
JasperReports 3.5
for Java Developers

Create, design, format, and export reports with

the world's most popular Java reporting library

David R. Heffelinger

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

JasperReports 3.5 for Java Developers

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2009

Production Reference: 1050809

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847198-08-2

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

www.allitebooks.com

http:///
http://www.allitebooks.org

Credits

Author
David R. Heffelinger

Reviewers
Allan Bond

BalaKishore G. Pamarti

T. David Hoppmann, Jr

Thomas M. Ose

Acquisition Editor
Douglas Paterson

Development Editor
Amey Kanse

Technical Editor
Ishita Dhabalia

Copy Editor
Sanchari Mukherjee

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinators
Ashwin Shetty

Neelkanth Mehta

Indexer
Hemangini Bari

Proofreaders
Jade Schuler

Laura Booth

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

David Heffelinger is the Chief Technology Oficer of Ensode Technology, LLC,
a software consulting irm based in the greater Washington DC area. He has been
professionally designing and developing software since 1995. David has been using
Java as his primary programming language since 1996, and has worked on many
large scale projects for several government and commercial clients, including IBM,
Verizon, the US Department of Homeland Security, Freddie Mac, Fannie Mae, and
the US Department of Defense.

David is the author of Java EE 5 Development Using GlassFish Application Server
and Java EE 5 with NetBeans 6 and JasperReports For Java Developers, both by
Packt Publishing.

David has a Masters degree in Software Engineering from Southern Methodist
University. David is the Editor in Chief of Ensode.net (http://www.ensode.net),
a web site about Java, Linux, and other technology topics.

I would like to thank everyone who has helped to make this book a
reality. I would like to thank the Development Editor, Amey Kanse;
the Project Coordinators, Ashwin Shetty and Neelkanth Mehta; the
Technical Editor, Ishita Dhabalia; the Acquisition Editor, Douglas
Paterson, and everyone else at Packt Publishing for giving me the
opportunity to update this book.

I would also like to thank the Technical Reviewers Allan Bond,
BalaKishore G. Pamarti, David Hoppmann, and Thomas M. Ose
for their insightful comments and suggestions.

Additionally, I would like to thank Teodor Danciu, JasperSoft,
and all the JasperReports contributors for creating an outstanding
reporting library.

Finally, I would like to thank my wife and daughter for putting up
with the long hours of work that kept me away from the family.

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewers

Allan Bond is a software developer who has been active in the IT industry for
10 years. His primary focus is the development of both frontend and backend
systems using Java and related technologies. He has worked and consulted for a
variety of organizations ranging from small businesses to Fortune 500 companies,
and government agencies. Allan holds a Masters degree in Information Systems
Management from Brigham Young University.

BalaKishore G. Pamarti is working in St. Jude Children's Research Hospital's
Clinical Informatics Department as a Programmer Analyst for the past ive years. It's
a non-proit organization supporting all the software systems in the patient care area.
Before joining St. Jude, BalaKishore did his Masters in Engineering Technology at
the University of Memphis and a Bachelors from the JNTU College of Engineering,
Hyderabad in Civil Engineering.

He lives with his wife and they both love hiking and exploring new places!

T. David Hoppmann, Jr is the DBA and lead report developer for Monolith
Software Solutions, an open source business intelligence and data warehousing
solution for restaurateurs. He graduated from the College of Charleston in his
hometown of Charleston, SC with degrees in Computer Science and Computer
Information Systems. He is also an active member of the Charleston, SC Linux
Users Group (CSCLUG).

www.allitebooks.com

http:///
http://www.allitebooks.org

Thomas M. Ose has been actively involved in computer and Information
Technologies for the past 30 years. He has seen computer and software trends
and technology mature over various industries including manufacturing, ofice
automation, and communication sectors. Over the years, Thomas has been a
programmer, consultant, and manager for various industries, and has become
proicient in many languages and disciplines including C, C++, C#, PHP, JAVA,
XML, and UML. He prides himself at always learning something new and
developing applications and solutions at the cutting edge of technology and the
industry. Thomas is currently the President of his own consulting company,
Ose Micro Solutions, Inc. specializing in electronic B2B, G2B system for the
Uniform Commercial Code and Business Registration systems for state and local
governments. For his solutions, he utilizes PHP, JAVA, and C# to provide web
service and browser-based solutions using XML to ile regulatory documents at state
and local governments. He has developed many national standards in this area and
spoken at numerous trade conventions.

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: An Overview of JasperReports 7

A brief history of JasperReports 7
What exactly is JasperReports? 8
The features of JasperReports 9

Flexible report layout 9

Multiple ways to present data 10

Multiple ways to supply data 10

Multiple datasources 10

Watermarks 11

Subreports 11

Exporting capabilities 11

Class library dependencies 13
Typical worklow 14
Where to get help 16
Summary 17

Chapter 2: Adding Reporting Capabilities to our Java Applications 19
Downloading JasperReports 20

Setting up our environment 23

JasperReports class library 24
Required libraries for report compilation 24

Apache Commons 24

Optional libraries and tools 26
Apache ANT 26

JDT compiler 26

JDBC driver 27

iText 27

JFreeChart 28

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[ii]

JExcelApi 28

Summary 28
Chapter 3: Creating your First Report 29

Creating a JRXML report template 29
Previewing the XML report template 31

Creating a binary report template 33
Compiling a JRXML template programmatically 33

Previewing the compiled report template 34

Compiling a JRXML template through ANT 36

Generating the report 38
Viewing the report 41

Displaying reports in a web browser 43

Elements of a JRXML report template 46
<property> 46

<import> 47

<template> 47

<style> 47

<subDataset> 47

<parameter> 48

<queryString> 48

<ield> 48
<sortField> 48

<variable> 49

<ilterExpression> 49
<group> 49

<background> 50

<title> 50

<pageHeader> 50

<columnHeader> 51

<detail> 51

<columnFooter> 52

<pageFooter> 52
<lastPageFooter> 53

<summary> 53

<noData> 54

Summary 55
Chapter 4: Creating Dynamic Reports from Databases 57

Database for our reports 58
Generating database reports 59

Embedding SQL queries into a report template 60

Generating the report 63

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[iii]

Modifying a report query through report parameters 67

Database reporting through a datasource 72

A comparison of database report methods 78

Summary 79
Chapter 5: Working with Other Datasources 81

Empty datasources 82
Map datasources 89
Java objects as datasources 94
TableModels as datasources 101
XML datasources 106
CSV datasources 111
Custom datasources 113

Writing a custom JRDataSource implementation 113

Using the custom JRDataSource implementation 115

Summary 118
Chapter 6: Report Layout and Design 119

Controlling report-wide layout properties 120
Setting text properties 121

Styles 121
Reusing styles through style templates 124

Setting text style for individual report elements 126

Setting a report's background 134
Report expressions 136
Adding multiple columns to a report 140

Final notes about report columns 144

Grouping report data 144
Report variables 148

Built-in report variables 156

Stretching text ields to accommodate data 156
Laying out report elements 159

Setting the size and position of a report element 162

Setting common element properties 167
Hiding repeated values 170
Subreports 173
Summary 178

Chapter 7: Adding Charts and Graphics to Reports 181
Adding geometrical shapes to a report 181

Adding lines to a report 182

Adding rectangles to a report 183

Adding ellipses to a report 185

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[iv]

Adding images to a report 186
Attributes of the 

 </band>

</background>

This element cannot be used more than once in a JRXML template.

<title>
This is the report title. It appears only once at the beginning of the report.

<title>

 <band height="50">

 <staticText>

 <reportElement x="180" y="0"
 width="200" height="20"/>

 <text><![CDATA[Title]]></text>

 </staticText>

 </band>

</title>

<pageHeader>
This element deines a page header that is printed at the beginning of every page
in the report.

<pageHeader>

 <band height="20">

 <staticText>

 <reportElement x="180" y="30"

 width="200" height="20"/>

 <text>

 <![CDATA[Page Header]]>

http:///

Chapter 3

[51]

 </text>

 </staticText>

 </band>

</pageHeader>

A JRXML template can contain zero or one <pageHeader> element.

<columnHeader>
This element deines the contents of column headers. It is ignored if the report has
a single column.

<columnHeader>

 <band height="20">

 <staticText>

 <reportElement x="180" y="50"

 width="200" height="20"/>

 <text>

 <![CDATA[Column Header]]>

 </text>

 </staticText>

 </band>

</columnHeader>

If present, the number of <columnHeader> elements in the template must
match the number of columns.

<detail>
This element deines the detail section of the report. The content of the <detail>
section is repeated for each record in the report's datasource.

<detail>

 <band height="20">

 <textField>

 <reportElement x="10" y="0"

 width="600" height="20" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{FieldName}]]>

 </textFieldExpression>

 </textField>

 </band>

</detail>

http:///

Creating your First Report

[52]

A JRXML template can contain zero or one <detail> elements. Most report
templates contain a <detail> element; typically, this is where the main data
of the report is displayed.

<columnFooter>
This element deines the contents of column footers. It is ignored if the report has
a single column.

<columnFooter>

 <band height="20">

 <staticText>

 <reportElement x="0" y="0"

 width="200" height="20"/>

 <text>

 <![CDATA[Column Footer]]>

 </text>

 </staticText>

 </band>

</columnFooter>

A JRXML template can contain zero or more <columnFooter> elements. If present,
the number of <columnFooter> elements in the template must match the number
of columns.

<pageFooter>
This element deines a page footer that is printed at the bottom of every page
in the report.

<pageFooter>

 <band height="20">

 <staticText>

 <reportElement x="0" y="5"

 width="200" height="20"/>

 <text>

 <![CDATA[Page Footer]]>

 </text>

 </staticText>

 </band>

</pageFooter>

A JRXML template can contain zero or one <pageFooter> element.

http:///

Chapter 3

[53]

<lastPageFooter>
Data deined in this element is displayed as the page footer of the last page rather
than the footer deined in the <pageFooter> element.

<lastPageFooter>

 <band height="20">

 <staticText>

 <reportElement x="0" y="5"

 width="200" height="20"/>

 <text>

 <![CDATA[Last Page Footer]]>

 </text>

 </staticText>

 </band>

</lastPageFooter>

A JRXML template can contain zero or one <lastPageFooter> element.

<summary>
This element is printed once at the end of the report.

<summary>

 <band height="20">

 <staticText>

 <reportElement x="0" y="5"

 width="200" height="20"/>

 <text>

 <![CDATA[Summary]]>

 </text>

 </staticText>

 </band>

</summary>

A JRXML template can contain zero or one <summary> element.

http:///

Creating your First Report

[54]

<noData>
The <noData> element can be used to control what will be generated in the report
when the datasource contains no data.

<noData>

 <band height="20">

 <staticText>

 <reportElement x="0" y="5"

 width="200" height="20"/>

 <text>

 <![CDATA[No data found]]>

 </text>

 </staticText>

 </band>

</noData>

Just like the <detail> element, most elements discussed in the previous sections
contain a single <band> element as its only child element. We will discuss the speciic
subelements of the <band> element in later chapters.

In the following screenshot, we can see a report that can help us visualize the
relative position of the report sections:

http:///

Chapter 3

[55]

As we can see, the page footer is labeled Page Footer/Last Page Footer. If the JRXML
template for the report contains a <lastPageFooter> element, its contents will be
displayed in the last page of the report, instead of the contents of the <pagefooter>
element. It is worth mentioning that if our report has only one page, and the report
template contains both the <pageFooter> and the <lastPageFooter> elements, then
in that case the contents of <lastPageFooter> will be displayed as the footer of the
irst (and only) page; the value of the <pageFooter> element will never be displayed.

Before we move on, we should mention that the <columnHeader> and
<columnFooter> elements will be displayed on the report only if it has more than
one column. How to add columns to a report is discussed in detail in Chapter 6,
Report Layout and Design.

Summary
In this chapter, we learned to create a JRXML report template by editing an XML
ile. We also saw how to preview the template by using the tools supplied by
JasperReports. We understood how to compile a JRXML template programmatically
and by using a custom ANT task.

After the successful compilation of the report, we illed the report template with
data by calling the appropriate methods supplied by the JasperFillManager class,
and we viewed the generated reports in native JasperReports' format by using the
JasperViewer utility. The chapter also guided us through the different report sections
in a JRXML template.

Finally, we created web-based reports by displaying generated reports in a web
browser. We are now ready to move on to the next chapter.

http:///

http:///

Creating Dynamic Reports

from Databases
In the previous chapter, we learned how to create our irst report. The simple report
in the previous chapter contained no dynamic data. In this chapter, we will explore
how to create a report from the data obtained from a database.

In this chapter, we will cover the following topics:

•	 How to embed SQL queries into a report template

•	 How to pass rows returned by an SQL query to a report through
a datasource

•	 How to use report ields to display data obtained from a database
•	 How to display database data in a report by using the <textField>

element of the JRXML template

Datasource deinition
A datasource is what JasperReports uses to obtain data for
generating a report. Data can be obtained from databases, XML iles,
arrays of objects, collections of objects, and XML iles.

In this chapter, we will focus on using databases as a datasource. The next chapter
discusses the other types of datasources.

http:///

Creating Dynamic Reports from Databases

[58]

Database for our reports
We will use a MySQL database to obtain data for our reports. The database is a subset
of public domain data that can be downloaded from http://dl.flightstats.us.
The original download is 1.3 GB, so we deleted most of the tables and a lot of data to
trim the download size considerably. MySQL dump of the modiied database can be
found as part of this book's code download at http://www.packtpub.com/files/
code/8082_Code.zip.

The flightstats database contains the following tables:

•	 aircraft

•	 aircraft_models

•	 aircraft_types

•	 aircraft_engines

•	 aircraft_engine_types

The database structure can be seen in the following diagram:

aircraft_engine_types

aircraft_engine_type_id tinyint unsigned(3) NOT NULL (PK)

description char(30) NOT NULL

aircraft_types

aircraft_type_id tinyint unsigned(3) NOT NULL (PK)

description char(30) NOT NULL

aircraft_models

aircraft_model_code char(7) NOT NULL (PK)

manufacturer char(30) NOT NULL

model char(20) NOT NULL

aircraft_type_id tinyint unsigned(3) NOT NULL

aircraft_engine_type_id tinyint unsigned(3) NOT NULL

aircraft_category_id tinyint unsigned(3) NOT NULL

amateur tinyint unsigned(3) NOT NULL

engines tinyint(4) NOT NULL

seats smallint(6) NOT NULL

weight int(11) NOT NULL

speed smallint(6) NOT NULL

aircraft_engines

aircraft_engine_code char(5) NOT NULL (PK)

manufacturer char(10) NOT NULL

model char(13) NOT NULL

aircraft_engine_type_id tinyint unsigned(3) NOT NULL

horsepower mediumint unsigned(8) NOT NULL

thrust mediumint unsigned(8) NOT NULL

fuel_consumed decimal(10,2) NOT NULL

aircraft

tail_num char(6)NOT NULL (PK)

aircraft_serial char(20) NOT NULL

aircraft_model_code char(7) NOT NULL

aircraft_engine_code char(5) NOT NULL

year_built year(4) NOT NULL

aircraft_type_id tinyint unsigned(3) NOT NULL

aircraft_engine_type_id tinyint unsigned(3) NOT NULL

registrant_type_id tinyint unsigned(3) NOT NULL

name char(50) NOT NULL

address1 char(33) NOT NULL

address2 char(33) NOT NULL

city char(18) NOT NULL

state char(2) NOT NULL

zip char(10) NOT NULL

region char(1) NOT NULL

county char(3) NOT NULL

country char(2) NOT NULL

certification char(10) NOT NULL

status_code char(1) NOT NULL

mode_s_code char(8) NOT NULL

fract_owner char(1) NOT NULL

last_action_date date(10) NOT NULL

cert_issue_date date(10) NOT NULL

air_worth_date date(10) NOT NULL

www.allitebooks.com

http:///
http://www.allitebooks.org

Chapter 4

[59]

The flightstats database uses the default MyISAM storage engine
for the MySQL RDBMS, which does not support referential integrity
(foreign keys). That is why we don't see any arrows in the diagram
indicating dependencies between the tables.

Let's create a report that will show the most powerful aircraft in the database. Let's
say, those with horsepower of 1000 or above. The report will show the aircraft tail
number and serial number, the aircraft model, and the aircraft's engine model. The
following query will give us the required results:

SELECT a.tail_num, a.aircraft_serial, am.model as aircraft_model,
 ae.model AS engine_model

FROM aircraft a, aircraft_models am, aircraft_engines ae

WHERE a.aircraft_engine_code in (select aircraft_engine_code
 from aircraft_engines
 where horsepower >= 1000)

 and am.aircraft_model_code = a.aircraft_model_code

 and ae.aircraft_engine_code = a.aircraft_engine_code

The above query retrieves the following data from the database:

Generating database reports
There are two ways to generate database reports—either by embedding SQL queries
into the JRXML report template or by passing data from the database to the compiled
report through a datasource. We will discuss both of these techniques.

We will irst create the report by embedding the query into the JRXML template.
Then, we will generate the same report by passing it through a datasource containing
the database data.

http:///

Creating Dynamic Reports from Databases

[60]

Embedding SQL queries into a report
template
JasperReports allows us to embed database queries into a report template. This can
be achieved by using the <queryString> element of the JRXML ile. The following
example demonstrates this technique:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/
 xsd/jasperreport.xsd"

 name="DbReport">

 <queryString>

 <![CDATA[SELECT a.tail_num, a.aircraft_serial,
 am.model as aircraft_model,

 ae.model as engine_model

 FROM aircraft a, aircraft_models am, aircraft_engines ae

 WHERE a.aircraft_engine_code in (
 select aircraft_engine_code
 from aircraft_engines
 where horsepower >= 1000)
 AND am.aircraft_model_code = a.aircraft_model_code

 AND ae.aircraft_engine_code = a.aircraft_engine_code]]>

 </queryString>

 <field name="tail_num" class="java.lang.String" />

 <field name="aircraft_serial" class="java.lang.String" />

 <field name="aircraft_model" class="java.lang.String" />

 <field name="engine_model" class="java.lang.String" />

 <pageHeader>

 <band height="30">

 <staticText>

 <reportElement x="0" y="0" width="69" height="24" />

 <textElement verticalAlignment="Bottom" />

 <text>

 <![CDATA[Tail Number:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="140" y="0" width="79" height="24" />

 <text>

 <![CDATA[Serial Number:]]>

 </text>

http:///

Chapter 4

[61]

 </staticText>

 <staticText>

 <reportElement x="280" y="0" width="69" height="24" />

 <text>

 <![CDATA[Model:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="420" y="0" width="69" height="24" />

 <text>

 <![CDATA[Engine:]]>

 </text>

 </staticText>

 </band>

 </pageHeader>

 <detail>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{tail_num}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="140" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraft_serial}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="280" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraft_model}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="420" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{engine_model}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

http:///

Creating Dynamic Reports from Databases

[62]

There are a few JRXML elements in this example that we haven't seen before.

As stated before, the <queryString> element is used to embed a database query into
the report template. In the given code example, the <queryString> element contains
the query wrapped in a CDATA block for execution. The <queryString> element has
no attributes or subelements other than the CDATA block containing the query.

Text wrapped inside an XML CDATA block is ignored by the XML parser.
As seen in the given example, our query contains the > character, which
would invalidate the XML block if it wasn't inside a CDATA block. A
CDATA block is optional if the data inside it does not break the XML
structure. However, for consistency and maintainability, we chose to use
it wherever it is allowed in the example.

The <field> element deines ields that are populated at runtime when the report
is illed. Field names must match the column names or alias of the corresponding
columns in the SQL query. The class attribute of the <field> element is optional;
its default value is java.lang.String. Even though all of our ields are strings, we
still added the class attribute for clarity. In the last example, the syntax to obtain the
value of a report ield is $F{field_name}, where field_name is the name of the ield
as deined.

The next element that we haven't seen before is the <textField> element. Text
ields are used to display dynamic textual data in reports. In this case, we are
using them to display the value of the ields. Like all the subelements of <band>,
text ields must contain a <reportElement> subelement indicating the text ield's
height, width, and x, y coordinates within the band. The data that is displayed in
text ields is deined by the <textFieldExpression> subelement of <textField>.
The <textFieldExpresson> element has a single subelement, which is the report
expression that will be displayed by the text ield and wrapped in an XML CDATA
block. In this example, each text ield is displaying the value of a ield. Therefore,
the expression inside the <textFieldExpression> element uses the ield syntax
$F{field_name}, as explained before.

Compiling a report containing a query is no different from compiling a report without
a query. It can be done programmatically or by using the custom JasperReports jrc
ANT task. We covered compiling reports in the previous chapter.

http:///

Chapter 4

[63]

Generating the report
As we have mentioned previously, in JasperReports terminology, the action of
generating a report from a binary report template is called illing the report. To
ill a report containing an embedded database query, we must pass a database
connection object to the report. The following example illustrates this process:

package net.ensode.jasperbook;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.util.HashMap;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperFillManager;

public class DbReportFill

{

 Connection connection;

 public void generateReport()

 {

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection("jdbc:mysql://
 localhost:3306/flightstats?user=user&password=secret");

 System.out.println("Filling report...");

 JasperFillManager.fillReportToFile("reports/DbReport.jasper",

 new HashMap(), connection);

 System.out.println("Done!");

 connection.close();

 }

 catch (JRException e)

 {

 e.printStackTrace();

 }

 catch (ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 catch (SQLException e)

 {

 e.printStackTrace();

 }

 }

http:///

Creating Dynamic Reports from Databases

[64]

 public static void main(String[] args)

 {

 new DbReportFill().generateReport();

 }

}

As seen in this example, a database connection is passed to the report in the
form of a java.sql.Connection object as the last parameter of the static
JasperFillManager.fillReportToFile() method. The irst two parameters are as
follows: a string (used to indicate the location of the binary report template or jasper
ile) and an instance of a class implementing the java.util.Map interface (used for
passing additional parameters to the report). As we don't need to pass any additional
parameters for this report, we used an empty HashMap.

There are six overloaded versions of the JasperFillManager.fillReportToFile()
method, three of which take a connection object as a parameter. Refer to the previous
chapter for a description of the other versions of this method that take a connection
object as a parameter.

For simplicity, our examples open and close database connections every
time they are executed. It is usually a better idea to use a connection
pool, as connection pools increase the performance considerably.
Most Java EE application servers come with connection pooling
functionality, and the commons-dbcp component of Apache Commons
includes utility classes for adding connection pooling capabilities to the
applications that do not make use of an application server.

After executing the above example, a new report, or JRPRINT ile is saved to disk.
We can view it by using the JasperViewer utility included with JasperReports.

http:///

Chapter 4

[65]

In this example, we created the report and immediately saved it to disk. The
JasperFillManager class also contains methods to send a report to an output
stream or to store it in memory in the form of a JasperPrint object. Storing the
compiled report in a JasperPrint object allows us to manipulate the report in
our code further. We could, for example, export it to PDF or another format.

The method used to store a report into a JasperPrint object is JasperFillManager.
fillReport(). The method used for sending the report to an output stream is
JasperFillManager.fillReportToStream(). These two methods accept the same
parameters as JasperFillManager.fillReportToFile() and are trivial to use once
we are familiar with this method. Refer to the JasperReports API for details.

In the next example, we will ill our report and immediately export it to PDF by
taking advantage of the net.sf.jasperreports.engine.JasperRunManager.
runReportToPdfStream() method.

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.util.HashMap;

http:///

Creating Dynamic Reports from Databases

[66]

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JasperRunManager;

public class DbReportServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

 Connection connection;

 response.setContentType("application/pdf");

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/DbReport.jasper");

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection("jdbc:mysql:
 //localhost:3306/flightstats?user=dbUser&password=secret");

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), connection);

 connection.close();

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

http:///

Chapter 4

[67]

We have already discussed this technique in the previous chapter. The only
difference here is that we are passing a connection to the report for generating a
database report. After deploying this servlet and pointing the browser to its URL,
we should see a screen similar to the following screenshot:

Although not directly related to database reporting, one more thing worth
mentioning is that we used the <pageHeader> element of the JRXML template to
lay out the report labels. If our report had more than one page, these labels would
appear at the top of every page.

Modifying a report query through report
parameters
Although embedding a database query into a report template is the simplest way to
generate a database report, this approach is not very lexible. As in order to modify
the report query, it is also necessary to modify the report's JRXML template.

http:///

Creating Dynamic Reports from Databases

[68]

The example JRXML template that we discussed in the previous section generates
a report that displays all the aircraft in the database with a horsepower equal to
or greater than 1000. If we wanted to generate a report to display all the aircraft
with a horsepower greater than or equal to 750, then we would have to modify the
JRXML and recompile it. Too much of work for such a small change! Fortunately,
JasperReports allows us to modify an embedded database query easily by using the
report parameters. The following JRXML template is a new version of the one we
saw in the previous section but modiied to take advantage of report parameters:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport xmlns="http://jasperreports.sourceforge.net
 /jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports
 .sourceforge.net/jasperreports http://jasperreports
 .sourceforge.net/xsd/jasperreport.xsd"

 name="DbReportParam">

 <parameter name="hp" class="java.lang.Integer" />

 <queryString>

 <![CDATA[SELECT a.tail_num, a.aircraft_serial, am.model as
 aircraft_model, ae.model as engine_model

 FROM aircraft a, aircraft_models am, aircraft_engines ae

 WHERE a.aircraft_engine_code in (

 select aircraft_engine_code

 from aircraft_engines

 where horsepower >= $P{hp})

 AND am.aircraft_model_code = a.aircraft_model_code

 AND ae.aircraft_engine_code = a.aircraft_engine_code]]>

 </queryString>

 <field name="tail_num" class="java.lang.String" />

 <field name="aircraft_serial" class="java.lang.String" />

 <field name="aircraft_model" class="java.lang.String" />

 <field name="engine_model" class="java.lang.String" />

 <pageHeader>

 <band height="30">

 <staticText>

 <reportElement x="0" y="0" width="69" height="24" />

 <textElement verticalAlignment="Bottom" />

 <text>

 <![CDATA[Tail Number:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="140" y="0" width="79" height="24" />

 <text>

 <![CDATA[Serial Number:]]>

 </text>

http:///

Chapter 4

[69]

 </staticText>

 <staticText>

 <reportElement x="280" y="0" width="69" height="24" />

 <text>

 <![CDATA[Model:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="420" y="0" width="69" height="24" />

 <text>

 <![CDATA[Engine:]]>

 </text>

 </staticText>

 </band>

 </pageHeader>

 <detail>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{tail_num}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="140" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraft_serial}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="280" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraft_model}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="420" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{engine_model}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

http:///

Creating Dynamic Reports from Databases

[70]

The only difference between this JRXML template and the previous one is that we
declared a report parameter in the following line:

<parameter name="hp" class="java.lang.Integer" />

We then used the declared parameter to retrieve the horsepower dynamically in the
where clause of the report query. As can be seen in this example, the value of a report
parameter can be retrieved by using the syntax $P{paramName}, where paramName is
the parameter name as deined in its declaration (hp in this example).

Passing a parameter to a report from Java code is very simple. In most of the
examples we have seen so far, we have been passing an empty HashMap to report
templates when we ill them. The purpose of that HashMap is to pass parameters to
the report template. The following servlet is a new version of the one we saw in the
previous section but modiied to send a report parameter to the report template:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JasperRunManager;

public class DbReportParamServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

 Connection connection;

 response.setContentType("application/pdf");

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

http:///

Chapter 4

[71]

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/DbReportParam.jasper");

 HashMap parameterMap = new HashMap();

 parameterMap.put("hp", new Integer(750));

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection("jdbc:mysql://
 localhost:3306/flightstats?user=dbuser&password=secret");

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, parameterMap, connection);

 connection.close();

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

The only difference between this servlet and the one in the previous section is that
here we declare a HashMap and populate it with the report parameters. Notice how
the HashMap key must match the report parameter name.

http:///

Creating Dynamic Reports from Databases

[72]

After deploying the servlet and directing the browser to its URL, we should see a
report as seen in the following screenshot:

Dynamically modifying the report queries is only one of many possible uses of
report parameters. Report parameters are discussed in detail in the next chapter.

Database reporting through a datasource
Another way we can generate reports based on database data is by using a
datasource. In JasperReports terminology, a datasource is a class implementing
the net.sf.jasperreports.engine.JRDataSource interface.

http:///

Chapter 4

[73]

To use a database as a datasource, the JasperReports API provides the
net.sf.jasperreports.engine.JRResultSetDataSource class. This class
implements the JRDataSource interface. It has a single public constructor that
takes a java.sql.ResultSet as its only parameter. The JRResultSetDataSource
class provides no public methods or variables. To use it, all we need to do
is provide a result set to its constructor and pass it to the report through the
JasperFillManager class.

Let's modify the last JRXML template so that it uses a JRResultSetDataSource
class to obtain database data.

The only change we need to make in the JRXML template is to remove the
<queryString> element.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE jasperReport PUBLIC "//JasperReports//DTD Report Design//EN"
 "http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

<jasperReport name="DbReportDS">

 <field name="tail_num" class="java.lang.String" />

 <field name="aircraft_serial" class="java.lang.String" />

 <field name="aircraft_model" class="java.lang.String" />

 <field name="engine_model" class="java.lang.String" />

 <pageHeader>

 <band height="30">

 <staticText>

 <reportElement x="0" y="0" width="69" height="24" />

 <textElement verticalAlignment="Bottom" />

 <text>

 <![CDATA[Tail Number:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="140" y="0" width="69" height="24" />

 <text>

 <![CDATA[Serial Number:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="280" y="0" width="69" height="24" />

 <text>

 <![CDATA[Model:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="420" y="0" width="69" height="24" />

 <text>

http:///

Creating Dynamic Reports from Databases

[74]

 <![CDATA[Engine:]]>

 </text>

 </staticText>

 </band>

 </pageHeader>

 <detail>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{tail_num}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="140" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraft_serial}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="280" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraft_model}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="420" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{engine_model}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

The procedure for compiling a database report by using JRResultSetDataSource
is no different from what we have already seen. To ill the report, we need to
execute a database query in our Java code and pass the query results to the report
in a datasource, as seen in the following example:

package net.ensode.jasperbook;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

http:///

Chapter 4

[75]

import java.sql.SQLException;

import java.sql.Statement;

import java.util.HashMap;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRResultSetDataSource;

import net.sf.jasperreports.engine.JasperFillManager;

public class DbReportDSFill

{

 Connection connection;

 Statement statement;

 ResultSet resultSet;

 public void generateReport()

 {

 try

 {

 String query = "SELECT a.tail_num, a.aircraft_serial, "

 + "am.model as aircraft_model,
 ae.model as engine_model
 FROM aircraft a, " + "aircraft_models am,
 aircraft_engines ae
 WHERE a.aircraft_engine_code in (" + "select
 aircraft_engine_code
 from aircraft_engines " +
 "where horsepower >= 1000)
 AND am.aircraft_model_code = a.aircraft_model_code "
 + "and ae.aircraft_engine_code = a.aircraft_engine_code";

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection("jdbc:mysql:
 //localhost:3306/flightstats?user=user&password=secret");

 statement = connection.createStatement();

 resultSet = statement.executeQuery(query);

 JRResultSetDataSource resultSetDataSource = new
 JRResultSetDataSource(resultSet);

 System.out.println("Filling report...");

 JasperFillManager.fillReportToFile("reports/DbReportDS.jasper",
 new HashMap(), resultSetDataSource);

 System.out.println("Done!");

 resultSet.close();

 statement.close();

 connection.close();

 }

 catch (JRException e)

 {

http:///

Creating Dynamic Reports from Databases

[76]

 e.printStackTrace();

 }

 catch (ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 catch (SQLException e)

 {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 new DbReportDSFill().generateReport();

 }

}

As seen in this example, to provide a report with database data by using
JRResultSetDataSource, we must execute the database query from the Java code
and wrap the resulting resultSet object into an instance of JRResultSetDataSource
by passing it to its constructor. The instance of JRResultSetDataSource must
then be passed to the JasperFillManager.fillReportToFile() method. Strictly
speaking, any method that takes an instance of a class implementing JRDataSource
can be called. In this example, we wished to save the report to a ile, so we chose to
use fillReportToFile(). This method ills the report with data from the datasource
and saves it to a ile in the ilesystem. It has the potential of throwing a JRException
if there is something wrong. Consequently, this exception must either be caught or
declared in the throws clause.

After executing this code, a report identical to the irst one we saw in the previous
section is generated. The following example demonstrates how a web-based report
can be created by using a database datasource:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

import java.util.HashMap;

import javax.servlet.ServletException;

http:///

Chapter 4

[77]

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRResultSetDataSource;

import net.sf.jasperreports.engine.JasperRunManager;

public class DbDSReportServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

 Connection connection;

 Statement statement;

 ResultSet resultSet;

 response.setContentType("application/pdf");

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()

 .getResourceAsStream("/reports/DbReportDS.jasper");

 try

 {

 String query = "select a.tail_num, a.aircraft_serial, "
 + "am.model as aircraft_model, ae.model as
 engine_model from aircraft a, "
 + "aircraft_models am, aircraft_engines ae
 where a.aircraft_engine_code in ("
 + "select aircraft_engine_code from
 aircraft_engines "
 + "where horsepower >= 1000) and
 am.aircraft_model_code = a.aircraft_model_code "

 + "and ae.aircraft_engine_code =
 a.aircraft_engine_code";

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection("jdbc:mysql:
 //localhost:3306/flightstats?user=dbuser&password=secret");

 statement = connection.createStatement();

 resultSet = statement.executeQuery(query);

 JRResultSetDataSource resultSetDataSource = new
 JRResultSetDataSource(resultSet);

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), resultSetDataSource);

 resultSet.close();

http:///

Creating Dynamic Reports from Databases

[78]

 statement.close();

 connection.close();

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

This code is very similar to the previous examples. It executes an SQL query through
JDBC and wraps the resulting resultSet in an instance of JRResultSetDataSource.
This instance of JRResultSetDataSource is then passed to the JasperRunManager.
runReportToPdfStream() method to export the report to PDF format and stream it
to the browser window.

All the examples in this chapter use simple SQL select queries to obtain report
data. It is also possible to obtain report data from the database by calling stored
procedures or functions (if supported by the RDBMS and JDBC driver we are using).

A comparison of database report methods
Although embedding a database query into a report template is the simpler way
that JasperReports allows us to create database reports, it is also the least lexible
one. Using a JRResultSetDataSource involves writing some more code but
results in more lexible reports, as the same report template can be used for
different datasources.

Which method to use depends on our needs. If we are sure that we will always be
using a database as a datasource for our report, and the database query is unlikely
to change much, then embedding the database query into the JRXML template at
design time is the most straightforward solution. If the query is likely to change,
or if we need to use datasources other than a database for our reports, then using
a datasource provides the most lexibility.

http:///

Chapter 4

[79]

Some report design tools will only generate database reports by
embedding a database query into the report template. If we are
using one of these tools, then we have little choice but to use this
method. We are free to remove the <queryString> element from
the JRXML after we are done designing the report and passing the
JRResultSetDataSource at runtime. However, if we do this, we
lose the ability to modify the report template from the report designer.

Summary
In this chapter, we learned the different ways we can create database reports
and how to use the <queryString> JRXML element to embed SQL queries in
a report template.

Additionally, we saw how to populate an instance of JRResultSetDataSource with
data from a result set and use it to ill a report. We also covered how to declare report
ields to access data from individual columns in the result set of the query used to ill
the report. Finally, we learned how to generate reports that are displayed both in the
user's web browser and in PDF format.

http:///

http:///

Working with Other

Datasources
As we mentioned previously, JasperReports allows us to use not only databases,
but also many other sources of data to generate reports. In this chapter, we will
learn how to use datasources other than databases to create our reports. As creating
web-based reports is by far the most common use of JasperReports, most examples
in this chapter will use the technique described in Chapter 3, Creating your First
Report, to stream a PDF report to a web browser through the JasperRunManager.
runReportToPdfStream() method.

By the end of the chapter, we will be able to:

•	 Use empty datasources for reports that don't require an external datasource

•	 Use any implementation of java.util.Map as a datasource

•	 Use arrays or collections of Java objects as datasources

•	 Use TableModels as datasources

•	 Use XML iles as datasources
•	 Use CSV iles as datasources
•	 Create our own custom datasources

http:///

Working with Other Datasources

[82]

All the JasperReports datasources implement the net.sf.jasperreports.engine.
JRDataSource interface. Reports are generated, or illed, by calling one of several
static methods in the net.sf.jasperreports.JasperFillManager class. The
JasperFillManager class contains several overloaded versions of the following
three methods:

•	 JasperFillManager.fillReport(): This method creates a report and stores
it in a net.sf.jasperreports.engine.JasperPrint() object.

•	 JasperFillManager.fillReportToFile(): This method creates a report
and stores it in the ilesystem as a JRPRINT ile, JasperReports' native
report format.

•	 JasperFillmanager.fillReportToStream(): This method generates
a report and streams it through a java.io.OutputStream object.

Each of these methods takes an instance of a net.sf.jasperreports.engine.
JRDataSource object as one of its arguments or an instance of java.sql.Connection
to connect directly to the database. In the previous chapter, we saw how we can pass
either a connection object or an instance of JRResultSetDataSource to a report
template to generate a report from database data. Report templates don't need to
change at all if we decide to change the type of datasource we will use to populate
them. For most examples in this chapter, we will use a slightly modiied version of
the report template we used in the previous chapter, populating it with different
types of datasources. As a matter of fact, the only example that will not use the
template from the previous chapter is the one illustrating empty datasources, which
we'll discuss next.

Empty datasources
The irst type of datasources that we will discuss in this chapter are empty
datasources. There is no way to create a report without using either a database
connection or a datasource. If we need to create simple reports that require
no external datasources, we can use an empty datasource to accomplish this.
JasperReports provides the net.sf.jasperreports.engine.JREmptyDataSource
that we can use for these situations. Let's create a simple report template containing
only static data to illustrate this process.

<?xml version="1.0"?>
<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports
 .sourceforge.net/xsd/jasperreport.xsd"
 name="EmptyDataSourceReport">

http:///

Chapter 5

[83]

 <detail>
 <band height="20">
 <staticText>
 <reportElement x="20" y="0" width="300" height="20"/>
 <text>
 <![CDATA[This simple report contains only static data.]]>
 </text>
 </staticText>
 </band>
 </detail>
</jasperReport>

As we can see, the above JRXML template contains no ields or any kind of dynamic
data. It simply generates some static text in the inal report.

