In reinforcement learning, the expected total future cumulative reward for taking an
action at a given state. Hence a Q-value is a function of action and state. It guides the
selection of actions in Q-learning.

Random initialization Before a model is fit, the process of assigning the weights an initial value
as a starting point. There is much literature on what, exactly, are good distributions to
choose from for the initial values based on the layer type, size, and task.

Recall A metric of a binary classifier, defined as the ratio of the actual examples that are
labeled by the classifier as positive. See precision.
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Regression A type of learning problem where the desired output (or label) is a number or list
of numbers. Making predictions that are numerically closer to the expected output is
better.

Regularization In machine learning, the process of imposing various modifications to the loss
function or the training process in order to counteract overfitting. There are several
ways to perform regularization, the most frequently used of which are L1 and L2 regular-
ization of weights.

Reinforcement learning (RL) A type of machine learning that involves learning optimal decisions
that maximize a metric called a reward through interacting with an environment. Chap-
ter 11 of this book covers the basics of RL and how to solve simple RL problems using
deep-learning techniques.

ResNet Short for residual network; a popular convolutional network widely used in computer
vision, featuring residual connections—that is, connections that skip layers.

ROC curve A way to visualize the trade-off between the true positive rate (recall) and the false
positive rate (false-alarm rate) of a binary classifier. The name of the curve (the receiver
operating characteristics curve) originated from the early days of radar technology. See area
under the curve (AUC).

Spectrogram An image-like 2D representation of 1D time signals such as sounds. A spectro-
gram has two dimensions: time and frequency. Each element represents the intensity or
power the sound contains in a given frequency range at a given moment in time.

Supervised learning The paradigm of training a machine-learning model using labeled exam-
ples. The internal parameters of the model are altered in a way that minimizes the differ-
ence between the model’s output for the examples and the corresponding actual labels.

Symbolic tensor In TensorFlow.js, an object of the SymbolicTensor class that is a specification
for the shape and data type (dtype) of a tensor. Unlike a tensor, a SymbolicTensor object
is not associated with concrete values. Instead, it is used as a placeholder for the input or
output of a layer or a model.

Tensor A data structure for holding data elements, usually numbers. Tensors can be thought
of as n-dimensional grids, where each position in the grid holds exactly one element.
The number of dimensions and size of each dimension is called the tensor’s shape. For
instance, a 3 × 4 matrix is a tensor with shape [3, 4]. A vector of length 10 is a 1D tensor
with shape [10]. Each tensor instance holds only one type of element. Tensors are
designed this way because it allows for convenient, highly efficient implementations of
common operations necessary for deep learning: for instance, matrix dot products.

TensorBoard A monitoring and visualization tool for TensorFlow. It allows users to visualize
model structure and training performance in the browser. TensorFlow.js can write train-
ing logs in a data format compatible with TensorBoard.
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TensorFlow An open source Python library for accelerated machine learning, with a focus on
deep neural networks. It was released by Google’s Brain team in November 2015. Its API
forms a blueprint for that of TensorFlow.js.

Training The process of altering a machine-learning model’s internal parameters (weights) to
make the model’s outputs more closely match the desired answers.

Training data The data that is used to train a machine-learning model. Training data consists
of individual examples. Each example is structured information (for example, images,
audio, or text) in conjunction with the expected answer (the label).

Transfer learning The practice of taking a machine-learning model previously trained for one
task, retraining it with a relatively small amount of data (compared to the original train-
ing dataset) for a new task, and using it for inference on the new task.

Underfitting When a model is trained for too few optimization steps, or a model has an insuffi-
cient representational power (capacity) to learn the patterns in the training data, which
results in a model that does not reach a decent level of quality, we say that the model is
underfit.

Unsupervised learning The paradigm of machine learning that uses unlabeled data. It is
opposed to supervised learning, which uses labeled data. Examples of unsupervised
learning include clustering (discovering distinct subsets of examples in the dataset) and
anomaly detection (determining if a given example is sufficiently different from the
examples in the training set).

Validation data Data that is set apart from training data for the tuning of hyperparameters,
such as the learning rate or the number of units in a dense layer. Validation data allows
us to tune our learning algorithm, possibly running training many times. Since valida-
tion data is also separate from testing data, we can still rely on the result from the test
data to give us an unbiased estimate of how our model will perform on new, unseen data.

Vanishing-gradient problem A classic problem in training deep neural networks in which the gra-
dients on the weight parameter get increasingly smaller as the number of layers gets
larger, and the weight parameters get farther and farther apart from the loss function as
a result. In modern deep learning, this problem is mitigated through improved activa-
tion functions, proper initialization of weights, and other tricks.

