
Deep Learning
with Python

A Hands-on Introduction
—
Nikhil Ketkar

Deep Learning with
Python

A Hands-on Introduction

Nikhil Ketkar

Deep Learning with Python: A Hands-on Introduction

Nikhil Ketkar
Bangalore, Karnataka, India

ISBN-13 (pbk): 978-1-4842-2765-7 ISBN-13 (electronic): 978-1-4842-2766-4
DOI 10.1007/978-1-4842-2766-4

Library of Congress Control Number: 2017939734

Copyright © 2017 by Nikhil Ketkar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie and Anila Vincent
Technical Reviewer: Jojo Moolayail
Coordinating Editor: Prachi Mehta
Copy Editor: Larissa Shmailo
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484227657. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http:\\www.apress.com/9781484227657
http://www.apress.com/source-code

To Aditi.

v

Contents at a Glance

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

 ■Chapter 1: Introduction to Deep Learning ��� 1

 ■Chapter 2: Machine Learning Fundamentals ��� 5

 ■Chapter 3: Feed Forward Neural Networks ��� 15

 ■Chapter 4: Introduction to Theano ��� 33

 ■Chapter 5: Convolutional Neural Networks ��� 61

 ■Chapter 6: Recurrent Neural Networks ��� 77

 ■Chapter 7: Introduction to Keras ��� 95

 ■Chapter 8: Stochastic Gradient Descent �� 111

 ■Chapter 9: Automatic Differentiation ��� 131

 ■Chapter 10: Introduction to GPUs �� 147

Index ��� 157

vii

Contents

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

 ■Chapter 1: Introduction to Deep Learning ��� 1

Historical Context ��� 1

Advances in Related Fields �� 3

Prerequisites ��� 3

Overview of Subsequent Chapters ��� 4

Installing the Required Libraries ��� 4

 ■Chapter 2: Machine Learning Fundamentals ��� 5

Intuition �� 5

Binary Classification ��� 5

Regression ��� 6

Generalization �� 7

Regularization �� 12

Summary �� 14

 ■Chapter 3: Feed Forward Neural Networks ��� 15

Unit ��� 15

Overall Structure of a Neural Network �� 17

Expressing the Neural Network in Vector Form �� 18

Evaluating the output of the Neural Network ��� 19

Training the Neural Network ��� 21

■ Contents

viii

Deriving Cost Functions using Maximum Likelihood �� 22

Binary Cross Entropy �� 23

Cross Entropy ��� 23

Squared Error ��� 24

Summary of Loss Functions ��� 25

Types of Units/Activation Functions/Layers �� 25

Linear Unit �� 26

Sigmoid Unit ��� 26

Softmax Layer ��� 27

Rectified Linear Unit (ReLU) �� 27

Hyperbolic Tangent ��� 28

Neural Network Hands-on with AutoGrad �� 31

Summary �� 31

 ■Chapter 4: Introduction to Theano ��� 33

What is Theano ��� 33

Theano Hands-On ��� 34

Summary �� 59

 ■Chapter 5: Convolutional Neural Networks ��� 61

Convolution Operation �� 61

Pooling Operation ��� 68

Convolution-Detector-Pooling Building Block��� 70

Convolution Variants ��� 74

Intuition behind CNNs ��� 75

Summary �� 76

 ■Chapter 6: Recurrent Neural Networks ��� 77

RNN Basics ��� 77

Training RNNs ��� 82

Bidirectional RNNs ��� 89

■ Contents

ix

Gradient Explosion and Vanishing �� 90

Gradient Clipping �� 91

Long Short Term Memory ��� 93

Summary �� 94

 ■Chapter 7: Introduction to Keras ��� 95

Summary �� 109

 ■Chapter 8: Stochastic Gradient Descent �� 111

Optimization Problems ��� 111

Method of Steepest Descent �� 112

Batch, Stochastic (Single and Mini-batch) Descent ��� 113

Batch �� 114

Stochastic Single Example ��� 114

Stochastic Mini-batch ��� 114

Batch vs� Stochastic ��� 114

Challenges with SGD �� 114

Local Minima �� 114

Saddle Points �� 115

Selecting the Learning Rate ��� 116

Slow Progress in Narrow Valleys �� 117

Algorithmic Variations on SGD �� 117

Momentum ��� 118

Nesterov Accelerated Gradient (NAS) ��� 119

Annealing and Learning Rate Schedules �� 119

Adagrad �� 119

RMSProp ��� 120

Adadelta ��� 121

Adam �� 121

Resilient Backpropagation �� 121

Equilibrated SGD ��� 122

■ Contents

x

Tricks and Tips for using SGD ��� 122

Preprocessing Input Data ��� 122

Choice of Activation Function ��� 122

Preprocessing Target Value �� 123

Initializing Parameters �� 123

Shuffling Data ��� 123

Batch Normalization ��� 123

Early Stopping �� 123

Gradient Noise �� 123

Parallel and Distributed SGD �� 124

Hogwild ��� 124

Downpour ��� 124

Hands-on SGD with Downhill ��� 125

Summary �� 130

 ■Chapter 9: Automatic Differentiation ��� 131

Numerical Differentiation ��� 131

Symbolic Differentiation ��� 132

Automatic Differentiation Fundamentals �� 133

Forward/Tangent Linear Mode �� 134

Reverse/Cotangent/Adjoint Linear Mode �� 138

Implementation of Automatic Differentiation �� 141

Hands-on Automatic Differentiation with Autograd �� 143

Summary �� 146

 ■Chapter 10: Introduction to GPUs �� 147

Summary �� 156

Index ��� 157

xi

About the Author

Nikhil Ketkar currently leads the Machine Learning Platform team at
Flipkart, India’s largest e-commerce company. He received his PhD from
Washington State University. Following that, he conducted postdoctoral
research at University of North Carolina at Charotte, which was followed
by a brief stint in high frequency trading at TransMarket in Chicago. More
recently, he led the data mining team in Guavus, a startup doing big data
analytics in the telecom domain and Indix, a startup doing data science in
the e-commerce domain. His research interests include machine learning
and graph theory.

xiii

About the Technical Reviewer

Jojo Moolayil is a data scientist and author of Smarter Decisions—The Intersection of Internet of Things and
Decision Science. With over four years of industrial experience in data science, decision science, and IoT,
he has worked with industry leaders on high-impact and critical projects across multiple verticals. He is
currently associated with General Electric, a pioneer and leader in data science for industrial IoT, and lives
in Bengaluru, the Silicon Valley of India.

He was born and raised in Pune, India and graduated from the University of Pune with a major in
information technology engineering. He started his career with Mu Sigma, the world’s largest pure play
analytics provider, and worked with the leaders of many Fortune 50 clients. One of the early enthusiasts to
venture into IoT analytics, he now focuses on solving decision science problems for industrial IoT use cases.
As a part of his role at GE, he also develops data science and decision science products and platforms for
industrial IoT.

xv

Acknowledgments

I would like to thank my colleagues at Flipkart and Indix, and the technical reviewers for their feedback and
comments.

1© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_1

CHAPTER 1

Introduction to Deep Learning

This chapter gives a broad overview and a historical context around the subject of deep learning. It also gives
the reader a roadmap for navigating the book, the prerequisites, and further reading to dive deeper into the
subject matter.

Historical Context
The field of Artificial Intelligence (AI), which can definitely be considered to be the parent field of deep
learning, has a rich history going back to 1950. While we will not cover this history in much detail, we will go
over some of the key turning points in the field, which will lead us to deep learning.

Tasks that AI focused on in its early days were tasks that could be easily described formally, like the
game of checkers or chess. This notion of being able to easily describe the task formally is at the heart of what
can or cannot be done easily by a computer program. For instance, consider the game of chess. The formal
description of the game of chess would be the representation of the board, a description of how each of the
pieces move, the starting configuration, and a description of the configuration wherein the game terminates.

With these notions formalized, it's relatively easy to model a chess-playing AI program as a search and,
given sufficient computational resources, it’s possible to produces a relatively good chess-playing AI.

The first era of AI focused on such tasks with a fair amount of success. At the heart of the methodology
was a symbolic representation of the domain and the manipulation of symbols based on given rules (with
increasingly sophisticated algorithms for searching the solution space to arrive at a solution).

It must be noted that the formal definitions of such rules were done manually. However, such early
AI systems were fairly general purpose task/problem solvers in the sense that any problem that could be
described formally could be solved with the generic approach.

The key limitation about such systems is that the game of chess is a relatively easy problem for AI simply
because the problem setting is relatively simple and can be easily formalized. This is not the case with many of
the problems human beings solve on a day-to-day basis (natural intelligence). For instance, consider diagnosing
a disease (as a physician does) or transcribing human speech to text. These tasks, like most other tasks human
beings master easily, are hard to describe formally and presented a challenge in the early days of AI.

Human beings address such tasks by leveraging a large amount of knowledge about the task/problem
domain. Given this observation, subsequent AI systems relied on a large knowledge base which captured the
knowledge about the problem/task domain. One point to be noted is the term used here is knowledge, not
information or data. By knowledge we simply mean data/information that a program/algorithm can reason
about. An example of this could be a graph representation of a map with edges labeled with distances and
about traffic (which is being constantly updated), which allows a program to reason about the shortest path
between points.

Chapter 1 ■ IntroduCtIon to deep LearnIng

2

Such knowledge-based systems wherein the knowledge was compiled by experts and represented
in a way which allowed algorithms/programs to reason about it represent the second generation of AI. At
the heart of such approaches were increasingly sophisticated approaches for representing and reasoning
about knowledge to solve tasks/problems which required such knowledge. Examples of such sophistication
include the use of first order logic to encode knowledge and probabilistic representations to capture and
reason where uncertainty is inherent to the domain.

One of the key challenges that such systems faced and addressed to some extent was the uncertainty
inherent in many domains. Human beings are relatively good at reasoning in environments with unknowns
and uncertainty. One key observation here is that even the knowledge we hold about a domain is not black
or white but gray. A lot of progress was made in this era on representing and reasoning about unknowns and
uncertainty. There were some limited successes in tasks like diagnosing a disease, which relied on leveraging
and reasoning using a knowledge base in the presence of unknowns and uncertainty.

The key limitation of such systems was the need to hand compile the knowledge about the domain from
experts. Collecting, compiling, and maintaining such knowledge bases rendered such systems unpractical.
In certain domains, it was extremely hard to even collect and compile such knowledge (for instance,
transcribing speech to text or translating documents from one language to another). While human beings
can easily learn to do such tasks, it's extremely challenging to hand compile and encode the knowledge
related to the tasks (for instance, the knowledge of the English language and grammar, accents, and subject
matter).

Human beings address such tasks by acquiring knowledge about a task/problem domain, a process
which is referred to as learning. Given this observation, the focus of subsequent work in AI shifted over a
decade or two to algorithms that improved their performance based on data provided to them. The focus
of this subfield was to develop algorithms that acquired relevant knowledge for a task/problem domain
given data. It is important to note that this knowledge acquisition relied on labeled data and a suitable
representation of labeled data as defined by a human being.

For instance, consider the problem of diagnosing a disease. For such a task, a human expert would
collect a lot of cases where a patient had and did not have the disease in question. Then, the human expert
would identify a number of features that would aid making the prediction like, say, the age of the patient,
the gender, and results from a number of diagnostic tests like blood pressure, blood sugar, etc. The human
expert would compile all this data and represent it in a suitable way like scaling/normalizing the data, etc.
Once this data was prepared, a machine learning algorithm can learn how to infer whether the patient has
the disease or not by generalizing from the labeled data. Note that the labeled data consisted of patients that
both have and do not have the disease. So, in essence, the underlying ML algorithm is essentially doing the
job of finding a mathematical function that can produce the right outcome (disease or no disease) given
the inputs (features like age, gender, data from diagnostic tests, etc.). Finding the simplest mathematical
function that predicts the outputs with required level of accuracy is at the heart of the field of ML. Specific
questions like how many examples are required to learn a task or the time complexity of the algorithm, etc.,
are specific questions on which the field of ML has provided answers with theoretical justification. The field
has matured to a point where, given enough data, computer resources, and human resources to engineer
features, a large class of problems are solvable.

The key limitation of mainstream ML algorithms is that applying them to a new problem domain
requires a massive amount of feature engineering. For instance, consider the problem of recognizing objects
in images. Using traditional ML techniques, such a problem will require a massive feature engineering
effort wherein experts would identify and generate features which would be used by the ML algorithm. In a
sense, the true intelligence is in the identification of features and what the ML algorithm is doing is simply
learning how to combine these features to arrive at the correct answer. This identification of features or the
representation of data which domain experts do before ML algorithms are applied is both a conceptual and
practical bottleneck in AI.

It’s a conceptual bottleneck because if features are being identified by domain experts, and the ML
algorithm is simply learning to combine and draw conclusions from this, is this really AI? It’s a practical
bottleneck because the process of building models via traditional ML is bottlenecked by the amount of
feature engineering required; there are limits to how much human effort can be thrown at the problem.

Chapter 1 ■ IntroduCtIon to deep LearnIng

3

Human beings learn concepts starting from raw data. For instance, a child shown a few examples/
instances of a particular animal (like, say, cats) will soon learn to identify cats. The learning process does
not involve a parent identifying features like does it have whiskers or does it have fur or does it have a tail.
Human learning goes from raw data to a conclusion without the explicit step where features are identified
and provided to the learner. In a sense, human beings learn the appropriate representation of data from the
data itself. Furthermore, they organize concepts as a hierarchy where complicated concepts are expressed
using primitive concepts.

The field of deep learning has its primary focus on learning appropriate representations of data such
that these could be used to draw conclusions. The word deep in deep learning refers to the idea of learning
the hierarchy of concepts directly from raw data. A more technically appropriate term for deep learning
would be representation learning, and a more practical term for the same would be automated feature
engineering.

Advances in Related Fields
It is important to make a note of advances in other fields that have played a key role in the recent interest and
success of deep learning. The following points are to be noted.

 1. The ability to collect, store, and operate over large amounts of data has greatly
advanced over the last decade (for instance, the Apache Hadoop Ecosystem).

 2. The ability to generate supervised training data (which is basically data with
labels—an example of this would be pictures annotated with the objects in the
picture) has improved a lot with the availability of crowd-sourcing services
(like Amazon Mechanical Turk).

 3. The massive improvements in computational horsepower brought about by
Graphical Processor Units.

 4. The advances in both theory and software implementation of automatic
differentiation (like Theano).

While these advancements are peripheral to deep learning, they have played a big role in enabling
advances in deep learning.

Prerequisites
The key prerequisites for reading this book are a working knowledge of Python and some course work on
linear algebra, calculus, and probability. It is recommended that readers refer to the following in case they
need to cover these prerequisites.

 1. Dive Into Python by Mark Pilgrim for Python.

 2. Linear Algebra by Gilbert Strang for linear algebra.

 3. Calculus by Gilbert Strang for calculus.

 4. All of Statistics by Larry Wasserman for probability (Section 1, Chapters 1-5).

http://dx.doi.org/10.1007/978-1-4842-2766-4_1
http://dx.doi.org/10.1007/978-1-4842-2766-4_5

Chapter 1 ■ IntroduCtIon to deep LearnIng

4

Overview of Subsequent Chapters
We now provide an overall outline of the subsequent chapters for the reader. It is important to note that
each of the chapters covers either the concepts or the skills (or in certain cases both) with respect to deep
learning. We highlight these below so that the readers can ensure that they have internalized these concepts
and skills. It is highly recommended that the readers not only read the chapters but also work out the
mathematical details (using pen and paper) and play with the source code provided in each of the chapters.

 1. Chapter 2 covers the basics of Machine Learning. The key take home point for
this chapter is the concept of generalizing over unseen examples, the ideas of
over-fitting and under-fitting the training data, the capacity of the model, and the
notion of regularization.

 2. Chapter 3 covers Feed Forward Neural Networks and serves as the conceptual
foundation for the entire book. Concepts like the overall structure of the neural
network, the input, hidden and output layers, cost functions and their basis on
the principle of Maximum Likelihood are the important concepts in this chapter.

 3. Chapter 4 provides a hands-on introduction to the Theano library. It covers how
to define networks as computational graphs, automatically derive gradients for
complicated networks, and train neural networks.

 4. Chapter 5 covers Convolutional Neural Networks, which are perhaps the most
successful application of deep learning.

 5. Chapter 6 covers Recurrent Neural Networks and Long Short Term Memory
(LSTM) networks, which are another successful application of deep learning.

 6. Chapter 7 provides a hands-on introduction to the Keras library. The Keras
library provides a number of high-level abstractions over the Theano library
and is probably the ideal go-to tool when it comes to building deep learning
applications.

 7. Chapter 8 introduces the reader to Stochastic Gradient Descent (SGD), which is
the most common procedure used to train Neural Networks. This chapter also
covers the shortcomings of SGD and a number of variations to SGD that address
these shortcomings.

 8. Chapter 9 introduces the reader to Automatic Differentiation (commonly
referred to as backpropagation), which is a standard technique used to derive
gradients (required for SGD) for arbitrarily complicated networks.

 9. Chapter 10 introduces the reader to Graphical Processing Units (GPUs) and
GPU-based computation, which has acted as a key enabling technology for deep
learning.

Installing the Required Libraries
There are a number of libraries that the reader will need to install in order to run the source code for
the examples in the chapters. We recommend that the reader install Anaconda Python Distribution
(https://www.continuum.io/downloads), which would make the process of installing the required packages
significantly easy (using either conda or pip). The list of packages the reader would need includes Scikit-learn,
Theano, Autograd, Keras, and PyOpenCL.

http://dx.doi.org/10.1007/978-1-4842-2766-4_2
http://dx.doi.org/10.1007/978-1-4842-2766-4_3
http://dx.doi.org/10.1007/978-1-4842-2766-4_4
http://dx.doi.org/10.1007/978-1-4842-2766-4_5
http://dx.doi.org/10.1007/978-1-4842-2766-4_6
http://dx.doi.org/10.1007/978-1-4842-2766-4_7
http://dx.doi.org/10.1007/978-1-4842-2766-4_8
http://dx.doi.org/10.1007/978-1-4842-2766-4_9
http://dx.doi.org/10.1007/978-1-4842-2766-4_10
https://www.continuum.io/downloads

5© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_2

CHAPTER 2

Machine Learning Fundamentals

Deep Learning is a branch of Machine Learning and in this chapter we will cover the fundamentals of
Machine Learning. While machine learning as a subject is inherently mathematical in nature, we will keep
mathematics to the basic minimum required to develop intuition about the subject. Prerequisites for the
subject matter covered in this chapter would be linear algebra, multivariable calculus, and basic probability
theory.

Intuition
As human beings we are intuitively aware of the concept of learning: it simply means to get better at a task
over a period of time. The task could be physical (like learning to drive a car) or intellectual (like learning
a new language). The subject of machine learning focuses on development of algorithms that can learn as
humans do; that is, they get better at a task over a period over time, with experience.

The first question to ask is why we would be interested in development of algorithms that improve
their performance over time, with experience. After all, there are many algorithms that are developed and
implemented to solve real world problems that don’t improve over time, they simply are developed by
humans and implemented in software and they get the job done. From banking to e-commerce and from
navigation systems in our cars to landing a spacecraft on the moon, algorithms are everywhere, and, a
majority of them do not improve over time. These algorithms simply perform the task they are intended to
perform, with some maintenance required from time to time. Why do we need machine learning?

The answer to this question is that for certain tasks it is easier to develop an algorithm that learns/
improves its performance with experience than to develop an algorithm manually. While this might seem
unintuitive to the reader at this point, we will build intuition for this during the course of this chapter.

Binary Classification
In order to further discuss the matter at hand, we need to be precise about some of the terms we have been
intuitively using, like task, learning, experience, and improvement. We will start with the task of binary
classification.

Consider an abstract problem domain where we have data of the form

D = {(x
1
, y

1
), (x

2
, y

2
), … (x

n
, y

n
)}

where x nÎ and y = ±1. We do not have access to all such data but only a subset S DÎ . Using S, our task
is to generate a computational procedure that implements the function f x y: ® such that we can use f to

make predictions over unseen data x y Si i,()Ï that are correct, f x yi i() = . Let us denote U DÎ as the set of

Chapter 2 ■ MaChine Learning FundaMentaLs

6

unseen data, that is, x y Si i,()Ï and x y Ui i,()Î . We measure performance over this task as the error over
unseen data,

E f D U

f x y

U
x y U

i i

i i, ,() =
() ¹éë ùû

()Î
å
, .

We now have a precise definition of the task, which is to categorize data into one of two categories
(y = ±1) based on some seen data S by generating f. We measure performance (and improvement in
performance) using the error E (f, D, U) over unseen data U. The size of the seen data |S| is the conceptual
equivalent of experience. In this context, we want to develop algorithms that generate such functions
f (which are commonly referred to as a model). In general, the field of machine learning studies the
development of such algorithms that produce models that make predictions over unseen data for such
algorithms, and other formal tasks (we will be introducing multiple such tasks later in the chapter). Note that
the x is commonly referred to as the input/input variable and y is referred to as the output/output variable.

As with any other discipline in computer science, the computational characteristics of such algorithms
is an important facet, but in addition to that we also would like to have a model f that achieves a lower error
E (f, D, U) with as small a |S| as possible.

Let us now relate this abstract but precise definition to a real world problem so that our abstractions
are grounded. Let us say an e-commerce web site wants to customize the landing page for registered users
to show them the products the users might be interested in buying. The web site has historical data on users
and would like to implement this as a feature so as to increase sales. Let us now see how this real world
problem maps onto the abstract problem of binary classification we described earlier.

The first thing that one might notice is that given a particular user and a particular product, one wants
to predict whether the user will buy the product. Since this is the value to be predicted, it maps onto y = ±1,
where we will let the value of y = +1 denote the prediction that the user will buy the product and we will
denote y = –1 as the prediction that the user does not buy the product. Note that that there is no particular
reason for picking these values; we could have swapped this (let y = +1 denote the does not buy case and
y = –1 denote the buy case) and there would be no difference. We just use y = ±1 to denote the two classes of
interest to categorize data. Next, let us assume that we can somehow represent the attributes of the product
and the user’s buying and browsing history as x nÎ . This step is referred to as feature engineering in
machine learning and we will cover it later in the chapter. For now, it suffices to say that we are able to
generate such a mapping. Thus, we have historical data of what the users browsed and bought, attributes of
a product and whether the user bought the product or not mapped onto {(x

1
, y

1
), (x

2
, y

2
), … (x

n
, y

n
)}. Now,

based on this data, we would like to generate a function or a model f x y: ® which we can use to determine

which products a particular user will buy and use this to populate the landing page for users. We can
measure how well the model is doing on unseen data by populating the landing page for users and see
whether they buy the products or not and evaluate the error E (f, D, U).

Regression
Let us introduce another task, namely regression. Here, we have data of the form D x y x y x yn n= () () ¼(){ }1 1 2 2, , ,, ,

where x nÎ and yÎ and our task is to generate a computational procedure that implements the function

f x y: ® . Note that instead of the prediction being a binary class label y = ±1 like in binary classification, we have

real valued prediction. We measure performance over this task as the root mean squared error (RMSE) over
unseen data,

Chapter 2 ■ MaChine Learning FundaMentaLs

7

E f D U

y f x

U
x y U

i i

i i, ,() =
- ()()æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

()Î
å
,

2
1

2

.

 ■ Note that the rMse is simply taking the difference between the predicted and actual value, squaring it so
as to account for both positive and negative differences, taking the mean so as to aggregate over all the unseen
data and, finally, taking the square root so as to counterbalance the square operation.

A real world problem that corresponds to the abstract task of regression is to predict the credit score for
an individual based on their financial history, which can be used by a credit card company to extend the line
of credit.

Generalization
Let us now cover what is the single most important intuition in machine leaning, which is that we want to
develop/generate models that have good performance over unseen data. In order to do that, let us introduce
a toy data set for a regression task first.

We generate the toy dataset by generating 100 values equidistantly between -1 and 1 as the input
variable (x). We generate the output variable (y) based on y x x= + + +2 2 2 where ε ~ , .N 0 0 1() is noise

(random variation) from a normal distribution with 0 mean and 0.1 being the standard deviation. Code for
this is presented in Listing 2-1 and the data is plotted in Figure 2-1.