In the above JRXML template, we chose to add an XML CDATA
section between the <text> and </text> tags. Although not
strictly necessary in this case, doing so allows us to easily modify the
text between these tags to include text that would prevent the XML
from parsing successfully.

After compiling this report, the binary template EmptyDataSource.jasper is created
in the ilesystem. We can use the following servlet code to ill the report and stream it
as a PDF to the web browser:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JREmptyDataSource;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperRunManager;

public class EmptyDSReportServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

http:///

Working with Other Datasources

[84]

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/EmptyDataSourceReport.jasper");

 try

 {

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), new JREmptyDataSource());

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (JRException e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

After deploying this servlet and directing the browser to its URL, our browser will
display the report as a PDF, as seen in the following screenshot:

http:///

Chapter 5

[85]

If empty datasources could be used only to generate reports with static data, they
wouldn't be very useful; we might as well type the report with our favorite word
processor. JasperReports allows us to pass parameters to a report. We can send
some dynamic data to the report by sending it some parameters.

The following JRXML ile demonstrates how parameters are retrieved in a report:

<?xml version="1.0"?>

<jasperReport xmlns="http://jasperreports.sourceforge.net
 /jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

 name="ParameterReport">

 <parameter name="paramName" class="java.lang.String"/>

 <detail>

 <band height="35">

 <staticText>

 <reportElement x="20" y="0" width="115" height="30"/>

 <text>

 <![CDATA[Parameter Value:]]>

 </text>

 </staticText>

 <textField>

 <reportElement x="135" y="11" width="100" height="19"/>

 <textFieldExpression>

 <![CDATA[$P{paramName}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

As can be seen in the above example, just like report ields, report parameters need
to be declared at the beginning of the JRXML template. The class attribute defaults
to java.lang.String. Even though our report parameter is a string, we included
it in the JRXML template for clarity. The value of the parameter can be retrieved by
using the syntax $P{name}, where name is the name of the parameter as declared in
the JRXML template.

http:///

Working with Other Datasources

[86]

Every method in the net.sf.jasperreports.engine.JasperFillManager class
contains a java.util.Map as one of its arguments. The purpose of this argument is
to allow us to send some parameters to the report. So far we have been using empty
HashMap classes for the reports we have been creating because none of them required
any parameters. In the following example, we will send a parameter to the report
template created by the previous JRXML ile:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JREmptyDataSource;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperRunManager;

public class ParameterReportServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/ParameterReport.jasper");

 HashMap parameterMap = new HashMap();

 parameterMap.put("paramName", "paramValue");

 try

 {

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, parameterMap, new JREmptyDataSource());

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (JRException e)

 {

http:///

Chapter 5

[87]

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

In this servlet, we populate a key/value pair in an instance of java.util.HashMap
and pass that HashMap to the report template through the JasperRunManager.
runReportToPdfStream() method. As can be seen in the code, the key of the Map
must match the parameter name in the JRXML template. After deploying the servlet
and browsing the appropriate URL, we should see a PDF report being rendered in
the browser, as demonstrated in the following screenshot:

As we can see, the value we used for the paramName parameter in the servlet is
displayed in the report.

Report parameters can be assigned values in the report template. That way, we
can assign a default value to any parameter that contains a null value. The syntax
to assign a default value to a report parameter is demonstrated in the following
JRXML snippet:

<parameter name="someParam" class="java.lang.String">

 <defaultValueExpression>

 new java.lang.String("default parameter value");

 </defaultValueExpression>

</parameter>

http:///

Working with Other Datasources

[88]

Of course, if a parameter value is sent for a parameter that has a default value
deined in the JRXML template, the value passed as a parameter takes precedence
over the default value.

In addition to allowing us to send report parameters, all JasperReports reports have
a number of built-in parameters that are always present, without us having to pass
them explicitly. The following table lists all of the built-in report parameters:

Built-in Parameter Description
REPORT_PARAMETERS_MAP Can be used to obtain a reference to the instance of

java.util.Map containing the parameters for the
report.

REPORT_DATA_SOURCE Can be used to obtain a reference to the instance of
net.sf.jasperreports.engine.JRDataSource
containing the ields for the report.

REPORT_CONNECTION Can be used to obtain a reference to the
java.sql.Connection passed to the report to
connect to the database. If no database connection
was passed to the report, it returns null.

IS_IGNORE_PAGINATION JasperReports allows reports to be exported to
several formats. Some of these formats are not
page-oriented (for example, HTML). Setting the value
of IS_IGNORE_PAGINATION to Boolean.TRUE
makes JasperReports ignore all the page breaking
settings in the report and generates a report containing
a single (and in cases of reports with a lot of data, a
very long) page.

REPORT_LOCALE Determines the language to be used to generate reports
when the report is localized. Localized reports are
translated "on the ly" to the language corresponding
to the value of this parameter.

REPORT_RESOURCE_BUNDLE Indicates the java.util.ResourceBundle instance
used to localize the report.

REPORT_MAX_COUNT Indicates the maximum number of records that will
be processed by the report.

REPORT_SCRIPTLET When a report uses a scriptlet, this parameter
returns a reference to it. If the report does
not use a scriptlet, this parameter returns an
instance of net.sf.jasperreports.engine.
JRDefaultScriptlet.

http:///

Chapter 5

[89]

Built-in Parameter Description
REPORT_VIRTUALIZER Sometimes reports are too large to be handled by the

available memory. Setting this parameter to an instance
of a class implementing net.sf.jasperreports.
engine.JRVirtualizer will allow JasperReports
to store temporary data in serialized form in order
to reduce the amount of memory required to ill the
report.

Some of the built-in parameters might not make sense yet, however, they will make
more sense as we discuss some more JasperReports features in future chapters.
The primary use of the REPORT_CONNECTION and REPORT_DATA_SOURCE built-in
parameters is for passing them to subreports, which are discussed in detail in the
next chapter. Report localization and report scriptlets will be covered in Chapter 8,
Other JasperReports Features.

Map datasources
JasperReports allows us to use instances of any class implementing the java.util.
Map interface as a datasource. We can use either an array or a collection of Map objects
to generate a report. Each Map in the collection or array is a record that will be used
to generate the data for each row in the detail area of the report. The JasperReports
API provides an implementation of net.sf.jasperreports.engine.JRDataSource
called net.sf.jasperreports.engine.data.JRMapArrayDataSource that we
can use for using an array of Map objects as a datasource. The following example
demonstrates this class in action:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.HashMap;

import java.util.Map;

http:///

Working with Other Datasources

[90]

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRDataSource;

import net.sf.jasperreports.engine.JasperRunManager;

import net.sf.jasperreports.engine.data.JRMapArrayDataSource;

public class MapArrayDSReportServlet extends HttpServlet

{

 private JRDataSource createReportDataSource()

 {

 JRMapArrayDataSource dataSource;

 Map[] reportRows = initializeMapArray();

 dataSource = new JRMapArrayDataSource(reportRows);

 return dataSource;

 }

 private Map[] initializeMapArray()

 {

 HashMap[] reportRows = new HashMap[4];

 HashMap row1Map = new HashMap();

 HashMap row2Map = new HashMap();

 HashMap row3Map = new HashMap();

 HashMap row4Map = new HashMap();

 row1Map.put("tail_num", "N263Y");

 row1Map.put("aircraft_serial", "T-11");

 row1Map.put("aircraft_model", "39 ROSCOE TRNR RACER");

 row1Map.put("engine_model", "R1830 SERIES");

 row2Map.put("tail_num", "N4087X");

 row2Map.put("aircraft_serial", "BA100-163");

 row2Map.put("aircraft_model", "BRADLEY AEROBAT");

 row2Map.put("engine_model", "R2800 SERIES");

 row3Map.put("tail_num", "N43JE");

 row3Map.put("aircraft_serial", "HAYABUSA 1");

 row3Map.put("aircraft_model", "NAKAJIMA KI-43 IIIA");

 row3Map.put("engine_model", "R1830 SERIES");

 row4Map.put("tail_num", "N912S");

 row4Map.put("aircraft_serial", "9973CC");

 row4Map.put("aircraft_model", "PA18-150");

 row4Map.put("engine_model", "R-1820 SER");

 reportRows[0] = row1Map;

http:///

Chapter 5

[91]

 reportRows[1] = row2Map;

 reportRows[2] = row3Map;

 reportRows[3] = row4Map;

 return reportRows;

 }

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

 throws ServletException, IOException

 {

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig()
 .getServletContext().getResourceAsStream
 ("/reports/AircraftReport.jasper");

 try

 {

 JRDataSource dataSource = createReportDataSource();

 JasperRunManager.runReportToPdfStream(reportStream,

 servletOutputStream, new HashMap(), dataSource);

 esponse.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

The JRMapArrayDataSource class has a single public constructor. This
constructor takes an array of Map objects as its only argument. The array must
already contain the maps to be used to populate the report before we pass it to
JRMapArrayDataSource. Map keys must map ield names in the report template
so that the JasperReports engine knows what values to use to populate the report
template's ields.

http:///

Working with Other Datasources

[92]

In addition to allowing us to use arrays of maps as datasources, JasperReports also
allows us to use a collection of Map objects as a datasource. JasperReports provides an
implementation of JRDataSource that we can use for this purpose; it is called net.
sf.jasperreports.engine.data.JRMapCollectionDataSource. Using this class is
very similar to using JRMapArrayDataSource. The only difference is that we pass a
collection of Map objects to its constructor instead of an array. The following example
illustrates this:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRDataSource;

import net.sf.jasperreports.engine.JasperRunManager;

import net.sf.jasperreports.engine.data.JRMapCollectionDataSource;

public class MapCollectionDSReportServlet extends HttpServlet
{

 private JRDataSource createReportDataSource()

 {

 JRMapCollectionDataSource dataSource;

 Collection reportRows = initializeMapCollection();

 dataSource = new JRMapCollectionDataSource(reportRows);

 return dataSource;

 }

 private Collection initializeMapCollection()

 {

 ArrayList reportRows = new ArrayList();

 HashMap row1Map = new HashMap();

 HashMap row2Map = new HashMap();

 HashMap row3Map = new HashMap();

 HashMap row4Map = new HashMap();

 row1Map.put("tail_num", "N263Y");

 row1Map.put("aircraft_serial", "T-11");

http:///

Chapter 5

[93]

 row1Map.put("aircraft_model", "39 ROSCOE TRNR RACER");

 row1Map.put("engine_model", "R1830 SERIES");

 row2Map.put("tail_num", "N4087X");

 row2Map.put("aircraft_serial", "BA100-163");

 row2Map.put("aircraft_model", "BRADLEY AEROBAT");

 row2Map.put("engine_model", "R2800 SERIES");

 row3Map.put("tail_num", "N43JE");

 row3Map.put("aircraft_serial", "HAYABUSA 1");

 row3Map.put("aircraft_model", "NAKAJIMA KI-43 IIIA");

 row3Map.put("engine_model", "R1830 SERIES");

 row4Map.put("tail_num", "N912S");

 row4Map.put("aircraft_serial", "9973CC");

 row4Map.put("aircraft_model", "PA18-150");

 row4Map.put("engine_model", "R-1820 SER");

 reportRows.add(row1Map);

 reportRows.add(row2Map);

 reportRows.add(row3Map);

 reportRows.add(row4Map);

 return reportRows;

 }

 protected void doGet(HttpServletRequest request,HttpServletResponse
 response)

 throws ServletException, IOException

 {

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/AircraftReport.jasper");

 try

 {

 JRDataSource dataSource = createReportDataSource();

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), dataSource);

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

http:///

Working with Other Datasources

[94]

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

This example is very similar to the previous example. The only difference is that here
we use a collection of Map objects instead of an array, and pass that to the constructor
of JRMapCollectionDataSource so that the Map objects can be used to populate the
report. It is worth noting that, even though we use java.util.ArrayList to group
the Map objects, this does not have to be the case; any class implementing the java.
util.Collection interface will work just as well.

Java objects as datasources
In addition to databases and maps, JasperReports allows us to use Plain Old Java
Objects (POJOs) as datasources. We can use any Java object that adheres to the
JavaBeans speciication as a datasource. The only requirement for an object to adhere
to the JavaBeans speciication is that it must have no public properties, it must have a
no-argument constructor, and it must provide getter and setter methods to access its
private and protected properties. Let's create a Java object to be used as a datasource
for our next example:

package net.ensode.jasperbook;

public class AircraftData
{
 public AircraftData(String tail, String serial, String model,
 String engine)
 {
 setTailNum(tail);
 setAircraftSerial(serial);
 setAircraftModel(model);
 setEngineModel(engine);
 }
 public AircraftData()
 {
 }
 private String tailNum;
 private String aircraftSerial;
 private String aircraftModel;
 private String engineModel;

 public String getAircraftModel()

http:///

Chapter 5

[95]

 {
 return aircraftModel;
 }

 public void setAircraftModel(String aircraftModel)
 {
 this.aircraftModel = aircraftModel;
 }

 public String getAircraftSerial()
 {
 return aircraftSerial;
 }

 public void setAircraftSerial(String aircraftSerial)
 {
 this.aircraftSerial = aircraftSerial;
 }

 public String getEngineModel()
 {
 return engineModel;
 }

 public void setEngineModel(String engineModel)
 {
 this.engineModel = engineModel;
 }

 public String getTailNum()
 {
 return tailNum;
 }

 public void setTailNum(String tailNum)
 {
 this.tailNum = tailNum;
 }
}

This type of object is called a data object or a data transfer object (DTO) or a value
object (VO). As one of the requirements of the JavaBeans speciication is to have a
no-argument constructor, we included one in our Bean. We also included another
convenience constructor that initializes all the properties in it. It is always a good idea
to follow standard naming conventions, a practice we followed in the above code.
Because this object's properties don't match the report template's ield names, we need
to modify the report template. The modiied JRXML template looks like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports
 .sourceforge.net/xsd/jasperreport.xsd"

http:///

Working with Other Datasources

[96]

 name="AircraftReport">
 <field name="tailNum" class="java.lang.String" />
 <field name="aircraftSerial" class="java.lang.String" />
 <field name="aircraftModel" class="java.lang.String" />
 <field name="engineModel" class="java.lang.String" />
 <pageHeader>
 <band height="30">
 <staticText>
 <reportElement x="0" y="0" width="69" height="24" />
 <textElement verticalAlignment="Bottom" />
 <text>
 <![CDATA[Tail Number:]]>
 </text>
 </staticText>
 <staticText>
 <reportElement x="140" y="0" width="69" height="24" />
 <text>
 <![CDATA[Serial Number:]]>
 </text>
 </staticText>
 <staticText>
 <reportElement x="280" y="0" width="69" height="24" />

 <text>

 <![CDATA[Model:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="420" y="0" width="69" height="24" />

 <text>

 <![CDATA[Engine:]]>

 </text>

 </staticText>

 </band>

 </pageHeader>

 <detail>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{tailNum}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="140" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraftSerial}]]>

 </textFieldExpression>

http:///

Chapter 5

[97]

 </textField>

 <textField>

 <reportElement x="280" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraftModel}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="420" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{engineModel}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

The only difference between this JRXML template and the one we've been using
so far is in the ield names. Initially, they were mapping to database columns,
but now because we are using a JavaBean to populate the report, they map to the
corresponding ields in the Bean.

As with Map objects, JasperReports allows us to group JavaBeans in either a
collection or an array. The JRDataSource implementation used to pass an array
of JavaBeans to a report template is called net.sf.jasperreports.engine.
JRBeanArrayDataSource. The following example demonstrates how to use it:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRDataSource;

import net.sf.jasperreports.engine.JasperRunManager;

import net.sf.jasperreports.engine.data.JRBeanArrayDataSource;

public class BeanArrayDSReportServlet extends HttpServlet

{

 private JRDataSource createReportDataSource()

http:///

Working with Other Datasources

[98]

 {

 JRBeanArrayDataSource dataSource;

 AircraftData[] reportRows = initializeBeanArray();

 dataSource = new JRBeanArrayDataSource(reportRows);

 return dataSource;

 }

 private AircraftData[] initializeBeanArray()

 {

 AircraftData[] reportRows = new AircraftData[4];

 reportRows[0] = new AircraftData("N263Y", "T-11",
 "39 ROSCOE TRNR RACER", "R1830 SERIES");

 reportRows[1] = new AircraftData("N4087X", "BA100-163",

 "BRADLEY AEROBAT", "R2800 SERIES");

 reportRows[2] = new AircraftData("N43JE", "HAYABUSA 1",

 "NAKAJIMA KI-43 IIIA", "R1830 SERIES");

 reportRows[3] = new AircraftData("N912S", "9973CC", "PA18-150",

 "R-1820 SER");

 return reportRows;

 }

 protected void doGet(HttpServletRequest request,HttpServletResponse
 response)

 throws ServletException, IOException

 {

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/BeanDSReport.jasper");

 try

 {

 JRDataSource dataSource = createReportDataSource();

 JasperRunManager.runReportToPdfStream(reportStream,

 servletOutputStream, new HashMap(), dataSource);

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

http:///

Chapter 5

[99]

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

In this example, we populate an array with AircraftData objects, which contain
the data to be displayed in the report. We then pass this array to the constructor of
JRBeanArrayDataSource, then pass the new instance of JRBeanArrayDataSource
to the JasperRunManager.runReportToPdfStream() method, which generates the
report and exports it to PDF on the ly. The generated report is then displayed in
the browser.

If we need to group our Beans in a collection instead of an array,
JasperReports provides the net.sf.jasperreports.engine.data.
JRBeanCollectionDataSource() class. This class has only one public constructor.
It takes a java.util.Collection as its only parameter. It expects this collection to
be populated with JavaBeans used to populate the report. The following example
demonstrates how to use JRBeanCollectionDataSource to populate our reports:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRDataSource;

import net.sf.jasperreports.engine.JasperRunManager;

import net.sf.jasperreports.engine.data.JRBeanCollectionDataSource;

public class BeanCollectionDSReportServlet extends HttpServlet

{

 private JRDataSource createReportDataSource()

 {

 JRBeanCollectionDataSource dataSource;

 Collection reportRows = initializeBeanCollection();

 dataSource = new JRBeanCollectionDataSource(reportRows);

 return dataSource;

http:///

Working with Other Datasources

[100]

 }

 private Collection initializeBeanCollection()

 {

 ArrayList reportRows = new ArrayList();

 reportRows.add(new AircraftData("N263Y", "T-11",

 "39 ROSCOE TRNR RACER", "R1830 SERIES"));

 reportRows.add(new AircraftData("N4087X", "BA100-163",
 "BRADLEY AEROBAT", "R2800 SERIES"));

 reportRows.add(new AircraftData("N43JE", "HAYABUSA 1",
 "NAKAJIMA KI-43 IIIA", "R1830 SERIES"));

 reportRows.add(new AircraftData("N912S", "9973CC", "PA18-150",
 "R-1820 SER"));

 return reportRows;

 }

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

 throws ServletException, IOException

 {

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/BeanDSReport.jasper");

 try

 {

 JRDataSource dataSource = createReportDataSource();

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), dataSource);

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

http:///

Chapter 5

[101]

The main difference between this example and the previous one is that here we are
grouping our data objects in a java.util.ArrayList instead of an array. When
using JRBeanCollectionDataSource to populate our reports, we do not necessarily
need to use an ArrayList to populate our Beans. Any class implementing java.
util.Collection will work just as well. JRBeanCollectionDataSource works the
same as the previous JRDataSource implementations we have seen before; that is, it
has a single public constructor that takes a collection of objects as its only argument.
We can then use the initialized JRBeanCollectionDataSource to ill the report.
This is accomplished by calling the JasperRunManager.runReportToPdfStream()
method in the doGet() method in the last example.

TableModels as datasources
In many client-side applications, data is displayed in tabular format. A common
requirement in many applications is to allow the user to print this tabular format as
a report.

JasperReports provides an implementation of the JRDataSource interface that
makes the task of generating reports from tabular format trivial for Swing
applications. The class in question is net.sf.jasperreports.engine.data.
JRTableModelDataSource. This class takes a javax.swing.table.TableModel as
its only parameter. Because tables in Swing are populated through TableModels, all
we need to do for generating a report from a table is to pass the appropriate table's
TableModel as a parameter. The following example is a simple but complete Swing
application demonstrating this process:

package net.ensode.jasperbook;

import java.awt.BorderLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.HashMap;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JTable;

import javax.swing.table.DefaultTableModel;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperFillManager;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.data.JRTableModelDataSource;

import net.sf.jasperreports.view.JasperViewer;

public class TableModelReport

http:///

Working with Other Datasources

[102]

{

 JFrame mainFrame;

 BorderLayout borderLayout;

 DefaultTableModel tableModel;

 JTable table = new JTable();

 JButton generateReportButton = new JButton("Generate Report");

 public TableModelReport()

 {

 mainFrame = new JFrame("Aircraft Data");

 borderLayout = new BorderLayout();

 generateReportButton.addActionListener(new ReportGenerator());

 populateTableModel();

 mainFrame.setSize(640, 150);

 mainFrame.setVisible(true);

 mainFrame.getContentPane().setLayout(borderLayout);

 mainFrame.add(new JLabel("Aircraft Data"), BorderLayout.NORTH);

 table.setModel(tableModel);

 mainFrame.getContentPane().add(table, BorderLayout.CENTER);

 mainFrame.getContentPane().add(generateReportButton,
 BorderLayout.SOUTH);

 mainFrame.setVisible(true);

 }

 private void populateTableModel()

 {

 String[] columnNames = {"tail_num", "aircraft_serial",
 "aircraft_model", "engine_model"};

 String[][] data = {

 {"N263Y", "T-11", " 39 ROSCOE TRNR RACER", "R1830 SERIES"},

 {"N4087X", "BA100-163", "BRADLEY AEROBAT", "R2800 SERIES"},

 {"N43JE", "HAYABUSA 1", "NAKAJIMA KI-43 IIIA", "R1830 SERIES"},

 {"N912S", "9973CC", "PA18-150", "R-1820 SER"}};

 tableModel = new DefaultTableModel(data, columnNames);

 }

 private void displayReport()

 {

 JasperPrint jasperPrint = generateReport();

 JasperViewer jasperViewer = new JasperViewer(jasperPrint);

 jasperViewer.setVisible(true);

 }

 private JasperPrint generateReport()

 {

 JasperPrint jasperPrint = null;

http:///

Chapter 5

[103]

 try

 {

 jasperPrint = JasperFillManager.fillReport(

 "reports/AircraftReportColumnIndex.jasper",
 new HashMap(),

 new JRTableModelDataSource(tableModel));

 }

 catch (JRException e)

 {

 e.printStackTrace();

 }

 return jasperPrint;

 }

 private class ReportGenerator implements ActionListener

 {

 public void actionPerformed(ActionEvent e)

 {

 displayReport();

 }

 }

 public static void main(String[] args)

 {

 new TableModelReport();

 }

}

This example, when executed, will display a window on the screen with a table
containing the Aircraft Data we have been using for most of the examples in this
chapter, along with a Generate Report button at the bottom, as can be seen in the
following screenshot:

http:///

Working with Other Datasources

[104]

Clicking on the Generate Report button will generate the report in JasperReports'
native format, and display it on the screen, which is ready for printing.

This window should look familiar. What we are seeing here is the same application
we used before to view reports in JasperReports' native format. The only difference
is that, instead of invoking the application from an ANT script, we invoked it
programmatically from our code. The class in question is net.sf.jasperreports.
view.JasperViewer; its constructor takes a JasperPrint object as its only
parameter. A JasperPrint object is an in-memory representation of a report
in JasperReports' native format. JasperViewer extends javax.swing.JFrame.
Therefore, to make it visible, all we need to do is call its setVisible() method,
passing the Boolean value true as a parameter. The displayReport() method
in the last example illustrates this procedure.

Of course, before we can display the report, we need to generate it by illing
the report template. Like we mentioned earlier, reports are generated from a
TableModel by passing the TableModel as a parameter to the constructor of
JRTableModelDataSource, as seen in the generateReport() method in
the last example.

Normally, when generating reports from a TableModel, report ields must match the
column names of TableModel. Sometimes it is impractical to use the column names
as report ields. JasperReports provides a way to generate reports from TableModels
without having to map the table columns to the report ields. We can name our
report ields COLUMN_X, where x is the column index, starting with zero. The
following JRXML template illustrates this. It will generate a report identical to the
one in the previous screenshot.

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http:///

Chapter 5

[105]

 xsi:schemaLocation="http://jasperreports.sourceforge
 .net/jasperreports http://jasperreports.sourceforge
 .net/xsd/jasperreport.xsd"

 name="AircraftReport">

 <field name="COLUMN_0" class="java.lang.String" />

 <field name="COLUMN_1" class="java.lang.String" />

 <field name="COLUMN_2" class="java.lang.String" />

 <field name="COLUMN_3" class="java.lang.String" />

 <pageHeader>

 <band height="30">

 <staticText>

 <reportElement x="0" y="0" width="69" height="24" />

 <textElement verticalAlignment="Bottom" />

 <text>

 <![CDATA[Tail Number:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="140" y="0" width="69" height="24" />

 <text>

 <![CDATA[Serial Number:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="280" y="0" width="69" height="24" />

 <text>

 <![CDATA[Model:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="420" y="0" width="69" height="24" />

 <text>

 <![CDATA[Engine:]]>

 </text>

 </staticText>

 </band>

 </pageHeader>

 <detail>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{COLUMN_0}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="140" y="0" width="69" height="24" />

http:///

Working with Other Datasources

[106]

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{COLUMN_1}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="280" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{COLUMN_2}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="420" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{COLUMN_3}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

Because we changed the report name, we need to change a single line in the above
example to make it work with this report template.

jasperPrint = JasperFillManager.fillReport("reports/AircraftReport
 .jasper", new HashMap(), new JRTableModelDataSource(tableModel));

Needs to be changed to:

jasperPrint = JasperFillManager.fillReport("reports/
 AircraftReportColumnIndex.jasper", new HashMap(),
 new JRTableModelDataSource(tableModel));

Had we not changed the report name, the code in the example would have worked
without any modiication with the new report template.

XML datasources
JasperReports allows us to use any well formatted XML document as a datasource.
JasperReports uses XPath expressions to traverse the XML documents and extract
the data for the report.

XPath is a language used to navigate through an XML document's
attributes and elements. More information about XPath can be found
at http://www.w3.org/TR/xpath.

http:///

Chapter 5

[107]

For our next example, we'll need an XML ile from which we'll read the data.
The following XML document will serve this purpose:

<?xml version="1.0" encoding="UTF-8"?>

<AircraftData>

 <aircraft>

 <tail_num>N263Y</tail_num>

 <aircraft_serial>T-11</aircraft_serial>

 <aircraft_model>39 ROSCOE TRNR RACER</aircraft_model>

 <engine_model>R1830 SERIES</engine_model>

 </aircraft>

 <aircraft>

 <tail_num>N4087X</tail_num>

 <aircraft_serial>BA100-163</aircraft_serial>

 <aircraft_model>BRADLEY AEROBAT</aircraft_model>

 <engine_model>R2800 SERIES</engine_model>

 </aircraft>

 <aircraft>

 <tail_num>N43JE</tail_num>

 <aircraft_serial>HAYABUSA 1</aircraft_serial>

 <aircraft_model>NAKAJIMA KI-43 IIIA</aircraft_model>

 <engine_model>R1830 SERIES</engine_model>

 </aircraft>

 <aircraft>

 <tail_num>N912S</tail_num>

 <aircraft_serial>9973CC</aircraft_serial>

 <aircraft_model>PA18-150</aircraft_model>

 <engine_model>R-1820 SER</engine_model>

 </aircraft>

</AircraftData>

We need to make a slight modiication to the JRXML template to be able
to create a report from an XML datasource successfully. We need to add a
<fieldDescription> element inside each <field> element. The following
JRXML template illustrates this modiication:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport

 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net
 /xsd/jasperreport.xsd"

 name="AircraftReportWithDescription">

 <field name="tail_num" class="java.lang.String">

 <fieldDescription>

 <![CDATA[tail_num]]>

http:///

Working with Other Datasources

[108]

 </fieldDescription>

 </field>

 <field name="aircraft_serial" class="java.lang.String">

 <fieldDescription>

 <![CDATA[aircraft_serial]]>

 </fieldDescription>

 </field>

 <field name="aircraft_model" class="java.lang.String">

 <fieldDescription>

 <![CDATA[aircraft_model]]>

 </fieldDescription>

 </field>

 <field name="engine_model" class="java.lang.String">

 <fieldDescription>

 <![CDATA[engine_model]]>

 </fieldDescription>

 </field>

 <pageHeader>

 <band height="30">

 <staticText>

 <reportElement x="0" y="0" width="69" height="24" />

 <textElement verticalAlignment="Bottom" />

 <text>

 <![CDATA[Tail Number:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="140" y="0" width="79" height="24" />

 <text>

 <![CDATA[Serial Number:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="280" y="0" width="69" height="24" />

 <text>

 <![CDATA[Model:]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="420" y="0" width="69" height="24" />

 <text>

 <![CDATA[Engine:]]>

http:///

Chapter 5

[109]

 </text>

 </staticText>

 </band>

 </pageHeader>

 <detail>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{tail_num}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="140" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraft_serial}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="280" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraft_model}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="420" y="0" width="69" height="24" />

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{engine_model}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

The main difference between the above JRXML template and the one we've been
using for most of our examples is the addition of the <fieldDescription> element
for each ield. The purpose of the <fieldDescription> element is to map the ield
name with the appropriate element in the XML ile. In this particular example, ield
names match the corresponding XML elements, but this is not always the case; this is
why <fieldDescription> elements are required for XML datasources.

The JRDataSource implementation we need to use to create reports from XML iles
is called net.sf.jasperreports.engine.data.JRXmlDataSource. The following
example demonstrates how to use it:

http:///

Working with Other Datasources

[110]

package net.ensode.jasperbook;

import java.io.BufferedInputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JasperRunManager;

import net.sf.jasperreports.engine.data.JRXmlDataSource;

public class XmlDSReportServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports
 /AircraftReportWithDescription.jasper");

 try

 {

 JRXmlDataSource xmlDataSource = new JRXmlDataSource(

 new BufferedInputStream(getServletConfig()
 .getServletContext().getResourceAsStream(
 "/reports/AircraftData.xml")),
 "/AircraftData/aircraft");

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), xmlDataSource);

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

http:///

Chapter 5

[111]

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

As can be seen in this example, we need to pass the XML document and an XPath
expression to the constructor of JRXmlDataSource. The example assumes we
saved the XML ile shown at the beginning of this section as AircraftData.xml.
In this particular case, we chose to pass the XML document as an input stream.
JRXmlDataSource contains other constructors that allow us to send the XML
document as an org.w3c.dom.Document, a java.io.File, or a string containing a
Uniform Resource Identiier (URI). Passing an XPath expression is optional. If we
don't pass one, then the datasource will be created from all the subelements of the
root element in the XML ile. If we do pass one, then the datasource will be created
from all the elements inside the XPath expression.

CSV datasources
JasperReports allows us to use Comma Separated Value (CSV) iles as sources of
data for our reports.

We will use the following CSV ile to provide data for our report:

tail_num,aircraft_serial,aircraft_model,engine_model

N263Y,T-11,39 ROSCOE TRNR RACER,R1830 SERIES

N4087X,BA100-163,BRADLEY AEROBAT,R2800 SERIES

N43JE,HAYABUSA 1,NAKAJIMA KI-43 IIIA,R1830 SERIES

N912S,9973CC,PA18-150,R-1820 SER

The JRDataSource implementation we need to use to create reports from CSV iles
is called net.sf.jasperreports.engine.data.JRCsvDataSource. The following
example demonstrates how to use it:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.HashMap;

http:///

Working with Other Datasources

[112]

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JasperRunManager;

import net.sf.jasperreports.engine.data.JRCsvDataSource;

public class CsvDSReportServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/AircraftReport.jasper");

 try

 {

 JRCsvDataSource jRCsvDataSource = new JRCsvDataSource(new
 InputStreamReader(getServletConfig().getServletContext()
 .getResourceAsStream("/reports/AircraftData.csv")));

 jRCsvDataSource.setUseFirstRowAsHeader(true);

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), jRCsvDataSource);

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

http:///

Chapter 5

[113]

Here, we need to pass the CSV ilename to the constructor of the JRCsvDataSource
class. The example assumes we saved the CSV ile shown at the beginning of this
section as AircraftData.csv. In this particular case, we chose to pass the CSV ile
as an input stream. The JRCsvDataSource class contains other constructors that
allow us to send the CSV ile as an instance of java.io.File or as an instance of
java.io.Reader.

The setUseFirstRowAsHeader() method deined in JRCsvDataSource allows
us to specify if we would like the irst row in our CSV ile to deine the headers
in our report. In our case, the CSV ile we are using deines headers this way;
therefore, we set this value to true. If our CSV ile had not had header deinitions
on the irst column, we would have had to set this value to false and invoke the
setColumnNames() method of JRCsvDataSourceto pass an array of string objects
containing the header names to be used in our report.

Custom datasources
So far we've seen all of the JRDataSource implementations provided by JasperReports.
If we need to extract data from a type of datasource not directly supported by
JasperReports, we can create a class implementing JRDataSource to meet our needs.
In this section, we will create a custom datasource allowing us to generate reports from
an instance of java.util.List containing arrays of strings as its elements.

Writing a custom JRDataSource
implementation
In our previous examples, all JasperReports datasources implement the
JRDataSource interface. JasperReports also includes the net.sf.jasperreports.
engine.JRRewindableDataSource interface. This interface extends JRDatasource,
adding a single method called moveFirst(). The moveFirst() method is intended
to move the cursor to the irst element in the datasource. Our custom datasource will
implement JRRewindableDataSource.
Let's take a look at the source of the custom datasource class.

package net.ensode.jasperbook;

import java.util.List;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRField;

import net.sf.jasperreports.engine.JRRewindableDataSource;

import org.apache.commons.lang.ArrayUtils;

http:///

Working with Other Datasources

[114]

public class ListOfArraysDataSource implements JRRewindableDataSource
{

 private List<String[]> listOfArrays;

 private String[] fieldNames;

 private int index = -1;

 public ListOfArraysDataSource(List<String[]> listOfArrays)

 {

 this.listOfArrays = listOfArrays;

 }

 public void moveFirst() throws JRException

 {

 index = 0;

 }

 public boolean next() throws JRException

 {

 index++;

 boolean returnVal = true;

 if (index >= listOfArrays.size())

 {

 returnVal = false;

 }

 return returnVal;

 }

 public Object getFieldValue(JRField jrField) throws JRException

{

 int fieldIndex = ArrayUtils.indexOf(fieldNames, jrField.getName());

 if (fieldIndex == ArrayUtils.INDEX_NOT_FOUND)

 {

 throw new JRException("Invalid field: " + jrField.getName());

 }

 return listOfArrays.get(index)[fieldIndex];

 }

 public void setListOfArrays(List<String[]> listOfArrays)

 {

 this.listOfArrays = listOfArrays;

 }

 public void setFieldNames(String[] fieldNames)

 {

 this.fieldNames = fieldNames;

 }

}

http:///

Chapter 5

[115]

JasperReports datasources contain elements and ields. When using a database as a
datasource, a database row is considered an element and the columns are considered
ields. When using Java objects as datasources, each object is an element, and each
attribute of the object is a ield. For our custom datasource, each string array is
considered an element, and each element in each array is considered a ield.

The next() method deined in JRDataSource moves the cursor to the next element
in the datasource. It returns a Boolean indicating if the move was successful or not.
In our implementation, we have an index variable indicating the current element in
the List. In our next() method, we increase index by one and return false if its
value is greater than or equal to the size of the list; otherwise, we return true.

The getFieldValue() method retrieves the value for the current ield in the
datasource. It takes a net.sf.jasperreports.engine.JRField as its only
argument. The JRField interface contains a getName() method that is used to
retrieve the value of the ield from its name. The way this is done depends on the
type of datasource. For example, JRBeanCollectionDataSource uses utility classes
from Apache Commons-BeanUtils to retrieve the Bean's property value from its
name. JRXmlDataSource uses a combination of Xalan, an XML transformation
library, and Apache Commons for its implementation.

For our getFieldValue() implementation, we followed one of the conventions
established by the standard JasperReports JRCsvDataSource: The ield names
can be passed to the datasource itself. The setFieldNames() method in our
custom datasource takes an array of strings specifying the ield names for each
of our elements. In our getFieldValue() implementation, with the help of the
ArrayUtils class from the Apache Commons lang library, we obtain the index
of the corresponding ield in the fieldNames array and obtain the value of the
corresponding element in the current array of strings.

For our moveFirst() implementation, we simply reset the values of the index
variable to zero.

Using the custom JRDataSource
implementation
Writing code to take advantage of a custom JRDataSource implementation is not
much different from writing code that uses standard JasperReports datasources.
After all, both custom and standard datasources implement the JRDataSource
interface. The following example illustrates how to take advantage of our custom
datasource implementation:

http:///

Working with Other Datasources

[116]

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRDataSource;

import net.sf.jasperreports.engine.JasperRunManager;

public class CustomDataSourceReportServlet extends HttpServlet

{

 private JRDataSource createReportDataSource()

 {

 String[] headers = {"tail_num", "aircraft_serial",
 "aircraft_model", "engine_model"};

 ListOfArraysDataSource dataSource;

 List<String[]> reportRows = initializeListOfArrays();

 dataSource = new ListOfArraysDataSource(reportRows);

 dataSource.setFieldNames(headers);

 return dataSource;

 }

 private List<String[]> initializeListOfArrays()

 {

 List<String[]> reportRows = new ArrayList<String[]>();

 String[] row1 = {"N263Y", "T-11", "39 ROSCOE TRNR RACER",

 "R1830 SERIES"};

 String[] row2 = {"N4087X", "BA100-163", "BRADLEY AEROBAT",

 "R2800 SERIES"};

 String[] row3 = {"N43JE", "HAYABUSA 1", "NAKAJIMA KI-43 IIIA",

 "R1830 SERIES"};

 String[] row4 = {"N912S", "9973CC", "PA18-150", "R-1820 SER"};

 reportRows.add(row1);

 reportRows.add(row2);

 reportRows.add(row3);

 reportRows.add(row4);

http:///

Chapter 5

[117]

 return reportRows;

 }

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/AircraftReport.jasper");

 try

 {

 JRDataSource dataSource = createReportDataSource();

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), dataSource);

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

In this example, we simply create an instance of our custom datasource, passing
a list of arrays to the constructor. Once we have a reference to an instance of
our datasource, we treat it just like any other JasperReports datasource. In this
particular example, like in most examples of this chapter, we simply ill the report
and display it in the browser as a PDF. We do this by invoking the static method
runReportToPdfStream(), which is deined in the net.sf.jasperreports.
engine.JasperRunManager class. The fact that we are using a custom datasource
in this case does not make any difference.

http:///

Working with Other Datasources

[118]

One more way JasperReports can obtain data to be displayed in reports is

by writing queries in the MDX query language. MDX stands for Multi
Dimensional Expressions and is frequently used when working with

Online Analytical Processing (OLAP) databases. MDX and OLAP
are complex subjects with whole books dedicated to them; we couldn't do
them justice in a short section of this book. To ind out more about how
to write MDX queries to populate reports, please refer to the mondrian
sample included with the JasperReports project ile.

