
www.allitebooks.com

http://www.allitebooks.org

Apache CXF Web Service
Development

Develop and deploy SOAP and RESTful Web Services

Naveen Balani

Rajeev Hathi

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache CXF Web Service Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Production Reference: 1111209

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-40-1

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Naveen Balani

Rajeev Hathi

Reviewer
Brett Porter

Acquisition Editor
Usha Iyer

Development Editor
Reshma Sundaresan

Technical Editor
Shadab N Khan

Copy Editor
Leonard D'silva

Indexer
Hemangini Bari

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Ashwin Shetty

Proofreader
Kevin McGowan

Graphics
Nilesh R. Mohite

Production Coordinator
 Adline Swetha Jesuthas

Cover Work
 Adline Swetha Jesuthas

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Naveen Balani works as a Software Architect with IBM India Software Labs (ISL).
He leads the design and development activities for WebSphere Business Services
Fabric product out of ISL Mumbai. He has over nine years of industrial experience
and has architected and implemented large scale enterprise solutions.

Naveen Balani likes to research upcoming technologies and is a Master Author with
IBM developerWorks having written over 60 plus publications, on topics such as
Web services, ESB, JMS, SOA, architectures, open source frameworks, semantic Web,
J2ME, pervasive computing, Spring, Ajax, and various IBM products. He started
working with web services way back in 2001 and proposed the irst MVC web
services-based pattern (http://www.ibm.com/developerworks/library/ws-mvc/)
in 2002.

Naveen Balani's articles on Spring Series (http://www.ibm.com/developerworks/
web/library/wa-spring1/) were rated as the top articles in the last 10 years
for developerWorks web architecture zone. He has co-authored books on Spring
framework (http://www.wrox.com/WileyCDA/WroxTitle/Beginning-Spring-
Framework-2.productCd-047010161X.html) and Multiple IBM Redbooks on
WebSphere Business Services Fabric and BPM 6.2 Product deployments. You can
reach him on his website—http://soaweb.co.in

I would like to thank my wonderful wife, Sonia, for her love and
patience and her endless support in spending many hours sitting
beside me, reviewing my work and providing valuable inputs.

I would also like to thank my parents for their support and
encouragement in all my endeavors.

And last but not least, to my good friend and co-author
Rajeev Hathi.

www.allitebooks.com

http://www.allitebooks.org

Rajeev Hathi is a J2EE Consultant and Developer living in Mumbai, India. He
grew up in a joint Hindu family and pursued his primary education in the ield of
Economics and Commerce. His hobbies are watching sports and listening to rock
music. His favorite bands are Pink Floyd and Dire Straits.

Rajeev has written several articles for IBM developerWorks portal. His major
contributions are in the ields of Java, web service, and DB2. He developed an
interest in computers after pursuing a diploma in Advanced Systems Management
at NIIT (National Institute of Information Technology).

Rajeev has been working on J2EE-based projects for more than ten years now.
He has worked with several companies offering software services and conducted
various knowledge sessions on Java and J2EE. He has attained several Java-based
certiications such as SCJP, SCWCD, SCBCD, and SCEA. He, along with the
co-author Naveen Balani, has initiated a portal http://soaweb.co.in which
aims to provide online consulting on the subject of web services.

A book is often the product of many hands. To start with I'd like to
thank Usha Iyer, an Acquisition Editor with Packt Publishing, for
having enough faith in my writing skills and abilities.. My special
thanks to the Packt Publishing team in making enormous efforts
to make this book a reality. A good book cannot be made better
without a constructive review and feedback and the reviewers
equally contributed to the whole writing process.

I owe thanks to my wonderful and lovely friend, Sunita, who
instilled in me enough conidence and zest to make my writing look
effortless. I owe thanks and gratitude to my family members who
have supported and encouraged my writing efforts day and night.
And last but not least, without my co-author and amazing friend
Naveen Balani, this project would not have been achievable.

Finally, I would like to dedicate this book to my late parents and late
sister. without their blessings, this project would have just remained
a mere thought.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Brett Porter is a software developer from Sydney, Australia, with a passion
for development tooling, and automation. Seeking a more standardized and
reproducible solution to organize, build, and deploy a number of software projects
across teams, he discovered an early beta of Maven 1.0 in 2003, and has since been
heavily involved in the development of the project. Brett is a Director and a Member
of the Apache Software Foundation. He is a member of the Apache Maven Project
Management Committee, and has conducted presentations and training on Maven
and related tooling at several conferences and events. He founded the Archiva
project in 2005.

Brett is the co-author of Apache Maven 2: Effective Implementation, published by Packt
Publishing in 2009. He was also the co-author of Better Builds with Maven, the irst
book to be written about the Maven 2.0 release in 2005, and has been involved in
reviewing Maven: A Developer's Notebook and Java Power Tools.

My thanks goes to everyone involved at the Apache Software
Foundation, and all those that contribute to and use the software.
You make projects such as CXF and the many others possible.

I'd also like to thank my wife Laura and my young daughter
Samantha, who could afford to spare me the extra hours to review
this book, so soon after having written my own!

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Familiar with CXF 7

Web service technology standards 8
XML 8

SOAP (Simple Object Access Protocol) 9
WSDL (Web Services Description language) 10

REST (Representational State Transfer) 12
Service Registry 13

Introducing web services 13
Approaches for web service development 14
Web service SOAP communication styles 15

Apache CXF 16
History of CXF 16
Why CXF? 17

Support for web service standards 17
Support for POJO (Plain Old Java Object) 18
Frontend programming APIs 18
Tools support 19
Support for RESTful services 19
Support for different transports and bindings 20
Support for non-XML binding 20
Ease of use 20
Flexible deployment 21

Setting up the environment 21
For ANT users 21
For Maven users 22

Summary 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Developing a Web Service with CXF 25
The Order Processing Application 26
Developing a service 27

Creating a Service Endpoint Interface (SEI) 27
Developing a service implementation class 30
Spring-based server bean 31

Developing a client 32
Developing a Spring-based client bean 33
Developing web service client code 33

Running the program 36
Building the code 37
Deploying the code 38
Executing the code 38

CXF architecture 39
Bus 39
Frontend 41

JAX-WS 41
Simple frontend 43

Messaging and Interceptors 43
Service model 45
Data binding 46
Protocol binding 47
Transports 49

Summary 49
Chapter 3: Working with CXF Frontends 51

JAX-WS frontend 51
Code-irst development 52

Creating Service Endpoint Interface (SEI) 53
Adding Java annotations 54
Publishing the service 59
Developing a consumer 60
Running the Code-irst example 61

Contract-irst development 62
Generating service components 64
Implementing the service method 73

Publishing the web service 73
Invoking the web service 74

Using dynamic client 74
Creating a simple dynamic client 74
Running the dynamic client 76
Using the CXF service model for building dynamic client 77

Running the dynamic client which uses Service Model API 80

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Provider and Dispatch services 81
Understanding messaging modes 82

Message mode 82
Payload mode 83

Understanding types of message objects 83
javax.xml.transform.Source 83

Implementing Provider service 85
Publishing the Provider service 88
Implementing the Dispatch service 89
Running the provider dispatch example 91
Web service context 93
Implementing Context in service 94

Running the web service context example 95
Simple frontend 96

Developing a simple frontend 96
Creating service implementation class and interface 97
Creating server implementation 97
Creating client 98

Running the simple frontend example 99
Summary 100

Chapter 4: Learning about Service Transports 101
Transport protocols in CXF 102

HTTP transport 102
SOAP over HTTP 103
HTTP only 105
HTTP Conduit 106
HTTP destination 107

HTTPs transport 108
Developing the service and implementation class 109
Generating crypto key 109
Creating client and server bean coniguration 110
Coniguring the server to support SSL 113
Developing the client component 113
Building and deploying 114
Coniguring SSL for Jetty runtime 115

JMS transport 118
Developing the service and implementation class 119
Developing an embedded broker 119
Creating a server and client bean coniguration 120
Developing a client component 122
Performing build and deployment 123

Local transport 126
Developing SEI and an implementation class 127
Developing a server 127
Creating client bean coniguration 127

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Developing a Client 128
Building and executing 129

Summary 130
Chapter 5: Implementing Advanced Features 131

Understanding CXF interceptors 131
Understanding interceptor phase and chain 132
Overview of the interceptor API 133

Interceptor interface 134
The PhaseInterceptor interface 134
The AbstractPhaseInterceptor class 135

Developing the custom interceptor 137
Developing the server side interceptor 138
Adding a server side interceptor to the Order Process service 141
Developing the client side interceptor 141
Adding a client side interceptor to the client code 144
Developing the standalone server for publishing the Order Process web
service 145
Building and running the Order Process web service and interceptor 146

Building the code 147
Executing the code 148

Testing the custom interceptor for negative condition 149
Understanding CXF features 151
Applying the GZIP feature to the Order Process web service 152

Developing service and implementation class 152
Developing a server component 153
Creating the client bean coniguration ile 154
Creating a client component to consume the service 155
Building and executing the code 155

Understanding CXF Invoker 157
Overview of Invoker API 157

The Invoker interface 158
The AbstractInvoker class 158

Developing custom invoker 159
Summary 164

Chapter 6: Developing RESTful Services with CXF 165
Overview of REST and RESTful services 166

Java API for RESTful services 168
CXF JAX-RS implementation 170

Developing end-to-end RESTful services using CXF JAX-RS
implementation 171

Developing the RESTful service 172
Creating Java data objects for Request and Response 172

Table of Contents

[v]

Providing binding for the Request and Response data objects 174
Developing the implementation class 175
Creating the client 185
Running the program 189
Building the code 190
Deploying the code 191
Executing the code 192

Adding exception handling to RESTful service 194
Summary 199

Chapter 7: Deploying RESTful Services with CXF 201
Packaging the Book Shop application 202

Coniguring CategoryService RESTful bean using Spring 202
Integrating Spring using web.xml 204
Building and deploying the WAR ile 205

Building the code 205
Deploying the code 207

Invoking operations on the Book Shop RESTful application 208
Installing POSTER client 208
Invoking the Book Shop application using the the POSTER tool 210

Invoking the Get Category operation 210
Invoking the Add Category operation 212
Invoking the Update Category operation 214
Invoking the Add Books operation 216
Invoking the Get Books operation 218
Invoking the Update Category operation with invalid request 220
Invoking the Get Category operation with invalid request 222
Invoking the Delete Category operation 224

Invoking the Book Shop application using CXF APIs 225
Coniguring JSON support for the Book Shop application 230

Incorporating JSON message format for the Book Shop application 231
Invoking the Get Category operation with JSON as the message format 234
Invoking the Add Category operation with JSON as the message format 236

Invoking the Book Shop application with JSON as the message format using
CXF APIs 238

Intercepting messages for the Book Shop application 240
Deploying the Book Shop application in the application servers 243
Summary 243

Chapter 8: Working with CXF Tools 245
Invoking a web service using the Java client 245

Analyzing the service WSDL deinition 246
Building and running the Java web service clients 251

Generate the web service clients 251
Analyzing the JAX-WS and client generated artifacts 255
Modifying the generated client 256

Table of Contents

[vi]

Building the client 258
Running the client 258

Invoking the web service using JavaScript 259
Building and running the Java web service clients 260
Generating the JavaScript client 260

Analyzing the generated artifacts 262
Creating the client 266
Running the client 270

Creating Service Implementation from the WSDL ile 271
Generating and deploying the Service Implementation from the WSDL ile 272

Generating the web Service Implementation 272
Analyzing the Service Implementation generated artifacts 273
Modifying the generated Service Implementation 274
Building the web service project 277
Deploying and publishing the web service 277
Invoking the web service 278

Validating WSDL iles 279
Summary 280

Appendix A: Getting Ready with Code Examples 281
Downloading the source code 281
Downloading the software required for the book 282
Setting up the environment 283
Using Maven for Build management 284

Building chapter source code using Maven 285
Appendix B: Getting Started with Spring 289

Concept of POJO-based development 290
Understanding Inversion of Control 290
Overview of aspect-oriented
programming 292
Introduction to Spring framework 293

The Spring IoC container 293
Creating a Spring IoC application 294

Creating the entity model 294
Creating services 298
Creating the application and wiring POJO 300
Creating the standalone client 304
Running the program 306

Building the code 307
Executing the code 309

Summary 310
Index 311

Preface
Apache CXF is an open source services framework that makes web service
development easy, simpliied, and standard based. CXF provides many features such
as frontend programming, support for different transports and data bindings, support
for different protocols, and other advanced concepts like Features and Invokers. It also
provides a programming model to build and deploy RESTful services.

The focus of the book is to provide readers with comprehensive details on how to
use the CFX framework for web services development. The book begins by giving us
an overview of CXF features and architecture. Each feature is explained in a separate
chapter, each of which covers well deined practical illustrations using real world
examples. This helps developers to easily understand the CXF API. Each chapter
provides hands on examples and provides step-by-step instructions to develop,
deploy, and execute the code.

What this book covers
The book is about the CFX service development framework. The book covers two
of the most widely used approaches, for web services development, SOAP and
REST. Each chapter in the book provides hands on examples, where we look in
detail at how to use the various CFX features in detail to develop web services in
a step-by-step fashion.

Chapter 1: Getting Familiar with CXF revisits web service concepts and provides an
introduction to CXF framework and its usage, and prepares the CXF environment
for the following chapters. By the end of this chapter the reader will be able to
understand the core concepts of CXF.

Preface

[2]

Chapter 2: Developing a Web Service with CXF focuses on getting the reader quickly
started with the CFX framework by developing a simple web service and running
it under the Tomcat container.

By the end of this chapter the reader will be able to develop a simple web service
using CXF.

Chapter 3: Working with CXF Frontends illustrates the use of different frontends,
like JAX-WS and CXF simple fronted API, and shows how to apply code-irst
and contract-irst development approaches for developing web services. We will
look at how to create dynamic web service clients, the use of web service context,
and how to work directly with XML messages using CXF Provide and Dispatch
implementation.

By the end of this chapter the reader will be able to apply different frontends to
develop a web service.

Chapter 4: Learning about Service Transports explains basic transport protocols for a
service and shows you how to conigure HTTP, HTTP(s), JMS, and Local protocol
for web services communication. You will get introduced to the concept of HTTP
conduit, which enables the client program to apply policies or properties to HTTP
and HTTPs protocols, and how to generate a crypto key and a key store for HTTPs
based service communication. You will learn how to use JMS protocol for web
services communication and how to facilitate web services message exchange using
CXF Local service transport.

By the end of this chapter the reader will be able develop services with
different transports

Chapter 5: Implementing Advanced Features will explain advanced concepts using
CXF Features, Interceptors, and Invokers, and how to integrate these concepts in
existing applications.

By the end of this chapter the reader will be able develop services with features
like Interceptors and Invokers

Chapter 6: Developing RESTful Services with CXF explains the concept of REST
technology and JAX-RS speciications, how CFX realizes the JAX-RS speciication,
and demonstrates additional features for developing enterprise RESTful services.
We will look at how to design, develop, and unit test the RESTful Service by taking
a real world example using CFX JAX-RS implementation.

By the end of this chapter the reader will be able to design, develop, and unit test the
RESTful service

Preface

[3]

Chapter 7: Deploying RESTful Services with CXF will explain how to deploy REST
services in a container like Tomcat using Spring coniguration, and how to test out
the various operations exposed by the RESTFul application using CXF RESTful client
API using a web service development tool. We will look at how to enable exception
handling, JSON message support, and logging support for RESTful applications
using CFX framework.

By the end of this chapter the reader would be able utilize various CXF features for
developing RESTful services and how to leverage Spring coniguration for deploying
RESTful service in the tomcat container.

Chapter 8: Working with CXF Tools will explain some of the commonly used CFX
tools that assist us in web services development. We will look at how to invoke a
real world .NET service over the internet using a Java client and JavaScript, create
web service implementation from WSDL iles, generate WSDL iles from web service
implementation, and validate the WSDL ile for compliance.

By the end of this chapter the reader will be able to use different CXF tools to
develop a service.

Appendix A deals with how to set up the CXF environment, provides details on how
the source code for each chapter is organized, and shows how to run the source code
examples using the ANT tool and Maven Tool.

Appendix B provides an explanation of the basics of the Spring framework and IoC
concepts, along with an end-to-end example which utilizes Spring IoC concepts.

By the end of this Appendix chapter the reader will have a good understanding
of Spring capabilities used in the context of CXF web services development in
this book.

What you need for this book
You will need the following software to be installed before running the
code example:

•	 Java 5 or higher. Apache CXF requires JDK 5 or a later version. JDK 5 can be
downloaded from the following site: http://java.sun.com/j2se/1.5.0/
download.jsp

•	 Tomcat 6.0 or higher. There is no strict requirement for Tomcat for CXF. In
fact, any servlet container that supports Java 5 or higher can be used with
CXF. For our illustrations, we will use Tomcat as our servlet container.
Tomcat version 6.0 can be downloaded from the following site: http://
tomcat.apache.org/download-60.cgi

Preface

[4]

•	 Apache Ant 1.7.1 or higher. Ant will be used to build and deploy the code.
The build utility can be downloaded from the site: http://ant.apache.
org/bindownload.cgi

•	 CXF binary distribution 2.2.3 or latest. CXF binary distribution can be
downloaded from the site: http://cxf.apache.org/download.html.

•	 Maven 2.x or higher, if you plan to use Maven instead of ANT for
running the code examples. Maven can be downloaded from the
site http://maven.apache.org/

Refer to Appendix A for more details on how to set up the environment for running
the code examples,

Who this book is for
This book is for developers who want to design and develop SOAP and RESTful
services using Apache CXF framework, and leverage various CXF features for
service development. It is ideal for developers who have some experience in Java
application development as well as some basic knowledge of web services, but
it covers some of the basic fundamentals of web services and REST to get you
acquainted with these technologies before using these concepts to develop services
using the CXF framework.

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " You need to specify the <http:address>
element for sending messages in an HTTP format. "

A block of code is set as follows:

import javax.jws.WebService;

@WebService

public interface OrderProcess {

 String processOrder(Order order);

}

Preface

[5]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<import resource="classpath:META-INF/cxf/cxf.xml" />

<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />

<import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

<jaxws:endpoint id="orderProcess" implementor="demo.order.
OrderProcessImpl" address="/OrderProcess" />

Any command-line input or output is written as follows:

set ACTIVEMQ_HOME = C:\apache-activemq-5.2.0

set ACTIVEMQ_VERSION = 5.2.0

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
the Add To Firefox button. A pop-up screen will appear, as shown in the next
screenshot. Click on the install button."

In web service terminology, code-irst is termed as the Bottoms up
approach, and contract-irst is referred to as the Top down approach.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[6]

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/5401_Code.zip
to directly download the example code.
The downloadable iles contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration, and help us to improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are veriied, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Familiar with CXF
We often require real world systems and applications to integrate with each other.
Application integration is one of the critical areas that you need to focus on during
application development, if your application involves integrating with third party or
external systems. Alternatively, depending on your requirements, you may want other
systems to access your application. Let's take an example of a credit card company
providing services to guarantee payments made by consumers. These services are
available over the Web, and consumers or applications, such as an online shopping
application, or an airline irm that accepts credit cards as payment for its services,
uses the credit card payment service for a consumer's payments. Since the credit
card services can be accessed by any application client such as a web browser or a
WAP (Wireless Application Protocol) enabled phone, and developed using any
programming language, there is a need for a standard-based communication where
the services offered can be used by any application, irrespective of any underlying
technology. This is where web services come into play, and to simplify the design
and development of web services, you have the option of using various web service
frameworks. Apache CXF is one such leading standard-based web services framework
whose goal is to simplify web services development.

In order to get started with the CXF framework, you irst need to understand the
concepts behind web services, the technology, and the standards that make up web
service and features provided by the CFX framework. This chapter will cover these
core concepts.

Speciically, in this chapter we will cover the following topics:

•	 The core technology standards and concepts behind web services
•	 Approaches for web services development
•	 Overview of Apache CXF framework
•	 Features provided by Apache CXF framework
•	 Setting up Apache CFX environment

www.allitebooks.com

http://www.allitebooks.org

Getting Familiar with CXF

[8]

Web service technology standards
Before you look at the concept behind web services you need to understand the
core technology standards that make up web services. Covering all the concepts
and standards associated with web services is a vast topic in itself. In this chapter
we attempt to cover the relevant web service standards and information used in the
context of this book to get you acquainted with the technologies for developing web
services using CXF. Some of the concepts will be explained in greater detail during
the course of this book.

XML
XML stands for Extensible Markup Language. XML is a markup language that
speciies or describes the format of the data to be exchanged between two parties.
The data is signiicantly structured as tags or elements in a hierarchical order. A user
can create his/her own tag to represent structured information. XML has become
the de facto standard for representing structured information. Some of the important
standard technologies associated with an XML document are listed below:

•	 XML namespace—an XML namespace is a standard for providing uniquely
named elements and attributes in an XML document. The XML namespace
concept is similar to package deinitions in Java, which provide conlict
resolution of class names based on package declarations. A namespace is
declared using the reserved XML attribute xmlns, the value of which must
be a URI (Uniform Resource Identiier) reference, for example,
xmlns=http://www.w3.org/1999/xhtml or using a preix
xmlns:xhtml=http://www.w3.org/1999/xhtml.

•	 XML schema—XML schema provides a means of deining the structure,
content, and semantics of XML documents. The XML Schema data model
includes the vocabulary (element and attribute names), the content model
(relationships and structure), and data types. An example of XML Schema
describing address information is provided below:
<xs:schema

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="address" type="Address"/>

 <xs:complexType name="Address">

 <xs:sequence>

 <xs:element name="addressLine1" type="xs:string"/>

 <xs:element name="addressLine2" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="state" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

Chapter 1

[9]

 </xs:sequence>

 </xs:complexType>

</xs:schema>

In the above example, xs represents the namespace of the XML Schema.
The address represents an element whose type is Address. The Address
type in turn is represented as complexType (similar to a Java bean Address
class which stores address information), which is comprised of elements
"addressLine1", "addressLine2", "city", "state", and "country" with
data type as string. The code listing below provides a valid Address XML
document based on the above Address XML schema. The Address XML
Schema provides validation for the following XML document:
<address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="address.xsd">

 <addressLine1>1501 ACity</addressLine1>

 <addressLine2>UCity</addressLine2>

 <city>SFO</city>

 <state>CA</state>

 <country>US</country>

</address>

SOAP (Simple Object Access Protocol)
SOAP is a protocol for exchanging XML-based messages over a network, typically
using HTTP protocol. The SOAP message format is comprised of a SOAP Envelope
which encloses all request information. The SOAP Envelope, in turn, is then made
up of optional headers and a body. The headers optionally contain context related
information, such as security or transaction, while the body contains actual payload
or application data.

The following listing provides a sample SOAP message format containing
address information:

<?xml version="1.0"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/"

xmlns:ns1="http://apress.com/beginjava6/address"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soapenv:Header></soapenv:Header>

<soapenv:Body>

<ns1:Address>

<ns1:addressLine1>1501ACity</ns1:addressLine1>

<ns1:addressLine2>UCity</ns1:addressLine2>

<ns1:city>SFO</ns1:city>

Getting Familiar with CXF

[10]

<ns1:state>CA</ns1:state>

<ns1:country>US</ns1:country>

</ns1:Address>

</soapenv:Body>

</soapenv:Envelope>

WSDL (Web Services Description language)
WSDL is a standard-based XML language used to describe web services. Under
WSDL, a web service is described as a set of communication endpoints that are
capable of exchanging messages. These communication endpoints are called ports.

An endpoint is comprised of two parts:

•	 The irst part is the abstract deinitions of operations (similar to methods in
Java) provided by the services and messages (input and output parameter
types for methods) which are needed to invoke the service. The set of abstract
operation deinitions is referred to as port type.

•	 The second part is the concrete binding of those abstract deinitions of
operations to concrete network protocol, where the service is located, and
message format for the service.

The WSDL binding describes how the service is bound to a messaging protocol,
particularly the SOAP messaging protocol. Typically, the WSDL iles would be
created using the tool provided by the web service framework. The following block
of code shows a listing of Address Veriication WSDL, which uses the Address XML
schema. Please refer to the inline comments for an explanation of the elements in the
below WSDL ile:

<?xml version='1.0' encoding='UTF-8'?><wsdl:definitions name="Addr
essVerifyProcessImplService" targetNamespace="http://order.demo/"
xmlns:ns1="http://schemas.xmlsoap.org/soap/http" xmlns:soap="http://
schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://order.demo/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.
w3.org/2001/XMLSchema">

<wsdl:types>

<!-- Schema definition for Address element. This serves as the input
message format for invoking the Address verification service. -->

<xs:schema attributeFormDefault="unqualified" elementFormDefault="unqu
alified" targetNamespace="http://order.demo/" xmlns:tns="http://order.
demo/" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Address" type="tns:address" />

<xs:element name="verifyAddress" type="tns:verifyAddress" />

<xs:element name="verifyAddressResponse" type="tns:verifyAddressRespo
nse" />

Chapter 1

[11]

<xs:complexType name="verifyAddress">

<xs:sequence>

<xs:element minOccurs="0" name="arg0" type="tns:address" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="address">

<xs:sequence>

<xs:element minOccurs="0" name="addressLine1" type="xs:string" />

<xs:element minOccurs="0" name="addressLine2" type="xs:string" />

<xs:element minOccurs="0" name="city" type="xs:string" />

<xs:element minOccurs="0" name="country" type="xs:string" />

<xs:element minOccurs="0" name="state" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="verifyAddressResponse">

<xs:sequence>

<xs:element minOccurs="0" name="return" type="xs:string" />

</xs:sequence>

</xs:complexType>

</xs:schema>

 </wsdl:types>

 <!-- Specifies the Messages for Address Verification Service. -->

 <wsdl:message name="verifyAddressResponse">

 <wsdl:part element="tns:verifyAddressResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="verifyAddress">

 <wsdl:part element="tns:verifyAddress" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <!-- Specifies the Operations for Verify Address service. -->

 <wsdl:portType name="AddressVerifyProcess">

 <wsdl:operation name="verifyAddress">

 <wsdl:input message="tns:verifyAddress" name="verifyAddress">

 </wsdl:input>

 <wsdl:output message="tns:verifyAddressResponse"
 name="verifyAddressResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <!-- Specifies the SOAP Binding for Verify Address Process. -->

 <wsdl:binding name="AddressVerifyProcessImplServiceSoapBinding"
 type="tns:AddressVerifyProcess">

Getting Familiar with CXF

[12]

 <soap:binding style="document" transport=
 "http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="verifyAddress">

 <soap:operation soapAction="" style="document" />

 <wsdl:input name="verifyAddress">

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output name="verifyAddressResponse">

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <!-- Service definition for Verify Address . -->

 <!-- The soap location specifies the URL where the address verify
service is located. -->

 <wsdl:service name="AddressVerifyProcessImplService">

 <wsdl:port binding="tns:AddressVerifyProcessImplServiceSoapBinding"
 name="AddressVerifyProcessImplPort">

 <soap:address location="http://localhost:9000/
 AddressVerifyProcess" />

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

In Chapter 8 you will look at how to use the various CXF tools for web
services development and format of WSDL iles in detail.

REST (Representational State Transfer)
REST (Representational State Transfer) is neither a technology nor a standard; it's
an architectural style—a set of guidelines for exposing resources over the Web. The
REST architecture style is related to a resource, which is a representation identiied
by a Uniform Resource Indicator (URI), for example, http://apachecfxCXF.
com/mybook. The resource can be any piece of information such as a book, order,
customer, employee, and so on. The client queries or updates the resource through
the URI and, therefore, inluences a state change in its representation. All resources
share a uniform interface for the transfer of state between client and resource.

Chapter 1

[13]

The World Wide Web is a classic example built on the REST architecture style. As
implemented on the World Wide Web, URIs identify the resources (http://amazon.
com/mybook), and HTTP is the protocol by which resources are accessed. HTTP
provides a uniform interface and set of methods to manipulate the resource. A client
program, like a web browser, can access, update, add, or remove a Web resource
through URI using various HTTP methods, like GET and POST, thereby changing its
representational state.

In Chapter 6 and 7 you will look at the REST concepts in detail and how
to develop web services using the REST architecture style (also termed
RESTful Web Services).

Service Registry
Service Registry provides a mechanism to look up web services. Traditionally, there
was UDDI speciication that deined the standards on registering and discovering
a web service, but it lacked enterprise-wide adoption. Enterprises started shipping
their own version of Service Registry, providing enterprise capabilities like service
versioning, service classiications, and life cycle management.

Introducing web services
There are many different deinitions available for a web service. The World Wide
Web Consortium (W3C) deines a web service as follows:

A Web service is a software system identiied by a URI whose public interfaces and
bindings are deined and described using XML (speciically WSDL). Its deinition
can be discovered by other software systems. These systems may then interact
with the web service in a manner prescribed by its deinition, using XML-based
messages conveyed by Internet protocols.

Simply, put web service is a software component that provides a business function
as a service over the web that can be accessed through a URL. Web services are next
generation web applications, modules, or components that can be thought of as a
service provided over the web. Traditionally, we had static HTML pages as web
content, which evolved into more dynamic full featured web applications providing
business functionality and rich GUI features to the end user. A web service
component is one step ahead of this web paradigm and provides only business
service, usually in the form of raw XML data that can be digested by virtually all
client systems. The GUI and business functionality are well separated. A web service
can be thought of as a self contained, self describing, modular application that can be
published, located, and invoked across the web.

Getting Familiar with CXF

[14]

The greatest beneit that web services provide is interoperability. Web services can
be ported on any platform and can be written in different programming languages.
Similarly, the client accessing the web service can be an application written in a
different language and running on a different platform than that of a service itself.

Approaches for web service development
Two of the most widely used approaches for developing web services are SOAP
(Simple Object Access Protocol) and the REST (Representational State Transfer)
architecture style. In depth details on developing SOAP-based web services are
provided in Chapters 2-5, while Chapters 6 and 7 are dedicated to RESTful web
service development.

A web service involves three types of roles—a service consumer, a service provider,
and an optional service registry. The following diagram shows the interaction
between the service provider, the service consumer, and the service registry:

Lookup provider
Service

Provider

Service

Registry

Lookup services Service

Consumer

Invoke services

The service providers furnish the services over the web and respond to web service
requests. The service consumer consumes the services offered by the service
provider. In SOAP-based web services, the service provider publishes the contract
(WSDL ile) of the service over the web where a consumer can access it directly or by
looking up a service registry. The service consumer usually generates a web service
client code from a WSDL ile using the tools offered by the web service framework to
interact with the web service. In the next chapter you will look at how to create web
service clients from a WSDL ile.

In Chapter 8 you will look at how to use various CXF tools for
web service development.

Chapter 1

[15]

With RESTful Web Services there is no formal contract between the service provider
and the service consumer. The service requestor needs to know the format of the
message, for instance, XML or JSON (Java Script Object Notation), and operations
supported by the service provider. The service provider exposes the set of operations
using standard HTTP methods like GET or POST. The service requestor invokes one
of the methods deined for the resources using the URI over the HTTP protocol.

The choice of adopting SOAP rather than REST depends on your application's
requirements. If your requirement consists of transmitting and receiving simple XML
messages, then you would probably go with RESTful Web Services. However, if your
requirement consists of various contracts to be deined and negotiated between the
provider and consumer such as using a WSDL (Web Service Description Language)
ile and adhering to various web services speciications (WS Speciications) such as
web service security for enterprise adoption, then SOAP-based web services is the
right option. If you are developing SOAP-based services, then you also need to be
aware of SOAP communication styles.

Web service SOAP communication styles
The web service SOAP communication style plays a signiicant role in
communicating SOAP XML messages between the service provider and the service
consumer. There exist two types of SOAP message styles, Document and RPC. The
SOAP message styles are deined in a WSDL document as SOAP binding. A SOAP
binding can have either an encoded use or a literal use. Encoding as the term implies,
the message would be encoded using some format, while literal speciies plain text
messages without any encoding logic.

Document style, as the name suggests, deals with XML documents as payloads which
adhere to well deined contracts, typically created using XML schema deinitions. The
XML schema format speciies the contract for business messages being exchanged
between web service provider and consumer, which the consumers can call and adhere
to. The XML schema deines the request and response message format between the
service provider and the service consumer. Document literal style is the preferred way
of web service communication for achieving interoperability.

Getting Familiar with CXF

[16]

RPC (Remote Procedure Call) style, on the other hand, indicates that the SOAP
body contains an XML representation of a method. In order to serialize method
parameters into the SOAP message so it can be deserialized back by any web service
implementation, the SOAP speciication deines a standard set of encoding rules. As
RPC is traditionally used in conjunction with SOAP encoding rules, the combination is
referred to as RPC/encoded. You also have an RPC/literal communication style model
where you don't have any encoding formats, but the messages are still limited to RPC
method-based communication, where messages can't be validated as they are not tied
to any XML Schema deinition. You should probably avoid developing RPC style web
services as it has a lot of interoperability issues.

There are lot of speciications designed for SOAP-based web services.
These web service speciications are designed for interoperable protocols
for Security, Reliable Messaging, Management, and Transactions in
loosely coupled systems. The speciications are built on top of the core
XML and SOAP standards.

Apache CXF
Apache CXF is an open source web service framework that provides an easy to use,
standard-based programming model for developing web services. Web services
can be implemented using different application protocols like SOAP, XML, JSON,
RESTful HTTP, and support various transport protocols like HTTP or JMS (Java
Message Service).

History of CXF
Exactly what does CXF stand for? Apache CXF is the product of two projects, Celtix
and XFire, hence the name CXF. Celtix, an open source Java-based Enterprise Service
Bus (ESB) project, is a product of ObjectWeb consortia that delivers open source
middleware solutions. The project was sponsored by IONA. On the other hand,
XFire, a Java-based SOAP framework, is an open source project from Codehaus. Both
Celtix and XFire, while in their initial versions, had many things in common and
therefore the developers of both projects decided to bring out the best of both worlds
and planned a better 2.0 version of Celtix and XFire. The communities of both these
projects entered incubation at the Apache Software foundation to develop version
2.0. It took about 20 months at the Apache incubator before CXF inally rolled out.
CXF is now formally known as Apache CXF which concentrates on delivering an
open source web service framework. The framework which had its irst release as
v2.0, is now evolved as v2.2, with bug ixes, and the addition of new features.

Chapter 1

[17]

Why CXF?
Picking up a framework is always a challenging task. There are many web service
frameworks available today. Historically, there was Axis 1 which evolved into Axis
2, providing better lexibility and enhanced support for web service standards. Other
widely used web service frameworks are GlassFish Metro, Glue, JBossWS, and so
on. Every web services framework aims to provide a robust infrastructure for the
developer to conveniently build, deploy, and publish the web services. So which
one is the better framework? That's a million dollar question!

We choose CFX rather than other web service frameworks as it supports all the
leading web service standards and provides a simpliied programming model
for developing SOAP and RESTful-based web services, along with options for
various other application protocols. CXF provides a lexible deployment model for
implementing web services. More speciically, we choose CFX as it provides the
following capabilities.

Support for web service standards
Web service standards deine the norms of a web service implementation with
respect to its interoperability. The standards ensure that a web service is accessed
independently of the client platform.

The framework provides the following web service standards support:

•	 Java API for XML Web Services (JAX-WS)
•	 SOAP
•	 Web Services Description Language (WSDL)
•	 Message Transmission Optimization Mechanism (MTOM)
•	 WS-Basic Proile
•	 WS-Addressing
•	 WS-Policy
•	 WS-ReliableMessaging
•	 WS-Security

One of the most important web services technologies is JAX-WS. JAX-WS is a
speciication designed to simplify the construction of primarily SOAP-based web
services and web service clients in Java. JAX-WS also includes the Java Architecture
for XML Binding (JAXB) and SOAP with Attachments API for Java (SAAJ).

www.allitebooks.com

http://www.allitebooks.org

Getting Familiar with CXF

[18]

JAXB offers data binding capabilities by providing a convenient way to map
XML schema to a representation in Java code. The JAXB shields the conversion
of XML schema messages in SOAP messages to Java code without having the
developers see the XML and SOAP parsing. The JAXB speciication deines the
binding between Java and XML schema. SAAJ provides a standard way of dealing
with XML attachments contained in a SOAP message. CXF provides support for a
complete JAX-WS stack. We will look at how to use the JAX-WS standards while
developing web services in the next chapter.

The WS-Addressing, WS-Policy, WS-ReliableMessaging, and WS-Security are all
part of the web services speciication aimed to bring in consistency in various areas
of web services. For instance, WS-Security speciication is about how integrity and
conidentiality can be enforced on web services using a standard method.

The WS-I Basic Proile is a speciication from the Web Services Interoperability
industry consortium (WS-I), which provides a reasonable set of rules and guidelines
that are best suited for achieving web services interoperability. The rules and
speciications are applied to a WSDL ile, as the said ile serves as the contract
between service provider and service consumer in SOAP-based web services.
Adhering to WS-I basic proiles ensures that your services can interoperate between
different platforms.

Support for POJO (Plain Old Java Object)
POJOs are Plain Old Java Objects that don't implement any infrastructure
framework-speciic interfaces such as JMS or EJB interfaces. Using the POJO
programming model simpliies testing and keeps things simple. POJO makes it easier
to integrate with other frameworks like Spring, which provides various services such
as transactions, and conforms to POJO in a standardized way. Throughout the book
we have used POJO to demonstrate the CXF capabilities. CXF implements the
JAX-WS and JAX-RS (Java API for RESTful services) speciication, which provides a
set of annotations to convert POJOs as SOAP and RESTful web services.

Frontend programming APIs
CXF frontends are programming APIs that can be used to develop web services and
web service clients. CXF supports two types of frontends, namely standard-based
JAX-WS, and simple frontend. These CXF frontends provide simple to use APIs to
expose POJOs as web services and create web service clients. In Chapter 3, we will
look at how to use the frontend programming APIs for developing web services.

Chapter 1

[19]

Tools support
CXF provides different tools for conversion between JavaBeans, web services, and
WSDL. These tools assist developers in generating web service clients like Java and
JavaScript from WSDL or generating a WSDL ile from a service implementation.
CXF provides support for Maven and Ant integration for build and dependency
management. Some of the tools supported are as follows:

•	 Java to web service
•	 Java to WSDL
•	 WSDL to Java
•	 WSDL to JavaScript
•	 WSDL to Service
•	 WSDL to SOAP
•	 WSDL to XML
•	 WSDL Validator
•	 XSD to WSDL

In Chapter 8, we will look at some of the commonly used CXF tools which assist in
web service development

Support for RESTful services
CXF supports the concept of RESTful (Representational State Transfer) services
and the JAX-RS speciication which speciies the semantics to create web services
according to the REST architectural style. JAX-RS speciication does not provide any
details on RESTful clients. CXF goes a step further and provides various options
to create clients that can interact with the JAX-RS web service. CXF also supports
Java Script Object Notation (JSON) data format which is a widely used format
developing Web 2.0-based applications. In Chapters 6 and 7, we will look at these
concepts in detail and how they are used for designing and developing RESTful
web services.

Getting Familiar with CXF

[20]

Support for different transports and bindings
Data binding is the key for all web service development. Data binding means
mapping between Java objects and message formats which have been exposed by the
service's implementation, for instance XML or JSON (Java Script Object Notation).
SOAP-based web services would use XML as the data format, while RESTful services
have a choice of using XML or JSON as the data format. CXF provides data binding
components that transparently handle the mapping for you. CXF also supports Java
Architecture for XML Binding (JAXB) and AEGIS data binding apart from SOAP
and HTTP protocol binding. CXF supports different kinds of transport protocols
such as HTTP, HTTP(s), JMS, and CXF Local protocol that allow service-to-service
communication within the single Java Virtual Machine (JVM).

All of the transport protocols are explained in the context of web service
development in Chapter 4.

Support for non-XML binding
CXF supports non-XML bindings such as JavaScript Object Notation (JSON) and
Common Object Request Broker Architecture (CORBA). It also supports the Java
Business Integration (JBI) architectures and Service Component Architectures
(SCAs). Non-XML binding provides more choices for integration with existing
infrastructure which support these formats. In Chapter 7 we will look at how to add
JSON support for RESTful web services.

Ease of use
The framework is developed with a mission to provide a robust infrastructure for
web services development and to ease the development process. CXF provides irst
class integration support with Spring framework, where a POJO exposed as web
services through CXF framework can leverage the services offered by the Spring
framework. For instance, transaction capabilities can be applied declaratively to
POJO web services through the Spring transaction infrastructure support. Using
the Spring framework simpliies the overall coniguration of web services and eases
deployment through XML-based coniguration iles. You will look at how CXF
provides Spring coniguration support, which eases coniguration and deployment
while developing web services.

Chapter 1

[21]

Flexible deployment
CXF offers a lexible deployment model where services can be developed and unit
tested in a standalone environment, and promoted for deployment in an application
server environment. Web services developed with CXF can be deployed with light
weight containers like Tomcat and also J2EE-based containers such as Websphere,
Weblogic, JBoss, Geronimo, and JOnAS. It can also be deployed in the two tier
client/server environment. CXF provides integration with a Service Component
Architecture (SCA) container like Tuscany. It also supports Java Business
Integration (JBI) integration with a web service deployed as a service engine in JBI
containers such as ServiceMix, OpenESB, and Petals.

Setting up the environment
In this section we will set up the CXF environment for running the code examples.
We will be using the ANT tool throughout the book for building and running the
code examples.

For ANT users
You will have to download and install the following software before setting up
the environment. The book illustrates the setup process in a Windows environment.
The same can be emulated in a Unix-based environment with ease:

•	 Java 5 or higher. Apache CXF requires JDK 5 or a later version. JDK 5
can be downloaded from the following website: http://java.sun.com/
j2se/1.5.0/download.jsp

•	 Tomcat 6.0 or higher. There is no strict requirement for Tomcat for CXF.
In fact, any servlet container that supports Java 5 or higher can be used
with CXF. For our illustrations, we will use Tomcat as our servlet container.
Tomcat version 6.0 can be downloaded from the following website:
http://tomcat.apache.org/download-60.cgi

•	 Apache Ant 1.7.1 or higher. Ant will be used to build and deploy the code.
The build utility can be downloaded from the site: http://ant.apache.
org/bindownload.cgi

•	 CXF binary distribution 2.2.3. CXF binary distribution can be downloaded
from the website: http://cxf.apache.org/download.html

Getting Familiar with CXF

[22]

Once the above list of software is installed, we go about setting up the following
environment variables:

Environment Variable Description
JAVA_HOME Set this to point to the JDK 1.5 installation

root folder, for example C:\jdk1.5.0_12.
CATALINA_HOME Set this to point to the Tomcat installation

root folder, for example C:\Program
Files\Tomcat 6.0.

ANT_HOME Set this to point to the ANT installation root
folder, for example C:\apache-ant-1.7.1.

CXF_HOME Set this to point to the CXF installation root
folder, for example C:\apache-cxf-2.2.3.

PATH Set this to point to the above respective
'HOME'/ bin folder, for example %JAVA_
HOME%\bin. Make sure that you do not
overwrite the existing PATH variable content.
You will need to add to the existing PATH.

The environment setup can also be automated using batch script. The script might
look like the following:

@echo off

rem ---

rem CXF Environment Setup script

rem ---

set JAVA_HOME=C:\jdk1.5.0_12

set CATALINA_HOME=C:\Program Files\Tomcat 6.0

set ANT_HOME=C:\apache-ant-1.7.1

set CXF_HOME=C:\apache-cxf-2.2.3

set PATH=%PATH%;%JAVA_HOME%\bin;%CATALINA_HOME%\bin;%ANT_HOME%\
bin;%CXF_HOME%\bin

rem ---

For Maven users
Apache CXF also supports a Maven-based build and installation. For readers
using Maven 2 for developing their applications, the CXF artifacts can be accessed
from the Maven central repository itself. The complete release is available at the
following location:

http://repo1.maven.org/maven2/

Chapter 1

[23]

The following POM dependencies need to be declared to build CXF code
using Maven:

<properties>

 <cxf.version>2.2.1</cxf.version>

</properties>

<dependencies>

 <dependency>

 <groupId>org.apache.cxf</groupId>

 <artifactId>cxf-rt-frontend-jaxws</artifactId>

 <version>${cxf.version}</version>

 </dependency>

 <dependency>

 <groupId>org.apache.cxf</groupId>

 <artifactId>cxf-rt-transports-http</artifactId>

 <version>${cxf.version}</version>

 </dependency>

 <dependency>

 <groupId>org.apache.cxf</groupId>

 <artifactId>cxf-rt-transports-http-jetty</artifactId>

 <version>${cxf.version}</version>

 </dependency>

</dependencies>

In each chapter we have developed the source code from scratch along with Ant
build iles to build and run the code. If you are interested in running the examples
directly without developing it from scratch, the entire source code is available at the
Packt website (www.packtpub.com/files/code/5401_Code.zip). The appendix
chapter Getting Ready with the Code Examples provides detailed instructions on how
to download the source code from the Packt site. If you plan to use Maven, relevant
pom.xml iles are provided with the source code download. Refer to the Using Maven
for Build management section in the Getting Ready with the Code Examples appendix
chapter on how to use Maven to build the examples.

Getting Familiar with CXF

[24]

Summary
In this chapter we introduced some of the basic concepts of web services and
technology standards that are relevant in the context of the book to get you acquainted
with these technologies before using these concepts for services development using
CXF. We went through the two of the most widely used approaches for web services
development, namely, SOAP-based web services and RESTful web services.

We looked at the Apache CXF framework, its history, and went through the various
standards and features offered by the CXF framework for web services development.
The Apache CXF provides a robust framework that makes web service development
easy, simpliied, and standard-based. Finally, we looked at how to set up the CXF
environment for both Ant and Maven users.

Developing a Web Service
with CXF

The irst chapter provided an introduction to web services and CXF framework. We
looked at the features supported by the CXF framework and how to set up the CXF
environment. This chapter will focus on programming web service with CXF. CXF
provides a robust programming model that offers simple and convenient APIs for
web service development. The chapter will focus on illustrating a simple web service
development using CXF and Spring-based conigurations. The chapter will also talk
about the architecture of CXF.

Before we examine CXF-based web service development, we will review the example
application that will be illustrated throughout the book. The example application
will be called Order Processing Application. The book will demonstrate the same
application to communicate different concepts and features of CXF so that the reader
can have a better understanding of CXF as a whole. This chapter will focus on the
following topics:

•	 Overview of a sample Order Processing Application
•	 CXF-based web service development with Spring
•	 Insight into CXF architecture

Developing a Web Service with CXF

[26]

The Order Processing Application
The objective of the Order Processing Application is to process a customer order.
The order process functionality will generate the customer order, thereby making
the order valid and approved. A typical scenario will be a customer making an
order request to buy a particular item. The purchase department will receive the
order request from the customer and prepare a formal purchase order. The purchase
order will hold the details of the customer, the name of the item to be purchased,
the quantity, and the price. Once the order is prepared, it will be sent to the
Order Processing department for the necessary approval. If the order is valid and
approved, then the department will generate the unique order ID and send it back to
the Purchase department. The Purchase department will communicate the order ID
back to the customer.

Prepare an order

Process an order
Client

For simplicity, we will look at the following use cases:

•	 Prepare an order
•	 Process the order

The client application will prepare an order and send it to the server application
through a business method call. The server application will contain a web service
that will process the order and generate a unique order ID. The generation of the
unique order ID will signify order approval.

In real world applications a unique order ID is always accompanied by
the date the order was approved. However, in this example we chose to
keep it simple by only generating order ID.

Chapter 2

[27]

Developing a service
Let's look speciically at how to create an Order Processing Web Service and then
register it as a Spring bean using a JAX-WS frontend.

In Chapter 3 you will learn about the JAX-WS frontend. The chapter
will also cover a brief discussion on JAX-WS. The Sun-based JAX-WS
speciication can be found at the following URL:
http://jcp.org/aboutJava/communityprocess/final/
jsr224/index.html

JAX-WS frontend offers two ways of developing a web service—Code-irst and
Contract-irst. We will use the Code-irst approach, that is, we will irst create a Java
class and convert this into a web service component. The irst set of tasks will be to
create server-side components.

In web service terminology, Code-irst is termed as the Bottoms Up
approach, and Contract-irst is referred to as the Top Down approach.

To achieve this, we typically perform the following steps:

•	 Create a Service Endpoint Interface (SEI) and deine a business method
to be used with the web service.

•	 Create the implementation class and annotate it as a web service.
•	 Create beans.xml and deine the service class as a Spring bean using a

JAX-WS frontend.

Creating a Service Endpoint Interface (SEI)
Let's irst create the SEI for our Order Processing Application. We will name our
SEI OrderProcess. The following code illustrates the OrderProcess SEI:

package demo.order;

import javax.jws.WebService;

@WebService

public interface OrderProcess {

 @WebMethod

 String processOrder(OrderprocessOrder(Order order);

}

www.allitebooks.com

http://www.allitebooks.org

Developing a Web Service with CXF

[28]

As you can see from the preceding code, we created a Service Endpoint Interface
named OrderProcess. The SEI is just like any other Java interface. It deines an
abstract business method processOrder. The method takes an Order bean as a
parameter and returns an order ID String value. The goal of the processOrder method
is to process the order placed by the customer and return the unique order ID.

One signiicant thing to observe is the @WebService annotation. The annotation is
placed right above the interface deinition. It signiies that this interface is not an
ordinary interface but a web service interface. This interface is known as Service
Endpoint Interface and will have a business method exposed as a service method to
be invoked by the client.

The @WebService annotation is part of the JAX-WS annotation library. JAX-WS
provides a library of annotations to turn Plain Old Java classes into web services and
speciies detailed mapping from a service deined in WSDL to the Java classes that
will implement that service. The javax.jws.WebService annotation also comes with
attributes that completely deine a web service. For the moment we will ignore these
attributes and proceed with our development.

The javax.jws.@WebMethod annotation is optional and is used for customizing the
web service operation. The @WebMethod annotation provides the operation name and
the action elements which are used to customize the name attribute of the operation
and the SOAP action element in the WSDL document.

The following code shows the Order class:

package demo.order;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "Order")

public class Order {

 private String customerID;

 private String itemID;

 private int qty;

 private double price;

 // Contructor

 public Order() {

 }

 public String getCustomerID() {

 return customerID;

 }

 public void setCustomerID(String customerID) {

 this.customerID = customerID;

 }

Chapter 2

[29]

 public String getItemID() {

 return itemID;

 }

 public void setItemID(String itemID) {

 this.itemID = itemID;

 }

 public int getQty() {

 return qty;

 }

 public void setQty(int qty) {

 this.qty = qty;

 }

 public double getPrice() {

 return price;

 }

 public void setPrice(double price) {

 this.price = price;

 }

}

 As you can see, we have added an @XmlRootElement annotation to the Order
class. The @XmlRootElement is part of the Java Architecture for XML Binding
(JAXB) annotation library. JAXB provides data binding capabilities by providing
a convenient way to map XML schema to a representation in Java code. The JAXB
shields the conversion of XML schema messages in SOAP messages to Java code
without having the developers know about XML and SOAP parsing. CXF uses JAXB
as the default data binding component.

The @XmlRootElement annotations associated with Order class map the Order class to
the XML root element. The attributes contained within the Order object by default are
mapped to @XmlElement. The @XmlElement annotations are used to deine elements
within the XML. The @XmlRootElement and @XmlElement annotations allow you to
customize the namespace and name of the XML element. If no customizations are
provided, then the JAXB runtime by default would use the same name of attribute for
the XML element. CXF handles this mapping of Java objects to XML.

Developing a Web Service with CXF

[30]

Developing a service implementation class
We will now develop the implementation class that will realize our OrderProcess
SEI. We will name this implementation class OrderProcessImpl. The following code
illustrates the service implementation class OrderProcessImpl:

@WebService

public class OrderProcessImpl implements OrderProcess {

 public String processOrder(Order order) {

 String orderID = validate(order);

 return orderID;

 }

 /**

 * Validates the order and returns the order ID

 **/

 private String validate(Order order) {

 String custID = order.getCustomerID();

 String itemID = order.getItemID();

 int qty = order.getQty();

 double price = order.getPrice();

 if (custID != null && itemID != null && !custID.equals("")
 && !itemID.equals("") && qty > 0
 && price > 0.0) {

 return "ORD1234";

 }

 return null;

 }

}

As we can see from the preceding code, our implementation class
OrderProcessImpl is pretty straightforward. It also has @WebService annotation
deined above the class declaration. The class OrderProcessImpl implements
OrderProcess SEI. The class implements the processOrder method. The
processOrder method checks for the validity of the order by invoking the validate
method. The validate method checks whether the Order bean has all the relevant
properties valid and not null.

It is recommended that developers explicitly implement OrderProcess
SEI, though it may not be necessary. This can minimize coding errors
by ensuring that the methods are implemented as deined.

Next we will look at how to publish the OrderProcess JAX-WS web service using
Sping coniguration.

Chapter 2

[31]

Spring-based server bean
What makes CXF the obvious choice as a web service framework is its use of
Spring-based coniguration iles to publish web service endpoints. It is the use
of such coniguration iles that makes the development of web service convenient
and easy with CXF.

Please refer to the Getting Started with Spring framework appendix chapter
to understand the concept of Inversion of Control, AOP (Aspect oriented
program), and features provided by the Spring framework using a sample
use case.

Spring provides a lightweight container which works on the concept of Inversion
of Control (IoC) or Dependency Injection (DI) architecture; it does so through the
implementation of a coniguration ile that deines Java beans and its dependencies.
By using Spring you can abstract and wire all the class dependencies in a single
coniguration ile. The coniguration ile is often referred to as an Application
Context or Bean Context ile.

