
DevOps for
SharePoint

With Packer, Terraform,
Ansible, and Vagrant
—
Oscar Medina
Ethan Schumann

www.allitebooks.com

http://www.allitebooks.org

DevOps for SharePoint
With Packer, Terraform,

Ansible, and Vagrant

Oscar Medina
Ethan Schumann

www.allitebooks.com

http://www.allitebooks.org

DevOps for SharePoint

ISBN-13 (pbk): 978-1-4842-3687-1				 ISBN-13 (electronic): 978-1-4842-3688-8
https://doi.org/10.1007/978-1-4842-3688-8

Library of Congress Control Number: 2018961417

Copyright © 2018 by Oscar Medina, Ethan Schumann

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484236871. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Oscar Medina
Lafayette, CA, USA

Ethan Schumann
Frisco, TX, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3688-8
http://www.allitebooks.org

I dedicate this book to my wonderful wife and daughter and our little
puppy, Ginger. I am truly blessed to have you all in my life.

—Oscar

Everything I do is with my amazing wife, Diana, in mind.
Thank you for continuous love and support!

—Ethan

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: �Introduction��� 1

What Is DevOps?�� 1

DevOps Core Practices��� 3

DevOps Core Values�� 5

DevOps Tools of the Trade�� 6

Benefits of DevOps Practices��� 16

Summary��� 20

Chapter 2: �Getting up and Running: Set up Your Environment�������������������������������� 21

Our Environment�� 21

Our Project Workflow��� 22

Install an Open Source Toolchain��� 23

Install Git�� 23

Install Terraform��� 24

Install Packer�� 25

Install Vagrant��� 25

Install Ansible��� 27

About the GitHub Repository�� 30

Getting Started��� 30

Summary��� 30

Table of Contents

About the Authors��� ix

About the Technical Reviewers�� xi

Acknowledgments�� xiii

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 3: �Build a Dev SharePoint Farm with Vagrant and ServerSpec������������������ 31

GitHub Repository Project Structure�� 32

Creating a Windows-Based Image Using Packer��� 33

Disabling Windows Updates��� 34

The Packer Template�� 34

Building the Box File��� 39

Building the Vagrant SharePoint Test Environment�� 39

Using SPAutoInstaller��� 40

A Look at the Vagrant Multimachine Environment��� 40

A Closer Look at the Vagrantfile��� 41

Bring up the SharePoint Vagrant Environment��� 51

Using ServerSpec to Test SharePoint Server Role Config�� 77

About ServerSpec��� 78

About Test-Driven Infrastructure�� 78

Push Vagrantfile to GitHub��� 83

Summary��� 83

Chapter 4: �Provisioning the SharePoint Farm to Azure Using Terraform���������������� 85

About the Solution Architecture��� 85

Terraform Folder Structure�� 86

Create Base VM Image Using Packer��� 88

Running the Bash Script��� 89

Create Packer Image VM�� 97

Configuring the Terraform Remote State��� 102

The Backend.tf File��� 103

Run Terraform Init��� 104

Create Core Azure Resources Using Terraform�� 106

About Terraform Modules��� 106

Defining the Core Networking Resources�� 107

Terraforming the SharePoint 2016 Servers in the Farm Topology��� 115

Preparing to Deploy Resources to Azure�� 115

Table of Contents

vii

Testing Terraform Infrastructure Deployments Using InSpec��� 129

About InSpec 2.0�� 129

Getting Started��� 129

Terraform Output�� 130

Testing Virtual Machines�� 131

Executing InSpec Tests��� 133

Generating the Dynamic Ansible Inventory File for Azure Resources�� 134

Using azure_rm.py and azure_rm.ini Files Provided by Ansible�� 135

Use Ansible Playbooks to Install and Configure SharePoint 2016 Farm������������������������������������ 138

Execute Ansible Ad Hoc Commands Against Azure Virtual Machine������������������������������������� 139

Run Ansible Playbooks by Role��� 146

Summary��� 153

Chapter 5: Provisioning the SharePoint Farm to AWS Using
Terraform and Ansible��� 155

About the Solution Architecture��� 155

Terraform Folder Structure�� 157

Set up AWS Credentials��� 158

Configuring the Terraform Back End�� 159

Create the S3 Bucket via AWS CLI�� 159

Run Terraform Init��� 162

Define the Terraform Back End�� 164

Create Core AWS Resources Using Terraform�� 165

About Terraform Modules��� 165

Terraforming the SharePoint 2016 Servers in the Farm Topology��� 173

Preparing to Deploy Resources to AWS�� 175

Generating the Dynamic Ansible Inventory File for AWS Resources�� 179

Using EC2.py and EC2.ini Files Provided by Ansible��� 179

Use Ansible Playbooks to Install and Configure SharePoint 2016 Farm������������������������������������ 181

Execute Ansible Ad Hoc Commands Against AWS Instance�� 182

Run Ansible Playbooks by Role��� 188

Summary��� 196

Table of Contents

viii

Chapter 6: �Scaling the Farm Using Terraform and Ansible����������������������������������� 197
Farm Topology�� 197

Architecture Changes��� 198

Building the Packer WFE Image��� 199

Getting Started��� 199

Scaling Farm Topology Using Terraform�� 206

Scaling Up�� 206

Scaling Out��� 208

Terraforming Multiple WFE Virtual Machines�� 208

Terraforming the Load Balancer and NAT Rules��� 212

Provisioning the New SharePoint 2016 Farm��� 217

Performing Configuration Management on the WFEs�� 220

Accessing the WFEs in the Availability Set��� 220

Joining WFEs to the SharePoint Farm�� 221

Summary��� 223

Chapter 7: Establishing an Enterprise Environment to Manage
and Collaborate as a Team�� 225

Version Control��� 225

Orchestration��� 226

Security�� 230

Secrets Management��� 230

Access Control�� 231

Code��� 232

Automations��� 232

Environments�� 232

Resilience�� 233

One Equals Zero��� 233

The “Nines” of Availability�� 233

Shared Collaboration�� 234

Terraform Enterprise�� 234

Summary��� 236

Index�� 237

Table of Contents

ix

About the Authors

Oscar Medina is an independent consultant with over 18 years in the technology

sector. Oscar’s experience dates back to the dot-com boom era, where he managed

ecommerce sites based on Unix and written in Java. He is an advocate for DevOps

practices with a focus on cloud-agnostic tools and modern frameworks. Oscar’s software

development, coupled with cloud infrastructure, has been instrumental in helping

companies realize the benefits of many clouds by mentoring teams in migrating legacy

monolithic applications into microservices, building CI/CD pipelines, and orchestrating

Docker containers using Kubernetes on three of the leading clouds (AWS, GCP, and

Azure), all while maintaining a cloud-agnostic strategy.

Ethan Schumann is a solutions architect for Onica, a leading AWS cloud consulting

partner. He specializes in automation and DevOps transformations, with a focus on

enterprise implementations using cloud native services and modern tooling. He has

experience designing and implementing various technologies, such as Kubernetes

containerization, CI/CD constructs for various development workflows, and large-scale

Microsoft products, including SharePoint.

xi

About the Technical Reviewers

Jon Hawkesworth is a software engineer at M*Modal Ltd., where he discovered a

passion for automating Windows using Ansible. He has twice spoken at AnsibleFest

London about Ansible’s Windows support. He has contributed several Ansible Windows

modules, and he has been an external core committer to the Ansible project since 2016.

He can be found helping others automate on the #ansible IRC channel or on the Ansible-

project Google group.

Nic Jackson is a developer advocate and polyglot programmer working for HashiCorp.

He is the author of Building Microservices with Go (Packt Publishing, 2017), a book

that examines the best patterns and practices for building microservices with the Go

programming language. In his spare time, Nic coaches and mentors at Coder Dojo,

teaches at Women Who Go and GoBridge, and speaks and evangelizes good coding

practices, processes, and techniques.

xiii

Acknowledgments

I’d like to thank two wonderful people that supported me on this journey.

First, Jon Hawkesworth for all of his enthusiasm and dedication on our project. Jon,

you made this project so much easier, and I am forever grateful for our friendship.

I’d also like to thank my good friend Nic Jackson at HashiCorp. Nic, I value your

friendship and appreciate all the work you put into our project. Your support means so

much to me. Thank you for being such a great soul.

—Oscar Medina

1
© Oscar Medina, Ethan Schumann 2018
O. Medina and E. Schumann, DevOps for SharePoint, https://doi.org/10.1007/978-1-4842-3688-8_1

CHAPTER 1

Introduction
Before we begin exploring the modern DevOps practices in deploying and managing

SharePoint, you need to understand what DevOps is.

In this chapter, we discuss DevOps. We put it into context as it relates to SharePoint

infrastructure projects, and how we can leverage these practices and tools to ultimately

achieve agility, predictability, repeatability in deployments, and cost savings in the

maintenance aspect of the platform on-premises or in the cloud.

Note  This book focuses on DevOps as it relates to the infrastructure of
SharePoint; however, these principles apply to the development of new features
on top of SharePoint (i.e., WebParts, workflows, or new components using the
SharePoint Framework).

�What Is DevOps?
It is common for the community to have a different interpretation of DevOps. To be clear,

DevOps is not a set of tools or a role within the enterprise.

DevOps is comprised of principles (both technical and cultural) and practices

for delivering applications and services at high velocity. In many organizations, these

practices entail that the development and IT pros/operations teams work together in the

full life cycle to achieve this. This is where the cultural aspect of DevOps practice comes

into play, as it represents a shift from the traditional silos of these teams; however, the

collaboration between these teams is paramount to increase DevOps maturity within the

enterprise.

2

This collaboration between the two teams increases agility and transparency

in delivering the solutions that ultimately both teams are responsible for. With this

transparency, product managers and other internal customers can easily gain insight

into any progress and/or problems in the delivery pipeline.

Figure 1-1 shows you where three common siloed enterprise teams’ efforts are joined

to practice DevOps.

Figure 1-1.  Three traditionally siloed enterprise teams are joined to practice
DevOps within the enterprise

Depending on the size of an organization, there could be fewer teams; for example,

an organization may have a development team that writes their own automation tests,

and an operations team whose focus is on infrastructure on-premises or in the cloud.

Let’s take a closer look at the core practices of DevOps to further help us understand

why DevOps is important as it relates to SharePoint initiatives.

Chapter 1 Introduction

3

�DevOps Core Practices
In the scenario shown in Figure 1-2, there are two teams. The development team’s focus

as it relates to applying the core DevOps practices typically involves code build, test

coverage, packaging, and deployment readiness. For the operations team, however, most

of the focus is on enabling the automation of the development team’s tests and builds,

as well as the infrastructure, which includes provisioning, configuration management,

orchestration and deployment of software, and infrastructure using IaC (Infrastructure

as Code).

Note  We go over IaC in the “Applying DevOps Practices” section of this chapter.

Figure 1-2.  The development and operations teams collaborate to practice
DevOps

It is important to note that the same underlying methods, such as version control,

rollback, and testing are used by both teams while applying DevOps practices.

Figure 1-3 is a holistic DevOps view that shows the various components—such

as continuous integration, continuous delivery, and continuous deployment—

throughout various stages in a pipeline.

Chapter 1 Introduction

4

�Continuous Integration

Continuous integration (CI) is the practice of frequently integrating new code into

the overall solution or central repository. This entails automation, typically using a

build service such as Jenkins, which may run unit tests and end-to-end tests prior to

integration.

This is far different from previous practices where a developer might merge code

after extensive changes and, of course, with a higher likelihood of errors and failed

builds. In return, this made it far more difficult and onerous to deliver new features, as it

took longer to find and address the issues.

With continuous integration, every change is committed and triggers automated

build and testing.

There are many benefits to continuous integration, such as improving developer

productivity, finding bugs and addressing them more quickly, and delivering new

features more frequently.

�Continuous Delivery

Continuous delivery (CD) is the practice of having code changes automatically

built, tested, and prepped for production release. Continuous delivery takes over

where continuous integration ends. In other words, continuous delivery further

progresses through the release cycle to deliver the new code and deploy to either a

Figure 1-3.  A holistic view of DevOps in the software and infrastructure release
process

Chapter 1 Introduction

5

test or a production environment. Continuous delivery ensures that you always have

a production-ready, versioned artifact that has gone through the entire testing and

build phase.

�Continuous Deployment

With continuous deployment, all code changes are automatically deployed to

production. This happens after running through the automated build and testing, of

course.

�DevOps Core Values
In 2010, Damon Edwards and John Willis described DevOps using the acronym CAMS,

which stands for culture, automation, measurement, and sharing. The adoption of these

values is essential for ensuring success within an organization.

�Culture

Indeed, DevOps is about a cultural shift, and it is an undertaking for any organization. It

is not just about the tools or toolchain being used. As mentioned earlier, the mere action

of bringing together two teams that were previously disconnected and working in silos

is a fundamental shift for any enterprise. A collaborative, cross-team problem-solving

approach is critical.

�Automation

Any organization that has adopted DevOps practices will most definitely say that

automation plays a big role. In fact, it is a must-have or prerequisite when it comes to

getting things done. This allows the team to focus on the product vision and overall

innovation, rather than manually working on repetitive tasks.

�Measurement

Incorporating feedback and providing visibility is fundamental when applying DevOps

practices. Every possible component that can be measured should be, and sharing those

metrics is critical in providing the visibility needed to make educated decisions, which

may come from the business, development, and operations teams.

Chapter 1 Introduction

6

�Sharing

Sharing metrics and other information across teams is a key component in cross-team

collaboration. It also helps build trust across teams. This is part of that culture shift that

we talked about earlier in this chapter. Adopting a sharing culture is perhaps one of the

greatest challenges that enterprise-level environments face today, and it is one that must

be incorporated to ensure success.

�DevOps Tools of the Trade
To practice DevOps, we must rely on modern tooling to allow automation and

streamlining of the entire software release cycle. Let’s go over key open source

tools that help us in the deployment, update, and configuration management of a

SharePoint farm.

Tip  In upcoming chapters, we go through step-by-step exercises that use these
tools in deploying and updating a SharePoint farm.

�Infrastructure as Code

Until recently, the same software development methodology, including source control

for a typical software project, has not been applied to infrastructure. As mentioned

earlier, the operations team now also treats everything as code and leverages

versioning when applying DevOps practices, in addition to automation, as one of the

core values of DevOps. We use Infrastructure as Code (IaC) to provision SharePoint

farms. The same code can be used to provision staging, testing, and production

environments to multiple target environments, such as Azure, Amazon Web Services

(AWS), or on-premises.

Note A core component of DevOps is treating infrastructure as code, very much
the same as a software development workflow, which includes source control,
code, build, test, and maintenance of infrastructure.

Chapter 1 Introduction

7

�Introducing Terraform

To provision or deploy a SharePoint farm and deploy to AWS and Azure, we use

HashiCorp’s Terraform open source tool. HashiCorp describes Terraform as follows:

“Terraform enables you to safely and predictably create, change, and improve

production infrastructure. It is an open source tool that codifies APIs into declarative

configuration files that can be shared amongst team members, treated as code, edited,

reviewed, and versioned.” (www.terraform.io).

Simply put, Terraform is a tool for building, changing, and versioning

infrastructure for popular service providers such as AWS, Azure, OpenStack, and

others. It manages low-level components, such as compute instances, storage, and

networking. It also manages high-level components, such as DNS entries and other

SaaS features.

There are several benefits in using Terraform vs. cloud native services. You don’t

want to get locked in to a specific cloud; this is something many customers struggle with

and something very important to consider when it comes to architecting a solution or

leveraging native cloud services.

Terraform is a cloud-agnostic tool that helps plan, orchestrate, and deploy

infrastructure to multiple clouds. You can even deploy an infrastructure that is

comprised of multiple providers; for example, deploying a server in AWS and using

Google Cloud for DNS and IP address assigned to the server.

Here are some key features that make it compelling.

•	 Infrastructure as Code. Infrastructure is described using a

declarative syntax. Infrastructure can be shared and reused.

•	 Execution plans. Terraform’s execution plan allows you to see

what would happen should you choose to build the infrastructure

by executing the apply command. It’s a good sanity check before

actually building the infrastructure.

•	 Resource graph. Terraform builds graphs of the resources being

used and their dependencies.

•	 Change automation. Complex change-sets can be applied to

infrastructure with minimal human intervention.

Chapter 1 Introduction

http://﻿www.terraform.io﻿

8

•	 Versioned infrastructure. Much like software, you can use Git,

Bitbucket, or GitLab to version your infrastructure.

•	 Reusable infrastructure modules. Imagine empowering your

developers to easily use the latest version of a SharePoint farm to

deploy a test environment in minutes. Now you need to extend that

farm capability to include other infrastructure capabilities; therefore,

you create and publish your own modules for anyone to consume

within your enterprise, or you open source said modules.

Let’s look at an example configuration file (see Listing 1-1) that describes a web

front-end server deployed to AWS.

Listing 1-1.  Terraform Configuration File Example That Describes Web Front

End Server to Be Deployed to AWS

provider "aws" {

 region = "${var.region}"

}

resource "aws_eip" "default" {

 instance = "${aws_instance.spfarm_WFE1.id}"

 vpc = true

}

resource "aws_instance" "spfarm_WFE1" {

 instance_type = "${var.instance_type}"

 ami = "${lookup(var.amis, var.region)}"

 # the security group

 vpc_security_group_ids = ["${aws_security_group.sg_spfarm.id}"]

 key_name = "${aws_key_pair.spfarmkeypair.key_name}"

 # the main VPC

 subnet_id = "${aws_subnet.main-public-1.id}"

 tags {

 "Name" = "${var.sprole_name} - ${aws_security_group.sg_spfarm.id}",

 "Server Role" = "Web-Front End",

Chapter 1 Introduction

9

 "Tier" = "Presentation Layer",

 "Location" = "AWS Cloud",

 "Environment" = "Staging"

 }

You will notice that there are items that look like variables. Terraform allows us to

define variables, and then uses interpolation as shown in the example code, to inject

the values of these variables. This is very powerful because it allows us to create

clean configuration files. It also allows a single place to change things globally,

typically on a Terraform project where you have a variables.tf file, which includes

global variables.

�Idempotency

One common trait of DevOps tools is the ability to run a given task and only update

items that need to be updated based on the instructions. Merriam-Webster defines

idempotent as “relating to or being a mathematical quantity which when applied to itself

under a given binary operation (such as multiplication) equals itself.” For example, with

Ansible, you may run a playbook against a group of machines in an inventory called

Application Servers. One of the playbook’s tasks enables several features and roles,

including the Web Server (IIS) role. Now let’s assume that one of those machines already

has the Web Server (IIS) role enabled. Ansible checks for this and simply skips the task,

and either outputs to a log or your terminal—a status indicating it skipped the machine

because the role was already configured.

If we run that same playbook a second time, we will get the same message indicating

that it skipped that specific machine for the same reason.

That is idempotency, and it is used in many tools, including Terraform and Ansible.

This saves time, as you avoid performing tasks that are not necessary within your

workflow.

�Configuration Management

Practicing DevOps also involves dealing with configuration management in an elegant

and efficient manner. Ansible stands out, as it has a growing community, is a leader

in configuration management, and is quite capable of dealing with provisioning, app

deployment, continuous delivery, security and compliance, and orchestration. As you

can see, Ansible can do more than just configuration management, and in fact, there is

Chapter 1 Introduction

10

an overlap in capabilities when combined with other tools. Ultimately, it is a matter of

preference and what your organization feels comfortable investing in.

Note  In this book, we use Ansible primarily as a configuration management tool;
clearly, that is just scratching the surface of its capabilities. Later in this book, we
cover how to use Ansible Tower, which is a web-based solution that makes Ansible
easier for IT teams to use. It’s designed to be the hub for all of your automation
tasks and a setup for enterprise-level environments.

Ansible is minimal by design, with a low learning curve; yet, its capabilities are highly

powerful. It uses declarative YAML and JSON to describe playbooks, which themselves

contain tasks that can be executed on target machines.

Ansible is an open source configuration management, deployment, and

orchestration tool. Unlike many tools in this space, Ansible is agentless, meaning nothing

is installed on the target servers to be managed. It can manage Linux and Windows

machines, respectively. Windows machines are managed using WinRM, whereas Linux

machines are managed using SSH.

The following are Ansible’s key features.

•	 A consistent, repeatable, reliable approach automates and manages

different environments, such as testing, staging, and production.

•	 It uses YAML, a human-readable and popular markup language used

by other open source systems for declarative configuration.

•	 It is extensible via modules. There are about 750 community provided

powerful modules for both Linux and Windows.

•	 It integrates well with other open source tools, such as Vagrant,

Packer, and Terraform.

•	 Agentless, it integrates with identity management systems such

as Active Directory and runs commands under user-supplied

credentials. It does not require high privileges.

•	 It manages systems via authoring reusable, version-controlled

playbooks and roles to manage a desired state.

Chapter 1 Introduction

11

�Virtualization

Bringing agility to DevOps practices involves having the ability to stand up and tear

down testing and staging environments at will—in minutes. Enter Vagrant. HashiCorp,

the maker of Vagrant describes it as follows: “Vagrant is a tool for building and managing

virtual machine environments in a single workflow. With an easy-to-use workflow and

focus on automation, Vagrant lowers development environment setup time, increases

production parity, and makes the ‘works on my machine’ excuse a relic of the past.”

(www.vagrantup.com)

Vagrant allows you to build environments in a repeatable, reliable fashion, and

with a single workflow. Vagrant uses the provider concept to provision virtual machines

for different platforms such as VirtualBox, VMWare, AWS, Azure, and Docker. Vagrant

then uses provisioners such as Chef, Puppet, and Ansible to execute configuration

management tasks.

Let’s look at Vagrantfile shown in Listing 1-2, which contains an Ansible provider to

configure a Windows Server 2016 VirtualBox machine as a domain controller. This is a

Vagrantfile that we use later in this book to provision the testing environment SharePoint

domain controller server, to run configuration management on that machine to promote

it as a domain controller, and to create the SharePoint service accounts.

Note  Don’t worry if you don’t understand the details of this file. In subsequent
chapters, we go over the details of this Vagrantfile to help you understand what
exactly it is doing and how it all comes together when building the virtualized
testing SharePoint farm environment.

Listing 1-2.  Actual Vagrantfile Used to Bring up a SharePoint Farm and

Configure Servers

require 'yaml'

require 'json'

error = Vagrant::Errors::VagrantError

machines = YAML.load_file 'vagrant-machines.yaml'

ANSIBLE_RAW_SSH_ARGS = []

Chapter 1 Introduction

https://﻿www.vagrantup.com﻿

12

#delete the inventory file if it exists so we can recreate

File.delete("ansible/hosts_test_env.yaml")

File.open("ansible/hosts_test_env.yaml" ,'w') do |f|

 machines.each do |machine|

 f.write "#{machine[0]}:\n"

 f.write " Hosts:\n"

 f.write " #{machine[1]['name']}:\n"

 f.write " ansible_ssh_host: #{machine[1]['ip_address']}\n"

 end

end

Vagrant.configure(2) do |config|

 config.vm.box_check_update = false

 machines.each do |machine|

 name = machine[1]['name']

 box = machine[1]['box']

 role = machine[1]['role']

 hostname = machine[1]['hostname']

 providers = machine[1]['providers']

 memory = machine[1]['memory'] || '512'

 default = machine[1]['default'] || false

 ip_address = machine[1]['ip_address']

 # insert the private key from the host machine to the guest

 �ANSIBLE_RAW_SSH_ARGS << "-o IdentityFile=~/.vagrant.d/insecure_private_

key"

 fail error.new, 'machines must contain a name' if name.nil?

 config.vm.define name, primary: default, autostart: default do |cfg|

 cfg.vm.hostname = hostname

 # credentials

 cfg.winrm.username = "vagrant"

Chapter 1 Introduction

13

 cfg.winrm.password = "vagrant"

 cfg.vm.guest = :windows

 cfg.vm.communicator = "winrm"

 cfg.windows.halt_timeout = 35

 config.vm.boot_timeout = 400

 #configure the network for this machine

 cfg.vm.network "private_network", ip: ip_address

 �cfg.vm.network :forwarded_port, guest: 5985, host: 5985, id: "winrm",

auto_correct: true

 �cfg.vm.network :forwarded_port, guest: 3389, host: 3389, id: "rdp",

auto_correct: true

 �cfg.vm.network :forwarded_port, guest: 22, host: 2222, id: "ssh",

auto_correct: true

 if box

 cfg.vm.box = box

 elsif box_url && box_name

 cfg.vm.box = box_name

 cfg.vm.box_url = box_url

 else

 fail error.new, 'machines must contain box or box_name and box_url'

 end

 if providers == 'virtualbox'

 cfg.vm.provider :virtualbox do |v|

 v.gui = true

 v.customize ["modifyvm", :id, "--memory", memory]

 v.customize ["modifyvm", :id, "--cpus", 2]

 v.customize ["modifyvm", :id, "--vram", 128]

 v.customize ["modifyvm", :id, "--clipboard", "bidirectional"]

 v.customize ["modifyvm", :id, "--accelerate3d", "on"]

 v.customize ["modifyvm", :id, "--accelerate2dvideo", "on"]

 end

 end

Chapter 1 Introduction

14

 �# we can insert provisioners here to inject additional scripts if

needed

 # sample below.

 �#cfg.vm.provision "shell", path: "./ansible/roles/internal/common/

files/openssh.ps1"

 �# Use specific Ansible Playbooks and other provisioners based on SP

Machine Role

 if role == 'DomainController'

 cfg.vm.provision :ansible do |ansible|

 #let's configure the domain controler and add

 # a) the SP Service Accounts

 # b) Sample User Accounts

 ansible.limit = "domaincontrollers"

 ansible.playbook = "ansible/plays/domaincontroller.yml"

 ansible.inventory_path = "ansible/test.ini"

 ansible.verbose = "vvvv"

 ansible.raw_ssh_args = ANSIBLE_RAW_SSH_ARGS

 end

 elsif role == 'Front-End'

 # we must set the network interface DNS server accordingly

 # before we join the machine to the domain

 �config.vm.provision "shell", path: "./ansible/roles/internal/

domaincontroller/files/setDNS.ps1", args:"-DNS 192.1.68.2.19

-Network 192.168.2.16"

 # join machine to domain name

 cfg.vm.provision :ansible do |ansible|

 ansible.limit = "webservers"

 ansible.playbook = "ansible/plays/webservers.yml"

 ansible.inventory_path = "ansible/test.ini"

 ansible.verbose = "vvvv"

 ansible.raw_ssh_args = ANSIBLE_RAW_SSH_ARGS

 end

 end

Chapter 1 Introduction

15

 end

 end

end

From a DevOps perspective, Vagrant provides a disposable environment and

consistent workflow for developing and testing infrastructure management scripts such

as PowerShell or Ansible modules.

Vagrant excels tremendously in enforcing environmental parity, which helps avoid

surprises in the deployment of applications on top of the infrastructure.

�Machine Imaging (Prebaked Images)

Machine imaging is a common practice in IT shops. However, until not too long ago,

all the imaging had to be done manually, which led to errors and a costly and tedious

process to create and update “blessed” images in the enterprise.

Introducing Packer

Packer is an open source tool for creating identical machines in multiple platforms, such

as AWS, OpenStack, Azure, and VMWare. Packer runs on every major operating system

and is very lightweight.

Today, when we talk about images, we think of them as a unit that contains

preconfigured operating system and software packages. This unit is used to launch and

destroy instances in seconds—much like Amazon EC2 instances, which are launched

based on AMIs with preinstalled operating systems such as Linux, Red Hat, Windows

2012, Windows 10, and so forth.

These images can also be launched on VirtualBox, VMWare Fusion for Mac, and

other virtualization platforms.

Tip  Later in this book, we use Packer to create a base Windows 2016 Server
image for our SharePoint farm, which we then launch using Terraform.

Packer is a modern open source tool; however, it also embraces configuration

management tools such as Puppet and Ansible to install and configure software

packages. The possibilities are endless; you can make a demo of custom software, or in

our case, showcase the latest SharePoint version, launched in seconds.

Chapter 1 Introduction

16

The following are the key features/advantages of Packer.

•	 Ultra-fast infrastructure deployment. Launches completely

configured images to development, staging, and production

environments within seconds.

•	 Portability. Because Packer creates identical images for multiple

platforms, you can run a production environment in AWS, staging in

Google Cloud, or a development VirtualBox environment locally on a

laptop, for example. This is portability at its finest.

•	 Stability. Because software packages and configuration management

takes place at the time of building the machine, problems are

detected and fixed early, rather than finding issues when images are

launched in different environments.

There are many great use cases for Packer. Because Packer is command-line driven,

building it into the continuous delivery pipeline is possible. In this scenario, a service

like Jenkins may run Packer commands to build the image, which itself contains

Serverspec tests to run at build time. Should the test pass, new images are created for

multiple platforms, and then launched and tested.

It is worth noting that the HashiCorp Atlas site (at the time of writing this book) is

going through a transformation. HashiCorp now offers each product independently.

In other words, if your organization uses Terraform Enterprise only, this is possible. In

return, this allows a company to integrate the usage of the individual product into its

own delivery pipeline as it sees fit, rather than using the stack of the HashiCorp products

(what used to be Atlas) in one workflow.

�Benefits of DevOps Practices
We’ve covered the practices and values of DevOps, and you learned which open source

tools are at the core of the preferred toolchain. However, you want to know the benefits

of practicing DevOps within the enterprise. DevOps teams increased from 16% in 2014,

to 19% in 2015, to 22% in 2016, and to 27% in 2017.1

1�2017 State of DevOps Report: New findings on transformational leadership, automation
practices and more, Puppet, https://puppet.com/resources/whitepaper/state-of-
devops-report?pcnav=off&pctiles=off&ls=Campaigns&lsd=Search&cid=7010f000001eVg
M&utm_medium=paid-search&utm_campaign=Q2FY18_AMER_All_CAMPGN_SER_BING_2017-DO-
rpt&utm_source=bing&utm_content=2017-devops-report&utm_term=devops

Chapter 1 Introduction

https://puppet.com/resources/whitepaper/state-of-devops-report?pcnav=off&pctiles=off&ls=Campaigns&lsd=Search&cid=7010f000001eVgM&utm_medium=paid-search&utm_campaign=Q2FY18_AMER_All_CAMPGN_SER_BING_2017-DO-rpt&utm_source=bing&utm_content=2017-devops-report&utm_term=devops
https://puppet.com/resources/whitepaper/state-of-devops-report?pcnav=off&pctiles=off&ls=Campaigns&lsd=Search&cid=7010f000001eVgM&utm_medium=paid-search&utm_campaign=Q2FY18_AMER_All_CAMPGN_SER_BING_2017-DO-rpt&utm_source=bing&utm_content=2017-devops-report&utm_term=devops
https://puppet.com/resources/whitepaper/state-of-devops-report?pcnav=off&pctiles=off&ls=Campaigns&lsd=Search&cid=7010f000001eVgM&utm_medium=paid-search&utm_campaign=Q2FY18_AMER_All_CAMPGN_SER_BING_2017-DO-rpt&utm_source=bing&utm_content=2017-devops-report&utm_term=devops
https://puppet.com/resources/whitepaper/state-of-devops-report?pcnav=off&pctiles=off&ls=Campaigns&lsd=Search&cid=7010f000001eVgM&utm_medium=paid-search&utm_campaign=Q2FY18_AMER_All_CAMPGN_SER_BING_2017-DO-rpt&utm_source=bing&utm_content=2017-devops-report&utm_term=devops

17

The DevOps movement continues to gain momentum as mentioned in the

State of DevOps Report, published by Puppet and DORA, a DevOps research and

assessment organization. You might wonder if this is applicable or helpful to an IT

professional working on the Microsoft stack of technologies. And the answer is yes;

in fact, given Microsoft’s recent open source track record and initiatives, there is a

lot of toolchain modernization within this ecosystem; it will only become far more

relevant in the near future. As an IT pro, it is beneficial to become acquainted with

the DevOps practices and apply them to your work to enhance your skills and further

your career.

With Microsoft’s “love” for Linux, it is gradually becoming easier to use Microsoft’s

own tools on systems other than Windows. One example is .NET Core now being open

sourced and capable of running on Linux. Another example is the ability to run SQL

Server on Linux.

�Why DevOps Practices Matter When It Comes to SharePoint

So how does DevOps relate or is relevant to the SharePoint platform and related

technologies, such as Azure, AWS, and other clouds where one can deploy it?

Having been around in the SharePoint consulting world for over 17 years, we’ve seen

a fair number IT shops manually build virtual machines for a SharePoint farm more

often than I’d like to admit. This ultimately causes a lot of grief for IT pros, the business

stakeholders, and the end client due to inconsistency and an error-prone approach. Not

to mention, the time it takes to build out a farm manually.

Clearly, the open source tools that we’ve discussed have not been around for

that long. But now that they have been around for a few years, shouldn’t we feel the

urgency to automate not only the installation of SharePoint but also the provisioning of

virtualized environments across clouds and on-premises?

Note  Many SharePoint administrators are already aware that PowerShell
automation exists for a good portion of the steps needed to install SharePoint. In
this book, we look beyond that and cover automated installation, configuration
management, and provisioning of the entire virtualized farm on-premises or in
the cloud.

Chapter 1 Introduction

18

Enterprise environments can no longer afford to work with arcane methodologies if

they are to be successful in delivering products and services to both internal and external

customers.

Multiple surveys and research documents published by companies like Puppet,

Amazon, and Ansible all convey the same message: DevOps practices lead to higher IT

performance, which, in return, delivers improved business outcomes as measured by

productivity, profitability, and market share.

DevOps benefits span far beyond financial ramifications, as organizations are now

capable of achieving their vision and goals irrespective of what that vision is. In other

words, DevOps is quite relevant, no matter the business a company is in.

Given these findings, it is paramount to have engaged leadership to ensure success

in adopting DevOps practices, because these are the people that have the ability to

make decisions and the budget, and who are able to provide support in the midst of a

transformation.

�Applying DevOps Practices

Now that you are aware of some of the benefits of DevOps, let’s look at some areas where

applying DevOps practices and using open source tools may prove to be extremely

beneficial in the SharePoint realm.

Use Infrastructure as Code to Provision SharePoint Dev and Test
Environments

As mentioned earlier on this chapter, the operations team also treats everything as code

and leverages versioning when applying DevOps practices in addition to automation as

one of the core values of DevOps. How then can we avoid manually provisioning servers

that form part of a SharePoint Farm? We use Infrastructure as Code (IaC). The same

code can be used to provision staging, testing and production environments to multiple

target environments such as Azure, AWS or on-premises.

When a new developer joins an organization, it now takes a matter of minutes

to provision a local environment by using previously created code that describes

the infrastructure for a local environment. In this scenario, the developer can

use the Vagrantfile previously developed by the ops team (which is most likely in

source control such as GitHub) to quickly provision any environment with a simple

command such as vagrant up.

Chapter 1 Introduction

19

This effectively streamlines the infrastructure and provisioning of identical

environments for staging, testing, and production, which eliminates any surprises that

may affect timelines.

Continuous Integration/Continuous Deployment

You might recall that DevOps practices include automated testing and CI/CD. How can

we apply automation now that we have our Vagrantfile?

Before the development team can provision their own environment, the operations

team might code the Vagrantfile, and add configuration management and test scripts

to ensure that the environments being provisioned are successful. To do this, they can

add actual test scripts and run automated testing using Jenkins, for example. If the

tests pass, the Vagrantfile is versioned and stored in GitHub, which makes the latest

version available to other teams in the organization. Anytime a developer needs to

spin up a development environment that mirrors production, he/she simply gets the

latest Vagrantfile from GitHub, and has an environment in minutes. This process was

shown in Figure 1-3.

Configuration Management

Another major component of DevOps is configuration management. Tools like Ansible

help automate the provisioning of various software packages; for example, an Ansible

playbook that contains various standard tasks to perform machine updates, or install Git,

Chocolatey, and other packages on virtual machines. All of this can happen when you

initially spin up the machine using Vagrant or make updates to existing machines.

In another scenario, a systems administrator executes ad hoc Ansible commands

against a group of machines (like all WFEs in the SharePoint farm) to install a SharePoint

hotfix or patch.

It is easy to see the power of automation vs. manually remoting into each machine,

installing packages, and restarting the machine, all of which may lead to missing steps,

errors, and a lot of dedicated time to execute.

As you’ve learned in this chapter, Ansible’s capabilities span far more than just

configuration management. This book’s exercises, however, focus on the core capability

to manage a SharePoint farm.

Chapter 1 Introduction

20

�Summary
In this chapter, you learned about DevOps practices and values, why DevOps is an

important practice to adopt in any organization, and the tools that enable you to practice

DevOps when deploying identical environments and managing a SharePoint farm in an

enterprise environment.

In the next chapter, we walk you through the setup of all the tools that you need to

follow the exercises in this book.

Chapter 1 Introduction

21
© Oscar Medina, Ethan Schumann 2018
O. Medina and E. Schumann, DevOps for SharePoint, https://doi.org/10.1007/978-1-4842-3688-8_2

CHAPTER 2

Getting up and Running:
Set up Your Environment
Now that you understand what DevOps is all about, let’s prepare our environment

to follow the exercises in this book. Having your environment configured properly is

paramount to being able to execute the exercises. The following will help you configure

the proper tooling and settings to enable the successful creation of your SharePoint

deployment and configuration.

This chapter walks you through the initial setup of the various open source tools that

you need to follow the various exercises in subsequent chapters.

Note  Because Ansible does not support Windows as a host, we will only focus
on OS X and Linux as our host platforms. If you are using Windows, installing a VM
with a Linux OS will allow you to perform the following setup.

�Our Environment
All the sample code, terminal commands, and usage of these tools are executed on a

MacBook Pro (OS X Sierra 10.12.5). All of these tools are available on the latest versions

of OS X and most Linux distributions. As such, we will only focus on these operating

systems in the exercises.

22

�Our Project Workflow
The exercises in this book follow a workflow. There is a sequence to how we want to

implement things; therefore, we recommend that you follow the chapter sequence.

The following are the workflow steps.

	 1.	 Build a generic Packer Windows image.

	 2.	 Build a Vagrant test environment SharePoint Farm.

	 3.	 Build production images using Packer (AWS and Azure).

	 4.	 Deploy an infrastructure using Terraform (AWS and Azure).

As you can see in Figure 2-1, Packer is used. We use Packer later in this book to create

a “golden image” for our SharePoint farm.

Figure 2-1 depicts the environment used for the exercises in this book. It shows

a laptop with Vagrant to build boxes for the VirtualBox provider, and it uses both

PowerShell and Ansible for configuration management.

Figure 2-1.  Mac OS X Ansible control machine responsible for building a
SharePoint Vagrant environment

Chapter 2 Getting up and Running: Set up Your Environment

23

The following software packages are used throughout the book’s exercises:

•	 Git

•	 Vagrant

•	 Packer

•	 Ansible

•	 Terraform

The following section walks you through the installation of these packages.

Tip  Any source code or other supplementary material referenced by the authors
in this book is available to readers on GitHub via the book’s product page, located
at www.apress.com/ISBN13. For more information, please visit www.apress.
com/source-code. You may choose to clone the repository and follow the
exercises in this book. See the “About the GitHub Repository” section later in this
chapter.

�Install an Open Source Toolchain
All subsequent chapters on this book make use of several tools. This section guides you

through installing the prerequisite toolchain needed for the book’s exercises.

�Install Git
For Windows, you can install a PowerShell native tool called posh-git. This ships with all

the standard functionality of Git and is usable inside of a standard PowerShell terminal.

Note that you should have PowerShell 5.x installed.

�Install posh-git Using Chocolatey on Windows

As an administrator, run the following.

 C:\choco install poshgit

Chapter 2 Getting up and Running: Set up Your Environment

http://www.apress.com/ISBN13
http://www.apress.com/source-code
http://www.apress.com/source-code

24

�Install Terraform
Terraform can be installed in several ways, such as downloading the binaries directly

from the HashiCorp site at www.terraform.io/downloads.html. There are several other

options as outlined next.

�Install Using Homebrew on Mac OS X

The first method is to install it using Homebrew on OS X by executing the following

command.

$ brew install terraform

Later, when a new version is out, we can easily update it by executing the following

command.

$ brew upgrade terraform

�Verifying Installation

To verify that all is working properly, you can issue the following command.

$ terraform -v

The output of this should be Terraform v0.9.x, for example, or whatever version is

installed.

�Install Using Terraform Version Manager

Although it is not required to complete the exercises in this book, Terraform Version

Manager is very handy when working with large environments. This is due to the rapid

release and deprecation of Terraform features as the tool continues to evolve. You can

also use tfenv, an open source tool that is available at https://github.com/kamatama41/

tfenv. It works on OS X, Linux, and Windows.

tfenv allows you to manage multiple installed versions of Terraform. You can install it

by executing the following command.