Listing 2-1. Generalization vs. Rote Learning

#Generate Toy Dataset
import pylab
import numpy
x = numpy.linspace(-1,1,100)
signal = 2 + x + 2 * x * x
noise = numpy.random.normal(0, 0.1, 100)
y = signal + noise
pylab.plot(signal,'b');
pylab.plot(y,'g')
pylab.plot(noise, 'r')
pylab.xlabel("x")
pylab.ylabel("y")
pylab.legend(["Without Noise", "With Noise", "Noise"], loc = 2)
x_train = x[0:80]
y_train = y[0:80]

Model with degree 1
pylab.figure()
degree = 2
X_train = numpy.column_stack([numpy.power(x_train,i) for i in xrange(0,degree)])

Chapter 2 ■ MaChine Learning FundaMentaLs

8

model = numpy.dot(numpy.dot(numpy.linalg.inv(numpy.dot(X_train.transpose(),X_train)),X_
train.transpose()),y_train)
pylab.plot(x,y,'g')
pylab.xlabel("x")
pylab.ylabel("y")
predicted = numpy.dot(model, [numpy.power(x,i) for i in xrange(0,degree)])
pylab.plot(x, predicted,'r')
pylab.legend(["Actual", "Predicted"], loc = 2)
train_rmse1 = numpy.sqrt(numpy.sum(numpy.dot(y[0:80] - predicted[0:80], y_train -
predicted[0:80])))
test_rmse1 = numpy.sqrt(numpy.sum(numpy.dot(y[80:] - predicted[80:], y[80:] -
predicted[80:])))
print("Train RMSE (Degree = 1)", train_rmse1)
print("Test RMSE (Degree = 1)", test_rmse1)

Model with degree 2
pylab.figure()
degree = 3
X_train = numpy.column_stack([numpy.power(x_train,i) for i in xrange(0,degree)])
model = numpy.dot(numpy.dot(numpy.linalg.inv(numpy.dot(X_train.transpose(),X_train)),
X_train.transpose()),y_train)
pylab.plot(x,y,'g')
pylab.xlabel("x")
pylab.ylabel("y")
predicted = numpy.dot(model, [numpy.power(x,i) for i in xrange(0,degree)])
pylab.plot(x, predicted,'r')
pylab.legend(["Actual", "Predicted"], loc = 2)
train_rmse1 = numpy.sqrt(numpy.sum(numpy.dot(y[0:80] - predicted[0:80],
y_train - predicted[0:80])))
test_rmse1 = numpy.sqrt(numpy.sum(numpy.dot(y[80:] - predicted[80:],
y[80:] - predicted[80:])))
print("Train RMSE (Degree = 2)", train_rmse1)
print("Test RMSE (Degree = 2)", test_rmse1)

Model with degree 8
pylab.figure()
degree = 9
X_train = numpy.column_stack([numpy.power(x_train,i) for i in xrange(0,degree)])
model = numpy.dot(numpy.dot(numpy.linalg.inv(numpy.dot(X_train.transpose(),X_train)),
X_train.transpose()), y_train)
pylab.plot(x, y,'g')
pylab.xlabel("x")
pylab.ylabel("y")
predicted = numpy.dot(model, [numpy.power(x,i) for i in xrange(0,degree)])
pylab.plot(x, predicted,'r')
pylab.legend(["Actual", "Predicted"], loc = 3)
train_rmse2 = numpy.sqrt(numpy.sum(numpy.dot(y[0:80] - predicted[0:80],
y_train - predicted[0:80])))
test_rmse2 = numpy.sqrt(numpy.sum(numpy.dot(y[80:] - predicted[80:],
y[80:] - predicted[80:])))
print("Train RMSE (Degree = 8)", train_rmse2)
print("Test RMSE (Degree = 8)", test_rmse2)

Chapter 2 ■ MaChine Learning FundaMentaLs

9

Output
Train RMSE (Degree = 1) 3.50756834691
Test RMSE (Degree = 1) 7.69514326946
Train RMSE (Degree = 2) 0.91896252959
Test RMSE (Degree = 2) 0.446173435392
Train RMSE (Degree = 8) 0.897346255079
Test RMSE (Degree = 8) 14.1908525449

Figure 2-1. Generate a toy problem dataset for regression

In order to simulate seen and unseen data, we use the first 80 data points as seen data and the rest
we treat as unseen data. That is, we build the model using only the first 80 data points and use the rest for
evaluating the model.

Next, we use a very simple algorithm to generate a model, commonly referred to as Least Squares.
Given a data set of the form D x y x y x yn n= () () ¼(){ }1 1 2 2, , ,, , where x nÎ and yÎ, the least squares model

takes the form y = bx where b is a vector such that X yb -
2

2
 is minimized. Here X is a matrix where each row

is an x, thus X m nÎ ´ with m being the number of examples (in our case 80). The value of b can be derived

using the closed form b = ()-X X X yT T1
. We are glossing over a lot of important details of the least squares

method but those are secondary to the current discussion. The more pertinent detail is how we transform
the input variable to a suitable form. In our first model, we will transform x to be a vector of values [x0, x1, x2].
That is, if x = 2, it will be transformed to [1, 2, 4]. Post this transformation, we can generate a least squares
model b using the formula described above. What is happening under the hood is that we are approximating

the given data with a second order polynomial (degree = 2) equation, and the least squares algorithm is
simply curve fitting or generating the coefficients for each of [x0, x1, x2].

Chapter 2 ■ MaChine Learning FundaMentaLs

10

We can evaluate the model on the unseen data using the RMSE metric. We can also compute the RMSE
metric on the training data. The actual and predicted values are plotted in Figure 2-2 and listing 2-1 shows
the source code for generating the model.

Figure 2-2. Actual and predicted values for model with degree = 2

Next, we generate another model with the least squares algorithm but we will transform x to
[x0, x1, x2 , x3, x4, x5, x6, x7, x8]. That is, we are approximating the given data with a polynomial with
degree = 8. The actual and predicted values are plotted in Figure 2-3 and listing 2-1 shows the source
code for generating the model. As the last step we generate a model with degree = 1.

Chapter 2 ■ MaChine Learning FundaMentaLs

11

Figure 2-3. Actual and predicted values for model with degree = 8

The actual and predicted values are plotted in Figure 2-4 and listing 2-1 shows the source code for
generating the model.

Figure 2-4. Actual and predicted values for model with degree = 1

Chapter 2 ■ MaChine Learning FundaMentaLs

12

We now have all the details in place to discuss the core concept of generalization. The key question to ask
is which is the better model? The one with degree = 2 or the one with degree = 8 or the one with degree = 1?

Let us start by making a few observations about the three models. The model with degree = 1 performs
poorly on both the seen as well as unseen data as compared to the other two models. The model with
degree = 8 performs better on seen data as compared to the model with degree = 2. The model with
degree = 2 performs better than the model with degree = 8 on unseen data. Table 2-1 visualizes this in table
form for easy interpretation.

Table 2-1. Comparing the performance of the 3 different models

Degree 1 2 8

Seen Data Worst Worst Better

Unseen Data Worst Better Worst

Let us now understand the important concept of model capacity, which corresponds to the degree of the
polynomial in this example. The data we generated was using a second order polynomial (degree = 2) with
some noise. Then, we tried to approximate the data using three models of degree: 1, 2, and 8, respectively.
The higher the degree, the more expressive is the model. That is, it can accommodate more variation. This
ability to accommodate variation corresponds to the notion of capacity. That is, we say that the model with
degree = 8 has a higher capacity that the model with degree = 2, which in turn has a higher capacity than
the model with degree = 1. Isn’t having higher capacity always a good thing? It turns out it is not, when we
consider that all real world datasets contain some noise and a higher capacity model will end up just fitting
the noise in addition to the signal in the data. This is why we observe that the model with degree = 2 does
better on the unseen data as compared to the model with degree = 8. In this example, we knew how the data
was generated (with a second order polynomial (degree = 2) with some noise); hence, this observation is quite
trivial. However, in the real world, we don’t know the underlying mechanism by which the data is generated.
This leads us to the fundamental challenge in machine learning, which is, does the model truly generalize?
And the only true test for that is the performance over unseen data.

In a sense the concept of capacity corresponds to the simplicity or parsimony of the model. A model
with high capacity can approximate more complex data. This is how many free variables/coefficients the
model has. In our example, the model with degree = 1 does not have capacity sufficient to approximate the
data and this is commonly referred to as under fitting. Correspondingly, the model with degree = 8 has extra
capacity and it over fits the data.

As a thought experiment, consider what would happen if we had a model with degree equal to 80. Given
that we had 80 data points as training data, we would have an 80-degree polynomial that would perfectly
approximate the data. This is the ultimate pathological case wherein there is no learning at all. The model
has 80 coefficients and can simply memorize the data. This is referred to as rote learning, the logical extreme
of overfitting. This is why the capacity of the model needs to be tuned with respect to the amount of training
data we have. If the dataset is small, we are better off training models with lower capacity.

Regularization
Building on the idea of model capacity, generalization, over fitting, and under fitting, let us now cover the
idea of regularization. The key idea here is to penalize complexity of the model. A regularized version of least
squares takes the form y = bx, where b is a vector such that X yb l b- +

2

2

2

2
 is minimized and λ is a

user-defined parameter that controls the complexity. Here, by introducing the term l b
2

2
, we are penalizing

complex models. To see why this is the case, consider fitting a least square model using a polynomial of
degree 10, but the values in the vector b has 8 zeros; 2 are non-zeros. Against this, consider the case where

Chapter 2 ■ MaChine Learning FundaMentaLs

13

all values in the vector b are non-zeros. For all practical purposes, the former model is a model with

degree = 2 and has a lower value of l b
2

2
. The λ term allows us to balance accuracy over the training data

with the complexity of the model. Lower values of λ imply a simpler model.
We can compute the value of b using the closed form b l= -()-X X I X yT T1

. We illustrate keeping the

degree fixed at a value of 80 and varying the value of λ in listing 2-2.

Listing 2-2. Regularization

import pylab
import numpy
x = numpy.linspace(-1,1,100)
signal = 2 + x + 2 * x * x
noise = numpy.random.normal(0, 0.1, 100)
y = signal + noise
x_train = x[0:80]
y_train = y[0:80]

train_rmse = []
test_rmse = []
degree = 80
lambda_reg_values = numpy.linspace(0.01,0.99,100)

for lambda_reg in lambda_reg_values:
 X_train = numpy.column_stack([numpy.power(x_train,i) for i in xrange(0,degree)])
 model = numpy.dot(numpy.dot(numpy.linalg.inv(numpy.dot(X_train.transpose(),X_train) +
lambda_reg * numpy.identity(degree)),X_train.transpose()),y_train)
 predicted = numpy.dot(model, [numpy.power(x,i) for i in xrange(0,degree)])
 train_rmse.append(numpy.sqrt(numpy.sum(numpy.dot(y[0:80] - predicted[0:80],
y_train - predicted[0:80]))))
 test_rmse.append(numpy.sqrt(numpy.sum(numpy.dot(y[80:] - predicted[80:],
y[80:] - predicted[80:]))))

pylab.plot(lambda_reg_values, train_rmse)
pylab.plot(lambda_reg_values, test_rmse)
pylab.xlabel(r"λ")
pylab.ylabel("RMSE")
pylab.legend(["Train", "Test"], loc = 2)

The training RMSE (seen data) and test RMSE (unseen data) is plotted in Figure 2-5.

Chapter 2 ■ MaChine Learning FundaMentaLs

14

Summary
In this chapter we covered the basics of Machine Learning. The key take-home points for this chapter are the
concepts of generalizing over unseen examples, over-fitting and under-fitting the training data, the capacity
of the model, and the notion of regularization. The reader is encouraged to try out the examples (in the
source code listings). In the next chapter, we will build on these concepts and cover neural networks.

Figure 2-5. Regularization

15© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_3

CHAPTER 3

Feed Forward Neural Networks

In this chapter we will cover some key concepts around feedforward neural networks. These concepts will
serve as a foundation as we cover more technical topics in depth.

At an abstract level, a Neural Network can be thought of as a function
f x yq : ,® which takes an input x nÎ and produces an output y mÎ , and whose behavior is

parameterized by q Îp . So for instance, fθ could be simply y f x x= () = ×q q .

We will start by looking at the structure of a neural network, followed by how they are trained and used
for making predictions.

Unit
A unit is the basic building of a neural network; refer to Figure 3-1. The following points should be noted:

 1. A unit is a function that takes as input a vector x nÎ and produces a scalar.

 2. A unit is parameterized by a weight vector w nÎ and a bias term denoted by b.

 3. The output of the unit can be described as

f x w b
i

n

i i
=
å × +

æ

è
ç

ö

ø
÷

1

where f : ® is referred to as an activation function.

 4. A variety of activation functions may be used, as we shall see later in the chapter;
generally, it’s a non-linear function.

Chapter 3 ■ Feed Forward Neural Networks

16

Figure 3-1. A unit in a neural network

Chapter 3 ■ Feed Forward Neural Networks

17

Overall Structure of a Neural Network
Neural Networks are constructed using the unit as a basic building block (introduced earlier); refer to
Figure 3-2.

Figure 3-2. Structure of a Neural Network

The following points are to be noted:

 1. Units are organized as layers, with every layer containing one or more units.

 2. The last layer is referred to as the output layer.

 3. All layers before the output layers are referred to as hidden layers.

 4. The number of units in a layer is referred to as the width of the layer.

Chapter 3 ■ Feed Forward Neural Networks

18

 5. The width of each layer need not be the same, but the dimension should be
aligned, as we shall see later in the chapter.

 6. The number of layers is referred to as the depth of the network. This is where the
notion of deep (as in deep learning) comes from.

 7. Every layer takes as input the output produced by the previous layer, except for
the first layer, which consumes the input.

 8. The output of the last layer is the output of the network and is the prediction
generated based on the input.

 9. As we have seen earlier, a neural network can be seen as a function f x yq : ,®

which takes as input x nÎ and produces as output y mÎ and whose behavior is

parameterized by q Îp . We can now be more precise about θ; it’s simply a

collection of all the weights w for all the units in the network.

 10. Designing a neural network involves, amongst other things, defining the overall
structure of the network, including the number of layers and the width of these
layers.

Expressing the Neural Network in Vector Form
Let us now take a look at the layers of a Neural Network and their dimensions in a bit more detail.
Refer to Figure 3-3; the following points should be noted:

 1. If we assume that the dimensionality of the input is x nÎ and the first layer has p
1

units, then each of the units has w nÎ weights associated with them. That is, the
weights associated with the first layer are a matrix of the form w n p

1
1Î ´ . While this is

not shown in the diagram, each of the p
1
 units also has a bias term associated with it.

 2. The first layer produces an output o p
1

1Î where o f x w bi
k

n

k k i= × +
æ

è
ç

ö

ø
÷

=
å

1

. Note

that the index k corresponds to each of the inputs/weights (going from 1 … n) and
the index i corresponds to the units in the first layer (going from 1.. p

1
).

 3. Let us now look at the output of the first layer in a vectorised notation. By
vectorised notation we simply mean linear algebraic operations like vector
matrix multiplications and computation of the activation function on a vector
producing a vector (rather than scalar to scalar). The output of the first layer can
be represented as f x w b× +()1 1 . Here we are treating the input x nÎ to be of

dimensionality 1 × n, the weight matrix w
1
 to be of dimensionality n × p

1
, and the

bias term to be a vector of dimensionality 1 × p
1
. Notice then that x w b× +1

produces a vector of dimensionality 1 × p
1
 and the function f simply transforms

each element of the vector to produce o p
1

1Î .

 4. A similar process follows for the second layer that goes from o p
1

1Î to o p
2

2Î .

This can be written in vectorised form as f o w b1 2 2× +(). We can also write the

entire computation up to layer 2 in vectorised form as f f x w b w b× +()× +()1 1 2 2 .

Chapter 3 ■ Feed Forward Neural Networks

19

Evaluating the output of the Neural Network
Now that we have looked at the structure of a Neural Network, let’s look at how the output of the neural
network can be evaluated against labeled data. Refer to Figure 3-4. The following points are to be noted:

 1. We can assume that our data has the form D x y x y x yn n= () () ¼(){ }1 1 2 2, , ,, , where

x nÎ and yÎ{ }0 1, , which is the target of interest (currently this is binary, but it

may be categorical or real valued depending on whether we are dealing with a
multi-class or regression problem, respectively).

 2. For a single data point we can compute the output of the Neural Network, which
we denote as ŷ .

Figure 3-3. Expressing the Neural Network in Vector Form

Chapter 3 ■ Feed Forward Neural Networks

20

 3. Now we need to compute how good the prediction of our Neural Network ŷ is as
compared to y. Here comes the notion of a loss function.

 4. A loss function measures the disagreement between ŷ and y which we denote by
l. There are a number of loss functions appropriate for the task at hand: binary
classification, multi-classification, or regression, which we shall cover later in the
chapter (typically derived using Maximum Likelihood).

 5. A loss function typically computes the disagreement between ŷ and y over a
number of data points rather than a single data point.

Figure 3-4. Loss/Cost function and the computation of cost/loss w.r.t, a neural network

Chapter 3 ■ Feed Forward Neural Networks

21

Training the Neural Network
Let us now look at how the Neural Network is Trained. Refer to Figure 3-5. The following points are to be
noted:

 1. Assuming the same notation as earlier, we denote by θ the collection of all the
weights and bias terms of all the layers of the network. Let us assume that θ
has been initialized with random values. We denote by f

NN
 the overall function

representing the Neural Network.

 2. As we have seen earlier, we can take a single data point and compute the output
of the Neural Network ŷ . We can also compute the disagreement with the actual
output y using the loss function l(ŷ , y) that is l(f

NN
(x, θ), y).

 3. Let us now compute the gradient of this loss function and denote it by
Ñ ()()l f x yNN , ,q .

 4. We can now update θ using steepest descent as q q a qs s NNl f x y= - × ()()-1 , ,

where s denotes a single step (we can take many such steps over different data
points in our training set over and over again until we have a reasonably good
value for l(f

NN
(x, θ), y).

 ■ Note For now, we will stay away from the computation of gradients of loss functions Ñ ()()l f x, , yNN q .
these can be generated using automatic differentiation (covered elsewhere in the book) quite easily (even for
arbitrary complicated loss functions) and need not be derived manually. also, the method of steepest descent
and stochastic gradient descent is covered in a separate chapter.

Chapter 3 ■ Feed Forward Neural Networks

22

Figure 3-5. Training a Neural Network

Deriving Cost Functions using Maximum Likelihood
We will now look into how loss functions are derived using Maximum Likelihood. Specifically, we will see
how commonly used loss functions in deep learning like binary cross entropy, cross entropy, and squared
error can be derived using the Maximum Likelihood principle.

Chapter 3 ■ Feed Forward Neural Networks

23

Binary Cross Entropy
Instead of starting with the general idea of Maximum Likelihood, let’s directly jump to the binary
classification problem. We have some data consisting of D x y x y x yn n= () () ¼(){ }1 1 2 2, , ,, , where x nÎ and

yÎ{ }0 1, , which is the target of interest (currently this is binary, but it may be categorical or real valued

depending on whether we are dealing with a multi-class or regression problem, respectively).
Let us assume that we have somehow generated a model that predicts the probability of y given x. Let us

denote this model by f (x, θ) where θ represents the parameters of the model. The idea behind Maximum
Likelihood is to find a θ that maximizes P D | .q() Assuming a Bernoulli distribution and given that each of

the examples {(x
1
, y

1
), (x

2
, y

2
), … (x

n
, y

n
)} are independent, we have the following expression:

P D f x f x
i

n

i

y

i

yi i| ,q q q() = () × - ()()
=

-()Õ
1

1
1 ,

We can take a logarithm operation on both sides to arrive at the following:

log | logP D f x f x
i

n

i

y

i

yi iq q q() = () × - ()()
=

-()Õ
1

1
1, ,

which simplifies to the expression below:

log | log , log ,P D y f x y f x
i

n

i i i iq q q() = ()+ -() - ()()
=
å

1

1 1

Instead of maximizing the RHS, we minimize its negative value as follows:

- () = - ()+ -() - ()()
=
ålog | log , log ,P D y f x y f x
i

n

i i i iq q q
1

1 1

This leads us to the binary cross entropy function as below:

- ()+ -() - ()()
=
å
i

n

i i i iy f x y f x
1

1 1log , log ,q q

The idea of Maximum Likelihood thus allows us to derive the binary cross entropy function which can
be used as a loss function in the context of binary classification.

Cross Entropy
Building on the idea of binary cross entropy, let us now consider deriving the cross entropy loss function to
be used in the context of multi-classification. Let us assume in this case that y kÎ{ }0 1, ,.. , which are the

classes. We also denote n n nk1 2, ××× to be the observed counts of each of the k classes. Observe that
i

k

in n
=
å =

1

.

In this case, too, let us assume that we have somehow generated a model that predicts the probability of y
given x. Let us denote this model by f (x, θ) where θ represents the parameters of the model. Let us again use
the idea behind Maximum Likelihood, which is to find a θ that maximizes P D | .q() Assuming a Multinomial
distribution and given that each of the examples {(x

1
, y

1
), (x

2
, y

2
), … (x

n
, y

n
)} are independent, we have the

following expression:

P D
n

n n n
f x

k i

n

i

yi|
!

! ! !
,q q() =

× ×××
()

=
Õ

1 2 1

Chapter 3 ■ Feed Forward Neural Networks

24

We can take a logarithm operation on both sides to arrive at the following:

log | log ! log ! ! ! log ,P D n n n n f xk
i

n

i

yiq q() = - × ××× + ()
=
Õ1 2

1

This can be simplified to the following:

log | log ! log ! ! ! logP D n n n n y f xk
i

n

i iq q() = - × ××× + ()
=
å1 2

1

,

The terms log n ! and log ! ! !n n nk1 2× ××× are not parameterized by θ and can be safely ignored as we try to

find a θ that maximizes P D | .q() Thus we have the following:

log | logP D y f x
i

n

i iq q() = ()
=
å

1

,

As before, instead of maximizing the RHS we minimize its negative value as follows:

- () = - ()
=
ålog | logP D y f x
i

n

i iq q
1

,

This leads us to the binary cross entropy function as below:

- ()
=
å
i

n

i iy f x
1

log ,q

The idea of Maximum Likelihood thus allows us to derive the cross entropy function, which can be used
as a loss function in the context of multi-classification.

Squared Error
Let us now look into deriving the squared error to be used in the context of regression using Maximum
Likelihood. Let us assume in this case that yÎ. Unlike the previous cases where we assumed that we had a
model that predicted a probability, here we will assume that we have a model that predicts the value of y. To
apply the Maximum Likelihood idea, we assume that the difference between the actual y and the predicted
ŷ has a Gaussian distribution with zero mean and a variance of σ2. Then it can be shown that minimizing

i

n

y y
=
å -()

1

2ˆ

leads to the minimization of - ()log |P D q .

Chapter 3 ■ Feed Forward Neural Networks

25

Summary of Loss Functions
We now summarize three key points with respect to loss functions and the appropriateness of a particular
loss function given the problem at hand.

 1. The Binary Cross entropy given by the expression

- ()+ -() - ()()
=
å
i

n

i i i iy f x y f x
1

1 1log , log ,q q

is the recommended loss function for binary classification. This loss function
should typically be used when the Neural Network is designed to predict the
probability of the outcome. In such cases, the output layer has a single unit with a
suitable sigmoid as the activation function.

 2. The Cross entropy function given by the expression

- ()
=
å
i

n

i iy f x
1

log ,q

is the recommended loss function for multi-classification. This loss function
should typically be used with the Neural Network and is designed to predict the
probability of the outcomes of each of the classes. In such cases, the output layer
has softmax units (one for each class).

 3. The squared loss function given by
i

n

y y
=
å -()

1

2ˆ should be used for regression

problems. The output layer in this case will have a single unit.

