
T E C H N O L O G Y I N A C T I O N ™

Game
Programming
with Code Angel

Learn how to code in Python on
Raspberry Pi or PC
—
Mark Cunningham

www.allitebooks.com

http://www.allitebooks.org

Game Programming
with Code Angel

Learn how to code in Python
on Raspberry Pi or PC

Mark Cunningham

www.allitebooks.com

http://www.allitebooks.org

Game Programming with Code Angel: Learn how to code in Python on

Raspberry Pi or PC

ISBN-13 (pbk): 978-1-4842-5304-5 ISBN-13 (electronic): 978-1-4842-5305-2
https://doi.org/10.1007/978-1-4842-5305-2

Copyright © 2020 by Mark Cunningham

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5304-5.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Mark Cunningham
Edinburgh, Scotland

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5305-2
http://www.allitebooks.org

To Mum and Dad

For recoginizing that a Space Invaders habit and a ZX81
might eventually lead somewhere in 40 years’ time…

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���xi

About the Technical Reviewer ���xiii

Chapter 1: Introduction���1

Coding a game ��3

Python and Pygame ��4

Choosing an IDE ��4

Python IDLE ���4

Thonny ���5

PyCharm Edu ���5

Bugs and debugging ���5

Common mistakes ��6

Indentation ��6

Variable and function names ���7

Case ���7

Brackets and quotes ��7

Missing colons ���8

Comments ���8

Time to get started…��8

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Forest Bomber part 1: A first level ��������������������������������������9

Getting started ��9

Step 1: Set up the game environment ��11

Step 2: Initialize variables ���13

Score and lives ��13

Forest list variable ���16

Step 3: Display the background ��18

Step 4: Draw the forest ���20

Using math to calculate tree position ��21

Deciding which trees to draw ��22

Summary���24

Chapter 3: Forest Bomber part 2: Is it a bird…? ��������������������������������25

Step 5: Draw the plane ��25

Step 6: Move the plane ���27

Fly across the screen ��27

Fly down the screen ��29

Chapter 4: Forest Bomber part 3: Bombs away… ������������������������������33

Step 7: Drop the bomb ��34

Key presses ���34

Move the bomb ���37

Exploding trees ���40

Ground level ��42

Step 8: Game over/level up ���43

Table of ConTenTsTable of ConTenTs

vii

Chapter 5: Forest Bomber part 4: Wrapping it up �������������������������������49

Step 9: Display scoreboard and messages ���50

Scoreboard background ��50

Display the score ���52

Display the level ��53

Display the high score ���54

Display messages ��55

Chapter 6: Snapper part 1: In the woods ��61

Getting started ��61

Step 1: Set up the game environment ��63

Step 2: Initialize variables ���65

Boolean variables ��65

Dictionaries ���66

Step 3: Display the background ��69

Chapter 7: Snapper part 2: Say cheese ��71

Step 4: Draw and move the camera ��72

The mouse pointer ���72

Step 5: Show an animal ��74

Using the dictionary���74

Step 6: Hide an animal ��77

Setting a timer ���78

Rectangles ���80

Show another animal ��81

Building a function ��82

Table of ConTenTsTable of ConTenTs

viii

Chapter 8: Snapper part 3: Snapped ��87

Step 7: Take a photograph ��88

Rectangles collide ���89

Snapped it! ��91

Oops, missed! ��92

Hit or miss? ���93

Step 8: Game over ���95

Step 9: Scoreboard��96

Chapter 9: Alien Invasion part 1: Under attack ��������������������������������101

Getting started ��101

Step 1: Set up the game environment ��103

Step 2: Initialize variables ���106

Step 3: Display the background ��108

Chapter 10: Alien Invasion part 2: Missile launch is Go �������������������109

Step 4: Drive the base ���109

Comparison operators ���111

Step 5: Launch missile ��112

Move the missile ���114

Display missile ��115

Logical operators ��115

Chapter 11: Alien Invasion part 3: And they came from
outer space ���119

Step 6: Move UFOs ��120

Stay on screen ���122

Time for a change ��123

Call the function ��124

Display UFOs��124

Table of ConTenTsTable of ConTenTs

ix

Chapter 12: Save the planet ���127

Step 7: Shoot UFOs ���128

Catching some rays ���132

Step 8: Game over ���135

Step 9: Scoreboard��137

Chapter 13: Golf part 1: On the tee ���139

Getting started ��139

Step 1: Set up the game environment ��140

Step 2: Initialize variables ���143

Variable naming conventions ��144

Constants ���144

Step 3: Display background ��145

Step 4: Display flag ���146

Chapter 14: Golf part 2: On the green ���149

Step 5: Power meter ���149

Step 6: Move the ball ��152

More about lists ���154

Update ball location ���156

Draw the ball ���158

Chapter 15: Golf part 3: It’s in the hole ���161

Step 7: In the hole ���162

Joining strings ���163

Drawing Pygame shapes ���163

Centering text ��164

Drawing Pygame text ��165

In the hole message ��165

Table of ConTenTsTable of ConTenTs

x

Step 8: Scoreboard��167

Fixed loops ��169

Display the scoreboard ���170

Wrapping up ��171

Index ���173

Table of ConTenTsTable of ConTenTs

xi

About the Author

Mark Cunningham is the founder of Code Angel and a Computing

Science teacher with over 20 years experience teaching in Scotland.

Working with high school students, Mark has learned which coding

concepts new coders find difficult to understand, learn, and master. He has

recognized that students want to learn to code by writing programs which

will motivate and engage them. His work with Code Angel has allowed

him to take his teaching beyond the classroom and reach a much wider

audience online. Mark is also the co-founder of Hashtag Learning who

develop online resources for schools.