$ brew install tfenv

Chapter 2 Getting up and Running: Set up Your Environment

http://www.terraform.io/downloads.html
https://github.com/kamatama41/tfenv
https://github.com/kamatama41/tfenv

25

�Install Using Other Methods

There are several configuration management tools that allow you to install and use

Terraform.

•	 A Puppet Module for Terraform (https://forge.puppet.com/

inkblot/terraform)

•	 Docker Container with Terraform (https://hub.docker.com/r/

hashicorp/terraform)

•	 Ansible Role for Terraform (https://galaxy.ansible.com/azavea/

terraform)

�Install Packer
The most common installation method is to download the binaries; however, there are a

couple of alternative methods that we cover here.

�Install Using Homebrew on Mac OS X

To install Packer, execute the following command.

$ brew install packer

�Verifying Installation

To verify that Packer is installed correctly, issue the following command.

$ packer –v

This should output the version installed.

�Install Vagrant
Vagrant can be installed in several ways, including downloading the binaries from the

HashiCorp site at www.vagrantup.com/downloads.html.

Chapter 2 Getting up and Running: Set up Your Environment

https://forge.puppet.com/inkblot/terraform
https://forge.puppet.com/inkblot/terraform
https://hub.docker.com/r/hashicorp/terraform
https://hub.docker.com/r/hashicorp/terraform
https://galaxy.ansible.com/azavea/terraform
https://galaxy.ansible.com/azavea/terraform
http://www.vagrantup.com/downloads.html

26

�Install Using Homebrew on Mac OS X

In addition to Brew, you want to make sure that you have Homebrew-Cask, which

extends Homebrew. It is available via, Brew of course!

What is Homebrew-Cask? Its authors describe it as follows: “Homebrew-Cask

extends Homebrew and brings its elegance, simplicity, and speed to macOS applications

and large binaries alike. It only takes 1 line in your shell to reach 3652 Casks maintained

by 4612 contributors.” (www.caskroom.github.io)

To install Homebrew-Cask, simply execute the following command.

 $ brew tap caskroom/cask

Verify that installation was successful by executing brew cask on your terminal. You

should see output that looks like the following code.

$ brew cask

brew-cask provides a friendly homebrew-style CLI workflow for the

administration of macOS applications distributed as binaries.

Commands:

 --version displays the Homebrew-Cask version

 audit verifies installability of Casks

 cat �dump raw source of the given Cask to the

standard output

 cleanup cleans up cached downloads and tracker symlinks

 create creates the given Cask and opens it in an editor

 doctor checks for configuration issues

 edit edits the given Cask

 fetch �downloads remote application files to local

cache

 home opens the homepage of the given Cask

 info displays information about the given Cask

 install installs the given Cask

 list �with no args, lists installed Casks; given

installed Casks, lists staged files

 outdated list the outdated installed Casks

 reinstall reinstalls the given Cask

Chapter 2 Getting up and Running: Set up Your Environment

http://brew.sh/
http://www.caskroom.github.io

27

 search searches all known Casks

 style checks Cask style using RuboCop

 uninstall uninstalls the given Cask

 zap zaps all files associated with the given Cask

See also "man brew-cask"

Now that you have Homebrew-Cask, let’s install Vagrant. Execute the following

command.

$ brew cask install vagrant

�Verifying Installation

To verify that Vagrant is installed correctly, issue the following command.

$ vagrant –v

This should output the version installed.

�Install Ansible
Now let’s install the configuration management tool that we will use throughout our

exercises. If you’ve installed the other tools using Homebrew, then this first option

should be the easiest for you. Also, be sure that you have Python 2.x installed because it

is a prerequisite.

Note  Windows machines are not supported control machines for Ansible; therefore,
you want to use a Vagrant box with Linux for this purpose. The following section
explains an Ansible provided Vagrant box to quickly get up and running with Ansible.

�Install Using Homebrew on Mac OS X

$ brew install ansible

Verify installation by executing the following command with the output shown,

depending on the version that you installed. In our case, it was Ansible 2.3.1.0. The

output also shows that we are running Python 2.7.13. Note that Ansible and Python are

frequently updated, so you will most likely have a newer version.

Chapter 2 Getting up and Running: Set up Your Environment

28

$ ansible --version

ansible 2.3.1.0

 config file =

 configured module search path = Default w/o overrides

 python version = 2.7.13 (default, Apr 4 2017, 08:47:57) [GCC 4.2.1

Compatible Apple LLVM 8.1.0 (clang-802.0.38)]

�Install Using PIP (Python Package Manager) on Mac OS X

According to the Ansible documentation, this is the preferred installation. In our

experience, however, using Homebrew works just as well. Install by executing the

following command.

$ sudo pip install ansible

You can verify installation by simply executing the following command, which

should output the version of Ansible installed.

$ ansible --version

�Use an Ansible-Provided Vagrant Machine as a Control Machine

You can opt to use the Ansible Vagrant machine to quickly get up and running.

This machine contains Ansible Tower, a powerful software package that allows you

to centralize all of your Ansible playbooks and deployments. Some key features include

role-based access control, job scheduling, and a nice visual representation of your

inventory.

Tip  Although we do not use Ansible Tower, we highly recommend using it as part
of your enterprise level DevOps tool-chain given the added features such as access
control, job scheduling, dashboards and workflow control.

Execute the following commands.

	 1.	 $ mkdir ansibletower

	 2.	 $ cd ansibletower

	 3.	 $ vagrant init ansible/tower

Chapter 2 Getting up and Running: Set up Your Environment

29

	 4.	 $ vagrant up –provider virtualbox

	 5.	 $ vagrant ssh

Executing the command in item 5 outputs the username and password that you

need to access the Ansible Tower web-based interface.

 $ vagrant ssh

Last login: Sat Jul 8 02:34:10 2017 from gateway

 Welcome to Ansible Tower!

 Log into the web interface here:

 https://10.42.0.42/

 Username: admin

 Password: NA7nr4JuvLDT

 The documentation for Ansible Tower is available here:

 http://www.ansible.com/tower/

 For help, visit http://support.ansible.com/

[vagrant@ansible-tower ~]$

Since you are now SSHed into the box, you can easily execute Ansible commands.

For example, to get the Ansible version used on the Vagrant machine, execute the

following command, and you will see similar output.

[vagrant@ansible-tower ~]$ ansible --version

ansible 2.3.0.0

 config file = /etc/ansible/ansible.cfg

 configured module search path = Default w/o overrides

 �python version = 2.7.5 (default, Nov 6 2016, 00:28:07) [GCC 4.8.5

20150623 (Red Hat 4.8.5-11)]

[vagrant@ansible-tower ~]$

Once configured, you are ready to follow along.

Chapter 2 Getting up and Running: Set up Your Environment

30

�About the GitHub Repository
The entire GitHub repository for the exercises in this book is available on the GitHub

website. You may use this repository as a starting point, or you may create a blank project

and incorporate some of the components. It really is up to you. Just know that we are

referencing this specific structure and repository while working through the various

exercises.

Tip T o set up Git, please see https://help.github.com/articles/
set-up-git. This covers initial setup, including SSH keys for authentication.

�Getting Started
The first thing that you want to do is clone the repository. This allows you to run the

project locally and modify it as you see fit. To do that, simply execute the following

command in your terminal.

$ git clone git@github.com:SharePointOscar/vagrant-ansible-packer-spfarm.git

Once you’ve cloned the repository, you are ready to follow our first exercise in

Chapter 3.

�Summary
In this chapter, we installed all the open source tools needed to execute the exercises

in this book. In the next chapter, we start our first exercise and build a test environment

for our SharePoint farm using Vagrant and Ansible. This serves as a great starting point,

which we will build on to create the proper artifact using Packer and to deploy to Azure

and AWS.

Chapter 2 Getting up and Running: Set up Your Environment

https://help.github.com/articles/set-up-git
https://help.github.com/articles/set-up-git

31
© Oscar Medina, Ethan Schumann 2018
O. Medina and E. Schumann, DevOps for SharePoint, https://doi.org/10.1007/978-1-4842-3688-8_3

CHAPTER 3

Build a Dev SharePoint
Farm with Vagrant
and ServerSpec
In the previous chapter, we walked through the required setup of our toolchain and

cloning the GitHub repository for this book. With all this in place, we are ready to start

with the first step in our overall workflow.

This chapter walks you through creating a test environment using Vagrant and

testing it using the ServerSpec framework. We perform tests because we want to make

sure that any configuration management tasks we execute have successfully executed

and that the software is configured per our requirements.

The overall solution, which is intended to run locally on a developer’s machine,

looks like the diagram shown in Figure 3-1.

Figure 3-1.  Vagrant machines. YAML is responsible for defining the Ansible
inventory file.

32

�GitHub Repository Project Structure
The GitHub repository is structured with subprojects to separate things by tool and area,

such as Infrastructure as Code (Terraform), configuration management (Ansible), and

image baking (Packer). For example, all Ansible-related things are under the Ansible

folder. All Terraform (Infrastructure as Code) assets are located under the Terraform

folder. The Packer-related templates are within its folder. Listing 3-1 is a view of the

project structure.

Listing 3-1.  GitHub Repository Project Structure

$ tree -L 2

.

├── HOWTOUSE.md
├── LICENSE
├── README.md
├── Vagrantfile
├── ansible
│ ├── development.ini
│ ├── extensions
│ ├── group_vars
│ ├── hosts_test_env.yaml
│ ├── plays
│ ├── production.ini
│ ├── roles
│ ├── test.ini
│ └── test_env.yaml
├── ansible.cfg
├── packer
│ ├── README.MD
│ ├── answer_files
│ ├── atlas-aws-win2016.json
│ ├── aws-scripts
│ ├── aws-win2016.json
│ ├── floppy
│ ├── packer_cache

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

33

│ ├── scripts
│ ├── vagrantfile-windows_2016.template
│ └── windows_2016.json
├── terraform
│ ├── atlas
│ ├── local
│ └── shared
├── vagrant-machines.yaml
└── vpass.txt
15 directories, 17 files

The Vagrant aspect of this project is comprised of two files: vagrant-machines.yaml

and the Vagrantfile.

We will work with these two files to build our SharePoint farm. But before we do

that, we need to create our “golden image,” which is considered the base image with

preloaded software packages, updates, and so forth.

Tip  For this initial step in the workflow, we create a basic Windows Server
2016 image, but it is not the final image because we are testing our configuration
management scripts while building the Vagrant SharePoint test environment. Think
of it as an iterative process.

�Creating a Windows-Based Image Using Packer
Our first step in the overall workflow is to create a “golden image” with the provisioned

software packages, which serves as the basis for building out our SharePoint farm using

Vagrant. To do this, we’ve made use of an open source repository from Stefan Scherer,

from which we’ve extracted some content, modified it, and then integrated it into our repo

for convenience. Specifically, we added the shutdown command to ensure a Sysprep since

we are building a domain controller, and we don’t want any duplicate SID error messages.

You can find the packer folder within our GitHub repository. Let’s go over the

contents of the packer folder within the repo and highlight a few things as it relates to

creating our image.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

34

�Disabling Windows Updates
For the purpose of this walkthrough, we want to ensure that when we build our image,

the updates do not get downloaded and installed, because it is a very time-consuming

process. Therefore, we need to first modify the XML file under the answer_files

directory, and then open the file at 2016/Autounattend.xml and uncomment, as

showing in Listing 3-2.

Listing 3-2.  Ensure the Answer File Has This Section Uncommented

<!-- WITHOUT WINDOWS UPDATES -->

 <SynchronousCommand wcm:action="add">

 �<CommandLine>cmd.exe /c

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -File

a:\enable-winrm.ps1</CommandLine>

 <Description>Enable WinRM</Description>

 <Order>99</Order>

 </SynchronousCommand>

<!-- END WITHOUT WINDOWS UPDATES -->

Tip  You can follow detailed instructions on updates in the README.md file within
the repository.

�The Packer Template
Our Packer template uses Windows Server 2016, which is a supported OS for SharePoint

2016. The file that we will edit and modify is named windows_2016.json. It is a template

that Packer uses to build the image.

Tip P acker templates are extremely helpful because you can easily push them to
source control and use the typical pull request method to review changes prior to
building the next version. We highly recommend versioning your Packer templates
as part of your workflow.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

35

Packer builders allow us to build images for different virtualization providers,

such as VMWare, VirtualBox, Hyper-V, Docker, and AWS, to name a few. We look at the

VirtualBox builder through this exercise. The following is a snippet of what this template

looks like.

{

 "builders": [

 ….

 {

 "type": "virtualbox-iso",

 "communicator": "winrm",

 "iso_url": "{{user `iso_url`}}",

 "iso_checksum_type": "{{user `iso_checksum_type`}}",

 "iso_checksum": "{{user `iso_checksum`}}",

 "headless": true,

 "boot_wait": "2m",

 "winrm_username": "vagrant",

 "winrm_password": "vagrant",

 "winrm_timeout": "6h",

 "shutdown_command": "A:/shutdown-Packer.bat",

 "guest_os_type": "Windows2012_64",

 "guest_additions_mode": "disable",

 "disk_size": 61440,

 "floppy_files": [

 "{{user `autounattend`}}",

 "./scripts/unattend.xml",

 "./scripts/shutdown-Packer.bat",

 "./floppy/WindowsPowershell.lnk",

 "./floppy/PinTo10.exe",

 "./scripts/disable-screensaver.ps1",

 "./scripts/disable-winrm.ps1",

 "./scripts/enable-winrm.ps1",

 "./scripts/microsoft-updates.bat",

 "./scripts/win-updates.ps1",

 "./scripts/oracle-cert.cer"

],

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

36

 "vboxmanage": [

 [

 "modifyvm",

 "{{.Name}}",

 "--memory",

 "2048"

],

 [

 "modifyvm",

 "{{.Name}}",

 "--cpus",

 "2"

]

]

 }

],

 "provisioners": [

 {

 "type": "windows-shell",

 "execute_command": "{{ .Vars }} cmd /c \"{{ .Path }}\"",

 "scripts": [

 "./scripts/vm-guest-tools.bat",

 "./scripts/enable-rdp.bat"

]

 },

 {

 "type": "powershell",

 "scripts": [

 "./scripts/debloat-windows.ps1"

]

 },

 {

 "type": "windows-restart"

 },

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

37

 {

 "type": "windows-shell",

 "execute_command": "{{ .Vars }} cmd /c \"{{ .Path }}\"",

 "scripts": [

 "./scripts/pin-powershell.bat",

 "./scripts/set-winrm-automatic.bat",

 "./scripts/compile-dotnet-assemblies.bat",

 "./scripts/uac-enable.bat",

 "./scripts/compact.bat"

]

 }

],

 "post-processors": [

 {

 "type": "vagrant",

 "keep_input_artifact": false,

 "output": "spfarm_base_windows_2016_{{.Provider}}.box",

 "vagrantfile_template": "vagrantfile-windows_2016.template"

 }

],

 "variables": {

 �"iso_url": "http://care.dlservice.microsoft.com/dl/

download/1/4/9/149D5452-9B29-4274-B6B3-5361DBDA30

BC/14393.0.161119-1705.RS1_REFRESH_SERVER_EVAL_X64FRE_EN-US.ISO",

 "iso_checksum_type": "md5",

 "iso_checksum": "70721288BBCDFE3239D8F8C0FAE55F1F",

 "autounattend": "./answer_files/2016/Autounattend.xml",

 "hyperv_switchname": "{{env `hyperv_switchname`}}"

 }

}

Let’s go over the sections of this template to fully understand what is needed and

what we may change.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

38

�Builders

Builders are responsible for building and targeting images for the various platforms.

Packer has several, including for VMWare, VirtualBox, EC2, and Docker. It is important

to know that each builder has its own specifics when it comes to configuration.

Our Packer template contains metadata for floppy drives, which we populate with

specific files that we need to be accessible as we build our image. Of special interest is

"./scripts/shutdown-Packer.bat", which we use to ensure that Sysprep runs the first

time that the machine boots.

In addition, the metadata includes "shutdown_command": "A:/shutdown-Packer.bat",

which uses the file attached to the floppy drive.

�Provisioners

Packer uses provisioners to install and configure software packages, patch the kernel,

create domain users, and perform many actions at build time. There are several

provisioners, including Ansible, PowerShell, Chef, Puppet, Salt, and Shell.

Tip W e use the Ansible provisioner to implement a lot of the configuration
management when building a SharePoint farm.

Provisioners are executed in the order they appear on the template. For this

template, we have several that further configure the image, including enabling RDP.

You can create a custom provisioner if need be. Packer is extensible via its plug-in

mechanism.

�Post Processors

Post processors run after the builders and provisioners. They are optional and can be used,

for example, when uploading a box to the HashiCorp Vagrant cloud. Our template outputs

a file with the .box extension. We use this file to add to the Vagrant list of boxes for later use.

�Variables

Variables help you update your template in one place. The overall structure allows you

to have a variables node with respective metadata. It is a best practice to always use

variables and their values within the template because it makes updating so much easier.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

39

�Building the Box File
Now that our template is modified with all the metadata we need, we are ready to build a

base Windows 2016 Server image for our SharePoint farm.

Within the /packer directory of the GitHub repository, execute the following command.

packer build --only=virtualbox-iso windows_2016.json

Note P lease note that the resulting file can be fairly large, usually around 10GB,
so be sure that you have plenty of disk space prior to running this command.

This process takes a while. You will see the virtual machine reboot as per the

instructions in the “Provisioners” section in this chapter. Once it has completed, we

have a .box file, which we now need to import into Vagrant. We do this by executing the

following command from the root of the GitHub project directory.

vagrant box add sharepointoscar/spfarm_base_windows2016 spfarm_base_

windows_2016_virtualbox.box

Tip T he base box can be hosted on the Vagrant cloud or be internally accessible
via a URL. Just know that the size of this artifact is around 4GB, so be sure that
you have enough space.

We now have a base image that we can use for our Vagrant environment. Once this

task is completed, we can switch over to our other GitHub repository for this project.

�Building the Vagrant SharePoint Test Environment
Now that we’ve gone through the Packer build process, we have a base box that Vagrant

can use, which we specify in our Vagrantfile as the base box to use for our SharePoint farm.

We need to configure our boxes based on the SharePoint role. To do this, we need

to modify our Vagrantfile. However, recall that our solution has two files that need to

be modified. This is because our Vagrant environment is a multibox environment, and

we’ve implemented a flexible way to add or remove servers from the farm at build time.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

40

�Using SPAutoInstaller
We use Ansible to carry out specific tasks; however, SPAutoInstaller is incorporated

because it is a comprehensive open source utility created by Brian Lalancette from

Microsoft. You can find it at http://spautoinstaller.com. We use it to fully configure

a SharePoint 2016 farm. Ansible helps us glue all the tasks together, as well as perform

other configuration management tasks prior to installing SharePoint. Later in this

chapter, we go over the specific Ansible task that triggers the SPAutoInstaller PowerShell

scripts based on the SharePoint role that we are configuring using Ansible playbooks.

�A Look at the Vagrant Multimachine Environment
Our solution uses two files to build the SharePoint farm: vagrant-machines.yaml and

Vagrantfile. The YAML file is used to add or remove machines to the farm, and to specify

various properties, including the farm role and IP address. The following are the full

contents of the working file.

DomainControllers:

 name: DomainController1

 box: sharepointoscar/spfarm_base_windows2016

 hostname: SP2012R2AD

 role: DomainController

 memory: 2048

 default: true

 ip_address: 192.168.2.19

 providers: virtualbox

Webservers:

 name: WFE1

 box: sharepointoscar/spfarm_base_windows2016

 hostname: sp2016WFE

 role: Front-End

 memory: 2048

 default: false

 ip_address: 192.168.2.16

 providers: virtualbox

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

﻿http://spautoinstaller.com﻿

41

Databases:

 name: Database1

 box: sharepointoscar/spfarm_base_windows2016

 hostname: sp2016Sqlserver

 role: Database

 default: false

 ip_address: 192.168.2.17

 providers: virtualbox

AppServers:

 name: AppServer1

 box: sharepointoscar/spfarm_base_windows2016

 hostname: sp2016AppServer

 role: Application

 default: false

 ip_address: 192.168.2.18

 providers: virtualbox

Tip T he hostname metadata of each box must be unique, as is the case with the
IP address.

We have grouped the boxes in their specific farm role, such as app servers, web

servers, and so forth. With this in place, we can easily scale our farm and add an

additional web server for instance. Then, the next time we provision our environment,

Vagrant will spin up the new box.

�A Closer Look at the Vagrantfile
The following is the full contents of the Vagrantfile. We will go through major sections of

it below.

-*- mode: ruby -*-

vi: set ft=ruby :

 �# TOPOLOGY - this topology is for a Small Non-High Availability MinRole

Farm comprised of two servers plus

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

42

 # Domain Controller, Database Server and:

 # a) WFE / Distributed Cache

 # b) Application with Search Server

 �# for more details on SharePoint Topologies https://technet.microsoft.

com/en-us/library/mt743704(v=office.16).aspx

 # also, be sure to take a look at the HOWTOUSE.md on this repository.

require 'yaml'

require 'json'

error = Vagrant::Errors::VagrantError

machines = YAML.load_file 'vagrant-machines.yaml'

ANSIBLE_RAW_SSH_ARGS = []

#delete the inventory file if it exists so we can recreate

File.delete("ansible/hosts_test_env.yaml")

File.open("ansible/hosts_test_env.yaml" ,'w') do |f|

 machines.each do |machine|

 f.write "#{machine[0]}:\n"

 f.write " Hosts:\n"

 f.write " #{machine[1]['name']}:\n"

 f.write " ansible_ssh_host: #{machine[1]['ip_address']}\n"

 end

end

Vagrant.configure(2) do |config|

 config.vm.box_check_update = false

 machines.each do |machine|

 name = machine[1]['name']

 box = machine[1]['box']

 role = machine[1]['role']

 hostname = machine[1]['hostname']

 providers = machine[1]['providers']

 memory = machine[1]['memory'] || '512'

 default = machine[1]['default'] || false

 ip_address = machine[1]['ip_address']

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

43

 # insert the private key from the host machine to the guest

 �ANSIBLE_RAW_SSH_ARGS << "-o IdentityFile=~/.vagrant.d/insecure_private_key"

 fail error.new, 'machines must contain a name' if name.nil?

 config.vm.define name, primary: default, autostart: default do |cfg|

 cfg.vm.hostname = hostname

 # credentials

 cfg.winrm.username = "vagrant"

 cfg.winrm.password = "vagrant"

 cfg.vm.guest = :windows

 cfg.vm.communicator = "winrm"

 cfg.windows.halt_timeout = 35

 cfg.vm.boot_timeout = 600

 #configure the network for this machine

 cfg.vm.network "private_network", ip: ip_address

 �cfg.vm.network :forwarded_port, guest: 5985, host: 5985, id: "winrm",

auto_correct: true

 �cfg.vm.network :forwarded_port, guest: 3389, host: 3389, id: "rdp",

auto_correct: true

 �cfg.vm.network :forwarded_port, guest: 22, host: 2222, id: "ssh",

auto_correct: true

 cfg.vm.network :public_network

 if box

 cfg.vm.box = box

 elsif box_url && box_name

 cfg.vm.box = box_name

 cfg.vm.box_url = box_url

 else

 fail error.new, 'machines must contain box or box_name and box_url'

 end

 if providers == 'virtualbox'

 cfg.vm.provider :virtualbox do |v|

 v.gui = true

 v.customize ["modifyvm", :id, "--memory", memory]

 v.customize ["modifyvm", :id, "--cpus", 2]

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

44

 v.customize ["modifyvm", :id, "--vram", 128]

 v.customize ["modifyvm", :id, "--clipboard", "bidirectional"]

 v.customize ["modifyvm", :id, "--accelerate3d", "on"]

 v.customize ["modifyvm", :id, "--accelerate2dvideo", "on"]

 end

 end

 �# we can insert provisioners here to inject additional scripts if

needed

 # sample below.

 �#cfg.vm.provision "shell", path: "./ansible/roles/internal/common/

files/openssh.ps1"

 �# Use specific Ansible Playbooks and other provisioners based on SP

Machine Role

 if role == 'DomainController'

 cfg.vm.provision :ansible do |ansible|

 #let's configure the domain controler and add

 # a) the SP Service Accounts

 # b) Sample User Accounts

 ansible.limit = "domaincontrollers"

 ansible.playbook = "ansible/plays/domaincontroller.yml"

 ansible.inventory_path = "ansible/test.ini"

 ansible.verbose = "vvvv"

 ansible.raw_ssh_args = ANSIBLE_RAW_SSH_ARGS

 end

 elsif role == 'Front-End'

 # we must set the network interface DNS server accordingly

 # before we join the machien to the domain

 �config.vm.provision "shell", path: "./ansible/roles/internal/

domaincontroller/files/setDNS.ps1", args:"-DNS 192.1.68.2.19

-Network 192.168.2.16"

 # join machine to domain name

 cfg.vm.provision :ansible do |ansible|

 ansible.limit = "webservers"

 ansible.playbook = "ansible/plays/webservers.yml"

 ansible.inventory_path = "ansible/test.ini"

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

45

 ansible.verbose = "vvvv"

 ansible.raw_ssh_args = ANSIBLE_RAW_SSH_ARGS

 end

 end

 end

 end

end

This is a lot to take in, so let’s go over some of the key elements in this file.

�Building the Ansible Inventory Dynamically

Because we use Ansible as our provisioning tool, we must create an “inventory” file that

keeps track of all the machines that Ansible should be able to reach and manage. These

machines are grouped by the SharePoint role in our scenario. As you can imagine, things

can get very complicated if we were to maintain the inventory file and the Vagrantfile

manually, as it would effectively be more work to keep those two files in sync, as they should

be. In other words, you never want to be in a situation where your Vagrantfile specifies a

machine that does not exist in the Ansible inventory file and vice versa (see Figure 3-1).

In lines 21 to 36, the Vagrantfile deletes the previous file within the file system, and

then creates a File object to write the new values based on the vagrant-machines.yaml

definition. The new inventory file is then written to ansible/hosts_test_env.yaml,

which is used both when provisioning using Vagrant and when executing ad hoc Ansible

commands to run playbooks.

For each machine defined, it creates said machine, based on the base box and

with specific virtualization provider, which in our case is VirtualBox. It ensures that the

WinRM username and password are specified for Ansible to access for provisioning and

configuration management tasks, which happens when the environment is brought up.

This is because Vagrant has provisioners, and in our case, we use Ansible as a provisioner.

We then configure the network and ports. SSH, RDP, and WinRM are key to our

configuration. We need to configure SSH so that Vagrant is able to access the machine.

RDP is opened so that we can remote into the machine. WinRM is needed later to

perform configuration management using Ansible.

�Performing Ansible Provisioning Tasks Based on SharePoint Role

Our Vagrantfile language is Ruby; therefore, we can take advantage of all the Ruby

goodness, which includes core conditional statements. For our Vagrant environment,

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

46

we want to ensure that only certain provisioning tasks or Ansible playbooks are executed

based on the server SharePoint role.

The first role we handle is the domain controller, which is set up from scratch using

Ansible and PowerShell. Once the domain controller is available, we bring up the rest of

the machines in the farm and join them to the domain.

Because we use the Ansible provisioner within our Vagrantfile, Listing 3-3 is what the

output looks like when we execute the command to bring up the domain controller role.

Listing 3-3.  Ansible Provisioner Output When Bringing up the Domaincontroller1

Machine

PYTHONUNBUFFERED=1 ANSIBLE_FORCE_COLOR=true ANSIBLE_HOST_KEY_

CHECKING=false ANSIBLE_SSH_ARGS='-o UserKnownHostsFile=/dev/null -o

IdentitiesOnly=yes -i '/Users/sharepointoscar/.vagrant.d/insecure_

private_key' -o IdentityFile=~/.vagrant.d/insecure_private_key -o

IdentityFile=~/.vagrant.d/insecure_private_key -o IdentityFile=~/.

vagrant.d/insecure_private_key -o IdentityFile=~/.vagrant.d/insecure_

private_key -o ControlMaster=auto -o ControlPersist=60s' ansible-playbook

--connection=ssh --timeout=30 --extra-vars="ansible_ssh_user='vagrant'"

--limit="domaincontrollers" --inventory-file=ansible/test.ini -vvvv

ansible/plays/domaincontroller.yml

Using /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible.cfg as config file

statically included: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible/roles/internal/domaincontroller/tasks/promote-domain.yml

statically included: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml

Loading callback plugin default of type stdout, v2.0 from /usr/local/

Cellar/ansible/2.3.1.0/libexec/lib/python2.7/site-packages/ansible/plugins/

callback/__init__.pyc

PLAYBOOK: domaincontroller.yml

1 plays in ansible/plays/domaincontroller.yml

PLAY [domaincontroller.yml | All roles]

**

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

47

TASK [Gathering Facts]

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/setup.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant on PORT 5985 TO

192.168.2.19

EXEC (via pipeline wrapper)

ok: [DomainController1]

META: ran handlers

TASK [domaincontroller : Set DNS Server]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/promote-domain.yml:2

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant on PORT 5985 TO

192.168.2.19

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

<192.168.2.19> PUT "/Users/sharepointoscar/git-repos/vagrant-

ansible-packer-spfarm/ansible/roles/internal/domaincontroller/

files/SetDNS.ps1" TO "C:\Users\vagrant\AppData\Local\Temp\ansible-

tmp-1509936795.34-13173498082809\SetDNS.ps1"

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "changed": true,

 "rc": 0,

 "stderr": "",

 �"stdout": "\r\n\r\n__GENUS : 2\r\n__CLASS :

__PARAMETERS\r\n__SUPERCLASS : \r\n__DYNASTY : __PARAMETERS\

r\n__RELPATH: \r\n__PROPERTY_COUNT : 1\r\n__DERIVATION : {}\r\n

__SERVER : \r\n__NAMESPACE : \r\n__PATH : \r\

nReturnValue : 0\r\nPSComputerName : \r\n\r\n\r\n\r\n",

 "stdout_lines": [

 "",

 "",

 "__GENUS : 2",

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

48

 "__CLASS : __PARAMETERS",

 "__SUPERCLASS : ",

 "__DYNASTY : __PARAMETERS",

 "__RELPATH : ",

 "__PROPERTY_COUNT : 1",

 "__DERIVATION : {}",

 "__SERVER : ",

 "__NAMESPACE : ",

 "__PATH : ",

 "ReturnValue : 0",

 "PSComputerName : ",

 "",

 "",

 ""

]

}

TASK [domaincontroller : Install Active Directory on Windows Server 2016]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/promote-domain.yml:5

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant on PORT 5985 TO

192.168.2.19

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

<192.168.2.19> PUT "/Users/sharepointoscar/git-repos/vagrant-

ansible-packer-spfarm/ansible/roles/internal/domaincontroller/files/

create-domain.ps1" TO "C:\Users\vagrant\AppData\Local\Temp\ansible-

tmp-1509936813.45-54504785903488\create-domain.ps1"

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "changed": true,

 "rc": 0,

 "stderr": "",

 "stdout": "Configuring SharePoint Farm Active Directory Domain

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

49

Controller\r\n \r\nThe task has completed successfully.

\r\nSee log %windir%\\security\\logs\\scesrv.log for detail info.

\r\nCompleted 5 percent (0/18) \tProcess Security Policy area

\r\nCompleted 22 percent (3/18) \tProcess Security Policy area

\r\nCompleted 44 percent (7/18) \tProcess Security Policy area

\r\nCompleted 61 percent (10/18) \tProcess Security Policy area

\r\nCompleted 77 percent (13/18) \tProcess Security Policy area

\r\nCompleted 100 percent (18/18) \tProcess Security Policy area

\r\n \r\nThe task has completed successfully.\r\nSee log

%windir%\\security\\logs\\scesrv.log for detail info.\r\n\r\nSuccess

RestartNeeded FeatureResult \r\n

------- ------------- -------------

\r\n True No {Active Directory Domain Services,

Group PolicyManagement, Remote Server Administration Tools...\r\n

 \r\nchanged\r\n\r\n\r\n",

 "stdout_lines": [

 "Configuring SharePoint Farm Active Directory Domain Controller",

 " ",

 "The task has completed successfully.",

 "See log %windir%\\security\\logs\\scesrv.log for detail info.",

 "Completed 5 percent (0/18) \tProcess  Security   Policy  area ",

 "Completed 22 percent (3/18) \tProcess  Security Policy  area ",

 "Completed 44 percent (7/18) \tProcess  Security Policy  area ",

 "Completed 61 percent (10/18) \tProcess Security Policy area ",

 "Completed 77 percent (13/18) \tProcess Security Policy area ",

 "Completed 100 percent (18/18) \tProcess Security Policy area ",

 " ",

 "The task has completed successfully.",

 "See log %windir%\\security\\logs\\scesrv.log for detail info.",

 "",

 "Success RestartNeeded FeatureResult",

 "------- ------------- -------------",

 �" True No {Active Directory Domain Services,

Group Policy Management, Remote Server Administration Tools...",

 "",

 "changed",

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

50

 "",

 ""

]

}

TASK [domaincontroller : win_reboot]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible/roles/internal/domaincontroller/tasks/promote-domain.yml:11

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant on PORT 5985

TO 192.168.2.19

EXEC (via pipeline wrapper)

attempting post-reboot test command 'whoami'

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant on PORT 5985 TO

192.168.2.19

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "changed": true,

 "rebooted": true,

 "warnings": []

}

TASK [domaincontroller : debug]

**

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/promote-domain.yml:15

ok: [DomainController1] => {

 "msg": "The result of the reboot is: True"

}

......

You will notice that this is very verbose. This is because in our Vagrantfile, we

indicated that Ansible be verbose by specifying it within our provisioner (see the bold

text in the following).

 �# Use specific Ansible Playbooks and other provisioners based on SP

Machine Role

 if role == 'DomainController'

 cfg.vm.provision :ansible do |ansible|

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

51

 #let's configure the domain controler and add

 # a) the SP Service Accounts

 # b) Sample User Accounts

 ansible.limit = "domaincontrollers"

 ansible.playbook = "ansible/plays/domaincontroller.yml"

 ansible.inventory_path = "ansible/test.ini"

 ansible.verbose = "vvvv"

 ansible.raw_ssh_args = ANSIBLE_RAW_SSH_ARGS

 end

As you move down the output, you can see that each subtask is being executed and

what the results are.

�Bring up the SharePoint Vagrant Environment
Having hostnames in place allows us to execute Vagrant commands targeting a specific

box. For example, if we wanted to only bring up and configure the domain server, we

would execute the following command.

$ vagrant up DomainController1

Vagrant only brings up the box named DomainController1 and runs our Ansible and

ServerSpec provisioners specified in the Vagrantfile. If we want to check the status of all

the machines in our farm, we execute the following command.

$ vagrant status

This outputs something similar to the following.

Current machine states:

DomainController1 not created (virtualbox)

WFE1 not created (virtualbox)

Database1 not created (virtualbox)

AppServer1 not created (virtualbox)

This environment represents multiple VMs. The VMs are all listed

above with their current state. For more information about a specific

VM, run `vagrant status NAME .̀

As you can see, the environment is not up at this time. So let’s bring this

environment up.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

52

�Bring up the Domain Controller

First, we want to bring up the domain controller, since all other servers depend on

this role. Hence, this is why we indicate in vagrant-machines.yaml that this role is the

default. This ensures that Vagrant brings it up first.

Executing the following command brings up our domain controller.

$ vagrant up DomainController1

In the background, Vagrant is configuring the base Windows Server 2016 and

promoting it to a domain controller. Ansible tasks are then executed to add the

SharePoint Server service accounts and other user accounts. We use DomainController1

because that is the name we gave our Vagrant box in the YAML file.

Should this command fail, destroy the machine by running the following command.

$ vagrant destroy -f DomainController1

Then, try to bring up the DomainController1 machine again.

Tip E nsure that you have installed the ServerSpec provisioner so that the
command runs successfully. If you have not installed it, simply comment out lines
120 to 122, where the ServerSpec tests are called for the domain controller build.

The Ansible Tasks

Each server in the topology has a specific role; therefore, we want to configure each

machine differently based on that role. For our Ansible directory structure, we’ve

included an Ansible role that matches each SharePoint role, as shown in the following

directory structure.

> $ tree -L 2

├── Database
│ ├── defaults
│ ├── files
│ ├── handlers
│ ├── meta
│ ├── tasks

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

53

│ ├── templates
│ └── vars
├── WFE
│ ├── defaults
│ ├── handlers
│ ├── meta
│ ├── tasks
│ ├── templates
│ └── vars
├── common
│ ├── README.md
│ ├── files
│ ├── meta
│ └── tasks
└── domaincontroller
 ├── defaults
 ├── files
 ├── handlers
 ├── meta
 ├── tasks
 ├── templates
 └── vars

27 directories, 1 file

You can see we have the database, the domain controller, and a WFE role (the app

server role is not shown). If you take a closer look, each Ansible role has a tasks folder, in

which we define the various tasks for provisioning and configuration management.

The tasks folder contains a main.yaml file, which includes as many YAML files as we

want. These represent grouped tasks. For this role, we have two tasks: promote-domain.yml

and create-ad-accounts.yml, which ensure that all SharePoint service accounts are

created, as well as sample user accounts.

> $ tree -L 2

├── defaults
│ └── main.yml
├── files
│ ├── ImportADServiceAccounts.ps1

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

54

│ ├── ImportADUsers.ps1
│ ├── SetDNS.ps1
│ ├── create-domain.ps1
│ ├── import_create_ad_sample_users.csv
│ ├── import_create_ad_users.csv
│
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── tasks
│ ├── create-ad-accounts.yml
│ ├── main.yml
│ └── promote-domain.yml
├── templates
│ └── example.j2
└── vars
 └── main.yml

7 directories, 15 files

For the domain controller, we ensure that the following happens:

•	 Promote Windows Server 2016 to domain controller

•	 Reboot server after promoting it to domain controller

•	 Add the Vagrant user account to domain admins

•	 Create SharePoint service accounts

•	 Create sample user accounts

Tip  You can change the service account names and user accounts, which all
reside in their respective CSV files within the domain controller role located at
ansible/roles/internal/domaincontroller/files.

The main.yml file includes the tasks that we want to ensure are executed on the

playbook. The file contents look like Listing 3-4.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

55

Listing 3-4.  main.yml Includes Tasks to Be Executed on the Playbook

 - include: promote-domain.yml

 - include: create-ad-accounts.yml

Let’s take a closer look at the first task, which handles promoting a simple Windows

Server 2016 into a domain controller. The following is what our task looks like.

- name: Install Active Directory on Windows Server 2016

 script: files/create-domain.ps1

 register: script_result

 changed_when: "'changed' in script_result.stdout"

 tags:

 - create-domain

- name: Reboot for AD changes to take effect.

 win_reboot:

 tags:

 - create-domain

- name: Server is rebooted, now a domain controller. Stop all other tasks

without failing or errors.

 meta: end_play

 tags:

 - create-domain

You will notice that there are braces with variables on some of our task files. These

come from the Ansible group vars YAML file, which is located under Ansible/group_

vars/all/all.yml.

Ansible looks at these variables every time it executes a playbook or task.

Listing 3-5 shows the contents of the group vars all.yml file, which contains all of our

global variables.

Listing 3-5.  The all.yml file Contents with Global Variables Used by Ansible

domain: "sposcar.local"

network: "10.0.2.15"

netbios: "SPOSCAR"

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

56

dns_server: "192.168.2.19"

domain_admin_user: packer@sposcar.local

domain_admin_password: pass@word1!

ansible_user: vagrant

ansible_password: vagrant

ansible_port: 5985

ansible_connection: winrm

ansible_winrm_transport: ntlm

ansible_winrm_operation_timeout_sec: 120

ansible_winrm_read_timeout_sec: 150

The following is necessary for Python 2.7.9+ (or any older Python that

has backported SSLContext, eg, Python 2.7.5 on RHEL7) when using default

WinRM self-signed certificates:

ansible_winrm_server_cert_validation: ignore

#SharePoint related global variables

SharePointBitsPath: "c:\\SP\\2016\\SharePoint"

SharePointPrerequisitesPath: "c:\\SP\\2016\\prerequisiteinstallerfiles"

cloud_host: null

Note T hough not necessary, you may want to change the domain name and
other variables in this file to meet your needs and to deploy your own test/dev
environment locally.

Let’s go through the contents of the promote-domain.yml file in detail.

The first Ansible task promotes the machine as a domain controller. This is also

handled by a PowerShell script, which resides within the files folder of the Ansible role.

