
Implementing
iOS and macOS
Documents with
the Files App

Managing Files and Ensuring
Compatibility
—
Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Implementing iOS and
macOS Documents
with the Files App

Managing Files and Ensuring
Compatibility

Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Implementing iOS and macOS Documents with the Files App: Managing
Files and Ensuring Compatibility

ISBN-13 (pbk): 978-1-4842-4491-3 ISBN-13 (electronic): 978-1-4842-4492-0
https://doi.org/10.1007/978-1-4842-4492-0

Copyright © 2019 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media, New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4491-3. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Jesse Feiler
Plattsburgh, NY, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4492-0
http://www.allitebooks.org

iii

Chapter 1: Using Documents ��1

Describing a Document ���1

Keeping Track of a Document and Its Data ���2

Structuring a Document ��2

Handling Document Versions ��3

Comparing Documents and Files ��3

Structuring a Document and an App ���3

Summary���4

Chapter 2: Looking Inside a Document ���5

Using JSON Encoding ��5

Introducing JSON ��6

JSON and Swift ���7

Using Swift Structs ��7

Encoding JSON ��9

Decoding JSON ��10

Putting the Encoding and Decoding Together ��11

Summary���12

About the Author ��vii

About the Technical Reviewer ���ix

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 3: Matching a Document to a Document Format �������������������13

Preparing for iCloud ��13

Setting Up Your Document in Your App ���15

Managing Document Types ���17

Looking at info�plist ���20

Summary���23

Chapter 4: Securing and Protecting Data ���25

Security and Privacy Overview ���25

Case Study: Using Cocoa Location Services ���26

Summary���33

Chapter 5: Implementing Documents on macOS: NSDocument ����������35

Differences Between iOS UIDocuments and macOS NSDocuments �������������������36

Creating a Document-Based App on macOS ���36

Adding Code to Your macOS App ���40

AppDelegate ��40

ViewController ���42

Document ��43

Storyboard ��46

Overview of macOS and iOS Development ���47

Summary���48

Chapter 6: Implementing Documents on iOS ��������������������������������������49

Using Files and the iOS File System ���49

Choosing Document Storage Locations ��51

Browsing Documents ��52

Looking at Recent Documents ��55

Viewing Files and Folders for an App ��58

Summary���60

Table of ConTenTsTable of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 7: Implementing Documents on iOS: UIDocument and
UIDocumentBrowser ViewController ���������������������������������61

Creating a Document-Based App ��62

Introducing UIDocument ��68

Working with UIDocument ���68

Working with UIDocumentViewController ���71

Opening the Document ��72

Closing the Document ���74

Working with UIDocumentBrowserView Controller ���74

Loading the UIDocumentBrowserViewController ���74

Creating a Document ���76

Picking (Opening) a Document ��79

Handling Errors ��82

Summary���82

Chapter 8: Sharing Documents with Share Buttons ���������������������������83

Using Share Buttons (As a User) ���83

Creating a Sharing Example ��84

Sharing the Data ���95

Summary���98

Chapter 9: Using User Defaults, Settings, and Preferences ����������������99

Looking at the Data Structures ���100

Exploring User Defaults, Preferences, and Settings ��102

Understanding User Defaults ���102

Exploring Settings ���103

Using Preferences ���103

Table of ConTenTsTable of ConTenTs

vi

Preferences and Settings: A Case Study ���104

Creating the PreferencesApp ���104

Adding a Settings Bundle ��107

Accessing the Settings Bundle from Your Code ��116

Adding a Settings Interface ���119

Summary���121

Chapter 10: Working with File Wrappers and Packages ������������������123

Using Packages ���123

Considering Bundles ���128

Using File Wrappers ��128

Summary���131

Chapter 11: Using File Archives ��133

Using Swift Unified Logging ��134

Using Log and a Breakpoint to Archive Data ���136

Selecting the Item to Archive ��140

Creating the Object to Archive ��142

Doing the Archive ��146

Making the Class Conform to NSCoding ��146

Implementing the Example ��149

Moving Archiving into Documents ���151

Summary ��152

Index ���153

Table of ConTenTsTable of ConTenTs

vii

About the Author

Jesse Feiler is a developer, consultant, and author specializing in database

technologies and location-based apps. Jesse’s apps include NP Risk,

Minutes Machine, Utility Smart, Cyber Continuity, and Saranac River Trail.

He has worked for organizations as varied as the Federal Reserve Bank

of New York (Chief, Special Projects Staff in Systems Development), the

Albers and Archipenko foundations (data management), and a number of

database projects typically using FileMaker. His apps are available in the

App Store and are published by Champlain Arts Corp (champlainarts.com).

Jesse is heard regularly on WAMC Public Radio for the Northeast’s The

Roundtable. He is a founder of Friends of Saranac River Trail, Inc. A native

of Washington DC, he has lived in New York City and currently lives in

Plattsburgh, NY.

ix

About the Technical Reviewer

Charles Cruz is a mobile application developer for the iOS,

Windows Phone, and Android platforms. He graduated from

Stanford University with B.S. and M.S. degrees in engineering. He lives

in Southern California and runs a photography business with his wife

(www.bellalentestudios.com) and enjoys backpacking. Charles can be

reached at codingandpicking@gmail.com.

http://www.bellalentestudios.com/
http://codingandpicking@gmail.com

1© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_1

CHAPTER 1

Using Documents
We use documents to store and organize data in the apps that we use.

This is a simple description of how and why we use documents with

mobile apps built with macOS and iOS. There’s much more than this

simple description to consider when you start working with documents,

and this chapter goes into the basic details you need to consider. You can

find many books and articles dealing with documents, but the key points

are described here.

 Describing a Document
When you use an app, you sometimes need to store data for the app (that’s

the basic description just mentioned). Storing data turns out to be far from

simple because when we talk about storing data, we almost always mean

storing and retrieving data on demand. For that store-and-retrieve process

to be useful to developers and users, you need to be able to identify the

data to be stored and retrieved, such as the current temperature.

Just to make things a little more complex, you need to be able to store

and retrieve data that you can identify in two different ways:

• You need to be able to identify the physical location of

the data to be stored and retrieved.

• You need to be able to identify the logical

characteristics of the data to be stored and retrieved.

2

Putting this together means that you need to be able to store, retrieve,

and identify data by its location and characteristics (such as a name).

 Keeping Track of a Document and Its Data
We are accustomed to thinking of documents as static objects: once a

document is written or printed, it doesn’t appear to change. You can make

changes or edits to documents, but those changes are typically visible in

one way or another so that the initial document is modified. In the digital

world, changes can be continual, and thinking of a document as a static

object is misleading, to say the least.

When you use word processing tools, you can often track changes to

documents so that instead of a static document you may have a multitude

of changed documents. This multitude of changed documents can

proliferate quickly not only with word processing documents but also

with changes using tools such as Git or GitHub.

 Structuring a Document
Documents can be structured in any way that the developer chooses. As

you will see in Chapter 2, you can use structures that you create or common

structures that are defined by others. The structure of a document provides a

structure (or format) for the data that the document will contain. When you

know a document’s structure, you can read or write its data.

At least that is the idea. Document structures can change over time so

in practice you need to know not only the structure of a document but the

specific variation of the structure in use.

Note The variation of a document’s structure is often referred to as
a version.

ChapTer 1 Using DoCUmenTs

3

 Handling Document Versions
A common way of handling the issue of document versions is to create a

document structure that has at least two components: one is the version

identifier and the second is everything else. For example, a document can

start with the version identifier, which might be something as simple as a

string or even an integer. In that way, your app will know to read a single

integer or a string of X characters from the beginning of a document’s data.

That integer or string lets your app identify the version; having done that,

your app can read the data for that version. This strategy is commonly used

in macOS and iOS using a file manager (described in Chapter 2).

 Comparing Documents and Files
Documents store data for an app in a known location from which it can be

retrieved (or to which it can be stored). This location is typically a file—an

object that is managed by the operating system. Like documents themselves,

files can also have versions. A significant difference between a file and

a document is that in many cases, the operating system manages a file’s

opening, closing, and storage. A document in many cases is inside a file.

Note This is a simplification and generalization.

 Structuring a Document and an App
Apps that are based on data are easy to build or convert to document-

based apps. There are two common ways of building such apps. In the first

way, developers start from a data structure and add functionality to it. In

the other way, developers start from functionality and add data to it.

ChapTer 1 Using DoCUmenTs

4

 Summary
In this chapter, you saw an overview of documents, versions, and the

differences between documents and files. From here you will move onto

the details of documents and how to use them effectively.

Today, JSON (JavaScript Object Notation) and the Codable protocols

are commonly used for managing app data. Previously, a technology

referred to as coding was commonly used to store and manage data

that is internal to an app. The basic process was to convert data that is

identified by keys to and from NSData objects. The operating systems

support NSData, and you don’t have to worry about the implementation:

it is fast and efficient. The only limitation is that not every type of data

can be archived.

If you are building an app that needs to manage persistent data,

chances are that Codable is the way to go. If you are modifying an existing

app, you may want to continue using the archiving code that already

exists. (Using both is perfectly feasibly, but it can become a maintenance

nightmare.)

ChapTer 1 Using DoCUmenTs

5© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_2

CHAPTER 2

Looking Inside a
Document
In Chapter 1, you learned how to describe and structure a document.

You now know that you, as the designer and developer of an app and its

documents, control what data is stored, where and how it is stored, and

how to identify and reference it.

You can decide that the data will be stored as a sequence of integers or

as a single long string, whatever matters to you and the data you will use.

In practice, it makes sense to structure the data inside a document if only

to be able to access it easily. This chapter shows how to structure the data

within a document using JSON encoding. This structure and encoding

provides an easy-to-use format for data that relies on Unicode strings that

can represent basic types recognized by JSON.

 Using JSON Encoding
What matters most for JSON is the fact that the format is text-based (as

opposed, for example, to a binary or digital representation) and the

fact that each element can be named (as opposed to being identified by

location or sequence).

6

A location- or sequence-based coding style lets you specify the format

of each element in the encoding sequence. Knowing the format of an

element means that you know how much space it will take up, and this will

let you read or write the data using the standard read/write syntax in any

programming language.

The disadvantage of sequence- or location-based coding is that if you

change the sequence of data elements or the format of a data element, you

break any read/write code that you already have. JSON encoding relies on

names of data elements rather than their formats or sequence. Thus, you

avoid the frequent problem of breaking read/write code when you modify

a format of a single data element or when you change the order of the data

elements.

 Introducing JSON
JSON starts as a text format for serialization of structured data. In this

sense, serialization means converting the strings or other objects into

a format that can be read or written. JSON starts from four primitive

types, the meanings of which are common to many programming

languages:

• A string is an ordered collection of Unicode characters.

• A number is just that; the most basic JSON number is a

double.

• A Boolean is true or false.

• The final primitive value in JSON is null, an object that

has no value.

In JSON, these types can be combined into objects, which are

unordered collections of name/value pairs; a JSON array is an ordered

collection of name/value pairs.

Chapter 2 Looking inside a doCument

7

 JSON and Swift
Swift goes beyond the basic JSON types with its JSONSerialization class

(part of the Foundation framework). JSONSerialization converts JSON

into array and dictionary Swift data types in addition to the basic JSON

string, number, and Bool data types.

Note swift bridges Boolean and bool (C) types into Bool types. this
is handled automatically for you.

 Using Swift Structs
JSON is a flexible and easy-to-use notation tool. On the other hand, Swift

is designed to be a powerful tool for building apps, particularly those using

the model-view-controller (MVC) design pattern, which is more complex

than JSON. One area that demonstrates this well is the Swift struct type.

You may often declare structs in Swift that you will use throughout your

app (or not at all). When you work strictly with JSON, it is uncommon to

declare a struct that is not used to store data. This section explains how to

create and use Swift structs with JSON.

Listing 2-1 shows how to create a Swift struct for a Student object or

model (the terms are interchangeable in this section) using a playground.

Listing 2-1. Swift Struct

import Foundation

struct Student {

 var name: String

 var studentID: Int

}

Chapter 2 Looking inside a doCument

8

What matters here is that the Student struct contains two var elements:

name and studentID. Also worth noting is the fact that in this playground

the Foundation framework must be imported because it will be used for

working with JSON data. The other elements of the struct are standard

Swift elements.

Tip note that the swift style is to capitalize names of objects such
as structs, so the name of the Student struct is capitalized.