Summary
This chapter has given us a quick run through all the non-database datasources
supported by JasperReports, including how to create our own.

We have created reports that use no external datasources by using an empty
datasource. We also used instances of a class implementing java.util.Map as a
datasource by taking advantage of the net.sf.jasperreports.engine.data.
JRMapArrayDataSource class. We learned to use plain Java objects as datasources
by employing the net.sf.jasperreports.engine.JRBeanArrayDataSource
and net.sf.jasperreports.engine.JRBeanCollectionDataSource classes.
Besides, we also saw the use of a Swing TableModel and an XML document
as a datasource by implementing the net.sf.jasperreports.engine.data.
JRTableModelDataSource and net.sf.jasperreports.engine.data.
JRXmlDataSource classes respectively. We also saw how CSV iles can be used as
datasources for our reports by taking advantage of the net.sf.jasperreports.
engine.data.JRCsvDataSource class.

We have covered not only the datasources supported by JasperReports, but also
created custom datasources by creating our own JRDataSource implementation.
In addition to datasources, we also discussed how to pass data in the form of
report parameters.

http:///

Report Layout and Design
All reports we have created so far contain simple layouts. In this chapter, we
will cover how to create elaborate layouts, including, among other JasperReports
features, adding background images or text to a report, logically grouping report
data, conditionally printing report data, and creating subreports.

In this chapter, we will cover the following topics:

•	 How to control report-wide layout properties

•	 How to use styles to control the look of report elements

•	 How to add multiple columns to a report

•	 How to divide report data into logical groups

•	 How to allow report text ields to stretch for displaying large amounts
of data

•	 How to control the layout of the report elements, including how to
control their position, width, and height, among other layout properties

•	 How to use the <frame> element to visually group report elements

•	 How to add background text to a report

•	 How to add dynamic data to a report through report expressions
and variables

•	 How to conditionally print data based on a report expression

•	 How to create subreports

http:///

Report Layout and Design

[120]

Most of the techniques described in this chapter are encapsulated in the
JRXML template. For this reason, we will not be showing Java code for
most examples as it would illustrate nothing we haven't seen before. The
code to generate all the reports in this chapter can be downloaded as part
of this book's code, available at http://www.packtpub.com/files/
code/8082_Code.zip.

Controlling report-wide layout properties
The <jasperReport> root element of the JRXML template contains a number of
attributes that allow us to control report layout. The following table summarizes
these attributes:

Attribute Description Valid values Default
values

pageWidth Determines the width of
the page in pixels.

Any non-negative integer. 595

pageHeight Determines the height of
the page in pixels.

Any non-negative integer. 842

leftMargin Determines the left margin
of the page in pixels.

Any non-negative integer. 20

rightMargin Determines the right
margin of the page in
pixels.

Any non-negative integer. 20

topMargin Determines the top margin
of the page in pixels.

Any non-negative integer. 30

bottomMargin Determines the bottom
margin of the page in
pixels.

Any non-negative integer. 30

orientation Determines the orientation
of the page.

Portrait, Landscape Portrait

whenNoDataType Determines how to create
reports with no data in its
datasource.

NoPages,
BlankPage,
AllSectionsNoDetail

NoPages

isTitleNewPage Determines if the title
section of the report will
be printed on a separate
page.

true, false false

isSummaryNewPage Determines if the summary
section of the report will be
printed on a separate page.

true, false false

http:///

Chapter 6

[121]

Most of the attributes in the table are self-explanatory, and their use should be
intuitive. However, the whenNoDataType attribute deserves more explanation.

When there is no data in the report's datasource, by default JasperReports will not
generate a report. This happens because the default value of whenNoDataType is
BlankPage. Setting whenNoDataType to BlankPage will result in a single blank page
report. If we would like a report displaying all sections except the detail section, we
can accomplish this by setting whenNoDataType to AllSectionsNoDetail.

Setting text properties
JasperReports provides several ways to control text properties in the report. We
can control the font, whether the text is bold, italic, underlined, its background
and foreground colors, and so on.

Styles
One way JasperReports allows us to control text properties is by using the <style>
element. This element allows us to control the foreground and background colors,
the style of font (bold, italic, or normal), the font size, a border for the font, and many
other attributes. Styles can extend other styles and add to or override properties of
the parent style.

The following JRXML template illustrates the use of styles:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport name="ReportStylesDemo"

 xmlns="http://jasperreports.sourceforge.net/
 jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports

 .sourceforge.net/jasperreports http://
 jasperreports.sourceforge.net/xsd/
 jasperreport.xsd">

 <style name="parentStyle" isDefault="true" fontName="Times"

 isBold="true" fontSize="13" pdfFontName="Helvetica-Bold"/>

 <style name="childStyle" fontSize="9"/>

 <detail>

 <band height="60">

 <staticText>

 <reportElement x="0" y="0" width="555" height="35" />

 <text>

 <![CDATA[This text uses the default report style,

 in this report it is called "parentStyle".]]>

http:///

Report Layout and Design

[122]

 </text>

 </staticText>

 <staticText>

 <reportElement x="0" y="35" width="555" height="25"
 style="childStyle"/>

 <text>

 <![CDATA[This text uses the style called "childStyle", this
 style inherits all the properties of it's parents,
 and overrides only the size.]]>

 </text>

 </staticText>

 </band>

 </detail>

</jasperReport>

There are a few things to note about this example. First, notice the isDefault="true"
attribute of the parent style. It makes all the report elements use this style by default
without having to explicitly declare it. Because the irst <staticText> element
does not indicate what style to use, it will use the style named parentStyle by
default. The style report used by the elements is deined by the style attribute of the
<reportElement> style, as can be seen in the second <staticText> element in
this template.

After compiling, illing, and exporting this JRXML template, we should have a report
like the following:

The <style> element contains numerous attributes. The complete list of
attributes can be found at http://jasperforge.org/uploads/publish/
jasperreportswebsite/JR%20Website/jasperreports_quickref.html#style.
Some of the most commonly used style attributes are outlined in the following table:

http:///

Chapter 6

[123]

Attribute Description Valid values
forecolor Indicates the text color. Either a hexadecimal RGB

value preceded by the #
character or one of the
following predeined values:
black, blue, cyan,
darkGray, gray, green,
lightGray, magenta,
orange, pink, red,
yellow, white

backcolor Indicates the text
background color.

Refer to the valid values of
forecolor above.

hAlign Indicates the horizontal
alignment of the element.

Center, Justified, Left,
Right

vAlign Indicates the vertical
alignment of the element.

Bottom, Middle, Top

fontName Indicates what font to use
for the element.

A string indicating the font
to be used.

fontSize Indicates the size of the font. An integer indicating the text
size to be used.

isBold Indicates whether the font
is bold.

true, false

IsItalic Indicates whether the font
is italic.

true, false

IsUnderline Indicates whether the font
is underlined.

true, false

isStrikeThrough Indicates whether the font
is strikethrough.

true, false

lineSpacing Determines the spacing
between lines of text. A value
of 1_1_2 indicates a line and
a half of space between lines
of text.

1_1_2, Double, Single

markup Allows the element to
be styled using HTML
snippets, RTF snippets or the
JasperReports speciic "styled"
markup.

none, html, rtf, styled

http:///

Report Layout and Design

[124]

All the attributes that are not speciic to textual information (forecolor, backcolor,
hAlign, and so on) can be used for any kind of element, not just textual elements.
The markup attribute is used to allow segments of the text to be styled using HTML
markup, RTF snippets, or using the JasperReports speciic <style> XML element.
This is covered in detail later in this chapter.

Reusing styles through style templates
Although adding styles directly to a report template is fairly straightforward, it does
have one disadvantage: if we need to add the same style to several reports, then we
need to add the style individually to each report. Furthermore, if we need to change
a style, then we need to go and modify the style deinition in each report template.

To avoid the situation described in the previous paragraph, JasperReports allows
us to deine styles in a style template. When using a style template, styles can be
deined separately from the report template and reused across several reports.
Additionally, if we need to modify a style, all we need to do is modify the template,
as opposed to having to update each report template individually.

The following JRXML template takes advantage of a style template that deines
the text styles used in the report:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport name="ReportStylesDemo"

 xmlns="http://jasperreports.sourceforge.net
 /jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports
 .sourceforge.net/jasperreports http://
 jasperreports.sourceforge.net/xsd
 /jasperreport.xsd">

 <template>

 "http://localhost:8080/jasperbookch6/reports/styles.jrtx"

 </template>

 <detail>

 <band height="60">

 <staticText>

 <reportElement x="0" y="0" width="555" height="35" />

 <text>

 <![CDATA[This text uses the default report style, in this
 report it is called "parentStyle".]]>

 </text>

 </staticText>

 <staticText>

http:///

Chapter 6

[125]

 <reportElement x="0" y="35" width="555" height="25"
 style="childStyle"/>

 <text>

 <![CDATA[This text uses the style called "childStyle", this
 style inherits all the properties of its parents,
 and overrides only the size.]]>

 </text>

 </staticText>

 </band>

 </detail>

</jasperReport>

This JRXML template is a slightly modiied version of the report template we saw
in the previous report. The only difference is that, instead of deining styles in the
JRXML template, they are deined in an external report style template. As we can
see, we can import an external template by using the <template> tag. The body of
this tag must be the URL or the full/relative path to the report template.

Notice how the URL for the style template is absolute, it includes the protocol, host,
port, and path. This allows us to "publish" our template in a web server or servlet
container and easily reuse it in the future.

The actual style template is shown below:

<?xml version="1.0"?>

<!DOCTYPE jasperTemplate

 PUBLIC "-//JasperReports//DTD Template//EN"

 "http://jasperreports.sourceforge.net/dtds/jaspertemplate.dtd">

<jasperTemplate>

 <style name="parentStyle" isDefault="true" fontName="Times"

 isBold="true" fontSize="13" pdfFontName="Helvetica-Bold"/>

 <style name="childStyle" style="parentStyle" fontSize="9"/>

</jasperTemplate>

Notice how a style template simply contains style deinitions just like the ones
we used inside a JRXML template. These deinitions must be nested inside a
<jaspertemplate> tag.

http:///

Report Layout and Design

[126]

Setting text style for individual report elements
Report styles can be shared among several report elements. JasperReports allows
us to set some properties for individual report elements. This can be accomplished
by setting attributes in the <textElement> subelement of <staticText> and
<textField>. These attributes are outlined in the following table:

Attribute Description Valid values
lineSpacing Determines the spacing

between lines of text. A value
of 1_1_2 indicates a line and
a half of space between lines
of text.

1_1_2, Double, Single

rotation Indicates the text direction by
rotating it 90 degrees in the
speciied direction.

Left, None, Right

textAlignment Indicates the horizontal
alignment of the text.

Center, Justified, Left,
Right

markup Allows the text to be styled
using a markup language
such as HTML or RTF.

none, html, rtf, styled

The following snippet of a JRXML template illustrates how to use these attributes:

<staticText>
 <reportElement x="0" y="0" width="555" height="60"/>
 <textElement lineSpacing="Double" textAlignment="Center"
 verticalAlignment="Middle"/>
 <text>
 <![CDATA[This text is not really important.Its only purpose is
 to illustrate text style.]]>
 </text>
</staticText>

This snippet would generate text both horizontally and vertically centered using
double-spacing.

Notice how the text is double-spaced and vertically and horizontally centered,
like we speciied in the attributes of the <textElement> JRXML element.

http:///

Chapter 6

[127]

It is worth noting that because <textElement> is a subelement of both
<staticText> and <textField>, the technique described here can be applied
to static text as well as to dynamic text coming from a report expression.

Use styles to create more maintainable reports
In the short run, it is usually faster to set the text properties using the
<textElement> element. However, doing it this way prevents us
from reusing the styles across several elements. Report styles allow us
to do this, and they provide much more control than the attributes in
<textElement>, saving us time in the long run.

Using markup to style text
Like we briely mentioned in past sections, JasperReports allows us to use markup
languages such as HTML and RTF to style report text. The JasperReports speciic
XML <style> element can also be used to style report text.

The techniques illustrated in the following sections can be used for
JRXML <staticText> and <textField> elements. For simplicity, all
the examples use static text, but the techniques can be used just as easily
for dynamically generated text rendered inside a <textField> element.

Styled text
The text property modiication techniques described so far apply the text properties
to a complete text element. Sometimes we want certain segments of a text element to
have a different style. For example, we might want to emphasize a word by making
it bold or italic. JasperReports allows us to do this by using styled text.

As we have seen in previous sections, both the <textElement> and <style>
elements contain a markup attribute, and we need to set this attribute to styled to
use styled text. When this attribute is set to styled, the text inside a <textField>
or <staticText> element is not interpreted as regular text, but as XML instead. The
text to be styled needs to be nested between <style> elements to obtain a different
style from the rest of the text. This <style> element contains attributes similar to the
JRXML <style> element discussed previously.

http:///

Report Layout and Design

[128]

The following table lists all the attributes available to this <style> element:

Attribute Description Valid values
fontName Indicates the font to be used

for the element.
A string indicating the font
to be used.

size Indicates the size of the font. An integer indicating the text
size to be used.

isBold Indicates whether the font
is bold.

true, false

IsItalic Indicates whether the font
is italic.

true, false

IsUnderline Indicates whether the font is
underlined.

true, false

isStrikeThrough Indicates whether the font is
strikethrough.

true, false

pdfFontName Indicates the name of the
font to be used if the report
is exported to PDF.

Courier, Courier-Bold,
Courier-BoldOblique,
Courier-Oblique,
Helvetica, Helvetica

Bold, Helvetica

BoldOblique, Helvetica

Oblique, Symbol, Times-
Roman, Times-Bold,
Times-BoldItalic,
Times-Italic,
ZapfDingbats

pdfEncoding Indicates the encoding to be
used if the report is exported
to PDF.

A string indicating the
encoding to be used when
the report is exported to PDF.

isPdfEmbedded Indicates whether the PDF
font should be embedded in
the document.

true, false

forecolor Indicates the color of the text. See valid values for
forecolor in the Styles
section of this chapter.

backcolor Indicates the background
color of the text.

See valid values for
backcolor in the Styles
section of this chapter.

http:///

Chapter 6

[129]

The following example illustrates how to use the styled value for the markup
attribute to style text in a report:

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"
 name="StyledTextMarkupDemoReport" pageWidth="595"
 pageHeight="842" columnWidth="555" leftMargin="20"

 rightMargin="20" topMargin="30" bottomMargin="30">

 <detail>

 <band height="50">

 <staticText>

 <reportElement x="0" y="0" width="500" height="48"/>

 <textElement markup="styled">

 </textElement>

 <text>

 <![CDATA[This text is <style isBold="true">styled</style>

 using the value of
 <style isItalic="true">styled</style>

 for the <style forecolor="blue">markup</style>

 attribute.]]>

 </text>

 </staticText>

 </band>

 </detail>

</jasperReport>

As we can see in the above example, all we need to do is wrap the sections of text
we want to style in <style> tags, and then use the appropriate attributes (isBold,
isItalic, and so on) to style the text.

This JRXML template will generate a report containing text using the expected
font styles.

http:///

Report Layout and Design

[130]

HTML
In addition to using styled text to set text style, we can use HTML markup for the
same purpose. It allows us to use familiar HTML tags, such as , , and <i>
to style our text. The following example illustrates how to do this:

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport xmlns="http://jasperreports.sourceforge.net
 /jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

 name="HtmlMarkupDemoReport" pageWidth="595"
 pageHeight="842" columnWidth="555"
 leftMargin="20" rightMargin="20" topMargin="30"
 bottomMargin="30">

 <detail>

 <band height="50">

 <staticText>

 <reportElement x="0" y="0" width="500" height="48"/>

 <textElement markup="html">

 </textElement>

 <text>

 <![CDATA[This text is styled using the value of
 <i>html</i> for the
 markup attribute.]]>

 </text>

 </staticText>

 </band>

 </detail>

</jasperReport>

As we can see, all we need to do is set the value of the markup attribute of the
<textElement> element to "html". After that, we can use HTML markup in the
body of the <text> element, which then will be rendered as expected in the report.

This JRXML template will generate a report containing text using the expected
font styles.

http:///

Chapter 6

[131]

Rich Text Format
The third markup style supported "out of the box" by JasperReports is Rich Text
Format, or RTF. RTF is a format that is supported by almost all existing word
processors. RTF markup is human readable; JasperReports is able to interpret RTF
markup and render text as expected.

The following example illustrates how to format text using RTF:

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge
 .net/jasperreports http://jasperreports

 .sourceforge.net/xsd/jasperreport.xsd"

 name="RtfMarkupDemoReport" pageWidth="595"
 pageHeight="842" columnWidth="555" leftMargin="20"
 rightMargin="20" topMargin="30" bottomMargin="30">

 <detail>

 <band height="50">

 <staticText>

 <reportElement x="0" y="0" width="500" height="48"/>

 <textElement markup="rtf">

 </textElement>

 <text>

 {\rtf1\ansi\deff0\adeflang1025

 {\fonttbl
 {\f0\froman\fprq2\fcharset0 Times New Roman;}
 {\f1\froman\fprq2\fcharset0 Times New Roman;}
 {\f2\fswiss\fprq2\fcharset0 Arial;}
 {\f3\fnil\fprq2\fcharset128 AlMothnna;}
 {\f4\fnil\fprq1\fcharset128 Courier 10 Pitch;}
 {\f5\fmodern\fprq1\fcharset128 Courier New;}
 {\f6\fmodern\fprq1\fcharset128 Courier
 {*\falt Courier New};
 }
 {\f7\fnil\fprq2\fcharset0 DejaVu Sans;}
 }

 {\colortbl;\red0\green0\blue0;\red35\green0\blue220;
 \red128\green128\blue128;

 }

 {\stylesheet
 {\s1\cf0
 {*\hyphen2\hyphlead2\hyphtrail2\hyphmax0}
 \rtlch\af7\afs24\lang255\ltrch\dbch\af7

http:///

Report Layout and Design

[132]

 \langfe255\hich\f0\fs24\lang1033\loch\f0\fs24
 \lang1033\snext1 Normal;

 }

 {\s2\sb240\sa120\keepn\cf0
 {*\hyphen2\hyphlead2\hyphtrail2\hyphmax0}
 \rtlch\afs28\lang255\ltrch\dbch\langfe255\hich
 \f2\fs28\lang1033\loch\f2\fs28\lang1033
 \sbasedon1\snext3 Heading;

 }

 {\s3\sa120\cf0
 {*\hyphen2\hyphlead2\hyphtrail2\hyphmax0}
 \rtlch\af7\afs24\lang255\ltrch\dbch\af7
 \langfe255\hich\f0\fs24\lang1033\loch\f0\fs24
 \lang1033\sbasedon1\snext3 Body Text;

 }

 {\s4\sa120\cf0
 {*\hyphen2\hyphlead2\hyphtrail2\hyphmax0}
 \rtlch\af7\afs24\lang255\ltrch\dbch\af7
 \langfe255\hich\f0\fs24\lang1033\loch\f0\fs24
 \lang1033\sbasedon3\snext4 List;

 }

 {\s5\sb120\sa120\cf0
 {*\hyphen2\hyphlead2\hyphtrail2\hyphmax0}
 \rtlch\af7\afs24\lang255\ai\ltrch\dbch\af7
 \langfe255\hich\f0\fs24\lang1033\i\loch\f0\fs24
 \lang1033\i\sbasedon1\snext5 caption;

 }

 {\s6\cf0
 {*\hyphen2\hyphlead2\hyphtrail2\hyphmax0}
 \rtlch\af7\afs24\lang255\ltrch\dbch\af7
 \langfe255\hich\f0\fs24\lang1033\loch\f0\fs24
 \lang1033\sbasedon1\snext6 Index;

 }

 }

 {\info
 {\creatim\yr2009\mo3\dy29\hr17\min23}
 {\revtim\yr0\mo0\dy0\hr0\min0}
 {\printim\yr0\mo0\dy0\hr0\min0}
 {\comment StarWriter}
 {\vern3000}
 }
 \deftab709
 {*\pgdsctbl
 {\pgdsc0\pgdscuse195\pgwsxn12240\pghsxn15840
 \marglsxn1134\margrsxn1134\margtsxn1134
 \margbsxn1134\pgdscnxt0 Standard;

 }

http:///

Chapter 6

[133]

 }

 \paperh15840\paperw12240\margl1134\margr1134
 \margt1134\margb1134\sectd\sbknone\pgwsxn12240
 \pghsxn15840\marglsxn1134\margrsxn1134
 \margtsxn1134\margbsxn1134\ftnbj\ftnstart1
 \ftnrstcont\ftnnar\aenddoc\aftnrstcont\aftnstart1
 \aftnnrlc\pard\plain\ltrpar\s1\cf0
 {*\hyphen2\hyphlead2\hyphtrail2\hyphmax0}
 \rtlch\af7\afs22\lang255\ltrch\dbch\af7\langfe255
 \hich\f6\fs22\lang1033\loch\f6\fs22\lang1033
 {\rtlch \ltrch\loch\f6\fs22\lang1033\i0\b0
 This text is
 {\rtlch\ltrch\dbch\hich\b\loch\b styled}

 using the value of
 {\rtlch\ltrch\dbch\hich\i\loch\i rtf}
 for the {\cf2 markup} attribute.
 }

 \par
 }

 </text>

 </staticText>

 </band>

 </detail>

</jasperReport>

The highlighted code is the RTF markup. When the report is rendered, the text inside
the <textElement> and <text> elements will be rendered using the correct style.

Don't worry too much if you don't understand RTF markup. Very few
people create RTF by hand these days. As a matter of fact, we admit
we cheated to create this example! We simply wrote the text in a word
processor, applied the desired styles, and saved in RTF format. Then,
we opened the RTF ile in a text editor and pasted the markup into the
JRXML ile.

http:///

Report Layout and Design

[134]

Setting a report's background
Reports can have elements that appear in the report background, behind all other
report elements. We can add any report element to the background by using the
JRXML <background> element. The following JRXML template demonstrates how
to do this:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge

 .net/jasperreports http://jasperreports.sourceforge
 .net/xsd/jasperreport.xsd"

 name="BackgroundDemoReport" >

 <style name="centeredText" hAlign="Center" vAlign="Middle" />

 <style name="boldCentered" style="centeredText" isBold="true" />

 <style name="backgroundStyle" style="boldCentered"

 fontName="Helvetica" pdfFontName="Helvetica-Bold"

 forecolor="lightGray" fontSize="90"/>

 <background>

 <band height="782">

 <staticText>

 <reportElement x="0" y="0" width="555" height="782"
 style="backgroundStyle" mode="Transparent" />

 <textElement rotation="None"/>

 <text>

 <![CDATA[SAMPLE]]>

 </text>

 </staticText>

 </band>

 </background>

 <title>

 <band height="60">

 <staticText>

 <reportElement x="0" y="0" width="555" height="60"
 style="boldCentered" />

 <text>

 <![CDATA[Report Background Demo]]>

 </text>

 </staticText>

 </band>

 </title>

 <detail>

http:///

Chapter 6

[135]

 <band height="600">

 <staticText>

 <reportElement x="0" y="300" width="555" height="60"

 mode="Transparent" style="centeredText" />

 <text>

 <![CDATA[This report demonstrates how to set the report
 background.]]>

 </text>

 </staticText>

 </band>

 </detail>

</jasperReport>

The JRXML <background> element (highlighted in this JRXML template), just like
all other JRXML elements that create a report section, contains a single <band>
element as its only subelement. The <background> element is different from other
section elements because it is designed to span a complete page, with its contents
shown behind all other report elements. It is worth noting that, in order to allow
report backgrounds to display correctly, the mode attribute of other report sections
must be set to Transparent.

After compiling the last JRXML template and illing the resulting Jasper template,
we should obtain a report like the following:

http:///

Report Layout and Design

[136]

Notice how the background text appears to be behind the text in the <band> element.

It is common to set an image, usually a company logo, as a watermark
like a report background. In the next chapter we will learn how to add
images to a report. The techniques explained there can be used to add
an image as a report background.

Report expressions
Using report expressions, another feature of JasperReports, we can display calculated
data on a report. Calculated data is the data that is not static and not speciically
passed as a report parameter or a datasource ield.

Report expressions are built from combining report parameters, ields, and
static data. By default, report expressions can be built using the Java language,
but JasperReports can support any other language supported by the JVM. The
JasperReports project ile includes examples of using BeanShell and Groovy to
build report expressions.

By far the most commonly used report expressions are Java expressions,
so we will cover only those. Refer to the examples distributed with
the JasperReports project ZIP ile if you need to create expressions in
BeanShell or Groovy.

We have already seen simple report expressions in the form of report parameters
and ields. We can use any valid Java language expression that returns a string or a
numeric value as report expressions. For example, we can concatenate strings or call
any method in a report expression. The following JRXML template demonstrates
these concepts:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge

 .net/jasperreports http://jasperreports
 .sourceforge.net/xsd/jasperreport.xsd"

 name="ReportExpressionsDemo">

 <queryString>

 <![CDATA[SELECT (select count(*) from aircraft_models am where
 am.aircraft_type_id = 4)
 AS fixed_wing_single_engine_cnt, (select count(*) from
 aircraft_models am where am.aircraft_type_id = 5)

http:///

Chapter 6

[137]

 AS fixed_wing_multiple_engine_cnt,(select count(*) from
 aircraft_models am where am.aircraft_type_id = 6)
 AS rotorcraft_cnt]]>

 </queryString>

 <field name="fixed_wing_single_engine_cnt"
 class="java.lang.Integer" />

 <field name="fixed_wing_multiple_engine_cnt"

 class="java.lang.Integer" />

 <field name="rotorcraft_cnt" class="java.lang.Integer" />

 <detail>

 <band height="100">

 <textField>

 <reportElement x="20" y="0" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Fixed Wing Single Engine Aircraft Models: "
 + $F{fixed_wing_single_engine_cnt}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="20" y="20" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Fixed Wing Multiple Engine Aircraft " +
 "Models:" + $F{fixed_wing_multiple_engine_cnt}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="20" y="40" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Fixed Wing Aircraft Models: " +
 ($F{fixed_wing_single_engine_cnt}.intValue() +
 $F{fixed_wing_multiple_engine_cnt}.intValue())]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="20" y="60" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Rotorcraft Aircraft Models: " +
 $F{rotorcraft_cnt}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="20" y="80" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Aircraft Models Reported: " +

http:///

Report Layout and Design

[138]

 ($F{fixed_wing_single_engine_cnt}.intValue() +
 $F{fixed_wing_multiple_engine_cnt}.intValue() +
 $F{rotorcraft_cnt}.intValue())]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

This JRXML generates a report on the total number of ixed-wing single engine,
ixed-wing multiple engine, and rotorcraft aircraft in the flightstats database. It
then calculates the total number of ixed-wing aircraft in the database by adding the
irst two ields. Lastly, it calculates the total number of aircraft reported by adding all
three ields.

The following servlet generates a PDF report from the jasper ile generated by the
previous JRXML template and directs it to the browser:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JasperRunManager;

public class ReportExpressionsDemoServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request,HttpServletResponse
 response)

 throws ServletException, IOException

 {

 Connection connection;

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports
 /ReportExpressionsDemo.jasper");

http:///

Chapter 6

[139]

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection("jdbc:mysql:
 //localhost:3306/flightstats?
 user=dbuser&password=secret");

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), connection);

 connection.close();

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

In the above code, there is nothing that we haven't seen before. The logic to add
report expressions is encapsulated in the JRXML template.

After deploying this servlet and directing the browser to its URL, we should see a report
similar to the following:

http:///

Report Layout and Design

[140]

Adding multiple columns to a report
JasperReports allows us to generate reports with multiple columns. Reports we have seen
so far seem to have multiple columns. For example, the report we created in the previous
section has a column for model, another column for tail number, and one more for serial
number. However, all three of these ields are laid out in a single <band> element.

When we add multiple columns to a report, we should think of the data inside a
band as a cell, regardless of how the data is laid out inside that band.

The flightstats database we used for the examples in Chapter 4, Creating Dynamic
Reports from Databases, contains the country, state, and city where an aircraft is
registered. Let's create a report displaying the tail number of all aircraft registered in
the state of New York in the United States. Our report will display the data in three
columns. The following JRXML template will generate a report with the desired layout:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

 name="MultipleColumnDemo"

 columnCount="3"

 columnWidth="180">

 <queryString>

 <![CDATA[select a.tail_num from aircraft a where a.country = 'US'

 and a.state = 'NY' order by a.tail_num]]>

 </queryString>

 <field name="tail_num" class="java.lang.String" />

 <columnHeader>

 <band height="20">

 <staticText>

 <reportElement x="0" y="0" height="20" width="84" />

 <text>Tail Number</text>

 </staticText>

 </band>

 </columnHeader>

 <detail>

 <band height="20">

 <textField>

 <reportElement x="0" y="0" height="20" width="84" />

http:///

Chapter 6

[141]

 <textFieldExpression>

 <![CDATA[$F{tail_num}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

As we can see in this JRXML template, the number of columns and the column
width are speciied by the columnCount and columnWidth attributes of the
<jasperReport> root element.

The column width defaults to 555 pixels, which is also the default width
of a report page, excluding its margins. If we want to create a report with
multiple columns, we must specify a smaller columnWidth attribute
than the default; otherwise, our JRXML template will fail to compile.

As can be seen in the last example, we can deine a column header to be displayed at
the top of every column. This can be accomplished by the <columnHeader> JRXML
element. We can also choose to display a column footer at the bottom of every
column by adding a <columnFooter> element to our JRXML template (not shown
in the example). Just like all the other JRXML templates deining report sections,
<columnHeader> and <columnFooter> contain a single <band> element as their
only child element. This <band> element can contain report ields, static text, images,
graphs, or anything else we can display in any of the other report sections.

The following servlet will generate a PDF report from the jasper ile generated from
the last JRXML template and direct it to the browser:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JasperRunManager;

http:///

Report Layout and Design

[142]

public class MultipleColumnDemoServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request,HttpServletResponse
 response)

 throws ServletException, IOException

 {

 Connection connection;

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/MultipleColumnDemo.jasper");

 try

 {

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection("jdbc:mysql:
 //localhost:3306/flightstats" +
 "?user=dbuser&password=secret");

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), connection);

 connection.close();

 response.setContentType("application/pdf");

 servletOutputStream.flush();

 servletOutputStream.close();

 }

 catch (Exception e)

 {

 // display stack trace in the browser

 StringWriter stringWriter = new StringWriter();

 PrintWriter printWriter = new PrintWriter(stringWriter);

 e.printStackTrace(printWriter);

 response.setContentType("text/plain");

 response.getOutputStream().print(stringWriter.toString());

 }

 }

}

http:///

Chapter 6

[143]

There is nothing we haven't seen before in this servlet. The logic for multiple-column
data is encapsulated in the JRXML. After deploying this servlet and directing the
browser to its URL, we should see a report like the following:

As we can see, the data is displayed in three columns. This way, we can create the
whole report using about one-third of the pages we would have had to use with one
column. Please note that each column would show all the report elements deined
inside the <band> element in the <detail> section of the report template. In this
particular example, we have a single text ield corresponding to each aircraft's tail
number. If we would have deined additional report elements (for example, two
more text ields for the aircraft model and serial number), each of these ields would
be displayed in a single column. Adjusting the width of the column would be
necessary to accommodate the additional data.

http:///

Report Layout and Design

[144]

Final notes about report columns
There are a few more things we should know about report columns before we move
on. Because these features are fairly straightforward, we decided not to show any
examples. However, we should be aware of them.

Report columns by default have no space between them. (In the last report, the
columns are wider than the displayed tail number. There is a lot of whitespace inside
the columns.) We can change this default behavior by using the columnSpacing
attribute of the root <jasperReport> element of the JRXML template.

By default, report columns are illed vertically, which means the irst column is
illed to completion irst, then the second, then the third, and so on. If we want to
ill the columns by row, that is, ill the irst row irst , then the second row, and
so on, we can achieve this by setting the printOrder attribute of the root
<jasperReport> element to Horizontal.

Column footers by default are printed at the bottom of the page. If a report column
does not have enough data to ill a page, there will be some blank space between the
end of the column and the column footer. If we want the column footer to be printed
right after the end of the column, we can do it by setting the isFloatColumnFooter
attribute of the <jasperReport> element to true.

Grouping report data
JasperReports allows us to group report data in a logical manner. For example, if
we were creating a report about cars, we could group the data by car make and/or
model. If we were creating a report about sales igures, we could group the report
data by geographical area.

The flightstats database we used for the examples in Chapter 4, Creating Dynamic
Reports from Databases, contains the country, state, and city where an aircraft is
registered. Let's create a report displaying aircraft data registered in any state
starting with the letter "A" in the United States. We will group the report data
by state abbreviation. The JRXML template for the report is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge

 .net/jasperreports http://jasperreports
 .sourceforge.net/xsd/jasperreport.xsd"

 name="DataGroupingDemo">

 <queryString>

http:///

Chapter 6

[145]

 <![CDATA[select a.tail_num, a.aircraft_serial, am.model, a.state
 from aircraft a, aircraft_models am where
 a.aircraft_model_code = am.aircraft_model_code and
 a.country = ‘US' and state like ‘A%' order by state,
 model]]>

 </queryString>

 <field name="tail_num" class="java.lang.String" />

 <field name="aircraft_serial" class="java.lang.String" />

 <field name="model" class="java.lang.String" />

 <field name="state" class="java.lang.String" />

 <group name="StateGroup">

 <groupExpression>

 <![CDATA[$F{state}]]>

 </groupExpression>

 <groupHeader>

 <band height="40">

 <staticText>

 <reportElement x="0" y="10" width="115" height="20" />

 <textElement>

 </textElement>

 <text>Aircraft Registered In:</text>

 </staticText>

 <textField>

 <reportElement x="116" y="10" width="20" height="20" />

 <textFieldExpression>$F{state}</textFieldExpression>

 </textField>

 </band>

 </groupHeader>

 <groupFooter>

 <band height="40">

 <staticText>

 <reportElement x="0" y="10" width="140" height="20" />

 <textElement>

 </textElement>

 <text>End Aircraft Registered In:</text>

 </staticText>

 <textField>

 <reportElement x="141" y="10" width="20" height="20" />

 <textFieldExpression>$F{state}</textFieldExpression>

 </textField>

http:///

Report Layout and Design

[146]

 </band>

 </groupFooter>

 </group>

 <detail>

 <band height="20">

 <staticText>

 <reportElement x="20" y="0" height="20" width="35" />

 <text>Model:</text>

 </staticText>

 <textField>

 <reportElement x="56" y="0" height="20" width="164" />

 <textFieldExpression>

 <![CDATA[$F{model}]]>

 </textFieldExpression>

 </textField>

 <staticText>

 <reportElement x="220" y="0" height="20" width="65" />

 <text>Tail Number:</text>

 </staticText>

 <textField>

 <reportElement x="286" y="0" height="20" width="84" />

 <textFieldExpression>

 <![CDATA[$F{tail_num}]]>

 </textFieldExpression>

 </textField>

 <staticText>

 <reportElement x="380" y="0" height="20" width="75" />

 <text>Serial Number:</text>

 </staticText>

 <textField>

 <reportElement x="456" y="0" height="20" width="94" />

 <textFieldExpression>

 <![CDATA[$F{aircraft_serial}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

As can be seen in this example, a group is deined by the <group> element. The
<group> element must contain a name attribute deining the group's name. A group
must also contain a <groupExpression> subelement. This subelement indicates the
data that must change to start a new data group. In this example, every time the state
changes, we begin a new data grouping.

http:///

Chapter 6

[147]

A group can optionally contain either a group header or a group footer. They are
useful to place labels at the beginning and end of the grouped data. The group
header and footer contain a single <band> element as their only child element. This
is a regular <band> element. We can place any report element in it according to our
wish, just as if it were inside any of the other report sections (title, page header,
column header, detail, and so on). In the example just discussed, we chose to place
some static text and report ields identifying the state to which the aircraft in the
group are registered.

The servlet to generate a PDF report is virtually identical to the one we saw in the
previous section, the only difference being the location of the jasper template. After
deploying this servlet and directing the browser to its URL, we should see a report
like the following:

http:///

Report Layout and Design

[148]

We chose to display the third page on the screenshot to illustrate the group header
and footer.

The <group> element contains attributes that allow us to control the layout of the
group data. The following table summarizes these attributes:

Attribute Description
isStartNewPage When set to true, each data group will begin

on a new page.

isStartNewColumn When set to true, each data group will begin
in a new column.

isReprintHeaderOnEachPage When set to true, the group header will be
reprinted on every page.

isResetPageNumber When set to true, the report page number will
be reset every time a new group starts.

Each of the attributes described in the table above default to false.

Report variables
When we wrote the report in the Report Expressions section, we had to type the
following expression twice:

$F{fixed_wing_single_engine_cnt}.intValue() +
$F{fixed_wing_multiple_engine_cnt}.intValue())

This expression was typed once to calculate the number of ixed-wing aircraft
reported, and again to calculate the total number of aircraft reported. This duplication
is not a good thing because, if we need to change the expression for any reason, we
would have to do it twice. JasperReports allows us to assign report expressions to a
variable, eliminating the need to type the expression multiple times. The following
JRXML template is a modiied version of the one we wrote in that section, this version
takes advantage of report variables to eliminate the duplicate expression.