- name: Install Active Directory on Windows Server 2016

 script: files/create-domain.ps1

 register: script_result

 changed_when: "'changed' in script_result.stdout"

 tags:

 - create-domain

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

57

Note W e intentionally used a PowerShell script to show how you might do this.
However, you can use the Ansible win_domain module as well, and this task can
easily be modified to use it.

We then initiate a reboot.

- name: Reboot for AD changes to take effect.

 win_reboot:

 tags:

 - create-domain

Next, we end the playbook execution.

- name: Server is rebooted, now a domain controller. Stop all other tasks

without failing or errors.

 meta: end_play

 tags:

 - create-domain

Tip W e used tags in each Ansible task. We go over this in detail later in this
chapter, and show you how we use them to only execute tasks with specific tags.

Using Ansible to Execute Playbooks or Specific Tasks

Although our Vagrantfile uses the Ansible provisioner, there may be times when we want

to run a playbook or even a specific task after the machines have been provisioned. This

is where the power of Ansible continues to shine.

For our scenario, we’ve already built our domain controller. If you recall, there are

two main ansible tasks. We’ve covered one, promote-domain.yml. Now let’s assume that

we want to run our second task—create-ad-accounts.yml—manually to populate the

Active Directory with SharePoint service accounts and sample domain user accounts.

From the root of our GitHub repository directory, we execute the following command.

> $ ansible-playbook -i ansible/test.ini ansible/plays/domaincontroller.yml

--extra-vars="ansible_user='vagrant@sposcar.local' ansible_password='Pass@

word1!'" --start-at-task="Add Admin Account to Domain Admins" -vvvvv

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

58

There is a lot of useful information in this command. First, at the end of the

command, we specify which task from the playbook Ansible should start at. In this

case, it is Add Admin Account to Domain Admins. We must pass several parameters

contained within–extra-vars, which include the credentials that Ansible should use for

the WinRM connection to the Windows server.

Tip O nce the server is promoted to a domain controller, we must use the domain
account when executing future Ansible tasks. In this case, it is vagrant@sposcar.
local, which is in the domain admins group. It was added to the administrators
group as well.

The output of executing the command is as follows.

$ ansible-playbook -i ansible/hosts_dev_env.yaml ansible/plays/

domaincontroller.yml --extra-vars="ansible_user='vagrant@sposcar.local'

ansible_password='vagrant'" --start-at-task="Ensure vagrant is member of

Domain Admins, Administrators, Domain Users" -vvvv

Using /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible.cfg as config file

statically included: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible/roles/internal/domaincontroller/tasks/promote-domain.yml

statically included: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml

Loading callback plugin default of type stdout, v2.0 from /usr/local/

Cellar/ansible/2.3.1.0/libexec/lib/python2.7/site-packages/ansible/plugins/

callback/__init__.pyc

PLAYBOOK: domaincontroller.yml

1 plays in ansible/plays/domaincontroller.yml

PLAY [domaincontroller.yml | All roles]

TASK [Gathering Facts]

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/setup.ps1

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

59

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

EXEC (via pipeline wrapper)

ok: [DomainController1]

TASK [domaincontroller : Add Admin Account to Domain Admins]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml:21

Using module file/usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_user.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "account_disabled": false,

 "account_locked": false,

 "changed": true,

 "description": "Vagrant User",

 "fullname": "Vagrant",

 "groups": [

 {

 "name": "Domain Users",

 "path": "WinNT://SPOSCAR/SP2012R2AD/Domain Users"

 },

 {

 "name": "Domain Admins",

 "path": "WinNT://SPOSCAR/SP2012R2AD/Domain Admins"

 },

 {

 "name": "Administrators",

 "path": "WinNT://SPOSCAR/SP2012R2AD/Administrators"

 }

],

 "name": "vagrant",

 "password_expired": false,

 "password_never_expires": true,

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

60

 "path": "WinNT://SPOSCAR/SP2012R2AD/vagrant",

 "sid": "S-1-5-21-2574927426-235769873-4243624142-1000",

 "state": "present",

 "user_cannot_change_password": false

}

TASK [domaincontroller : Create directory structure]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml:31

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_file.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

EXEC (via pipeline wrapper)

ok: [DomainController1] => {

 "changed": false

}

TASK [domaincontroller : Copy ImportADUsers.ps1 to c:\tmp]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml:37

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_stat.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

<192.168.2.19> PUT "/Users/sharepointoscar/git-repos/vagrant-

ansible-packer-spfarm/ansible/roles/internal/domaincontroller/files/

ImportADUsers.ps1" TO "C:\Users\vagrant\AppData\Local\Temp\ansible-

tmp-1511718603.79-192615989626036\source"

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_copy.ps1

EXEC (via pipeline wrapper)

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

61

changed: [DomainController1] => {

 "changed": true,

 "checksum": "0724159ad9d191ca52e0623fadbd29fc5b993140",

 "dest": "c:\\tmp\\ImportADUsers.ps1",

 "operation": "file_copy",

 "original_basename": "source",

 "size": 1095,

 "src": "C:\\Users\\vagrant\\AppData\\Local\\Temp\\ansible-

tmp-1511718603.79-192615989626036\\source"

}

TASK [domaincontroller : Copy ImportADServiceAccounts.ps1 to c:\tmp]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml:43

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_stat.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

<192.168.2.19> PUT "/Users/sharepointoscar/git-repos/vagrant-

ansible-packer-spfarm/ansible/roles/internal/domaincontroller/files/

ImportADServiceAccounts.ps1" TO "C:\Users\vagrant\AppData\Local\Temp\

ansible-tmp-1511718606.71-55782215012245\source"

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_copy.ps1

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "changed": true,

 "checksum": "9abba9699cf28836bf1d297faad25e2686916977",

 "dest": "c:\\tmp\\ImportADServiceAccounts.ps1",

 "operation": "file_copy",

 "original_basename": "source",

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

62

 "size": 1122,

 "src": �"C:\\Users\\vagrant\\AppData\\Local\\Temp\\ansible-

tmp-1511718606.71-55782215012245\\source"

}

TASK [domaincontroller : Copy import_create_ad_sample_users.csv to c:\tmp]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml:49

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_stat.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

<192.168.2.19> PUT "/Users/sharepointoscar/git-repos/vagrant-ansible-

packer-spfarm/ansible/roles/internal/domaincontroller/files/import_create_

ad_sample_users.csv" TO "C:\Users\vagrant\AppData\Local\Temp\ansible-

tmp-1511718609.85-26838732258466\source"

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_copy.ps1

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "changed": true,

 "checksum": "f23522a391042e12beed481e26b3ce750d110994",

 "dest": "c:\\tmp\\import_create_ad_sample_users.csv",

 "operation": "file_copy",

 "original_basename": "source",

 "size": 584,

 �"src": "C:\\Users\\vagrant\\AppData\\Local\\Temp\\ansible-tmp-

1511718609.85-26838732258466\\source"

}

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

63

TASK [domaincontroller : Copy import_create_ad_users.csv to c:\tmp]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml:55

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_stat.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

<192.168.2.19> PUT "/Users/sharepointoscar/git-repos/vagrant-ansible-

packer-spfarm/ansible/roles/internal/domaincontroller/files/import_

create_ad_users.csv" TO "C:\Users\vagrant\AppData\Local\Temp\ansible-

tmp-1511718613.09-193282785092701\source"

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_copy.ps1

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "changed": true,

 "checksum": "5216a8ccb14780492685c34a8015def573b19439",

 "dest": "c:\\tmp\\import_create_ad_users.csv",

 "operation": "file_copy",

 "original_basename": "source",

 "size": 589,

 �"src": �"C:\\Users\\vagrant\\AppData\\Local\\Temp\\ansible-

tmp-1511718613.09-193282785092701\\source"

}

TASK [domaincontroller : Create AD User Accounts]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml:62

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_shell.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

64

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "changed": true,

 "cmd": "C:\\tmp\\ImportADUsers.ps1",

 "delta": "0:00:01.703369",

 "end": "2017-11-26 05:50:17.917848",

 "rc": 0,

 "start": "2017-11-26 05:50:16.214478",

 "stderr": "",

 "stderr_lines": [],

 "stdout": "",

 "stdout_lines": []

}

TASK [domaincontroller : Create SharePoint AD Service Accounts]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/create-ad-accounts.yml:66

Using module file /usr/local/Cellar/ansible/2.3.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/win_shell.ps1

<192.168.2.19> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 192.168.2.19

EXEC (via pipeline wrapper)

changed: [DomainController1] => {

 "changed": true,

 "cmd": "C:\\tmp\\ImportADServiceAccounts.ps1",

 "delta": "0:00:01.358956",

 "end": "2017-11-26 05:50:19.917204",

 "rc": 0,

 "start": "2017-11-26 05:50:18.558247",

 "stderr": "",

 "stderr_lines": [],

 "stdout": "",

 "stdout_lines": []

}

META: ran handlers

META: ran handlers

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

65

PLAY RECAP

DomainController1 : ok=9 changed=7 unreachable=0 failed=0

As you can see, nine tasks completed successfully and zero failed. Great! If we were

to run this command again, tasks would not change anything because nothing changed

on the server side. This is called idempotence.

Tip I dempotence is the property of certain operations in mathematics and
computer science that can be applied multiple times without changing the result
beyond. In the context of managing systems, you can think of it as ensure you
check the state of resources and only change them if is not in the desired state.

We now have a populated Active Directory with SharePoint service accounts and

sample user accounts. We’ve made a lot of progress. Our domain controller spins up

properly and Active Directory has the required service accounts for SharePoint. Why not

make that a test when spinning up the domain controller role?

In the next section, we use ServerSpec to write some basic tests to check for these

things. This is a great start for when we are ready to incorporate our build into a CI/CD

environment. Imagine, once your tests pass, you can publish the Vagrantfile into source

control for developers to access the fully working version.

But first, let’s bring up our database server, which serves as the back end for the

SharePoint 2016 farm.

�Bring up the Database Server

Now that our domain controller is provisioned, let’s bring up our database server. The

database server also has its own Ansible role, which handles these two key tasks:

•	 Joining the database server to the domain

•	 Executing an unattended SQL Server 2014 installation (this takes at

least five minutes, so do not panic if it seems as if the task is stuck)

Much like the domain server, we can easily provision the database server by

executing the following command.

>$ vagrant up Database1

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

66

The Vagrantfile ensures that the Ansible playbook is executed when the machine

is provisioned. The playbook is located at ansible/plays/databaseservers.yml. The

playbook tasks are located in the respective role at ansible/roles/internal/database/

tasks/main.yml.

The contents of the main.yml look similar to the following:

 - include: join-to-domain.yml

 - include: mountimg.yml

As you can see, there are two main tasks for our database playbook. Let’s go over

each one in detail.

The Ansible Tasks

This task ensures that the database server is joined to the domain we have created. The

key subtask uses an Ansible built-in module, win_domain_membership, and we configure

it as follows to join the database server to our domain.

Listing 3-6.  The join-to-domain.yml Task

- name: Join Database to Domain Controller

 win_domain_membership:

 dns_domain_name: "{{domain}}"

 hostname: "SP2016SQLSERVER"

 domain_admin_user: "{{domain_admin_user}}"

 domain_admin_password: "{{domain_admin_password}}"

 state: domain

 register: domain_state

 tags:

 - join-to-domain

 - all-environments

- name: Reboot server after joining to Domain Server

 win_reboot:

 when: domain_state.reboot_required

 tags:

 - join-to-domain

 - all-environments

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

67

Note that we are using the hostname provided by our vagrant-machines.yml file.

We use the domain admin and password, as we need proper rights to join this machine

to the domain. And we use our global variables, which have curly braces. These come

from our ansible/group_vars/all/all.yml file. Lastly, we reboot the machine so that

changes can take effect.

The mountimg.yml Task

Now that we’ve joined the server to our domain and restarted it, we focus on the

unattended installation of SQL Server 2014. ansible/roles/internal/database/tasks/

mountimg.yml contains the entire group of tasks that are needed to achieve this.

Listing 3-7 is what it looks like in its entirety.

Listing 3-7.  The Contents of the mountimg.yml Task File

- name: Disable User Access Control UAC

 script: ../roles/internal/common/files/disable-uac.bat

 tags:

 - vagrant-environment

- name: Install .NET Framework 3.5 (its required for database install)

 win_feature:

 name: Net-Framework-Features

 state: present

 restart: yes

 include_sub_features: yes

 include_management_tools: yes

 tags:

 - vagrant-environment

open up firewall port 1433 for SQL to accept incoming connections.

- name: Open port 1433 for remote connections to SQL Server

 win_firewall_rule:

 name: SQL Server Remote Connections

 localport: 1433

 action: allow

 direction: in

 protocol: tcp

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

68

 profiles: domain,private,public

 state: present

 enabled: yes

 tags:

 - all-environments

since we are using Ansible 2.4, change this to the built-in module

- name: Add SPOSCAR\SP_FARM to Local Admins Group

 �script: ../../common/files/AddDomainAccountToAdminsGroup.ps1 -domain_

username SPOSCAR\SP_FARM -domain_username_password pass@word1!

 tags:

 - all-environments

- name: Add SPOSCAR\administrator to Local Admins Group

 �script: ../../common/files/AddDomainAccountToAdminsGroup.ps1 -domain_

username SPOSCAR\Administrator -domain_username_password pass@word1!

 tags:

 - all-environments

- name: Add SPOSCAR\vagrant to SysAdmin SQL Role (return 0 = success)

 �win_shell: sqlcmd -S SP2016SQLSERVER -Q "EXEC sp_addsrvrolemember

'SPOSCAR\vagrant', 'sysadmin';"

 tags:

 - all-environments

- name: Reboot Server so UAC changes take effect.

 win_reboot:

- name: Download SQL Server ISO to root C:\

 win_get_url:

 �url: http://download.microsoft.com/download/6/D/9/6D90C751-6FA3-4A78-

A78E-D11E1C254700/SQLServer2014SP2-FullSlipstream-x64-ENU.iso

 dest: c:\SQLServer2014-x64-ENU.iso

 force: no

 tags:

 - vagrant-environment

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

69

- name: Copy SQL Server ConfigurationFile to C:\

 win_copy:

 src: ../roles/internal/Database/files/ConfigurationFile.ini

 dest: c:\ConfigurationFile.ini

 tags:

 - vagrant-environment

- name: Mount SQL Server ISO Image

 win_disk_image:

 image_path: C:\SQLServer2014-x64-ENU.iso

 state: present

 register: disk_image_out

 tags:

 - vagrant-environment

- name: Output debug info for path mount

 debug:

 �msg: 'The path to SQL executable {{ disk_image_out.mount_path }}setup.

exe'

 tags:

 - vagrant-environment

#Run a command under a non-Powershell interpreter (cmd in this case)

- name: Run SQL Server unattended setup command using ConfigurationFile

 win_shell: D:\setup.exe /Q /ConfigurationFile=c:\ConfigurationFile.ini

 args:

 executable: cmd

 tags:

 - vagrant-environment

Several things are happening here. First, we make sure that UAC is disabled because

it would prevent the install otherwise. We then install the .NET Framework. The only

reason this may be needed is because the installation uses some .NET assemblies to

carry out the install as a workflow. We ensure that port 1433 is open because SQL Server

uses this for remote connections.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

70

Next, we ensure that the SP farm accounts are in the local administrator’s group.

 - name: Add SPOSCAR\SP_FARM to Local Admins Group

 �script: ../../common/files/AddDomainAccountToAdminsGroup.ps1 -domain_

username SPOSCAR\SP_FARM -domain_username_password pass@word1!

 tags:

 - all-environments

- name: Add SPOSCAR\administrator to Local Admins Group

 �script: ../../common/files/AddDomainAccountToAdminsGroup.ps1 -domain_

username SPOSCAR\Administrator -domain_username_password pass@word1!

 tags:

 - all-environments

We then download the SQL binaries using the following subtask.

- name: Download SQL Server ISO to root C:\

 win_get_url:

 �url: http://download.microsoft.com/download/6/D/9/6D90C751-6FA3-4A78-

A78E-D11E1C254700/SQLServer2014SP2-FullSlipstream-x64-ENU.iso

 dest: c:\SQLServer2014-x64-ENU.iso

 force: no

 tags:

 - vagrant-environment

Note W e reuse these tasks to build the SharePoint farm in Azure and AWS;
therefore, we use tags to execute only the tasks needed for a given environment.

This subtask is at the core of the playbook to execute an unattended SQL install.

Once the SQL image is downloaded, we mount the disc and then execute the

installation via a configuration file.

Run a command under a non-Powershell interpreter (cmd in this case)

- name: Run SQL Server unattended setup command using ConfigurationFile

 win_shell: D:\setup.exe /Q /ConfigurationFile=c:\ConfigurationFile.ini

 args:

 executable: cmd

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

71

Note T his task may take up to 10 minutes. As a rule of thumb, if you don’t see an
error on the Ansible console, do not stop the task, because it is actually working.

There is a lengthy output once the subtask has completed. We’ve removed most of it.

Highlight the output you need to discover if it was successful. This is Setup result: 0.

Listing 3-8.  The Output Shows “Setup result:0” Which Indicates A Successful

SQL Server Unattended Install

[......]

"--",

 "Running Action: CloseUI",

 "Stop action skipped in UI Mode Quiet",

 "Completed Action: CloseUI, returned True",

 "Completed Action: ExecuteCloseWorkflow, returned True",

 "Completed Action: ExecuteCompleteWorkflow, returned True",

 "",

 "",

 "--",

 "",

 "Setup result: 0",

 "SQM Service: Sqm does not have active session.",

 "Microsoft (R) SQL Server 2014 12.00.2000.08",

 "",

 "Copyright (c) Microsoft Corporation. All rights reserved.",

 "",

 ""

]

}

�Bring up the WFE and App Server

Now that our domain controller and database server are up and running, we want to

bring up our WFE and app server using Vagrant (similar to what we did for the domain

controller). The WFE role has different tests we will run, and has different Ansible task as

well. However, both app server and WFE use the same Ansible tasks.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

72

Noteworthy are the Ansible tasks that handle the actual installation of SharePoint

2016, and we will go through it in detail. Let’s bring up the server by running the

following command.

>$ vagrant up WFE1

Vagrant executes the Ansible provisioner at the time the WFE is brought up, and

runs the corresponding Ansible playbook located at ansible/plays/webservers.yml.

The playbook looks at the WFE role tasks, which are located under ansible/roles/

internal/WFE/tasks/main.yml. It is in the file where we specify which tasks should be

executed and in what order. The following is what the file looks like.

 - include: join-to-domain.yml

 - include: mount-sp-img.yml

As of the writing of this book, the include directive was deprecated; it still works,

but you will see warnings. For information on using import_tasks, see https://docs.

ansible.com/ansible/2.4/playbooks_reuse_includes.html.

Note T he SharePoint roles are dictated by the SPAutoInstaller XML configuration
file, where we specify the topology for the farm. SPAutoInstaller uses the hostname
to assign roles. We defined our hostnames in our vagrant-machines.yaml file on
the root of our GitHub project repository.

As you can see, we only have two main tasks for the WFE role. Here is the overall

expected end state:

•	 The WFE should be joined to the domain server.

•	 The SharePoint image disk should be mounted.

•	 SharePoint 2016 prerequisites should be downloaded.

•	 SharePoint 2016 prerequisites should be installed.

•	 SPAutoInstaller is triggered and the farm is created and configured as

per the XML file within our Git repository at ansible/roles/common/

files/SPAutoInstaller/SPAutoInstallerInput.xml.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

﻿https://docs.ansible.com/ansible/2.4/playbooks_reuse_includes.html﻿
﻿https://docs.ansible.com/ansible/2.4/playbooks_reuse_includes.html﻿

73

Tip I f you wish to view the contents of the SPAutoInstallInput.xml file, simply
go to http://spautoinstaller.com and upload it to view the configuration,
change as desired, and then download and include in the GitHub repository.

The join-to-domain.yml Task

Tip R ecall that the variable values shown in braces come from the group_vars/
all/all.yml Ansible file. Also, notice that we reuse a task from the domain controller
Ansible role, based on the following SetDNS.ps1 file location.

Let’s take a closer look at the first task: join-to-domain.yml. As you probably guessed,

this task’s sole purpose is to join the machine to the domain controller we provisioned

earlier in this chapter. The task uses built-in Ansible modules such as the win_domain_

membership, which makes it easy to join the machine to our domain. Here is a closer look

at our task file. The first subtask handles the actual joining to the domain. This subtask

uses a built-in module called win_domain_membership. We use additional variables, such

as the domain_admin_user and domain_admin_password, for the proper rights to join the

machine to the sposcar.local domain.

- name: Join Webserver to Domain Controller

 win_domain_membership:

 dns_domain_name: "{{domain}}"

 hostname: "{{cloud_host}}"

 domain_admin_user: "{{domain_admin_user}}"

 domain_admin_password: "{{domain_admin_password}}"

 state: domain

 register: domain_state

 tags:

 - join-to-domain

- name: Reboot server after joining to Domain Server

 win_reboot:

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

http://spautoinstaller.com/

74

 when: domain_state.reboot_required

 tags:

 - join-to-domain

Once the server is joined, a reboot ensures that things work properly.

The mount-sp-img.yml Task

This task is used to do several things, such as downloading the SharePoint prerequisites,

installing prerequisites, mounting the SharePoint Server disc, and initiating the

SPAutoInstaller script.

Tip I f you wish to see the SPAutoInstaller in action while the task is executing,
simply log in using the vagrant@sposcar.local account before the SPAutoInstaller
script is triggered. You should be able to view the various PowerShell and DOS
windows cycling through the process.

Listing 3-9 shows the contents of the task file; most of the subtasks are

self-explanatory. We will focus on the last task.

Listing 3-9.  The mount-sp-img.yml file Contains Subtasks, Including the

SharePoint Install Task

- name: Install PSExec

 win_chocolatey:

 name: psexec

 ignore_errors: yes

- name: Download SharePoint 2016

 win_get_url:

 �url: https://download.microsoft.com/download/0/0/4/004EE264-7043-45BF-

99E3-3F74ECAE13E5/officeserver.img

 dest: c:\

 force: no

This task mounts the Officeserver.img file

- name: Mount the SharePoint Bits IMG

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

75

 win_disk_image:

 image_path: c:\officeserver.img

 state: present

 register: disk_image_out

- name: Create c:\SP directory

 win_file:

 path: C:\SP

 state: directory

- name: Copy SP folder (SPAutoInstaller folder structure)

 win_copy:

 src: ../../common/files/SP/

 dest: C:\SP

 force: false

- name: �Copy SP Bits in {{ disk_image_out.mount_path }} to SPAutoInstaller

folder structure

 �win_shell: XCOPY {{ disk_image_out.mount_path }}* C:\SP\2016\SharePoint\

/s /i /Y

 args:

 executable: cmd

- name: Install All Required Windows Features

 win_feature:

 �name: NET-HTTP-Activation,NET-Non-HTTP-Activ,NET-WCF-Pipe-

Activation45,NET-WCF-HTTP-Activation45,Web-Server,Web-WebServer,Web-

Common-Http,Web-Static-Content,Web-Default-Doc,Web-Dir-Browsing,Web-

Http-Errors,Web-App-Dev,Web-Asp-Net,Web-Asp-Net45,Web-Net-Ext,Web-

Net-Ext45,Web-ISAPI-Ext,Web-ISAPI-Filter,Web-Health,Web-Http-

Logging,Web-Log-Libraries,Web-Request-Monitor,Web-Http-Tracing,Web-

Security,Web-Basic-Auth,Web-Windows-Auth,Web-Filtering,Web-Digest-

Auth,Web-Performance,Web-Stat-Compression,Web-Dyn-Compression,Web-Mgmt-

Tools,Web-Mgmt-Console,Web-Mgmt-Compat,Web-Metabase,WAS,WAS-Process-

Model,WAS-NET-Environment,WAS-Config-APIs,Web-Lgcy-Scripting,Windows-

Identity-Foundation,Xps-Viewer

 state: present

 restart: yes

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

76

 include_sub_features: yes

 include_management_tools: yes

 register: feature_result

make sure to put the prerequisites in the proper folder.

- name: Download SharePoint Prerequisites

 �script: ../../common/files/DownloadPrerequisites.ps1 -SPPrerequisitesPath

{{SharePointPrerequisitesPath}}

- name: Install SharePoint Prerequisites via PowerShell

 �script: ../../common/files/Install-Prerequisites.ps1 -SharePointBitsPath

{{SharePointBitsPath}}

- name: Reboot after Installing Prerequisites

 win_reboot:

- �name: Trigger AutoSPInstaller (computer will restart and continue

install)

 win_psexec:

 command: C:\SP\AutoSPInstaller\AutoSPInstallerLaunch.bat

 priority: high

 elevated: yes

 interactive: yes

 username: sposcar\vagrant

 password: Pass@word1!

 wait: no

Pause for 5 minutes to build app cache.

- name: Wait for SPAutoInstaller to Finish first pass

 pause:

 minutes: 5

- name: Reboot server for AutoSPInstaller to continue

 win_reboot:

- name: wait until admin port 2016 is available. start checking after 15

minutes.

 win_wait_for:

 port: 2016

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

77

 state: present

 delay: 900

 sleep: 20

 timeout: 1800

The last task, Trigger AutoSPInstaller (computer will restart and continue

install), performs the heavy lifting when it comes to installing the SharePoint bits and

configuring the farm.

As you can see, it uses a batch file called AutoSPInstallerLaunch.bat. If we wanted

to see what is happening on the server, we simply sign in using the domain account

SPOSCAR\vagrant on the VirtualBox VM.

We call PSExec with specific parameters and flags to ensure that the batch runs.

Tip I f you feel that the last task, Trigger AutoSPInstaller, is taking a while, you
can sign in to the VirtualBox using the SPOSCAR\vagrant domain account. The task
manager indicates which PowerShell tasks are running. Signing in typically triggers
the AutoSPInstaller to continue installing if it was stuck for some reason, at least
from our experience with running the Ansible playbook.

In our mount-sp-img.yml file, we have a subtask to install PSExec because we

use PSExec to ensure that it is called properly since we are executing it via a different

machine (in this case, a MacBook Pro with Ansible installed).

�Using ServerSpec to Test SharePoint Server Role
Config
Testing infrastructure is important in achieving the desired state to replicate (in this

scenario, the SharePoint development environment). Running infrastructure test scripts

can be done through the Vagrant ServerSpec provisioner and running tests manually.

Integrating these kinds of tests into the CI/CD pipeline is ideal when we start automating

our infrastructure testing, and we want to automatically publish the Vagrantfile to

GitHub, for example.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

78

�About ServerSpec
ServerSpec is an open source framework that helps with testing infrastructure, a practice

known as test-driven infrastructure (TDI). ServerSpec is built on top of Rspec, which

typically is used to test Ruby applications while practicing test-driven development (TDD).

�About Test-Driven Infrastructure
For many years, IT pros managed infrastructure manually and with a combination of

ad hoc scripts to deploy updates to servers by literally remoting into the machine using

RDP and installing software updates or packages. This created inconsistency and did

not allow for a repeatable process in deploying similar machine images for a given

application. Needless to say, maintenance of these systems became a nightmare.

When we think of the benefits that TDD has brought to developers, we start realizing

those same benefits are applicable when we treat our infrastructure as code and

incorporate testing into the deployment of infrastructure on-premises and to the cloud.

By treating infrastructure as code, we start leveraging source control for managing

our infrastructure, we enable multiple team members to contribute to the infrastructure,

and we gain consistency and a repeatable process for managing resources. Infrastructure

as Code is relatively new, and many clouds are using it. For example, you can easily

programmatically build an entire virtual private cloud on AWS using tools like Terraform.

Tip L ater in this book, we go over how to use Terraform to deploy a SharePoint
farm to AWS and Azure clouds.

�Running Tests on Provisioning VM

For our scenario, we will execute tests against the domain controller. These are specific

to this role. For example, we do not want IIS running on the domain controller. We also

want to make sure that the WinRM and RDP ports are open. Lastly, we want to make

sure that the server is configured as a domain controller. You can find the tests on our

solution at /spec/SP2012R2AD.sposcar.local/sample_spec.rb, where you can also

augment additional tests, as you see fit.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

79

At times, you may be required to run tests shortly after the environment is up and

running or has been provisioned by Vagrant. To do this, you need to install an open

source plug-in Vagrant-Serverspec by executing the following command.

> $ vagrant plugin install vagrant-serverspec –plugin-version "1.0.1"

Next, you need to modify the Vagrantfile to run the tests after the virtual machine has

been provisioned. In our scenario, it is the domain controller (see Listing 3-10).

Listing 3-10.  Add Serverspec Provisioner and Specify a Test to Run

 �# Use specific Ansible Playbooks and other provisioners based on SP

Machine Role

if role == 'DomainController'

 cfg.vm.provision :ansible do |ansible|

 #let's configure the domain controler and add

 # a) the SP Service Accounts

 # b) Sample User Accounts

 ansible.limit = "domaincontrollers"

 ansible.playbook = "ansible/plays/domaincontroller.yml"

 ansible.inventory_path = "ansible/test.ini"

 ansible.verbose = "vvvv"

 ansible.raw_ssh_args = ANSIBLE_RAW_SSH_ARGS

 end

 # Run ServerSpec Tests for Domain Controller

 cfg.vm.provision :serverspec do |spec|

 spec.pattern = 'spec/SP2013R2AD.sposcar.local/sample_spec.rb'

 end

elsif role == 'Front-End'

The code listed in bold is what we need to add to our Vagrantfile, roughly starting on

line 105. If all goes well, you should see the output or test results in your terminal, similar

to the following output.

 Port "5985"

 should be listening

Port "3389"

 should be listening

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

80

Command "Get-ExecutionPolicy"

 stdout

 should match /RemoteSigned/

 exit_status should eq 0

Windows feature "AD-Domain-Services"

 should be installed by "powershell"

Windows feature "IIS-Webserver"

 should not be installed by "dism"

Windows feature "Web-Webserver"

 should not be installed by "powershell"

Finished in 5.69 seconds (files took 0.87226 seconds to load)

7 examples, 0 failures

�Running Tests Manually

There may be times when you want to manually run your infrastructure tests. Since we

have provisioned the domain controller, we can execute a command to quickly run our

tests as shown in Listing 3-11.

Caution T he Rakefile at the root of the project uses a dev.env file that contains
the credentials to pass the WinRM connection. You must change these values if
you are not using the sposcar.local domain and have modified the corresponding
Ansible playbook and group_vars. Please ensure that the group_vars/all.
yml domain admin and domain password match the credentials on the dev
environment; otherwise, tests will fail.

Listing 3-11.  Command to Run Tests Manually and Output Shown

> $ bundle exec rake spec

/Users/sharepointoscar/.rvm/rubies/ruby-2.3.4/bin/ruby -I/Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-core-3.7.0/lib:/Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-support-3.7.0/lib /Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-core-3.7.0/exe/rspec

--pattern spec/shared/*_spec.rb

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

81

No examples found.

Finished in 0.0004 seconds (files took 0.07191 seconds to load)

0 examples, 0 failures

/Users/sharepointoscar/.rvm/rubies/ruby-2.3.4/bin/ruby -I/Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-core-3.7.0/lib:/Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-support-3.7.0/lib /Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-core-3.7.0/exe/rspec

--pattern spec/SP2012R2AD.sposcar.local/*_spec.rb

Port "5985"

 should be listening

Port "3389"

 should be listening

User "SPOSCAR\vagrant"

 should exist

 should belong to group "Administrators"

User "SPOSCAR\vagrant"

 should exist

 should belong to group "SPOSCAR\\Domain Admins"

Command "Get-ExecutionPolicy"

 stdout

 should match /RemoteSigned/

 exit_status

 should eq 0

Windows feature "AD-Domain-Services"

 should be installed by "powershell"

Windows feature "IIS-Webserver"

 should not be installed by "dism"

Windows feature "Web-Webserver"

 should not be installed by "powershell"

Finished in 8.06 seconds (files took 0.49515 seconds to load)

11 examples, 0 failures

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

82

/Users/sharepointoscar/.rvm/rubies/ruby-2.3.4/bin/ruby -I/Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-core-3.7.0/lib:/Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-support-3.7.0/lib /Users/

sharepointoscar/.rvm/gems/ruby-2.3.4/gems/rspec-core-3.7.0/exe/rspec

--pattern spec/sp2016WFE/*_spec.rb

No examples found.

Finished in 0.00045 seconds (files took 0.37396 seconds to load)

0 examples, 0 failures

Because this is a domain controller, we want to ensure that it does not have IIS

running. We also want to ensure that the vagrant account is a member of the domain

admins group, and, of course, that this server is a domain controller.

The command executes all tests for all the spec files located under the spec/ folder.

A successful execution shows the output in green, but you can also see the number of

failures and successes within the output shown.

Testing Additional Server Roles

You can add servers to test by executing a serverspec-init command (on Ubuntu, you

can simply run serverspec-init), as follows:

> $ bundle exec serverspec-init

Select OS type:

 1) UN*X

 2) Windows

Select number: 2

Select a backend type:

 1) WinRM

 2) Cmd (local)

Select number: 1

Input target host name: sp2016WFE

 + spec/sp2016WFE/

 + spec/sp2016WFE/sample_spec.rb

 + spec/spec_helper.rb

!! Rakefile already exists and differs from template

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

83

As you can see, a new folder under spec/ is added with the hostname that we

specified. Now that this folder structure is in place, we can start adding our tests to the

sample_spec.rb file, which we can rename to wfe_spec.rb, for example.

Tip I n the next chapter, we implement CI using Jenkins as our Packer template,
which outputs the Vagrant .box file needed to build our SharePoint 2016 dev
environment.

�Push Vagrantfile to GitHub
The Vagrantfile is part of the overall GitHub project repository. So anytime we make

changes, we can easily push those to GitHub by checking our code and pushing those

changes—at which point, all developers on the team get the latest and greatest solution

that they can use to quickly build the SharePoint 2016 dev environment.

One key component to this workflow is that after checking in the latest version of the

Vagrantfile, a continuous integration server, such as Jenkins, should be used to build this

environment continuously and run the tests; and if those tests pass, tag the repo with the

appropriate release.

�Summary
In this chapter, we walked through building a Vagrant SharePoint dev environment and

discussed the configuration management aspect of it. On the configuration management

side, we used Ansible to execute various playbooks and tasks against the corresponding

SharePoint VM role to install and configure the SharePoint VM. We also discussed how

to incorporate infrastructure driven testing, and walked through some basic spec tests

using ServerSpec to test our domain controller at the time of provisioning the VM.

In the next chapter, we create the proper artifacts in Packer, run them through CI

using Jenkins, and deploy our SharePoint 2016 farm to AWS in a staging environment.

The key benefit is that we are using the same Packer template that we used for standing

up the Vagrant dev environment to mirror the environment configuration.

Chapter 3 Build a Dev SharePoint Farm with Vagrant and ServerSpec

85
© Oscar Medina, Ethan Schumann 2018
O. Medina and E. Schumann, DevOps for SharePoint, https://doi.org/10.1007/978-1-4842-3688-8_4

CHAPTER 4

Provisioning the
SharePoint Farm to
Azure Using Terraform
In this chapter, we will go through the exercise of using Infrastructure as Code (IaC) to

deploy the SharePoint 2016 farm to a staging environment in the Azure cloud. We do this

by using one of the most sought after and reliable tools out on the market—Terraform by

HashiCorp. Before coding our infrastructure, we will code our Packer image template to

target Azure RM. The end result of our Packer exercise will be a VHD image that we can

use in Terraform to build our SharePoint virtual machines.

�About the Solution Architecture
This architecture includes a custom Azure image deployed by us. The design leverages

a gallery Azure image that contains SQL Server 2014 preinstalled. Other servers in the

topology use the custom Azure image that we built using Packer (see Figure 4-1).

86

Note  In Chapter 2, we introduced you to the various open source tools, including
Terraform. This book is not meant to be an exhaustive resource, but rather
assumes you know the basics. A book can be written just on Terraform, and it has
been written. We recommend James Turnbull’s The Terraform Book (Turnbull Press,
2016). For information on how Terraform works, please visit www.terraform.io.

�Terraform Folder Structure
Our Terraform folder is divided into environments. We have AWS and Azure, local,

and a shared folder. The shared folder is where common artifacts are used by any

environment. Items such as the SSH keys and providers reside within this folder.

Figure 4-1.  The SharePoint 2016 farm topology in Azure cloud

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

http://www.terraform.io

87

> $ tree terraform -l 2

terraform

├── aws
│ ├── environments
│ │ ├── development
│ │ │ └── backend.tf
│ │ └── staging
│ │ ├── ad.tf
│ │ ├── backend.tf
│ │ ├── eip.tf
│ │ ├── gateways.tf
│ │ ├── iam_roles.tf
│ │ ├── main.tf
│ │ ├── ssm.tf
│ │ └── variables.tf
│ ├── keypair.tf
│ ├── output.tf
│ ├── scripts
│ │ ├── EC2-Windows-Launch.zip
│ │ ├── change_hostname.ps1
│ │ ├── create-bucket.sh
│ │ └── install_EC2_Launch.ps1
│ ├── terraform.tfstate.backup
│ └── variables.tf
├── azure
│ └── environments
│ └── staging
│ ├── backend.tf
│ ├── beconf.tfvars
│ ├── main.tf
│ ├── terraform.tfvars
│ ├── variables.tf
│ └── vms.tf
├── local
│ └── variables.tf
└── shared

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

88

 ├── providers
 │ ├── aws.tf
 │ └── azure.tf
 └── ssh_keys
 ├── keys.tf
 ├── spfarm_rsa.pem
 └── spfarm_rsa.pub
2 [error opening dir]

12 directories, 29 files

For the purpose of going through the deployment of the SharePoint 2016 farm to

Azure, we will mainly focus on the Azure folder contents within our GitHub repository

throughout this exercise.

We will be building a fully functional SharePoint 2016 staging environment in Azure.

First, we need to create our “golden image” and add it to a blob storage along other

artifacts. We do this using a custom Bash script described in the next section.

�Create Base VM Image Using Packer
As with our development environment in Chapter 3, we’ll use Packer to create our base

image for the Vagrant development environment farm. The process is similar to Azure; we

use Packer to build the image. But first, we must set up proper credentials, storage account,

container, and so forth, to hold the image or VHD and connect to Azure via Packer.

To do this, we have a Bash script that handles all of this for us, rather than our doing

it manually via the Azure portal. Who wants to do things manually when automation is at

the core of practicing DevOps, right?

Note  The azure_setup.sh script was originally part of the repository found
at https://github.com/SharePointOscar/packer/blob/master/
contrib/azure-setup.sh, which is a fork from the HashiCorp/Packer
repository. A pull request was merged as of the writing of this book, but we
included the script within our repo for convenience in the /packer/azure-scripts
folder. We updated it to use the latest Azure CLI. The script ensures the required
software is installed on your machine.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

https://github.com/SharePointOscar/packer/blob/master/contrib/azure-setup.sh
https://github.com/SharePointOscar/packer/blob/master/contrib/azure-setup.sh
https://github.com/SharePointOscar/packer/blob/master/contrib/azure-setup.sh

89

�Running the Bash Script
Our Bash script is located under the packer/azure-scripts/azure-setup.sh location.

The script checks for required software in order to run successfully. It creates all the

required resources including a service principal, application, storage account, and

assigns the “owner” role to our service principal to run Packer.

Tip  The output of the script is used by our configuration in Ansible, Packer, and
Terraform, we will update those accordingly as we go through the exercise.

We execute our script and respond to the required parameters as needed. Next, we

break down what the script does section by section.

�Checking for Required Software

As shown next, the Bash script, once executed, ensures that we have the Azure CLI and

jq (https://stedolan.github.io/jq), a lightweight JSON processor that easily filters

results from Azure CLI commands.

Tip  For information on installing Azure CLI and other tools, please see Chapter 2.

$./azure-setup.sh setup

Found az-cli version: azure-cli (2.0.23)

acr (2.0.17)

acs (2.0.22)

advisor (0.1.0)

appservice (0.1.22)

backup (1.0.3)

batch (3.1.7)

batchai (0.1.3)

billing (0.1.6)

cdn (0.0.10)

cloud (2.0.10)

cognitiveservices (0.1.9)

command-modules-nspkg (2.0.1)

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

﻿https://stedolan.github.io/jq﻿

90

configure (2.0.12)

consumption (0.2.0)

container (0.1.15)

core (2.0.23)

cosmosdb (0.1.15)

dla (0.0.15)

dls (0.0.18)

eventgrid (0.1.5)

extension (0.0.6)

feedback (2.0.6)

find (0.2.7)

interactive (0.3.11)

iot (0.1.15)

keyvault (2.0.15)

lab (0.0.13)

monitor (0.0.13)

network (2.0.19)

nspkg (3.0.1)

profile (2.0.16)

rdbms (0.0.9)

redis (0.2.10)

reservations (0.1.0)

resource (2.0.19)

role (2.0.15)

servicefabric (0.0.7)

sql (2.0.17)

storage (2.0.21)

vm (2.0.20)

Python location '/usr/local/opt/python3/bin/python3.6'

Extensions directory '/Users/sharepointoscar/.azure/cliextensions'

Python (Darwin) 3.6.4 (default, Jan 3 2018, 12:27:11)

[GCC 4.2.1 Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)]

Legal docs and information: aka.ms/AzureCliLegal

Found jq version: jq-1.5

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

91

�Using Device Authentication with Azure CLI

Next, our script prompts us with a URL that we must visit, and then we enter the

generated code. Once we do this, we see the output on the terminal window as follows. If

we previously signed in using the Azure CLI, then we can simply hit Enter, and the script

will use the default account.