Vectorization The process of turning a piece of nonnumerical data into a representation as an
array of numbers (such as a vector). For example, text vectorization involves turning
characters, words, or sentences into vectors.

Visor In tfjs-vis (a visualization library tightly integrated with TensorFlow.js), a collapsible
region that can be created with a single function call on the side of the web page to hold
surfaces for visualization. Multiple tabs can be created within a visor to organize the sur-
faces. See section 8.1 for details.

Vocabulary In the context of deep learning, a set of discrete, unique items that may be used as
the input to or output from a neural network. Typically, each item of the vocabulary can
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be mapped to an integer index, which can then be turned into a one-hot or embedding-
based representation.

Weight A tunable parameter of a neural network layer. Changing the weights changes the
numerical details of how the input is transformed into the output. The training of a neu-
ral network is primarily about updating weight values in a systematic way.

Weight quantization A technique for reducing the serialized and on-the-wire size of a model. It
involves storing the weight parameters of the model at a lower numeric precision.

Word embedding One way to vectorize words in text-related neural networks. A word is
mapped onto a 1D tensor (or vector) via an embedding lookup process. Unlike one-hot
encoding, the word embedding involves nonsparse vectors in which the element values
are continuous-varying numbers instead of 0s and 1s.
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visualizing 247–259

data privacy 20
data type (dtype) property 166, 482, 484, 490
data.js file 62
data() method 76, 484–486
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dataset skew 231
dataset.columnNames() function 222
Dataset.forEachAsync() function 205, 209
dataset.map function 213, 243
Dataset.skip() method 222
Dataset.take() method 222
Dataset.toArray() function 209, 222
datasets 60–61

building 1D convnets on 315–318
for MNIST 119
rolling 399–401
running 1D convnets on 315–318

dataSync() method 66, 136, 484–486
decision trees 14
decoder 346
decoderCombinedContext 330
deep learning 13, 454

advantages of 16–18
algorithmic advances 17–18
benchmarks 17
data 17
hardware 16–17

generative 334–370
limitations of 470–472
supervised 458–460
trends in 473–474

deep neural networks 13
deep reinforcement learning 371–414

cart-pole examples 376–389
examples of 373–376, 389–392
policy gradients 376–389
policy networks 376–389
Q-learning 389–410

DQNs 396–399
Markov decision process 392–396
Q-values 392–396
training DQNs 399–410

value networks 389–410
default learning rate 54
dense layer transforms 12
dense layers 44, 50, 80, 90, 128–130, 294–296
densely connected networks 461–463
dependencies for tfjs-node 137–142

reducing overfitting with dropout layers
140–142

training enhanced convnet for MNIST in
tfjs-node 138–140

deploying
models 417–452
TensorFlow.js models 439–450

on JavaScript-based cross-platform desktop 
applications 445–447

on JavaScript-based mobile app plugin 
systems 447–448

on JavaScript-based mobile applications
443–445

on single-board computers 448–450
on WeChat 447–448
overview 450
to browser extensions 441–443
to cloud services 440–441
to web 439–440

dequantization 428
determineMeanAndStddev function 67–69
Digit class 364
div() function 502
dose-response curve 248
dot product 74, 123, 317
downloads, predicting duration of with 

TensorFlow.js 38–49
code listings 39–40
console interactions 39–40
creating data 40–43
defining models 43–46
fitting models to training data 46–48
formatting data 40–43
predictions with trained models 48

DQNs (deep Q-networks)
overview of 396–399
training 399–410

balancing exploration and exploitation
401–402

Bellman equation 404–406
epsilon-greedy algorithms 401–402
extracting predicted Q-values 402–404
extracting target Q-values 404–406
intuition behind 399
loss function for Q-value backpropagation

406–410
loss function for Q-value prediction 406–410
replay memory 399–401
rolling datasets for 399–401

dropout layers 140–142
dropoutRate parameter 280
dtype (data type) property 166, 482, 484, 490

E

Electron.js 26, 445
element-wise operations 494–496
Embedding Projector 319
embedding vectors 312, 319
embeddings 169, 173

transfer learning based on 168–173
word embeddings 310–312

embedding_test.js file 420
empty arrays 483
encoder-decoder architecture 324–327
encoder-decoder models 327–331
encoderLast 329
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encoders 346
encoding 306–308