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years of experiences in Security,

Web/Mobile Development, Cloud, and IT Architecture. His true IT

passions are Security and Android.

He has been programming and teaching how to program with Android,

Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a Master of Science in Computing Science from the

University of Salerno, Italy.

He has worked as a Project Manager, Software Engineer, Research

Engineer, Chief Security Architect, Information Security Manager, PCI/

SCADA Auditor, and Senior Lead IT Security/Cloud/SCADA Architect for

many years.

His technical skills include Security, Android, Cloud, Java, MySQL,

Drupal, Cobol, Perl, Web and Mobile Development, MongoDB, D3,

Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,

Scratch, and so on.

He currently works as Chief Information Security Officer (CISO) for

Cargotec Oyj.

He worked as Visiting Lecturer and Supervisor for exercises at the

Networking Laboratory of the Helsinki University of Technology (Aalto

University). He holds four international patents (PKI, SIP, SAML, and Proxy

areas).

Massimo has reviewed more than 40 IT books for different publishing

companies, and he is the coauthor of Pro Android Games (Apress, 2015).

1© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_1

CHAPTER 1

Introduction
Welcome to Python game programming with Code Angel. In this book, you

will write the Python program code required to build four amazing games,

learning how to code as you go along.

The four games you will make are shown in the following.

Figure 1-1 shows the Forest Bomber game.

Figure 1-1. Forest Bomber

2

Figure 1-2 shows the Snapper game.

Figure 1-3 shows the Alien Invasion game.

Figure 1-3. Alien Invasion

Figure 1-2. Snapper

Chapter 1 IntroduCtIon

3

Figure 1-4 shows the Golf game.

 Coding a game
Each game is built up steadily over several chapters. Take your time

working through each chapter, adding the program code as instructed.

New concepts will be explained as they are introduced.

As you finish each game, you should run your program to check that

it works as expected. If it doesn't, don't worry. It's quite common for a

program to contain errors which are known as bugs. If your program has

a bug, carefully compare your code with the code from this book and try

to spot any differences. Missing out just one single character or typing a

character in the wrong place can prevent a program from running.

Have fun playing your finished game or impress your friends by letting

them play the game that you have programmed!

Figure 1-4. Golf

Chapter 1 IntroduCtIon

4

 Python and Pygame
In order to run any of the code in this book, you will need to install

the Python programming language on your computer. This is a fairly

straightforward process. Follow the installation instructions on the Python

web site: www.python.org.

Once you have installed Python, you need to install the Pygame library

which extends Python and provides many of the functions required to

make games. Visit the web site for information on how to download and

install Pygame: www.pygame.org.

Both Python and Pygame are open source and completely free.

 Choosing an IDE
Now that you have installed Python and Pygame, you are ready to begin

coding. You are probably wondering where to actually type your Python code.

The best way to do this is by using an IDE. IDE stands for integrated

development environment. It's what programmers use to enter, run, and

debug their code.

There are lots of different IDEs to choose from. At Code Angel, we

recommend one of the following IDEs to get you started. They are all free

and available for Windows, MacOS, and Linux.

 Python IDLE
Pros: Installed with Python, fine for small projects

Cons: Basic, limited debugging, not great for larger projects

Rating 3/5

Chapter 1 IntroduCtIon

http://www.python.org
http://www.pygame.org

5

 Thonny
Pros: Easy to use

Cons: Not as polished as PyCharm

Rating 4/5

Windows, Mac, or Linux

 PyCharm Edu
Pros: Works well for large projects

Cons: More complex interface and menu options, steep learning curve

Installation: Needs Pygame to be added under Settings ➤ Project

Interpreter

Rating 5/5

Once you install whichever IDE you think best meets your needs, you

are ready to start coding.

 Bugs and debugging
A bug is simply an error in a computer program. Bugs are so called

because early computers were very large and insects would get inside the

system and cause a short circuit. Nowadays, a bug refers to program code

which contains an error.

A bug may cause a program to crash or prevent it from working in

the way that was expected. Debugging means finding and fixing bugs in

program code.

When a program crashes, it may display an error message. Sometimes

the message can be difficult to understand. The most important thing to

note is the line number at which the error occurred. Find the line number

in your program, and compare it very closely with the same line of code

from this book. Look for any differences. Your program code must be

Chapter 1 IntroduCtIon

6

exactly the same as the code from the book. Also check that the lines

above and below the reported line number are correct.

A logic error is an error which causes a program to run incorrectly but

does not necessarily cause the program to crash. Because there is no error

message, logic errors can be difficult to find.

With logic errors, you need to work out where in the program code

the error might be. For example, imagine a game where the objective is

to shoot a spaceship. Each time that the player hits the spaceship, they

should have ten points added to their score. However, you find when

running the game that ten points are subtracted each time a spaceship is

hit. This would be an example of a logic error.

This logic error must have occurred when the program updated the

game score. It is likely that a minus sign has been used instead of a plus

sign, and that is what has caused the error. The game will not actually

crash, but the player will soon get fed up losing points every time they hit

a spaceship!

 Common mistakes
While bugs can be caused in many different ways, there are some common

mistakes you should look out for.

 Indentation
In Python, indentation levels are very important. Indentation errors can

cause a program to crash or not work correctly. Each level of indentation

should be either four spaces or a single tab.

while True:

⎵⎵⎵⎵for event in pygame.event.get():

⎵⎵⎵⎵⎵⎵⎵⎵key_pressed = pygame.key.get_pressed()

Chapter 1 IntroduCtIon

7

Make sure that you carefully check indentation levels as you enter new

lines of code.