With the struct shown in Listing 2-1, you can create an instance of the

struct using code such as the following:

let student1 = Student(name: "John Appleseed", studentID: 154)

You can integrate JSON with Swift by using an encode (to: encoder)

function to encode data along with an init (from decoder:) to do the

reverse. To do this, you need to create keys to identify the elements that

you will be coding and decoding. The first step is to declare coding keys as

an enum CodingKeys element, as shown in Listing 2-2.

Listing 2-2. Swift Extension for Coding Keys

 enum CodingKeys: String, CodingKey {

 case studentID = "studentID"

 case name

 }

}

Note that they are the keys you will use to encode and decode the data

for the name and studentID variables. With the keys established along with

the variables, you can now create an encode (to: encoder) function, as

shown in Listing 2-3. Note that this extension indicates that the Student

struct conforms to the Encodable protocol.

Chapter 2 Looking inside a doCument

9

Listing 2-3. Swift Extension for Encoding

extension Student: Encodable {

 func encode(to encoder: Encoder) throws {

 var container = encoder.container(keyedBy: CodingKeys.self)

 try container.encode(name, forKey: .name)

 try container.encode(studentID, forKey: .studentID)

 }

}

 Encoding JSON
You’ll need a JSONEncoder object to handle encoding. Such a JSONEncoder

object is often named jsonEncoder but you can use any name you want.

A JSONEncoder object specifies the container for the encoded data.

In Listing 2-3, there is only one function, encode (to: encoder), and

it uses a jsonEncoder object, the container that will contain the encoded

data retrieved from the encoder.

The heart of the encode(to: encoder) function consists of the three

lines of code that encode the struct elements (name and studentID).

The first of these lines tries to encode the name var using the .name key:

 try container.encode(name, forKey: .name)

The second of these lines tries to encode the studentID var using

the .studentID key:

 try container.encode(studentID, forKey: .studentID)

These lines of code appear frequently in this type of function. In case

you are wondering how the try is handled, note that the

func encode(to encoder: Encoder)function

can throw an error.

Chapter 2 Looking inside a doCument

10

Tip if you are debugging this code, set a breakpoint on the try
statement so that you can see what causes a problem. typical
problems you may encounter in this code are typos in the key
names.

Once you have created a jsonEncoder, you can reference the container

within it and associate it with keys that you have declared elsewhere in the

function with this line of code:

 var container = encoder.container(keyedBy: CodingKeys.self)

 Decoding JSON
Listing 2-4 shows the reverse operation to decode the JSON code.

Listing 2-4. Extension for Decoding

extension Student: Decodable {

 init(from decoder: Decoder) throws {

 let values = try decoder.container(keyedBy: CodingKeys.self)

 name = try values.decode(String.self, forKey: .name)

 studentID = try values.decode(Int.self, forKey: .studentID)

 }

}

Rather than an encode(to: encoder:) function, the heart of this code

is init(from decoder: Decoder).

You retrieve the values from the decoder container using the coding

keys, like so:

 let values = try decoder.container(keyedBy: CodingKeys.self)

Chapter 2 Looking inside a doCument

11

Rather than encode each variable and key, you then decode them

using code such as the following:

 name = try values.decode(String.self, forKey: .name)

 studentID = try values.decode(Int.self, forKey: .studentID)

 Putting the Encoding and Decoding Together
You can encode and decode the data as you wish. For the purpose of

debugging, you can print out encoded data using code such as the

following:

You can print out a string showing the JSON code:

You can then reverse the process to print out the decoded data, as you

see here:

Note For debugging, you may want to add the code in this section
to your app so that you can use breakpoints to verify the encoding
and decoding of the data. usually once it is working and the keys are
correct, you can disable the breakpoints or even remove them.

Chapter 2 Looking inside a doCument

12

 Summary
This chapter showed you how to encode and decode JSON data to and

from Swift structs. Because you will be working with named Swift objects,

you don’t have to worry about the sequence or formatting of data.

Chapter 2 Looking inside a doCument

13© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_3

CHAPTER 3

Matching a Document
to a Document Format
In this chapter, you will see how to match a document as described and

defined in your app’s code to an actual runtime document object. This is

the heart of putting documents to work. This chapter covers the three basic

points you need to address:

• Preparing for iCloud

• Setting up your document in your app

• Managing document types

 Preparing for iCloud
You may wonder what iCloud has to do with documents, but the answer is

quite simple. As you start to use more and more aspects of iOS and macOS,

you’ll see that network connectivity and iCloud are no longer special cases.

More and more you (and your users) will find that iCloud and the network

are essential for your devices to function properly. It’s taken a long time,

but it’s safe to say that we do have connectivity now.

Not only do we have connectivity most of the time, but users and

developers are getting more comfortable with managing that connectivity.

Developers and users alike turn to airplane mode when it’s necessary to

14

go offline for one reason or another. (This is a dramatic simplification from

the days when it was common practice to separately adjust Bluetooth, data

access, and other connections.)

Because iCloud connectivity is so common today, many developers

include it in the capability settings for apps. Figure 3-1 shows the iCloud

capability for a macOS app.

Figure 3-1. Setting up iCloud for a macOS app

The iCloud services can be turned on or off with the checkboxes. Note

that iCloud documents can be enabled here. It’s important to note as well

that both CloudKit and key-value storage can be used with documents.

You’ll learn more about key-value storage with documents in Chapter 9.

For an iOS app, Figure 3-2 shows the cloud capability settings.

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

15

Note that although there are many more options available for iOS apps,

the section for the iCloud options is the same for iOS and macOS apps. For

this reason, iCloud data is compatible with both environments.

 Setting Up Your Document in Your App
There are differences in setting up and using documents in iOS and

macOS; however, the basic settings, shown in Figures 3-3 and 3-4, are

very similar. Figure 3-3 shows the document setup for an iOS app, and

Figure 3- 4 shows the setup for a macOS app.

Figure 3-2. Setting up iCloud for an iOS app

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

16

Setting up a document in macOS is fairly similar, as you can see in

Figure 3-4.

Figure 3-3. Setting up a document in iOS

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

17

 Managing Document Types
An app can open many different documents depending on how you build

the app and the documents. Each type of document (not each specific

document) is defined as a document type in your info property list, as you

can see in Figure 3-5.

Note that a document type has a name. In Figure 3-5, that name is

Images; the document type name is descriptive and is used internally by

your app.

A document type can handle various types of content. Apple uses

uniform type identifiers (UTIs) to identify standard types. You can also

create your own types. Using the standard types where possible makes

your app more usable because users can read and write any files that

conform to the supported UTIs.

Figure 3-4. Setting up a document in macOS

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

18

For example, Figure 3-5 shows that the Images document type

can handle any document that conforms to the public.image UTI

specification. There is more on data types later in this chapter. For now,

it is sufficient to know that the Images data type defined in this app (built

with the Document Based App iOS project template) conforms to a

standard image format called public.image which, in turn, conforms to

the public.data and public.content UTIs.

The simplest way to think about UTIs is

• Document types are the types of documents your app

can open.

• Exported UTIs are the types of documents your app

controls and can export (in a simple sense, they are the

UTIs that your app writes).

Figure 3-5. The Images data type for iOS

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

19

• Imported UTIs are the types of documents your app

reads. They are controlled by other apps, which export

them.

Figure 3-5 shows a document type for an iOS app. There are different

settings for document types used in macOS. Some of the differences

revolve around the fact that in macOS, the document type is used to

determine what app opens that document type. In iOS, this is handled

differently.

Figure 3-6 shows a document type for macOS.

Figure 3-6. Document types for macOS apps differ from iOS apps

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

20

 Looking at info.plist
What you see in Figures 3-5 and 3-6 is complex. In the project navigator

at the left of both figures, you see the project files. In both figures, you see

Swift files as well as one or more storyboards, entitlements files, and assets

(what you see varies by the project and your settings). What matters at

this point is the info.plist file, which is the property list for each project.

Property lists are used extensively in Cocoa and Cocoa Touch. They consist

of specific data types (arrays, strings, numbers, dictionaries, numbers,

dates, Boolean values, or NSData). Property lists are very fast and efficient

ways of storing and retrieving data. Each app has a basic property list

(called info.plist), and there may be other property lists supporting

other parts of the app.

A property list consists of key-value pairs where the keys are strings

and the values are one of the data types mentioned in the previous

paragraph. The beginning of the source code of a property list is shown in

Figure 3-7.

Figure 3-7. Source code of a property list

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

21

As you can see in Figure 3-7, a property list is easy to display in

XML. The formatting that you see in Figure 3-7 is generated by Xcode.

Property lists can also be formatted directly from XML in tools such as

Excel and BBEdit. A property list displayed in Xcode can be formatted

as shown in Figure 3-8.

Note that with formatting, the property list is a bit easier to read,

but remember that it is still the basic XML-based property list shown

previously in Figure 3-7.

When you look at the project navigator, you can open any of the

files using Control-click. For property lists, you are given a choice of the

formatting options shown in Figure 3-9.

Figure 3-8. Formatted property list in Xcode

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

22

Figure 3-10 shows the choices under the Open As option.

Figure 3-9. Choosing a formatting option for a file in the Xcode
project navigator

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

23

Source code formatting of a property list is shown in Figure 3-7; the

property list format is shown in Figure 3-8.

If you refer back to Figures 3-5 and 3-6, you’ll see in both of them a

formatted property list at the top of the figure (remember that you can

open it with a Control-click of the property list in the project navigator).

Beneath the formatted property lists in Figures 3-5 and 3-6 is yet

another representation of the property list: it’s simple to refer to it as a UI

version. They are the versions shown for property types and other settings.

What matters is that all of the formatting you see in Figures 3-5 and 3-6

is based on the raw property list. The different UI formats can make

it easier to work with the documents you want to handle in macOS or

iOS. However, remember that the underlying property list (info.plist) is

what matters. It is generally easier to work with the UI-formatted versions,

but to be absolutely certain what you are doing, it is safest to go back to the

source code of info.plist to see exactly what is going on.

 Summary
Document types are used to match a document and its contents to

a subclass of UIDocument or NSDocument. UTIs are used to identify

documents that may be used by various apps and documents. In this

chapter, you also explored the structuring and setting up of iCloud for

documents and the use of property lists with files and documents.

Figure 3-10. Viewing a property list

Chapter 3 MatChing a DoCuMent to a DoCuMent ForMat

25© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_4

CHAPTER 4

Securing and
Protecting Data
As soon as you start thinking about saving data, you should be thinking

about the security of that data. Every step of the process from deciding

what data to store and what rules to implement for safeguarding that data

needs to be considered. This chapter focuses on these issues.

 Security and Privacy Overview
As pointed out at the beginning of Chapter 1, we use documents to store

and organize the data that we use in apps. There are two fundamental types

of data that we organize into documents: data that is distributed with the

app, and data that users create and modify. The second type, which is data

that users create and modify, may include data distributed with the app.

No matter what type of data is involved, if you are building or designing

an app, you need to be aware of data issues that may arise. Until fairly

recently, data issues were fairly modest in apps. Some data was clearly

sensitive, but most data in apps required no special handling. Users and

developers took frequent refuge behind the notion that “no one will care

about our data.” Data such as personal identification numbers was clearly

sensitive; developers and users often handled security for such data by

adding a disclaimer or note in the documentation.

26

All of this started changing as massive data breaches were reported in a

variety of systems. Best practices for the handling of sensitive data (or data

that might be or become sensitive) were formulated.

In response to media reports and general awareness of data security,

laws and regulations have begun to be implemented. For example, in the

European Union (EU), the General Data Protection Regulation (GDPR)

came into effect on May 25, 2018.

As new laws, regulations, and best practices take effect and become

part of everyday operations, it behooves people who deal with data to

understand how to implement these new practices in the modern data

environment. This chapter provides a case study of a very simple use of

private data and how it can be accidentally destroyed by simple or careless

use. You can use this case study to guide you in your use of private data

and privacy implementation.

 Case Study: Using Cocoa Location Services
One of the most important privacy issues has to do with the location of

mobile devices. Before mobile devices were so widespread, data privacy

was mostly a matter of protecting information that was relatively static

even if it was shared over the Internet. With mobile devices, however,

the device itself can create confidential location data. This is a part of the

necessary functioning of any device that needs to be able to locate itself

and the infrastructure that it needs to use to make phone calls or otherwise

do what it needs to do.