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation= "http://jasperreports

 .sourceforge.net/jasperreports http://jasperreports
 .sourceforge.net/xsd/jasperreport.xsd"

 name="ReportVariablesDemo">

 <queryString>

http:///

Chapter 6

[149]

 <![CDATA[SELECT
 (select count(*) from aircraft_models am
 where am.aircraft_type_id = 4)
 AS fixed_wing_single_engine_cnt,

 (select count(*) from aircraft_models am
 where am.aircraft_type_id = 5)
 AS fixed_wing_multiple_engine_cnt,
 (select count(*) from aircraft_models am where

 am.aircraft_type_id = 6)
 AS rotorcraft_cnt]]>

 </queryString>

 <field name="fixed_wing_single_engine_cnt"
 class="java.lang.Integer" />

 <field name="fixed_wing_multiple_engine_cnt"
 class="java.lang.Integer" />
 <field name="rotorcraft_cnt" class="java.lang.Integer" />

 <variable name="fixed_wing_engine_cnt" class="java.lang.Integer">

 <variableExpression>

 <![CDATA[new Integer
 ($F{fixed_wing_single_engine_cnt}.intValue() +
 $F{fixed_wing_multiple_engine_cnt}.intValue())]]>

 </variableExpression>

 </variable>

 <detail>

 <band height="100">

 <textField>

 <reportElement x="20" y="0" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Fixed Wing Single Engine Aircraft Models: "
 + $F{fixed_wing_single_engine_cnt}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="20" y="20" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Fixed Wing Multiple Engine Aircraft " +
 "Models: " + $F{fixed_wing_multiple_engine_cnt}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="20" y="40" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Fixed Wing Aircraft Models: " +
 $V{fixed_wing_engine_cnt}]]>

 </textFieldExpression>

http:///

Report Layout and Design

[150]

 </textField>

 <textField>

 <reportElement x="20" y="60" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Rotorcraft Aircraft Models: " +
 $F{rotorcraft_cnt}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="20" y="80" height="20" width="500" />

 <textFieldExpression>

 <![CDATA["Total Aircraft Models Reported: " +
 ($V{fixed_wing_engine_cnt}.intValue() +
 $F{rotorcraft_cnt}.intValue())]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

As can be seen in the above example, report expressions can be assigned to a
variable by using the <variable> element in a JRXML ile. We give the variable a
name by using the name attribute of the <variable> ield. The actual expression
we want to assign to a variable must be enclosed inside a <variableExpression>
element. Variable values can be accessed in other report expressions by using the
$V{variable_name} notation, where variable_name is the name we gave the
variable by using the name attribute within the <variable> element.

Output for the above example is identical to the output of the example given in
the Report Expressions section.

The JRXML <variable> element contains a number of attributes, which are
summarized in the following table:

Attribute Description Valid values Default value
Name Sets the variable

name.
Any valid XML attribute
value.

N/A

Class Sets the variable
class.

Any Java class available in
the CLASSPATH.

java.lang.
String

http:///

Chapter 6

[151]

Attribute Description Valid values Default value
calculation Determines what

calculation to perform
on the variable when
illing the report.

Average—variable value
is the average of every
non-null value of the
variable expression. Valid
for numeric variables
only.

Count—variable value
is the count of non-null
instances of the variable
expression.

First—variable value
is the value of the irst
instance of the variable
expression. Subsequent
values are ignored.

Highest—variable value
is the highest value for the
variable expression.

Lowest—variable value
is the lowest value in the
report for the variable
expression.

Nothing—no calculations
are performed on the
variable.

StandardDeviation—
variable value is the
standard deviation of all
non-null values matching
the report expression.
Valid for numeric
variables only.

Sum—variable value is the
sum of all non-null values
matching the report
expression.

System—variable value
is a custom calculation.

Variance—variable
value is the variance of all
non-null values matching
the report expression.

Nothing

http:///

Report Layout and Design

[152]

Attribute Description Valid values Default value
incrementGroup Determines the name

of the group at which
the variable value is
recalculated, when
incrementType is
Group.

The name of any group
declared in the JRXML
report template.

N/A

resetType Determines when the
value of a variable is
reset.

Column—the variable
value is reset at the
beginning of each column.

Group—the variable
value is reset when
the group speciied
by incrementGroup
changes.

None—the variable value
is never reset.

Page—the variable value
is recalculated at the
beginning of every page.

Report—the variable
value is recalculated once
at the beginning of the
report.

Report

resetGroup Determines the name
of the group where the
variable value is reset,
when resetType is
Group.

The name of any group
declared in the JRXML
report template.

N/A

As can be inferred from the table, JasperReports variables can be used not only to
simplify report expressions, but also to perform calculations and display the result
of those calculations on the report.

Let's modify the report that we developed in the previous section so that it displays
the total number of aircraft in each state. To accomplish this, we need to create a
report variable and set its calculation attribute to Count. The following JRXML
template illustrates this concept:

<?xml version="1.0" encoding="UTF-8" ?>
<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge
 .net/jasperreports http://jasperreports.sourceforge

http:///

Chapter 6

[153]

 .net/xsd/jasperreport.xsd"

 name="VariableCalculationDemo">

 <queryString>

 <![CDATA[select a.tail_num, a.aircraft_serial, am.model, a.state
 from aircraft a, aircraft_models am
 where a.aircraft_model_code = am.aircraft_model_code
 and a.country = ‘US' and state like ‘A%'
 order by state, model]]>

 </queryString>

 <field name="tail_num" class="java.lang.String" />

 <field name="aircraft_serial" class="java.lang.String" />

 <field name="model" class="java.lang.String" />

 <field name="state" class="java.lang.String" />

 <variable name="aircraft_count" class="java.lang.Integer"
 calculation="Count" resetType="Group"
 resetGroup="StateGroup">

 <variableExpression>

 <![CDATA[$F{aircraft_serial}]]>

 </variableExpression>

 <initialValueExpression>

 <![CDATA[new java.lang.Integer(0)]]>
 </initialValueExpression>

 </variable>

 <group name="StateGroup">

 <groupExpression>

 <![CDATA[$F{state}]]>

 </groupExpression>

 <groupHeader>

 <band height="40">

 <staticText>

 <reportElement x="0" y="10" width="115" height="20" />

 <textElement>

 </textElement>

 <text>Aircraft Registered In:</text>

 </staticText>

 <textField>

 <reportElement x="116" y="10" width="20" height="20" />

 <textFieldExpression>$F{state}</textFieldExpression>

 </textField>

 </band>

 </groupHeader>

 <groupFooter>

 <band height="40">

http:///

Report Layout and Design

[154]

 <textField>

 <reportElement x="0" y="10" width="325" height="20" />

 <textFieldExpression>

 <![CDATA["Total Number Of Aircraft Registered In " +
 $F{state} + ": " + $V{aircraft_count}]]>

 </textFieldExpression>

 </textField>

 </band>

 </groupFooter>

 </group>

 <detail>

 <band height="20">

 <staticText>

 <reportElement x="20" y="0" height="20" width="35" />

 <text>Model:</text>

 </staticText>

 <textField>

 <reportElement x="56" y="0" height="20" width="164" />

 <textFieldExpression>

 <![CDATA[$F{model}]]>

 </textFieldExpression>

 </textField>

 <staticText>

 <reportElement x="220" y="0" height="20" width="65" />

 <text>Tail Number:</text>

 </staticText>

 <textField>

 <reportElement x="286" y="0" height="20" width="84" />

 <textFieldExpression>

 <![CDATA[$F{tail_num}]]>

 </textFieldExpression>

 </textField>

 <staticText>

 <reportElement x="380" y="0" height="20" width="75" />

 <text>Serial Number:</text>

 </staticText>

 <textField>

 <reportElement x="456" y="0" height="20" width="94" />

 <textFieldExpression>

 <![CDATA[$F{aircraft_serial}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

http:///

Chapter 6

[155]

In this report template, setting the calculation attribute of the <variable> ield to
Count allowed us to obtain the number of aircraft in each state. By setting the report
expression to $F{aircraft_serial}, each time a serial number is displayed in the
report, the variable value is increased by one. Setting the resetType attribute to
Group allows us to reset the variable value to its initial value, which in turn is set by
the <initialValueExpression> ield.

The code for the servlet that ills and exports the jasper ile generated by this JRXML
has nothing we haven't seen before and, therefore, it is not shown. After directing the
browser to its URL, we should see a report similar to the following:

The same concepts we saw here can be applied to the other calculation values and
reset types.

http:///

Report Layout and Design

[156]

Built-in report variables
JasperReports has a number of built-in report variables that we can use in our reports
without having to declare them. They are listed and described in the following table:

Built-In Variable Description
PAGE_COUNT Contains the total number of pages in the report.

PAGE_NUMBER Contains the current page number.

COLUMN_COUNT Contains the total number of columns in the report.

COLUMN_NUMBER Contains the current column number.

REPORT_COUNT Contains the total number of records in the report.

NameOfGroup_COUNT Contains the total number of records in the group
named NameOfGroup. The exact report variable
name will match the group name in the report; for
example, for a group named MyGroup, the variable
name will be MyGroup_COUNT.

Stretching text ields to accommodate
data
By default, <textField> elements have a ixed size. If the data they need to display
does not it in their deined size, it is simply not displayed in the report. This is rarely
the behavior we would want. Luckily, JasperReports allows us to alter this default
behavior. This is accomplished by setting the isStretchWithOverflow attribute of
the <textField> element to true.

The following JRXML template demonstrates how to allow text ields to stretch so
that they can accommodate large amounts of data:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge
 .net/jasperreports http://jasperreports.sourceforge
 .net/xsd/jasperreport.xsd"

 name="TextFieldStretchDemo">

 <field name="lots_of_data" class="java.lang.String" />

 <detail>

 <band height="30">

 <textField isStretchWithOverflow="true">

 <reportElement x="0" y="0" width="100" height="24" />

http:///

Chapter 6

[157]

 <textFieldExpression class="java.lang.String">
 <![CDATA[$F{lots_of_data}]]>
 </textFieldExpression>
 </textField>
 </band>
 </detail>
</jasperReport>

The following servlet ills the jasper template generated from the above JRXML
and directs the generated report to the browser window in PDF format:

package net.ensode.jasperbook;

import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRDataSource;
import net.sf.jasperreports.engine.JasperRunManager;
import net.sf.jasperreports.engine.data.JRMapCollectionDataSource;

public class TextFieldStretchDemoServlet extends HttpServlet
{
 private JRDataSource createReportDataSource()
 {
 JRMapCollectionDataSource dataSource;
 Collection reportRows = initializeMapCollection();
 dataSource = new JRMapCollectionDataSource(reportRows);
 return dataSource;
 }

 private Collection initializeMapCollection()
 {
 ArrayList reportRows = new ArrayList();
 HashMap datasourceMap = new HashMap();
 datasourceMap.put("lots_of_data", "This element contains so much
 data, " + "there is no way it will ever fit in
 the text field without it stretching.");
 reportRows.add(datasourceMap);
 return reportRows;
 }

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)
 throws ServletException, IOException

http:///

Report Layout and Design

[158]

 {
 ServletOutputStream servletOutputStream =
 response.getOutputStream();
 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/reports/TextFieldStretchDemo.jasper");
 try
 {
 JRDataSource dataSource = createReportDataSource();
 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), dataSource);
 response.setContentType("application/pdf");
 servletOutputStream.flush();
 servletOutputStream.close();
 }
 catch (Exception e)
 {
 // display stack trace in the browser
 StringWriter stringWriter = new StringWriter();
 PrintWriter printWriter = new PrintWriter(stringWriter);
 e.printStackTrace(printWriter);
 response.setContentType("text/plain");
 response.getOutputStream().print(stringWriter.toString());
 }
 }
}

We should see a report like the following after directing the browser to this servlet's URL:

http:///

Chapter 6

[159]

When a <textField> element stretches to accommodate its data, its parent <band>
element stretches accordingly. When a <band> element stretches due to one of its
child <textField> elements stretching, JasperReports allows us to control how other
child elements of the <band> element will be positioned when the band stretches.
This will be discussed in detail in the next section.

Laying out report elements
As we saw in Chapter 3, Creating your First Report, a report can contain the following
sections: a report title, a page header, a page footer, a column header, a column
footer, a detail section, a report summary, and a last page footer. These sections
are deined by the <title>, <pageHeader>, <pageFooter>, <columnHeader>,
<columnFooter>, <detail>, <summary>, and <lastPageFooter> JRXML
elements, respectively.

Each of these elements contains a single <band> element as its only subelement.
The <band> element can contain zero or more <line>, <rectangle>, <ellipse>,


 </band>

 </background>

</jasperReport>

http:///

Chapter 7

[187]

After compiling this JRXML template and illing the resulting binary jasper template,
we should have a report that looks like the following:

In this example, we set the width and height of the band to match the image size.
Sometimes, the image is not available at the time of designing the report; therefore,
we might not know the exact image dimensions. We can control how the image
will look if its dimensions do not match the area deined by the <reportElement>
subelement of the <image> element. This can be accomplished by using the
scaleImage attribute of the <image> element. Following are the valid values for
the scaleImage attribute:

•	 Clip: The report will display only that portion of the image that its into
the area deined by <reportElement>.

•	 FillFrame: The image will stretch vertically and/or horizontally to it in
the area deined by <reportElement>.

•	 RetainShape: The image will resize itself to it in the area deined
by <reportElement>. If the image width changes to it in this area, the
height will be proportionally changed so that the image retains its shape,
and vice versa.

http:///

Adding Charts and Graphics to Reports

[188]

Attributes of the <image> element
The <image> element contains other attributes that allow us to control how the
image will be displayed in the report. The following sections summarize most of
these attributes.

evaluationTime
The evaluationTime attribute determines when the associated <imageExpression>
will be evaluated. The valid values for this attribute are as follows:

•	 Band: The expression is evaluated when the containing band has rendered
all other components.

•	 Column: The expression is evaluated when the end of the current column
is reached.

•	 Group: The expression is evaluated when the group indicated by the
evaluationGroup attribute changes.

•	 Now: The expression is evaluated when illing the containing band.
•	 Page: The expression is evaluated when the end of the current page is

reached.

•	 Report: The expression is evaluated when the end of the report is reached.

The default value of evaluationTime is Now.

evaluationGroup
When evaluationTime is Group, the evaluationGroup attribute determines
the group name to use in order to evaluate the associated <imageExpression>.
The value for this attribute must match the group name we would like to use
as the evaluation group.

hAlign
The hAlign attribute indicates the horizontal alignment of the image. The valid
values for this attribute are as follows:

•	 Center: The image will be centered.

•	 Left: The image will be left-aligned.

•	 Right: The image will be right-aligned.

The default value of hAlign is Left.

http:///

Chapter 7

[189]

vAlign
This attribute indicates the vertical alignment of the image. The valid values for
this attribute are as follows:

•	 Bottom: The image will be placed at the bottom of the area deined by
its <reportElement>.

•	 Middle: The image will be vertically centered between the top and bottom
boundaries deined by <reportElement>.

•	 Top: The image will be placed at the top of the area deined
by <reportElement>.

The default value of vAlign is Top.

IsLazy
This attribute determines whether the image is loaded when the report is illed
or when the report is viewed or exported. The valid values for this attribute are
as follows:

•	 true: The image will be loaded when the report is viewed or exported.

•	 false: The image will be loaded when the report is illed.

The default value of IsLazy is false.

isUsingCache
The isUsingCache attribute indicates whether images loaded from the same
<imageExpression> will be cached. The valid values for this attribute are as follows:

•	 true: The image will be cached.

•	 false: The image will not be cached.

The default value of isUsingCache is true.

http:///

Adding Charts and Graphics to Reports

[190]

onErrorType
The onErrorType attribute determines the report's behavior when there is a problem
loading the image. The valid values for this attribute are as follows:

•	 Blank: Only blank space will be displayed instead of the image.

•	 Error: An exception will be thrown, and the report will not be illed
or viewed.

•	 Icon: An icon indicating a missing image will be displayed.

The default value of onErrorType is Error.

The <image> element contains other attributes to support hyperlinks and bookmarks,
which are discussed in detail in Chapter 8, Other JasperReports Features.

Adding charts to a report
JasperReports supports several kinds of charts, such as pie charts, bar charts, XY
bar charts, stacked bar charts, line charts, XY line charts, area charts, XY area charts,
scatter plot charts, bubble charts, time series charts, high low charts, and candlestick
charts. We will discuss each one of these in detail, but before we do so, let's discuss
common properties among all charts.

There is a JRXML element used to create each type of chart; all of these elements
will be discussed in subsequent sections. Each of these elements must contain a
<chart> element as one of its subelements. The <chart> element must contain a
<reportElement> element to deine the chart's dimensions and position as one
of its subelements. It may also contain a <box> element to draw a border around
the chart, a <chartTitle> subelement to deine and format the chart's title, and
a <chartSubtitle> subelement to deine and format the chart's subtitle.

Attributes of the <chart> element
The JRXML <chart> element contains a number of attributes that allow us to control
the way a chart looks and behaves. The most commonly used attributes are listed in
the following sections.

customizerClass
This attribute deines the name of a class that can be used to customize the chart. The
value for this element must be a string containing the name of a customizer class.

http:///

Chapter 7

[191]

evaluationGroup
When evaluationTime is Group, the evaluationGroup attribute determines
the name of the group to use for evaluating the chart's expressions. The value
for this attribute must match the group name we would like to use as the chart's
evaluation group.

evaluationTime
The evaluationTime attribute determines when the chart's expression will be
evaluated. The valid values for this attribute are as follows:

•	 Band: The chart is rendered when the containing band has inished rendering
all other elements.

•	 Column: The chart is rendered when inished rendering all other elements
in the current column.

•	 Group: The chart is rendered when the group speciied by
evaluationGroup changes.

•	 Now: The chart is rendered when its containing band is illed.
•	 Page: The chart is rendered when inished rendering all the other elements

in the same page.

•	 Report: The chart is rendered when inished rendering all the other elements
in the report.

The default value of evaluationTime is Now.

isShowLegend
The isShowLegend attribute is used to determine whether a chart legend will
be displayed on the report. The valid values for this attribute are as follows:

•	 true: A legend will be displayed on the report.

•	 false: A legend will not be displayed on the report.

The default value of isShowLegend is true.

http:///

Adding Charts and Graphics to Reports

[192]

Chart customization
JasperReports uses JFreeChart as the underlying charting library; JFreeChart
contains features that are not directly supported by JasperReports. We can
take advantage of these features by supplying a customizer class through the
customizerClass attribute.

All the customizer classes must implement the net.sf.jasperreports.engine.
JRChartCustomizer interface, which contains a single method. The signature for
that method is:

customize(org.jfree.chart.JFreeChart chart, JRChart jasperChart)

org.jfree.chart.JFreeChart is the JFreeChart library's representation of a
chart, whereas JRChart is JasperReports' representation of a chart. Because the
customize() method is automatically called by JasperReports when illing a report,
we don't need to worry about instantiating and initializing instances of these classes.

Chart customization is more of a JFreeChart feature rather than a JasperReports
feature. Therefore, we will refrain from showing an example.

More information about JFreeChart can be found at
http://www.jfree.org/jfreechart/.

The JRXML <chart> element contains some attributes used to support bookmarks
and hyperlinks. These attributes are discussed in detail in the next chapter.

Chart datasets
Another common property across all the chart types is a dataset. Although each chart
type contains different subelements to deine a chart's expressions deining the data
used to generate the chart, all of these subelements contain a <dataset> element that
deines when the chart's expressions are evaluated and reset.

Attributes of the <dataset> element
The following sections describe all of the attributes for the JRXML <dataset> element.

http:///

Chapter 7

[193]

incrementType
The incrementType attribute determines when to recalculate the value of the chart
expression. The valid values for this attribute are as follows:

•	 Column: The chart expression is recalculated at the end of each column.

•	 Group: The chart expression is recalculated when the group speciied by
incrementGroup changes.

•	 None: The chart expression is recalculated with every record.

•	 Page: The chart expression is recalculated at the end of every page.

•	 Report: The chart expression is recalculated once at the end of the report.

The default value of incrementType is None.

incrementGroup
The incrementGroup attribute determines the name of the group at which the chart
expression is recalculated when incrementType is Group. The value for this attribute
must match the name of a group declared in the JRXML report template.

resetType
The resetType attribute determines when the value of the chart expression is reset.
The valid values for this attribute are as follows:

•	 Column: The chart expression is reset at the beginning of each column.

•	 Group: The chart expression is reset when the group speciied by
incrementGroup changes.

•	 None: The chart expression is never reset.

•	 Page: The chart expression is recalculated at the beginning of every page.

•	 Report: The chart expression is recalculated once at the beginning of
the report.

The default value of resetType is Report.

resetGroup
The resetGroup determines the name of the group at which the chart expression
value is reset, when resetType is Group. The value for this attribute must match
the name of any group declared in the JRXML report template.

http:///

Adding Charts and Graphics to Reports

[194]

Plotting charts
Another JRXML element that is common to all the chart types is the <plot> element.
The JRXML <plot> element allows us to deine several of the chart's characteristics,
such as orientation and background color.

Attributes of the <plot> element
All attributes for the JRXML <plot> element are described in the next sections.

backcolor
The backcolor attribute deines the chart's background color. Any six-digit
hexadecimal value is a valid value for this attribute, and it represents the RGB
value of the chart's background color. The hexadecimal value must be preceded
by a # character.

backgroundAlpha
The backgroundAlpha attribute deines the transparency of the chart's background
color. The valid values for this attribute include any decimal number between 0 and 1,
both inclusive. The higher the number, the less transparent the background will be.

The default value of backgroundAlpha is 1.

foregroundAlpha
The foregroundAlpha attribute deines the transparency of the chart's foreground
colors. The valid values for this attribute include any decimal number between 0 and
1, both inclusive. The higher the number, the less transparent the foreground will be.

The default value of foregroundAlpha is 1.

orientation
The orientation attribute deines the chart's orientation (vertical or horizontal).
The valid values for this attribute are as follows:

•	 Horizontal

•	 Vertical

The default value of orientation is Vertical.

Now that we have seen the attributes that are common to all the chart types, let's
take a look at the chart types that are supported by JasperReports.

http:///

Chapter 7

[195]

Pie charts
JasperReports allows us to create pie charts both in 2D and 3D. The procedure to
create the 2D and 3D pie charts is almost identical; so, we will discuss them together.

Suppose we are asked to create a report indicating the most popular aircraft models
registered in a particular city, as they appear in the flightstats database (refer to
Chapter 4, Creating Dynamic Reports from Databases). This information can be nicely
summarized in a pie chart. The following screenshot shows a report displaying this
information for Washington, DC:

The JRXML template to create the report is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

http:///

Adding Charts and Graphics to Reports

[196]

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge
 .net/jasperreports http://jasperreports
 .sourceforge.net/xsd/jasperreport.xsd"
 name="PieChartDemoReport">
 <queryString>
 <![CDATA[select am.model from aircraft a, aircraft_models am
 where city='WASHINGTON' and state='DC'
 and a.aircraft_model_code = am.aircraft_model_code
 order by model]]>
 </queryString>
 <field name="model" class="java.lang.String" />
 <variable name="totalAircraft" class="java.lang.Integer"
 calculation="Count" resetType="Group"
 resetGroup="modelGroup">
 <variableExpression>
 <![CDATA[$F{model}]]>
 </variableExpression>
 <initialValueExpression>
 <![CDATA[new java.lang.Integer(0)]]>
 </initialValueExpression>
 </variable>
 <group name="modelGroup">
 <groupExpression>
 <![CDATA[$F{model}]]>
 </groupExpression>
 </group>
 <summary>
 <band height="750">
 <!-- Start 2D Pie Chart -->
 <pieChart>
 <chart evaluationTime="Report">
 <reportElement x="135" y="0" width="270" height="350" />
 </chart>
 <pieDataset>
 <dataset incrementType="None" />
 <keyExpression>
 <![CDATA[$F{model}]]>
 </keyExpression>
 <valueExpression>
 <![CDATA[$V{totalAircraft}]]>
 </valueExpression>
 </pieDataset>
 <piePlot>
 <plot/>
 </piePlot>
 </pieChart>
 <!-- End 2D Pie Chart -->

 <!-- Start 3D Pie Chart -->

http:///

Chapter 7

[197]

 <pie3DChart>
 <chart evaluationTime="Report" isShowLegend="false">
 <reportElement x="125" y="375" width="300" height="200" />
 </chart>
 <pieDataset>
 <dataset incrementType="None" />
 <keyExpression>
 <![CDATA[$F{model}]]>
 </keyExpression>
 <valueExpression>
 <![CDATA[$V{totalAircraft}]]>
 </valueExpression>
 </pieDataset>
 <pie3DPlot>
 <plot/>
 </pie3DPlot>
 </pie3DChart>
 <!-- End 3D Pie Chart -->
 </band>
 </summary>
</jasperReport>

We can see from this example that the JRXML element to create a 2D pie chart is
<pieChart>, and the JRXML element to create a 3D pie chart is <pie3DChart>.
Just like all the other JRXML chart elements, these elements also contain a <chart>
subelement. They contain a <pieDataSet> subelement too, which in turn contains
the <dataset> element (for the chart), a <keyExpression> and <valueExpression>
subelements. <keyExpression> contains a report expression indicating what to use
as a key in the chart. The <valueExpression> element contains an expression used
to calculate the value for the key. The values we see to the left of the equals sign in
the chart labels correspond to the key expression (aircraft model, in this case). The
values we see to the right of the equals sign in the labels correspond to the value
expression (number of aircraft of a particular model, in this case).

In this example, the aircraft model is used as the key and is represented by the report
ield called model. The value to be used in the chart is the total number of aircraft of
a particular model, represented by the totalAircraft report variable.

Element <pieChart> must contain a <piePlot> subelement containing the
chart's <plot> element. Also, element <pie3DChart> must contain an analogous
<pie3DPlot> element. The <piePlot> element has no attributes, whereas the
<pie3DPlot> element has a single optional attribute called depthFactor. This
attribute indicates the depth (how tall or short the pie chart is) of the 3D pie chart;
its default value is 0.2.

http:///

Adding Charts and Graphics to Reports

[198]

Bar charts
Bar charts, just like pie charts, can be used to illustrate quantitative differences
between chart elements. They can be used to display the same data a pie chart
displays, but in a different way. One advantage that bar charts have over pie charts is
that the same data for more than one category can be displayed.

Suppose we are asked to produce a report comparing the number of aircraft
registered in Washington, DC, with the number of aircraft registered in New York
city. The report must also illustrate the most popular aircraft models in each city.
If we wanted to display this data graphically using a pie chart, we would have to
create a pie chart for each city. With a bar chart, however, we can display the whole
picture using a single chart, as can be seen in the following screenshot:

http:///

Chapter 7

[199]

The JRXML template used to generate this report is as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net
 /xsd/jasperreport.xsd" name="BarChartDemoReport">

 <queryString>

 <![CDATA[(select a.city, am.model
 from aircraft a, aircraft_models am
 where city='NEW YORK' and state='NY'
 and a.aircraft_model_code = am.aircraft_model_code
 order by model)

 UNION ALL

 (select a.city, am.model
 from aircraft a, aircraft_models am
 where city='WASHINGTON' and state='DC'
 and a.aircraft_model_code = am.aircraft_model_code
 order by model)]]>

 </queryString>

 <field name="city" class="java.lang.String" />

 <field name="model" class="java.lang.String" />

 <variable name="totalAircraft" class="java.lang.Integer"
 calculation="Count" resetType="Group"
 resetGroup="modelGroup">

 <variableExpression>

 <![CDATA[$F{model}]]>

 </variableExpression>

 <initialValueExpression>

 <![CDATA[new java.lang.Integer(0)]]>

 </initialValueExpression>

 </variable>

 <group name="modelGroup">

 <groupExpression>

 <![CDATA[$F{model}]]>

 </groupExpression>

 </group>

 <summary>

 <band height="750">

 <!-- Start 2D Bar Chart -->

 <barChart>

 <chart evaluationTime="Report">

 <reportElement x="0" y="0" width="555" height="350" />

 </chart>

http:///

Adding Charts and Graphics to Reports

[200]

 <categoryDataset>

 <dataset incrementType="None" />

 <categorySeries>

 <seriesExpression>

 <![CDATA[$F{model}]]>

 </seriesExpression>

 <categoryExpression>

 <![CDATA[$F{city}]]>

 </categoryExpression>

 <valueExpression>

 <![CDATA[$V{totalAircraft}]]>

 </valueExpression>

 </categorySeries>

 </categoryDataset>

 <barPlot isShowTickMarks="false">

 <plot />

 </barPlot>

 </barChart>

 <!-- End 2D Bar Chart -->

 <!-- Start 3D Bar Chart -->

 <bar3DChart>

 <chart evaluationTime="Report" isShowLegend="false">

 <reportElement x="0" y="375" width="555" height="350" />

 </chart>

 <categoryDataset>

 <dataset incrementType="None" />

 <categorySeries>

 <seriesExpression>

 <![CDATA[$F{model}]]>

 </seriesExpression>

 <categoryExpression>

 <![CDATA[$F{city}]]>

 </categoryExpression>

 <valueExpression>

 <![CDATA[$V{totalAircraft}]]>

 </valueExpression>

 </categorySeries>

 </categoryDataset>

 <bar3DPlot>

 <plot />

 </bar3DPlot>

 </bar3DChart>

 <!-- End 3D Bar Chart -->

 </band>

 </summary>

</jasperReport>

http:///

Chapter 7

[201]

As we can see in this example, the process used to create bar charts is very similar to
the one for creating pie charts. This example creates two bar charts, a 2D and a 3D.
Let's discuss the 2D bar chart irst.

The JRXML element used to create a 2D bar chart is <barChart>. Just like all the
other charts in JasperReports, it must contain a <chart> subelement, which contains
a <reportElement> subelement deining the chart's dimensions and position.

The <dataset> element in a bar chart must be enclosed between the
<categoryDataSet> and </categoryDataset> JRXML elements. The
<categoryDataSet> element must contain a <categorySeries> element.
This element deines what data element the bars will represent (aircraft
models, in this example). The <categoryDataSet> element must also contain a
<categoryExpression> element, which deines how the data will be separated
into categories for comparison. In this example, data is separated by cities. The
<valueExpression> element deines what expression to use for determining the
value of each bar in the chart.

If we want to create 3D bar charts, the JRXML element to use is <bar3DChart>,
which works almost exactly the same as <barChart>, the only difference being
that the <plot/> element must be a subelement of <bar3DPlot>. The <bar3DPlot>
element contains three attributes:

•	 isShowLabels: It determines whether labels will be shown in the chart.

•	 xOffset: Its valid value is any numeric value indicating the number of pixels
to use for the 3D effect on the x axis.

•	 yOffset: Its valid value is any numeric value indicating the number of pixels
to use for the 3D effect on the y axis.

XY line charts
XY line charts allow us to view the relationship between two numerical values. For
our next example, let's suppose that we need to generate a report for a light school
to illustrate the operating cost for lying a particular model of their aircraft. Let's
assume the light school has an inventory of 43 of these aircraft, and the operating
cost of each aircraft is $45 per day. The JRXML to generate a report with a chart
illustrating the operating cost would look like the following:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd

http:///

Adding Charts and Graphics to Reports

[202]

 /jasperreport.xsd"

 name="XYLineChartReportDemo">

 <queryString>

 <![CDATA[select tail_num from aircraft
 where aircraft_model_code = 0033001]]>

 </queryString>

 <field name="tail_num" class="java.lang.String" />

 <variable name="grandTotalAircraft" class="java.lang.Integer"
 calculation="Count" resetType="Report">

 <variableExpression>

 <![CDATA[$F{tail_num}]]>

 </variableExpression>

 <initialValueExpression>

 <![CDATA[new java.lang.Integer(0)]]>

 </initialValueExpression>

 </variable>

 <summary>

 <band height="750">

 <!-- Start X Y Line Chart -->

 <xyLineChart>

 <chart evaluationTime="Report">

 <reportElement x="0" y="0" width="555" height="350" />

 </chart>

 <xyDataset>

 <dataset incrementType="None" />

 <xySeries>

 <seriesExpression>

 <![CDATA["CH 2000"]]>

 </seriesExpression>

 <xValueExpression>

 <![CDATA[$V{grandTotalAircraft}]]>

 </xValueExpression>

 <yValueExpression>

 <![CDATA[new Long($V{grandTotalAircraft}.longValue()
 *45L)]]>

 </yValueExpression>

 </xySeries>

 </xyDataset>

 <linePlot>

 <plot />

 </linePlot>

 </xyLineChart>

 <!-- End X Y Line Chart -->

 </band>

 </summary>

</jasperReport>

http:///

Chapter 7

[203]

The generated report would look like this:

As we can see in the example, for XY line charts, the <dataset> element must be
inside an <xyDataset> element and this element has no attributes. In addition to the
<dataset> element, <xyDataset> may contain one or more <xySeries> element.

<xySeries> may contain a <seriesExpression> element, which is used to generate
the label at the bottom of the chart in the example. The <xySeries> element may
also contain an <xValueExpression> element and a <yValueExpression> element.
These last two elements contain report expressions for the X and Y values in the
chart, respectively.

http:///

Adding Charts and Graphics to Reports

[204]

Other types of charts
As we have seen in the previous examples, all the JRXML elements used to display
a chart follow a pattern. First, we have the element that determines what chart
to plot (<pieChart>, <barChart>, and so on). Inside that element is a <chart>
element followed by an element enclosing the <dataset> element (<pieDataset>,
<categoryDataset>, and so on), which, in turn, is followed by an element enclosing
the <plot> element (<piePlot>, <barPlot>, and so on). As all of the charts follow
the same pattern, we thought it would be redundant to show examples for all the
chart types supported by JasperReports. In the following sections, we will discuss the
elements used to create all other supported chart types, without explicitly showing
examples. The JasperReports project iles include examples for all the chart types,
and they can be found in the demo/samples/charts directory:

Chart type Chart element Dataset element Plot element
XY bar chart <xyBarChart> <xyDataset> <barPlot>

Stacked bar
chart

<stackedBarChart> <categoryDataset> <barPlot>

Line chart <lineChart> <categoryDataset> <linePlot>

Area chart <areaChart> <categoryDataset> <areaPlot>

XY area chart <xyAreaChart> <xyDataset> <areaPlot>

Scatter plot
chart

<scatterChart> <xyDataset> <scatterPlot>

Bubble chart <bubbleChart> <xyDataset> <bubblePlot>

Time series
chart

<timeSeriesChart> <timeSeriesDataset> <timeSeriesPlot>

High low
chart

<highLowChart> <highLowDataset> <highLowPlot>

Candlestick
chart

<candlestickChart> <highLowDataset> <candlestickPlot>

Gantt chart <ganttChart> <ganttDataset> <barPlot>

Meter chart <meterChart> <valueDataset> <meterPlot>

Multiple axis
chart

<multiAxisChart> <categoryDataset> <multiAxisPlot>

Stacked area
chart

<stackedAreaChart> <categoryDataset> <areaPlot>

Thermometer
chart

<thermometerChart> <valueDataset> <thermometerPlot>

XY line chart <xyLineChart> <xyDataset> <linePlot>

http:///

Chapter 7

[205]

You can ind details of the attributes for each of these at
http://jasperforge.org/uploads/publish/jasperreportswebsite/

JR%20Website/jasperreports_quickref.html.

Summary
In this chapter, we learned how to add graphical elements to our reports. We also
understood how to add geometric igures and lines to our reports by using the
<line>, <rectangle>, and <ellipse> JRXML elements.

We also discussed how to add images to our reports by using the <image> JRXML
element. Adding several types of charts to our reports by using the appropriate
JRXML elements, such as <pieChart>, <barChart>, and <xyLineChart> was
also covered.

http:///

http:///

Other JasperReports

Features
JasperReports has several features that allow us to create elaborate reports.
In this chapter, we will discuss some of these features.

Some of the features we will cover in this chapter include:

•	 How to display report text in different languages by using report
localization/internationalization

•	 How to execute snippets of Java code by using scriptlets

•	 How to create crosstab (cross-tabulation) reports

•	 How to use subdatasets to run a query with the results of a different query

•	 How to add anchors, hyperlinks, and bookmarks to the reports in order
to ease navigation between report sections

Report localization
JasperReports takes advantage of the Java language's internationalization features
to be able to generate reports in different languages. The following JRXML template
will generate a report displaying a line of text that will be different depending on the
locale used:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport xmlns="http://jasperreports.sourceforge.net
 /jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

http:///

Other JasperReports Features

[208]

 name="LocalizationDemoReport"

 resourceBundle="localizationdemo">

 <summary>

 <band height="60">

 <textField>

 <reportElement x="0" y="0" width="200" height="30" />

 <textFieldExpression>

 <![CDATA[$R{localization.text1}]]>

 </textFieldExpression>

 </textField>

 </band>

 </summary>

</jasperReport>

The resourceBundle attribute of the <jasperReport> element tells JasperReports
where to get the localized strings to use for the report. For this attribute to work
correctly, a property ile with a root name matching the value of the attribute
must exist anywhere in the CLASSPATH when illing the report. In the example,
a property ile with the name localizationdemo.properties must exist in the
CLASSPATH when using the default locale. To use a different locale, the name of
the ile must be localizationdemo_[locale].properties. For example, to use a
Spanish locale, the name would be localizationdemo_es.properties.

The following property ile can be used with this template to generate the report
using the default locale:

localization.text1=This is English text.

This, of course, assumes that the default locale uses the English language. In order
to enable the JasperReports to pick it up as the resource bundle for the default locale,
the ile must be saved as localizationdemo.properties.

To generate a report from this template in Spanish, localization_es.properties
must look like this:

localization.text1=Este texto es en Español.

Notice how in both the property iles the key (text before the equals sign) is the
same. This must be the case for each locale property ile that we wish to use because
JasperReports uses this key to obtain the localized text to display in the report.
As can be seen in the example, the syntax to obtain the value for resource bundle
properties is $R{key}.

http:///

Chapter 8

[209]

To let JasperReports know what locale we wish to use, we need to assign a value
to a built-in parameter. This parameter's name is deined as a constant called
REPORT_LOCALE. This constant is deined in the net.sf.jasperreports.engine.
JRParameter class, and its value must be an instance of java.util.Locale.
The following example demonstrates this procedure:

package net.ensode.jasperbook;

import java.util.HashMap;

import java.util.Locale;

import net.sf.jasperreports.engine.JREmptyDataSource;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRParameter;

import net.sf.jasperreports.engine.JasperFillManager;

public class LocalizationDemoReportFill

{

 public static void main(String[] args)

 {

 try

 {

 HashMap parameterMap = new HashMap();

 if (args.length > 0)

 {

 parameterMap.put(JRParameter.REPORT_LOCALE,
 new Locale(args[0]));

 }

 System.out.println("Filling report...");

 JasperFillManager.fillReportToFile(

 "reports/LocalizationDemoReport.jasper",

 parameterMap, new JREmptyDataSource());

 System.out.println("Done!");

 }

 catch (JRException e)

 {

 e.printStackTrace();

 }

 }

}

http:///

Other JasperReports Features

[210]

This example assumes that we have already created a jasper template from the JRXML
template. If no command-line parameters are sent to this code, it will use the default
locale; otherwise, it will use the irst command-line parameter as the locale. Passing the
string es as the irst command-line parameter will result in the report being generated
in Spanish. This happens because the highlighted code in the example puts the string
we get as a command-line parameter into a HashMap containing report parameters
that we pass to our report in the JasperFillManager.fillReportToFile() call. The
generated report will look like the following:

Passing no parameters to the code will result in a report using the default locale.