 Variable and function names
Make sure variable names and function names are spelled correctly.

score ✓
csore ×

Variable names and function names use underscores between words.

plane_exploded ✓

Variable names and function names cannot contain spaces.

plane exploded ×

 Case
Python is case sensitive. This applies to Python commands, as well as

function and variable names.

So in a Python program, score, Score, and SCORE are three completely

different things.

 Brackets and quotes
Brackets and quotes come in pairs.

If there is an opening bracket, there must also be a closing bracket

()

The same applies to quotes

“ ” or ‘ ’

Chapter 1 IntroduCtIon

8

 Missing colons
if statements, for statements, def function declarations, and class

definitions all end in a colon. It’s common for beginners to miss the colon

out by mistake – if you are getting an error, make sure that the colon is not

missing.

if bomb.y > SCREEN_HEIGHT:

 Comments
A comment is a note or explanation included in the program code.

In Python, comments begin with the # hash symbol and will often be

displayed in a different color by the IDE.

Comments are ignored by the computer when the program is being run.

All of the programs in this book include comments to help explain what the

program code is doing. These comments don’t affect the program and so do

not actually have to be entered, but it is good practice to include them.

 Time to get started…
You are now ready to start programming the games in this book, beginning

with Forest Bomber. You might find coding tricky at times, you might get

frustrated, but to become a programmer, the key is to stick with it and not

give up. And of course…have fun!

Chapter 1 IntroduCtIon

9© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_2

CHAPTER 2

Forest Bomber part 1:
A first level

Dusty sunbeams cut eerie shadows across the forest floor.
Dawn was breaking.

The radio message was faint at first, but became gradually
stronger. 'Mayday…Mayday…' The distant hum of an air-
plane engine could be heard above the trees.

Captain Matt Johnson knew he was in trouble. The fuel gauge
in his B-58 Hustler was well into the red, indicating that he
would have no more than two minutes before his plane went
down. He glanced out of the jet fighter window. Where could
he land? There was nothing but a sea of trees beneath him.

He knew he had only one option remaining. Captain Johnson
would have to clear a landing strip using the bombs fitted to
the Hustler.

 Getting started
We have an idea for a game, Forest Bomber. In Forest Bomber, an airplane

is running out of fuel and has to land safely at the bottom of the screen.

However, there are trees in the forest which will cause the plane to explode

10

if it crashes into one. So the pilot of the plane – our player – has to try and

bomb the trees to clear a landing strip.

OK, so we have an idea for a game, and it seems simple enough. That’s

a good start. Now what?

Before we even begin writing any of the Forest Bomber code, we need

to design the game in more detail by taking the idea and breaking it down

into smaller steps, covered here and in Chapters 3 to 5 as follows:

 1. Set up game environment (Chapter 2).

 2. Initialize variables (Chapter 2).

 3. Display the background (Chapter 2).

 4. Draw the forest (Chapter 2).

 5. Draw the plane (Chapter 3).

 6. Move the plane (Chapter 3).

 7. Drop the bomb (Chapter 4).

 8. Game over/level up (Chapter 4).

 9. Display scoreboard and messages (Chapter 5).

I’ve split the steps over four chapters so we could gradually build up

the game. The first two steps might seem a little odd, but the remaining

seven steps should make some sense.

By the end of step 4, we will have designed and coded the layout for the

first level of Forest Bomber.

Let’s begin by sketching out how the game screen will look (Figure 2- 1).

The plane should start in the top left-hand area of the screen, and the forest,

which the player must clear in order to land, will run along the bottom of

the screen. As this will be the first level, we will start with four trees in the

forest, but the number of trees will increase in each level making the game

progressively more difficult.

Chapter 2 Forest BomBer part 1: a First level

11

 Step 1: Set up the game environment
Before we can even begin to think about planning the main gameplay, we

have to start by setting up some basic elements of the game environment.

This is fairly boring stuff, and so the plan is to skip by it as quickly as

possible so that we can concentrate on the main game where we will be

able to develop much more useful and interesting coding skills. OK, here

goes. Enter the lines of code exactly as they are shown in code listing 1 in

Figure 2-2.

Figure 2-1. Forest Bomber level 1 design

Chapter 2 Forest BomBer part 1: a First level

12

We won’t worry too much about the code at this stage, but if you want

to know more, the following explains what it does:

• Lines 1–3 are called comments. They are ignored by

the computer.

• Lines 5–8 tell the computer that we are going to use

some additional Python code which has to be imported.

• Lines 11–15 are some of the colors we will be using later

in the program.

• Lines 18–32 set up some values which will be used

throughout the program. For example, SCREEN_

WIDTH and SCREEN_HEIGHT will be used to draw the

actual game screen at 640 × 480 pixels, TREE_SPACING

will be used to keep a 40-pixel space between each of

the trees, and PLANE_START_Y will be used to start the

plane 54 pixels down from the top of the screen.

Figure 2-2. Forest Bomber code listing 1

Chapter 2 Forest BomBer part 1: a First level

13

Again, enter the lines of code shown in code listing 2 in Figure 2-3.

• Lines 36–43 set up the window in which the game will

be displayed.

• Lines 46–51 load the graphics which will be used in

the game.

• Lines 54–55 load the audio files which will be used in

the game.

 Step 2: Initialize variables
Now that all of the boring stuff is out of the way, we can start to write

the game.

 Score and lives
We will begin by gaining an understanding of variables. A variable stores a

piece of information or data to be used in a program. Think of a variable as

being like a box. Each variable must have its own unique name.

Figure 2-3. Forest Bomber code listing 2

Chapter 2 Forest BomBer part 1: a First level

14

In Forest Bomber, we need to keep track of the score. To do this, we

use a variable. We will create a box (a variable), give it the name score and

place the number 0 in it.