We will create a server side Spring-based coniguration ile and name it as
beans.xml. The following code illustrates the beans.xml coniguration ile:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jaxws="http://cxf.apache.org/jaxws"

 xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />

 <import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

 <jaxws:endpoint

 id="orderProcess"

 implementor="demo.order.OrderProcessImpl"

 address="/OrderProcess" />

</beans>

Developing a Web Service with CXF

[32]

Let's examine the previous code and understand what it really means. It irst deines
the necessary namespaces. It then deines a series of <import> statements. It imports
cxf.xml, cxf-extension-soap.xml, and cxf-servlet.xml. These iles are Spring-
based coniguration iles that deine core components of CXF. They are used to
kick start CXF runtime and load the necessary infrastructure objects such as WSDL
manager, conduit manager, destination factory manager, and so on

The <jaxws:endpoint> element in the beans.xml ile speciies the OrderProcess
web service as a JAX-WS endpoint. The element is deined with the following
three attributes:

•	 id—speciies a unique identiier for a bean. In this case, jaxws:endpoint is
a bean, and the id name is orderProcess.

•	 implementor—speciies the actual web service implementation class. In this
case, our implementor class is OrderProcessImpl.

•	 address—speciies the URL address where the endpoint is to be published.
The URL address must to be relative to the web context. For our example,
the endpoint will be published using the relative path /OrderProcess.

The <jaxws:endpoint> element signiies that the CXF internally uses JAX-WS
frontend to publish the web service. This element deinition provides a short and
convenient way to publish a web service. A developer need not have to write any
Java class to publish a web service.

Developing a client
In the previous section we discussed and illustrated how to develop and publish a
web service. We now have the server-side code that publishes our OrderProcess
web service. The next set of tasks will be to create the client-side code that will
consume or invoke our OrderProcess web service. To achieve this, we will perform
the following steps:

•	 Develop the client-beans.xml to deine the client factory class as a Spring
bean using JAX-WS frontend

•	 Develop a client Java application to invoke the web service

Chapter 2

[33]

Developing a Spring-based client bean
We will create a client-side Spring-based coniguration ile and name it as
client-beans.xml. The following code illustrates the client-beans.xml
coniguration ile:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<jaxws:client id="orderClient" serviceClass=
 "demo.order.OrderProcess" address=
 "http://localhost:8080/orderapp/OrderProcess" />
</beans>

The <jaxws:client> element in the client-beans.xml ile speciies the client bean
using JAX-WS frontend. The element is deined with the following three attributes:

•	 id—speciies a unique identiier for a bean. In this case, jaxws:client is a
bean and the id name is orderClient. The bean will represent an SEI.

•	 serviceClass—speciies the web service SEI. In this case our SEI class is
OrderProcess

•	 address—speciies the URL address where the endpoint is
published. In this case the endpoint is published at the URL address:
http://localhost:8080/orderapp/OrderProcess

<jaxws:client> signiies the client bean that represents an OrderProcess SEI. The
client application will make use of this SEI to invoke the web service. Again, CXF
internally uses JAX-WS frontend to deine this client-side component.

Developing web service client code
We will now create a standalone Java class to invoke our OrderProcess web service.
The following code illustrates the client invocation of a web service method:

public final class Client {

 public Client() {

 }

 public static void main(String args[]) throws Exception {

 // START SNIPPET: client

 ClassPathXmlApplicationContext context

Developing a Web Service with CXF

[34]

 = new ClassPathXmlApplicationContext(new String[]
 {"demo/order/client/client-beans.xml"});

 OrderProcess client = (OrderProcess) context.
 getBean("orderClient");

 // Populate the Order bean

 Order order = new Order();

 order.setCustomerID("C001");

 order.setItemID("I001");

 order.setQty(100);

 order.setPrice(200.00);

 String orderID = client.processOrder(order);

 String message = (orderID == null) ?
 "Order not approved" : "Order approved;
 order ID is " + orderID;

 System.out.println(message);

 System.exit(0);

As you can see from the above code, we have the main method that irst loads
the client-beans.xml coniguration ile. It uses the Spring application context
component ClassPathXmlApplicationContext to load the coniguration ile. The
context component's getBean method is passed the bean ID orderClient. This
method will return the OrderProcess SEI component. Using the SEI, we then invoke
the web service method processOrder. One thing to observe here is that the client
always uses the interface to invoke a web service method. The processOrder method
takes the Order bean as a parameter. The following code depicts the Order bean:

public class Order {

 private String customerID;

 private String itemID;

 private int qty;

 private double price;

 // Contructor

 public Order() {

 }

 // Getter and setter methods for the above declared properties

}

The above Order bean is populated with the valid values and passed to the
processOrder method. The method will then process the order and return the
unique order ID.

Chapter 2

[35]

We have now inished developing server and client side components. To summarize,
we created the OrderProcess service endpoint interface and the implementation
class. We then created server and client-side Spring-based coniguration iles and
inally we created the client application. The relevant components are developed
and we are all set to run or execute our code. But before we do that, you will have
to create one inal component that will integrate Spring and CXF.

We need to wire Spring and CXF through web.xml. The following code illustrates
the web.xml ile:

<web-app>

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>WEB-INF/beans.xml</param-value>

 </context-param>

 <listener>

 <listener-class>

 org.springframework.web.context.ContextLoaderListener

 </listener-class>

 </listener>

 <servlet>

 <servlet-name>CXFServlet</servlet-name>

 <display-name>CXF Servlet</display-name>

 <servlet-class>

 org.apache.cxf.transport.servlet.CXFServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>CXFServlet</servlet-name>

 <url-pattern>/*</url-pattern>

 </servlet-mapping>

</web-app>

Let's go through the above piece of code. The web.xml, as we know, is the web
application coniguration ile that deines a servlet and its properties. The ile
deines CXFServlet, which acts as a front runner component that initiates the
CXF environment. It deines the listener class ContextLoaderListener, which
is responsible for loading the server-side coniguration ile beans.xml. So upon
the web server startup, the order process web service endpoint will be registered
and published.

Developing a Web Service with CXF

[36]

Running the program
The source code and build ile for the chapter is available in the
Chapter2/orderapp folder of the downloaded source code.

Before running the program, we will organize the code so far developed in the
appropriate folder structure. You can create the folder structure, as shown in the
following screenshot, and put the components in the respective sub folders

The developed code will go into the following:

•	 The Java code will go into the respective package folders
•	 The beans.xml and web.xml will go into the webapp\WEB-INF folder
•	 The client-beans.xml ile will go into the demo\order\client folder

Once the code is organized, we will go about building and deploying it in the
Tomcat server. It will typically involve three steps:

•	 Building the code
•	 Deploying the code
•	 Executing the code

Chapter 2

[37]

Building the code
Building the code means compiling the source Java code. We will use the
ANT tool to do this. The ANT ile is provided in Chapter2\orderapp folder.
The following code illustrates the sample build.xml build script:

<?xml version="1.0" encoding="UTF-8"?>

<project name="CXF Chapter2 example" default="build" basedir=".">

 <import file="common_build.xml"/>

 <target name="client" description=
 "run demo client" depends="build">

 <property name="param" value=""/>

 <cxfrun classname="demo.order.client.Client" />

 </target>

 <target name="server" description=
 "run demo server" depends="build">

 <cxfrun classname="demo.spring.servlet.Server"/>

 </target>

 <property name="cxf.war.file.name" value="orderapp"/>

 <target name="war" depends="build">

 <cxfwar filename="${cxf.war.file.name}.war" webxml=
 "webapp/WEB-INF/web.xml" />

 </target>

</project>

Alongside build.xml, you will also ind common_build.xml in the same folder.
The common_buid.xml refers to CATALINA_HOME environment variable to
ind location of tomcat installation. Please make sure that you have set up the
environment variables as mentioned in Appendix A. Open the command prompt
window, go to C:\orderapp folder and run the ant command. It will build the code
and put the class iles under the newly created build folder. The following igure
shows the output generated upon running the ant command.

www.allitebooks.com

http://www.allitebooks.org

Developing a Web Service with CXF

[38]

Deploying the code
Having built the code, we will deploy it. Deployment effectively means building and
moving the code archive to the server deploy path. We will be using the Tomcat web
container to deploy and run the application. To deploy our built code, navigate to
project root folder, and enter the following command:

ant deploy

This will build the WAR ile and put it under the Tomcat server webapp path. For
example, if you have installed the Tomcat under the root folder, then the WAR
will be deployed to /Tomcat/webapp folder.

Executing the code
Following code deployment, we are all set to run the Order Process Application.
You will execute the Java client program Client.java to invoke the Order Process
web service. The program will invoke the processOrder method that will generate
the order ID if the speciied order is approved. Before running the client program,
we need to start the Tomcat web server. There are several ways of starting the
Tomcat server depending on the Tomcat version that is installed. Once the server is
started, you need to run the client program by giving the following command at the
command prompt window:

ant client

As you can see above, we are using Ant to run the client program. Upon executing
this command, it will generate the following output:

Thus we have successfully executed the order processing web service.

Chapter 2

[39]

CXF architecture
The architecture of CXF is built upon the following components:

•	 Bus
•	 Frontend
•	 Messaging and Interceptors
•	 Service Model
•	 Data bindings
•	 Protocol bindings
•	 Transport

The following igure shows the overall architecture:

CXF Architecture

Bus

Messaging

and Interceptors
Transports Data Bindings

Service Model
Protocol

Bindings
Front-ends

Bus
Bus is the backbone of the CXF architecture. The CXF bus is comprised of a
Spring-based coniguration ile, namely, cxf.xml which is loaded upon servlet
initialization through SpringBusFactory. It deines a common context for all
the endpoints. It wires all the runtime infrastructure components and provides a
common application context. The SpringBusFactory scans and loads the relevant
coniguration iles in the META-INF/cxf directory placed in the classpath and
accordingly builds the application context. It builds the application context from
the following iles:

•	 META-INF/cxf/cxf.xml

•	 META-INF/cxf/cxf-extension.xml

•	 META-INF/cxf/cxf-property-editors.xml

Developing a Web Service with CXF

[40]

The XML ile is part of the installation bundle's core CXF library JAR. Now, we
know that CXF internally uses Spring for its coniguration. The following XML
fragment shows the bus deinition in the cxf.xml ile.

<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl" />

The core bus component is CXFBusImpl. The class acts more as an interceptor
provider for incoming and outgoing requests to a web service endpoint.
These interceptors, once deined, are available to all the endpoints in that
context. The cxf.xml ile also deines other infrastructure components such as
BindingFactoryManager, ConduitFactoryManager, and so on. These components
are made available as bus extensions. One can access these infrastructure objects
using the getExtension method. These infrastructure components are registered
so as to get and update various service endpoint level parameters such as service
binding, transport protocol, conduits, and so on.

CXF bus architecture can be overridden, but one must apply caution when
overriding the default bus behavior. Since the bus is the core component that
loads the CXF runtime, many shared objects are also loaded as part of this runtime.
You want to make sure that these objects are loaded when overriding the existing
bus implementation.

You can extend the default bus to include your own custom components or service
objects such as factory managers. You can also add interceptors to the bus bean.
These interceptors deined at the bus level are available to all the endpoints. The
following code shows how to create a custom bus:

SpringBeanFactory.createBus("mycxf.xml")

SpringBeanFactory class is used to create a bus. You can complement or overwrite
the bean deinitions that the original cxf.xml ile would use. For the CXF to load the
mycxf.xml ile, it has to be in the classpath or you can use a factory method to load
the ile. The following code illustrates the use of interceptors at the bus level:

<bean id="cxf" class="org.apache.cxf.bus.spring.SpringBusImpl">

 <property name="outInterceptors">

 <list>

 <ref bean="myLoggingInterceptor"/>

 </list>

 </property>

</bean>

<bean id="myLogHandler" class="org.mycompany.com.cxf.logging.
 LoggingInterceptor">

 ...

</bean>

Chapter 2

[41]

The preceding bus deinition adds the logging interceptor that will perform logging
for all outgoing messages.

Frontend
CXF provides the concept of frontend modeling, which lets you create web services
using different frontend APIs. The APIs let you create a web service using simple
factory beans and JAX-WS implementation. It also lets you create dynamic web
service clients. The primary frontend supported by CXF is JAX-WS. We will look
at how to use the Frontend programming model in the next chapter.

JAX-WS
JAX-WS is a speciication that establishes the semantics to develop, publish, and
consume web services. JAX-WS simpliies web service development. It deines
Java-based APIs that ease the development and deployment of web services.
The speciication supports WS-Basic Proile 1.1 that addresses web service
interoperability. It effectively means a web service can be invoked or consumed by
a client written in any language. JAX-WS also deines standards such as JAXB and
SAAJ. CXF provides support for complete JAX-WS stack.

JAXB provides data binding capabilities by providing a convenient way to map XML
schema to a representation in Java code. The JAXB shields the conversion of XML
schema messages in SOAP messages to Java code without the developers seeing
XML and SOAP parsing. JAXB speciication deines the binding between Java and
XML Schema. SAAJ provides a standard way of dealing with XML attachments
contained in a SOAP message.

JAX-WS also speeds up web service development by providing a library of
annotations to turn Plain Old Java classes into web services and speciies a detailed
mapping from a service deined in WSDL to the Java classes that will implement that
service. Any complex types deined in WSDL are mapped into Java classes following
the mapping deined by the JAXB speciication.

As discussed earlier, two approaches for web service development exist: Code-First
and Contract-First. With JAX-WS, you can perform web service development using
one of the said approaches, depending on the nature of the application.

With the Code-irst approach, you start by developing a Java class and interface and
annotating the same as a web service. The approach is particularly useful where
Java implementations are already available and you need to expose implementations
as services.

Developing a Web Service with CXF

[42]

You typically create a Service Endpoint Interface (SEI) that deines the service
methods and the implementation class that implements the SEI methods. The
consumer of a web service uses SEI to invoke the service functions. The SEI directly
corresponds to a wsdl:portType element. The methods deined by SEI correspond
to the wsdl:operation element.

@WebService

public interface OrderProcess {

 String processOrder(Order order);

}

JAX-WS makes use of annotations to convert an SEI or a Java class to a web
service. In the above example, the @WebService annotation deined above the
interface declaration signiies an interface as a web service interface or Service
Endpoint Interface.

In the Contract-irst approach, you start with the existing WSDL contract, and generate
Java class to implement the service. The advantage is that you are sure about what to
expose as a service since you deine the appropriate WSDL Contract-irst. Again the
contract deinitions can be made consistent with respect to data types so that it can be
easily converted in Java objects without any portability issue. In Chapter 3 we will look
at how to develop web services using both these approaches.

WSDL contains different elements that can be directly mapped to a Java class
that implements the service. For example, the wsdl:portType element is directly
mapped to SEI, type elements are mapped to Java class types through the use of Java
Architecture of XML Binding (JAXB), and the wsdl:service element is mapped to
a Java class that is used by a consumer to access the web service.

The WSDL2Java tool can be used to generate a web service from WSDL. It has various
options to generate SEI and the implementation web service class. As a developer,
you need to provide the method implementation for the generated class. If the WSDL
includes custom XML Schema types, then the same is converted into its equivalent
Java class.

Chapter 2

[43]

In Chapter 8 you will learn about CXF tools. The chapter will also cover a
brief discussion on the wsdl2java tool.

Simple frontend
Apart from JAX-WS frontend, CXF also supports what is known as 'simple frontend'.
The simple frontend provides simple components or Java classes that use relection
to build and publish web services. It is simple because we do not use any annotation
to create web services. In JAX-WS, we have to annotate a Java class to denote it
as a web service and use tools to convert between a Java object and WSDL. The
simple frontend uses factory components to create a service and the client. It does
so by using Java relection API. In Chapter 3 we will look at how to develop simple
frontend web services

The following code shows a web service created using simple frontend:

// Build and publish the service

OrderProcessImpl orderProcessImpl = new OrderProcessImpl();

ServerFactoryBean svrFactory = new ServerFactoryBean();

svrFactory.setServiceClass(OrderProcess.class);

svrFactory.setAddress("http://localhost:8080/OrderProcess");

svrFactory.setServiceBean(orderProcessImpl);

svrFactory.create();

Messaging and Interceptors
One of the important elements of CXF architecture is the Interceptor components.
Interceptors are components that intercept the messages exchanged or passed
between web service clients and server components. In CXF, this is implemented
through the concept of Interceptor chains. The concept of Interceptor chaining is
the core functionality of CXF runtime.

Developing a Web Service with CXF

[44]

The interceptors act on the messages which are sent and received from the web
service and are processed in chains. Each interceptor in a chain is conigurable, and
the user has the ability to control its execution.

Interceptor
InterceptorChain

PhaseInterceptor

+handleMessage()

+handleFault()

+getAfter()

+getBefore()

+getId()

+getPhase()

+add()

The core of the framework is the Interceptor interface. It deines two abstract
methods—handleMessage and handleFault. Each of the methods takes the object
of type Message as a parameter. A developer implements the handleMessage to
process or act upon the message. The handleFault method is implemented to
handle the error condition. Interceptors are usually processed in chains with every
interceptor in the chain performing some processing on the message in sequence,
and the chain moves forward. Whenever an error condition arises, a handleFault
method is invoked on each interceptor, and the chain unwinds or moves backwards.

Interceptors are often organized or grouped into phases. Interceptors providing
common functionality can be grouped into one phase. Each phase performs speciic
message processing. Each phase is then added to the interceptor chain. The chain,
therefore, is a list of ordered interceptor phases. The chain can be created for both
inbound and outbound messages. A typical web service endpoint will have three
interceptor chains:

•	 Inbound messages chain
•	 Outbound messages chain
•	 Error messages chain

There are built-in interceptors such as logging, security, and so on, and the
developers can also choose to create custom interceptors.

Chapter 2

[45]

In Chapter 5 we will learn about working with CXF advanced features.
The chapter will mainly focus on Interceptors.

Service model
The Service model, in a true sense, models your service. It is a framework of
components that represents a service in a WSDL-like model. It provides functionality
to create various WSDL elements such as operations, bindings, endpoints,
schema, and so on. The following igure shows the various components that form
the Service model:

ServiceInfo

InterfaceInfo

OperationInfo

MessageInfoBindingInfo

BindingOperationInfo

EndpointInfo

The components of the Service model can be used to create a service. As you can see
from the above igure, the service model's primary component is ServiceInfo which
aggregates other related components that make up the complete service model.
ServiceInfo is comprised of the following components that more or less represent
WSDL elements:

•	 InterfaceInfo
•	 OperationInfo
•	 MessageInfo
•	 BindingInfo
•	 EndpointInfo

A web service is usually created using one of the frontends offered by CXF. It can
be either constructed from a Java class or from a WSDL.

Developing a Web Service with CXF

[46]

CXF frontends internally use the service model to create web services. For
example, by using a simple frontend, we can create, publish, and consume
web services through factory components such as ServerFactoryBean and
ClientProxyFactoryBean. These factory classes internally use the service
model of CXF.

Data binding
Data binding is the key for any web service development. Data binding means
mapping between Java objects and XML elements. As we know, with web service,
messages are exchanged as XML artifacts. So there has to be some way to convert
these XML into Java objects and vice versa for the application to process as service
and client. Data binding components perform this mapping for you. CXF supports
two types of data binding components—JAXB and Aegis. CXF uses JAXB as the
default data binding component. As a developer, you have the choice of specifying
the binding discipline through a coniguration ile or API. If no binding is speciied,
then JAXB is taken as a default binding discipline. The latest version of CXF uses
JAXB 2.1. JAXB uses annotations to deine the mapping between Java objects and
XML. The following code illustrates the use of JAXB annotations:

@XmlRootElement(name="processOrder", namespace=" http://localhost/
 orderprocess")

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name="processOrder", namespace=
 " http://localhost/orderprocess")

public class OrderProcess {

 @XmlElement(name="arg0", namespace="")

 private order.Order arg0;

 //Gettter and Setter

….

}

As shown in the previous code, the @Xml speciic annotations represents the JAXB
metadata that is used by JAXB to map Java classes to XML schema constructs. For
example, the @XmlType annotation speciies that the OrderProcess class will be
mapped to complex XSD element type 'processOrder' that contains an element
'arg0' of type 'Order' bean.

CXF also supports the Aegis data binding component to map between Java objects
and XML. Aegis allows developers to gain control of data binding through its
lexible mapping system. You do not have to rely on annotations to devise the
mapping. Your Java code is clean and simple POJO.

Chapter 2

[47]

Aegis also supports some annotations that can be used to devise binding. Some of
the annotations that can be used with Aegis are:

•	 XmlAttribute

•	 XmlElement

•	 XmlParamType

•	 XmlReturnType

•	 XmlType

In Aegis, you deine the data mapping in a ile called <MyJavaObject>.aegis.xml,
where MyJavaObject is the object that you are trying to map with XML. Aegis reads
this XML to perform the necessary binding. Aegis also uses relection to derive the
mapping between Java object and XML. The following code fragment shows the
sample Aegis mapping ile:

<?xml version="1.0" encoding="UTF-8"?>
<mappings>
 <mapping name="HelloWorld">
 <method name="sayHi">
 <parameter index="0" mappedName=
 "greeting" nillable='false' />
 </method>
 </mapping>
</mappings>

The above XML fragment states that a string parameter of a method named sayHi of
the bean HelloWorld should be mapped to a name as greeting.

You can conigure your web service to use Aegis data binding as follows:

<jaxws:endpoint id="orderProcess" implementor="demo.order.
OrderProcessImpl" address="/OrderProcess" >

 <jaxws:dataBinding>

 <bean class="org.apache.cxf.aegis.databinding.AegisDatabinding" />

 </jaxws:dataBinding>

</jaxws:endpoint>

Protocol binding
Bindings bind the web service's messages with the protocol-speciic format. The
messages, in web service terminology, are nothing but an operation with input and
output parameters. The message deined in the web service component is called a
logical message. The logical message used by a service component is mapped or
bound to a physical data format used by endpoints in the physical world. It lays
down rules as to how the logical messages will be mapped to an actual payload sent
over the wire or network.

www.allitebooks.com

http://www.allitebooks.org

Developing a Web Service with CXF

[48]

Bindings are directly related to port types in a WSDL artifact. Port types deine
operations and input and output parameters which are abstract in nature. They
deine the logical message, whereas binding translates this logical message into
actual payload data deined by the underlying protocol. The following WSDL
portion shows the sample binding details:

<wsdl:binding name="OrderProcessImplServiceSoapBinding"
 type="tns:OrderProcess">

 <soap:binding style="document" transport=
 "http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="processOrder">

 <soap:operation soapAction="" style="document" />

 <wsdl:input name="processOrder">

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output name="processOrderResponse">

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

</wsdl:binding>

As you can see from the above sample binding fragment, it is deined using the
<binding> element. This element has two attributes, namely, name and type.
The name attribute identiies the binding, and the type attribute maps it with the
port type. The name attribute of the binding element is used to associate with the
endpoint. The child elements of the <binding> parent element deine the actual
mapping of the messages with the protocol format. In the previous case, the
communication protocol used is SOAP 1.1.

CXF supports the following binding protocols:

•	 SOAP 1.1
•	 SOAP 1.2
•	 CORBA
•	 Pure XML

Chapter 2

[49]

Transports
Transport deines the high-level routing protocol to transmit the messages over
the wire. Transport protocols are associated with the endpoints. One endpoint can
communicate with another using a speciic transport protocol. Transport details are
nothing but networking details. Service endpoints are a physical representation of
a service interface. Endpoints are composed of binding and networking details. In a
WSDL artifact, transport details are speciied as part of the <port> element. The port
element is a child of the service element. The WSDL portion following shows the
sample transport details:

<wsdl:service name="OrderProcessImplService">

 <wsdl:port binding="tns:OrderProcessImplServiceSoapBinding"
 name="OrderProcessImplPort">

 <soap:address location="http://localhost:8080/orderapp/
 OrderProcess" />

 </wsdl:port>

</wsdl:service>

As you see from the above XML fragment, transport details are speciied as part of
the service element. The service element has one child element as port element. The
port element maps to binding as deined by the binding element and provides details
of the transport. The previous example shows SOAP as binding protocol and HTTP
as a transport protocol. In Chapter 4, the various transport protocols are explained in
the context of web services development.

CXF supports the following transports for its endpoints:

•	 HTTP
•	 CORBA
•	 JMS
•	 Local

Summary
The chapter started by describing the Order Processing Application and we saw how
to develop a web service with CXF and Spring-based coniguration. CXF's seamless
integration with Spring makes it extremely easy and convenient to build and publish
a web service. We also saw how to build, deploy, and execute a web service using
ANT and Tomcat. The chapter later described the CXF architecture, which is built
upon the core components. These components lay down the foundation for building
web services.

Working with CXF Frontends
CXF frontends are programming APIs that can be used to develop and publish web
services. CXF supports two types of frontends, JAX-WS and simple frontend. This
chapter will provide a more detailed explanation of the JAX-WS frontend. We will
also look at how to build a web service using simple frontend API. The chapter will
focus on developing SOAP-based web services using two types of frontends:

•	 JAX-WS frontend
•	 Simple frontend

Using JAX-WS frontend, we will look at the following:

•	 Web service development using the Code-irst development approach
•	 Web service development using the contract-irst development approach
•	 Building a dynamic client or consumer
•	 Provider and Dispatch based implementation
•	 Understanding web service context

JAX-WS frontend
CXF supports the JAX-WS 2.0 API speciication provided by Java Community
Process (JCP). JAX-WS is a formal speciication by JCP that deines APIs to build,
develop, and deploy web services. CXF provides its own JAX-WS implementation
adhering to JAX-WS speciication standards. The CXF JAX-WS frontend provides
different APIs to build different kinds of web services. Apart from providing
standard WSDL-based development, it also provides APIs to build XML-based
services in the form of Provider and Dispatch interfaces.

Working with CXF Frontends

[52]

There are two ways or approaches for developing JAX-WS SOAP-based web
services—Code-irst development and contract-irst development. In Code-irst
development, as the name suggests, you start off with the code and then convert it
into WSDL. Code-irst development is typically used where the input and output
objects format of the implementation methods is simpler, and you want to quickly
expose them as web services. Code-irst development is much simpler as you start
off with Java objects without worrying about how the WSDL and XSD would be
generated which could lead to issues where Java objects can't be mapped to XML
elements the way you had intended. Note that based on the input and output format
of the implementation method, tools like CXF Java2WSDL would generate contracts,
including XSD formats, for you. For instance, you can't expose a Map or Collection
as an output message format as there is no standard way to map this to an XML
schema, and this could lead to interoperability issues.

In Contract-irst development the developer builds the web service from an existing
WSDL artifact. Contract-irst development is typically used when you already have
an XML schema deining the input and output message format for the web service
operations, or you want to gain iner control of how the XML is being mapped to
Java objects. Contract-irst development requires you to be well versed in XSD and
WSDL contracts as you start modeling contracts using these constructs. If you are
creating services based on industry standards, you would probably start off with
Contract-irst development as the industry message formats are typically available
as XML Schema.

If you are familiar with both these approaches and know how the objects are
mapped to XML, you can go with code-irst development. CXF supports both these
approaches and provides support for various Data binding mechanisms which help
you to map Java objects to XML.

We will start off with the code-irst development approach.

Code-irst development
In this section, we will start by developing a Java class and convert it into a service
class by annotating it. You can carry out web service development using the
following steps:

•	 Creating Service Endpoint Interface (SEI)
•	 Adding Java annotations
•	 Publishing the service
•	 Developing a consumer
•	 Running the Code-irst example

Chapter 3

[53]

Creating Service Endpoint Interface (SEI)
Service Endpoint Interface is a Java interface that deines a business method to be
exposed as a service method. The service method is implemented by a service class.
An SEI can be modeled by using two different approaches:

•	 Building an SEI component from scratch
•	 Converting existing business functionality into service-based components

The irst approach is to build an SEI component from scratch, that is, develop
a whole new web service without any existing code or WSDL contract. It is
recommended that you start by writing the service interface and then creating the
service implementation class. Writing the service interface is always good practice
as it gives a proper client side view of your service methods. The implementation
class can then implement the methods deined in the interface.

The second approach is to take the existing business functionality and convert it
into service-based components. Most of the time you have business logic already
developed and you want to expose them as service methods. You can achieve this
by developing an SEI and deining only those business methods that you want
to expose as a service method, and then make the existing Java code implement
that SEI. The other approach commonly used is to create Wrapper SEI and an
implementation class, which would use the existing implementation classes to
carry out the functionality.

We will start off by creating an SEI component from scratch. We start by developing
an OrderProcess SEI and implementing it. The following code illustrates the
OrderProcess SEI:

package demo.order;

public interface OrderProcess {

 String processOrder(Order order);

}

The above code, as you can see, is a simple POJO interface. It deines one
abstract method processOrder that takes an Order bean as a parameter.
The OrderProcessImpl implementation class implements the processOrder
method, and this method will be exposed later as a web service method.

Working with CXF Frontends

[54]

We will now implement the interface by providing the business logic to the interface
method. You will write the OrderProcessImpl class that will implement the
OrderProcess SEI. The following code illustrates the OrderProcessImpl class:

package demo.order;

public class OrderProcessImpl implements OrderProcess {

 public String processOrder(Order order) {

 System.out.println("Processing order...");

 String orderID = validate(order);

 return orderID;

 }

. . .

The above code is a simple POJO implementation class that implements the
processOrder method. The method simply veriies the order and returns a unique
order ID. For simplicity, we return a static order ID as part of our implementation.
In the next section we will convert the SEI and implementation class into web service
components by annotating them.

Adding Java annotations
Web service annotations are added to a Java class to expose it as a service
component. JAX-WS uses Java 5 annotations, provided by the Web Services
Metadata for the Java Platform speciication (JSR-181) to convert a component
to a web service. The annotations are simply markups that can be used to deine
a speciic context for a particular component or a method. Each annotation is
supported by one or more of the attributes or properties of that context. In this
section we will add annotations to our OrderProcess SEI and the implementation
class and convert them into a service component. In this section we will cover the
following web service annotations:

•	 javax.jws.WebService

•	 javax.jws.soap.SOAPBinding

javax.jws.WebService
A Java component can be converted into a service by adding a @WebService
annotation. This annotation has to be deined both in SEI and the implementation
class. The @WebService annotation is deined by the javax.jws.WebService
interface.

Chapter 3

[55]

The @WebService annotation supports the following attributes:

Attribute Description
Name Indicates the name of the service interface.

It is directly mapped to a name attribute of
the <wsdl:portType> element in WSDL
document. If the attribute is not provided,
then the name of the service interface is taken
as default.

targetNamespace It holds the namespace where the service is
deined. If no namespace is provided, then
the package name is taken as default.

serviceName The name of the published service object.
It directly maps to a name attribute
of wsdl:service element in WSDL
document. The default value is the name
of the service implementation class.

wsdlLocation It indicates the location of WSDL document
in the form of URL.

endpointInterface This attribute is used by the service
implementation class. It speciies the fully
qualiied name of the service interface
which will be implemented by the service
implementation class.

portName It indicates the name of the endpoint where
the service is published. It directly maps to a
name attribute of the <wsdl:port> element
in the WSDL document.

Let's annotate our OrderProcess SEI and OrderProcessImpl implementation class.
The following code illustrates the use of @WebService annotation:

package demo.order;

import javax.jws.WebService;

@WebService
public interface OrderProcess {
 String processOrder(Order order);
}

The @WebService annotation is declared directly above the interface or class
declaration. It annotates the class or interface as a web service class or interface.
In the above code, the OrderProcess interface is deined as a web service interface
by annotating it with @WebService annotation.

Working with CXF Frontends

[56]

Let's look at the OrderProcessImpl implementation class.

The following code shows the annotated OrderProcessImpl implementation class:

package demo.order;

import javax.jws.WebService;

@WebService(serviceName="OrderProcessService",
portName="OrderProcessPort")

public class OrderProcessImpl implements OrderProcess {

 public String processOrder(Order order) {

 System.out.println("Processing order...");

 String orderID = validate(order);

 return orderID;

 }

. . .

As with SEI, you deine the @WebService above the class declaration. You will deine
two attributes—serviceName and portName. The serviceName attribute is deined
with the value as OrderProcessService. The service name is used by the consumer
to obtain the remote interface stub for invoking the service method. The port name
signiies the endpoint name. The service endpoint is also called as a service port
where the service is published. The name here is OrderProcessPort.

There are many other optional annotations that can be used alongside @WebService
to fully describe a web service. Other annotations add iner level details to the
service. It is always recommended that you make use of these annotations
to describe your web service, so that the generated WSDL document has more
speciic details as speciied by these annotations. If you do not use these optional
annotations, then the WSDL is generated with default conventions,
as discussed in previous table.

javax.jws.soap.SOAPBinding
The @SOAPBinding annotation is deined by the javax.jws.soap.SOAPBinding
interface. The annotation is used if you want to specify SOAP binding for
your service.

Chapter 3

[57]

The annotation supports the following attributes:

Attribute Description Default
Style Indicates the style of the SOAP

message. The attribute supports two
styles, namely, Style.DOCUMENT
and Style.RPC.

The default is
DOCUMENT.

Use The attribute determines how the
SOAP message is to be formatted
during serialization. It supports two
values, namely, Use.LITERAL and
Use.ENCODED

The default is
LITERAL.

parameterStyle Indicates how the SOAP messages
are to be used. The message can be
either wrapped, that is, operation
parameters are wrapped as child
elements inside an element in the
SOAP body, or it can be unwrapped
as different individual elements.
It supports two values, namely
ParameterStyle.BARE and
ParameterStyle.WRAPPED.

The default is
WRAPPED.

The SOAP Binding plays an important role in web service communication. Let's look
at two styles of SOAP Binding in greater detail.

RPC versus Document style
The web service SOAP communication style plays an important role in
communicating SOAP XML messages between service provider and consumer.
There are two SOAP message styles, Document and RPC. The SOAP message styles
are deined in WSDL document as SOAP binding. A SOAP binding can have an
encoded use or a literal use. Encoding, as the term implies the message would be
encoded using some format, while literal speciies plain text messages without any
encoding logic.

Document style, as the name suggests, deals with XML documents as payloads
which adhere to well deined contracts, typically created using XML Schema
deinitions. The XML schema format speciies the contract of the service messages
invoked by consumers. The XML Schema deines the request and response message
format between service provider and service consumer which can be validated by
service consumer or service provider. Document literal style is the preferred way for
web service communication to achieve interoperability.

www.allitebooks.com

http://www.allitebooks.org

Working with CXF Frontends

[58]

RPC (Remote Procedure Call) style, on the other hand, indicates that the SOAP
body contains an XML representation of a method. In order to serialize method
parameters into the SOAP message so that it can be deserialized back by any web
service implementation, the SOAP speciication deines a standard set of encoding
rules. As RPC is traditionally used in conjunction with the SOAP encoding rules,
the combination is referred to as RPC/encoded. You also have an RPC/literal
communication style model where you don't have any encoding formats, but still
the messages are limited to RPC method-based communication, where messages
can't be validated as they are not tied to any XML schema deinition. You should
probably avoid developing RPC style web services as they have a lot of
interoperability issues.

The following code illustrates the use of the @SOAPBinding annotation:

@WebService(name="OrderProcess")

@SOAPBinding(parameterSyle=ParameterStyle.BARE)

public interface OrderProcess {

 String processOrder(Order order);

}

javax.jws.WebMethod
The @WebMethod annotation is deined by the javax.jws.WebMethod interface. The
annotation is used for customizing web service operation. The @WebMethod provides
the operation name and action attributes which are used to customize the name
attribute of the <wsdl:operation> element and the soapAction attribute of the
<soap:operation> element in the WSDL document. The @WebMethod annotation is
placed just above the service method declaration.

The @WebMethod annotation supports the following attributes:

Attribute Description
Name Indicates the name of the service method.

It directly maps to the name attribute of the
<wsdl:operation> element in the WSDL
document. The default value is the name of
the method.

Action It indicates the SOAP action for the SOAP
operation. It directly maps to a soapAction
attribute of the <soap:operation> element.
The default value is a blank string.

Exclude It determines whether the method will be a
web service or a non-service method. The
default value is false.

Chapter 3

[59]

The following code snippet illustrates the use of the @WebMethod annotation:

@WebMethod (name="processOrder")

public String processOrder(Order order) {

. . .

JAX-WS web service annotations support a host of other annotations like
@RequestWrapper, @ResponseWrapper, @Oneway, and so on. Some of these
will be explained during the course of this chapter.

Publishing the service
Publishing the service means registering the service component on the server and
making it available to the consumer through the endpoint URL. You will publish
the OrderProcess web service on a particular endpoint URL. The endpoint URL
in this case will be http://localhost:8080/OrderProcess. You will develop a
server component that will publish your OrderProcess service. For this example,
we will use the lightweight web server provided by Java 5 to publish our service.
CXF provides its own standalone server utility, JaxWsServerFactoryBean
to publish the web service, which will be used in Chapter 5.

The following code illustrates the server code:

import javax.xml.ws.Endpoint;

public class Server {

 protected Server() throws Exception {

 System.out.println(«Starting Server»);

 OrderProcessImpl orderProcessImpl = new OrderProcessImpl();

 String address = «http://localhost:8080/OrderProcess»;

 Endpoint.publish(address, orderProcessImpl);

 }

 public static void main(String[] args) {

 new Server();

 Thread.sleep(50000);

 System.exit(0);

 }

}

Working with CXF Frontends

[60]

The static method of publishing the Endpoint class provides a convenient way
to publish and test the JAX-WS web service. The method takes the endpoint URL
address and an object of OrderProcessImpl class as a parameter. The endpoint
address is where the OrderProcess service will be published. The publish
method creates a lightweight web server at the URL http://localhost:8080/
OrderProcess and deploys the service to that location. The lightweight web server
runs in the JVM for a minute and automatically exits. One can view the WSDL
contract of the service by adding the following URL to a web browser

 http://localhost:8080/OrderProcess?wsdl

Developing a consumer
The consumer of the web service invokes the service method to get the required
result. In this section we will develop a Client class that will look up our
OrderProcess service and invoke its processOrder method. The following code
illustrates the service consumer component:

public class Client {

 private static final QName SERVICE_NAME =
 new QName("http://order.demo/", "OrderProcessService");

 private static final QName PORT_NAME =
 new QName("http://order.demo/", "OrderProcessPort");

 private static final String WSDL_LOCATION =
 "http://localhost:8080/OrderProcess?wsdl";

 public static void main(String args[]) throws Exception {

 URL wsdlURL = new URL(WSDL_LOCATION);

 Service service = Service.create(wsdlURL, SERVICE_NAME);

 OrderProcess port = service.getPort(PORT_NAME,
 OrderProcess.class);

 Order order = new Order();

 order.setCustomerID("C001");

 order.setItemID("I001");

 order.setPrice(100.00);

 order.setQty(20);

 String result = port.processOrder(order);

 System.out.println("The order ID is " + result);

 }

}

Chapter 3

[61]

The client code performs the following:

1. It irst constructs the WSDL URL. The WSDL URL is
http://localhost:8080/OrderProcess?wsdl. The URL signiies
the location of WSDL document.

Before running the client program, you can validate that the
service is available by invoking the above WSDL URL. If you
are able to see the WSDL, then it means that the OrderProcess
service was published successfully.

2. It then creates the Service object. The Service object is created using the
static create method. The method takes the WSDL URL and service name
as the parameter. The service name OrderProcessService is a QName and
is mapped to the <wsdl:service> element in the WSDL document. The
<wsdl:service> element deines the service endpoints.

3. Using the Service object, you obtain the SEI stub proxy component by
calling the getPort method. The getPort method takes the port name and
SEI class as the parameters. The port name OrderProcessPort is a QName
and is mapped to the <wsdl:port> element in the WSDL document. The
SEI class is OrderProcess.

4. The proxy component is then used to invoke the service method
processOrder. Before invoking the method, you have to populate the
Order bean and pass it to the processOrder method. The method is
called on the server, and it returns the order ID.

Running the Code-irst example
We will use the ANT tool to build and execute the code. The source code and build
ile for the chapter is available in the Chapter3/codefirst folder of the downloaded
source code. Navigate to the Chapter3/codefirst folder, and run the following
command on the command prompt:

•	 ant build

This will build the source code
•	 ant server

This will run the Server class and publish the Order Process web service
to the location http://localhost:8080.

Working with CXF Frontends

[62]

•	 Open a new command prompt and run the client. Doing this will invoke
the service
ant client

Upon the running the client, you will see the following output:
INFO: Creating Service {http://order.demo/}OrderProcessImplService
from WSDL: http://localhost:8080/OrderProcess?wsdl

The order ID is ORD1234

The output shows the generated order ID.
On the console, where the server is running, you will see the following
output, denoting that an order has been processed:
Processed order...ORD1234

Contract-irst development
In Contract-irst development, the developer builds the web service from an
existing WSDL artifact. One can use the CXF wsdl2java tool to generate relevant
server and client-side components from the existing WSDL document. The generated
server-side service implementation class can then be used to add or implement the
business method. To build the Contract-irst JAX-WS web service, go through the
following steps:

1. Generating service components
2. Implementing the service method
3. Publishing the web service
4. Developing a client

We will irst build the service provider component from the given WSDL. We will
make use of the WSDL below to generate service components. The WSDL is created
using earlier examples. Please refer to inline comments for explanation of important
tags in a WSDL ile.

<?xml version='1.0' encoding='UTF-8'?>

<wsdl:definitions name="OrderProcessService" targetNamespace="http://
order.demo/" xmlns:ns1="http://schemas.xmlsoap.org/soap/http" xmlns:
soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://
order.demo/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:
xsd="http://www.w3.org/2001/XMLSchema">

 <wsdl:types>

 <xs:schema attributeFormDefault="unqualified" elementFormDefault
="unqualified" targetNamespace="http://order.demo/" xmlns:tns="http://
order.demo/" xmlns:xs="http://www.w3.org/2001/XMLSchema">

Chapter 3

[63]

 <!-- XSD Schema for Input and Output operations -->

 <xs:element name="processOrder" type="tns:processOrder" />

 <xs:element name="processOrderResponse" type="tns:
 processOrderResponse" />

 <xs:complexType name="processOrder">

 <xs:sequence>

 <xs:element minOccurs="0" name="arg0"
 type="tns:order" />

 </xs:sequence>

 </xs:complexType>

 <!-- Complex order type elemnets i.e maps to Order Bean -->

 <xs:complexType name="order">

 <xs:sequence>

 <xs:element minOccurs="0" name="customerID"
 type="xs:string" />

 <xs:element minOccurs="0" name="itemID"
 type="xs:string" />

 <xs:element name="price" type="xs:double" />

 <xs:element name="qty" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="processOrderResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="return"
 type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <!-- Message formats for request and response -->

 <wsdl:message name="processOrderResponse">

 <wsdl:part element="tns:processOrderResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="processOrder">

 <wsdl:part element="tns:processOrder" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <!-- Port type and operations for processOrder operation -->

 <wsdl:portType name="OrderProcess">

 <wsdl:operation name="processOrder">

 <wsdl:input message="tns:processOrder" name="processOrder">

 </wsdl:input>

 <wsdl:output message="tns:processOrderResponse"
 name="processOrderResponse">

Working with CXF Frontends

[64]

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <!-- WSDL Binding definition for Order Process-->

 <wsdl:binding name="OrderProcessServiceSoapBinding"
 type="tns:OrderProcess">

 <soap:binding style="document" transport=
 "http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="processOrder">

 <!-- SOAP Binding style -->

 <soap:operation soapAction="" style="document" />

 <wsdl:input name="processOrder">

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output name="processOrderResponse">

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <!-- WSDL service definition-->

 <wsdl:service name="OrderProcessService">

 <wsdl:port binding="tns:OrderProcessServiceSoapBinding"
 name="OrderProcessPort">

 <!--soap address location for orderprocess web service-->

 <soap:address location="http://localhost:8080/OrderProcess" />

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Generating service components
Just as we created the WSDL from a web service, here we will create a web service
from a WSDL. The elements that deine the service in the WSDL document can be
mapped to a Java service component using JAX-WS. The following table shows
some of the relevant mappings between the WSDL element and the corresponding
Java components:

WSDL element Java component
targetNamespace attribute of the
<wsdl:definitions> element

Java package

<wsdl:portType> Java Service Endpoint Interface (SEI)

Chapter 3

[65]

WSDL element Java component
<wsdl:operation> child element
of the <wsdl:portType> element

Java methods

<wsdl:service> Service class
<wsdl:message> Service operation parameters

We will use the wsdl2java tool to build a service from WSDL. CXF provides many
such tools to ease and automate web service development. The wsdl2java tool can
be used to generate the relevant service components. The tool provides various
options or arguments that can be used during the conversion. One can generate the
service components with the following command:

wsdl2java -ant -impl -server -d <outputdir> mywsdl.wsdl

Here is the description of the wsdl2java command tool options:

Tool options Description
- ant: This option will generate the ANT build ile

build.xml that can be used to build the
generated code

- impl: This option will generate a service
implementation class

- server: This option will generate a server component
that can be used to publish the service and start
the server

-d
<outputdir>:

This option can be used to direct the generated
code to a speciic output folder

Let's actually perform the code generation using the wsdl2java tool. We will use
the existing OrderProcess.wsdl, as discussed in an earlier section, to convert it
into a JAX-WS service class. Navigate to the Chapter3/contractfirst folder of
the downloaded source folder, and type in the following command:

wsdl2java.bat –d src –ant -impl -server OrderProcess.wsdl

Working with CXF Frontends

[66]

This command will generate the following set of iles:

•	 JAXB Input and Output message classes—this tool generates respective
Java input and output message components based on the input and output
message schema deined in a WSDL format. For OrderProcess.wsdl, it will
generate ProcessOrder as an input class and ProcessOrderResponse as an
output class which maps to the processOrder and processOrderResponse
XML element. It also generates the Order class which maps to the
<xs:complexType name="order"> deinition in the WSDL ile.

•	 Service Interface—this service interface contains web service methods. The
service interface generated for Order Process WSDL is OrderProcess.java

•	 Service Implementation class—this class provides a sample implementation
which extends the Service interface. We would modify this class to add
our implementation code. The service implementation generated for Order
Process WSDL is OrderProcessImpl.java

•	 Standalone Server class—this class provides a standalone utility to
publish and test the JAX-WS web service using an embedded server.
The code generated for the OrderProcess.wsdl ile is OrderProcess_
OrderProcessPort_Server.java.

•	 Build ile—the build ile can be used to build the generated source code
and publish the web service using the standalone server class.

All these components reside under the demo.order package. The wsdl2java tool
devises the package name by mapping it with the targetNamespace attribute
of the <wsdl:definitions> element. If you look at the WSDL contract, the
targetNamespace has the value http://order.demo. The wsdl2java tool will
derive the package name by reversing the URL and stripping off the leading
http://. The package name therefore becomes demo.order.

Let's look at these artifacts in detail.

Chapter 3

[67]

JAXB input and output message classes
The ProcessOrder, ProcessOrderResponse, and Order class are generated for
OrderProcess WSDL. These classes represent the input and output classes for web
service operation. If you open up these iles in the editor, then you see various JAXB
annotations on classes and methods which are used to map a Java class to XML.
The ProcessOrder and ProcessOrderResponse classes are termed as Request and
Response Wrapper classes. The Request Wrapper class holds the input parameter
and the Response Wrapper class holds the output parameter. As with the JAX-WS
speciication, the Request and Response Wrapper classes are generated by default
for document literal style web services. As discussed earlier in the SOAP Binding
section, in the case of document wrapped style, the web service request consists
of a root element which represents the name of the operation, and a child element
following the root element represents the payload. The name of the operation is
used by the web service framework to determine which method to invoke the
implementation class.

To understand the Request and Response Wrapper concepts, let's look at an example
of a sample SOAP request message sent by the web service client when it invokes the
processOrder operation.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

 <ns2:processOrder xmlns:ns2="http://order.demo/">

 <arg0>

 <customerID>C001</customerID>

 <itemID>I001</itemID>

 <price>200.0</price>

 <qty>100</qty>

 </arg0>

 </ns2:processOrder>

</soap:Body>

</soap:Envelope>

 As you see in this code, the soap body contains the wrapper root element
"processOrder" which maps to the method name "processOrder" in the Order
Process web service. This is how a web service container like CXF identiies which
method to invoke in the case of a document-literal wrapped style. The child element
(arg0) following the root element represents the SOAP payload which maps to the
input parameter (Order) of processOrder method in the OrderProcess class. The
CXF framework behind the scenes converts the SOAP payload to the Order class
by referring to JAX annotations and invokes the method processOrder. Once the
method is invoked, the response object from the method is converted to the required
XML response transparently by the CXF framework before transmitting the response
back to the web service client.

Working with CXF Frontends

[68]

The following code snippet shows the generated ProcessOrder class:

package demo.order;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlType;

/**

 * <p>Java class for processOrder complex type.

 *

 * <p>The following schema fragment specifies the expected content
contained within this class.

 *

 * <pre>

 * <complexType name="processOrder">

 * <complexContent>

 * <restriction base="{http://www.w3.org/2001/
XMLSchema}anyType">

 * <sequence>

 * <element name="arg0" type="{http://order.demo/}order"
minOccurs="0"/>

 * </sequence>

 * </restriction>

 * </complexContent>

 * </complexType>

 * </pre>

 *

 *

 */

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "processOrder", propOrder = {

 "arg0"

})

public class ProcessOrder {

 protected Order arg0;

 /**

 * Gets the value of the arg0 property.

 *

 * @return

 * possible object is

 * {@link Order }

 *

 */

 public Order getArg0() {

Chapter 3

[69]

 return arg0;

 }

 /**

 * Sets the value of the arg0 property.

 *

 * @param value

 * allowed object is

 * {@link Order }

 *

 */

 public void setArg0(Order value) {

 this.arg0 = value;

 }

}

As you can see in the previous code listing, the generated ProcessOrder class has
the JAXB binding deined, which maps the ProcessOrder class to the processOrder
XML element. The ProcessOrder contains the Order class which maps to the arg0
element, as shown in the SOAP request example. The Request Wrapper class is
denoted by the @RequestWrapper annotation on the Service Interface, as discussed
in the next section.

Service Interface
The OrderProcess class is an SEI that deines the abstract processOrder method.
The following code shows the generated class:

@WebService(targetNamespace = "http://order.demo/",
name = "OrderProcess")

@XmlSeeAlso({ObjectFactory.class})

public interface OrderProcess {

 @ResponseWrapper(localName = "processOrderResponse",
targetNamespace = "http://order.demo/", className =
"demo.order.ProcessOrderResponse")

 @RequestWrapper(localName = "processOrder", targetNamespace =
 "http://order.demo/", className = "demo.order.ProcessOrder")

 @WebResult(name = "return", targetNamespace = "")

 @WebMethod

 public java.lang.String processOrder(

 @WebParam(name = "arg0", targetNamespace = "")

 demo.order.Order arg0

);

}

Working with CXF Frontends

[70]

As you can see, the generated code uses lot of annotations to deine the SEI.
Firstly, it uses the @WebService annotation that deines the class as a web service.
The @Xml SeeAlso annotation instructs JAXB to include the ObjectFactory class
when performing the data binding. The service method processOrder is deined
with relevant method-level annotations. The @RequestWrapper annotations wrap
the input message and the @ResponseWrapper annotation wraps the output
message and its parameter to a Java class, as deined by its className attribute
respectively. Note that if you are using the OrderProcess interface for creating a
web service client, as illustrated in the Code-irst development approach, you don't
need to use the Wrapper objects as input, as this would be created at runtime by
the CXF JAX-WS framework, based on the classname deined in @RequestWrapper
annotation. Instead, you would work with the Order class itself. CXF JAX-WS
runtime hides the complexity of the RequestWrapper and ResponseWrapper classes
from developers. The @WebResult provides the logical name for the return type,
which is named return. The @WebMethod annotation signiies that the processOrder
method is a service method. Finally, the processOrder service method parameter
is annotated with @WebParam annotation. The @WebParam annotation is used to
customize the mapping of the method parameter to the WSDL message part name.
For instance, the Order method parameter would be mapped to the arg0 element
name in request XML.

Service implementation class
The generated OrderProcessImpl represents the service implementation class that
provides an empty shell for the processOrder method. The following code shows
the service implementation class:

@javax.jws.WebService(

 serviceName = "OrderProcessService",

 portName = "OrderProcessPort",

 targetNamespace = "http://order.demo/",

 wsdlLocation = "file:OrderProcess.wsdl",

 endpointInterface = "demo.order.OrderProcess")

public class OrderProcessImpl implements OrderProcess {

 private static final Logger LOG =
 Logger.getLogger(OrderProcessImpl.class.getName());

 /* (non-Javadoc)

 * @see demo.order.OrderProcess#processOrder(demo.order.Order
arg0)*

 */

Chapter 3

[71]

 public java.lang.String processOrder(demo.order.Order arg0) {

 LOG.info("Executing operation processOrder");

 System.out.println(arg0);

 try {

 java.lang.String _return = "";

 return _return;

 } catch (Exception ex) {

 ex.printStackTrace();

 throw new RuntimeException(ex);

 }

 }

}

The class is generated with the @WebService annotation having all the relevant
attributes. It implements the generated OrderProcess SEI and deines an empty
implementation of the processOrder service method. The developer needs to
implement this empty method to complete the implementation.