It is possible to disable some or all of the location services on a mobile

device (for example, by using airplane mode) but this limits or degrades

performance. Apple has made location services a feature that can be

turned on and off directly rather than disabling all communications. To do

so, you use the Cocoa Location Services Framework.

Chapter 4 SeCuring and proteCting data

27

Users need to allow the use of location services on their device. Often

this happens during installation of the operating system or setup of the

device, but users can do it using Settings. Figure 4-1 shows how a user can

set up the privacy location settings for an app using Settings.

Figure 4-1. The Location Services settings

Once you have located your app in the Location Services section,

you can choose the privacy settings you want. An app can ask for your

permission on an as-needed basis, as you can see in Figure 4-2. (The text

at the top of the alert is explained later in this chapter.)

Chapter 4 SeCuring and proteCting data

28

When using Settings, as shown in Figure 4-1, you can set the same

options using the interface shown in Figure 4-3.

Figure 4-2. Adjusting location privacy settings for an app as needed

Chapter 4 SeCuring and proteCting data

29

In addition to the text in Settings and an app alert, you must adjust

your property list to support these interfaces. As you can see in Figure 4-4,

your property list has places where you describe how the user’s location

data will be used.

Figure 4-3. Using the same settings in the Settings app as in an alert
from the app

Chapter 4 SeCuring and proteCting data

30

It is very important to let the user know how you will use the location

data you collect. Note that Apple reviewers ask developers to be specific

in their description of how data will be used. It’s no longer sufficient to

explain your use of location data with a phrase such as “Get the user’s

location.” Figure 4-5 shows an example of a description that is not specific

enough.

Figure 4-4. Adjusting the property list for the privacy location settings

Chapter 4 SeCuring and proteCting data

31

If you do not provide any description, your app will write a message to

the console, as shown in Figure 4-6.

Figure 4-5. Make sure you describe how you will use the data

Chapter 4 SeCuring and proteCting data

32

Location services provide a great example of a common problem with

privacy and security. If a description for the use of the location data is not

provided, a runtime message is displayed in the console, but no error is

thrown, as you can see in Figure 4-6. You can argue whether this should

be an error or not (as the engineers at Apple most likely have done), but

the argument is convincing that it is not an error even though it might be a

programming mistake.

Figure 4-6. A missing description prevents the app from getting the
location

Chapter 4 SeCuring and proteCting data

33

It is a common and usually good design to build this type of warning

into an app. However, Figure 4-5 shows a common error. Note that the

description is “This is a test.” Because no error is thrown, it is remarkably

easy for this description of how the location data will be used to show

up in a shipping product. If you look at media reviews and articles about

security, you’ll see that one of the biggest complaints is that when

an app does provide information about how data will be used, it may well

be wrong. It is often a placeholder (“This is a test”) or a description from

another app that has been brought forward by copy-and-paste.

 Summary
Because the explanations of what data is collected and how it will be

used are written in simple language and not code that a compiler or build

process can flag, these descriptions are very often wrong. Now that they

are required by regulations such as GDPR, these errors are more important

than ever.

The moral is that you should make certain that descriptions of security

for users are correct so that users can rely on them, understand them, and

use them.

Chapter 4 SeCuring and proteCting data

35© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_5

CHAPTER 5

Implementing
Documents
on macOS:
NSDocument
The heart of documents on macOS is the NSDocument class. Like

UIDocument in iOS, it is an abstract class that you subclass for your own

app. Three classes interact to provide document functionality in your app.

They are the following:

• NSDocument is the abstract class that you subclass for

your app.

• NSDocumentController is the app-specific class that

manages the opening and closing of your document.

• NSWindowController is the class that manages the

window in which your document is displayed.

36

There isn’t a one-to-one mapping of these classes between macOS

and NSDocument and iOS and UIDocument; however, the similarities

between NSDocument and UIDocument as well as the similarities between

NSDocumentController and UIDocumentController are important (but

they are no more than similarities).

 Differences Between iOS UIDocuments
and macOS NSDocuments
The biggest difference between iOS documents and macOS documents

is that on macOS, the documents are part of the system environment and

on iOS, they are part of each app’s environment. There are reasons for this

(many of which reflect the evolution of the two operating systems), but

what matters is this aspect of the environment in which your app runs and

your document exists.

Putting it another way, the tools that let you manage documents

(creating and saving them, for example) are part of macOS and, on iOS

they are part of tools such as UIDocumentBrowserViewController rather

than iOS.

 Creating a Document-Based App on macOS
As is usually the case, the simplest way to start building a new app is to use

one of the built-in Xcode templates. Creating a document-based macOS

app is no different. Start by creating a new project using the macOS Cocoa

App template, shown in Figure 5-1.

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

37

As you do with an iOS project, name the macOS project and provide

optional information, as shown in Figure 5-2.

Figure 5-1. Creating a new Cocoa app for macOS

Figure 5-2. Information for a macOS app

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

38

By contrast, Figure 5-3 shows the options for an iOS app.

Figure 5-3. Information for an iOS app

There are some options for macOS projects that you won’t find for

iOS apps. In particular, for macOS project templates, you’ll see options

to use storyboards and documents. For iOS project templates, you have a

template for documents, and storyboards are assumed.

As is always the case when you create a new project from a template,

try to run it as you see in Figure 5-4 at the top left with the right-pointing

arrow. (Some projects, particularly those that require an iCloud account,

may not run, but this one should run for you.)

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

39

As the project runs, it will use your Mac to run it instead of an iOS

simulator. The basic app should show you a screen such as the one shown

in Figure 5-5.

Figure 5-4. Running the app

Figure 5-5. Running your new macOS app

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

40

 Adding Code to Your macOS App
It is a good idea to look inside the app that you’ve created to see how it

works. (This will help you make changes to it as you develop your app.)

The main components of your app when you start out from the project

template are as follows:

• AppDelegate: This is functionally similar to the

AppDelegate that you use for iOS apps.

• ViewController: This is a view controller (named

ViewController) that works similarly to a view

controller in an iOS app.

• Document: This is a subclass of the NSDocument class.

The following sections show you the code for this project.

 AppDelegate
As you can see in Figure 5-6, this is similar to app delegates in iOS apps

(but it’s much shorter, in part because the operating system has much of

the document work built into it).

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

41

The basic code that is part of the project template is shown in Listing 5-1.

The comments in the code explain what you can add to it. The project

template will run without any customization but you should implement

the commented-out code or a variation of it before releasing an app even

just for testing.

Listing 5-1. AppDelegate Template Code

import Cocoa

@NSApplicationMain

class AppDelegate: NSObject, NSApplicationDelegate {

 func applicationDidFinishLaunching(_

 aNotification: Notification) {

 // Insert code here to initialize your application

 }

Figure 5-6. Using AppDelegate

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

42

 func applicationWillTerminate(

 aNotification: Notification) {

 // Insert code here to tear down your application

 }

}

 ViewController
ViewController is the instance of NSViewController that will let you manage

objects in the view. The basic ViewController is shown in Figure 5-7 and

Listing 5-2. It will be modified in the "Document" section later in this chapter.

Figure 5-7. Creating the ViewController

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

43

Listing 5-2. ViewController Code

//

// ViewController.swift

// Document2A

//

//

import Cocoa

class ViewController: NSViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 override var representedObject: Any? {

 didSet {

 // Update the view, if already loaded.

 }

 }

}

 Document
Document is the subclass of NSDocument that manages the document and its

data. The basic code is shown in Figure 5-8 and Listing 5-3. It is important

to note that the document subclass makeWindowControllers method

includes the code for matching the storyboard to the Document class.

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

44

Listing 5-3. Document Code

//

// Document.swift

// Document2A

//

//

import Cocoa

class Document: NSDocument {

Figure 5-8. Managing your document

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

45

 override init() {

 super.init()

 // Add your subclass-specific initialization here.

 }

 override class var autosavesInPlace: Bool {

 return true

 }

 override func makeWindowControllers() {

 // Returns the Storyboard that contains your

 Document window.

 let storyboard = NSStoryboard(

 name: NSStoryboard.Name("Main"), bundle: nil)

 let windowController =

 storyboard.instantiateController(

 withIdentifier:

 NSStoryboard.SceneIdentifier(

 "Document Window Controller"))

 as! NSWindowController

 self.addWindowController(windowController)

 }

 override func data(ofType typeName: String) throws -> Data {

 // Insert code here to write your document to data of the

 // specified type, throwing an error in case of failure.

 // Alternatively, you could remove this method and override

 // fileWrapper(ofType:), write(to:ofType:), or

 // write(to:ofType:for:originalContentsURL:) instead.

 throw NSError(domain: NSOSStatusErrorDomain

 code: unimpErr, userInfo: nil)

 }

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

46

 override func read(from data: Data,

 ofType typeName: String) throws

 {

 // Insert code here to read your document from the

 // given data of

 // the specified type, throwing an error in case of failure.

 // Alternatively, you could remove this method and override

 // read(from:ofType:) instead.

 // If you do, you should also override isEntireFileLoaded to

 // return false if the contents are lazily loaded.

 throw NSError(domain: NSOSStatusErrorDomain,

 code: unimpErr, userInfo: nil)

 }

}

 Storyboard
Figure 5-9 shows how you can modify the storyboard in the template to

add a text view (you do this just as you do it in iOS). In Document, you can

use the text view to collect the data and then process it.

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

47

 Overview of macOS and iOS Development
Note that the details of managing the data in the text views differ between

macOS and iOS. Among the differences are that in macOS, functions

expose scrolling behaviors that in iOS are properties of the views.

Keep in mind the history of Cocoa on macOS. In the earliest

documentation, OpenStep and its precursor, NeXTSTEP, were designed

for use in a world of business apps that were running on early personal

computers. Even the earliest versions had functions for managing

formatted tables and strings. The development path for Cocoa and Cocoa

Touch differs in large part because the target platform for Cocoa Touch

was at first the iPhone. Although there were (and are) business apps, the

apps and users of iOS devices are very different from the apps and users of

NeXTSTEP at its launch (September 18, 1989).

Figure 5-9.

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

48

Note For an interesting look at the environment in 1989, see the
timeline of Computer history at www.computerhistory.org/
timeline/1989/.

 Summary
The basic mechanism for reading and writing data is the same for macOS

and iOS: you use objects in a storyboard to receive and send that data.

Note that storyboards are a relatively new addition to macOS, so

you may not find them in old code samples. Note, too, that you may find

references to binding in old code. Although it is not deprecated, it is not

used frequently in modern macOS code.

Chapter 5 ImplementIng DoCuments on maCos: nsDoCument

http://www.computerhistory.org/timeline/1989/
http://www.computerhistory.org/timeline/1989/

49© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_6

CHAPTER 6

Implementing
Documents on iOS
There are three main issues you have to consider when implementing

documents on iOS:

• With the advent of the iOS Files app in iOS 11, users

began to have access to the underlying file system in

iOS.

• The basic class for iOS documents is UIDocument,

which is designed to be subclassed.

• UIDocumentBrowserViewController is a view

controller designed to implement the user interface of

the Files iOS app.

This chapter focuses on the first point: Files.

 Using Files and the iOS File System
When the first iPhone was launched, it wasn’t an immediate success.

In fact, if you go back and search for news articles, you’ll discover some

major complaints about the product. One of the biggest was the absence of

connectors (such as USB) to attach other devices to the iPhone in the way

that users were accustomed to attaching devices to personal computers.

50

The fact that the entire iPhone file system was hidden from the user’s

view was one of the common complaints. There were reasons for the

hidden file system architecture and, over the decade of iPhone use, users,

developers, and analysts have come to learn the benefits (and sometimes,

drawbacks) of this architecture.

With the advent of iOS 11 in 2017, Apple released its Files app, which

approached the issue of file management in a very different way from the

architecture that people were accustomed to from the beginning of the

personal computer era. In the basic personal computer file architecture,

which was built on the traditional Unix file architecture, users managed

files and folders, which could be placed almost anywhere on the device.

The Files app takes a different approach in that files are accessible from

specific areas that are usually related to apps. In other words, instead of

thinking of files that can be moved anywhere on a personal computer’s

disk, users are now encourage to think of files that can be moved anywhere

within an app’s file space (often referred to as a sandbox).

Recognizing that people are not simply using disk space on a personal

computer, the Files app incorporates access to cloud storage services that

go beyond a personal computer such as iCloud, Dropbox, Box, Google

Drive, and OneDrive.

For people who are accustomed to the legacy structure where users

can place files where they want to, this can be a relearning experience.