When a variable is first given a value, it is being initialized. The score

variable is initialized with the value 0 (Figure 2-4).

We will also need to keep track of the game level. Again, we use a

variable, but this time we will call it level and initialize it with 1, because

the game will begin at level 1 (Figure 2-5).

Figure 2-4. The variable score, which stores the value 0

Figure 2-5. The variable level, which stores the value 1

Chapter 2 Forest BomBer part 1: a First level

15

Variables can store different types of data. Our score and level variables

are both integers. An integer is a whole number which can be positive,

negative, or zero.

Enter the code to initialize all of the game variables, as shown in code

listing 3 in Figure 2-6.

Line 57 initializes the level variable with the value 1.

Line 58 initializes the score variable with the value 0.

Figure 2-6. Forest Bomber code listing 3

Chapter 2 Forest BomBer part 1: a First level

16

Key learning a variable is like a box which can store some data or
information. each variable has its own unique name and is initialized
as follows:

score = 0

lives = 1

 Forest list variable
Lines 85–88 use a special type of variable to set up the tree formation for

each level.

The variables forest_1, forest_2, forest_3, and forest_4 are lists.

A list is a special kind of variable because it can store more than one item

of data. There are four different forest lists because there will be four levels

in the game.

Each forest list stores 12 items, which can be either

• ‘T’ which represents a tree

• ‘–’ which represents a space

Figures 2-7 to 2-10 show how the four forests are stored as lists and

how each list is then mapped to a tree drawn on the screen. We will learn

later in this chapter how we actually draw the trees.

Figure 2-7. Level 1 illustration using the forest_1 list

Chapter 2 Forest BomBer part 1: a First level

17

Notice that as we move from forest 1 through to forest 4, there are more

trees. This is so that each level is harder than the one before. If you wish,

you can customize Forest Bomber by changing the combination of ‘T’s and

‘-’s in the list to change the formation of trees in a level (although probably

best not to do that just yet).

Key learning a list is a special type of variable which can be used
to store multiple items of data.

So far, we have entered almost 90 lines of code, and nothing is

happening in our game yet!

Figure 2-8. Level 2 illustration using the forest_2 list

Figure 2-9. Level 3 illustration using the forest_3 list

Figure 2-10. Level 4 illustration using the forest_4 list

Chapter 2 Forest BomBer part 1: a First level

18

 Step 3: Display the background
It is time to display some of the graphics for Forest Bomber, and we will

begin with the background graphic. Enter lines 91–105 as shown in code

listing 4 in Figure 2-11.

Notice that line 94 and lines 102–105 are indented (which means

they are spaced in from the left of the page). Also notice that line 97 has

a double indent, and lines 98–99 have three levels of indentation. Python

is very specific about each level of indentation. Each level of indentation

should be exactly four spaces (or one tab).

Let’s take a closer look at line 102.

This is the line of code which draws our game background. It uses

the blit command to display the background image in the top left-hand

corner of the game window. The background image itself is 640 × 480

pixels which is exactly the same size as the Forest Bomber window, so it

fits in place perfectly.

Pygame uses a coordinate system to draw graphics on screen, and the

point (0,0) is in the upper left-hand corner as can be seen in Figure 2-12.

Figure 2-11. Forest Bomber code listing 4

Chapter 2 Forest BomBer part 1: a First level

19

There are a couple of other things to note about the way in which the

background image is displayed by line 102:

• game_screen is a variable which was initialized in

line 40, and it is a representation of the Forest Bomber

game window.

• background_image is a variable which was initialized in

line 46. It stores the image file background.png.

Now it’s time to test our program. Run Forest Bomber, and if you have

entered the code correctly, the background image should be displayed.

If you get an error, carefully check that all code has been entered correctly.

Even the slightest mistake will cause the program to not run.

Figure 2-12. Pygame coordinate system

Chapter 2 Forest BomBer part 1: a First level

20

Key learning blit draws an image onto a pygame screen.

pygame uses a coordinate system, where the point (0,0) is the
top-left corner of the game.

each level of indentation is four spaces or one tab.

 Step 4: Draw the forest
Now that we have our game background, it’s time to draw the forest.

We have already seen that the layout of the forest for each level is

stored in a list. For level 1, the forest layout is held in the list forest_1. The

next block of code will draw the forest on top of the game background.

To draw the forest, code listing 5 should be added between lines 102

and 104 as shown in Figure 2-13.

Some lines of code listing 5 in Figure 2-13 are quite complicated, and

so the techniques used will be picked up later in the book.

For now, we will concentrate on lines 106–108 because they actually

draw the trees in our forest.

Figure 2-13. Forest Bomber code listing 5

Chapter 2 Forest BomBer part 1: a First level

21

 Using math to calculate tree position
Line 106 does a bit of math to work out how far across the game screen

to place each tree.

• The variable tree.x will store the x coordinate of the

tree (how far across the screen it should be displayed).

• FIRST_TREE is a variable which has already been given

the value of 140 in line 28 of the program.

• column will be 0 to begin with but will then become 1,

then 2, then 3, and all the way up to 11. This is because

there can be 12 different positions at which a tree can

be displayed from left to right.

• TREE_SPACING is also a variable which has its value

assigned earlier in the code – if you check back to line

27, you will see it was set to 40. This variable is the

number of pixels between each tree in the forest.

• The ∗ sign in Python means multiply.