Scriptlets
JasperReports allows us to execute snippets of Java code at certain points during the
report illing process. We can accomplish this by writing scriptlets. All the scriptlets
must extend either net.sf.jasperreports.engine.JRAbstractScriptlet or
net.sf.jasperreports.engine.JRDefaultScriptlet. Following is a brief
explanation on these classes:

•	 JRAbstractScriptlet: This contains a number of abstract methods that
must be overridden in every implementation. These methods are called
automatically by JasperReports at the appropriate moment.

•	 JRDefaultScriptlet: This is a convenience class containing default
empty implementations of every method in JRAbstractScriptlet. It
can be used whenever we wish to override only a few of the methods in
JRAbstractScriptlet.

http:///

Chapter 8

[211]

The following table summarizes these methods:

Method Description
public void beforeReportInit() Called before report initialization.

public void afterReportInit() Called after report initialization.

public void beforePageInit() Called before each page is initialized.

public void afterPageInit() Called after each page is initialized.

public void beforeColumnInit() Called before each column is initialized.

public void afterColumnInit() Called after each column is initialized.

public void beforeGroupInit(String
groupName)

Called before the group speciied in the
parameter is initialized.

public void afterGroupInit(String
groupName)

Called after the group speciied in the
parameter is initialized.

public void beforeDetailEval() Called before each record in the detail
section of the report is evaluated.

public void afterDetailEval() Called after each record in the detail
section of the report is evaluated.

Scriptlets allow us to add complex functionality to our reports, not easily achievable by
report expressions or variables. We indicate that we want to use a scriptlet by setting
the scriptletClass attribute of the <jasperReport> element in the JRXML template
to the fully qualiied name of the scriptlet (including the entire package name).

Suppose we have a report that is taking a long time to ill. The following scriptlet
could help us ind out which speciic part of the report was taking a long time to ill
so that we would know what to optimize:

package net.ensode.jasperbook;

import net.sf.jasperreports.engine.JRAbstractScriptlet;

import net.sf.jasperreports.engine.JRScriptletException;

public class PerformanceScriptlet extends JRAbstractScriptlet

{

 private long reportInitStartTime;

 private long reportInitEndTime;

 private long pageInitStartTime;

 private long pageInitEndTime;

 private long columnInitStartTime;

 private long columnInitEndTime;

 private long groupInitStartTime;

 private long groupInitEndTime;

 private long detailEvalStartTime;

 private long detailEvalEndTime;

http:///

Other JasperReports Features

[212]

 public void beforeReportInit() throws JRScriptletException

 {

 reportInitStartTime = System.currentTimeMillis();

 }

 public void afterReportInit() throws JRScriptletException

 {

 reportInitEndTime = System.currentTimeMillis();

 System.out.println("Report initialization took " +
 (reportInitEndTime - reportInitStartTime) +
 " milliseconds.");

 }

 public void beforePageInit() throws JRScriptletException

 {

 pageInitStartTime = System.currentTimeMillis();

 }

 public void afterPageInit() throws JRScriptletException

 {

 pageInitEndTime = System.currentTimeMillis();

 Integer pageNum = (Integer) getVariableValue("PAGE_NUMBER");

 System.out.println("Page " + pageNum + " initialization took " +
 (pageInitEndTime - pageInitStartTime) +
 " milliseconds.");

 }

 public void beforeColumnInit() throws JRScriptletException

 {

 columnInitStartTime = System.currentTimeMillis();

 }

 public void afterColumnInit() throws JRScriptletException

 {

 columnInitEndTime = System.currentTimeMillis();

 Integer columnNum = (Integer) getVariableValue("COLUMN_NUMBER");

 System.out.println("Column " + columnNum + " initialization took "
 + (columnInitEndTime - columnInitStartTime) +
 " milliseconds.");

 }

 public void beforeGroupInit(String groupName)
 throws JRScriptletException

 {

 groupInitStartTime = System.currentTimeMillis();

 }

 public void afterGroupInit(String groupName)
 throws JRScriptletException

 {

 groupInitEndTime = System.currentTimeMillis();

http:///

Chapter 8

[213]

 System.out.println("Group " + groupName + " initialization took "
 + (groupInitEndTime - groupInitStartTime) +
 " milliseconds.");

 }

 public void beforeDetailEval() throws JRScriptletException

 {

 detailEvalStartTime = System.currentTimeMillis();

 }

 public void afterDetailEval() throws JRScriptletException

 {

 detailEvalEndTime = System.currentTimeMillis();

 System.out.println("Detail evaluation took "
 + (detailEvalEndTime - detailEvalStartTime) +
 " milliseconds.");

 }

}

Each of the methods in this scriptlet would be run at the appropriate time, giving
us an idea of the area(s) that are suffering from performance problems. Like we
mentioned before, all that's needed to use a scriptlet in a report is to provide its fully
qualiied name to the scriptletClass attribute of the root <jasperreport> element
in the JRXML template. The following example illustrates this concept:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation= "http://jasperreports.sourceforge.net

 /jasperreports http://jasperreports.sourceforge.net/xsd

 /jasperreport.xsd"

 name="ScriptletDemoReport" resourceBundle="localizationdemo"
 scriptletClass="net.ensode.jasperbook.PerformanceScriptlet">

 <summary>

 <band height="60">

 <textField>

 <reportElement x="0" y="0" width="200" height="30" />

 <textFieldExpression>

 <![CDATA[$R{localization.text1}]]>

 </textFieldExpression>

 </textField>

 </band>

 </summary>

</jasperReport>

http:///

Other JasperReports Features

[214]

This JRXML template is a slightly modiied version of the template we saw in the
previous section. The only difference is that we assigned a value to the scriptlet
attribute of <jasperReport>. When illing the jasper template generated by the
this JRXML template, we should see some console output similar to the following:

Column 1 initialization took 0 milliseconds.

Page 1 initialization took 0 milliseconds.

Report initialization took 0 milliseconds.

Detail evaluation took 31 milliseconds.

As can be seen in the Java source, scriptlets have access to the report variables.
Their value can be obtained by calling the getVariableValue() method. In this
example, we access only built-in variables, but there is nothing preventing scriptlets
from accessing normal variables. Similarly, scriptlets can access report ields
and parameters, both built-in and custom, by calling the getFieldValue() and
getParameterValue() methods, respectively. Just like the getVariableValue()
method, both of these methods take a single string parameter indicating the name of
the ield or parameter to obtain. Scriptlets can only access, not modify, report ields
and parameters; however, scriptlets can modify report variable values. This can be
accomplished by calling the setVariableValue() method. This method is deined
in the JRAbstractScriptlet class, which is always the parent class of any scriptlet.
The following example illustrates how to modify a report variable from a scriptlet:

package net.ensode.jasperbook;

import net.sf.jasperreports.engine.JRDefaultScriptlet;
import net.sf.jasperreports.engine.JRScriptletException;

public class ReportVariableModificationScriptlet extends
JRDefaultScriptlet
{
 public void afterReportInit() throws JRScriptletException
 {
 setVariableValue("someVar", new String(
 "This value was modified by the scriptlet."));
 }
}

This class will modify a variable someVar to have the value modiied by the scriptlet.

Notice how this scriptlet extends JRDefaultScriptlet instead
of JRAbstractScriptlet. The JRDefaultScriptlet
class is a convenience class included with JasperReports. It
includes empty implementations of all the abstract methods in
JRAbstractScriptlet, allowing us to override only those
methods that concern our particular case.

http:///

Chapter 8

[215]

The following JRXML template uses this scriptlet to modify the value of its
someVar variable:

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport xmlns="http://jasperreports.sourceforge.net
 /jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation= "http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"
 name="ScriptletVariableModificationReport"

 scriptletClass= "net.ensode.jasperbook
 .ReportVariableModificationScriptlet">

 <variable name="someVar" class="java.lang.String">

 <initialValueExpression>

 <![CDATA["This is the initial variable value."]]>

 </initialValueExpression>

 </variable>

 <title>

 <band height="30">

 <textField>

 <reportElement width="555" height="30" x="0" y="0" />

 <textFieldExpression>

 <![CDATA[$V{someVar}]]>

 </textFieldExpression>

 </textField>

 </band>

 </title>

</jasperReport>

Compiling and illing this JRXML template results in the following report:

http:///

Other JasperReports Features

[216]

Notice how the report displays the variable value set in the scriptlet.

Before moving on, it is worth mentioning that we can add any additional methods
we need to our scriptlets. Reports can call these methods by using the built-in
parameter REPORT_SCRIPTLET. For example, if our scriptlet has a method called
foo(), a report could access it by using the syntax $P{REPORT_SCRIPTLET}.foo().

Crosstabs
Crosstabs (cross-tabulation) reports are the reports containing tables that tabulate
the data across rows and columns. This feature was introduced in JasperReports
1.1. The following example illustrates the use of crosstabs in a report. The JRXML
template will generate a report displaying a table containing the number of aircraft
in each city of the state of New York. The last column of the table will display the
total number of aircraft for all models in each city. The last row will display the total
number of aircraft of each model in the table. To avoid having an unmanageable
number of columns in the table, we will limit the report to aircraft models that start
with the letter "C".

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport xmlns="http://jasperreports.sourceforge.net
 /jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

 name="CrossTabDemoReport" leftMargin="5" rightMargin="5">

 <queryString>

 <![CDATA[select a.city, am.model, a.tail_num

 from aircraft a, aircraft_models am

 where a.state='NY' and am.model like 'C%'

 and a.aircraft_model_code = am.aircraft_model_code

 order by city, model]]>

 </queryString>

 <field name="tail_num" class="java.lang.String" />

 <field name="model" class="java.lang.String" />

 <field name="city" class="java.lang.String" />

 <summary>

 <band height="60">

 <crosstab>

 <reportElement width="782" y="0" x="0" height="60" />

 <rowGroup name="cityGroup" width="100" totalPosition="End">

 <bucket>

 <bucketExpression class="java.lang.String">

http:///

Chapter 8

[217]

 <![CDATA[$F{city}]]>

 </bucketExpression>

 </bucket>

 <crosstabRowHeader>

 <cellContents>

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <textField>

 <reportElement width="100" y="0" x="0" height="20" />

 <textElement textAlignment="Right"
 verticalAlignment="Middle" />

 <textFieldExpression>

 <![CDATA[$V{cityGroup}]]>

 </textFieldExpression>

 </textField>

 </cellContents>

 </crosstabRowHeader>

 <crosstabTotalRowHeader>

 <cellContents>

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <staticText>

 <reportElement x="0" y="0" width="60" height="20" />

 <textElement verticalAlignment="Middle" />

 <text>TOTAL</text>

 </staticText>

 </cellContents>

 </crosstabTotalRowHeader>

 </rowGroup>

 <columnGroup name="modelGroup" height="20"
 totalPosition="End">

 <bucket>

 <bucketExpression class="java.lang.String">

 $F{model}

 </bucketExpression>

 </bucket>

 <crosstabColumnHeader>

 <cellContents>

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <textField isStretchWithOverflow="true">

http:///

Other JasperReports Features

[218]

 <reportElement width="60" y="0" x="0" height="20" />

 <textElement verticalAlignment="Bottom" />

 <textFieldExpression>

 <![CDATA[$V{modelGroup}]]>

 </textFieldExpression>

 </textField>

 </cellContents>

 </crosstabColumnHeader>

 <crosstabTotalColumnHeader>

 <cellContents>

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <staticText>

 <reportElement width="60" y="0" x="0" height="20" />

 <textElement verticalAlignment="Bottom" />

 <text>TOTAL</text>

 </staticText>

 </cellContents>

 </crosstabTotalColumnHeader>

 </columnGroup>

 <measure name="tailNumCount" class="java.lang.Integer"
 calculation="Count">

 <measureExpression>$F{tail_num}</measureExpression>

 </measure>

 <crosstabCell height="20" width="60">

 <cellContents backcolor="#FFFFFF">

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <textField>

 <reportElement x="5" y="0" width="55" height="20" />

 <textElement textAlignment="Left"
 verticalAlignment="Bottom" />

 <textFieldExpression class="java.lang.Integer">

 $V{tailNumCount}

 </textFieldExpression>

 </textField>

 </cellContents>

 </crosstabCell>

 </crosstab>

 </band>

 </summary>

</jasperReport>

http:///

Chapter 8

[219]

Compiling and illing this JRXML template results in the following report:

To keep the example as simple as possible, we refrained from
adding any styles to the text in the crosstab. There is nothing
preventing us from altering the text to have different fonts,
alignments, and so on, as discussed in Chapter 6, Report Layout
and Design.

In this example, the crosstab is deined by the <crosstab> element. The <rowGroup>
element deines a group to split the data into rows. In the example, each row
displays data for a different city. The <bucket> and <bucketExpression> elements
deine what report expression to use as a group delimiter for <rowGroup>. We have
used the city ield as a delimiter in order to achieve the splitting of the data into
rows by city. The <crosstabRowHeader> element deines the expression to use as a
row header. It contains a single subelement, namely <cellContents>, which acts as
a sort of inner band inside crosstabs.

Notice that the variable name for the text ield inside <crosstabRowHeader>
is not declared in the JRXML template. This is because the name assigned
to <rowGroup> (through its name attribute) creates an implicit variable. The
<crosstabTotalRowHeader> element deines the contents of the header cell
for the TOTAL row; it takes a single <cellContents> as its only subelement.

The <columnGroup> element, along with its subelements, is analogous to the
<rowGroup> element, except that it affects columns instead of rows. <columnGroup>
has the same subelements as <rowGroup>. The use of the <columnGroup> element is
illustrated in the above example.

http:///

Other JasperReports Features

[220]

The <measure> element deines the calculation to be performed across the rows and
columns. Possible values for its calculation attribute includes Average, Count,
First, Highest, Lowest, Nothing, StandardDeviation, Sum, and Variance. These
values work just like the analogous values for the calculation attribute for report
variables. For a brief explanation refer to Chapter 6, Report Layout and Design.

The <crosstabCell> element deines how data in the non-header cells will be
laid out. This element also contains a single <cellContents> element as its only
subelement. If we wish to format cells displaying totals differently from other cells,
we can accomplish this by adding additional <crosstabCell> elements and setting
their rowTotalGroup and/or columnTotalGroup attributes to match the names
deined in <rowGroup> and <columnGroup>.

Crosstab subelements
The <crosstab> element contains a number of subelements not shown in the
example. The following sections describe all of the subelements of <crosstab>. Most
of the elements shown in the following sections contain additional subelements. For
more details visit the JRXML Schema Reference at http://jasperforge.org/
uploads/publish/jasperreportswebsite/trunk/schema.reference.html.

<columnGroup>
The <columnGroup> subelement deines a group used to split the data into columns.
Attributes for this element include:

•	 height: This deines the height of the column group header.
•	 name: This deines the name of the column group.
•	 headerPosition: This deines the position of the header contents

(Right, Left, Center, Stretch).

•	 totalPosition: This deines the position of the TOTAL column
(Start, End, None).

<crosstabCell>
The <crosstabCell> subelement deines how data in the non-header cells will
be laid out. Attributes for this element include:

•	 columnTotalGroup: This indicates the group to use to calculate the
column total.

•	 height: This deines the height of the cell.

http:///

Chapter 8

[221]

•	 rowTotalGroup: This indicates the group to use in order to calculate the
row total.

•	 width: This deines the width of the cell.

<crosstabDataset>
The <crosstabDataset> subelement deines the dataset to be used in order to
populate the crosstab. (See the next section for a detailed explanation.) The only
attribute for this element is:

•	 isDataPreSorted: This indicates whether the data in the dataset
is pre-sorted.

<crosstabParameter>
The <crosstabParameter> subelement is used to access report variables and
parameters from within the crosstab. Attributes for this element include:

•	 name: This deines the parameter name.
•	 class: This indicates the parameter class.

<measure>
The <measure> subelement deines the calculation to be performed across the
rows and columns. Attributes for this element include:

•	 name: This deines the measure name.
•	 class: This indicates the measure class.•	 calculation: This indicates the calculation to be performed between

crosstab cell values.

<parametersMapExpression>
The <parametersMapExpression> subelement is used to pass a report variable or
parameter containing an instance of java.util.Map as a set of parameters for the
crosstab. This element contains no attributes.

http:///

Other JasperReports Features

[222]

<reportElement>
The <reportElement> subelement deines the position, width, and height of the
crosstab within its enclosing band. Attributes for this element include all standard
<reportElement> attributes.

<rowGroup>
The <rowGroup> subelement deines a group used to split the data into rows.
Attributes for this element include:

•	 name: This deines the name of the row group.
•	 width: This deines the width of the row group.
•	 headerPosition: This deines the position of the header contents

(Top, Middle, Bottom, Stretch).

•	 totalPosition: This deines the position of the TOTAL column
(Start, End, None).

<whenNoDataCell>
The <whenNoDataCell> subelement deines what to display on an empty crosstab
cell. This element contains no attributes.

Subdatasets
Sometimes we would like to display related charts or crosstabs for similar data
grouped differently. For example, in the previous section, we generated a crosstab
displaying the total number of aircraft of a particular set of models in the state
of New York. We can display the same set of data for different states by using
subdatasets. The following example illustrates how to do this:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation= "http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

 name="DatasetDemoReport" leftMargin="5" rightMargin="5">

 <subDataset name="Aircraft_Models">

 <parameter name="StateParam" class="java.lang.String" />

 <queryString>

 <![CDATA[select a.city, am.model, a.tail_num

http:///

Chapter 8

[223]

 from aircraft a, aircraft_models am

 where a.state=$P{StateParam} and am.model like 'C%'

 and a.aircraft_model_code = am.aircraft_model_code

 order by city, model]]>

 </queryString>

 <field name="tail_num" class="java.lang.String" />

 <field name="model" class="java.lang.String" />

 <field name="city" class="java.lang.String" />

 </subDataset>

 <queryString>

 <![CDATA[select distinct state from aircraft where state

 in ('MD', 'NY', 'VA') order by state]]>

 </queryString>

 <field name="state" class="java.lang.String" />

 <detail>

 <band height="100">

 <textField>

 <reportElement x="0" y="10" width="500" height="20" />

 <textFieldExpression>

 <![CDATA["Aircraft registered in " + $F{state}]]>

 </textFieldExpression>

 </textField>

 <crosstab>

 <reportElement width="782" y="30" x="0" height="60" />

 <crosstabDataset>

 <dataset>

 <datasetRun subDataset="Aircraft_Models">

 <datasetParameter name="StateParam">

 <datasetParameterExpression>

 <![CDATA[$F{state}]]>

 </datasetParameterExpression>

 </datasetParameter>

 </datasetRun>

 </dataset>

 </crosstabDataset>

 <rowGroup name="cityGroup" width="100" totalPosition="End">

 <bucket>

 <bucketExpression class="java.lang.String">

 <![CDATA[$F{city}]]>

 </bucketExpression>

 </bucket>

 <crosstabRowHeader>

 <cellContents>

 <box>

http:///

Other JasperReports Features

[224]

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <textField>

 <reportElement width="100" y="0" x="0" height="20" />

 <textElement textAlignment="Right"
 verticalAlignment="Middle" />

 <textFieldExpression>

 <![CDATA[$V{cityGroup}]]>

 </textFieldExpression>

 </textField>

 </cellContents>

 </crosstabRowHeader>

 <crosstabTotalRowHeader>

 <cellContents>

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <staticText>

 <reportElement x="0" y="0" width="60" height="20" />

 <textElement verticalAlignment="Middle" />

 <text>TOTAL</text>

 </staticText>

 </cellContents>

 </crosstabTotalRowHeader>

 </rowGroup>

 <columnGroup name="modelGroup" height="20"
 totalPosition="End">

 <bucket>

 <bucketExpression class="java.lang.String">

 $F{model}

 </bucketExpression>

 </bucket>

 <crosstabColumnHeader>

 <cellContents>

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <textField isStretchWithOverflow="true">

 <reportElement width="100" y="0" x="0" height="20" />

 <textElement verticalAlignment="Bottom" />

 <textFieldExpression>

 <![CDATA[$V{modelGroup}]]>

 </textFieldExpression>

 </textField>

http:///

Chapter 8

[225]

 </cellContents>

 </crosstabColumnHeader>

 <crosstabTotalColumnHeader>

 <cellContents>

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <staticText>

 <reportElement width="60" y="0" x="0" height="20" />

 <textElement verticalAlignment="Bottom" />

 <text>TOTAL</text>

 </staticText>

 </cellContents>

 </crosstabTotalColumnHeader>

 </columnGroup>

 <measure name="tailNumCount" class="java.lang.Integer"
 calculation="Count">

 <measureExpression>

 $F{tail_num}

 </measureExpression>

 </measure>

 <crosstabCell height="20" width="100">

 <cellContents backcolor="#FFFFFF">

 <box>

 <pen lineColor="black" lineWidth="1"/>

 </box>

 <textField>

 <reportElement x="5" y="0" width="55" height="20" />

 <textElement textAlignment="Left"
 verticalAlignment="Bottom" />

 <textFieldExpression class="java.lang.Integer">

 $V{tailNumCount}

 </textFieldExpression>

 </textField>

 </cellContents>

 </crosstabCell>

 </crosstab>

 </band>

 </detail>

</jasperReport>

http:///

Other JasperReports Features

[226]

After compiling this template and illing the resulting jasper ile, we should get
a report that looks like the following:

As we can see, the report template generates a different crosstab for each record in
the <detail> section of the report. To accomplish this, we need to create a query
inside <subdataSet> elements. The query must have one or more parameters, also
deined inside <subdataSet>. This parameter needs to be populated with a report
expression. In the example, we use the city ield for this purpose.

http:///

Chapter 8

[227]

To populate the dataset parameters with the desired report expression, we need
to use the <crosstabDataset> element inside the crosstab. This element must
contain a single <dataset> element, which in turn contains a <datasetRun>
element. This element contains a name attribute indicating the subdataset to use in
order to populate the crosstab. It also contains a <datasetParameterExpression>
subelement indicating the report element to use to populate the dataset parameter.

Subdatasets can also be used in a similar manner to create related charts in each
report record. To accomplish this, the <dataset> element must be placed inside
the appropriate dataset element for the chart (<categoryDataset>, <pieDataset>,
and so on). The following example demonstrates this for a bar chart. The report
generated by the JRXML template will display a bar chart illustrating the number
of aircraft registered in the states of Maryland, New York, and Virginia.

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation= "http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

 name="ChartDatasetDemoReport" leftMargin="5" rightMargin="5">

 <subDataset name="Aircraft_Registrations">

 <parameter name="StateParam" class="java.lang.String" />

 <queryString>

 <![CDATA[select a.city, count(*) as aircraft_count

 from aircraft a

 where a.state=$P{StateParam}

 and a.city like 'A%'

 group by city]]>

 </queryString>

 <field name="aircraft_count" class="java.lang.Integer" />

 <field name="city" class="java.lang.String" />

 </subDataset>

 <queryString>

 <![CDATA[select distinct state from aircraft
 where state in ('MD', 'NY', 'VA') order by state]]>

 </queryString>

 <field name="state" class="java.lang.String" />

 <detail>

 <band height="200">

 <textField>

 <reportElement x="0" y="10" width="500" height="20" />

 <textFieldExpression>

 <![CDATA["Aircraft registered in " + $F{state}]]>

http:///

Other JasperReports Features

[228]

 </textFieldExpression>

 </textField>

 <barChart>

 <chart>

 <reportElement width="500" y="30" x="0" height="170" />

 </chart>

 <categoryDataset>

 <dataset>

 <datasetRun subDataset="Aircraft_Registrations">

 <datasetParameter name="StateParam">

 <datasetParameterExpression>

 <![CDATA[$F{state}]]>

 </datasetParameterExpression>

 </datasetParameter>

 </datasetRun>

 </dataset>

 <categorySeries>

 <seriesExpression>"City"</seriesExpression>

 <categoryExpression>

 <![CDATA[$F{city}]]>

 </categoryExpression>

 <valueExpression>

 <![CDATA[$F{aircraft_count}]]>

 </valueExpression>

 </categorySeries>

 </categoryDataset>

 <barPlot isShowTickMarks="true" isShowTickLabels="true">

 <plot orientation="Horizontal"/>

 </barPlot>

 </barChart>

 </band>

 </detail>

</jasperReport>

Notice how the <dataset> element inside <categoryDataset> contains a
<datasetRun> element with its subdataset attribute set to the subdataset declared
at the beginning of the report. After compiling this JRXML template and illing the
resulting jasper template, we should get a report like the following:

http:///

Chapter 8

[229]

Each chart corresponds to a different state in the main report query. Data in each
chart corresponds to cities for the corresponding state.

http:///

Other JasperReports Features

[230]

Adding hyperlinks and anchors
to reports
JasperReports allows us to add hyperlinks and anchors to our reports. The only
report elements that can be hyperlinks or anchors are text ields, charts, and images.
Hyperlinks allow us to quickly navigate between different report sections, a feature
that is very useful when producing long reports. The following example illustrates
how to add hyperlinks to our reports:

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

 name="HyperLinkDemoReport" leftMargin="5" rightMargin="5">

 <title>

 <band height="60">

 <staticText>

 <reportElement x="0" y="0" width="555" height="30" />

 <text>

 <![CDATA[In a rush?]]>

 </text>

 </staticText>

 <textField hyperlinkType="LocalAnchor">

 <reportElement x="0" y="30" width="555" height="30" />

 <textFieldExpression>

 <![CDATA["Go to summary section."]]>

 </textFieldExpression>

 <hyperlinkAnchorExpression>

 <![CDATA["summary_section"]]>

 </hyperlinkAnchorExpression>

 </textField>

 </band>

 </title>

 <detail>

 <band height="60">

 <textField isStretchWithOverflow="true">

 <reportElement x="0" y="0" width="555" height="30" />

 <textFieldExpression>

 <![CDATA["This is the main report area, if this area had "
 + "a lot of text and the person reading " + "the report
 did not have time to read it all, " + "we can direct

http:///

Chapter 8

[231]

 them to the summary section " + "by using a hyperlink.
 Let's add some more text " + "to make this area look
 more realistic. Boy, " + "if I was reading this report I
 would be bored " + "by now. Perhaps reading only the
 summary would " + "be a good idea? Why don't we do just
 that?"]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

 <summary>

 <band height="60">

 <textField isStretchWithOverflow="true">

 <reportElement x="0" y="0" width="555" height="30" />

 <textFieldExpression>

 <![CDATA["This is the summary section. It contains less
 text so that the person reading the report can get the
 gist of the report data."]]>

 </textFieldExpression>

 <anchorNameExpression>

 <![CDATA["summary_section"]]>

 </anchorNameExpression>

 </textField>

 </band>

 </summary>

</jasperReport>

As we can see from the example, we can turn a text ield into a hyperlink by
using the hyperlinkType attribute. In this example, we set hyperlinkType to
be LocalAnchor, which means that the hyperlink target is another area of the
report speciied by an anchor expression. The <hyperlinkAnchorExpression>
element indicates what the target for the hyperlink will be. To create the target
for the anchor, we need to use the <anchorNameExpression> JRXML element.
Notice how the contents of the <anchorNameExpression> match the contents of
<hyperlinkAnchorExpression> in the example. This is how we link hyperlinks
with the corresponding anchor.

In addition to pointing to speciic anchors, hyperlinks can point to external
resources or speciic pages in the report. When a hyperlink points to an external
resource, the enclosing element (text ield, image, or chart) must contain a
<hyperlinkReferenceExpression> element containing a report expression
indicating the name of the external resource (usually a URL).

http:///

Other JasperReports Features

[232]

The following table summarizes the different types of hyperlinks supported by
JasperReports:

Hyperlink type Description Elements deining hyperlink target
LocalAnchor Hyperlink points

to an anchor in the
report, deined by the
<anchorNameExpression>
element.

<hyperlinkAnchorExpression>

LocalPage Hyperlink points to a page
in the current report.

<hyperlinkPageExpression>

None Used to indicate that the
element containing the
hyperlinkType attribute
is not an anchor. (This is
the default.)

N/A

Reference Hyperlink points to an
external resource.

<hyperlinkReferenceExpression>

RemoteAnchor Hyperlink points to an
anchor in an external
resource.

<hyperlinkAnchorExpression>

<hyperlinkReferenceExpression>

RemotePage Hyperlink points to a page
in an external resource.

<hyperlinkPageExpression>

<hyperlinkReferenceExpression>

The text ield, chart, or image containing the hyperlinkType attribute must
contain the corresponding element deining the hyperlink target as shown
in the table. Of all these elements, the only element we haven't discussed is
<hyperlinkPageExpression>. This element must contain a report expression
resolving into a numeric value corresponding to the page number where the
hyperlink will take us.

Turning chart items into hyperlinks
Another interesting JasperReports feature is that it allows us to turn chart items
into hyperlinks; that is, it lets us click on them to quickly navigate to another
report section or to an external resource. The following example, which is a slightly
modiied version of the chart example in the Subdatasets section, illustrates how to
do this:

http:///

Chapter 8

[233]

<?xml version="1.0" encoding="UTF-8" ?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation= "http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"

 name="ChartHyperlinkDemoReport" leftMargin="5" rightMargin="5">

 <subDataset name="Aircraft_Registrations">

 <parameter name="StateParam" class="java.lang.String" />

 <queryString>

 <![CDATA[select a.city, count(*) as aircraft_count

 from aircraft a

 where a.state=$P{StateParam} and a.city like 'A%'

 group by city]]>

 </queryString>

 <field name="aircraft_count" class="java.lang.Integer" />

 <field name="city" class="java.lang.String" />

 </subDataset>

 <queryString>

 <![CDATA[select distinct state from aircraft where state in
 ('MD', 'NY', 'VA') order by state]]>

 </queryString>

 <field name="state" class="java.lang.String" />

 <detail>

 <band height="200">

 <textField>

 <reportElement x="0" y="10" width="500" height="20" />

 <textFieldExpression>

 <![CDATA["Aircraft registered in " + $F{state}]]>

 </textFieldExpression>

 </textField>

 <barChart>

 <chart>

 <reportElement width="500" y="30" x="0" height="170" />

 </chart>

 <categoryDataset>

 <dataset>

 <datasetRun subDataset="Aircraft_Registrations">

 <datasetParameter name="StateParam">

 <datasetParameterExpression>

 <![CDATA[$F{state}]]>

 </datasetParameterExpression>

 </datasetParameter>

 </datasetRun>

http:///

Other JasperReports Features

[234]

 </dataset>

 <categorySeries>

 <seriesExpression>"City"</seriesExpression>

 <categoryExpression>

 <![CDATA[$F{city}]]>

 </categoryExpression>

 <valueExpression>

 <![CDATA[$F{aircraft_count}]]>

 </valueExpression>

 <itemHyperlink hyperlinkType="Reference"
 hyperlinkTarget="Blank">

 <hyperlinkReferenceExpression>

 <![CDATA["http://maps.google.com?q=" + $F{city} + ","
 + $P{StateParam}]]>

 </hyperlinkReferenceExpression>

 <hyperlinkTooltipExpression>

 <![CDATA["Map of " + $F{city} + ", "
 + $P{StateParam}]]>

 </hyperlinkTooltipExpression>

 </itemHyperlink>

 </categorySeries>

 </categoryDataset>

 <barPlot isShowTickMarks="true" isShowTickLabels="true">

 <plot orientation="Horizontal"/>

 </barPlot>

 </barChart>

 </band>

 </detail>

</jasperReport>

As we can see, all we need to do to turn a chart item into a hyperlink is add an
<itemHyperlink> subelement to the chart's <categorySeries> element. The
<itemHyperlink> element has a hyperlinkType attribute that is equivalent to the
same attribute in the <textField>, <chart>, or <image> elements. Refer to the table
in the previous section to see all the valid values for this attribute. In this example,
we created a reference hyperlink, which means that clicking on a chart element will
take us to an external resource (a map of the selected city, in our example).

http:///

Chapter 8

[235]

The <itemHyperlink> element also has a hyperlinkTarget attribute, which
determines the target window for the hyperlink target when the report is exported
to HTML. The valid values for hyperlinkTarget include:

Hyperlink
target

Description

Blank The hyperlink target will open in a new window.

Parent The hyperlink target will open in the parent frame.

Self The hyperlink target will open in the window and frame containing
the hyperlink.

Top The hyperlink target will open in the top browser window, replacing
all the frames in the browser.

We should note that the <textField>, <image>, and <chart> elements also have
a hyperlinkTarget attribute that works as described in the above table.

When the value of the hyperlinkType attribute is either Reference, RemoteAnchor,
or RemotePage, a <hyperlinkReferenceExpression> element must be used to
indicate the URL of the remote resource that the hyperlink points to. In our example,
we simply direct the user to Google Maps, passing the state and city the user clicked
on as URL parameters.

If the value of hyperlinkType is RemoteAnchor, then a <remoteAnchorExpression>
subelement must be added to the parent element (<chart>, <image>,
<textField>, or <itemHyperlink>). The body of this element must be a
string expression resolving to an anchor target in the remote URL pointed to
by the <hyperlinkReferenceExpression> element. Similarly, if the value of
hyperlinkType is RemotePage, then a <hyperlinkPageExpression> element must
be speciied. The value of this element must resolve to an integer indicating the page
of the remote resource speciied by <hyperlinkReferenceExpression>.

Any element that can be turned into a hyperlink (<chart>, <image>, <textField>,
or <itemHyperlink>) has an optional <hyperlinkTooltipExpression> element
that can be used to generate a tooltip when the user hovers the mouse pointer
over the element. In our example, we follow the most common and logical approach,
which is to create a tooltip displaying some descriptive text that explains what
will happen when the user clicks on the hyperlink.

http:///

Other JasperReports Features

[236]

After compiling, illing, exporting our example to HTML, and then opening the
exported result in a browser, we can see our hyperlinks in action.

Clicking on any of the bars in any of the bar charts will take us to the map of the city
corresponding to the bar.

http:///

Chapter 8

[237]

Bookmarks
The PDF documents can have a tree-like "table of contents" that allows easy navigation
between the document sections. This table of contents is labeled bookmarks in most
PDF viewers. JasperReports can generate bookmarks in reports exported to PDF by
setting the bookmarkLevel attribute of any image, chart, or text ield containing an
<anchorExpression> subelement. The following JRXML template illustrates the use
of the bookmarkLevel attribute to create bookmarks. It is a slightly modiied version
of the second subdataset example from the previous section.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design
 //EN" "http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

<jasperReport name="BookmarkDemoReport" leftMargin="5"
 rightMargin="5">

 <subDataset name="Aircraft_Registrations">

 <parameter name="StateParam" class="java.lang.String" />

 <queryString>

 <![CDATA[select a.city, count(*) as aircraft_count

 from aircraft a

 where a.state=$P{StateParam} and a.city like 'A%'

 group by city]]>

 </queryString>

 <field name="aircraft_count" class="java.lang.Integer" />

 <field name="city" class="java.lang.String" />

 </subDataset>

 <queryString>

 <![CDATA[select distinct state from aircraft where state in
 ('MD', 'NY', 'VA') order by state]]>

 </queryString>

 <field name="state" class="java.lang.String" />

 <detail>

 <band height="200">

 <textField bookmarkLevel="1">

 <reportElement x="0" y="10" width="500" height="20" />

 <textFieldExpression>

 <![CDATA["Aircraft registered in " + $F{state}]]>

 </textFieldExpression>

 <anchorNameExpression>

 <![CDATA["Aircraft registered in " + $F{state}]]>

 </anchorNameExpression>

 </textField>

 <barChart>

 <chart bookmarkLevel="2">

 <reportElement width="500" y="30" x="0" height="170" />

http:///

Other JasperReports Features

[238]

 <anchorNameExpression>

 <![CDATA["Chart"]]>

 </anchorNameExpression>

 </chart>

 <categoryDataset>

 <dataset>

 <datasetRun subDataset="Aircraft_Registrations">

 <datasetParameter name="StateParam">

 <datasetParameterExpression>

 <![CDATA[$F{state}]]>

 </datasetParameterExpression>

 </datasetParameter>

 </datasetRun>

 </dataset>

 <categorySeries>

 <seriesExpression>"City"</seriesExpression>

 <categoryExpression>

 <![CDATA[$F{city}]]>

 </categoryExpression>

 <valueExpression>

 <![CDATA[$F{aircraft_count}]]>

 </valueExpression>

 </categorySeries>

 </categoryDataset>

 <barPlot isShowTickMarks="true" isShowTickLabels="true">

 <plot orientation="Horizontal" />

 </barPlot>

 </barChart>

 </band>

 </detail>

</jasperReport>

The value for the bookmarkLevel attribute must be a positive integer indicating the
relative position of the item in the bookmark tree structure. A value of 1 indicates a
root node in the tree. After compiling, illing, and exporting this JRXML template, we
should get a PDF containing bookmarks, with the chart titles as root nodes and the
charts themselves as child nodes.

http:///

Chapter 8

[239]

Clicking on the nodes will direct the main window to the appropriate anchor.

Handling very large reports
Sometimes, when illing a report, the report datasource may have a lot of data. In
some cases, the generated report can become very large, and in some cases larger
than the memory allocated for the JVM, causing an OutOfMemoryException.