Perhaps the most important point to consider is that with the legacy file

structure, you place files where you want to place them in relation to your

computer’s disks and other storage locations. Using the iOS File System

and Files, you place files in either of two general locations:

• You can place files in the folder for a specific app. A

folder can be shared among several related apps. For

good examples of this type of sharing, use the built-in

Pages, Keynote, or Numbers apps and experiment by

saving files to be shared.

Chapter 6 ImplementIng DoCuments on Ios

51

• You can place files in a cloud storage service such as

iCloud or Dropbox.

Here are some details about using Files.

 Choosing Document Storage Locations
Remember that file storage is primarily determined by the app a file is

associated with. Your primary tool for choosing the storage location is by

setting it in Settings for an app. For example, in Settings, you can see the

various settings for installed apps on your iOS device (Figure 6-1).

Figure 6-1. Choosing the settings for your apps

Chapter 6 ImplementIng DoCuments on Ios

52

Find your app and then choose the storage location, as shown in

Figure 6-2. Your choices depend on what you have installed on your iOS

device. If you use iCloud (a very common choice), you can choose to store

your data there. You can choose to store it on a local device or you can use

Dropbox, Box, or another service.

Figure 6-2. Choosing a document storage location

 Browsing Documents
When you use Files, you can choose to browse files in a specific location

(this, of course, depends on what you have chosen for locations and the

files that you have). It’s important to understand the browsing data that

Files shows you, so the following images show you what you might see.

Chapter 6 ImplementIng DoCuments on Ios

53

If you have decided to use your iPad for storage, you might see the

browse results shown in Figure 6-3 when you choose the On My iPad

location.

Figure 6-3. Browsing the On My iPad files

If you use iCloud Drive, you may see a browse window such as the one

shown in Figure 6-4.

Chapter 6 ImplementIng DoCuments on Ios

54

Note that when you browse, the locations are at the left of the window.

When you select a specific file or folder, you will see its container indicated

either in Locations at the left or at the top of the right-hand list, as in

Figure 6-5.

Figure 6-4. Browsing documents and folders on iCloud Drive

Chapter 6 ImplementIng DoCuments on Ios

55

 Looking at Recent Documents
Using the tabs at the bottom of the window, you can switch between recent

files and folders and ones that you want to browse. Figure 6-6 shows recent

files and folders.

Figure 6-5. Folder names at the top of the right-hand pane

Chapter 6 ImplementIng DoCuments on Ios

56

If some of your documents have not yet been downloaded from a

remote server, you will see the cloud icon shown in Figure 6-7, indicating

that they are waiting to be downloaded. If you tap a specific file, you can

speed up its downloading process.

Figure 6-6. Recent files and folders

Chapter 6 ImplementIng DoCuments on Ios

57

Note that in addition to indicating if a file needs to be downloaded, you

can see its location. For example, in Figure 6-7, in the lower right, you can

see a document that is marked as On My iPad rather than iCloud Drive.

Tip get used to working with Files and using the file location
information and download status. Because there is often a time lag
as a download is scheduled and processed, you will save yourself
time if you know what files are where so that you don’t try to debug
issues that are merely timing issues.

Figure 6-7. Downloading files

Chapter 6 ImplementIng DoCuments on Ios

58

 Viewing Files and Folders for an App
When you look at apps on an iOS device, you can tap and hold an app icon

to see the files and folders that may belong to it, as shown in Figure 6-8.

Figure 6-8. Tap and hold an app icon to see its files

If necessary, a Show More button will appear at the top right, as you

can see in Figure 6-8. When you use Show More, a companion Show Less

button appears, as you can see in Figure 6-9.

Chapter 6 ImplementIng DoCuments on Ios

59

When you look at the apps in Files (Figure 6-7), you will see a list of the

files and folders, as shown in Figure 6-10.

Figure 6-9. The Show Less option

Chapter 6 ImplementIng DoCuments on Ios

60

 Summary
Use Settings to control where you store the files and folders for an app, and

use Files to browse files and folders as well as recents.

Remember that you control where the files and folders are placed

not by selecting locations on your personal computer but by selecting

locations on the device you’re using or on a cloud storage function such as

iCloud or Dropbox.

Figure 6-10. A list of all files and folders for an app

Chapter 6 ImplementIng DoCuments on Ios

61© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_7

CHAPTER 7

Implementing
Documents on iOS:
UIDocument and
UIDocumentBrowser
ViewController
Documents are critical components of many apps and have been so from

the beginning of the personal computer era. Many people still think of

documents as paper-based objects, but the documents that people work

with today on iOS and macOS are much more sophisticated than their

paper predecessors. This chapter introduces today’s documents and their

structures. It then explains how to use UIDocumentBrowserViewController

to manage documents.

62

 Creating a Document-Based App
As is often the case with the basic building blocks of the frameworks in

Xcode, the simplest way to get started with documents for iOS is to use the

Document Based App project template that’s built into Xcode. Begin by

creating a new iOS project, as shown in Figure 7-1.

Figure 7-1. Picking the Document Based App template in Xcode

Go through the standard options shown in Figure 7-2 to set up the

template.

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

63

Continue with the options until you have the project template

complete as shown in Figure 7-3.

Figure 7-2. Setting the options for the new project

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

64

When you’re finished, run the app. (This is a step you should always

take when you create a new project from a template. Except for issues such

as network availability, your new project template should run.)

Figure 7-3. Reviewing the new project

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

65

Run the project. You should see the Simulator, as shown in Figure 7-5.

Figure 7-4. Looking at the storyboard

As you can see in Figure 7-4, you can open the project and see the

storyboard with two view controllers.

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

66

Continue exploring your new app. Use the Browse tab to browse files in

your app’s sandbox, as shown in Figure 7-6.

Figure 7-5. Running the app

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

67

There are no files there now, but there is a Create Document button.

Try it out!

Nothing happens.

It’s time to move to the next section of this chapter, which looks at

UIDocument. Among other tasks, you’ll see how to implement the Create

Document button.

Figure 7-6. Exploring the Browse tab in your app

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

68

 Introducing UIDocument
The basic document class in iOS is UIDocument. UIDocument provides the

basic functionality of a document in these ways:

• fileURL: UIDocument identifies a document using

a file URL so that your app can locate it for

reading and writing.

• UIDocument manages asynchronous reading and

writing of data on a background queue with

minimal effort on your part.

• UIDocument also coordinates reading and writing

of document files using cloud services such as

iCloud.

• UIDocument also manages conflicts and changes

to versions of your document.

These are the basic components of UIDocument. In order to start

working with documents, you can use the basic code that is available in

the Document Based App template. The basic code in the project template

provides functionality for fileURL (document identification) as well as

the critical reading and writing features along with cloud services and

management of conflicts and changes.

 Working with UIDocument
The key components for working with UIDocument are UIDocument,

which handles reading, writing, and creating UIDocuments, and

UIDocumentBrowserViewController, which handles the browsing and

the user interface part of reading, writing, and creating UIDocument.

Completing the basic functionality of UIDocument is an implementation of

UIDocumentViewController.

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

69

UIDocument takes care of a lot of document management for you

including many critical functions such as saving documents and managing

changes. You can study the documentation to see all of the features, but

you can use the stripped-down functions for UIDocument that are part

of the Document Based App template used in this chapter. In fact, the

basic code from the template (shown in Figure 7-7 and Listing 7-1) is an

excellent place to start and, for many basic apps, it may be all you need

along with a line or two of app-specific code.

Figure 7-7. Basic UIDocument functionality

Listing 7-1. The Basic Code

//

// Document.swift

// Document1

//

//

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

70

import UIKit

class Document: UIDocument {

 override func contents(forType typeName: String) throws ->

Any {

 // Encode your document with an instance of NSData or

NSFileWrapper

 return Data()

 }

 override func load(fromContents contents: Any, ofType

typeName: String?)

 throws {

 // Load your document from contents: ofType:)

 }

}

The function you need to implement first is contents(forType:).

When you have decided the format for the data in your document, you

specify its type, and that type is used to read and write the document’s

data. Often, the type of a document file is a basic Swift or Objective-C type

such as NSData. If you use NSData, it is your responsibility to convert your

document’s data to NSData or whatever type you are using.

The companion function is load(fromContents: ofType:). Both of

these functions let you read or write a general-purpose format and then

convert it into data that your app manages.

If you explore the code for UIDocument, you’ll see that it handles

asynchronous reading and writing, working with cloud data, and

managing changes all within the basic structure of the two functions:

contents(forType:)and load(fromContents: ofType:)

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

71

 Working with UIDocumentViewController
Once you have your document in place, you need to add a view controller

so that you can see and manipulate content. In the Document Based App

project template, the document controller is created as shown in Figure 7- 8.

Figure 7-8. The DocumentViewController

The code is shown in Listing 7-2.

Listing 7-2. Document View Controller Code

class DocumentViewController: UIViewController {

 @IBOutlet weak var documentNameLabel: UILabel!

 var document: UIDocument?

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

72

 // Access the document

 document?.open(completionHandler: { (success) in

 if success {

 // Display the content of the document, e.g.:

 self.documentNameLabel.text

 self.document?.fileURL.lastPathComponent

 } else {

 // Make sure to handle the failed import

appropriately,

 // e.g., by presenting an error message to the user.

 }

 })

 }

 @IBAction func dismissDocumentViewController() {

 dismiss(animated: true) {

 self.document?.close(completionHandler: nil)

 }

 }

}

There are two functions in the DocumentViewController class:

viewWillAppear((_:) and dismissDocumentViewController(). The

first opens the document and the second closes it.

 Opening the Document
Opening the document is a great example of the Swift asynchronous

programming style using a completion handler. The code is

document?.open(completionHandler: { (success) in

 if success {

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

73

 // Display the content of the document, e.g.:

 self.documentNameLabel.text

 self.document?.fileURL.lastPathComponent

 } else {

 // Make sure to handle the failed import appropriately,

 // e.g., by presenting an error message to the user.

 }

 })

open is called on the document (note that it is an optional and is unwrapped

with ?). The completion handler is declared in the open function, and it

is called upon completion of open. There is one parameter passed into

the completion handler. As is common but not required, it is often called

success; it is a Boolean that indicates if open has succeeded or not.

The completion handler then executes this code:

if success {

 // Display the content of the document, e.g.:

 self.documentNameLabel.text

 self.document?.fileURL.lastPathComponent

} else {

 // Make sure to handle the failed import appropriately, e.g., by

 // presenting an error message to the user.

}

For a successful opening of the document, a label in the storyboard is

filled with lastPathComponent of the file URL. (You can see this at the right

in Figure 7-4.) For most apps, you would actually display some content

from the document in the interface.

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

74

Note The completion handler for opening the document is a
significant way of improving app performance. When you are dealing
with documents and files that may be in the cloud, the delay in
executing the completion handler (whether successful or not) can be
significant. Remember this when you are testing your app.

 Closing the Document
Closing the document uses a similar structure with

dismissDocumentViewController. However, note that the completion

handler in the app is nil. If you don’t need to process data that has

changed, you don’t have to do anything except close the document.

 Working with UIDocumentBrowserView
Controller
UIDocumentBrowserViewController is the heart of the document-based

app. This section provides an overview of what happens. There are

two basic paths to follow: creating a document or opening an existing

document. (You might want to refer back to Figures 7-5 and 7-6.)

 Loading the UIDocumentBrowserViewController
The first step in working with a UIDocumentBrowserViewController is to

load it, as shown in Figure 7-9.

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

75

Note that your UIDocumentBrowserViewController subclass should

also conform to the UIDocumentBrowserViewControllerDelegate

protocol. You can see this in line 12 of Figure 7-9. For additional reference,

here is the code:

delegate = self

You have choices for the visual style of the browser that you can

set at this point so that they coordinate with your user interface. Other

initializations can be handled in your info.plist.

Note There is more on your info.plist in Chapter 3.

Figure 7-9. Loading UIDocumentBrowserViewController

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

76

Note that viewDidLoad lets you choose whether documents can be

created with line 19:

allowsDocumentCreation = // true or false

After you have loaded the UIDocumentBrowserViewController, you

typically implement four functions, which are shown as stubs in Figure 7-9,

The functions are

• (documentBrowser(_:didRequestDocumentCreationWi

thHandler:) for creating a new document

• (documentBrowser(_:didPickDocumentAt:) for

opening an existing document

• (documentBrowser(_:didImportDocumentAt:toDestin

ationURL:) for, after opening a document, presenting it

with its content

• (documentBrowser(_:failedToImportDocumentAt:err

or) to handle an error

 Creating a Document
You can use the template to create a new document. As the documentation

indicates, you can allow users to choose which of several basic documents

you will use as a template. See Figure 7-10.