So let’s do the math…

When column is 0:

tree.x = FIRST_TREE + column ∗ TREE_SPACING
 = 140 + 0 ∗ 40
 = 140

When column is 1:

tree.x = FIRST_TREE + column ∗ TREE_SPACING
 = 140 + 1 ∗ 40
 = 180

Chapter 2 Forest BomBer part 1: a First level

22

When column is 2:

tree.x = FIRST_TREE + column ∗ TREE_SPACING
 = 140 + 2 ∗ 40
 = 220

And so on. This is how we work out the x coordinate of each of the

12 trees.

 Deciding which trees to draw
But wait – we don’t actually want to display all 12 trees. We only want to

display a tree when our forest list has a T. That’s where line 107 comes in.

This is an if statement. if statements are used in programming to

make a decision.

This code is saying

• Only draw a tree if the forest_item is equal to ‘T’.

Notice the use of the double equals (==) in line 107. In Python, we use ==

to check if two things are equal.

Line 107 doesn’t actually draw anything though; it is only making the

decision. If the forest_item is equal to ‘T’, then line 108 will be executed,

and line 108 is the line which draws the tree on the screen.

Notice that line 108 is indented. If the forest_item is a ‘T’, then all

indented lines directly below the line will be executed. In this case, the only

indented line is 108, so that will be executed if the forest_item is a ‘T’.

Chapter 2 Forest BomBer part 1: a First level

23

Line 108 uses the blit command to draw a tree_image onto the

game_screen at coordinates (tree.x,tree.y). But where do all of these

commands and values come from?

• We learned about blit earlier in this chapter when we

drew the background image.

• We also saw that game_screen is a variable which stores

the Forest Bomber game window.

• tree_image is a variable used to store the image of a

tree. It was initialized in line 47 of the program where it

was loaded with the file tree.png – the picture of a tree.

• We have already seen how tree.x is initialized by some

math which calculates how far horizontally across the

screen each tree should be placed.

• tree.y is a variable initialized in line 77 of the program.

It uses some math to work out where to place the tree

vertically, a few pixels above the bottom of the game

screen.

Let’s ignore lines 109–110. They will display the image of a tree on fire if

it has been hit by a bomb. As we have not written the code to drop a bomb

yet, these lines won’t actually do anything.

We can summarize lines 105–108 as follows:

• Go through each forest item in our forest list.

• Use math to calculate the x coordinate of the tree.

• If the forest item is a tree, then draw a tree in the correct

location.

Run the program. The four trees of Forest Bomber level 1 should be

displayed along the bottom of the game window.

Chapter 2 Forest BomBer part 1: a First level

24

Key learning if is used to make a decision.

Double equals (==) are used to check if two things are equal.

the indented lines below an if statement will be executed if the
statement works out to be true.

 Summary
Phew! No one said learning to code would be easy. We have covered a lot

of complex programming in this first chapter because we prefer to dive

right in. Don’t worry if it all seems difficult to understand. It is, but it will get

easier, and we will revisit many of these topics as we work through the book.

So far, we have written lots of lines of code, and all we have to show for

it is our game background and some trees. The Forest Bomber game will

begin to take a bit more shape in the next chapter.

Chapter 2 Forest BomBer part 1: a First level

25© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_3

CHAPTER 3

Forest Bomber part 2:
Is it a bird…?

Captain Matt Johnson looked out of the window of his B-58
Hustler. The forest below stretched out like a giant green carpet
as far as the eye could see. He studied the fuel gauge again. The
dial pointed directly at the letter E.

Empty.

The B-58 Hustler began making its descent…

In the previous chapter, we completed steps 1–4 of our game design

and learned how to draw the background and trees onto the screen. In

this chapter, we will learn how to draw and move Captain Johnson’s B-58

Hustler plane.

Picking up the steps from our original plan

 5. Draw the plane.

 6. Move the plane.

 Step 5: Draw the plane
Insert code listing 6 between lines 112 and 117 as shown in Figure 3-1.

26

Let’s take a closer look at lines 113 and 114 in Figure 3-2.

We can see another if statement has been used here, so we know that

the program code is making a decision. It is checking to see if plane_

exploded is False. If we look all the way back to line 63, we can see that

plane_exploded is a variable and it is initialized to False.

What is False? In programming, there is a variable type known as a

Boolean, and it can have one of only two possible values: True or False.

Boolean variables are useful in game programming, because they can only

be one or the other. There is no in-between. They can only be either True

or False. Later in the program, we will set the value of the plane_exploded

Boolean variable to True when our plane crashes into a tree. But for now,

it’s False.

Given that the value of plane_exploded is False (at least for now), then

line 114 will execute. Line 114 uses the blit command to draw the plane

image at coordinates (plane.x,plane.y).

Figure 3-1. Forest Bomber code listing 6

Figure 3-2. Forest Bomber code listing lines 113 and 114

Chapter 3 Forest BomBer part 2: Is It a BIrd…?

27

We can see from previous lines of code in our program that

• plane_image is a variable which stores plane.png

(line 45).

• plane.x is initialized with the value PLANE_START_X

(line 73). PLANE_START_X is initialized with the value 0

(line 32) so plane.x will have the value 0.

• plane.y is initialized with the value PLANE_START_Y

(line 74). PLANE_START_Y is initialized with the value 54

(line 33) so plane.y will have the value 54.

Our plane will first appear at coordinates (0,54).

Run the program. The plane should appear near the top of the screen,

on the far left-hand side.

Key learning a Boolean variable can store one of two values: true
or False.

 Step 6: Move the plane
In game programming, we move a sprite around the game screen by

changing its coordinates and then redrawing the screen.

 Fly across the screen
In order to get the plane to move across the screen, we increase the

x coordinate and then redraw the screen. The more we increase the

x coordinate by, the faster the plane will fly. We will increase the x

coordinate by 5, which means it will move to the right by 5 pixels.