Types of Units/Activation Functions/Layers
We will now look at a number of Units/Activation Functions/Layers commonly used for Neural Networks.

Let’s start by enumerating a few properties of interest for activation functions.

 1. In theory, when an activation function is non-linear, a two-layer Neural Network
can approximate any function (given a sufficient number of units in the hidden
layer). Thus, we do seek non-linear activation functions in general.

 2. A function that is continuously differentiable allows for gradients to be computed
and gradient-based methods to be used for finding the parameters that minimize
our loss function over the data. If a function is not continuously differentiable,
gradient-based methods cannot make progress.

 3. A function whose range is finite (as against infinite) leads to a more stable
performance w.r.t gradient-based methods.

 4. Smooth functions are preferred (empirical evidence) and Monolithic
functions for a single layer lead to convex error surfaces (this is typically not a
consideration w.r.t deep learning).

 5. Are symmetric around the origin and behave like identity functions near the
origin (f x x() =).

Chapter 3 ■ Feed Forward Neural Networks

26

Linear Unit
The Linear unit is the simplest unit which transforms the input as y w x b= +. . As the name indicates, the
unit does not have a non-linear behavior and is typically used to generate the mean of a conditional
Gaussian distribution. Linear units make gradient-based learning a fairly straightforward task.

Sigmoid Unit
The Sigmoid unit transforms the input as follows:

y
e wx b

=
+ - +()

1

1
.

The underlying activation function (refer to Figure 3-6) is given by

f x
e x() =

+ -

1

1
.

Sigmoid units can be used in the output layer in conjunction with binary cross entropy for binary
classification problems. The output of this unit can model a Bernoulli distribution over the output y
conditioned over x.

Figure 3-6. Sigmoid Function

Chapter 3 ■ Feed Forward Neural Networks

27

Softmax Layer
The Softmax layer is typically used as an output layer for multi-classification tasks in conjunction with
the Cross Entropy loss function. Refer to Figure 3-7. The Softmax layer normalizes outputs of the previous
layer so that they sum up to one. Typically, the units of the previous layer model an un-normalized score of
how likely the input is to belong to a particular class. The softmax layer normalized this so that the output
represents the probability for every class.

Figure 3-7. Softmax Layer

Rectified Linear Unit (ReLU)
Rectified Linear Unit used in conjunction with a linear transformation transforms the input as

f x wx b() = +()max ,0 .

Chapter 3 ■ Feed Forward Neural Networks

28

The underlying activation function is f x x() = ()max ,0 ; refer to Figure 3-8. The ReLU unit is more
commonly used as a hidden unit in recent times. Results show that ReLU units lead to large and consistent
gradients, which helps gradient-based learning.

Figure 3-8. ReLU

Hyperbolic Tangent
The Hyperbolic Tangent unit transforms the input (used in conjunction with a linear transformation) as
follows:

y wx b= +()tanh .

The underlying activation function (refer to Figure 3-9) is given by

f x x() = ()tanh .

The hyperbolic tangent unit is also commonly used as a hidden unit.

Chapter 3 ■ Feed Forward Neural Networks

29

Listing 3-1. A 2-Layer Neural Network for Regression

import autograd.numpy as np
import autograd.numpy.random as npr
from autograd import grad
import sklearn.metrics
import pylab

Generate Dataset
examples = 1000
features = 100
D = (npr.randn(examples, features), npr.randn(examples))

Specify the network
layer1_units = 10
layer2_units = 1
w1 = npr.rand(features, layer1_units)
b1 = npr.rand(layer1_units)
w2 = npr.rand(layer1_units, layer2_units)
b2 = 0.0
theta = (w1, b1, w2, b2)

Define the loss function
def squared_loss(y, y_hat):
 return np.dot((y - y_hat),(y - y_hat))

Output Layer
def binary_cross_entropy(y, y_hat):
 return np.sum(-((y * np.log(y_hat)) + ((1-y) * np.log(1 - y_hat))))

Figure 3-9. The tanh activation function

Chapter 3 ■ Feed Forward Neural Networks

30

Wraper around the Neural Network
def neural_network(x, theta):
 w1, b1, w2, b2 = theta
 return np.tanh(np.dot((np.tanh(np.dot(x,w1) + b1)), w2) + b2)

Wrapper around the objective function to be optimised
def objective(theta, idx):
 return squared_loss(D[1][idx], neural_network(D[0][idx], theta))

Update
def update_theta(theta, delta, alpha):
 w1, b1, w2, b2 = theta
 w1_delta, b1_delta, w2_delta, b2_delta = delta
 w1_new = w1 - alpha * w1_delta
 b1_new = b1 - alpha * b1_delta
 w2_new = w2 - alpha * w2_delta
 b2_new = b2 - alpha * b2_delta
 new_theta = (w1_new,b1_new,w2_new,b2_new)
 return new_theta

Compute Gradient
grad_objective = grad(objective)

Train the Neural Network
epochs = 10
print "RMSE before training:", sklearn.metrics.mean_squared_error(D[1],neural_network(D[0],
theta))
rmse = []
for i in xrange(0, epochs):
 for j in xrange(0, examples):
 delta = grad_objective(theta, j)
 theta = update_theta(theta,delta, 0.01)

rmse.append(sklearn.metrics.mean_squared_error(D[1],neural_network(D[0], theta)))
print "RMSE after training:", sklearn.metrics.mean_squared_error(D[1],neural_network(D[0],
theta))

pylab.plot(rmse)
pylab.show()

#Output
#RMSE before training: 1.88214665439
#RMSE after training: 0.739508975012

Chapter 3 ■ Feed Forward Neural Networks

31

Neural Network Hands-on with AutoGrad
We will now build a simple Neural Network from scratch (refer to Listing 3-1). The only external library
we will be using is Autograd. Autograd is an automatic differentiation library that will allow us to compute
gradients for arbitrary functions written with Numpy.

 ■ Note autograd is covered in more detail in the chapter on automatic differentiation.

Summary
In this chapter we covered feed forward neural networks, which will serve as the conceptual foundation for
the rest of the chapters. The key concepts we covered were the overall structure of the neural network, the
input, hidden and output layers, cost functions, and their basis on the principle of Maximum Likelihood.
We encourage the reader to try out the example in the source code listing; although it is a toy example, it will
help reinforce the concepts. The next chapter will provide a hands-on introduction to the reader on Theano,
which will enable the reader to implement full-fledged neural networks.

Figure 3-10. RMSE over training steps

33© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_4

CHAPTER 4

Introduction to Theano

In this chapter we introduce the reader to Theano, which is a Python library for defining mathematical
functions (operating over vectors and matrices), and computing the gradients of these functions. Theano is
the foundational layer on which many deep learning packages like Keras are based.

What is Theano
As we have seen before, building deep learning models fundamentally involves optimizing loss functions
using stochastic gradient descent (SGD), requiring the computation of the gradient of loss function. As loss
functions in deep learning are complicated, it is not convenient to manually derive such gradients. This is
where Theano comes in handy. Theano allows the user to define mathematical expressions that encode loss
functions and, once these are defined, Theano allows the user to compute the gradients of these expressions.

A typical workflow for using Theano is as follows:

 1. Write symbolic expressions in Python that implement the loss function of the
model to be built. This usually amounts to only a few lines of code because of
the expressiveness of the Python language and a tight integration with Numpy
that allows the user to quickly and elegantly define mathematical expressions
involving vectors and matrices.

 2. Use the symbolic/automatic differentiation capabilities in Theano to generate an
expression that produces the gradient of the loss function.

 3. Pass this gradient function as a parameter to a SGD optimization routine to
optimize the loss function.

Theano allows a user to focus on the model rather than on the mechanics of deriving the gradient. The
specific capabilities of Theano that make it a great toolbox for building deep learning models are as follows:

 1. a very seamless integration with Numpy that allows the user to use Numpy
objects (vectors and matrices) in the definition of loss functions

 2. Theano can generate optimized code for both CPU as well as GPU under
the hood without the user having to rewrite the code, which defines the loss
function.

 3. optimized automatic/symbolic differentiation

 4. numerical stability for the generated code via automatic/symbolic differentiation

Chapter 4 ■ IntroduCtIon to theano

34

Theano Hands-On
Let us now start getting our hands dirty with Theano. We will start with simple examples, which will serve as
conceptual building blocks for more complicated examples. It is recommended that the reader go over the
source code listing and corresponding computational graph for each example and give careful consideration
to how the source code translates to the computational graph.

In our first example in Listing 4-1 (and the corresponding computational graph in Figure 4-1) we will
define a simple function with scalars. The reader should note the following:

 1. Scalars are defined before they can be used in a mathematical expression.

 2. Every scalar is given a unique name.

 3. Once defined, the scalar can be operated upon with operations like +, -, * and /.

 4. The function construct in Theano allows one to relate inputs and outputs. So, in
the example from Listing 4-1, we have defined a function with the name g, which
takes a, b, c, d, and e as input and produces f as the output.

 5. We can now compute the result of the function g given the input and check that it
evaluates exactly as the non-Theano expression.

 6. While this seems like a trivial example, the non-trivial bit is that now we will
be able to easily compute the gradient of such a function g quite easily using
Theano, as we will see soon.

Listing 4-1. Functions with Scalars

import theano.tensor as T
from theano import function

a = T.dscalar('a')
b = T.dscalar('b')
c = T.dscalar('c')
d = T.dscalar('d')
e = T.dscalar('e')

f = ((a - b + c) * d)/e

g = function([a, b, c, d, e], f)

print "Expected: ((1 - 2 + 3) * 4)/5.0 = ", ((1 - 2 + 3) * 4)/5.0
print "Via Theano: ((1 - 2 + 3) * 4)/5.0 = ", g(1, 2, 3, 4, 5)

Expected: ((1 - 2 + 3) * 4)/5.0 = 1.6
Via Theano: ((1 - 2 + 3) * 4)/5.0 = 1.6

Chapter 4 ■ IntroduCtIon to theano

35

In our second example in Listing 4-2 (and the corresponding computational graph in Figure 4-2) we will
define a simple function with vectors. The reader should note the following:

 1. Vectors/Matrices are defined before they can be used in a mathematical
expression.

 2. Every Vector/Matrix is given a unique name.

 3. The dimensions of the Vectors/Matrices are not specified.

 4. Once Vectors/Matrices are defined, the user can define operations like matrix
addition, subtraction, and multiplication. The user should take care that vector/
matrix operations respect the intended dimensionality.

 5. As before, the user can define a function based on the defined expressions. In
this case we define a function f that takes a, b, c, and d as input and produces e as
output.

 6. The use can pass Numpy arrays to the function and compute the output.
The user should take care that vector/matrix inputs respect the intended
dimensionality.

Listing 4-2. Functions with Vectors

import numpy
import theano.tensor as T
from theano import function

a = T.dmatrix('a')
b = T.dmatrix('b')
c = T.dmatrix('c')
d = T.dmatrix('d')

Figure 4-1. Functions with scalars

Chapter 4 ■ IntroduCtIon to theano

36

e = (a + b - c) * d

f = function([a,b,c,d], e)

a_data = numpy.array([[1,1],[1,1]])
b_data = numpy.array([[2,2],[2,2]])
c_data = numpy.array([[5,5],[5,5]])
d_data = numpy.array([[3,3],[3,3]])

print "Expected:", (a_data + b_data - c_data) * d_data
print "Via Theano:", f(a_data,b_data,c_data,d_data)

Expected: [[-6 -6]
[-6 -6]]
Via Theano: [[-6. -6.]
[-6. -6.]]

Figure 4-2. Functions with Vectors

In our next example in Listing 4-3 (and the corresponding computational graph in Figure 4-3) we will
define a function with both scalars and vectors. The reader should note the following:

 1. Scalars and vectors/matrices can be used together in expressions.

 2. The user needs to take care that vector/matrices respect the dimensionality both
while defining the expressions as well as passing inputs to the expressions.

Listing 4-3. Functions with Scalars and Vectors

import numpy
import theano.tensor as T
from theano import function

Chapter 4 ■ IntroduCtIon to theano

37

a = T.dmatrix('a')
b = T.dmatrix('b')
c = T.dmatrix('c')
d = T.dmatrix('d')

p = T.dscalar('p')
q = T.dscalar('q')
r = T.dscalar('r')
s = T.dscalar('s')
u = T.dscalar('u')

e = (((a * p) + (b - q) - (c + r)) * d/s) * u

f = function([a,b,c,d,p,q,r,s,u], e)

a_data = numpy.array([[1,1],[1,1]])
b_data = numpy.array([[2,2],[2,2]])
c_data = numpy.array([[5,5],[5,5]])
d_data = numpy.array([[3,3],[3,3]])

print "Expected:", (((a_data * 1.0) + (b_data - 2.0) - (c_data + 3.0)) * d_data/4.0) * 5.0
print "Via Theano:", f(a_data,b_data,c_data,d_data,1,2,3,4,5)

Expected: [[-26.25 -26.25]
[-26.25 -26.25]]
Via Theano: [[-26.25 -26.25]
[-26.25 -26.25]]

Figure 4-3. Functions with Scalars and Vectors

In our next example in Listing 4-4 (and the corresponding computational graph in Figure 4-4) we will
define a few activation functions with Theano. The nnet package in Theano defines a number of common
activation functions.

Listing 4-4. Activiation Functions

import theano.tensor as T
from theano import function

sigmoid
a = T.dmatrix('a')
f_a = T.nnet.sigmoid(a)
f_sigmoid = function([a],[f_a])
print "sigmoid:", f_sigmoid([[-1,0,1]])

Chapter 4 ■ IntroduCtIon to theano

38

tanh
b = T.dmatrix('b')
f_b = T.tanh(b)
f_tanh = function([b],[f_b])
print "tanh:", f_tanh([[-1,0,1]])

fast sigmoid
c = T.dmatrix('c')
f_c = T.nnet.ultra_fast_sigmoid(c)
f_fast_sigmoid = function([c],[f_c])
print "fast sigmoid:", f_fast_sigmoid([[-1,0,1]])

softplus
d = T.dmatrix('d')
f_d = T.nnet.softplus(d)
f_softplus = function([d],[f_d])
print "soft plus:",f_softplus([[-1,0,1]])

relu
e = T.dmatrix('e')
f_e = T.nnet.relu(e)
f_relu = function([e],[f_e])
print "relu:",f_relu([[-1,0,1]])

softmax
f = T.dmatrix('f')
f_f = T.nnet.softmax(f)
f_softmax = function([f],[f_f])
print "soft max:",f_softmax([[-1,0,1]])

Chapter 4 ■ IntroduCtIon to theano

39

In our next example in Listing 4-5 (and the corresponding computational graph in Figure 4-5) we will
define a function with internal state. The reader should note the following:

 1. All models (deep learning or otherwise) will involve defining functions with
internal state, which will typically be weights that need to be learned or fitted.

 2. A shared variable is defined using the shared construct in Theano.

 3. A shared variable can be initialized with Numpy constructs.

 4. Once the shared variable is defined and initialized, it can be used in the
definition of expressions and functions in a manner similar to scalars and
vectors/matrices, as we have seen earlier.

 5. A user can get the value of the shared variable using the get_value method.

Figure 4-4. Activation Functions

Chapter 4 ■ IntroduCtIon to theano

40

 6. A user can set the value for the shared variable using the set_value method.

 7. A function defined using the shared variable computes its output based on
the current value of the shared variable. That is, as soon as the shared variable
updates, a function defined using the shared variable will produce a different
value for the same input.

 8. A shared variable allows a user to define a function with internal state, which can
be updated arbitrarily without needing to redefine the function defined using the
shared variable.

Listing 4-5. Shared Variables

import theano.tensor as T
from theano import function
from theano import shared

import numpy

x = T.dmatrix('x')
y = shared(numpy.array([[4, 5, 6]]))
z = x + y
f = function(inputs = [x], outputs = [z])

print "Original Shared Value:", y.get_value()
print "Original Function Evaluation:", f([[1, 2, 3]])

y.set_value(numpy.array([[5, 6, 7]]))

print "Original Shared Value:", y.get_value()
print "Original Function Evaluation:", f([[1, 2, 3]])

Couldn't import dot_parser, loading of dot files will not be possible.
Original Shared Value: [[4 5 6]]
Original Function Evaluation: [array([[5., 7., 9.]])]
Original Shared Value: [[5 6 7]]
Original Function Evaluation: [array([[6., 8., 10.]])]

Chapter 4 ■ IntroduCtIon to theano

41

In our next example in Listing 4-6 (and the corresponding computational graph in Figure 4-6) we will
define a function and generate a function that computes its gradient. The reader should note the following:

 1. A function needs to be defined using expressions before the gradient of the
function can be generated.

 2. The grad construct in Theano allows the user to generate the gradient of a
function (as an expression). Users can then define a function over the expression,
which gives them the gradient function.

 3. Gradients can be computed for any set of expressions/functions as in the earlier
examples. So, for instance, we could generate gradients for functions with a
shared state. As the shared state updates, so do the function and the gradient
function.

Listing 4-6. Gradients

import theano.tensor as T
from theano import function
from theano import shared

import numpy

x = T.dmatrix('x')
y = shared(numpy.array([[4, 5, 6]]))
z = T.sum(((x * x) + y) * x)

f = function(inputs = [x], outputs = [z])

g = T.grad(z,[x])
g_f = function([x], g)

Figure 4-5. Shared Variables

Chapter 4 ■ IntroduCtIon to theano

42

print "Original:", f([[1, 2, 3]])
print "Original Gradient:", g_f([[1, 2, 3]])

y.set_value(numpy.array([[1, 1, 1]]))
print "Updated:", f([[1, 2, 3]])
print "Updated Gradient", g_f([[1, 2, 3]])

Original: [array(68.0)]
Original Gradient: [array([[7., 17., 33.]])]
Updated: [array(42.0)]
Updated Gradient [array([[4., 13., 28.]])]

Figure 4-6. Computing Gradients

In our next example in Listing 4-7 (and the corresponding computational graph in Figure 4-7 (a) and
Figure 4-7 (b)) we will define a few loss functions using Theano. The nnet package in Theano implements
many standard loss functions.

Listing 4-7. Loss Functions

import theano.tensor as T
from theano import function

binary cross entropy
a1 = T.dmatrix('a1')
a2 = T.dmatrix('a2')
f_a = T.nnet.binary_crossentropy(a1, a2).mean()
f_sigmoid = function([a1, a2],[f_a])
print "Binary Cross Entropy [[0.01,0.01,0.01]],[[0.99,0.99,0.01]]:",
f_sigmoid([[0.01,0.01,0.01]],[[0.99,0.99,0.01]])

Chapter 4 ■ IntroduCtIon to theano

43

categorical cross entropy
b1 = T.dmatrix('b1')
b2 = T.dmatrix('b2')
f_b = T.nnet.categorical_crossentropy(b1, b2)
f_sigmoid = function([b1, b2],[f_b])
print "Categorical Cross Entropy [[0.01,0.01,0.01]],[[0.99,0.99,0.01]]:",
f_sigmoid([[0.01,0.01,0.01]],[[0.99,0.99,0.01]])

squared error
def squared_error(x,y):
 return (x - y) ** 2

c1 = T.dmatrix('b1')
c2 = T.dmatrix('b2')
f_c = squared_error(c1, c2)
f_squared_error = function([c1, c2],[f_c])
print "Squared Error [[0.01,0.01,0.01]],[[0.99,0.99,0.01]]:",
f_sigmoid([[0.01,0.01,0.01]],[[0.99,0.99,0.01]])

Binary Cross Entropy [[0.01,0.01,0.01]],[[0.99,0.99,0.01]]: [array(3.058146503109446)]
Categorical Cross Entropy [[0.01,0.01,0.01]],[[0.99,0.99,0.01]]: [array([9.16428867])]
Squared Error [[0.01,0.01,0.01]],[[0.99,0.99,0.01]]: [array([9.16428867])]

Figure 4-7 (a). Loss Functions – Binary Cross Entropy

Chapter 4 ■ IntroduCtIon to theano

44

Figure 4-7 (b). Loss Functions – Categorical Cross Entropy and Squared Error

Chapter 4 ■ IntroduCtIon to theano

45

In our next example in Listing 4-8 (and corresponding computational graph in Figure 4-8) we will
define L1 and L2 regularization using Theano.

Listing 4-8. Regularization

import theano.tensor as T
from theano import function

L1 Regularization
def l1(x):
 return T.sum(abs(x))

L2 Regularization
def l2(x):
 return T.sum(x**2)

a = T.dmatrix('a')
f_a = l1(a)
f_l1 = function([a], f_a)
print "L1 Regularization:", f_l1([[0,1,3]])

b = T.dmatrix('b')
f_b = l2(b)
f_l2 = function([b], f_b)
print "L2 Regularization:", f_l2([[0,1,3]])

L1 Regularization: 4.0
L2 Regularization: 10.0

Chapter 4 ■ IntroduCtIon to theano

46

In our next example in Listing 4-9 (and corresponding computational graph in Figure 4-9) we will
define a function with a random variable. The reader should note the following:

 1. There are cases/situations where we want to define functions having a random
variable (for instance introducing minor corruptions in inputs).

 2. Such a random element in the function is different from having an internal state,
like in the case of shared variables.

Figure 4-8. Regularization

Chapter 4 ■ IntroduCtIon to theano

47

 3. Basically, the desired outcome in such cases/situations is that the user wants to
define a function with a random variable with a particular distribution.

 4. Theano provides a construct called RandomStreams, which allows the user to
define functions with a random variable. RandomStreams is initialized with a
seed.

 5. The user defines a variable using RandomStreams and specifies a distribution by
calling the appropriate function (in our case, normal).

 6. Once defined, the random variable can be used in the definition of expression or
functions in a manner similar to scalars and vectors/matrices.

 7. Every invocation of the function defined with a random variable will internally
draw a sample point from the set distribution (in our case, normal).

Listing 4-9. Random Streams

import theano.tensor as T
from theano import function
from theano.tensor.shared_randomstreams import RandomStreams
import numpy

random = RandomStreams(seed=42)

a = random.normal((1,3))
b = T.dmatrix('a')

f1 = a * b

g1 = function([b], f1)

print "Invocation 1:", g1(numpy.ones((1,3)))
print "Invocation 2:", g1(numpy.ones((1,3)))
print "Invocation 3:", g1(numpy.ones((1,3)))

Invocation 1: [[1.25614218 -0.53793023 -0.10434045]]
Invocation 2: [[0.66992188 -0.70813926 0.99601177]]
Invocation 3: [[0.0724739 -0.66508406 0.93707751]]

Chapter 4 ■ IntroduCtIon to theano

48

In our next example in Listing 4-10 (and corresponding computational graph in Figure 4-10) we will
build a model for Logistic regression. The reader should note the following:

 1. The example generates some artificial/toy data, fits a logistic regression model
and computes the accuracy before and after training. This is a toy dataset for the
purposes of illustration; the model is not generalizing/learning, as the data is
generated randomly.

 2. We define a function to compute L2 regularization as covered in listing 4-8
earlier.

 3. We generate input data, which consists of 1000 vectors of dimensionality 100.
Basically, 1000 examples with 100 features.

 4. We generate random target/output labels as zeros and ones.

 5. We define the expressions for logistic regression involving the data (denoted
by x), the outputs (denoted by y), the bias term (denoted by b), and the weight
vector (denoted by w). The weight vector and the bias term are shared variables.

 6. We compute the prediction, the error, and the loss using binary cross entropy as
introduced in listing 4-7 earlier.

 7. Having defined these expressions, we can now use the grad construct in Theano
(introduced in listing (4-6)) to compute the gradient.

 8. We define a train function based on the gradient function. The train function
defines the inputs, outputs, and how the internal state (shared variables) are to
be updated.

 9. The train function is invoked for 1000 steps; in each step the gradient is
computed internally and the shared variables are updated.