To sign in, use a web browser to open the page https://aka.ms/devicelogin

and enter the code <GENERATED CODE> to authenticate.

[

 {

 "cloudName": "AzureCloud",

 "id": "eeec2e47-bae1-eeeb-a35a-35a7adc3e293",

 "isDefault": true,

 "name": "Microsoft Azure Enterprise",

 "state": "Enabled",

 "tenantId": "555c7f71-4542-4e9b-8e1a-99e4751f4750",

 "user": {

 "name": "account@mycompany.com",

 "type": "user"

 }

 }

]

[

 {

 "cloudName": "AzureCloud",

 "id": "eeec2e47-bae1-eeeb-a35a-35a7adc3e293",

 "isDefault": true,

 "name": "Microsoft Azure Enterprise",

 "state": "Enabled",

 "tenantId": "555c7f71-4542-4e9b-8e1a-99e4751f4750",

 "user": {

 "name": "me@mycompany.com",

 "type": "user"

 }

 }

]

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

92

Please enter the Id of the account you wish to use. If you do not see

a valid account in the list press Ctrl+C to abort and create one.

If you leave this blank we will use the Current account.

>

Using subscription_id: <redacted>

Using tenant_id: <redacted>

ukwest

�Specify a Unique Name for Storage Account, Resource Group,
and Client

Next, our script prompts us to type a unique name to create multiple resources needed

such as the storage account and resource group. For our purposes in this exercise, we

provided the value spfarmstaging.

Choose a name for your resource group, storage account and client

client. This is arbitrary, but it must not already be in use by

any of those resources. ALPHANUMERIC ONLY. Ex: mypackerbuild

> spfarmstaging

�Application Secret

Part of the Azure setup requires the OAuth authentication against Azure Active

Directory. For this reason, we must create an application. Our script will provide us both

the client_id and client_secret once we run it completely.

Enter a secret for your application. We recommend generating one with

openssl rand -base64 24. If you leave this blank we will attempt to

generate one for you using openssl. THIS WILL BE SHOWN IN PLAINTEXT.

Ex: mypackersecret8734

> pass@word1!

[

 {

 "displayName": "East Asia",

 "id": "/subscriptions/<redacted>/locations/eastasia",

 "latitude": "22.267",

 "longitude": "114.188",

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

93

 "name": "eastasia",

 "subscriptionId": null

 },

...

 {

 "displayName": "Korea South",

 "id": "/subscriptions/<redacted>/locations/koreasouth",

 "latitude": "35.1796",

 "longitude": "129.0756",

 "name": "koreasouth",

 "subscriptionId": null

 }

]

�Choose a Location

Much like AWS has regions, Azure has the equivalent: locations. We are on the West

Coast, so we choose “westus”. The script was not too clear on what you needed to enter.

Be sure to enter the internal name of the location, as shown next.

Choose which region your resource group and storage account will be

created. example: westus

> westus

==> Creating resource group

{

 "id": "/subscriptions/<redacted>/resourceGroups/spfarmstaging",

 "location": "westus",

 "managedBy": null,

 "name": "spfarmstaging",

 "properties": {

 "provisioningState": "Succeeded"

 },

 "tags": null

}

==> Creating storage account

{

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

94

 "accessTier": null,

 "creationTime": "2018-01-28T14:57:12.552228+00:00",

 "customDomain": null,

 "enableHttpsTrafficOnly": false,

 "encryption": {

 "keySource": "Microsoft.Storage",

 "keyVaultProperties": null,

 "services": {

 "blob": {

 "enabled": true,

 "lastEnabledTime": "2018-01-28T14:57:12.583446+00:00"

 },

 "file": {

 "enabled": true,

 "lastEnabledTime": "2018-01-28T14:57:12.583446+00:00"

 },

 "queue": null,

 "table": null

 }

 },

 �"id": "/subscriptions/<redacted>/resourceGroups/spfarmstaging/providers/

Microsoft.Storage/storageAccounts/spfarmstaging",

 "identity": null,

 "kind": "Storage",

 "lastGeoFailoverTime": null,

 "location": "westus",

 "name": "spfarmstaging",

 "networkRuleSet": {

 "bypass": "AzureServices",

 "defaultAction": "Allow",

 "ipRules": [],

 "virtualNetworkRules": []

 },

 "primaryEndpoints": {

 "blob": "https://spfarmstaging.blob.core.windows.net/",

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

95

 "file": "https://spfarmstaging.file.core.windows.net/",

 "queue": "https://spfarmstaging.queue.core.windows.net/",

 "table": "https://spfarmstaging.table.core.windows.net/"

 },

 "primaryLocation": "westus",

 "provisioningState": "Succeeded",

 "resourceGroup": "spfarmstaging",

 "secondaryEndpoints": {

 "blob": "https://spfarmstaging-secondary.blob.core.windows.net/",

 "file": null,

 "queue": "https://spfarmstaging-secondary.queue.core.windows.net/",

 "table": "https://spfarmstaging-secondary.table.core.windows.net/"

 },

 "secondaryLocation": "eastus",

 "sku": {

 "capabilities": null,

 "kind": null,

 "locations": null,

 "name": "Standard_RAGRS",

 "resourceType": null,

 "restrictions": null,

 "tier": "Standard"

 },

 "statusOfPrimary": "available",

 "statusOfSecondary": "available",

 "tags": {},

 "type": "Microsoft.Storage/storageAccounts"

}

==> Creating application

==> Does application exist?

==> application does not exist

==> Creating service principal

f9da43fa-8ed6-4584-9250-10d2c682a434 was selected.

==> Creating permissions

Sleeping for 10 seconds to wait for resources to be

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

96

created. If you get an error about a resource not existing, you can

try increasing the amount of time we wait after creating resources

by setting PACKER_SLEEP_TIME to something higher than the default.

==> Creating permissions

{

 "id": "/subscriptions/<redacted>/providers/Microsoft.Authorization/

roleAssignments/a4671417-6abf-4308-987a-914cc9c77ae0",

 "name": "a4671417-6abf-4308-987a-914cc9c77ae0",

 "properties": {

 "additionalProperties": {

 "createdBy": null,

 "createdOn": "2018-01-28T14:57:52.5603878Z",

 "updatedBy": "c3923ccf-8eb1-4aa5-90a0-96efa181866a",

 "updatedOn": "2018-01-28T14:57:52.5603878Z"

 },

 "principalId": "f9da43fa-8ed6-4584-9250-10d2c682a434",

 �"roleDefinitionId": "/subscriptions/<redacted>/providers/Microsoft.

Authorization/roleDefinitions/8e3af657-a8ff-443c-a75c-2fe8c4bcb635",

 "scope": "/subscriptions/<redacted>"

 },

 "type": "Microsoft.Authorization/roleAssignments"

}

�Successful Script Output

The following output is critical for configuring both the Packer template and the

Terraform later in this chapter. We will configure Packer in the next section with this

information.

Tip U se the following output for configuration of the Packer template. These
values will also be useful for our Ansible and Terraform configuration later in this
chapter. If you get warnings, this is fine, generally, and you can proceed.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

97

{

 "client_id": "454547cb-2e0f-420b-b526-4f3b1c7d09c9",

 "client_secret": "pass@word1!",

 "object_id": "v9Ca43fa-8ed6-4584-9250-10d2c682a434",

 "subscription_id": "<redacted>",

 "tenant_id": "<redacted>",

 "resource_group_name": "spfarmstaging",

 "storage_account": "spfarmstaging",

}

Please note that it is a best practice to place this sensitive data in environment

variables. For reference, please refer to www.packer.io/docs/templates/user-

variables.html for details.

�Create Packer Image VM
To create our Azure VM image using Packer, we must have a Packer JSON template. Our

file is located at the following location on our repo: packer/azure_windows2016.

�The Packer Template for Azure

The following are the contents of our template. We need to modify the variable values

to match the values provided from the output when we ran azure_setup.sh. We have

highlighted in bold the section we pasted from the output of running the Bash script.

{

 "builders": [{

 "type": "azure-arm",

 "client_id": "0b4547cb-2e0f-420b-b526-4f3b1c7d09c9",

 "client_secret": "pass@word1!",

 "object_id": "f9da43fa-8ed6-4584-9250-10d2c682a434",

 "subscription_id": "dbbc2e47-bae1-4b8b-a35a-35a7adc3e293",

 "tenant_id": "484c7f71-4542-4e8b-8e1a-87e4751f4750",

 "resource_group_name": "spfarmstaging",

 "storage_account": "spfarmstaging",

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

http://﻿www.packer.io/docs/templates/user-variables.html﻿
http://﻿www.packer.io/docs/templates/user-variables.html﻿

98

 "capture_container_name": "images",

 "capture_name_prefix": "packer",

 "os_type": "Windows",

 "image_publisher": "MicrosoftWindowsServer",

 "image_offer": "WindowsServer",

 "image_sku": "2016-Datacenter",

 "communicator": "winrm",

 "winrm_use_ssl": "true",

 "winrm_insecure": "true",

 "winrm_timeout": "3m",

 "winrm_username": "packer",

 "azure_tags": {

 "environment": "Staging",

 "task": "Image deployment"

 },

 "location": "West US",

 "vm_size": "Standard_DS2_v2"

 }],

 "provisioners": [{

 "type": "powershell",

 "inline": [

 �"& $env:SystemRoot\\System32\\Sysprep\\Sysprep.exe /oobe /

generalize /quiet /quit",

 �"while($true) { $imageState = Get-ItemProperty HKLM:\\

SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Setup\\State

| Select ImageState; if($imageState.ImageState -ne 'IMAGE_

STATE_GENERALIZE_RESEAL_TO_OOBE') { Write-Output $imageState.

ImageState; Start-Sleep -s 10 } else { break } }"

]

 }]

}

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

99

Of special interest, is the provisioners section, where we execute a PowerShell

command to Sysprep and generalize the machine. Listing 4-1 is the full output of the

successful Packer build command.

Tip  Please modify the metadata as needed. For example, you may deploy the
Packer template to a different location than West US by simply modifying that
value.

Listing 4-1.  Successful Output Would Include the Information Shown

me@sharepointoscar ~/git-repos/vagrant-ansible-packer-spfarm/packer

> $ packer build azure_windows_2016.json

==> azure-arm: Running builder ...

 azure-arm: Creating Azure Resource Manager (ARM) client ...

==> azure-arm: Creating resource group ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

==> azure-arm: -> Location : 'West US'

==> azure-arm: -> Tags :

==> azure-arm: ->> environment : Staging

==> azure-arm: ->> task : Image deployment

==> azure-arm: Validating deployment template ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

==> azure-arm: -> DeploymentName : 'pkrdp1m34k3fnm8'

==> azure-arm: Deploying deployment template ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

==> azure-arm: -> DeploymentName : 'pkrdp1m34k3fnm8'

==> azure-arm: Getting the certificate's URL ...

==> azure-arm: -> Key Vault Name : 'pkrkv1m34k3fnm8'

==> azure-arm: -> Key Vault Secret Name : 'packerKeyVaultSecret'

==> azure-arm: -> Certificate URL : 'https://pkrkv1m34k3fnm8.vault.

azure.net/secrets/packerKeyVaultSecret/648567e836a74c8bbb7c3d44f9a311bc'

==> azure-arm: Setting the certificate's URL ...

==> azure-arm: Validating deployment template ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

100

==> azure-arm: -> DeploymentName : 'pkrdp1m34k3fnm8'

==> azure-arm: Deploying deployment template ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

==> azure-arm: -> DeploymentName : 'pkrdp1m34k3fnm8'

==> azure-arm: Getting the VM's IP address ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

==> azure-arm: -> PublicIPAddressName : 'packerPublicIP'

==> azure-arm: -> NicName : 'packerNic'

==> azure-arm: -> Network Connection : 'PublicEndpoint'

==> azure-arm: -> IP Address : '104.42.225.145'

==> azure-arm: Waiting for WinRM to become available...

==> azure-arm: Connected to WinRM!

==> azure-arm: Provisioning with Powershell...

==> azure-arm: Provisioning with shell script: /var/folders/c2/qf2pd13d4fs4

jhsthhlf4gr40000gn/T/packer-powershell-provisioner046129632

 azure-arm: #< CLIXML

 azure-arm: IMAGE_STATE_COMPLETE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 azure-arm: IMAGE_STATE_UNDEPLOYABLE

 �azure-arm: <Objs Version="1.1.0.1" xmlns="http://schemas.microsoft.com/

powershell/2004/04"><Obj S="progress" RefId="0">

<TN RefId="0"><T>System.Management.Automation.PSCustomObject

</T><T>System.Object</T></TN><MS><I64 N="SourceId">1</I64><PR

N="Record"><AV>Preparing modules for first use.</AV><AI>0</AI><Nil

/><PI>-1</PI><PC>-1</PC><T>Completed</T><SR>-1</SR><SD> </SD></PR>

</MS></Obj></Objs>

==> azure-arm: Querying the machine's properties ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

101

==> azure-arm: -> ComputeName : 'pkrvm1m34k3fnm8'

==> azure-arm: -> OS Disk : �'https://spfarmstaging.blob.core.

windows.net/images/pkros1m34k3fnm8.

vhd'

==> azure-arm: Powering off machine ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

==> azure-arm: -> ComputeName : 'pkrvm1m34k3fnm8'

==> azure-arm: Capturing image ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

==> azure-arm: -> ComputeName : 'pkrvm1m34k3fnm8'

==> azure-arm: Deleting resource group ...

==> azure-arm: -> ResourceGroupName : 'packer-Resource-Group-1m34k3fnm8'

==> azure-arm: Deleting the temporary OS disk ...

==> azure-arm: -> OS Disk : �'https://spfarmstaging.blob.core.windows.net/

images/pkros1m34k3fnm8.vhd'

Build 'azure-arm' finished.

==> Builds finished. The artifacts of successful builds are:

--> azure-arm: Azure.ResourceManagement.VMImage:

StorageAccountLocation: westus

OSDiskUri: https://spfarmstaging.blob.core.windows.net/system/Microsoft.

Compute/Images/spfarmstaging/packer-osDisk.30ec65ab-39ed-43a2-b6c4-

62e0dc5b5cf6.vhd

OSDiskUriReadOnlySas: https://spfarmstaging.blob.core.windows.net/system/

Microsoft.Compute/Images/spfarmstaging/packer-osDisk.30ec65ab-39ed-43a2-

b6c4-62e0dc5b5cf6.vhd?se=2018-02-28T15%3A31%3A58Z&sig=erjQA27JuVFHk4qwdpFIg

wiuXDTdgkB%2BKLHHnRU2YR4%3D&sp=r&sr=b&sv=2015-02-21

TemplateUri: https://spfarmstaging.blob.core.windows.net/system/Microsoft.

Compute/Images/spfarmstaging/packer-vmTemplate.30ec65ab-39ed-43a2-b6c4-

62e0dc5b5cf6.json

TemplateUriReadOnlySas: https://spfarmstaging.blob.core.windows.net/system/

Microsoft.Compute/Images/spfarmstaging/packer-vmTemplate.30ec65ab-39ed-

43a2-b6c4-62e0dc5b5cf6.json?se=2018-02-28T15%3A31%3A58Z&sig=94AD24%2F%2BsGX

yn0uBsEDzb%2FHljxogQAb972G21lt8z%2BE%3D&sp=r&sr=b&sv=2015-02-21

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

102

Now that we’ve created our Azure VM image using Packer, we have a VHD file stored

in Azure in the storage account that we created via the Bash script earlier. It is ready to

be used by our Terraform configuration. But first, we must set up Terraform remote state,

which allows us to collaborate on IaC within a team setting, as the state is not stored

locally.

�Configuring the Terraform Remote State
Once we have the Azure CLI fully configured, we are ready to start working with

Terraform. We must first set up storage and versioning of the Terraform state. Terraform

state controls how changes to the infrastructure are tracked. In a team environment, this

is a must-have for multiple team members making changes as part of the overall team

workflow.

Note that the default Terraform state is stored on the local disk in the location where

the Terraform command was run.

Tip  Terraform state contains sensitive data such as secrets which you do not
want to expose publicly. Please refer to www.terraform.io/docs/state/
index.html for more information.

There are several options when it comes to managing state for Terraform and setting

up the back end. One option is to use the Terraform Enterprise product by HashiCorp.

There are several others, including Consul, AWS, and S3.

The supported back end that we will use is AzureRM with versioning enabled.

Tip  To view a list of supported back ends, please visit www.terraform.io/
docs/backends/types/index.html.

We create a file called backend.tf to hold the top level Terraform back-end

configuration.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

http://www.terraform.io/docs/state/index.html
http://www.terraform.io/docs/state/index.html
http://www.terraform.io/docs/backends/types/index.html
http://www.terraform.io/docs/backends/types/index.html

103

�The Backend.tf File
To configure remote state, we add the following snippet to the backend.tf file within the

terraform/azure/environments/staging folder, as follows.

Listing 4-2.  The remote state resource configuration within the backend.tf file

contents

terraform {

 backend "azurerm" {}

}

The backend.tf file will be checked into source control; therefore, we want to avoid

putting sensitive information inside. To avoid doing this, we use another file called

beconf.tfvars, which contains the sensitive information needed to initiate the back-

end remote state (this is not checked into source control).

The contents of the beconf.tfvars should include the following key value pairs.

storage_account_name = "spfarmstagingacct"

container_name = "spfarmstaging"

key = "staging-terraform-tfstate"

access_key = "xxxx"

The values of the contents of the beconf.tfvars file come from the output of the

Bash script that we ran successfully. With the exception of the access_key value, we

must go to blob storage and obtain it manually via the Azure portal, under the Blob

Storage settings.

In addition, you need to go to the Azure portal and create the container called

spfarmstaging for the storage account, as the Bash script does not actually create that.

Please note that the value for key is the name of the Terraform state file that will

be created in the storage container. Terraform automatically appends the .tfstate

extension. In this case, the storage container is named spfarmstaging.

Warning E nsure that you have obtained the access_key from the blob storage
via the Azure portal prior to moving forward with Terraform init.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

104

�Run Terraform Init
Now that we configured our Azure remote state, we need to initialize Terraform for the

Azure environment. Because we organized our Terraform folder by environment (AWS,

local, Azure, etc.), we want to ensure we are within the terraform/azure/environments/

staging folder prior to running the command. In this scenario, we are building a staging

environment on Azure for our SharePoint 2016 farm.

Note  Terraform also has the concept of workspaces, but we do not use them
for our exercise. You can learn more about workspaces at www.terraform.io/
docs/state/workspaces.html.

With our beconf.tfvars file updated, we are now able to execute the command

shown in Listing 4-3.

Listing 4-3.  Successful Console Output from Running the Terraform init

Command

>$ terraform init –backend-config=./beconf.tfvars

Initializing the backend...

Initializing provider plugins...

The following providers do not have any version constraints in

configuration, so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain breaking

changes, it is recommended to add version = “...” constraints to the

corresponding provider blocks in configuration, with the constraint strings

suggested below.

* provider.azurerm: version = "~> 1.0"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

http://www.terraform.io/docs/state/workspaces.html
http://www.terraform.io/docs/state/workspaces.html

105

any changes that are required for your infrastructure. All Terraform

commands should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget,

other commands will detect it and remind you to do so if necessary..

The output is quite helpful, actually. There are two takeaways from this output that

we can spot. First, Terraform is downloading the AzureRM provider. As of Terraform

v0.10, the providers have been decoupled for good reasons. One reason is version

constraint for a given solution. The following is a blurb from the announcement by

HashiCorp:

As of v0.10, provider plugins are no longer included in the main Terraform
distribution. Instead, they are distributed separately and installed auto-
matically by the terraform init command. In the long run, this new approach
should be beneficial to anyone who wishes to upgrade a specific provider to
get new functionality without also upgrading another provider that may
have introduced incompatible changes. In the short term, it just means a
smaller distribution package and thus avoiding the need to download tens
of providers that may never be used.

Second, we can constrain the AzureRM provider to a specific version moving

forward. For us, this means going into our provider file located at terraform/shared/

providers/azure.tf, and adding the suggested snippet of code. Our file should look like

Listing 4-4.

Listing 4-4.  Contents of the azure.tf Provider File Constraining the Version of the

AzureRM Provider for Our Solution

provider.azurerm: version = "~> 1.0"

provider "azurerm" {

 subscription_id = "${var.subscription_id}"

 client_id = "${var.client_id}"

 client_secret = "${var.client_secret}"

 tenant_id = "${var.tenant_id}"

}

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

106

�Create Core Azure Resources Using Terraform
We have finally initialized our Azure environment, and our Terraform state is now

stored in Azure. We are ready to start defining our SharePoint 2016 farm resources.

Terraform uses HCL, or HashiCorp Configuration Language syntax. It looks similar to

JSON, but unlike JSON, you can comment the document, and it is more readable by

humans. Nonetheless, if you need to support JSON for the purpose of defining Terraform

resources, you can do so because it acts the same way, irrespective of using HCL or JSON.

The first artifacts that we need to create (and this is typical) are the vNet, a security

group, and any variables and output we would like to see at the time of running

Terraform apply.

�About Terraform Modules
Throughout this exercise, we use Terraform modules when declaring some resources,

which are hosted on a separate repository. Think of modules as reusable components

that can be used throughout your cloud environments. Modules may contain attributes

that are populated via static text or dynamically via setting the corresponding variable’s

value. Module sources supported include local, HashiCorp Registry, GitHub, HTTP

URLs, and S3 Buckets.

For our exercise, we want to keep our modules versioned on GitHub. They are

located at github.com/SharePointOscar/terraform_modules.git. We will reference

them directly from there. So, let’s get started.

Note  Because the modules for Azure and AWS are on GitHub, you can opt to
modify as you like by forking the repository. AWS and Azure resource specification
continuously changes; therefore, we fully expect you might have to add or modify
modules. Alternatively, you can opt not to use them and just use the Terraform built
in resources directly.

Because we have our Terraform modules completely decoupled from our SharePoint

2016 Terraform project, we are able to modify the modules separately and even version

them or apply releases.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

107

This can prove to be very powerful as we might encounter a scenario where our

SharePoint Terraform project depends on a specific release of the Azure vNet module. In

such a case, we would want to specify the release within the module source.

�Defining the Core Networking Resources
One of the first tasks is to define the core components in our virtual private cloud. There

are interrelated components, which we will also cover shortly.

We must first define the core vNET, network security groups, subnets, firewall

rules, and ports, as follows. These reside within the terraform/azure/environments/

staging/main.tf file.

As per the architecture diagram in Figure 4-1, we define the appropriate vNet and

subnets shown next.

Create a virtual network

resource "azurerm_virtual_network" "spfarmstaging-vnet" {

 name = "spfarm_staging_network"

 address_space = ["10.10.0.0/16"]

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

}

module "subnet-public-a" {

 source = �"github.com/SharePointOscar/terraform_

modules.git//azure_modules//GatewaySubnet"

 sb_name = "spfarm-subnet-public-a"

 rg_name = "${var.resource_group_name}"

 vnet_name = �"${azurerm_virtual_network.spfarmstaging-

vnet.name}"

 sb_addr_prefix = "10.10.1.0/24"

}

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

108

module "subnet-public-b" {

 source = �"github.com/SharePointOscar/terraform_

modules.git//azure_modules//GatewaySubnet"

 sb_name = "spfarm-subnet-public-b"

 rg_name = "${var.resource_group_name}"

 vnet_name = �"${azurerm_virtual_network.spfarmstaging-

vnet.name}"

 sb_addr_prefix = "10.10.2.0/24"

}

Create Network Security Group and rule for backend

resource "azurerm_network_security_group" "spfarm-security-group-backend" {

 name = "spfarm-security-group-backend"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 # allow SSH connections

 security_rule {

 name = "SSH"

 priority = 1001

 direction = "Inbound"

 access = "Allow"

 protocol = "Tcp"

 source_port_range = "*"

 destination_port_range = "22"

 source_address_prefix = "*"

 destination_address_prefix = "*"

 }

 # allow WinRM connections

 security_rule {

 name = "WinRM"

 priority = 1002

 direction = "Inbound"

 access = "Allow"

 protocol = "Tcp"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

109

 source_port_range = "*"

 destination_port_range = "5985"

 source_address_prefix = "*"

 destination_address_prefix = "*"

 }

 # allow RDP connections

 security_rule {

 name = "RDP"

 priority = 1003

 direction = "Inbound"

 access = "Allow"

 protocol = "Tcp"

 source_port_range = "*"

 destination_port_range = "3389"

 source_address_prefix = "*"

 destination_address_prefix = "*"

 }

 tags {

 environment = "Terraform Demo"

 }

}

Create Network Security Group and rule

resource "azurerm_network_security_group" "spfarm-security-group-frontend" {

 name = "spfarm-security-group-frontend"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 # allow SSH connections

 security_rule {

 name = "SSH"

 priority = 1001

 direction = "Inbound"

 access = "Allow"

 protocol = "Tcp"

 source_port_range = "*"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

110

 destination_port_range = "22"

 source_address_prefix = "*"

 destination_address_prefix = "*"

 }

 # allow WinRM connections

 security_rule {

 name = "WinRM"

 priority = 1002

 direction = "Inbound"

 access = "Allow"

 protocol = "Tcp"

 source_port_range = "*"

 destination_port_range = "5985"

 source_address_prefix = "*"

 destination_address_prefix = "*"

 }

 # allow RDP connections

 security_rule {

 name = "RDP"

 priority = 1003

 direction = "Inbound"

 access = "Allow"

 protocol = "Tcp"

 source_port_range = "*"

 destination_port_range = "3389"

 source_address_prefix = "*"

 destination_address_prefix = "*"

 }

 tags {

 environment = "Terraform Demo"

 }

}

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

111

// # DB1 Network settings

 resource "azurerm_public_ip" "db1-public-ip" {

 name = "db1-public-ip"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 public_ip_address_allocation = "static"

 tags {

 environment = "staging"

 }

}

resource "azurerm_network_interface" "spfarm-db1" {

 name = "network-interface-spfarm-db1"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 network_security_group_id = �"${azurerm_network_security_group.spfarm-

security-group-backend.id}"

 dns_servers = ["10.10.2.19"]

 ip_configuration {

 name = "db1-ipconfiguration"

 subnet_id = "${module.subnet-public-b.id}"

 public_ip_address_id = "${azurerm_public_ip.db1-public-ip.id}"

 private_ip_address_allocation = "static"

 private_ip_address = "10.10.2.17"

 }

 tags {

 environment = "Staging"

 }

}

resource "azurerm_public_ip" "appserver1-public-ip" {

 name = "appserver1-public-ip"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 public_ip_address_allocation = "static"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

112

 tags {

 environment = "SharePoint 2016 Staging"

 }

}

resource "azurerm_network_interface" "spfarm-appserver1" {

 name = "network-interface-spfarm-appserver1"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 network_security_group_id = �"${azurerm_network_security_group.spfarm-

security-group-backend.id}"

 dns_servers = ["10.10.2.19"]

 ip_configuration {

 name = "appserver1-ipconfiguration"

 subnet_id = "${module.subnet-public-a.id}"

 public_ip_address_id = �"${azurerm_public_ip.appserver1-public-

ip.id}"

 private_ip_address_allocation = "static"

 private_ip_address = "10.10.1.18"

 }

 tags {

 environment = "SharePoint 2016 Staging"

 }

}

WFE1 Network settings

resource "azurerm_public_ip" "wfe1-public-ip" {

 name = "wfe1-public-ip"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 public_ip_address_allocation = "static"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

113

 tags {

 environment = "SharePoint 2016 Staging"

 }

}

resource "azurerm_network_interface" "spfarm-wfe1" {

 name = "network-interface-spfarm-wfe1"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 network_security_group_id = �"${azurerm_network_security_group.spfarm-

security-group-frontend.id}"

 dns_servers = ["10.10.2.19"]

 ip_configuration {

 name = "wfe1-ipconfiguration"

 subnet_id = "${module.subnet-public-a.id}"

 public_ip_address_id = �"${azurerm_public_ip.wfe1-public-ip.

id}"

 private_ip_address_allocation = "static"

 private_ip_address = "10.10.1.16"

 }

 tags {

 environment = "Staging"

 }

}

AD1 Network settings

resource "azurerm_public_ip" "ad1-public-ip" {

 name = "ad1-public-ip"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 public_ip_address_allocation = "static"

 tags {

 environment = "SharePoint 2016 Staging"

 }

}

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

114

resource "azurerm_network_interface" "spfarm-ad1" {

 name = "network-interface-spfarm-ad1"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 network_security_group_id = �"${azurerm_network_security_group.spfarm-

security-group-backend.id}"

 ip_configuration {

 name = "AD1-ipconfiguration"

 subnet_id = "${module.subnet-public-b.id}"

 public_ip_address_id = "${azurerm_public_ip.ad1-public-ip.id}"

 private_ip_address_allocation = "static"

 private_ip_address = "10.10.2.19"

 }

 tags {

 environment = "SharePoint 2016 Staging"

 }

}

Many foundational resources have been declared including two security groups: one

for back-end resources and one for front-end resources. We also defined two subnets,

which are attached to their corresponding subnet and network security group. Had we

not used Terraform modules, we would have repeated ourselves quite a bit in terms of

declaring the same resources over and over again. Maintaining this code would prove to

be an onerous task as our project grows.

To ensure we get the modules registered within our solution, we must execute the

terraform get command.

> $ terraform get

- module.subnet-public-a

- module.subnet-public-b

Because we’ve only used two Azure modules thus far, that is exactly what we get from

the output of our command.

Tip  if you wish to refresh all modules, execute terraform get –
update=true and all modules will be downloaded.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

115

After defining our core network resources in Azure, we are ready to define our virtual

machines in our SharePoint 2016 farm topology.

�Terraforming the SharePoint 2016 Servers
in the Farm Topology
The next Azure resources we need to define are the different virtual machines that

are part of our SharePoint 2016 farm topology. Recall in Chapter 3, our topology

included several server roles. We will define these same roles in Terraform to deploy

them to AWS. We later use Ansible to perform configuration management, and install

and configure the SharePoint 2016 domain controller and join all VMs to the newly

configured domain.

The following are the roles that we will define via Terraform:

•	 Domain controller

•	 Database server

•	 Application server

•	 Web front end

Note  If you recall, earlier in this chapter, we used Packer to create our “golden
image.” This is the Azure VM image we use throughout our Terraform project
to create Azure VMs corresponding to the SharePoint server roles within the
farm. However, we do not use our custom Azure VM for SQL because we want
to leverage the one available in the gallery that contains the preinstalled SQL
software.

�Preparing to Deploy Resources to Azure
Now that we have all of our AWS SharePoint farm resources declared, it is time to deploy

the resources. To do this, we first want to ensure that our configuration is validated by

executing terraform validate.

> $ terraform validate

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

116

You should not see any errors at this point. If that is the case, then you want to proceed

to execute a Terraform plan to ensure that all of your resources will be created as expected.

�Execute Terraform Plan

It is a good practice to also execute the plan command to ensure that all looks good. But

most importantly, you can verify the proposed creation or modification of resources, is

what is expected. In addition, it is a great way to capture changes that may or may not

need to be executed right away.

The terraform plan command accepts several optional parameters (you can type

terraform plan –h to obtain a full list). Of special interest, is the –out=path because it

allows you to specify a file where you save the planned deployment. This file can then be

used as input for executing the terraform apply command later.

>$ terraform plan –out=./azure_spfarm_staging.plan –var-file=./terraform.

tfvars

This outputs a long list of resources with values for some attributes, and others

show <computed>, which are computed at runtime when you execute the terraform

apply command. The following is a trimmed down look at our output showing the WFE

configuration.

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be

persisted to local or remote state storage.

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 ...trimmed for brevity...

 + azurerm_public_ip.ad1-public-ip

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

117

 location: "westus"

 name: "ad1-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 sku: "Basic"

 tags.%: "1"

 tags.environment: �"SharePoint 2016

Staging"

 + azurerm_public_ip.appserver1-public-ip

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

 location: "westus"

 name: "appserver1-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 sku: "Basic"

 tags.%: "1"

 tags.environment: �"SharePoint 2016

Staging"

 + azurerm_public_ip.db1-public-ip

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

 location: "westus"

 name: "db1-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 sku: "Basic"

 tags.%: "1"

 tags.environment: "staging"

 + azurerm_public_ip.webfrontend-lb-public-ip

 id: <computed>

 fqdn: <computed>

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

118

 ip_address: <computed>

 location: "westus"

 name: �"webfrontend-lb-

public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 sku: "Basic"

 tags.%: "1"

 tags.environment: �"SharePoint 2016

Staging"

 + azurerm_public_ip.wfe-public-ip[0]

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

 location: "westus"

 name: "wfe0-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 sku: "Basic"

 tags.%: "1"

 tags.environment: �"SharePoint 2016

Staging"

 + azurerm_public_ip.wfe-public-ip[1]

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

 location: "westus"

 name: "wfe1-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 sku: "Basic"

 tags.%: "1"

 tags.environment: �"SharePoint 2016

Staging"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

119

 + azurerm_subnet.subnet-frontend

 id: <computed>

 address_prefix: "10.10.3.0/24"

 ip_configurations.#: <computed>

 name: �"spfarm-subnet-

frontend"

 resource_group_name: "spfarmstaging"

 virtual_network_name: �"spfarm_staging_

network"

...

 + azurerm_virtual_machine.spfarm_wfe1

 id: <computed>

 availability_set_id: �"${azurerm_

availability_set.

webfrontend_

availabilityset.id}"

 delete_data_disks_on_termination: "true"

 delete_os_disk_on_termination: "false"

 identity.#: <computed>

 location: "westus"

 name: "SP2016WFE"

 network_interface_ids.#: <computed>

 os_profile.#: "1"

 os_profile.1539969592.admin_password: <sensitive>

 os_profile.1539969592.admin_username: "packer"

 os_profile.1539969592.computer_name: "SP2016WFE0"

 os_profile.1539969592.custom_data: <computed>

 os_profile_windows_config.#: "1"

 �os_profile_windows_config.2256145325.additional_

unattend_config.#: "0"

 �os_profile_windows_config.2256145325.enable_

automatic_upgrades: "true"

 �os_profile_windows_config.2256145325.provision_

vm_agent: "true"

 os_profile_windows_config.2256145325.winrm.#: "0"

 resource_group_name: "spfarmstaging"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

120

 storage_image_reference.#: <computed>

 storage_os_disk.#: "1"

 storage_os_disk.0.caching: "ReadWrite"

 �storage_os_disk.0.create_option: "FromImage"

 storage_os_disk.0.disk_size_gb: <computed>

 storage_os_disk.0.image_uri: �"https://spfarms

taging.blob.

core.windows.net/

system/Microsoft.

Compute/Images/

spfarmstaging/packer-

osDisk.5fd747c3-

2933-4f09-af1e-

12bf65d1c476.vhd"

 storage_os_disk.0.managed_disk_id: <computed>

 storage_os_disk.0.managed_disk_type: <computed>

 storage_os_disk.0.name: "WFE0-osdisk1"

 storage_os_disk.0.os_type: "Windows"

 storage_os_disk.0.vhd_uri: �"https://spfarm

staging.blob.

core.windows.net/

spfarmstaging/wfe0-

osdisk.vhd"

 tags.%: <computed>

 vm_size: "Standard_DS2_v2"

 + azurerm_virtual_network.spfarmstaging-vnet

 id: <computed>

 address_space.#: "2"

 address_space.0: "10.10.0.0/16"

 address_space.1: "10.10.0.0/16"

 location: "westus"

 name: �"spfarm_staging_

network"

 resource_group_name: "spfarmstaging"

 subnet.#: <computed>

 tags.%: <computed>

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

121

 + module.subnet-application.azurerm_subnet.main

 id: <computed>

 address_prefix: "10.10.2.0/24"

 ip_configurations.#: <computed>

 name: �"spfarm-subnet-

application"

 resource_group_name: "spfarmstaging"

 virtual_network_name: �"spfarm_staging_

network"

 + module.subnet-backend.azurerm_subnet.main

 id: <computed>

 address_prefix: "10.10.1.0/24"

 ip_configurations.#: <computed>

 name: "spfarm-subnet-backend"

 resource_group_name: "spfarmstaging"

 virtual_network_name: "spfarm_staging_network"

Plan: 30 to add, 0 to change, 0 to destroy.

--

This plan was saved to: azure_spfarm_staging.plan

To perform exactly these actions, run the following command to apply:

 terraform apply " azure_spfarm_staging.plan"

�Executing Terraform Apply

We’ve executed the terraform plan command and saved the proposed plan to a file.

We like what we see and wish to now deploy all the related resources to Azure. We do this

by executing the command shown in Listing 4-5.

Listing 4-5.  A Partial View of the output When Executing the terraform plan

Command

$ terraform apply azure_spfarm_staging.plan

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

122

persisted to local or remote state storage.

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 + azurerm_network_interface.spfarm-ad1

 id: <computed>

 applied_dns_servers.#: <computed>

 �dns_servers.#: <computed>

enable_accelerated_networking: "false"

 enable_ip_forwarding: "false"

 internal_dns_name_label: <computed>

 internal_fqdn: <computed>

 ip_configuration.#: "1"

 �ip_configuration.0.load_balancer_backend_

address_pools_ids.#: <computed>

ip_configuration.0.load_balancer_

inbound_nat_rules_ids.#: <computed>

 �ip_configuration.0.name: "db1-ipconfiguration"

ip_configuration.0.primary: <computed>

 ip_configuration.0.private_ip_address: <computed>

 �ip_configuration.0.private_ip_address_

allocation: "dynamic"

 ip_configuration.0.public_ip_address_id: �"${azurerm_public_

ip.ad1-public-ip.id}"

 ip_configuration.0.subnet_id: �"${module.subnet-

public-a.id}"

 �location: "westus"

mac_address: �<computed>

 name: �"network-interface-

spfarm-ad1"

 network_security_group_id: �"${azurerm_network_

security_group.spfarm-

security-group.id}"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

123

 private_ip_address: <computed>

 private_ip_addresses.#: <computed>

 resource_group_name: "spfarmstaging"

 tags.%: "1"

 tags.environment: "staging"

 virtual_machine_id: <computed>

 ..