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

77

In many older design patterns, you would choose to create an empty

document and then possibly modify it with data. The design pattern that

is most often used in iOS is not to create a document but instead to copy

an existing template document from your bundle and put the copy in the

appropriate place for your app. This is a different work flow, but it becomes

more efficient as you create and modify your app over time.

Listing 7-3 shows the code to let users choose a template from a list.

The key line of code is

let newDocumentURL = Bundle.main.url(forResource: "Template",

 withExtension: DocumentBrowserViewController.

documentExtension)

 importHandler(newDocumentURL, .copy)

 }

This takes a file called Template with your document extension from

your bundle and copies it to a new location. If you don’t need to let users

Figure 7-10. Creating a document

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

78

choose from among several templates, just use this code without the alert

that lets people choose.

Listing 7-3. Letting Users Choose a Template

let title = NSLocalizedString("Choose File Template", comment: "")

let cancelButtonTitle = NSLocalizedString("Cancel", comment: "")

let defaultButtonTitle = NSLocalizedString("Basic (Default) ",

 comment: "Default")

let generalButtonTitle = NSLocalizedString("Demo)", comment: "")

let alertController = UIAlertController(title: title, message:

message, preferredStyle: .alert)

let newDocumentURL = Bundle.main.url(forResource: "Template",

 withExtension: DocumentBrowserViewController.

documentExtension)

 importHandler(newDocumentURL, .copy)

 }

// Create the actions.

let cancelAction = UIAlertAction(title: cancelButtonTitle,

 style: .cancel) { action in

 importHandler(nil, .none)

 }

let defaultButtonAction = UIAlertAction(title:

defaultButtonTitle,

 style: .default) { _ in

 let newDocumentURL = Bundle.main.url(forResource: "Template",

 withExtension: DocumentBrowserViewController.

documentExtension)

 importHandler(newDocumentURL, .copy)

 }

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

79

let generalButtonAction = UIAlertAction(title:

generalButtonTitle,

 style: .default) { _ in

 let newDocumentURL = Bundle.main.url(forResource:

"Template2",

 withExtension: DocumentBrowserViewController.

documentExtension)

 importHandler(newDocumentURL, .copy)

}

// Add the actions.

alertController.addAction(cancelAction)

alertController.addAction(defaultButtonAction)

alertController.addAction(generalButtonAction)

present(alertController, animated: true, completion: nil)

 Picking (Opening) a Document
Figure 7-11 shows the code for opening an existing document.

Figure 7-11. Opening an existing document

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

80

The key line of code here lets you select from several existing files; you

attempt to open the first in the list as specified here:

guard let sourceURL = documentURLs.first else { return }

As you can see in Figure 7-9, you can specify if multiple

files can be selected with this line of code in viewDidLoad for

DocumentBrowserViewController:

allowsPicking Multiple Items = // true or false

Once you have picked a document, you ask the

DocumentBrowserViewController to present it, as shown in Figure 7-12.

Figure 7-12. Presenting a document

Or you can use this code:

presentDocument (at:destinationURL)

The typical code is shown in Listing 7-4.

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

81

Listing 7-4. Presenting a Document

func presentDocument(at documentURL: URL) {

 let storyBoard = UIStoryboard(name: "Main", bundle: nil)

 let documentViewController =

 storyBoard.instantiateViewController(withIdentifier:

 "DocumentViewController") as! DocumentViewController

 documentViewController.document =

 Document(fileURL: documentURL)

 present(documentViewController, animated: true,

 completion: nil)

}

Note that this code brings together a document view controller, a

storyboard, and a document. All of these components must match (this is

a common cause of debugging issues).

The code is also shown in Figure 7-13.

Figure 7-13. Presenting a document

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

82

 Handling Errors
The last part of handling document browser view controllers is to make

certain that you handle errors properly; see Figure 7-14.

Figure 7-14. Handling errors properly

 Summary
This chapter shows the processes involved in opening or creating a

document. The most important take-away is that instead of creating

documents from scratch, the best practice is to put a template document

into your bundle so that opening and creating a document can both use

the same basic code.

CHAPTER 7 IMPLEMENTING DOCUMENTS ON IOS: UIDOCUMENT AND
UIDOCUMENTBROWSERVIEWCONTROLLER

83© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_8

CHAPTER 8

Sharing Documents
with Share Buttons
In previous chapters, you saw how to implement documents on iOS and

macOS to save data and share it across your apps. In this chapter, you’ll

see another way to share data using the Share button so that you can

dynamically share data from one app to another without using a document

to store and share the data.

The main points covered in this chapter are

• Using Share buttons (as a user)

• Using Share buttons (as a developer)

• Managing the shared data

 Using Share Buttons (As a User)
To share data, you need one app to share the data (sometimes this process

is called vending the data) and another app (or several apps) to receive the

data and use it as the receiving app wants. Note that, just as is the case with

documents and their types, the connection between sender and receiver

(or vendor and receiver) is dynamic. Neither app needs to know about the

other. The document type or sharing information lets each app function on

its own so that you don’t need to build enormous multi-purpose apps that

require substantial development and maintenance costs.

84

Sharing is part of Cocoa and Cocoa Touch (and it has been since

the beginning of the original NeXTSTEP and Rhapsody versions of the

operating systems). In order to share data, a common format needs to

be available to the sender and receiver. Here is an example of the basic

structure.

 Creating a Sharing Example

Note Remember that you can add apps to the simulator. Mail
may not be configured for you. If you have a device you can use for
testing, it’s best to use it. You can test the ShareApp by downloading
it as described in Chapter 1. Look for the Chapter 8 version.

The simplest example to use for sharing data is the Master-Detail project

template in Xcode. It’s the basis for many examples (and even apps in

the App Store). It’s a simple app with two views. On an iPhone, only one

view at a time is shown; on larger devices, the two views share the screen.

Whichever you’re using, you start from an app that lets you tap + to enter

the current date and time, as you can see in Figure 8-1.

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

85

If you tap the timestamp created in the master view, you’ll see the

details (a better-formatted timestamp) shown in Figure 8-2.

Figure 8-1. Creating a new timestamp record

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

86

In Figure 8-3, you can see an action button added to the navigation

bar at the right. (You’ll learn how to implement it in this chapter). With the

action button, you can share the data from the detail view.

Figure 8-2. Detail view

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

87

Figure 8-3. Adding an action button to share the data

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

88

Create your own version of the app as shown in Figure 8-5.

Figure 8-4. Starting from the Master-Detail App project template

The example used here is named ShareApp. Start from the Master-

Detail App template shown in Figure 8-4.

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

89

As you can see in Figure 8-6, you don’t need to worry about any

settings at this point because the defaults will work for you.

Figure 8-5. Building your own project

Figure 8-6. Using the default Master-Detail App settings

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

90

Figure 8-7. Opening the storyboard

Open the storyboard. You’ll see the two main views shown in Figure 8- 7.

Open the library at the top of the utilities pane to see the library

objects, as shown in Figure 8-8.

Figure 8-8. Selecting a bar button item to add

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

91

Drag a bar button item to the right of the top bar in the Detail scene, as

shown in Figure 8-9.

Figure 8-9. Adding a bar button item

From the attributes inspector, choose the Action button, as shown in

Figure 8-10.

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

92

Implement the action button by opening the storyboard with the

assistant so that you can see the storyboard and DetailViewController

at the same time, as shown in Figure 8-11. Control-drag from the action

button in the storyboard to the code in DetailViewController and name

the outlet actionButton.

Figure 8-10. Choosing the action button

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

93

Fi
gu

re
 8

-1
1.

 C
on

n
ec

ti
n

g
th

e
ou

tl
et

 fo
r

ac
ti

on
B

u
tt

on

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

94

A
d

d
 th

e
co

d
e

fo
r

th
e

ac
ti

on
, a

s
sh

ow
n

 in
 F

ig
u

re
 8

-1
2.

Fi
gu

re
 8

-1
2.

 P
re

pa
ri

n
g

th
e

bu
tt

on
 a

n
d

ac
ti

on

Se
t a

 b
re

ak
p

oi
n

t i
n

 th
e
ac
ti
on
Bu
tt
on
Ac
ti
on

 fu
n

ct
io

n
 a

n
d

 te
st

 th
at

 y
ou

r
ac

ti
on

 b
u

tt
on

 n
ow

 w
or

ks
.

A
ll

th
at

’s
 le

ft
 to

 d
o

is
 to

 im
p

le
m

en
t t

h
e

sh
ar

in
g.

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

95

 Sharing the Data
The objective at this point is to share the timestamp data in a format

that other apps can recognize. This is done by implementing a

UIActivityViewController, as you will see in this section. The activity view

controller that you present will reflect the type of data that you have available

to share and the possible receivers of that data. Because of this dynamic

functioning, you can’t be certain what you should be seeing, so the first

example in this section will use a very basic type of sharing: the activity view

controller will share text that is included in this section. For most users, this text

will be able to be received by built-in apps such as Mail, Notes, and Messenger.

Your activity view controller will present a list of items available to

share. For this example, you can do that with the code shown in Listing 8-1.

Add this code to DetailViewController.

Listing 8-1. actionButtonAction

@IBAction func actionButtonAction(_ sender: Any) {

 let sharedItems = "Sample text"

 let activityViewController = UIActivityViewController

(activityItems:

 [textToShare], applicationActivities: nil)

 // position the popover relative to this view

 activityViewController.popoverPresentationController?.

sourceView = self.view

 // present the view controller

 self.present(activityViewController, animated: true,

 completion: nil)

 }

}

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

96

Figure 8-13. Experimenting with an activity view controller

In this example, you need a receiver that can handle plain text. Mail,

Notes, and Messages can do so, but if you do not have them installed, your

choices will be limited to Save or Copy. Otherwise, you will see an activity

view controller, as shown in Figure 8-14.

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

97

Fi
gu

re
 8

-1
4.

 U
si

n
g

th
e

ac
ti

vi
ty

 v
ie

w
 c

on
tr

ol
le

r

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

98

If you have installed Mail, you can send the text, as shown in Figure 8- 15.

Figure 8-15. You can email text from the activity view controller

 Summary
Experiment with various combinations of senders and receivers. The

set of items passed to the activity view controller is a set of type Any. For

reference, here is the declaration of init for UIActivityViewController:

init(activityItems: [Any], applicationActivities: [UIActivity]?)

You’ll notice that you can specify activities as an optional; there is more

information on them in the documentation.

ChApteR 8 ShARIng DoCuMentS wIth ShARe ButtonS

99© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_9

CHAPTER 9

Using User Defaults,
Settings, and
Preferences
Documents are the primary way of saving data for apps. You can share

the document with various apps and users so that the data is available

to all users, but there are other ways to store and manage data in an app.

Documents are the workhorses because you can control how much data is

saved and how it is saved and shared.

Since the beginning of the iOS and macOS systems (and their

predecessors) there has been another set of tools that let you store data.

These tools are commonly used for user defaults, settings, and preferences.

The data that they store and use is typically limited in size and scope. Even

the terminology of these tools (user defaults, settings, and preferences)

suggests the small size of the data involved. This remains true, but it

is important to consider the fact that with the advances in technology,

including data storage, user defaults, settings, and preferences, can in fact

be a more central part of your app’s data strategy.

100

Note Strictly speaking, a preference is the value of a setting such
as the color to be used for drawing a new line where the value is blue
for the lineColor preference. Once the value of a setting is set, it
persists and is used each time the app runs until it is changed. In this
case, the preference may be referred to as a default. In iOS, the built-
in Settings app lets users control preferences and settings.

Preferences in Cocoa are stored in the Cocoa preferences system
(also known as user defaults). If you want to make a strict distinction
among these terms, in iOS the built-in Settings app controls these
values for users. In Cocoa and Cocoa Touch, the user defaults system
manages a database with the values. Some people distinguish
between settings (part of the user interface) and user defaults (part of
the Cocoa frameworks).

This chapter explores the possibilities you can use today for these data

tools.

 Looking at the Data Structures
When you are working with documents, you can control the formatting

and management of the data. You can use a standard document type,

which may have associated classes (images, for example), but the data for

user defaults, settings, and preferences is more limited. Specifically, these

objects must all be property list elements. A property list is a key-value

structure where the keys are strings and the values are any of the following

simple data types:

• String

• Date

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

101

• Integer number

• Float number

• Boolean

A property list (extension .plist) is designed for efficient serialization.