Standalone server class
The generated OrderProcess_OrderProcessPort_Server class represents
the standalone server class. The standalone server class gets its name from the
<wsdl:portType> element and the <wsdl:port> element. It is used to publish
the service on a given endpoint address and start the server.

public class OrderProcess_OrderProcessPort_Server{

 protected OrderProcess_OrderProcessPort_Server() throws Exception
{

 System.out.println("Starting Server");

 Object implementor = new OrderProcessImpl();

 String address = "http://localhost:8080/OrderProcess";

 Endpoint.publish(address, implementor);

 }

 public static void main(String args[]) throws Exception {

 new OrderProcess_OrderProcessPort_Server();

 System.out.println("Server ready...");

}

Working with CXF Frontends

[72]

Build ile
The ANT build ile can be used to build the generated Java ile. The build process
will create the respective classes in the build folder. The following code shows this
portion of the generated build.xml ile:

<project name="cxf wsdltojava" default="build" basedir=".">

 <property environment="env"/>

 <property name="home.dir" location="${basedir}"/>

 <property name="build.dir" location ="${basedir}/build"/>

 <property name="build.classes.dir" location ="${build.dir}/
classes"/>

 <property name="build.src.dir" location ="${basedir}"/>

…

 <target name="OrderProcessClient" description=
 "Run demo.order.OrderProcess_OrderProcessPort_Client"
 depends="compile">

 <property name="param" value=""/>

 <cxfrun classname="demo.order.OrderProcess_OrderProcessPort_
 Client"

 param1="file:OrderProcess.xml"

 param2="${op}"

 param3="${param}"/>

 </target>

 <target name="OrderProcessServer" description="Run demo.order.
 OrderProcess_OrderProcessPort_Server" depends="compile">

 <cxfrun classname="demo.order.OrderProcess_OrderProcessPort_
 Server"

 param1="file:OrderProcess.xml"/>

 </target>

…

</project>

The ANT build ile above deines the target both for server and client application.
Execute the ant command from the path where this ile is generated. The ant command
will build or compile the generated code and put it in the build folder. You can then
use the following commands to run the server and client programs respectively:

ant OrderProcessServer

ant OrderProcessClient

In Chapter 8 we will look at how to use the WSDL2Java tool to create a
service implementation from a .NET WSDL ile.

Chapter 3

[73]

Implementing the service method
Modify the OrderProcessImpl class to provide your implementation for
processOrder method. The following code illustrates this portion of the generated
OrderProcessImpl implementation class:

public class OrderProcessImpl implements OrderProcess {

 private static final Logger LOG =
 Logger.getLogger(OrderProcessImpl.class.getName());

 /* (non-Javadoc)

 * @see demo.order.OrderProcess#processOrder(demo.order.Order
arg0)*

 */

 public java.lang.String processOrder(demo.order.Order arg0) {

 LOG.info("Executing operation processOrder");

 System.out.println(arg0);

 try {

 java.lang.String _return = "ORD1234";

 return _return;

 } catch (Exception ex) {

 ex.printStackTrace();

 throw new RuntimeException(ex);

 }

 }

}

You can provide the required business logic to this processOrder method and
complete the implementation. We provide a dummy implementation and return
a static Order ID "ORD1234", as shown above.

Publishing the web service
To publish the generated Order Process service, navigate to the
Chapter3/contractfirst folder, and type in the following command:

ant server

This will publish the Order Process web service at
http://localhost:8080/OrderProcess

Working with CXF Frontends

[74]

Invoking the web service
You can use the web service client from the Code-irst development section to invoke
the web service. Navigate to the Chapter3/codefirst folder of the downloaded
source code and type in the following command:

ant client

In Chapter 8 we will look at how to use the client code generated from
WSDL2 Java tool to invoke a service

You will see the order ID being printed in the console.

Using dynamic client
A web service client typically uses service interface to invoke service methods. Till
now we developed client applications that used Service Endpoint Interface (SEI) or a
proxy to the interface to call the service method. There may be a situation where you
need to provide a client that is generated dynamically at the runtime. Dynamic client
is typically helpful where you don't want to have an extra overhead for generating and
maintaining stub classes for creating clients. As dynamic client inspects the WSDL and
creates input and output objects dynamically, based on WSDL deinition, it also serves
as a component for validating WSDL ile and input and output message formats,
without actually invoking the web service as part of your unit test environment.

CXF provides an alternate way to build a web service client dynamically. It delivers
the concept of dynamic client through the use of the JaxWsDynamicClientFactory
factory class. CXF also provides a non JAX-WS class named DynamicClientFactory.
This is useful if your service component is developed using any non JAX-WS API.
This chapter will focus on the JAX-WS version of dynamic client factory class.

Creating a simple dynamic client
Let's look at how to create a dynamic client. You need an existing WSDL document
to generate a dynamic client. The JaxWsDynamicClientFactory factory class will
make use of this WSDL and generate the SEI and data classes, at the runtime, in the
memory. As part of this exercise, we would reuse the Order Process WSDL that we
had generated in the Code-irst development section.

Chapter 3

[75]

We will name the dynamic client class OrderProcessJaxWsDynamicClient.
The following block of code shows the code listing for
OrderProcessJaxWsDynamicClient.java:

package demo.order.client;

import org.apache.cxf.jaxws.endpoint.dynamic.
JaxWsDynamicClientFactory;

import org.apache.cxf.endpoint.Client;

import java.lang.reflect.Method;

public class OrderProcessJaxWsDynamicClient {

 public OrderProcessJaxWsDynamicClient() {

 }

 public static void main(String str[]) throws Exception {

 JaxWsDynamicClientFactory dcf = JaxWsDynamicClientFactory.
 newInstance();

 Client client = dcf.createClient("http://localhost:8080/
 OrderProcess?wsdl");

 Object order = Thread.currentThread().
getContextClassLoader().loadClass("demo.order.Order").
newInstance();

 Method m1 = order.getClass().getMethod("setCustomerID",
 String.class);

 Method m2 = order.getClass().getMethod("setItemID",
 String.class);

 Method m3 = order.getClass().getMethod("setQty",
 Integer.class);

 Method m4 = order.getClass().getMethod("setPrice",
 Double.class);

 m1.invoke(order, "C001");

 m2.invoke(order, "I001");

 m3.invoke(order, 100);

 m4.invoke(order, 200.00);

 Object[] response = client.invoke("processOrder", order);

 System.out.println("Response is " + response[0]);

 }

}

Working with CXF Frontends

[76]

The OrderProcessJaxWsDynamicClient carries out the following steps:

1. Create an instance of a JaxWsDynamicClientFactory factory class.
This is done by calling the static newInstance method.

2. After getting the instance, you invoke the createClient method on
this instance to create the client component dynamically. This method
retrieves the WDSL document from the URL http://localhost:8080/
OrderProcess?wsdl. Note that we published the OrderProcess service at
http://localhost:8080/OrderProcess. This method returns an object of
org.apache.cxf.endpoint.ClientImpl class.

3. We then dynamically build an instance of an Order class using context
classloader. We need to pass the Order object to the processOrder method.

4. The next set of code populates the Order bean using Java relection. Since
we are generating a dynamic client, and there is no SEI directly available to
the client, we have to use Java relection API to invoke the service and data
methods. The invoke method on the Client object will make a call to the
processOrder service method that takes the Order bean as a parameter.

5. We then retrieve the output and print it on the console. Our object is
represented as a simple string, which contains the Order Id.

Now, let's see the dynamic client in action.

Running the dynamic client
We will use the ANT tool to build and execute the code. The source code and
build ile for the chapter is available in the Chapter3/dynamiclient folder of the
downloaded source code. Navigate to the Chapter3/dynamiclient folder, and run
the following command on the command prompt:

1. ant build

This will build the source code
2. ant server

This will run the server and publish the Order Process web service to the
location http://localhost:8080/OrderProcess.
This is the same web service that was developed as part of the Code-irst
development approach

3. Open a new command prompt and run the client, which will invoke
the service
ant client

Chapter 3

[77]

On running the client, you will see the following output:
Oct 13, 2009 6:50:40 PM org.springframework.context.support.AbstractAp-
plicationContext prepareRefresh
INFO: Refreshing org.apache.cxf.bus.spring.BusApplicationCon-
text@32563256: display name [org.apache.cxf.bus.spring.BusApplication-
Context@32563256]; startup date [Tue Oct 13 18:50:40 IST 2009]; root of
context hierarchy
......
INFO: Created classes: demo.order.ObjectFactory, demo.order.Order,
demo.order.ProcessOrder, demo.order.ProcessOrderResponse

Response is ORD1234

The output shows the generated order ID. As you see in the above output
message highlighted in bold, the JaxWsDynamicClientFactory dynamically
creates the demo.order.Order, demo.order.ProcessOrder, and demo.order.
ProcessOrderResponse classes at runtime.

Using the CXF service model for building
dynamic client
The previous code uses Java relection API. Alternatively, you can use the CXF service
model framework to dynamically build the service information and inally invoke
the service method through bean introspection. By using service model framework
can dynamically obtain the web service information. This approach is better when
compared to the earlier approach, particularly when you don't know which class to
load for the web service input and output message. This approach doesn't require an
extra overhead for obtaining the correct class loader reference to load the required
input and output objects, which based on container class loading policy can be
problematic. The following image shows the service model framework components
that can be used to get or populate the service information:

ServiceInfo

InterfaceInfo

OperationInfo

MessageInfoBindingInfo

BindingOperationInfo

EndpointInfo

Working with CXF Frontends

[78]

We will change the above Java relection based code to relect the service model API.
Since the example code is large, we will dissect the code and explain each chunk of it.

import java.beans.PropertyDescriptor;

import java.util.List;

import javax.xml.namespace.QName;

import org.apache.cxf.endpoint.Client;

import org.apache.cxf.endpoint.Endpoint;

import org.apache.cxf.jaxws.endpoint.dynamic.
JaxWsDynamicClientFactory;

import org.apache.cxf.service.model.BindingInfo;

import org.apache.cxf.service.model.BindingMessageInfo;

import org.apache.cxf.service.model.BindingOperationInfo;

import org.apache.cxf.service.model.MessagePartInfo;

import org.apache.cxf.service.model.ServiceInfo;

public class OrderProcessJaxWsDynClient {

 public OrderProcessJaxWsDynClient() {

 }

 public static void main(String str[]) throws Exception {

 JaxWsDynamicClientFactory dcf = JaxWsDynamicClientFactory.
 newInstance();

 Client client = dcf.createClient("http://localhost:8080/
 OrderProcess?wsdl");

 Endpoint endpoint = client.getEndpoint();. . .

We start off by creating an instance of the JaxWsDynamicClientFactory factory
class and then invoke the createClient method on this instance to create the client
component dynamically. The createClient method retrieves the WDSL document
from the URL http://localhost:8080/OrderProcess?wsdl. We then get the
service endpoint object from the Client object. This is where we will start using the
dynamics service model framework.

// Make use of CXF service model to introspect the existing WSDL

 ServiceInfo serviceInfo = endpoint.getService().
getServiceInfos().get(0);

 QName bindingName = new QName("http://order.demo/", "
OrderProcessServiceSoapBinding");

 BindingInfo binding = serviceInfo.getBinding(bindingName);

 QName opName = new QName("http://order.demo/", "processOrder");

 BindingOperationInfo boi = binding.getOperation(opName);
// Operation name is processOrder

 BindingMessageInfo inputMessageInfo = null;

 if(!boi.isUnwrapped()){

 //OrderProcess uses document literal wrapped style.

 inputMessageInfo = boi.getWrappedOperation().getInput();

Chapter 3

[79]

 }else {

 inputMessageInfo = boi.getUnwrappedOperation().getInput();

 }

 List<MessagePartInfo> parts = inputMessageInfo.
getMessageParts();

 MessagePartInfo partInfo = parts.get(0); gb// Input class is
Order

Using the service endpoint object, we will obtain the ServiceInfo object. The
ServiceInfo object is the base object of the service model framework. We can start
by obtaining the relevant service information using the ServiceInfo object. We
will obtain the following details—binding info, the service operation name, and
the input parameter name. The BindingInfo class represents the service binding
information. We will pass the operation qualiied name to the getOperation()
method to retrieve the binding operation information associated with that binding.
For OrderProcess service, there is only one operation processOrder. By using
the BindingOperationInfo object, we will then get the operation input parameter
details. The BindingMessageInfo object consists of a list of message parts of type
MessagePartInfo, which represents an input parameter. For the OrderProcess
service, there is only one input associated with processOrder operation. Therefore,
we retrieve the irst MessagePartInfo object. Once we have obtained the operation
and message information, we can use bean introspection to invoke the service
method. The following code illustrates the use of bean introspection:

List<MessagePartInfo> parts = inputMessageInfo.getMessageParts();

MessagePartInfo partInfo = parts.get(0); // Input class is Order

 // Get the input class Order

 Class<?> orderClass = partInfo.getTypeClass();

 Object orderObject = orderClass.newInstance();

 // Populate the Order bean

 // Set customer ID, item ID, price and quantity

 PropertyDescriptor custProperty =
 new PropertyDescriptor("customerID", orderClass);

 custProperty.getWriteMethod().invoke(orderObject, "C001");

 PropertyDescriptor itemProperty =
 new PropertyDescriptor("itemID", orderClass);

 itemProperty.getWriteMethod().invoke(orderObject, "I001");

 PropertyDescriptor priceProperty =
 new PropertyDescriptor("price", orderClass);

 priceProperty.getWriteMethod().invoke(orderObject,
 Double.valueOf(100.00));

 PropertyDescriptor qtyProperty =
 new PropertyDescriptor("qty", orderClass);

Working with CXF Frontends

[80]

 qtyProperty.getWriteMethod().invoke(orderObject,
 Integer.valueOf(20));

 // Invoke the processOrder() method and print the result

 // The response class is String

 Object[] result = client.invoke(opName, orderObject);

 System.out.println("The order ID is " + result[0]);

As you can see, we are invoking the processOrder method that takes the Order
bean as the input parameter. The PropertyDescriptor is used to set and get the
properties of the Order class. The important thing to observe is that everything
is performed dynamically and there is no existing information about the input
parameter class. The dynamic client can be used with service model if your web
service has many complex dependencies. Now, let's run the dynamic client.

Running the dynamic client which uses Service
Model API
We will use the ANT tool to build and execute the code. The source code and
build ile for the chapter is available in the Chapter3/dynamiclient folder of
the downloaded source code. Navigate to the Chapter3/dynamiclient folder,
and run the following command on the command prompt:

•	 ant build

This will build the source code
•	 ant server

This will run the server and publish the Order Process web service to
the location http://localhost:8080. Don't close this window.

•	 Open a new command prompt, and run the client which will invoke
the service
ant modelclient

On running the client you will see the following output.
Oct 13, 2009 6:50:40 PM org.springframework.context.support.AbstractAp-
plicationContext prepareRefresh
INFO: Refreshing org.apache.cxf.bus.spring.BusApplicationCon-
text@32563256: display name [org.apache.cxf.bus.spring.BusApplication-
Context@32563256]; startup date [Tue Oct 13 18:50:40 IST 2009]; root of
context hierarchy

Chapter 3

[81]

......
INFO: Created classes: demo.order.ObjectFactory, demo.order.Order,
demo.order.ProcessOrder, demo.order.ProcessOrderResponse

The order ID is ORD1234

The output shows the generated order ID. As you can see in the above output
message highlighted in bold, the JaxWsDynamicClientFactory dynamically
creates the demo.order.Order, demo.order.ProcessOrder, and demo.
order.ProcessOrderResponse classes at runtime.

Provider and Dispatch services
You can build a JAX-WS service by writing an SEI and annotating it as a web service
or generating an SEI from a given WSDL. With SEI-based implementation, you
simply write the service method, and the client program makes use of SEI to invoke
this service method. Behind the scenes, the operation parameters or messages are
converted into XML and vice versa by the JAXB.

Provider and Dispatch interfaces, part of JAX-WS API, are used to develop a web
service that processes or handles messages as raw XML, and not through method
invocation. Unlike SEI-based implementation, the messages are not converted into
XML using data binding techniques like JAXB. Instead, the messages themselves
are in a raw XML format.

The Provider and Dispatch methods are useful where the XML messages
transferred between web service client and web service provider are pretty large and
you don't want the extra overhead of converting the XML messages in Java objects.
As part of your web service implementation, you would want to deal with XML
directly and probably use an effective way to parse XML, rather than relying on the
web service framework.

JAX-WS provides the javax.xml.ws.Provider interface that offers functionality
to create and implement a service provider that will process XML messages. It will
take a request in the form of XML messages from the dispatcher client, process the
same, and accordingly generate the response. The provider implementation class
will be published as a service endpoint on the server. On the other hand, the JAX-WS
javax.xml.ws.Dispatch interface is used to process the XML message and send the
response in XML format to the service provider.

Working with CXF Frontends

[82]

Since both Provider and Dispatcher services deal with the raw XML as a message,
we will irst look at the different types or modes of messages that can be processed.
It is very important to gain a good understanding of the nature of messages that
can be exchanged. We will also look at different message types that can be handled
by the Provider and Dispatch implementation. Later, we will develop Provider
and Dispatch implementations. The section will focus on the topics below in the
following order:

•	 Understanding messaging modes
•	 Understanding types of message objects
•	 Implementing Provider service
•	 Implementing Dispatch service
•	 Publishing the Provider service
•	 Running the example

Understanding messaging modes
The Provider and Dispatcher interfaces allow two types of messages—Message
and Payload. They are often considered as two different messaging modes. The
difference lies in the message content. The Message mode consists of the actual data
along with the control information such as the header, whereas the Payload mode
works only with actual data. The Message mode is used when you want to access the
SOAP header information associated with the web service request. Most web service
speciications such as WS-Security, WS-Policy, and WS-authorization use the SOAP
header to propagate context information for web services.

Message mode
In this mode the message is processed in its entirety. An implementation class
will process the complete message, the message composed of control or binding
information such as the header and the actual message data.

@WebServiceProvider()

@ServiceMode(value = Service.Mode.MESSAGE)

public class OrderProcessDOMProvider implements Provider<DOMSource> {

. . .

Chapter 3

[83]

The above code snippet illustrates the processing of a SOAP message with the
Message mode by a Provider implementation. The implementation uses SOAP
binding and accepts a complete SOAP message. The complete SOAP message is
nothing but the SOAP envelope, which is composed of the header and the actual
data. Both the incoming and outgoing messages are complete SOAP messages.
One can also specify the mode of messaging using the @ServiceMode annotation.
This annotation expects a value that will determine the message mode. The value
above is deined as Service.Mode.MESSAGE, which indicates that the Provider
implementation will handle the message with the mode as MESSAGE.

Payload mode
Payload means the actual data that is sent or received. An implementation class will
process only the actual data or payload and not the complete message. The payload
of a message is the actual business data that is passed between endpoints. In the case
of SOAP binding, the SOAP body is the payload of the message.

@WebServiceProvider()

@ServiceMode(value = Service.Mode.PAYLOAD)

public class OrderProcessDOMProvider implements Provider<DOMSource> {

. . .

The above code snippet illustrates the processing of SOAP messages with
the Payload mode by a Provider implementation. The implementation accepts
a SOAP message, which is part of a SOAP body element. The annotation
@ServiceMode is used with the value of Service.Mode.PAYLOAD to specify the
Payload mode for the message. The Payload mode is the default mode used by
the Provider implementation, that is, if you do not specify the @ServiceMode
annotation, it takes Payload as the default messaging mode.

Understanding types of message objects
Both the Provider and Dispatch implementation work with input and output
messages that represent one of the following three objects—javax.xml.transform.

Source, javax.xml.soap.SOAPMessage, and javax.activation.DataSource.

javax.xml.transform.Source
With a Provider implementation, you can provide an input and output message
object of the type java.xml.transform.Source. Source objects are a direct
representation of XML documents. They allow APIs to access and manipulate XML
document contents. The Provider implementation works with three types of source
implementation, DOMSource, SAXSource, and StreamSource.

Working with CXF Frontends

[84]

DOMSource
DOMSource object, as the name suggests, represents XML elements or messages in a
Document Object Model (DOM) tree. The DOM tree is a tree of nodes. Each node
represents an XML element. DOMSource implementation provides methods to access
and create a node in the DOM tree.

SAXSource
SAXSource object represents an XML elements or messages based on Simple API for
XML (SAX) model. The SAX model is event based. It makes use of InputSource and
XMLReader objects to access and manipulate XML elements.

StreamSource
StreamSource object represents XML elements or messages as a stream of bytes.

javax.xml.soap.SOAPMessage
The SOAPMessage object is a natural choice for an input or output message for the
Provider implementation, if you are using the SOAP binding for transmitting
messages. It works only in the Message mode, which means one has to provide
the complete SOAP envelope as messages. A SOAPMessage object represents the
SOAP envelope which is composed of a SOAPPart object and an AttachmentPart
object. The SOAPPart resembles the SOAP envelope, and it contains SOAP headers
and the SOAP message body. The AttachmentPart object resembles binary data
attached to the SOAP message. The SOAPMessage object can have zero or several
AttachmentPart objects.

javax.activation.DataSource
You can also pass messages as a form of DataSource object. The DataSource object
represents an arbitrary collection of data that supports MIME type. It provides access
to the data type and the data itself in the form of InputStream and OutputStream. The
DataSource object is useful when you want to send messages that are http-bound with
the mode as Message. An example of using a DataSource object would be to transfer
image contents such as like ingerprint images for authentication.

Chapter 3

[85]

In next section, we will implement Dispatch and Provider components that
will process the XML messages. First we will look at implementing the Dispatch
service implementation that will make a request to the Provider implementation
in the form of an XML message. Then, we will work on building the Provider
implementation that will process the request and send the appropriate response. We
will revisit the example of the Order Processing Application and show how this can
be implemented using the Provider and Dispatcher implementation.

The source code for provider service implementation is available in the
Chapter3/providerdispatch folder of the downloaded source code.

Implementing Provider service
In this section we will look at how to implement a Provider web service that directly
processes Order XML messages. We will break down the code into sections in order
to understand it in detail. The following code snippet shows the code listing of the
OrderProcessDOMProvider class:

@WebServiceProvider()

@ServiceMode(value = Service.Mode.MESSAGE)

public class OrderProcessDOMProvider implements Provider<DOMSource> {

 public OrderProcessDOMProvider() {

 }

. . .

The OrderProcessDOMProvider provider implementation class implements a
Provider interface with a type as DOMSource. The type has to be speciic and cannot
be generic. This means that you cannot implement the Provider<T> interface. <T>
must be replaced with one of the Source objects discussed in the previous section.
The interface deines one abstract method invoke. The invoke method takes one of
the three object types as a parameter, Source, MessageObject, or DataSource. We
will look at implementing our Provider class with a Source type message.

Working with CXF Frontends

[86]

The class declaration is supported with the @WebServiceProvider annotation.
The @WebServiceProvider signiies that the Provider class is a JAX-WS-based
service provider implementation. The @WebServiceProvider is supported with
the following attributes:

Attribute Description
portName It indicates the name of the endpoint where the service

is published. It directly maps to a name attribute of the
<wsdl:port> element in the WSDL document.

serviceName The name of the published service object. It directly maps
to a name attribute of the <wsdl:service> element in the
WSDL document.

targetNamespace It holds the namespace where the service is deined.
wsdlLocation It indicates the location of the WSDL document in the form

of a URL.

All the above attributes are optional. If you choose not to provide the attributes,
then in such case, the values of these attributes are implicitly provided.

Next, we look at the implementation method. The invoke() method performs the
following steps:

1. Create the SOAPMessage object to hold the incoming XML request. It then
prints the message to the system console. You can validate the message to
make sure it is the same request we sent from the dispatcher client.
public DOMSource invoke(DOMSource request) {

 DOMSource response = new DOMSource();

 try {

 MessageFactory factory = MessageFactory.newInstance();

 SOAPMessage soapReq = factory.createMessage();

 soapReq.getSOAPPart().setContent(request);

MessageFactory factory = MessageFactory.newInstance();

 SOAPMessage soapReq = factory.createMessage();

 soapReq.getSOAPPart().setContent(request);

 System.out.println("Incoming Client Request as a
DOMSource data in MESSAGE Mode");

 soapReq.writeTo(System.out);

 System.out.println("\n");

Chapter 3

[87]

2. Next, we print the order information associated with the node by iterating
through child nodes. The following snippet of code shows the code listing:
Node processOrderNode = soapReq.getSOAPBody().getFirstChild();

 //Get arg0 - order element

 Node order = processOrderNode.getChildNodes().item(0);

 //Get list of child nodes associated with order and print it

 NodeList list = order.getChildNodes();

 for(int i = 0 ; i<list.getLength() ; i++){

 //Get the child nodes and value as per the order xml
request.

 System.out.println(list.item(i).getNodeName() + "="
+

 list.item(i).getFirstChild().getNodeValue());

 }

3. We then create a SOAP message from the MessageFactory instance. Since
we are using SOAP binding, the response XML message here will be a SOAP
message. We create the order response in the required XML format and set
it in the SOAP body. For simplicity, we set the Order Id to a static value
"ORD1234", as shown in the following block of code:
SOAPMessage orderResponse = factory.createMessage();

 QName processOrderQName =
 new QName("http://order.demo/", "processOrder");

 QName responseQName =
 new QName("http://order.demo/", "return");

 //create the element –

 //<http://order.demo/:processOrder></http://order.demo/:
 processOrder>

 SOAPElement processOrderResponse =

orderResponse.getSOAPBody().addChildElement(processOrderQName);

//create the element inside processOrder - //<http://order.demo/:
return>ORD1234</http://order.demo/:return>

processOrderResponse.addChildElement(responseQName).

addTextNode("ORD1234");

4. We then construct a DOMSource object and set the soap response as a XML
node and return the same
response.setNode(orderResponse.getSOAPPart());

Working with CXF Frontends

[88]

As you can see in the above invoke() method, unlike SEI-based implementation,
the Provider implementation works directly with XML messages. The input and
output message both have the same type. The developer has to build a message in
the form of raw XML. The XML message can resemble a SOAP format or a standard
one, as deined by the wsdl:operation element in the WSDL ile. The XML message
should follow the basic norms of SOAP style, RPC, and Document.

The following code illustrates the SOAP response that would be generated by the
OrderProcessDOMProvider implementation:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<ns2:processOrder xmlns:ns2="http://order.demo/
"><arg0><customerID>C001</customerID><itemID>I001</
itemID><price>200.0</price><qty>100</qty></arg0></ns2:processOrder>

</soap:Body>

</soap:Envelope>

Publishing the Provider service
We will publish the OrderProcessDOMProvider provider service on the
endpoint URL http://localhost:8080/OrderProcessDOMProvider. The
following code shows the Server that publishes the OrderProcessDOMProvider
service provider object:

public class Server {

 protected Server() throws Exception {

 System.out.println("Starting Server");

 Object implementor = new OrderProcessDOMProvider();

 String address = "http://localhost:8080/
 OrderProcessDOMProvider";

 Endpoint.publish(address, implementor);

 }

 public static void main(String args[]) throws Exception {

 new Server();

 System.out.println("Server ready...");

 Thread.sleep(5 * 60 * 1000);

 System.out.println("Server exiting");

 System.exit(0);

 }

Chapter 3

[89]

The previous code is similar to the one used for publishing the web service
for the Code-irst development approach with the exception of publishing the
OrderProcessDOMProvider class instead of the OrderProcessImpl class.

Next, we look at the Dispatcher client implementation that would invoke the
web service.

Implementing the Dispatch service
The Dispatch component is responsible for making a request in the form of an
XML message. We will name the Dispatch component as DispatcherClient.
The Dispatcher client performs the following steps:

1. The code irst creates the Service object. The Dispatch object is created
from the Service object. The service object is constructed using the target
namespace and the service QName:

public final class DispatcherClient {

 public static final String WSDLFile =
 "http://localhost:8080/OrderProcessDOMProvider?wsdl";

 public DispatcherClient() {

 }

 public static void main(String args[]) throws Exception {

 URL wsdlURL = new URL(WSDLFile);

 MessageFactory factory = MessageFactory.newInstance();

 QName domProvider = new QName("http://provider.order.
 demo/", "OrderProcessDOMProviderService");

 QName portName = new QName("http://provider.order.demo/",
 "OrderProcessDOMProviderPort");

 Service service = Service.create(wsdlURL, domProvider);

2. Next, the SOAPMessge object is created from the MessageFactory
instance. Since we are using SOAP binding, we create an instance of
a SOAPMessage object

 SOAPMessage soapRequest = factory.createMessage();

3. Next, the XML request is created for the Order, and set it in the SOAP body.
As you can see in the code listing below, the SOAP body is retrieved using
the soapRequest.getSOAPBody() method and request XML order is set as
the child element of the SOAP body.
QName processOrderQName = new QName("http://order.demo/",
"processOrder");

Working with CXF Frontends

[90]

 //create the element - <http://order.demo/:processOrder>
 </http://order.demo/:processOrder>

 SOAPElement processOrderResponse =
 soapRequest.getSOAPBody().addChildElement(processOrderQNa
 me);

 SOAPElement order = processOrderResponse.
addChildElement("arg0");

 order.addChildElement("customerID").addTextNode("Naveen");

 order.addChildElement("itemID").addTextNode("I001");

 order.addChildElement("price").addTextNode("200.00");

 order.addChildElement("qty").addTextNode("200");

4. Next, the DOMSource object is constructed by passing the SOAP request:
DOMSource domRequestMsg = new

DOMSource(soapRequest.getSOAPPart());

5. Once the DOMSource object is in place, we go about creating the Dispatch
implementation. The Dispatch implementation object is created using
the service created above. The method createDispatch is used to
create the Dispatch implementation object. The method takes port
name, the DOMSource class, and the message mode as parameters.
The message mode will be Mode.MESSAGE and the port name will be
OrderProcessDOMProviderPort

Dispatch<DOMSource> domMsg = service.createDispatch(portName,
DOMSource.class, Mode.MESSAGE);

6.	 You then call the invoke method on the dispatch implementation that
sends the request to the service provider and gets back the response as
DOMSource. Since the response will be in the form of an XML message, you
have to use the getNode method of the DOMSource object to parse the XML
response message. After running the client, the Order ID is printed
at the console.
 DOMSource domResponseMsg = domMsg.invoke(domRequestMsg);

System.out.println("Client Request as a DOMSource data in
MESSAGE Mode");

 soapReq.writeTo(System.out);

 System.out.println("\n");

 System.out.println("Response from server: " +
domResponseMsg.getNode().getLastChild().getTextContent());

Chapter 3

[91]

The following code shows the SOAP request created by the DispatcherClient class:

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/
"><SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/"/>

<SOAP-ENV:Body xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/">

<processOrder xmlns="http://order.demo/">

<arg0 xmlns="http://order.demo/"><customerID xmlns="http://order.
demo/">Naveen</customerID><itemID xmlns="http://order.demo/">I001</
itemID><price xmlns="http://order.demo/">200.00</price><qty
xmlns="http://order.demo/">200</qty>

/arg0>

</processOrder>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Running the provider dispatch example
We will use the ANT tool to build and execute the code. The source code and the
build ile for the chapter is available in the Chapter3/providerdispatch folder of
the downloaded source code. Navigate to the Chapter3/providerdispatch folder
and run the following command on the command prompt:

•	 ant build

This will build the source code
•	 ant server

This will run the server and publish the Order Process web service to the
location http://localhost:8080/OrderProcessDOMProvider. Do not
close this window.

•	 Open a new command prompt, and run the client which will invoke the
service

 ant client

On running the client, you will see the following output:

Working with CXF Frontends

[92]

INFO: …
Incoming Client Request as a DOMSource data in MESSAGE Mode
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xml-
soap.org/soap/envelope/"><SOAP-ENV:Header xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"/><SOAP-ENV:
Body xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/
"><processOrder xmlns="http://order.demo/"><arg0 xmlns="http://
order.demo/"><customerID xmlns="http://order.demo/">Naveen</
customerID><itemID xmlns="http://order.demo/">I001</itemID><price
xmlns="http://order.demo/">200.00</price><qty xmlns="http://order.
demo/">200</qty></arg0></processOrder></SOAP-ENV:Body></SOAP-
ENV:Envelope>
Response from server: ORD1234

The output in the client shows the Response order ID ORD1234 from the server.

On the server console, you will see the following output:

Incoming Client Request as a DOMSource data in MESSAGE Mode

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/"><SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.
org/soap/envelope/"/><SOAP-ENV:Body xmlns:SOAP-ENV="http://schemas.
xmlsoap.org/soap/envelope/"><processOrder xmlns="http://order.
demo/"><arg0 xmlns="http://order.demo/"><customerID xmlns="http://
order.demo/">Naveen</customerID><itemID xmlns="http://order.
demo/">I001</itemID><price xmlns="http://order.demo/">200.00</
price><qty xmlns="http://order.demo/">200</qty></arg0></
processOrder></SOAP-ENV:Body></SOAP-ENV:Envelope>

customerID=Naveen

itemID=I001

price=200.00

qty=200

As you can see above, the server prints the incoming SOAP request and prints out
the customerId, itemId, price, and qty details associated with order.

Chapter 3

[93]

Web service context
Every message that is exchanged between the client and service provider has some
contextual information attached to it. The context here is the web service that gives
information about the service message being passed between the endpoints. The
context information is often called metadata, that is, the data about the message. The
context information is stored in the form of key-value pairs. Context information
is simply the properties that provide information on the incoming and outgoing
message. The properties are stored as a Java Map object. These properties hold two
types of information, data about the message and the underlying transport protocol
that is used to route the message.

CXF provides access to these context properties in the form of a JAX-WS based
MessageContext object. The javax.xml.ws.handler.MessageContext interface
extends java.util.Map<String key, Object obj>. The Message context object
is associated with a scope and can be in any one of the following scopes:

•	 Application
The message context properties deined in an application scope can be
shared by a service provider, service consumer, and the JAX-WS
handler implementations. Any message context property set in service
consumer code or service provider code is defaulted to Application scope.

•	 Handler
Handler scoped properties are only available to the JAX-WS handler
implementations. A message context property set in Handlers is not
available to the service implementation code or a service client. Any
message context property deined by the handler implementation is,
by default, handler scoped.

Handlers are used to perform additional processing of inbound and
outbound messages. In Chapter 5 we will look at how to use handlers to
intercept SOAP messages.

You can change the scope with the help of the setScope method of the
MessageContext object. The setScope method takes two parameters, namely,the
key and the scope. The key is the message context property key that you want to
change to relect the new scope. The scope value can be MessageContext.Scope.
APPLICATION or MessageContext.Scope.HANDLER.

This chapter will focus on working with message property context in JAX-WS
service implementation.

Working with CXF Frontends

[94]

Implementing Context in service
Service implementation class developed using JAX-WS can access the message
context properties through the use of the WebServiceContext interface. The
WebServiceContext interface deines the getMessageContext method that can be
used to obtain the MessageContext object. The MessageContext object can then be
used to get or set the message context property.

Let's revisit the JAX-WS OrderProcess service code that we developed as part
of the Code-irst development approach. We will modify it to incorporate the
MessageContext implementation.

@WebService(endpointInterface="demo.order.OrderProcess",
portName="OrderProcessPort")

public class OrderProcessImpl implements OrderProcess {

 @Resource

 WebServiceContext wsc;

 public String processOrder(Order order) {

 System.out.println("Getting the operation info from the message
 context ");

 MessageContext ctx = wsc.getMessageContext();

 QName operation = (QName) ctx.get(Message.WSDL_OPERATION);

 System.out.println("The operation name is " + operation);

. . .

As you can see in the above code snippet, we have modiied the processOrder
method to include the following steps:

1. The WebServiceContext property has been added to OrderProcessImpl
class and annotated with an @Resource annotation. The @Resource
annotation is used to inject resource objects. The CXF container at runtime
will inject an instance of WebServiceContext when the processOrder
method is being invoked.

2. We then invoke the getMessageContext method on the injected
WebServiceContext object. The method returns the MessageContext object.

3. The message context object can then be used to access the message context
properties. These properties are stored by the object as key-value pair. The
above code uses the WSDL_OPERATION key to get the information on the wsdl
operation being invoked. Inside the processOrder method, you are calling
ctx,get(Message.WSDL_OPERATION) which will return the name of the
operation in question as QName.

Chapter 3

[95]

Running the web service context example
We will use the ANT tool to build and execute the code. The source code and build
ile for the chapter is available in the Chapter3/context folder of the downloaded
source code. Navigate to the Chapter3/context folder, and run the following
command on the command prompt:

•	 ant build

This will build the source code
•	 ant server

This will run the publish the Order Process web service to the location
http://localhost:8080/OrderProcess

•	 Open a new command prompt, and run the client which will invoke
the service ant client
On running the client, you will see the following output.
INFO: Creating Service {http://order.demo/}OrderProcessImplService
from WSDL: http://localhost:8080/OrderProcess?wsdl

The order ID is ORD1234

The output shows the generated order ID.
On the console where the server is running, you will see the
following output:
Processing order...

Getting the operation info from the message context

The operation name is {http://order.demo/}processOrder.

As you can see, it is very simple to get the contextual information of the message.
The following table shows some of the relevant properties that can be accessed in a
JAX-WS-based service implementation:

Property Description
ENDPOINT_ADDRESS The endpoint address of the published service
HTTP_REQUEST_METHOD The name of the request method used to send the message
QUERY_STRING The query string attached to URL while making the request
MTOM_ENABLED It determines whether or not the service provider can use

MTOM attachments
CONTENT_TYPE The MIME type of the message
WSDL_SERVICE The service name as a QName

Working with CXF Frontends

[96]

Property Description
WSDL_PORT The port name as a QName
WSDL_INTERFACE The SEI name as a QName
WSDL_OPERATION The service operation name as a QName

Simple frontend
Unlike JAX-WS, simple frontend does not provide any formal speciication or
standard to develop and deploy a web service. Instead it makes use of simple factory
components to build a service. The factory components use Java-based relection
API internally to create service and client components. It's simpler to use and does
not require any tool to build the service. JAX-WS, on the other hand, is a formal
speciication that addresses the development and deployment of web service.

The following table explains the difference between JAX-WS and Simple frontend:

JAX-WS Simple frontend
JAX-WS is a Sun Java speciication that
speciies APIs to develop and deploy web
services

A relection based API to develop and
deploy web service

Supports Java 5 annotation-based
development

Annotations are not supported

In this section we will use simple frontend API to develop a service and
client component.

Developing a simple frontend
Let's start with the building of web service using simple frontend. We will look
at the following steps:

1. Creating service implementation class and interface
2. Creating server implementation
3. Creating client proxy component to invoke our web service

Chapter 3

[97]

Creating service implementation class and interface
We will revisit the example of an Order Processing application. We will create
an interface for the Order Processing application named OrderProcess and an
implementation class named OrderProcesImpl. The OrderProcessImpl class
will have a service method processOrder that will process the given order and
generate the unique ID. The following block of code shows the code listing of the
OrderProcess interface and the OrderProcessImpl class:

public interface OrderProcess {

 String processOrder(Order order);

}

public class OrderProcessImpl implements OrderProcess {

 public String processOrder(Order order) {

 System.out.println("Processing order...");

 String orderID = validate(order);

 return orderID;

 }

. . . // Refer to chapter3/simplefrontend source code for complete
listing

The previous code is similar to one developed for Code-irst development approach,
without the use of web service annotation. We do not need to annotate our class here
as we are using the simple frontend to build our web service.

We do not need an interface here, but it is good practice to separate the
service contract and the implementation. Moreover, it helps in modeling
the client as a proxy component.

Next, we will create a server component that will publish our web service

Creating server implementation
We will create a server component that will publish our OrderProcess web
service. The server component is created by using a simple frontend class called
ServerFactoryBean. The ServerFactoryBean class publishes the service as an
endpoint that can be referenced through the endpoint URL. Let's create the server
component to publish the OrderProcess service.

public class SimpleServer {

 public static void main(String[] arg) {

 // Create service implementation

Working with CXF Frontends

[98]

 OrderProcessImpl orderProcessImpl = new OrderProcessImpl();

 // Create Server

 ServerFactoryBean svrFactory = new ServerFactoryBean();

 svrFactory.setServiceClass(OrderProcess.class);

 svrFactory.setAddress("http://localhost:8080/
 SimpleOrderProcess");

 svrFactory.setServiceBean(orderProcessImpl);

 svrFactory.create();

 }

}

The previous code instantiates the ServerFactoryBean class which in turn uses
Java relection to build the service. We provide the service interface and the class
name to the factory bean class. In this case, it will be the OrderProcess interface
and the OrderProcessImpl class respectively. We also need to set the endpoint URL
http://localhost:8080/SimpleOrderProcess to the factory. The service will be
published at the said URL.

Finally, the create method of the factory publishes the service as an endpoint. The
OrderProcess service will be published on this URL. You can test the validity of the
service by invoking the following URL:

http://localhost:8080/SimpleOrderProcess?wsdl

This should show the order process WSDL. If you are able to see the WSDL,
then it effectively means that the service is published successfully on the server.

Next, we will develop the client component that will invoke the
OrderProcess service.

Creating client
The client proxy component is used to invoke the processOrder method of the
OrderProcess service.

package demo.order.client;

import org.apache.cxf.frontend.ClientProxyFactoryBean;

import demo.order.Order;

import demo.order.OrderProcess;

 public class SimpleClient {

 public static void main(String[] args) {

Chapter 3

[99]

 ClientProxyFactoryBean factory =
 new ClientProxyFactoryBean();

 factory.setServiceClass(OrderProcess.class);

 factory.setAddress("http://localhost:8080/
 SimpleOrderProcess");

 OrderProcess client = (OrderProcess) factory.create();

 Order order = new Order();

 order.setCustomerID("C001");

 order.setItemID("I001");

 order.setPrice(100.00);

 order.setQty(20);

 String result = client.processOrder(order);

 System.out.println("The order ID is " + result);

 }

}

As you can see from the previous code, the proxy will be created using the simple
frontend factory class called ClientProxyFactoryBean. You need to provide
the service class and the endpoint address to the factory component. The create
method returns the implementation object of the type OrderProcess. It is typecast
to the OrderProcess service interface, which can then be used to invoke the
processOrder method.

Running the simple frontend example
We will use the ANT tool to build and execute the code. The source code and build
ile for the chapter is available in the Chapter3/simplefrontend folder of the
downloaded source code. Navigate to the Chapter3/simplefrontend folder, and
run the following command on the command prompt:

•	 ant build

This will build the source code
•	 ant server

This will run the server and publish the Order Process web service to
the location http://localhost:8080/SimpleOrderProcess.

Working with CXF Frontends

[100]

•	 Open a new command prompt, and run the client which will invoke
the service
ant client

On running the client, you will see the following output.
The order ID is ORD1234
The output shows the generated order ID.

Summary
The CXF JAX-WS-based framework provides a complete web service stack which
eases web service development and deployment. In this chapter we learnt the
concepts and core technology associated with web services using CXF JAX-WS
API. We looked at how to create web services using the Code-irst and Contract-
irst approach. We looked at how to create dynamic web service clients and work
directly with XML messages using the Provider and Dispatch implementation. The
chapter also demonstrated the use of web service context where the user can access
the context information of the service message. Lastly, we looked at the CXF-based
Simple frontend API to develop web services.

Learning about Service
Transports

Web service transport uses higher level protocols to route or transfer messages
between service endpoints. The higher level protocols include: HTTP, FTP, JMS,
SMTP, and so on. These protocols are also known as application protocols. The
application protocols are part of the TCP/IP suite that operates at the application
layer. The application protocols directly communicate with a low-level protocol
such as TCP to perform data routing. The following igure illustrates the semantics
of application and transport protocol:

Client

S

O

A

P

S

O

A

P

H

T

T

P

H

T

T

P

T

C

P

T

C

P

SOAP over HTTP

Server

-Application

-Transport

This igure depicts the data low from the client to the server and vice versa using
the application protocol.

Learning about Service Transports

[102]

Transport protocols in CXF
CXF provides support for the following transport protocols:

•	 HTTP
•	 HTTPs
•	 JMS
•	 Local

While HTTP, HTTPs, and JMS run over TCP routing protocol for remote routing,
the local transport is used to transmit service messages locally within a single
JVM. The transports are message routers. In the context of CXF, web service
messages that are part of service operations are routed between service endpoints
using a speciic transport.

The transport details are provided when deining an endpoint. An endpoint is
a physical manifestation of the service. Simply put, it is an instantiated service.
The endpoint deinition is composed of binding details and transport details. The
transport details are often called networking details. The endpoint is deined as part
of a <wsdl:service> element in the WSDL contract. The following code fragment
illustrates the endpoint:

 <wsdl:service name="OrderProcessImplService">

 <wsdl:port binding="tns:OrderProcessImplServiceSoapBinding"
 name="OrderProcessImplPort">

 <soap:address location="http://localhost:8080/orderapp/
 OrderProcess" />

 </wsdl:port>

 </wsdl:service>

The OrderProcessImplService is the actual service name which is bound to a
SOAP binding name and port name. The binding details specify the operations and
the input/output messages while the port name speciies the transport URL. The
following section briely discusses the <wsdl:port> element.

HTTP transport
HTTP is a standard web transport protocol. HTTP transport is widely used with web
service as most services are published over the web. HTTP transport has become the
most commonly used and standard communication channel for service endpoints.
CXF provides support for HTTP transport in the following two ways:

•	 SOAP over HTTP
•	 HTTP only

Chapter 4

[103]

SOAP over HTTP
Simple Object Access Protocol (SOAP) is the language format of web service
messages that are transmitted or exchanged between consumer and service provider.
These messages are often exchanged over the Web and therefore, the SOAP messages
are routed over HTTP protocol. This ensures interoperability as the client and the
service providers can be running on different platforms. SOAP payloads can also
use other transports such as SMTP, FTP, JMS. But the most common and prevalent
transport is HTTP and therefore all SOAP implementations automatically and very
naturally support HTTP as their routing application protocol.

There are two types of SOAP messages that can be transported over HTTP,
SOAP 1.1 and SOAP 1.2.

SOAP 1.1 over HTTP
You can deine the SOAP 1.1 binding with the use of the <soap:binding> element.
This element is the direct child of the <wsdl:binding> element. It signiies that this
service is bound to the SOAP version 1.1 protocol format, that is, the message will
follow the SOAP 1.1 format. The <soap:binding> element comes with a transport
attribute in which you can specify which transport protocol to use. In this case it will
be HTTP. It takes the value in the form of the following URI:

http://schemas.xmlsoap.org/soap/http

The following WSDL code fragment shows the SOAP 1.1 binding with HTTP
transport:

 <wsdl:binding name="OrderProcessServiceSoapBinding"
 type="tns:OrderProcess">
 <soap:binding style="document" transport=
 "http://schemas.xmlsoap.org/soap/http" />
. . .

 </wsdl:binding>

The previous code fragment tells us that you are sending SOAP 1.1 messages over
HTTP. You also need to specify the service endpoint address that will use SOAP 1.1
HTTP binding.

The following WSDL code fragment illustrates the use of the SOAP 1.1
endpoint address:

 <wsdl:service name="OrderProcessService
 <wsdl:port binding="tns:OrderProcessServiceSoapBinding"
 name="OrderProcessPort">
 <soap:address location="http://localhost:8080/OrderProcess">
 </wsdl:port>
 </wsdl:service>

Learning about Service Transports

[104]

You need to specify the <soap:address> element for sending SOAP 1.1 messages.
The element is the direct child element of the <wsdl:port> element, which is part
of the <wsdl:service> element. The <soap:address> element takes one attribute
named location, which speciies the endpoint address.

SOAP 1.2 over HTTP
You can deine SOAP 1.2 binding with the use of the <soap12:binding> element.
This element is the direct child of <wsdl:binding> element. It signiies that this
service is bound to the SOAP version 1.2 protocol format, that is, the message
will follow the SOAP 1.2 format. The <soap12:binding> element comes with a
transport attribute in which you can specify which transport protocol to use. The
value is the same for both SOAP 1.1 and 1.2. The value is a URI which indicates
SOAP 1.2 binding with HTTP.

http://schemas.xmlsoap.org/soap/http

The following WSDL code fragment shows the SOAP 1.2 binding with HTTP
transport:

 <wsdl:binding name="OrderProcessServiceSoapBinding"
 type="tns:OrderProcess">

 <soap12:binding style="document" transport=
 "http://schemas.xmlsoap.org/soap/http" />

. . .

 </wsdl:binding>

The previous code fragment signiies that you are sending SOAP 1.2 messages
over HTTP. You then specify the service endpoint address that will use SOAP 1.2
HTTP binding.

The following WSDL fragment illustrates the use of the SOAP 1.2 endpoint address:

 <wsdl:service name="OrderProcessService">

 <wsdl:port binding="tns:OrderProcessServiceSoapBinding"
 name="OrderProcessImplPort">

 <soap12:address location="http://localhost:8080/
 OrderProcess">

 </wsdl:port>

 </wsdl:service>

You need to specify the <soap12:address> element for sending SOAP 1.2 messages.
The element is the direct child element of the <wsdl:port> element which is part of
the <wsdl:service> element. The <soap12:address> element takes one attribute
named location. The location attribute speciies the endpoint address.

Chapter 4

[105]

SOAP 1.2 is the latest release from the W3C Group. There are a lot of
improvements compared to SOAP 1.1. A discussion on the features of
each version is beyond the scope of this book. More information can be
found at http://www.w3.org/TR/soap12-part0/

HTTP only
Web service messages typically follow SOAP protocol format. But you may choose
to send messages using the HTTP protocol format depending on the application
requirement. The HTTP only transport sends web service messages in HTTP
protocol format. It uses the HTTP GET and POST methods to perform request and
response between consumer and service endpoints.

The following WSDL fragment shows the HTTP only binding:

 <binding name="OrderProcessServiceHttpBinding"
 type="OrderProcess">

 <http:binding verb="GET"/>

 <operation name="processOrder">

 <http:operation location="processOrder"/>

 <input>

 <http:urlEncoded/>

 </input>

 <output>

 <mime:content type="text/html"/>

 </output>

 </operation>

 </binding>

The previous code fragment describes HTTP binding, which means the input and
output message will be in HTTP protocol format. It sends the message as a GET
request. The input message has the value http:urlEncoded, which means the
message parameter will take the form of a name=value pair. The output message
or the return type will be string formatted as HTML.

You also need to specify the service endpoint address that will use HTTP
only binding.

The following WSDL fragment illustrates the use of the HTTP endpoint address:

 <wsdl:service name="OrderProcessService">

 <wsdl:port binding="tns:OrderProcessServiceHttpBinding"
 name="OrderProcessPort">

 <http:address location="http://localhost:8080/OrderProcess">

Learning about Service Transports

[106]

 </wsdl:port>

 </wsdl:service>

You need to specify the <http:address> element for sending messages in HTTP
format. The element is the direct child element of the <wsdl:port> element, which is
part of the <wsdl:service> element. The <http:address> element has one attribute
location. The location attribute speciies the endpoint address.

The <http:address> endpoint address is also used for messages that
are not in a SOAP or HTTP format. This element is speciied when the
message format is other than SOAP.

In the following sections we will explore concepts called HTTP Conduit and HTTP
Destination that can be used to change the HTTP transport behavior.

HTTP Conduit
Conduit simply means channel or pipe. HTTP conduits are channels allow us
to apply certain HTTP related properties or attributes which can affect the way
messages are exchanged between endpoints. You typically specify HTTP connection
attributes such as whether to allow chunking, connection timeout, and so on. The
conduit is always deined by the client or consumer of the service. The following
code fragment illustrates the use of a sample HTTP conduit:

<beans …

 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

…

 <http-conf:conduit name="{http://order.demo} OrderProcessImplPort.
 http-conduit">

<http-conf:client Connection="Keep-Alive" AllowChunking="false" />

 <http-conf:tlsClientParameters secureSocketProtocol="SSL">

 </http-conf:tlsClientParameters>

</http-conf:conduit>

…

</beans>

Firstly, you need to deine the HTTP coniguration namespace to use the conduit. The
following XML fragment shows the http-conf namespace along with schema location:

 xmlns:http-conf="http://cxf.apache.org/transports/http/
 configuration"

 xsi:schemaLocation="

 http://cxf.apache.org/transports/http/configuration

 http://cxf.apache.org/schemas/configuration/http-conf.xsd

Chapter 4

[107]

The <http-conf:conduit> element represents the HTTP conduit. It is
used to specify certain attributes while invoking the service endpoint. The
<http-conf:conduit> element has one name attribute that indicates the name
of the conduit. The name has a standard convention, and it takes the form of
{WSDL_endpoint_target_namespace}PortName.http-conduit. You can also
specify a wildcard such as *.http-conduit as the conduit name. The child
element <http-conf:tlsClientParameters> indicates that this conduit will
use secure transport. There are many other child elements that can be used with
the conduit. One of the signiicant child elements is <http-conf:client>. It is
used to specify different HTTP connection attributes from the client perspective.
The attributes are more like client-side HTTP headers. The following table shows
some of the attributes that can be used with the <http-conf:client> element.

Attribute Description
ConnectionTimeout It indicates time in milliseconds. The client attempts to send

the request before the connection times out. The default value
is 30,000. The value of 0 means request will never timeout.

AllowChunking It indicates whether the request can be sent in chunks to the
server. The default is true.

CacheControl It communicates directives on the behavior of the cache when
the message request is communicated to the server.

ContentType It indicates the MIME data that is sent to the server.

HTTP destination
The server-side endpoints use destinations to specify HTTP attributes while
serving the connection to its client. The following code illustrates the use of a
sample HTTP destination:

<beans ...

...

<http-conf:destination name="{http://order.demo}OrderProcessImplPort.
http-destination">

 <http-conf:server HonorKeepAlive="true" />

</http-conf:destination>

</beans>

Learning about Service Transports

[108]

Like the conduit, the HTTP destination also uses http-conf namespace. The
<http-conf:destination> element represents the HTTP destination to which certain
HTTP attributes can be set. The said element takes a name attribute that holds a value
expressed as {WSDL_endpoint_target_namespace}PortName.http-destination

The most signiicant child element is <http-conf:server>. It is used to specify
different HTTP connection attributes from the server perspective. The following table
shows some of the attributes that can be used with the <http-conf:server> element:

Attribute Description
ReceiveTimeout It indicates the time in milliseconds, the server

attempts to receive the request before the
connection times out. The default value is 30,000.
0 means the server will never timeout.