See also one-hot encoding
enhanced convnet 138–140
epsilon vector 350
epsilon-greedy algorithms 401–402, 409
evaluate() method 46, 144, 488
exp function 110
expandDims() function 135
exploitation 380, 401–402
exploration 380, 401–402

F

face-api.js 467
Facets 241
false negatives (FNs) 96
false positive rate (FPR) 98–102, 104, 115
false positives (FPs) 96
Fashion-MNIST dataset 348, 355, 432
fast Fourier transform (FFT) 229
feature engineering 16
features 41
FFT (fast Fourier transform) 229
filters parameter 122–123, 125, 127, 332
fine granularity 436
fine-tuning in transfer learning 174, 177–184

single models for 177–178
through layer unfreezing 180–184

fit() method 46, 48, 131, 144, 156–158, 161, 170, 
191, 195, 276, 314, 354, 380, 399, 488

fitCallbacks() function 277
fitDataset() method 156, 219, 276–277, 354, 380, 

399
flatten layers 128–130
Float32Array 134, 137, 484, 486
float32-type tensors 484
Flutter framework 444
FNs (false negatives) 96
forEach() function 209, 227
.forEachAsync(f) method 210
forEachAsync() function 205, 207, 209
formatting data 40–43
FPR (false positive rate) 98–102, 104, 115
FPs (false positives) 96
freezing layers 155–161
function. See loss function
functional API 494

G

GANs (generative adversarial networks) 5, 345, 
366, 460

generating images with 356–368
ACGANs 360–362

generating MNIST ACGANs 366–368
training ACGANs 363–366
training MNIST ACGANs 366–368

overview 357–360
training 366

gated recurrent units 302–305
gather() function 268
GCP (Google Cloud Platform) 439
general-purpose input-output (GPIO) 449
generative adversarial networks. See GANs
generator function 206–207
geometric space 456
getLayer() method 164
getWeights() function 76, 88
GitHub 25, 30

accessing projects from 61–63
running projects from 61–63

globalMaxPool1d layer 316
Glorot initialization 18
glorotNormal initializer 89
GloVe (Global Vectors) 319
GNMT (Google Neural Machine Translation)

5, 327
golden values 422–424
Google Cloud 19, 26
Google Cloud Platform (GCP) 439
Google Cloud Vision AI 440
Google Home 145
Google I/O 30
Google Neural Machine Translation (GNMT)

5, 327
Google Vizier 473
Google’s Project Magenta 31
GPIO (general-purpose input-output) 449
--gpu flag 186, 299, 322, 338, 349, 366, 408
GPUs (graphics processing units) 15–16, 19, 22, 

30, 52, 75, 138, 142, 148, 261
gradient ascent 266–268
gradient descent 50, 53–59, 266

backpropagation 56–59
optimizing 50

gradients 52, 90, 503–505
See also policy gradients

graphics processing units (GPUs) 15–16, 19, 22, 
30, 52, 75, 138, 142, 148, 261

GraphModel conversion 437
accelerating model inference with 435–437
optimizing inference speed with 434–437

graphs 27
GRUs (gated recurrent units) 302–305, 464
gzip compression 432–433
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H

heatmaps 254–255
height-width-channel (HWC) 118, 128
hidden layers 80, 82, 87, 89, 94
hierarchical representation learning 13
higher-dimensional tensors 487
histograms 252–253
HSV (hue-saturation-value) 10
HTML img elements 135–137
hue-saturation-value (HSV) 10
HWC (height-width-channel) 118, 128
hyperparameters 72, 89–92, 289–290, 340, 459
hypothesis space 8

I

IID (independent and identically distributed) 
datasets 232, 234

image data 490
--image flag 272
image tensors

from canvas elements 135–137
from HTML img elements 135–137
from TypedArrays 134
from video elements 135–137

ImageNet 17, 117, 154, 431
images

activating 265–268
generating with GANs 356–368

ACGANs 360–362
generating MNIST ACGANs 366–368
overview of GANs 357–360
training ACGANs 363–366
training MNIST ACGANs 366–368

representing 118–119
representing sounds as 145–149

image-to-image transformations 125–126
Immediately Invoked Async Function Expression 

pattern 46
immutable values 491
imports, for tfjs-node 137–142

reducing overfitting with dropout layers
140–142

training enhanced convnet for MNIST in
tfjs-node 138–140

imputation 237
Inception 154
incompatible output shapes 161–173
independent and identically distributed (IID) 