It is possible to set up JasperReports so that it stores segments of a report on the
disk in order to free some memory. This can be accomplished by using a built-in
report parameter REPORT_VIRTUALIZER. The value for this parameter must be an
instance of a class implementing net.sf.jasperreports.engine.JRVirtualizer.
JasperReports comes with an implementation of this interface, namely net.sf.
jasperreports.engine.fill.JRFileVirtualizer. This implementation is
suficient to handle the vast majority of the large reports. If, for some reason,
this implementation is not suficient for our needs, we can always create our own
implementation of net.sf.jasperreports.engine.JRVirtualizer. The following
example illustrates typical usage of JRVirtualizer:

package net.ensode.jasperbook;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.HashMap;

http:///

Other JasperReports Features

[240]

import net.sf.jasperreports.engine.JRException;
import net.sf.jasperreports.engine.JRParameter;
import net.sf.jasperreports.engine.JasperFillManager;
import net.sf.jasperreports.engine.fill.JRFileVirtualizer;

public class DbConnectionReportFill
{
 Connection connection;

 public void generateReport(String reportName)
 {
 String reportDirectory = "reports";
 JRFileVirtualizer fileVirtualizer = new JRFileVirtualizer(3,
 "cacheDir");
 HashMap parameterMap = new HashMap();
 parameterMap.put(JRParameter.REPORT_VIRTUALIZER, fileVirtualizer);

 try
 {
 Class.forName("com.mysql.jdbc.Driver");
 connection = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/flightstats?" +
 "user=user&password=secret");
 System.out.println("Filling report...");
 JasperFillManager.fillReportToFile(reportDirectory + "/"
 + reportName + ".jasper",
 parameterMap,connection);
 System.out.println("Done!");
 connection.close();
 }
 catch (JRException e)
 {
 e.printStackTrace();
 }
 catch (ClassNotFoundException e)
 {
 e.printStackTrace();
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new DbConnectionReportFill().generateReport(args[0]);
 }
}

http:///

Chapter 8

[241]

The JRFileVirtualizer class has two constructors. The one we chose to use in
the example takes two parameters. The irst parameter is the maximum number of
report pages that will be stored in primary memory (RAM) before the sections of the
report are stored in virtual memory (disk). The second parameter is the directory that
will be used to store the segments of the report that will be stored on disk. The other
constructor takes a single parameter, an int indicating the maximum number of
report pages that will be stored in primary memory. When using this constructor, the
cached portions of the report will be stored in the working directory of the running
application. We need to do nothing special in the JRXML template to be able to cache
them to disk.

The process described in this section makes illing a report a much slower process
than usual. Therefore, report virtualization should be used only when there is a good
possibility that the report will cause the JVM to run out of memory.

Summary
In this chapter, we discussed several features that allow us to create elaborate
reports. We learned to render localized reports by using the resourceBundle
attribute of the <jasperReport> JRXML element. We then used scriptlets to add
complex functionality to our reports, including variable value modiication and
performance measurement. We saw how to add cross-tabulation tables (crosstabs)
to our reports by taking advantage of the <crosstab> JRXML element and display
related charts or crosstabs for each record in a report by using subdatasets. To ease
the task of report navigation, we learned how to add hyperlinks, anchors, and
bookmarks to our reports. We have also seen how we can safely generate reports
larger than the available memory by taking advantage of report virtualization.

http:///

http:///

Exporting to Other Formats
Reports can be exported to several formats. Because reports in native JasperReports
format can be viewed only by using the JasperReports API (or by using the
JasperViewer utility included with JasperReports), exporting reports is a common
requirement. Exported reports can be viewed with readily available software like PDF
viewers, word processors, and web browsers. In this chapter, we will learn how to
export our reports to all of the formats supported by JasperReports.

Topics covered in this chapter include:

• Exporting reports to PDF
• Exporting reports to RTF

• Exporting reports to ODT
• Exporting reports to Excel

• Exporting reports to HTML

• Exporting reports to XML

• Exporting reports to CSV

• Exporting reports to plain text

• Directing exported reports to a browser

http:///

Exporting to Other Formats

[244]

Exporting overview
Exporting reports is done using a series of classes that implement the
net.sf.jasperreports.engine.JRExporter interface. This interface
contains, among others, the following two methods:

• public void setParameter(JRExporterParameter parameter,
java. lang.Object value)

• public void exportReport()

The setParameter() method is used to set the parameters needed to export the
report. In most cases, two parameters need to be set: the name of the output ile
or output stream used to output the exported report and the JasperPrint object
containing the native report. We would set the output ile any time we are sure
we want to save the exported report to the disk. We would set the output stream
parameter to send the exported report through the network or when we are not sure
if we want to save the exported report to the disk or stream it through the network.
As an output stream can be easily saved to the disk or streamed through the
network, the decision can be made at the runtime.

As can be seen in the signature of the setParameter() method, it takes an instance
of net.sf.jasperreports.engine.JRExporterParameter as its irst argument.
JRExporterParameter contains a number of static constants that are typically used
as the irst argument to the setParameter() method. To accommodate the most
common cases, the JRExporterParameter constants of interest are:

• JRExporterParameter.JASPER_PRINT: This is used to set the
JasperPrint object to export.

• JRExporterParameter.OUTPUT_FILE_NAME: This is used to set
the output ilename.

• JRExporterParameter.OUTPUT_STREAM: This is used to set the
output stream.

There are several other constants deined in JRExporterParameter.
Consult the JavaDoc documentation for JRExporterParameter
at http://jasperreports.sourceforge.net/api/net/sf/
jasperreports/engine/JRExporterParameter.html for details.

As we will see in the following sections, exporting to different formats follows
the same pattern in all cases. Once we are familiar with the procedure to export
to one format, learning to export to other formats will be trivial.

http:///

Chapter 9

[245]

Exporting reports functionality is done entirely in Java code; the JRXML does not
need to be modiied at all. For most of the examples in this chapter, we will be using
the subdatasets example from the previous chapter.

Before moving on, it is worth mentioning that for most formats, exported reports
keep their formatting (fonts, colors, and so on). The only two formats that lose their
formatting are CSV and plain text because both of these are plain text iles containing
no formatting information.

Exporting to PDF
We have already seen the examples of exporting reports to PDF in previous chapters.
However, all the examples we have seen so far stream a PDF report straight to the
browser window. In the following example, we will export a report to PDF and save
it to the ilesystem:

package net.ensode.jasperbook;

import java.io.File;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRExporterParameter;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.export.JRPdfExporter;

import net.sf.jasperreports.engine.util.JRLoader;

public class PdfExportDemo

{

 public static final String REPORT_DIRECTORY = "reports";

 public void pdfExport(String reportName)

 {

 File file = new File(REPORT_DIRECTORY + "/" + reportName +
 ".jrprint");

 try

 {

 JasperPrint jasperPrint = (JasperPrint)
 JRLoader.loadObject(file);

 JRPdfExporter pdfExporter = new JRPdfExporter();

 pdfExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);

 pdfExporter.setParameter(JRExporterParameter.OUTPUT_FILE_NAME,

 REPORT_DIRECTORY + "/" + reportName + ".pdf");

 System.out.println("Exporting report...");

 pdfExporter.exportReport();

 System.out.println("Done!");

 }

http:///

Exporting to Other Formats

[246]

 catch (JRException e)

 {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 new PdfExportDemo().pdfExport(args[0]);

 }

}

As we can see in the example, the JRExporter implementation used to export to
PDF is net.sf.jasperreports.engine.export.JRPdfExporter. We need to
pass it to the compiled report in the native JasperReports format by setting the
JRExporterParameter.JASPER_PRINT parameter to the appropriate instance
of net.sf.jasperreports.engine.JasperPrint.

Because we are saving the report to disk, we set the output ilename to be the report
name. The only difference is that we substitute the ile extension with "pdf".

The code we just wrote will generate a PDF that looks like the following screenshot:

http:///

Chapter 9

[247]

http:///

Exporting to Other Formats

[248]

Exporting to RTF
Rich Text Format (RTF) is a document ile format that is supported by most word
processors. Exporting to RTF allows our documents to be read by Microsoft Word
and several other word processors.

Unfortunately, RTF documents generated by JasperReports
are not always readable by OpenOfice.org or StarOfice writer
because these ofice suites are not fully compliant with the RTF
speciication. As we'll see in the next section, JasperReports can
export to OpenDocument Text, the native format for both of these
ofice suites.

The following example illustrates how to export a report into RTF format:

package net.ensode.jasperbook;

import java.io.File;

import net.sf.jasperreports.engine.JRException;
import net.sf.jasperreports.engine.JRExporterParameter;
import net.sf.jasperreports.engine.JasperPrint;
import net.sf.jasperreports.engine.export.JRRtfExporter;
import net.sf.jasperreports.engine.util.JRLoader;

public class RtfExportDemo
{
 public static final String REPORT_DIRECTORY = "reports";
 public void rtfExport(String reportName)
 {
 File file = new File(REPORT_DIRECTORY + "/" + reportName +
 ".jrprint");
 try
 {
 JasperPrint jasperPrint = (JasperPrint)
 JRLoader.loadObject(file);
 JRRtfExporter rtfExporter = new JRRtfExporter();
 rtfExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);
 rtfExporter.setParameter(JRExporterParameter.OUTPUT_FILE_NAME,
 REPORT_DIRECTORY + "/" + reportName + ".rtf");
 System.out.println("Exporting report...");
 rtfExporter.exportReport();
 System.out.println("Done!");
 }
 catch (JRException e)
 {
 e.printStackTrace();
 }
 }

http:///

Chapter 9

[249]

 public static void main(String[] args)
 {
 new RtfExportDemo().rtfExport(args[0]);
 }
}

As we can see in this example, net.sf.jasperreports.engine.export.
JRRtfExporter is the JRExporter implementation we need to use to export to RTF.
Like the previous example, we tell the exporter what report to export by supplying
an instance of net.sf.jasperreports.engine.JasperPrint as the value for the
JRExporterParameter.JASPER_PRINT parameter, and we set the output ile to be
the report name by setting the JRExporterParameter.OUTPUT_FILE_NAME with the
appropriate value.

This example code will generate an RTF document as shown in the following
screenshot:

http:///

Exporting to Other Formats

[250]

Exporting to ODT
OpenDocument Text (ODT) is the word processing standard for Organization for the
Advancement of Structured Information Standards (OASIS) and the native format of
several open source word processing tools, most notably OpenOfice.org Writer.

Reports can be exported to ODT by taking advantage of the JROdtExporter class
provided with JasperReports. The following example illustrates how to do this:

package net.ensode.jasperbook;

import java.io.File;

import net.sf.jasperreports.engine.JRException;
import net.sf.jasperreports.engine.JRExporterParameter;
import net.sf.jasperreports.engine.JasperPrint;
import net.sf.jasperreports.engine.export.oasis.JROdtExporter;
import net.sf.jasperreports.engine.util.JRLoader;

public class OdtExportDemo
{
 public static final String REPORT_DIRECTORY = "reports";
 public void odtExport(String reportName)
 {
 File file = new File(REPORT_DIRECTORY + "/" + reportName +
 ".jrprint");
 try
 {
 JasperPrint jasperPrint = (JasperPrint)
 JRLoader.loadObject(file);
 JROdtExporter odtExporter = new JROdtExporter();
 odtExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);
 odtExporter.setParameter(JRExporterParameter.OUTPUT_FILE_NAME,
 REPORT_DIRECTORY + "/" + reportName + ".ods");
 System.out.println("Exporting report...");
 odtExporter.exportReport();
 System.out.println("Done!");
 }
 catch (JRException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new OdtExportDemo().odtExport(args[0]);
 }
}

http:///

Chapter 9

[251]

As we can see, exporting to ODT is not much different from exporting to other
formats. The JRExporter implementation that we need to use in this case is
net.sf.jasperreports.engine.export.oasis.JROdtExporter. Note that in
the previous examples, we have speciied what report to export by supplying an
instance of net.sf.jasperreports.engine.JasperPrint as the value for the
JRExporterParameter.JASPER_PRINT parameter. We then set the output ile to
be the report name by setting JRExporterParameter.OUTPUT_FILE_NAME with
the appropriate value.

The following screenshot illustrates how the BarChartReportDemo example from
Chapter 7, Adding Charts and Graphics to Reports, is rendered in OpenOfice.org
Writer after being exported to ODT:

http:///

Exporting to Other Formats

[252]

Exporting to Excel
It is not uncommon to request reports in Microsoft Excel format as Excel allows
easy manipulation of report data to perform calculations. JasperReports provides
built-in capability to export reports to Excel. The following example demonstrates
this functionality:

package net.ensode.jasperbook;

import java.io.File;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRExporterParameter;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.export.JExcelApiExporter;

import net.sf.jasperreports.engine.util.JRLoader;

public class XlsExportDemo

{

 public static final String REPORT_DIRECTORY = "reports";

 public void xlsExport(String reportName)

 {

 File file = new File(REPORT_DIRECTORY + "/" + reportName +
 ".jrprint");

 try

 {

 JasperPrint jasperPrint = (JasperPrint)
 JRLoader.loadObject(file);

 JExcelApiExporter xlsExporter = new JExcelApiExporter();

 xlsExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);

 xlsExporter.setParameter(JRExporterParameter.OUTPUT_FILE_NAME,
 REPORT_DIRECTORY + "/" + reportName + ".xls");

 System.out.println("Exporting report...");

 xlsExporter.exportReport();

 System.out.println("Done!");

 }

 catch (JRException e)

 {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 new XlsExportDemo().xlsExport(args[0]);

 }

}

http:///

Chapter 9

[253]

This example follows the same pattern as the previous examples in this chapter. The
JRExporter implementation needed to export to Excel is net.sf.jasperreports.
engine.export.JExcelApiExporter. Again, we set the report to export and the
output ilename by setting the appropriate parameters on JExcelApiExporter.

This example will generate an Excel spreadsheet that looks like the following
screenshot:

JasperReports includes two Excel exporters: JExcelApiExporter
and JRXlsExporter. It is preferable to use JExcelApiExporter
because JRXlsExporter does not support exporting
images. JExcelApiExporter is the newer Excel exporter.
JRXlsExporter is still included for backward compatibility.

http:///

Exporting to Other Formats

[254]

Exporting to HTML
Exporting to HTML is another common requirement. The following example
demonstrates how to do it:

package net.ensode.jasperbook;

import java.io.File;

import net.sf.jasperreports.engine.JRException;
import net.sf.jasperreports.engine.JRExporterParameter;
import net.sf.jasperreports.engine.JasperPrint;
import net.sf.jasperreports.engine.export.JRHtmlExporter;
import net.sf.jasperreports.engine.util.JRLoader;

public class HtmlExportDemo
{
 public static final String REPORT_DIRECTORY = "reports";

 public void htmlExport(String reportName)
 {
 File file = new File(REPORT_DIRECTORY + "/" + reportName +
 ".jrprint");
 try
 {
 JasperPrint jasperPrint = (JasperPrint)
 JRLoader.loadObject(file);
 JRHtmlExporter htmlExporter = new JRHtmlExporter();
 htmlExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);
 htmlExporter.setParameter(JRExporterParameter.OUTPUT_FILE_NAME,
 REPORT_DIRECTORY + "/" + reportName + ".html");
 System.out.println("Exporting report...");
 htmlExporter.exportReport();
 System.out.println("Done!");
 }
 catch (JRException e)
 {
 e.printStackTrace();
 }
 }
 public static void main(String[] args)
 {
 new HtmlExportDemo().htmlExport(args[0]);
 }
}

In this example, we generate an HTML ile and save it to disk. The JRExporter
implementation for HTML export is net.sf.jasperreports.engine.export.
JRHtmlExporter. Like in the previous examples, we set the report to export and
the ilename by setting the appropriate parameters.

http:///

Chapter 9

[255]

A common requirement when exporting to HTML is to have the exported report
directed to a browser window. This technique will be covered in the last section
in this chapter.

The code in the example will generate an HTML report that looks like the following:

Reports exported to HTML result in a single HTML ile, regardless of how many
pages the original report has.

http:///

Exporting to Other Formats

[256]

Exporting to XML
JasperReports uses a Document Type Deinition (DTD) ile to generate XML
reports. XML reports can be exported back to the compiled reports by using the
net.sf.jasperreports.engine.xml.JRPrintXmlLoader class. The following
example demonstrates how to export a report to XML:

package net.ensode.jasperbook;

import java.io.File;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRExporterParameter;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.export.JRXmlExporter;

import net.sf.jasperreports.engine.util.JRLoader;

public class XmlExportDemo

{

 public static final String REPORT_DIRECTORY = "reports";

 public void xmlExport(String reportName)

 {

 File file = new File(REPORT_DIRECTORY + "/" + reportName +
 ".jrprint");

 try

 {

 JasperPrint jasperPrint = (JasperPrint)
 JRLoader.loadObject(file);

 JRXmlExporter xmlExporter = new JRXmlExporter();

 xmlExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);

 xmlExporter.setParameter(JRExporterParameter.OUTPUT_FILE_NAME,
 REPORT_DIRECTORY + "/" + reportName + ".jrpxml");

 System.out.println("Exporting report...");

 xmlExporter.exportReport();

 System.out.println("Done!");

 }

 catch (JRException e)

 {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 new XmlExportDemo().xmlExport(args[0]);

 }

}

http:///

Chapter 9

[257]

As we can see in the example, the JRExporter implementation used to export to
XML is net.sf.jasperreports.engine.export.JRXmlExporter. The same
procedure used in the previous examples is used to set the report to export and
to the resulting ilename.

Notice that the ilename used for the exported report contains
the extension jrpxml. Even though exported reports are
standard XML iles, it is customary to use this extension
instead of xml.

The following is a partial listing of the generated XML ile:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jasperPrint PUBLIC "-//JasperReports//DTD Report Design//EN"
 "http://jasperreports.sourceforge.net/dtds/jasperprint.dtd">

<jasperPrint name="DatasetDemoReport" pageWidth="595"
 pageHeight="842">

 <page>

 <text textHeight="13.578125" lineSpacingFactor="1.3578125"
 leadingOffset="-3.1972656">

 <reportElement x="5" y="40" width="500" height="20"/>

 <textContent>

 <![CDATA[Aircraft registered in MD]]>

 </textContent>

 </text>

 <rectangle radius="0">

 <reportElement mode="Opaque" x="5" y="60" width="782"
 height="80" forecolor="#000000"/>

 <graphicElement pen="None" fill="Solid"/>

 </rectangle>

 <frame>

 <reportElement x="105" y="80" width="100" height="20"
 backcolor="#FFFFFF"/>

 <box border="Thin" borderColor="#000000"/>

 <text textAlignment="Left"
 verticalAlignment="Bottom"
 textHeight="13.578125"
 lineSpacingFactor="1.3578125"
 leadingOffset="-3.1972656">

 <reportElement x="5" y="0" width="55" height="20"/>

 <textContent><![CDATA[1]]></textContent>

 </text>

 </frame>

 </page>

</jasperPrint>

http:///

Exporting to Other Formats

[258]

The DTD for the XML generated when exporting to XML can be found at
http://jasperreports.sourceforge.net/dtds/jasperprint.dtd.

Reports exported to XML can be viewed with the JasperViewer utility included with
JasperReports. To view a report exported to XML, the XML argument needs to be
passed to it. For example, to view this XML report, the following command needs
to be typed in the command line (assuming all required libraries are already in the
CLASSPATH):

net.sf.jasperreports.view.JasperViewer -Freports/DatasetDemoReport.jrpxml
-XML

Exporting reports to XML has some advantages over using the compiled report
directly. For example, exported reports are human readable and editable, and they can
easily be stored in a database without resorting to Binary Large Objects (BLOBS).

Exporting to CSV
Comma Separated Values (CSV) iles contain a number of values separated by
commas. There are several software utilities that can parse CSV iles. JasperReports
includes built-in functionality to export reports to CSV iles. The following example
illustrates the process:

package net.ensode.jasperbook;

import java.io.File;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRExporterParameter;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.export.JRCsvExporter;

import net.sf.jasperreports.engine.util.JRLoader;

public class CsvExportDemo

{

 public static final String REPORT_DIRECTORY = "reports";

 public void csvExport(String reportName)

 {

 File file = new File(REPORT_DIRECTORY + "/" + reportName +
 ".jrprint");

 try

 {

 JasperPrint jasperPrint = (JasperPrint)
 JRLoader.loadObject(file);

 JRCsvExporter csvExporter = new JRCsvExporter();

http:///

Chapter 9

[259]

 csvExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);

 csvExporter.setParameter(JRExporterParameter.OUTPUT_FILE_NAME,
 REPORT_DIRECTORY + "/" + reportName + ".csv");

 System.out.println("Exporting report...");

 csvExporter.exportReport();

 System.out.println("Done!");

 }

 catch (JRException e)

 {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 new CsvExportDemo().csvExport(args[0]);

 }

}

Again, there is nothing earth shattering about this example. It follows the same pattern
we have seen in previous examples. As can be seen in the example, the JRExporter
implementation used to export to CSV is net.sf.jasperreports.engine.export.
JRCsvExporter. The report to export and the ilename of the exported report are set
by assigning the appropriate values to the JRExporterParameter.JASPER_PRINT and
JRExporterParameter.OUTPUT_FILE_NAME parameters.

This example code will generate a CSV ile that looks like the following:

Aircraft registered in MD,,,,,,,,,,,,

,CHALLENGER II,,CL-600-2B16,,TOTAL,,,,,,,

SEVERNA PARK,,1,,0,,1,,,,,,

SPARKS,,0,,1,,1,,,,,,

TOTAL,,1,,1,,2,,,,,,

Aircraft registered in NY,,,,,,,,,,,,

,C90A,,CGS HAWK,,CH 2000,,CHALLENGER II,,CL-600-2B16,,COZY MARK IV,

BROOKLYN,,0,,0,,0,,0,,0,,1

HOLLEY,,0,,0,,0,,1,,0,,0

MAYVILLE,,0,,0,,0,,0,,0,,0

MECHANICVILLE,,0,,0,,0,,1,,0,,0

SAINT JAMES,,1,,0,,0,,0,,0,,0

SAYVILLE,,0,,0,,2,,0,,0,,0

WATERTOWN,,0,,1,,0,,0,,0,,0

WEST HENRIETTE,,0,,0,,0,,1,,0,,0

WHITE PLAINS,,0,,0,,0,,0,,1,,0

TOTAL,,1,,1,,2,,3,,1,,1

http:///

Exporting to Other Formats

[260]

,CW-3,,TOTAL,,,,,,,,,

BROOKLYN,,0,,1,,,,,,,,

HOLLEY,,0,,1,,,,,,,,

MAYVILLE,,1,,1,,,,,,,,

MECHANICVILLE,,0,,1,,,,,,,,

SAINT JAMES,,0,,1,,,,,,,,

SAYVILLE,,0,,2,,,,,,,,

WATERTOWN,,0,,1,,,,,,,,

WEST HENRIETTE,,0,,1,,,,,,,,

WHITE PLAINS,,0,,1,,,,,,,,

TOTAL,,1,,10,,,,,,,,

Aircraft registered in VA,,,,,,,,,,,,

,CL-600-2B19,,CL-600-2C10,,TOTAL,,,,,,,

ARLINGTON,,18,,5,,23,,,,,,

DULLES,,4,,0,,4,,,,,,

TOTAL,,22,,5,,27,,,,,,

Here is how the CSV ile is rendered by OpenOfice.org's spreadsheet
component, Calc:

http:///

Chapter 9

[261]

Exporting to plain text
In this section, we will export a more "textual" report than the one we used for
previous sections. The JRXML template for the report that we will export is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jasperReport PUBLIC "-//JasperReports//DTD Report Design//

 EN" "http://jasperreports.sourceforge.net/dtds/jasperreport.dtd">

<jasperReport name="PlainTextExportDemoReport" >

 <title>

 <band height="30">

 <staticText>

 <reportElement x="0" y="0" width="555" height="30" />

 <text>

 <![CDATA[Text Heavy Report]]>

 </text>

 </staticText>

 </band>

 </title>

 <detail>

 <band height="100">

 <staticText>

 <reportElement x="0" y="0" width="555" height="100" />

 <text>

 <![CDATA[Exporting to plain text makes more sense when the
 report is completely (or mostly) text.Since tables and
 graphical elements don't translate to plain text very
 well. We created this report template to demonstrate
 exporting to plain text. Exciting, isn't it?]]>

 </text>

 </staticText>

 </band>

 </detail>

</jasperReport>

The following Java code fragment will export the JasperReports' native report
generated by this JRXML template into plain text:

package net.ensode.jasperbook;

import java.io.File;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRExporterParameter;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.export.JRTextExporter;

import net.sf.jasperreports.engine.export.JRTextExporterParameter;

http:///

Exporting to Other Formats

[262]

import net.sf.jasperreports.engine.util.JRLoader;

public class PlainTextExportDemo

{

 public static final String REPORT_DIRECTORY = "reports";

 public void plainTextExport(String reportName)

 {

 File file = new File(REPORT_DIRECTORY + "/" + reportName +
 ".jrprint");

 try

 {

 JasperPrint jasperPrint = (JasperPrint)
 JRLoader.loadObject(file);

 JRTextExporter textExporter = new JRTextExporter();

 textExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);

 textExporter.setParameter(
 JRExporterParameter.OUTPUT_FILE_NAME, REPORT_DIRECTORY
 + "/" + reportName + ".txt");

 textExporter.setParameter(JRTextExporterParameter
 .CHARACTER_WIDTH, new Integer(10));

 textExporter.setParameter(JRTextExporterParameter
 .CHARACTER_HEIGHT, new Integer(10));

 System.out.println("Exporting report...");

 textExporter.exportReport();

 System.out.println("Done!");

 }

 catch (JRException e)

 {

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 new PlainTextExportDemo().plainTextExport(args[0]);

 }

}

http:///

Chapter 9

[263]

After compiling and executing this code with the report generated by the JRXML
template we have just written, we should have a text ile with the following contents
in our hard drive:

 Text Heavy Report

Exporting to plain text makes more sense when the

report is completely (or mostly) text.

Since tables and graphical elements don't translate to

plain text very well.

We created this report template to demonstrate

exporting to plain text.

Exciting, isn't it?

Notice how, in this example, we had to set some parameters in addition to
the output ilename. The JRTextExporterParameter.CHARACTER_WIDTH and
JRTextExporterParameter.CHARACTER_HEIGHT parameters tell JasperReports
the number of pixels in the report to be mapped to a character in the exported
text. This is because the text in the report is essentially a bunch of pixels, and the
JasperReports engine does not directly recognize the characters in it. By specifying
the CHARACTER_WIDTH and CHARACTER_HEIGHT parameters, the engine can make
an educated guess on how to map the pixels to ASCII characters.

Another way to help JasperReports map report pixels to ASCII characters is to specify
the page width and height of the exported report. This can be achieved by setting the
JRExportParameter.PAGE_WIDTH and JRExportParameter.PAGE_HEIGHT parameters
to the appropriate values in JRTextExporter.

Either the page width and height or the character width and height (or both) must
be speciied when exporting to plain text. If both page and character dimensions
are speciied, then character dimensions take precedence.

Because the algorithm JasperReports uses to generate plain text
reports maps pixels to ASCII characters, the conversion is not
always 100% accurate. In most cases, report templates must be
modiied so that they can be successfully exported to text. For
these reasons, we do not recommend exporting reports to plain
text unless absolutely necessary.

http:///

Exporting to Other Formats

[264]

Directing HTML reports to a browser
In previous chapters, we have seen the examples of generating a PDF report and
streaming it to the browser "on the ly". Earlier in this chapter, we saw how to export
reports to an HTML and store them in the ilesystem. In this section, we will see how
to export a report to HTML and immediately send it to the user's browser window.
The following example is a servlet that exports an already illed JasperPrint object to
HTML and displays the resulting exported report into the browser. As can be seen in
the following code, it takes the base report name as a request parameter. Executing
this report using the BarChartDemoReport from Chapter 7, Adding Charts and
Graphics to Reports, results in the following page being displayed in the browser:

package net.ensode.jasperbook;

import java.io.File;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletContext;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRExporterParameter;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.export.JRHtmlExporter;

import net.sf.jasperreports.engine.export.JRHtmlExporterParameter;

import net.sf.jasperreports.engine.util.JRLoader;

import net.sf.jasperreports.j2ee.servlets.ImageServlet;

public class HtmlReportServlet extends HttpServlet

{

 public static final String REPORT_DIRECTORY = "/reports";

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)
 throws ServletException, IOException

 {

 ServletContext context = this.getServletConfig()
 .getServletContext();

 String reportName = request.getParameter("reportName");

 File file = new File(context.getRealPath(REPORT_DIRECTORY + "/"
 + reportName + ".jrprint"));

 PrintWriter printWriter = response.getWriter();

 try

 {

http:///

Chapter 9

[265]

 JasperPrint jasperPrint = (JasperPrint) JRLoader
 .loadObject(file.getPath());

 JRHtmlExporter htmlExporter = new JRHtmlExporter();

 response.setContentType("text/html");

 request.getSession().setAttribute(
 ImageServlet.DEFAULT_JASPER_PRINT_SESSION_ATTRIBUTE,
 jasperPrint);

 htmlExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);

 htmlExporter.setParameter(JRExporterParameter.OUTPUT_WRITER,
 printWriter);

 htmlExporter.setParameter(JRHtmlExporterParameter.IMAGES_URI,
 "image?image=");

 htmlExporter.exportReport();

 }

 catch (JRException e)

 {

 // display stack trace in the browser

 e.printStackTrace(printWriter);

 }

 }

}

http:///

Exporting to Other Formats

[266]

Directing the browser to the URL for this servlet will result in the report
being displayed in the browser in HTML, as can be seen demonstrated in
the following screenshot:

We chose to export this particular report to illustrate that the HTML exporting
capability works ine for complex reports. This report generates charts at the
illtime, which get translated to image iles when exporting to HTML.

In order to stream a report as HTML to the browser, we need to set some parameters
on an instance of net.sf.jasperreports.engine.export.JRHtmlExporter.
The irst parameter name we need to set is deined in the net.sf.jasperreports.
engine.JRExporterParameter.JASPER_PRINT constant. Its value must be an
instance of net.sf.jasperreports.engine.JasperPrint containing the report
we wish to stream to the browser.

http:///

Chapter 9

[267]

The next parameter we need to set is deined in the net.sf.jasperreports.
engine.JRExporterParameter.OUTPUT_WRITER constant. As can be seen in the
example, its corresponding value must be the instance of java.io.PrintWriter
obtained by calling the getWriter() method on the HttpServletResponse object.

If the report we are exporting contains images, then there are a couple of extra steps
we need to take to make sure the images are displayed correctly in the browser. We
must attach the JasperPrint instance to the HTTP session. The session attribute name
is deined in the DEFAULT_JASPER_PRINT_SESSION_ATTRIBUTE constant deined in
net.sf.jasperreports.j2ee.servlets.ImageServlet.

We also need to set the JRHtmlExporterParameter.IMAGES_URI parameter in the
instance of JRHtmlExporter; its corresponding value must be a string indicating
the location of the images. In practice, this value is almost always set to the URL
mapped to the net.sf.jasperreports.j2ee.servlets.ImageServlet included
with JasperReports. In our example, we set its value to "image?image=", which is
a typical value. Of course, the ImageServlet must be included in the web.xml for
reports with images to render properly. The web.xml corresponding to the previous
servlet deployment is as follows:

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>webreport</servlet-name>
 <servlet-class>
 net.ensode.jasperbook.HtmlReportServlet
 </servlet-class>
 </servlet>
 <servlet>
 <servlet-name>ImageServlet</servlet-name>
 <servlet-class>
 net.sf.jasperreports.j2ee.servlets.ImageServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>webreport</servlet-name>
 <url-pattern>/webreport</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>ImageServlet</servlet-name>
 <url-pattern>/image</url-pattern>
 </servlet-mapping>
</web-app>

http:///

Exporting to Other Formats

[268]

Notice that, for this example, we loaded an already illed report from the ilesystem
and streamed it to the browser as HTML. It is also possible to load a jasper template,
ill it, export the resulting report to HTML, and then stream it to the browser. To
accomplish this, we would load the jasper template from the ilesystem, ill it using
the JasperFillManager.fillReport() method, and then export the resulting
JasperPrint object to HTML. The following example is a modiied version of the
previous servlet, and the new version illustrates this procedure:

package net.ensode.jasperbook;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.util.HashMap;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JRExporterParameter;

import net.sf.jasperreports.engine.JasperFillManager;

import net.sf.jasperreports.engine.JasperPrint;

import net.sf.jasperreports.engine.export.JRHtmlExporter;

import net.sf.jasperreports.engine.export.JRHtmlExporterParameter;

import net.sf.jasperreports.j2ee.servlets.ImageServlet;

public class HtmlReportServlet2 extends HttpServlet

{

 public static final String REPORT_DIRECTORY = "/reports";

 protected void doGet(HttpServletRequest request, HttpServletResponse
 response)

 throws ServletException, IOException

 {

 Connection connection;

 String reportName = request.getParameter("reportName");

 PrintWriter printWriter = response.getWriter();

 InputStream reportStream = getServletConfig().getServletContext()
 .getResourceAsStream("/" + REPORT_DIRECTORY + "/"
 + reportName + ".jasper");

 JasperPrint jasperPrint;

 try

http:///

Chapter 9

[269]

 {

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection("jdbc:mysql://
 localhost:3306/flightstats?user=root&password=password");

 jasperPrint = JasperFillManager.fillReport(reportStream, new
 HashMap(), connection);

 JRHtmlExporter htmlExporter = new JRHtmlExporter();

 response.setContentType("text/html");

 request.getSession().setAttribute(

 ImageServlet.DEFAULT_JASPER_PRINT_SESSION_ATTRIBUTE,
 jasperPrint);

 htmlExporter.setParameter(JRExporterParameter.JASPER_PRINT,
 jasperPrint);

 htmlExporter.setParameter(JRExporterParameter.OUTPUT_WRITER,
 printWriter);

 htmlExporter.setParameter(JRHtmlExporterParameter.IMAGES_URI,
 "image?image=");

 htmlExporter.exportReport();

 connection.close();

 }

 catch (Throwable t)

 {

 // display stack trace in the browser

 t.printStackTrace(printWriter);

 }

 }

}

The main difference between this example and the previous one is that, instead
of loading the JasperPrint object from the ilesystem, we are loading the jasper
template, illing it, and storing the illed report in a JasperPrint object. This instance
is then used as the value for the JRExporterParameter.JASPER_PRINT parameter.

http:///

Exporting to Other Formats

[270]

Summary
In this chapter, we learned how to export reports to all of the formats supported
by JasperReports. We learned to export reports to PDF by taking advantage of the
JRPdfExporter class. We also saw how to export reports to RTF/Microsoft Word
by taking advantage of the JRRtfExporter class. Additionally, we saw how reports
can be exported to OpenDocument format (the native format for OpenOfice.org and
StarOfice) using the JROdtExporter class. Similarly, to export reports to Microsoft
Excel, HTML, and CSV formats we used the JExcelApiExporter, JRHtmlExporter,
and JRCsvExporter classes, respectively. The JRXmlExporter class of JasperReports
provided us with the functionality to export our reports to the XML format. Finally,
we learned to export reports to plain text by taking advantage of the JRTextExporter
class. The chapter also gave us an insight on how to direct HTML reports to a browser.

http:///

Graphical Report Design

with iReport
So far, we have been creating all our reports by writing JRXML templates by hand.
JasperSoft, the company behind JasperReports, offers a graphical report designer called
iReport. iReport allows us to design reports graphically by dragging report elements
into a report template and by using its graphical user interface to set report attributes.

iReport started as an independent project by Giulio Toffoli. JasperSoft recognized the
popularity of iReport and, in October 2005, hired Giulio Toffoli and made iReport
the oficial report designer for JasperSoft. Like JasperReports, iReport is also open
source. It is licensed under the GNU Public License (GPL).

In 2008, iReport was rewritten to take advantage of the NetBeans platform. It is
freely available both as a standalone product and as a plugin to the NetBeans IDE.

In this chapter, we will be covering the standalone version of
iReport; however, the material is also applicable to the iReport
NetBeans plugin.

By the end of this chapter, you will be able to:

•	 Obtain and set up iReport

•	 Quickly create database reports by taking advantage of iReport's
Report Wizard

•	 Design reports graphically with iReport
•	 Add multiple columns to a report

•	 Group report data

•	 Add images and charts to a report

http:///

Graphical Report Design with iReport

[272]

Obtaining iReport
iReport can be downloaded from its home page at http://jasperforge.org/
projects/ireport by clicking on the Download iReport image slightly above
the center of the page.

Once we click on the image, we are directed to an intermediate page where we can
either log in with our JasperForge account or go straight to the download page.

http:///

Chapter 10

[273]

Either logging in or clicking on the No Thanks, Download Now button takes us
to the iReport download page.

The standalone iReport product is in the irst row of the table on the page. To
download it, we simply click on the Download link in the last column. Other
downloads on the page are for older versions of JasperReports, iReport NetBeans
plugin, and other JasperSoft products.

http:///

Graphical Report Design with iReport

[274]

iReport can be downloaded as a DMG ile for Macintosh computers, as a Windows
installer for Windows PCs, as a source ile, as a ZIP ile, or as a gzipped TAR ile.
To install iReport, simply follow the usual application installation method for
your platform.

If you chose to download the ZIP or gzipped TAR ile, simply extract it into any
directory. A subdirectory called something like iReport-nb-3.5.1 will be created.
(The exact name will depend on the version of iReport that was downloaded.) Inside
this directory, you will ind a bin subdirectory containing an executable shell script
called ireport and a couple of Windows executables, ireport.exe and ireport_w.
exe. On Windows systems, either EXE ile will start iReport.

The difference between the two Windows executables is that the
ireport.exe will display a command-line window when iReport
is executed, and ireport_w.exe won't. Both versions provide
exactly the same functionality.

On Unix and Unix-like systems, such as Linux and Mac OS, iReport can be started
by executing the ireport shell script.

The following screenshot illustrates how iReport looks when it is opened for the
irst time:

http:///

Chapter 10

[275]

Setting up iReport
iReport can help us quickly generate database reports. To do so, we need to
provide it with the JDBC driver and connection information for our database.

iReport comes bundled with JDBC drivers for several open source relational
database systems, such as MySQL, PostgreSQL, HSQLDB, and others. If we want
to connect to a different database, we need to add the JDBC driver to iReport's
CLASSPATH. This can be done by clicking on Tools | Options and then selecting
the Classpath tab.

To add the JDBC driver to the CLASSPATH, click on the Add JAR button, and then
navigate to the location of the JAR ile containing the JDBC driver. Select the JAR ile
and click on the OK button at the bottom of the window.

We won't actually add a JDBC driver, as we are using MySQL for
our examples, which is one of the RDBMS systems supported out of
the box by iReport. The information just provided is for the beneit of
readers using an RDBMS system that is not supported out of the box.

http:///

Graphical Report Design with iReport

[276]

Before we can create reports that use an RDBMS as a datasource, we need to create a
database connection. In order to do so, we need to click on the Report Datasources
icon in the toolbar:

After doing so, the Connections / Datasources coniguration window should
pop up.

To add the connection, we need to click on the New button, select Database JDBC
connection, and then click on the Next> button.

http:///

Chapter 10

[277]

We then need to select the appropriate JDBC driver, ill in the connection
information, and click on the Save button.