HonorKeepAlive It indicates whether to accept a client request for
keeping the connection alive after the response is
sent. The default value is false.

CacheControl It communicates directives on the behavior of the
cache when the message response is sent back to
the client.

ContentType It indicates the MIME data that is sent to the client.

HTTPs transport
HTTPs stands for HTTP secure. It is a combination of HTTP and secured protocol.
The protocol is used to access sensitive information such as payments and inancial
data on secured websites. HTTPs creates a secure transport layer over a normal
insecure one. The client browser connects to secure websites using the https://
URL. The client can make a secure connection to a secure website only if the site has
its certiicate registered in the client browser or if the site certiicate is registered with
certain Certiicate Authorities (CA) and at least one of the CA is supported by the
client browser. The certiicate is typically created using the pair of private/public
keys known to the client and the server. The public/private keys are generated using
a cryptography algorithm such as RSA.

The following table shows the difference between the two protocols:

Http Https
URL begins with http:// URL begins with https://
It operates on default port 80 It uses default port 443
It is a text-based insecure protocol It is a secured protocol

Chapter 4

[109]

CXF supports HTTPs protocol through which service messages can be exchanged
securely. In this section we will develop an order process web service and a
consumer that will exchange messages securely through HTTPs transport. You will
need to perform the following steps:

1. Developing service SEI and the implementation class
2. Generating crypto key
3. Creating a server and client bean coniguration
4. Creating a client component to use the service
5. Coniguring the server to support SSL
6. Developing a client
7. Building and deploying

The source code and build ile is available in the Chapter4/HTTPs folder of the
downloaded source code.

Developing the service and implementation class
We will use the same OrderProcess SEI and OrderProcessImpl class which were
demonstrated in earlier sections.

import javax.jws.WebService;

@WebService

public interface OrderProcess {

 String processOrder(Order order);

}

Generating crypto key
We will use the Java-based keytool application to generate the crypto key. The
server and client program will use this key to communicate in a secure fashion. You
need to have the Java 5 SDK kit installed on your machine. The JDK installation bin
folder has the keytool application. Run the keytool application by entering the
following command in the command prompt window:

keytool -genkey -alias Tomcat -keyalg RSA -storepass changeit -keypass
changeit -keystore orderprocess.jks -dname "cn=localhost"

The above command will generate the key in the location where it is executed.

Learning about Service Transports

[110]

Let's take a look at the options and understand what they mean:

•	 -genkey—option generates a public/private key
•	 -alias—option is used to provide a unique name to the generated key
•	 -keyalg—option is used to specify the algorithm to be used to

generate a key
•	 -storepass—option is to provide a password for a key store
•	 -keypass—option is to provide a password for a key itself
•	 -keystore—is used to specify a keystore ilename
•	 -dname—is used to specify a domain name or the website name

The command along with the above options generates a public/private key which
is encrypted using RSA crypto algorithm. The generated key is given an alias name
Tomcat. The key is stored in a ile named orderprocess.jks. The ile is known
as a key store ile. A key store accommodates all the public/private keys. The ile
extension jks means Java Key Store. The ile extension is not mandatory, and you
may specify the ile without the jks extension. The key and the key store is given
the password changeit. The password is used to access the keystore and retrieve
the keys. The -dname option here is signiicant. It indicates your website name.
For testing web applications running on a local host, the -dname must be assigned
a value localhost.

The command also generates a .keystore ile under the C:\Documents and
Settings\<your_login_name> folder in the Windows environment, or user home
directory if not on Windows. This ile is also a key store. If you do not want to
explicitly specify the key store ilename using the —keystore option, then you can
also use this alternate .keystore ile.

Usually, every secured site is digitally signed in the form of certiicate. For our
example we will not use a certiicate.

Creating client and server bean coniguration
We will be using Spring-based coniguration iles to develop consumer and service
endpoints. Both consumer and service endpoints will exchange messages through
HTTPs protocol. The following code illustrates the server coniguration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:http-conf="http://cxf.apache.org/transports/http/
configuration"

 xmlns:jaxws="http://cxf.apache.org/jaxws"

Chapter 4

[111]

 xsi:schemaLocation="

 http://cxf.apache.org/transports/http/configuration

 http://cxf.apache.org/schemas/configuration/http-conf.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.
 xsd

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />

 <import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

 <jaxws:endpoint id="orderProcess" implementor="demo.order.
OrderProcessImpl" address="/OrderProcess" />

</beans>

The server coniguration ile contains only one <jaxws:endpoint> element which is
used to deine the service endpoint for the OrderProcess service. The OrderProcess
endpoint address will be relative URI /OrderProcess.

The client coniguration uses SSL properties to enable secure connectivity with the
service endpoint. The following code illustrates the client coniguration ile:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:sec="http://cxf.apache.org/configuration/security"

 xmlns:http-conf="http://cxf.apache.org/transports/http/
 configuration"

 xmlns:jaxws="http://cxf.apache.org/jaxws"

 xsi:schemaLocation="

 http://cxf.apache.org/configuration/security

 http://cxf.apache.org/schemas/configuration/security.xsd

 http://cxf.apache.org/transports/http/configuration

 http://cxf.apache.org/schemas/configuration/http-conf.xsd

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.
 xsd">

 <jaxws:client id="orderClient" serviceClass="demo.order.
OrderProcess" address="https://localhost:8443/orderappssl/
OrderProcess" />

 <http-conf:conduit name="*.http-conduit">

 <http-conf:tlsClientParameters secureSocketProtocol="SSL">

Learning about Service Transports

[112]

 <sec:keyManagers keyPassword="changeit">

 <sec:keyStore type="JKS" password="changeit" file="C:\tmp\
 orderprocess.jks" />

 </sec:keyManagers>

 </http-conf:tlsClientParameters>

 </http-conf:conduit>

</beans>

Firstly, the client coniguration uses <jaxws:client> to register the OrderProcess
service bean. It then deines the HTTP conduit, which allows us to set SSL-related
properties. The following code fragment shows the SSL coniguration:

…

 <http-conf:tlsClientParameters secureSocketProtocol="SSL">

 <sec:keyManagers keyPassword="changeit">

 <sec:keyStore type="JKS" password="changeit" file=
 "C:\tmp\orderprocess.jks" />

 </sec:keyManagers>

 </http-conf:tlsClientParameters>

…

The <http-conf:tlsClientParameters> element deines the secure channel.
It speciies the secureSocketProtocol attribute with the value of SSL. The
child element <sec:keyManagers> is conigured with the password and key
store location.

If we remember the key generated in the above section using the
keytool command-line tool, the same parameters are provided
here by the client to unlock the key.

The above elements are supported by the namespace sec:

…

 xmlns:sec="http://cxf.apache.org/configuration/security"

…

 xsi:schemaLocation="

 http://cxf.apache.org/configuration/security

 http://cxf.apache.org/schemas/configuration/security.xsd

…

You must specify the above namespace and the schema location entries.

Chapter 4

[113]

Coniguring the server to support SSL
You might be wondering why we haven't added the SSL properties in the service
endpoint bean coniguration ile. The reason is we are using the Tomcat server
for our deployment. The Tomcat server comes with its own SSL coniguration.
You will need to enable the server to communicate over a secure channel. The
SSL coniguration can be found in the server.xml ile, which is located under the
%CATALINA_HOME%\conf folder. You need to uncomment the following commented
entry in this ile:

 <Connector port="8443" maxHttpHeaderSize="8192"

 maxThreads="150" minSpareThreads="25"
 maxSpareThreads="75"

 enableLookups="false" disableUploadTimeout="true"

 acceptCount="100" scheme="https" secure="true"

 clientAuth="false" sslProtocol="TLS" />

After uncommenting it, you need to add two more attributes, keystoreFile and
keystorePass to the <Connector> element. The modiied entry will look as follows:

 <Connector port="8443" maxHttpHeaderSize="8192"

 maxThreads="150" minSpareThreads="25"
 maxSpareThreads="75"

 enableLookups="false" disableUploadTimeout="true"

 acceptCount="100" scheme="https" secure="true"

 clientAuth="false" sslProtocol="TLS"

 keystoreFile="C:\tmp\orderprocess.jks"

 keystorePass="changeit"

 />

The above updated entry ensures that the server will accept HTTPs connections.
You can now safely invoke the order process service using HTTPs.

Developing the client component
The Client class will obtain the OrderProcess bean and invoke its processOrder
method. The following code illustrates the consumer code:

…

 public static void main(String args[]) throws Exception {

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext(new String[]
 {"demo/order/client/client-bean.xml"});

 OrderProcess client = (OrderProcess) context.
 getBean("orderClient");

Learning about Service Transports

[114]

…

 String orderID = client.processOrder(order);

 String message = (orderID == null) ? "Order not approved" :
 "Order approved; order ID is " + orderID;

 System.out.println(message);

 System.exit(0);

…

Building and deploying
The next step is to build and deploy our code. We will use ANT to build
the code. The code will be deployed on the Tomcat web server.

Your ANT build ile will look as follows:

<?xml version="1.0"?>

<project name="Order Process HTTPS " default="build" basedir=".">

<import file="common_build.xml"/>

 <target name="client" description="run demo client"
 depends="build">

 <cxfrun classname="demo.order.client.Client" />

 </target>

 <property name="cxf.war.file.name" value="orderappssl"/>

 <target name="war" depends="build">

 <cxfwar filename="${cxf.war.file.name}.war" webxml=
 "webapp/WEB-INF/web.xml" />

 </target>

</project>

You generate the server side WAR ile and run the client. The ANT build ile is used
to build and compile the code. The build folder will be created under the project
root folder.

You then start the Tomcat web server. It is started by entering the following
command at your project root:

catalina start

The server will publish the OrderProcess service and listen on the SSL port 8443

Once the server is started you invoke the client by entering the following command:

ant client

The previous command will run the Client class, which will invoke the
processOrder method of the OrderProcess bean. The method invocation will
initiate message exchange on the secure layer.

Chapter 4

[115]

For more information on building the source code using the ANT tool, see
the Appendix A Getting Ready with Code Examples. The appendix covers
step-by-step information on organizing and building the source code.

The source code and build ile is available in the Chapter4/HTTPs_Jetty folder of
the downloaded source code.

Coniguring SSL for Jetty runtime
In the previous section we looked at coniguring SSL using the Tomcat web
container. In this section we will conigure SSL using a standalone web server. We
will conigure Jetty, a standalone web server, to accept SSL connections. Jetty is an
open source miniature web server licensed under Apache License 2.0. CXF provides
support for the Jetty runtime engine. You can conigure the Jetty runtime by deining
the <httpj:engine-factory> element in the server side coniguration ile. The
following code illustrates the Jetty runtime coniguration:

<beans ...
...
xmlns:httpj="http://cxf.apache.org/transports/http-jetty/
configuration"
xsi:schemaLocation="http://cxf.apache.org/schemas/configuration/http-
jetty.xsd"
...
 <httpj:engine-factory bus="cxf">
 <httpj:engine port="9001">
 ...
 </httpj:engine>
 </httpj:engine-factory>
</beans>

You irst need to deine a namespace URI for a Jetty engine, which is http://cxf.
apache.org/transports/http-jetty/configuration, and the preix is httpj. The
namespace should also be supported with the schema location. You then deine the
<httpj:engine-factory> element that represents the jetty runtime engine factory.
The element has one attribute bus that speciies the application bus. The default bus is
cxf, and you can choose to provide the default value. The bus is the core engine of a
CXF framework and manages the jetty infrastructure components in this context. You
then deine the <httpj:engine> child element. This element takes port number as an
attribute. The <httpj:engine> element represents one instance of the jetty server. The
server listens for an incoming request on the speciied port.

Learning about Service Transports

[116]

The engine element has many child elements. The section will focus on one such
child element httpj:tlsServerParameters. This element is used to conigure
SSL-related properties to enable secure access to a server.

We will revisit our previous example and replace the Tomcat server with
CXF-provided Jetty runtime. We will now create one server coniguration
ile that will look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:sec="http://cxf.apache.org/configuration/security"

 xmlns:http="http://cxf.apache.org/transports/http/configuration"

 xmlns:httpj="http://cxf.apache.org/transports/http-jetty/
 configuration"

 xmlns:jaxws="http://cxf.apache.org/jaxws"

 xsi:schemaLocation="

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd

 http://cxf.apache.org/configuration/security

 http://cxf.apache.org/schemas/configuration/security.xsd

 http://cxf.apache.org/transports/http/configuration

 http://cxf.apache.org/schemas/configuration/http-conf.xsd

 http://cxf.apache.org/transports/http-jetty/configuration

 http://cxf.apache.org/schemas/configuration/http-jetty.xsd

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.
xsd">

 <httpj:engine-factory bus="cxf">

 <httpj:engine port="9001">

 <httpj:tlsServerParameters>

 <sec:keyManagers keyPassword="changeit">

 <sec:keyStore type="JKS" password="changeit" file=
 "c:\tmp\orderprocess.jks"/>

 </sec:keyManagers>

 </httpj:tlsServerParameters>

 </httpj:engine>

 </httpj:engine-factory>

</beans>

As you can see from the above code, SSL coniguration parameters are deined as part
of the <sec:keyManagers> child element of the <httpj:tlsServerParameters>
element. All you do is provide the location of your key store ile along with the
password as part of the <sec:keyStore> element.

Chapter 4

[117]

Since we are not using Tomcat server, we have to write the server code that
will publish the OrderProcess service on the Jetty runtime. The following code
illustrates the Server class that creates the service endpoint and publishes it:

import org.apache.cxf.Bus;

import org.apache.cxf.bus.spring.SpringBusFactory;

import javax.xml.ws.Endpoint;

import demo.order.OrderProcessImpl;

public class Server {

 public Server() {

 SpringBusFactory factory = new SpringBusFactory();

 Bus bus = factory.createBus("demo/order/server/server-bean.
 xml");

 factory.setDefaultBus(bus);

 OrderProcessImpl orderProcessImpl = new OrderProcessImpl();

 Endpoint.publish("https://localhost:9001/OrderProcessSSL",
 orderProcessImpl);

 }

public static void main(String[] args) {

 new Server();

 System.out.println("Server ready ...");

 }

}

The code irst instantiates the SpringFactoryBus class to create the bus from this
server coniguration ile. The createBus method takes the server coniguration
XML ile as a parameter and creates the bus. This bus is set as a default bus.
Remember that the jetty runtime uses the cxf bus by default, so indirectly you
are using the same default CXF bus. The Endpoint class then publishes the
OrderProcessImpl service implementation class on the secured URL. The
endpoint URL is https://localhost:9001/OrderProcessSSL

Once the server is created, follow the same sequence of steps to run the client
program, which were discussed in the previous section. The Client class will
consume the OrderProcess service and invoke its processOrder method.

Learning about Service Transports

[118]

JMS transport
Web services play an important role when it comes to asynchronous communication.
This nature of communication is very common in enterprise platform integration
connecting disparate systems. JMS is a Java standard that provides a platform to
develop applications that can communicate asynchronously with external systems.
CXF provides support for JMS transport for its services, and enables them to
exchange messages asynchronously.

In JMS, the messages are exchanged using two popular communication models,
Point-to-Point (P2P) and Publisher-Subscriber (Pub-Sub).

In the P2P model the messages are exchanged through the concept of queues. Each
message has only one consumer. P2P is used to process messages synchronously
and asynchronously. In the Pub-Sub model, the messages are exchanged through the
concept of topics. A consumer subscribes to a topic in order to receive the message. A
message in this model can only be exchanged asynchronously. Queue and Topic are
called as destinations.

The following igure shows the P2P JMS communication model:

JMS Broker

Request queue

Response queue

JMS Model

Client Server

The client makes a request by sending the message to a destination queue and
waits for the response from the server. The server receives the message, processes
it, and returns the response back to the queue. The resulting message is then
consumed by the client.

JMS can be considered as a glue technology that connects disparate or distinct
systems. When using JMS, you typically perform the following steps:

1. Set up the JNDI context
2. Lookup for the queue connection factory
3. Fetch the queue from the connection factory
4. Make a connection in the form of a Session object
5. Create a provider and consumer object
6. Perform the message exchange using the above objects
7. Close the connection

Chapter 4

[119]

Imagine as a developer you have to write the code for the above tasks. It can be
tedious and time consuming. CXF provides a convenient approach to connect your
services through JMS using a Spring-based coniguration. It completely abstracts the
process of creating and looking up destination objects.

In this section, you will develop an order process web service that will exchange
messages with the consumer using JMS transport. You will need to perform the
following steps:

1. Developing service SEI and the implementation class
2. Developing an embedded broker
3. Creating a server and a client bean coniguration
4. Creating a client component to consume the service
5. Performing build and deployment

You will use Apache ActiveMQ provider as a message broker. For the purpose of
deployment, you will use Tomcat as a web server.

The source code and build ile is available in the Chapter4/JMS folder of the
downloaded source code.

Developing the service and implementation class
You will use the same OrderProcess SEI and OrderProcessImpl class that was
demonstrated in earlier sections.

import javax.jws.WebService;

@WebService

public interface OrderProcess {

 String processOrder(Order order);

}

Developing an embedded broker
An embedded broker is a miniature broker application which will act as a JMS
provider to accept messages from the consumer and the server. You will use
ActiveMQ as a messaging provider. Apache ActiveMQ is an open source
enterprise messaging provider. It provides support for a wide variety of
protocols and cross-language client applications. It also provides a platform
to implement messaging using enterprise integration patterns. ActiveMQ
supports JMS standard v1.1.

Learning about Service Transports

[120]

The following code illustrates the MessageBroker class that uses ActiveMQ as
a JMS provider:

import org.apache.activemq.broker.BrokerService;

import org.apache.activemq.store.memory.MemoryPersistenceAdapter;

public final class MessageBroker {

 private MessageBroker() {

 }

 public static void main(String[] args) throws Exception {

 BrokerService broker = new BrokerService();

 broker.setPersistenceAdapter(new MemoryPersistenceAdapter());

 broker.addConnector("tcp://localhost:61616");

 broker.start();

 System.out.println("JMS broker ready ...");

 }

}

You will irst instantiate the BrokerService class. The BrokerService class
represents the JMS broker that is used to set up the messaging infrastructure. The
setPersistenceAdapter method sets the persistence layer for the messages. The
persistence adapter is the object of the MemoryPersistenceAdapter class. It means
that the messages will be persisted in-memory. Then you deine the connectivity
using the addConnector method. The method takes the URI in the form of
<protocol>://<hostname>:<port>. The broker will listen on this URI. You will
provide localhost as your hostname and 61616 as a port number on which the
broker will accept the messages. The communication protocol will be tcp. The
start() method will start the broker.

Creating a server and client bean coniguration
You will use Spring-based coniguration iles to develop consumer and service
endpoints. Both consumer and service endpoints will open a link with the message
broker for message exchange through message queues. The following code illustrates
the server coniguration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jaxws="http://cxf.apache.org/jaxws"

 xmlns:jms="http://cxf.apache.org/transports/jms"

 xmlns:p="http://www.springframework.org/schema/p"

 xsi:schemaLocation=" http://www.springframework.org/schema/beans

Chapter 4

[121]

 http://www.springframework.org/schema/beans/spring-
 beans.xsd

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd ">

 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />

 <import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

 <import resource="classpath:META-INF/cxf/cxf-extension-jms.xml" />

 <jaxws:endpoint id="orderProcess" implementor="demo.order.
 OrderProcessImpl" address="jms://" >

 <jaxws:features>

 <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig" />

 </jaxws:features>

 </jaxws:endpoint>

 <bean id="jmsConfig" class="org.apache.cxf.transport.jms.
 JMSConfiguration"

 p:connectionFactory-ref="jmsConnectionFactory"

 p:targetDestination="test.cxf.jmstransport.queue" />

 <bean id="jmsConnectionFactory" class=
 "org.apache.activemq.ActiveMQConnectionFactory">

 <property name="brokerURL" value="tcp://localhost:61616" />

 </bean>

 </beans>

The <jaxws-endpoint> element is used to deine the service endpoint for the
OrderProcess service. The <jaxws-features> is used to apply features to the
service endpoint. In this case, we use the JMSConfigFeature bean, to which we
set the JMS coniguration. The coniguration deines the JMS connection factory
and destination queue. The connection factory ActiveMQConnectionFactory is
used to obtain the connection to the broker. The destination name provided is
test.cxf.jmstransport.queue. The complete JMS coniguration is represented
by JMSConfiguration object.

The client coniguration is similar to service coniguration. The following code
illustrates the client coniguration ile:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jaxws="http://cxf.apache.org/jaxws"

xmlns:p="http://www.springframework.org/schema/p"

Learning about Service Transports

[122]

xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/
 spring-beans.xsd

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:client id="orderClient" serviceClass="demo.order.
 OrderProcess" address="jms://" >

 <jaxws:features>

 <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>

 </jaxws:features>

 </jaxws:client>

 <bean id="jmsConfig" class="org.apache.cxf.transport.jms.
 JMSConfiguration"

 p:connectionFactory-ref="jmsConnectionFactory"

 p:targetDestination="test.cxf.jmstransport.queue" />

 <bean id="jmsConnectionFactory" class="org.apache.activemq.
 ActiveMQConnectionFactory">

 <property name="brokerURL" value="tcp://localhost:61616" />

 </bean>

 </beans>

The client coniguration uses <jaxws:client> to register the OrderProcess service.
It uses the same sequence to specify the JMS coniguration, as deined by the server
coniguration. The message broker is a central point message provider that sits
between client and server. Both client and server exchange messages via the broker.

The bean element for JMS coniguration uses p: namespace to deine
its attribute value. The p: namespace gives you an alternate way of
specifying your bean properties.

Developing a client component
The Client class will obtain the OrderProcess bean and invoke its processOrder()
method. The following code illustrates the consumer code:

public final class Client {

 public Client() {

 }

 public static void main(String args[]) throws Exception {

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext(new String[] {"demo/order/
 client/client-bean.xml"});

Chapter 4

[123]

 OrderProcess client = (OrderProcess) context.
 getBean("orderClient");

 Order order = new Order();

 order.setCustomerID("C001");

 order.setItemID("I001");

 order.setQty(100);

 order.setPrice(200.00);

 String orderID = client.processOrder(order);

 String message = (orderID == null) ? "Order not approved" :
 "Order approved; order ID is " + orderID;

 System.out.println(message);

 System.exit(0);

 }

}

Performing build and deployment
The next step is to build and deploy our code. You will use ANT to build the code
and it will be deployed on the Tomcat web server. The code needs to be organized
into folders, as shown below:

The following code illustrates the ANT build ile:

<?xml version="1.0"?>

<project name="Order Process JMS Queue" default="build" basedir=".">

 <property environment="env"/>

 <condition property="activemq.home" value="${env.ACTIVEMQ_HOME}">

 <isset property="env.ACTIVEMQ_HOME"/>

 </condition>

Learning about Service Transports

[124]

 <fail message="this sample need to use activemq, please setup
 ACTIVEMQ_HOME in your environment"

 unless="activemq.home"/>

 <condition property="activemq.version" value="${env.ACTIVEMQ_
 VERSION}">

 <isset property="env.ACTIVEMQ_VERSION"/>

 </condition>

 <fail message="this sample need to use activemq, please setup
 ACTIVEMQ_VERSION in your envrionment"

 unless="activemq.version"/>

 <property name="thirdparty.classpath" location=
 "${activemq.home}/activemq-all-${activemq.version}.jar"/>

 <import file="common_build.xml"/>

 <target name="start.jmsbroker" description="run jms broker"
 depends="build">

 <cxfrun classname="demo.order.broker.MessageBroker" />

 </target>

 <target name="client" description="run demo client"
 depends="build">

 <cxfrun classname="demo.order.client.Client" />

 </target>

 <target name="server" description="run demo server"
 depends="build">

 <cxfrun classname="demo.order.server.Server" />

 </target>

…

The irst part checks for the environment variable ACTIVEMQ_HOME and
ACTIVEMQ_VERSION. You need to set this environment variable before
proceeding with the build. Depending on your ActiveMQ installation, this
environment variable should hold the following values:

set ACTIVEMQ_HOME = C:\apache-activemq-5.2.0

set ACTIVEMQ_VERSION = 5.2.0

Chapter 4

[125]

You have to deine the path for the third party JAR ile. As we are using ActiveMQ
as an external message provider, you will specify activemq-all-5.2.0.jar as a
third-party JAR ile. You then deine three targets each for broker, client, and server
respectively. To build and execute the code, perform the following steps:

1. The following command on your project root will compile the code
and place it under the build folder:
ant

2. Once the code is built successfully, you need to start the message broker.
The ant start.jmsbroker command is used to start the message broker.
The following igure shows the message broker startup output:

3. You will then start the Tomcat web server. It is started by giving the
following command at your project root:
catalina start

4. The server will register the OrderProcess service and connect to the
message broker on port 61616
Once the server is started, you invoke the client by giving the
following command:
ant client

5. The above command will run the Client class, which will invoke the
processOrder() method of the OrderProcess bean. The method
invocation will initiate message exchange via the broker.

Learning about Service Transports

[126]

Local transport
CXF provides support for local transport. Local transport means routing of service
messages within a single JVM. Both the server and the client must be launched inside
a JVM. The messages are serialized and piped between the endpoints. The following
igure shows the working of local transport:

Local Transport

JVM

Invokes

Server ThreadClient Thread

Client

Endpoint

Service

Endpoint
Local Pipe

Messages

This works more like local EJBs. You may have local endpoints that communicate with
each other to address a small worklow before routing it to the external endpoint.

To signify a local transport, you simply need to specify the local:// URI convention
while deining the endpoint. In this section, you will develop the order process web
service and a consumer that will exchange messages using local transport.

You need to perform the following steps:

1. Developing SEI and an implementation class
2. Developing a server
3. Creating client bean coniguration
4. Developing a client

The source code and build ile is available in the Chapter4/Local folder of the
downloaded source code.

Chapter 4

[127]

Developing SEI and an implementation class
You will use the same OrderProcess SEI and the OrderProcessImpl class,
demonstrated in earlier chapters.

import javax.jws.WebService;

@WebService

public interface OrderProcess {

 String processOrder(Order order);

}

Developing a server
The server component is very simple. The following code illustrates the Server class:

package demo.order.server;

import javax.xml.ws.Endpoint;

import demo.order.OrderProcessImpl;

public class Server {

 public Server() throws Exception {

 OrderProcessImpl orderProcessImpl = new OrderProcessImpl();

 Endpoint.publish("local://OrderProcess", orderProcessImpl);

 }

 public static void main(String args[]) throws Exception {

 new Server();

 System.out.println("Server ready...");

 }

}

As you can see, all you need to do is deine your endpoint with the URI preixed as
local:// and you are all set. The URI local://OrderProcess signiies that the
OrderProcess service will be published for local use by the client inside the JVM.

Creating client bean coniguration
The following code shows the Spring-based client bean coniguration:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jaxws="http://cxf.apache.org/jaxws"

xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-
 beans.xsd

 http://cxf.apache.org/jaxws

Learning about Service Transports

[128]

 http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:client id="orderClient" serviceClass="demo.order.
OrderProcess" address="local://OrderProcess" />

</beans>

The above client bean coniguration is a simple JAX-WS client that registers
the OrderProcess service class to use local endpoint local://OrderProcess

Developing a Client
The Client class obtains the OrderProcess bean and invokes its processOrder()
method. The following code illustrates the consumer code:

public final class Client {

 public Client() {

 }

 public static void main(String args[]) throws Exception {

 Server.main(new String[]{""});

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext(new String[]
 {"demo/order/client/client-bean.xml"});

 OrderProcess client = (OrderProcess) context.
 getBean("orderClient");

 Order order = new Order();

 order.setCustomerID("C001");

 order.setItemID("I001");

 order.setQty(100);

 order.setPrice(200.00);

 String orderID = client.processOrder(order);

 String message = (orderID == null) ? "Order not approved" :
"Order approved; order ID is " + orderID;

 System.out.println(message);

 System.exit(0);

 }

}

One important thing to notice is that you invoke your Server class from the client
code itself. The following code snippet will irst start the Server class:

Server.main(new String[]{""});

Chapter 4

[129]

Remember, both client and server should be a part of the same JVM for the local
transport to work.

Building and executing
The ANT build ile will look like as follows:

<?xml version="1.0"?>

<project name="Order Process Local transport" default="build"
basedir=".">

 <import file="common_build.xml"/>

 <target name="client" description="run demo client"
 depends="build">

 <cxfrun classname="demo.order.client.Client" />

 </target>

</project>

As you can see, there is no server target. There is only one client target
deined, which means you use one single main() method to run both the
client and the server.

Running one single JVM means you have only one main()
method running.

You can run the code by giving the ant client command. Upon executing the
command, it will show the following output:

Learning about Service Transports

[130]

Summary
In this chapter, you learned how to conigure the following CXF supported transports:

•	 HTTP
•	 HTTPs
•	 JMS
•	 Local

The chapter introduced you to the concept of HTTP conduit, which enables
the client program to apply policies/properties to HTTP and HTTPs protocols.
You learned how to generate a crypto key and a keystore for HTTPs-based
service communication. You also learned how to invoke a service using the JMS
coniguration features. The chapter also provided a working example of a standalone
Jetty runtime. Finally, you learned the concept of local transport that allows the client
and service program to exchange messages within a single JVM.

Implementing Advanced
Features

In the previous chapter we learned about various types of CXF transports such as
HTTP, HTTPs, JMS, and so on, which can be used to invoke a service. In this chapter
we will learn advanced concepts like features, interceptors, and invokers. The
chapter will explain how to create a custom component for each of these
advanced features and apply it to your service.

The chapter will cover the following topics:

•	 Understanding CXF interceptors
•	 Developing custom interceptors
•	 Understanding CXF features
•	 Understanding CXF invokers
•	 Developing custom invokers

Understanding CXF interceptors
In the web service scenario, the consumer and service provider communicate with
each other through the exchange of messages. The messages are marshalled at
the client end and unmarshalled at the server end. In web service terminology,
marshalling is the process of converting Java objects to XML iles, which are to be
sent over a network. Unmarshalling refers to converting an XML ile back to a
Java object.

Implementing Advanced Features

[132]

When the consumer makes a request on the remote service, the data is irst
marshalled and placed over the network to be sent to the server. The server receives
this marshalled data, unmarshalls it, and invokes the service method. The process is
repeated in the same manner when the server sends back the response to the client.
Marshalling and unmarshalling are the core services that are provided by client
and service runtime. In CXF these special kinds of services are offered through the
concept of interceptors.

Interceptors are POJOs that intercept your message to provide or apply certain core
services to it. CXF supports many such interceptors that provide core services to the
message that is being exchanged between consumer and service endpoint. These
interceptors do the work of marshalling and unmarshalling, manipulating message
headers, performing authorization checks, validating the message data, and so on.
CXF provides built-in core interceptors that act upon messages. You can also develop
your own custom interceptor, which can change to process the message before it is
passed to the server. Interceptors are invoked in chain and organized in phases. In
this section we will cover the following topics:

•	 Understanding interceptor phase and chain
•	 Overview of interceptor API

Understanding interceptor phase and chain
Interceptors are ordered or structured in phases. A phase can be thought of as a
category that holds interceptors having similar or common functionality. A phase
indicates or signiies an action that is performed by its interceptors on the messages.
Some of the actions are marshalling, unmarshalling, user authorization, data
compression, and so on. Interceptors within a phase are organized sequentially in
the order of execution.

A phase tells the interceptor of its location in the chain. A chain is a collection of
phases. Phases are connected together in an ordered list to form an interceptor
chain. There are two types of interceptor chains, an inbound chain and an outbound
chain. Both these chains have their set of phases. For example, interceptors in an
UNMARSHAL phase, for an inbound chain, unmarshalls the message data into
objects to be used by the application server.

Chapter 5

[133]

The following igure shows the interceptor chain and phases:

Inbound chain

Outbound chain

Application

Logic

interceptor interceptor

interceptor interceptor interceptor interceptor

interceptor interceptor

-Phase

There are typically three types of chains associated with an endpoint:
•	 Inbound chain—it processes incoming messages
•	 Outbound chain—it processes outgoing messages
•	 Fault chain—it processes error messages

The previous igure shows message processing in the chain. It shows the
service-side interceptors.

•	 For every request to a service, an inbound interceptor is created at the server
end, and for every response, an outbound interceptor is created.

•	 The message goes through a chain and is processed by interceptors in phases
in a particular order or sequence.

•	 The inbound interceptors manipulate the message before it reaches the
application logic on the server side.

•	 The outbound interceptors manipulate the message before it is sent to
the client.

•	 If an error condition occurs, then the interceptor chain unwinds itself to the
calling program. It effectively means the control will go back to previous
interceptors in a reverse chain and terminate at the application logic.

Overview of the interceptor API
Let's examine interceptor API and what classes can be used by the developers to
write the custom interceptor.

The interceptor API is speciied in two CXF packages: org.apache.cxf.
interceptor and org.apache.cxf.phase. The interfaces in the org.apache.cxf.
interceptor package allow you to develop the custom interceptors. The classes in
this package resemble some of the core interceptors offered by CXF. The components
in the org.apache.cxf.phase package allow you to develop interceptors and
aggregate them in phases.

Implementing Advanced Features

[134]

The core interceptors indirectly implement the PhaseInterceptor interface by
extending the AbstractPhaseInterceptor abstract class. The PhaseInterceptor
extends the Interceptor interface. Let's start by looking at these interfaces and the
abstract class for developing custom interceptors.

Interceptor interface
When you write a custom interceptor, you need to directly or indirectly implement
the Interceptor interface. The Interceptor interface deines two methods,
handleMessage and handleFault.

The following code illustrates the CXF Interceptor interface:

package org.apache.cxf.interceptor;
public interface Interceptor<T extends Message> {
 void handleMessage(T message) throws Fault;
 void handleFault(T message);
}

You need to implement the above Interceptor interface and its methods to develop
the custom interceptor. Let's look at the methods:

•	 handleMessage—the method expects an object of a type derived from
org.apache.cxf.message.Message. It is the core method that processes
the message. The method is called on all the interceptors sequentially in
a chain. To write a custom interceptor one has to implement this method
and provide message processing logic.

•	 handleFault:—the method expects an object of a type derived from org.
apache.cxf.message.Message. It is called when there arises an error
condition while processing the message. In this case, the method is called
on the interceptor which processed the message, which in turn invokes this
method on the previous interceptor in the chain recursively in reverse order.
The method is used to handle exceptions.

The PhaseInterceptor interface
Most of the core interceptors implement the Interceptor interface indirectly through
the PhaseInterceptor interface. The following code illustrates this interface:

package org.apache.cxf.phase;

...

public interface PhaseInterceptor<T extends Message> extends
Interceptor<T> {

 Set<String> getAfter();

 Set<String> getBefore();

Chapter 5

[135]

 String getId();

 String getPhase();

}

The PhaseInterceptor interface deines methods that allow the interceptors to
work in chain. It deines the following four methods:

•	 getAfter—this method returns a Set containing IDs of the interceptors
that should be executed before this interceptor. It effectively means that
this interceptor will be placed in chain after the interceptors in the set.

•	 getBefore—this method returns a Set containing IDs of the interceptors
that should be executed after this interceptor. It effectively means that this
interceptor will be placed in chain before the interceptors in the set.

•	 getId—this method returns the ID of the interceptor. Every interceptor
in the chain has a unique ID associated with it.

•	 getPhase—this method returns the phase in which this interceptor
is executed.

A developer must extend the AbstractPhaseInterceptor class,
which in turn implements the PhaseInterceptor interface to create a custom
interceptor that participates in a phase. The next section talks about the
AbstractPhaseInterceptor class.

The getAfter and getBefore return the set of IDs of interceptors
participating in the same phase as that of the interceptor on which these
methods are invoked.
If you do not wish to have your interceptor participate in the phase, then
your interceptor can directly implement the Interceptor interface and
should not use the PhaseInterceptor interface.

The AbstractPhaseInterceptor class
The interceptor API provides a convenient class named
AbstractPhaseInterceptor, which provides a blank implementation of the
PhaseInterceptor interface methods. More importantly, it deines the constructor
with which, you can specify the phase name for your interceptor. When you specify
the phase, your interceptor is ordered according to the phase in the chain. It also
provides a blank implementation of the handleFault method of the Interceptor
interface. Developer needs to override this method. The developers though still
have to implement the handleMessage method of the Interceptor interface. The
following code illustrates the use of the AbstractPhaseInterceptor abstract class:

Implementing Advanced Features

[136]

 public class MyPhaseedInterceptor extends AbstractPhaseInterceptor {

 public MyPhasedInterceptor() {

 super(Phase.INVOKE); // Put this interceptor in this phase

 }

 public void handleMessage(Message msg) throws Fault {

 // process the message

 }

}

As you can see from the previous code, a developer only needs to implement
the handleMessage method. The methods of the PhaseInterceptor interface
are already implemented by the AbstractPhaseInterceptor abstract class. The
developer can override the handleFault method, the blank implementation of
which has been already provided in the abstract class. The signiicant thing to
observe is the constructor. It tells us that this interceptor is part of the INVOKE
phase. The phases are ordered in a chain and are determined by a class named
PhaseInterceptorChain. Most of the core interceptors offered by CXF use the
AbstractPhaseInterceptor class. The following table shows the phases for an
inbound chain:

Phase Description
RECEIVE Transport level processing
(PRE/USER/POST)_STREAM Stream level processing/transformations
READ Suitable for reading headers
(PRE/USER/POST)_PROTOCOL Protocol processing
UNMARSHAL Unmarshalling of the request
(PRE/USER/POST)_LOGICAL Processing of the unmarshalled request
PRE_INVOKE Pre invocation actions
INVOKE Invocation of the service
POST_INVOKE Invocation of the outgoing chain if there is one

The following table shows the phases for an outbound chain:

Phase Description
SETUP Setup for the following phases
(PRE/USER/POST)_LOGICAL Processing of objects about to be marshalled
PREPARE_SEND Opening of the connection
PRE_STREAM Stream level processing
PRE_PROTOCOL Misc protocol actions

Chapter 5

[137]

Phase Description
WRITE Writing of the protocol message
MARSHAL Marshalling of the objects
(USER/POST)_PROTOCOL Processing of the protocol message
(USER/POST)_STREAM Processing of the byte level message
SEND Final sending of the message and closing of the

transport stream

The following UML diagram summarizes the use of interceptors in phase:

PhaseInterceptor

AbstractPhaseInterceptor

MessageModeInInterceptor JAXRSInInterceptor

LoggingInInterceptor AbstractSoapInterceptor StaxInInterceptor ServiceInvokerInterceptor

Interceptor

The above diagram shows some of the core interceptors offered by CXF.
In the next section, we will use one of the previous interceptors named
AbstractSoapInterceptor and illustrate this as part of developing the
custom interceptor.

Developing the custom interceptor
In order to demonstrate the capabilities of interceptors, we assume a use case where
only valid authenticated users can access the order processing web service. We
expect that the user credentials required to access the web service are available in the
SOAP header along with the payload.

To demonstrate these requirements, we create two interceptors, one on the client
side, and the other on the server side. The client interceptor is responsible for
intercepting the outgoing SOAP message and adding user credentials in the SOAP
header. The server side interceptor intercepts an incoming SOAP message, extracts
the user credentials from the SOAP message, and validates it. If the user credential
fails, then it throws an exception back, in which case the web service operation
doesn't execute.

Implementing Advanced Features

[138]

We will develop our custom interceptor using the following steps:
•	 Developing the server side interceptor
•	 Adding the server side interceptor to the order process service
•	 Developing the client side interceptor
•	 Adding a client side interceptor to the client code
•	 Developing the standalone server for publishing the order process

web service
•	 Building and running the order process web service and interceptor
•	 Testing the custom interceptor for a negative condition

The source code and build ile is available in the Chapter5/Interceptor folder of
the downloaded source code.

Developing the server side interceptor
We will irst develop the server side interceptor. We will name this implementation
class as OrderProcessUserCredentialInterceptor. The following is the code
listing of the OrderProcessUserCredentialInterceptor class:

import javax.xml.namespace.QName;

import org.apache.cxf.binding.soap.SoapMessage;

import org.apache.cxf.binding.soap.interceptor.
AbstractSoapInterceptor;

import org.apache.cxf.headers.Header;

import org.apache.cxf.interceptor.Fault;

import org.apache.cxf.phase.Phase;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

public class OrderProcessUserCredentialInterceptor extends
AbstractSoapInterceptor {

 private String userName;

 private String password;

 public OrderProcessUserCredentialInterceptor() {

 super(Phase.PRE_INVOKE);

 }

 public void handleMessage(SoapMessage message) throws Fault {

 System.out.println("OrderProcessUserCredentialInterceptor
 handleMessage invoked");

 QName qnameCredentials = new QName("OrderCredentials");

 // Get header based on QNAME

 if (message.hasHeader(qnameCredentials)) {

 Header header = message.getHeader(qnameCredentials);

Chapter 5

[139]

 Element elementOrderCredential= (Element) header.getObject();

 Node nodeUser = elementOrderCredential.getFirstChild();

 Node nodePassword = elementOrderCredential.getLastChild();

 if (usernamel != null) {

 userName = nodeUser.getTextContent();

 }

 if (passwordel != null) {

 password = nodePassword.getTextContent();

 }

 }

 System.out.println("userName reterived from SOAP Header is "
 + userName);

 System.out.println("password reterived from SOAP Header is "
 + password);

 // Perform dummy validation for John

 if ("John".equalsIgnoreCase(userName) && "password".
 equalsIgnoreCase(password)) {

 System.out.println("Authentication successful for John");

 } else {

 throw new RuntimeException("Invalid user");

 }

 }

 public String getUserName() {

 return userName;

 }

 public void setUserName(String userName) {

 this.userName = userName;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

}

Let's analyze some of the important lines of the code. The
OrderProcessUserCredentialInterceptor extends the
AbstractSoapInterceptor class. The AbstractSoapInterceptor class
provides methods to access the SOAP header and version information.

Implementing Advanced Features

[140]

Next, we deine the default constructor for
OrderProcessUserCredentialInterceptor, which calls the super(Phase.
PRE_INVOKE) method to register the invocation phase, at which the
OrderProcessUserCredentialInterceptor invoker needs to be executed.
The OrderProcessUserCredentialInterceptor is executed by the CXF
framework during the PRE_INVOKE phase, before invoking the order process
web service operations.

public SOAPUserCredentialInterceptor() {

 super(Phase.PRE_INVOKE);

}

The handleMessage method gets invoked by the CXF interceptor framework during
the phase registered by the OrderProcessUserCredentialInterceptor class. The
SoapMessage class provides a method to get the list of SOAP headers or get the
SOAP header based on the namespace. We then retrieve the <OrderCredentials>
element from the SOAP header based on the namespace by calling the method
message.getHeader(qnameCredentials).The web service client sets the username
and password in an <OrderCredentials> element, which is added to the SOAP
header element when creating the web service request.

The following is the sample SOAP header request which contains the
<OrderCredentials> element. The code listed above carries out the function of
retrieving the username and password from the <OrderCredentials> element.

<soap:Header>

 <OrderCredentials>

 <username>John</username>

 <password>password</password>

 </OrderCredentials>

</soap:Header>

We will look at how to set this object when we create the client side interceptor.
We then retrieve the username and password node from the <OrderCredentials>
element and get the value associated with the username and password node. As
part of our implementation, we provide a dummy authentication implementation
for a user John, where the password for user John will be the value password. If
the password doesn't match, then an exception occurs. You can provide your own
implementation based on your requirements, for instance, to look up the database
to retrieve user authentication information and perform a validation.

Chapter 5

[141]

Adding a server side interceptor to the Order
Process service
Next we add the OrderProcessUserCredentialInterceptor class to the Order
Process web service. You can add interceptors with a coniguration ile or deine
annotations on the service interface or service class. We would use annotations on
the OrderProcessImpl service implementation class.

The following code shows the revised OrderProcessImpl.java with relevant
interceptor annotation:

import javax.jws.WebService;

@org.apache.cxf.interceptor.InInterceptors (interceptors = {"demo.
order. OrderProcessUserCredentialInterceptor" })

@WebService

public class OrderProcessImpl implements OrderProcess {

 public String processOrder(Order order) {

 System.out.println("Processing order...");

 String orderID = validate(order);

 return orderID;

 }

}

As you can see in the previous code listing, we have added an InInterceptors
annotation that deines an inbound interceptor, which would be invoked before the
web service is executed.

@org.apache.cxf.interceptor.InInterceptors (interceptors = {"demo.
order.server.OrderProcessUserCredentialInterceptor" })

With this, we have added the interceptor to our Order Process web service.
Next, we would create the client interceptor, which would intercept the outgoing
SOAP message, and set the user credentials in the SOAP header.

Developing the client side interceptor
We will now develop the client side interceptor. We will name this implementation
class as OrderProcessClientHandler. The following is the code listing of the
OrderProcessClientHandler class:

import javax.xml.namespace.QName;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.apache.cxf.binding.soap.SoapMessage;

Implementing Advanced Features

[142]

import org.apache.cxf.binding.soap.interceptor.
AbstractSoapInterceptor;
import org.apache.cxf.binding.soap.interceptor.
SoapPreProtocolOutInterceptor;
import org.apache.cxf.headers.Header;
import org.apache.cxf.interceptor.Fault;
import org.apache.cxf.phase.Phase;
import org.w3c.dom.Document;
import org.w3c.dom.Element;

public class OrderProcessClientHandler extends AbstractSoapInterceptor
{

 public String userName;
 public String password;

 public OrderProcessClientHandler() {
 super(Phase.WRITE);
 addAfter(SoapPreProtocolOutInterceptor.class.getName());
 }

 public void handleMessage(SoapMessage message) throws Fault {

 System.out.println("OrderProcessClientHandler handleMessage
 invoked");

 DocumentBuilder builder = null;
 try {
 builder = DocumentBuilderFactory.newInstance().
 newDocumentBuilder();
 } catch (ParserConfigurationException e) {
 e.printStackTrace();
 }
 Document doc = builder.newDocument();
 Element elementCredentials =
 doc.createElement("OrderCredentials");
 Element elementUser = doc.createElement("username");
 elementUser.setTextContent(getUserName());
 Element elementPassword = doc.createElement("password");
 elementPassword.setTextContent(getPassword());
 elementCredentials.appendChild(elementUser);
 elementCredentials.appendChild(elementPassword);

 // Create Header object
 QName qnameCredentials = new QName("OrderCredentials");
 Header header = new Header(qnameCredentials,
 elementCredentials);
 message.getHeaders().add(header);
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

Chapter 5

[143]

 public String getUserName() {
 return userName;
 }

 public void setUserName(String userName) {
 this.userName = userName;
 }
}

Let's analyze some of the important lines of the code.
The OrderProcessClientHandler extends the AbstractSoapInterceptor class.
The AbstractSoapInterceptor class provides methods to access the SOAP header
and version information.

Next, we deine the default constructor for OrderProcessClientHandler,
which calls the super(Phase.WRITE) constructor method and addAft
er(SoapPreProtocolOutInterceptor.class.getName()) to register
the invocation phase at which the OrderProcessClientHandler
interceptor needs to be executed. The addAfter method speciies that the
OrderProcessClientHandler interceptor needs to be added to the interceptor
chain after the CXF in-built SoapPreProtocolOutInterceptor interceptor
class. The method is part of the base class AbstractPhaseInterceptor. The
OrderProcessClientHandler is executed by the CXF framework during the
WRITE phase and after the SoapPreProtocolOutInterceptor interceptor class.
The SoapPreProtocolOutInterceptor interceptor is responsible for setting up the
SOAP version and header, and hence any additions to the SOAP header element
need to be done after the SoapPreProtocolOutInterceptor.

public OrderProcessClientHandler() {
 super(Phase.WRITE);
 addAfter(SoapPreProtocolOutInterceptor.class.getName());
}

The OrderProcessClientHandler class handleMessage method receives the
SoapMessage as the input, which provides access to the SOAP header information
associated with the SOAP payload.

We next create the <OrderCredentials> root XML element and add the
username and password element to it. We then create a Header object and set the
OrderCredentials elements in the header object, along with the namespace by
calling the constructor new Header(qnameCredentials, elementCredentials).
We then inally add the Header element to the SOAP Header using the message.
getHeaders().add(header) method.

Next, we need to add the OrderProcessClientHandlerinterceptor to the web
service client.

Implementing Advanced Features

[144]

Adding a client side interceptor to the client
code
You can add interceptors with a coniguration ile or programmatically using
the CXF org.apache.cxf.endpoint.Client interface. We will use this to add
outbound interceptors.

The following code shows the Client class:

import demo.order.OrderProcess;

import demo.order.Order;

import org.apache.cxf.frontend.ClientProxy;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

public final class Client {

 public Client() {

 }

 public static void main(String args[]) throws Exception {

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext(new String[]
 {"demo/order/client/client-beans.xml"});

 OrderProcess client = (OrderProcess) context.
 getBean("orderClient");

 OrderProcessClientHandler clientInterceptor =
 new OrderProcessClientHandler();

 clientInterceptor.setUserName("John");

 clientInterceptor.setPassword("password");

 org.apache.cxf.endpoint.Client cxfClient = ClientProxy.
 getClient(client);

 cxfClient.getOutInterceptors().add(clientInterceptor);

 Order order = new Order();

 order.setCustomerID("C001");

 order.setItemID("I001");

 order.setQty(100);

 order.setPrice(200.00);

 String orderID = client.processOrder(order);

 String message = (orderID == null) ? "Order not approved" :
 "Order approved; order ID is " + orderID;

 System.out.println(message);

 }

}

Chapter 5

[145]

As you can see in the given code, we create an instance of the
OrderProcessClientHandler class and set the username and password. We then
retrieve the org.apache.cxf.endpoint.Client object using the ClientProxy.
getClient(client) method and add the OrderProcessClientHandler instance as
an outbound interceptor to the org.apache.cxf.endpoint.Client instance using
the cxfClient.getOutInterceptors().add() method. Thus, we have completed
our client and server interceptors' functionality.

The following is the client-beans.xml coniguration ile used to conigure the web
service client:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jaxws="http://cxf.apache.org/jaxws"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/
 spring-beans.xsd

 http://cxf.apache.org/jaxws

 http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:client id="orderClient" serviceClass="demo.order.
OrderProcess" address="http://localhost:8080/OrderProcess" />

</beans>

Next, we write a standalone server utility to publish the Order Process web
service to the endpoint address http://localhost:8080/OrderProcess. The
standalone server utility provides a quick way to test your web service as well as
the interceptors, which are invoked during execution prior to deployment in the
application server.

Developing the standalone server for
publishing the Order Process web service
We will now develop the standalone server utility which will publish the
Order Process web service. We will name this implementation class as
OrderProcessServerStart. The following provides the code listing of the
OrderProcessServerStart class.

import org.apache.cxf.jaxws.JaxWsServerFactoryBean;

public class OrderProcessServerStart {

 public static void main(String[] args) {

 OrderProcess orderProcess = new OrderProcessImpl();

Implementing Advanced Features

[146]

 JaxWsServerFactoryBean server = new JaxWsServerFactoryBean();

 server.setServiceBean(orderProcess);

 server.setAddress("http://localhost:8080/OrderProcess");

 server.create();

 System.out.println("Server ready....");

 Thread.sleep(5 * 60 * 1000);

 System.out.println("Server exiting");

 System.exit(0); }

}

We start off by creating the JaxWsServerFactoryBean instance. We then set the
implementation class instance OrderProcessImpl and set the address where the
OrderProcess web service needs to be deployed which is http://localhost:8080/
OrderProcess and invoke the create method on the JaxWsServerFactoryBean
instance. The create method creates an embedded jetty service instance and deploys
the Order Process web service.

Building and running the Order Process web
service and interceptor
Before running the program, we organize the code in the appropriate folder
structure. We organize the code in the folder structure which is shown below:

Once the code is organized, we build and deploy it in the Jetty embedded server.
It will typically involve three steps:

•	 Building the code
•	 Deploying the code
•	 Executing the code

Chapter 5

[147]

Building the code
We create the build.xml ile to add a target for running the standalone server utility.
The following code illustrates the build.xml build script:

<?xml version="1.0" encoding="UTF-8"?>
<project name="CXF Book examples" default="build" basedir=".">
…
 <target name="client" description=
 "run demo client" depends="build">
 <property name="param" value=""/>
 <cxfrun classname="demo.order.client.Client" />
 </target>
 <target name="server" description=
 "run demo server" depends="build">
 <cxfrun classname="demo.order.OrderProcessServerStart"/>
 </target>
</project>

As you can see, we have added a target server which runs the server standalone class
demo.order.OrderProcessServerStart and a target client that runs the client class
demo.order.client.Client.

For more information on building the source code using the ANT tool,
see the Appendix Getting Ready with Code Examples. The Appendix covers
step-by-step information on organizing and building the source code.

Implementing Advanced Features

[148]

Deploying the code
After the code build is performed, we deploy it in the embedded jetty container for
testing. To deploy the built code, navigate to your project root folder, and give the
following command:

ant server

This executes the Java program demo.order.OrderProcessServerStart that starts
the embedded jetty server, which deploys and publishes the Order Process web service
and makes it available at the URL http://localhost:8080/OrderProcess

After running the above command, you will see the following output. Do not close
the window while the server is running.

Executing the code
After the code deployment is over, we are all set to run the web service client. You
will execute the Java client program Client.java to invoke the Order Process web
service. Run the client program by giving the following command in the command
prompt window:

ant client

As you can see from the previous screenshot, we are using ant to run the client
program. Upon executing this command, it will generate the following output:

Chapter 5

[149]

As you can see in the previous output, the OrderProcessClientHandler interceptor
is invoked, which sets the username and password in the SOAP header.