datasets 232, 234
inference

in web pages 319–320
speed 434–437

inference phase 9, 141
information distillation pipeline 264
inner product 74
input features 59–74

accessing data 63–64
accessing projects from GitHub 61–63
data normalization 66–69
datasets 60–61
defining problems 65–66
linear regression on data 70–74
running projects from GitHub 61–63

input space 267–268
installing tfjs-node-gpu 477–481

on Linux 477–480
on Windows 480–481

instant access 21
instant WebGL acceleration 20
Int32Array 484
int32-type tensors 484
internal activations

extracting 264
visualizing 262–264

internal weights 75–76
interpreting

caveats on 77
models 74–77

extracting internal weights from models
75–76

extracting meaning from learned weights
74–75

nonlinearity and 87–89
Ionic 26, 444
iris-flower dataset 107

J

JavaScript language
APIs 391–392
cross-platform desktop applications 445–447
ecosystem of 25–26
mobile app plugin systems 447–448
mobile applications 443–445

Jupyter 241

K

Kaggle 17, 241, 255, 474–475
Keras library 25, 27, 29–31, 165, 430, 475
Kernel methods 14
kernelInitializer field 90
kernelRegularizer parameter 280
kernels 44, 74, 88, 282
kernelSize parameter 122, 125, 127, 148, 313, 

332, 362
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KL (Kullbach-Liebler) divergence 353
kNN (k-nearest neighbor) 172–174, 184
Kullbach-Liebler (KL) divergence 353

L

L2 regularizer 282
labeled training data 455
labels 8
last-layer activation 289
latent vector 346
layered representation learning 13
layer-freezing approach 160
layers 44, 454, 465

conv2d 122–125
dense 128–130, 294–296
dropout 140–142
flatten 128–130
freezing 155–161
maxPooling2d 126–127
stacking 86–87
unfreezing 180–184

Layers API 30
layers attribute 164
LD_LIBRARY_PATH variable 478
leakyReLU activation 366
learned weights 74–75
leCunNormal 89
libtensorflow library 446
line charts 248–250
linear regression, in TensorFlow.js 37–78

gradient descent 50–59
interpreting models 74–77
model.fit() 50–59
predicting download duration with 38–49
with multiple input features 59–74

linear scaling 85
linechart() function 248–250, 272
Linux operating system, installing

tfjs-node-gpu 477–480
Lipnet 19
loadLayersModel() function 155–156
locality 125
--logDir flag 299, 367
logreg (logistic regression) 14
loss edge 56
loss function 45, 289

for backpropagation of Q-values 406–410
for binary classification 103–106
for multiclass classification 111–113
for prediction of Q-values 406–410

loss surface 50
lowered inference latency 19

LSTM (Long Short-Term Memory), generating 
text with 335–345

adjustable randomness in 342–345
example of 337–342
next-character predictors 335–337

lstm command 317
lstmLayerSize argument 339

M

machine learning 6–26, 454
data and 201–202
deep learning with Node.js 24–25
JavaScript ecosystem 25–26
representing text in 306–308
traditional programming vs. 7–12
universal workflow of 287–290

machine translation 321
MAE (mean absolute error) 47, 282
map() function 226
.mapAsync() method 211
MAR (Missing at Random) 236
Markov decision process (MDP) 392–396, 410
Math.seedrandom() function 420
matMul (matrix multiplication) 94
matrix. See  confusion matrix
max() function 404
maxPooling2d layers 121, 126–127, 316
MCAR (Missing Completely at Random) 237
MDP (Markov decision process) 392–396, 410
mean absolute error (MAE) 47, 282
mean() method 495
meanAbsoluteError function 45, 47, 65, 194, 279, 

462
meanSquaredError function 70, 74, 106, 189, 

194, 289, 406–407, 463
memory, managing in Tensorflow.js 499–503
MetaCar 32
Microsoft Machine Learning Services 440
Microsoft Visual Studio 480
minimize() method 354
Missing at Random (MAR) 236
Missing Completely at Random (MCAR) 237
Missing Not at Random (MNAR) 237
ML5.js 32
MLP (multilayer perceptron) 80, 121, 170, 264, 

280–281, 284, 295–296, 301, 309, 317, 332, 
352, 460–461, 463, 465

MNAR (Missing Not at Random) 237
MNIST

dataset for 119
generating ACGANs 366–368
training ACGANs 366–368
training enhanced convnet for 138–140
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MobileNet 5, 19, 153–154, 162, 166, 168, 170, 
172–173, 186, 191, 193, 196, 432, 445