 + azurerm_network_interface.spfarm-db1

 id: <computed>

 applied_dns_servers.#: <computed>

 dns_servers.#: <computed>

 enable_accelerated_networking: "false"

 enable_ip_forwarding: "false"

 internal_dns_name_label: <computed>

 internal_fqdn: <computed>

 ip_configuration.#: "1"

 �ip_configuration.0.load_balancer_backend_

address_pools_ids.#: <computed>

 �ip_configuration.0.load_balancer_inbound_

nat_rules_ids.#: <computed>

 ip_configuration.0.name: "db1-ipconfiguration"

 ip_configuration.0.primary: <computed>

 ip_configuration.0.private_ip_address: <computed>

 �ip_configuration.0.private_ip_address_

allocation: "dynamic"

 ip_configuration.0.public_ip_address_id: �"${azurerm_public_

ip.db1-public-ip.id}"

 ip_configuration.0.subnet_id: �"${module.subnet-

public-a.id}"

 location: "westus"

 mac_address: <computed>

 name: �"network-interface-

spfarm-db1"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

124

 network_security_group_id: �"${azurerm_network_

security_group.spfarm-

security-group.id}"

 private_ip_address: <computed>

 private_ip_addresses.#: <computed>

 resource_group_name: "spfarmstaging"

 tags.%: "1"

 tags.environment: "staging"

 virtual_machine_id: <computed>

 + azurerm_network_interface.spfarm-wfe1

 id: <computed>

 applied_dns_servers.#: <computed>

 dns_servers.#: <computed>

 enable_accelerated_networking: "false"

 enable_ip_forwarding: "false"

 internal_dns_name_label: <computed>

 internal_fqdn: <computed>

 ip_configuration.#: "1"

 �ip_configuration.0.load_balancer_backend_

address_pools_ids.#: <computed>

 �ip_configuration.0.load_balancer_inbound_

nat_rules_ids.#: <computed>

 ip_configuration.0.name: "wfe1-ipconfiguration"

 ip_configuration.0.primary: <computed>

 ip_configuration.0.private_ip_address: <computed>

 �ip_configuration.0.private_ip_address_

allocation: "dynamic"

 ip_configuration.0.public_ip_address_id: �"${azurerm_public_

ip.wfe1-public-ip.id}"

 ip_configuration.0.subnet_id: �"${module.subnet-

public-a.id}"

 location: "westus"

 mac_address: <computed>

 name: �"network-interface-

spfarm-wfe1"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

125

 network_security_group_id: �"${azurerm_network_

security_group.spfarm-

security-group.id}"

 private_ip_address: <computed>

 private_ip_addresses.#: <computed>

 resource_group_name: "spfarmstaging"

 tags.%: "1"

 tags.environment: "staging"

 virtual_machine_id: <computed>

 + azurerm_network_security_group.spfarm-security-group

 id: <computed>

 location: "westus"

 name: "spfarm-security-group"

 resource_group_name: "spfarmstaging"

 security_rule.#: "3"

 security_rule.0.access: "Allow"

 security_rule.0.destination_address_prefix: "*"

 security_rule.0.destination_port_range: "22"

 security_rule.0.direction: "Inbound"

 security_rule.0.name: "SSH"

 security_rule.0.priority: "1001"

 security_rule.0.protocol: "tcp"

 security_rule.0.source_address_prefix: "*"

 security_rule.0.source_port_range: "*"

 security_rule.1.access: "Allow"

 security_rule.1.destination_address_prefix: "*"

 security_rule.1.destination_port_range: "5985"

 security_rule.1.direction: "Inbound"

 security_rule.1.name: "WinRM"

 security_rule.1.priority: "1002"

 security_rule.1.protocol: "tcp"

 security_rule.1.source_address_prefix: "*"

 security_rule.1.source_port_range: "*"

 security_rule.2.access: "Allow"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

126

 security_rule.2.destination_address_prefix: "*"

 security_rule.2.destination_port_range: "3389"

 security_rule.2.direction: "Inbound"

 security_rule.2.name: "RDP"

 security_rule.2.priority: "1003"

 security_rule.2.protocol: "tcp"

 security_rule.2.source_address_prefix: "*"

 security_rule.2.source_port_range: "*"

 tags.%: "1"

 tags.environment: "Staging"

 + azurerm_public_ip.ad1-public-ip

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

 location: "westus"

 name: "ad1-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 tags.%: "1"

 tags.environment: "staging"

 + azurerm_public_ip.appserver1-public-ip

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

 location: "westus"

 name: "appserver1-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 tags.%: "1"

 tags.environment: "staging"

 + azurerm_public_ip.db1-public-ip

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

127

 location: "westus"

 name: "db1-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 tags.%: "1"

 tags.environment: "staging"

 + azurerm_public_ip.wfe1-public-ip

 id: <computed>

 fqdn: <computed>

 ip_address: <computed>

 location: "westus"

 name: "wfe1-public-ip"

 public_ip_address_allocation: "static"

 resource_group_name: "spfarmstaging"

 tags.%: "1"

 tags.environment: "staging"

 ...

 + azurerm_virtual_network.network

 id: <computed>

 address_space.#: "1"

 address_space.0: "10.10.0.0/16"

 location: "westus"

 name: "spfarm_staging_network"

 resource_group_name: "spfarmstaging"

 subnet.#: <computed>

 tags.%: <computed>

 + module.subnet-public-a.azurerm_subnet.main

 id: <computed>

 address_prefix: "10.10.1.0/24"

 ip_configurations.#: <computed>

 name: "spfarm-subnet-public-a"

 resource_group_name: "spfarmstaging"

 virtual_network_name: "spfarm_staging_network"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

128

 + module.subnet-public-b.azurerm_subnet.main

 id: <computed>

 address_prefix: "10.10.2.0/24"

 ip_configurations.#: <computed>

 name: �"spfarm-subnet-

public-b"

 resource_group_name: "spfarmstaging"

 virtual_network_name: �"spfarm_staging_

network"

Plan: 16 to add, 0 to change, 0 to destroy.

--

This plan was saved to: azure_spfarm_staging_plan.plan

To perform exactly these actions, run the following command to apply:

 terraform apply "azure_spfarm_staging_plan.plan"

The output is quite lengthy, so we won’t show you this. However, you can also use

the following command.

 >$ terraform show

At this point, you should see all the resources created by visiting the Azure portal.

Caution  You may incur charges deploying resources to Azure. It is recommended
that you destroy the resources as soon as possible to avoid charges.

We’ve gone through the process of deploying our entire SharePoint infrastructure to

Azure, but we are not done yet! We need to ensure that our infrastructure is configured

as desired. Since we are using IaC, we can apply the development principles, including

writing test cases.

Fortunately for us, we have InSpec 2.0. InSpec is a framework that helps test

configuration and as of 2.0, cloud resource configuration. It is widely used in automation

scenarios such as ours.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

129

�Testing Terraform Infrastructure Deployments
Using InSpec
When we built our development SharePoint 2016 farm in Chapter 3, we included a way

to test and confirm that our configuration was in the desired state by using Serverspec.

Because we are writing infrastructure as code, it is quite appropriate to also write

tests to ensure that our end result is what we expect it to be. Testing Terraform deployed

resources in AWS and Azure has become easier thanks to the newest version of InSpec

2.0, which brings this capability.

�About InSpec 2.0
InSpec is an automated testing framework, which allows you to write unit tests against

a Windows configuration (for example) to validate that specific Windows features are

enabled. As of InSpec 2.0, however, we can now test specific cloud provider resources,

such as AWS and Azure resources that have been deployed with Terraform.

The unit tests we write can be incorporated into a CI/CD pipeline using Jenkins or

VSTS. InSpec is effectively Compliance as Code (CaC), which until now was a missing piece

when provisioning IaC. You can learn more about open source InSpec at www.inspec.io.

�Getting Started
Our infrastructure tests reside within the terraform/tests/azure folder. This folder was

created using the inspec init profile terraform/tests/azure command, which

creates a file structure needed to start creating tests against our infrastructure.

We need to ensure that the Azure environment variables are set prior to executing

tests. This is because InSpec uses the Azure API to run the tests against the terraformed

Azure resources.

To set the environment variables on your terminal, simply fill in the required

information and paste the following snippet.

>$ export AZURE_CLIENT_ID='55555555-7844-40c9-bdd4-6ba2868d9121' \

export AZURE_SECRET='pass@word1!' \

export AZURE_SUBSCRIPTION_ID='dbbc2e47-bae1-5555-a35a-35a7adc3e293' \

export AZURE_TENANT='484c7f71-4542-5555-8e1a-87e4751f4750'

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

http://﻿www.inspec.io﻿

130

�Terraform Output
InSpec 2.0 leverages the Terraform output defined. This is needed to write meaningful

test cases, as we use the actual existing values of various resources to write our tests. To

have a readable file for InSpec, we export the Terraform output by executing the following

command within the terraform/azure/environments/staging folder location.

>$ terraform output --json > ../../../tests/azure/files/terraform.json

The command places the terraform.json file in the appropriate location for the test

scripts to find it.

Armed with the values of these variables, we are ready to start writing some test

cases. There are particular things we care about when deploying our SharePoint farm

topology to Azure.

�Testing Our Resource Group

We would like to run some tests on our resource group, which we named spfarmstaging,

in our Terraform configuration file. We want to verify the following:

•	 The number of virtual machines that our resource group contains.

If you recall, our SharePoint 2016 farm topology has a total of four

virtual machines.

•	 Since there are four virtual machines, each one has at least one

network interface (nic). We are expecting four.

•	 The name of our resource group is as we specified.

•	 The location of our resource group should be in westus.

•	 We have created two NSGs to protect their corresponding subnets

(the back-end and front-end subnets).

We created a test file at the following location on our GitHub repo terraform/tests/

azure/controls/resource_group.rb. and its contents are shown in Listing 4-6.

Listing 4-6.  Contents of the resource_group.rb Infrastructure Test File

control 'azure_spfarm_storage' do

 �title 'Verify the SharePoint 2016 Farm Azure primary Resource Group

configuration.'

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

131

 impact 1.0

 describe azure_resource_group(name: 'spfarmstaging') do

 �# Check if the number of VMs in the Resource Group is correct

(for SharePoint 2016 topology we have 4)

 its('vm_count') { should eq 4 }

 �# Check if the number of public IPs is correct, should be 4 one for

each VM

 its('public_ip_count') { should eq 4 }

 its('name') { should eq 'spfarmstaging' }

 #storage should be in the West US

 its('location') { should cmp 'westus' }

 # We have two NSGs for our solution

 its('nsg_count') { should eq 2 }

 end

end

�Testing Virtual Machines
Virtual machines are another set of resources deployed via Terraform. For our virtual

machines, we have a few critical things we want to test, which include the following tests.

•	 Our virtual machine should be located in the ‘westus’

•	 Our virtual machine should contain network interfaces

•	 The total network interace count should be one

•	 The size of our virtual machine should be Standard_DS2_v2

•	 Our virtual machine should have resource tags (we can also check for

a specific tag)

Our test file is located at terraform/tests/azure/controls/virtual_machines.rb.

We used only test two machines to give you a sense of what is possible, however.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

132

control 'azure_spfarm_virtual_machines' do

 �title 'Verify the SharePoint 2016 Farm Virtual Machines are configured as

required.'

 impact 1.0

 describe azure_virtual_machine(group_name: 'spfarmstaging', name:

'sp2016AppServer') do

 # Check if the VM is located in the correct region

 its('location') { should cmp 'westus' }

 # should have nics attached to it

 it { should have_nics }

 # The Public Address Network Interface should exist

 its('nic_count') {should eq 1}

 # Check if the VM has the correct size

 its('vm_size') { should cmp 'Standard_DS2_v2' }

 # Check if the VM has tags

 it { should have_tags }

 end

 �describe azure_virtual_machine(group_name: 'spfarmstaging', name:

'SP2016SQLSERVER') do

 # Check if the VM is located in the correct region

 its('location') { should cmp 'westus' }

 # should have nics attached to it

 it { should have_nics }

 # The Public Address Network Interface should exist

 its('nic_count') {should eq 1}

 # Check if the VM has the correct image

 its('publisher') { should cmp 'MicrosoftSQLServer' }

 its('offer') { should cmp 'SQL2014SP2-WS2012R2' }

 its('sku') { should cmp 'Enterprise' }

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

133

 # Check if the VM has the correct size

 its('vm_size') { should cmp 'Standard_DS2_v2' }

 # Check if the VM has the correct admin username

 its('admin_username') { should eq 'packer' }

 # Check if the VM has tags, as per business requirements

 it { should have_tags }

 end

end

�Executing InSpec Tests
Now that we’ve written our test cases against our Azure resources, we are ready to

execute our test suite by using the following command.

>$ inspec exec test/azure –t azure://

The output may look familiar if you’ve used other testing frameworks, which is

shown in Listing 4-7.

Listing 4-7.  A Successful InSpec Test Execution

Profile: InSpec Profile (Test Azure Resources Deployed via Terraform)

Version: 0.1.0

Target: azure://88888888-bae1-4b8b-a35a-35a7adc3e293

 ✔ check-securityRules: azure_generic_resource

 ✔ �azure_generic_resource name should cmp == "spfarm-security-group-

backend"

 ✔ azure_generic_resource location should cmp == "westus"

 ✔ �azure_generic_resource properties.securityRules.count should eq 3

 ✔ �azure_spfarm_storage: Verify the SharePoint 2016 Farm Azure primary

Resource Group configuration.

 ✔ azure_resource_group vm_count should eq 4

 ✔ azure_resource_group public_ip_count should eq 4

 ✔ azure_resource_group name should eq "spfarmstaging"

 ✔ azure_resource_group location should cmp == "westus"

 ✔ azure_resource_group nsg_count should eq 2

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

134

 ✔ �azure_spfarm_virtual_machines: Verify the SharePoint 2016 Farm

Virtual Machines are configured as required.

 ✔ azure_virtual_machine should have nics

 ✔ azure_virtual_machine location should cmp == "westus"

 ✔ azure_virtual_machine nic_count should eq 1

 ✔ azure_virtual_machine vm_size should cmp == "Standard_DS2_v2"

 ✔ azure_virtual_machine should have nics

 ✔ azure_virtual_machine location should cmp == "westus"

 ✔ azure_virtual_machine nic_count should eq 1

 ✔ azure_virtual_machine publisher should cmp == "MicrosoftSQLServer"

 ✔ azure_virtual_machine offer should cmp == "SQL2014SP2-WS2012R2"

 ✔ azure_virtual_machine sku should cmp == "Enterprise"

 ✔ azure_virtual_machine vm_size should cmp == "Standard_DS2_v2"

 ✔ azure_virtual_machine admin_username should eq "packer"

Profile Summary: 3 successful controls, 0 control failures, 0 controls

skipped

Test Summary: 20 successful, 0 failures, 0 skipped

We need to now perform configuration management tasks using Ansible. These

are the same playbooks we executed when building the Vagrant test environment for

SharePoint in Chapter 3. Before that, we must ensure that Ansible has an inventory of the

Azure VMs, including the IP addresses. In our next section, we cover how to generate an

Ansible dynamic inventory from Azure resources.

�Generating the Dynamic Ansible Inventory File
for Azure Resources
Because we are using Azure virtual machine resources, we expect that at any given point,

we can tear down and re-create the virtual machines, which means IP addresses will

change. Therefore, instead of having a static Ansible inventory file, as we had for our

Vagrant SharePoint test environment, we want to build it based on the existing virtual

machines deployed to Azure.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

135

�Using azure_rm.py and azure_rm.ini Files
Provided by Ansible
We could figure out how to build a dynamic inventory file for Ansible from scratch.

But there is no need to do so, given that Ansible provides a Python script for us to use

(see https://github.com/ansible/ansible/blob/devel/contrib/inventory).

Tip  Ansible now supports “inventory plugins” which enhance the capabilities of
dynamic inventory scripts by providing access to Ansible’s internals. At the time of
writing this book, there isn’t an inventory plug-in for Azure, but check at https://
docs.ansible.com/ansible/latest/plugins/inventory.html, as it is
potentially included in the upcoming Ansible 2.7 release.

First, download the two files into the project’s ansible folder and ensure that the

azure_rm.py file is executable by using chmod u+x azure_rm.py.

azure_rm.in serves as a configuration file and can be customized; for example, we

may not be using some of the services listed, which can be commented out. In addition,

we can constrain our calls to focus on querying a specific resource group. In our case, we

have modified the file to only query the spfarmstaging Azure resource group and only

from the westus location, as shown in Listing 4-8.

Listing 4-8.  Contents of the azure_rm.ini File Customized to Only Show Westus

Resources from the Spfarmstaging Resource Group

Configuration file for azure_rm.py

#

[azure]

Control which resource groups are included. By default all resources

groups are included.

Set resource_groups to a comma separated list of resource groups names.

resource_groups=spfarmstaging

Control which tags are included. Set tags to a comma separated list of

keys or key:value pairs

#tags=

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

﻿https://github.com/ansible/ansible/blob/devel/contrib/inventory﻿
https://docs.ansible.com/ansible/latest/plugins/inventory.html
https://docs.ansible.com/ansible/latest/plugins/inventory.html

136

Control which locations are included. Set locations to a comma separated

list (e.g. eastus,eastus2,westus)

locations=westus

Include powerstate. If you don't need powerstate information, turning it

off improves runtime performance.

include_powerstate=yes

Control grouping with the following boolean flags. Valid values: yes, no,

true, false, True, False, 0, 1.

group_by_resource_group=yes

group_by_location=yes

group_by_security_group=yes

group_by_tag=yes

�Installing Azure Python SDK

Ansible requires additional packages in order to work with Azure. To install these, we use

pip (Python package manager) and execute the following command.

>$ pip install ansible[azure]

This installs all required packages. We list those using grep to filter the results. It

should look something like the following.

> $ pip list | grep azure

DEPRECATION: The default format will switch to columns in the future. You

can use --format=(legacy|columns) (or define a format=(legacy|columns) in

your pip.conf under the [list] section) to disable this warning.

azure-cli-nspkg (3.0.1)

azure-common (1.1.8)

azure-mgmt-compute (2.1.0)

azure-mgmt-network (1.7.1)

azure-mgmt-nspkg (2.0.0)

azure-mgmt-resource (1.2.2)

azure-mgmt-storage (1.5.0)

azure-nspkg (2.0.0)

azure-storage (0.35.1)

msrestazure (0.4.21)

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

137

Tip  If you get permission denied errors, you might need to adjust the command
and use sudo (i.e., sudo pip install ansible[azure]).

�Configuring Ansible Credentials Using Environment Variables

To use the provided Python script, we need to ensure that we have certain environment

variables set. These environment variables can be created from the output of our Bash

script mentioned in the “Create Base VM Image Using Packer” section. You can also grab

the values from the packer/azure_windows_2016.json file, as it uses these values. On

our terminal, we set the following environment variables.

>$ export AZURE_CLIENT_ID='<REDACTED>' \

export AZURE_SECRET='pass@word1' \

export AZURE_SUBSCRIPTION_ID='<REDACTED>' \

export AZURE_TENANT='<REDACTED>

Warning  You must set the environment variables successfully before moving
on because the Ansible Python script will not be able to authenticate to Azure
otherwise. Recall that we obtained that information from running our Bash script
earlier in this chapter, and can use this information to set these environment
variables when using Ansible.

�Running the azure_rm.py Python Script

Once we’ve installed the required software packages, we execute a test command that

outputs a list of virtual machines deployed to Azure.

From within the ansible/ folder, which is where we have the script file. We execute a

test command as shown in Listing 4-9.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

138

Listing 4-9.  Ansible Command Results That Lists All Virtual Machines Deployed

to Azure

>$ ansible -i ansible/azure_rm.py spfarmstaging --list

 hosts (4):

 SP2012R2AD

 sp2016AppServer

 sp2016Sqlserver

 sp2016WFE

Another command available to us is

>$ ansible-inventory –i azure_rm.py –list

or if we wanted to show which hosts show up for specific groups, we can execute the

following command, as well.

>$ ansible-inventory –i azure_rm.py –graph

We now see all the servers that we previously deployed using Terraform. Notice that

the hostname corresponds to the name we provided for each virtual machine and not

the actual computer name.

�Use Ansible Playbooks to Install and Configure
SharePoint 2016 Farm
Now that we have our infrastructure deployed via Terraform, it is time to start executing

Ansible playbooks and tasks to perform configuration management. Specifically, we

want to install the SharePoint 2016 and configure the farm topology.

Tip  We could have used built-in provisioners in Terraform to execute Ansible
playbooks, but for our scenario, we want to keep Terraform usage to building out
IaC and not perform any configuration management with it.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

139

�Execute Ansible Ad Hoc Commands Against
Azure Virtual Machine
Before we get deep into executing Ansible playbooks against our Azure resources, we

want to test basic commands to ensure that we have our setup properly configured.

�Run Ansible’s Setup Module via Ad Hoc Command

For this example, we will run the Ansible built-in setup module against the

sp2016AppServeral already provisioned. This module gathers facts about the server in

question. In our terminal, and while in the root of our GitHub project structure, we type

what’s shown in Listing 4-10.

Listing 4-10.  Output of Executing an Ansible Setup Ad Hoc Command Against

an Azure Virtual Machine

> $ ansible -i ansible/azure_rm.py sp2016AppServer -m setup -vvv --extra-

vars="ansible_user='packer' ansible_password='pass@word1!'"

ansible 2.4.3.0

 �config file = /Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible.cfg

 �configured module search path = ['/Users/sharepointoscar/.ansible/

plugins/modules', '/usr/share/ansible/plugins/modules']

 �ansible python module location = /usr/local/lib/python3.6/site-packages/

ansible

 executable location = /usr/local/bin/ansible

 �python version = 3.6.4 (default, Jan 3 2018, 12:27:11) [GCC 4.2.1

Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)]

Using /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible.cfg as config file

Parsed /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/azure_rm.py inventory source with script plugin

META: ran handlers

Using module file /usr/local/lib/python3.6/site-packages/ansible/modules/

windows/setup.ps1

<40.78.100.40> ESTABLISH WINRM CONNECTION FOR USER: packer on PORT 5985 TO

40.78.100.40

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

140

EXEC (via pipeline wrapper)

sp2016AppServer | SUCCESS => {

 "ansible_facts": {

 "ansible_architecture": "64-bit",

 "ansible_bios_date": "06/02/2017",

 "ansible_bios_version": "090007 ",

 "ansible_date_time": {

 "date": "2018-02-09",

 "day": "09",

 "epoch": "1518216073.77164",

 "hour": "22",

 "iso8601": "2018-02-09T22:41:13Z",

 "iso8601_basic": "20180209T224113771639",

 "iso8601_basic_short": "20180209T224113",

 "iso8601_micro": "2018-02-09T22:41:13.771639Z",

 "minute": "41",

 "month": "02",

 "second": "13",

 "time": "22:41:13",

 "tz": "UTC",

 "tz_offset": "+00:00",

 "weekday": "Friday",

 "weekday_number": "5",

 "weeknumber": "5",

 "year": "2018"

 },

 "ansible_distribution": "Microsoft Windows Server 2016 Datacenter",

 "ansible_distribution_major_version": "10",

 "ansible_distribution_version": "10.0.14393.0",

 "ansible_domain": "",

 "ansible_env": {

 "ALLUSERSPROFILE": "C:\\ProgramData",

 "APPDATA": "C:\\Users\\packer\\AppData\\Roaming",

 "COMPUTERNAME": "APPSERVER1",

 "ChocolateyInstall": "C:\\ProgramData\\chocolatey",

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

141

 "ComSpec": "C:\\Windows\\system32\\cmd.exe",

 "CommonProgramFiles": "C:\\Program Files\\Common Files",

 �"CommonProgramFiles(x86)": "C:\\Program Files (x86)\\Common

Files",

 "CommonProgramW6432": "C:\\Program Files\\Common Files",

 "HOMEDRIVE": "C:",

 "HOMEPATH": "\\Users\\packer",

 "LOCALAPPDATA": "C:\\Users\\packer\\AppData\\Local",

 "LOGONSERVER": "\\\\APPSERVER1",

 "NUMBER_OF_PROCESSORS": "2",

 "OS": "Windows_NT",

 �"PATHEXT": ".COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.

MSC;.CPL",

 "PROCESSOR_ARCHITECTURE": "AMD64",

 �"PROCESSOR_IDENTIFIER": "Intel64 Family 6 Model 63 Stepping 2,

GenuineIntel",

 "PROCESSOR_LEVEL": "6",

 "PROCESSOR_REVISION": "3f02",

 "PROMPT": "PG",

 "PSExecutionPolicyPreference": "Unrestricted",

 �"PSModulePath": "C:\\Users\\packer\\Documents\\

WindowsPowerShell\\Modules;C:\\Program Files\\

WindowsPowerShell\\Modules;C:\\Windows\\system32\\

WindowsPowerShell\\v1.0\\Modules;C:\\Program Files\\Microsoft

Monitoring Agent\\Agent\\PowerShell",

 "PUBLIC": "C:\\Users\\Public",

 �"Path": "C:\\Windows\\system32;C:\\Windows;C:\\Windows\\

System32\\Wbem;C:\\Windows\\System32\\WindowsPowerShell\\

v1.0\\;C:\\ProgramData\\chocolatey\\bin;C:\\Users\\packer\\

AppData\\Local\\Microsoft\\WindowsApps",

 "ProgramData": "C:\\ProgramData",

 "ProgramFiles": "C:\\Program Files",

 "ProgramFiles(x86)": "C:\\Program Files (x86)",

 "ProgramW6432": "C:\\Program Files",

 "SystemDrive": "C:",

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

142

 "SystemRoot": "C:\\Windows",

 "TEMP": "C:\\Users\\packer\\AppData\\Local\\Temp",

 "TMP": "C:\\Users\\packer\\AppData\\Local\\Temp",

 "USERDOMAIN": "APPSERVER1",

 "USERDOMAIN_ROAMINGPROFILE": "APPSERVER1",

 "USERNAME": "packer",

 "USERPROFILE": "C:\\Users\\packer",

 "windir": "C:\\Windows"

 },

 "ansible_fqdn": "APPSERVER1.",

 "ansible_hostname": "APPSERVER1",

 "ansible_interfaces": [

 {

 "default_gateway": "10.10.1.1",

 �"dns_domain": "3zqukdajuwtutf32mpr3kqjdlc.dx.internal.

cloudapp.net",

 "interface_index": 3,

 "interface_name": "Microsoft Hyper-V Network Adapter #4",

 "macaddress": "00:0D:3A:36:EF:10"

 }

],

 "ansible_ip_addresses": [

 "10.10.1.5",

 "fe80::543e:c031:e4f0:773c"

],

 "ansible_kernel": "10.0.14393.0",

 "ansible_lastboot": "2018-02-09 21:11:13Z",

 "ansible_machine_id": "S-1-5-21-2571558981-2393378056-3617554007",

 "ansible_memtotal_mb": 7168,

 "ansible_nodename": "APPSERVER1.",

 "ansible_os_family": "Windows",

 "ansible_os_name": "Microsoft Windows Server 2016 Datacenter",

 "ansible_owner_contact": "",

 "ansible_owner_name": "",

 "ansible_powershell_version": 5,

 "ansible_processor": [

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

143

 "GenuineIntel",

 "Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz",

 "GenuineIntel",

 "Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz"

],

 "ansible_processor_cores": 2,

 "ansible_processor_count": 1,

 "ansible_processor_threads_per_core": 1,

 "ansible_processor_vcpus": 2,

 "ansible_product_name": "Virtual Machine",

 "ansible_product_serial": "0000-0007-6789-2939-5396-6604-04",

 "ansible_reboot_pending": false,

 "ansible_swaptotal_mb": 0,

 "ansible_system": "Win32NT",

 "ansible_system_description": "",

 "ansible_system_vendor": "Microsoft Corporation",

 "ansible_uptime_seconds": 5401,

 "ansible_user_dir": "C:\\Users\\packer",

 "ansible_user_gecos": "",

 "ansible_user_id": "packer",

 "ansible_user_sid": "S-1-5-21-2571558981-2393378056-3617554007-500",

 "ansible_win_rm_certificate_expires": "2018-02-10 02:12:35",

 "ansible_windows_domain": "WORKGROUP",

 "module_setup": true

 },

 "changed": false

}

META: ran handlers

META: ran handlers

Success! You might have noticed that the ad hoc command that we executed

contains the Ansible –extra-vars populated with the domain username and password.

We need to indicate this. Those credentials are different from the values found in the

YAML file located at ansible/group_vars/all/all.yml. Specifically, the ansible_user

and ansible_password values are different because they are used by the development

environment.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

144

Note  You can change the ansible_user and ansible_password values found at an
ansible/group_vars/all/all.yml to avoid adding those to ad hoc commands.

�Resolving Errors

Inevitably, we are bound to get errors when we are first setting up our environment to

execute commands against Azure, as there may be either outdated or missing libraries.

Error: “winrm or requests is not installed: No module named xmltodict”

$ ansible -i ansible/ec2.py -m ping tag_Role_AppServer --extra-

vars="ansible_port='5986' ansible_user='Administrator'ansible_

password='Pass@word1!'ansible_winrm_scheme='https' ansible_winrm_server_

cert_validation='ignore'" -vvvv

. . .

Using module file /Library/Python/2.7/site-packages/ansible/modules/system/

ping.py

52.53.237.25 | FAILED! => {

 "msg": "winrm or requests is not installed: No module named xmltodict"

}

Resolution

To resolve this error, run the following.

>$ pip install xmltodict

Collecting xmltodict

 Downloading xmltodict-0.11.0-py2.py3-none-any.whl

Installing collected packages: xmltodict

Successfully installed xmltodict-0.11.0

Error: “winrm or requests is not installed: No module named winrm”

One of the first errors we get from running our ping Ansible command, is shown in bold,

as follows.

ansible 2.4.2.0

 . . .

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

145

Using module file /Library/Python/2.7/site-packages/ansible/modules/system/

ping.py

52.53.237.25 | FAILED! => {

 "msg": "winrm or requests is not installed: No module named winrm"

}

Resolution

This error is telling us that the pywinrm package is missing or not installed, essentially.

This can happen if the Ansible Python executable is different from the one used on your

terminal.

If you have different Python interpreter versions (which happens often, and it is

needed at times), then simply make sure that the pywinrm package is installed for that

version. Run the following command.

>$ pip install pywinrm

Collecting pywinrm

 Downloading pywinrm-0.2.2-py2.py3-none-any.whl

Collecting requests-ntlm>=0.3.0 (from pywinrm)

 Downloading requests_ntlm-1.1.0-py2.py3-none-any.whl

Requirement already satisfied: xmltodict in /Library/Python/2.7/site-

packages (from pywinrm)

Collecting requests>=2.9.1 (from pywinrm)

 Downloading requests-2.18.4-py2.py3-none-any.whl (88kB)

 100%

|█████████████████████████████|

92kB 3.0MB/s

Requirement already satisfied: six in /Library/Python/2.7/site-packages/

six-1.11.0-py2.7.egg (from pywinrm)

Errors: Ansible Command hangs for a long time

At times, executing an Ansible command may take a long time, and you get a timeout

error message.

Resolution

First, test WinRM connectivity. From OS X, execute the following command.

>$ nc -z -w1 <HOSTNAME> 5985;echo $?

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

146

A successful output would look something like this.

>$ nc -z -w1 HOSTNAME 5985;echo $?

Connection to hostname port 5985 [tcp/wsman] succeeded!

0

If the command returns 0, then there are no WinRM connectivity issues, which tells

us that there must be something wrong on the Ansible configuration side. Also ensure

that WinRM is configured properly over the desired port: 5985 for HTTP and 5986 for

HTTPS, which also requires certificates. In our scenario, it is critical that the Azure

security group has the Ingress configured on the desired port.

If you still get connection refused errors, check the firewall rules on the host. In

addition, since we are working with hosts in the cloud, you may need to adjust the scope

of the Windows Remote Management (HTTP-in) rule to allow remote IPs to contact port

5985 on the public profile.

�Run Ansible Playbooks by Role
Once we are past any connectivity issues on our virtual machines, we are ready to

execute Ansible playbooks against our machines. We start with the domain controller,

which is at the heart of our topology.

Warning  Before running any Ansible playbooks or commands, be sure to restart
the Azure virtual machines. Somehow, we found that our Ansible playbook did not
actually restart them when needed. To reboot via an Ansible command, you can
execute the following command within the root of our project:>$ time Ansible
all –I Ansible/azure_rm.py –e ansible_user=packer –e ansible_
password=pass@word1! –m win_reboot.

�Perform Configuration Management for the Domain Controller

We open a terminal and ensure that we are at the root of our GitHub repository.

>$ ansible-playbook -i ansible/azure_rm.py ansible/plays/domaincontroller.

yml --extra-vars="cloud_host='SP2012R2AD' ansible_user='packer' ansible_

password='pass@word1!'" -vvvv

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

147

As you can see, we are passing the administrator account and password as extra

arguments. Of special interest, however, is the cloud_host variable. Our playbook

accepts a parameter named cloud_host, which corresponds to the host we want to

execute the playbook against.

After the playbook runs, the machine is promoted to a domain controller, and it is

restarted.

The playbook will only execute the first task within our playbook. We must execute

the second task, which adds the SharePoint service accounts and end-user sample

accounts to AD once it is in place.

Note  The ansible_user and ansible_password variable values correspond to the
Terraform defined in each virtual machine under os_profile.

A successful output will look similar to the following.

ansible-playbook 2.4.3.0

 �config file = /Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible.cfg

 �configured module search path = ['/Users/sharepointoscar/.ansible/

plugins/modules', '/usr/share/ansible/plugins/modules']

 �ansible python module location = /usr/local/lib/python3.6/site-packages/

ansible

 executable location = /usr/local/bin/ansible-playbook

 �python version = 3.6.4 (default, Jan 3 2018, 12:27:11) [GCC 4.2.1

Compatible Apple LLVM 9.0.0 (clang-900.0.39.2)]

Using /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible.cfg as config file

setting up inventory plugins

Parsed /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/azure_rm.py inventory source with script plugin

..

statically imported: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible/roles/internal/domaincontroller/tasks/promote-domain.yml

statically imported: /Users/sharepointoscar/git-repos/vagrant-ansible-

packer-spfarm/ansible/roles/internal/domaincontroller/tasks/create-ad-

accounts.yml

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

148

Loading callback plugin default of type stdout, v2.0 from /usr/local/lib/

python3.6/site-packages/ansible/plugins/callback/default.py

PLAYBOOK: domaincontroller.yml

1 plays in ansible/plays/domaincontroller.yml

 [WARNING]: Could not match supplied host pattern, ignoring: |

 [WARNING]: Could not match supplied host pattern, ignoring:

DomainControllers

PLAY [domaincontroller.yml | All roles]

TASK [Gathering Facts]

Using module file /usr/local/lib/python3.6/site-packages/ansible/modules/

windows/setup.ps1

<104.210.33.93> ESTABLISH WINRM CONNECTION FOR USER: packer on PORT 5985 TO

104.210.33.93

checking if winrm_host 104.210.33.93 is an IPv6 address

EXEC (via pipeline wrapper)

ok: [SP2012R2AD]

META: ran handlers

TASK [domaincontroller : Install Active Directory on Windows Server 2016]

task path: /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/roles/internal/domaincontroller/tasks/promote-domain.yml:6

<104.210.33.93> ESTABLISH WINRM CONNECTION FOR USER: packer on PORT 5985 TO

104.210.33.93

checking if winrm_host 104.210.33.93 is an IPv6 address

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

<104.210.33.93> PUT "/Users/sharepointoscar/git-repos/vagrant-

ansible-packer-spfarm/ansible/roles/internal/domaincontroller/files/

create-domain.ps1" TO"C:\Users\packer\AppData\Local\Temp\ansible-

tmp-1518466688.0834079-241749603086064\create-domain.ps1"

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

149

EXEC (via pipeline wrapper)

EXEC (via pipeline wrapper)

ok: [SP2012R2AD] => {

 "changed": false,

 "rc": 0,

 �"stderr": "The following exception occurred while retrieving

member \"SetPassword\": \"The user name could not be found.\

r\n\"\r\nAt C:\\Users\\packer\\AppData\\Local\\Temp\\ansible-

tmp-1518466688.0834079-241749603086064\\create-domain.ps1:18

char:3\r\n+ $adminUser.SetPassword($AutoLoginPassword)\r\

n+ ~~\r\n+ CategoryInfo

: NotSpecified: (:) [], ExtendedTypeSystemException\r\n+

FullyQualifiedErrorId : CatchFromBaseGetMember\r\n",

 �"stdout": "Configuring SharePoint Farm Active Directory Domain

Controller\n \r\nThe task has completed successfully.\r\nSee log

%windir%\\security\\logs\\scesrv.log for detail info.\r\nCompleted

5 percent (0/18) \tProcess Security Policy area

\rCompleted 22 percent (3/18) \tProcess Security Policy area

\rCompleted 44 percent (7/18) \tProcess Security Policy area

\rCompleted 61 percent (10/18) \tProcess Security Policy area

\rCompleted 77 percent (13/18) \tProcess Security Policy area

\rCompleted 100 percent (18/18) \tProcess Security Policy area

\r\r\nThe task has completed successfully.\r\nSee log %windir%\\

security\\logs\\scesrv.log for detail info.\r\n\r\nSuccess Restart

Needed Exit Code Feature Result

\r\n------- -------------- --------- --------------

\r\nTrue No Success {Active Directory Domain

Services, Group P...\r\n\r\nMessage : You must restart this

computer to complete the operation.\r\n \r\nContext :

DCPromo.General.2\r\nRebootRequired : True\r\nStatus :

Success\r\n\r\n\r\n\r\n",

 "stdout_lines": [

 "Configuring SharePoint Farm Active Directory Domain Controller",

 " ",

 "The task has completed successfully.",

 "See log %windir%\\security\\logs\\scesrv.log for detail info.",

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

150

 "Completed 5 percent (0/18) \tProcess Security Policy area ",

 "Completed 22 percent (3/18) \tProcess Security Policy area ",

 "Completed 44 percent (7/18) \tProcess Security Policy area ",

 "Completed 61 percent (10/18) \tProcess Security Policy area ",

 "Completed 77 percent (13/18) \tProcess Security Policy area ",

 "Completed 100 percent (18/18) \tProcess Security Policy area ",

 " ",

 "The task has completed successfully.",

 "See log %windir%\\security\\logs\\scesrv.log for detail info.",

 "",

 "Success Restart Needed Exit Code Feature Result ",

 "------- -------------- --------- -------------- ",

 "True No Success �{Active Directory

Domain Services, Group P...",

 "",

 "Message : �You must restart this computer to

complete the operation.",

 " ",

 "Context : DCPromo.General.2",

 "RebootRequired : True",

 "Status : Success",

 "",

 "",

 ""

]

}

Next, we will execute the second portion of the playbook, which adds the required

service accounts for SharePoint to Active Directory, as well as sample user accounts.

You may need to wait until the machine is fully restarted, or restart it manually using

the Azure portal prior to executing the next playbook task. Be sure that you can RDP into

it using the packer@sposcar.local domain account and the password, pass@word1!, prior

to running Ansible tasks.

You may also execute the following Ansible command to test if the machine is up.

>$ ansible all –i ansible/azure_rm.py –e ansible_user=packer@sposcar.local

-e ansible_password=pass@word1! –m win_ping –l SP2012R2AD

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

151

Tip R ecall that we executed the same Ansible playbook in the Vagrant test
environment that we built in Chapter 3. The difference now is that we are targeting
the Azure virtual machine with the domain controller role. For information on the
playbook content, go to ansible/roles/domaincontroller/tasks/main.yml.

> $ ansible-playbook -i ansible/azure_rm.py ansible/plays/domaincontroller.

yml --extra-vars="cloud_host='SP2012R2AD' ansible_user='packer@sposcar.

local' ansible_password='pass@word1!'" --start-at-task="Add Admin Account

to Domain Admins" -vvvvv

Because we promoted our Azure virtual machine to a domain controller in the

previous execution of the Ansible playbook, we need to tell Ansible which credentials to

use to perform configuration management, and use an account that has domain admin

credentials. This account is the SPOSCAR\packer account, which is also the one we

specified as an administrator when we baked the Packer image for our SharePoint farm.

Our playbook just added all the SharePoint service accounts in Active Directory and

created sample users in Active Directory. After the Ansible task completes, our domain

controller is ready for our SharePoint farm. Next, we configure the database server.

�Perform Configuration Management for the Database Server

Because we are using an Azure-provided image for the SQL server role, we do not

need to perform any configuration other than joining the VM to the domain. However,

because we are using an Azure-provided SQL server image, we need to open the WinRM

port to execute the Ansible playbook.

Note that we must enable the firewall port for the SQL server to be managed over

WinRM, as the Azure gallery provided image has it closed by default. You have the option

to automate this; in our case, we simply RDP to the VM and enable the firewall rule. It is

port 5985 by default, and the rule is already created, so it is a matter of ensuring that it is

enabled.

>$ ansible-playbook -i ansible/azure_rm.py ansible/plays/databaseservers.

yml --extra-vars="cloud_host='SP2016SQLSERVER' ansible_user='packer'

ansible_password='pass@word1!'" --tags="join-to-domain" -vvvv

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

152

To constrain our playbook from executing any other tasks, we use the Ansible “tags”

and specify the value. Notice that we are using the non-domain VM administrative

account to execute this task. The playbook task itself contains the proper domain

account and password to allow for joining our VM to the domain. The playbook task can

be found at Ansible/Roles/Database/Task/main.yml, where you can control which

tasks are included in the playbook itself.

And that is it for our database server. It is now ready for our SharePoint install. But

first, let’s configure the other farm roles.

�Perform Configuration Management for the App Server and
WFE Roles

Our Ansible playbook is very much the same for both the app server and the WFE.

The playbook contains two major tasks: one to join the machine to the domain and one

to download and install the SharePoint prerequisites. It then runs AutoSPInstaller,

which takes at least 40 minutes to finish executing.

> $ ansible-playbook -i ansible/azure_rm.py ansible/plays/appservers.yml

--extra-vars="cloud_host='sp2016AppServer' ansible_user='packer' ansible_

password='pass@word1!'" –vvvvv

Once the playbook completes, we should be able to access central administration

on port 2016. If there are errors, we can see the script halting on our Ansible terminal.

If there are errors, it is typically easier to RDP in to the VM and run the AutoSPInstaller

to see the output from the script, as we don’t get that within the Ansible terminal,

unfortunately.