On the console where you executed the ant server, you see the user credentials being
printed by the OrderProcessUserCredentialInterceptor interceptor.

As we have supplied valid credentials the
OrderProcessUserCredentialInterceptor interceptor is successfully executed
and we see the Order Process web service being executed as denoted by the
Processing Order... system output message shown in the previous screenshot.

Testing the custom interceptor for negative
condition
Next, we try out a negative scenario by setting the username as Jack in the
SOAP header. Open up the Client.java in an editor, and make the following
modiications, as highlighted in bold below to provide the username as Jack.

import demo.order.OrderProcess;

import demo.order.Order;

Implementing Advanced Features

[150]

import org.apache.cxf.frontend.ClientProxy;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

public final class Client {

 public Client() {

 }

 //Code not shown , same as earlier Client code

OrderProcess client = (OrderProcess) context.getBean("orderClient");

 OrderProcessClientHandler clientInterceptor =
 new OrderProcessClientHandler();

 clientInterceptor.setUserName("John");

 clientInterceptor.setPassword("nopassword");

 org.apache.cxf.endpoint.Client cxfClient =
 ClientProxy.getClient(client);

 cxfClient.getOutInterceptors().add(clientInterceptor);

 System.exit(0);

 // END SNIPPET: client

 }

}

As with our server side interceptor implementation, the
OrderProcessUserCredentialInterceptor throws an exception if the password
for John is not equal to value password. Thus, the above request would result in an
error being thrown, and the web service operation would not be executed.

Next we build the modiied Client.java. Navigate to the project root folder, and
run the following command in sequence the ant build, followed by ant client

If you look at the server output, you notice that the web service operation
is not executed, you would not see the Processing Order system out
message being printed at the console as an exception is thrown by
OrderProcessUserCredentialInterceptor

On the client side, you would see an SOAP fault exception with the message Invalid
user or password being printed at the console, as shown in the following screenshot:

Chapter 5

[151]

Thus, we have successfully tested the interceptors for the Order Process web service.

Understanding CXF features
A Feature is a component that provides extra capability to the server, client, and
bus, over and above their existing functionality. The CXF bundle provides feature
components that allow the developer to add extra features to the endpoints and bus.

The following table lists the feature components supported by CXF:

Feature Description
ColocFeature Enables collocating services with different

transport protocols
FailoverFeature Enables clients to failover from the initial target endpoint

to another compatible endpoint for the target service
StaxDataBindingFeature Performs data binding using XML streaming
LoggingFeature Enables inbound and outbound logging
GZIPFeature Enables gzip compression to the service messages
JMSConfigFeature Enables JMS transport coniguration
WSAddressingFeature Enables and controls the use of WS-Addressing
RMFeature Enables and controls the use of WS-RM

(Reliable Messaging)

Implementing Advanced Features

[152]

Features are an indirect form of interceptors. You can use a Feature component
instead of directly using an interceptor. When you apply a feature to the service
endpoint, the server bean factory will invoke the initialize method of that
particular feature class. This method will invoke the respective interceptor class
for that feature. For example, you can use LoggingFeature to enable logging of
inbound and outbound messages. The LoggingFeature class, behind the scenes,
will invoke the initialize method which will register the LoggingInInterceptor
and LoggingOutInterceptor components so as to perform the logging. With
features, you can avoid direct use of interceptors. It is the most convenient way of
applying extra functionality to your web service. Every feature class extends the
AbstractFeature class. This class provides API to add extra capabilities to the
server, client, or bus. When the feature is applied to the bus, all the service endpoints
automatically inherit that feature.

In the next section, we will use one of the features offered by CXF and apply it to our
Order Process web service.

Applying the GZIP feature to the Order
Process web service
In this section we will develop the Order Process web service that will use the
CXF-offered GZIPFeature to compress the service request and response in a gzip
format. You will need to perform the following steps:

1. Developing service SEI and implementation class
2. Developing a server component
3. Creating a client bean coniguration ile
4. Creating a client component to consume the service
5. Building and executing the code

The source code and build ile is available in the Chapter5/Feature folder of the
downloaded source code.

Developing service and implementation class
We will use the same OrderProcess SEI and OrderProcessImpl class that is
demonstrated in earlier sections.

import javax.jws.WebService;

@WebService
public interface OrderProcess {
 String processOrder(Order order);
}

Chapter 5

[153]

Developing a server component
The following code illustrates the Server component:

import org.apache.cxf.jaxws.JaxWsServerFactoryBean;
import org.apache.cxf.transport.http.gzip.GZIPFeature;
import demo.order.OrderProcess;
import demo.order.OrderProcessImpl;

public class Server {

 public static void main(String[] args) throws Exception {

 OrderProcess orderProcess = new OrderProcessImpl();
GZIPFeature gzip = new GZIPFeature();
gzip.setThreshold(1);
 JaxWsServerFactoryBean server = new JaxWsServerFactoryBean();
 server.setServiceBean(orderProcess);
 server.setAddress("http://localhost:8080/feature/
OrderProcessGZIP");
 server.getFeatures().add(gzip);
 server.create();
 System.out.println("Server ready....");

 Thread.sleep(5 * 60 * 1000);
 System.out.println("Server exiting");
 System.exit(0);
 }
}

You will use JAXWsServerFactoryBean class to create the server. One of the
things you will set is the GZIPFeature feature class. The following code line adds
the gzip feature:

 sf.getFeatures().add(gzip);

The getFeatures method returns the List of existing features for this JAX-WS
server factory bean. If there are no existing features then it will return a blank list.
You then add the GZIPFeature object to the list. It basically signiies that the server
will compress the response in a gzip format and send it back to the client. We also
set a threshold value of 1. It means skip 1 byte and compress the remaining content.
The idea here is to show the signiicance of threshold. The threshold value of 0
means full content compression. If no threshold value is provided, then by default it
performs full content compression. The service endpoint address will be
http://localhost:8080/feature/OrderProcessGZIP.

Implementing Advanced Features

[154]

Creating the client bean coniguration ile
The following code shows the client coniguration ile:

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"

xmlns:jaxws="http://cxf.apache.org/jaxws"

xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-
 beans.xsd

 http://cxf.apache.org/transports/http/configuration

 http://cxf.apache.org/schemas/configuration/http-conf.
 xsd

 http://cxf.apache.org/jaxws http://cxf.apache.org/
 schemas/jaxws.xsd">

 <http-conf:conduit name="*.http-conduit">

 <http-conf:client AcceptEncoding="gzip" />

 </http-conf:conduit>

 <jaxws:client id="orderClient" serviceClass="demo.order.
OrderProcess" address="http://localhost:9000/feature/OrderProcessGZIP">

 <jaxws:features>

 <bean class="org.apache.cxf.transport.http.gzip.GZIPFeature"
>

 <property name="threshold" value="1" />

 </bean>

 </jaxws:features>

 </jaxws:client>

</beans>

From the code you can see above, you will irst deine the HTTP conduit to specify
the client side HTTP properties. You specify the properties as part of the <http-
conf:client> element. This element takes the AcceptEncoding attribute, which
indicates that the client application can accept encoded responses. The encoding type
value here is gzip. You then deine the client endpoint using the <jaxws:client>
element with the service class as demo.order.OrderProcess. The service endpoint
address is http://localhost:8080/feature/OrderProcessGZIP. Since we want
the request also to be gzip compressed, we provide the <jaxws:features> child
element to the <jaxws:client> element. In the <jaxws:features> element, you
deine the GZIPFeature class as part of the <bean> element. The <property> tag
deines the threshold for gzip compression. The value in this case is 1.

Chapter 5

[155]

Creating a client component to consume the
service
The Client class obtains the OrderProcess bean and invokes its processOrder()
method. The following code illustrates the consumer code:

public final class Client {

 public Client() {

 }

 public static void main(String args[]) throws Exception {

 ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext(new String[] {"demo/order/
 client/client-beans.xml"});

 OrderProcess client = (OrderProcess) context.
 getBean("orderClient");

 Order order = new Order();

 order.setCustomerID("C001");

 order.setItemID("I001");

 order.setPrice(100.00);

 order.setQty(20);

 String result = client.processOrder(order);

 System.out.println("The Order ID is : " + result);

 System.exit(0);

 }

}

In the next section we will build and execute the code.

Building and executing the code
Before running the program we will organize the code in the appropriate folder
structure. We organize the code in the folder structure, shown below:

You will build the code using the ANT tool. You can provide the ant command at the
project root folder in the command prompt window to build the code.

Implementing Advanced Features

[156]

For more information on building the source code using the ANT tool,
see the Appendix Getting Ready with Code Examples. The Appendix covers
step-by-step information on organizing and building the source code.

Executing the code requires you to launch the server and then run the client
program. The command ant server starts the server. Once the server is started, you
can give the ant client command to execute the client code. You will not see any
compressed data in the server and client console output. The compression will be at
the SOAP level, that is, after the message is marshalled and before it is unmarshalled.

You use the Apache-offered tcpmon tool to see the outgoing and incoming SOAP
requests and response messages. You need to change the tcpmon tcp listener port
to an arbitrary port number such as 9000 and provide the same port in the client
coniguration ile in the address attribute of the <jaxws:client> element. Then
change the server port in tcpmon to 8080. This makes sure that the client irst sends a
request to the tcpmon server, which in turn will send it to our embedded jetty server.

tcpmon is a utility tool that can be used to see data packets in transit sent
between the client and the server program using TCP protocol.

The following screenshot shows the output of the tcpmon tool:

Chapter 5

[157]

The previous screenshot shows the SOAP request and response message in transit in
a gzip compressed form.

Understanding CXF Invoker
In an earlier section, we looked at Feature components that can be added to your
service endpoint to enable that feature. In this section, we will talk about yet another
CXF component named Invoker. Invoker, in web service context, simply means to
invoke a method of the service, and the Invoker component does exactly the same.
So what is special about the Invoker component? Well, it provides you with the
ability to customize your service method execution. It provides you with the ability
to control the service invocation. It effectively means you can preix or add more
functionality to your service business method before the method is actually invoked.
Invokers are applied to a service endpoint.

Invoker acts more like simple ilter components. It gives you the ability to intercept
the message before the service method is called or invoked. Invokers though cannot
be called as interceptors. In CXF, interceptors process messages at different phases
in an inbound or outbound chain. Invokers do not have phases, they merely invoke
a service method with the ability to intercept the message just before the service
method is invoked. It means you can write a piece of code that could manipulate the
message before the operation is invoked. We will discuss the concept through the
following topics:

•	 Overview of Invoker API
•	 Developing custom invoker

Overview of Invoker API
Before we demonstrate the practical use of the invoker component, let's look and
understand the invoker API and what classes can be used by developers to write
the custom invoker. The invoker API is part of a package named org.apache.cxf.
service.invoker. The interfaces and classes in this package allow you to develop a
custom invoker. We will discuss two main components in this package, the Invoker
interface and the AbstractInvoker class.

Implementing Advanced Features

[158]

The Invoker interface
When you write a custom invoker, you need to directly or indirectly implement the
Invoker interface. The Invoker interface deines a method called invoke that takes
objects of type org.apache.cxf.message.Exchange and java.lang.Object as
parameters. The following code shows the Invoker interface:

import org.apache.cxf.message.Exchange;

public interface Invoker {
 Object invoke(Exchange exchange, Object o);
}

You need to implement the above Invoker interface and the invoke method to write
your own invoker. This will provide functionality to the invoke method. Most of the
time, you will have to indirectly implement the Invoker interface by extending the
AbstractInvoker class.

The AbstractInvoker class
The invoker API provides a more important and useful abstract class named
AbstractInvoker. It provides a ready implementation of the invoke method. A
developer should override this method and provide extension to the existing service
functionality. The invoke method simply uses Java relection to invoke the service
method. The AbstractInvoker class deines one abstract method getServiceObject.
The developer needs to implement this method by returning the service object.
The following code illustrates the use of the AbstractInvoker class:

import org.apache.cxf.message.Exchange;

public class MyInvoker extends AbstractInvoker {
 // Service bean
 private Object bean;

 public MyInvoker(Object bean) {
 this.bean = bean;
 }

 @Override
 public Object invoke(Exchange exchange, Object o) {
 // Provide your own extension logic here before the
 // service method is invoked

 // Invokes the service method
 return super.invoke(exchange, o);
 }

 public Object getServiceObject(Exchange exchange) {
 return bean;
 }
}

Chapter 5

[159]

The previous code shows a sample MyInvoker class that extends AbstractInvoker.
The constructor takes the service bean as a parameter. This bean is returned from the
getServiceObject method. The developer must implement the getServiceObject
method by returning the service bean instance. The developer should override the
invoke method and provide the functionality on the top of the existing service
method functionality. The super.invoke method will call the invoke method of the
AbstractInvoker class which in turn will invoke the service method. Remember,
invokers are applied to the service endpoint and they invoke its service method.

In the next section we will look at real world examples on how to use invokers.

The source code and build ile is available in the Chapter5/Invoker folder of the
downloaded source code.

Developing custom invoker
We will take the same use case of authentication security check discussed
in the earlier Developing custom interceptor section. The users of the Order
Process web service will be authenticated. Again, as part of assumption,
we will have the user credentials already deined in the SOAP header. The
components to be developed will remain the same. There will be changes
to only two components, OrderProcessUserCredentialInterceptor.
java and OrderProcessServerStart.java. We will call our class ile
OrderProcessUserCredentialInterceptor.java as AuthenticationInvoker.
java. You will now see how we can use invoker to perform authentication before
the processOrder method is called on the OrderProcess service.

The following code illustrates the AuthenticationInvoker class:
import java.util.List;

import javax.xml.namespace.QName;

import org.apache.cxf.binding.soap.SoapHeader;
import org.apache.cxf.common.util.ClassHelper;
import org.apache.cxf.headers.Header;
import org.apache.cxf.message.Exchange;
import org.apache.cxf.service.invoker.AbstractInvoker;
import org.apache.cxf.service.model.OperationInfo;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

import demo.order.OrderProcessImpl;

public class AuthenticationInvoker extends AbstractInvoker {

 private String userName;
 private String password;

 private Object bean;

 public AuthenticationInvoker(Object bean) {

Implementing Advanced Features

[160]

 this.bean = bean;
 }

 @Override
 public Object invoke(Exchange exchange, Object o) {

 // Get method and class details from the request
 OperationInfo opInfo = exchange.get(OperationInfo.class);
 String methodName = opInfo.getInputName();
 Class<?> realClass = ClassHelper.getRealClass(bean);
 QName qnameOrderCredential = new QName("OrderCredentials");

 // Perform security check only if the service class is
OrderProcessImpl
 // and method name is processOrder
 if (realClass == OrderProcessImpl.class && "processOrder".
 equals(methodName)) {
 List list = (List) exchange.getInMessage().get
 (Header.HEADER_LIST);
 for (int i = 0 ; i< list.size() ; i++) {
 // Get the SOAP header
 SoapHeader header = (SoapHeader) list.get(i);
 if(header.getName().equals(qnameOrderCredential)) {

 Element orderCredential= (Element) header.getObject();
 Node usernamel = orderCredential.getFirstChild();
 Node passwordel = orderCredential.getLastChild();

 if (usernamel != null) {
 userName = usernamel.getTextContent();
 }
 if (passwordel != null) {
 password = passwordel.getTextContent();
 }
 } else {
 throw new RuntimeException("Request doesn't contain
 OrderCredentials namespace");
 }
 }

 System.out.println("userName reterived from SOAP Header is "
 + userName);
 System.out.println("password reterived from SOAP Header is "
 + password);

 // Perform dummy validation for John
 if ("John".equalsIgnoreCase(userName) && "password".
 equalsIgnoreCase(password)) {
 System.out.println("Authentication successful for John");
 } else {
 throw new RuntimeException("Invalid user or password");
 }
 }

 // Call super class invoke method
 // This will invoke processOrder method

Chapter 5

[161]

 return super.invoke(exchange,o);

 }

 @Override
 public Object getServiceObject(Exchange arg0) {
 return bean;
 }
. . .
// Getter and setter for username and password
}

The previous code is pretty similar to that deined in
OrderProcessUserCredentialInterceptor.java for the interceptor. The primary
difference is that here we are using invoker that will check for the name of the
service class and method. If the service class is OrderProcessImpl and the method
to be invoked is processOrder, then only the authentication security check will be
performed on the user.

Let's scan the AuthenticationInvoker class and see what the invoker part
actually does.

Firstly the AuthenticationInvoker class extends the abstract class
AbstractInvoker. It means the class must implement the getServiceObject
method. The method implementation here simply returns the instance of the service
bean OrderProcessImpl.

The class overrides the invoke method which is part of the AbstractInvoker
abstract class. We provide the complete authentication security check logic here
and then call our processOrder method. See the following code snippet:

 OperationInfo opInfo = exchange.get(OperationInfo.class);
 String methodName = opInfo.getInputName();
 Class<?> realClass = ClassHelper.getRealClass(bean);
 . . .
 // Perform security check only if the service class is
 OrderProcessImpl
 // and method name is processOrder
 if (realClass == OrderProcessImpl.class && "processOrder".
 equals(methodName)) {
 // perform authentication

Implementing Advanced Features

[162]

As you can see from the previous code snippet, we check if the service class is
OrderProcessImpl and the method to be invoked is processOrder, and only then
will we perform the authentication. We perform the introspection of the service
bean in question, which is OrderProcessImpl, and get its metadata (which is the
class name and method name). We get the class name using the CXF offered utility
class ClassHelper. The method name is fetched using the CXF service model API
component OperationInfo. Using these details, we check if they are the same and
accordingly perform authentication.

The processOrder method of the OrderProcessImpl bean is called by invoking
super.invoke which will call the invoke method of the AbstractInvoker
abstract class.

You must be wondering from where the OrderProcessImpl service bean came from.
This is passed through our server class OrderProcessServerStart. The following
code shows the OrderProcessServerStart class:

import org.apache.cxf.jaxws.JaxWsServerFactoryBean;

import demo.order.OrderProcessImpl;
import demo.order.OrderProcess;

public class OrderProcessServerStart {

 public static void main(String[] args) {
 // Service instance
 OrderProcess orderProcess = new OrderProcessImpl();
 JaxWsServerFactoryBean jaxServer = new JaxWsServerFactoryBean();
 jaxServer.setServiceBean(orderProcess);
 jaxServer.setAddress("http://localhost:8080/OrderProcess");

 // Set the Invoker
 jaxServer.setInvoker(new AuthenticationInvoker(orderProcess));
 jaxServer.create();

System.out.println("Server ready...");
 Thread.sleep(5 * 60 * 1000);

System.out.println("Server exiting");
System.exit(0);

 }
}

As you can see from the previous code snippet, the only change we make is to
set the invoker to our JaxWsServerFactoryBean class. The setInvoker method
used takes the AuthenticationInvoker invoker as a parameter. The instance of
service class OrderProcessImpl is passed as an argument to the constructor of
the AuthenticationInvoker class. This basically tells the server factory bean that
we will use an invoker named AuthenticationInvoker that will perform the
authentication check if the service bean passed is OrderProcessImpl.

Chapter 5

[163]

The rest of the components to be developed are the same as shown in the Developing
custom interceptor section of this chapter. We build and execute the code as instructed in
the Building and running the Order Process web service and interceptor section. The folder
structure will look like the following:

You start the server using the ant server command. Once the server is started, run
the client by giving the ant client command. The client program will show the
following output:

The server program will show the following output:

The previous screenshot shows successful authentication.

Implementing Advanced Features

[164]

Summary
The chapter introduced you to the concept of Interceptors that enables you to
process the message in transit. One can process the message before the request to
the service and after the response from the service. You learned the signiicance of
the interceptor chain and phase. You also learned how to develop a custom SOAP
interceptor that intercepts a SOAP message and manipulates the header. The chapter
briefed you about the concept of Features, which are components, offered by CXF
that can be used directly instead of interceptors. Finally, you learned to develop
Invokers that can be used to control the service method execution.

Developing RESTful Services
with CXF

Web services have become a standard way to achieve interoperability between
systems. There are two main approaches for developing web services; one is by
using the Simple Object Access Protocol (SOAP) and the other is by using the
Representational State Transfer (REST) architecture style.

In earlier chapters, we looked at how to develop SOAP-based web services using
CXF and JAX-WS support. Developing SOAP-based web services requires various
contracts to be deined and negotiated between the provider and consumer, such
as using a Web Service Description Language (WSDL) for describing the message,
adhering to various web service speciications (WS Speciications like WS-Security),
and choosing a document-literal or RPC style for web service communication.

Services built using the REST architecture style (termed as RESTful services)
encapsulate data in a simple XML form and transport it over HTTP just like a web
page request to the web server. This simpliies the development of web services
without imposing overheads caused by the SOAP-based development approach.
RESTFul web services are particularly useful when it is only necessary to transmit
and receive simple XML messages.

In this chapter we will introduce the RESTful style of developing web services and
look at how to develop RESTful services using the CXF framework. We will cover
the following topics in the chapter:

•	 Overview of REST and RESTful services
•	 Java API for RESTful services
•	 CXF JAX-RS implementation
•	 Developing end-to-end RESTful services using CXF JAX-RS implementation

Developing RESTful Services with CXF

[166]

For a list of web service speciications, refer to the following URL:
 http://www.oasis-open.org/committees/tc_cat.php?cat=ws

Overview of REST and RESTful services
REST stands for Representational State Transfer. REST is neither a technology nor a
standard; it's an architectural style, a set of guidelines for exposing resources over the
web. The REST architecture style is related to a resource, which is a representation
identiied by a Uniform Resource Indicator (URI) as described at http://cxf.
soaweb.co.in/book. The resource can be any piece of information such as Book,
Order, Customer, Employee, and so on. The client queries or updates the resource
through the URI by exchanging representations of the resource. The representations
contain actual information in a format such as HTML, XML, or JavaScript Object
Notation (JSON) that is accepted by the resource. The client needs to be aware
of the representation returned by the client. Usually the client speciies which
representations it wants, like http://cxf.soaweb.co.in/index.html and the
server returns the required resource, for instance, the required page with HTML
content. All resources share a uniform interface for the transfer of state between
client and resource. All the information required to process a request on a resource is
contained within the request itself, thereby making the interaction stateless.

The World Wide Web is a classic example of REST architecture style. As implemented
on the World Wide Web, URIs identify the resources (http://cxf.soaweb.co.in/
book), and HTTP is the protocol by which resources are accessed. HTTP provides a
uniform interface and a set of methods to manipulate the resource. A client program,
like a web browser, can access, update, add, or remove a web resource through URI
using various HTTP methods. HTTP provides standard methods such as GET, POST,
PUT, DELETE, HEAD, TRACE, and Options. Each of these methods represents actions that
can be performed on the resource. For instance, the HTTP GET is used for retrieving the
information only and should never change the resource state, while methods like PUT,
POST, DELETE inluence a state change in its representation.

Web services built using the principles of REST architecture are termed as RESTful
web services. Web services developed using the REST approach are viewed as
resources and identiied by their URI. The web service exposes the set of operations
using standard HTTP methods like GET or POST. The web service clients invoke one
of the methods deined on the resources using the URI over the HTTP protocol.

The following is an example of a RESTful service, which provides employee details
within a department and how clients can access the service.

Chapter 6

[167]

URI for the RESTful service—http://<host>/department/deptname/employee:

•	 GET—returns a list of employees in a department
•	 POST—creates an employee record in a department
•	 DELETE—deletes an employee record in a department

URI for the RESTful service—http://<host>/department/deptname/employee/

naveen:

•	 GET—returns information about an employee naveen
•	 PUT—updates information about the employee naveen
•	 DELETE—deletes information about the employee naveen

The PUT method also creates a new resource, if there is none available.
If a resource exists, then PUT will overwrite it. The Sequence of PUT
requests will keep updating or overwriting the last resource and therefore
it is termed as idempotent. POST on the other hand will always create a
new resource. For instance, if an amount transferred is being initiated
via a POST request using a browser and the user inadvertently clicked
the initiate transfer button again, you might end up having the amount
transferred twice.

In the above example, the resource being exposed is an employee object. The
employee object is represented by the URI /employee. Every employee's information
is retrieved by appending an identiier to the employee such as /employee/naveen.
The HTTP methods GET, POST, PUT, and DELETE internally map to the operations that
need to be carried out on the employee object.

The following is an example of a POST request for http://<host>/department/
deptname/employee

POST /department/deptname/employee HTTP/1.1

Content-Type: */*

Accept: application/xml

User-Agent: Apache CXF 2.2.2

Cache-Control: no-cache

Pragma: no-cache

Host: 127.0.0.1:9001

<employee><firstname>rajeev</firstname><lastname>hathi</lastname>

<dob>10/26/78</dob></employee>

As you can see from the above example, the request is a plain XML message over
the HTTP protocol. The HTTP header method POST speciies that the request is a
POST request.

Developing RESTful Services with CXF

[168]

Data supported by the RESTful web service is normally XML, but it can support
other widely used formats like JavaScript Object Notation (JSON). The Content-
Type MIME tag associated with HTTP headers speciies the format of the message,
for instance application/json speciies the JSON message format, while
application/xml deines the XML format. The Accept tag speciies the format
of the message accepted by the client, which in this case is application/xml. The
format of the message is the representation of the resource that we discussed in the
REST overview section. We will look at how to set the Content-Type and Accept
tag when we deal with the HTTP format for executing the sample application.

Java API for RESTful services
In the earlier example, we looked at the employee HTTP POST request. If we need to
provide an implementation for realizing the employee HTTP request, we carry out
the following steps:

•	 Identify whether it's an HTTP POST request
•	 Convert the XML content associated with HTTP POST request into the

required format expected by your implementation, for instance a Java object
•	 Perform the required operation, for instance insert the employee object in the

database
•	 Convert the response back into an HTTP format, for instance set the HTTP

Status as 200 denoting a successful response and convert the response into
the required format (XML or JSON), and set it in the HTTP body.

Based on your requirements, you need to provide an implementation for all
HTTP methods, for instance GET, PUT, and DELETE. Don't you think it would
be good to have a standard way for developing RESTful services in Java and
simplify the creation of RESTFul services? That's where the Java API for RESTful
Web services (JAX-RS) speciication comes in with the aim of simplifying RESTful
services development.

Java API for RESTful Web services (JAX-RS) is a speciication that determines the
semantics to create web services according to the Representational State Transfer
(REST) architectural style. JAX-RS uses annotations for implementing RESTful web
services based on HTTP. You use the annotations on Plain Old Java objects (POJO)
to expose it as a RESTful resource. The classes are annotated with the request made
by the URI, for instance /employee and methods on the POJO deine what request
(or content type) the class or methods accept and what HTTP methods the class or
methods support (such as GET and POST).

Chapter 6

[169]

At runtime, the framework that implements the JAX-RS speciication is responsible
for invoking the right Java implementation by mapping the HTTP request to one of
the RESTful Java resource methods that satisies the request. The JAX-RS speciication
provides an algorithm to match an HTTP request to one of the resource methods
that can be implemented by the runtime framework which implements the JAX-RS
speciication. The basis of the algorithm is to determine the Java Resource class and
method based on the HTTP URI of the request (for instance /employee), the content
type (for instance application/xml), and HTTP method (for instance GET).

The JAX-RS speciication provides the following goals:

•	 POJO-centric
The JAX-RS API provides a set of annotations and associated classes/
interfaces that can be used with POJOs in order to expose them as
RESTful resources.

•	 HTTP-centric
As RESTful resources are exposed over HTTP, the speciication provides
clear mapping between HTTP Protocol and the corresponding JAX-RS API
classes, methods, and guidelines on how to match the HTTP request to
the resource class and method.

•	 Format independence
The API provides a pluggable mechanism to allow HTTP content type to
be added in a standard manner. For example, application/xml is one of the
HTTP content types and, based on the content type, the RESTful resources
should have a mechanism to serve the request.

•	 Container independence
The application developed using JAX-RS should be able to run in any con-
tainer. The speciication deines a standard mechanism on how to deploy an
application using JAX-RS APIs.

•	 Inclusion in the Java Enterprise Edition container

The speciication deines how RESTful resources can be hosted in a Java EE 6
container and leverage the capabilities offered by the container

For more about the JAX-RS speciication, refer to the JSR website at
http://jcp.org/en/jsr/detail?id=311

Developing RESTful Services with CXF

[170]

CXF JAX-RS implementation
CXF provides an implementation of the JAX-RS 1.0 speciication along with various
features that assist developers in building enterprise-based RESTful services.

The following are the various features offered by the CXF framework for creating
RESTful services:

•	 Spring Integration
The Spring framework has become the de facto framework for building
Enterprise Java applications. CXF provides integration with the Spring
framework, which simpliies coniguration and deployment of RESTful
applications. Spring provides dependency injection which promotes
loose coupling and provides various services to POJO like declarative
transaction management. All the capabilities provided by Spring can be
leveraged when developing RESTful POJO-based applications using CXF.

The Appendix B Getting Started with Spring framework chapter provides an
introduction to the Spring framework and the Spring IoC container.

•	 Pluggable data binding
Data binding is about mapping the HTTP request, for instance JSON or XML
over HTTP, to the required Java objects which your implementation expects.
Similarly, the response from the Java implementation needs to be mapped
to the required format, for eample XML or JSON format, before sending the
response over HTTP. CXF handles this mapping transparently behind the
scenes by providing data binding components. CXF supports various data
binding mechanisms such as JAXB, JSON, XMLBean, and Aegis. CXF allows
you to specify the binding mechanism declaratively.

•	 Client API
The JAX RS speciication does not provide client side APIs for invoking
a JAX-RS enabled REST service. CXF simpliies this by providing Client
APIs to invoke RESTful services which can also be conigured using the
Spring dependency framework.

•	 Security
Applications built using CXF JAX-RS implementation can leverage Spring
framework features like declarative security to restrict a resource class and
methods access based on application requirements, instead of handling the
security requirements programmatically.

Chapter 6

[171]

•	 Filters
Filters are used to perform pre processing or post processing of messages.
CXF provides an ability to create and conigure ilters for inspecting the
message, logging the message, and modifying the request or response based
on the application requirements.

CXF also allows developers to create RESTful services using JAX-WS Provider and
Dispatch APIs. We discussed JAX-WS Dispatch and Dispatcher APIs in Chapter 3,
where provider and consumer use raw XML for communication. Similarly, you can
use JAX-WS Provider and Dispatch APIs to create RESTful services which use XML
as the data format. CXF ships an example in the samples/restful folder of the
distribution of how to create RESTful services using JAX-WS Provider and Dispatch
APIs. In this chapter we will focus only on how to build RESTful services using the
CXF JAX-RS implementation

Before we study closely CXF based RESTful services development, we will look
at an overview of the example called Book Shop application that we will build
in this chapter.

Developing end-to-end RESTful services
using CXF JAX-RS implementation
In this section we will develop a RESTful service that will enable us to perform
CRUD operations using JAX-RS implementation. We will look at a case study of
a Book Shop application.

The Book Shop application is an online application which provides categorization
of technology books such as Java or .NET. The Book Shop application lets the
administrator create new categories for adding books, modifying an existing
category, getting a particularly category, or deleting a category. Once a
categorization exists, the application provides the ability to add books and
associate it with the respective category.

For simplicity we will look at the following examples:
•	 Creating a category
•	 Updating a category
•	 Deleting a category
•	 Getting a list of categories
•	 Getting a speciic category
•	 Adding books to a category
• Getting a list of books associated with a category

Developing RESTful Services with CXF

[172]

The application exposes these functions over the web by using the RESTful style
using some URI. The client application interacts with the book shop application by
sending an XML request over HTTP. In next chapter we will look at how the Book
Shop application provides supports for the JSON format.

Developing the RESTful service
To develop the RESTful service, we typically perform the following steps:

•	 Create Java data objects for Request and Response.
•	 Provide Binding for the Request and Response objects
•	 Create the Implementation class and annotate the Implementation class

with JAX-RS annotations to create a RESTful implementation
•	 Unit test the RESTful service
•	 Create clients to invoke various methods of the RESTful service
•	 Deploy the RESTful service in a container

The source code of this chapter is available in the chapter6/restapp
folder of the source code distribution. Refer to Appendix Getting Ready
with the Code Examples for detailed instructions on how to download the
source code from the Packt site.

Creating Java data objects for Request and
Response
For the Book Shop application we create two Request data objects called Category
and Book. The Category object contains the category information, whereas Book
contains book information.

We will now develop the Category object. We will name this implementation class
as Category. The following is the code listing of the Category.java object.

package demo.restful;

import java.util.Collection;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "Category")

public class Category {

 private String categoryId;

 private String categoryName;

Chapter 6

[173]

 private Collection<Book> books;

 public String getCategoryId() {

 return categoryId;

 }

 public void setCategoryId(String categoryId) {

 this.categoryId = categoryId;

 }

 public String getCategoryName() {

 return categoryName;

 }

 public void setCategoryName(String categoryName) {

 this.categoryName = categoryName;

 }

 public Collection<Book> getBooks() {

 return books;

 }

 public void setBooks(Collection<Book> books) {

 this.books = books;

 }

}

As you can see above, we have added an annotation @XmlRootElement
to the Java class. We will look at this annotation in detail in the next section.

The Category object holds books references, which is modeled as a collection in
the Category object.

We will now develop the Book object. We will name this implementation class
as Book. The following is the code listing of the Book.java object:

package demo.restful;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "Book")
public class Book {

 private String bookId;

 private String bookISBNnumber;

 private String bookName;

 //Let assume one author only
 private String author;

 public String getBookId() {
 return bookId;
 }

Developing RESTful Services with CXF

[174]

 public void setBookId(String bookId) {
 this.bookId = bookId;
 }

 public String getBookISBNnumber() {
 return bookISBNnumber;
 }

 public void setBookISBNnumber(String bookISBNnumber) {
 this.bookISBNnumber = bookISBNnumber;
 }

 public String getBookName() {
 return bookName;
 }

 public void setBookName(String bookName) {
 this.bookName = bookName;
 }

 public String getAuthor() {
 return author;
 }

 public void setAuthor(String author) {
 this.author = author;
 }

}

We will use the same Request data object for Response. For Response, we would
send the response object back along with the HTTP status. We will look into this
when implementing the service.

Providing binding for the Request and Response
data objects
The Request and Response data objects need to be serialized in the required format,
such as XML or JSON, for communicating between a RESTful service and a client.
To serialize the data objects, you need to use one of the data binding components or
create your own custom data binding components, which create a mapping between
Java objects and XML (or the required format).

CXF uses JAXB as the default data binding component. JAXB uses annotations to
deine the mapping between Java objects and XML.

Chapter 6

[175]

The @XmlRootElement annotations associated with Category class map the
Category class to an XML root element. The attributes contained within the
Category object by default are mapped to @XmlElement. The @XmlElement
annotations are used to deine elements within the XML. The @XmlRootElement and
@XmlElement annotations allow you to customize the namespace and name of the
XML element. If no customizations are provided, the JAXB runtime by default would
use the same name for the attribute as the XML element. CXF handles this mapping
of Java objects to XML transparently behind the scenes.

The following is an XML Request that maps to the Category data object.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Category>

<categoryName>Microsoft NET</categoryName>

<categoryId>002</categoryId>

<books><author>NaveenBalani</author>

<bookISBNnumber>ISB003</bookISBNnumber>

<bookId>003</bookId>

<bookName>Spring NET Series</bookName>

</books>

</Category>

Developing the implementation class
We will now develop the implementation class to realize our Book shop application.
We will name this implementation class CategoryService.

The following code illustrates the service implementation class
CategoryService.java.

package demo.restful;

//JAX-RS Imports

import javax.ws.rs.Consumes;

import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.core.Response;

import javax.ws.rs.core.Response.Status;

/*

 * CategoryService class.

Developing RESTful Services with CXF

[176]

 */

@Path("/categoryservice")

@Produces("application/xml")

public class CategoryService {

 @GET

 @Path("/category/{id}")

 public Category getCategory(@PathParam("id") String id) {

 return null;

 }

 @POST

 @Path("/category")

 @Consumes("application/xml")

 public void addCategory(Category category) {

 }

 @DELETE

 @Path("/category/{id}")

 public void deleteCategory(@PathParam("id") String id) {

 }

 @PUT

 @Path("/category")

 public void updateCategory(Category category) {

 }

 @POST

 @Path("/category/book")

 @Consumes("application/xml")

 public void addBooks(Category category) {

 }

 @GET

 @Path("/category/{id}/books")

 @Consumes("application/xml")

 public void getBooks(@PathParam("id") String id) {

 }

}

As we can see from the above code, our implementation class CategoryService is
pretty straightforward. It deines methods to add a category, delete a category, get
a category, update a category, add books to a category, and get the books associated
with a category.

Chapter 6

[177]

The CategoryService also had various annotations deined on the class and
methods deinition. These annotations are JAX-RS annotations, which are used at
runtime to create the RESTful service resource. In JAX-RS terminology, a class which
has the JAX-RS annotations deined is termed as a Resource class.

The CategoryService deines the @Path and @Produces annotations above the
class declaration. The @Path annotation deines the URI path that a resource class
or class method will serve a request for. For example, for the CategoryService, we
have deined @Path("/categoryservice"), which means the URI request, such
as http://localhost:9080/restapp/categoryservice, would be served by the
CategoryService.

The @Produces annotation deines the content type that the method or resource class
can produce and send back to the client. You can deine the @Produces annotation on
a class as well as methods, in which case, the method level annotations would override
class annotations. If @Produces annotation is not speciied, then the runtime container
will assume that any content type can be produced. For the CategoryService class,
we have deined @Produces("application/xml") annotation, which implies that the
CategoryService produces only application/xml.

Each method in CategoryService is mapped to the HTTP methods that they
support. In JAX-RS terminology, the HTTP methods annotations, that is, @GET and
@POST are called Request Method Designators, while the methods of a resource
class annotated with a request method designator are termed as Resource methods.

The Resource class, such as CategoryService, which has a @Path annotation
deined, is termed as a Root Resource class. The Root Resource class provides
Request Method Designators to process the request. The following table
summarizes the Request Method Designators for CategoryService methods:

Resource Method Request Method
Designators

Description

getCategory @GET The @GET annotation indicates that the
annotated method responds to HTTP GET
requests.

addCategory @POST The @POST annotation indicates that the
annotated method responds to HTTP POST
requests.

deleteCategory @DELETE The @DELETE annotation indicates that the
annotated method responds to HTTP DELETE
requests.

Developing RESTful Services with CXF

[178]

Resource Method Request Method
Designators

Description

updateCategory @PUT The @PUT annotation indicates that the
annotated method responds to HTTP PUT
requests. The PUT request would typically
update the resource.

addBooks @POST The @POST annotation indicates that the
annotated method responds to HTTP POST
requests

getBooks @GET The @GET annotation indicates that the
annotated method responds to HTTP GET
requests

Associated with each method are the @Produce annotations which determine what
content type they produce, and the @Path attribute identiies the URI that would be
served by the method. The @Path may also include variables embedded in the URI,
like /category/{id}, as in the case of the getCategory() method. While resolving
the URI served by the method, the @Path attribute associated with the class would
also be taken into consideration. If the method doesn't specify a @Path annotation,
it's inherited from a class.

In JAX-RS terminology, URI path templates are URIs with zero or more
embedded parameters within the URI syntax. The /category/{id} is
an example of the URI path template.

For instance, if the HTTP GET request URL is http://localhost:9080/restapp/
categoryservice/category/001, then the container will map this request to
CategoryService class as it provides @Path annotation with /categoryservice
value and the method that would be invoked would be getCategory as it speciies
the @Path annotation with value ("/category/{id}"), which matches any URI
request starting with /category/{id} , where {id} is some value , like 001.

The following table summarizes the URI exposed by each method and examples of
HTTP URI that would invoke the resource method:

Chapter 6

[179]

Resource Method Request
Method
Designators

@Path Example of a HTTP URI request that
matches the resource method

getCategory @GET /category/
{id}

http://localhost:9080/
restapp/categoryservice/
category/001

addCategory @POST /category http://localhost:9080/
restapp/categoryservice/
category

deleteCategory @DELETE /category/
{id}

http://localhost:9080/
restapp/categoryservice/
category/001

updateCategory @PUT /category http://localhost:9080/
restapp/categoryservice/
category

addBooks @POST /category/
book

http://localhost:9080/
restapp/categoryservice/
category/book

getBooks @GET /category/
{id"}/
books

http://localhost:9080/
restapp/categoryservice/
category/001/books

The path used for addBooks is /category/book . We could have
also used /category/{id}/book to add books associated with
Category. We choose /category/book as we might want to add a
category along with books in one request instead of iring two requests
addCategory() followed by addBooks().

We will next look at the @PathParam annotation. The @PathParam annotation is
used to map a given URI Path template variable to the method parameter. For
instance, if you look at the getCategory() method, as shown below, its deines
the @PathParam("id") for @Path ("/category/{id}")

@Path("/category/{id}")

public Category getCategory(@PathParam("id") String id)

Any URI request such as /category/nnn, for instance, /category/001, would map
the value 001 to String id , which essentially means the String ID now has the
value 001.

Developing RESTful Services with CXF

[180]

Adding Data Access logic to the implementation class
The implementation class CategoryService needs to talk to a data store, like the
database or lat iles for accessing the Category and Books information. To do this we
create a Data Access object and provide a dummy implementation. Creating a Data
Access object is a common way to access the application's data store.

We will now develop the Data Access object. We will name this implementation class
as CategoryDAO.

Refer to http://java.sun.com/blueprints/corej2eepatterns/
Patterns/DataAccessObject.html for more information on the
Data Access object pattern.

The following code illustrates the CategoryDAO.java:
package demo.restful;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashMap;

import java.util.Map;

/*

 * DataAcess object for performing CRUD operations.

 * Dummy implementation.

 */

public class CategoryDAO {

 private static Map<String, Category> categoryMap =
 new HashMap<String, Category>();

 private static Map<String, Collection<Book>> bookMap =
 new HashMap<String, Collection<Book>>();

 static {

 //Populate some static data

 Category category1 = new Category();

 category1.setCategoryId("001");

 category1.setCategoryName("Java");

 categoryMap.put(category1.getCategoryId(), category1);

 Book book1 = new Book();

 book1.setAuthor("Naveen Balani");

 book1.setBookName("Spring Series");

 book1.setBookId("001");

 book1.setBookISBNnumber("ISB001");

 Book book2 = new Book();

 book2.setAuthor("Rajeev Hathi");

 book2.setBookName("CXF Series");

Chapter 6

[181]

 book2.setBookId("002");

 book2.setBookISBNnumber("ISB002");

 Collection<Book> booksList = new ArrayList<Book>();

 booksList.add(book1);

 booksList.add(book2);

 bookMap.put(category1.getCategoryId(), booksList);

 }

 public void addCategory(Category category) {

 categoryMap.put(category.getCategoryId(), category);

 }

 //Add Books associated with the Category

 public void addBook(Category category) {

 bookMap.put(category.getCategoryId(), category.getBooks());

 }

 public Collection<Book> getBooks(String categoryId) {

 return bookMap.get(categoryId);

 }

 public Category getCategory(String id) {

 Category cat = null;

 //Dummy implementation to return a new copy of category to

 //avoid getting overridden by service

 if(categoryMap.get(id) != null) {

 cat = new Category();

 cat.setCategoryId(categoryMap.get(id).getCategoryId());

 cat.setCategoryName(categoryMap.get(id).getCategoryName());

 }

 return cat;

 }

 public void deleteCategory(String id) {

 categoryMap.remove(id);

 // Remove association of books

 bookMap.remove(id);

 }

 public void updateCategory(Category category) {

 categoryMap.put(category.getCategoryId(), category);

 }

}

Developing RESTful Services with CXF

[182]

As you can see in the above code listing, we have created CRUD operations (Create,
Read, Update, Delete) for the Category object. For simplicity, we have created two
Static maps, categoryMap and booksMap, which hold dummy Category and Book
objects. In a real implementation scenario, you would typically access the database to
get this information.

Next, we integrate the CategoryDAO implementation class with the CategoryService.
The code listing below provides the revised CatalogService implementation:

package demo.restful;

//JAX-RS Imports

import javax.ws.rs.Consumes;

import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

/*

 * CategoryService class - Add/Removes category for books

 */

@Path("/categoryservice")

@Produces("application/xml")

public class CategoryService {

 public CategoryDAO getCategoryDAO() {

 return categoryDAO;

 }

 //Wired using Spring

public void setCategoryDAO(CategoryDAO categoryDAO) {

 this.categoryDAO = categoryDAO;

 }

 @GET

 @Path("/category/{id}")

 public Category getCategory(@PathParam("id") String id) {

 System.out.println("getCategory called with category id: "

 + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 return cat;

 }

 @POST

Chapter 6

[183]

 @Path("/category")

 @Consumes("application/xml")

 public void addCategory(Category category) {

 System.out.println("addCategory called");

 Category cat = (Category) getCategoryDAO().getCategory(

 category.getCategoryId());

 }

 @DELETE

 @Path("/category/{id}")

 public void deleteCategory(@PathParam("id") String id) {

 System.out.println("deleteCategory with category id : " +

 id);

 getCategoryDAO().deleteCategory(id);

 }

 @PUT

 @Path("/category")

 public void updateCategory(Category category) {

 System.out.println("updateCategory with category id : "

 + category.getCategoryId());

 getCategoryDAO().updateCategory(category);

 }

 @POST

 @Path("/category/book")

 @Consumes("application/xml")

 public void addBooks(Category category) {

 System.out.println("addBooks with category id : "

 + category.getCategoryId());

 Category cat = (Category) getCategoryDAO().getCategory(

 category.getCategoryId());

 getCategoryDAO().addBook(category);

 }

 @GET

 @Path("/category/{id}/books")

 @Consumes("application/xml")

 public Category getBooks(@PathParam("id") String id) {

 System.out.println("getBooks called with category id : "+

id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

Developing RESTful Services with CXF

[184]

 cat.setBooks(getCategoryDAO().getBooks(id));

 return cat;

 }

}

The code highlighted above shows the changes made to the CategoryService. As
you can see, each method implementation uses the CategoryDAO object to carry out
the corresponding operation. We don't create an instance of the CategoryDAO object.
Instead, the reference for the CategoryDAO object is injected through the Spring
coniguration ile. Since CXF provides integration with the Spring framework, you can
leverage the dependency injection capability of Spring in your applications.

The following is the code snippet for the Spring coniguration ile, named
restapp.xml and used by the application:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/
 spring-beans-2.0.xsd">

 <bean id="categoryService" class="demo.restful.CategoryService">

 <property name="categoryDAO">

 <ref bean="categoryDAO" />

 </property>

 </bean>

 <bean id="categoryDAO" class="demo.restful.CategoryDAO">

 <!-- wire dependency-->

 </bean>

As you can see above, we have deined the categoryDAO bean and wired the reference
to the categoryService bean. Our client will load this ile at the irst step. The
instantiation of the bean and wiring of the bean is handled by the Spring framework.

If you are not familiar with Spring framework, then refer to the Appendix
B Getting Started with Spring framework chapter on how to create a sample
application using the Spring framework and Spring IoC container.

Chapter 6

[185]

Creating the client
JAX-RS doesn't provide a standard approach for creating RESTful clients. The CXF
framework provides two approaches for creating clients. Each of these approaches
lets you conigure clients using Spring.

•	 Proxy-based API
Proxy-based API allows you to use the resource classes and interfaces that
you have created for RESTful service implementation. Proxy shields the
client from creating the HTTP request manually and inspects the RESTful
service implementation to create the HTTP request. To use the proxy-based
API approach, you need to use the org.apache.cxf.jaxrs.client.JAXR-
SClientFactory class and pass the RESTful service implementation class as
the input to create a proxy. Once the proxy is created, any method that you
invoke on proxy would invoke the required RESTFul service implementation.
The next code snippet explains how to use the JAXRSClientFactory to cre-
ate a proxy to CategoryService. Once we get a handle to the proxy, we can
than call the corresponding methods on it, for instance getBooks() method
as shown below:
CategoryService store = JAXRSClientFactory.create("http://
localhost:9000", CategoryService.class);

//Makes remote call to Category RESTFul service

store.getBooks("001");

•	 HTTP centric clients
HTTP centric clients use the org.apache.cxf.jaxrs.client.WebClient
instances to invoke the RESTful service. We will use the HTTP-centric
approach to communicate with the CategoryService RESFTful service and
look into the APIs in detail when creating the client.

We will now develop the client which will invoke the CategoryService RESTful
service. We will name this implementation class as CategoryServiceClient.

The following code illustrates the class CategoryServiceClient.java:

package demo.restful.client;

import java.util.Iterator;

import org.apache.cxf.jaxrs.client.WebClient;

import demo.restful.Book;

import demo.restful.Category;

public class CategoryServiceClient {

 public static void main(String[] args) {

 // Service instance

Developing RESTful Services with CXF

[186]

 WebClient client = WebClient.create("http://localhost:9000/");

 Category category = client.path("categoryservice/category/001").
 accept(

 "application/xml").get(Category.class);

 System.out.println("Category details from REST service.");

 System.out.println("Category Name " +
 category.getCategoryName());

 System.out.println("Category Id " + category.getCategoryId());

 System.out.println("Book details for Category "+
 category.getCategoryId() + " from REST service");

 String bookString = "categoryservice/category/"+
 category.getCategoryId() + "/books";

 WebClient clientBook = WebClient.create
 ("http://localhost:9000/");

 Category categoryBooks = clientBook.path(

 bookString).accept("application/xml")

 .get(Category.class);

 Iterator<Book> iterator = categoryBooks.getBooks().iterator();

 while (iterator.hasNext()) {

 Book book = iterator.next();

 System.out.println("Book Name " + book.getBookName());

 System.out.println("Book ISBN " + book.getBookISBNnumber());

 System.out.println("Book ID " + book.getBookId());

 System.out.println("Book Author " + book.getAuthor());

 }

 }

}

The code carries out the following steps:

1. We start off by creating an instance of WebClient, by passing the base URI
where the RESTful service is running.
WebClient client = WebClient.create(“http://localhost:9000/”);

2. Next, we specify the URI path that we want to invoke, which updates the base
URI, so the new URI becomes http://localhost:9000/categoryservice/
category/001. The accept method on the client sets the Accept header for
HTTP request and get method invokes the above URI. The response received
from the RESTful service is mapped to the Category object.
Category category = client.path("categoryservice/category/001").
accept(

 "application/xml").get(Category.class);

Chapter 6

[187]

3. After getting the Category object from RESTFul service, we then create one
more GET request to get books associated with the category. We create a URI
as http://localhost:9000/ categoryservice/category/001/books
and invoke the URI by calling the get method, and the response from the
RESTful service is mapped to the Category object.
String bookString = "categoryservice/category/"+
category.getCategoryId() + "/books";

 WebClient clientBook = WebClient.create
 ("http://localhost:9000/");

 Category categoryBooks = clientBook.path(

 bookString).accept("application/xml").
 get(Category.class);

4. Next, we print out the book information associated with the category, as
shown below:
Iterator<Book> iterator = categoryBooks.getBooks().iterator();

 while (iterator.hasNext()) {

 Book book = iterator.next();

 System.out.println("Book Name " + book.getBookName());

 System.out.println("Book ISBN " + book.
 getBookISBNnumber());

 System.out.println("Book ID " + book.getBookId());

 System.out.println("Book Author " + book.getAuthor());

 }

We have thus implemented a Client that invokes a GET operation for the
getCategory() and getBooks() resource method. In the next chapter we
will test the remaining resource methods and look at the HTTP request and
response format which lows between the client and the RESTFul service.

Making RESTful service available over HTTP
Before testing the client, we need to make the CategoryService available over
HTTP. The simplest way of doing this is by using the CXF org.apache.cxf.jaxrs.
JAXRSServerFactoryBean class, which exposes the CategoryService over HTTP
without the overhead of deploying the CategoryService in a web container. This is
really helpful if you need to quickly test out your RESTful service and clients and can
include this as part of your unit test before deploying the RESTful service in a web
container. Deploying in a web container would require you to perform extra steps
such as creating the web descriptor, JAX-RS conigurations, and packaging your
application as a web archive. In the next chapter we will look at these steps in detail
when we will deploy the CategoryService in a web container.

Developing RESTful Services with CXF

[188]

We will now look at how to make the CategoryService available over HTTP
using the CXF JAXRSServerFactoryBean class. We will name the class
CategoryServerStart

The following code listing shows the CategoryServerStart.java object:

package demo.restful.client;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

import demo.restful.Category;

import demo.restful.CategoryService;

public class CategoryServerStart {

 public static void main(String[] args) {

 ClassPathXmlApplicationContext appContext = new

 ClassPathXmlApplicationContext(new String[] {

 "/demo/restful/restapp.xml"

 });

 CategoryService categoryService = (CategoryService)

 appContext.getBean("categoryService");

 // Service instance

 JAXRSServerFactoryBean restServer = new
JAXRSServerFactoryBean();

 restServer.setResourceClasses(Category.class);

 restServer.setServiceBeans(categoryService);

 restServer.setAddress("http://localhost:9000/");

 restServer.create();

BufferedReader br = new BufferedReader(new InputStreamReader(System.
in));

 try {

 br.readLine();

 } catch (IOException e) {

 }

 System.out.println("Server Stopped");

 System.exit(0);

 }

}

Chapter 6

[189]

The following steps are executed as part of the code:

1. We start off by loading the Spring coniguration iles through the Spring
ClassPathXmlApplicationContext method.
 ClassPathXmlApplicationContext appContext =
 new ClassPathXmlApplicationContext(new String[] {

 "/demo/restful/restapp.xml"

 });

2. After the Spring coniguration ile is loaded, all the beans deined will
be instantiated and the references will be wired. We then access the
categoryService bean through the getBean() method.
 CategoryService categoryService = (CategoryService)

 appContext.getBean("categoryService");

3. Next, we create the JAXRSServerFactoryBean instance. We set the
service bean to CategoryService instance, and set the address where the
CategoryService needs to be deployed, which is http://localhost:9000,
and invoke the create method on the JAXRSServerFactoryBean instance.
The create method creates an embedded jetty service instance and deploys
the CategoryService. The server instance will run until you hit enter on the
console where this java program is executing.
JAXRSServerFactoryBean restServer = new JAXRSServerFactoryBean();

 restServer.setResourceClasses(Category.class);

 restServer.setServiceBeans(categoryService);

 restServer.setAddress("http://localhost:9000/");

 restServer.create();

Now, let's run the program and see our code in action.