 10. Accuracy is computed before and after the training steps using sklearn.metrics

Figure 4-9. Random Streams

Chapter 4 ■ IntroduCtIon to theano

49

Listing 4-10. Logistic Regression

import numpy
import theano
import theano.tensor as T
import sklearn.metrics

def l2(x):
 return T.sum(x**2)

examples = 1000
features = 100

D = (numpy.random.randn(examples, features), numpy.random.randint(size=examples,
low=0, high=2))
training_steps = 1000

x = T.dmatrix("x")
y = T.dvector("y")
w = theano.shared(numpy.random.randn(features), name="w")
b = theano.shared(0., name="b")

p = 1 / (1 + T.exp(-T.dot(x, w) - b))
error = T.nnet.binary_crossentropy(p,y)
loss = error.mean() + 0.01 * l2(w)
prediction = p > 0.5
gw, gb = T.grad(loss, [w, b])

train = theano.function(inputs=[x,y],outputs=[p, error], updates=((w, w - 0.1 * gw),
(b, b - 0.1 * gb)))
predict = theano.function(inputs=[x], outputs=prediction)

print "Accuracy before Training:",sklearn.metrics.accuracy_score(D[1], predict(D[0]))

for i in range(training_steps):
 prediction, error = train(D[0], D[1])

print "Accuracy before Training:", sklearn.metrics.accuracy_score(D[1], predict(D[0]))

Accuracy before Training: 0.481
Accuracy before Training: 0.629

Chapter 4 ■ IntroduCtIon to theano

50

In our next example in Listing 4-11 (and corresponding computational graph in Figure 4-11) we will
build a model for Linear regression. The reader should note the following:

 1. The example generates some artificial/toy data, fits a linear regression model
and computes the accuracy before and after training. This is a toy dataset for
the purposes of illustration, the model is not generalizing/learning as the data is
generated randomly.

 2. We define a function to compute L2 regularization as covered in listing 4-8
earlier.

 3. We define a function for squared error as covered in listing 4-7.

 4. We generate input data, which consists of 1000 vectors of dimensionality 100.
Basically, 1000 examples with 100 features.

 5. We generate random target/output labels values between 0 and 1.

 6. We define the expressions for linear regression involving the data (denoted by x),
the outputs (denoted by y), the bias term (denoted by b) and the weight vector
(denoted by w). The weight vector and the bias term are shared variables.

 7. We compute the prediction, the error and the loss using squared error as
introduced in listing 4-7 earlier.

 8. Having defined these expressions, we can now use the grad construct in Theano
(introduced in listing (4-6) to compute the gradient.

 9. We define a train function based on the gradient function. The train function defines
the inputs, outputs and how the internal state (shared variables) are to be updated.

 10. The train function is invoked for a 1000 steps, in each step the gradient is
computed internally and the shared variables are updated.

 11. Root mean squared error (RMSE) is computed before and after the training steps
using sklearn.metrics

Figure 4-10. Logistic Regression

Chapter 4 ■ IntroduCtIon to theano

51

Listing 4-11. Linear Regression

import numpy
import theano
import theano.tensor as T
import sklearn.metrics

def l2(x):
 return T.sum(x**2)

def squared_error(x,y):
 return (x - y) ** 2

examples = 1000
features = 100

D = (numpy.random.randn(examples, features), numpy.random.randn(examples))
training_steps = 1000

x = T.dmatrix("x")
y = T.dvector("y")
w = theano.shared(numpy.random.randn(features), name="w")
b = theano.shared(0., name="b")

p = T.dot(x, w) + b
error = squared_error(p,y)
loss = error.mean() + 0.01 * l2(w)
gw, gb = T.grad(loss, [w, b])

train = theano.function(inputs=[x,y],outputs=[p, error], updates=((w, w - 0.1 * gw),
(b, b - 0.1 * gb)))
predict = theano.function(inputs=[x], outputs=p)

print "RMSE before training:", sklearn.metrics.mean_squared_error(D[1],predict(D[0]))

for i in range(training_steps):
 prediction, error = train(D[0], D[1])

print "RMSE after training:", sklearn.metrics.mean_squared_error(D[1],predict(D[0]))

RMSE before training: 90.4707491496
RMSE after training: 0.915701676631

Chapter 4 ■ IntroduCtIon to theano

52

In our next example in Listing 4-12 (and corresponding computational graph in Figure 4-12) we will
build a neural network model with 2 layers. The reader should note the following:

 1. The example generates some artificial/toy data, fits a logistic regression model
and computes the accuracy before and after training. This is a toy dataset for the
purposes of illustration; the model is not generalizing/learning, as the data is
generated randomly.

 2. We define a function to compute L2 regularization as covered in listing 4-8
earlier.

 3. We generate input data, which consists of 1000 vectors of dimensionality 100.
Basically, 1000 examples with 100 features.

 4. We generate random target/output labels as zeros and ones.

 5. We define the expressions for the 2-layer neural network involving the data
(denoted by x), the outputs (denoted by y), the bias term of the first layer
(denoted by b1), the weight vector of the first layer (denoted by w1), the bias term
of the second layer (denoted by b2), and, the weight vector of the second layer
(denoted by w2). The weight vectors and the bias terms are shared variables.

 6. We use the tanh activation function as covered in listing 4-4 to encode the neural
network.

 7. We compute the prediction, the error, and the loss using binary cross entropy as
introduced in listing 4-7 earlier.

 8. Having defined these expressions, we can now use the grad construct in Theano
(introduced in listing (4-6)) to compute the gradient.

 9. We define a train function based on the gradient function. The train function
defines the inputs, outputs, and how the internal state (shared variables) are to
be updated.

Figure 4-11. Linear Regression

Chapter 4 ■ IntroduCtIon to theano

53

 10. The train function is invoked for 1000 steps; in each step the gradient is
computed internally and the shared variables are updated.

 11. Accuracy is computed before and after the training steps using sklearn.metrics

Listing 4-12. Neural Network

import numpy
import theano
import theano.tensor as T
import sklearn.metrics

def l2(x):
 return T.sum(x**2)

examples = 1000
features = 100
hidden = 10

D = (numpy.random.randn(examples, features), numpy.random.randint(size=examples,
low=0, high=2))
training_steps = 1000

x = T.dmatrix("x")
y = T.dvector("y")

w1 = theano.shared(numpy.random.randn(features, hidden), name="w1")
b1 = theano.shared(numpy.zeros(hidden), name="b1")

w2 = theano.shared(numpy.random.randn(hidden), name="w2")
b2 = theano.shared(0., name="b2")

p1 = T.tanh(T.dot(x, w1) + b1)
p2 = T.tanh(T.dot(p1, w2) + b2)

prediction = p2 > 0.5

error = T.nnet.binary_crossentropy(p2,y)

loss = error.mean() + 0.01 * (l2(w1) + l2(w2))
gw1, gb1, gw2, gb2 = T.grad(loss, [w1, b1, w2, b2])

train = theano.function(inputs=[x,y],outputs=[p2, error], updates=((w1, w1 - 0.1 * gw1),
(b1, b1 - 0.1 * gb1), (w2, w2 - 0.1 * gw2), (b2, b2 - 0.1 * gb2)))
predict = theano.function(inputs=[x], outputs=[prediction])

print "Accuracy before Training:", sklearn.metrics.accuracy_score(D[1], numpy.
array(predict(D[0])).ravel())

for i in range(training_steps):
 prediction, error = train(D[0], D[1])

Chapter 4 ■ IntroduCtIon to theano

54

print "Accuracy after Training:", sklearn.metrics.accuracy_score(D[1],
numpy.array(predict(D[0])).ravel())

Accuracy before Training: 0.51
Accuracy after Training: 0.716

Figure 4-12. Neural Network

In our next example in Listing 4-13 (and corresponding computational graphs in Figures 4-13 (a), 4-13 (b)
and 4-13 (c)) we will define a function using the if-else and switch construct. The reader should note the following:

 1. Certain functions need an if-else (or switch) clause for their evaluation. For such
cases Theano provides an if-else and switch constructs.

 2. Expressions and functions can be defined using the if-else and switch constructs
and gradients can be generated as with other expressions/constructs.

 3. In the example we demonstrate the computation of the hinge lose using the
if-else and switch construct and verify that it matches to the one defined
with max.

Listing 4-13. Switch/If-Else

import numpy
import theano
import theano.tensor as T
from theano.ifelse import ifelse

def hinge_a(x,y):
 return T.max([0 * x, 1-x*y])

def hinge_b(x,y):
 return ifelse(T.lt(1-x*y,0), 0 * x, 1-x*y)

def hinge_c(x,y):
 return T.switch(T.lt(1-x*y,0), 0 * x, 1-x*y)

Chapter 4 ■ IntroduCtIon to theano

55

x = T.dscalar('x')
y = T.dscalar('y')

z1 = hinge_a(x, y)
z2 = hinge_b(x, y)
z3 = hinge_b(x, y)

f1 = theano.function([x,y], z1)
f2 = theano.function([x,y], z2)
f3 = theano.function([x,y], z3)

print "f(-2, 1) =",f1(-2, 1), f2(-2, 1), f3(-2, 1)
print "f(-1,1) =",f1(-1, 1), f2(-1, 1), f3(-1, 1)
print "f(0,1) =",f1(0, 1), f2(0, 1), f3(0, 1)
print "f(1, 1) =",f1(1, 1), f2(1, 1), f3(1, 1)
print "f(2, 1) =",f1(2, 1), f2(2, 1), f3(2, 1)

f(-2, 1) = 3.0 3.0 3.0
f(-1,1) = 2.0 2.0 2.0
f(0,1) = 1.0 1.0 1.0
f(1, 1) = 0.0 0.0 0.0
f(2, 1) = 0.0 0.0 0.0

Figure 4-13 (a). Hinge implemented using Max

Figure 4-13 (a) illustrates the implementation of the hinge loss using the max operation that is
l y x y() = - ×()max ,0 1 where x is the correct/actual output and y is the output produced by the model. The
computational graph closely corresponds to the formula/equation for hinge loss.

Chapter 4 ■ IntroduCtIon to theano

56

Figure 4-13 (b) illustrates the implementation of the hinge loss using the ifelse construct. Note how the
computational graph implements the condition and the intended out for each of the condition.

Figure 4-13 (b). Hinge implemented using ifelse

Figure 4-13 (c). Hinge implemented using switch

Chapter 4 ■ IntroduCtIon to theano

57

In our next example in listing 4-14 (and the corresponding computational graph in Figure 4-14) we
illustrate the scan construct that allows the user to define functions involving iterative computation. The
reader should note the following.

 1. Computation of certain functions requires iterative constructs for which Theano
provides the scan construct.

 2. In our example we compute the power operation with the scan construct and
match the output with using the standard operator for power.

 3. Expressions and functions can be defined using the scan construct and gradients
can be generated as with other expressions/constructs.

Listing 4-14. Scan

import theano
import theano.tensor as T
import theano.printing
k = T.iscalar("k")
a = T.dscalar("a")
result, updates = theano.scan(fn=lambda prior_result, a: prior_result * a, outputs_info=a,
non_sequences=a, n_steps=k-1)
final_result = result[-1]
a_pow_k = theano.function(inputs=[a,k], outputs=final_result, updates=updates)
print a_pow_k(2,5), 2 ** 5
print a_pow_k(2,5), 2 ** 5
32.0 32

Chapter 4 ■ IntroduCtIon to theano

58

Fi
gu

re
 4

-1
4.

 S
ca

n
 O

pe
ra

ti
on

Chapter 4 ■ IntroduCtIon to theano

59

Summary
In this chapter we covered the basics of Theano which is a low level library for building and training neural
networks. Theano allows users to build computational graphs and compute gradients and is the ideal tool
when it comes to building new architectures/networks as it gives the user a very fine grained control over
the computational graph. A number of libraries like Keras (covered in Chapter 7) and Lasagne are built over
Theano and provide higher level abstractions so that users need not build networks using computational
graphs themselves. Such higher level libraries make the user much more productive, but the user does not
have precise control over the network/architecture. In general, higher level libraries are recommended when
the higher library provides a close enough implementation of the network/ architecture the user wants to
build. In case, this is not available, it is recommended that the user build the network using Theano which
will give him complete control. Basically using such high level libraries versus Theano is a tradeoff between
productivity and control, much similar to programming in Python vs. programming in C.

http://dx.doi.org/10.1007/978-1-4842-2766-4_7

61© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_5

CHAPTER 5

Convolutional Neural Networks

Convolution Neural Networks (CNNs) in essence are neural networks that employ the convolution operation
(instead of a fully connected layer) as one of its layers. CNNs are an incredibly successful technology that has
been applied to problems wherein the input data on which predictions are to be made has a known grid like
topology like a time series (which is a 1-D grid) or an image (which is a 2-D grid).

Convolution Operation
Let us start developing intuition for the convolution operation in one dimension. Given an input I(t) and a
kernel K(a) the convolution operation is given by

s t I a K t a
a

() = () × -()å

An equivalent form of this operation given commutativity of the convolution operation is as follows:

s t I t a K a
a

() = -() × ()å

Furthermore, the negative sign (flipping) can be replaced to get cross-correlation given as follows:

s t I t a K a
a

() = +() × ()å

Chapter 5 ■ Convolutional neural networks

62

Figure 5-1. Convolution operation – Intuition

In deep learning literature and software implementations, convolution and cross-correlation are used
interchangeably. The essence of the operation is that the Kernel is a much shorter set of data points as
compared to the input, and the output of the convolution operation is higher when the input is similar to
the kernel. Figures 5-1 and 5-2 illustrate this key idea. We take an arbitrary input and an arbitrary kernel,
perform the convolution operation, and the highest value is achieved when the kernel is similar to a
particular portion of the input.

Chapter 5 ■ Convolutional neural networks

63

Figure 5-2. Convolution operation – One Dimension

Chapter 5 ■ Convolutional neural networks

64

Let us strengthen our intuition about convolution by observing Figures 5-1 and 5-2 and noting the
following points:

 1. The input is an arbitrary large set of data points.

 2. The Kernel is a set of data points smaller in number to the input.

 3. The convolution operation in a sense slides the kernel over the input and
computes how similar the kernel is with the portion of the input.

 4. The convolution operation produces the highest value where the Kernel is most
similar with a portion of the input.

The convolution operation can be extended to two dimensions. Given an input I(m, n) and a kernel
K(a, b) the convolution operation is given by

s t I a b K m a n b
a b

() = () × - -()åå , ,

An equivalent form of this operation given commutativity of the convolution operation is as follows:

s t I m a n b K a b
a b

() = - -() × ()åå , ,

Furthermore, the negative sign (flipping) can be replaced to get cross-correlation given as follows:

s t I m a n b K a b
a b

() = + +() × ()åå , ,

Figure 5-3 illustrates the convolution operation in two dimensions. Note that this is simply extending
the idea of convolution to two dimensions.

Chapter 5 ■ Convolutional neural networks

65

Figure 5-3. Convolution operation – Two Dimensions

Having introduced the convolution operation, we can now dive deeper into the key constituent parts of
a CNN, were a convolution layer is used instead of a fully connected layer which involves a matrix
multiplication. So, a fully connected layer can be described as y f x w= ×() where x is the input vector, y is
the output vector, w is a set of weights, and f is the activation function. Correspondingly, a convolution layer
can be described as y f s x w= ×()() where s denotes the convolution operation between the input and the
weights.

Chapter 5 ■ Convolutional neural networks

66

Figure 5-4. Dense Interactions in Fully Connected Layers

Let us now contrast the fully connected layer with the convolution layer. Figure 5-4 illustrates a fully
connected layer and Figure 5-5 illustrates a convolution layer, schematically. Figure 5-6 illustrates parameter
sharing in a convolution layer and the lack of it in a fully connected layer. The following points should be noted:

 1. For the same number of inputs and outputs, the fully connected layer has a lot
more connections, and correspondingly weights that a convolution layer.

 2. The interactions amongst inputs to produce outputs are fewer in convolution
layers as compared to many interactions in the case of a fully connected layer.
This is referred to as sparse interactions.

 3. Parameters/weights are shared across the convolution layer, given that the kernel
is much smaller than the input and the kernel slides across the input. Thus, there
are a lot fewer unique parameters/weights in a convolution layer.

Chapter 5 ■ Convolutional neural networks

67

Figure 5-5. Sparse Interactions in Convolution Layer

Chapter 5 ■ Convolutional neural networks

68

Figure 5-6. Parameter Sharing Tied Weights

Pooling Operation
Let us now look at the pooling operation which is almost always used in CNNs in conjunction with
convolution. The intuition behind the pooling operation is that the exact location of the feature is not a
concern if in fact it has been discovered. It simply provides translation invariance. So, for instance, assume
that the task at hand is to learn to detect faces in photographs. Let us also assume that the faces in the
photograph are tilted (as they generally are) and suppose that we have a convolution layer that detects the
eyes. We would like to abstract the location of the eyes in the photograph from their orientation. The pooling
operation achieves this and is an important constituent of CNNs.

Figure 5-7 illustrates the pooling operation for a two-dimensional input. The following points are to be noted:

 1. Pooling operates over a portion of the input and applies a function f over this
input to produce the output.

 2. The function f is commonly the max operation (leading to max pooling), but
other variants such as average or L

2
 norm can be used as an alternative.

Chapter 5 ■ Convolutional neural networks

69

Figure 5-7. Pooling or Subsampling

 3. For a two-dimensional input, this is a rectangular portion.

 4. The output produced as a result of pooling is much smaller in dimensionality as
compared to the input.

Chapter 5 ■ Convolutional neural networks

70

Convolution-Detector-Pooling Building Block
Let us now look at the Convolution-Detector-Pooling block, which can be thought of as a building block of
the CNN.

Let us now look at how all the operations we have covered earlier work in conjunction. Refer to Figure 5-8
and Figure 5-9. The following points are to be noted:

 1. The detector stage is simply a non-linear activation function.

 2. The convolution, detector, and pooling operations are applied in sequence to
transform the input to the output. The output is referred to as a feature map.

 3. The output typically is passed on to other layers (convolution or fully connected).

 4. Multiple Convolution-Detector-Pooling blocks can be applied in parallel,
consuming the same input and producing multiple outputs or feature maps.

Figure 5-8. Convolution followed by detector stage and pooling

Chapter 5 ■ Convolutional neural networks

71

Figure 5-9. Multiple Filters/Kernels giving Multiple Feature Maps

Chapter 5 ■ Convolutional neural networks

72

In the case of image inputs, which consist of 3 channels, a separate convolution operation is applied to
each channel and then outputs post the convolution are added up. This is illustrated in Figure 5-10.

Figure 5-10. Convolution with Multiple Channels

Chapter 5 ■ Convolutional neural networks

73

Figure 5-11. A Complete Convolution Neural Network Architecture

Having covered all the constituent elements of CNNs, we can now look at an exemplar CNN in its
entirety as illustrated in Figure 5-11. The CNN consists of two stages of convolution-detector-pooling
blocks with multiple filters/kernels at each stage producing multiple feature maps. Post these two
stages we have a fully connected layer which produces the output. In general, a CNN may have multiple
stages of convolution-detector-pooling blocks (employing multiple filters) typically followed by a fully
connected layer.

Chapter 5 ■ Convolutional neural networks

74

Convolution Variants
We will now cover some variations of convolution, illustrated in Figure 5-12. Strided convolution is a variant
of the standard convolution where the kernel slides over the input by moving at a predefined stride. An
alternative way of looking at this is that the standard convolution operated at a stride size equal to one.
Another variation is tiled convolution where there are actually multiple kernels that are convolved with the
input alternately.

Figure 5-12. Convolution, variation on the theme

Chapter 5 ■ Convolutional neural networks

75

Another variation on the theme is locally connected layers which basically employ sparsity of
interactions but do not employ parameter/weight sharing. This is illustrated in Figure 5-13.

Figure 5-13. Locally Connected Weights

Intuition behind CNNs
So far in this chapter we have covered the key constituent concepts behind the CNN, namely the convolution
operation, the pooling operation, and how they are used in conjunction. Let us now take a step back to
internalize the intuition behind CNNs using these building blocks.

The first idea to consider is the capacity of CNNs (refer to Chapter 2 on the capacity of a machine
learning model). CNNs, which replace at least one of the fully connected layers of a neural network by the
convolution operation, have less capacity than a fully connected network. That is, there exist data sets that a
fully connected network will be able to model that a CNN will not be. So, the first point to note is that CNNs
achieve more by limiting the capacity, hence making the training efficient.

http://dx.doi.org/10.1007/978-1-4842-2766-4_2

Chapter 5 ■ Convolutional neural networks

76

The second idea to consider is that learning the filters driving the convolution operation is, in a sense,
representation learning. For instance, the learned filters might learn to detect edges, shapes, etc. The
important point to consider here is that we are not manually describing the features to be extracted from the
input data, but are describing an architecture that learns to engineer the features/representations.

The third idea to consider is the location invariance introduced by the pooling operation. The pooling
operation separates the location of the feature from the fact that it is detected. A filter detecting straight lines
might detect this filter in any portion of the image, but the pooling operation picks the fact that the feature is
detected (max pooling).

The fourth idea is that of hierarchy. A CNN may have multiple convolution and pooling layers stacked
up followed by a fully connected network. This allows the CNN to build a hierarchy of concepts wherein
more abstract concepts are based on simpler concepts (refer to Chapter 1).

The fifth and last idea is the presence of a fully connected layer at the end of a series convolution and
pooling layers. The idea is that the series of convolution and pooling layers generates the features and a
standard neural network learns the final classification/regression function. It is important to distinguish this
aspect of the CNN from traditional machine learning. In traditional machine learning, an expert would hand
engineer features and feed them to a neural network. In the case of CNNs, these features/representations are
being learned from data.

Summary
In this chapter we covered the basics of CNNs. The key takeaway points are the convolution operation, the
pooling operation, how they are used in conjunction, and how features are not hand engineered but learned.
CNNs are the most successful application of deep learning and embody the idea of learning features/
representations rather than hand engineering them.

http://dx.doi.org/10.1007/978-1-4842-2766-4_1

77© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_6

CHAPTER 6

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) in essence are neural networks that employ recurrence, which is
basically using information from a previous forward pass over the neural network. Essentially, all RNN’s
can be described as a recurrence relationship. RNNs are suited and have been incredibly successful when
applied to problems wherein the input data on which the predictions are to be made is in the form of a
sequence (series of entities where order is important).

RNN Basics
Let us start by describing the moving parts of a RNN. First, we introduce some notation.

 1. We will assume that input consists of a sequence of entities x(1), x(2), …, x(τ).

 2. Corresponding to this input we either need to produce a sequence y(1), y(2), …, y(τ)
or just one output for the entire input sequence y

 3. To distinguish between what the RNN produces and what it is ideally expected to
produce we will denote by ŷ (1), ŷ (2), …, ŷ (τ) or ŷ the output the RNN produces.
Note that this is distinct from what the RNN should ideally produce, which is
denoted by y(1), y(2), …, y(τ) or y.

RNNs either produce an output for every entity in the input sequence or produce a single output for the
entire sequence. Let us consider the case where an RNN produces one output for every entity in the input.
The RNN can be described using the following equations:

h Ux Wh bt t t() () -()= + +()tanh 1

ŷ softmax Vh ct t() ()= +()
The following points about the RNN equations should be noted:

 1. The RNN computation involves first computing the hidden state for an entity in
the sequence. This is denoted by h(t).

 2. The computation of h(t) uses the corresponding input at entity x(t) and the
previous hidden state h t-()1 .

 3. The output ŷ (t) is computed using the hidden state h(t).

 4. There are weights associated with the input and the previous hidden state while
computing the current hidden state. This is denoted by U and W respectively.
There is also a bias term denoted by b.

Chapter 6 ■ reCurrent neural networks

78

 5. There are weights associated with the hidden state while computing the output;
this is denoted by V. There is also a bias term, which is denoted by c.

 6. The tanh activation function (introduced in earlier chapters) is used in the
computation of the hidden state.

 7. The softmax activation function is used in the computation of the output.

 8. The RNN as described by the equations can process an arbitrarily large input sequence.

 9. The parameters of the RNN, namely, U,W,V,b,c, etc. are shared across the computation
of the hidden layer and output value (for each of the entities in the sequence).

Figure 6-1 illustrates an RNN. Note how the illustration depicts the recurrence relation with the self-loop
at the hidden state.