After the playbook runs, we execute a similar playbook for the WFE, as follows.

> $ ansible-playbook -i ansible/azure_rm.py ansible/plays/webservers.

yml --extra-vars="cloud_host='SP2016WFE' ansible_user='packer' ansible_

password='pass@word1!'" –vvvvv

Once the WFE playbook is completed, we have a clean SharePoint 2016 farm

running, which can further be configured.

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

153

�Summary
In this chapter, we walked through how to use IaC to provision a SharePoint 2016 farm

to Azure in a consistent and repeatable way. We used Packer to create an Azure image

that contains a couple of preinstalled packages, like VSCode in our example. We then

referenced this custom VHD in our Terraform configuration files to provision our servers.

We also used Ansible to perform configuration management of our initial servers.

Playbooks are a great way to have control over all configuration changes applied to the

servers on our topology. Coupled with version control, it allows developers to make

changes, test locally, execute targeting a staging environment, and then initiate pull

requests prior to changes being pushed to a production environment.

In the next chapter, we create the proper artifacts in Packer and deploy our

SharePoint 2016 farm to AWS.

Figure 4-2.  Fully deployed SharePoint 2016 farm to the Azure cloud

Chapter 4 Provisioning the SharePoint Farm to Azure Using Terraform

155
© Oscar Medina, Ethan Schumann 2018
O. Medina and E. Schumann, DevOps for SharePoint, https://doi.org/10.1007/978-1-4842-3688-8_5

CHAPTER 5

Provisioning the
SharePoint Farm to
AWS Using Terraform
and Ansible
In the previous chapter, we successfully created our golden image, the Windows

machine that will be used to provision all the virtual machines in AWS and/or Azure.

In this chapter, we go through the exercise of deploying the SharePoint 2016 farm to a

test environment in AWS using IaC. Once again, we use Terraform by HashiCorp.

�About the Solution Architecture
Note that this architecture does not utilize some of the native AWS resources, such as

AWS Directory Service or Amazon Relational Database Service (RDS). Although AWS

Directory Service could be used with some modification to the domain controller

Ansible configurations, RDS is not compatible because there are some permissions

needed for SharePoint configuration that are not available.

156

Caution  Note that we are creating the domain controller and database server in
public subnets for ease of use, allowing us to run Ansible from our local machine
without any additional VPN connections. In a production/live configuration, you
want to configure a VPN to the VPC to run Ansible locally, or run Ansible on an
instance that exists within the VPC. As shown in Figure 5-1, the private subnets are
created but not used.

Figure 5-1.  The AWS farm topology (similar to the Vagrant topology for dev
environment)

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

157

�Terraform Folder Structure
Our Terraform folder is divided into environments. We have an AWS, a local, and

a shared folder. The shared folder is where common artifacts are used by any

environment. Items such as the SSH keys and providers reside within this folder.

> $ tree terraform -l 2

terraform

├── aws
│ ├── backend.tf
│ ├── environments
│ │ ├── staging
│ │ └── test
│ │ ├── backend.tf
│ │ ├── main.tf
│ │ └── variables.tf
│ ├── scripts
│ │ └── create-bucket.sh
├── azure
│ ├── environments
│ │ └── test
│ │ └── main.tf
│ └── terraform.tfstate.d
│ └── AZURE_SPFARM
├── local
│ └── variables.tf
├── shared
│ ├── providers
│ │ └── aws.tf
│ ├── ssh_keys
│ │ ├── keys.tf
│ │ ├── spfarm_rsa.pem
│ │ └── spfarm_rsa.pub
│ └── vpc
└── terraform.tfstate.d

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

158

2 [error opening dir]

16 directories, 21 filesTerraform project folder structure

For the purpose of going through the deployment of the SharePoint 2016 farm to

AWS, we will mainly focus on the AWS folder contents within our GitHub repository

throughout this exercise.

We will be building a fully functional SharePoint 2016 test environment in AWS.

�Set up AWS Credentials
Terraform uses the AWS credentials already in our system. That is, we already have

installed the AWS CLI and configured it using the aws configure command. Once AWS

CLI is configured, the credentials are stored in the ~/.aws/credentials file (on OS X). If

you need to install AWS CLI on Windows or OS X, instructions are at http://docs.aws.

amazon.com/cli/latest/userguide/installing.html#install-msi-on-windows.

Often, AWS engineers/operators have multiple accounts/access keys configured

for executing against different accounts or with different permission levels. The core

concepts of this practice are in the AWS documentation at https://docs.aws.amazon.

com/cli/latest/userguide/cli-multiple-profiles.html.

The key takeaway for our work is knowing how to specify a profile when running

your AWS CLI commands. This is as simple as using the "--profile [PROFILE NAME]"

flag for all AWS commands; for example

aws s3api create-bucket --bucket $NAME --region $REGION --acl $ACL --

create-bucket-configuration LocationConstraint=$REGION --profile [PROFILE NAME].

Our exercises use a single profile in our AWS CLI config, so we have no need to use

the "--proflie" flag.

Tip H aving AWS credentials configured prevents us from using them within
our configuration, which should be avoided. Instead, Terraform reads the AWS
credentials from our environment variables.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

﻿http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-msi-on-windows﻿
﻿http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-msi-on-windows﻿
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

159

�Configuring the Terraform Back End
Once we have the AWS CLI fully configured, we are ready to start working with Terraform.

We must first set up storage and versioning of the Terraform state. Terraform state controls

how changes to the infrastructure are tracked. In a team environment, this is a must-have

for multiple team members making changes as part of the overall team workflow.

There are several of options when it comes to managing state for Terraform and

setting up the back end. One option is to use the Terraform Enterprise product by

HashiCorp. There are several others, including Consul, AzureRM, and Google Cloud.

The supported back end that we will use is the AWS S3 Bucket with versioning

enabled, combined with DynamoDB to support state locking, as per the documentation.

Tip T o view a list of supported back ends, please visit https://www.
terraform.io/docs/backends/types/index.html.

�Create the S3 Bucket via AWS CLI
There are a couple of ways to create the S3 Bucket: via the web console or via the AWS

CLI. Given that we already have the AWS CLI installed, we will use that approach.

However, the outcome is the same, and you should use whichever approach you feel

comfortable with.

We have created a Bash script to quickly create our bucket; it is located in the

terraform/aws/scripts folder. Listing 5-1 shows what the Bash script looks like.

Caution T he Bash script is not meant to be robust, and can use enhancements
to include error checking. However, it does successfully create the resources on
AWS, as tested.

Listing 5-1.  Utility Bash Script to Quickly Set up the Required S3 Bucket for the

Terraform Back End

#!/bin/bash

set -e

while getopts n:r:a: option

do

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

https://www.terraform.io/docs/backends/types/index.html
https://www.terraform.io/docs/backends/types/index.html

160

 case "${option}"

 in

 n) NAME=${OPTARG};;

 r) REGION=${OPTARG};;

 a) ACL=$OPTARG;;

 esac

done

We assume you have the AWS CLI installed.

aws s3api create-bucket --bucket $NAME --region $REGION --acl $ACL

--create-bucket-configuration LocationConstraint=$REGION

#enable versioning

aws s3api put-bucket-versioning --bucket $NAME --versioning-configuration

Status=Enabled

Create AWS DynamoDB Table with Key for locking

aws dynamodb create-table --table-name terraform-lock --attribute-

definitions AttributeName=lockId,AttributeType=S --key-schema AttributeName

=lockId,KeyType=HASH --provisioned-throughput ReadCapacityUnits=1,WriteCapa

cityUnits=1

The script accepts three parameters, as follows:

•	 -n (this is the bucket name)

•	 -r (this is the region)

•	 -a (this is the ACL, acceptable values are private, public-read, public-

read-write, and authenticated-read)

We give our bucket a meaningful name, spfarm-terraform-state, because we are

considering using this bucket to storage of multiple environment Terraform states, such

as dev, prod, and staging. We also set the region to us-west-1 region, which is US West

Norcal. Lastly, we specify the ACL with a value of private for our purposes.

Tip S etting the proper ACL on the Terraform state is critical, even within an
organization. For more information, please refer to https://www.terraform.
io/docs/state/sensitive-data.html.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

https://www.terraform.io/docs/state/sensitive-data.html
https://www.terraform.io/docs/state/sensitive-data.html

161

Listing 5-2.  Executing the Bash scripts outputs the results

> $./create-bucket.sh -n spfarm-terraform-state -r us-west-1 -a private

spfarm-terraform-staging

us-west-1

private{

 "Location": "http://spfarm-terraform-state.s3.amazonaws.com/"

}

{

 "TableDescription": {

 �"TableArn": "arn:aws:dynamodb:us-west-1:653931956080:table/

terraform-lock",

 "AttributeDefinitions": [

 {

 "AttributeName": "lockId",

 "AttributeType": "S"

 }

],

 "ProvisionedThroughput": {

 "NumberOfDecreasesToday": 0,

 "WriteCapacityUnits": 1,

 "ReadCapacityUnits": 1

 },

 "TableSizeBytes": 0,

 "TableName": "terraform-lock",

 "TableStatus": "CREATING",

 "KeySchema": [

 {

 "KeyType": "HASH",

 "AttributeName": "lockId"

 }

],

 "ItemCount": 0,

 "CreationDateTime": 1511986629.86

 }

}

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

162

The Bash script also enables versioning on our newly created S3 Bucket. In addition, it

creates the DynamoDB Table with the proper configuration for locking the Terraform state.

�Run Terraform Init
Now that we created our AWS S3 Bucket, we need to initialize Terraform for the AWS

environment. Because we organized our Terraform folder by environment (AWS, Local,

Azure, etc.), we want to ensure that we are within the terraform/aws/environments/

test folder prior to running the command. In this scenario, we are building a staging

environment on AWS for our SharePoint 2016 farm.

Note T erraform also has the concept of workspaces, but we do not use them
for our exercise. You can learn more about workspaces at www.terraform.io/
docs/state/workspaces.html.

>$ terraform init

If successful, the output of this command should look like Listing 5-3.

Listing 5-3.  Successful Console Output from Running the terraform init Command

me@sharepointoscar ~/git-repos/vagrant-ansible-packer-spfarm/terraform/aws/

environments/test

> $ terraform init

Initializing the backend...

Initializing provider plugins...

 - Checking for available provider plugins on https://releases.hashicorp.com...

 - Downloading plugin for provider "aws" (1.4.0)...

The following providers do not have any version constraints in

configuration, so the latest version was installed.

To prevent automatic upgrades to new major versions that may contain

breaking changes, it is recommended to add version = “...” constraints to

the corresponding provider blocks in configuration, with the constraint

strings suggested below.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

http://www.terraform.io/docs/state/workspaces.html
http://www.terraform.io/docs/state/workspaces.html

163

* provider.aws: version = "~> 1.4"

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to

see any changes that are required for your infrastructure. All Terraform

commands should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget,

other commands will detect it and remind you to do so if necessary.

The output is quite helpful, actually. There are two takeaways from this output that

we can spot. The first thing is that Terraform is downloading the AWS provider. As of

Terraform v0.10, the providers have been decoupled for good reasons. One reason is

version constraint for a given solution. The following is a blurb from the announcement

by HashiCorp:

As of v0.10, provider plugins are no longer included in the main Terraform
distribution. Instead, they are distributed separately and installed auto-
matically by the terraform init command.

In the long run, this new approach should be beneficial to anyone who wishes
to upgrade a specific provider to get new functionality without also upgrad-
ing another provider that may have introduced incompatible changes. In the
short term, it just means a smaller distribution package and thus avoiding
the need to download tens of providers that may never be used.

Second, we can constraint the AWS provider to a specific version moving forward.

For us, this means going into our provider file located at terraform/shared/providers/

aws.tf, and adding the snippet of code suggested. Our file should look like Listing 5-4.

Listing 5-4.  Contents of the aws.tf Provider File Constraining the Version of the

AWS Provider for Our Solution

provider.aws: version = "~> 1.4"

provider "aws" {

 region = "${var.aws_region}"

 access_key = "${var.aws_access_key_id}"

 secret_key = "${var.aws_secret_access_key}"

}

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

164

�Define the Terraform Back End
Now that we have configured state and initialized Terraform, we are ready to define our

back end declaratively using the HCL syntax. This file can be found under terraform/

aws/environments/test/backend.tf. It should look similar to Listing 5-5.

Listing 5-5.  The Terraform Back End Configuration File Contents (terraform/

aws/environments/test/backend.tf)

terraform {

 backend "s3" {

 bucket = "spfarm-terraform-state"

 key = "shared/terraform_staging_env.tfstate"

 region = "us-west-1"

 encrypt = true

 dynamodb_table = "terraform-lock"

 }

}

Perhaps you are wondering why we are not using interpolation when defining

the back end. Unfortunately, Terraform back-end configuration does not support

interpolation given the timing of the init command, by default. The initialization

happens at such an early stage that interpolation is not yet available. If you would

like to use interpolation with Terraform init, a partial initialization can be utilized to

accomplish this by issuing the "-backend-config" command, in which you pass in the

parameters via the CLI. The following is an example.

terraform init \

 -backend-config "bucket=$TF_VAR_tf_state_bucket" \

 -backend-config "lock_table=$TF_VAR_tf_state_table" \

 -backend-config "region=$TF_VAR_region" \

 -backend-config "key=$TF_VAR_application/$TF_VAR_environment"

Note that in this example, we are setting the values of the init flags using the same

environment variables that we use to dynamically configure our Terraform variables.

Environment variables can be easily injected into most environments. They allow us

to create a common workflow, whether we are running locally or using continuous

integration.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

165

Excluding the use of "-backend-config", we must manually type the values and

ensure that they match the S3 Bucket name and the DynamoDB Table name that we

previously configured. This is the approach used throughout our examples.

�Create Core AWS Resources Using Terraform
We have finally initialized our AWS environment and are ready to start defining our

SharePoint 2016 farm Resources. Terraform uses HCL, or HashiCorp Configuration

Language syntax. In HashiCorp’s own words:

“HCL (HashiCorp Configuration Language) is a configuration language
built by HashiCorp. The goal of HCL is to build a structured configuration
language that is both human and machine friendly for use with command-
line tools, but specifically targeted towards DevOps tools, servers, etc. HCL
is also fully JSON compatible. That is, JSON can be used as completely valid
input to a system expecting HCL. This helps makes systems interoperable
with other systems.”

(https://github.com/hashicorp/hcl)

The first artifacts that we need to create (and this is typical) are the VPC, a security

group, and any variables and output we would like to see at the time of running

Terraform apply.

�About Terraform Modules
Throughout this exercise, we use Terraform modules, which are hosted on a separate

repository. Think of modules as reusable components that can be used throughout your

AWS environments. Modules may contain attributes that are populated via static text or

dynamically via setting the corresponding variable’s value. Module sources supported

include local, HashiCorp Registry, GitHub, HTTP URLs, and S3 Buckets.

For our exercise, we want to keep our modules versioned on GitHub. They are

located at github.com/SharePointOscar/terraform_modules.git. We will reference

them directly from there. So, let’s get started.

Because we have our Terraform modules completely decoupled from our SharePoint

2016 Terraform project, we are able to modify the modules separately, and even version

them or apply releases.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

﻿https://github.com/hashicorp/hcl﻿

166

This can prove to be very powerful, as we might encounter a scenario where our

SharePoint Terraform project depends on a specific release of, let’s say, the AWS VPC

module; in such case, we would want to specify the release within the module source.

The following exercise walks you through the process of versioning the AWS VPC module

within our GitHub repository.

VERSIONING THE AWS VPC MODULE

So, let’s modify the AWS VPC module within our GitHub repository located at https://

github.com/SharePointOscar/terraform_modules.git. Please clone it if you

are following along. We will add the optional attribute, called enable_classiclink, for the

sole purpose of demonstrating the versioning of modules. The code is shown in bold in the

following.

resource "aws_vpc" "main" {

 cidr_block = "${var.cidr_block}"

 instance_tenancy = "${var.instance_tenancy}"

 enable_dns_support = "${var.dns_support}"

 enable_dns_hostnames = "${var.dns_hostnames}"

 enable_classiclink = "${var.enable_classiclink}"

 tags {

 Name = "${var.vpc_name}"

 }

}

Next, we add the corresponding variable in the vars.tf file, as shown in bold.

variable "vpc_name" {

 description = "VPC Name"

}

variable "enable_classiclink" {

 description = "Whether or not the VPC has Classiclink enabled"

}

variable "cidr_block" {

 description = "The CIDR block for the VPC"

}

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

https://github.com/SharePointOscar/terraform_modules.git
https://github.com/SharePointOscar/terraform_modules.git

167

variable "instance_tenancy" {

 description = "A tenancy option for instances launched into the VPC"

}

variable "dns_support" {

 description = "A tenancy option for instances launched into the VPC"

}

variable "dns_hostnames" {

 description = "A tenancy option for instances launched into the VPC"

}

Now that we have modified the VPC module, we want to version it; or in GitHub terms, create a

release. To do this, we execute the following command.

>$ git tag -a "v0.0.1" -m "First release of the AWS VPC"

> $ git push --follow-tags

Counting objects: 1, done.

Writing objects: 100% (1/1), 180 bytes | 180.00 KiB/s, done.

Total 1 (delta 0), reused 0 (delta 0)

To https://github.com/SharePointOscar/terraform_modules.git

 * [new tag] v0.0.1 -> v0.0.1

We now see that the tag has been created. This should also be visible within the GitHub UI. We

can now reference the specific tag when creating the VPC, as shown in our next section.

�Defining the Core Networking Resources

One of the first components we need to define is our virtual private cloud (VPC). There

are interrelated components that we will also cover.

We define the core VPC, Internet gateway, firewall rules, and ports (as follows),

which reside within the terraform/aws/environments/test/main.tf file.

Notice that we are pulling the specific VPC module version, and we have used the

attribute (enable_classiclink) that we defined earlier.

module "vpc_spfarm_test" {

 source =�"github.com/SharePointOscar/terraform_modules.git//aws_modules//

vpc?ref=v0.0.1"

 vpc_name = "vpc_spfarm_test"

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

168

 cidr_block = "10.10.0.0/16"

 instance_tenancy = "default"

 dns_support = true

 dns_hostnames = true

 enable_classiclink = false

}

module "internet_gateway" {

 source = �"github.com/SharePointOscar/terraform_modules.git//aws_

modules//internet_gateway"

 vpc_id = "${module.vpc_spfarm_test.id}"

 igw_name = "gw_internet"

}

module "route_table" {

 source = �"github.com/SharePointOscar/terraform_modules.git//aws_modules//

route_table"

 vpc_id = "${module.vpc_spfarm_test.id}"

}

module "route" {

 source = �"github.com/SharePointOscar/terraform_modules.

git//aws_modules//route"

 route_table_id = "${module.route_table.route_table_id}"

 destination_cidr_block = "0.0.0.0/0"

 gateway_id = "${module.internet_gateway.id}"

}

Declare the data source

data "aws_availability_zones" "available" {}

module "subnet-public-a" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//subnet"

 subnet_name = "subnet_public_a_spfarm_test"

 availability_zone = "${data.aws_availability_zones.available.names[0]}"

 vpc_id = "${module.vpc_spfarm_test.id}"

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

169

 cidr_block = "10.10.1.0/24"

 map_public_ip_on_launch = "true"

}

module "subnet-public-b" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//subnet"

 subnet_name = "subnet_public_b_spfarm_test"

 availability_zone = "${data.aws_availability_zones.available.names[1]}"

 vpc_id = "${module.vpc_spfarm_test.id}"

 cidr_block = "10.10.2.0/24"

 map_public_ip_on_launch = "true"

}

module "subnet-private-a" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//subnet"

 subnet_name = "subnet_private_a_spfarm_test"

 availability_zone = "${data.aws_availability_zones.available.names[0]}"

 vpc_id = "${module.vpc_spfarm_test.id}"

 cidr_block = "10.10.4.0/24"

 map_public_ip_on_launch = "false"

}

module "subnet-private-b" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//subnet"

 subnet_name = "subnet_private_b_spfarm_test"

 availability_zone = "${data.aws_availability_zones.available.names[1]}"

 vpc_id = "${module.vpc_spfarm_test.id}"

 cidr_block = "10.10.5.0/24"

 map_public_ip_on_launch = "false"

}

module "route_table_association" {

 source = �"github.com/SharePointOscar/terraform_modules.git//aws_

modules//route_table_association"

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

170

 subnet_id = "${module.subnet-public-a.id}"

 route_table_id = "${module.route_table.route_table_id}"

}

module "elb_security_group" {

 source = �"github.com/SharePointOscar/terraform_modules.git//aws_

modules//security_group"

 sg_name = "sg_elb_spfarm_test"

 vpc_id = "${module.vpc_spfarm_test.id}"

}

module "elb_http_rule" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//security_group_rule"

 type = "ingress"

 from_port = 80

 to_port = 80

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 security_group_id = "${module.elb_security_group.id}"

}

module "sg_spfarm_test" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//security_group"

 sg_name = "sg_spfarm_test"

 vpc_id = "${module.vpc_spfarm_test.id}"

}

allow ssh connections

module "spfarm_test_ssh_rule" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//security_group_rule"

 type = "ingress"

 to_port = 22

 from_port = 22

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

171

 security_group_id = "${module.sg_spfarm_test.id}"

}

allow ssh connections

module "spfarm_test_rdp_rule" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//security_group_rule"

 type = "ingress"

 to_port = 3389

 from_port = 3389

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 security_group_id = "${module.sg_spfarm_test.id}"

}

block all other ports

module "spfarm_test_egress_rule" {

 source = �"github.com/SharePointOscar/terraform_modules.git//

aws_modules//security_group_rule"

 type = "egress"

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 security_group_id = "${module.sg_spfarm_test.id}"

}

module "elb_spfarm_test" {

 source = �"github.com/SharePointOscar/terraform_

modules.git//aws_modules//elb"

 elb_name = "elb-spfarm-test"

 subnets = ["${module.subnet-public-a.id}"]

 internal = false

 security_groups = ["${module.elb_security_group.id}"]

 instance_port = 80

 instance_protocol = "tcp"

 lb_port = 80

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

172

 lb_protocol = "tcp"

 healthy_threshold = 2

 unhealthy_threshold = 2

 timeout = 3

 target = "TCP:80"

 interval = 30

 cross_zone_load_balancing = true

}

Many foundational resources have been declared including security groups, security

group rules, and public and private subnets. Had we not used Terraform modules, we

would have repeated ourselves quite a bit in terms of declaring the same resources over and

over again. Maintaining the code would prove to be an onerous task as our project grew.

To ensure that we get the modules registered within our solution, we must execute

the terraform get command. Notice that it retrieves the specific tag for our VPC module.

> $ terraform get

- module.vpc_spfarm_test

 �Getting source "github.com/SharePointOscar/terraform_modules.git//

aws_modules//vpc?ref=v0.0.1"

- module.internet_gateway

- module.route_table

- module.route

- module.subnet-public-a

- module.subnet-public-b

- module.subnet-private-a

- module.subnet-private-b

- module.route_table_association

- module.elb_security_group

- module.elb_http_rule

- module.sg_spfarm_test

- module.spfarm_test_ssh_rule

- module.spfarm_test_rdp_rule

- module.spfarm_test_egress_rule

- module.elb_spfarm_test

- module.spfarmkeypair

- module.spfarm_WFE1

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

173

When we executed this command (and it has not been the first time), Terraform

retrieved only the AWS VPC module since we explicitly asked for a version.

Tip  If you wish to refresh all modules, execute terraform get –update=true,
which downloads all the modules.

�Terraforming the SharePoint 2016 Servers
in the Farm Topology
The next AWS resources that we need to define are the different virtual machines or

instances. Recall that in Chapter 3, our topology included several server roles. We will

define these same roles in Terraform to deploy them to AWS. We later use Ansible to

perform configuration management, and install and configure SharePoint 2016, the

domain controller, and the database server.

The following are the roles we will define via Terraform:

•	 Domain controller

•	 Database server

•	 Application server

•	 Web front end

Note  If you recall, in Chapter 3, we used Packer to create our “golden image,”
which is the AMI we use throughout our Terraform project to create AWS instances
corresponding to the SharePoint server roles within the farm. However, we do not
use our custom AMI for SQL, as we want to leverage the AMI from the gallery that
contains the preinstalled SQL software.

Therefore, you will need to fetch the AMI ID that was produced with Packer, and
add it to the variables.tf file. We will use it for the following parameter:

"DomainController" = "INSERT AMI HERE"

"AppServer" = " INSERT AMI HERE "

"WFE" = " INSERT AMI HERE "

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

174

All the instances use our custom AWS module, which allows us to really focus on the

specific instance configuration, rather than figuring out how to define an instance. As an

example of the configuration, we have the web front-end instance. Most of the attributes

are populated from either variables within the variables.tf file, or a module’s attribute

value at runtime.

For example, you can see that subnet_id is populated from the subnet module.

Likewise, the security group ID is populated from the security group module we declared

and named sg_spfarm_test earlier within the file.

Of special interest is how the availability_zone attribute is populated using a data

module, which we declared earlier in the main.tf file. We declared it as follows.

Declare the data source

data "aws_availability_zones" "available" {}

The availability zones data module allows access to a list of AWS zones for the

configured region at the provider level. In this case, our file located at terraform/

shared/providers/aws.tf. This is quite helpful, since we may not remember what

zone names are available, and we do not want to hard-code the values in our Terraform

configuration. Listing 5-6 shows this module in action (code in bold). We simply get the

first available value of the available zones.

Listing 5-6.  Terraform AWS Instance Declaration for the SharePoint Web Front End

module "spfarm_WFE1" {

 source = �"github.com/SharePointOscar/terraform_

modules.git//aws_modules//instance"

 ami = "${lookup(var.ami, var.region)}"

 availability_zone = �"${data.aws_availability_zones.available.

names[0]}"

 instance_type = "${var.instance_type}"

 monitoring = true

 ebs_optimized = falses

 associate_public_ip_address = true

 key_name = "${module.spfarmkeypair.key_name}"

 tenancy = "default"

 vpc_security_group_ids = ["${module.sg_spfarm_test.id}"]

 subnet_id = "${module.subnet-public-a.id}"

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

175

 instance_name = "spfarm_WFE1"

 volume_size = "30"

 volume_type = "gp2"

 iops = "100"

 delete_on_termination = true

}

�Preparing to Deploy Resources to AWS
Now that we have all of our AWS SharePoint farm resources declared, it is time to deploy

the resources. To do this, we first need to ensure that our configuration is validated by

executing terraform validate.

�Execute Terraform Plan

Terraform helps us plan the execution prior to changing infrastructure. When executed,

the plan command generates an actual plan file that captures the exact changes that will

be performed. It is a good practice to execute the plan command to ensure that all looks

good. In addition, it is a great way to capture changes that may or may not need to be

executed right away.

The terraform plan command accepts several optional parameters (you can type

terraform plan –h to obtain a full list). Of special interest, is the –out=path because

it allows you to specify the file in which you save the planned deployment. This file can

then be used as input in executing the terraform apply command later.

>? terraform plan –out=aws_test_spfarm.plan

This outputs a long list of resources with values for some attributes, and others

show <computed>, which is computed at runtime when you execute the terraform

apply command. The following is a trimmed down look at our output, showing the WFE

configuration.

Refreshing Terraform state in-memory prior to plan...

The refreshed state will be used to calculate this plan, but will not be

persisted to local or remote state storage.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

176

data.aws_availability_zones.available: Refreshing state...

--

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

 + create

Terraform will perform the following actions:

 . . .

 + module.spfarm_WFE1.aws_instance.main

 id: <computed>

 ami: "ami-955c6ef5"

 associate_public_ip_address: "true"

 availability_zone: "us-west-1b"

 ebs_block_device.#: <computed>

 ebs_optimized: "false"

 ephemeral_block_device.#: <computed>

 instance_state: <computed>

 instance_type: "t2.micro"

 ipv6_address_count: <computed>

 ipv6_addresses.#: <computed>

 key_name: "sp_farm_rsa"

 monitoring: "true"

 network_interface.#: <computed>

 network_interface_id: <computed>

 placement_group: <computed>

 primary_network_interface_id: <computed>

 private_dns: <computed>

 private_ip: <computed>

 public_dns: <computed>

 public_ip: <computed>

 root_block_device.#: "1"

 root_block_device.0.delete_on_termination: "true"

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

177

 root_block_device.0.volume_size: "30"

 root_block_device.0.volume_type: "gp2"

 security_groups.#: <computed>

 source_dest_check: "true"

 subnet_id: "${var.subnet_id}"

 tags.%: "1"

 tags.Name: "spfarm_WFE1"

 tenancy: "default"

 volume_tags.%: <computed>

 vpc_security_group_ids.#: <computed>

 . . .

Plan: 20 to add, 0 to change, 0 to destroy.

--

This plan was saved to: aws_test_spfarm.plan

To perform exactly these actions, run the following command to apply:

 terraform apply "aws_test_spfarm.plan"

�Executing Terraform Apply

We’ve executed the terraform plan command and saved the proposed plan to a file. We

like what we see and wish to now deploy all of the related resources to AWS. We do this

by executing the following command.

>$ terraform apply aws_test_spfarm.plan

The output is quite lengthy, so we won’t show you this. You should see all the

resources created. Go to the AWS console to verify that all of our resources are created

(see Figure 5-2).

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

178

Figure 5-2.  The four SharePoint EC2 instances we deployed using Terraform

Caution  You may incur charges deploying resources to AWS. It is recommended
that you destroy the resources as soon as possible to avoid charges.

We’ve gone through the process of deploying our entire SharePoint infrastructure to

AWS, but we are not done yet! We need to now perform configuration management tasks

using Ansible and with the same playbooks that we executed when building the Vagrant

test environment for SharePoint in Chapter 3. Before that, we must ensure that Ansible

has an inventory of the EC2 instances, including the IP addresses. In our next section, we

cover how to generate an Ansible dynamic inventory from AWS resources.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

179

�Generating the Dynamic Ansible Inventory File
for AWS Resources
Because we are using AWS EC2 instances, we expect that at any given point, we can tear

down and re-create the instances, which means IP addresses will change. Therefore,

instead of having a static Ansible inventory file, as we had for our Vagrant SharePoint test

environment, we want to build it based on the existing EC2 instances in AWS.

�Using EC2.py and EC2.ini Files Provided by Ansible
We could figure out how to build a dynamic inventory file for Ansible from scratch.

But there is no need to do so, given that Ansible provides a Python script for us to

use (http://docs.ansible.com/ansible/latest/intro_dynamic_inventory.

html#example-aws-ec2-external-inventory-script).

First, download the two files into the project’s Ansible folder and ensure that the

EC2.py file is executable by using chmod u+x ec2.py.

ec2.in serves as a configuration file that can be customized; for example, we may not

be using some of the services listed, so they can be commented out. As another example,

we do not want RDS or ElastiCache, so we excluded them as shown in Listing 5-7.

Listing 5-7.  Excluding Services Within the ec2.ini File

[ec2]

...

To exclude RDS instances from the inventory, uncomment and set to False.

rds = False

To exclude ElastiCache instances from the inventory, uncomment and set to

False.

elasticache = False

...

Note that, the ec2.py script has a dependency on Boto that requires the AWS

credentials as it interacts with the AWS API; however, we are able to execute the ec2.py

script against AWS without entering credentials because we have the AWS_ACCESS_KEY_

ID and AWS_SECRET_ACCESS_KEY set in our environment already.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

﻿http://docs.ansible.com/ansible/latest/intro_dynamic_inventory.html#example-aws-ec2-external-inventory-script﻿
﻿http://docs.ansible.com/ansible/latest/intro_dynamic_inventory.html#example-aws-ec2-external-inventory-script﻿

180

�Installing Boto

In order to use the provided Python script, we need to ensure that Boto (an AWS SDK for

Python) is installed. On OS X, it can be installed as follows.

>$ pip install boto

Note  If you have Boto3 installed, this script actually imports it for you
automatically.

�Running the EC2 Script

Once we’ve installed the required software packages, we execute a test command that

outputs a list of instances with many of the metadata attributes.

From within the ansible/ folder, which is where we have the script file, we execute

the test command as shown in Listing 5-8.

Listing 5-8.  Trimmed Output of the ./ec2.py –list Command. We Only Show an

Instance and Its Metadata

>$ ec2.py --list

{

 "_meta": {

 "hostvars": {

 "54.219.142.97": {

 "ansible_host": "54.219.142.97",

. . .

 "ec2_tag_Environment": "Staging",

 "ec2_tag_Group": "DomainControllers",

 "ec2_tag_Name": "spfarm-SP-DC",

 "ec2_tag_Role": "DomainController",

 "ec2_virtualization_type": "hvm",

 "ec2_vpc_id": "vpc-fd1cfb9a"

 }

 }

 },

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

181

 "ami_dc92a8bc": [

 "54.219.142.97"

],

"tag_Environment_Staging": [

 "54.219.142.97"

],

 "tag_Group_DomainControllers": [

 "54.219.142.97"

],

 "tag_Name_spfarm_SP_DC": [

 "54.219.142.97"

],

 "tag_Role_DomainController": [

 "54.219.142.97"

],

. . .

}

Note R unning the ec2.py script from outside EC2 is not efficient; typically,
you want to run it within EC2, which also entails using the internal IP and
DNS vs. public.

�Use Ansible Playbooks to Install and Configure
SharePoint 2016 Farm
Now that we have our infrastructure deployed via Terraform, it is time to start executing

Ansible playbooks and tasks to perform configuration management. Specifically, we

want to install SharePoint 2016 and configure the farm topology.

Tip  We could have used built-in provisioners in Terraform to execute Ansible
playbooks, but for our scenario, we want to keep Terraform usage to building out
IaC, not to perform any configuration management with it.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

182

�Execute Ansible Ad Hoc Commands Against AWS Instance
Before we get deep into executing Ansible playbooks against our AWS resources, we want

to test basic commands to ensure that we have our setup properly configured.

�Obtaining EC2 Instances IP Addresses

Earlier, when we executed the ./ec2.py –list command, we received a response

in JSON with details of all the AWS instances currently running. This information is

valuable, as we can obtain specific details to execute Ansible commands against a

specific server group, role, or machine. The output of the command looked something

like the following (trimmed for brevity).

. . .

{

 "_meta": {

 "hostvars": {

 "54.219.142.97": {

 "ansible_host": "54.219.142.97",

 "ec2__in_monitoring_element": false,

 "ec2_account_id": "653931956080",

 "ec2_ami_launch_index": "0",

 "ec2_architecture": "x86_64",

 "ec2_block_devices": {

 "sda1": "vol-0a344355d70b96b64"

 },

 "ec2_client_token": "",

 "ec2_dns_name": "ec2-54-219-142-97.us-west-1.compute.amazonaws.com",

 "ec2_ebs_optimized": false,

 "ec2_eventsSet": "",

 "ec2_group_name": "",

 "ec2_hypervisor": "xen",

 "ec2_id": "i-0f606be765e7f5bf2",

 "ec2_image_id": "ami-dc92a8bc",

 "ec2_instance_profile": "",

 "ec2_instance_type": "t2.micro",

 "ec2_ip_address": "54.219.142.97",

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

183

 "ec2_item": "",

 "ec2_kernel": "",

 "ec2_key_name": "spfarm_rsa",

 "ec2_launch_time": "2017-12-07T22:23:25.000Z",

 "ec2_monitored": false,

 "ec2_monitoring": "",

 "ec2_monitoring_state": "disabled",

 "ec2_persistent": false,

 "ec2_placement": "us-west-1b",

 "ec2_platform": "windows",

 "ec2_previous_state": "",

 "ec2_previous_state_code": 0,

 "ec2_private_dns_name": "ip-10-10-1-50.us-west-1.compute.internal",

 "ec2_private_ip_address": "10.10.1.50",

 �"ec2_public_dns_name": "ec2-54-219-142-97.us-west-1.compute.

amazonaws.com",

 "ec2_ramdisk": "",

 "ec2_reason": "",

 "ec2_region": "us-west-1",

 "ec2_requester_id": "",

 "ec2_root_device_name": "/dev/sda1",

 "ec2_root_device_type": "ebs",

 "ec2_security_group_ids": "sg-90afb8f6",

 "ec2_security_group_names": "sg_spfarm_staging",

 "ec2_sourceDestCheck": "true",

 "ec2_spot_instance_request_id": "",

 "ec2_state": "running",

 "ec2_state_code": 16,

 "ec2_state_reason": "",

 "ec2_subnet_id": "subnet-3ae93f61",

 "ec2_tag_Environment": "Staging",

 "ec2_tag_Group": "DomainControllers",

 "ec2_tag_Name": "spfarm-SP-DC",

 "ec2_tag_Role": "DomainController",

 "ec2_virtualization_type": "hvm",

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

184

 "ec2_vpc_id": "vpc-fd1cfb9a"

 }

 }

 },

 "ami_dc92a8bc": [

 "54.219.142.97"

],

 "ec2": [

 "54.219.142.97"

],

 "i-0f606be765e7f5bf2": [

 "54.219.142.97"

],

 "key_spfarm_rsa": [

 "54.219.142.97"

],

 "platform_windows": [

 "54.219.142.97"

],

 "security_group_sg_spfarm_staging": [

 "54.219.142.97"

],

 "tag_Environment_Staging": [

 "54.219.142.97"

],

 "tag_Group_DomainControllers": [

 "54.219.142.97"

],

 "tag_Name_spfarm_SP_DC": [

 "54.219.142.97"

],

 "tag_Role_DomainController": [

 "54.219.142.97"

],

 "type_t2_micro": [

 "54.219.142.97"

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

185

],

 "us-west-1": [

 "54.219.142.97"

],

 "us-west-1b": [

 "54.219.142.97"

],

 "vpc_id_vpc_fd1cfb9a": [

 "54.219.142.97"

]

}

. . .

If you want to execute an Ansible playbook against all domain controllers, you can

use the tag_Group_DomainControllers tag. If we had deployed multiple domain servers,

we would have several IP addresses, and our Ansible command would target all servers

in the group. Powerful, indeed.

Tip  When using the ec2 inventory script, hosts automatically appear in groups
based on how they are tagged in EC2. This is why our Terraform declarations
include specific tags such as role and group as well as environment—all for the
purpose of filtering assets when executing Ansible tasks and playbooks against
AWS instances.

�Run Ansible’s Setup Module via Ad Hoc Command

For this example, we use the tag_Role_DomainController, which we obtained from the

output of our previous command, and run the Ansible built-in setup module against the

server. This module gathers facts about the server in question. In our terminal, we type

what’s shown in Listing 5-9.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

186

Listing 5-9.  Output of Executing a Ping Against EC2 Instance

> $ ansible -i ansible/ec2.py -m setup tag_Role_DomainController –extra-

vars="ansible_user='vagrant@sposcar.local' ansible_password='Pass@word1!'"

-vvvvv

ansible 2.4.1.0

 config file = �/Users/sharepointoscar/git-repos/vagrant-ansible-packer-

spfarm/ansible.cfg

 configured module search path = �[u'/Users/sharepointoscar/.ansible/

plugins/modules', u'/usr/share/ansible/

plugins/modules']

 ansible python module location = �/usr/local/Cellar/ansible/2.4.1.0/

libexec/lib/python2.7/site-packages/

ansible

 executable location = /usr/local/bin/ansible

 python version = �2.7.14 (default, Sep 25 2017, 09:53:22) [GCC 4.2.1

Compatible Apple LLVM 9.0.0 (clang-900.0.37)]

Using /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible.cfg as config file

Reading vault password file: /Users/sharepointoscar/git-repos/vagrant-

ansible-packer-spfarm/vpass.txt

setting up inventory plugins

Parsed /Users/sharepointoscar/git-repos/vagrant-ansible-packer-spfarm/

ansible/ec2.py inventory source with script plugin

Loading callback plugin minimal of type stdout, v2.0 from /usr/local/

Cellar/ansible/2.4.1.0/libexec/lib/python2.7/site-packages/ansible/plugins/

callback/__init__.pyc

META: ran handlers

Using module file /usr/local/Cellar/ansible/2.4.1.0/libexec/lib/python2.7/

site-packages/ansible/modules/windows/setup.ps1

<54.219.142.97> ESTABLISH WINRM CONNECTION FOR USER: vagrant@sposcar.local

on PORT 5985 TO 54.219.142.97

<54.219.142.97> WINRM CONNECT: �transport=ntlm endpoint=http://54.219.142.