The PropertyListSerialization class handles this for you. Property lists

are used throughout Cocoa; over the years, this code has been refined and

tested so that it can be relied on for many tasks.

In addition, a NSData type can be stored in a property list. If you do

this, you must handle the serialization and deserialization of that data

to or from an object that you want to deal with. A very common case

is converting a NSData type to some binary format, which can then be

interpreted as an image or other complex data structure.

Property lists can also include arrays and dictionaries. This means that

you can use a property list, which itself is an array containing a dictionary

that also declares another array as well as numbers and other simple objects.

The other constraint to bear in mind when considering user defaults,

settings, and preferences is that the guidance from Apple is that these

tools should be used only for limited purposes and relatively small

amounts of data.

When thinking about storing data in this way, don’t worry too

much about how much data can be stored as user defaults, settings, or

preferences because that’s not really the limiting factor. If you use up

almost all of a device’s storage in this way, you will degrade performance

long before you run out of space.

Property lists are stored as instances of the

PropertyListSerialization class. As instances of this class, property

lists are read and written in full when they are read or written. This can

mean that in order to access a single Boolean value, you may need to read

or write an entire property list with dozens, hundreds, or even thousands

of items. You can focus your reading or writing by storing property list

values in an array or dictionary, but this doesn’t really help you much.

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

102

You will need to read the entire property list in order to get to the array or

dictionary and only then will you be able to hone in on the value you want.

The data that is stored as defaults, preferences, and settings can be

anything that you want to store (provided that it is a property list and

doesn’t take up too much space). There is a difference between these

terms and this is a good place to start to understand them.

 Exploring User Defaults, Preferences,
and Settings
All of these data structures can be stored in property lists, but

understanding how they are used can help you use them most efficiently.

Remember that these structures are always stored in property lists, which

means they are stored in key-value structures. For that reason, each user

default, preference, and setting has a name (the key under which it is

stored). There may be other data stored under that key—perhaps a lot of

it—but each has a key.

Tip When you are thinking about using these tools to store your
own data, remember that the Settings app and user defaults system
manage the data. If you want total control over the data, how it is
stored, and the user interface for it, you may want to use a database
or document where you control these features.

 Understanding User Defaults
A user default value is a starting value (default) for some aspect of your

app. For example, an app that lets you store the names of students in a

class may start by identifying students as Student 1, Student 2, and so forth.

A new student that a user adds might be called New Student.

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

103

In an app like this, you might want to let the users set their own

defaults such as these:

• “Student” is the name of each item in the app and new

items are labelled “New Student.”

• You could change the default value for items to be

“Item” so that you would have “Chair” and “New Chair”

as the app runs.

• A slightly more complex default might let a user choose

between “New” and a number to identify a new item, as

in New Chair or Chair 3.

Defaults like this are often exposed to the user so that they can choose.

Tip In a case like this, an empty string may be the default.

 Exploring Settings
There is a user defaults database that stores settings like this for each

app. The settings values persist from one use of the app to the next.

Furthermore, users can change settings directly using the built-in tool, as

shown later in this chapter.

 Using Preferences
Although there is no hard-and-fast rule, many people consider preferences

to be settable from outside the app, possibly even at the time the app is

installed. In addition, some preferences such as the user’s location or

language preference are set using the operating system itself.

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

104

 Preferences and Settings: A Case Study
This section uses a simple example of a setting for the name of an item

in an app (“Chair” or “Student”). It shows how this can be implemented

with Settings or the user defaults system rather than with a database or

document.

The code for this example is downloadable as described in Chapter 1.

(It is PreferencesApp.) The major steps in the process of implementing

PreferencesApp are

• Start from a built-in Xcode project template

(Single View App in this case).

• Add a Settings bundle to manage the settings

(“Chair” or “Student” in this example).

• Build an interface to your app for the settings.

• Add an interface to show the app’s settings and

version. (This is useful for debugging any app. I use it

automatically when I build any app.)

 Creating the PreferencesApp
Because this example focuses just on settings and preferences, the Single

View App project template is a good place to start (Figure 9-1).

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

105

You can use the basic settings such as naming your app. In the

options shown in Figure 9-2, take a moment to look at the checkboxes at

the bottom of the view. If you want to develop your own more complex

preferences and other values, Core Data is a good tool to look into. It is

implemented as a single user SQLite database that is built into Cocoa. If

you are familiar with relational databases, it can be a good tool to use in

implementing your own complex settings and preferences. When it comes

to managing data in your app, you can use Settings and Core Data, as well

as documents. In some cases, there are advantages to using separate data

management strategies so that the app and its data are independent of one

another.

Figure 9-1. Starting from the Single View App project template

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

106

You can use the general settings shown in Figure 9-3 for

PreferencesApp. It’s also worth noting that PreferencesApp as

implemented here doesn’t require any special support in your app until

you get to the integration in the “Accessing the Settings Bundle From Your

Code” section later in this chapter.

Figure 9-2. Setting the options for PreferencesApp

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

107

 Adding a Settings Bundle
What you do need to do to implement Settings in an iOS app is add a

new file that contains a settings bundle. You can do this in your app using

New ➤ File, as shown in Figure 9-4.

Figure 9-3. You don’t need special options to use Settings

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

108

Tip When adding a settings bundle to your app, be careful to select
the correct file. There are other settings bundles such as WatchKit
Settings Bundle and, in the future, there are likely to be other settings
bundles.

Make certain that you add the new file to the correct target in your

app, as shown in Figure 9-5. (The group you place it in is important for

organizing your files, but the target is absolutely essential.)

Figure 9-4. Adding a settings bundle to your app

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

109

Figure 9-5. Placing the new settings bundle in the right target

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

110

Note that inside the bundle is a group (en.lproj) containing some

localized strings for the root of the bundle as well as a property list of root

strings. You can use these as-is. The default values are shown in Figure 9-7.

Figure 9-6. Confirming that the settings bundle has been added to
the project navigator

When you have added the settings bundle, you’ll see it in your project

navigator, as shown in Figure 9-6.

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

111

With the settings bundle added to your app, you can try it out using

the built-in settings. Run the app in the simulator and look for Settings, as

shown in Figure 9-8.

Figure 9-7. You can use the default settings strings as-is

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

112

Figure 9-8. Using Settings in iOS

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

113

Scroll down to find PreferencesApp, as shown in Figure 9-9.

Figure 9-9. Tapping PreferencesApp in Settings

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

114

Open the Text Field item so you can see its values. Change the value of

Default Value to Student, as shown in Figure 9-11.

Figure 9-10. Initial settings

Open Root.plist in the settings bundle. You will see the default

settings shown in Figure 9-10.

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

115

You can take advantage of the autocapitalization style, as you can

see in Figure 9-12. This means that the words of the entered text will be

capitalized. Experiment with the other Settings commands and you’ll see

that you have a lot of features built in that you don’t have to code yourself.

Figure 9-11. Changing the Default Value to Student

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

116

Finally, test Settings in the simulator, as shown in Figure 9-13. (You’ll

notice that some items in Settings for an app are automatically added by

iOS. The Siri & Search settings are an example of this.)

 Accessing the Settings Bundle from Your Code
When a user adjusts Settings, that’s only the beginning. You need to be

able to access the Settings values in your app. This section shows how to

do so based on Settings, as shown in Figure 9-13.

Figure 9-12. Adjusting the settings for your app

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

117

Start by reminding yourself that the Settings in iOS accesses the

defaults database that is built into Cocoa. That database is managed by the

UserDefaults class object (not an instance; the class). UserDefaults (the

class object) has a function that returns the shared defaults object with the

standard property. As noted previously, each item in UserDefaults has a

key, and you can access it with code such as the following:

return UserDefaults.standard.bool (forKey: "name_preference")

This key is the identifier key in the property list. As you can see in

Figure 9-14, if you start to type the code to access a key, it is completed for

you.

Figure 9-13. Test settings

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

118

You can test this by adding code to appDelegate application(:didFi

nishLaunchingWithptions:), as you can see in Figure 9-15.

Figure 9-14. Using the identifier key to access a user default property

Figure 9-15. Accessing a property in the user default Settings app

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

119

 Adding a Settings Interface
The code shown in Figure 9-15 is executed only when the app launches.

You can build your own interface to show a user defaults property

whenever you want it. In a view controller of the main storyboard, add

a button, as shown in Figure 9-16. (If you are using the Single View App

project template, as shown in this chapter, the view controller to use is

called ViewController.)

Figure 9-16. Adding a button to the view controller

Remember to connect the button to an action in your app, as shown in

Figure 9-17.

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

120

Fi
gu

re
 9

-1
7.

 C
on

n
ec

ti
n

g
th

e
bu

tt
on

 to
 a

n
 a

ct
io

n

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

121

Add a breakpoint to the action so that you can check the value of the

user default property, as shown in Figure 9-18.

Figure 9-18. Using a breakpoint to check the value

 Summary
This chapter showed how to use the built-in user defaults preferences and/

or Settings app to store values for your app. These values must be able to

be stored in a property list and they should now be large data objects, but

you can use them for many purposes other than building a large-scale data

manager.

ChaPTer 9 USIng USer DefaUlTS, SeTTIngS, anD PreferenCeS

123© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_10

CHAPTER 10

Working with File
Wrappers and
Packages
This section lets you look at data storage tools other than documents.

Like documents, they are all ways to persist data from your apps, and all

of these tools, including documents, are supported on Cocoa and Cocoa

Touch. Many of the tools (including the ones in this part of the book)

have long histories in Cocoa and its predecessors. As noted, documents

have evolved over time and have changed in many ways. The tools in this

section have certainly changed over time, but the basic structures have

remained remarkably stable so they are used in many legacy apps as well

as in ones being developed today.

All of the tools in this chapter let you combine files into multi-file

structures that can be manipulated either as single structures or as their

component parts.

 Using Packages
From early days of Macintosh, multi-file packages have been used to

manage files. In the first Macintosh file system, files had two sections

called forks. Almost all files had a data fork, and many files also had a

124

resource fork. The user-visible file was basically the data fork, and the

resource fork contained elements that the data fork used. These elements

were typically alerts, icons, and other identifiable or visible elements. Each

type of element in a resource fork had a name, typically a four-character

code such as ALRT (for alert), DLOG (for dialog), or ICON. The idea of using

identifiable and structured elements in a container remains a critical part

of Cocoa.

The disadvantage of the resource fork was that when you copied

a file to another platform the resource fork typically disappeared; it

was the data fork that contained the data so it wasn’t a disaster in most

cases. Today, Cocoa (and Cocoa Touch) use a more sophisticated way of

wrapping data into what appears to be a single file. They are referred to

as packages.

Note Swift packages are manifests that are used to assemble
code and manage dependencies. A common tool is CocoaPods
(CocoaPods.org).

You can still see packages throughout Cocoa and particularly in the

developer tools. When you create a project in Xcode, you usually create a

folder that contains two items, shown in Figure 10-1.

ChAPter 10 Working With File WrAPPerS And PACkAgeS

http://cocoapods.org

125

In the example shown in Figure 10-1, the name of the project is

iOSDocumentApp. The project itself is in an xcodeproj file, which contains

references to the iOSDocumentApp folder. The open folder is shown in

Figure 10-2. Note that inside the folder are individual files as well as

subfolders with more files and folders.

Figure 10-1. An Xcode project consists of a file and a folder

ChAPter 10 Working With File WrAPPerS And PACkAgeS

126

If you hold down Control while clicking a file or folder in the Finder,

you will see the contents of that file or folder as a package. This is shown in

Figure 10-3.

Figure 10-2. The project folder contains subfolders and files

Figure 10-3. Use the Control key to look inside a file package

ChAPter 10 Working With File WrAPPerS And PACkAgeS

127

Note that not all files or folders are packages, so the Control key cannot

open them. However, it is important to note that your Xcode project is a

package of files. If you move the folder away from the xcodeproj file that

refers to it, you will break the project package.

Inside a file package, the contents are often structured with a Contents

folder that contains subfolders, as you can see in Figure 10-4. Most apps

have a Contents folder.

Figure 10-4. Files and folders can be structured within the package

ChAPter 10 Working With File WrAPPerS And PACkAgeS

128

 Considering Bundles
If you look at build phases in an Xcode app, you’ll see a step that moves

files into an app bundle, as shown in Figure 10-5.