Figure 6-1. RNN (Recurrence using the previous hidden state)

Chapter 6 ■ reCurrent neural networks

79

The figure also depicts a loss function associated with each output associated with each input. We will
refer back to it when we cover how RNNs are trained.

Presently, it’s essential to internalize how an RNN is different from all the feedforward neural networks
(including convolution networks) we have seen earlier. The key difference is the hidden state, which
represents a summary of the entities seen in the past (for the same sequence).

Ignoring for the time being how RNNs are trained, it should be clear to the reader how a trained RNN
could be used. For a given sequence of inputs, an RNN would produce an output for each entity in the input.

Let us now consider a variation in the RNN wherein instead of the recurrence using the hidden state, we
have recurrence using the output produced in the previous state (refer to Figure 6-2).

Figure 6-2. RNN (Recurrence using the previous output)

Chapter 6 ■ reCurrent neural networks

80

The equations describing such an RNN are as follows:

h = Ux +Wt t t() ()tanh(ˆ)()y b- +1

ŷ softmax Vh ct t() ()= +()

The following points are to be noted:

 1. The RNN computation involves first computing the hidden state for an entity in
the sequence. This is denoted by h(t).

 2. The computation of h(t) uses the corresponding input at entity x(t) and the
previous output ŷ t-()1 .

 3. The output ŷ(t) is computed using the hidden state h(t).

 4. There are weights associated with the input and the previous output while
computing the current hidden state. This is denoted by U and W respectively.
There is also a bias term denoted by c.

 5. There are weights associated with the hidden state while computing the output;
this is denoted by V. There is also a bias term, which is denoted by c.

 6. The tanh activation function (introduced in earlier chapters) is used in the
computation of the hidden state.

The softmax activation function is used in the computation of the output.
Let us now consider a variation in the RNN where only a single output is produced for the entire

sequence (refer to Figure 6-3). Such an RNN is described using the following equations:

h = Ux +Wt t t() ()tanh(ˆ)()y b- +1

ŷ softmax Vh c= +()()t

Chapter 6 ■ reCurrent neural networks

81

Figure 6-3. RNN (Producing a single output for the entire input sequence)

Chapter 6 ■ reCurrent neural networks

82

The following points are to be noted:

 1. The RNN computation involves computing the hidden state for an entity in the
sequence. This is denoted by h(t).

 2. The computation of h(t) uses the corresponding input at entity x(t) and the
previous hidden state h t-()1 .

 3. The computation of h(t) is done for each entity in the input sequence
x(1), x(2), …, x(τ).

 4. The output ŷ is computed only using the last hidden state h(τ).

 5. There are weights associated with the input and the previous hidden state while
computing the current hidden state. This is denoted by U and W respectively.
There is also a bias term denoted by b.

 6. There are weights associated with the hidden state while computing the output;
this is denoted by V. There is also a bias term, which is denoted by c.

 7. The tanh activation function (introduced in earlier chapters) is used in the
computation of the hidden state.

 8. The softmax activation function is used in the computation of the output.

Training RNNs
Let us now look at how RNNS are trained. To do this, we first need to look at how the RNN looks when we
unroll the recurrence relation which is at the heart of the RNN.

Chapter 6 ■ reCurrent neural networks

83

Figure 6-4. Unrolling the RNN corresponding to Figure 6-1

Unrolling the recurrence relation corresponding to RNN is simply writing out the equations by recursively
substituting the value on which recurrence relation is defined. In the case of the RNN in Figure 6-1, this
is h(t). That is, the value of h(t) is defined in terms of h t-()1 , which in turn is defined in terms of h t-()2 and
so on till h(0).

Chapter 6 ■ reCurrent neural networks

84

Figure 6-5. Unrolling the RNN corresponding to Figure 6-2

Chapter 6 ■ reCurrent neural networks

85

Figure 6-6. Unrolling the RNN corresponding to Figure 6-3

We will assume that h(0) is either predefined by the user, set to zero, or learned as another parameter/
weight (learned like W, V, or b). Unrolling simply means writing out the equations describing the RNN in
terms of h(0). Of course, in order to do so, we need fix the length of the sequence, which is denoted by τ.
Figure 6-4 illustrates the unrolled RNN corresponding to the RNN in Figure 6-1 assuming an input sequence
of size 4. Similarly, Figure 6-5 and 6-6 illustrate the unrolled RNNs corresponding to the RNNs in Figure 6-2
and 6-3 respectively. The following points are to be noted:

 1. The unrolling process operates on the assumption that the length of the input
sequence is known beforehand and based on the recurrence is unrolled.

 2. Once unrolled, we essentially have a non-recurrent neural network.

Chapter 6 ■ reCurrent neural networks

86

 3. The parameters to be learned, namely, U,W,V,b,c, etc. (denoted in dark in the
diagram) are shared across the computation of the hidden layer and output
value. We have seen such parameter sharing earlier in the context of CNNs.

 4. Given an input and output of a given size, say τ (assumed to be 4 in Figures 6-4,
6-5, 6-6), we can unroll an RNN and compute gradients for the parameters to be
learned with respect to a loss function (as we have seen in earlier chapters).

 5. Thus, training an RNN is simply unrolling the RNN for a given size of input
(and, correspondingly, the expected output) and training the unrolled RNN via
computing the gradients and using stochastic gradient descent.

As mentioned earlier in the chapter, RNNs can deal with arbitrarily long inputs and correspondingly,
they need to be trained on arbitrarily long inputs. Figure 6-7 illustrates how an RNN is unrolled for different
sizes of inputs. Note that once the RNN is unrolled, the process of training the RNN is identical to training
a regular neural network which we have covered in earlier chapters. In Figure 6-7 the RNN described in
Figure 6-1 is unrolled for input sizes of 1,2,3 and 4.

Chapter 6 ■ reCurrent neural networks

87

Figure 6-7. Unrolling the RNN corresponding to Figure 6-1 for different sizes of inputs

Chapter 6 ■ reCurrent neural networks

88

Figure 6-8. Teacher Forcing (Top – Training, Bottom - Prediction)

Given that the data set to be trained on consists of sequences of varying sizes, the input sequences are
grouped so that the sequences of the same size fall in one group. Then for a group, we can unroll the RNN
for the sequence length and train. Training for a different group will require the RNN to be unrolled for a
different sequence length. Thus, it is possible to train the RNN on inputs of varying sizes by unrolling and
training with the unrolling done based on the sequence length.

Chapter 6 ■ reCurrent neural networks

89

It must be noted that training the unrolled RNN (illustrated in Figure 6-1) is essentially a sequential
process, as the hidden states are dependent on each other. In the case of RNNs wherein the recurrence is
over the output instead of the hidden state (Figure 6-2), it is possible to use a technique called teacher
forcing as illustrated in Figure 6-8. The key idea here is to use y t-()1 instead of ŷ t-()1 in the computation of h(t)
while training. While making predictions (when the model is deployed for usage), however, ŷ t-()1 is used.

Bidirectional RNNs
Let us now take a look at another variation on RNNs, namely, the bidirectional RNN. The key intuition
behind a bidirectional RNN is to use the entities that lie further in the sequence to make a prediction for the
current entity. For all the RNNs we have considered so far we have been using the previous entities (captured
by the hidden state) and the current entity in the sequence to make the prediction. However, we have not
been using information concerning the entities that lie further in the sequence to make predictions. A
bidirectional RNN leverages this information and can give improved predictive accuracy in many cases.

A bidirectional RNN can be described using the following equations:

h U x W h bf
t

f
t

f
t

f
() () +()= + +()tanh 1

h U x W h bb
t

b
t

b
t

b
() () -()= + +()tanh 1

ŷ softmax V h V h ct
b b

t
f f

t() () ()= + +()

The following points are to be noted:

 1. The RNN computation involves first computing the forward hidden state and
backward hidden state for an entity in the sequence. This is denoted by h

f
(t) and

h
b

(t) respectively.

 2. The computation of h
f
(t) uses the corresponding input at entity x(t) and the

previous hidden state hf
t-()1 .

 3. The computation of h
b

(t) uses the corresponding input at entity x(t) and the
previous hidden state hb

t-()1 .

 4. The output ŷ (t) is computed using the hidden state h
f
(t) and h

b
(t)

 5. There are weights associated with the input and the previous hidden state
while computing the current hidden state. This is denoted by U

f
 , W

f
 , U

b
 , and W

b

respectively. There is also a bias term denoted by b
f
 and b

b
.

 6. There are weights associated with the hidden state while computing the output;
this is denoted by V

b
 and V

f
 . There is also a bias term, which is denoted by c.

 7. The tanh activation function (introduced in earlier chapters) is used in the
computation of the hidden state.

 8. The softmax activation function is used in the computation of the output.

 9. The RNN as described by the equations can process an arbitrarily large input sequence.

 10. The parameters of the RNN, namely, U
f
 , U

b
, W

f
 , W

b
, V

b
, V

f
 , b

f
 , b

b
, c, etc. are shared

across the computation of the hidden layer and output value (for each of the
entities in the sequence).

Chapter 6 ■ reCurrent neural networks

90

Figure 6-9. Bidirectional RNN

Gradient Explosion and Vanishing
Training RNNs suffers from the challenges of vanishing and explosion of gradients. Vanishing gradients
means that, when computing the gradients on the unrolled RNNs, the value of the gradients can drop to a
very small value (close to zero). Similarly, the gradients can increase to a very high value which is referred to
as the exploding gradient problem. In both cases, training the RNN is a challenge.

Chapter 6 ■ reCurrent neural networks

91

Let us relook at the equations describing the RNN.

h Ux Wh bt t t() () -()= + +()tanh 1

ŷ softmax Vh ct t() ()= +()

Let us derive the expression for the
¶
¶
L

W
 by applying the chain rule. This is illustrated in Figure 6-10.

¶
¶

=
¶
¶

¶
¶

é

ë
ê

ù

û
ú
¶

£ £

()

()
£ £ £ £ -

+()

()

()

å å ÕL

W

L

h

h

h

h

t

t

t
k t k j t

j

j

k

1 1 1

1

t ¶¶

é

ë
ê
ê

ù

û
ú
úW

Let us now focus on the part of the expression
k j t

j

j

h

h£ £ -

+()

()Õ ¶
¶1

1

 which involves a repeated matrix

multiplication of W which contributes to both the vanishing and exploding gradient problems. Intuitively,
this is similar to multiplying a real valued number over and over again, which might lead to the product
shrinking to zero or exploding to infinity.

Gradient Clipping
One simple technique to deal with exploding gradients is to rescale the norm of gradient whenever it goes

over a user-defined threshold. Specifically, if the gradient denoted by ĝ
L

W
=

¶
¶

 and if ĝ c> then we set ˆ
ˆ

ˆ.g
c

g
g=

This technique is both simple and computationally efficient but does introduce an extra hyperparameter.

Chapter 6 ■ reCurrent neural networks

92

Figure 6-10. Vanishing and Exploding Gradients

Chapter 6 ■ reCurrent neural networks

93

Long Short Term Memory
Let us now take a look at another variation on RNNs, namely, the Long Short Term Memory (LSTM)
Network. An LSTM can be described with the following set of equations. Note that the symbol � . notes
pointwise multiplication of two vectors (if a =[]11 2, , and b =[]0 5 0 5 0 5. . ., , , then a b� =[]0 5 0 5 1. ., , , the
functions σ, g and h are non-linear activation functions, all W and R are weight matrices, and all the b terms
are bias terms).

z g W x R y bt
z

t
z

t
z

() () -()= + +()ˆ 1

i W x R y p c bt
i

t
i

t
i

t
i

() () -() -()= + + +()s ˆ 1 1�

f W x R y p c bt
f

t
f

t
f

t
f

() -() -()= + + +()s ˆ 1 1�

c i z f ct t t t t() () () () -()= +� � 1

o W x R y p c bt
o

t
o

t
o

t
o

() () -() ()= + + +()s ˆ 1 �

ŷ o h ct t t() () ()= ()�

The following points are to be noted:

 1. The most important element of the LSTM is the cell state denoted by
c i z f ct t t t t() () () () -()= +� � 1 . The cell state is updated based on the block input z(t)

and the previous cell state c t-()1 . The input gate i(t) determines what fraction of the
block input makes it into the cell state (hence called a gate). The forget gate f (t)
determines how much of the previous cell state to retain.

 2. The output ŷ (t) is determined based on the cell state c(t) and the output gate o(t),
which determines how much the cell state affects the output.

 3. The z(t) term is referred to as the block input and it produces a value based on the
current input and the previous output.

 4. The i(t) term is referred to as the input gate. It determines how much of the input
to retain in the cell state c(t).

 5. All the p terms are peephole connections, which allow for a faction of the cell
state to factor into the computation of the term in question.

 6. The computation of the cell state c(i) does not encounter the issue of the
vanishing gradient (this is referred to as the constant error carousal). However,
LSTMs are affected by exploding gradients and gradient clipping is used while
training.

Chapter 6 ■ reCurrent neural networks

94

Summary
In this chapter we covered the basics of Recurrent Neural Networks (RNN). The key take-home points from
this chapter are the notion of the hidden state, training RNNs via unrolling (backpropagation through time),
the problem of vanishing and exploding gradients, and long short term memory networks. It is important to
internalize how RNNs contain internal/hidden states that allow them to make predictions on a sequence of
inputs, an ability that goes beyond conventional neural networks.

Figure 6-11. Long Short Term Memory

95© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_7

CHAPTER 7

Introduction to Keras

This chapter introduces the reader to Keras, which is a library that provides highly powerful and abstract
building blocks to build deep learning networks. The building blocks Keras provides are built using Theano
(covered earlier) as well as TensorFlow (which is an alternative to Theano for building computational
graphs, automatically deriving gradients, etc.). Keras supports both CPU and GPU computation and is a
great tool for quickly prototyping ideas.

We will introduce a number of key building blocks Keras provides, and then build a CNN and LSTM
using Keras.

Let us start with a simple, single layer neural network. Listing 7-1 provides the code and Figure 7-1
gives the computational graph. The following points are to be noted:

 1. A model is defined using the Sequential construct, which allows the user to
add/configure layers.

 2. Using this functionality, a user can add one or more layers and build the network.
The Dense layer is basically a fully connected layer (leading to a vector-matrix or
vector-vector product), which we have seen earlier.

 3. The input and output dimensionality needs to be specified when the first layer
is defined. In this case the model will take an input of dimensionality 500 and
produce an output of dimensionality 1.

 4. After this layer we add an activation function, in this case a sigmoid.

 5. The model once defined needs to be explicitly compiled and, at this time, we
provide the loss function, the optimization algorithm, and other metrics we want
to calculate.

 6. An appropriate loss function needs to be picked given the task at hand; in this
case, given that we have a binary classification problem, we select binary
cross-entropy.

 7. An appropriate optimization algorithm needs to be picked, which typically is a
variant of Stochastic Gradient Descent (coved in later chapters).

 8. Once compiled we can fit the model by providing the data and evaluate the model.

Chapter 7 ■ IntroduCtIon to Keras

96

Listing 7-1. Single Layer Neural Network

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.utils.visualize_util import plot

model = Sequential()
model.add(Dense(1, input_dim=500))
model.add(Activation(activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

data = np.random.random((1000, 500))
labels = np.random.randint(2, size=(1000, 1))

score = model.evaluate(data,labels, verbose=0)
print "Before Training:", zip(model.metrics_names, score)

model.fit(data, labels, nb_epoch=10, batch_size=32, verbose=0)

score = model.evaluate(data,labels, verbose=0)
print "After Training:", zip(model.metrics_names, score)
plot(model, to_file='s1.png', show_shapes=True)

Before Training: [('loss', 0.76832762384414677), ('acc', 0.50700000000000001)]
After Training: [('loss', 0.67270196056365972), ('acc', 0.56299999999999994)]

Figure 7-1. Single Layer Neural Network (Binary Classification)

Chapter 7 ■ IntroduCtIon to Keras

97

Listing 7-2. Two Layer Neural Network

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.utils.visualize_util import plot

model = Sequential()
model.add(Dense(32, input_dim=500))
model.add(Activation(activation='sigmoid'))
model.add(Dense(1))
model.add(Activation(activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

data = np.random.random((1000, 500))
labels = np.random.randint(2, size=(1000, 1))

score = model.evaluate(data,labels, verbose=0)
print "Before Training:", zip(model.metrics_names, score)

model.fit(data, labels, nb_epoch=10, batch_size=32, verbose=0)

score = model.evaluate(data,labels, verbose=0)
print "After Training:", zip(model.metrics_names, score)

plot(model, to_file='s2.png', show_shapes=True)

Before Training: [('loss', 0.73012506151199341), ('acc', 0.51200000000000001)]
After Training: [('loss', 0.6588478517532349), ('acc', 0.52700000000000002)]

Let us now look at a two-layer neural network. Listing 7-2 provides the code and Figure 7-2 gives the
computational graph. The following points are to be noted:

 1. A model is defined using the Sequential construct.

 2. We add the first layer, using Dense, and specify the input dimensionality. In this
case the model will take an input of dimensionality 500 and produce an output of
dimensionality 32.

 3. We define an activation function, selecting sigmoid.

 4. We then define the second layer using Dense. Here we define the output
dimensionality to be 1. Note, however, that we do not need to define the input
dimensionality, as it is the same as the dimensionality of the output of the
previous layer.

 5. As before, we define the optimize and loss function, compile, train, and evaluate.

Chapter 7 ■ IntroduCtIon to Keras

98

Figure 7-2. Double Layer Neural Network (Binary Classification)

Let us now look at a two-layer neural network for multiclass classification. Listing 7-3 provides the code
and Figure 7-3 gives the computational graph. The following points are to be noted:

 1. A model is defined using the Sequential construct.

 2. We add the first layer, using Dense, and specify the input dimensionality. In this
case the model will take an input of dimensionality 500 and produce an output of
dimensionality 32.

 3. We define an activation function, selecting sigmoid.

 4. We then define the second layer using Dense. Here we define the output
dimensionality to be 10. Note that this is exactly equal to the number of classes
we have in our dataset.

 5. Next we use the softmax activation and the categorical entropy as the loss
function (an earlier chapter covers why this is a good choice).

 6. We compile, train, and evaluate the model as before.

Chapter 7 ■ IntroduCtIon to Keras

99

Listing 7-3. Multiclass Classification

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.utils.np_utils import to_categorical
from keras.utils.visualize_util import plot

model = Sequential()
model.add(Dense(32, input_dim=500))
model.add(Activation(activation='relu'))
model.add(Dense(10))
model.add(Activation(activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['categorical_
accuracy'])

data = np.random.random((1000, 500))
labels = to_categorical(np.random.randint(10, size=(1000, 1)))

score = model.evaluate(data,labels, verbose=0)
print "Before Training:", zip(model.metrics_names, score)

model.fit(data, labels, nb_epoch=10, batch_size=32, verbose=0)

score = model.evaluate(data,labels, verbose=0)
print "After Training:", zip(model.metrics_names, score)

plot(model, to_file='s3.png', show_shapes=True)

Before Training: [('loss', 2.4697211952209472), ('categorical_accuracy',
0.092999999999999999)]
After Training: [('loss', 2.1891849689483642), ('categorical_accuracy',
0.19400000000000001)]

Chapter 7 ■ IntroduCtIon to Keras

100

Let us now look at a two-layer neural network for regression. Listing 7-4 provides the code and Figure 7-4
gives the computational graph. The following points are to be noted:

 1. A model is defined using the Sequential construct.

 2. We add the first layer, using Dense, and specify the input dimensionality. In this
case the model will take an input of dimensionality 500 and produce an output of
dimensionality 32.

 3. We define an activation function, selecting sigmoid.

 4. We then define the second layer using Dense, producing an output of
dimensionality 1.

 5. We select the activation as sigmoid and select mean squared error, which is
appropriate for regression.

 6. We compile, train, and evaluate the model.

Figure 7-3. Multiclass Classification

Chapter 7 ■ IntroduCtIon to Keras

101

Listing 7-4. Regression

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.utils.visualize_util import plot

model = Sequential()
model.add(Dense(32, input_dim=500))
model.add(Activation(activation='sigmoid'))
model.add(Dense(1))
model.add(Activation(activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='mse', metrics=['mean_squared_error'])

data = np.random.random((1000, 500))
labels = np.random.randint(2, size=(1000, 1))

score = model.evaluate(data,labels, verbose=0)
print "Before Training:", zip(model.metrics_names, score)

model.fit(data, labels, nb_epoch=10, batch_size=32, verbose=0)

score = model.evaluate(data,labels, verbose=0)
print "After Training:", zip(model.metrics_names, score)

plot(model, to_file='s4.png', show_shapes=True)

Before Training: [('loss', 0.26870122766494753), ('mean_squared_error',
0.26870122766494753)]
After Training: [('loss', 0.22180086207389832), ('mean_squared_error',
0.22180086207389832)]

Let us now take a pause and look at how Keras allows for quick iteration of ideas.

 1. New models can be quickly defined, trained, and evaluated using the sequential
construct.

 2. The parameters of the layers input/output dimensionality can be easily modified.

 3. We can compare multiple choices of activation functions easily. Listing 7-6
illustrates how we can compare the effects of activation functions.

 4. We can compare multiple choices of optimization algorithms easily. Listing 7-5
illustrates how we can compare the effects of different choices of activation
algorithms.

Chapter 7 ■ IntroduCtIon to Keras

102

Listing 7-5. Optimisers

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation

def train_given_optimiser(optimiser):
 model = Sequential()
 model.add(Dense(1, input_dim=500))
 model.add(Activation(activation='sigmoid'))
 model.compile(optimizer=optimiser, loss='binary_crossentropy', metrics=['accuracy'])

 data = np.random.random((1000, 500))
 labels = np.random.randint(2, size=(1000, 1))

 score = model.evaluate(data,labels, verbose=0)
 print "Optimiser: ", optimiser
 print "Before Training:", zip(model.metrics_names, score)

Figure 7-4. Regression

Chapter 7 ■ IntroduCtIon to Keras

103

 model.fit(data, labels, nb_epoch=10, batch_size=32, verbose=0)

 score = model.evaluate(data,labels, verbose=0)
 print "After Training:", zip(model.metrics_names, score)

train_given_optimiser("sgd")
train_given_optimiser("rmsprop")
train_given_optimiser("adagrad")
train_given_optimiser("adadelta")
train_given_optimiser("adam")
train_given_optimiser("adamax")
train_given_optimiser("nadam")

Optimiser: sgd
Before Training: [('loss', 0.76416229248046874), ('acc', 0.51800000000000002)]
After Training: [('loss', 0.6759231286048889), ('acc', 0.56899999999999995)]
Optimiser: rmsprop
Before Training: [('loss', 0.77773557662963866), ('acc', 0.52600000000000002)]
After Training: [('loss', 0.727150842666626), ('acc', 0.53500000000000003)]
Optimiser: adagrad
Before Training: [('loss', 0.9275067367553711), ('acc', 0.49099999999999999)]
After Training: [('loss', 0.66770141410827633), ('acc', 0.57599999999999996)]
Optimiser: adadelta
Before Training: [('loss', 0.76523585319519039), ('acc', 0.48799999999999999)]
After Training: [('loss', 0.70753741836547857), ('acc', 0.51700000000000002)]
Optimiser: adam
Before Training: [('loss', 0.76974405097961429), ('acc', 0.51100000000000001)]

After Training: [('loss', 0.66079518222808842), ('acc', 0.59399999999999997)]
Optimiser: adamax
Before Training: [('loss', 0.76244759178161625), ('acc', 0.49399999999999999)]
After Training: [('loss', 0.67273861455917361), ('acc', 0.58499999999999996)]
Optimiser: nadam
Before Training: [('loss', 0.71690645027160649), ('acc', 0.50600000000000001)]
After Training: [('loss', 0.62006913089752203), ('acc', 0.68799999999999994)]

Keras implements a number of optimisers, namely Stocastic Gradient Descent (SGD), RMSProp,
AdaGrad, AdataDelta, Adam, Adamax, and Nadam. Chapter 8 covers these (SGD and its variants) in much
detail, explaining the intuition for each. For the context of this chapter it suffices to say that Keras makes it
easy for users to experiment with these optimisers with very little coding effort.