MobileNetV2 426, 431
model adaptation 154
model compilation step 45
model deployment 425
model performance 426
model quality 426
model.compile() function 52, 70, 90, 131, 157
model.evaluate() function 73, 132, 141–142
model.fit() function 50–59, 71, 73, 88, 100, 131, 

142, 420, 503
backpropagation 56–59
optimizing gradient descent 50

model.fitDataset 209, 214–219, 223, 244, 503
model.predict() function 136, 141, 325, 500–501
model.save() function 143
model.summary() method 80–81, 165, 280
models

capacity of 84–86
defining 43–46
deploying 417–452
encoder-decoder models 327–331
extracting internal weights from 75–76
fitting to training data 46–48
for classification 92–106

accuracy 96–99
binary classifications 92–95
binary cross entropy 103–106
loss function for binary classifications

103–106
measuring quality of binary classifiers 96–99
precision 96–99
recall 96–99
ROC curves 96–103

for fine-tuning in transfer learning 177–178
from symbolic tensors 166–167
inference speed of 435–437
interpreting 74–77

caveats on 77
extracting meaning from learned weights

74–75
nonlinearity and 87–89

loading in browsers 142–144
of sequential order

in GRUs 302–305
in RNNs 296–305
in simple RNNs 299–302
with dense layers 294–296

optimizing 417–425, 437–452
inference speed with GraphModel 

conversion 434–437
size through post-training weight 

quantization 426–433
saving from Node.js 142–144

testing 417–452
trained, predictions with 48
training

visualization of 273–287
with model.fitDataset 214–219
with Node.js 137–144

visualizing after training 260–271
with outputs from base models 161–173

transfer learning on embeddings 168–173
webcam transfer learning 164–166

Momentum 95
MongoDB 26
MPEG format 490
MSE (mean squared error) 65, 81, 86–87, 103, 

106, 283, 345, 419
mul() function 196, 404
multiclass classification 92, 106–114

activating softmax 109–111
categorical cross entropy 111–113
confusion matrix 113–114
fine-grained analysis of 113–114
loss function for 111–113
one-hot encoding of categorical data 107–109

multi-hot encoding 306–308
multilayer perceptron (MLP) 80, 121, 170, 264, 

280–281, 284, 295–296, 301, 309, 317, 332, 
352, 460–461, 463, 465

multilayer perceptrons 461–463
multiply layer 362
music composition 321
MusicRNN 467

N

Naive Bayes classifier 14
NaN (not-a-number) 55, 235
NCHW format 118
n-dimensional arrays 288
negative values 384
neural networks 6, 12–18, 470–472

building intuition for nonlinearity in 82–89
nonlinearity and model capacity 84–86
nonlinearity and model interpretability

87–89
stacking layers without nonlinearity 86–87

history of 15–16
next() function 276
next-character predictors 335–337
NHWC format 118, 120, 122, 490
Node.js platform 24–25

saving models from 142–144
training models with 137–144

dependencies for tfjs-node 137–142
imports for tfjs-node 137–142
loading models in browsers 142–144
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no-default mean 492
nonlinearity 79–116

at output 92–106
intuition for 82–89
model capacity and 84–86
model interpretability and 87–89
overview 80–92
stacking layers without 86–87

normalization.js file 62
normalizing data 66–69
not-a-number (NaN) 55, 235
npm package manage 62
numeric/categorical distinction 240
NVIDIA driver 478
NVIDIA Jetson Nano 449
nvidia-smi command 478

O

object detection
simple object detection 187–195
through transfer learning on convnets 185–195

objects in tf.data. Dataset 203
Observable notebook 241
observation 373, 375, 400
onBatchBegin 71
onBatchEnd 71, 278
one-hot encoding 107–110, 112, 120, 306–308
one-hot vectorization 307
onEpochBegin 71, 100, 115
onEpochEnd 71, 219, 278
onEpochStart 219
online DQNs 406
onTrainBegin 71
onTrainEnd 71, 113
op fusion 436
optimization schemes 18
optimizer configuration 289
optimizers 45
OR operator 496
outliers 235–236
output sequence 321
output shapes

compatible 155–161
incompatible 161–173

overfitting 280–287, 459
reducing with dropout layers 140–142

P

package.json file 62
padding sequences 314
papaparse library 64
parallelizable operations 22

parallelization 301
parameter sharing 125, 298
Path variable 480
PCA (principal component analysis) 319
perceptrons, multilayer 461–463
Phishing Website dataset 92
pip install tensorboard command 300
plotly.js 26, 232
POJO (plain old JavaScript object) 248
policy gradients 383–389

cart-pole examples 376–378
policy networks 378–381
REINFORCE algorithm 381–389
reinforcement-learning examples 376–378
training policy networks 381–389

policy networks 373, 376–389
cart-pole examples 376–378
REINFORCE algorithm 381–389
reinforcement-learning examples 376–378
training 381–389

pooling 127
PoseNet 21, 467
post-training weight quantization 427
precision 96–99, 104
predict() method 48, 80, 144, 170, 172, 178, 264, 