Before saving the database connection properties, it is a good idea to click on the
Test button to make sure we can connect to the database. If we can, we should see
a pop-up window like the following:

After verifying that we can successfully connect to the database, we are ready to
create some database reports.

http:///

Graphical Report Design with iReport

[278]

Creating a database report in record time
iReport contains a wizard that allows us to quickly generate database reports (very
useful if the boss asks for a report 15 minutes before the quitting time on a Friday!).
The wizard allows us to use one of the predeined templates that are included with
iReport. The included report templates are divided into two groups: templates laid
out in a "columnar" manner and templates laid out in a "tabular" manner. Columnar
templates generate reports that are laid out in columns, and tabular templates
generate reports that are laid out like a table.

In this section, we will create a report displaying all the aircraft with a horsepower
of 1000 or more.

To quickly create a database report, we need to go to File | New | Report Wizard.

We should then enter an appropriate name and location for our report and click
on Next>.

http:///

Chapter 10

[279]

Next, we need to select the datasource or database connection to use for our report.
For our example, we will use the JDBC connection we conigured in the previous
section. We can then enter the database query we will use to create the report.
Alternatively, we can use the iReport query designer to design the query.

For individuals with SQL experience, in many cases it is easier
to come up with the database query in a separate database client
tool and then paste it in the Query text area than using the
query designer.

The complete query for the report is:

select

a.tail_num,

a.aircraft_serial,

am.model as aircraft_model,

ae.model as engine_model

from aircraft a, aircraft_models am, aircraft_engines ae

where a.aircraft_model_code = am.aircraft_model_code

and a.aircraft_engine_code = ae.aircraft_engine_code
and ae.horsepower >= 1000

http:///

Graphical Report Design with iReport

[280]

The following window shows a list of all the columns selected in the query, allowing
us to select which ones we would like to use as report ields:

In this case, we want the data for all columns in the query to be displayed in the
report. Therefore, we select all columns by clicking on the second button.

We then select how we want to group the data and click on Next>. This creates a
report group. (Refer to the Grouping Report Data section in Chapter 6, Report Layout
and Design for details.)

http:///

Chapter 10

[281]

In this example, we will not group the report data. The screenshot illustrates how
the drop-down box contains the report ields selected in the previous step.

We then select the report layout (Columnar or Tabular). In this example, we will
use the Tabular Layout.

After selecting the layout, we click on Next> to be presented with the last step.

http:///

Graphical Report Design with iReport

[282]

We then click on Finish to generate the report's JRXML template.

While the template is automatically saved when it is created, the
report generated by the Preview button is not automatically saved.

We can then preview our report by clicking on Preview.

That's it! We have created a report by simply entering a query and selecting a few
options from a wizard.

http:///

Chapter 10

[283]

Tweaking the generated report
Admittedly, the report title and column headers of our report need some tweaking.
To modify the report title so that it actually relects the report contents, we can either
double-click on the report title on iReport's main window and type an appropriate
report title, or we can modify the value of the Text property for the title static text in
the Properties window at the lower righthand side.

Double-clicking on the title is certainly the fastest way to modify it. However, the
Properties window allows us to modify not only the text, but also the font, borders,
and several other properties.

We can follow the same procedure for each column header. The following screenshot
shows the resulting template as displayed in iReport's main window:

We'll preview the report one more time to see the inal version.

http:///

Graphical Report Design with iReport

[284]

There you have it! The boss can have his or her report, and we can leave work and
enjoy the weekend!

Creating a report from scratch
In the previous section, we discussed how to quickly generate a database report by
using iReport's Report Wizard. The wizard is very convenient because it allows us to
create a report very quickly. However, its disadvantage is that it is not very lexible.
In this section, we will learn how to create a report from scratch in iReport. Our
report will show the tail number, serial number, and model of every aircraft in the
FlightStats database.

To create a new report, we need to go to the File | New | Empty report menu item.

At this point, we should enter a Report name and Location.

http:///

Chapter 10

[285]

In this example, we will set the report name to iReportDemo and accept all the other
default values. After clicking on the OK button, iReport's main window should look
like this:

The horizontal lines divide the different report sections. Any item we insert between
any two horizontal lines will be placed in the appropriate report section's band.
Horizontal lines can be dragged to resize the appropriate section(s).

http:///

Graphical Report Design with iReport

[286]

The vertical lines represent the left and right report margins. It is not possible to drag
the vertical lines. To modify the left and right margins, we must select the report in
the Report Inspector window at the top left.

Then, we need to modify the margins from the Properties window at the bottom right.

Properties for all the report sections and elements, such as variables,
scriptlets, title, background, detail, and so on, can be modiied by
following the approach described here.

Going back to our empty report template, let's add a report title. For this, we will use
the static text Aircraft Report. To add the static text, we need to use the Static Text
component in the Palette.

http:///

Chapter 10

[287]

We then need to drag the Static Text component to the Title area of the report.
iReport, by default, inserts the text Static text inside this ield. To modify this default
text, we can double-click anywhere inside the ield and type in a more appropriate
title. Alternatively, we can modify the Text property for the static text ield in the
Properties window at the lower righthand side.

In the Properties window, we can modify other properties for our text. In the above
screenshot, we modiied the text size to be 18 pixels, and we made it bold by clicking
on the checkbox next to the Bold property.

We can center the report title within the Title band by right-clicking on it, selecting
Position, and then Center.

http:///

Graphical Report Design with iReport

[288]

After following all of these steps, our report should now look like this:

Applying the same techniques used for adding the report title, we can add some
more static text ields in the page header. After adding the page header, our report
now looks like this:

http:///

Chapter 10

[289]

We modiied the Vertical Alignment of all three text ields in the page header
by selecting the appropriate values in the Properties window for each one of them.

Now it is time to add some dynamic data to the report. We can enter a report
query selecting the report node in the Report Inspector window and then selecting
Edit Query.

As we type the report query, by default iReport retrieves report ields from it. This
query will retrieve the tail number, serial number, and model of every aircraft in the
database.

http:///

Graphical Report Design with iReport

[290]

Now that we have a query and report ields, we can add text ields to the report. We
can do so by dragging the ields in the Report Inspector window to the appropriate
location in the report template.

http:///

Chapter 10

[291]

After aligning each text ield with the corresponding header, our report should now
look like this:

To avoid extra vertical space between records, we resized the Detail band by
dragging its bottom margin up. The same effect can be achieved by double-clicking
on the bottom margin.

Notice that we have an empty Column Header band in the report template. This
empty band will result in having some whitespace between each header and the irst
row in the Detail band. To avoid having this whitespace in our report, we can easily
delete this band by right-clicking on it in the Report Inspector window and selecting
Delete Band.

http:///

Graphical Report Design with iReport

[292]

We now have a simple but complete report. We can view it by clicking on Preview.

That's it! We have created a simple report graphically with iReport.

Creating more elaborate reports
In the previous section, we created a fairly simple database report. In this section, we
will modify that report to illustrate how to add images, charts, and multiple columns
to a report. We will also see how to group report data. We will perform all of these
tasks graphically with iReport.

Adding images to a report
Adding static images to a report is very simple with iReport. Just drag the Image
component from the Palette to the band where it will be rendered in the report.

When we drop the image component into the appropriate band, a window pops up
asking us to specify the location of the image ile to display.

http:///

Chapter 10

[293]

After we select the image, we can drag it to its exact location where it will be rendered.

As we can see, adding images to a report using iReport couldn't be any simpler.

http:///

Graphical Report Design with iReport

[294]

Adding multiple columns to a report
The report we've been creating so far in this chapter contains over 11,000 records.
It spans over 300 pages. As we can see, there is a lot of space between the text ields.
Perhaps it would be a good idea to place the text ields closer together and add
an additional column. This would cut the number of pages in the report by half.

To change the number of columns in the report, we simply need to select the root
report node in the Report Inspector window at the top left and then modify its
Columns property in the Properties window at the bottom right.

When we modify the Columns property, iReport automatically modiies the Column
Width property to an appropriate value. We are free, of course, to modify this value
if it doesn't meet our needs.

As our report now contains more than one column, it makes sense to re-add the
Column Header band we deleted earlier. This can be done by right-clicking on
the band in the Report Inspector window and selecting Add Band.

http:///

Chapter 10

[295]

Next, we need to move the static text in the page header to the Column Header band.
To move any element from one band to another, all we need to do is drag it to the
appropriate band in the Report Inspector window.

Next, we need to resize and reposition the text ields in the Detail band and the static
text elements in the Column Header band so that they it in the new, narrower width
of the columns. Also, resize the Column Header band to avoid having too much
whitespace between the elements of the Column Header and Detail bands. Our report
now looks like this:

http:///

Graphical Report Design with iReport

[296]

We can see the resulting report by clicking on Preview.

Grouping report data
Suppose we are asked to modify our report so that data is divided by the state where
the aircraft is registered. This is a perfect situation to apply report groups. Recall
from Chapter 6, Report Layout and Design, that report groups allow us to divide report
data when a report expression changes. Recall that our report query limits the result
set to aircraft registered in the United States, and one of the columns it retrieves is
the state where the aircraft is registered.

To deine a report group, we need to right-click on the root report node in the Report
Inspector window, and then select Add Report Group.

http:///

Chapter 10

[297]

Then, enter the Group name and indicate whether we want to group by a ield or by
a report expression. In our case, we want to group the data by state ield.

After clicking on Next>, we need to indicate whether we want to add a group header
and/or footer to our report.

http:///

Graphical Report Design with iReport

[298]

For aesthetic purposes, we move the static text ields in the Column Header band
to the Group Header band, remove the column and page header bands, and add
additional information to the Group Header band. After making all of these changes,
our report preview will look like this:

We can preview the report by clicking Preview.

http:///

Chapter 10

[299]

Adding charts to a report
To add a chart to a report, we need to drag the Chart component from the Palette
into the approximate location where the chart will be rendered in the report.

When dropping the chart component into the report, the following window will
pop up, allowing us to select the type of chart we want to add to the report:

For this example, we will add a 3D bar chart to the report. All that needs to be done
is to click on the appropriate chart type, and then click on the OK button.

http:///

Graphical Report Design with iReport

[300]

Our chart will graphically illustrate the number of aircraft registered in each state
of the United States. (We will explain how to have the chart display the appropriate
data later in this section.) We will place the chart in the Summary band at the end of
the report. As the chart will illustrate a lot of data, we need to resize the Summary
band so that our chart can it. After resizing the Summary band, outlining the area
of the report to be covered by the chart, and selecting the chart type, the Summary
section of our report preview looks like this:

To ine-tune the appearance of the chart, we can select it in the Report Inspector
window and then modify its properties as necessary in the Properties window.

http:///

Chapter 10

[301]

To specify the data that will be displayed in the chart, we need to right-click on the
chart in the Report Inspector window and select Chart Data. We then need to click
on the Details tab in the resulting pop-up window.

http:///

Graphical Report Design with iReport

[302]

We then need to click on the Add button to add a new Category series.

The Series expression ield is the name of the series. Its value can be any object that
implements java.lang.Comparable. In most cases, the value of this ield is a string.

The Category expression ield is the label of each value in the chart. The value of this
ield is typically a string. In our example, each state is a different category, so we will
use the state ield ($F{state}) as our category expression.

The Value expression ield is a numeric value representing the value to be charted
for a particular category. In our example, the number of aircraft in a particular state
is the value we want to chart. Therefore, we use the implicit stateGroup_COUNT
variable ($V{stateGroup_COUNT}) as our value expression.

The optional Label Expression ield allows us to customize item labels in the chart.

Every time we create a group in a report template, an implicit variable
named groupName_COUNT is created, where groupName is the name
of the group.

http:///

Chapter 10

[303]

We can either type in a value for the Series expression, Category expression,
and Value expression ields, or we can click on the icon to be able to graphically
select the appropriate expression using iReport's Expression editor.

Using the Expression editor, we can select any parameter, ield, or variable as
our expression. We can also use user-deined expressions to ill out any of the
ields that require a valid JasperReports expression.

After selecting the appropriate expressions for each of the ields, our chart details
are as follows:

http:///

Graphical Report Design with iReport

[304]

After clicking on OK and closing the Chart details window, we are ready to view
our chart in action, which can be done simply by clicking on Preview.

Help and support
Although this chapter didn't discuss every iReport feature, I'm conident that iReport
is intuitive enough after you get comfortable with it. Some of the iReport features
not covered in this chapter include subreport creation and adding crosstabs, lines,
ellipses, and rectangles to a report. However, we have learned all these features
the "hard" way by creating a JRXML template by hand. For someone familiar with
JasperReports, adding these features to a report created by iReport should be
trivial. If more help is needed, JasperSoft provides additional documentation for
iReport, and lots of knowledgeable people frequent the iReport forums at http://
jasperforge.org/plugins/espforum/browse.php?group_id=83&forumid=101.

http:///

Chapter 10

[305]

Summary
This chapter taught us how to install and set up iReport, use iReport's Report Wizard
to quickly generate a report, and graphically design custom reports. Moreover, we
learned how to group report data graphically with iReport, to add multiple columns
to a report, and to add images and charts to a report graphically with iReport.

iReport is a very powerful tool that can signiicantly reduce report design time.
To use all of the features of iReport effectively, however, an iReport user must be
familiar with basic JasperReports concepts, such as bands, report variables, report
ields, and so on.

http:///

http:///

Integrating JasperReports

with Other Frameworks
In previous chapters, we have seen several examples of web-based applications
generating reports and streaming them to the browser. In those examples, we
have been using "raw" servlets to generate reports. Most modern web-based Java
applications are written using one of several web application frameworks. In
addition to using a web application framework, most modern Java projects use
an object-relational mapping (ORM) tool for database access. In this chapter, we
will cover how to integrate JasperReports with several popular web application
frameworks and ORM tools. We will cover the following topics:

•	 Integrating JasperReports with Hibernate

•	 Integrating JasperReports with the Java Persistence API (JPA)

•	 Integrating JasperReports with Spring

•	 Integrating JasperReports with Java Server Faces (JSF)

•	 Integrating JasperReports with Struts

Please note that this chapter assumes some familiarity with the above frameworks.
Feel free to skip to the sections that apply to the frameworks used in your project.

http:///

Integrating JasperReports with Other Frameworks

[308]

Integrating JasperReports with Hibernate
Hibernate (http://www.hibernate.org) is a very popular ORM tool. JasperReports
(version 1.2 and newer) includes native support for Hibernate integration. This
integration consists of allowing embedded report queries to be written in the
Hibernate Query Language (HQL). The following JRXML template illustrates how
to do this:

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport
 xmlns="http://jasperreports.sourceforge.net/jasperreports"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jasperreports.sourceforge.net
 /jasperreports http://jasperreports.sourceforge.net/xsd
 /jasperreport.xsd"
 name="HibernateQueryDemoReport" pageWidth="595" pageHeight="842"
 columnWidth="555" leftMargin="20" rightMargin="20"
 topMargin="30" bottomMargin="30">

 <parameter name="countryCode" class="java.lang.String"/>

 <queryString language="hql">

 <![CDATA[from Aircraft aircraft
 where country = $P{countryCode} order by aircraft.id]]>

 </queryString>

 <field name="id" class="java.lang.String"/>

 <field name="aircraftSerial" class="java.lang.String"/>

 <field name="yearBuilt" class="java.lang.String"/>

 <title>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="555" height="30"/>

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA["Aircraft Registered in Country Code: " +

 $P{countryCode}]]>

 </textFieldExpression>

 </textField>

 </band>

 </title>

 <pageHeader>

 <band height="30">

 <staticText>

 <reportElement x="0" y="0" width="100" height="30"/>

 <textElement/>

 <text>

 <![CDATA[Tail Number]]>

http:///

Chapter 11

[309]

 </text>

 </staticText>

 <staticText>

 <reportElement x="100" y="0" width="100" height="30"/>

 <textElement/>

 <text>

 <![CDATA[Serial Number]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="200" y="0" width="100" height="30"/>

 <textElement/>

 <text>

 <![CDATA[Year Built]]>

 </text>

 </staticText>

 </band>

 </pageHeader>

 <detail>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="100" height="30"/>

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{id}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="100" y="0" width="100" height="30"/>

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraftSerial}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="200" y="0" width="100" height="30"/>

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{yearBuilt}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

http:///

Integrating JasperReports with Other Frameworks

[310]

This JRXML template does not look much different from other JRXML templates we
have seen before. The only difference is that its embedded report query is written in
the HQL. To let JasperReports know that it should interpret the query as HQL (as
opposed to SQL), the language attribute of the <queryString> element must be set
to hql.

There is nothing special we need to do in order to compile a report using HQL
as its query language. We can either use standard ANT tasks or compile it
programmatically, just like any other JRXML template.

The HQL query in this template retrieves data in the aircraft table for all the
aircraft registered in the country speciied by the countryCode parameter. Hibernate
uses Value Objects that map to database tables. In order to make the HQL query
in the JRXML template work, we need to create a Value Object that maps to the
aircraft table.

To develop the example for this section, we have used an Eclipse plug-
in called Hibernate Synchronizer. Hibernate Synchronizer generates
Hibernate Java source code and XML coniguration from the database
schema. It greatly speeds up development of the Data Access Layer
of an application using Hibernate for database access. Hibernate
Synchronizer can be downloaded from http://hibernatesynch.
sourceforge.net.

The code for this Value Object is as follows:

package net.ensode.jasperbook.dbaccess;

import net.ensode.jasperbook.dbaccess.base.BaseAircraft;

public class Aircraft extends BaseAircraft

{

 private static final long serialVersionUID = 1L;

 /* [CONSTRUCTOR MARKER BEGIN] */

 public Aircraft()

 {

 super();

 }

 /**

 * Constructor for primary key

 */

 public Aircraft(java.lang.String id)

 {

 super(id);

 }

 /**

 * Constructor for required fields

http:///

Chapter 11

[311]

 */

 public Aircraft(java.lang.String id,
 java.lang.String aircraftSerial,
 java.lang.String aircraftModelCode,
 java.lang.String aircraftEngineCode,
 java.lang.String yearBuilt,
 java.lang.String aircraftTypeId,
 java.lang.String aircraftEngineTypeId,
 java.lang.String registrantTypeId,
 java.lang.String name, java.lang.String address1,
 java.lang.String address2, java.lang.String city,
 java.lang.String state, java.lang.String zip,
 java.lang.String region, java.lang.String county,
 java.lang.String country,
 java.lang.String certification,
 java.lang.String statusCode,
 java.lang.String modeSCode,
 java.lang.String fractOwner,
 java.util.Date lastActionDate,
 java.util.Date certIssueDate,
 java.util.Date airWorthDate)

 {

 super(id, aircraftSerial, aircraftModelCode, aircraftEngineCode,

 yearBuilt, aircraftTypeId, aircraftEngineTypeId,
 registrantTypeId, name, address1, address2, city, state, zip,
 region, county, country, certification, statusCode, modeSCode,
 fractOwner, lastActionDate, certIssueDate, airWorthDate);

 }

 /* [CONSTRUCTOR MARKER END] */

}

Notice that this class extends a class called BaseAircraft, and its source code is
as follows:

package net.ensode.jasperbook.dbaccess.base;

import java.lang.Comparable;

public abstract class BaseAircraft implements Comparable, Serializable

{

 public static String REF = "Aircraft";

 public static String PROP_AIRCRAFT_SERIAL = "AircraftSerial";

 public static String PROP_AIRCRAFT_TYPE_ID = "AircraftTypeId";

 public static String PROP_STATE = "State";

 public static String PROP_REGISTRANT_TYPE_ID = "RegistrantTypeId";

 public static String PROP_ADDRESS1 = "Address1";

 //remaining property constants removed for brevity

 //constructors omitted for brevity

http:///

Integrating JasperReports with Other Frameworks

[312]

 protected void initialize()

 {

 }

 private int hashCode = Integer.MIN_VALUE;

 // primary key

 private java.lang.String id;

 // fields

 private java.lang.String aircraftSerial;

 private java.lang.String aircraftModelCode;

 private java.lang.String aircraftEngineCode;

 private java.lang.String yearBuilt;

 private java.lang.String aircraftTypeId;

 private java.lang.String aircraftEngineTypeId;

 private java.lang.String registrantTypeId;

 private java.lang.String name;

 private java.lang.String address1;

 private java.lang.String address2;

 private java.lang.String city;

 private java.lang.String state;

 private java.lang.String zip;

 private java.lang.String region;

 private java.lang.String county;

 private java.lang.String country;

 private java.lang.String certification;

 private java.lang.String statusCode;

 private java.lang.String modeSCode;

 private java.lang.String fractOwner;

 private java.util.Date lastActionDate;

 private java.util.Date certIssueDate;

 private java.util.Date airWorthDate;

 //Getters, setters, equals() and hashCode() methods

 //omitted for brevity

 public int compareTo(Object obj)

 {

 if (obj.hashCode() > hashCode())

 return 1;

 else if (obj.hashCode() < hashCode())

 return -1;

 else

 return 0;

 }

 public String toString()

 {

http:///

Chapter 11

[313]

 return super.toString();

 }

}

In order to let Hibernate know that the preceding class maps to the aircraft table,
we need to write an XML coniguration ile, and its source code is as follows:

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC

 "-//Hibernate/Hibernate Mapping DTD//EN"

 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="net.ensode.jasperbook.dbaccess">

 <class name="Aircraft"

 table="aircraft">

 <id name="Id"

 type="string"

 column="tail_num">

 </id>

 <property name="AircraftSerial"

 column="aircraft_serial"

 type="string"

 not-null="true"

 length="20"/>

 <property name="AircraftModelCode"

 column="aircraft_model_code"

 type="string"

 not-null="true"

 length="7"/>

 <property name="AircraftEngineCode"

 column="aircraft_engine_code"

 type="string"

 not-null="true"

 length="5"/>

 <property name="YearBuilt"

 column="year_built"

 type="java.lang.String"

 not-null="true"

 length="4"/>

 <property name="AircraftTypeId"

 column="aircraft_type_id"

 type="java.lang.String"

 not-null="true"

 length="3"/>

 <property name="AircraftEngineTypeId"

http:///

Integrating JasperReports with Other Frameworks

[314]

 column="aircraft_engine_type_id"

 type="java.lang.String"

 not-null="true"

 length="3"/>

 <property name="RegistrantTypeId"

 column="registrant_type_id"

 type="java.lang.String"

 not-null="true"

 length="3"/>

 <property name="Name"

 column="name"

 type="string"

 not-null="true"

 length="50"/>

 <property name="Address1"

 column="address1"

 type="string"

 not-null="true"

 length="33"/>

 <property name="Address2"

 column="address2"

 type="string"

 not-null="true"

 length="33"/>

 <property name="City"

 column="city"

 type="string"

 not-null="true"

 length="18"/>

 <property name="State"

 column="state"

 type="string"

 not-null="true"

 length="2"/>

 <property name="Zip"

 column="zip"

 type="string"

 not-null="true"

 length="10"/>

 <property name="Region"

 column="region"

 type="string"

 not-null="true"

 length="1"/>

http:///

Chapter 11

[315]

 <property name="County"

 column="county"

 type="string"

 not-null="true"

 length="3"/>

 <property name="Country"

 column="country"

 type="string"

 not-null="true"

 length="2"/>

 <property name="Certification"

 column="certification"

 type="string"

 not-null="true"

 length="10"/>

 <property name="StatusCode"

 column="status_code"

 type="string"

 not-null="true"

 length="1"/>

 <property name="ModeSCode"

 column="mode_s_code"

 type="string"

 not-null="true"

 length="8"/>

 <property name="FractOwner"

 column="fract_owner"

 type="string"

 not-null="true"

 length="1"/>

 <property name="LastActionDate"

 column="last_action_date"

 type="date"

 not-null="true"

 length="10"/>

 <property name="AirWorthDate"

 column="air_worth_date"

 type="date"

 not-null="true"

 length="10"/>

 </class>

</hibernate-mapping>

http:///

Integrating JasperReports with Other Frameworks

[316]

This XML ile lets Hibernate know that the Aircraft class maps to the aircraft
table, and also deines the mapping between the table's columns and the class ields.

Hibernate needs another XML coniguration ile, which allows it to know the
database connection information and the XML iles to be used to map database
tables to Java classes. This XML coniguration ile is called hibernate.cfg.xml,
and its source code is as follows:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"

 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <!-- local connection properties -->

 <property name="hibernate.connection.url">

 jdbc:mysql://localhost:3306/flightstats

 </property>

 <property name="hibernate.connection.driver_class">

 com.mysql.jdbc.Driver

 </property>

 <property name="hibernate.connection.username">user</property>

 <property name="hibernate.connection.password">secret</property>

 <!-- property name="hibernate.connection.pool_size"></property -->

 <!-- dialect for MySQL -->

 <property name="dialect">

 org.hibernate.dialect.MySQLDialect

 </property>

 <property name="hibernate.show_sql">false</property>

 <property name="hibernate.transaction.factory_class">

 org.hibernate.transaction.JDBCTransactionFactory

 </property>

 <mapping resource="Aircraft.hbm.xml" />

 <mapping resource="AircraftEngines.hbm.xml"/>

 <mapping resource="AircraftEngineTypes.hbm.xml"/>

 <mapping resource="AircraftModels.hbm.xml"/>

 <mapping resource="AircraftTypes.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

http:///

Chapter 11

[317]

The following code fragment illustrates how to ill a report using HQL as its
query language:

package net.ensode.jasperbook;

import java.util.HashMap;

import java.util.Map;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperFillManager;

import net.sf.jasperreports.engine.query.
JRHibernateQueryExecuterFactory;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.cfg.Configuration;

public class HibernateQueryDemo

{

 Session session;

 SessionFactory sessionFactory;

 public static void main(String[] args)

 {

 new HibernateQueryDemo().fillReport(args[0]);

 }

 public void fillReport(String countryCode)

 {

 String reportDirectory = "reports";

 session = createSession();

 Map parameterMap = new HashMap();

 parameterMap.put(JRHibernateQueryExecuterFactory
 .PARAMETER_HIBERNATE_SESSION, session);

 parameterMap.put("countryCode", countryCode);

 try

 {

 System.out.println("Filling report...");

 JasperFillManager.fillReportToFile(reportDirectory
 + "/HibernateQueryDemoReport.jasper", parameterMap);

 System.out.println("Done!");

 }

 catch (JRException e)

 {

 System.out.println("There was an error filling the report.");

 e.printStackTrace();

 }

 }

 private Session createSession()

http:///

Integrating JasperReports with Other Frameworks

[318]

 {

 SessionFactory sessionFactory = new Configuration().configure()
 .buildSessionFactory();

 return sessionFactory.openSession();

 }

}

Once again, there is not much difference between illing a report using an embedded
HQL query and illing a report using an embedded SQL query or a datasource. The
main difference is that an instance of org.hibernate.Session must be passed
to the report through a parameter named JRHibernateQueryExecuterFactory.
PARAMETER_HIBERNATE_SESSION. Executing this code will generate a report similar
to the following:

Of course, in order for this procedure to work, Hibernate must be conigured
properly so as to connect to the database from which the report data will be retrieved.
Refer to the online Hibernate documentation at http://hibernate.org/5.html for
details on coniguring Hibernate for your environment.

http:///

Chapter 11

[319]

As we can see, integrating JasperReports and Hibernate is trivial. Because Hibernate
is a very popular ORM tool, this integration was a welcome addition
to JasperReports 1.2.

Integrating JasperReports with JPA
Hibernate is just one of many available ORM tools. The proliferation of the ORM
tools motivated Sun Microsystems to come up with a standard ORM tool for Java.
Out of this initiative, the Java Persistence API (JPA) was born.

It is possible to integrate JasperReports with JPA by writing report templates that
use JPA's query language as opposed to using SQL. The following JRXML template
illustrates this:

<?xml version="1.0" encoding="UTF-8"?>

<jasperReport

 xmlns="http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation= "http://jasperreports.sourceforge.net

 /jasperreports http://jasperreports.sourceforge.net/xsd

 /jasperreport.xsd"

 name="JpaQueryDemoReport" pageWidth="595" pageHeight="842"
 columnWidth="555" leftMargin="20" rightMargin="20"

 topMargin="30" bottomMargin="30">

 <parameter name="countryCode" class="java.lang.String"/>

 <queryString language="ejbql">

 <![CDATA[select a from Aircraft a
 where a.country = $P{countryCode}
 order by a.tailNum]]>

 </queryString>

 <field name="tailNum" class="java.lang.String"/>

 <field name="aircraftSerial" class="java.lang.String"/>

 <field name="name" class="java.lang.String"/>

 <title>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="555" height="30"/>

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA["Aircraft Registered in Country Code: " +

 $P{countryCode}]]>

 </textFieldExpression>

 </textField>

 </band>

http:///

Integrating JasperReports with Other Frameworks

[320]

 </title>

 <pageHeader>

 <band height="30">

 <staticText>

 <reportElement x="0" y="0" width="100" height="30"/>

 <textElement/>

 <text>

 <![CDATA[Tail Number]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="100" y="0" width="100" height="30"/>

 <textElement/>

 <text>

 <![CDATA[Serial Number]]>

 </text>

 </staticText>

 <staticText>

 <reportElement x="200" y="0" width="100" height="30"/>

 <textElement/>

 <text>

 <![CDATA[Name]]>

 </text>

 </staticText>

 </band>

 </pageHeader>

 <detail>

 <band height="30">

 <textField>

 <reportElement x="0" y="0" width="100" height="30"/>

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{tailNum}]]>

 </textFieldExpression>

 </textField>

 <textField>

 <reportElement x="100" y="0" width="100" height="30"/>

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{aircraftSerial}]]>

 </textFieldExpression>

 </textField>

 <textField isBlankWhenNull="true">

 <reportElement x="200" y="0" width="100" height="30"/>

http:///

Chapter 11

[321]

 <textElement/>

 <textFieldExpression class="java.lang.String">

 <![CDATA[$F{name}]]>

 </textFieldExpression>

 </textField>

 </band>

 </detail>

</jasperReport>

Just like with Hibernate, writing a JRXML template using the Java Persistence Query
Language (JPQL) is not much different from writing a standard JRXML template
using SQL. All we need to do is specify ejbql as the value of the language property
for the <queryString> element of our JRXML template.

Originally, JPA was going to be a part of the EJB 3.0 speciication;
however, the expert group decided to separate JPA from EJB. When JPA
was part of the EJB speciication, the query language was called EJBQL.
When JPA separated from the EJB speciication, the query language was
renamed to JPQL. JasperReports still uses the old EJBQL name as the
value of the <queryString> JRXML element.

As far as the code is concerned, we need to pass an instance of javax.persistence.
EntityManager as a report parameter. Behind the scenes, JasperReports uses
this EntityManager object to execute the JPQL query. The following example
illustrates this:

package net.ensode.jasperbook.jpa;

import java.util.HashMap;

import java.util.Map;

import javax.persistence.EntityManager;

import javax.persistence.EntityManagerFactory;

import javax.persistence.Persistence;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperFillManager;

import net.sf.jasperreports.engine.query.JRJpaQueryExecuterFactory;

public class JpaDemo

{

 public static void main(String[] args)

 {

 EntityManagerFactory entityManagerFactory = Persistence
 .createEntityManagerFactory("flightstatsPU");

 EntityManager entityManager = entityManagerFactory
 .createEntityManager();

 Map parameterMap = new HashMap();

http:///

Integrating JasperReports with Other Frameworks

[322]

 parameterMap.put(JRJpaQueryExecuterFactory
 .PARAMETER_JPA_ENTITY_MANAGER, entityManager);

 parameterMap.put("countryCode", args[0]);

 try

 {

 JasperFillManager.fillReportToFile("reports/

 JpaQueryDemoReport.jasper", parameterMap);

 }

 catch (JRException ex)

 {

 ex.printStackTrace();

 }

 finally

 {

 if (entityManager != null && entityManager.isOpen())

 {

 entityManager.close();

 }

 if (entityManagerFactory != null &&
 entityManagerFactory.isOpen())

 {

 entityManagerFactory.close();

 }

 }

 }

}

In order to be able to run JPQL queries from within a report template, we need
to obtain an instance of javax.persistence.EntityManager as usual. When
working in standalone Java applications like our example, we obtain an instance of
EntityManager by invoking the createEntityManager() method on an instance of
javax.persistence.EntityManagerFactory.

When working with Java EE applications that are deployed to an
application server, an instance of EntityManager can be injected
into the code. My book "Java EE 5 Development Using GlassFish
Application Server", Packt Publishing explains how to do this.

http:///

Chapter 11

[323]

Once we have an instance of EntityManager, we need to pass it as a report
parameter by adding it to the java.util.Map instance that we pass to JasperReports
when illing a report. There is a predeined constant that JasperReports will
use to retrieve the EntityManager. The constant name is PARAMETER_JPA_
ENTITY_MANAGER and, it is deined in net.sf.jasperreports.engine.query.
JRJpaQueryExecuterFactory. All we need to do to pass the EntityManager
instance is use this constant as its key in the Map.

After adding the EntityManager instance to the map, we ill the report as usual.
In the example we just saw, we illed the report to a JRPRINT ile by invoking
JasperFillManager.fillReportToFile() and passing the report template
location and parameterMap as parameters.

Once the report has been illed, we need to close the EntityManager and
EntityManagerFactory instances as we usually do when working with JPA.

JPA requires us to develop entity classes (denoted by the @Entity annotation) that
map to the database tables. JPQL queries refer to JPA entities as opposed to database
tables. In our example, we are using an Aircraft entity that maps to the Aircraft
table in our database.

package net.ensode.jasperbook.jpa.entities;

import java.io.Serializable;

import java.util.Date;

import javax.persistence.Basic;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.NamedQueries;

import javax.persistence.NamedQuery;

import javax.persistence.Table;

import javax.persistence.Temporal;

import javax.persistence.TemporalType;

@Entity

@Table(name = "aircraft")

public class Aircraft implements Serializable

{

 private static final long serialVersionUID = 1L;

 @Id

 @Basic(optional = false)

 @Column(name = "tail_num")

 private String tailNum;

 @Basic(optional = false)

 @Column(name = "aircraft_serial")

http:///

Integrating JasperReports with Other Frameworks

[324]

 private String aircraftSerial;

 @Basic(optional = false)

 @Column(name = "aircraft_model_code")

 private String aircraftModelCode;

 @Basic(optional = false)

 @Column(name = "aircraft_engine_code")

 private String aircraftEngineCode;

 @Basic(optional = false)

 @Column(name = "year_built")

 @Temporal(TemporalType.DATE)

 private Date yearBuilt;

 @Basic(optional = false)

 @Column(name = "aircraft_type_id")

 private short aircraftTypeId;

 @Basic(optional = false)

 @Column(name = "aircraft_engine_type_id")

 private short aircraftEngineTypeId;

 @Basic(optional = false)

 @Column(name = "registrant_type_id")

 private short registrantTypeId;

 @Basic(optional = false)

 @Column(name = "name")

 private String name;

 @Basic(optional = false)

 @Column(name = "address1")

 private String address1;

 @Basic(optional = false)

 @Column(name = "address2")

 private String address2;

 @Basic(optional = false)

 @Column(name = "city")

 private String city;

 @Basic(optional = false)

 @Column(name = "state")

 private String state;

 @Basic(optional = false)

 @Column(name = "zip")

 private String zip;

 @Basic(optional = false)

 @Column(name = "region")

 private char region;

 @Basic(optional = false)

 @Column(name = "county")

 private String county;

http:///

Chapter 11

[325]

 @Basic(optional = false)

 @Column(name = "country")

 private String country;

 @Basic(optional = false)

 @Column(name = "certification")

 private String certification;

 @Basic(optional = false)

 @Column(name = "status_code")

 private char statusCode;

 @Basic(optional = false)

 @Column(name = "mode_s_code")

 private String modeSCode;

 @Basic(optional = false)

 @Column(name = "fract_owner")

 private char fractOwner;

 @Basic(optional = false)

 @Column(name = "last_action_date")

 @Temporal(TemporalType.DATE)

 private Date lastActionDate;

 @Basic(optional = false)

 @Column(name = "cert_issue_date")

 @Temporal(TemporalType.DATE)

 private Date certIssueDate;

 @Basic(optional = false)

 @Column(name = "air_worth_date")

 @Temporal(TemporalType.DATE)

 private Date airWorthDate;

 public Aircraft()

 {

 }

 public Aircraft(String tailNum)

 {

 this.tailNum = tailNum;

 }

//Other constructors, methods and getters and setters omitted for //
brevity.

}

The JPA entities are conigured through annotations. The @Entity annotation at the
class level marks the above class as a JPA entity. The @Table annotation, also at the
class level, speciies what database table the entity maps to. The @Column annotation
speciies what column in the table each ield in the entity maps to.

http:///

Integrating JasperReports with Other Frameworks

[326]

JPA requires an XML coniguration ile called persistence.xml. The format
of persistence.xml will vary slightly depending on the JPA implementation
we are using, and also on whether we are working on a standalone application,
or an application that needs to be deployed to an application server. The
persistence.xml coniguration ile for our example looks like the following:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="1.0"

 xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

 <persistence-unit name="flightstatsPU"
 transaction-type="RESOURCE_LOCAL">

 <class>net.ensode.jasperbook.jpa.entities.Aircraft</class>

 <properties>

 <property name="toplink.jdbc.user"
 value="user"/>

 <property name="toplink.jdbc.driver"
 value="com.mysql.jdbc.Driver"/>

 <property name="toplink.jdbc.password"
 value="secret"/>

 <property name="toplink.jdbc.url"
 value="jdbc:mysql://localhost:3306/flightstats?
 zeroDateTimeBehavior=convertToNull"/>

 </properties>

 </persistence-unit>

</persistence>

In our example, we are using toplink as our JPA implementation. Therefore, we
need to use some toplink speciic properties to specify the JDBC URL, driver, and
credentials. The property names will vary depending on the JPA implementation
being used. For Java EE applications, database credentials and URL should not
be speciied, instead, we should specify the JNDI (Java Naming and Directory
Interface) name for a connection pool in the application server.

http:///

Chapter 11

[327]

After running our code, a report similar to the following is generated:

Integrating JasperReports with Spring
Spring (http://www.springframework.org) is a very popular framework that helps
simplify the development of Java EE applications. The Spring Framework integrates
nicely with JasperReports. In this section, we will develop a simple web application
using Spring Web MVC, which is Spring's native web application framework.