97:5985/wsman

<54.219.142.97> WINRM OPEN SHELL: ��900867AA-E791-4474-ADDB-BE9F63583127

EXEC (via pipeline wrapper)

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

187

<54.219.142.97> WINRM EXEC 'PowerShell' ['-NoProfile', '-NonInteractive',

'-ExecutionPolicy', 'Unrestricted', '-']

<54.219.142.97> WINRM RESULT u'<Response code 1, out

"{"changed":false,"an", err "An error occurred wh">'

<54.219.142.97> WINRM CLOSE SHELL: 900867AA-E791-4474-ADDB-BE9F63583127

54.219.142.97 | SUCCESS => {

 "ansible_facts": {

 "ansible_architecture": "64-bit",

 "ansible_bios_date": "08/24/2006",

 "ansible_bios_version": "4.2.amazon",

. . .

"ansible_fqdn": "SP-DC.sposcar.local",

 "ansible_hostname": "SP-DC",

 "ansible_interfaces": [

 {

 "default_gateway": "10.10.1.1",

 "dns_domain": null,

 "interface_index": 4,

 "interface_name": "AWS PV Network Device #0",

 "macaddress": "06:28:3F:57:C6:72"

 }

],

 "ansible_ip_addresses": [

 "10.10.1.50",

 "fe80::c986:a7cb:c3dc:deb8"

],

. . .

},

 "changed": false,

 "failed": false

}

META: ran handlers

META: ran handlers

Success! You might have noticed that the ad hoc command we executed contains the

Ansible –extra-vars populated with the domain username and password. We need to

add this because the machine we are targeting is a domain controller.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

188

�Run Ansible Playbooks by Role
Now that we have tested our setup locally, we are ready to execute Ansible Playbooks by

SharePoint specific role.

�Perform Configuration Management for the Domain Controller

Tip  If this is your first time running Ansible, you may need to install some
prerequisite plug-ins. Most common are xmltodict and pywinrm, which can be
installed via pip on any OS.

pip install xmltodict

pip install pywinrm

First, let’s set up the domain controller. Notice that we are using the local

administrator account for this run because the domain controller is not yet set up. For

subsequent runs, we will use the credentials stored in the Ansible configuration.

There are two things to note if you are using macOS High Sierra. You may have to

disable History Expansion in your bash terminal to get the exclamation point shown in

the following password to work. This can be done with the "set +H" command.

Also, there is a known bug in which Python fails when trying to create a fork. This

can be worked around with the "export OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES"

command.

ansible-playbook -i ansible/ec2.py ansible/plays/domaincontroller.

yml --extra-vars="ec2_host='tag_Role_DomainController' ansible_user='.\

Administrator' ansible_password='Pass@word1!'" --tags="create-domain" -vvvv

After this first run, the machine is promoted to a domain controller, and it is

restarted. Next, we execute the second portion of the playbook, which adds the required

service accounts for SharePoint, as well as sample user accounts. Please note that

the server may take some time (up to five minutes) to become ready for the following

playbook. If you run the following commands before it is ready, you will receive an error.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

189

Tip R ecall that we executed the same Ansible playbook in the Vagrant test
environment we built in Chapter 3. The difference now is that we are targeting
the EC2 instance with the DomainController role. For information on the playbook
content, go to ansible/roles/domaincontroller/tasks/main.yml.

ansible-playbook -i ansible/ec2.py ansible/plays/domaincontroller.yml

--extra-vars="ec2_host='tag_Role_DomainController'" --start-at-task="Add

Admin Account to Domain Admins" -vvvvv

After this Ansible task has completed, our domain controller is ready for our

SharePoint farm. Next, we configure the database server.

�Perform Configuration Management for the Database Server

We will now join the database server to the domain using the following command. Since

we are using an AWS-provided image that comes with SQL Server preinstalled, there is

no need to configure the database.

ansible-playbook -i ansible/ec2.py ansible/plays/databaseservers.yml

--extra-vars="ec2_host='tag_Role_Database'" --tags="join-to-domain" -vvvvv

�Perform Configuration Management for SharePoint Server

We now need to configure the SharePoint application server by joining it to the domain,

downloading the SharePoint .img file from Microsoft, and running the AutoSPInstaller tool.

AutoSPInstaller is an open source project created by Brian Lalancette. It abstracts

the installation of SharePoint to an XML configuration file and allows a completely

unattended setup. Prior to the creation of the tool, this process was a huge boon to IT

professionals who were trying to reliably deploy SharePoint in an automated fashion.

Our first step, like the other servers, is to join the domain.

ansible-playbook -i ansible/ec2.py ansible/plays/appservers.yml --extra-

vars="ec2_host='tag_Role_AppServer'" --tags="join-to-domain" -vvvvv

Once this is complete, we can execute the script to install SharePoint and get it

up and running. This script leverages the open source project AutoSPInstaller, which

is a fully unattended installation of SharePoint. Note that this script downloads the

SharePoint installation media directly from Microsoft, which can take quite a while.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

190

If we take a look at the Ansible scripts, we can see a few steps being conducted:

installing PSExec, downloading SharePoint media from Microsoft, moving needed

components to the C:\SP location, and installing all prerequisite Windows features. Once

all of this is completed, we simply instruct Ansible to start the AutoSPInstallerLaunch.

bat file, which runs the entire SharePoint installation process for us. Note that the

installation does require a restart, so to ensure that Ansible is monitoring the process

and reports upon completion, we use a win_wait_for step that periodically checks for

the SharePoint administration port (2016) to come up and start listening for traffic. Once

this is detected, Ansible will report a successful installation and exit gracefully.

ansible-playbook -i ansible/ec2.py ansible/plays/appservers.yml --extra-

vars="ec2_host='tag_Role_AppServer' ansible_user='vagrant@sposcar.local'

ansible_password='Pass@word1!'" --start-at-task="Install PSExec" -vvvvv

Let’s take a look at the Ansible script we are using to install SP. The following are the

actions taken:

•	 Install PSExec.

•	 Download SharePoint from Microsoft to the host at C:\.

•	 Mount the SharePoint image to D:\ so the files can be accessed.

•	 Create the C:\SP directory and copy the necessary files from the

image to this folder.

•	 Install all the prerequisites for the Microsoft packages needed for

SharePoint.

•	 Launch the unattended SPAutoInstaller.

•	 Wait for SharePoint administration port 2016 to become available.

- name: Install PSExec

 win_chocolatey:

 name: psexec

 ignore_errors: yes

- name: Download SharePoint 2016

 win_get_url:

 �url: https://download.microsoft.com/download/0/0/4/004EE264-7043-45BF-

99E3-3F74ECAE13E5/officeserver.img

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

191

 dest: c:\

 force: no

- name: Copy Officeserver.img to server

win_copy:

src: ../../common/files/officeserver.img

dest: c:\officeserver.img

force: no

This task mounts the Officeserver.img file

- name: Mount the SharePoint Bits IMG

 win_disk_image:

 image_path: c:\officeserver.img

 state: present

 register: disk_image_out

- name: Create c:\SP directory

 win_file:

 path: C:\SP

 state: directory

- name: Copy SP folder (SPAutoInstaller folder structure)

 win_copy:

 src: ../../common/files/SP/

 dest: C:\SP

 force: false

- name: Copy SP Bits in D:\ to SPAutoInstaller folder structure

 win_shell: XCOPY D:* C:\SP\2016\SharePoint\ /s /i /Y

 args:

 executable: cmd

- name: Unmount SharePoint Bits .img

 win_disk_image:

 image_path: c:\officeserver.img

 state: absent

- name: Install All Required Windows Features

 win_feature:

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

192

 �name: NET-HTTP-Activation,NET-Non-HTTP-Activ,NET-WCF-Pipe-

Activation45,NET-WCF-HTTP-Activation45,Web-Server,Web-WebServer,

Web-Common-Http,Web-Static-Content,Web-Default-Doc,Web-Dir-Browsing,

Web-Http-Errors,Web-App-Dev,Web-Asp-Net,Web-Asp-Net45,Web-Net-Ext,

Web-Net-Ext45,Web-ISAPI-Ext,Web-ISAPI-Filter,Web-Health,Web-Http-

Logging,Web-Log-Libraries,Web-Request-Monitor,Web-Http-Tracing,Web-

Security,Web-Basic-Auth,Web-Windows-Auth,Web-Filtering,Web-Digest-Auth,

Web-Performance,Web-Stat-Compression,Web-Dyn-Compression,Web-Mgmt-

Tools,Web-Mgmt-Console,Web-Mgmt-Compat,Web-Metabase,WAS,WAS-Process-

Model,WAS-NET-Environment,WAS-Config-APIs,Web-Lgcy-Scripting,Windows-

Identity-Foundation,Xps-Viewer

 state: present

 restart: yes

 include_sub_features: yes

 include_management_tools: yes

make sure to put the prerequisites in the proper folder.

- name: Download SharePoint Prerequisites

 �script: ../../common/files/DownloadPrerequisites.ps1 -SPPrerequisitesPath

{{SharePointPrerequisitesPath}}

- name: Install SharePoint Prerequisites via PowerShell

 �script: ../../common/files/Install-Prerequisites.ps1 -SharePointBitsPath

{{SharePointBitsPath}}

- name: Trigger AutoSPInstaller (computer will restart and continue install)

 �win_shell: C:\SP\AutoSPInstaller\AutoSPInstallerMain.ps1 C:\SP\

AutoSPInstaller\AutoSPInstallerInput.xml

- name: Reboot after installing SPAutoInstaller pre-reqs

win_reboot:

- name: wait until admin port 2016 is available. start checking after 10

minutes.

 win_wait_for:

 port: 2016

 state: present

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

193

 delay: 600

 sleep: 20

Once this script is complete, Ansible exits and shows that the preceding steps have

succeeded. Note that SharePoint can take quite a bit of time to install, upwards of 20 to

30 minutes.

�Perform Configuration Management for SharePoint Web Server

Our final step in this chapter is to configure the web servers for hosting the SharePoint

application. As with the other servers, our first step is to join the domain we previously

created.

ansible-playbook -i ansible/ec2.py ansible/plays/appservers.yml --extra-

vars="ec2_host='tag_Role_WFE'" --tags="join-to-domain" -vvvvv

We now utilize a playbook identical to that of the main SharePoint server. Once

again utilizing the AutoSPInstaller tool, we simply execute the Ansible playbook and

let the scripts take care of the rest. A great feature of the AutoSPInstaller tool is that it

automatically detects when another SharePoint server has been deployed, and then

configures this instance to join the farm as a SharePoint web server.

ansible-playbook -i ansible/ec2.py ansible/plays/appservers.yml --extra-

vars="ec2_host='tag_Role_WFE" --start-at-task="Install PSExec" -vvvvv

�Validating the Installation

With this final task complete, we can now navigate to the public IP address of either

of the SharePoint servers at port 2016 to see that the site is running in the default

configuration state (see Figure 5-3).

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

194

�Resolving Errors

Inevitably, we are bound to get errors when we are first setting up our environment to

execute commands against AWS, as there may be either outdated or missing libraries.

Error: “winrm or requests is not installed: No module named xmltodict”

$ ansible -i ansible/ec2.py -m ping tag_Role_AppServer --extra-

vars="ansible_port='5986' ansible_user='Administrator'ansible_

password='Pass@word1!'ansible_winrm_scheme='https' ansible_winrm_server_

cert_validation='ignore'" -vvvv

. . .

Using module file /Library/Python/2.7/site-packages/ansible/modules/system/

ping.py

52.53.237.25 | FAILED! => {

 "msg": "winrm or requests is not installed: No module named xmltodict"

}

Figure 5-3.  The SharePoint Farm is up and running, Central Administration
Console accessed via the browser

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

195

Resolution

To resolve this error, run the following.

>$ pip install xmltodict

Collecting xmltodict

 Downloading xmltodict-0.11.0-py2.py3-none-any.whl

Installing collected packages: xmltodict

Successfully installed xmltodict-0.11.0

Error: “winrm or requests is not installed: No module named winrm”

One of the first errors we get from running our ping Ansible command is shown in bold

in the following.

ansible 2.4.2.0

 . . .

Using module file /Library/Python/2.7/site-packages/ansible/modules/system/

ping.py

52.53.237.25 | FAILED! => {

 "msg": "winrm or requests is not installed: No module named winrm"

}

Resolution

This error is telling us that the pywinrm package is missing or not installed essentially.

This can happen if the Ansible Python executable is different from the one used on your

terminal.

If you have different Python interpreter versions (which happens often, and it is

needed at times), then simply make sure that the pywinrm package is installed for the

version. Run the following command.

>$ pip install pywinrm

Collecting pywinrm

 Downloading pywinrm-0.2.2-py2.py3-none-any.whl

Collecting requests-ntlm>=0.3.0 (from pywinrm)

 Downloading requests_ntlm-1.1.0-py2.py3-none-any.whl

Requirement already satisfied: xmltodict in /Library/Python/2.7/site-

packages (from pywinrm)

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

196

Collecting requests>=2.9.1 (from pywinrm)

 Downloading requests-2.18.4-py2.py3-none-any.whl (88kB)

 100% |████████████████████| 92kB 3.0MB/s

Requirement already satisfied: six in /Library/Python/2.7/site-packages/

six-1.11.0-py2.7.egg (from pywinrm)

Errors: Ansible Command hangs for a long time

At times, executing an Ansible command may take a long time, and you get a timeout

error message.

Resolution

First, test WinRM connectivity. From OS X, execute the following command.

>$ nc -z -w1 <HOSTNAME> 5985;echo $?

If the command returns 0, then there are no WinRM connectivity issues, which tells

us that there must be something wrong on the Ansible configuration side. Also, ensure

that WinRM is configured properly over the desired ports: 5985 for HTTP and 5986 for

HTTPS, which also requires certificates. In our scenario, it is critical to ensure that the

AWS security group has the Ingress configured on the desired port.

Tip  Please ensure that the WinRM listener is actually listening on the correct
port. Also note, we use port 5985, though in production you may want to use
port 5986 which encrypts traffic. Lastly, ensure that Windows Firewall is allowing
access via the domain public profile (this tends to be missed).

�Summary
In this chapter, we walked through how to deploy and configure a SharePoint farm in

AWS using Terraform for infrastructure provisioning, and Ansible for configuration

management. With Terraform, we deployed all the resources required for a functioning

farm: an AWS VPC including subnets, internet gateways, security groups, one SQL Server

database, one SharePoint application server, and one SharePoint web server. This setup

provides us with a functional base installation of SharePoint.

In the next chapter, we explore the configuration of our SharePoint farm to make it

ready for end users.

Chapter 5 Provisioning the SharePoint Farm to AWS Using Terraform and Ansible

197
© Oscar Medina, Ethan Schumann 2018
O. Medina and E. Schumann, DevOps for SharePoint, https://doi.org/10.1007/978-1-4842-3688-8_6

CHAPTER 6

Scaling the Farm Using
Terraform and Ansible
In the previous two chapters, we walked you through deploying our farm to Azure and

AWS using Infrastructure as Code. We then performed configuration management using

Ansible to install SharePoint based on our topology.

In this chapter, we go through the exercise of scaling the Azure SharePoint farm

topology discussed in Chapter 4 by making the WFE role highly available using Azure

availability sets. We use Terraform to specify the objects. We also add a load balancer to

distribute incoming traffic.

�Farm Topology
We will modify the previous farm topology to make the role highly available. Figure 6-1

shows what the architecture will look like. We are also adding an Azure load balancer to

control traffic to our WFEs.

198

�Architecture Changes
There are several architectural changes that we will walk through in this chapter to help

you understand how to scale a SharePoint farm rapidly and in a repeatable, predictable

fashion. The following includes some of the major changes.

•	 We add availability sets for the WFE role to make them highly

available and redundant.

•	 We add a load balancer to manage traffic to our WFEs.

•	 We place each SharePoint role in its respective subnet and NSGs.

•	 We create a Packer image to quickly spin up additional WFEs. This

image has the SharePoint bits and prerequisites installed, which

allows us to run an Ansible playbook to add the new WFEs to the

farm.

Please note that not all roles are made highly available for this walkthrough. The aim

of this chapter is to show you how to do this for a given tier; in this case, the web front

end role, using Terraform, Ansible, and Packer.

Figure 6-1.  The SharePoint 2016 farm using Azure availability sets for the WFE role

Chapter 6 Scaling the Farm Using Terraform and Ansible

199

Note  We focus on the scaling the Azure cloud farm we deployed in earlier
chapters. However, the code can be enhanced (and perhaps this is a good
challenge for you) to scale the AWS SharePoint 2016 farm deployment by
modifying the Terraform IaC.

�Building the Packer WFE Image
Earlier chapters showed you how to create a Packer Windows 2016 server image as a

base image for the SharePoint 2016 farm. We had a vanilla OS with a VSCode and a

couple of other software packages. However, another approach is to create an image per

SharePoint role, which is preloaded with the SharePoint prerequisites installed. Using

this approach, you can easily join it to the farm. In our case, we want to create an image

for the WFE role. Let’s go through what you need to do next.

�Getting Started
To start creating our Packer template, we copied our existing one and made

modifications. The key difference is that we are using the Ansible provisioner to execute

our WFE Ansible playbook, which we have also modified. We will go over changes

shortly. Once the image is built, it is stored in our storage account, and we will reference

this image URL via Terraform at a later time.

�The WFE Packer Template

Our new template resides in the following project location: Packer/azure_windows2016_

wfe.json. We added the Ansible provisioner shown in bold in Listing 6-1. The goal is to

preinstall SharePoint 2016 prerequisites on this image, so that at a later time, we simply

run the WFE playbook to join it to the domain and add it to the farm.

Chapter 6 Scaling the Farm Using Terraform and Ansible

200

Listing 6-1.  WFE Packer Template Using Ansible Provisioner to Preinstall

SharePoint Prerequisites

{

 "variables": {},

 "builders": [{

 "type": "azure-arm",

 "client_id": "",

 "client_secret": "",

 "object_id": "",

 "subscription_id": "",

 "tenant_id": "",

 "resource_group_name": "spfarmstaging",

 "storage_account": "spfarmstaging",

 "capture_container_name": "spfarmstaging",

 "capture_name_prefix": "packer",

 "os_type": "Windows",

 "image_publisher": "MicrosoftWindowsServer",

 "image_offer": "WindowsServer",

 "image_sku": "2016-Datacenter",

 "communicator": "winrm",

 "winrm_use_ssl": "true",

 "winrm_insecure": "true",

 "winrm_timeout": "15m",

 "winrm_username": "packer",

 "azure_tags": {

 "Role": "WFE"

 },

 "location": "West US",

 "vm_size": "Standard_DS2_v2"

 }],

 "provisioners": [

Chapter 6 Scaling the Farm Using Terraform and Ansible

201

 {

 "type": "windows-shell",

 "execute_command": "{{ .Vars }} cmd /c \"{{ .Path }}\"",

 "scripts": [

 "scripts/enable-rdp.bat",

 "scripts/chocolatey.bat",

 "scripts/chocopacks.bat"

]

 },

 {

 "type": "windows-shell",

 "execute_command": "{{ .Vars }} cmd /c \"{{ .Path }}\"",

 �"scripts": ["scripts/pin-powershell.bat","scripts/set-winrm-

automatic.bat"]

 },

 {

 "type": "powershell",

 "scripts": [

 "scripts/disable-screensaver.ps1",

 "scripts/postInstall.ps1",

 "scripts/enable-winrm.ps1"

]

 },

 {

 "type": "ansible",

 "playbook_file": "../ansible/plays/webservers.yml",

 "ansible_env_vars": ["ANSIBLE_CONFIG=../ansible.cfg"],

 "groups":["Webservers"],

 "user": "packer",

 "extra_arguments": [

 "--connection", "packer",

 "--tags=never",

 �"--extra-vars", "ansible_shell_type=powershell ansible_shell_

executable=None cloud_host=Webservers ansible_user=packer",

 "-vvvvv"

]

Chapter 6 Scaling the Farm Using Terraform and Ansible

202

 },

 {

 "type": "windows-restart",

 �"restart_check_command": "powershell -command \"& {Write-Output

'packer restarted this machine successfully.'}\""

 },

 {

 "type": "powershell",

 "inline": [

 �"& $env:SystemRoot\\System32\\Sysprep\\Sysprep.exe /oobe

/generalize /quiet /quit",

 �"while($true) { $imageState = Get-ItemProperty HKLM:\\

SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Setup\\State

| Select ImageState; if($imageState.ImageState -ne 'IMAGE_

STATE_GENERALIZE_RESEAL_TO_OOBE') { Write-Output $imageState.

ImageState; Start-Sleep -s 10 } else { break } }"

]

 }

]

}

�The Ansible WFE Playbook Changes

As you may have noticed, we are using the same Ansible playbook as we did in earlier

chapters. However, a change we made to this playbook, is to include an additional file

located at Ansible/roles/WFE/tasks/packer-bootstrap.yml, which contains several

tasks which themselves install necessary software such as the utility PSExec, SharePoint

2016 bits. We then download the SharePoint prerequisites and install them on this image.

The playbook also copies the folder structure we created in our GitHub repository

as per the SPAutoInstaller structure and drops the downloaded prerequisites in the

respective folder. We then install the SharePoint prerequisites and mount the SharePoint

image to extract it into the SPAutoInstaller folder as well.

Chapter 6 Scaling the Farm Using Terraform and Ansible

203

Listing 6-2.  The Ansible Tasks Used By Packer to Bootstrap the WFE Image

- name: Install PSExec

 win_chocolatey:

 name: psexec

 ignore_errors: yes

 tags:

 - never

- name: Download SharePoint 2016

 win_get_url:

 �url: https://download.microsoft.com/download/0/0/4/004EE264-7043-45BF-

99E3-3F74ECAE13E5/officeserver.img

 dest: c:\

 force: no

 tags:

 - never

This task mounts the Officeserver.img file

- name: Mount the SharePoint Bits IMG

 win_disk_image:

 image_path: c:\officeserver.img

 state: present

 register: disk_image_out

 tags:

 - never

- name: Create c:\SP directory

 win_file:

 path: C:\SP

 state: directory

 tags:

 - never

- name: Copy SP folder (SPAutoInstaller folder structure)

 win_copy:

 src: ../../common/files/SP/

 dest: C:\SP

Chapter 6 Scaling the Farm Using Terraform and Ansible

204

 force: false

 tags:

 - never

- name: Copy SP Prerequisites Downloader PowerShell Script

 win_copy:

 src: ../../common/files/DownloadPrerequisites.ps1

 dest: C:\SP\DownloadPrerequisites.ps1

 force: false

 tags:

 - never

- name: Copy SP Prerequisites Installer PowerShell Script

 win_copy:

 src: ../../common/files/Install-Prerequisites.ps1

 dest: C:\SP\Install-Prerequisites.ps1

 force: false

 tags:

 - never

- name: Copy SP Bits in {{ disk_image_out.mount_path }} to SPAutoInstaller

folder structure

 �win_shell: XCOPY {{ disk_image_out.mount_path }}* C:\SP\2016\SharePoint\

/s /i /Y

 args:

 executable: cmd

 tags:

 - never

- name: Download SharePoint Prerequisites

 �win_shell: C:\SP\DownloadPrerequisites.ps1 -SPPrerequisitesPath c:\

SP\2016\prerequisiteinstallerfiles

 tags:

 - never

- name: Install SharePoint Prerequisites via PowerShell

 �win_shell: C:\SP\Install-Prerequisites.ps1 -SharePointBitsPath c:\

SP\2016\SharePoint

Chapter 6 Scaling the Farm Using Terraform and Ansible

205

 tags:

 - never

- name: Install All Required Windows Features

 win_feature:

 �name: NET-HTTP-Activation,NET-Non-HTTP-Activ,NET-WCF-Pipe-

Activation45,NET-WCF-HTTP-Activation45,Web-Server,Web-WebServer,Web-

Common-Http,Web-Static-Content,Web-Default-Doc,Web-Dir-Browsing,Web-

Http-Errors,Web-App-Dev,Web-Asp-Net,Web-Asp-Net45,Web-Net-Ext,Web-

Net-Ext45,Web-ISAPI-Ext,Web-ISAPI-Filter,Web-Health,Web-Http-

Logging,Web-Log-Libraries,Web-Request-Monitor,Web-Http-Tracing,Web-

Security,Web-Basic-Auth,Web-Windows-Auth,Web-Filtering,Web-Digest-

Auth,Web-Performance,Web-Stat-Compression,Web-Dyn-Compression,Web-Mgmt-

Tools,Web-Mgmt-Console,Web-Mgmt-Compat,Web-Metabase,WAS,WAS-Process-

Model,WAS-NET-Environment,WAS-Config-APIs,Web-Lgcy-Scripting,Windows-

Identity-Foundation,Xps-Viewer

 state: present

 restart: yes

 include_sub_features: yes

 include_management_tools: yes

 register: feature_result

 tags:

 - never

Tip  You might have noticed that each task has a tag with the –never value. This
tag is available as of Ansible 2.5, so we can use this tag to exclude specific tasks
when running the playbook. More information is at http://docs.ansible.
com/ansible/latest/user_guide/playbooks_tags.html.

In addition, you can also specify to only run the tasks with the tag, as shown in our

Packer template in Listing 6-1.

To build the image we simply run the following command from within the Packer

folder as follows.

>$ Packer build azure_win2016_wfe.json

Chapter 6 Scaling the Farm Using Terraform and Ansible

http://docs.ansible.com/ansible/latest/user_guide/playbooks_tags.html
http://docs.ansible.com/ansible/latest/user_guide/playbooks_tags.html

206

Once the task completes, it will output the VHD URL that we will use in our

Terraform definition in the next section.

�Scaling Farm Topology Using Terraform
When it comes to scaling any application on the cloud, we have many options at our

disposal. We have to make decisions in how we approach this and leverage native cloud

services and features as much as possible is one of those conundrums we face constantly.

In the traditional data center, we add additional servers to an n-tier application;

whereas in the cloud, we add virtual machines and leverage other capabilities. For

Azure, its virtual machine availability sets. For SharePoint deployments, we typically find

ourselves adding VMs for a specific role.

In this chapter, we show you how to leverage Azure features that help scale and make

your SharePoint farm highly available. We will use Terraform to describe Azure resources

as we have been, but we will make several changes as outlined in the “Architecture

Changes” section.

�Scaling Up
Scaling up, or vertically, means that we need to add more resources to our virtual

machines. For example, our WFEs may need more CPU, RAM, and so forth, to meet

SLAs. To quickly do this, we can modify the definition of our Terraform VMs and specify

an Azure VM size. We previously defined our WFE in Terraform, the property we would

modify is called vm_size. We specify a different size as per Azure available sizes.

Listing 6-3.  VM Size Property to Change to Scale up the VMs That Are Used for

the WFE Role

resource "azurerm_virtual_machine" "spfarm_wfe" {

 name = "spfarm_wfe"

 location = "West US"

 resource_group_name = "${var.resource_group_name}"

 vm_size = "Standard_DS2_v2"

 network_interface_ids = ["${azurerm_network_interface.spfarm-wfe.id}"]

 �availability_set_id = "${azurerm_availability_set.WebFrontEnd_

AvailabilitySet.id}"

Chapter 6 Scaling the Farm Using Terraform and Ansible

207

 storage_os_disk {

 name = "WFE1-osdisk1"

 os_type = "Windows"

 caching = "ReadWrite"

 image_uri = "${var.os_disk_vhd_uri}"

 vhd_uri = �"https://${var.storage_account}.blob.core.windows.

net/${var.container_name}/wfe1-osdisk.vhd"

 create_option = "FromImage"

 }

 os_profile {

 computer_name = "SP2016WFE"

 admin_username = "packer"

 admin_password = "pass@word1!"

 }

 os_profile_windows_config {

 provision_vm_agent = true

 enable_automatic_upgrades = true

 }

 provisioner "remote-exec" {

 connection = {

 type = "winrm"

 user = "packer"

 password = "pass@word1!"

 agent = "false"

 host = "${azurerm_public_ip.wfe1-public-ip.ip_address}"

 }

 �inline = ["powershell.exe Set-ExecutionPolicy RemoteSigned -force",

"powershell.exe -version 4 -ExecutionPolicy Bypass Restart-Computer"]

 }

}

To make the change to this virtual machine, we execute the following command.

>$ terraform apply –var-file terraform.tfvars

Chapter 6 Scaling the Farm Using Terraform and Ansible

208

Note that in this scenario, all that happens is that the actual Azure virtual machine size

is changed as desired, and the OS disk we are using remains intact. This means that we still

have our SharePoint bits installed and the machine is still joined to our SharePoint farm.

Tip  For most enterprise environments, cost savings are a major focus, especially
when it comes to cloud usage. If you notice that certain machines are not being
used frequently, you can easily scale down by changing this property to a smaller
size, given the availability of other sizes in the cluster that the existing VM is in.

�Scaling Out
Scaling out, or horizontally, means that we add WFEs for our front end, for example. We

will define additional WFEs in our Terraform definition, and then run Ansible to run the

SharePoint installer. We will then deploy both WFEs within a virtual machine availability

set, which itself is receiving traffic from a public load balancer (shown in Figure 6-1).

�About Virtual Machine Availability Sets

Azure virtual machine availability sets bring availability and reliability for our virtual

machines. availability sets are a logical grouping in Azure that when used, isolate our virtual

machines from each other. The machines are deployed across different nodes and cluster.

Should a hardware failure occur in Azure, not all of the virtual machines would be affected.

For our SharePoint farm, we place each the WebFrontEnd role into an availability set

and add at least two virtual machines to ensure that we are covered by higher service

level agreement (SLA).

�Terraforming Multiple WFE Virtual Machines
In Chapter 4, we defined our core networking resources and our virtual machines as we

prepared to deploy our SharePoint farm to Azure. We declared a single virtual machine

for each role, however. In order to scale our farm, we need to add WFEs. To do this, we

want to change the way we declare our virtual machines and network interfaces.

Chapter 6 Scaling the Farm Using Terraform and Ansible

209

�Changing the Network Interface Declaration

The file we modify is located at terraform/azure/environments/staging/network.tf.

We continue to leverage Terraform’s powerful interpolation by declaring our network

interface as follows. Notice we have a count property declared as well. The network

interface name property also uses the count.index to append the value to have a unique

name for these network interface cards.

Listing 6-4.  Declaring Multiple Network Interfaces in Terraform

resource "azurerm_network_interface" "spfarm-wfe" {

 count = 2

 name = �"network-interface-spfarm-

wfe${count.index}"

 location = "${var.location}"

 resource_group_name = "${var.resource_group_name}"

 network_security_group_id = �"${azurerm_network_security_

group.spfarm-security-group-

frontend.id}"

 dns_servers = ["10.10.1.19"]

 ip_configuration {

 name = "wfe${count.index}-ipconfiguration"

 subnet_id = "${azurerm_subnet.subnet-frontend.id}"

 private_ip_address_allocation = "dynamic"

 �load_balancer_backend_address_pools_ids = �["${azurerm_lb_backend_

address_pool.bpepool.id}"]

 }

 tags {

 environment = "Staging"

 }

}

Note T he network interfaces do not use public IP addresses as we want to
use our public load balancer to accept traffic for our WFE, hence declaring the
load_balancer_backend_pools_ids property within our ip_configuration block.

Chapter 6 Scaling the Farm Using Terraform and Ansible

210

�Declaring the Virtual Machine Availability Set

Declaring a virtual machine availability set in Terraform is actually quite simple. The key

is to add virtual machines to it when declaring them in Terraform, as we will do shortly.

Listing 6-5.  Terraform Virtual Machine Availability Set Declaration

resource "azurerm_availability_set" "WebFrontEnd_AvailabilitySet" {

 name = "WebFrontEnd_AvailabilitySet"

 location = "${var.location}"

 resource_group_name = "${var.resource_group_name}"

 platform_fault_domain_count = 2

 platform_update_domain_count = 2

 managed = false

}

When adding VMs to an availability set, Azure automatically assigns each VM an

update domain and a fault domain. By default, availability sets have two fault domains,

each sharing a common power source and network switch, and VMs are automatically

separated across the fault domains.

�Modifying the WFE VM Terraform Declaration

We must declare at least two WFEs to add them to the availability set. Terraform allows

us to do this easily with its powerful meta-parameter called count and interpolation

capabilities. We add the count property and indicate the number of WFEs that should be

created, as shown next.

Tip  Count is part of Terraform meta-parameters available to us. For more information,
visit www.terraform.io/docs/configuration/resources.html#count.

In addition to indicating the number of WFEs, we want to make sure the name of our

virtual machine is unique, so we use the count index to append it to the name property

(shown in bold in Listing 6-6). We ensure our WFEs are part of the availability set by

setting the value of the availability_set_id property value.

Chapter 6 Scaling the Farm Using Terraform and Ansible

http://www.terraform.io/docs/configuration/resources.html#count

211

Listing 6-6.  Declaring Multiple Virtual Machines in Terraform for the WFE Role

resource "azurerm_virtual_machine" "spfarm_wfe" {

 count = 2

 name = "SP2016WFE${count.index}"

 location = "${var.location}"

 resource_group_name = "${var.resource_group_name}"

 vm_size = "Standard_DS2_v2"

 �network_interface_ids = ["${element(azurerm_network_interface.spfarm-

wfe.*.id, count.index)}"]

 availability_set_id = �"${azurerm_availability_set.WebFrontEnd_

AvailabilitySet.id}"

 �# Uncomment this line to delete the OS disk automatically when deleting

the VM

 # delete_os_disk_on_termination = true

 �# Uncomment this line to delete the data disks automatically when deleting

the VM delete_data_disks_on_termination = true

 storage_os_disk {

 name = "WFE${count.index}-osdisk1"

 os_type = "Windows"

 caching = "ReadWrite"

 image_uri = "${var.os_disk_wfe_vhd_uri}"

 vhd_uri = �"https://${var.storage_account}.blob.core.windows.

net/${var.container_name}/wfe${count.index}-osdisk.vhd"

 create_option = "FromImage"

 }

 os_profile {

 computer_name = "SP2016WFE${count.index}"

 admin_username = "packer"

 admin_password = "pass@word1!"

 }

Chapter 6 Scaling the Farm Using Terraform and Ansible

212

 os_profile_windows_config {

 provision_vm_agent = true

 enable_automatic_upgrades = true

 }

}

Earlier in this chapter, we built the WFE role–specific Packer image. It is time for us to

use it. We ensure that the image_uri within our virtual machine declaration contains the

blob URL where we stored the image. To make things easier, we declare another variable

within our variables.tf called os_disk_wfe_vhd_uri, which contains the full blob

URL of our packer image VHD. We then use that variable as the value of the image_url

property.

�Terraforming the Load Balancer and NAT Rules
Now that our WFEs are deployed within a virtual machine availability set, we need to

point traffic to this availability set. To do this, it is a best practice to use a load balancer.

We declare a public load balancer and related artifacts including probes, public IP, and

basic load balancing rules.

The contents of our file located at terraform/azure/environments/staging/

loadbalancer.tf should look similar to the Listing 6-7.

Listing 6-7.  Load Balancer and Related Artifacts

Load Balancers and associated pools

resource "azurerm_lb" "WebFrontEnd_LB" {

 name = "WebFrontEnd_LB"

 location = "${var.location}"

 resource_group_name = "${var.resource_group_name}"

 frontend_ip_configuration {

 name = "Web-LB-FrontEnd"

 public_ip_address_id = �"${azurerm_public_ip.webfrontend-lb-

public-ip.id}"

 }

}

Chapter 6 Scaling the Farm Using Terraform and Ansible

213

resource "azurerm_public_ip" "webfrontend-lb-public-ip" {

 name = "webfrontend-lb-public-ip"

 location = "${var.location}"

 resource_group_name = "${var.resource_group_name}"

 public_ip_address_allocation = "static"

 tags {

 environment = "SharePoint 2016 Staging"

 }

}

resource "azurerm_lb_backend_address_pool" "bpepool" {

 resource_group_name = "${var.resource_group_name}"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 name = "Web-LB-BackendPool"

}

resource "azurerm_lb_nat_pool" "lbnatpool" {

 count = 2

 resource_group_name = "${var.resource_group_name}"

 name = "ssh"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 protocol = "Tcp"

 frontend_port_start = 50000

 frontend_port_end = 50119

 backend_port = 22

 frontend_ip_configuration_name = "Web-LB-FrontEnd"

}

LB Probes

resource "azurerm_lb_probe" "lbprobe443" {

 resource_group_name = "${var.resource_group_name}"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 name = "lbprobe443"

 port = 443

}

Chapter 6 Scaling the Farm Using Terraform and Ansible

214

resource "azurerm_lb_probe" "lbprobe80" {

 resource_group_name = "${var.resource_group_name}"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 name = "lbprobe80"

 port = 80

}

resource "azurerm_lb_probe" "lbprobe3389" {

 resource_group_name = "${var.resource_group_name}"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 name = �"lbprob3389"https://www.terraform.io/docs/

providers/azurerm/d/image.html

 port = 3389

}

LB Rules

resource "azurerm_lb_rule" "lbrule443" {

 resource_group_name = "${var.resource_group_name}"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 name = "lbrule"

 protocol = "Tcp"

 frontend_port = 443

 backend_port = 443

 backend_address_pool_id = �"${azurerm_lb_backend_address_pool.

bpepool.id}"

 probe_id = "${azurerm_lb_probe.lbprobe443.id}"

 frontend_ip_configuration_name = "Web-LB-FrontEnd"

}

resource "azurerm_lb_rule" "lbrule80" {

 resource_group_name = "${var.resource_group_name}"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 name = "lbrule80"

 protocol = "Tcp"

 frontend_port = 80

 backend_port = 80

 backend_address_pool_id = �"${azurerm_lb_backend_address_pool.

bpepool.id}"

Chapter 6 Scaling the Farm Using Terraform and Ansible

215

 probe_id = "${azurerm_lb_probe.lbprobe80.id}"

 frontend_ip_configuration_name = "Web-LB-FrontEnd"

}

resource "azurerm_lb_rule" "lbrule3389" {

 resource_group_name = "${var.resource_group_name}"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 name = "lbrule80"

 protocol = "Tcp"

 frontend_port = 3389

 backend_port = 3389

 backend_address_pool_id = �"${azurerm_lb_backend_address_pool.

bpepool.id}"

 probe_id = "${azurerm_lb_probe.lbprobe3389.id}"

 frontend_ip_configuration_name = "Web-LB-FrontEnd"

}

NAT Rules to allow access to each VM

resource "azurerm_lb_nat_rule" "NatRule0" {

 name = "NatRule-${count.index}"

 resource_group_name = "${var.resource_group_name}"

 loadbalancer_id = "${azurerm_lb.WebFrontEnd_LB.id}"

 protocol = "tcp"

 frontend_port = "5985${count.index + 1}"

 backend_port = 5985

 frontend_ip_configuration_name = "Web-LB-FrontEnd"

 count = 2

 depends_on = ["azurerm_lb.WebFrontEnd_LB"]

}

Tip A ccessing availability set Nodes is typically done using a bastion or jump
box, and you should certainly follow this practice. However, for our example, we
will take a simple approach and access an individual machine from the virtual
machine availability set by configuring inbound NAT rules.

Chapter 6 Scaling the Farm Using Terraform and Ansible

216

We configure a single NAT rule on the load balancer to allow Ansible to execute the

playbooks. This happens via port 5985, which is the back-end port, as shown in

Listing 6-8. The front-end port ends up being different for each VM. For example, for the

WFE0, the NAT rule front-end port is 59851 and the WFE1 is 59852 (see www.terraform.

io/docs/providers/azurerm/d/image.html).

Figure 6-2.  Load balancer NAT rule shows port mapping for WFE0 within our
availability set

Chapter 6 Scaling the Farm Using Terraform and Ansible

http://www.terraform.io/docs/providers/azurerm/d/image.html
http://www.terraform.io/docs/providers/azurerm/d/image.html

217

�Provisioning the New SharePoint 2016 Farm
Now that we have made all the changes to our Terraform code, it is time to provision our

site to Azure. But first, let’s take a look at what will be provisioned. To do that, we execute

the following command (this should be familiar to you at this point).

>$ terraform plan

The output in Listing 6-8 is trimmed for brevity. However, we want to show you the

two WFEs that Terraform will provision given our new declaration.

Listing 6-8.  The two WFEs Added to the Availability Set

+ azurerm_virtual_machine.spfarm_wfe[0]

 id: <computed>

 availability_set_id: �"${azurerm_

availability_set.

webfrontend_avail

abilityset.id}"

 delete_data_disks_on_termination: "true"

 delete_os_disk_on_termination: "false"

 identity.#: <computed>

 location: "westus"

 name: "SP2016WFE0"

 network_interface_ids.#: <computed>

 os_profile.#: "1"

 os_profile.1539969592.admin_password: <sensitive>

 os_profile.1539969592.admin_username: "packer"

 os_profile.1539969592.computer_name: "SP2016WFE0"

 os_profile.1539969592.custom_data: <computed>

 os_profile_windows_config.#: "1"

 �os_profile_windows_config.2256145325.additional_

unattend_config.#: "0"

 �os_profile_windows_config.2256145325.enable_

automatic_upgrades: "true"

 �os_profile_windows_config.2256145325.provision_

vm_agent: "true"

Chapter 6 Scaling the Farm Using Terraform and Ansible

218

 os_profile_windows_config.2256145325.winrm.#: "0"

 resource_group_name: "spfarmstaging"

 storage_image_reference.#: <computed>

 storage_os_disk.#: "1"

 storage_os_disk.0.caching: "ReadWrite"

 storage_os_disk.0.create_option: "FromImage"

 storage_os_disk.0.disk_size_gb: <computed>

 storage_os_disk.0.image_uri: �"https://spfarms-

taging.blob.core.

windows.net/system/

Microsoft.Compute/

Images/spfarmstaging/

packer-osDisk.