268, 368, 425, 436, 438, 451, 488
predicting

convnets for 134–137
image tensors from canvas elements 135–137
image tensors from HTML img 

elements 135–137
image tensors from TypedArrays 134
image tensors from video elements 135–137
tf.browser.fromPixels() 135–137

duration of downloads with TensorFlow.js
38–49

code listings 39–40
console interactions 39–40
creating data 40–43
defining models 43–46
fitting models to training data 46–48
formatting data 40–43

next characters 335–337
with trained models 48

pretrained models
leveraging from TensorFlow.js 465–468
reusing 153–184

creating models with outputs from base 
models 161–173

freezing layers 155–161
transfer learning on compatible output 

shapes 155–161
transfer learning on incompatible output 

shapes 161–173
transfer learning through fine-tuning

174–184
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pretrained neural networks, reusing 152–197
object detection through transfer learning on 

convnets 185–195
reusing pretrained models 153–184
transfer learning 153–184

principal component analysis (PCA) 319
print() function 108
prob (probability) 105, 112
Progressive WebApps 444
Project Magenta 31
projects

accessing from GitHub 61–63
running from GitHub 61–63

pseudo-examples 242
PyPI 25
PyTorch 21, 427

Q

Q-networks 373, 389
quantization 428–429
Q-values 392, 394–396, 399, 401, 405–406

loss function for backpropagation of 406–410
loss function for prediction of 406–410
predicted 402–404
target 404–406

R

random forests 15, 17
random initialization 50
randomly valued tensors 492–493
randomness in generated text 342–345
rank 482–483
rank-0 tensor 483–484
rank-1 tensor 485
rank-2 tensor 485–487
rank-3 tensor 487
Raspberry Pi 4 449
React Native 26, 34, 444–445
recall 96–99, 104
rect() function 151
rectified linear unit (relu) 17, 82, 84
recurrent networks 464
recurrent neural networks. See RNNs
red-green-blue (RGB) 7, 10, 20, 118, 123, 266
reduction operations 494–496
regression 43, 154
regularization 290
regularizers 465
REINFORCE algorithm 381–389
reinforcement learning, examples of 376–378, 

389–392
formulating 373–376
JavaScript API 391–392

relu (rectified linear unit) 17, 82, 84
.repeat(count) method 211
replay memory 399–401
representing

data 9–12
images 118–119
sounds as images 145–149
text in machine learning 306–308

Request parameters 224
RequestInfo 220, 224
ResNet 154
RethinkDB 26
returnSequence property 338
reward-discounting 382
rewards 373–375, 400
RGB (red-green-blue) 7, 10, 20, 118, 123, 266
RL (reinforcement learning) 5, 372, 410, 460
RMS (root-mean-square) 95
RMSProp 18, 95, 289
RNNs (recurrent neural networks) 5, 28, 276, 

294–305, 317, 321, 326, 461, 465
modeling sequential order in 296–305
modeling sequential order in GRUs 302–305
modeling sequential order in simple RNNs

299–302
modeling sequential order with dense layers

294–296
ROC curves (receiver operating characteristic 

curves) 96–103
rolled RNN diagrams 297
rolling datasets 399–401
root-mean-square (RMS) 95
row-major order 486

S

sample() function 342, 401
sampledLabels variable 370
sampleLen 339
--sampleLen flag 339
samples axis 488
samples dimension 67
samplesSoFar 214
save() method 142, 166
scalar (rank-0 tensor) 483–484
scalar tensor 190
scale differences 240
scatter plots 250
scatterplot() function 250
<script> tags 41, 247
SD (standard deviation) 492
sentiment-analysis 308–310
sentinel value 238
sequence data 489
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sequenceLength 311
sequences 292–333