Insert code listing 7 at line 101.

Chapter 3 Forest BomBer part 2: Is It a BIrd…?

28

Line 101 can be read as

• Take the variable which stores the plane’s x coordinate.

• Add 5 onto it.

We learned earlier in this chapter that plane.x was initialized with 0.

When line 101 is executed, it will take what is stored in plane.x (in this

case 0) and add on 5. So the new value of plane.x is 5.

We need to do this repeatedly; otherwise, the plane will only move 5

pixels once, which won’t be much use. It’s time to look back at another line

of code that we wrote earlier, line 92.

while True means to repeat doing something – forever. Look down

at the rest of the program code below line 92. It is all indented. This

means that all the indented code will keep repeating, forever (well at least

until the user closes the game window). This also means that 5 will be

repeatedly added onto the x coordinate of the plane.

In order to see the plane actually move, we need to redraw the screen.

Let’s look at some code that we wrote earlier but didn’t pay much attention

to, the last two lines of code in the program, lines 122 and 123.

Figure 3-3. Forest Bomber code listing 7

Figure 3-4. Forest Bomber code listing line 92

Chapter 3 Forest BomBer part 2: Is It a BIrd…?

29

Line 122 redraws the screen, while line 123 determines how many

times the screen should be redrawn in one second, in this case 30.

So our program now draws the plane, moves it 5 pixels right, redraws

the plane, moves it another 5 pixels right, and so on, creating the illusion of

the plane moving.

Test this by running the program.

Fantastic, right? Except for one thing. Our plane flies off the end of the

screen never to be seen again, and that won’t make for much of a game!

 Fly down the screen
Let’s take a moment to consider the logic to make the plane fly down the

screen:

• If the plane flies off the right-hand side of the screen,

move it down the screen and back to the left-hand side.

To move the plane

• Down: We add 100 to its y coordinate.

• Back to the left: We set its x coordinate back to 0.

Add the code to fly the plane down the screen shown in code listing 8,

Figure 3-6.

Figure 3-5. Forest Bomber code listing lines 122 and 123

Figure 3-6. Forest Bomber code listing 8

Chapter 3 Forest BomBer part 2: Is It a BIrd…?

30

Run the program. Now the plane should fly to the right edge of the

screen and then drop down by 100 pixels beginning again on the left-hand

side, except now it flies all the way to the bottom of the screen and then

disappears. We will fix this in a later chapter.

Now we are going to make a couple of minor changes to the code that

flies our plane and which will be useful later.

First, adapt line 102 so that it reads as in Figure 3-7.

We have added + speed_boost to the end of the line, but why? We

want to make the game get a little harder for levels 3 and 4. For levels 1

and 2, speed_boost is 0, so it makes no difference to the speed of the plane.

But for levels 3 and 4, we will set speed_boost to 1. This means we will be

adding 6 to the plane’s x coordinate for levels 3 and 4 instead of 5. It will

make the plane fly slightly faster across the screen and make the game just

that little bit harder.

The second change is to insert an if statement at line 102, Figure 3-8.

The purpose of this line is to make sure we only move the plane if

• We have not reached the end of the level.

• The plane has not exploded.

If either of these events occurs, we do not want to move our plane. We

will learn later in the book how we change the values of level_cleared when

the level is over and plane_exploded when the plane crashes into a tree.

Figure 3-7. Forest Bomber code listing line 102

Figure 3-8. Forest Bomber code listing line 102 with if statement

Chapter 3 Forest BomBer part 2: Is It a BIrd…?

31

The code should now look like code listing 9 in Figure 3-9. One very

important thing to note – because we added an if statement at line 102,

lines 103, 105, 106, and 107 have all had one extra indentation.

Key learning to move a sprite, change its coordinates and then
redraw the screen.

while True is used in python game programming to repeat forever.

Figure 3-9. Forest Bomber code listing 9

Chapter 3 Forest BomBer part 2: Is It a BIrd…?

33© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_4

CHAPTER 4

Forest Bomber part 3:
Bombs away…

Captain Johnson looked down at the flight control panel of his
B-58 Hustler jet. He knew what he had to do. His finger hov-
ered over the button marked ‘Release.’ Timing was all-
important now. He could not afford to miss his target. A bead
of sweat slipped slowly down his right temple.

Wait…Wait…Wait…Now!

He hit the button, and a bomb dropped out of the B-58 and
began hurtling toward the forest below.

In the last chapter, we learned how to make the plane fly across the

screen. Next, we will learn how to write the code which will drop a bomb,

and then we will develop the end of level and game over code.

From our plan

 7. Drop the bomb.

 8. Game over/level up.

34

 Step 7: Drop the bomb
 Key presses
So far in Forest Bomber, there is not much for the player to do other

than sit back and watch the plane fly across and down the screen until it

eventually disappears off the bottom right-hand corner. Not much of a

game! We want our player to be able to interact with Forest Bomber so that

when they hit the spacebar, a bomb is dropped.

Pygame has a way of capturing or storing any key presses.

The code will look as in Figure 4-1.

• The first line assigns any key presses to a variable

key_pressed.

• The second line checks to see if the key_pressed

variable holds a specific key, in this case the spacebar.

Let’s build the key press code into Forest Bomber. Insert code listing 10

(Figure 4-2) at line 96.

Figure 4-1. Key press code

Figure 4-2. Forest Bomber code listing 10

Chapter 4 Forest BomBer part 3: BomBs away…

35

We already know that lines 97 and 98 check to see if the spacebar was

pressed. Lines 99–102 is the code which will run when the spacebar is

pressed.