Running the program
Before running the program, we will organize the code so far developed in the
appropriate folder structure. You can create the folder structure, as shown below,
and put the components in the respective subfolders.

Developing RESTful Services with CXF

[190]

As you can see in previous screenshot, the restapp is the project folder for this
chapter. The restapp\src is the location of our source code. Place the Java code
into the respective package folders in the restapp\src folder and the Spring
coniguration ile restapp.xml in the src\demo\restful folder.

Once the code is organized, we will build and deploy it in the Jetty embedded server.
It will typically involve three steps:

•	 Building the code
•	 Deploying the code
•	 Executing the code

Building the code
Building the code means compiling the source java code. To build the code we will
use the ANT tool. You need to create the CXF build scripts (build.xml) to build the
code, as shown below. The build.xml the same as any build scripts shipped with
CXF samples, but customized to our application. The build script for this example is
provided in Chapter6/restapp folder. The following code illustrates the build.xml
build script:

<?xml version="1.0" encoding="UTF-8"?>
<project name="CXF Book RESTFul App" default="build" basedir=".">
 <import file="common_build.xml"/>
 <target name="client" description=
 "run demo client" depends="build">
 <property name="param" value=""/>
 <cxfrun classname="demo.restful.client.CategoryServiceClient"
/>
 </target>
 <target name="server" description="run server" depends="build">
 <property name="param" value=""/>
 <cxfrun classname="demo.restful.client.CategoryServerStart" />
 </target>
 <property name="cxf.war.file.name" value="restapp"/>
 <target name="war" depends="build">
 <cxfwar filename="${cxf.war.file.name}.war" webxml=
 "webapp/WEB-INF/web.xml" />
 </target>
</project>

Alongside build.xml, you will also ind common_build.xml which provides
common CXF build functions. The common_build.xml is copied over from samples
folder of Apache CXF distribution. Open the command prompt window, go to
restapp folder, and run the ant command. It will build the code, and put the class
iles under the newly created build folder. The following screenshot shows the
output generated on running the ant command:

Chapter 6

[191]

Deploying the code
After the code build is inished, we deploy it in the embedded jetty container for
testing. To deploy our built code, navigate to the restapp folder and type the
following command

ant server

This will execute the Java program CategoryServerStart, which starts the
embedded jetty server, deploys the CategoryService, and makes it available
over the URL http://localhost:9000/catalogservice

After running the above command, you will see the following output. Don't close
this window as the server is running. After the client is invoked, you can hit enter
on this console to stop the server.

Developing RESTful Services with CXF

[192]

Executing the code
After the code deployment is inished, we are all set to run the Book Shop
application. You execute the Java client program CategoryServiceClient to invoke
the CatalogService. Run the client program by giving the following command on
the command prompt window:

ant client

On executing this command, the CategoryServiceClient will invoke the
CategoryService getCategory method using the URL http://localhost:8080/
categoryservice/category/001 followed by the getBooks method using the
URL http://localhost:8080/categoryservice/category/001/books to get the
books associated with the Category, as discussed in the Creating the client section.
The following output will be printed on the console, which displays the category and
book information for category ID 001.

On the console where you executed the ant server, you will see the following
response, denoting the getCategory() and getBook() request being executed for
category ID 001.

Chapter 6

[193]

You can also view the response of GET Category request in the browser by typing
the URL http://localhost:9000/categoryservice/category/001. You will see
the following response:

Similarly, to get the books' details for the category, type in URL http://
localhost:9000/categoryservice/category/001/books in the browser,
and you will see the following response:

Developing RESTful Services with CXF

[194]

Thus we have successfully deployed and tested the RESTful service. In the next
chapter we will look at how to deploy the Book Shop RESTful application in a
Tomcat container and test out all the scenarios for the Book Shop application. With
the RESTful service up and running, we next look at how to add exception handling
to a RESTful service.

Adding exception handling to RESTful service
Let's take a scenario where a client sends a request to delete or update a category,
and the category does not exist, so your implementation needs to return the correct
error message back to the client.

To deal with exceptions, JAX-RS provides the WebApplicationException, which
extends the Java RuntimeException class. The WebApplicationException can
take an HTTP status code or javax.ws.rs.core.Response object as part of the
constructor. The Response object can be used to set the entity information providing
a user readable error message along with the HTTP status code.

Typically, exception handling for RESTful service would fall into one of the
following categories:

•	 The implementation class can throw an unchecked
WebApplicationException with the required HTTP Error code. The
HTTP speciication deines which HTTP response code should be used for
unsuccessful requests, which can be interpreted by clients in a standard way.
For example, Status code 4xx deines client error, such as Bad request, and
5xx deines the server request where server failed to fulill a valid request.

•	 The implementation class can create a javax.ws.rs.core.Response object
and send a custom error message to the client or send the required HTTP
status code in the response.

•	 The implementation class can throw a checked exception, and you can
wire an Exception Resolver implementation to convert the application
exception to the Response object. The ExceptionResolver interface
provides a contract for a provider that maps Java exception to a Response.
For instance, if you are fetching information from the database, and a
record does not exist, and your application throws a RecordNotFound
exception, then you can map this exception to a Response object using your
ExceptionResolver implementation. The Response object can be populated
with a custom error message and sent back to the client, as mentioned in the
second approach.

Chapter 6

[195]

We will now modify the CategoryService class to add the exception handling
capability. We use the irst and second approach for exception handling to
understand these concepts in detail. The following is the revised CategoryService
class, we have only shown the code snippets which have changed.

package demo.restful;

//JAX-RS Imports …

/*

 * CategoryService class - Add/Removes category for books

 */

@Path("/categoryservice")

@Produces("application/xml")

public class CategoryService{

 @GET

 @Path("/category/{id}")

 public Category getCategory(@PathParam("id") String id) {

 System.out.println("getCategory called with category id: " +
 id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 if (cat == null) {

 ResponseBuilder builder =
 Response.status(Status.BAD_REQUEST);

 builder.type("application/xml");

 builder.entity("<error>Category Not Found</error>");

 throw new WebApplicationException(builder.build());

 } else {

 return cat;

 }

 }

 @POST

 @Path("/category")

 @Consumes("application/xml")

 public Response addCategory(Category category) {

 System.out.println("addCategory called");

 Category cat = (Category) getCategoryDAO().getCategory(

 category.getCategoryId());

 if (cat != null) {

 return Response.status(Status.BAD_REQUEST).build();

 } else {

 getCategoryDAO().addCategory(category);

 return Response.ok(category).build();

Developing RESTful Services with CXF

[196]

 }

 }

 @DELETE

 @Path("/category/{id}")

 public Response deleteCategory(@PathParam("id") String id) {

 System.out.println("deleteCategory with category id : " + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 if (cat == null) {

 return Response.status(Status.BAD_REQUEST).build();

 } else {

 getCategoryDAO().deleteCategory(id);

 return Response.ok().build();

 }

 }

 @PUT

 @Path("/category")

 public Response updateCategory(Category category) {

 System.out.println("updateCategory with category id : "

 + category.getCategoryId());

 Category cat = (Category) getCategoryDAO().getCategory(

 category.getCategoryId());

 if (cat == null) {

 return Response.status(Status.BAD_REQUEST).build();

 } else {

 getCategoryDAO().updateCategory(category);

 return Response.ok(category).build();

 }

 }

 @POST

 @Path("/category/book")

 @Consumes("application/xml")

 public Response addBooks(Category category) {

 System.out.println("addBooks with category id : "

 + category.getCategoryId());

 Category cat = (Category) getCategoryDAO().getCategory(

 category.getCategoryId());

 if (cat == null) {

 return Response.status(Status.NOT_FOUND).build();

 } else {

 getCategoryDAO().addBook(category);

 return Response.ok(category).build();

Chapter 6

[197]

 }

 }

 @GET

 @Path("/category/{id}/books")

 @Consumes("application/xml")

 public Response getBooks(@PathParam("id") String id) {

 System.out.println("getBooks called with category id : " + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 if (cat == null) {

 return Response.status(Status.NOT_FOUND).build();

 } else {

 cat.setBooks(getCategoryDAO().getBooks(id));

 return Response.ok(cat).build();

 }

 }

}

The code highlighted in the above code listing is the modiication that we have made
to add exception handling to the CategoryService implementation. The getCategory
method uses the irst approach, where we have used a javax.ws.rs.core.Response.
ResponseBuilder to create a Response object, set the entity error message as xml
<error>Category Not Found</error> and HTTP Status code as BAD_REQUEST.
We then build the response and throw a WebApplicationException back to the
client, as shown in above code listing. The CXF framework would convert the
WebApplicationException into required HTTP format and send the response back to
the client. We will look at HTTP response content in detail in the next chapter where
we will look at various test scenarios for CategoryService implementation.

For the rest of the resource method implementation, we modify the output parameter
to the javax.ws.rs.core.Response object. For instance , if you look at the addBooks
implementation above, if we do not ind a valid category ID in the client request, then
we would sent the HTTP STATUS NOT FOUND message back to the client, and if
the request is successfully processed, then we build the category response and send it
back to the client using the Response.ok(category).build() method

Developing RESTful Services with CXF

[198]

To test the exception handling code, follow the build and deploy steps mentioned
in the Running the program section to rebuild and deploy the program. Once the
Category Service is available over HTTP, type in http://localhost:9000/
categoryservice/category/003 in the browser, and you would get the HTTP
400 BAD Request message on the Internet Explorer browser, as shown in the next
screenshot. Internet Explorer doesn't show the custom error message. If you open
up the URL in Firefox browser, then you would see the custom error message
"<error>Category Not Found</error>" in the browser. As you can see, depending
on your client, the custom error message may not be shown. The standard method
is to use HTTP status code for returning the status to the client. If your clients can
interpret the error messages, then it's best to use a custom error message to give
more information about the error.

In the next chapter, we will look at the underlying request and response HTTP
message in detail.

Chapter 6

[199]

Summary
The chapter started by describing RESTful architecture and the REST based approach
for developing web services. We looked at JAX-RS speciications and how CXF
realizes the JAX-RS speciication and provides additional features for developing
enterprise RESTful services. We saw how to develop a RESTful web service with
CXF by looking at the example of the Book Shop application in a step-by-step
fashion. We also saw how to create clients to invoke the RESTful service and how to
build, deploy, and execute the RESTful service using ANT and Tomcat.

RESTful HTTP provides a unique concept to the way resources are accessed and
manipulated and simpliies overall web services development. In the next chapter
we will look at how to deploy the RESTful service in various containers and execute
the remaining test scenarios for the Book Shop application.

Deploying RESTful Services
with CXF

In the last chapter we looked at how to develop RESTful services and test the service
in an embedded jetty container. We also looked at how to handle exception scenarios
for the RESTful service.

In this chapter we will look at how to package the Book Shop application and deploy
it to the Tomcat container. We will then execute various test scenarios by invoking
operations on the Book Shop RESTful application.

One of the features of the CXF framework is the support for a pluggable data binding
mechanism in which different message formats such as XML, JSON, and XMLBeans
can be plugged declaratively. We will look at how to extend the Book Shop
application to support the JSON message format using CXF data binding support.

We will cover the following topics in this chapter:

•	 Packaging the Book Shop application.
•	 Invoking operations on the Book Shop RESTful application.
•	 Coniguring JSON support for the Book Shop application.
•	 Intercepting messages for the Book Shop application.
•	 Deploying the Book Shop application on application servers.

Deploying RESTful services with CXF

[202]

Packaging the Book Shop application
Packaging the Book Shop application involves creating the web archive for
deployment to a web container. So far we have created the Category Service RESTful
bean as part of the Book Shop application, we now need to conigure the bean and
make this available over the HTTP address, which can then be invoked by clients.

We will carry out the following steps:

1. Coniguring Category Service RESTful bean using Spring
2. Integrating Spring using web.xml
3. Building and deploying the WAR ile

The source code of this chapter is available in the Chapter7/
restapp folder of the source code distribution. Refer to Appendix A
for detailed instructions on how to download the source code from
the Packt site.

Coniguring CategoryService RESTful bean
using Spring
We will now expose the CategoryService bean as a RESTful resource over an
endpoint address which clients can invoke. CXF simpliies this coniguration with
the use of Spring-based coniguration iles. It is the use of such coniguration iles
that makes development of RESTful services convenient and easy with CXF. Spring
provides an Inversion of Control (IoC) container (also known as Dependency
Injection) which simpliies coniguration and wiring of the application objects.
To ind out more about the Spring framework and dependency injection, refer to
Appendix B.

We will create a server side Spring-based coniguration ile and name it as beans.
xml. The following code illustrates the beans.xml coniguration ile:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jaxrs="http://cxf.apache.org/jaxrs"

 xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://cxf.apache.org/jaxrs

http://cxf.apache.org/schemas/jaxrs.xsd">

Chapter 7

[203]

 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <import resource="classpath:META-INF/cxf/cxf-extension-jaxrs-
 binding.xml" />

 <import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

 <jaxrs:server id="categoryRESTService" address="/">

 <jaxrs:features>

 <cxf:logging/>

</jaxrs:features>

<jaxrs:serviceBeans>

 <ref bean="categoryService" />

 </jaxrs:serviceBeans>

 </jaxrs:server>

</beans>

Let's examine the above code and understand what it really means. We start off
by deining the necessary namespaces. We then deine a series of <import>
statements, cxf.xml, cxf-extension-soap.xml, and cxf-servlet.xml. These iles
are Spring-based coniguration iles that deine core components of CXF. These iles
are used to kick start CXF runtime and load the necessary CXF infrastructure objects
such as WSDL manager, conduit manager, destination factory manager and so on.

The <jaxrs:server> element in the beans.xml ile speciies the CategoryService
as a RESTful resource over an address. The element is deined with the following
attributes:

•	 Id—speciies a unique identiier for a bean with value categoryRESTService.
•	 address—speciies the URL endpoint address where the RESTful resource

will be available. The URL address must be relative to the web context. For
our example, the endpoint will be published using the relative URL /restapp,
where /restapp is the web context URL. So any request like /restapp/
categoryservice/category would go to one of the resource classes in the
given jaxrs:server endpoint, which is the CategoryService class.

•	 serviceBeans—speciies the actual RESTful implementation classes.
In this case, we have only one implementor class demo.restful.
CategoryService. The serviceBeans attribute wires the reference
to categoryService, which provides the CategoryService bean
deinition. As you will recollect from an earlier chapter we speciied the
CategoryService bean deinition in restapp.xml.

Deploying RESTful services with CXF

[204]

The <jaxrs:server> element publishes the CategoryService bean as a RESTful
resource over address. A developer need not have to write any Java class to publish
the RESTful service. Next we need to wire the CXF Controller Servlet (CXFServlet)
in web.xml which directs the request to one of the matching RESTful resources
deined in the <jaxrs:server> element.

Integrating Spring using web.xml
We will now wire CXF and Spring through web.xml. The following code illustrates
the web.xml ile:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 WEB-INF/beans.xml
 classpath:demo/restful/restapp.xml
 </param-value>
 </context-param>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>CXFServlet</servlet-name>
 <display-name>CXF Servlet</display-name>
 <servlet-class>
 org.apache.cxf.transport.servlet.CXFServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>CXFServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Chapter 7

[205]

Let's go through this piece of code. web.xml, as we know, is the web application
coniguration ile that deines a servlet and its properties. The ile deines
CXFServlet, which acts as a front runner component that initiates the CXF
environment. web.xml also deines the listener class ContextLoaderListener,
which is responsible for loading the server-side coniguration ile beans.xml and
restapp.xml. restapp.xml is the Spring coniguration ile that conigures our
RESTful application, which we discussed in one the earlier chapters. So on web
server startup, the CategoryService RESTful service will be registered and available
over the address, for example, /restapp/categoryservice.

Building and deploying the WAR ile
The source code and build iles for the example are available in the Chapter7/
restapp folder of the downloaded source code. The following screenshot shows
the folder layout:

beans.xml and web.xml are available in the webapp/WEB-INF folder and the Java
code is available in the relevant package folder. We will now build and deploy
the code in the Tomcat server. We will carry out the following steps:

•	 Building the code
•	 Deploying the code

Building the code
Building the code means compiling the Java source code. To build the code we
will use the ANT tool. The build.xml ile is provided in the Chapter 7/restapp
folder. build.xml is the same as other build scripts shipped with CXF samples,
but customized to our application. The following code illustrates the build.xml
build script:

Deploying RESTful services with CXF

[206]

<?xml version="1.0" encoding="UTF-8"?>

<project name="CXF Book RESTFul App" default="build" basedir=".">

 <import file="common_build.xml"/>

 <target name="runRESTClient" description="run demo client"
depends="build">

 <property name="param" value=""/>

 <cxfrun classname="demo.restful.client.
 CategoryServiceRESTClient"

 param1="${format}"

 />

 </target>

 <target name="server" description="run server" depends="build">

 <property name="param" value=""/>

 <cxfrun classname="demo.restful.client.CategoryServerStart" />

 </target>

 <property name="cxf.war.file.name" value="restapp"/>

 <target name="war" depends="build">

 <cxfwar filename="${cxf.war.file.name}.war" webxml="webapp/WEB-
 INF/web.xml" />

 </target>

</project>

Alongside build.xml you will also ind common_build.xml. You will need to
modify these build scripts to suit your environment. common_build.xml refers to
the CATILINA_HOME environment variable for locating the Tomcat installation. Make
sure that you have set up the environment as explained in Appendix A. Open the
command prompt window, go to the restapp folder, and run the ant command. It
will build the code and put the class iles under the newly created build folder. The
next screenshot shows the output generated upon running the ant command:

Chapter 7

[207]

Deploying the code
After the code build is inished, we deploy it. Deployment effectively means building
and moving the code archive to the server deploy path. We will be using the Tomcat
web container to deploy and run the application. To deploy our built code, navigate
to the restapp folder and give the following command:

ant deploy

This will build the WAR ile and put it under the Tomcat server webapp path. For
example, if you have installed Tomcat in the C:/Tomcat folder, then the WAR ile
will be deployed to the C:/Tomcat/webapp folder.

The following screenshot shows the output generated upon running the
ant deploy command:

When the deployment is inished, start the Tomcat server by navigating to the
Tomcat install location and click on the tomcat.exe ile. This starts the Tomcat
server on the default port 8080.

Deploying RESTful services with CXF

[208]

Invoking operations on the Book Shop
RESTful application
In order to invoke operations on the Book Shop RESTful application, we need to
create a client which will submit the HTTP request to the RESTful service. We irst
use the Poster development User Interface tool that provides a tooling environment
to interact with web services and inspect the result. The tool is pretty useful as it is
capable of working directly with the HTTP format, which allows us to understand
how the actual messages are represented, and provides an environment for
debugging raw HTTP messages. Next, we will look at how to use CXF APIs to create
clients, hiding the complexity of dealing with raw HTTP messages.

Installing POSTER client
Poster is available as add-on extension for the Firefox browser. If you don't have the
Firefox browser installed on your system, then install it from http://www.mozilla.
com/en-US/firefox/ie.html. We used Firefox version 3.5.2. Follow these steps to
install the Poster plug-in for Firefox:

1. Open up the URL https://addons.mozilla.org/en-US/firefox/
addon/2691 in the Firefox browser. The following screen comes up:

Chapter 7

[209]

2. Click the Add To Firefox button. A pop-up screen will appear, as shown in
the next screenshot. Click on the Install button. The Poster plug-in that we
used is 2.0, which is compatible with Firefox 3.5.2.

3. The Poster add-on will be installed, and you receive a conirmation
screen. Click the Restart Firefox button.

4. Launch the Poster plug-in by clicking on the P icon, as shown in the
next screenshot:

Deploying RESTful services with CXF

[210]

Invoking the Book Shop application using the
the POSTER tool
We now invoke the various methods exposed by the CategoryService bean for
our Book Shop application. To recap from a previous chapter, the following table
provides the resource methods exposed by the CategoryService bean. Request
method designators supported by each resource method, URI served by the methods
and example of HTTP URL that would invoke the resource method.

Resource Method Request
Method
Designators

@Path Example of a HTTP URI request
that matches the resource method

getCategory @GET /category/
{id}

http://localhost:8080/
restapp/categoryservice/
category/001

addCategory @POST /category http://localhost:8080/
restapp/categoryservice/
category

deleteCategory @DELETE /category/
{id}

http://localhost:8080/
restapp/categoryservice/
category/001

UpdateCategory @PUT /category http://localhost:8080/
restapp/categoryservice/
category

AddBooks @POST /category/
book

http://localhost:8080/
restapp/categoryservice/
category/book

getBooks @GET /category/
{id"}/
books

http://localhost:8080/
restapp/categoryservice/
category/001/books

Invoking the Get Category operation
We now send a GET Category request to the CategoryService. Launch the poster
plug-in, and enter the following information in the Poster screen

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category/001 (replace 8080 with the port number where the web server
is running)

2. Click on the Headers tab, enter Accept in Name ield and Value
as application/xml, as shown in the next screenshot, then click the
Add/change button. The Accept header speciies that the client accepts
only application/xml content type as a response.

Chapter 7

[211]

3. In the Actions tab, click GET method to issue HTTP GET request to the
CategoryService with the above information.

The following getCategory() method code will be executed as highlighted in bold,
retrieving the category information based on category id. Since we have populated
category information with dummy data for category ID 001, category information
would be retrieved for category ID 001. Next the CXF JSX-RS implementation
converts the Category Java object to an XML format using JAXB binding. It also
creates the HTTP response, sets the HTTP headers (status, content-type, content
length), and Category XML in the HTTP message body data.

 @GET
 @Path("/category/{id}")
 public Category getCategory(@PathParam("id") String id) {

 System.out.println("getCategory called with category id: " + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);
 if (cat == null) {
 ResponseBuilder builder = Response.status(Status.BAD_REQUEST);
 builder.type("application/xml");
 builder.entity("<error>Category Not Found</error>");
 throw new WebApplicationException(builder.build());
 } else {
 return cat;

Deploying RESTful services with CXF

[212]

 }
 }

On successful invocation, you receive the following response from the
getCategory() method of the CategoryService. As you can see in the next
screenshot, the response is in an XML format, which represents the category
information for category 001. The HTTP Status is 200, which signiies that the
request was successfully processed.

Invoking the Add Category operation
We will send an Add Category request to the CategoryService. Enter the following
information in the Poster screen:

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category (Replace 8080 with the port number where the web server
is running).

2. Enter Content Type as application/xml. The content type speciies
the request format.

3. In the Content to Send ield, enter the following Category information
in an XML format:
<Category><categoryName>.NET</categoryName><categoryId>002</
categoryId></Category>

4. Click on the Headers tab, and check if the Name ield contains Accept and
if its Value is application/xml. If not, then add these values.

Chapter 7

[213]

5. In the Actions tab, click POST method to issue HTTP POST request to
the CategoryService with the above information.

The following addCategory() method code, as highlighted in bold, will be executed
in order to add the category information:

 @POST
 @Path("/category")
 @Consumes("application/xml")
 public Response addCategory(Category category) {

 System.out.println("addCategory called");

 Category cat = (Category) getCategoryDAO().getCategory(
 category.getCategoryId());
 if (cat != null) {
 return Response.status(Status.BAD_REQUEST).build();
 } else {
 getCategoryDAO().addCategory(category);
 return Response.ok(category).build();
 }

 }

Deploying RESTful services with CXF

[214]

On successful invocation, you receive the following response from the
addCategory() method of the CategoryService. You get the same XML request
data resource as for the response data resource. The HTTP Status is 200, which
signiies that the request was successfully processed.

Invoking the Update Category operation
In this scenario, we will send an Update Category request to the CategoryService
by entering the following information on the Poster screen:

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category (Replace 8080 with the port number where the web server
is running).

2. Enter Content Type as application/xml. This speciies the request
content type.

3. In the Content to Send ield, enter the following Category information in
XML format
<Category><categoryName>Microsoft NET</
categoryName><categoryId>002</categoryId></Category>

4. Click on the Headers tab, and check if the Name ield contains Accept and if
its Value is application/xml. If not, then add these values.

5. In the Actions tab, click the PUT method to issue HTTP PUT request to
the CategoryService with the above information.

Chapter 7

[215]

The following updateCategory() method code, as highlighted in bold, will be
executed in order to update the category information for category ID 002. Since the
category ID 002 does exist, the update will be successful. If the category ID doesn't
exist, then an error will be thrown back to the client. We will look at this scenario in
the Invoking the Update Category operation with Invalid request section.

 @PUT
 @Path("/category")
 public Response updateCategory(Category category) {
 System.out.println("updateCategory with category id : "
 + category.getCategoryId());

 Category cat = (Category) getCategoryDAO().getCategory(
 category.getCategoryId());
 if (cat == null) {
 return Response.status(Status.BAD_REQUEST).build();
 } else {
 getCategoryDAO().updateCategory(category);
 return Response.ok(category).build();
 }
 }

Deploying RESTful services with CXF

[216]

On successful invocation, you receive the following response from the
updateCategory() method of the CategoryService. You get the same XML request
data resource as for the response data resource. The HTTP Status is 200, which
signiies that the request was successfully processed.

Invoking the Add Books operation
So far we have created a category Microsoft .NET with category ID 002. We will
now add books to the Category ID 002. We send an Add Book request to the
CategoryService by entering the following information in the Poster screen:

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category/book (Replace 8080 with the port number where the web server
is running).

2. Enter Content Type as application/xml.
3. In the Content to Send ield, enter the following Category information in

an XML format. As you can see in the request below, we have speciied the
category ID as 002.
<Category>
<books><author>Naveen Balani</author><bookISBNumber>ISB003</
bookISBNumber><bookId>003</bookId><bookName>Spring NET Series</
bookName></books>
<categoryName>Microsoft NET</categoryName><categoryId>002</
categoryId>
</Category>

Chapter 7

[217]

4. Click on the Headers tab, and check if the Name ield contains Accept and
if its Value is application/xml. If not, then add these values.

5. In the Actions tab, click the POST method to issue HTTP POST request to
the CategoryService with the above information.

The following addBook() method code will be executed as highlighted in bold,
adding the books information for category ID 002.

 @POST

 @Path("/category/book")

 @Consumes("application/xml")

 public Response addBooks(Category category) {

 System.out.println("addBooks with category id : "

 + category.getCategoryId());

 Category cat = (Category) getCategoryDAO().getCategory(

 category.getCategoryId());

 if (cat == null) {

Deploying RESTful services with CXF

[218]

 return Response.status(Status.NOT_FOUND).build();

 } else {

 getCategoryDAO().addBook(category);

 return Response.ok(category).build();

 }

 }

On successful invocation, you receive the following response from the addBooks()
method of the CategoryService. You get the same XML request message as
the response message. The HTTP Status is 200, which signiies the request was
successfully processed.

Invoking the Get Books operation
We will now retrieve the books information that we added by invoking the Get
Book operations on the CategoryService. Enter the following information in
the Poster screen:

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category/002/books (Replace 8080 with the port number where the
web server is running).

2. Click on the Headers tab, and check if the Name ield contains Accept
and if its Value is application/xml. If not, then add these values.

Chapter 7

[219]

3. In the Actions tab, click the GET method to issue HTTP GET request
to the CategoryService with the above information.

The following getBooks() method code will be executed as highlighted in bold,
retrieving all books information associated with the category ID.

 @GET

 @Path("/category/{id}/books")

 @Consumes("application/xml")

 public Response getBooks(@PathParam("id") String id) {

 System.out.println("getBooks called with category id : " + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 if (cat == null) {

 return Response.status(Status.NOT_FOUND).build();

 } else {

 cat.setBooks(getCategoryDAO().getBooks(id));

 return Response.ok(cat).build();

 }

 }

Deploying RESTful services with CXF

[220]

On successful invocation, you receive the following response from the getBooks()
method of the CategoryService. As you can observe in the screenshot below the
response is in XML format, which represents the books information for category 001.
The HTTP Status is 200, which signiies that the request was successfully processed:

Invoking the Update Category operation with
invalid request
We will now test out exception scenarios for CategoryService. We will send an
Update Category request to the CategoryService with a category ID that does not
exist in the system. Enter the following information in the Poster screen.

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category (Replace 8080 with the port number where the web server is
running).

2. Enter Content Type as application/xml.
3. Click on the Headers tab, and check if the Name ield contains Accept and

if Value is application/xml. If not, then add these values.

Chapter 7

[221]

4. In the Content to Send ield, enter the following Category information
in an XML format. Note that we specify the categoryId as 003, which
does not exist.
<Category><categoryName>Microsoft NET</
categoryName><categoryId>003</categoryId></Category>

5. In the Actions tab, click the PUT method to issue HTTP PUT request to
the CategoryService with the above information.

The following updateCategory() method code will be executed as highlighted in
bold. As the category ID 003 doesn't exist, we set the Response Status as BAD_REQUEST
denoting an error. The CXF JSX RS implementation then creates an HTTP response
with status code as 400 (BAD_REQUEST) denoting an error back to the client. Apart from
HTTP status code, you can also send a custom error message back to the client. We will
look at this scenario in the next invocation request.

 @PUT
 @Path("/category")
 public Response updateCategory(Category category) {

 System.out.println("updateCategory with category id : "
 + category.getCategoryId());

 Category cat = (Category) getCategoryDAO().getCategory(

Deploying RESTful services with CXF

[222]

 category.getCategoryId());
 if (cat == null) {
 return Response.status(Status.BAD_REQUEST).build();
 } else {
 getCategoryDAO().updateCategory(category);
 return Response.ok(category).build();
 }
 }

You would receive the following response from the updateCategory() method
of the CategoryService. As you see in the following screenshot, the Status is 400
Bad Request, which signiies that the there was an error while processing the request
due to a Bad Request message being sent by the client.

Invoking the Get Category operation with invalid
request
In this scenario, we will send a Get Category request to the CategoryService
where category ID does not exist. Enter the following information in the Poster screen:

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category/003 (Replace 8080 with the port number where the web server
is running). Here we can see that category ID is speciied as 003.

2. Click on the Headers tab, and check if the Name ield contains Accept and
Value is application/xml. If not, then add these values.

Chapter 7

[223]

3. In the Actions tab, click the GET method to issue HTTP GET request to the
CategoryService with the above information.

4. The following getCategory() method code will be executed, as highlighted
in bold. Since the category ID doesn't exist, we create a custom error message
"<error>Category Not Found</error>" and set it in Response object and
throw a WebApplicationException. Next, the CXF JSX-RS implementation
creates the HTTP response, sets the HTTP Status code as 400, and sets the
exception message in HTTP body.

 @GET

 @Path("/category/{id}")

 public Category getCategory(@PathParam("id") String id) {

 System.out.println("getCategory called with category id: "
 + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 if (cat == null) {

 ResponseBuilder builder = Response.status(Status.BAD_
 REQUEST);

 builder.type("application/xml");

 builder.entity("<error>Category Not Found</error>");

 throw new WebApplicationException(builder.build());

 } else {

 return cat;

 }

 }

You would receive the following error response from the getCategory() service:

Deploying RESTful services with CXF

[224]

Invoking the Delete Category operation
We will now delete the category information by sending a delete category request to
the CategoryService. Enter the following information in the Poster screen

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category/002 (replace 8080 with the port number where the web server
is running). Here we can see that the category ID is speciied as 002.

2. In the Actions tab, select the DELETE method and click submit to issue an
HTTP DELETE request to the CategoryService with the above information.

The following deleteCategory() method code will be executed as highlighted
in bold. If the category is deleted, then we build the response for successful
conirmation using Response.ok().build():

 @DELETE

 @Path("/category/{id}")

 public Response deleteCategory(@PathParam("id") String id) {

 System.out.println("deleteCategory with category id : " + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 if (cat == null) {

 return Response.status(Status.BAD_REQUEST).build();

 } else {

 getCategoryDAO().deleteCategory(id);

Chapter 7

[225]

 return Response.ok().build();

 }

 }

You will receive the following response from the deleteCategory() service.
The HTTP status code is 200 denoting a successful invocation.

You can verify if the category ID is successfully deleted, by invoking the GET
Category operation with the category ID 002.

Invoking the Book Shop application using
CXF APIs
We will now look at how to invoke the Book shop application using CXF APIs. The
source code for the client, which is CategoryServiceRESTClient.java, is available
in the Chapter7/restapp/demo/restful/client folder of the downloaded source
code. The CategoryServiceRESTClient class is a standalone class, which provides
a test method for testing out the various CategoryService RESTful methods. We
can break down the code into code snippets for better understanding.

•	 The testAddCategory() method
The testAddCategory() method invokes the addCategory() method of the
CategoryService.
We start off by creating an instance of WebClient by passing the base URI
where the RESTful service is running. We looked at the WebClient API in
an earlier chapter. The following code snippet shows the WebClient API:

Deploying RESTful services with CXF

[226]

WebClient client = WebClient.create(CATEGORY_URL)

The CATEGORY_URL is deined as one of the constants in the
CategoryServiceRESTClient class. Change the value to point it to the URL
where the Category Service is running:
private static final String CATEGORY_URL="http://localhost:8080";

Next, we specify the URI path that we want to invoke in client.path() meth-
od, so the actual URI to invoke becomes CATEGORY_URL + categoryservice/
category. Following shows the code snippet for client.path() method:
client.path("categoryservice/category").accept(

 format).type(format);

The accept method on the client sets the Accept header for HTTP request,
and the type method on the client sets the Content Type. Since we are
dealing with XML messages, we would pass the type and accept values as
application/xml while running the program.

•	 Next we create an instance of Category object and call the client.
post(cat, Category.class). The client post method invokes an HTTP
POST request with the Category object as input. The response received back
from RESTful service is mapped to the Category object.
The following shows the code snippet:
Category cat = new Category();

cat.setCategoryId(CATEGORY_ID);

cat.setCategoryName("Fiction");

Category catResponse = client.post(cat, Category.class);

System.out.println("Category Id retreived for format " + format
+ "

 is "+ catResponse.getCategoryId());

Here we can see how the WebClient abstracts out the underlying low
level implementation details, and we directly work with the Java object.
The conversion of Java objects to XML messages and the creation of an
HTTP request, as speciied in Invoking the Add Category operation section,
would be carried out by the CXF framework

•	 The testUpdateCategory() method
The testUpdateCategory() method invokes the updateCategory()
method of the CategoryService.

Chapter 7

[227]

We start off by creating an instance of the Category object and call the
client.put(cat) method. The client put method invokes an HTTP PUT
request with the Category object as input. The response received back from
the RESTful service is mapped to the Response object. We then print the
status of PUT operation using the response.getStatus() method, which
should be 200 in the case of a successful update. We looked at the Response
object in an earlier chapter while dealing with exception handling. The
following shows the code snippet:
Category cat = new Category();

cat.setCategoryId(CATEGORY_ID);

cat.setCategoryName("Fiction Series");

Response response = client.put(cat);

System.out.println("Status retreived for update category for
format " + format + " is " + response.getStatus());

•	 The testGetCategory() method
The testGetCategory() method invokes the getCategory() method of
the CategoryService.
We invoke the get method on the client using the get(Category.class)
method. The input to the get method is a class name. The CXF framework
maps the response received from the RESTful service to the Category class.
The get method would invoke an HTTP GET method with the required URL.
The following shows the code snippet:
WebClient client = WebClient.create(CATEGORY_URL);

Category category = client.path("/categoryservice/
category/"+CATEGORY_ID).accept(

 format).type(format).get(Category.class);

System.out.println("Category details retreived from service with
format "+ format);

System.out.println("Category Name " + category.getCategoryName());

System.out.println("Category Id " + category.getCategoryId());

•	 The testAddBooksForCategory() method
The testAddBooksForCategory() method invokes the addBooks()
method on the CategoryService.

Deploying RESTful services with CXF

[228]

We start off by creating an instance of Category and Book object, and add the
Book object to the Category instance. We specify a category ID which exists in
the system. A similar exception would be thrown, as discussed in Invoking the
Get Category operation with Invalid request section, if category ID passed does
not exist in the system. We then invoke the post(cat, Category.class)
method on the client. The client post method invokes an HTTP POST
request with the Category object as input. The response received back from
the RESTful service is mapped to the Category object. The following shows
the code snippet:
WebClient client = WebClient.create(CATEGORY_URL);

 client.path("/categoryservice/category/book").type(format).

 accept(format);

 Category cat = new Category();

 cat.setCategoryId(CATEGORY_ID);

 cat.setCategoryName("Fiction Series");

 Book book1 = new Book();

 book1.setAuthor("Naveen Balani");

 book1.setBookId("NB001");

 book1.setBookISBNnumber("ISBNB001");

 book1.setBookName("Fiction Book1");

 Collection<Book> booksList = new ArrayList<Book>();

 booksList.add(book1);

 cat.setBooks(booksList);

 client.post(cat, Category.class);

•	 The testGetBooksForCategory() method
The testGetBooksForCategory() method invokes the getBooks() method
on the CategoryService.
We invoke the get method on the client using the get(Category.class)
method. The input to the get method is the class name. CXF framework
maps the response received from the RESTful service to the Category class.
We then retrieve the books associated with the Category object and print
the output on the console.
The following code snippet explains how to retrieve the books information
and prints out the book details:
WebClient clientBook = WebClient.create(CATEGORY_URL);

Category categoryBooks = clientBook.path(

"/categoryservice/category/"+CATEGORY_ID +"/books")

.type(format).accept(format)

Chapter 7

[229]

.get(Category.class);

System.out.println("Book details retreived from service
with format "+ format);

assertEquals(String.valueOf(categoryBooks.getBooks().size()),
"1");

Iterator<Book> iterator = categoryBooks.getBooks().iterator();

while (iterator.hasNext()) {

Book book = iterator.next();

 System.out.println("Book Name " + book.getBookName());

 System.out.println("Book ISBN " + book.getBookISBNnumber());

 System.out.println("Book ID " + book.getBookId());

 System.out.println("Book Author " + book.getAuthor());

}

Next, we will run the client. To run the client, navigate to the Chapter7/
restapp/demo/restful/client folder of the downloaded source code, and
type in the following ant command. Before running the client, make sure that
the Tomcat server is running.
ant runRESTClient -Dformat=application/xml

This command will run the CategoryServiceRESTClient class. We pass
the format argument to the CategoryServiceRESTClient class with value
as application/xml. The application/xml value is set as the type and
accept value on the WebClient object instance, as discussed earlier. The
type maps to HTTP Content-Type and accept maps to HTTP Accept tag,
denoting the request format is application/xml and the client is expecting
the response in an application/xml format.

Deploying RESTful services with CXF

[230]

After running the client you see the following output at the console. Each
of the test methods listed above gets executed, which invokes the required
methods on the RESTful service and prints out the response at the console.

Coniguring JSON support for the Book
Shop application
For the Book Shop application, we used XML as the message format for interaction
between clients and RESTful services. Based on applications requirements, you may
want to use JSON as the message format. JSON is a light weight data-interchange
format and is being widely used with AJAX (Asynchronous JavaScript and XML)
based applications.

CXF simpliies handling of multiple message formats through its support for
Pluggable Binding mechanism, where the same RESTful resource can support
multiple message formats, for instance, JSON as the message format.

Chapter 7

[231]

We will now look at how to support JSON message format for the Book
Shop application.

Incorporating JSON message format for
the Book Shop application
We will now change the CategoryService bean to handle the JSON message
format. The following code highlighted in bold illustrates the modiication for
CategoryService for handling JSON message format

package demo.restful;

//JAX-RS Imports
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.ResponseBuilder;
import javax.ws.rs.core.Response.Status;

/*
 * CategoryService class - Add/Removes category for books
 */

@Path("/categoryservice")
@Produces({"application/json","application/xml"})
public class CategoryService {

 private CategoryDAO categoryDAO = new CategoryDAO();

 public CategoryDAO getCategoryDAO() {
 return categoryDAO;
 }

 public void setCategoryDAO(CategoryDAO categoryDAO) {
 this.categoryDAO = categoryDAO;
 }
 @GET
 @Path("/category/{id}")
 @Produces({"application/json","application/xml"})
 public Category getCategory(@PathParam("id") String id) {

 System.out.println("getCategory called with category id: " + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);
 if (cat == null) {
 ResponseBuilder builder = Response.status(Status.BAD_REQUEST);
 builder.type("application/xml");

Deploying RESTful services with CXF

[232]

 builder.entity("<error>Category Not Found</error>");
 throw new WebApplicationException(builder.build());
 } else {
 return cat;
 }
 }

 @POST
 @Path("/category")
 @Consumes({"application/json","application/xml"})
 public Response addCategory(Category category) {

 System.out.println("addCategory called");

 Category cat = (Category) getCategoryDAO().getCategory(
 category.getCategoryId());

 if (cat != null) {
 return Response.status(Status.BAD_REQUEST).build();
 } else {
 getCategoryDAO().addCategory(category);
 return Response.ok(category).build();
 }

 }

 @DELETE
 @Path("/category/{id}")
 public Response deleteCategory(@PathParam("id") String id) {

 System.out.println("deleteCategory with category id : " + id);
 Category cat = (Category) getCategoryDAO().getCategory(id);
 if (cat == null) {
 return Response.status(Status.BAD_REQUEST).build();
 } else {
 getCategoryDAO().deleteCategory(id);
 return Response.ok().build();
 }
 }

 @PUT
 @Path("/category")
 @Consumes({"application/json","application/xml"})
 public Response updateCategory(Category category) {

 System.out.println("updateCategory with category id : "
 + category.getCategoryId());

 Category cat = (Category) getCategoryDAO().getCategory(
 category.getCategoryId());
 if (cat == null) {
 return Response.status(Status.BAD_REQUEST).build();
 } else {
 getCategoryDAO().updateCategory(category);
 return Response.ok(category).build();
 }
 }

Chapter 7

[233]

 @POST
 @Path("/category/book")
 @Consumes({"application/json","application/xml"})
 public Response addBooks(Category category) {
 System.out.println("addBooks with category id : "
 + category.getCategoryId());

 Category cat = (Category) getCategoryDAO().getCategory(
 category.getCategoryId());
 if (cat == null) {
 return Response.status(Status.NOT_FOUND).build();
 } else {
 getCategoryDAO().addBook(category);
 return Response.ok(category).build();
 }
 }

 @GET
 @Path("/category/{id}/books")
 @Consumes("application/xml,application/json")
 public Response getBooks(@PathParam("id") String id) {

 System.out.println("getBooks called with category id : " + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 if (cat == null) {
 return Response.status(Status.NOT_FOUND).build();
 } else {
 cat.setBooks(getCategoryDAO().getBooks(id));
 return Response.ok(cat).build();

 }
 }

}

The above code shows that we have modiied only the @Produces and @Consumes
annotations to add support for application/json type, which speciies the
CategoryService accepts and produces application/json type in addition to
application/xml. The CXF runtime would handle the conversion of HTTP JSON
request to Java objects, and map the response from Java objects to HTTP JSON
response format. Based on the content type associated with the HTTP request,
the JSON or XML request would be serialized to Java objects and the appropriate
methods which serve those request types would be called. For the CategoryService,
all resource methods accept and produce XML as well as JSON formats.

Deploying RESTful services with CXF

[234]

We have thus enabled JSON support for CategoryService. Follow the steps in the
Building the code and Deploying the code sub sections mentioned in the Building and
deploying the WAR ile section to deploy the latest code. Before running the deploy
command on the console, carry out the following steps:

1. Stop the Tomcat server
2. Undeploy the web application by running the following command on the

command prompt from the Chapter7/restapp folder
 ant undeploy

3. Start the Tomcat server

We would next invoke the CategoryService RESTful resource using JSON as the
message format.

Invoking the Get Category operation with JSON as
the message format
We now send a Get Category request to the CategoryService and receive the
output response in JSON format. Launch the poster plug-in, and enter the following
information in the Poster screen:

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category/001 (Replace 8080 with the port number where the web server
is running).

2. Click on the Headers tab, and in the Name ield enter Accept, in the Value
ield enter application/json, and click Add/Change. This will overwrite any
existing values for the Accept parameter.

3. In the Actions tab, click GET to issue a HTTP GET request to the
CategoryService

Chapter 7

[235]

The getCategory() method code will be executed, as shown in the next code
snippet. We had analyzed this code earlier in the Invoking the Get Category operation
section. There is no change in the implementation, the only thing that we added was
the @Produces annotation which speciies that geCategory() accepts application/
xml and application/json as the message format. If you remove the application/
json value, build and redeploy the application, and ire the same request, then CXF
runtime will throw an error as it can't ind a resource that accepts the application/
json message type. The CXF implementation converts the Category Java object to
the JSON format using default JSON binding. It also creates the HTTP response, and
sets the HTTP headers (status, content-type, content length) and Category JSON
format as the HTTP body data.

@GET

 @Path("/category/{id}")

 @Produces({"application/json","application/xml"})

 public Category getCategory(@PathParam("id") String id) {

 System.out.println("getCategory called with category id: " + id);

 Category cat = (Category) getCategoryDAO().getCategory(id);

 if (cat == null) {

 ResponseBuilder builder = Response.status(Status.BAD_REQUEST);

 builder.type("application/xml");

Deploying RESTful services with CXF

[236]

 builder.entity("<error>Category Not Found</error>");

 throw new WebApplicationException(builder.build());

 } else {

 return cat;

 }

 }

On successful invocation, you receive the following response from the
getCategory() method of the CategoryService. As you can see, the response is in
JSON format, which represents the category information for category 001. The HTTP
Status is 200, which signiies that the request was successfully processed.

Invoking the Add Category operation with JSON
as the message format
We will send an Add Category request to the CategoryService using JSON as the
message format. Enter the following information in the Poster screen, as shown in
the next screenshot:

1. Enter URL as http://localhost:8080/restapp/categoryservice/
category (Replace 8080 with the port number where the web server is
running).

2. Enter Content Type as application/json. This speciies the request
content type.

Chapter 7

[237]

3. Click on the Headers tab, and in the Name ield enter Accept, in the Value
ield enter application/json, and click Add/Change. This will overwrite any
existing values for the Accept parameter.

4. In the Content to Send ield, enter the following Category information in a
JSON format.
{"Category":{"categoryId":"003","categoryName":"WebSphere"}}

5. In the Actions section, click on the POST method, which will issue an HTTP
POST request to the CategoryService with the above information.

The addCategory() method is executed for the above request, which now consumes
application/json as the message format. The code is the same as the one we
analyzed earlier in the Invoking the Add category section.

Deploying RESTful services with CXF

[238]

On successful invocation you receive the following response from the
addCategory() method of the CategoryService. You get the same JSON request
message as for the response message. The HTTP Status is 200, which signiies that
the request was successfully processed.

Similarly, you can invoke the rest of the operations of CategoryService using JSON
as the message format.

Invoking the Book Shop application with
JSON as the message format using CXF APIs
We will use the same client, discussed earlier in the Invoking the Book Shop application
using CXF APIs section. To run the client, navigate to the Chapter7/restapp/demo/
restful/client folder of the downloaded source code, and type in the following
ant command. Before running the client, please make sure that the Tomcat server is
running.

ant runRESTClient -Dformat=application/json

Chapter 7

[239]

This command will run the CategoryServiceRESTClient class. As you can see,
we now pass the format argument as application/json. The application/json
value will be set as the type and accept value on the WebClient object instance, as
discussed earlier in the Invoking the Book Shop application using CXF APIs section. The
type maps to HTTP Content-Type and accept maps to HTTP Accept tag denotes
the request format is application/json and that the client is expecting the response
in application/json format.

The important point to note is there is no change in the client code, except that we
now set application/json as the message format. CXF handles the conversion
of JSON format to Java objects transparently behind the scenes. CXF handles this
conversion transparently through its data-binding framework.

After running the above command you will see the following output at the console.
Each of the test methods, as discussed earlier in the Invoking the Book Shop application
using CXF APIs section, gets executed, and this invokes the required methods on
the RESTful service and prints out the response at the console. As you can see in the
following screenshot, we are now using application/json as the message format.

Deploying RESTful services with CXF

[240]

Intercepting messages for the Book Shop
application
Based on application requirements you may want to intercept the request and
response messages to log the messages or do pre or post processing of the messages.
For instance, you may want to check if security headers are present in the request,
authenticate the information, and then invoke the JAX-RS resource. CXF provides
Interceptors and Custom Invokers to pre or post process the message. In Chapter 5
we looked at how to use Interceptors to intercept SOAP requests. If your application
requires you to merely log the messages, then you can use the <cfx:logging>
coniguration in association with <jaxrs:server> deinition to log inbound and
outbound messages.

For the Book Shop application, we would go with simpliied logging capability. To
enable logging, we modify beans.xml. The following highlighted code shows the
modiication made to bean.xml to enable logging:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jaxrs="http://cxf.apache.org/jaxrs"

 xmlns:cxf="http://cxf.apache.org/core"

 xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://cxf.apache.org/jaxrs

http://cxf.apache.org/schemas/jaxrs.xsd

http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <import resource="classpath:META-INF/cxf/cxf-extension-jaxrs-
 binding.xml" />

 <import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

 <jaxrs:server id="categoryService" address="/">

 <jaxrs:features>

 <cxf:logging/>

</jaxrs:features>

<jaxrs:serviceBeans>

Chapter 7

[241]

 <ref bean="categoryServiceBean" />

 </jaxrs:serviceBeans>

 </jaxrs:server>

 <bean id="categoryServiceBean" class="demo.restful.CategoryService"/>

</beans>

As you can see in the above coniguration, we have added an <jaxrs:features>
deinition tag along with <cfx:logging>cxf, which tells the CXF runtime to enable
logging for categoryService.

Thus we have enabled logging for CategoryService. Follow the steps in the Building
the code and Deploying the code subsection mentioned in the Building and deploying the
WAR ile section to deploy the latest code. Before running the deploy command on
the console, carry out the following steps:

1. Stop the Tomcat server
2. Undeploy the web application by running the following

command on the command prompt from the source code build location
(C:\ApaceCFXBook\restapp)CXF
 ant undeploy

3. Start the Tomcat server

Fire a sample GET request with category ID 001, as mentioned in Invoking the
Get Category operation and the Invoking the Get Category operation with JSON
message format section.

You will see the following messages being logged in the tomcat_install/logs/
catalina.xxxx-xx-xx.log ile:

INFO: Inbound Message

ID: 1

Address: /restapp/categoryservice/category/001

Encoding: UTF-8

Content-Type:

Headers: {connection=[keep-alive], accept-language=[en-us,en;q=0.5],
host=[localhost:8080], keep-alive=[300], user-agent=[Mozilla/5.0
(Windows; U; Windows NT 5.1; en-US; rv:1.9.0.13) Gecko/2009073022
Firefox/3.0.13 (.NET CLR 3.5.30729)], accept-encoding=[gzip,deflate],
Content-Type=[null], Accept=[application/xml], accept-charset=[ISO-
8859-1,utf-8;q=0.7,*;q=0.7]}

Payload:

Deploying RESTful services with CXF

[242]

Aug 10, 2009 10:40:05 PM org.apache.cxf.interceptor.LoggingOutIntercep
tor$LoggingCallback onClose

INFO: Outbound Message

ID: 1

Encoding:

Content-Type: application/xml

Headers: {Date=[Mon, 10 Aug 2009 17:10:04 GMT]}

Payload: <?xml version="1.0" encoding="UTF-8" standalone="yes"?><Cate
gory><categoryId>001</categoryId><categoryName>Java</categoryName></
Category>

The above message speciies the GET Category request with the response type
as application/xml. As you can see above, the response Content-Type is set
as application/xml, denoting XML as response format.

The following messages specify the GET Category request with the response type
as application/json:

Aug 10, 2009 10:40:13 PM org.apache.cxf.interceptor.
LoggingInInterceptor logging

INFO: Inbound Message

ID: 2

Address: /restapp/categoryservice/category/001

Encoding: UTF-8

Content-Type:

Headers: {connection=[keep-alive], accept-language=[en-us,en;q=0.5],
host=[localhost:8080], keep-alive=[300], user-agent=[Mozilla/5.0
(Windows; U; Windows NT 5.1; en-US; rv:1.9.0.13) Gecko/2009073022
Firefox/3.0.13 (.NET CLR 3.5.30729)], accept-encoding=[gzip,deflate],
Content-Type=[null], Accept=[application/json], accept-charset=[ISO-
8859-1,utf-8;q=0.7,*;q=0.7]}

Payload:

Aug 10, 2009 10:40:13 PM org.apache.cxf.interceptor.LoggingOutIntercep
tor$LoggingCallback onClose

INFO: Outbound Message

ID: 2

Encoding:

Content-Type: application/json

Headers: {Date=[Mon, 10 Aug 2009 17:10:13 GMT]}

Payload: {"Category":{"categoryId":"001","categoryName":"Java"}}

Chapter 7

[243]

As you can see above, the response Content-Type is set as application/json,
denoting JSON as response format.

Thus, we have successfully deployed and tested the RESTful service which utilizes
the CXF logging feature.

Deploying the Book Shop application in
the application servers
So far we have deployed the Book Shop application web archive in the Tomcat
web server. You might want to deploy the Book Shop application in various other
application servers. The steps to deploy the Book Shop application web archive
remains more or less the same for all application servers, where the application
servers provide some kind of administration console or administrative command to
deploy the applications. The war ile (restapp.war) for the Book Shop application
is available inside the /restapp/build/war folder where you built the source
code. You need to import this war ile during deployment. Once the web archive
is deployed, you can test your deployment by invoking various operations, as
mentioned in the Invoking the Book Shop Application section.