Listing 7-6. Activation Functions

import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation

def train_given_activation(activation):
 model = Sequential()
 model.add(Dense(1, input_dim=500))
 model.add(Activation(activation=activation))
 model.compile(optimizer="sgd", loss='binary_crossentropy', metrics=['accuracy'])

http://dx.doi.org/10.1007/978-1-4842-2766-4_8

Chapter 7 ■ IntroduCtIon to Keras

104

 data = np.random.random((1000, 500))
 labels = np.random.randint(2, size=(1000, 1))

 score = model.evaluate(data,labels, verbose=0)
 print "Activation: ", activation
 print "Before Training:", zip(model.metrics_names, score)

 model.fit(data, labels, nb_epoch=10, batch_size=32, verbose=0)

 score = model.evaluate(data,labels, verbose=0)
 print "After Training:", zip(model.metrics_names, score)

train_given_activation("relu")
train_given_activation("tanh")
train_given_activation("sigmoid")
train_given_activation("hard_sigmoid")
train_given_activation("linear")

Activation: relu
Before Training: [('loss', 2.6973885402679443), ('acc', 0.48899999999999999)]
After Training: [('loss', 7.7373054656982418), ('acc', 0.505)]
Activation: tanh
Before Training: [('loss', 5.0640698051452633), ('acc', 0.41699999999999998)]
After Training: [('loss', 7.6523446731567386), ('acc', 0.52000000000000002)]
Activation: sigmoid
Before Training: [('loss', 0.70816111516952518), ('acc', 0.52500000000000002)]
After Training: [('loss', 0.67464308834075926), ('acc', 0.58199999999999996)]
Activation: hard_sigmoid
Before Training: [('loss', 0.70220352411270137), ('acc', 0.52100000000000002)]
After Training: [('loss', 0.67294596910476689), ('acc', 0.58099999999999996)]
Activation: linear
Before Training: [('loss', 3.5439299507141113), ('acc', 0.47799999999999998)]
After Training: [('loss', 8.2581552581787108), ('acc', 0.0)]

Keras implements a number of activation functions, namely, tanh, sigmoid, hard_sigmoid, linear,
and relu (rectified linear unit). Activation functions and their appropriateness given a task (classification,
multiclassification, regression, etc.) are covered in much detail in Chapter 3. For the context of this chapter,
it suffices to say that Keras makes it easy for users to experiment with these activation functions with very
little coding effort.

Let us now look at the constructs Keras provides to build the Convolution Neural Networks introduced
in Chapter 5. The data set we will be using is the MNIST data set, which is a commonly used benchmark data
set for deep learning. The data set consists of handwritten digits (60,000 training examples and 10,000 test
examples). The task at hand is to predict the digit given the image, so this is a multiclassifcation problem
with ten classes.

Listing 7-7. CNN

import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D

http://dx.doi.org/10.1007/978-1-4842-2766-4_3
http://dx.doi.org/10.1007/978-1-4842-2766-4_5

Chapter 7 ■ IntroduCtIon to Keras

105

from keras.utils import np_utils
from keras.utils.visualize_util import plot

Image Size
img_rows, img_cols = 28, 28

Filter
nb_filters = 32

Pooling
pool_size = (2, 2)

Kernel
kernel_size = (3, 3)

Prepare dataset
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
nb_classes = 10
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

CNN
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))

Compilation
model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy'])

Training
batch_size = 128
nb_epoch = 1
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_
data=(X_test, Y_test))

Chapter 7 ■ IntroduCtIon to Keras

106

Evaluation
score = model.evaluate(X_test, Y_test, verbose=0)
print "Test Metrics:", zip(model.metrics_names, score)
plot(model, to_file='s7.png', show_shapes=True)

Output
Train on 60000 samples, validate on 10000 samples
Epoch 1/1
60000/60000 [==============================] - 128s - loss: 0.3964 - acc: 0.8776 - val_
loss: 0.0929 - val_acc: 0.9712
Test Metrics: [('loss', 0.092853568810969594), ('acc', 0.97119999999999995)]

Figure 7-5. CNN

Chapter 7 ■ IntroduCtIon to Keras

107

Listing 7-7 presents the source code for the convolution neural network and Figure 7-5 illustrates the
computation graph. The following points are to be noted:

 1. The overall network consists of two convolution-detector blocks, followed by
a max pooling layer which in turn is followed by a two layer fully connected
network (refer to Chapter 5).

 2. The size of the kernel is 3 × 3.

 3. The pooling operation is done over sections of dimensionality 2 × 2.

 4. There are a number of dropout layers, which are basically a form of
regularization (refer to Chapter 1) and operate by randomly turning off a certain
number of units. The parameter 0.25 indicates the faction of inputs that will be
randomly dropped.

 5. The flatten layers convert the input of any dimensionality to a dimensionality
of 1 × n. So, for instance, an input of dimensionality 2 × 2 × 3 gets converted to a
directionality of 1 × 12.

 6. The output layer is softmax and the loss function is categorical entropy, as is
appropriate for a multiclassification problem (refer to Chapter 3).

 7. The model is fit using adadelta (refer to Chapter 8) and, for the purposes of
illustration, we set the epochs to 1 (ideally it’s set to much more than that).

Listing 7-8. LSTM

import numpy as np
from keras.preprocessing import sequence
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Embedding
from keras.layers import LSTM
from keras.datasets import imdb
from keras.utils.visualize_util import plot

max_features = 20000
maxlen = 80
batch_size = 32

Prepare dataset
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features)
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)

LSTM
model = Sequential()
model.add(Embedding(max_features, 128, dropout=0.2))
model.add(LSTM(128, dropout_W=0.2, dropout_U=0.2))
model.add(Dense(1))
model.add(Activation('sigmoid'))

Compile
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

http://dx.doi.org/10.1007/978-1-4842-2766-4_5
http://dx.doi.org/10.1007/978-1-4842-2766-4_1
http://dx.doi.org/10.1007/978-1-4842-2766-4_3
http://dx.doi.org/10.1007/978-1-4842-2766-4_8

Chapter 7 ■ IntroduCtIon to Keras

108

Training
model.fit(X_train, y_train, batch_size=batch_size, verbose=1, nb_epoch=1, validation_
data=(X_test, y_test))

Evalaution
score = model.evaluate(X_test, y_test, batch_size=batch_size)
print "Test Metrics:", zip(model.metrics_names, score)
plot(model, to_file='s8.png', show_shapes=True)

Output
Train on 25000 samples, validate on 25000 samples
Epoch 1/1
25000/25000 [==============================] - 165s - loss: 0.5286 - acc: 0.7347 - val_
loss: 0.4391 - val_acc: 0.8076
25000/25000 [==============================] - 33s
Test Metrics: [('loss', 0.43908300422668456), ('acc', 0.80759999999999998)]

Figure 7-6. LSTM

Chapter 7 ■ IntroduCtIon to Keras

109

Let us now look at the construct Keras provides to build LSTM Networks, introduced in Chapter 6 (refer
to Listing 7-8 and Figure 7-6). The data set we will be using is from IMDB and represents 25,000 reviews from
IMDD categorized as positive or negative, making this a binary sequence classification problem. The data
is preprocessed to contain only frequent words (the words are actually represented as integers). Listing 7-8
presents the source code and Figure 7-6 illustrates the computational graph. Keras provides a fairly high-
level construct for LSTMs, which allows users to construct LSTM models.

Summary
In this chapter we covered the basics of using Keras, using a number of small and simple examples. We
encourage the reader to experiment with the examples. Keras has extensive documentation, which is
recommended further reading.

http://dx.doi.org/10.1007/978-1-4842-2766-4_6

111© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_8

CHAPTER 8

Stochastic Gradient Descent

An essential step in building a deep learning model is solving the underlying optimization problem, as
defined by the loss function. This chapter covers Stochastic Gradient Descent (SGD), which is the most
commonly used algorithm for solving such optimization problems. We also cover a breadth of algorithmic
variations published in academic literature which improve on the performance of SGD, and present a bag of
largely undocumented tricks which will allow the user to go an extra mile. Lastly, we cover some ground on
parallel/distributed SGD and touch on Second Order Methods for completeness.

Most of the examples presented in the accompanying code for this chapter are based on a Python
package called downhill. Downhill implements SGD with many of its variations and is an excellent choice
for experimenting.

Optimization Problems
Simply put, an optimization problem involves finding the parameters which minimize a mathematical function.

For example, given the function f x x() = 2 , finding the value of x which minimizes the function is an
optimization problem (refer to Figure 8-1).

Figure 8-1. An optimization problem involves finding the parameters that minimize a given function

Chapter 8 ■ StoChaStiC Gradient deSCent

112

While the functions we want to minimize while building deep learning models are way more
complicated (involving multiple parameters which may be scalars, vectors, or matrices), conceptually it’s
simply finding the parameters that minimize the function.

The function one wants to optimize for while building a deep learning model is referred to as the loss
function. The loss function may have a number of scalar/vector/matrix-valued parameters but always has
a scalar output. This scalar output represents the goodness of the model. Goodness, typically, means a
combination of how well the model predicts and how simple the model is.

 ■ Note For now, we will stay away from the statistical/machine learning aspects of a loss function (covered
elsewhere in the book) and focus purely on solving such optimization problems. that is, we assume that we
have been presented with a loss function L(x) where x represents the parameters of the model and the job at
hand is to find the values for x which minimize L(x).

Method of Steepest Descent
Let us now look at a simple mathematical idea, which is the intuition behind SGD. For the sake of simplicity,
let us assume that x is just one vector. Given that we want to minimize L(x), we want to change or update
x such that L(x) reduces. Let u represent the unit vector or direction in which x should be ideally changed
and let α denote the magnitude (scalar) of this step. A higher value of α implies a larger step in the direction
u, which is not desired. This is because u is evaluated for the current value of x and it will be different for a
different x.

Thus, we want to find a u such that

lim
a

a
®

+()
0
L x u

is minimized. It follows that

lim .
a

a
®

+() = Ñ ()
0
L u L xTx u x

Thus, we basically want to find a u such that

u L xT Ñ ()x

is minimized. Note that Ñ ()xL x is the gradient of L(x).

Given that both uT and Ñ ()xL x are vectors, it follows that

u L x u L xT Ñ () = × Ñ ()x x cos ,q

where θ is the angle between the two vectors (refer to Figure 8-2).

Chapter 8 ■ StoChaStiC Gradient deSCent

113

The value of cos θ would be minimized at q p= , that is to say the vectors are pointing in the opposite

direction. Thus, it follows that setting the direction u = - Ñ ()xL x would achieve our desired objective. This
leads to a simple iterative algorithm as follows:

Input: α, n

Initialize x to a random value.
For n steps do:

Update x = x x- Ñ ()a L x

Output: x

Batch, Stochastic (Single and Mini-batch) Descent
So far, we were denoting our loss function as L(x). The training data (examples) were implicit in this notation.
For the purpose of this discussion, we need to make them explicit. Let us denote our training data as
D d d dn= ¼{ }1 2, , . Our loss function should now be denoted as L

D
(x). This simply means that the loss function

is being evaluated with parameters x and with respect to a set of data points D. Let T be a subset of examples in
D; then L

T
(x) denotes the loss function evaluated over the set of examples T. Similarly, Ñ ()xL xD

 and Ñ ()xL xT

denote the gradients of the loss function L(x) computed over the sets of training data D and T, respectively.

 ■ Note For now, we will stay away from the computation of gradients of loss functions over subsets of data.
these can be generated using automatic differentiation (covered elsewhere in the book) quite easily (even for
arbitrary complicated loss functions) and need not be derived manually.

Armed with this notation, we can now discuss three variants of the steepest descent approach we
discussed earlier.

Figure 8-2. Finding the desired direction of update

Chapter 8 ■ StoChaStiC Gradient deSCent

114

Batch
In this approach, the entire dataset D is used in the update step. That is, x is updated as x x L xD= -Ñ ()x . Two
things are apparent about this approach. First, that it is expensive as it requires a computation over the entire
dataset. Second, the update direction is the most accurate one, given our entire dataset.

Stochastic Single Example
In this approach, only a single example from D is used in the update step. That is, x is updated as
x x L xS= -Ñ ()x where S =1. Note that we use a different example in each iteration chosen randomly (hence

the term stochastic, which simply means having a random nature). Two things are apparent about this
approach, too. First, that it is quite cheap as it requires a computation of the gradient over only a single example.
Second, the update direction is not as accurate as we are only using a very small fraction of the training dataset.

Stochastic Mini-batch
In this approach, only a small subset of examples from D is used in the update step. That is, x is updated as
x x L xS= -Ñ ()x where S D< . Note that we use a different set of examples in each iteration chosen

randomly (hence the term stochastic).

Batch vs. Stochastic
In practice, stochastic approaches dominate over batch approaches and are much more commonly used.
A seemingly nonintuitive fact about stochastic approaches is that not only is the gradient over few examples
cheaper to compute, not getting the exact direction (using only a small number of examples) actually leads
to better solutions. This is particularly true for large datasets with redundant information wherein the
examples are not too different from each other. Another reason for stochastic approaches performing better
is the presence of multiple local minima with different depths. In a sense, the noise in the direction allows
for jumping across the trenches while a batch approach will converge in the trench it started with.

Challenges with SGD
Having covered the conceptual description of SGD, let us now consider the challenges of applying it to
solving real world problems while build deep learning models.

Local Minima
Local minima are suboptimal solutions (refer to Figure 8-3) that trap any steepest descent approach and
prevent the iterative procedure for making progress towards a better solution.

Chapter 8 ■ StoChaStiC Gradient deSCent

115

Saddle Points
Saddle points are points (refer to Figure 8-4) where the gradient evaluates to zero but the point is not a
local minimum. Saddle points are any steepest descent approach and prevent the iterative procedure for
making progress towards a better solution. There is good empirical evidence that saddle points are much
more common than local minima when it comes to optimization problems in a high number of dimensions
(which is always the case when it comes to building deep learning models).

Figure 8-4. Saddle point

Figure 8-3. Local Minima

Chapter 8 ■ StoChaStiC Gradient deSCent

116

Selecting the Learning Rate
The α is the earlier discussion which represents the magnitude (scalar) of the step (in the direction u) is
taken in each iteration so as to update x. This α is commonly referred to as the learning rate and it has a big
impact on finding good solutions to the optimization problem (refer to Figure 8-5). Too high a learning rate
can cause the solution to bounce around and too low a learning rate means slow convergence (implying
not getting to a good solution in a given number of iterations). When it comes to loss functions with many
parameters trained on sparse datasets, a single global learning rate for all parameters makes the problem of
choosing a learning rate even more challenging.

Figure 8-5. Learning rate needs to be set properly

Chapter 8 ■ StoChaStiC Gradient deSCent

117

Slow Progress in Narrow Valleys
Another problem inherent to steepest descent is the slow progress in narrow valleys generated due to badly
scaled datasets. Progress slows down drastically as we get closer to the solution (refer to Figure 8-6).

Figure 8-6. Slow progress in narrow valleys

Algorithmic Variations on SGD
We will now cover a number of algorithmic variations for SGD proposed in academic literature that address
the challenges discussed earlier.

Chapter 8 ■ StoChaStiC Gradient deSCent

118

Momentum
Consider the update step for SGD described earlier,

x L x= - Ñ ()x xa .

The intuition behind momentum is to use a fraction of the previous update for the current update. That
is, let u

s
 denote the update to the parameters x in step s. Similarly, let us-1 denote the update in the previous

step. Now, let us update x with

us x= + Ñ ()-g au L xs 1 .

That is, we update

x x us= -

instead of

x x x= - Ñ ()a L x .

Figure 8-7. Momentum steering

Simply put, we have used a faction of the update in the previous step for the current update. This idea is
referred to as momentum, as it is akin to the momentum acquired by a ball rolling downhill. A ball that has
picked up momentum will bounce out of small ditches (local minima) along the way and reach the bottom
of the hill. It will also keep up somewhat with the speed of previous downhill movement even if the hill has
a much reduced slope (because it has picked up momentum). The momentum term basically causes new
step direction to be biased by the step previous direction (refer to Figure 8-7). Use of momentum has been
empirically shown to cause reduced oscillation and faster convergence.

Chapter 8 ■ StoChaStiC Gradient deSCent

119

Nesterov Accelerated Gradient (NAS)
Using the same notation as before, the Nesterov accelerated gradient is basically updating x with

us x= + Ñ -()- -g a gu L x us s1 1 .

That is, we update x x us= - .

The intuition behind this is looking one step ahead. That is, we first take a step in the direction of the
accumulated gradient and do an adaptation. The intuition behind NAS is looking ahead and anticipating,
which leads to better solutions (refer to Figure 8-8).

Figure 8-8. NAS steering

Annealing and Learning Rate Schedules
When gradient descent approaches a minimum, we have seen how a bad learning rate can cause it to
oscillate around the minima (see Figure 8-5). Annealing refers to reducing the learning rate as it approaches
the minima. This can be done manually (stopping the gradient descent and restarting from the same point
with a reduced learning rate) or via learning rate schedules which introduce a number of user-controlled
hyper parameters which dictate how the learning rate is reduced based on the number of steps taken.
However, it must be noted that we are using the same learning rate for all the parameters, which may not be
appropriate; a per-parameter learning rate adjustment is desired.

Adagrad
The Adagrad algorithm adjusts the learning rate for each parameter. So far, we have been denoting the
parameters of the loss function as x. Note that x is actually a large number of parameters, each of which is
being updated with the same learning rate. Let x

i
 denote one of the parameters and let g

i
s denote the gradient

for x
i
 at step s. For steps 0 1 1, , ,¼ -S we have a corresponding series of gradients g

i
0, g

i
1,…,g

i
s.

Chapter 8 ■ StoChaStiC Gradient deSCent

120

Let

G g g gi i i
S= () + () +¼+()-0 2 1 2 1 2

,

which is basically the sum of squares of the gradients for each step up to the previous step. The update rule
in Adagrad is

x x

G

gi i i
S= -

a
1

2

.

The α term is the global learning rate, which gets adapted for each parameter based on the previous
gradients. It must also be noted that as G accumulates, the learning rate slows down for each parameter and
eventually no progress can be made, which is a weakness of Adagrad.

RMSProp
The RMSProp algorithm improves on the Adagarad algorithm’s weakness of completely halted progress
beyond a certain number of iterations. The intuition here is to use a window of fixed size over the gradients
computed at each step rather than use the full set of gradients. That is, compute G over only the past W steps.
Now, it’s conceptually equivalent but computationally cheaper to treat the computation of

G
g g g

W
i
S W

i
S w

i
S

=
() + () +¼+()- - + -2 1 2 1 2

as the accumulation of exponentially decaying average of square of gradients rather than store all values of

g g g gi
w

i
w

i i
- - + - -¼, , ,1 2 1

and compute G at each step. That is, we compute

E g E g gi

S

i

S

i
S()é

ë
ù
û = ()é

ë
ù
û + -()()

-2 2 1 2
1r r

where ρ is the decay.
Now, note that in Adagrad we were computing the update as

x x

G

gi i i
S= -

a
1

2

. Consider the value of G
1

2 . We can see that this is simply the root-mean-square of g
i
, that is

RMS g G E gi i

S

[]= = ()é
ë

ù
û

1

2 2
.

Thus, we can compute the update as

x x
RMS g

gi i
i

i
S= -

[]
a

.

Chapter 8 ■ StoChaStiC Gradient deSCent

121

Adadelta
The intuition behind Adadelta is to consider whether the unit of the parameter and the update to the
parameter is the same. The author of the Adadelta argues that this is not the same in the case of any first
order methods like steepest descent (but is the same in the case of second order methods like Newton’s
method). In order to fix this issue, the proposed update rule of Adadelta is

x x
RMS x

RMS g
gi i

i

S

i

S i
S= -

D[]
[]

-1

where RMS x
SD[] -1

 is the root-mean-square of the actual updates to x. Note that RMS xi

SD[] -1
 lags

behind RMS[g
i
]S by one step.

Adam
Adam computes the updates by maintaining the exponentially weighted averages of both g

i
 and (g

i
)2 for each

parameter (denoted by the subscript i). The update rule for Adam is

x x
E g

E gi i

i
S

i
S= -

()éë ùû

éë ùû-

-a
1

2
1 .

It is important to note that E gi
S-éë ùû

1 and E gi
S(]-éë)1 2

 are biased towards zero in the initial steps for small

decay rates (there are two decay rates here—one for E gi
S-éë ùû

1 and one for E gi
S(]-éë)1 2

—which we denote by

ρ
1
 and ρ

2
 respectively). This bias can be corrected by computing

E g
E g

i
S i

S

-
-

éë ùû =
éë ùû
-

1

1

11 r

and

E g
E g

i
S i

S

(]
(]

-
-

éë) =
éë)
-

1 2
1 2

21 r

respectively.

Resilient Backpropagation
The intuition behind Resilient Backpropagation is that the sign of the gradient switches back and forth
between positive and negative when the learning rate is too high (refer to Figure 7). The key idea is to keep
track of the sign of the previous gradient and match it with the current gradient. If the sign is the same, use a
higher learning rate and, if different, use a lower learning rate. Note that this is done for every parameter. The
hyper parameters include the amounts to increase and decrease the learning rate (in case the sign matches
or does not match, respectively).

http://dx.doi.org/10.1007/978-1-4842-2766-4_5#Fig8

Chapter 8 ■ StoChaStiC Gradient deSCent

122

Equilibrated SGD
Equilibrated SGD aims to address issues SGD experiences with saddle points. The key idea here is that we
need second order information (second derivatives of the loss function) to get out of the trap of a saddle

point. The update rule for Equilibrated SGD is given by x x
D

gi i

i
S i

S= -
a

 where D D Hi
S

i
S

d= + -()()-r r1 2
1

(exponentially weighted average) and H
d
 is the diagonal of the Hessian matrix of L(x) (computed

symbolically) evaluated at xÎ () 0 1, (normal distribution with 0 mean and standard deviation of 1).

Tricks and Tips for using SGD
We will now cover a number of tricks and tips for SGD proposed in academic literature that address the
challenges discussed earlier.

Preprocessing Input Data
It is of utmost importance that data is scaled well so as to ease the optimization (refer to Figure 8-6). A good
rule of thumb is to standardize the data by subtracting the mean and divide by the standard deviation to
scale the data. So, if X X X Xn= ¼{ }1 2, is one of the input variables, we transform the data so that

X
X

i
i=
-m
s

.

In case of sparse data (most of X
i
 are equal to zero), the standardization process will cause the data to

become dense, max-abs scaling where

X
X

Xi
i=
()max

.

Scaling the feature to have a unit norm

X
X

Xi
i

i

=
2

is another approach to scaling data.
It is also a good practice to remove linear correlations amongst input variables from input data using

Principal Component Analysis.

Choice of Activation Function
Common examples of activation function are the standard logistic function f x

e x() =
+ -

1

1
 and the

hyperbolic tangent function f x x() = ()tanh . A recommended approach is to use an activation function that

is symmetrical around 0 (rather than only positive or negative), for instance, f x x() = æ
è
ç

ö
ø
÷1 7159

2

3
. tanh . It is

also recommended that a small linear term be added to prevent flat sports, f x x ax() = ()+tanh .

Chapter 8 ■ StoChaStiC Gradient deSCent

123

Preprocessing Target Value
While target values can be binary (0,1) in many cases, it is advisable to transform the target variable to values
that lie within the range (not asymptotically, but practically) of the activation functions used to define the
loss function. Not doing so leads to parameters being updated to higher and higher values without achieving
any effect (on the output label). However, if the value of the target label is being used as a measure of
confidence, then the labels which have been unnecessarily pushed to higher values are bad estimates of the
confidence. While 0 and 1 may be extreme values for the activation function, it is also important not to
choose targets that lie in the linear region of the activation function. A recommended approach is to choose
values that maximize the second derivative of the activation function, for instance, ±1 for

f x x() = æ
è
ç

ö
ø
÷1 7159

2

3
. tanh .

Initializing Parameters
It is a recommended practice to initialize parameters randomly (normal distribution, zero-mean, unit

variance). Another recipe for neural networks where the activation function is f x x() = æ
è
ç

ö
ø
÷1 7159

2

3
. tanh

(and the data is standardized) is to set weights to m
-
1

2 where m is the fan-in (the number of connections

feeding into the node).