Let’s examine line 99 more closely. It is another if statement. This

statement checks for three things. It checks if

• bomb_dropped is False

• level_cleared is False

• plane_exploded is False

In Chapter 3, we learned about Boolean variables that can store either

True or False. Let’s look again at the if statement to work out exactly what

we are checking for:

• bomb_dropped is False

Is there a bomb already dropping? If so, we do not want

to allow another bomb to be dropped because it would

make the game too easy. We have to wait until any

previous bombs have exploded or disappear off- screen

before allowing the player to drop the next one.

• level_cleared is False

We can’t drop a bomb if the level has cleared

because the game is waiting to level up.

• plane_exploded is False

We can’t drop a bomb if the plane has exploded

because it is game over.

We need all three of these statements to be False before we can drop a

bomb. To check that they are all False, we place and between each statement.

Chapter 4 Forest BomBer part 3: BomBs away…

36

If all three statements are False, then lines 100 and 102 are executed:

• Line 100 sets the Boolean variable bomb_dropped to

True. This will prevent another bomb being dropped

until bomb_dropped is set back to False again.

• Line 101 sets the x coordinate of the bomb to the value

of the x coordinate of the plane, plus 15. This means

that the bomb will be displayed horizontally in the

middle of the plane.

• Line 102 sets the y coordinate of the bomb to the value

of the y coordinate of the plane plus 10. This means that

the bomb will be displayed 10 pixels below the plane.

We now need some code to display the bomb on screen. Remember

how we wrote the code to display the plane by using the blit command?

We will use very similar code to display the bomb.

Insert code listing 11 (Figure 4-3) at line 135.

Figure 4-3. Forest Bomber code listing 11

Chapter 4 Forest BomBer part 3: BomBs away…

37

Key learning pygame.key.get_pressed() checks any key
presses.

the and keyword can be used to join multiple conditions within a
single if statement.

when and is used, all the statements have to work out as being true
for the if statement to execute.

Now run the program and try hitting the spacebar. A bomb should

appear where the plane is – it just doesn’t move yet.

 Move the bomb
In Chapter 3, we learned how to move the plane by changing its

coordinates and then redrawing the screen. We will move the bomb in

exactly the same way.

Add code listing 12 (Figure 4-4) at line 117.

This code can be read as

• If a bomb has been dropped

• Move it down 3 pixels.

• Move it right 5 pixels.

Figure 4-4. Forest Bomber code listing 12

Chapter 4 Forest BomBer part 3: BomBs away…

38

Test the game by running it. If we press the spacebar, the bomb drops.

The only problem is it keeps going off the screen and we can never launch

another bomb. This is because the bomb_dropped Boolean variable is set to

True when the bomb is launched and never changed back to False.

Remember the code that tests if a bomb can be dropped (Figure 4-5)?

A bomb can only be launched if bomb_dropped is False. Let’s fix our

program so that when a bomb disappears off-screen, bomb_dropped is reset

to False. Insert code listing 13 (Figure 4-6) at line 122 (note that line 122

has two indentations – eight spaces).

• Line 122 tests to see if the bomb has gone below the

bottom of the screen.

• Line 125 tests to see if the bomb has gone beyond the

right-hand side of the screen.

If the bomb has disappeared off the bottom, or off the right of the

screen, bomb_dropped will be set to False which means we can now use

the spacebar to drop a new bomb.

Figure 4-5. Code which tests if a bomb can be launched

Figure 4-6. Forest Bomber code listing 13

Chapter 4 Forest BomBer part 3: BomBs away…

39

Let’s take a closer look at line 122. It compares the y coordinate of the

bomb (bomb.y) with the SCREEN_HEIGHT. But how does the program know

what SCREEN_HEIGHT is?

Look back to lines 18 and 19 of the program. SCREEN_WIDTH is set to

640 and SCREEN_HEIGHT is set to 480. We don’t have to do this, but it makes

our code easier to read. And if we decided we wanted a bigger screen for

our game, say 800 × 600, then we would just have to set SCREEN_WIDTH and

SCREEN_HEIGHT to 800 and 600, respectively, at the start of the program.

You may be also wondering why we use capital letters for some

variable names, like SCREEN_WIDTH and SCREEN_HEIGHT. This is because

they are constants. A constant is assigned a value at the start of the

program, and it doesn’t change. Python’s naming convention suggests

we should use capital letters to indicate the use of constants. That way we

know that we are dealing with a constant value, and therefore its value

should not be changed by the program.

There is one other part of line 122 that merits a closer look. Previously

when comparing values, we have used the double equals sign (==) to

check whether two values are equal. In line 122 (and also in line 125), we

use the greater than (>) symbol. So line 122 actually reads

if the y coordinate of the bomb is greater than the

screen width

The full list of Python’s comparison operators is as follows:

Comparison Operator Meaning

== Is equal to

> Is greater than

>= Is greater than or equal to

< Is less than

<= Is less than or equal to

!= Is not equal to

Chapter 4 Forest BomBer part 3: BomBs away…

40

Key learning the python naming convention suggests using capital
letters to indicate a constant value.

python has a range of comparison operators: ==, >, >=, <, <=,
and !=.

Run the program to test that a new bomb can be dropped once the

previous bomb has disappeared off the edge of the screen.

 Exploding trees
The code to blow up a tree is quite complex, and given we are only just

beginning to learn how to code, we will only focus on a small part of it.

Let’s begin by adding code listing 14 (Figure 4-7) at line 128.

Figure 4-7. Forest Bomber code listing 14

Chapter 4 Forest BomBer part 3: BomBs away…

41

Let’s take a brief overview of lines 128–139 to see what they do:

• Check each of the trees in the forest to see if the bomb

has hit it.

• If it has

• We increase the score.