When you add files to an app in the project navigator, they are usually

automatically added to the Build Phases step so that they are found in the

app bundle, and that’s where you can retrieve them from in your code. By

default, your app has a main bundle (bundle.main) with known contents.

You can find the API at developer.apple.com by looking for bundle.

 Using File Wrappers
File wrappers are somewhat similar to packages in that they may contain

files and folders inside a single object. A file wrapper typically has at least

one file, but it can be empty. File wrappers are most frequently used as the

container for files and folders in a document that itself is a file wrapper.

Figure 10-6 shows a file wrapper document.

Figure 10-5. Apps contain bundles

ChAPter 10 Working With File WrAPPerS And PACkAgeS

http://developer.apple.com

129

Note that you need to set the LSTypeIsPackage property to YES so that

the document appears to the user as a single object. The file type should

conform to com.apple.package.

You can download WrapperPlaygroundDemo as described in Chapter 1

to see how to put a file wrapper document together. The process is

described in the following section. The code is shown in Listing 10-1.

The process is simple:

• Assemble the files that will be wrapped.

• Convert each file to the Data type (formerly NSData).

There are utility methods in Swift to do this easily.

• Wrap each file in a wrapper.

• Create a root wrapper in the document.

• Add each wrapped file to the root wrapper.

Figure 10-6. Declaring a file wrapper document

ChAPter 10 Working With File WrAPPerS And PACkAgeS

130

You can do these steps in any order, and there are functions

that let you add and remove them dynamically. One common use

of file wrappers is to wrap together several related files such as

media and text. If they are wrapped in a file wrapper, you use the

contents(forType:) and load(fromContents:ofType:) methods

as you would for a document that consists of any data type such as an

archive or a single image or text.

The files in the root file wrapper are not in any given order. Most

important for reasons of efficiency is the fact that each file wrapper is

loaded separately so if you have a lot of files in a single object, you can load

them on an as-needed basis (Swift and Cocoa take care of this for you).

Listing 10-1 shows the code to assemble a file wrapper from files

named testString and testImage; they are each wrapped in an individual

wrapper (the names are stringDataWrapper and imageDataWrapper).

In addition, there is a rootDirectoryWrapper. As noted in the code at

the end of Listing 10-1, you can read or write the wrapped files using

contents(forType:) or load(fromContents:ofType:).

Listing 10-1. Assembling a File Wrapper Document in a Playground

import UIKit

import PlaygroundSupport

let testString = "Now is the time"

let testImage = UIImage(named:"mantegna.jpg")

// convert to Data

let imageData = testImage!.pngData()

let stringData = testString.data (using: .utf8)

// build directory wrapper

let rootDirectoryWrapper = FileWrapper(directoryWithFile

Wrappers: [:])

ChAPter 10 Working With File WrAPPerS And PACkAgeS

131

// wrap string

let stringDataWrapper = FileWrapper(regularFileWithContents:

stringData!)

stringDataWrapper.preferredFilename = "StringWrapper"

rootDirectoryWrapper.addFileWrapper(stringDataWrapper)

// wrap image

let imageDataWrapper = FileWrapper(regularFileWithContents:

imageData!)

imageDataWrapper.preferredFilename = "ImageWrapper"

rootDirectoryWrapper.addFileWrapper(imageDataWrapper)

print ("wrapper", rootDirectoryWrapper)

print (rootDirectoryWrapper.fileWrappers)

for eachWrapper in rootDirectoryWrapper.fileWrappers! {

 print (eachWrapper)

}

// for writing: return rootDirectoryWrapper if you are using in

contents(forType:)

// for reading: load(fromContents:ofType:)

 Summary
This chapter showed how to wrap files together in bundles or file

wrappers. There are efficiencies to using file wrappers since only

necessary file wrappers are updated as the root file wrapper is managed.

The overall idea of having a way to handle files separately or together

depending on what you want to do with them is the key take-away from

wrappers and bundles.

ChAPter 10 Working With File WrAPPerS And PACkAgeS

133© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_11

CHAPTER 11

Using File Archives
In Chapter 7, you learned the basics of reading and writing document data.

One common way of doing this is to convert your own data from whatever

its structure and format is to an NSData object (now a Data object), which

can be read or written with a simple statement. The only catch to this is

that you need to do the conversion from your data type to Data. One of

the simplest and most used techniques is to use the built-in archiving

technology in Cocoa.

Note Archiving is gradually being replaced by Codable, but
the transition is ongoing. Older code generally uses archiving as
described in this chapter. You can find Apple’s documentation of
both at https://developer.apple.com/documentation/
foundation/archives_and_serialization. Also, the latest
version of Swift NSData has become Data.

This chapter provides an overview of archiving. The example is a

common use of archiving in which you take some data, archive it to

Data, and then unarchive it to (hopefully) the original value. This is

such a useful process that many developers leave code of this nature

commented out in apps so that it can be monitored during debugging by

simply enabling the code.

https://developer.apple.com/documentation/foundation/archives_and_serialization
https://developer.apple.com/documentation/foundation/archives_and_serialization

134

 Using Swift Unified Logging
The archiving and debugging code in this chapter is implemented

using the Swift Unified Logging System available in iOS 10, macOS 10,

tvOS 10, and watch OS 3 (as well as later versions of these products).

Unified logging is a modern and efficient tool that replaces previous

tools such as Apple System Logger (ASL). It is possible to move

to unified logging as you are working on new sections of code, so

developers are gradually doing so. This section provides a quick

overview of unified logging as an introduction. For more information,

go to the Apple documentation at https://developer.apple.com/

documentation/os/logging.

The heart of unified logging is a data type that contains information

about the logged information. (This replaces previous iterations of

logging in which parameters were passed to a function.) If you use

unified logging, you can construct your own structure for your logging.

The version of 11 ShareApp (downloadable as described in Chapter 1)

uses a common version. It is a struct defined with the code shown in

Listing 11-1.

Listing 11-1. Commonly used Log Structure

// Use new Swift unified logging system

import os.log

struct Log {

 static var general = OSLog(subsystem: "com.myapp.my_target",

 category: "info")

}

This code is shown in Figure 11-1.

ChApter 11 USing File ArChiveS

https://developer.apple.com/documentation/os/logging
https://developer.apple.com/documentation/os/logging

135

In the example, this code is placed at the top of AppDelegate.swift.

You use the code where needed in your app, as you will see in this section.

The invocation in a minimal version is like this code:

os_log("Row selected-%@",

 indexPath.debugDescription)

Beyond the bare minimum here, refer to the documentation cited

previously for other information you can log. As a result of this code, here

is what will be shown in the console:

2018-12-26 14:51:09.777111-0500 ShareApp[6228:697878]

 Row selected-[0, 0]

Figure 11-1. Importing os.log and defining the struct

ChApter 11 USing File ArChiveS

136

This causes an invocation of OSLog. Beyond the parameters shown

here, you can add additional parameters such as the standard formatting

for a print statement, like

("Row selected-%@",

and a string that is generated dynamically and formatted according to that

command.

You will see this in action later in this chapter.

 Using Log and a Breakpoint to Archive Data
If you use archiving to encode and decode data for the

contents(forType:) and load (fromContents:, ofType:) functions,

it is useful to test that code with a breakpoint. Once things are tested, you

can use archiving in the actual functions.

Returning to ShareApp, you can intercept a tap in a timestamp

generated in the master view controller and attempt to encode it.

Figure 11-2 reminds you of the master view controller in which you can

add new timestamp items with the +.

ChApter 11 USing File ArChiveS

137

As noted, it is common to work with the master detail view controller

as a starting point for many apps. In the master detail model, you can add

functionality at either the master or detail level. Users are accustomed to

this interface, so it makes sense not to add an unfamiliar variation. If you

add a Share button to the master view controller, as shown in Figure 11-3,

users will expect to share the contents of the master view controller, which

is all of the data.

Figure 11-2. Adding new timestamps with +

ChApter 11 USing File ArChiveS

138

But what do you do if you want to share a single item? There are two

approaches you can take. One is to put a Share button on a detail view

controller, as you can see in Figure 11-4.

Figure 11-3. Sharing the master view controller data

Figure 11-4. Sharing from a detail view controller

ChApter 11 USing File ArChiveS

139

When using the master detail model, you have to remember that it is

the master item that manages the detail items. This means that the control

for selecting one of the detail items belongs on the master view controller

because it is the master that will manage the selection of the detail item.

If it is the master that will be handling selection, where do you put

the Share button so that it is not confused with a Share button that selects

everything? The most common solution is to simply use a tap or click in

a detail row of the master view controller to manage selection. This is an

efficient way to proceed (and it takes advantage of a useful function).

The function that lets you select a single detail item from the

master view controller is the UITableViewDelegate function named

 tableView(_:didSelectRowAt:).

Figure 11-5 shows how to override that function with a log message.

(The log message adds log and type variables to the minimal code in

Listing 11-1).

The code shows a console message identifying which detail item has

been selected, as you can see in Figure 11-5.

Figure 11-5. Log selection of a detail item

ChApter 11 USing File ArChiveS

140

 Selecting the Item to Archive
To get started with the archive, create a breakpoint so that you can access

the selected item. You do so in the tableView(_:didSelectRowAt:)

function, as shown in Listing 11-2.

Listing 11-2. Showing the Selected Object

override func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 //let rowDebugDescription = indexPath.debugDescription

 os_log("Row selected-%@",

 type: .info,

 indexPath.debugDescription)

 // set a breakpoint here

 let object = objects[indexPath.row] as! NSDate

 }

Figure 11-6 shows the simulator and the data in this test.

ChApter 11 USing File ArChiveS

141

When the item is selected in the simulator, the breakpoint is triggered,

as you can see in Figure 11-7.

Figure 11-6. Data in the simulator for testing

ChApter 11 USing File ArChiveS

142

This experiment requires that you correctly capture the detail item so

make certain that you have done so. (In this sample, make sure you have

created at least two detail items so that you can use the timestamps to

differentiate between them.)

 Creating the Object to Archive
ShareApp creates new objects in the master view controller that it then

can display. These objects are NSDate objects with the current timestamp.

When you start thinking about archiving objects, you can continue with

these NSDate objects, but in real life, you will probably use custom objects

that you archive. For that reason, a new object (ShareableObject) can be

created here to use in your archiving tests. SharableObject will actually

wrap an NSDate object, so the changes to the app are relatively few. (Not

only are they relatively few, but if you are using this app as the basis of

other projects, you’ll repeat these modifications for each one.)

Figure 11-7. Make sure you have selected the right detail object

ChApter 11 USing File ArChiveS

143

The first step is to create the new SharableObject class which wraps

an NSDate object, which can be called sharableDate. As always, create the

new class in Xcode using File ➤ New ➤ File to create a new Cocoa Touch

Class for iOS, as you can see in Figure 11-8.

Name the new class as SharableObject, as shown in Figure 11-9.

Figure 11-8. Creating a new class for ShareableObject

Figure 11-9. This will need to be a subclass of NSObject

ChApter 11 USing File ArChiveS

144

As always, when you add a new class to a project, make certain it is in

the right target, as shown in Figure 11-10.

Add the sharableDate property to SharableObject, as shown in

Figure 11-11.

Figure 11-10. Adding the new class to the target

Figure 11-11. Creating the class

ChApter 11 USing File ArChiveS

145

Make a few changes so that instead of creating a new NSDate when

you add an object to the app, you create a new ShareableObject.

Similarly, you update the interface to show the date that is inside

ShareableObject. These are common changes that are quickly shown in

the following section.

In MasterViewController, insertNewObject will have to insert a new

ShareableObject. Listing 11-3 shows the updated function.

Listing 11-3. Inserting a new ShareableObject

@objc

 func insertNewObject(_ sender: Any) {

 //objects.insert(NSDate(), at: 0)

 objects.insert(SharableObject(), at: 0)

 let indexPath = IndexPath(row: 0, section: 0)

 tableView.insertRows(at: [indexPath], with: .automatic)

 }

Change MasterViewController as shown in Listing 11-4 to show the

description of the sharableDate object.

Listing 11-4. Showing the Date

 override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(withIdentifier:

"Cell", for: indexPath)

 let object = objects[indexPath.row] as! SharableObject

 cell.textLabel!.text = object.sharableDate.description

 return cell

 }

ChApter 11 USing File ArChiveS

146

Try running the app. It should look like the original version, but if

you set a breakpoint, you should be able to see that you’re showing the

description of sharableDate.