padding 314
RNNs 294–305
truncating 314

sequence-to-sequence tasks
formulating 321–324
with attention mechanisms 321–331

attention-based encoder-decoder models
327–331

encoder-decoder architecture and 324–327
sequential order, modeling

in GRUs 302–305
in RNNs 296–305
in simple RNNs 299–302
with dense layers 294–296

server cost 19
Set.forEach() function 209
set() method 491
sgd (stochastic gradient descent) 45, 71, 94–95
sgd optimizer 45
shallow learning 14
shape property 482
.shuffle(bufferSize, seed?) method 212
shuffledTargets array 107
sigmoid function 82, 110
SIMD (Single Instruction Multiple Data) 22
simple object detection 186–195
simpleRNNs 296–302, 304, 326, 329, 464
single models for fine-tuning in transfer 

learning 177–178
single-board computers 448–450
Single-Shot Detection (SSD) 193–194
SISD (Single Instruction Single Data) 22
skew 239–240
.skip(count) method 211
slice() function 331, 498
slicing tensors 497–499
SoC (system-on-chip) 449
softmax function 109–111
sounds

recognizing 144–149
representing as images 145–149

sparseCategoricalCrossentropy 462
spectrograms 145–149
speech-command apps 174–176
spoken words, recognizing 144–149

representing sounds as images 145–149
spectrograms 145–149

squared error 66
SSD (Single-Shot Detection) 193–194
<ST> (start-of-sequence symbol) 325
stacking layers 86–87
standard deviation (SD) 492
standard transformation 66

step() method 103, 391
stochastic gradient descent (sgd) 45, 71, 94–95
streaming normalization 213
streaming window 233
StyleGANs 356
sub() method 502
sudo command 478
sum() function 404
summary() method 86, 143, 157, 196
supervised learning 9
surface patterns 23
SVMs (support vector machines) 14, 17
symbolic AI 7
symbolic tensors 166–167
SymbolicTensor 166–167, 177
synthesized scenes 186–187

T

tackle binary 14
.take() method 211
target 41
target DQNs 406
targetQs 403, 405, 407
t-distributed stochastic neighbor (t-SNE) 

embedding 271, 319
temperature values 342
tensor buffers 490–491
Tensor class 495
tensor1d (rank-1 tensor) 485
tensor2d (rank-2 tensor) 485–487
TensorBoard URL 367
TensorBuffer 491
@tensorflow/tfjs 480
TensorFlow Developer Summit 30
TensorFlow Playground 23–24, 29
TensorFlow.js 4, 19, 23, 427, 475, 480, 483, 487, 

494, 502
advantages of 27–33
convolutional networks 463
densely connected networks 461–463
ecosystem of 475
history of 27–30

Keras 27–30
TensorFlow 27–30

layers 465
leveraging pretrained models from 465–468
linear regression in 37–78

gradient descent 50–59
interpreting models 74–77
model.fit() 50–59
with multiple input features 59–74

memory management in 499–503
multilayer perceptrons 461–463
 



530 INDEX
TensorFlow.js (continued)
predicting download duration with 38–49

code listings 39–40
console interactions 39–40
creating data 40–43
defining models 43–46
duration prediction 38
fitting models to training data 46–48
formatting data 40–43
predictions with trained models 48

quick reference 460–465
recurrent networks 464
regularizers 465
similar libraries vs. 31

TensorFlow.js models
deploying 439–450

considerations when deploying to web
439–440

on JavaScript-based cross-platform desktop 
applications 445–447

on JavaScript-based mobile app plugin 
systems 447–448

on JavaScript-based mobile applications
443–445

on single-board computers 448–450
on WeChat 447–448
overview 450
to browser extensions 441–443
to cloud services 440–441

testing 418–425
continuous training 424–425
unit testing 418–422
with golden values 422–424

@tensorflow/tfjs-node-gpu 480
tensorflowjs_converter 437, 451
tensor-in-tensor-out (TITO) 497
tensors 27, 118–119, 288, 482–499

all-one tensors 491–492
all-zero tensors 491–492
binary operations 496
concatenating 497–499
data batches 488
examples of 488–490

image data 490
sequence data 489
vector data 489
video data 490

from tensor buffers 490–491
higher-dimensional tensors 487
MNIST dataset 119
randomly valued tensors 492–493
Rank-3 tensors 487
scalar (rank-0 tensor) 483–484
slicing 497–499
tensor1d (rank-1 tensor) 485

tensor2d (rank-2 tensor) 485–487
unary operations 493–496

element-wise operations vs. reduction 
operations 494–496

functional API vs. chaining API 494
tensors.trainTarget 71
testData constant 41
testing

models 417–452
TensorFlow.js models 418–425

continuous training 424–425
unit testing 418–422
with golden values 422–424

text
adjustable randomness in 342–345
deep learning for 292–333
generating with LSTM 335–345

example of 337–342
next-character predictors 335–337

models for 305–320
representing in machine learning 306–308
RNNs 294–305

text summarization 321
text vectorization 306
tf namespace 47, 494
tf symbol 41, 483
tf.abs() method 47
tf.add() method 496
tf.argMax() method 496
tf.argMin() method 496
tf.browser.fromPixels() function 135–137, 151, 