Summary
In this chapter we looked at how to deploy a RESTful service in a Tomcat web
container. We then executed various operations on the RESTful service using the
Poster development tool.

We also looked at how to enable JSON support for the existing CategoryService
implementation and how CXF framework enables the JSON data-binding
mechanism seamlessly. To follow up, we executed sample invocation scenarios for
the CategoryService with JSON as the message format. We thus enabled support
for XML as well as JSON for the Book Shop RESTful application

Finally, we looked at how to enable logging using the CXF features declaratively,
and touched upon procedures to deploy the Book Shop application to various
application servers.

Using the CXF JAX-RS features greatly simpliied the RESTful service
development and provided various capabilities such as logging interceptors,
multiple data-binding supports, and simpliied coniguration using integration
with the Spring framework.

Working with CXF Tools
The CXF framework provides various tools that assist developers in creating and
invoking web services. CXF provides tools to create web service clients and web
service implementations from WSDL iles, to create SOAP binding and service
deinition from WSDL interfaces, to validate WSDL iles, and to integrate with the
popular Apache Maven software tool for build management.

In this chapter we will look at some of the commonly used CXF tools that assist in
web service development. We will cover the following topics in this chapter:

•	 Invoking web services using a Java client
•	 Invoking web services using JavaScript
•	 Creating web service implementation from a WSDL ile
•	 Using the WSDLValidator tool to validate the WSDL ile

Invoking a web service using the
Java client
A web service exposes a set of operations over the network, typically via HTTP
protocol. In order to invoke the web services, the web service client needs to know
the following information:

•	 What operations are exposed by the web service
•	 The input and output message formats required to access the service

operations
•	 What protocol, for instance HTTP or JMS, to use to invoke the web service
•	 The URL location of the web service

Working with CXF Tools

[246]

All of the above information is contained in the standard XML descriptor called
WSDL (Web Service Description Language). The WSDL ile provides a format
contract between the web service provider and the web service client. In earlier
chapters we looked at the formats of the WSDL ile. The web service client typically
inspects the WSDL ile to determine what operations are exposed by the web service,
what parameters need to be supplied to invoke the web service operation and to
formulate the request, and invokes the web service over the supported protocol.
Similarly, the web service clients need to write the code to inspect the response and
convert it into the required format. CXF hides the complexity of creating web service
clients by providing the WSDL to Java command line tool, which takes a WSDL ile
and generates client code. The client code can be used by developers with no changes
to invoke the web services.

In Chapter 3 we looked at the Contract First development approach where we used
the WSDL2Java tool to generate SEI classes from WSDL. In order to create clients, we
reused the server-side SEI interface and input classes. Often this might not be the
case as you wouldn't have access to the actual SEI interface and input classes and
you would generate client code from the WSDL ile and use this for creating clients.
In this section, we will look at how to generate client code from an existing WSDL.
For this example, we will take a real world scenario, where we will invoke a .NET
service located over the Web using the Java client generated by the WSDL to Java
tool. This shows the true power of web service interoperability, where applications
implemented in different languages can communicate with each other.

The process of generating web service clients does not differ for web
services implemented in different languages, as you generate web service
clients from WSDL and XML Schema deinitions.

Before invoking the .NET service, let's examine the WSDL to determine which
operations are exposed by the web service.

Analyzing the service WSDL deinition
We will invoke a publicly available .NET web service located at http://www.
ignyte.com/webservices/ignyte.whatsshowing.webservice/moviefunctions.

asmx?wsdl. This web service retrieves US Theaters and Movie Showtime information
based on a valid US zip code and a radius supplied by the web service clients.

The .NET web service is a WS-I compliant web service.

Chapter 8

[247]

The Web Services Interoperability Organization (WS-I), an open industry
organization, was formed to promote web services interoperability across platforms,
operating systems, and programming languages. One concrete product of WS-I is the
Basic Proile. Basic Proile narrows the scope of speciications to a reasonable set of
rules and guidelines that are best suited to help interoperability.

If you type in the given URL in the browser, you see the WSDL deinition, as shown
in the following screenshot:

Let's analyze the important sections of the WSDL ile to get an understanding of
which operations are exposed by the movie information web service and which
message formats are required to invoke the web service.

The web service provides two operations, GetTheatersAndMovies and
GetUpcomingMovies, as shown in listing below. For this chapter, we will focus on
how to invoke the GetTheatersAndMovies operation. The GetTheatersAndMovies
takes the GetTheatersAndMoviesSoapIn message as the input and provides
GetTheatersAndMoviesSoapOut as the output message.

Working with CXF Tools

[248]

<wsdl:portType name="MovieInformationSoap">

 <wsdl:operation name="GetTheatersAndMovies">

 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/
wsdl/">This method will retrieve a list of all theaters and the movies
playing today.</wsdl:documentation>

 <wsdl:input message="tns:GetTheatersAndMoviesSoapIn" />

 <wsdl:output message="tns:GetTheatersAndMoviesSoapOut" />

 </wsdl:operation>

 </wsdl:portType>

The web service client invokes the GetTheatersAndMovies operation to get theater
and movie information. The input to the GetTheatersAndMovies operation is the
GetTheatersAndMoviesSoapIn XML message.

The GetTheatersAndMoviesSoapIn message references the GetTheatersAndMovies
element, which deines the actual XML schema deinition for the input message. The
following is the code listing of GetTheatersAndMovies schema deinition:

<s:element name="GetTheatersAndMovies">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1"
 name="zipCode" type="s:string" />

 <s:element minOccurs="1" maxOccurs="1"
 name="radius" type="s:int" />

 </s:sequence>

 </s:complexType>

 </s:element>

The GetTheatersAndMovies contains an element zipCode of type String and
radius which is of type integer that needs to be passed as input by the web
services client as an input to the GetTheatersAndMoviesSoapIn operation. The
minOccurs and maxOccurs attribute associated with zipCode and radius is
used to specify the minimum and maximum occurrence of the element inside a
GetTheatersAndMovies element. The zipCode and radius element can appear
only once inside a GetTheatersAndMovies element as it speciies the value of
maxOccurs="1". If maxOccurs has the value Unbounded, then it implies that
multiple occurrences of the element can exist.

Similarly, the GetTheatersAndMoviesResponse speciies the output
message format for the response. The following is the code listing of the
GetTheatersAndMoviesResponse schema deinition. We will break down
the schema for better understanding:

Chapter 8

[249]

•	 The GetTheatersAndMoviesResponse schema
The following shows the deinition of GetTheatersAndMoviesResponse. The
GetTheatersAndMoviesResponse contains an element ArrayOfTheater.
<s:element name="GetTheatersAndMoviesResponse">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1"
 name="GetTheatersAndMoviesResult" type=
 "tns:ArrayOfTheater" />

 </s:sequence>

 </s:complexType>

</s:element>

•	 The ArrayOfTheater Schema
The following shows the deinition of ArrayOfTheater schema.
The ArrayOfTheater is an array which consists of Theatre elements.
The maxOccurs="unbounded" speciies that multiple occurrences of
Theatre elements can exist in an ArrayOfTheater element.
 <s:complexType name="ArrayOfTheater">

 <s:sequence>

 <s:element minOccurs="0" maxOccurs=
 "unbounded" name="Theater" nillable=
 "true" type="tns:Theater" />

 </s:sequence>

 </s:complexType>

•	 The Theatre Schema
The Theater elements consist of the Name and Address elements of type
String, which speciies the name and address of the Theatre and an array of
ArrayOfMovie element.
<s:complexType name="Theater">

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1"
 name="Name" type="s:string" />

 <s:element minOccurs="0" maxOccurs="1"
 name="Address" type="s:string" />

 <s:element minOccurs="0" maxOccurs="1"
 name="Movies" type="tns:ArrayOfMovie" />

 </s:sequence>

</s:complexType>

Working with CXF Tools

[250]

•	 The ArrayOfMovie Schema
The following is the ArrayOfMovie deinition. The ArrayOfMovie is an array
which consists of Movie elements. The maxOccurs="unbounded" speciies
that multiple occurrences of Movie elements can exist in an ArrayOfMovie
element.
<s:complexType name="ArrayOfMovie">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs=
 "unbounded" name="Movie" nillable=
 "true" type="tns:Movie" />
 </s:sequence>
 </s:complexType>

•	 The Movie Schema
The Movie element contains details of movies such as ratings, names of the
movies, running times and show times represented as String type.
<s:complexType name="Movie">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
 name="Rating" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1"
 name="Name" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1"
 name="RunningTime" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1"
 name="ShowTimes" type="s:string" />
 </s:sequence>
 </s:complexType>

Based on the Schema deinitions above, the CXF WSDL2Java tool generates Java
code that maps to these XML elements. The web service clients communicate
with the web services using these generated Java objects to invoke a Java method
representing the GetTheatersAndMoviesoperation and leave the SOAP XML to
Java conversion and low level implementation details with the CXF framework.

The SOAP address in the WSDL ile speciies the location of the service, which is
http://www.ignyte.com/webservices/ignyte.whatsshowing.webservice/

moviefunctions.asmx, as shown in the listing below:

<wsdl:service name="MovieInformation">

 <wsdl:port name="MovieInformationSoap" binding=
 "tns:MovieInformationSoap">

 <soap:address location="http://www.ignyte.com/webservices/
 ignyte.whatsshowing.webservice/moviefunctions.asmx" />

 </wsdl:port>

Chapter 8

[251]

 <wsdl:port name="MovieInformationSoap12" binding=
 "tns:MovieInformationSoap12">

 <soap12:address location="http://www.ignyte.com/webservices/
 ignyte.whatsshowing.webservice/moviefunctions.asmx" />

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

We will now look at how to generate the web service client code for the Movie
information web service.

Building and running the Java web service
clients
The source code and build iles for the example are available in the Chapter8/
wsdl2Java folder of the downloaded source code. We will follow the steps below
to build and execute the web service client:

•	 Generate the web service clients
•	 Analyze the generated artifacts
•	 Modify the generated code
•	 Build the web service client
•	 Run the web service client

Generate the web service clients
We will use the Ant build script (build.xml) for generating the web service client
code and building the project code as shown below. Navigate to the Chapter8/
wsdl2java folder of the downloaded source code. Execute the cxfWSDLToJava target
by navigating to the wsdl2java folder and running the following command:

ant cxfWSDLToJava

Working with CXF Tools

[252]

The following igure shows the output generated upon running the ant command:

The cxfWSDLToJava ant target calls the CXF tool apache.cxf.tools.wsdlto.
WSDLToJava to generate web service client code based on the URL http://www.
ignyte.com/webservices/ignyte.whatsshowing.webservice/moviefunctions.
asmx?wsdl

The following is a code snippet of ant target cxfWSDLToJava in build.xml:

 <target name="cxfWSDLToJava">

 <java classname="org.apache.cxf.tools.wsdlto.WSDLToJava"
 fork="true">

 <arg value="-client"/>

 <arg value="-d"/>

 <arg value="src"/>

 <arg value="http://www.ignyte.com/webservices/ignyte.
 whatsshowing.webservice/moviefunctions.asmx?wsdl"/>

 <classpath>

 <path refid="cxf.classpath"/>

 </classpath>

 </java>

 </target>

WSDLToJava generates JAX-WS compliant Java code for the services deined in the
WSDL document. Based on the parameters passed, it can generate the starting point
of the code for developing the web service client and service. The client option, as
shown in above snippet, generates the client code. The following is a list of augments
and descriptions supported by the WSDLToJava tool extracted as it is from the CXF
website—http://cwiki.apache.org/CXF20DOC/wsdl-to-java.html.

Chapter 8

[253]

Option Description
-? Displays the online help for this utility.
-help Displays the online help for this utility.
-h Displays the online help for this utility.
-fe frontend-name Speciies the frontend technology to use for generating

code. Default is JAXWS. Currently supports only JAXWS
frontend.

-db databinding-name Speciies the data binding mechanism. Default is jaxb.
Currently supports jaxb and xmlbeans databinding.
sdo (sdo-static and sdo-dynamic) supported in 2.3.

-wv wsdl-version Speciies the WSDL version. Default is WSDL1.1.
Currently supports only WSDL1.1 version.

-p [wsdl-namespace=]
PackageName

Speciies zero or more package names to use for
the generated code. Optionally speciies the WSDL
namespace to package name mapping.

-sn service-name The WSDL service name to use for the generated code.

-b binding-name Speciies JAXWS or JAXB binding iles or XMLBeans
context iles. Use multiple -b lags to specify multiple
entries.

-catalog catalog-file-name Specify catalog ile to map the imported wsdl/schema
-d output-directory Speciies the directory into which the generated code

iles are written.
-compile Compiles generated Java iles.
-classdir complile-class-
dir

Speciies the directory into which the compiled class iles
are written.

-client Generates starting point code for a client mainline.
-server Generates starting point code for a server mainline.
-impl Generates starting point code for an implementation

object.
-all Generates all starting point code—types, service proxy,

service interface, server mainline, client mainline,
implementation object, and an Ant build.xml ile.

-ant Generates the Ant build.xml ile.
-autoNameResolution Automatically resolve naming conlicts without

requiring the use of binding customizations.

Working with CXF Tools

[254]

Option Description
-defaultValues=
[DefaultValueProvider impl]

Speciies that default values are generated for the
impl and client. You can also provide a custom
default value provider. The default provider is
RandomValueProvider.

-nexclude schema-namespace
[=java-packagename]

Ignore the speciied WSDL schema namespace when
generating code. This option may be speciied multiple
times. Also, it optionally speciies the Java package name
used by types described in the excluded namespace(s).

-exsh (true/false) Enables or disables processing of implicit SOAP headers
(that is, SOAP headers deined in the wsdl:binding
but not the wsdl:portType section). Default is false.

-dns (true/false) Enables or disables the loading of the default
namespace package name mapping. Default is
true and http://www.w3.org/2005/08/
addressing=org.apache.cxf.ws.addressing
namespace package mapping will be enabled.

-dex (true/false) Enables or disables the loading of the default excludes
namespace mapping. Default is true.

-validate Enables validating the WSDL before generating the code.

-keep Speciies that the code generator will not overwrite any
pre-existing iles. You will be responsible for resolving
any resulting compilation issues.

-wsdlLocation wsdlLocation Speciies the value of the @WebServiceClient
annotation's wsdlLocation property.

-xjc<xjc args> Speciies a comma separated list of arguments that are
passed directly to the XJC processor when using the
JAXB databinding. A list of available XJC plugins can be
obtained using -xjc-X.

-noAddressBinding For compatibility with CXF 2.0, this lag directs the code
generator to generate the older CXF proprietary WS-
Addressing types instead of the JAX-WS 2.1 compliant
WS-Addressing types.

-v Displays the version number for the tool.
-verbose Displays comments during the code generation process.

-quiet Suppresses comments during the code generation
process.

wsdlfile The path and name of the WSDL ile to use in generating
the code.

Chapter 8

[255]

After executing the command, the generated code is created in the
wsdl2java/src folder.

Analyzing the JAX-WS and client generated
artifacts
The following artifacts are generated in the wsdl2Java/src/com/ignite/
whatsshowing folder:

•	 JAXB classes—these are generated by reading the schema deinitions
deined in the Movie information WSDL. The classes generated for the
Movie information web service are ArrayOfMovie, ArrayOfTheater,
ArrayOfUpcomingMovie, Movie, Theater UpcomingMovie, and
ObjectFactory.

•	 The RequestWrapper and ResponseWrapper classes—as the Movie
information web service uses the document-literal web service style,
the Request and Response wrapper objects are generated for input and
output message formats for the operations GetTheatersAndMovies
and GetUpcomingMovies. The Request and Response Wrapper
objects wrap the input and output for document-literal wrapped style
web services. The GetTheatersAndMovies (Request Wrapper) and
GetTheatersAndMoviesResponse (Response Wrapper) are generated for
the getTheatersAndMovies operation.

•	 The next code snippet shows the generated GetTheatersAndMovies.java.
As you can see below, the class has JAXB annotations that are deined to map
Java to an XML element. The JAXB annotations are similar to one that was
deined in earlier chapters. The @XmlRootElement deines the root element
of the input request which has the name GetTheatersAndMovies. The
attributes zipCode and radius are contained in the GetTheatersAndMovies
XML element. The annotations are used to map Java to an XML request.
@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "", propOrder = {

 "month",

 "year"

})

@XmlRootElement(name = "GetTheatersAndMovies")

public class GetTheatersAndMovies {

 protected String zipCode;

 protected int radius;

 public String getZipCode() {

 return zipCode;

Working with CXF Tools

[256]

 }

 public void setZipCode(String value) {

 this.zipCode = value;

 }

 public int getRadius() {

 return radius;

 }

 public void setRadius(int value) {

 this.radius = value;

 }

}

•	 Service Interface—this class contains the service interface for the Movie
information web service. The service interface generated for the Movie
information web service is MovieInformationSoap.java

•	 Service class—this is the class that web service clients will use to make
requests to the web service. The service class generated for the Movie
information web service is MovieInformation.java. The service class
contains the @WebServiceClient annotation and lookup methods to
retrieve the Service Interface.

•	 Client code—the standalone web service client code that provides a
starting point for the client code, which calls various operations of the
web service. You need to modify the client code to provide the input
for each of the operations being invoked. The client code generated
for the Movie information web service is MovieInformationSoap_
MovieInformationSoap12_Client.java and MovieInformationSoap_
MovieInformationSoap_Client.java. Two client codes are generated
as there are two ports deined for the Movie information service,
MovieInformationSoap and MovieInformationSoap12. You can use any of
the client code. There are two port types provided to support SOAP 1.1 and
SOAP 1.2 request.

Modifying the generated client
We will now modify the generated client MovieInformationSoap_
MovieInformationSoap12_Client.java to provide input to the
getTheatersAndMovies operations method. Open the MovieInformationSoap_
MovieInformationSoap12_Client.java in any text editor, and modify the
generated code, as highlighted in bold.

package com.ignyte.whatsshowing;

import java.io.File;

Chapter 8

[257]

//Other imports…..

import java.util.List;

public final class MovieInformationSoap_MovieInformationSoap12_Client
{

 public static void main(String args[]) throws Exception {

 //Refer to generated code for compete listing

 System.out.println("Invoking getTheatersAndMovies...");

 java.lang.String _getTheatersAndMovies_zipCode = "78750";

 int _getTheatersAndMovies_radius = 2;

com.ignyte.whatsshowing.ArrayOfTheater _getTheatersAndMovies__
return = port.getTheatersAndMovies(_getTheatersAndMovies_zipCode, _
getTheatersAndMovies_radius);

System.out.println("getTheatersAndMovies.result=" + _
getTheatersAndMovies__return);

 System.out.println("Theater List is : "

 + _getTheatersAndMovies__return.getTheater().size());

List<Theater> theatreList = _getTheatersAndMovies__return.
getTheater();

 for (int i = 0; i < theatreList.size(); i++) {

 System.out.println("Theatre Name : " +

 theatreList.get(i).getName());

 List<Movie> movieList =

 theatreList.get(i).getMovies().getMovie();

 for (int j = 0; j < movieList.size(); j++) {

 System.out.println("Movie Name : " +

 movieList.get(j).getName());

 System.out.println("Movie Rating : " +
 movieList.get(j).getRating());

 }

 System.out.println("End of Movies for Theatre :"

 + theatreList.get(i).getName());

 }

//Remaining code block

Working with CXF Tools

[258]

 As you can see in the previous code, we specify the zip code as 78750 and radius
as 2. Next, the operation getTheatersAndMovies(_getTheatersAndMovies_
zipCode, _getTheatersAndMovies_radius) is invoked. The operation returns
the com.ignyte.whatsshowing.ArrayOfTheater response. We then get the list
of theatres from com.ignyte.whatsshowing.ArrayOfTheater object by calling
the _getTheatersAndMovies__return.getTheater() method. Next we iterate
through the theatreList and print the name, theatreList.get(i).getName().
For each theatre, we retrieve the list of movies running in that theatre, by calling
theatreList.get(i).getMovies().getMovie(). We then iterate through the set of
movies and print the name, movieList.get(j).getName() and rating, movieList.
get(j).getRating() for each movie.

Building the client
To build the client, navigate to the wsld2java folder, and run the following
command to build the code.

ant build

The following screenshot shows the output generated on running the ant command:

Running the client
To run the client, navigate to the wsld2java folder, and run the following command
to build the code:

ant runClient

This command calls the target runClient in build.xml, and executes the
MovieInformationSoap_MovieInformationSoap_Client class

Chapter 8

[259]

The following output will be printed on the console. Look for the Theater List is
system output message to determine how many theatres are retrieved for that area
code. For each theatre you see the movie information being printed on the console.
Look for the Movie Name and Movie Rating system output message, as shown in
the next screenshot. Note that this information is retrieved at runtime, so the value of
Theater List is would vary from the one shown in the screenshot below:

We have thus successfully invoked the Movie information web service.

Invoking the web service using
JavaScript
CXF provides a tool called WSDL to JavaScript, which generates JavaScript client
code from the WSDL ile that can be used to invoke the web service. The generated
JavaScript code uses the XMLHttpRequest object, which provides scripted client
functionality for transferring data between a client and a server. Most modern
browsers support the XMLHttpRequest speciication. You need a compatible browser
supporting XMLHttpRequest APIs. The example has been tested on Internet Explorer
version 6.x and above.

Working with CXF Tools

[260]

Building and running the Java web service
clients
The source code and build iles for the example are available in the Chapter8/
wsdl2Java folder of the downloaded source code .We will follow the steps below
to build and execute the JavaScript web service client:

•	 Generate the JavaScript web service client
•	 Analyze the generated JavaScript artifacts
•	 Modify the JavaScript code for execution
•	 Run the JavaScript client on the browser

Generating the JavaScript client
We will use the Ant build script (build.xml) to generate the JavaScript client code
and build the project code, as shown below. Navigate to the Chapter8/wsdl2JS
folder of the downloaded source code.

Execute the cxfWSDLToJS target by navigating to the wsdl2JS folder, and run the
following command line:

ant cxfWSDLToJS

The following screenshot shows the output generated on running the ant command:

cxfWSDLToJS calls the CXF tool org.apache.cxf.tools.wsdlto.javascript.
WSDLToJavaScript to generate JavaScript code based on the WSDL URL http://www.
ignyte.com/webservices/ignyte.whatsshowing.webservice/moviefunctions.

asmx?wsdl. The following shows the code snippet of the cxfWSDLToJS target.

 <target name="cxfWSDLToJS">

Chapter 8

[261]

 <java classname="org.apache.cxf.tools.wsdlto.javascript.
 WSDLToJavaScript" fork="true">

 <arg value="-d"/>

 <arg value="src"/>

 <arg value="http://www.ignyte.com/webservices/ignyte.
 whatsshowing.webservice/moviefunctions.asmx?wsdl"/>

 <classpath>

 <path refid="cxf.classpath"/>

 </classpath>

 </java>

 </target>

The –d option in the above code snippet speciies the directory for the generated
code. After running the cxfWSDLToJS target, the JavaScript code will be generated in
the src folder. The WSDLToJavaScript generates JavaScript for the services deined
in the WSDL document. The following is the list of arguments and descriptions
supported by the WSDLToJS tool, extracted as it is from the CXF website—http://

cwiki.apache.org/CXF20DOC/wsdl-to-javascript.html

Option Description
-? Displays the online help for this utility.
-help Displays the online help for this utility.
-h Displays the online help for this utility.

-p
Speciies a mapping between the namespaces used in the WSDL
document and the preixes used in the generated JavaScript. This
argument can be used more than once.

-catalog
Speciies the URL of an XML catalog to be used for resolving imported
schemas and WSDL documents.

-d Speciies the directory into which the generated code is written.

-validate
Instructs the tool to validate the WSDL document before attempting to
generate any code.

-v Displays the version number for the tool.
-verbose Displays comments during the code generation process

-quiet Suppresses comments during the code generation process.

wsdlUrl
Speciies the location of the WSDL document from which the code
is generated.

After executing the command, the generated code is created in the src folder of the
wsdl2JS folder.

Working with CXF Tools

[262]

Analyzing the generated artifacts
JavaScript MovieInformation.js gets generated from the WSDL document in the
wsdl2JS/src folder. The JavaScript code is organized as follows:

•	 Schema functions—these are generated by reading the schema deinitions
deined in Movie information WSDL. For each of the schemas deined in
WSDL, a corresponding JavaScript function is generated. The code for each
schema starts with a comment, such as
Definitions for schema: http://www.ignyte.com/whatsshowing

Constructor for XML Schema item {http://www.ignyte.com/
whatsshowing}Movie

The Following is an example of the generated Movie schema:
//

// Definitions for schema: http://www.ignyte.com/whatsshowing

// http://www.ignyte.com/webservices/ignyte.whatsshowing.
webservice/moviefunctions.asmx?wsdl#types1

//

// Constructor for XML Schema item {http://www.ignyte.com/
whatsshowing}Movie

//

function www_ignyte_com_whatsshowing_Movie () {

 this.typeMarker = 'www_ignyte_com_whatsshowing_Movie';

 this._Rating = null;

 this._Name = null;

 this._RunningTime = null;

 this._ShowTimes = null;

}

For the Movie Information web service, we would have the JavaScript
functions code generated for Movie, UpcomingMovie, ArrayOfMovie,
Theater, ArrayOfUpcomingMovie, ArrayOfTheater, GetUpcomingMovies-
Response, GetTheatersAndMoviesResponse, GetTheatersAndMovies, and
GetUpcomingMovies.

Chapter 8

[263]

•	 Serialization and Deserialization functions—For each of the Schema code
generated, corresponding Serialization and Deserialization functions are
generated. The serialize function is used to convert the JavaScript schema
object to an XML request format and the deserialize function converts
the XML response to the corresponding JavaScript object. The following
code snippet shows the generated function handling the serializing and
deserializing of the Movie object:
//

// Serialize {http://www.ignyte.com/whatsshowing}Movie

//

function www_ignyte_com_whatsshowing_Movie_serialize(cxfjsutils,
elementName, extraNamespaces) {

 var xml = '';

 if (elementName != null) {

 xml = xml + '<';

 xml = xml + elementName;

 xml = xml + ' ';

 xml = xml + 'xmlns:jns0=\'http://www.ignyte.com/
 whatsshowing\' ';

 if (extraNamespaces) {

 xml = xml + ' ' + extraNamespaces;

 }

 xml = xml + '>';

 }

 // block for local variables

 {

 //Converts Rating object to XML Object

 if (this._Rating != null) {

 xml = xml + '<jns0:Rating>';

 xml = xml + cxfjsutils.escapeXmlEntities(this._Rating);

 xml = xml + '</jns0:Rating>';

 }

 //Look at the generated code, remaining code not

 //included...

 }

As you can see in the above code snippet, the www_ignyte_com_whatsshow-
ing_Movie_serialize function serializes the www_ignyte_com_whatss-
howing_Movie object to XML. It creates the XML request for the Movie and
Rating element.

Working with CXF Tools

[264]

function www_ignyte_com_whatsshowing_Movie_deserialize
(cxfjsutils, element) {

 var newobject = new www_ignyte_com_whatsshowing_Movie();

 cxfjsutils.trace('element: ' + cxfjsutils.
traceElementName(element));

 var curElement = cxfjsutils.getFirstElementChild(element);

 var item;

 cxfjsutils.trace('curElement: ' + cxfjsutils.
traceElementName(curElement));

 cxfjsutils.trace('processing Rating');

 //Converts Rating XML element to Rating object

 if (curElement != null &&
 cxfjsutils.isNodeNamedNS(curElement,
 'http://www.ignyte.com/whatsshowing', 'Rating')) {

 var value = null;

 if (!cxfjsutils.isElementNil(curElement)) {

 value = cxfjsutils.getNodeText(curElement);

 item = value;

 }

 newobject.setRating(item);

 if (curElement != null) {

 curElement = cxfjsutils.getNextElementSibling(curElement);

 }

 }

 //For complete listing, look at the generated code,

 //remaining code not included here.

 return newobject;

}

The www_ignyte_com_whatsshowing_Movie_deserialize function, as shown
above, does the opposite of converting the XML Response received from the
Movie information web service into the www_ignyte_com_whatsshowing_
Movie object. The rating information is retrieved from XMLResponse and set
in the Movie object by calling the newobject.setRating(item) method.
The function uses the methods from the cxf-utils.js JavaScript ile. cxf-
utils.js is part of the CXF distribution, available at CXF_Install/etc/cxf-
utils.js location. cxf-utils.js provides code for invoking the web service
and retrieving the XML response, common XML conversion code, and browser
compatibility support.

Chapter 8

[265]

•	 Service function—this function is generated by reading the service deinition
from the WSDL. The generate service function code starts with a comment
such as
// Definitions for service: {http://www.ignyte.com/whatsshowing}
MovieInformation

//

// Javascript for {http://www.ignyte.com/whatsshowing}
MovieInformationSoap

 The following is an example of the generated MovieInformation
service definition.

// Javascript for {http://www.ignyte.com/whatsshowing}
MovieInformationSoap

function www_ignyte_com_whatsshowing_MovieInformationSoap () {

 this.jsutils = new CxfApacheOrgUtil();

 this.jsutils.interfaceObject = this;

 this.synchronous = false;

 this.url = null;

 this.client = null;

 this.response = null;

 //For complete listing, look at the generated code,

 //remaining code not included here.

}

The generated code deines the synchronous property, which speciies the
interaction between the JavaScript client and the web service. By default,
the synchronous property is set to false for asynchronous style interaction.
In case of asynchronous style interaction, you need to provide a callback
function which is executed when the response is received from the web
service. Setting this property to true, implies that the JavaScript client code
(that calls the operations) would wait till the response is received from the
web service. The URL property speciies the URL of the web service. You
need to set the URL before calling the web service.

•	 Operation functions—these are generated by reading the service operations
deined in the WSDL. The generated service operation code starts with a
comment like the following:
//

// Operation {http://www.ignyte.com/whatsshowing}
GetTheatersAndMovies

Working with CXF Tools

[266]

// Wrapped operation.

// parameter zipCode

 The following is an example of the generated code for
GetTheatersAndMovies operation

//

// Operation {http://www.ignyte.com/whatsshowing}
GetTheatersAndMovies

// Wrapped operation.

// parameter zipCode

// - simple type {http://www.w3.org/2001/XMLSchema}string//
parameter radius

// - simple type {http://www.w3.org/2001/XMLSchema}int//

function www_ignyte_com_whatsshowing_GetTheatersAndMovies_
op(successCallback, errorCallback, zipCode, radius) {

 this.client = new CxfApacheOrgClient(this.jsutils);

 var xml = null;

 var args = new Array(2);

 args[0] = zipCode;

 args[1] = radius;

 //Calls corresponding Serialize Function

 //Invoke the web service

 //For complete listing, look at the generated code,

 //remaining code not included here.

}

We invoke the www_ignyte_com_whatsshowing_GetTheatersAndMovies_op
operation to retrieve the Theatre and Movies information.

Creating the client
In this section we will create an HTML page, which will include the generated
JavaScript. You need to write a few lines of JavaScript code to invoke the operations
deined in the generated JavaScript code and provide a callback function that will be
called after a response is received from the web service.

Chapter 8

[267]

We have provided a reference HTML ile named MovieInformation.html
in the Chapter8/wsdl2Java/src folder of the downloaded source code.
MovieInformation.html uses the CXF JavaScript Utility cxf-utils.js ile. Copy
this ile from CXF_Install/etc to the src folder. The following shows the code
listing of the MovieInformation.html page. We will break down the HTML ile into
code snippets as follows:

1. We start off by including the cxf-utils.js and generated
MovieInformation.js ile.
<head>

<script type="text/javascript" src="cxf-utils.js"></script>

<script type="text/javascript" src="MovieInformation.js"></script>

2. Next, we create a JavaScript function addDataTable to add results retrieved
from the Movie web service. Since we retrieve the Movie information at
runtime, we call this function recursively to display the Movie information
retrieved in a tabular format. The following code snippet adds rows to a
table dynamically:
<script language="JavaScript" type="text/javascript">

function addDataTable(name,value)

{

 var tbl = document.getElementById('tblResults');

 var lastRow = tbl.rows.length;

 var row = tbl.insertRow(lastRow);

 // left cell

 var cellLeft = row.insertCell(0);

 var textNodeLeft = document.createTextNode(name);

 cellLeft.appendChild(textNodeLeft);

 // right cell

 var cellRight = row.insertCell(1);

 var textNodeRight = document.createTextNode(value);

 cellRight.appendChild(textNodeRight);

}

</script>

3. Next, we deine a function invokeMovieInformation(), which invokes the
operation GetTheatersAndMovies by calling the function MovieService.
GetTheatersAndMovies(sucessResponse,errorResponse,zipCode,

radius).We retrieve the zip code and radius values from the input form
element. We also pass the functions sucessResponse and errorResponse
as input.

Working with CXF Tools

[268]

function invokeMovieInformation()

{

 var zipCode = document.movieinfoform.zipCode.value;

 var radius = document.movieinfoform.radius.value;

MovieService.
GetTheatersAndMovies(sucessResponse,errorResponse,zipCode,radius);

}

4. The sucessResponse function is called after a successful response is
retrieved from the Movie information web service. sucessResponse
is a callback function which retrieves the response object and calls
the addDataTable function to display the Theatre and Movie
information retrieved from the web service. We irst display the
length of Theatre received by calling the method response.
getGetTheatersAndMoviesResult().getTheater().length). Next
we display the irst Theater Name and Address by calling the methods
response.getGetTheatersAndMoviesResult().getTheater()[0].

getName() and response.getGetTheatersAndMoviesResult().
getTheater()[0].getAddress(). We then display the count of
movies running in that theatre by calling the method response.
getGetTheatersAndMoviesResult().getTheater()[0].getMovies().

getMovie().length, and we display all movie names running in that
theatre by calling the addDataTable() recursively.
The sucessResponse function is shown in the following code snippet:
<!-- This is the function called for a sucessResponse. -->

function sucessResponse(response)

{

 addDataTable("Length of Theatres " , response.
 getGetTheatersAndMoviesResult().getTheater().length);

 addDataTable("First Theatre name " , response.
 getGetTheatersAndMoviesResult().getTheater()[0].getName());

 addDataTable("First Theatre address " , response.
 getGetTheatersAndMoviesResult().getTheater()[0].getAddress())

 addDataTable("Count of Movies running in Fisrt Theatre - "
 , response.getGetTheatersAndMoviesResult().getTheater()[0].
 getMovies().getMovie().length)

 var movieLength = response.getGetTheatersAndMoviesResult().
 getTheater()[0].getMovies().getMovie().length;

 var i=0;

 for (i=0;i<movieLength;i++)

 {

Chapter 8

[269]

 addDataTable(i+1 + " Movie Name" , response.
getGetTheatersAndMoviesResult().getTheater()[0].getMovies().
getMovie()[i].getName())

 }

}

5. The errorResponse function would be called in case of an unsuccessful web
service invocation. The errorResponse function is shown in the following
code snippet, which displays an error alert message in the browser:
<!-- This is the function called for an error. -->

function errorResponse(error)

{

 alert("Error message is " + error);

}

6. Next, we deine the HTML form which calls the invokeMovieInformation()
function. The form deines two text input elements for zipCode and
radius. The form also deines a table element tblResults to display movie
information retrieved from the web service. invokeMovieInformation() is
shown in the following code snippet:
<form name="movieinfoform">

ZipCode: <input type="text" name ="zipCode" value="78759"/>

Radius: <input type="text" name ="radius" value="2"/>

Invoke Movie Information- <input type="button" value="Invoke"
name="Invoke Movie Information"

onClick="invokeMovieInformation()">

<table border="1" id="tblResults">

 <tr>

 <th colspan="2">Movie Results Web Service</th>

 </tr>

</table>

</form>

Working with CXF Tools

[270]

Running the client
Open up the MovieInformation.html page in the browser. You see the following
screen. Click on Invoke.

The Invoke button calls the invokeMovieInformation() JavaScript function, which
invokes the Movie information web service. After a successful invocation, you see
the following results displayed in the Movie Results web service table. Note that this
information is retrieved at runtime, so the value would vary from the one shown in
the next screenshot.

Chapter 8

[271]

We have thus successfully invoked the Movie information web service
using JavaScript.

Creating Service Implementation from
the WSDL ile
We looked at the WSDLToJava tool earlier, when we generated web service client
code based on a WSDL ile. Based on application requirements, you may want to
create a replica of a web service being invoked by the web service client and deploy
it in your local environment. This is typically beneicial when testing how your web
service clients can connect to local web service implementation, rather than invoking
the actual service over the Web. We created Service Implementation from a WSDL
ile in Chapter 3 where we looked at the Contract First development approach. The
outlines of the procedure remain the same with the exception of using a real world
.NET web service WSDL, and using it to create a Java Service Implementation. We
will now look at how to create a service implementation from the Movie information
WSDL ile.

Working with CXF Tools

[272]

Generating and deploying the Service
Implementation from the WSDL ile
The source code and build iles for the example are available in the Chapter8/
wsdl2JavaService folder of the downloaded source code. We will follow the steps
below to build and execute the web service client.

•	 Generate the web Service Implementation
•	 Analyze the generated artifacts
•	 Modify the web Service Implementation
•	 Build the web service project
•	 Deploy and publish the web service
•	 Invoke the web service

Generating the web Service Implementation
To generate the web Service Implementation, navigate to the wsdl2JavaService
folder, and run the following command:

ant cxfWSDLToJava

The next screenshot shows the output generated on running the ant command:

cxfWSDLToJava calls the CXF tool org.apache.cxf.tools.wsdlto.WSDLToJava
to generate Java server code based on the WSDL URL http://www.ignyte.com/
webservices/ignyte.whatsshowing.webservice/moviefunctions.asmx?wsdl.
The following code snippet shows the cxfWSDLToJava target:

 <target name="cxfWSDLToJava">
 <java classname="org.apache.cxf.tools.wsdlto.WSDLToJava"
 fork="true">
 <arg value="-server"/>
 <arg value="-impl"/>
 <arg value="-d"/>

Chapter 8

[273]

 <arg value="src"/>
 <arg value="http://www.ignyte.com/webservices/ignyte.
 whatsshowing.webservice/moviefunctions.asmx?wsdl"/>
 <classpath>
 <path refid="cxf.classpath"/>
 </classpath>
 </java>
 </target>

The –server option in the previous code snippet speciies the generation of the
server code. After executing the command, the generated code is created in the
wsdl2JavaService/src folder.

Analyzing the Service Implementation generated
artifacts
The artifacts generated are the same as those mentioned in the Analyzing the JAX-WS
and Client Generated Artifacts section with the addition of the Service Implementation
classes and standalone server program. The client code is not generated as we have
not speciied the client option.

•	 Service Implementation class—this class provides a sample implementation
which extends the Service interface. We would modify this class to add
our implementation code. The service implementation generated for Movie
Service is MovieInformationSoapImpl.java
The following code snippet shows the generated
MovieInformationSoapImpl.java:

@javax.jws.WebService(

 serviceName = "MovieInformation",

 portName = "MovieInformationSoap12",

 targetNamespace = "http://www.ignyte.com/
whatsshowing",

 wsdlLocation = "http://www.ignyte.com/
webservices/ignyte.whatsshowing.webservice/moviefunctions.
asmx?wsdl",

 endpointInterface = "com.ignyte.
whatsshowing.MovieInformationSoap")

public class MovieInformationSoapImpl implements
MovieInformationSoap {

 private static final Logger LOG =
 Logger.getLogger(MovieInformationSoapImpl.class.getName());

 /* (non-Javadoc)

Working with CXF Tools

[274]

 * @see com.ignyte.whatsshowing.MovieInformationSoap#getUpcomi
ngMovies(int month ,)int year)*

 */

 public com.ignyte.whatsshowing.ArrayOfUpcomingMovie
getUpcomingMovies(int month,int year) {

 //For complete listing, look at the generated code,

 //remaining code not included here.

 }

 /* (non-Javadoc)

 * @see com.ignyte.whatsshowing.MovieInformationSoap#getTheate
rsAndMovies(java.lang.String zipCode ,)int radius)*

 */

 public com.ignyte.whatsshowing.ArrayOfTheater
getTheatersAndMovies(java.lang.String zipCode,int radius) {

 //For complete listing, look at the generated code,

 //remaining code not included here.

 }

}

As you can see from the previous code snippet, the generated web service
implementation deines the javax.jws.WebService annotation which
describes the Movie information web service. We looked at WebService
annotations in earlier chapters. MovieInformationSoapImpl.java
implements two methods, getUpcomingMovies and getTheatersAndMovies.
In the next section, we will provide implementation for the getTheater-
sAndMovies method.

•	 Standalone server class—this class provides a standalone utility to publish
and test the JAX-WS web service using an embedded server. The code
generated for the Movie Information web service is MovieInformationSoap_
MovieInformationSoap12_Server.java.

Modifying the generated Service Implementation
We will now modify the generated Service Implementation
MovieInformationSoapImpl.java to add the implementation for the service methods.

1. Open MovieInformationSoapImpl.java in any text editor, and modify the
generated code, as highlighted in bold.
//Imports commented out..

@javax.jws.WebService(

 serviceName = "MovieInformation",

Chapter 8

[275]

 portName = "MovieInformationSoap",

 targetNamespace = "http://www.ignyte.com/
whatsshowing",

 endpointInterface = "com.ignyte.
whatsshowing.MovieInformationSoap")

public class MovieInformationSoapImpl implements
MovieInformationSoap {

//Code commented out.

 public com.ignyte.whatsshowing.ArrayOfTheater
getTheatersAndMovies(java.lang.String zipCode,int radius) {

 LOG.info("Executing operation getTheatersAndMovies");

 System.out.println(zipCode);

 System.out.println(radius);

 try {

 com.ignyte.whatsshowing.ArrayOfTheater _return = new

com.ignyte.whatsshowing.ArrayOfTheater();

 Theater theatre = new Theater();

 theatre.setName("Golden Gate Cinemas");

 theatre.setAddress("Golden Gate Lane");

 Movie movie = new Movie();

 movie.setName("Time changes movie");

 ArrayOfMovie movieArray = new ArrayOfMovie();

 movieArray.getMovie().add(movie);

 theatre.setMovies(movieArray);

 _return.getTheater().add(theatre);

 return _return;

 } catch (Exception ex) {

 ex.printStackTrace();

 throw new RuntimeException(ex);

 }

 }

}

2. We irst remove the generated wsdlLocation annotation property as we will
deploy the web service locally. We provide a dummy implementation for the
getTheatersAndMovies method.

Working with CXF Tools

[276]

3. We create an instance of the Theater object, which will be called as theatre,
and set the name and address on the Theater object.

4. We then create the Movie object, set its name, and add the Movie to
the ArrayOfMovie object (movieArray). Finally, we set the movieArray
object in the theatre object, and add the theatre object to the
ArrayOfTheater object.

Note that the ArrayOfTheater, Theater, ArrayOfMovie, and Movie
objects are JAXB schema classes generated by the WSDL2Java tool, based
on schema deinitions in the Movie information web service.

5. Next, we modify the generated Standalone server class,
MovieInformationSoap_MovieInformationSoap12_Server.java
to publish it to the local address. Open MovieInformationSoap_
MovieInformationSoap12_Server.java in any text editor. We should
modify only the relevant code.
//Imports..

public class MovieInformationSoap_MovieInformationSoap12_Server{

 protected MovieInformationSoap_MovieInformationSoap12_Server()
 throws Exception {

 System.out.println("Starting Server");

 Object implementor = new MovieInformationSoapImpl();

 String address = "http://localhost:9082/MovieService";

 Endpoint.publish(address, implementor);

 }

}

We modify the address to http://localhost:9082/MovieService. The
Endpoint.publish() method provides a convenient way to publish and
test the JAX-WS web service. publish() takes two parameters, location
of the web service, and the JAX-WS web service implementation class. The
publish() method creates a lightweight web server at the speciied URL,
in this case local host, and port 9082 deploys the web service to that
location. After running the above program, the MovieService will be
available at the following URL: http://localhost:9082/MovieService

Chapter 8

[277]

Building the web service project
To build the web service project, navigate to the wsld2JavaService folder,
and run the following command to build the code:

ant build

The following screenshot shows the output generated on running the ant command:

Deploying and publishing the web service
To publish the web service, navigate to the wsdl2JavaService folder, and run the
following command to build the code:

ant runServer

This command calls the target runServer in build.xml, and executes
the com.ignyte.whatsshowing.MovieInformationSoap_
MovieInformationSoap12_Server class

The following output is printed on the console, and you see the Server ready...
message being displayed:

Working with CXF Tools

[278]

Once the web service ID is published, you can retrieve the WSDL by typing the
URL http://localhost:9082/MovieService?wsdl at the browser. You get the
following output in the browser:

We have thus successfully deployed the Movie information web service. Next, we
look at how to invoke the web service.

Invoking the web service
We will use the JavaScript client generated earlier to invoke the Movie web service.
The only thing we need to change is the URL of the Movie web service in the HTML
page. To do this, navigate to the wsdl2JS/src folder, edit the MovieInformation.
html page, replace http://www.ignyte.com/webservices/ignyte.
whatsshowing.webservice/moviefunctions.asmx with the address http://
localhost:9082/MovieService as shown below, and save the HTML page.

MovieService.url = " http://www.ignyte.com/webservices/ignyte.
whatsshowing.webservice/moviefunctions.asmx";
by
MovieService.url = "http://localhost:9082/MovieService";

Chapter 8

[279]

Open the MovieInformation.html page, and click on the Invoke button. You will
see the following results being displayed in Movie Results Web Service table. As
you can see, the information displayed is what we have implemented
in the MovieInformationSoapImpl service.

We have thus successfully published and invoked the Movie information web service.

Validating WSDL iles
CXF provides a WSDLValidator tool to validate the WSDL ile and to ensure schemas
are well deined. This tool is helpful if you have created the WSDL ile from scratch
and want to validate it for correctness.

The build ile for the example is available in the Chapter8/WSDLValidator folder
of the downloaded source code. To run the example, navigate to Chapter8/
WSDLValidator, and run the following command. Before running the target, make
sure that you have published the Movie Service, as mentioned in the Deploying and
Publishing the Web Service section.

ant cxfWSDLValidator

This will validate the Movie Service WSDL ile available at
http://localhost:9082/MovieService?wsdl.

Working with CXF Tools

[280]

The next screenshot shows the output that should appear at the console. The Valid
WSDL output will be displayed if the WSDL was successfully validated:

The following code snippet shows the cxfWSDLValidator target in build.
xml.cxfWSDLValidator calls the Apache CXF utility org.apache.cxf.tools.
validator.WSDLValidator to validate the WSDL ile whose URL is http://
localhost:9082/MovieService?wsdl. You can also change the WSDL ile
location to actual .NET URL at http://www.ignyte.com/webservices/ignyte.
whatsshowing.webservice/moviefunctions.asmx?wsdl

<target name="cxfWSDLValidator">

 <java classname="org.apache.cxf.tools.validator.WSDLValidator"
 fork="true">

 <arg value="http://localhost:9082/MovieService?wsdl"/>

 <classpath>

 <path refid="cxf.classpath"/>

 </classpath>

 </java>

 </target>

Summary
In this chapter we looked at how to:

•	 Utilize CXF tools for web services development
•	 Create Java and JavaScript web service clients from WSDL and invoke real

world web services
•	 Create and deploy web service implementations from WSDL iles and

validate WSDL iles

We also learnt that CXF tools come in very handy when you want to integrate and
invoke third-party system functionality, exposed as web services.

Getting Ready with Code
Examples

You need to follow these steps to run the code examples in this book:

•	 Download the source code for this book from the Packt website
•	 Download the software required for the book
•	 Set up the environment

In the course of chapters we explained how to use the ANT tool to build and execute
the source code examples. If you plan to use Maven instead of the ANT tool, refer to
the Using Maven for Build management section below on how to use Maven to build
CXF examples.

Downloading the source code
The source code of the CXF book is available from the Packt website http:/
packtpub.com/files/code/5401_Code.zip. Download the cxf-5401.zip ile to
a directory of your choice, such as c:\, and you will see the following structure:

Getting Ready with Code Examples

[282]

Each chapter provides the ANT build iles (build.xml and common_build.xml) to
run the examples using the ANT tool. In each chapter we have explained in detail
how to create the examples from scratch, and build using the ANT tool. The source
code and ANT build iles are provided as a reference.

Chapter 2 provides a Maven build ile (pom.xml) that can be used to
run the examples with Maven. You can refer to the said pom.xml ile to
replicate build for other chapters for use with Maven.

The next screenshot shows the sample code structure from Chapter 2. In each
chapter we have provided the layout of the folder structure. Here the orderapp
folder contains the source code for Chapter 2.

Downloading the software required for
the book
You need the following software to be installed before running the code example:

•	 Java 5 or higher. Apache CXF requires JDK 5 or a later version. JDK 5 can be
downloaded from the following site: http://java.sun.com/j2se/1.5.0/
download.jsp

•	 Tomcat 6.0 or higher. There is no strict requirement for Tomcat for CXF.
Any servlet container that supports Java 5 or higher can be used with CXF.
For our illustrations, we use Tomcat as our servlet container. Tomcat version
6.0 can be downloaded from the following site:
http://tomcat.apache.org/download-60.cgi

•	 Apache Ant 1.7.1 or higher (for building the code with Ant). Ant is used to
build and deploy the code. The build utility can be downloaded from the
following site: http://ant.apache.org/bindownload.cgi

•	 CXF binary distribution 2.2.3 or latest. CXF binary distribution can be
downloaded from the site: http://cxf.apache.org/download.html

Appendix A

[283]

•	 Maven 2.x or higher (for building the code with Maven). If you plan to use
Maven for build management, refer to the Using Maven for Build management
section. Maven can be downloaded from the following site:
http://maven.apache.org/

Setting up the environment
Once the the software is installed, we go about setting up the following
environment variables:

Environment Variable Description
JAVA_HOME Set this to point to JDK 1.5 installation root folder, for

example C:\jdk1.5.0_12
CATALINA_HOME Set this to point to Tomcat installation root folder, for

example C:\Program Files\Tomcat 6.0
ANT_HOME Set this to point to ANT installation root folder, for example

C:\apache-ant-1.7.1

CXF_HOME Set this to point to CXF installation root folder, for example
C:\apache-cxf-2.2.3

MAVEN_HOME Set this to point to Maven installation root folder, for
example. C:\apache-maven-2.2.1

PATH Set this to point to the above respective 'HOME' bin folder,
for example %JAVA_HOME%\bin. Make sure that you do not
overwrite the existing PATH variable content. You will need
to add to the existing PATH.

The environment setup can also be automated using batch script. The script, under
Windows environment, might look like the following:

@echo off

rem ---

rem CXF Environment Setup script

rem ---

set JAVA_HOME=C:\jdk1.5.0_12

set CATALINA_HOME=C:\Program Files\Tomcat 6.0

set ANT_HOME=C:\apache-ant-1.7.1

set CXF_HOME=C:\apache-cxf-2.2.3

set MAVEN_HOME= C:\apache-maven-2.2.1

set PATH=%PATH%;%JAVA_HOME%\bin;%CATALINA_HOME%\bin;%ANT_HOME%\
bin;%CXF_HOME%\bin;%MAVEN_HOME%\bin

rem ---

Getting Ready with Code Examples

[284]

Alternatively, Windows users can make use of Control Panel to set up the
environment variable. From Control Panel, select System Properties and select the
Advanced tab. Under the Advanced tab, click on the Environment Variables button,
and set the appropriate environment variable.

Once the environment is set up, refer to the relevant chapter on how to develop,
build and run the source code.

Using Maven for Build management
Maven is a software tool for build and project management. It uses a construct
known as the Project Object Model (POM), which describes the components of
your project and dependency to build the project in an XML format. Maven provides
various pre-deined tasks, which facilitate build management and allow extensions
to add more speciic build tasks. Understanding and using Maven effectively is
a vast topic, and there are a lot of books dedicated to using Maven effectively. We
intend to provide a very short overview on Maven for readers who are not familiar
with the tool.

A key concept in Maven is that of artifacts, a packaged archive like a JAR or WAR,
which is created by the build and stored in a repository. Maven maintains artifacts in a
repository, indexed by Group ID which speciies the group, Artifact ID which speciies
the name of the artifact, and Version which speciies the version number of the artifact.
For instance, in the case of the CXF JAX-WS component, the group ID is org.apache.
cxf, artifact ID is cxf-rt-frontend-jaxws, and the version is 2.2.3 (or the latest).
When you build using the Maven tool, a local repository is created for you, typically in
your home drive, that is, C:\Documents and Settings\userName\.m2\repository
and all the dependent artifacts required for building the project are copied in their
respective groups\artifacts\version folder in the local repository. Note that while
building the project, the Maven tool irst checks if the required artifact exists in the
local repository and then looks up the Maven central repository (or the repository
speciied) to download the artifact from the Internet.