Shuffling Data
It is recommended practice to shuffle input data, as it may be in a particular order and hence might bias the
SGD. A rare exception to this is Curriculum Learning wherein examples are presented in a meaningful order
(increasing difficulty of prediction).

Batch Normalization
While our parameters are initialized in a way such that they are normalized (set randomly, normal
distribution, zero-mean, and unit variance), they do not remain normalized over the update steps. Batch
normalization renormalizes parameters after each batch (refer to batch SGD).

Early Stopping
Early stopping basically involves measuring the loss on an unseen (unused for SGD) subset of training data
(called validation data) and stopping when there is no change observed in the loss. Typically, there are two
hyper parameters introduced: one which determines whether the change is significant (any change in loss
less than this value is treated as not a change) and a patience parameter, which is the number of times a no
change step can be taken before the iterative procedure terminates.

Gradient Noise
The gradient noise trick introduces a mean centered noise, 0,s() , in every update step. Here, σ is a hyper

parameter and the gradient is computed as g gi i= + () 0,s .

Chapter 8 ■ StoChaStiC Gradient deSCent

124

Parallel and Distributed SGD
We now cover two parallel and distributed approaches for SGD. SGD in its basic form is a sequential
algorithm and convergence can be very slow on large data sets and models with a large number of
parameters. Parallel and distributed approaches have a great impact when it comes to dealing with large
volumes of training data (in the order of billions) and a large number of model parameters (in the order of
millions).

Hogwild
Consider the update step of the SGD procedure. What makes the algorithm inherently sequential is update
step x x x= - Ñ ()a L x . Let’s say that we want to employ multiple threads of computation to make the
iteration faster. Since we want only one thread to do this (do the update one step at a time), we would place a
lock around this step (to prevent a race condition). Once we do that, this essentially becomes a sequential
algorithm; no matter how many cores and threads we devote to the process, only one thread is actually
doing the work, while all others are waiting on a lock.

The intuition behind Hogwild is that the race condition caused by not placing a lock on the update step
does not lead to much inconsistency in updates when the optimization problem is sparse. This is simply
because each update step touches only a few parameters. The authors of Hogwild provide strong theoretical
and empirical evidence for this finding and the gains on large datasets are significant. Hogwild is easy to
implement on multi-core CPUs and GPUs.

Downpour
Downpour is a distributed algorithm for SGD that consists of two key moving parts: model replica and
parameter server (refer to Figure 8-9). A model replica is a set of machines that operates on a subset of data,
where every machine operates only on a subset of parameters. There are many such model replicas, each
operating on a different subset of a large dataset. The parameter server is a set of machines that maintains
a common global state of the model. Model replicas retrieve the global state from the parameter server,
update the model based on the subset of data and update the global state. Note that the fetch and update
of the global state does not happen at every iteration. There are two levels of distribution with Downpour.
First, the model parameters (what we have been denoting as x so far) are split across multiple machines in
each model replica. Second, the data is split amongst model replicas. So, essentially, each machine is doing
the gradient update step on a subset of model parameters, using a subset of data. The global state is updated
asynchronously. In spite of the apparent inconsistencies introduced by Downpour, it has been found to be
very effective when it comes to training a large model with large amounts of data.

Chapter 8 ■ StoChaStiC Gradient deSCent

125

Figure 8-9. Downpour

Hands-on SGD with Downhill
We will now a hands-on exercise with SGD using a Python package called Downhill. Downhill implements
SGD with many of its variants. It operates on loss functions defined in Theano, which makes it a very
convenient tool to play with SGD variants on arbitrary loss functions defined in Theano. Let us start with
generating a dataset for our exercise (Listing 8-1, Figure 8-10).

Listing 8-1. Generating data for our excercise

#Specifiy the number of examples we need (5000) and the noise level
train_X, train_y = sklearn.datasets.make_moons(5000, noise=0.1)

#One hot encode the target values
train_y_onehot = numpy.eye(2)[train_y]

#Plot the data
pylab.scatter(train_X[:-1000, 0], train_X[:-1000, 1], c=train_y[:-1000], cmap=pylab.
cm.Spectral)

Chapter 8 ■ StoChaStiC Gradient deSCent

126

This should produce a plot of the dataset we generated. The objective at hand is to train a model to
distinguish between the red and blue dots.

Figure 8-10. Dataset for our experiments

Next let’s define a loss function with Theano.

Listing 8-2. Defining the loss function

#Set Seed
numpy.random.seed(0)

num_examples = len(train_X)

#Our Neural Network
nn_input_dim = 2
nn_hdim = 1000
nn_output_dim = 2

#Regularization
reg_lambda = numpy.float64(0.01)

#Weights and bias terms
W1_val = numpy.random.randn(nn_input_dim, nn_hdim)
b1_val = numpy.zeros(nn_hdim)
W2_val = numpy.random.randn(nn_hdim, nn_output_dim)
b2_val = numpy.zeros(nn_output_dim)

X = T.matrix('X')

Chapter 8 ■ StoChaStiC Gradient deSCent

127

y = T.matrix('y')
W1 = theano.shared(W1_val, name='W1')
b1 = theano.shared(b1_val, name='b1')
W2 = theano.shared(W2_val, name='W2')
b2 = theano.shared(b2_val, name='b2')

batch_size = 1

#Our Loss function
z1 = X.dot(W1) + b1
a1 = T.tanh(z1)
z2 = a1.dot(W2) + b2
y_hat = T.nnet.softmax(z2)
loss_reg = 1./batch_size * reg_lambda/2 * (T.sum(T.sqr(W1)) + T.sum(T.sqr(W2)))
loss = T.nnet.categorical_crossentropy(y_hat, y).mean() + loss_reg

prediction = T.argmax(y_hat, axis=1)
predict = theano.function([X], prediction)

 ■ Note For now, we will stay away from the details of defining loss functions with theano (covered elsewhere
in the book).

Next we set up a simple SGD using Downhill. We use all default parameters and want do 10K iterations. The
patience parameter is set to 10K also so that early stopping (described earlier in the chapter) does not kick in.

Listing 8-3. SGD

#Store the training and vlidation loss
train_loss = []
validation_loss = []

opt = downhill.build('sgd', loss=loss)

#Set up training and validation dataset splits, use only one example in a batch #and use
only one batch per step/epoc

#Use everything except last 1000 examples for training
train = downhill.Dataset([train_X[:-1000], train_y_onehot[:-1000]], batch_size=batch_size,
iteration_size=1)

#Use last 1000 examples for valudation
valid = downhill.Dataset([train_X[-1000:], train_y_onehot[-1000:]])

#SGD
iterations = 0
for tm, vm in opt.iterate(train, valid, patience=10000):
 iterations += 1

 # Record the training and validation loss
 train_loss.append(tm['loss'])
 validation_loss.append(vm['loss'])

Chapter 8 ■ StoChaStiC Gradient deSCent

128

 if iterations > 10000:
 break

We can now visualize the decision boundary over the training (Figure 8-11) and validation (Figure 8-12)
sets, and the loss (Figure 8-13).

Figure 8-11. Decision boundary over training set

Figure 8-12. Decision boundary over validaton set

Chapter 8 ■ StoChaStiC Gradient deSCent

129

Listing 8-4. Using SGD variants implemented in Downhill

def build_model(algo):
 loss_value = []

 W1.set_value(W1_val)
 b1.set_value(b1_val)
 W2.set_value(W2_val)
 b2.set_value(b2_val)

 opt = downhill.build(algo, loss=loss)

 train = downhill.Dataset([train_X[:-1000], train_y_onehot[:-1000]], batch_size=1,
iteration_size=1)

 valid = downhill.Dataset([train_X[-1000:], train_y_onehot[-1000:]])
 iterations = 0
 for tm, vm in opt.iterate(train, valid, patience=1000):
 iterations += 1
 loss_value.append(vm['loss'])
 if iterations > 1000:
 break
 return loss_value

Figure 8-13. Training and Validation Loss over 10K iterations

Chapter 8 ■ StoChaStiC Gradient deSCent

130

algo_names = ['adadelta', 'adagrad', 'adam', 'nag', 'rmsprop', 'rprop', 'sgd']
losses = []
for algo_name in algo_names:
 print algo_name
 vloss = build_model(algo_name)
 losses.append(numpy.array(vloss))

Figure 8-14. Learning curves (over validation data)

Let us now try out a number of SGD variants implemented in Downhill (Listing 8-4) and visualize the
learning curves (Figure 8-14). We will be running Adadelta, Adagrad, Adam, Nesterov Accelerated Gradient
(NAG), RMSProp, Resilient Backpropagation, and vanilla SGD as before. We run all these algorithms with
default parameters for 1000 steps.

Summary
In this chapter we covered Stochastic Gradient Descent (SGD), the weaknesses of SGD, a number of
algorithmic variations to address these weaknesses, and a number of tricks to make SGD effective. SGD is
the most common approach to train deep learning models. The reader is advised to go over the examples
in the source code listings and also look at the implementations of SGD and its variants in the Downhill
package for further clarity and perspective.

One important aspect that we did not cover in this chapter is how gradients for arbitrary loss functions
(required for SGD) are computed. This is covered in the next chapter on automatic differentiation.

131© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_9

CHAPTER 9

Automatic Differentiation

In the chapter on Stochastic Gradient Descent, we treated the computation of gradients of the loss function
Ñ ()xL x as a black box. In this chapter we open this black box and cover the theory and practice of automatic
differentiation. Automatic differentiation is a mature technology that allows for the effortless and efficient
computation of gradients of arbitrarily complicated loss functions. This is critical when it comes to
minimizing loss functions of interest; at the heart of building any deep learning model lies an optimization
problem, which is invariably solved using stochastic gradient descent, which in turn requires one to
compute gradients.

Most of the applications in this chapter are based on the Python package Autograd, which provides a
mature set of capabilities for automatic differentiation.

Automatic differentiation is distinct from both numerical and symbolic differentiation, and we start by
covering enough about both of these so that distinction becomes clear. For the purposes of illustration,
assume that our function of interest is f : ® and we intend to find the derivative of f denoted by f ′ (x).

Numerical Differentiation
Numerical differentiation in its basic form follows from the definition of derivative/gradient. So, given that

¢() = =
+()- ()

®
f x

df

dx

f x x f x

xx
lim
D

D
D0

we can compute the f ′ (x) using the forward difference method as

¢() = () = +()- ()
+f x D h

f x h f x

h
,

setting a suitably small value for h. Similarly, we can compute f ′(x) using the backward difference
method as

¢() = () = ()- -()
f x D h

f x f x h

h
_ ,

Chapter 9 ■ automatiC Differentiation

132

again by setting a suitably small value for h. A more symmetric form is the central difference approach,
which computes f ′ as

¢() = () = +()- -()
f x D h

f x h f x h

h0 2
.

A further development over this idea is Richardson’s extrapolation

¢() = ()- ()
f x

D h D h4 2

3
0 0 .

The approximation errors for forward and backward differences are in the order of h, that is, O(h), while
those for central difference and Richardson’s approximation are O(h2) and O(h4) respectively.

The key problems with numerical differentiation are the computational cost, which grows with the
number of parameters in the loss function, the truncation errors, and the round off errors. The truncation
error is the inaccuracy we have in the computation of f ′(x) due to h not being zero. The round off error is
inherent to using floating point numbers and floating point arithmetic (as against using infinite precision
numbers, which would be prohibitive expensive).

Numerical differentiation is thus not a feasible approach for computing gradients while building deep
learning models. The only place where numerical differentiation comes in handy is quickly checking if
gradients are being computed correctly. This is highly recommended when you have computed gradients
manually or with a new/unknown automatic differentiation library. Ideally, this check should be put in as an
automated check/assertion before staring SGD.

 ■ Note numerical differentiation is implemented in a python package called Scipy. We do not cover it here,
as it is not directly relevant to deep learning.

Symbolic Differentiation
Symbolic differentiation in its basic form is a set of symbol rewriting rules applied to the loss function to
arrive at the derivatives/gradients. Consider two of such simple rules:

d

dx
f x g x

d

dx
f x

d

dx
x()+ ()() = ()+ ()g

and
d

dx
x nxn n= -()1 .

Now, given a function like f x x x() = +2 3 2 , we can successively apply the symbol writing rules to first
arrive at

Chapter 9 ■ automatiC Differentiation

133

¢() = ()+ ()f x
d

dx
x

d

dx
x2 3 2

by applying the first rewriting rule and ¢() = +f x x x6 22 by applying the second rule. Symbolic
differentiation is thus automating what we do when we derive gradients manually. Of course, the number of
such rules can be large, and more sophisticated algorithms can be leveraged to make this symbol rewriting
more efficient. However, in its essence, symbolic differentiation is simply the application of a set of symbol
rewriting rules. The key advantage of symbolic differentiation is that it generates a legible mathematical
expression for the derivative/gradient that can be understood and analyzed.

The key problem with symbolic differentiation is that it is limited to the symbolic differentiation rules
already defined, which can cause us to hit roadblocks when trying to minimize complicated loss functions.
An example of this is when your loss function involves an if-else clause or a for/while loop. In a sense,
symbolic differentiation is differentiating a (closed form) mathematical expression; it is not differentiating a
given computational procedure.

Another problem with automatic differentiation is that a naïve application of symbol rewriting
rules, in some cases, can lead to an explosion of symbolic terms (expression swell) and make the process
computationally unfeasible. Typically, a fair amount of compute effort is required to simplify such
expressions and produce a closed form expression of the derivative.

 ■ Note Symbolic differentiation is implemented in a python package called Sympy. We do not cover it here,
as it is not directly relevant to deep learning.

Automatic Differentiation Fundamentals
The first key intuition behind automatic differentiation is that all functions of interest (which we intend to
differentiate) can be expressed as compositions of elementary functions for which corresponding derivative
functions are known. Composite functions, thus can be differentiated by applying the chain rule for
derivatives. This intuition is also at the basis of symbolic differentiation.

The second key intuition behind automatic differentiation is that, rather than storing and manipulating
intermediate symbolic forms of derivatives of primitive functions, one can simply evaluate them (for a
specific set of input values) and thus address the issue of expression swell. Since intermediate symbolic
forms are being evaluated, we do not have the burden of simplifying the expression. Note that this prevents
us from getting a closed form mathematical expression of the derivate like the one symbolic differentiation
gives us; what we get via automatic differentiation is the evaluation of the derivative for a given set of values.

The third key intuition behind automatic differentiation is that, because we are evaluating derivatives
of primitive forms, we can deal with arbitrary computational procedures and not just closed form
mathematical expressions. That is, our function can contain if-else statements, for-loops, or even recursion.
The way automatic differentiation deals with any computational procedure is to treat a single evaluation
of the procedure (for a given set of inputs) as a finite list of elementary function evaluations over the input
variables to produce one or more output variables. While there might be control flow statements (if-else
statements, for-loops, etc.), ultimately, there is a specific list of function evaluations that transform the given
input to the output. Such a list/evaluation trace is referred to as a Wengert list.

Chapter 9 ■ automatiC Differentiation

134

Let us set the stage for discussing automatic differentiation by introducing a simple function

f x x x x1 2 1
2

2
2

1

2,() = +() . Figure 9-1 shows the computational graph for the function. Note that we also

introduce some intermediate variables for convenience.

Figure 9-1. A simple function and its computational graph

Forward/Tangent Linear Mode
The forward mode (also called tangent linear mode) of automatic differentiation associates each

intermediate variable in the computational graph with a derivative. More formally, we have �v
v

xi
i=

¶
¶

 for all

values of i where �vi is the derivative of the intermediate variable v
i
 with respect to an input variable/other

intermediate variable x. Figure 9-2 illustrates this for the example function we introduced earlier.

Chapter 9 ■ automatiC Differentiation

135

Note that there are a number of ways by which such a computational graph can be constructed and
the derivatives for the intermediate variables can be associated to the nodes. This can be done explicitly by
parsing the given function (to be differentiated) or implicitly by using operator overloading. For the purposes
of this discussion it suffices to say that the given function can be decomposed into its elementary functions
and, using the derivatives of the elementary functions and the chain rule, we can associate intermediate
variables with their corresponding derivatives.

Figure 9-2. Associating every intermediate variable with a derivative in forward mode automatic differentation

Chapter 9 ■ automatiC Differentiation

136

Given such an augmented computational graph, we can evaluate the value of the (partial) derivative
of the given function with respect to a particular variable (and a set of inputs) by evaluating the expressions
associated with the augmented computational graph. For this evaluation, we have values for all the input
variables and we set all the values of the derivatives of the input variables to 0, except for the variable for
which we intend to evaluate the partial derivative, which we set to 1. Figures 9-3 and 9-4 illustrate such an
evaluation of the computational graph.

Figure 9-3. Computing the derivative (partial with respect to x
1
) for a particular set of values of x

1
 and x

2

Chapter 9 ■ automatiC Differentiation

137

Figure 9-4. Computing the derivative (partial with respect to x
2
) for a particular set of values of x

1
 and x

2

Chapter 9 ■ automatiC Differentiation

138

It must be noted that with forward mode automatic differentiation we need to perform one evaluation
of the augmented computational graph for computing the partial derivative with respect to each input
variable. It follows that for computing the gradient for a function with respect to n input variable we
would require n evaluations. Thus, forward mode automatic differentiation is expensive when it comes to
computing gradients for functions with a lot of input variables, which is a common case in deep learning
where loss functions consist of many input variables and a single output variable.

It is also clear that forward mode automatic differentiation is a fairly straightforward application of the
chain rule and can be implemented easily using operator overloading. Forward mode automatic
differentiation is often implemented by the use of dual numbers, which are defined as a truncated Taylor
series of the form v v+ � . Arithmetic on dual numbers can be defined using 2 0= and treating a non-dual
number as v v+0 �. Dual numbers, in a sense, carry the derivative with them throughout their lifetime. Thus,
given that we have a complete implementation of dual numbers, the derivatives can simply be computed as
a side/parallel effect of the operations on the dual component.

Reverse/Cotangent/Adjoint Linear Mode
The reverse mode (also called cotangent linear mode or adjoint mode) of automatic differentiation also
associates each intermediate variable in the computational graph with a derivative computed backward

from the output. This bears a striking resemblance to backpropagation. More formally, we have v
y

v
i

i
i =

¶
¶

 for

all values of i where vi is the derivative of the output/intermediate variable y
i
 for all values of i. Figure 9-5

illustrates this for the example function we introduced earlier.
To evaluate the derivative, we first do a forward pass over the augmented computational graph as

shown in Figure 9-6. This is followed by a reverse pass in which the derivatives are computed, which is
illustrated in Figure 9-7.

Reverse mode automatic differentiation computes all the partial derivatives in a single forward pass and
a single reverse pass and thus scales well with respect to functions with many input variables common to
loss functions in deep learning.

Chapter 9 ■ automatiC Differentiation

139

Figure 9-5. Associating every intermediate variable with a derivative in reverse mode automatic differentiation

Chapter 9 ■ automatiC Differentiation

140

Figure 9-6. Forward pass of reverse mode automatic differentiation

Chapter 9 ■ automatiC Differentiation

141

Implementation of Automatic Differentiation
Let us now take a look at how Automatic Differentiation is commonly implemented. The three key
approaches are using source code transformation and operator overloading (explicit or implicit dual
number implementation).

Source Code Transformation
The source code transformation approach involves the user implementing the loss function in a regular
programming language and then using an automatic differentiation tool to generate the corresponding
gradient function. These two can then be compiled by the standard build tool chain to be used as part of a
larger application. Refer to Figure 9-8.

Figure 9-7. Backward pass of reverse mode automatic diffrentiation

Chapter 9 ■ automatiC Differentiation

142

Operator Overloading
The operator overloading approach basically is an explicit/implicit implementation of the dual number
approach wherein the corresponding differentiation operation is implemented for every primitive operation
of interest. Users implement their loss functions using the primitive operations and the computation of the
gradients happen by the invocation of the overloaded method implementing the differentiation operation.
Refer to Figure 9-9.

Figure 9-8. Source Code Transformation

Chapter 9 ■ automatiC Differentiation

143

 ■ Note one key implementation detail surrounding the operator overloading approach is whether the
operators in question are those already implemented in established library/core language or if the automatic
differentiation tool provides its own operators. autograd is an example an automatic differentiation tool that
overloads the established numpy Library whereas theano provides its own operators for which corresponding
differential operations are implemented.

Hands-on Automatic Differentiation with Autograd
We will now do a hands-on exercise with Automatic Differentiation using a Python package called Autograd.
Autograd implements Reverse mode automatic differentiation and can compute derivatives for arbitrary
Python and Numpy code.

Figure 9-9. Operator Overloading

Chapter 9 ■ automatiC Differentiation

144

Listing 9-1. Finding gradient for f x x x x1 2 1
2

2
2

1

2,() = +()
#Wrapper Around Numpy
import autograd.numpy as numpy

#Function to generate gradients
from autograd import grad

#Define the function
def f(x1, x2): return numpy.sqrt(x1 * x1 + x2 * x2)

#Compute the gradient w.r.t the first input variable x1
g_x1_f = grad(f,0)

#Compute the gradient w.r.t the second input variable x2
g_x2_f = grad(f,1)

#Evaluate and print the value of the function at x1=1, x2=2
print f(1,2)
#Produces 2.23

#Evaluate and print the value of the gradient w.r.t x1 at x1=1, x2=2
print g_x1_f(1,2)
#Produces 0.44

#Evaluate and print the value of the gradient w.r.t x2 at x1=1, x2=2
print g_x2_f(1,2)
#Produces 0.89

Let us get started by taking the function that we have used for discussion throughout this chapter,

f x x x x1 2 1
2

2
2

1

2,() = +() , and finding the gradient. As will be apparent, Autograd makes this really easy.

Listing 9-1 illustrates this.
Autograd provides a utility function to check the correctness of the computed gradients. Listing 9-2

illustrates this. It is a good idea to conduct such checks, especially when we are computing gradients for
complicated loss functions involving control flow statements.

Listing 9-2. Checking the gradient for f x x x x1 2 1
2

2
2

1

2,() = +()
from autograd.util import quick_grad_check

#Define the function
def f(x1, x2): return numpy.sqrt(x1 * x1 + x2 * x2)

#Computes and checks the gradient for the given values

quick_grad_check(f,1.0,extra_args=[2.0])

#Output
#
#Checking gradient of <function f at 0x10504bed8> at 1.0
#Gradient projection OK
#(numeric grad: 0.447213595409, analytic grad: 0.4472135955)

Chapter 9 ■ automatiC Differentiation

145

Listing 9-3. Logistic Regression using Autograd

import pylab
import sklearn.datasets
import autograd.numpy as np
from autograd import grad

Generate the data
train_X, train_y = sklearn.datasets.make_moons(500, noise=0.1)

Define the activation, prediction and loss functions for Logistic Regression
def activation(x):
 return 0.5*(np.tanh(x) + 1)

def predict(weights, inputs):
 return activation(np.dot(inputs, weights))

def loss(weights):
 preds = predict(weights, train_X)
 label_probabilities = preds * train_y + (1 - preds) * (1 - train_y)
 return -np.sum(np.log(label_probabilities))

Compute the gradient of the loss function
gradient_loss = grad(loss)

Set the initial weights
weights = np.array([1.0, 1.0])

Steepest Descent
loss_values = []
learning_rate = 0.001
for i in range(100):
 loss_values.append(loss(weights))
 step = gradient_loss(weights)
 weights -= step * learning_rate

Plot the decision boundary
x_min, x_max = train_X[:, 0].min() - 0.5, train_X[:, 0].max() + 0.5
y_min, y_max = train_X[:, 1].min() - 0.5, train_X[:, 1].max() + 0.5
x_mesh, y_mesh = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = predict(weights, np.c_[x_mesh.ravel(), y_mesh.ravel()])
Z = Z.reshape(x_mesh.shape)
cs = pylab.contourf(x_mesh, y_mesh, Z, cmap=pylab.cm.Spectral)
pylab.scatter(train_X[:, 0], train_X[:, 1], c=train_y, cmap=pylab.cm.Spectral)
pylab.colorbar(cs)

Plot the loss over each step
pylab.figure()
pylab.plot(loss_values)
pylab.xlabel("Steps")
pylab.ylabel("Loss")
pylab.show()

Chapter 9 ■ automatiC Differentiation

146

Let us now compute gradient for something a bit more complicated, the loss function for logistic
regression. Let’s also fit the model using steepest descent. Listing 9-1 shows the code for the same, and
Figures 9-10 and 9-11 show the decision boundary and the loss over the steepest descent steps.