The web.xml for our simple application is as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>

 <servlet-name>jasperSpring</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.DispatcherServlet

http:///

Integrating JasperReports with Other Frameworks

[328]

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>jasperSpring</servlet-name>

 <url-pattern>/jasperSpring/*</url-pattern>

 </servlet-mapping>

</web-app>

As can be seen in this web.xml code, there is only one servlet in our application,
DispatcherServlet. This servlet is provided by the springframework. Please
note that we named our servlet jasperSpring to make it clear that this instance of
DispatcherServlet will be used to generate reports. However, DispatcherServlet
is not speciic to JasperReports functionality.

Each application developed with the Spring framework must contain an application
context, which is usually an XML ile containing additional coniguration. For
Spring Web MVC applications, the application context ile is named after the
servlet, following the servletname-servlet.xml pattern. For our application, the
application context ile is named as jasperSpring-servlet.xml, and its source
code is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.
 springframework.org/dtd/spring-beans.dtd">

<beans>

 <bean id="dataSource"
 class="org.springframework.jdbc.datasource
 .DriverManagerDataSource" destroy-method="close">

 <property name="driverClassName">

 <value>com.mysql.jdbc.Driver</value>

 </property>

 <property name="url">

 <value>jdbc:mysql://localhost:3306/flightstats</value>

 </property>

 <property name="username">

 <value>user</value>

 </property>

 <property name="password">

 <value>secret</value>

 </property>

 </bean>

 <bean id="publicUrlMapping"

 class="org.springframework.web.servlet.handler
 .SimpleUrlHandlerMapping">

http:///

Chapter 11

[329]

 <property name="mappings">

 <props>

 <prop key="report">jasperController</prop>

 </props>

 </property>

 </bean>

 <bean id="jasperController"

 class="net.ensode.jasperbook.spring.JasperSpringController">

 <property name="dataSource">

 <ref local="dataSource"/>

 </property>

 </bean>

 <bean id="viewResolver"

 class="org.springframework.web.servlet.view
 .ResourceBundleViewResolver">

 <property name="basename" value="views"/>

 </bean>

</beans>

One of the main features of the springframework is that it allows applications
to be very loosely coupled by allowing the dependencies to be deined in XML
coniguration iles. This allows changing dependencies without having to change
a single line of code.

In the jasperSpring-servlet.xml ile, we deine a dependency on the
datasource of the database by declaring the bean with an id of datasource and
setting it up as a property of the jasperController bean. The bean with the id
of publicUrlMapping maps the URL ending in report (for example, http://
localhost/jasperSpring/report) to our controller. The bean with the id of
viewResolver is an instance of org.springframework.web.servlet.view.
ResourceBundleViewResolver. Its purpose is to look up values in a resource
bundle to determine what view to use. Its basename property deines the name
of the property ile containing the keys to look up. In this case, the property ile
must be named views.properties.

report.class=org.springframework.web.servlet.view.jasperreports
.JasperReportsPdfView

report.url=reports/DbReportDS.jasper

Notice that the base name of the keys (report, in this case) must match the
name of the controller property deined in the application context for
SimpleUrlHandlerMapping. It is in this property ile where we actually declare
that JasperReports will be used to render the data.

http:///

Integrating JasperReports with Other Frameworks

[330]

In this example, we are using the JasperReportsPdfView class to export to PDF.
The Spring framework also supports exporting to CSV, HTML, and Excel. To
export to one of these formats, the classes to use would be JasperReportsCsvView,
JasperReportsHtmlView, and JasperReportsXlsView respectively. All of these
classes are in the org.springframework.web.servlet.view.jasperreports
package.

The report.url property deines where to ind the compiled report template. In
order for the JasperReportsPdfView class to ind the compiled report template,
it must be located in a directory matching the value of this property. The report
template we will use for this example is the one we discussed in the Database reporting
through a datasource section of Chapter 4, Creating Dynamic Reports from Databases.

Just as with most MVC frameworks, we never code our servlets directly when
writing web applications using Spring MVC; instead, we write controller classes.
In this example, our controller class implements the org.springframework.web.
servlet.mvc.Controller interface. This interface deines a single method called
handleRequest().

package net.ensode.jasperbook.spring;

import java.io.IOException;

import java.sql.Connection;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.HashMap;

import java.util.Map;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.sql.DataSource;

import net.sf.jasperreports.engine.JRResultSetDataSource;

import org.springframework.web.servlet.ModelAndView;

import org.springframework.web.servlet.mvc.Controller;

public class JasperSpringController implements Controller

{

 private DataSource dataSource;

 public ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response)

 throws ServletException, IOException, ClassNotFoundException,
 SQLException

 {

 return new ModelAndView("report", getModel());

http:///

Chapter 11

[331]

 }

 private Map getModel() throws ClassNotFoundException, SQLException

 {

 Connection connection;

 Statement statement;

 ResultSet resultSet;

 HashMap model = new HashMap();

 String query = "select a.tail_num, a.aircraft_serial, "
 + "am.model as aircraft_model, ae.model as engine_model from
 aircraft a, "

 + "aircraft_models am, aircraft_engines ae where "
 + "a.aircraft_engine_code in ("
 + "select aircraft_engine_code from aircraft_engines "
 + "where horsepower >= 1000) and am.aircraft_model_code = "

 + "a.aircraft_model_code "

 + "and ae.aircraft_engine_code = a.aircraft_engine_code";

 connection = dataSource.getConnection();

 statement = connection.createStatement();

 resultSet = statement.executeQuery(query);

 JRResultSetDataSource resultSetDataSource = new
 JRResultSetDataSource(resultSet);
 model.put("datasource", resultSetDataSource);

 return model;

 }

 public void setDataSource (DataSource dataSource)

 {

 this.dataSource=dataSource;

 }

}

Note that our implementation of the handleRequest() method is very simple. It
returns a new instance of org.springframework.web.servlet.ModelAndView.
We pass the view name (deined in the application context) and a map containing
the data to be displayed to the constructor of ModelAndView, and return it.

The getModel() method of JasperSpringController executes an SQL query in
the database and populates an instance of JRResultSetDataSource with the results.

http:///

Integrating JasperReports with Other Frameworks

[332]

Finally, we need to write a JSP that will invoke JasperSpringController.

<%@ page language="java" contentType="text/html;
 charset=UTF-8" pageEncoding="UTF-8"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">

 <title>Generate Report</title>

 </head>

 <body>

 Click on the button to generate the report.

 <form name="reportForm" action="jasperSpring/report"
 method="post">

 <input type="submit" name="submitButton" value="Submit"/>

 </form>

 </body>

</html>

Notice that no special JSP tag libraries are needed to integrate with Spring. After we
deploy our web application and direct our browser to http://localhost:8080/
jasperspring/generate_report.jsp, we should see a web page like the following:

After clicking on the Submit button, the report will be generated and displayed in
the browser in PDF format.

http:///

Chapter 11

[333]

Integrating JasperReports with JSF
JavaServer Faces (JSF) is the standard technology for developing user interfaces for
Java server applications. In theory, JSF is view technology agnostic (that is, it can be
used to develop user interfaces for a variety of technologies). However, in practice,
JSF is almost always used to develop web applications.

JSF applications typically consist of JSP and backing beans, with the latter serving as
controllers for the former. JSF and JasperReports integration can be accomplished by
creating a backing bean that will generate a report. The following example illustrates
this technique:

package net.ensode.jsf;

import java.io.IOException;

import java.io.InputStream;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.util.HashMap;

import javax.faces.context.FacesContext;

import javax.faces.event.ActionEvent;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServletResponse;

http:///

Integrating JasperReports with Other Frameworks

[334]

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperRunManager;

public class ReportGenerator

{

 public void generateReport(ActionEvent actionEvent)

 throws ClassNotFoundException, SQLException, IOException,
 JRException

 {

 Connection connection;

 FacesContext facesContext = FacesContext.getCurrentInstance();

 HttpServletResponse response = (HttpServletResponse)
 facesContext.getExternalContext().getResponse();

 InputStream reportStream = facesContext.getExternalContext()
 .getResourceAsStream("/reports/DbReport.jasper");

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 Class.forName("com.mysql.jdbc.Driver");

 connection = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/flightstats?" +

 "user=user&password=secret");

 facesContext.responseComplete();

 response.setContentType("application/pdf");

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), connection);

 connection.close();

 servletOutputStream.flush();

 servletOutputStream.close();

 }

}

JasperReports does not natively integrate with JSF. The trick to getting them to
work together is to use the JSF API to obtain objects from the servlet API, as
JasperReports integrates nicely with these objects. The HttpServletResponse
object is of particular interest.

As can be seen in the preceding example, we can obtain the HttpServletResponse
object by calling the FacesContext.getExternalContext().getResponse()
method. We can then obtain an instance of ServletOutputStream from
the response object as usual, by calling the HttpServletResponse.
getOutputStream() method.

http:///

Chapter 11

[335]

In order to know what report to compile, we need to load the compiled report
template as a stream. This is accomplished by calling the FacesContext.
getExternalContext().getResourceAsStream() method, as illustrated in the
code. For this example, we will use the report template discussed in the Embedding
SQL queries into a report template section of Chapter 4, Creating Dynamic Reports
from Databases.

Once we have obtained the HttpServletResponse and servletOutputStream
objects, and loaded the report template into memory, then all we need to do in order
to generate the report is execute the JasperRunManager.runReportToPdfStream()
method, passing the appropriate parameters. This, of course, assumes that we want
to render the report as a PDF. To render the report in other formats, we need to
substitute with the appropriate call.

Notice that we call facesContext.responseComplete() before invoking
JasperRunManager.runReportToPdfStream(). The reason for this is to interrupt
the JSF processing cycle. If we don't call this method, JSF will try to apply a
navigation rule and render the page as HTML. By interrupting the cycle and taking
over, we are able to display the report as a PDF.

In order to execute the generateReport() method in the backing bean, we need
to bind it to a JSP action. The following JSP illustrates how to do this:

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=UTF-8">
 <title>Generate Report</title>
 </head>
 <body>
 <f:view>
 <h:outputText value="Click on the link below to generate the
 report."/>
 <h:form>
 <h:commandLink action="generate_report"
 actionListener="#{reportGenerator.generateReport}">
 <h:outputText value="Generate Report"/>
 </h:commandLink>
 </h:form>
 </f:view>
 </body>
</html>

http:///

Integrating JasperReports with Other Frameworks

[336]

This JSP links the action of clicking on a commandLink component (basically an
HTML hyperlink) to the generateReport() method on the ReportGenerator
backing bean. This JSP ile is rendered as follows:

Clicking on the Generate Report link results in the report template being illed,
exported to PDF, and displayed to the user.

In order for this to work as expected, some coniguration needs to be done behind
the scenes. The faces-config.xml ile must be conigured properly to let JSF know
that ReportGenerator is a backing bean.

http:///

Chapter 11

[337]

<?xml version="1.0"?>

<faces-config version="1.2"
 xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xi="http://www.w3.org/2001/XInclude"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee
 /web-facesconfig_1_2.xsd">

 <managed-bean>

 <managed-bean-name>reportGenerator</managed-bean-name>

 <managed-bean-class>

 net.ensode.jsf.ReportGenerator

 </managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 </managed-bean>

</faces-config>

This ile must be placed in the WEB-INF directory inside the war ile used to deploy
the application.

The last step needed to make this technique work properly is to set up the
web.xml ile to use JSF.

<?xml version="1.0" encoding="ISO-8859-1"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <servlet>

 <servlet-name>Faces Servlet</servlet-name>

 <servlet-class>

 javax.faces.webapp.FacesServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Faces Servlet</servlet-name>

 <url-pattern>*.jsf</url-pattern>

 </servlet-mapping>

</web-app>

http:///

Integrating JasperReports with Other Frameworks

[338]

This tells the web container to use the javax.faces.webapp.FacesServlet servlet
to process any requests for ilenames ending in .jsf.

Integrating JasperReports with Struts
The Struts framework is the most popular Java web application framework.
Typically, Struts applications consist of JSP's, action classes that serve as the
controller component of MVC, form beans that map HTML form elements, and
an XML coniguration ile. For more information on the Struts framework take a
look at "Learning Jakarta Struts 1.2", Stephan Wiesner, Packt Publishing. JasperReports
and Struts integration consists of writing a controller that will generate a report
when executed.

The following action class demonstrates this technique:

package net.ensode.jasperbook.struts;

import java.io.InputStream;

import java.sql.Connection;

import java.sql.DriverManager;

import java.util.HashMap;

import javax.servlet.ServletOutputStream;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.sf.jasperreports.engine.JasperRunManager;

import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionForward;

import org.apache.struts.action.ActionMapping;

public class GenerateReportAction extends Action

{

 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)

 throws Exception

 {

 Connection connection;

 ServletOutputStream servletOutputStream = response
 .getOutputStream();

 InputStream reportStream = getServlet().getServletConfig()
 .getServletContext().getResourceAsStream(
 "/reports/DbReport.jasper");

 response.setContentType("application/pdf");

 Class.forName("com.mysql.jdbc.Driver");

http:///

Chapter 11

[339]

 connection = DriverManager.getConnection("jdbc:mysql://localhost:
 3306/flightstats?user=user&password=secret");

 JasperRunManager.runReportToPdfStream(reportStream,
 servletOutputStream, new HashMap(), connection);

 connection.close();

 servletOutputStream.flush();

 servletOutputStream.close();

 return mapping.getInputForward();

 }

}

All the action classes must extend the org.apache.struts.action.Action class.
Typically, the execute() method is overridden to implement custom logic for
servicing a request. As can be seen in this code, the execute() method takes an
instance of HttpServletResponse as one of its parameters. This makes it easy to
write action classes that generate reports.

The technique illustrated in the preceding example is not much different from what
we have seen in various earlier examples throughout the book. In most examples,
we used standard Java servlets to generate web reports, implementing the report
logic in the servlet's doGet() method. As both the HttpServlet.doGet() and
Action.execute() methods take an instance of HttpServletResponse as one of
their parameters, the technique to generate a report from an action class is virtually
identical to the technique used when employing a servlet.

Let us take a look at the JSP that will invoke the GenerateReportAction.execute()
method.

<%@ taglib uri="http://struts.apache.org/tags-html" prefix="html"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

 <head>

 <title>Generate Report</title>

 </head>

 <body>

 <p>Click on the button to generate the report.</p>

 <html:form action="/generate_report">

 <html:submit />

 </html:form>

 </body>

</html>

http:///

Integrating JasperReports with Other Frameworks

[340]

This JSP will generate a very simple HTML form with a Submit button as its only
input ield.

Next, let us take a look at the form bean for this JSP.

package net.ensode.jasperbook.struts;

import org.apache.struts.action.ActionForm;

public class GenerateReportForm extends ActionForm

{

}

As the HTML form generated by the preceding JSP has no input ields other than
a Submit button, its corresponding form bean has no ields. We still need to write
it because, when writing Struts applications, each JSP must have a corresponding
form bean.

To wire the action class, the form bean, and the JSP together, we need to create a
struts-config.xml ile and deploy it in the WEB-INF directory of the application's
war ile.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE struts-config PUBLIC

 "-//Apache Software Foundation//DTD Struts Configuration 1.2//EN"

 "http://jakarta.apache.org/struts/dtds/struts-config_1_2.dtd">

<struts-config>

 <!-- ==================================== Form Bean Definitions -->

 <form-beans>

 <form-bean name="generateReportForm"

 type="net.ensode.jasperbook.struts.GenerateReportForm">

 </form-bean>

 </form-beans>

 <!-- =============================== Action Mapping Definitions -->

 <action-mappings>

 <action path="/generate_report"

 type="net.ensode.jasperbook.struts.GenerateReportAction"

 name="generateReportForm"

 scope="request"

 input="generate_report.jsp">

 </action>

 </action-mappings>

</struts-config>

http:///

Chapter 11

[341]

The <form-bean> tag deines the GenerateReportForm class as a form bean and
assigns the logical name generateReportForm to it.

The <action> tag maps the GenerateReportAction action class to the
/generate_report path. It also speciies that the GenerateReportForm form bean
will be associated with this action. Finally, it links the generate_report.jsp JSP
ile through the input attribute.

Like all server-side Java web applications, Struts applications must contain a web.
xml ile in the WEB-INF directory inside the application's war ile.

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>

 <display-name>Struts JasperReports Application</display-name>

 <servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <init-param>

 <param-name>debug</param-name>

 <param-value>2</param-value>

 </init-param>

 <init-param>

 <param-name>detail</param-name>

 <param-value>2</param-value>

 </init-param>

 <load-on-startup>2</load-on-startup>

 </servlet>

 <!-- Standard Action Servlet Mapping -->

 <servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

 </servlet-mapping>

</web-app>

This web.xml ile simply deines the Struts ActionServlet to process all the URLs
ending in .do. The Struts ActionServlet calls the appropriate JSP and action class
behind the scenes for the appropriate URL.

http:///

Integrating JasperReports with Other Frameworks

[342]

Following the standard procedure for deploying web applications, we create a
WAR ile with the preceding iles and required dependencies, deploy it to a servlet
container, and point the browser to the corresponding URL. We should then see a
web page similar to the following:

Clicking on the Submit button generates the report, exports it to PDF, and displays
it in the browser.

http:///

Chapter 11

[343]

Summary
The chapter started with integrating JasperReports with Hibernate by writing
embedded report queries in the HQL. JasperReports with HQL queries is
similar to reports containing SQL queries except that the language attribute of
the <queryString> element must be set to hql. Next, we saw how to integrate
JasperReports with the JPA. As with Hibernate, JPA integration requires that the
language attribute of the <queryString> element be modiied. For JPA, the value
of this attribute must be set to ejbql. Following our discussion of JPA, we saw
how to integrate JasperReports with the Spring framework by taking advantage
of Spring's built-in support for JasperReports integration.

The chapter also dealt with JSF and JasperReports integration and illustrated how
to write backing beans that ill a report and display it in the browser. Finally, the
chapter illustrated the integration of JasperReports with Struts by explaining how to
write action classes that ill a report and display it in the browser.

http:///

http:///

Symbols
<background> element 50, 135
<bucket> element 219
<bucketExpression> element 219
<chart> element

about 190
attributes 190
customizerClass 190
evaluationGroup 191
evaluationTime 191
isShowLegend 191

<columnFooter> element 52
<columnGroup> subelement

about 220
attributes 220
headerPosition attribute 220
height attribute 220
name attribute 220
totalPosition attribute 220

<columnHeader> element 51
<crosstabCell> element 220
<crosstabCell> subelement

about 220
attributes 220
columnTotalGroup attribute 220
height attribute 220
rowTotalGroup attribute 221
width attribute 221

<crosstabDataset> subelement
about 221
attributes 221
isDataPreSorted attribute 221

<crosstab> element
about 219, 220
<columnGroup> subelement 220

<crosstabCell> subelement 220
<crosstabDataset> subelement 221
<crosstabParameter> subelement 221
<measure> subelement 221
<parametersMapExpression>

subelement 221
<reportElement> subelement 222
<rowGroup> subelement 222
subelements 220
<whenNoDataCell> subelement 222

<crosstabParameter> subelement
about 221
attributes 221
class attribute 221
name attribute 221

<crosstabRowHeader> element 219
<datasets> element

about 192
attributes 192

<datasets> element, attributes
incrementGroup 193
incrementType 193
resetGroup 193
resetType 193

<dataSourceExpression> 178
<detail> element 51
<ieldDescription> element 107
<ield> element 48, 62
<ilterExpression> element 49
<group> element

about 49, 148
attributes 148
isReprintHeaderOnEachPage 148
isResetPageNumber 148
isStartNewColumn 148
isStartNewPage 148

Index

http:///

[346]

<image> element
about 188
attributes 188

<image> element, attributes
evaluationGroup 188
evaluationTime 188
hAlign 188
IsLazy 189
isUsingCache 189
onErrorType 190
vAlign 189

<import> element 47
<jasperReport> root elements

<background> 50
<columnFooter> 52
<columnHeader> 51
<detail> 51, 52
<ield> 48
<ilterExpression> 49
<group> 49
<import> 47
<lastPageFooter> 53
<noData> 54, 55
<pageFooter> 52
<pageHeader> 50
<parameter> 48
<property> 46
<queryString> 48
<sortField> 48
<style> 47
<subDataset> 47
<summary> 53
<template> 47
<title> 50
<variable> 49

<lastPageFooter> element 53
<measure> subelement

about 221
attributes 221
calculation attribute 241
class attribute 221
name attribute 221

<noData> element 54
<pageFooter> element 52
<pageHeader> element 50
<parameter> element 48
<parametersMapExpression> 178

<parametersMapExpression> subelement
 221

<plot> element
about 194
attributes 194

<plot> element, attributes
backcolor 194
backgroundAlpha 194
foregroundAlpha 194
orientation 194

<property> element 46
<queryString> element 48, 62, 73
<reportElement>

about 159
attributes 159

<reportElement>, attributes
backcolor 161
forecolor 161
height 161
isPrintInFirstWholeBand 161
isPrintRepeatedValues 161
isPrintWhenDetailOverFlows 161
isRemoveLineWhenBlank 161
key 161
mode 161
positionType 161
printWhenGroupChanges 161
stretchType 161
width 161
x 161
y 161

<reportElement> subelement
about 222
attributes 222

<returnValue> 178
<rowGroup> element 219
<rowGroup> subelement

about 222
attributes 222
headerPosition attribute 222
name attribute 222
totalPosition attribute 222
width attribute 222

<sortField> element 48
<style> element

about 47, 122
attributes 122

http:///

[347]

<style> element, attributes
backcolor 123
fontName 123
fontSize 123
forecolor 123
hAlign 123
isBold 123
isItalic 123
isStrikeThrough 123
isUnderline 123
linespacing 123
vAlign 123

<subDataset> element 47, 48
<subreport> JRXML element

about 178
subelements 178

<subreport> JRXML element, subelements
<dataSourceExpression> 178
<parametersMapExpression> 178
<returnValue> 178

<summary> element 53
<template> element 47
<textElement> element

linespacing attribute 126
rotation attribute 126
textAlignment attribute 126

<textField> element 62
<title> element 50
<variable> element

about 49, 150
attributes 150

<variable> element, attributes
calculation 152
class 152
incrementerFactoryClass 152
incrementGroup 152
incrementType 152
name 152
resetGroup 152
resetType 152

<whenNoDataCell> subelement 222

A

anchors
about 230, 231
adding, to reports 230, 231

Apache ANT 26
Apache Commons

about 13, 24
Commons Digester library 25
optional libraries 26

Apache Commons BeanUtils 26
Apache Commons Collections 25
Apache Commons Logging 25
Apache POI 13

B
bar charts

about 198
creating 198-201

binary report template
compiled report template, previewing

 34, 35
creating 33
JRXML template, compiling 33
JRXML template, compiling through

ANT 36, 38
bookmarkLevel attribute 238
bookmarks

about 237
generating 237, 238

built-in report parameters, empty data-
sources

about 88
is_ignore_pagination 88
report_connection 88
report_data_source 88
report_locale 88
report_max_count 88
report_parameters_map 88
report_resource_bundle 88
report_scriptlet 88
report_virtualizer 89

built-in report variables
about 156
column_count 156
column_number 156
nameofgroup_count 156
page_count 156
page_number 156
report_count 156

http:///

[348]

C

chart items
turning, into hyperlinks 232-234

charts
adding, to report 190
area chart 204
bar charts 198
bubble chart 204
candlestick chart 204
<chart> element 190
customizing 192
datasets 192
gantt chart 204
high low chart 204
line chart 204
meter chart 204
multiple axis chart 204
pie charts 195
plotting 194
scatter plot chart 204
stacked area chart 204
stacked bar chart 204
thermometer chart 204
times series chart 204
types 204
XY area chart 204
XY bar chart 204
XY line chart 204
XY line charts 201

class library dependencies
about 13
Apache Commons 13
Apache POI 13
JAXP 13
JFreeChart 13

common element properties
about 167
setting 167, 169

Commons Digester library
about 25
Apache Commons BeanUtils 26
Apache Commons Collections 25
Apache Commons Logging 25

compileReportToFile() method 33
crosstabs 216-220
CSV 258

CSV datasources
about 111
net.sf.jasperreports.engine.data.JRCsvData-

Source, using 111
CSV format

reports, exporting to 258-260
custom datasources

about 113
custom JRDataSource implementation,

using 115-117
custom JRDataSource implementation,

writing 114, 115
custom JRDataSource implementation

employing 115-117
writing 114, 115

D

database report, iReport
creating 278-282
generated report, tweaking 283

database reports
database reporting, through datasource

72- 78
generating 59
methods, comparing 78
report, generating 63-66
report query, modifying through report

parameters 67-70
SQL queries, embedding into report

template 60-62
datasource

about 57
CSV datasources 111
custom datasources 113
Java objects, as datasources 94
map datasources 89
XML datasources 106

data transfer object. See DTO
displayReport() method 104
Document Type Deinition (DTD) 256
DTO 95

E
empty datasources

built-in report parameters 88
report parameters, assigning values to 87

http:///

[349]

evaluationGroup attribute 188
evaluationTime attribute 188
Excel format

reports, exporting to 252, 253

F
illing 16, 63
illReportToFile() method

about 39
parameters 39
versions 39

for hyperLinkTarget attribute
about 235
values 235

G

generateReport() method 104
geometrical shapes

adding, to reports 181
ellipses, adding to report 185, 186
lines, adding to report 182, 183
rectangles, adding to report 183, 184

getFieldValue() method 115, 214
getName() method 115
getParameterValue() method 214
getVariableValue() method 214
getWriter() method 267
GPL 271

H

hAlign attribute 188
Hibernate

about 308
JasperReports, integrating with 308-319

HTML format
reports, exporting to 254, 255

HTML reports
directing, to browser 264-269

hyperlinks
about 230, 231
adding, to reports 230, 231
LocalAnchor 232
LocalPage 232
none 232
Reference 232

RemoteAnchor 232
RemotePage 232

I

images
adding, to report 186, 187
example 187

incrementGroup attribute 193
incrementType attribute 193
iReport

about 271
database report, creating 278-282
database report, generating quickly 278
downloading 272-274
features 304
installing 274
report, creating from scratch 284-292
reports, modifying 292
setting up 275-277

IsLazy attribute 189
isUsingCache attribute 189
iText library 27

J
JasperCompileManager.compileReport

ToFile() method
about 33
parameters 33

jasper ile 16
JasperFillManager class 73
JasperFillManager.illReport() method 268
JasperForge

about 16
oficial online forums 17

JasperPrint ile 16
JasperReports

built-in report variables 156
common element properties, setting 167,

169
about 8
anchors, adding 230, 231
chart items, turning into

hyperlinks 232-235
charts, adding 190
class library dependencies 13
crosstabs 216

http:///

[350]

downloading 20
downloading, from SourceForge 20
download links 21
ellipses, adding 185
environment, setting up 23
features 9
geometrical shapes, adding 181
history 7
hyperlinks, adding 230, 231
images, adding 186
integrating, with Hibernate 308-319
integrating, with JPA 319-326
integrating, with JSF 333-337
integrating, with Spring 327-332
integrating, with Struts 338-342
large reports, handling 239, 241
lines, adding 182
oficial online forums 16
rectangles, adding 183
report localization 207
requisites 9
scriplets 210
subdatasets 222
support 16
worklow 14
repeated values, hiding 170-173
report background, setting 134
report elements, laying out 159
report-wide layout properties, controlling

120, 148
subreports 173
text ields, stretching to accommodate data

156-159
text properties, setting 121

JasperReports-3.1.4 directory
build 23
build.xml 23
changes.txt 23
demo 23
dist 23
docs 23
lib 23
license.txt 23
pom.xml 23
readme.txt 23
src 23

JasperReports class library 24

JasperReports, download links
applet.jar 21
.jar 22
javalow.jar 22
project.tar.gz 22
project.zip 22

JasperReports, features
about 9
exporting capabilities 11
lexible report layout 9
multiple datasources 10
report data, displaying ways 10
report data, supplying ways 10
subreports 11
watermarks 11

JasperSoft 8
Java Development Kit. See JDK
Java Development Tools. See JDT

Java objects
using as datasources 94

Java objects, as datasources
JRBeanCollectionDataSource, using 99
net.sf.jasperreports.engine.JRBeanArrayDa-

taSource, using 97-99
report template, modifying 95-97

JAXP 13
JDBC driver

about 27
RDBMS 27

JDK 9
JDT 9
JDT compiler 26
JExcelApi 28
JFreeChart 13
JFreeChart library 28
JPA

about 319
JasperReports, integrating with 319-326

JRAbstractScriptlet class 210
JRDefaultScriptlet class 210
JRMapArrayDataSource class 91
JROdtExporter class 250
JRResultSetDataSource class 73
JRXML ile

elements 30
<reportElement> 30
<staticText> 30

http:///

[351]

<text> 30
JRXML iles 15
JRXML report template

creating 29, 30
elements 46
XML report template, previewing 31, 32

JSF

about 333
JasperReports, integrating with 333-337

L
Lesser GNU Public Library 8

M
map datasources

about 89
net.sf.jasperreports.engine.data.JRMapAr-

rayDataSource class, executing 89- 91
net.sf.jasperreports.engine.data.JRMapCol-

lectionDataSource, executing 92, 93
markup language, used for text styling

HTML 130
RTF 131

MDX 118
moveFirst() method 113

N

net.sf.jasperreports.engine.data.JRMapAr-
rayDataSource class 91

next() method 115

O
OASIS 250
ODT 250
ODT format

reports, exporting to 250, 251
oficial online forums 16
OLAP 118
onErrorType attribute 190
OpenDocument Text. See ODT
optional libraries, JasperReports

about 26
Apache ANT 26
iText 27

JDBC driver 27
JDT compiler 26
JExcelApi 28
JFreeChart library 28

Organization for the Advancement of
Structured Information Standards.
See OASIS

ORM Tool 307

P

PDF format
reports, exporting to 245, 246

pie charts
about 195
creating 195-197
creating, in 2D 195
creating, in 3D 195

plain text format
reports, exporting to 261, 263

POJOs 10, 94
public void afterColumnInit() method 211
public void afterDetailEval() method 211
public void afterGroupInit(String

groupName) method 211
public void afterPageInit() method 211
public void afterReportInit() method 211
public void beforeColumnInit() method 211
public void beforeDetailEval() method 211
public void beforeGroupInit(String

groupName) method 211
public void beforePageInit() method 211
public void beforeReportInit() method 211

R

RDBMS
Firebird 27
HSQLDB 27
JavaDB/Derby 27
MySQL 27
Oracle 27
PostgreSQL 27
SQL Server 27
Sybase 27

repeated values
hiding 170-173

http:///

[352]

report
multiple columns, adding 140-148
report columns, inal notes 144, 148
creating 29
displaying, on web browser 43, 44
exporting 244
exporting overview 244
exporting, to CSV format 258-260
exporting, to Excel format 252, 253
exporting, to HTML format 254, 255
exporting, to ODT format 250, 251
exporting, to PDF format 245, 246
exporting, to plain text format 261
exporting, to RTF format 248, 249
exporting, to XML format 256-258
generating 38
viewing 41, 43

report background
setting 134, 135

report data
grouping 144-148

report elements
laying out 159
position, setting 162-167
size, setting 162

report expressions
method, calling 136
PDF report, generating 138, 139

report, iReport
charts, adding 299-304
creating, from scratch 284-292
images, adding 292, 293
modifying 292
multiple columns, adding 294-296
report data, grouping 296-298

report text, styling
HTML, used 130
markup language, used 127, 129
RTF, used 131, 133

report variables
about 148
duplicate expression, eliminating 148-150
report, modifying 152-155

report-wide layout properties
controlling 120, 148

resetGroup attribute 193
resetType attribute 193

Rich Text Format. See RTF

RTF 248
RTF format

reports, exporting to 248, 249

S

scriplets
about 210
example 211
features 211, 213, 214

setFieldNames() method 115
setParameter() method 244
setUseFirstRowAsHeader() method 113
setVisible() method 104
Spring

about 327
JasperReports, integrating with 327-332

Struts
about 338
JasperReports, integrating with 338-342

subdatasets
about 222, 227
bar chart, generating 227-229
example 222-225

subreports
about 173, 178
JRXML template 173-175

T

TableModels datasources
report, generating 104, 106

text ields
stretching, to accommodate data 156-159

text properties
setting 121
styles 121
styles, reusing through style

templates 124, 125
styles, using 121
text style, setting for individual report

elements 126
text style, setting for individual report

element 126

http:///

[353]

U
URI 111

V

vAlign attribute 189
Value object. See VO
VO 95

W
worklow, JasperReports 14

X
XML datasources

about 106
<ieldDescription> element, adding in

<ield> element 107, 109
net.sf.jasperreports.engine.data.JRXmlData-

Source, using 109, 111
XML document 107

XML format
reports, exporting to 256-258

XML report templates 14
XY line charts

about 201, 203
creating 201, 203

Y
y Align, <image>element 189
y, <report>element 161

http:///

Thank you for buying
JasperReports 3.5
for Java developers

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing JasperReports 3.5 for Java developers, Packt will have given
some of the money received to the JasperReports project.

In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.

If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

http:///

Pentaho Reporting 3.5 for Java
Developers
ISBN: 978-1-847193-19-3 Paperback: 300 pages

Create advanced reports, including cross tabs, sub-
reports, and charts that connect to practically any
data source using open source Pentaho Reporting.

1. Create great-looking enterprise reports in
PDF, Excel, and HTML with Pentaho's Open
Source Reporting Suite, and integrate report
generation into your existing Java application
with minimal hassle

2. Use data source options to develop advanced
graphs, graphics, cross tabs, and sub-reports

Learning SQL Server 2008
Reporting Services
ISBN: 978-1-847196-18-7 Paperback: 512 pages

A step-by-step guide to getting the most of Microsoft
SQL Server Reporting Services 2008

1. Everything you need to create and deliver
data-rich reports with SQL Server 2008
Reporting Services as quickly as possible

2. Packed with hands-on-examples to learn
and improve your skills

3. Connect and report from databases,
spreadsheets, XML Data, and more

Please check www.PacktPub.com for information on our titles

http:///

	Cover
	Table of Contents
	Preface
	Chapter 1: An Overview of JasperReports
	A brief history of JasperReports
	What exactly is JasperReports?
	The features of JasperReports
	Flexible report layout
	Multiple ways to present data
	Multiple ways to supply data
	Multiple datasources
	Watermarks
	Subreports
	Exporting capabilities

	Class library dependencies
	Typical workflow
	Where to get help
	Summary

	Chapter 2: Adding Reporting Capabilities to our Java Applications
	Downloading JasperReports
	Setting up our environment

	JasperReports class library
	Required libraries for report compilation
	Apache Commons

	Optional libraries and tools
	Apache ANT
	JDT compiler
	JDBC driver
	iText
	JFreeChart
	JExcelApi

	Summary

	Chapter 3: Creating your First Report
	Creating a JRXML report template
	Previewing the XML report template

	Creating a binary report template
	Compiling a JRXML template programmatically
	Previewing the compiled report template
	Compiling a JRXML template through ANT

	Generating the report
	Viewing the report
	Displaying reports in a web browser

	Elements of a JRXML report template
	<property>
	<import>
	<template>
	<style>
	<subDataset>
	<parameter>
	<queryString>
	<field>
	<sortField>
	<variable>
	<filterExpression>
	<group>
	<background>

	<title>
	<pageHeader>
	<columnHeader>
	<detail>
	<columnFooter>
	<pageFooter>
	<lastPageFooter>

	<summary>
	<noData>

	Summary

	Chapter 4: Creating Dynamic Reports from Databases
	Database for our reports
	Generating database reports
	Embedding SQL queries into a report template
	Generating the report
	Modifying a report query through report parameters
	Database reporting through a datasource
	A comparison of database report methods

	Summary

	Chapter 5: Working with Other Datasources
	Empty datasources
	Map datasources
	Java objects as datasources
	TableModels as datasources
	XML datasources
	CSV datasources
	Custom datasources
	Writing a custom JRDataSource implementation
	Using the custom JRDataSource implementation

	Summary

	Chapter 6: Report Layout and Design
	Controlling report-wide layout properties
	Setting text properties
	Styles
	Reusing styles through style templates
	Setting text style for individual report elements

	Setting a report's background
	Report expressions
	Adding multiple columns to a report
	Final notes about report columns

	Grouping report data
	Report variables
	Built-in report variables

	Stretching text fields to accommodate data
	Laying out report elements
	Setting the size and position of a report element

	Setting common element properties
	Hiding repeated values
	Subreports
	Summary

	Chapter 7: Adding Charts and Graphics to Reports
	Adding geometrical shapes to a report
	Adding lines to a report
	Adding rectangles to a report
	Adding ellipses to a report

	Adding images to a report
	Attributes of the <image> element
	evaluationTime
	evaluationGroup
	hAlign
	vAlign
	IsLazy
	isUsingCache
	onErrorType

	Adding charts to a report
	Attributes of the <chart> element
	customizerClass
	evaluationGroup
	evaluationTime
	isShowLegend

	Chart customization
	Chart datasets
	Attributes of the <dataset> element

	Plotting charts
	Attributes of the <plot> element

	Pie charts
	Bar charts
	XY line charts
	Other types of charts

	Summary

	Chapter 8: Other JasperReports Features
	Report localization
	Scriptlets
	Crosstabs
	Crosstab subelements
	<columnGroup>
	<crosstabCell>
	<crosstabDataset>
	<crosstabParameter>
	<measure>
	<parametersMapExpression>
	<reportElement>
	<rowGroup>
	<whenNoDataCell>

	Subdatasets
	Adding hyperlinks and anchors
to reports
	Turning chart items into hyperlinks
	Bookmarks

	Handling very large reports
	Summary

	Chapter 9: Exporting to Other Formats
	Exporting overview
	Exporting to PDF
	Exporting to RTF
	Exporting to ODT
	Exporting to Excel
	Exporting to HTML
	Exporting to XML
	Exporting to CSV
	Exporting to plain text
	Directing HTML reports to a browser
	Summary

	Chapter 10: Graphical Report Design with iReport
	Obtaining iReport
	Setting up iReport
	Creating a database report in record time
	Tweaking the generated report

	Creating a report from scratch
	Creating more elaborate reports
	Adding images to a report
	Adding multiple columns to a report
	Grouping report data
	Adding charts to a report

	Help and support
	Summary

	Chapter 11: Integrating JasperReportswith Other Frameworks
	Integrating JasperReports with Hibernate
	Integrating JasperReports with JPA
	Integrating JasperReports with Spring
	Integrating JasperReports with JSF
	Integrating JasperReports with Struts
	Summary

	Index