 Doing the Archive
Now that you have the item to archive, you can archive it and proceed

to unarchive it to test the process. To use the archiving tools, you need

to implement the NSCoder protocol in the class to be archived (or

unarchived). This structure means that each object encodes or decodes

itself. You see this over and over in Cocoa apps: each object does its own

work as much as possible. This means that when you make changes to the

app, you minimize where the changes are made. If you want to go through

the changes in the previous section, you’ll see that changing NSDate to Sha

rableObject/shareableDate doesn’t require much rewriting of code.

 Making the Class Conform to NSCoding
When you create the SharableObject class, you make it a subclass of

NSObject, and you also make it conform to NSCoding, which does the

archiving. By simply adding NSCoding to the class, you will generate some

errors. Xcode will ask if you want it to automatically add stubs for the

missing functions, as you can see in Figure 11-12.

This will get you on your way to completing the app.

ChApter 11 USing File ArChiveS

147

When you tap Fix, the stubs will be added, as you can see in Figure 11- 13.

Complete the stubs with the code shown in Listing 11-5.

Figure 11-12. Xcode can add stubs for NSCoding functions

Figure 11-13. Letting Xcode add stubs for NSCoding

ChApter 11 USing File ArChiveS

148

Listing 11-5. Complete sharableObject

import UIKit

import os.log

class SharableObject: NSObject, NSCoding {

 var sharableDate: NSDate=NSDate()

 func encode(with aCoder: NSCoder) {

 aCoder.encode(self.sharableDate, forKey: "dateKey")

 }

 required init?(coder aDecoder: NSCoder) {

 guard (aDecoder.decodeObject(forKey: "dateKey") as? NSDate)

!= nil else

 {

 os_log ("Unable to decode sharableDate")

 return

 }

 sharableDate = aDecoder.decodeObject(forKey: "dateKey") as?

NSDate ?? NSDate()

 }

 override init() {

 sharableDate = NSDate()

 }

 init(dateToInit: NSDate) {

 sharableDate = dateToInit

 }

}

The functions that you add all take an NSCoder called aCoder as a

parameter. It is passed in so you don’t declare it. The encode(with:)

function lets you encode data for the archive. The typical use of this

ChApter 11 USing File ArChiveS

149

function is to encode one variable in the class and to give it a key name.

By doing this, you can access each variable in the archive by a key name

and you don’t have to worry about the order of the data in the file. In

Listing 11-5, the first encode function encodes the sharableDate property

and assigns the key dateKey to it.

The companion function, init(coder:), takes a Decoder object and

reverses the process.

 Implementing the Example
The stub code needs to be entered for most archiving processes. For the

example, you can move beyond tableView(:didSelectRowAt:) so that

you can archive and dearchive data for testing. This section is only for

testing. The example code is shown in Listing 11-6.

Listing 11-6. Implement Debugginng Code in the Example

override func tableView(_ tableView: UITableView,

didSelectRowAt indexPath: IndexPath) {

 os_log("Row selected-%@",

 indexPath.debugDescription)

 let object = objects[indexPath.row] as! SharableObject

 var savedData: Data?

 do {

 let data = try NSKeyedArchiver.archivedData(withRootObject:

object,

 requiringSecureCoding: false)

 try data.write(to: MasterViewController.ArchiveURL)

 savedData = data as Data // keep it around for testing later

ChApter 11 USing File ArChiveS

150

 } catch {

 os_log ("Couldn't write file")

 }

 do {

 let debuggedUnArchive = try

 NSKeyedUnarchiver.unarchiveTopLevelObjectWithData(savedData!

as Data)

 if let test = debuggedUnArchive as? SharableObject {

 print ("\(test.sharableDate)")

 }

 } catch {

 os_log ("Couldn't read file")

 }

The heart of the archiving code is this line:

let data = try NSKeyedArchiver.archivedData(withRootObject:

object,

It invokes the stubs you created to archive the class into a Data object

called data. This line of code takes the Data object and unarchives it into a

variable called test in Listing 11-6.

The process of unarchiving and archiving data that is shown here

uses a temporary file that you can create. It is shown at the top of

MasterViewController with these lines:

static let DocumentsDirectory = FileManager().urls(

 for:.documentDirectory,

 in: .userDomainMask).first!

static let ArchiveURL = DocumentsDirectory.appendingPathComponent

("sharableObjectURL")

ChApter 11 USing File ArChiveS

151

Set breakpoints and experiment with the code to see how it works. This

is the common archiving code that you will frequently use.

 Moving Archiving into Documents
Instead of moving data to and from a file, you will frequently want to

move it into and out of a document that can be shared with other users.

Simply change the UIDocument functions to do archiving and dearchiving.

This means that contents(forType:) will use NSKeyedArchiver.

archivedData(withRootObject: requiringSecureCoding:) to archive

the data to an Data object and load(fromContents:, ofType) will use

NSKeyedUnarchiver.unarchiveTopLevelObjectWithData() to reverse the

archive operation.

For reference, Listing 11-7 shows the stubs of the UIDocument functions

that you will use in this way.

Listing 11-7. Please Add Caption

import UIKit

class Document: UIDocument {

 override func contents(forType typeName: String) throws -> Any {

 // Encode your document with an instance of Data or

NSFileWrapper

 return Data()

 }

 override func load(fromContents contents: Any, ofType

typeName: String?)

 throws {

 // Load your document from contents: ofType:)

 }

}

ChApter 11 USing File ArChiveS

152

 Summary
In this chapter, you saw how to archive and unarchive data to a file. You

can use the same process to work with a document. Try the process as

described in this chapter and set breakpoints as you test it. It may take

a little while to try it out, but once you have mastered archiving and

unarchiving, you are ready to move on to more complex documents.

ChApter 11 USing File ArChiveS

153© Jesse Feiler 2019
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0

Index

A
App delegates, 40–41
Apple System Logger (ASL), 134
Archive data

breakpoint, 140–141
data object, 150
implementation, 149–150
NSCoding

aCoder, 148
sharableObject, 148
Xcode, 146–147

object creation
NSDate objects, 142
sharableDate, 144–145
SharableObject, 143, 145

selected object, 140
simulator, 140–141
UIDocument functions, 151

B
Bundles, app, 128

C
Cocoa location services (case

study), 26–32

D
Data fork, 124
Data structures, 100–102
Document-based app creation

basic code, 69–70
browse tab, 67
new project reviewing, 64
new project setting, 63
picking in Xcode, 62
running, 66
storyboard, 65
UIDocument

function, 69
introduction, 68
working, 68

Document-based macOS app
Cocoa app creation, 37
components, 40
information, 37
running, 39

Document matching
info.plist, 20–23
managing types

for iOS app, 18–19
for macOS apps, 19
UYIs, 17

https://doi.org/10.1007/978-1-4842-4492-0

154

preparing for iCloud, 13–15
setting up in iOS, 16
setting up in macOS, 17

Documents
vs. files, 3
on iOS

browse files, 52–55
choosing storage

location, 51–52
file system, 49–50
issues, 49
recent files, 55–57
viewing files, 58–60

sharing
action button, 87, 92–94
adding bar button, 91
detail view, 86
DetailViewController, 95
Master-Detail App

template, 88, 89
own project building, 89
selecting bar button, 90
share buttons

(as a user), 83–84
storyboard, 90
timestamp record

creation, 85
UIActivityViewController,

95–96, 98
storing and retrieving data, 1
structuring Apps, 2, 3
track changes, 2
versions, 3

E
encode(with:) function, 148

F
File wrappers

declaring a document, 129
process, 129–130

Forks, 123

G, H
General Data Protection

Regulation (GDPR), 26

I
info.plist, 20
iOS documents vs.

macOS documents, 36

J, K
JavaScript Object Notation (JSON)

debugging, 11
decoding, 10–11
encoding, 5–6, 9
primitive types, 6

L
Log and breakpoint

log message, 139
master detail view controller,

137–138
master view controller, 136, 138

Document matching (cont.)

INDEX

155

M
Macintosh file system, 123
macOS vs. iOS, 47
Model-view-controller

(MVC), 7, 145, 150

N, O
NSCoder protocol, 146
NSData object, 133
NSDocument

classes, 35–36
document, 43–46

NSKeyedArchiver.archived
Data, 151

NSKeyedUnarchiver.unarchive
TopLevelObjectWith
Data(), 151

P, Q
Packages

control key, 126
files and folders, 127
Macintosh file system, 123
project folder, 126
Xcode project, 125

PreferencesApp
creation, 104
process, 104
setting, 106
special options, 107
tapping in Settings, 113
usage, 103

R
Resource fork, 124

S, T
Security overview, 25–26
Settings bundle

access with code, 117
adding to app, 108
adjusting the settings, 116
changing the value, 115
initial settings, 114
iOS, 112
key to access, 118
placing in right target, 109
project navigator, 110
root strings, 111
test settings, 117

SharableObject, 142–143, 146
ShareApp, 136, 142
Single View App, 105
Storyboard, 46
Swift Structs

creation, 7
extension for coding keys, 8
extension for Encoding, 9
MVC, 7

Swift unified logging system, 134–136

U
UIDocumentBrowserViewController

document creation, 76–79
document

opening/picking, 79–80

Index

156

document presenting, 80–81
functions, 76
handling errors, 82
loading, 74–75

UIDocumentViewController
code, 71–72
creation, 71
document closing, 74
document opening, 72–73

UITableViewDelegate function, 139
Unified logging

data type, 134
os.log, 135–136

User default, 102–103

V, W
Vending, 83
ViewController, 42–43

adding a button, 119
breakpoint, 121
connecting the

button, 120

X, Y, Z
Xcode, 21, 22, 62, 84, 124, 125,

146, 147

UIDocumentBrowserView
Controller (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Using Documents
	Describing a Document
	Keeping Track of a Document and Its Data
	Structuring a Document
	Handling Document Versions
	Comparing Documents and Files
	Structuring a Document and an App
	Summary

	Chapter 2: Looking Inside a Document
	Using JSON Encoding
	Introducing JSON
	JSON and Swift
	Using Swift Structs
	Encoding JSON
	Decoding JSON
	Putting the Encoding and Decoding Together

	Summary

	Chapter 3: Matching a Document to a Document Format
	Preparing for iCloud
	Setting Up Your Document in Your App
	Managing Document Types
	Looking at info.plist
	Summary

	Chapter 4: Securing and Protecting Data
	Security and Privacy Overview
	Case Study: Using Cocoa Location Services
	Summary

	Chapter 5: Implementing Documents on macOS: NSDocument
	Differences Between iOS UIDocuments and macOS NSDocuments
	Creating a Document-Based App on macOS
	Adding Code to Your macOS App

	AppDelegate
	ViewController
	Document
	Storyboard
	Overview of macOS and iOS Development
	Summary

	Chapter 6: Implementing Documents on iOS
	Using Files and the iOS File System
	Choosing Document Storage Locations
	Browsing Documents
	Looking at Recent Documents
	Viewing Files and Folders for an App
	Summary

	Chapter 7: Implementing Documents on iOS: UIDocument and UIDocumentBrowser ViewController
	Creating a Document-Based App
	Introducing UIDocument
	Working with UIDocument

	Working with UIDocumentViewController
	Opening the Document
	Closing the Document

	Working with UIDocumentBrowserView Controller
	Loading the UIDocumentBrowserViewController
	Creating a Document
	Picking (Opening) a Document
	Handling Errors

	Summary

	Chapter 8: Sharing Documents with Share Buttons
	Using Share Buttons (As a User)
	Creating a Sharing Example
	Sharing the Data
	Summary

	Chapter 9: Using User Defaults, Settings, and Preferences
	Looking at the Data Structures
	Exploring User Defaults, Preferences, and Settings
	Understanding User Defaults
	Exploring Settings
	Using Preferences

	Preferences and Settings: A Case Study
	Creating the PreferencesApp
	Adding a Settings Bundle
	Accessing the Settings Bundle from Your Code
	Adding a Settings Interface

	Summary

	Chapter 10: Working with File Wrappers and Packages
	Using Packages
	Considering Bundles
	Using File Wrappers
	Summary

	Chapter 11: Using File Archives
	Using Swift Unified Logging
	Using Log and a Breakpoint to Archive Data
	Selecting the Item to Archive
	Creating the Object to Archive
	Doing the Archive
	Making the Class Conform to NSCoding
	Implementing the Example
	Moving Archiving into Documents

	Summary

	Index