Figure 9-10. Decision boundary and training data for Logistic Regression

Figure 9-11. Loss over steps for Logistic Regression

Summary
In this chapter we covered the basics of Automatic Differentiation, which is commonly referred to as
backpropagation in the Neural Network Community. The key take-away for the reader in this chapter is that
automatic differentiation enables the computation of gradients for arbitrarily complex loss functions and is
one of the key enabling technologies for deep learning. The reader should also internalize the concepts of
automatic differentiation and how it is different from both symbolic and numerical differentiation.

147© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4_10

CHAPTER 10

Introduction to GPUs

This chapter introduces the reader to GPU (Graphics Processing Unit)-based computation, which has played
and will continue to play a big role in the successful application of Deep Learning in a variety of application
domains. Typically, a deep learning practitioner is working with high-level libraries like Keras or Theano,
which automatically translates the computation to be performed seamlessly to CPU or GPU. While in a
majority of the cases, a practitioner of deep learning is not required to understand the internal workings of
the GPU (as many high-level libraries are available), it is essential to be aware of the basics.

The essence of GPU-based computation is the notion of Single Instruction, Multiple Data (SIMD),
wherein the same computation is being performed in parallel (over may cores) on multiple data points.
This computational paradigm is very suitable for compute heavy linear algebra operations. As we have seen
in earlier chapters, the core computation involved in training deep learning models is the computation of
gradients and updating the parameters based on these gradients. At the heart of this lie basic linear algebraic
operations (dot products, vector matrix multiplications, etc.) and this GPU-based computation is quite
suitable for training (and making predictions) using the same.

Let us start by describing the key elements of such a GPU-based computation. Figure 10-1 schematically
illustrates these key elements.

Chapter 10 ■ IntroduCtIon to Gpus

148

The following points are to be noted:

 1. Deep learning-related computation involves some code to be executed
sequentially and some compute-intensive code which can be parallelized.

 2. Typically, the sequential code involves loading the data from disk, etc., which is
handled by the CPU.

 3. The computationally heavy code typically involves computing the gradients and
updating the parameters. Data for this computation is first transferred to the GPU
memory, and this computation then happens on the GPU.

 4. Next, the results are brought back to the main memory for further sequential
processing.

 5. There might be multiple blocks of such computationally heavy code interlaced
with sequential code.

 ■ Note there are two main ecosystems built around Gpus: one is Cuda, which is specific to nvidia, and
openCL, which is vendor-neutral. We will be covering concepts around Gpu computation in the context of openCL.

Let us start by looking at the overall programming model for GPU-based computation as described
by OpenCL. OpenCL is a vendor neural framework for heterogeneous computation involving CPUs, GPUs,
DSPs (Digital Signal Processors), and FPGAs (Field Programmable Gate Arrays), etc. Figure 10-2 illustrates
the physical view of the system.

Figure 10-1. GPU-based Computation

Chapter 10 ■ IntroduCtIon to Gpus

149

The following points are to be noted:

 1. The overall system consists of the Host and a number of OpenCL devices.

 2. The host refers to the CPU running the OS, which can communicate with a
number of OpenCL devices.

 3. OpenCL devices are heterogeneous, as in, different. They might be involving
CPUs, GPUs, DSPs (Digital Signal Processors), and FPGAs (Field Programmable
Gate Arrays), etc.

 4. OpenCL devices contain one or more compute units.

Let’s now look at the logical view of an OpenCL system illustrated in Figure 10-3.

Figure 10-2. OpenCL System Physical View

Chapter 10 ■ IntroduCtIon to Gpus

150

The following points are to be noted:

 1. An OpenCL program runs on the host system.

 2. The OpenCL program communicates with OpenCL devices using command
queues. Each OpenCL device has a separate command queue.

 3. Each OpenCL device houses data in its memory, sent to it by the program
running on the host.

 4. Each OpenCL device runs code sent to it by the host program, referred to as the
kernel.

 5. The host program, the command queues, the data, and the kernels together
constitute an execution context.

 6. The execution context essentially is the logical envelopment of the heterogeneous
computation. The host program orchestrates this computation by sending data
and code to be executed to the OpenCL devices and getting the results.

Figure 10-3. OpenCL System Logical View

Chapter 10 ■ IntroduCtIon to Gpus

151

Let’s now take a look at the logical memory layout on an OpenCL device. Figure 10-4 illustrates the same.

The following points are to be noted:

 1. An OpenCL device has a global memory, which is accessible to the host program
as well as all the running kernels on the device.

Figure 10-4. Device Memory

Chapter 10 ■ IntroduCtIon to Gpus

152

 2. An OpenCL device has a constant memory, which is just like global memory but
it is read-only for an executing kernel.

 3. A Work Item is the logical unit of parallelism and it has its own private memory.
Only the kernel code corresponding to this particular work item is aware of this
memory.

 4. A Work Group is the logical unit of synchronization and it contains a number
of Work Items. Note that any synchronization can only be done within a Work
Group.

 5. A Work group has its own Local Memory that can only be accessed from within
the Work Group.

Let us now take a look at the programming model with respect to an OpenCL Device (Figure 10-5).

Figure 10-5. Two-Dimensional NDRange Index Space

Chapter 10 ■ IntroduCtIon to Gpus

153

The following points are to be noted:

 1. An OpenCL kernel is launched to perform work on data already transferred
to the device memory. While launching, the number of work groups and the
numbers of work items in each work group is logically specified.

 2. The kernel is invoked in parallel for each work item in a work group. Work groups
execute in no particular order and a kernel can find out the current work item
identifier and work group identifier.

 3. Synchronization can happen only within a work group.

 4. A work item identifier can be 1-, 2-, or 3- dimensional (NDRange). This basically
makes it easy to write kernels for 1-D (time series), 2-D (images), and 3-D
(volumes) data sets.

Let us now introduce some notation that will allow us to describe the indexing. We will assume the
indexing is 2-D, but the same reasoning applies to 1-D or 3-D data. We denote by (G

x
 , G

y
) the global indexing

space. Let us now look at how this global indexing space gets broken into work groups and work items. For
convenience, we define offsets (F

x
 , F

y
) which define the portion of the indexing that is not broken into work

items and work groups. Let (S
x
 , S

y
) define the size of the work group and (W

x
 , W

y
) define the number of work

groups. Along similar lines, let (g
x
 , g

y
) denote the global identifiers, (s

x
 , s

y
) denote the local identifiers, and

let (w
x
 , w

y
) denote the work group identifiers. Then, the relationship between local and global identifiers is

described as (g
x
 , g

y
) = (w

x
S

x
 + s

x
 + F

x
 , w

y
S

y
 + s

y
 + F

y
).

Writing a kernel for a given computation basically involves leveraging this identifier mechanism and
the parallel invocations of the kernels over work items and work groups to perform the task at hand. Listings
10-2 and 10-3 illustrate this for vector addition and matrix multiplication, respectively. Listing 10-1 simply
prints out the details of the OpenCL system that the reader can use to determine the details of their system.

Listing 10-1. Getting Information on GPUs

import pyopencl as cl

print "OpenCL Platforms and Devices"
for platform in cl.get_platforms():
 print "Platform Name: ", platform.name
 print "Platform Vendor", platform.vendor
 print "Platform Version:", platform.version
 print "Platform Profile:", platform.profile
 for device in platform.get_devices():
 print "\n"
 print "\tDevice Name ", device.name
 print "\tDevice Type ", cl.device_type.to_string(device.type)
 print "\tDevice Max Clock Speed ", "{0} Mhz".format(device.max_clock_frequency)
 print "\tDevice Compute Units ", "{0}".format(device.max_compute_units)
 print "\tDevice Local Memory ", "{0:.0f} KB".format(device.local_mem_size/1024.0)
 print "\tDevice Constant Memory ", "{0:.0f} KB".format(device.max_constant_buffer_
size/1024.0)
 print "\tDevice Global Memory " "{0:.0f} GB".format(device.global_mem_size/
(1024*1024*1024.0))

OpenCL Platforms and Devices
Platform Name: Apple
Platform Vendor Apple

Chapter 10 ■ IntroduCtIon to Gpus

154

Platform Version: OpenCL 1.2 (Nov 18 2015 20:45:47)
Platform Profile: FULL_PROFILE
#
#
Device Name Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz
Device Type CPU
Device Max Clock Speed 2200 Mhz
Device Compute Units 8
Device Local Memory 32 KB
Device Constant Memory 64 KB
Device Global Memory 16 GB
#
#
Device Name Iris Pro
Device Type GPU
Device Max Clock Speed 1200 Mhz
Device Compute Units 40
Device Local Memory 64 KB
Device Constant Memory 64 KB
Device Global Memory 2 GB

Listing 10-2. Vector Addition

import numpy as np
import pyopencl as cl
import time

vector1 = np.random.random(5000000).astype(np.float32)
vector2 = np.random.random(5000000).astype(np.float32)

cl_context = cl.create_some_context()
queue = cl.CommandQueue(cl_context)
mf = cl.mem_flags
vector1_in_gpu = cl.Buffer(cl_context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=vector1)
vector2_in_gpu = cl.Buffer(cl_context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=vector2)
result_in_gpu = cl.Buffer(cl_context, mf.WRITE_ONLY, vector1.nbytes)

cl_program = cl.Program(cl_context, """
__kernel void sum(
 __global const float *vector1, __global const float *vector2, __global float *result)
{
 int i = get_global_id(0);
 result[i] = vector1[i] + vector2[i];
}
""").build()

t0 = time.time()
cl_program.sum(queue, vector1.shape, None, vector1_in_gpu, vector2_in_gpu, result_in_gpu)
t1 = time.time()
gpu_time = t1 - t0
print "GPU Time", gpu_time

Chapter 10 ■ IntroduCtIon to Gpus

155

result_in_numpy = np.empty_like(vector1)
cl.enqueue_copy(queue, result_in_numpy, result_in_gpu)

t0 = time.time()
cpu_result = vector1 + vector2
t1 = time.time()
cpu_time = t1 - t0
print "CPU Time", cpu_time

print "Norm of Difference", np.linalg.norm(result_in_numpy - cpu_result)

GPU Time 0.00202608108521
CPU Time 0.00995397567749
Norm of Difference 0.0

Listing 10-3. Matrix Multiplication

import numpy as np
import pyopencl as cl
import time

matrix1 = np.random.random((500,500)).astype(np.float32)
matrix2 = np.random.random((500,500)).astype(np.float32)

cl_context = cl.create_some_context()
queue = cl.CommandQueue(cl_context)
mf = cl.mem_flags
matrix1_in_gpu = cl.Buffer(cl_context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=matrix1)
matrix2_in_gpu = cl.Buffer(cl_context, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=matrix2)
result_in_gpu = cl.Buffer(cl_context, mf.WRITE_ONLY, matrix1.nbytes)

cl_program = cl.Program(cl_context, """
__kernel void product(
 int size, __global const float *matrix1, __global const float *matrix2, __global float
*result)
{
 int i = get_global_id(0);
 int j = get_global_id(1);
 result[i + size * j] = 0;
 for (int k = 0; k < size; k++)
 {
 result[i + size * j] += matrix1[k + size * i] * matrix2[j + size * k];
 }
}
""").build()

t0 = time.time()
cl_program.product(queue, matrix1.shape, None, np.int32(len(matrix1)), matrix1_in_gpu,
matrix2_in_gpu, result_in_gpu)
t1 = time.time()
gpu_time = t1 - t0
print "GPU Time", gpu_time

Chapter 10 ■ IntroduCtIon to Gpus

156

result_in_numpy = np.empty_like(matrix1)
cl.enqueue_copy(queue, result_in_numpy, result_in_gpu)

t0 = time.time()
cpu_result = np.dot(matrix1, matrix2)
t1 = time.time()
cpu_time = t1 - t0
print "CPU Time", cpu_time

print "Norm of Difference", np.linalg.norm(result_in_numpy - cpu_result.T)

GPU Time 0.00202608108521
CPU Time 0.00995397567749
Norm of Difference 0.0

Summary
In this chapter we have introduced the reader to GPU-based computation, which is one of the key enabling
technologies for Deep Learning.

One key point to note is that, in this chapter, we have covered the basics of GPU computation using
OpenCL, which is vendor-neutral. The concepts apply with minor variation to other vendor-specific GPU
computation libraries like CUDA, which is both older and popular as compared to OpenCL. The reader
is advised to try out the examples in the source code listings in the chapter following, while reading up on
the documentation of CUDA, which would be much easier to follow given that the reader has internalized
the foundations. Libraries like cuDNN, which is a CUDA-based library for deep learning, is recommended
further reading. It must be noted, however, that in many cases, when it comes to applying deep learning to a
real-world problem, it suffices to use high-level libraries like Theano and Keras, which generate GPU code.

The second key point to note is the importance of GPU-based computation for Deep Learning. The
single instruction, multiple data paradigm (SIMD) is ideal for deep learning, as most of computation with
respect to deep learning boils down to stochastic gradient descent (SGD). At the heart of SGD we have the
computation of gradients, which are essentially linear algebraic (vector/matrix) operations. As data sets and
the sizes of the parameters grow, it becomes essential to perform SGD in a scalable way, and GPUs currently
are the best suited computational paradigm.

157© Nikhil Ketkar 2017
N. Ketkar, Deep Learning with Python, DOI 10.1007/978-1-4842-2766-4

��������� A
Activation functions, 25–27, 29–31
Adadelta, 121
Adagrad algorithm, 120
Adam, 121
Adjointmode. See Reverse mode
Artificial Intelligence (AI), 1

methodology, 1
ML algorithms, 2
problem/task domain, 1

Autograd, 31, 143–144, 146
Automatic differentiation

fundamentals, 133
forward mode, 134–138
implementation, 141
operator overloading, 142
reverse mode, 138–139, 141
source code transformation, 141–142

hands-on with Autograd, 143–144, 146
numerical differentiation, 131–132
symbolic differentiation, 132–133

��������� B
Backward difference method, 131
Bernoulli distribution, 23, 26
Bidirectional RNN, 89–90
Binary classification, 5–6
Binary cross entropy, 23, 25

��������� C
Central difference approach, 132
Composite functions, 133
Computational graph, 135–136, 138
Computationally heavy code, 148
Compute-intensive code, 148
Constant error carousal, 93
Convolution-detector-pooling blocks, 70, 72, 73

Convolution neural networks (CNNs)
convolution-detector-pooling blocks, 70, 72, 73
intuition, 75–76
operation, 61

fully connected layers, 66
intuition, 62, 64
one dimension, 63
pooling operation, 68–69
sparse interactions in layer, 67
tied weights, 68
two dimensions, 64–65

variants, 74–75
Cost functions

computation of, 20
using Maximum Likelihood

binary cross entropy, 23
cross entropy, 23–24
squared error, 24

Cotangent linearmode. See
Reverse mode

Cross-correlation, 61, 64
Cross entropy, 23–25

��������� D
Deep learning

advances in related fields, 3
artificial intelligence, 1
historical context, 1–3
installing libraries, 4
prerequisites, 3

Depth of network, 18
Device memory, 153
Digital Signal Processors (DSPs), 148
Downpour, 125

��������� E
Equilibrated SGD, 122
Exploding gradient, 90–91

Index

■ INDEX

158

��������� F
Feedforward neural networks, 19

function, 15
hands-on with Autograd, 31
for regression, 29–30
structure, 17–18
training, 21–22
unit, 15
vector form, 18–19

Field Programmable Gate Arrays (FPGAs), 148
Forward mode, 134–138
Fully connected layer, 66, 73, 75

��������� G
Generalization, 7, 12

actual and predicted values, 10–11
dataset for regression, 9
least squares, 9
model capacity, 12
RMSE metric, 10
vs. rote learning, 7–9

Global indexing space, 153
Global memory, 151
Gradient-based methods, 25
Graphics Processing Unit (GPU)

computationally heavy code, 148
compute-intensive code, 148
key elements, 148
sequential code, 148
SIMD, 147

��������� H
Hidden layers, 17
Hogwild, 124
Hyperbolic tangent, 28

��������� I, J
Intermediate symbolic forms, 133

��������� K
Keras, 95

activation function, 97–98, 100, 103–104
Adadelta, 107
building blocks, 95
computational graph, 95
convolution neural networks, 104–105, 107
dropout layers, 107
flatten layers, 107
functionality, 95
IMDB, 109

IMDD, 109
input and output dimensionality, 95, 97–98
loss function, 95, 97
LSTM, 95, 107, 109
multiclass classification, 99–100
optimisers, 102–103
optimization algorithm, 95
pooling operation, 107
regression, 100–102
sequential construct, 95, 97–98, 100
single layer neural network, 96
softmax activation, 98, 107
theano, 95
two convolution-detector, 107
two layer neural network, 97

��������� L
Linear unit, 26
Logistic regression, 146
Long short term memory (LSTM), 93
Loss functions, 20, 21, 25

��������� M
Machine learning

binary classification, 5–6
generalization, 7–12
intuition, 5
regression, 6–7
regularization, 12–14

Matrix multiplication, 155–156
Maximum Likelihood

cost functions, 22
binary cross entropy, 23
cross entropy, 23–24
squared error, 24

principle, 4
Multinomial distribution, 23

��������� N
Nesterov accelerated gradient (NAS), 119
Numerical differentiation, 131–132
Numpy Library, 143

��������� O
OpenCL, 148

command queues, 150
defined, 148
device memory, 151
global memory, 151
GPUs, 153–154
heterogeneous, 149

■ INDEX

159

kernel, 150
private memory, 152
system logical view, 150
system physical view, 149
two-dimensional NDRange index

space, 152
work groups, 152, 153

Operator overloading, 142
Output layer, 17

��������� P, Q
Pooling operation, 68, 76
Private memory, 152

��������� R
RandomStreams, 47
Random variation, 7
Rectified Linear Unit (ReLU), 27
Recurrent Neural Networks (RNNs)

basics, 77–80, 82
bidirectional, 89–90
equations, 77–78, 80
gradient clipping, 91–92
gradient explosion, 90–91
LSTM, 93
notation, 77
points to be remembered, 82
recurrence using output, 79
teacher forcing, 89
training, 82–86, 88
unrolling, 83–85, 87
vanishing gradients, 90–92

Regression, 6–7
Regularization, 12–14
Resilient Backpropagation, 122
Reverse mode, 138–141, 143
RMSProp algorithm, 120–121
Root mean squared error (RMSE), 6–7
Rote learning, 12

��������� S
Scipy, 132
Sequential code, 148
Sigmoid unit, 26
Simple function, 134
Single instruction, multiple data

(SIMD), 147
Softmax activation function, 89
Softmax layer, 27
Softmax units, 25
Source code transformation, 141–142
Squared error, 24

Stochastic gradient descent (SGD), 111
algorithmic variations, 118

Adadelta, 121
Adagrad algorithm, 120
Adam, 121
annealing and learning rate schedules, 120
Equilibrated SGD, 122
momentum, 118–119
NAS, 119
Resilient Backpropagation, 122
RMSProp, 120–121

batch, 114
batch vs. stochastic, 114
challenges, 114

local minima, 115
saddle points, 115–116
selecting learning rate, 116–117
slow progress in narrow valleys, 118

with Downhill, 126–127
generating data, 126
loss function, 127
training and validation, 129
variants, 130

method of steepest descent, 112–113
optimization problems, 111–112
stochastic mini-batch, 114
stochastic single example, 114
tricks and tips

activation function, choice of, 123
batch normalization, 123
Downpour, 125
early stopping, 124
gradient noise, 124
Hogwild, 124
initializing parameters, 123
parallel and distributed SGD, 124
preprocessing input data, 122
preprocessing target value, 123
shuffling data, 123

Symbolic differentiation, 132–133
SymPy, 133

��������� T
Tangent linearmode. See Forward mode
Tanh activation function, 78, 80, 89
Teacher forcing, 88–89
TensorFlow, 95
Theano, 95, 143

definition, 33
hands-on, 34

activation functions, 37, 39
computing gradients, 42
functions with scalars and vectors, 34–37
gradients, 41

■ INDEX

160

Hinge implemented using Max, 55
linear regression, 51–52
logistic regression, 49–50
loss functions, 42–43
neural network, 53–54
random streams, 47–48
regularization, 45–46
shared variable, 40–41
switch/if-else, 54

workflow for using, 33

��������� U
Units, 15, 17

hyperbolic tangent, 28

linear unit, 26
ReLU, 27
Sigmoid unit, 26
Softmax layer, 27

Unrolling process, 83–85, 87

��������� V
Vanishing gradients, 90–93
Vector addition, 154–155
Vector form, 18–19

��������� W, X, Y, Z
Width of layer, 17
Work groups, 152, 153

Theano (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Deep Learning
	Historical Context
	Advances in Related Fields
	Prerequisites
	Overview of Subsequent Chapters
	Installing the Required Libraries

	Chapter 2: Machine Learning Fundamentals
	Intuition
	Binary Classification
	Regression
	Generalization
	Regularization
	Summary

	Chapter 3: Feed Forward Neural Networks
	Unit
	Overall Structure of a Neural Network
	Expressing the Neural Network in Vector Form
	Evaluating the output of the Neural Network
	Training the Neural Network

	Deriving Cost Functions using Maximum Likelihood
	Binary Cross Entropy
	Cross Entropy
	Squared Error
	Summary of Loss Functions

	Types of Units/Activation Functions/Layers
	Linear Unit
	Sigmoid Unit
	Softmax Layer
	Rectified Linear Unit (ReLU)
	Hyperbolic Tangent

	Neural Network Hands-on with AutoGrad
	Summary

	Chapter 4: Introduction to Theano
	What is Theano
	Theano Hands-On
	Summary

	Chapter 5: Convolutional Neural Networks
	Convolution Operation
	Pooling Operation
	Convolution-Detector-Pooling Building Block
	Convolution Variants
	Intuition behind CNNs
	Summary

	Chapter 6: Recurrent Neural Networks
	RNN Basics
	Training RNNs
	Bidirectional RNNs
	Gradient Explosion and Vanishing
	Gradient Clipping
	Long Short Term Memory
	Summary

	Chapter 7: Introduction to Keras
	Summary

	Chapter 8: Stochastic Gradient Descent
	Optimization Problems
	Method of Steepest Descent
	Batch, Stochastic (Single and Mini-batch) Descent
	Batch
	Stochastic Single Example
	Stochastic Mini-batch
	Batch vs. Stochastic

	Challenges with SGD
	Local Minima
	Saddle Points
	Selecting the Learning Rate
	Slow Progress in Narrow Valleys

	Algorithmic Variations on SGD
	Momentum
	Nesterov Accelerated Gradient (NAS)
	Annealing and Learning Rate Schedules
	Adagrad
	RMSProp
	Adadelta
	Adam
	Resilient Backpropagation
	Equilibrated SGD

	Tricks and Tips for using SGD
	Preprocessing Input Data
	Choice of Activation Function
	Preprocessing Target Value
	Initializing Parameters
	Shuffling Data
	Batch Normalization
	Early Stopping
	Gradient Noise

	Parallel and Distributed SGD
	Hogwild
	Downpour

	Hands-on SGD with Downhill
	Summary

	Chapter 9: Automatic Differentiation
	Numerical Differentiation
	Symbolic Differentiation
	Automatic Differentiation Fundamentals
	Forward/Tangent Linear Mode
	Reverse/Cotangent/Adjoint Linear Mode
	Implementation of Automatic Differentiation
	Source Code Transformation
	Operator Overloading

	Hands-on Automatic Differentiation with Autograd
	Summary

	Chapter 10: Introduction to GPUs
	Summary

	Index