451
tf.callbacks.earlyStopping() method 286
tf.concat() function 368, 497, 499
tf.data

accessing data in Dataset 209
creating tf.data.Dataset 203–207

from arrays 203–205
from CSV files 205–206
from generator function 206–207

managing data with 202–214
manipulating tfjs-data Datasets 210–214
tf.data.Dataset objects 203

tf.data.array() function 203–206
tf.data.csv() function 204, 221, 223–224
tf.data.Dataset 203–207

from arrays 203–205
from CSV files 205–206
from generator function 206–207
manipulating 210–214
objects in 203

tf.data.generator() method 204, 206–208, 244, 
276

tf.data.microphone 228–230
tf.data.webcam 225–228
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tf.dispose() 499–503
tf.div() function 342
tf.grad() function 268, 503–504
tf.grads() function 503–504
tf.image.resizeBilinear() function 135, 151
tf.image.resizeNearestNeighbor() function 135, 

151
tf.io.browserHTTPRequest() method 144
tf.layer.embedding() function 310
tf.LayerModel object 353
tf.layers.batchNormalization() method 286, 435
tf.layers.conv1d() function 312, 463
tf.layers.dropout() method 285
tf.layers.flatten layer 294
tf.layers.gru() method 434
tf.layers.lstm() method 434
tf.layers.separableConv2d layers 463
tf.layers.simpleRNN() function 296, 434
tf.LayersModel.fit() function 299–300
tf.LayersModel.fitDataset() function 300
tf.loadGraphModel() method 434
tf.loadLayersModel() method 143–144, 155, 166, 

175, 399, 434–435
tf.log() function 342
tf.logicalAnd() method 496
tf.logicalOr() method 496
tf.logicaXor() method 496
tf.matMul() method 496
tf.max() method 496
tf.mean() method 495
tf.metric.meanSquaredError() function 191
tf.metrics namespace 112
tf.min() method 496
tf.Model object 315, 330, 482
tf.Model.fit() method 56, 60, 81, 265
tf.model() function 167, 178, 264, 268
tf.mul() method 496
tf.multinomial() function 342–343, 345, 380, 401
tf.neg() function 493–494
tf.nextFrame() function 227
tf.norm() method 495
tf.oneHot() function 107, 403
tf.ones() method 492
tf.onesLike() method 492
tf.randomNormal() function 492
tf.randomUniform() function 492–493
tf.reciprocal() function 494
tf.regularizers.l1() method 285
tf.regularizers.l1l2() method 285
tf.relu() function 494
tf.scalar() method 484
tf.sequential() function 167
tf.sigmoid() function 380
tf.slice() function 497, 499
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Model training

Saving, loading, and converting models

Task type API / command Reference

Saving a model in JavaScript tf.LayersModel.save() Sect. 4.3.2

Loading a model in JavaScript tf.loadLayersModel()

Converting a Keras model for JavaScript tensorflowjs_converter Info box 5.1

Loading models converted from TensorFlow tf.loadGraphModel() Sect. 12.2

Preparing models for production

Deploying models to production

Target environment Reference

Browser Various, such as sect. 4.3.2

Browser extension Sect. 12.3.3

Cloud serving Sect. 12.3.2

Mobile (ReactNative) Sect. 12.3.4

Target environment Reference

Desktop (Electron.js) Sect. 12.3.5

App plugin platforms 
(such as WeChat) 

Sect. 12.3.6

Single-board computers 
(such as Raspberry Pi)

Sect. 12.3.7

Visualizing the training process
Browser: sect. 7.1.1
Node.js: info box 9.1

Dealing with under- and overfitting
Sect. 8.2
Table 8.1

Visualizing and understanding trained models
Sect. 7.2

How backpropagation works
Sect. 2.2

Choosing optimizer
Info box 3.1

Testing a model and the surrounding code
Sect. 12.1

Optimizing model speed with Grappler
Sect. 12.2.2

Weight quantization: Shrinking the model size
Sect. 12.2.1
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