5fd747c3-2933-4f09-

af1e-12bf65d1c476.vhd"

 storage_os_disk.0.managed_disk_id: <computed>

 storage_os_disk.0.managed_disk_type: <computed>

 storage_os_disk.0.name: "WFE0-osdisk1"

 storage_os_disk.0.os_type: "Windows"

 storage_os_disk.0.vhd_uri: �"https://spfarms-

taging.blob.core.

windows.net/

spfarmstaging/

wfe0-osdisk.vhd"

 tags.%: <computed>

 vm_size: "Standard_DS2_v2"

 + azurerm_virtual_machine.spfarm_wfe[1]

 id: <computed>

 availability_set_id: �"${azurerm_

availability_

set.webfrontend_

availabilityset.

id}"

Chapter 6 Scaling the Farm Using Terraform and Ansible

219

 delete_data_disks_on_termination: "true"

 delete_os_disk_on_termination: "false"

 identity.#: <computed>

 location: "westus"

 name: "SP2016WFE1"

 network_interface_ids.#: <computed>

 os_profile.#: "1"

 os_profile.1121002361.admin_password: <sensitive>

 os_profile.1121002361.admin_username: "packer"

 os_profile.1121002361.computer_name: "SP2016WFE1"

 os_profile.1121002361.custom_data: <computed>

 os_profile_windows_config.#: "1"

 �os_profile_windows_config.2256145325.additional_

unattend_config.#: "0"

 �os_profile_windows_config.2256145325.enable_

automatic_upgrades: "true"

 �os_profile_windows_config.2256145325.provision_

vm_agent: "true"

 os_profile_windows_config.2256145325.winrm.#: "0"

 resource_group_name: "spfarmstaging"

 storage_image_reference.#: <computed>

 storage_os_disk.#: "1"

 storage_os_disk.0.caching: "ReadWrite"

 storage_os_disk.0.create_option: "FromImage"

 storage_os_disk.0.disk_size_gb: <computed>

 storage_os_disk.0.image_uri: �"https://spfarmst-

aging.blob.core.

windows.net/

system/Microsoft.

Compute/Images/

spfarmstaging/

packer-osDisk.

5fd747c3-2933-4f09-

af1e-12bf65d1c476.vhd"

 storage_os_disk.0.managed_disk_id: <computed>

Chapter 6 Scaling the Farm Using Terraform and Ansible

220

 storage_os_disk.0.managed_disk_type: <computed>

 storage_os_disk.0.name: "WFE1-osdisk1"

 storage_os_disk.0.os_type: "Windows"

 �storage_os_disk.0.vhd_uri: "�https://spfarmst-

aging.blob.core.

windows.net/

spfarmstaging/

wfe1-osdisk.vhd"

 tags.%: <computed>

 vm_size: "Standard_DS2_v2"

Once we are happy with the output of the plan, we simply execute the following

command to provision it all.

>$ terraform apply –var-file=terraform.tfvars

�Performing Configuration Management on the WFEs
Earlier in this chapter, we walked through the changes needed for the provisioning

aspect of our WFEs in order to scale our farm. We now have them provisioned in Azure,

but we are not done.

We now need to access each one of them and finish installing the SharePoint bits.

Then, we join the machine to the SharePoint 2016 farm.

�Accessing the WFEs in the Availability Set
To access our WFEs, which are now behind a load balancer, we temporarily add a public

IP (PIP) to each VM, which in our case is WFE0 and WFE1, respectively.

Caution  We do this to run the one-time Ansible configuration management.
We remove the PIPs once we finish the configuration, as we do not want to have
them accessed, but rather use the load balancer to receive incoming traffic for our
availability set. In a production environment, you might opt to run Ansible via a VM
in Azure. Using the Azure Shell is another great alternative.

Chapter 6 Scaling the Farm Using Terraform and Ansible

221

For each VM, go to the Azure portal and associate the corresponding PIP. Our

Terraform code provisioned them, but we intentionally left the PIPs disassociated.

Once you have each WFE with a temporary public IP, you are ready to run the Ansible

playbooks to finish installing SharePoint and then join them to the farm.

�Joining WFEs to the SharePoint Farm
Our WFE Ansible playbook has been modified. We’ve created an additional task file

located at Ansible/roles/internal/WFE/tasks/join-server-to-farm.yml, which

contains the tasks we must run to join the WFE to the farm. The playbook is shown in

Listing 6-9.

Listing 6-9.  The Playbook Tasks to Join the WFE1 to the Existing Farm

- name: Copy addServerToFarm PowerShell Script

 win_copy:

 src: ../../common/files/addServerToFarm.ps1

 dest: C:\SP\addServerToFarm.ps1

 force: false

 tags:

 - join-to-farm

- name: Trigger AutoSPInstaller (computer will restart and continue

install)

 win_psexec:

 command: C:\SP\AutoSPInstaller\AutoSPInstallerLaunch.bat

 priority: high

 elevated: yes

 interactive: yes

 username: sposcar\vagrant

 password: Pass@word1!

 wait: no

 tags:

 - join-to-farm

- name: wait 300 seconds for port 2016 to become open on the host, don't

start checking for 60 seconds

Chapter 6 Scaling the Farm Using Terraform and Ansible

222

 win_wait_for:

 port: 2016

 host: {{cloud_host}}

 state: started

 delay: 60

 tags:

 - join-to-farm

- name: Join Server to existing SharePoint 2016 Farm

 win_psexec:

 command: powershell.exe Start-Process "$PSHOME\powershell.exe"

-ArgumentList "'-NoExit -ExecutionPolicy Bypass C:\SP\addServerToFarm.

ps1 -DBServer SP2016SQLSERVER -DBName DEV_Config -PassPhrase Pass@word1!

-SP2016 -ServerRole WebFrontEnd'"

 priority: high

 elevated: yes

 interactive: yes

 username: sposcar\vagrant

 password: Pass@word1!

 wait: no

 tags:

 - join-to-farm

Tip P lease note that for our examples code, we do not always use variables
within our Ansible playbooks, but it is certainly a best practice and helps code
maintainability. Items like the usernames and passwords in Listing 6-9 are good
candidates for this and would be placed in the ansible/group_vars/all.yml file.

We execute the following command.

>$ ansible-playbook -i ansible/azure_rm.py ansible/plays/webservers.

yml --extra-vars="cloud_host='SP2016WFE1' ansible_user='packer' ansible_

password='pass@word1!'" –tags=”join-to-domain,join-to-farm” -vvvv

Chapter 6 Scaling the Farm Using Terraform and Ansible

223

We are instructing Ansible to execute our WFE playbook, but in addition to that,

make sure that it only executes the tasks with the tags specified. This is because we want

to make sure that server is joined to our sposcar.local domain, and we need to join the

WFE to the farm with the WebFrontEnd role.

At this point, we have a full farm deployed and configured in Azure. There is a lot of

room to improve our configuration management, and we encourage you to make use

of the GitHub repository as a starting point to provision and manage your farms, in the

cloud or on-premises.

One of the major areas to be cautious about and improve upon is the passwords that

are used across the solution. Using HashiCorp Vault would be a great addition to manage

these passwords and encrypt them; examples are at https://docs.ansible.com/

ansible/latest/plugins/lookup/hashi_vault.html.

Another aspect of the code that needs improvement is using WinRM via port 5986

by default for encrypted traffic; this is a little more work, as it requires certificates, but

it is certainly worthwhile to implement. Ansible also has built-in secret protection via

Ansible Vault.

In addition, since we have our IaC in GitHub, we can use CI/CD pipelines to test our

changes, which is typical of the developer workflow.

�Summary
In this chapter, we walked through how to scale the SharePoint 2016 farm using

Terraform’s interpolation capabilities and leveraging Azure availability sets. We showed

you how you can build a Packer image for a given role in the farm. In our scenario,

we created an image for the WFE role, which we prepopulated with the SharePoint

prerequisites and installed them on the image. We did this using the Ansible Packer

provisioner. You can easily do this for the application server role using this technique.

Chapter 6 Scaling the Farm Using Terraform and Ansible

﻿https://docs.ansible.com/ansible/latest/plugins/lookup/hashi_vault.html﻿
﻿https://docs.ansible.com/ansible/latest/plugins/lookup/hashi_vault.html﻿

225
© Oscar Medina, Ethan Schumann 2018
O. Medina and E. Schumann, DevOps for SharePoint, https://doi.org/10.1007/978-1-4842-3688-8_7

CHAPTER 7

Establishing an Enterprise
Environment to Manage
and Collaborate as a Team
While the previous chapters focused on the technical configurations of deploying a

SharePoint farm using modern tooling and practices, it is important to be able manage

these processes at an enterprise level. Proper access control, automation, and workflow

are instrumental in ensuring that these practices can scale and meet the demand of an

ever-changing organization. Following are some industry standards and best practices

that can enable your team and organization.

�Version Control
While you are undoubtedly familiar with version control (we did use it in our previous

chapters after all), it is worth briefly mentioning the core concepts and advantages of

using it. Version control is not a new technology and has in fact grown over the past

decades via various implementations. The concept is simple; keep your code in a single

place that is considered the single “version of truth” for your environment. Traditionally

this has been utilized to manage application code. With the inception of concepts

such as configuration management and IaC, we can now leverage version control to

maintain, develop, and test not only applications but infrastructure and the complex

configurations of enterprise environments.

While the code used in this book is in GitHub, there are various products that

implement the same branch-based control mechanisms such as GitLab and Bitbucket,

and while there are some differences, none is drastic enough to warrant specific

consideration.

226

�Orchestration
Orchestration is the practice of using automation tooling to implement predictable

and repeatable workflows for effecting changes in your environment. For the purposes

of this book we will focus on the creation and maintenance of infrastructure, not

addressing other activities commonly addressed by orchestration (code compilation,

artifact creation, etc.). There are several products in this space that offer a dichotomy

of practices and philosophies on how to orchestrate your environment. While these

differences exist and should be considered when selecting a tool, the concept of using

them for automating your environment remains largely the same. As such, we will focus

on the what as opposed to the how.

Whatever the tool, the goal is the same. Utilizing an automation platform will

allow you to script the workflows necessary for deploying your infrastructure. This

can be written in shell for Linux based automation systems, PowerShell on Windows,

or even a proprietary plugin found within the tool. For the purposes of our example

we will examine a script used in Jenkins to automate a Terraform deployment. For

context, Jenkins allows Automation as Code via a Jenkinsfile, which is a script written

in the Groovy programming language that specifies the desired steps to run for a build

pipeline, or part of a pipeline. A typical Jenkinsfile contains the various build steps,

any parameters that the operator specifies, and usually some basic error handling. The

following Jenkinsfile has these basic sections:

•	 Agent. Defines which Jenkins instance to run on. Agent means we

will run this job on any available Jenkins master/slave.

•	 Parameters. Input parameters provided by the operator at the

beginning of each job. Here we specify the following:

•	 TERRAFORM_COMMAND. Performs a Terraform apply or destroy.

•	 PROJECT. The name of a project. It is used to create a Terraform

workspace, isolating the location of this code on the file system

from other projects.

•	 PHASE. The environment that is run (i.e., dev, QA, prod).

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

227

•	 Environment. Here we set some environment variables for the

context run. The following variables should be edited; the others are

dynamically populated from other parameters in the job.

•	 GIT_REPO. The repo to clone. This is where our Terraform code lives.

•	 GIT_CREDENTIALS. The ID of an SSH key stored in Jenkins.

•	 TF_VARIABLES_FILE. The name of a file to be used if there is a

Terraform variables file. If this file does not exist, the pipeline will

still execute successfully.

•	 Steps

•	 Initialization. Here we check out the Git repo from the master

branch so that we can conduct a build.

•	 Terraform apply. Here we conduct the following:

•	 terraform init. Initializes the workspace; ensures we have

all modules needed.

•	 terraform workspace. Selects the workspace represented by

the PROJECT variable.

•	 terraform plan. - A test of the Terraform code is conducted.

•	 terraform apply. The Terraform code is executed against

our environment.

•	 Terraform destroy. Here we conduct the following:

•	 terraform workspace. Selects the workspace represented by

the PROJECT variable.

•	 terraform destroy. Destroys the infrastructure that has

been deployed.

#!groovy

pipeline {

 agent any

 parameters {

 �choice (name: 'TERRAFORM_COMMAND', choices: 'create\ndestroy',

description: 'Terraform Apply / Destroy.')

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

228

 �string (name: 'PROJECT', defaultValue: 'demoProject', description:

'Specify the project for the deployment.')

 �choice (name: 'PHASE', choices: 'dev\nqa\nprod', description:

'Specify development phase.')

 }

 environment {

 IS_JENKINS_MODE = "true"

 GIT_REPO = "[INSERT GIT REPO TO CLONE]"

 GIT_CREDENTIALS �= "[INSERT JENKINS GIT

CREDENTIALS]"

 TF_STATE_ENV �= "${params.PROJECT}-${params.

FACTORY}-${params.PHASE}-${params.

VISIBILITY}"

 TF_CONFIG_DIR = "tf_config_dir"

 TF_VARIABLES_FILE = "vars.tfvars"

 AWS_TIMEOUT_SECONDS = 600

 }

 stages {

 stage("Initialization") {

 steps {

 �git branch: "develop", changelog: false, credentialsId:

"${GIT_CREDENTIALS}", poll: false, url: "${GIT_REPO}"

 �// Validate that the specified global variables file exists

for this deployment

 �sh "if [-e ${TF_VARIABLES_FILE}] ; then echo Found

Terraform variables file: ${TF_VARIABLES_FILE} ; else echo

Cannot find Terraform variables file: ${TF_VARIABLES_FILE} ;

exit 1 ; fi"

 }

 }

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

229

 stage("Terraform Apply") {

 when { expression { params.TERRAFORM_COMMAND == 'create' } }

 steps {

 withEnv(["PATH+TF=${tool 'terraform'}"]) {

 sh 'echo "Starting Terraform Deployment creation"'

 sh 'echo "Checking directory"'

 sh "terraform init -force-copy"

 sh 'terraform workspace list'

 �sh "[\$(terraform workspace list | grep -c ${TF_STATE_

ENV}) -lt 1] && terraform workspace new ${TF_STATE_ENV}

|| echo found Terraform environment ${TF_STATE_ENV}"

 sh 'terraform workspace select ${TF_STATE_ENV}'

 �sh "terraform plan -var datestamp=\$(date +%y%m%d%H%M)

-var-file=${TF_VARIABLES_FILE}"

 �sh "terraform apply -var datestamp=\$(date +%y%m%d%H%M)

-var-file=${TF_VARIABLES_FILE}"

 }

 }

 }

 stage("Terraform Destroy") {

 when { expression { params.TERRAFORM_COMMAND == 'destroy' } }

 steps {

 withEnv(["PATH+TF=${tool 'terraform'}"]) {

 sh "terraform init"

 sh 'terraform workspace list'

 sh 'terraform workspace select ${TF_STATE_ENV}'

 sh 'terraform show'

 �sh 'terraform destroy -force -var-file=${TF_VARIABLES_

FILE} ${extra_var_file}'

 }

 }

 }

 }

}

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

230

While this Jenkinsfile is generic and doesn’t incorporate the complex

parameterization that may be required in an enterprise environment (using different

branches, automated triggers via webhooks, etc.), it does provide the basic tenets of

providing reliable and repeatable automation. Even a basic Jenkinsfile like this describes

a workflow for all or part of a set of processes that make up all or part of a build pipeline.

It describes expected inputs and outputs and handles logging build information for us.

This is a core building block when working in a collaborative environment with several

engineers, as this provides us a common set of workflows to develop against. While one

engineer may be working on a completely different form of infrastructure as another,

both will be aware of the required configuration, directory structure, and so forth, to use.

This enforces standardized practices and increases shareability.

�Security
If you have ever worked in an enterprise, it is almost guaranteed that the importance and

need for mature security practices is at the forefront of the organizations priorities. While

automation allows us to abstract the management of security artifacts and user access to

code, it comes with its own pitfalls and considerations that must be acknowledged.

�Secrets Management
Managing secrets is the practice of abstracting all sensitive authentication and

authorization data away from the code base. In the context of IaC and configuration

management, this would pertain to things such as SSH keys, username/password

combos, authentication tokens, and more. There are several ways to implement secrets

management in an organization with various levels of complexity. At a minimum,

we want to keep this sensitive data outside of our code base. Storing an SSH key or

authentication string in a code base can produce dire results, even if the version control

product is only accessible internally.

One enabler of this practice can be to use the orchestration platform of your

choice to store secrets. Following our previous Jenkins example, we can store many

forms of secrets in the Jenkins encrypted database. This allows us to use common

configuration items without storing them locally or within our code. When a job is run,

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

231

the orchestration platform will handle the injection of these secrets at runtime and

secure them once the workflow is completed. Another option would be to make use of

Ansible’s built-in secret management mechanism, called Ansible Vault and documented

at https://docs.ansible.com/ansible/latest/user_guide/vault.html.

A more sophisticated implementation would involve extending your secrets

management to a secured tool that is designed explicitly for this purpose. A great

example is HashiCorp’s Vault, which enables the storage and retrieval of secrets via API

calls, wherein the secrets are managed in a single place and every usage of any credential

is logged for auditing purposes.

Ansible supports integration with HashiCorp’s Vault (and other secret management

tools) through the use of lookup plug-ins, documented at https://docs.ansible.com/

ansible/latest/plugins/lookup.html.

�Access Control
As the great philosopher Uncle Ben from the Spider-Man comics once said, “With great

power comes great responsibility.” While this is true in life, it is especially apparent in

the world of IT. Just because you can, doesn’t always mean you should. Proper control

gates, restriction of access, and logging are critical to ensuring that your environment is

secured from bad actors and accidental chaos.

Active Directory has been the de facto standard for role-based access control for

decades. It utilizes a centralized storage if users, groups, roles, and policies that dictate

who can do what. It is easily extendable across the enterprise via LDAP integration,

wherein an application can call Active Directory to see what a user is or isn’t allowed

to do within the context of that app. We can extend this to our orchestration platform,

version control platform, and AWS itself with great effect.

Since we presume that you, the reader, have a basic knowledge of Active Directory,

we can focus on what we are securing, not necessarily how. One common example is

Ansible Tower, as it can integrate with AD to provide role based access controls. If you

have your organization’s structure represented in Active Directory groups and roles, you

can allow and disallow access to automations via AD group membership.

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

﻿https://docs.ansible.com/ansible/latest/user_guide/vault.html﻿
﻿https://docs.ansible.com/ansible/latest/plugins/lookup.html﻿
﻿https://docs.ansible.com/ansible/latest/plugins/lookup.html﻿

232

�Code
Controlling who can access what code repositories is a big step in enforcing separation

of duties principles and preventing accidental or malicious acts. It is also important

to secure the branches that a user is allowed to change. For example, a developer may

create code in a feature branch, but should not necessarily be able to push their code to

production. Virtually all organizations exercise some form of change control processes

which code deployment will be subject to. Allowing only a release manager or team

lead to promote code into deployable branches is critical in enforcing only vetted and

qualified code is allowed to be deployed.

�Automations
Automation is incredibly powerful and inherently dangerous. While it can save

countless man hours from performing menial tasks and virtually eliminate human

error, automation can also enable a scenario where a single wrong click can have

critical impact on a business. To mitigate this risk, any workflows should have limited

access/triggers as to when they run. Common practices are to allow only a select group

to execute the automations (perhaps via Active Directory integration), or only allow

them to be triggered programmatically, such as via a promotion of code to a designated

branch. The latter is becoming an increasingly common practice, as it allows the

implementation of modern CI/CD practices and removes the need for additional human

steps to develop and deploy your infrastructure and configurations.

�Environments
Locking down environments is not a new practice, but it is worth mentioning in the

context of cloud-based environments. Now that we can rapidly provision and modify the

entirety of our IT assets through a management plane, it is more important than ever to

control who can access these features. Using the cloud providers built in authorization and

authentication methods is mandatory and can also be extended similar to aforementioned

Active Directory integrations to enforce centralization of access control in the cloud.

A further consideration is the isolation of environments in different network

segments within the cloud. Taking AWS as an example, creating a VPC per environment

allows each to be segregated from the other. This prevents accidental cross-environment

calls to applications and data stores, limiting the blast radius of any erroneous

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

233

deployments or bad actors. One caveat to this practice is the need for access to shared

resources, such as VPN tunnels, domain controllers, and so forth. This can be enabled

by the use of controlled peering between a network segment designated for shared

resources, allowing all environments to access a subset of resources.

�Resilience
One of the greatest advantages of the cloud is the resilience offered by the geographical

distribution of resources. Take advantage of geographical distribution features to

prevent downtime for your cloud infrastructure, and ultimately avoid downtime for your

applications.

The core philosophy shared by all cloud platforms is to always plan for failure.

This means for you to assume that your environment will experience an outage, it is

just a matter of when. With this firmly planted as an organization priority, we can take

advantage of the cloud for our SharePoint farm, as well as any and all resources we have.

�One Equals Zero
If a single point of failure exists, then we have already failed. We are no longer the

minimum viable product for a resource in the cloud, as it invites catastrophe and can be

easily avoided. Instead, utilizing proper high availability/disaster recovery techniques

such as autoscaling, multiregion deployments, immutability, and a tested failover

strategy can make your environment virtually impervious to failure. These practices

and features are at the core of what makes cloud-based infrastructure so attractive. You

should architect your infrastructure from day one to avoid all single points of failure.

�The “Nines” of Availability
By using the aforementioned techniques and practices, major organizations are able

to obtain increasingly higher “9’s” of availability. This is a metric by which many

organizations and services are measured, representing percentage of uptime. For

example, a company with four nines of availability has an uptime of 99.99%, equating to

only being down only 52.56 minutes per year. Before the invention of publicly accessible

cloud providers, obtaining this level of resilience required large amounts of capital

expenditure to buy and maintain multiple “copies” of an on-premise or co-located IT

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

234

infrastructure. This doesn’t account for the extra processes need to move data, ensuring

network connectivity, and DNS resolution between these traditional datacenters that is

greatly reduced by the cloud.

�Shared Collaboration
Collaboration is instrumental to maintaining knowledge of the code and systems in

use at any organization. Creating an environment where engineers can share, consult

each other, and learn from mistakes enables a team to continuously grow and refine

technology practices. With that in mind, let’s take a look at some of the tools that can

make collaboration meaningful and effective.

�Terraform Enterprise
While the open source nature of Terraform makes provides an easy point of entry for

building IaC, it is worth considering the Terraform Enterprise (TFE) platform to help

facilitate team collaboration and provide a common platform to devise and create

deployments. On top of the already excellent features provided by the free version of

Terraform, Enterprise offers several valuable advantages.

�Workspace Management and GUI

The GUI provided by TFE allows teams to have a visual dashboard to create and

deploy infrastructure. This enables a “single pane of glass” that your organization

can use to provide individual workspaces for each operator. This allows the breaking

down of monolithic deployments into discreet components, providing governance

and delegation features via fine-grained access controls for various resources. With

this capability you can separate the logical components of your infrastructure such

as networking, monitoring, and application domains. The existing teams in your

organization can now have true separation of duties, allowing only respective teams to

deploy the infrastructure they are responsible for.

�Version Control Connection

With full integration with your version control provider of choice, infrastructure can

be deployed directly based on commits, pull requests (PR), tags, and more. This

helps to realize the desire for all infrastructures versioned and represented as desired

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

https://www.terraform.io/docs/enterprise-beta/workspaces/index.html
https://www.terraform.io/docs/enterprise/vcs/index.html

235

state; you will know with absolute certainty that the code in your version control

repositories reflects exactly what is running in your environment. A key example of

how this advantage is realized is via pull requests. When someone submits a pull

request/merge request to a branch, TFE does a Terraform plan with the contents of

the request and records the results on the PR’s page. This helps you avoid merging PRs

that cause plan failures.

�Secure Variable Management

Variable management can be a challenging task when attempting to control and

automate it in a bespoke fashion. With the variable management capabilities of TFE,

you can allow teams to reuse various Terraform scripts and modules while securely

controlling the variables that are injected into deployments. Some examples of where

these features stand out include the ability to customize deployments for various

environments with discrete sizes for resources, tagging strategies, and configuration

management of the code that gets run against various resources. Additionally,

these variables can be set at an enterprise level, so each team working in a different

environment is no longer concerned with things such as how big a certain cluster is in

dev vs. QA.

�Remote Plans, Applies, State Storage, Locking, State Rollback

As you begin deploying increasingly complex infrastructures, having the ability to

record any Terraform plan actions and storing them for approval before conducting a

deployment provides necessary approval gates to prevent deployment failure. With state

storage and locking, you can maintain the state of your environment remotely and prevent

multiple overlapping deployments that could result in faulty or undesired infrastructure.

Coupled with the state rollback feature, you now have the ability to collaborate and deploy

as a team with zero concern for deployment conflicts and an incredibly easy way to

rollback deployments to the last good state with the press of a button.

�Private Module Registry

Organizations using the Terraform Enterprise module registry can have IT operators

serve as experienced “producers,” who create the infrastructure templates, and

developers or less experienced operators as “consumers,” who can easily provision

infrastructure following best practices with prebuilt modules. This is a crucial capability

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

https://www.terraform.io/docs/enterprise/getting-started/workspaces.html
https://www.terraform.io/docs/enterprise/workspaces/run-basics.html
https://www.terraform.io/docs/enterprise/registry/index.html

236

so that you can enable your organization to adhere to best practices and desired

configurations by putting the most experienced engineers in control of enterprise

constructs, while still allowing all operators the freedom to deploy without having to

concern themselves with whether they are following best practices.

�SaaS Install

TFE provides a cloud-hosted solution for the management of your environment,

removing the burden of having to deploy, configure, and maintain your own

implementation of Terraform Enterprise. SaaS provides many benefits, such as managing

upgrades of your platform, high availability, and failover for the TFE implementation.

While many organizations prefer to roll their own tooling and platforms, the flexibility

that this provides can be key for an enterprise of any size to have full confidence that

such a critical tool is always available with the latest features and capabilities.

�Summary
In this chapter, we examined how the concepts and practices covered in previous

chapters can be effectively applied at scale in an enterprise environment. This is critical

for the successful adoption of modern DevOps methodologies, as shared collaborative

environments introduce a high level of complexity. Requirements for standardization,

security, automation, and tooling are amplified as the size of the organization grows,

creating a management plane for these practices that does not exist at the individual

level. Taking full advantage of these practices and conventions will increase the

efficiency and velocity of any modern IT organization, providing the foresight and

organizational maturity to continually assess, improve, and mature.

Chapter 7 Establishing an Enterprise Environment to Manage and Collaborate as a Team

237
© Oscar Medina, Ethan Schumann 2018
O. Medina and E. Schumann, DevOps for SharePoint, https://doi.org/10.1007/978-1-4842-3688-8

Index

A
Access control, 231
Amazon Web Services (AWS)

architecture, 155–156
credentials, 158
Terraform (see Terraform folder)

Ansible, 9–10
Ansible inventory file

EC2 instances, 179
running EC2 script, 180–181

Ansible playbooks
ad hoc commands execution

built-in setup module, 139
resolving errors, 144–146

AWS, 181
EC2 instances, 182, 185
setup module, 185–187

configuration management
app server and WFE roles, 152–153
database server, 151–152, 189
domain controller, 146, 188–189
SharePoint server, 189–190, 193
SharePoint web server, 193

validation, 193
Ansible Vault, 231

B
Base VM image creation, Packer

Azure, Packer template 97
Bash script, running

application secret, 92–93
device authentication,

Azure CLI, 91–92
location, choosing, 93
output, 96–97
required software, 89–90
unique name, multiple resources

creation, 92

C
Cloud-based environments

active directory, 232
domain controllers, 233
VPN tunnels, 233

Compliance as Code (CaC), 129
Continuous delivery (CD), 4–5
Continuous deployment (CD), 5, 19
Continuous integration (CI), 4, 19
Core networking resources, 107
Culture, automation, measurement, and

sharing (CAMS), 5–6

D
DevOps

benefits, SharePoint, 16–18
CI, 4, 19
configuration management, 19
continuous delivery, 4–5
continuous deployment, 5, 19

https://doi.org/10.1007/978-1-4842-3688-8

238

description, 1
development and operations teams, 3
holistic view, 3–4
siloed enterprise teams, 2
trade tools

Ansible, 9–10
IaC, 6
idempotency, 9
Terraform, 7–9
Vagrant tool, 11–15

Dynamic Ansible inventory file, Azure
resources

azure_rm.py and azure_rm.ini files
Azure Python SDK,

installation, 136
credentials configuration,

environment variables, 137
Python script, running, 137–138

E, F
Enterprise environment

access control, 231
automations, 232
cloud-based environments, 232–233
code repositories, 232
orchestration

agent, 226
definition, 226
environment, 227
parameters, 226
steps, 227–230

resilience, 233
secrets management, 230
security, 230
TFE (see Terraform Enterprise (TFE))
version control, 225

Bitbucket, 225

GitLab, 225
integration, TFE, 235

G
GitHub repository, 30

box file, 39
disabling windows updates, 34
Packer template, 32–37
project structure, 32–33
Terraform, 32–33
Vagrantfile, 83

Graphical user interface (GUI), 234

H
HashiCorp configuration language

(HCL), 165
Homebrew on Mac OS X, 24–27

I, J, K
Idempotence, 9, 65
Infrastructure as Code (IaC), 3, 6, 18
InSpec 2.0, 129

L
Lalancette, Brian, 40

M, N
MacBook OS X

Ansible control machine, 22
Homebrew, 24–27
installation of packages, 23
Packer, 22
project workflow, 22
SharePoint Vagrant environment, 22
software packages, 23

DevOps (cont.)

Index

239

O
Open source toolchain

Ansible, 27–29
Git, 23
Packer, 25
posh-git, 23
Terraform

configuration management
tools, 25

HashiCorp site, 24
Homebrew on Mac OS X, 24
Terraform version manager, 24
verifying installation, 24

Vagrant, 25, 27

P, Q
Packer template

builders, 38
post processors, 38
Powershell script, 38, 40, 46
provisioners, 38
SharePoint 2016, 34
variables, 38

Packer tool, 15–16
posh-git, 23
Public IP (PIP), 220
Python package manager (PIP), 28

R
Relational database service (RDS), 155
Resilience, 233–234

S
SaaS installation, 236
Secrets management, 230

Secure variable management, 235
ServerSpec

CI/CD pipeline, 77
definition, 78
run test manually, 80–82
server roles, 82–83
specify test to run, 78–79
TDI, 78

Service level agreement (SLA), 208
SharePoint 2016 farm topology, 86
SharePoint 2016 servers

EC2 instances, 177–178
plan execution, 175, 177

T, U
Terraform, 7, 9

core Azure resources, creation,
106–107

modules, 106
SharePoint 2016 servers

terraform, execution
output, 121

terraform plan, execution, 116
testing, infrastructure deployments

Azure environment variables, 129
InSpec 2.0, 129
InSpec test execution, 133–134
resource group, 130–131
virtual machines, 131–133

Terraform Enterprise (TFE)
GUI, 234
private module registry, 235
remote plans, 235
SaaS installation, 236
secure management, 235
state storage, 235
version control, 234
workspace management, 234

Index

240

Terraform folder
back end, 159

definition, 164
running terraform init, 162–163
S3 bucket creation, 159–160, 162

HCL, 165
module, 165–166
SharePoint 2016 servers, 173–174
structure, 86, 88, 157–158

Terraform module, networking
resources, 167–168, 170, 172–173

Terraform remote state, configuration
backend.tf file, 103
terraform init, 104–105

Test-driven development (TDD), 78
Test-driven infrastructure (TDI), 78

V
Vagrant SharePoint

Ansible inventory, build, 45
command execution, 51
database server, Ansible tasks, 66–71
domain controller

Ansible tasks, 52–57
command execution, 58–59
create AD user accounts, 63–64
create SharePoint AD service

accounts, 64, 65
directory structure, 60
ImportADServiceAccounts.ps1, 61
ImportADUsers.ps1, 60
import_create_ad_sample_users.

csv, 62
import_create_ad_users.csv, 63
run a playbook, 57–58, 60–61
SharePoint 2016 farm, 65

multibox environment, 39
performing Ansible provisioner, 45–51

SPAutoInstaller, 40
Vagrantfile, 40–41
vagrant-machines.yaml, 33, 40–41,

45, 52
vagrant up DomainController1, 52
WFE and app server

Ansible playbook, 71
Ansible tasks, 73–77
SharePoint 2016, 71–72
SPAutoInstaller, 72

YAML file, 40
Vagrant tool, 11–15
Virtual machines

availability set, 210
network interface, 209
Terraform, 210–212

VPC module, AWS, 166–167

W, X, Y, Z
WFE

azure availability sets, 198
configuration management

availability set, 220
HashiCorp Vault, 223
playbook tasks, 221–222

farm topology
load balancer, 212–216
NAT rules, 212–216
scaling out, 208
scaling up, 206–208
SharePoint 2016

farm, 217–219
virtual machines (see Virtual

machines)
Packer image

Ansible tasks, 202–205
template, 199–202

Workspace management, 234

Index

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Introduction
	What Is DevOps?
	DevOps Core Practices
	Continuous Integration
	Continuous Delivery
	Continuous Deployment

	DevOps Core Values
	Culture
	Automation
	Measurement
	Sharing

	DevOps Tools of the Trade
	Infrastructure as Code
	Introducing Terraform
	Idempotency
	Configuration Management
	Virtualization
	Machine Imaging (Prebaked Images)
	Introducing Packer

	Benefits of DevOps Practices
	Why DevOps Practices Matter When It Comes to SharePoint
	Applying DevOps Practices
	Use Infrastructure as Code to Provision SharePoint Dev and Test Environments
	Continuous Integration/Continuous Deployment
	Configuration Management

	Summary

	Chapter 2: Getting up and Running: Set up Your Environment
	Our Environment
	Our Project Workflow
	Install an Open Source Toolchain
	Install Git
	Install posh-git Using Chocolatey on Windows

	Install Terraform
	Install Using Homebrew on Mac OS X
	Verifying Installation
	Install Using Terraform Version Manager
	Install Using Other Methods

	Install Packer
	Install Using Homebrew on Mac OS X
	Verifying Installation

	Install Vagrant
	Install Using Homebrew on Mac OS X
	Verifying Installation

	Install Ansible
	Install Using Homebrew on Mac OS X
	Install Using PIP (Python Package Manager) on Mac OS X
	Use an Ansible-Provided Vagrant Machine as a Control Machine

	About the GitHub Repository
	Getting Started

	Summary

	Chapter 3: Build a Dev SharePoint Farm with Vagrant and ServerSpec
	GitHub Repository Project Structure
	Creating a Windows-Based Image Using Packer
	Disabling Windows Updates
	The Packer Template
	Builders
	Provisioners
	Post Processors
	Variables

	Building the Box File

	Building the Vagrant SharePoint Test Environment
	Using SPAutoInstaller
	A Look at the Vagrant Multimachine Environment
	A Closer Look at the Vagrantfile
	Building the Ansible Inventory Dynamically
	Performing Ansible Provisioning Tasks Based on SharePoint Role

	Bring up the SharePoint Vagrant Environment
	Bring up the Domain Controller
	The Ansible Tasks
	Using Ansible to Execute Playbooks or Specific Tasks

	Bring up the Database Server
	The Ansible Tasks
	The mountimg.yml Task

	Bring up the WFE and App Server
	The join-to-domain.yml Task
	The mount-sp-img.yml Task

	Using ServerSpec to Test SharePoint Server Role Config
	About ServerSpec
	About Test-Driven Infrastructure
	Running Tests on Provisioning VM
	Running Tests Manually
	Testing Additional Server Roles

	Push Vagrantfile to GitHub
	Summary

	Chapter 4: Provisioning the SharePoint Farm to Azure Using Terraform
	About the Solution Architecture
	Terraform Folder Structure
	Create Base VM Image Using Packer
	Running the Bash Script
	Checking for Required Software
	Using Device Authentication with Azure CLI
	Specify a Unique Name for Storage Account, Resource Group, and Client
	Application Secret
	Choose a Location
	Successful Script Output

	Create Packer Image VM
	The Packer Template for Azure

	Configuring the Terraform Remote State
	The Backend.tf File
	Run Terraform Init

	Create Core Azure Resources Using Terraform
	About Terraform Modules

	Defining the Core Networking Resources
	Terraforming the SharePoint 2016 Servers in the Farm Topology
	Preparing to Deploy Resources to Azure
	Execute Terraform Plan
	Executing Terraform Apply

	Testing Terraform Infrastructure Deployments Using InSpec
	About InSpec 2.0
	Getting Started
	Terraform Output
	Testing Our Resource Group

	Testing Virtual Machines
	Executing InSpec Tests

	Generating the Dynamic Ansible Inventory File for Azure Resources
	Using azure_rm.py and azure_rm.ini Files Provided by Ansible
	Installing Azure Python SDK
	Configuring Ansible Credentials Using Environment Variables
	Running the azure_rm.py Python Script

	Use Ansible Playbooks to Install and Configure SharePoint 2016 Farm
	Execute Ansible Ad Hoc Commands Against Azure Virtual Machine
	Run Ansible’s Setup Module via Ad Hoc Command
	Resolving Errors

	Run Ansible Playbooks by Role
	Perform Configuration Management for the Domain Controller
	Perform Configuration Management for the Database Server
	Perform Configuration Management for the App Server and WFE Roles

	Summary

	Chapter 5: Provisioning the SharePoint Farm to AWS Using Terraform and Ansible
	About the Solution Architecture
	Terraform Folder Structure
	Set up AWS Credentials
	Configuring the Terraform Back End
	Create the S3 Bucket via AWS CLI
	Run Terraform Init

	Define the Terraform Back End
	Create Core AWS Resources Using Terraform
	About Terraform Modules
	Defining the Core Networking Resources

	Terraforming the SharePoint 2016 Servers in the Farm Topology
	Preparing to Deploy Resources to AWS
	Execute Terraform Plan
	Executing Terraform Apply

	Generating the Dynamic Ansible Inventory File for AWS Resources
	Using EC2.py and EC2.ini Files Provided by Ansible
	Installing Boto
	Running the EC2 Script

	Use Ansible Playbooks to Install and Configure SharePoint 2016 Farm
	Execute Ansible Ad Hoc Commands Against AWS Instance
	Obtaining EC2 Instances IP Addresses
	Run Ansible’s Setup Module via Ad Hoc Command

	Run Ansible Playbooks by Role
	Perform Configuration Management for the Domain Controller
	Perform Configuration Management for the Database Server
	Perform Configuration Management for SharePoint Server
	Perform Configuration Management for SharePoint Web Server
	Validating the Installation
	Resolving Errors

	Summary

	Chapter 6: Scaling the Farm Using Terraform and Ansible
	Farm Topology
	Architecture Changes

	Building the Packer WFE Image
	Getting Started
	The WFE Packer Template
	The Ansible WFE Playbook Changes

	Scaling Farm Topology Using Terraform
	Scaling Up
	Scaling Out
	About Virtual Machine Availability Sets

	Terraforming Multiple WFE Virtual Machines
	Changing the Network Interface Declaration
	Declaring the Virtual Machine Availability Set
	Modifying the WFE VM Terraform Declaration

	Terraforming the Load Balancer and NAT Rules
	Provisioning the New SharePoint 2016 Farm

	Performing Configuration Management on the WFEs
	Accessing the WFEs in the Availability Set
	Joining WFEs to the SharePoint Farm

	Summary

	Chapter 7: Establishing an Enterprise Environment to Manage and Collaborate as a Team
	Version Control
	Orchestration
	Security
	Secrets Management
	Access Control
	Code
	Automations
	Environments

	Resilience
	One Equals Zero
	The “Nines” of Availability

	Shared Collaboration
	Terraform Enterprise
	Workspace Management and GUI
	Version Control Connection
	Secure Variable Management
	Remote Plans, Applies, State Storage, Locking, State Rollback
	Private Module Registry
	SaaS Install

	Summary

	Index