Apache CXF also supports Maven-based build and installation and provides
various tasks which simplify CXF application management. The CXF artifacts can be
accessed from the Maven central repository itself. The complete release is available at
the following location: http://repo1.maven.org/maven2/org/apache/cxf/

Appendix A

[285]

The following shows an example of POM, and how dependencies are declared to
build applications which use the CXF framework using Maven:

<properties>

 <!-- CXF Version -->

 <cxf.version>2.2.3</cxf.version>

</properties>

<dependencies>

 <dependency>

 <groupId>org.apache.cxf</groupId>

 <artifactId>cxf-rt-frontend-jaxws</artifactId>

 <version>${cxf.version}</version>

 </dependency>

 <dependency>

 <groupId>org.apache.cxf</groupId>

 <artifactId>cxf-rt-transports-http</artifactId>

 <version>${cxf.version}</version>

 </dependency>

 <dependency>

Each dependency is listed as the <dependency> tag, with the <groupId>,
<artifactId>, and <version>

Building chapter source code using Maven
We will show how to use Maven for building the source code as part of Chapter 2.
The following shows the pom.xml from the Chapter2\orderapp folder of the source
code download. Please refer to the inline comments, which are highlighted in bold
for an explanation of the tags.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <!-- Defines group id for cxfbook -->
 <groupId>com.packtpub.cxfbook</groupId>
 <!-- Name of the artifact -->
 <artifactId>orderapp</artifactId>
 <!-- Packing format. We want to pakacge this as a WAR archive -->
 <packaging>war</packaging>
 <!-- Version for the oderapp arifact -->
 <version>1.0-SNAPSHOT</version>
 <name>orderapp maven webapp</name>

Getting Ready with Code Examples

[286]

 <properties>
 <!-- Version of CXF. Change this to latets version for building
against latest CXF distribution -->
 <cxf.version>2.2.3</cxf.version>
 </properties>
 <build>
 <!--Directory where the source code is located-->
 <sourceDirectory>src</sourceDirectory>
 <resources>
 <resource>
 <!-- Include properties and xml file from src folder-->
 <directory>src</directory>
 <includes>
 <include>**/*.properties</include>
 <include>**/*.xml</include>
 </includes>
 </resource>
 </resources>
 <plugins>
 <plugin>
 <!-- Maven Plugin used to build WAR archive-->
 <artifactId>maven-war-plugin</artifactId>
 <version>2.0</version>
 <configuration>
 <!-- Directory for Web application-->
 <webappDirectory>webapp</webappDirectory>
 <webResources>
 </webResources>
 </configuration>
 </plugin>
 <plugin>
 <!-- Plugin for compiling Java code -->
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <!-- Java version for compiling the source code-->
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
 <finalName>orderapp</finalName>
 </build>
 <dependencies>
 <dependency>
 <!-- Apache JAX-WS CXF Dependency for WAR and JAX-WS Client-->
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxws</artifactId>
 <version>${cxf.version}</version>
 </dependency>
 <dependency>

Appendix A

[287]

 <!-- Apache JAX-WS CXF Dependency for HTTP transport-->
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http</artifactId>
 <version>${cxf.version}</version>
 </dependency>
 </dependencies>
</project>

To build the Chapter 2 source code, navigate to the Chapter2\orderapp folder, and
type in the following command:

mvn clean install

You will see the following build output, and the WAR ile will be generated in the
orderapp/target folder. You can then deploy the WAR ile in the Tomcat server.

Alternatively, if you wish to deploy using a standalone web server like Jetty, then
you can add the following plugin in the POM ile:

 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>maven-jetty-plugin</artifactId>

Getting Ready with Code Examples

[288]

 <version>6.1.19</version>
 </plugin>

You can run the server by giving the following command:

mvn jetty:run

The previous command will start the WAR on localhost port 8080

Once the WAR ile is deployed, run the client, and this will invoke the
Order Process web service by typing in the following command from the
Chapter2\orderapp folder:

mvn exec:java -Dexec.mainClass=demo.order.client.Client

You will see the following output and "order ID is ORD1234" being printed at
the console:

We have thus successfully built, deployed, and executed the code using the
Maven tool.

Getting Started with Spring
Spring is an open source framework created to simplify the complexity of enterprise
application development. The Spring framework addresses all tiers of application
development in a consistent manner. The Spring framework provides a layered
architecture comprised of well deined modules, where each module can be used
independently to simplify some area of enterprise development. Spring functionality
can be used in a non managed environment, for instance an eclipse-based application
running in J2SE environment or in Java EE server.

To learn more about the latest developments in the Spring framework,
visit the Spring website at http://www.springsource.org/about

Understanding all the modules and features provided by the Spring framework
is a vast topic in itself and there are numerous books dedicated to Spring. In
this appendix chapter our attempt is to cover the basic understanding of Spring
framework to get you acquainted with the Spring capabilities used in the context of
CXF web services development for this book. The following topics will be covered in
this appendix chapter:

•	 Concept of POJO-based development
•	 Understanding Inversion of Control (IoC)
•	 Overview of aspect-oriented programming
•	 Introduction to Spring framework
•	 Creating a Spring IoC application

Getting Started with Spring

[290]

Concept of POJO-based development
A POJO is simply a Java object that does not implement any infrastructure
framework-speciic interfaces. The POJO-based development model is all about
using Plain Old Java objects for designing and developing applications and
concentrating on business logic, without worrying about external dependency, such
as adding code to POJO for transaction handling, dealing with message queues
and connections in the case of JMS (Java Message Service) applications, and so on.
The POJO programming model enables you to unit test the code without requiring
an external dependency like an EJB container or an application server, making the
whole programming experience simpliied.

Once you start creating applications comprised of POJO, the next thing you need
to determine is how you would assemble the application out of these POJOs in
a loosely coupled and consistent manner, as ultimately your goal is to run your
application in J2SE or a Java EE environment. If you are planning to deploy your
application in Java EE environment, you will also want to leverage container
capabilities like distributed transaction management, persistence support, or JMS
support. For your unit testing, you will want to run POJO without these external
container dependencies. In short, we want various services to be applied to POJO
in a consistent manner, so it can work in any environment. This is where the Spring
framework comes in, whose aim is to provide a consistent programming model for
POJO-based development, apply various services to POJO transparently, and to
enable enterprise application development using POJO.

Two of the most important features you need to be aware of before understanding
the Spring framework are IoC and AOP.

Note that the Spring framework offers many more capabilities than
IoC and AOP.

Understanding Inversion of Control
The basic concept of the Inversion of Control pattern (also known as dependency
injection) is that you do not create your objects but describe how they should
be created.

Appendix B

[291]

Take the following example of a loan processing application. For simplicity the
Loan process system carries out three steps—Customer Address veriication, Credit
veriication, and Loan assessment. Each of these steps is implemented as Java classes,
VerifyAddress, VerifyCredit, and LoanAssessment, respectively. Now, in
traditional application development without IoC, the following code snippet would
be used by the Loan processing application to carry out the loan processing as part of
the appyLoan() method shown below:

package demo.spring;

public class LoanProcessImpl {

 public Loan

 applyLoan(Loan loan) {

 VerifyAddress verifyAddress = new VerifyAddressImpl();

 VerifyCredit verifyCredit = new VerifyCreditImpl();

 LoanAssessment loanAssessment = new LoanAssessmentImpl();

 //Step one - verify address

 boolean validAddress = verifyAddress.
 verifyAddress(loan.getCustomer().getAddress());

 if(!validAddress){

 throw new RuntimeException("Address for Customer SSN "+
 loan.getCustomer().getSSN() + " is not valid");

 }

 //Step two -verify credit

 String status = verifyCredit.verifyCredit(loan.getCustomer());

 if(status.equalsIgnoreCase(VerifyCredit.BAD_CREDIT)){

 //If bad credit, disapprove Loan

 loan.setLoanStatus(LoanAssessment.LOAN_REJECTED);

 return loan;

 }else {

 return loanAssessment.assessLoan(loan);

 }

 }

}

Getting Started with Spring

[292]

As you see in the previous code, in the applyLoan() method we have created an
instance of VerifyAddress, VerifyCredit, and LoanAssessment objects. If any of
these objects is dependant on other objects, then it needs to be instantiated in that
scope (that is, in that class or method). These dependencies can grow based on our
application, and manageability could become a dificult task. You may not realize
that most of the time your object would be stateless and would eventually require
one shared instance of object in your application, rather than creating a creating
a new object for every request. Apart from object creation, you could also have
coniguration in your code, such as looking up the Data source connection factory
using JNDI.

Applying IoC principles would make your design modular and move the object
creation code and coniguration outside of the application code and manage
these dependency in an external coniguration ile. A container (like the Spring
framework's IoC container) then uses the external coniguration ile to create the
beans, manage the dependency and assemble the application from these loosely
coupled beans. In the Spring IoC application section, we will look at how to apply
IoC principles using Spring by taking the example of the Loan application that we
discussed above.

Overview of aspect-oriented
programming
Aspect-oriented programming, or AOP, is a programming technique that allows
modularization of software by minimizing crosscutting concerns, or behavior
that cuts across multiple modules (or classes) in a system, such as logging, security
and transaction management. AOP and IoC are complementary technologies
in that both apply a modular approach to complex problems in enterprise
application development.

In order to understand the concept of AOP, let's take a simple example of logging
functionality used in applications. In a typical object-oriented development approach
you might implement logging functionality by putting logger statements in all your
methods and Java classes. In an AOP approach you would instead modularize the
logging concern and apply it declaratively to the components that require logging
functionality, without the component knowing about the existence of the logging
concern itself. In AOP terminology, the modular unit for crosscutting concern like
logging, which is applied dynamically to modules, is referred to as Aspect.

Appendix B

[293]

Introduction to Spring framework
Spring framework is a light weight open source layered application framework
created to simplify the complexity of enterprise application development. Spring
has become the de facto framework for creating Java based enterprise applications.

The Spring framework provides the following functionality:

•	 Light weight IoC container for lifecycle and dependency management
of objects.

•	 AOP functionality for modularizing cross-cutting concerns and providing
services to POJO in a declarative fashion, like transaction management,
logging, messaging, exposing POJO using one of the remote technology
like RMI, HTTP, web services, and so on.

•	 Consistent abstraction layer which provides integration with various
standards like JPA (Java Persistence API), JDBC, JMS, and third party
APIs like Hibernate, Top Link, and JDO.

•	 MVC framework which provides a highly conigurable Model View
Controller implementation via strategy interfaces, and accommodates
numerous view technologies including JSP, Velocity, Tiles, iText, and
POI implementation.

Spring framework assists in POJO development where all the features described
above can be applied to POJO and the Spring IoC container provides the necessary
infrastructure to assemble POJOs to create the required application.

The Spring IoC container
The core of Spring's design is the org.springframework.beans package, designed
for working with beans. The package serves as the underlying medium for other
functionality and is typically not used by developers. The next layer of abstraction
is the org.springframework.beans.factory.BeanFactory interface which is
the root interface for accessing the Spring IoC container. An implementation of
BeanFactory enables you to access the objects that are instantiated and managed by
the Spring IoC container.

The most commonly used BeanFactory deinition is the XmlBeanFactory which
loads beans based on deinitions in an XML ile, as shown in code listing below:

BeanFactory factory = new XMLBeanFactory(new FileInputSteam("beans.
xml"));

Getting Started with Spring

[294]

To retrieve a bean from BeanFactory you simply call the getBean() method: passing
in the name of the bean you want to retrieve, as shown in listing below

OrderBean orderbean = (MyBean) factory.getBean("order");

Next we look at IoC concepts in action by taking an example of a Loan processing
system. The following example should be suficient to understand the concepts of
IoC used in the context of the book.

Creating a Spring IoC application
We will take an example of a Loan Processing Application. For simplicity our Loan
process system carries out three steps for approving or rejecting the loan. These steps
include Customer Address veriication, Credit veriication, and Loan assessment.

We start by designing our application, and identifying the entity model of the system
that would interact with the system. All of the entity can be modelled as POJO. We
will deine the following entity model for the Loan processing system:

•	 Address POJO—this contains address information
•	 Customer POJO—this contains customer information. The customer object

holds a reference to the address object instance.
•	 Loan POJO—this contains Loan information and holds a reference to the

address Customer object.
Each POJO provides a set of properties and corresponding get/set method to
set the information. For instance Customer object provides the setFirstname and
getFirstName methods to set and get the firstName property.

The source code and build ile of is available in the ApacheCXFBook/
springapp folder of the source code distribution. Refer to the Appendix
Getting Ready with the Code examples for detailed instructions on how to
download the source code from the Packt web site.

Creating the entity model
We will now create the entity models. Let's start off by creating the Address model.
We will name this implementation class as Address. The following is the code listing
for Address.java:

package demo.spring;

public class Address {

 private String addressLine1;

Appendix B

[295]

 private String addressLine2;

 private String city;

 private String state;

 private String country;

 public String getAddressLine1() {

 return addressLine1;

 }

 public void setAddressLine1(String addressLine1) {

 this.addressLine1 = addressLine1;

 }

 public String getAddressLine2() {

 return addressLine2;

 }

 public void setAddressLine2(String addressLine2) {

 this.addressLine2 = addressLine2;

 }

 public String getCity() {

 return city;

 }

 public void setCity(String city) {

 this.city = city;

 }

 public String getState() {

 return state;

 }

 public void setState(String state) {

 this.state = state;

 }

 public String getCountry() {

 return country;

 }

 public void setCountry(String country) {

 this.country = country;

 }

}

As you see above the Address class is pretty straightforward and provides
properties and methods to store address information, such as address line, city,
state, and country.

Getting Started with Spring

[296]

Next we will create the Customer entity model. We will name this implementation
class as Customer. The following is the code listing for Customer.java:

package demo.spring;

public class Customer {

 private String firstname;

 private String lastname;

 private String SSN;

 private String DOB;

 private Address address;

 public String getFirst name() {

 return firstname;

 }

 public void setFirstname(String firstname) {

 this.firstname = firstname;

 }

 public String getLastname() {

 return lastname;

 }

 public void setLastname(String lastname) {

 this.lastname = lastname;

 }

 public String getDOB() {

 return DOB;

 }

 public void setDOB(String dob) {

 DOB = dob;

 }

 public Address getAddress() {

 return address;

 }

 public void setAddress(Address address) {

 this.address = address;

 }

 public String getSSN() {

 return SSN;

 }

 public void setSSN(String ssn) {

 SSN = ssn;

 }

}

Appendix B

[297]

The Customer object contains a reference to Address information, which stores
the address information for the customer.

Finally we create the Loan entity. We will name this implementation class as Loan.
The Following is the code listing for Loan.java:

package demo.spring;

import java.util.Date;

public class Loan {

 private Customer customer;

 private String loanApplicationId;

 private Date loanApplyDate;

 private String loanStatus;

 public String getLoanStatus() {

 return loanStatus;

 }

 public void setLoanStatus(String loanStatus) {

 this.loanStatus = loanStatus;

 }

 public Customer getCustomer() {

 return customer;

 }

 public void setCustomer(Customer customer) {

 this.customer = customer;

 }

 public String getLoanApplicationId() {

 return loanApplicationId;

 }

 public void setLoanApplicationId(String loanApplicationId) {

 this.loanApplicationId = loanApplicationId;

 }

 public Date getLoanApplyDate() {

 return loanApplyDate;

 }

 public void setLoanApplyDate(Date loanApplyDate) {

 this.loanApplyDate = loanApplyDate;

 }

}

The Loan object contains a reference to Customer information, which stores the
customer information. Clients interact with the Loan system by creating an instance
of Loan object.

Getting Started with Spring

[298]

With the entity modelled, we now create the various services for the Loan processing
application that will carry out the required Loan functions.

Creating services
As part of the Loan processing application, we will create three services—verify
Address, verify Credit and Loan assessment. These services are also designed as
POJO. We start off by creating the Address veriication service which validates
an address.

We create an interface and implementation for the Address veriication
service. We will name the interface as VerifyAddress and the implementation
class as VerifyAddressImpl. The Following provides the code listing for
VerifyAddress.java:

package demo.spring;

public interface VerifyAddress {

 public boolean verifyAddress(Address address);

}

VerifyAddress interface provides the method verifyAddress which takes Address
object as input and returns true or false to denote a valid or an invalid address.
The following provides the code listing for VerifyAddressImpl.java. As part of
the implementation, we provide a dummy implementation, which returns false if
address city is null.

package demo.spring;

public class VerifyAddressImpl implements VerifyAddress {

 public boolean verifyAddress(Address address) {

 System.out.println("verifyAddress called");

 if(address.getCity() == null){

 return false;

 }

 return true;

 }

}

Appendix B

[299]

Next we will create the Credit Veriication service which provides credit
veriication about the customer. We create an interface and implementation for the
Credit veriication service. We will name the interface as VerifyCredit and the
implementation class as VerifyCreditImpl. The following provides the code listing
for VerifyCredit.java:

package demo.spring;

public interface VerifyCredit {

 public String GOOD_CREDIT ="GOOD";

 public String BAD_CREDIT ="BAD";

 public String verifyCredit(Customer customer);

}

VerifyCredit provides one method, verifyCredit which takes Customer object
as input and returns String with value either GOOD_CREDIT or BAD_CREDIT. The
following provides the code listing for VerifyCreditImpl.java. As part of the
implementation, we provide a dummy implementation, which returns GOOD_CREDIT
if customer SSN starts with A. In a real world implementation, you would probably
use one of the various external credit rating services offered over the web.

package demo.spring;

public class VerifyCreditImpl implements VerifyCredit {

 public String verifyCredit(Customer customer) {

 System.out.println("verifyCredit called with SSN " +
 customer.getSSN());

 if(customer.getSSN().startsWith("A")){

 return GOOD_CREDIT;

 }else{

 return BAD_CREDIT;

 }

 }

}

Next we will create the LoanAssessment service which provides loan assessment,
taking into account the loan and customer details. We create an interface and
implementation for the Loan Assessment service. We will name the interface as
LoanAssessment and implementation class as LoanAssessmentImpl. The following
provides the code listing for LoanAssessment.java:

package demo.spring;

public interface LoanAssessment {

 public String LOAN_APPROVED ="APPROVED";

 public String LOAN_REJECTED ="REJECTED";

Getting Started with Spring

[300]

 public Loan assessLoan(Loan loan);

}

LoanAssessment provides one method, assessLoan which takes the Loan object
as input and returns the Loan object as output with the loan status as APPROVED or
REJECTED. The following provides the code listing for LoanAssessmentImpl.java.
As part of the implementation, we provide a dummy implementation, which sets
the loan as approved if Customer SSN starts with "A".

package demo.spring;

import java.util.Date;

public class LoanAssessmentImpl implements LoanAssessment {

 public Loan assessLoan(Loan loan) {

 //Assign a unique id.

 loan.setLoanApplicationId(loan.getCustomer().getSSN() +
 System.currentTimeMillis());

 System.out.println("assessLoan loan id generated is "+
 loan.getLoanApplicationId());

 //Dummy implementation

 if(loan.getCustomer().getSSN().startsWith("A")){

 loan.setLoanStatus(LOAN_APPROVED);

 }else{

 loan.setLoanStatus(LOAN_REJECTED);

 }

 return loan;

 }

}

Creating the application and wiring POJO
So far we have created the loosely coupled POJO components as part of the Loan
Processing application. From the implementation of the service and entity models,
you can see the simplicity associated with POJO implementation and these POJO
can be tested without the need for any external container dependency. The other
feature is that these objects can be reused across the system and not just with Loan
processing applications. For instance, address veriication service and credit rating
can be used wherever there is need for address and credit veriication. Next we
will assemble the services to realize the Loan Processing application. We will create
an interface and implementation for the LoanProcess application. We name the
interface as LoanProcess and implementation class as LoanProcessImpl. The
following provides the code listing for LoanProcess.java:

Appendix B

[301]

package demo.spring;

public interface LoanProcess {

 public Loan applyLoan(Loan loan);

 public VerifyAddress getVerifyAddress();

 public void setVerifyAddress(VerifyAddress verifyAddress);

 public VerifyCredit getVerifyCredit();

 public void setVerifyCredit(VerifyCredit verifyCredit);

 public LoanAssessment getLoanAssessment();

 public void setLoanAssessment(LoanAssessment loanAssessment);

}

LoanProcess provides the get/set method to access the services, VerifyAddresss,
VerifyCredit, and LoanAssessment, along with a method applyLoan(), which the
client would call for applying the loan. The following shows the implementation for
LoanProcessImpl.java:

package demo.spring;

public class LoanProcessImpl implements LoanProcess {

 private VerifyAddress verifyAddress;

 private VerifyCredit verifyCredit;

 private LoanAssessment loanAssessment;

 public VerifyAddress getVerifyAddress() {

 return verifyAddress;

 }

 public void setVerifyAddress(VerifyAddress verifyAddress) {

 this.verifyAddress = verifyAddress;

 }

 public VerifyCredit getVerifyCredit() {

 return verifyCredit;

 }

 public void setVerifyCredit(VerifyCredit verifyCredit) {

 this.verifyCredit = verifyCredit;

 }

 public LoanAssessment getLoanAssessment() {

 return loanAssessment;

 }

 public void setLoanAssessment(LoanAssessment loanAssessment) {

 this.loanAssessment = loanAssessment;

 }

 public Loan applyLoan(Loan loan) {

 //Step one - verify address

Getting Started with Spring

[302]

 boolean validAddress = getVerifyAddress().
 verifyAddress(loan.getCustomer().getAddress());

 if(!validAddress){

 throw new RuntimeException("Address for Customer SSN "+
 loan.getCustomer().getSSN() + " is not valid");

 }

 //Step two -verify credit

 String status = getVerifyCredit().
 verifyCredit(loan.getCustomer());

 if(status.equalsIgnoreCase(VerifyCredit.BAD_CREDIT)){

 //If bad credit, disapprove Loan

 loan.setLoanStatus(LoanAssessment.LOAN_REJECTED);

 return loan;

 }else {

 return getLoanAssessment().assessLoan(loan);

 }

 }

}

As you see above, LoanProcessImpl provides get/set method implementations
for various services, getVerifyCredit(), setVerifyCredit(), and so on , along
with a dummy implementation for the applyLoan() method. applyLoan() calls
the various services as part of load processing. First it calls getVerifyAddress().
verifyAddress() to verify the address, next it calls the getVerifyCredit().
verifyCredit() method to verify the credit and inally getLoanAssessment().
assessLoan(), which approves or rejects the loan.

As you see, nowhere in the code have we created an instance of a service object
that is VerifyAddress, VerifyCredit or LoanAssessment. So how does
LoanProcessImpl get the services instance at runtime? All these dependencies
are injected by the Spring IoC container using a coniguration ile. The coniguration
ile tells the Spring ICO container how to instantiate, conigure and wire the
dependency in your application. In the Loan processing application, the setter
methods for the services are called by Spring IoC framework reading the
coniguration ile. The applyLoan() method will then use the service references to
carry out the implementation.

The following is the listing of the Spring coniguration ile for the Loan processing
application. We name the coniguration ile as loanprocess.xml.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Appendix B

[303]

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd">

 <bean id="loanProcess" class="demo.spring.LoanProcessImpl">

 <property name="verifyAddress">

 <ref bean="verifyAddress" />

 </property>

 <property name="verifyCredit">

 <ref bean="verifyCredit" />

 </property>

 <property name="loanAssessment">

 <ref bean="loanAssessment" />

 </property>

 </bean>

 <bean id="verifyAddress" class="demo.spring.VerifyAddressImpl">

 <!-- wire dependency-->

 </bean>

 <bean id="verifyCredit" class="demo.spring.VerifyCreditImpl">

 <!-- wire dependency-->

 </bean>

 <bean id="loanAssessment" class="demo.spring.LoanAssessmentImpl">

 <!-- wire dependency-->

 </bean>

</beans>

Let's analyze the loanprocess.xml code listing. We start off with the <beans> tag
which deines the XML Schema for Spring beans framework. These are standard
deinitions for Spring , which you would ind in any Spring coniguration ile. Next
we deine the beans used in our Loan Process application using the <bean> tag. The
bean tag deines information on how to create the bean and deines a unique id, class
deinition, property, references, and various other properties. For a list of properties
associated with bean deinition, refer to Spring documentation. For instance, the
demo.spring.LoanAssessmentImpl bean deinition looks like the following:

<bean id="loanAssessment" class="demo.spring.LoanAssessmentImpl">

 <!-- wire dependency-->

</bean>

Getting Started with Spring

[304]

To wire the loanAssessment dependency to the LoanProcessImpl bean deinition,
you use the setter-based dependency injection and use the ref bean deinition to
wire the loanAssessment bean with the loanAssessment property.

Note that the LoanProcessImpl object provides getter and setter
methods for the loanAssesment property and the following deinition
provides the wiring.

<bean id="loanProcess" class="demo.spring.LoanProcessImpl">
 <property name="loanAssessment">
 <ref bean="loanAssessment" />
 </property>
 </bean>

Similarly the verifyAddress and verifyCredit bean is deined and injected to the
loanProcess bean. We have thus assembled our Loan processing application.

The same concepts of dependency injection have been applied throughout the
book where we have used Spring coniguration. CXF also provides its own schema
and bean deinition that you can use to conigure CXF components, like the
<jaxws:client> deinition which lets you create JAXWS clients, rather than writing
code to create the clients. All of the CXF components can be wired through Spring
conigurations and can leverage various features offered by Spring framework.

Creating the standalone client
We will now create the standalone client which will invoke the Loan processing
application. We will name this implementation class as LoanProcessClient. The
following provides the code listing for LoanProcessClient.java:

package demo.spring.client;

import java.util.Date;

import org.springframework.context.support.
ClassPathXmlApplicationContext;

import demo.spring.Address;

import demo.spring.Customer;

import demo.spring.Loan;

import demo.spring.LoanProcess;

public class LoanProcessClient {

 public static void main(String[] args){

 try

 {

 System.out.println("LoanProcessClient started");

Appendix B

[305]

 ClassPathXmlApplicationContext appContext =
 new ClassPathXmlApplicationContext(new String[] {

 "/demo/spring/loanprocess.xml"

 });

 System.out.println("Spring configuration file loaded");

 Customer customer = new Customer();

 customer.setFirstname("Naveen");

 customer.setLastname("Balani");

 customer.setSSN("A0989999999");

 //Address

 Address address = new Address();

 address.setAddressLine1("Stree one");

 address.setCity("Mumbai");

 address.setCountry("India");

 customer.setAddress(address);

 Loan loan = new Loan();

 loan.setCustomer(customer);

 loan.setLoanApplyDate(new Date());

 LoanProcess loanProcess = (LoanProcess)

 appContext.getBean("loanProcess");

 Loan loanResponse =loanProcess.applyLoan(loan);

 System.out.println("Loan status for customer with SSN " +
 loan.getCustomer().getSSN() + " is " +
 loanResponse.getLoanStatus());

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

}

Getting Started with Spring

[306]

LoanProcessClient creates the Customer, Address, and Loan object, and populates
it with some data. LoanProcessClient also loads the Spring coniguration iles
through ClassPathXmlApplicationContext as shown below:

 ClassPathXmlApplicationContext appContext =
 new ClassPathXmlApplicationContext(new String[] {

 "/demo/spring/loanprocess.xml"

 });

After the Spring coniguration ile is loaded, all the beans deined will be instantiated
and the references will be wired. You can then access the bean, for instance
LoanProcess POJO, through the getBean() method as shown below:

LoanProcess loanProcess = (LoanProcess)

 appContext.getBean("loanProcess");

Once the client gets a reference to LoanProcess object, it then executes the
applyLoan() process on it and get backs the LoanResponse object and prints
the status of loan on the console.

Running the program
Before running the program, we will organize the code so far developed in the
appropriate folder structure. You can create the folder structure as shown below
and put the components in the respective sub folders.

•	 As you see in the igure above, springapp is the project folder for this
appendix chapter. springapp/src is the location of our source code.
Place the Java code into the respective package folders in the springapp/src
folder. Place loanprocess.xml in the src/demo/spring folder.

•	 Once the code is organized, we will go about building and executing
the code.

Appendix B

[307]

Building the code
To build the code we will use the Maven tool. To set up the Maven environment, refer
to Appendix A Getting Ready with the Code examples. The pom.xml ile for this example
is provided in springapp folder. The code below illustrates the pom.xml ile:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>packt</groupId>

<artifactId>springloanapp</artifactId>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<name>springloanapp</name>

<url>http://maven.apache.org</url>

<build>

 <!--Source Directory -->

 <sourceDirectory>src</sourceDirectory>

 <resources>

 <resource>

 <directory>src</directory>

 <includes>

 <include>**/*.properties</include>

 <include>**/*.xml</include>

 </includes>

 </resource>

 </resources>

 <plugins>

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.5</source>

 <target>1.5</target>

 </configuration>

 </plugin>

 </plugins>

</build>

<properties>

 <!-- Set the latest Spring version here -->

 <spring-version>2.5</spring-version>

 </properties>

<dependencies>

 <dependency>

Getting Started with Spring

[308]

 <groupId>org.springframework</groupId>

 <artifactId>spring</artifactId>

 <version>${spring-version}</version>

 </dependency>

</dependencies>

</project>

Open the command prompt window, go to the springapp folder and run the
command mvn clean install. It will build the source code and put the class iles
under the target folder. The following screenshot shows the output generated on
running the mvn clean install command:

Appendix B

[309]

Executing the code
You execute the Java client program LoanProcessClient by giving the following
command on the command prompt window:

mvn exec:java -Dexec.mainClass=demo.spring.client.LoanProcessClient

Upon executing this command, the following output as shown in the screenshot below
will be displayed. If you look at the INFO: log event highlighted in the output below,
you see the beans—loanProcess, verifyAddress, verifyCredit, and loanAssessment
being loaded by the Spring container based on the loanprocess.xml ile.

You will then see that the output of the POJO methods being printed at the console,
"verifyAddress called", "verifyCredit called with SSN A0989999999", "assessLoan
loan id generated is A09899999991255071849921", and "Loan status for customer
with SSN A0989999999 is APPROVED"

We have thus successfully assembled and executed our Loan Processing application
using Spring IoC container features.

Getting Started with Spring

[310]

Summary
In this appendix chapter we looked at the concept of POJO development, IoC, and
AOP. We then looked at features provided by Spring framework and executed
a sample Loan processing application which demonstrated IoC principles using
Spring IoC container. Going through the entire Spring framework and features is a
vast topic in itself, and in this appendix chapter our intention was to provide you
with just enough details to understand the concepts around dependency injection
and Spring integration that we have used in the context of CXF web services
development in this book.

Index
Symbols
<jaxrs:server> element

about 203
address attribute 203
id attribute 203
serviceBeans attribute 203
endpoint> element
endpoint> elementabout 32
endpoint> element address attribute 32
endpoint> elementid attribute 32
endpoint> elementimplementor attribute

32
@Path annotation 177
@PathParam annotation 179
@Produces annotation 177
@SOAPBinding annotation

about 56
attributes 57
parameterStyle attribute 57
style attribute 57
use attribute 57

@WebMethod annotation 28
about 58
action attribute 58
attributes 58
exclude attribute 58
name attribute 58

@WebService annotation 28
about 54, 56
attributes 55
endpointInterface attribute 55
name attribute 55
portName attribute 55
serviceName attribute 55
targetNamespace attribute 55

wsdlLocation attribute 55
@XmlRootElement annotation 29
@XmlRootElement annotationssabout 175

A
AbstractInvoker class 158
AbstractPhaseInterceptor class 135
addBook() method 217
addCategory() method 213
addDataTable function 268
AEGIS data binding 20
AOP 292
Apache ActiveMQ provider 119
Apache CXF

about 16
environment, setting up 21
features 17
Frontend programming APIs 18
history 16
POJO support 18
RESTful services support 19
tools support 19
web service standards support 17

apache.cxf.tools.wsdlto.WSDLToJava 252
application protocols

about 101
FTP 101
HTTP 101
JMS 101
SMTP 101

applyLoan() method 302
ArrayOfMovie Schema 250
ArrayOfTheater Schema 249
Aspect-oriented programming. See AOP

[312]

B
beans.xml 205
Book Shop application

Add Books operation, invoking 216-218
Add Category operation, invoking 212- 214
Add Category operation, invoking with

JSON 236-238
CategoryService RESTful bean,

coniguring 202, 203
code, building 205, 206
code, deploying 207
Delete Category operation,

invoking 224, 225
deploying 243
Get Books operation, invoking 218, 220
GET Category operation, invoking 210-212
Get Category operation, invoking with

invalid request 222, 223
Get Category operation, invoking with

JSON 234-235
invoking, CXF APIs used 225-229
invoking, Poster tool used 210
invoking with JSON as message format 238
JSON message format,

incorporating 231-233
JSON support, coniguring 230
messages, intercepting 240-243
operations, invoking 208
packaging 202
Poster client, installing 208, 209
Spring, integrating 204, 205
Update Category operation,

invoking 214, 216
Update Category operation, invoking with

invalid request 220-222
WAR ile, building 205
WAR ile, deploying 205

Book shop application, RESTful services 71
build management

Maven, using 284
bus

about 39
architecture 40
CXFBusImpl 40

C

category object
developing 172, 173

CategoryService class 177
CategoryService RESTful bean

coniguring, Spring used 202, 203
CFX

architecture 39
client, developing 32
lexible deployment 21
frontend modeling 41
program, running 36
required software, downloading 282
simple frontend 43
transport protocols 102
web service, developing 27

CFX environment
setting up, for ANT users 21
setting up, for Maven users 22

CFX environment, for ANT users
about 21
variables 22

CFX environment, for Maven users 22, 23
CFX framework 20
chapter source code

building, Maven used 285-288
client code 256
client, developing

about 32
Spring based client bean, developing 33
web service client code, developing 33-35

client, RESTful services
creating 185-187
HTTP centric clients 185
Proxy-based API 185

client side interceptor
adding, to client code 144, 145
developing 141-143

code irst development
code irst example, running 62
Code irst example, running 61

Code irst development
about 52
consumer, developing 60, 61
Java annotations, adding 54
SEI, creating 53, 54
service, publishing 59, 60

code, interceptor

[313]

building 147
deploying 148
executing 148, 149

code, RESTful services
building 190
deploying 191
executing 192-194

conduit 106
contract irst development

WSDL ile 64
Contract irst development

about 52, 62
service components, generating 64
service method, implementing 73
web service, invoking 74
web service, publishing 73
WSDL ile 62, 63

Contract First development approach 246
custom interceptor

building 146
client side interceptor, adding to client code

144, 145
client side interceptor, developing 141-143
developing 137
order process web service, building 146
order process web service, running 146
running 146
server side interceptor, adding to order

process service 141
server side interceptor, developing 138-140
standalone server, developing for order

process web service 145, 146
testing 149, 151

custom invoker
developing 159-163

CXF architecture
about 39
bus 39
data binding 46
messaging and interceptors 43
protocol binding 47
service model 45
transports 49

CXF feature
about 151
components 151

CXF framework

about 171
client API 170
features 170
ilters 171
pluggable data binding 170
security 170
Spring integration 170

CXF frontends
about 51
JAX-WS frontend 51
simple frontend 96
types 51

CXF interceptors 131
CXF invoker 157
CXF JAX-RS implementation 170
cxfWSDLToJava 272

D
Data Access object

creating 180
developing 180

data binding 20, 46
deleteCategory() method 224
Dependency Injection. See DI
Deserialization functions 263
destination queue 121
destinations 118
development approaches, JAX-WS SOAP-

based web services
code irst development 52
Contract irst development 52

dispatch service
implementing 89, 90

document style, SOAP Binding 57
DOMSource object 84
dynamic client

about 74
building, CFX service model used 77-80
creating 74-76
running 76
usage 74

dynamic client, using service model API
running 81

E
environment variables, CFX

[314]

ANT_HOME 283
CATALINA_ 283
CXF_HOME 283
JAVA_ HOME HOME 283
MAVEN_HOME 283
PATH 283
setting up 283, 284

errorResponse function 269
exception handling

adding, to RESTful services 194-198
Extensible Markup Language. See XML

F
feature components

ColocFeature 151
FailoverFeature 151
GZIPFeature 151
JMSConigFeature 151
LoggingFeature 151
RMFeature 151
StaxDataBindingFeature 151
WSAddressingFeature 151

lexible deployment, CFX 21
frontend modeling

about 41
JAXB 41
SAAJ 41

frontend programming APIs 18

G
getBooks() method 219
getCategory() method 211
getServiceObject method 161
GetTheatersAndMovies 247
GetTheatersAndMoviesResponse

schema 249
getVerifyCredit() method 302
GZIP feature

applying, to order process web service 152
client bean coniguration ile, creating 154
client component, creating 155
code, building 155, 156
code, executing 155, 156
OrderProcessImpl class, developing 152
OrderProcess SEI, developing 152
server component, developing 153

H
handleMessage method 134
HTTP 102
HTTP centric clients 185
HTTP conduit 106
HTTP connection attributes

about 107
AllowChunking 107
CacheControl 107, 108
ConnectionTimeout 107
ContentType 107, 108
HonorKeepAlive 108
ReceiveTimeout 108

HTTP destination 107
HTTP only transport, CFX 105
HTTPs 108
HTTPs transport

about 108
client bean coniguration, creating 110-112
client component, developing 113
code, building 114
code, deploying 114
crypto key, generating 109, 110
OrderProcessImpl class, developing 109
OrderProcess SEI, developing 109
server bean coniguration, creating 110-112
server, coniguring 113
SSL, coniguring for Jetty runtime 115-117

HTTP transport, CFX
about 102
HTTP conduit 106
HTTP destination 107
HTTP only transport 105
SOAP 1.1, over HTTP 103
SOAP 1.2, over HTTP 104
SOAP, over HTTP 103

I
implementation class, RESTful services

data access logic, adding 180-184
developing 175, 176

interceptor API
AbstractPhaseInterceptor class 135
interceptor interface 134
overview 133
PhaseInterceptor interface 134

[315]

interceptor chain
about 132
fault chain 133
inbound chain 133
outbound chain 133
types 133

interceptor components, CFX
architecture 43, 44

interceptor interface
about 134
handleMessage method 134

interceptors
about 132
chain 132
phase 132

Inversion of Control. See IOC
invoke method 158
invokeMovieInformation() function 269
invoker API

about 157
AbstractInvoker class 158
invoker interface 158

invoker interface 158
IOC 290-292

J
Java annotations

adding 54
javax.jws.soap.SOAPBinding 56
javax.jws.WebMethod 58
javax.jws.WebService 54

Java API for RESTful services. See JAX-RS
Java data objects, RESTful services

category object, developing 172, 173
creating 172

JavaScript web service client
creating 266-269
generated artifacts, analyzing 262-265
generating 260, 261
running 270

Java web service clients
building 251, 258
client generated artifacts,

analyzing 255, 256
generated client, modifying 256, 258
JAX-WS, analyzing 255, 256

running 251, 258
web service clients, generating 251, 252

javax.xml.soap.SOAPMessage
about 84
javax.activation.DataSource 84

javax.xml.transform.Source 83
JAXB 18, 20, 41
JAXB Classes 255
JAX-RS

about 168, 169
CXF JAX-RS implementation 170
goals 169

JAX-WS
about 17, 41
properties 95

JAX-WS frontend
about 27, 51

JAX-WS SOAP-based web services
developing 52

JBI 21
JMS connection factory 121
JMS transport

about 118
Apache ActiveMQ provider 119
client bean coniguration, creating 120-122
client component, developing 122
code, building 123-125
code, deploying 123-125
embedded broker, developing 119, 120
OrderProcessImpl class, developing 119
OrderProcess SEI, developing 119
P@P model, used 118
Pub-Sub model, used 118
server bean coniguration, creating 120-122

JSON data format 19

L
local transport

about 126
client bean coniguration, creating 127
client, developing 128
code, building 129
code, executing 129
OrderProcess SEI, developing 127
server, developing 127

[316]

M
marshalling 131
Maven

about 284
using, for build management 284, 285

maxOccurs attribute 248
message objects, provider and dispatch

services
about 83
DOMSource object 84
javax.activation.DataSource 84
javax.xml.soap.SOAPMessage 84
javax.xml.transform.Source 83
SAXSource object 84
StreamSource object 84

messaging modes, provider and dispatch
services

about 82
message mode 82, 83
payload mode 83

minOccurs attribute 248
Movie Schema 250

N
non-XML bindings

CORBA 20
JBI 20
JSON 20

non-XML binding support, CFX 20

O
operation functions 265
Order Processing Application

about 26
code, building 37
code, deploying 38
code, executing 38
objective 26

order process web service
building 146
GZIP feature, applying 152
running 146

P

P2P model 118
PhaseInterceptor interface

about 134
getAfter method 135
getBefore method 135
getId method 135
getPhase method 135

POJO 290
POJO-based development 290
POJOs 18
POM 284
portName attribute 86
ports 10
Poster 208
Poster client

installing 208, 209
processOrder method 28, 159
protocol binding 47
provider and dispatch services

about 81
message objects 83
messaging modes 82
web service context 93
web service context example, running 95
web service context, implementing 94

provider dispatch example
running 91, 92

provider service
attributes 86
implementing 85-88
publishing 88

Proxy-based API 185
Pub-Sub model 118

R
Representational State Transfer. See REST
Request Method Designators 177
RequestWrapper class 255
Resource class 177
resource method

AddBooks 210
addCategory 210
deleteCategory 210
getBooks 210
getCategory 210
UpdateCategory 210

[317]

Resource methods
about 177
addBooks 178
addCategory 177
deleteCategory 177
getBooks 178
getCategory 177
updateCategory 178

response.getStatus() method 227
ResponseWrapper class 255
REST 12, 166
restapp.xml 205
REST architecture style

about 166
World Wide Web example 166

RESTful services
about 19, 166
Book shop application 171
developing 172
developing, CXF JAX-RS

implementation used 171
example 166, 168
making, available over HTTP 187-189

RESTful services development
binding, providing for data objects 174
client, creating 185
code, building 190
code, deploying 191
code, executing 192-194
exception handling, adding 194-198
implementation class, developing 175
Java data objects, creating 172-174
program, running 189

RPC style 16
RPC style, SOAP Binding 58

S
SAAJ 41
SAXSource object 84
SCA 21
Schema functions 262
SEI

creating 53, 54
creating 27-29

Serialization functions 263
server side interceptor

adding, to order process service 141
developing 138-140

service class 256
service components, Contract irst

development
generating 64-66
JAXB input classes 67

service function 265
Service implementation

creating, from WSDL ile 271
generated artifacts, analyzing 273, 274
generating, from WSDL ile 272
web service implementation, generating

272, 273
WSDL iles, validating 279

service implementation class
about 273
developing 30

Service implementation generated artifacts
analyzing 273
generated service implementation,

modifying 274, 276
web service, deploying 277, 278
web service, invoking 278, 279
web service project, building 277
web service, publishing 277, 278

service interface 256
service model, CFX architecture

about 45
BindingInfo component 45
components 45
EndpointInfo component 45
InterfaceInfo component 45
MessageInfo component 45
OperationInfo component 45
ServiceInfo component 45

serviceName attribute 86
Service Registry 13
service WSDL deinition

analyzing 246-250
setInvoker method 162
setVerifyCredit() method 302
simple frontend

about 96
developing 96
about 43

simple frontend, developing

[318]

about 96
client, creating 98
server implementation, creating 97, 98
service implementation class, creating 97
service implementation interface, creating

97
steps 96

simple frontend example
running 99

Simple Object Access Protocol. See SOAP
SOAP 9, 17, 103
SOAP Binding

about 57
document style 57
RPC style 58

SOAP over HTTP transport, CFX 103
software required, CFX

about 282
Apache Ant 1.7.1 282
CXF binary distribution 2.2.3 282
JDK 5 282
Maven 2.x 283
Tomcat 6.0 282

source code, CFX
downloading 281, 282

Spring
about 289
integrating, web.xml used 204, 205

Spring-based server bean 31, 32
Spring framework

about 293
functionalities 293
Spring IOC container 293

Spring IOC application
code, building 307, 308
code, executing 309
creating 294-303
entity model, creating 294-297
POJO wiring 300-304
running 306
services, creating 298, 299
standalone client, creating 304-306

Spring IOC container 293
standalone server

developing, for order process web
service 145, 146

Standalone server class 274

StreamSource object 84
sucessResponse function 268

T
targetNamespace attribute 86
testAddBooksForCategory() method 227
testAddCategory() method 225
Theatre Schema 249
tools

about 19
Java to web service 19
Java to WSDL 19
WSDL to Java 19
WSDL to JavaScript 19
WSDL to Service 19
WSDL to SOAP 19
WSDL to XML 19
WSDL Validator 19
XSD to WSDL 19

transport protocols, CFX
HTTP 102
HTTPs 102
HTTPs transport 108
HTTP transport 102
JMS 102
JMS transport 118
local 102
local transport 126

transports 49

U
unmarshalling 131
updateCategory() method 215
URI 166

W
WAR ile

building 205
deploying 205

web service
invoking, Java client used 245, 246
invoking, JavaScript used 259

web service context
about 93
implementing 94

[319]

web service context example
running 95

web service, developing
about 27
SEI, creating 27-29
service implementation class,

developing 30
Spring-based server bean 31

web services
about 13
development approaches 14
introducing 13
invoking, Java client used 245, 246
invoking, JavaScript used 259
service provider 14
service registry 14
service requestor 14
SOAP communication style 15

Web Services Description Language. See
WSDL

web services development approaches 14
web service SOAP communication style

about 15
RPC style 16

web service standards support, CXF
about 17
JAX-WS 17
MTOM 17
SOAP 17
WS-Addressing 17
WS-Basic Proile 17
WSDL 17
WS-Policy 17
WS-ReliableMessaging 17
WS-Security 17

web service technology standards
about 8
REST 12
Service Registry 13
XML 8

web.xml 205
WS-Addressing 18
WSDL 10, 246
WSDL iles

validating 279, 280
wsdlLocation attribute 86
WSDLValidator tool 279

WS-I Basic Proile 18
WS-Policy 18
WS-ReliableMessaging 18
WS-Security 18

X
XML

about 8
SOAP 9
WSDL 10
XML namespace 8
XML schema 8

Thank you for buying
Apache CXF Web Service
Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Apache CXF Web Service Development, Packt will have
given some of the money received to the Apache Sowftware Foundation project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

RESTful Java Web Services
ISBN: 978-1-847196-46-0 Paperback: 256 pages

Master core REST concepts and create RESTful web
services in Java

1. Build powerful and lexible RESTful web
services in Java using the most popular Java
RESTful frameworks to date (Restlet, JAX-RS
based frameworks Jersey and RESTEasy, and
Struts 2)

2. Master the concepts to help you design and
implement RESTful web services

3. Plenty of screenshots and clear explanations to
facilitate learning

Spring Persistence with Hibernate
ISBN: 978-1-849510-56-1 Paperback: 460 pages

Build robust and reliable persistence solutions for
your enterprise Java application

1. Get to grips with Hibernate and its
coniguration manager, mappings, types,
session APIs, queries, and much more

2. Integrate Hibernate and Spring as part of your
enterprise Java stack development

3. Work with Spring IoC (Inversion of Control),
Spring AOP, transaction management, web
development, and unit testing considerations
and features

Please check www.PacktPub.com for information on our titles

Swing Extreme Testing
ISBN: 978-1-847194-82-4 Paperback: 328 pages

The Extreme approach to complete Java application
testing

1. Learn Swing user interface testing strategy

2. Automate testing of components usually
thought too hard to test automatically

3. Practical guide with ready-to-use examples and
source code

4. Based on the authors’ experience developing
and testing commercial software

WordPress 2.7 Complete
ISBN: 978-1-847196-56-9 Paperback: 296 pages

Create your own complete blog or web site from
scratch with WordPress

1. Everything you need to set up your own
feature-rich WordPress blog or web site

2. Clear and practical explanations of all aspects
of WordPress

3. In-depth coverage of installation, themes,
syndication, and podcasting

4. Explore WordPress as a fully functioning
content management system

Please check www.PacktPub.com for information on our titles

	1847195407
	Copyright
	Credits
	About the Authors
	About the Reviewer
	Table of Contents
	Preface
	Getting Familiar with CXF
	Web service technology standards
	XML
	SOAP (Simple Object Access Protocol)
	WSDL (Web Services Description language)

	REST (Representational State Transfer)
	Service Registry

	Introducing web services
	Approaches for web service development
	Web service SOAP communication styles

	Apache CXF
	History of CXF
	Why CXF?
	Support for web service standards
	Support for POJO (Plain Old Java Object)
	Frontend programming APIs
	Tools support
	Support for RESTful services
	Support for different transports and bindings
	Support for non-XML binding
	Ease of use
	Flexible deployment

	Setting up the environment
	For ANT users
	For Maven users

	Summary

	Developing a Web Service with CXF
	The Order Processing Application
	Developing a service
	Creating a Service Endpoint Interface (SEI)
	Developing a service implementation class
	Spring-based server bean

	Developing a client
	Developing a Spring-based client bean
	Developing web service client code

	Running the program
	Building the code
	Deploying the code
	Executing the code

	CXF architecture
	Bus
	Frontend
	JAX-WS
	Simple frontend

	Messaging and Interceptors
	Service model
	Data binding
	Protocol binding
	Transports

	Summary

	Working with CXF Frontends
	JAX-WS frontend
	Code-first development
	Creating Service Endpoint Interface (SEI)
	Adding Java annotations
	Publishing the service
	Developing a consumer
	Running the Code-first example

	Contract-first development
	Generating service components
	Implementing the service method

	Publishing the web service
	Invoking the web service

	Using dynamic client
	Creating a simple dynamic client
	Running the dynamic client
	Using the CXF service model for building dynamic client
	Running the dynamic client which uses Service Model API

	Provider and Dispatch services
	Understanding messaging modes
	Message mode
	Payload mode

	Understanding types of message objects
	javax.xml.transform.Source

	Implementing Provider service
	Publishing the Provider service
	Implementing the Dispatch service
	Running the provider dispatch example
	Web service context
	Implementing Context in service
	Running the web service context example

	Simple frontend
	Developing a simple frontend
	Creating service implementation class and interface
	Creating server implementation
	Creating client

	Running the simple frontend example
	Summary

	Learning about Service Transports
	Transport protocols in CXF
	HTTP transport
	SOAP over HTTP
	HTTP only
	HTTP Conduit
	HTTP destination

	HTTPs transport
	Developing the service and implementation class
	Generating crypto key
	Creating client and server bean configuration
	Configuring the server to support SSL
	Developing the client component
	Building and deploying
	Configuring SSL for Jetty runtime

	JMS transport
	Developing the service and implementation class
	Developing an embedded broker
	Creating a server and client bean configuration
	Developing a client component
	Performing build and deployment

	Local transport
	Developing SEI and an implementation class
	Developing a server
	Creating client bean configuration
	Developing a Client
	Building and executing

	Summary

	Implementing Advanced Features
	Understanding CXF interceptors
	Understanding interceptor phase and chain
	Overview of the interceptor API
	Interceptor interface
	The PhaseInterceptor interface
	The AbstractPhaseInterceptor class

	Developing the custom interceptor
	Developing the server side interceptor
	Adding a server side interceptor to the Order Process service
	Developing the client side interceptor
	Adding a client side interceptor to the client code
	Developing the standalone server for publishing the Order Process web service
	Building and running the Order Process web service and interceptor
	Building the code
	Executing the code

	Testing the custom interceptor for negative condition

	Understanding CXF features
	Applying the GZIP feature to the Order Process web service
	Developing service and implementation class
	Developing a server component
	Creating the client bean configuration file
	Creating a client component to consume the service
	Building and executing the code

	Understanding CXF Invoker
	Overview of Invoker API
	The Invoker interface
	The AbstractInvoker class

	Developing custom invoker
	Summary

	Developing RESTful Services with CXF
	Overview of REST and RESTful services
	Java API for RESTful services
	CXF JAX-RS implementation

	Developing end-to-end RESTful services using CXF JAX-RS implementation
	Developing the RESTful service
	Creating Java data objects for Request and Response
	Providing binding for the Request and Response data objects
	Developing the implementation class
	Creating the client
	Running the program
	Building the code
	Deploying the code
	Executing the code

	Adding exception handling to RESTful service

	Summary

	Deploying RESTful Services with CXF
	Packaging the Book Shop application
	Configuring CategoryService RESTful bean using Spring
	Integrating Spring using web.xml
	Building and deploying the WAR file
	Building the code
	Deploying the code

	Invoking operations on the Book Shop RESTful application
	Installing POSTER client
	Invoking the Book Shop application using the
the POSTER tool
	Invoking the Get Category operation
	Invoking the Add Category operation
	Invoking the Update Category operation
	Invoking the Add Books operation
	Invoking the Get Books operation
	Invoking the Update Category operation with
invalid request
	Invoking the Get Category operation with invalid request
	Invoking the Delete Category operation

	Invoking the Book Shop application using CXF APIs

	Configuring JSON support for the Book Shop application
	Incorporating JSON message format for
the Book Shop application
	Invoking the Get Category operation with JSON as the message format
	Invoking the Add Category operation with JSON
as the message format

	Invoking the Book Shop application with JSON as the message format using CXF APIs

	Intercepting messages for the Book Shop application
	Deploying the Book Shop application in the application servers
	Summary

	Working with CXF Tools
	Invoking a web service using the
Java client
	Analyzing the service WSDL definition
	Building and running the Java web service clients
	Generate the web service clients
	Analyzing the JAX-WS and client generated artifacts
	Modifying the generated client
	Building the client
	Running the client

	Invoking the web service using
JavaScript
	Building and running the Java web service clients
	Generating the JavaScript client
	Analyzing the generated artifacts
	Creating the client
	Running the client

	Creating Service Implementation from the WSDL file
	Generating and deploying the Service Implementation from the WSDL file
	Generating the web Service Implementation
	Analyzing the Service Implementation generated artifacts
	Modifying the generated Service Implementation
	Building the web service project
	Deploying and publishing the web service
	Invoking the web service

	Validating WSDL files
	Summary

	Getting Ready with Code Examples
	Downloading the source code
	Downloading the software required for the book
	Setting up the environment
	Using Maven for Build management
	Building chapter source code using Maven

	Getting Started with Spring
	Concept of POJO-based development
	Understanding Inversion of Control
	Overview of aspect-oriented
programming
	Introduction to Spring framework
	The Spring IoC container

	Creating a Spring IoC application
	Creating the entity model
	Creating services
	Creating the application and wiring POJO
	Creating the standalone client
	Running the program
	Building the code
	Executing the code

	Summary

	Index