• We play an explosion sound.

• We set a timer to keep a burning tree graphic on

screen for ten frames.

Let’s take a moment to focus on two of the more straightforward lines

of code that have been used in this block, the code that is run when a

bomb has hit a tree:

• Line 135 sets the Boolean variable bomb_dropped to

False. This means that a new bomb can be dropped

when the player hits the spacebar.

• Line 138 increases the value held in the score variable.

If you remember back to the beginning of Chapter 2,

we set score to 0 and level to 1. Line 138 adds 10 × the

current level to score:

• As level is currently 1, the value 10 (10 × 1) will be

added to the current score.

• As score was initialized with the value 0, score will

become 10 when a first tree is hit.

• When a second tree is hit, score will become 20

and so on.

Chapter 4 Forest BomBer part 3: BomBs away…

42

We will learn how to display the score and level in the next chapter.

The code between lines 142 and 147 uses a timer to display the

burning tree image for a series of ten frames before removing it from the

game altogether. The code is beyond the scope of this chapter, so we will

skip past it.

Test the game again. You should find that if the bomb hits a tree, it

explodes.

 Ground level
Our game of Forest Bomber is starting to take shape. The big problem now

is that when our plane reaches the ground level, it flies through the trees

and off the screen.

Code listing 15 (Figure 4-8) addresses this. Insert the code at line 149.

We won’t go into this code in too much detail, but in summary

• Line 150 uses a bit of math to work out if the y

coordinate of the plane is at the ground level.

Figure 4-8. Forest Bomber code listing 15

Chapter 4 Forest BomBer part 3: BomBs away…

43

• If it is, line 151 calculates the position of the front of

the plane.

• Line 152 says if the plane has got beyond the right-hand

side of the screen, then the level has been cleared, so

set the Boolean variable level_cleared to True.

• Lines 158–163 check to see if the plane has hit a tree

and, if it has, then set the Boolean variable plane_

exploded to True.

Test the game. Now the plane will come to a halt if the player manages

to clear all of the trees from the forest, or it will explode if it hits a tree.

 Step 8: Game over/level up
If the plane hits a tree, then it is game over.

If the plane reaches the right-hand side of the screen on the ground

level, then the game needs to move on to the next level.

In either case, we will display a message to the user to tell them what

has happened and invite them to hit the return key to continue.

There are two Boolean variables which will have been set depending

on what has happened previously:

• plane_exploded will have been set to True if the plane

has hit a tree.

• level_cleared will have been set to True if the player

has cleared all of the trees from the forest.

We will use these variables to determine what to do next.

Add code listing 16 (Figure 4-9) at line 104.

Chapter 4 Forest BomBer part 3: BomBs away…

44

Notice the use of the keyword elif at line 105 (Figure 4-10).

It is short for else if and goes with the if statement at line 98. Together,

these lines can be read as

if the spacebar is pressed

drop a bomb

else if the return key is pressed

start a new level/game

Also notice that the way in which we test if the return key is pressed is

just the same as the way in which we tested if the space key was pressed.

Looking at the first part of line 108 (Figure 4-11), we are checking to see

if the plane has exploded.

Figure 4-10. Forest Bomber code listing line 105

Figure 4-9. Forest Bomber code listing 16

Chapter 4 Forest BomBer part 3: BomBs away…

45

If the plane has exploded, then we know it’s game over. Lines 109–117

reset all the variables back to their start-of-game values.

There is a second part to line 108 (Figure 4-12).

This checks to see if we have cleared the level and also if the current

level is equal to TOTAL_LEVELS, which is 4. In other words, if we have cleared

level 4, we go back to the beginning of the game and start again at level 1.

Now that we have dealt with the game over functionality, let’s add the

functionality to move up a level. Add code listing 17 (Figure 4-13) at line 119

(making sure to check the indentation very carefully).

Figure 4-11. Forest Bomber code listing line 108 (first part)

Figure 4-12. Forest Bomber code listing line 108 (second part)

Figure 4-13. Forest Bomber code listing 17

Chapter 4 Forest BomBer part 3: BomBs away…

46

Line 120 is another elif statement, this time paired with the if

statement at line 108. Together they can be read like this:

if the plane has exploded and it’s game over

restart the game

else if level has been cleared

level up

Let’s take a closer look at some of the code used to level up

(Figures 4-14, 4-15 and 4-16).

• Line 120 checks to see if the level has been cleared.

If it has

• Line 121 adds 1 onto the level variable.

• Line 122 sets the level_cleared to False so that the

game can start the next level.

• Lines 124–131 load the forest for the new level into

the forest variable. Also note that the speed_boost

variable is set to 1 for levels 3 and 4 to make the plane

fly faster, as discussed in Chapter 3.

Figure 4-14. Forest Bomber code listing line 120

Figure 4-15. Forest Bomber code listing line 121

Figure 4-16. Forest Bomber code listing line 122

Chapter 4 Forest BomBer part 3: BomBs away…

47

• Finally, lines 133 and 134 reset the x and y coordinates

of the plane so that it restarts at the top left of the game

screen.

Key learning the elif statement is used along with an if
statement and means else if.

to add a value onto a variable, use +=.

Now test the game:

• When the plane crashes, the user can press the return

key to begin a new game.

• When all the trees are cleared, the user can press return

to move onto the next level.

All that’s missing now is a scoreboard and some feedback for the user

at the end of each level and the end of the game.

Chapter 4 Forest BomBer part 3: BomBs away…

49© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_5

CHAPTER 5

Forest Bomber part 4:
Wrapping it up

The B-58 Hustler was now flying so low that its wings were
clipping the treetops. Captain Johnson surveyed the scene. He
had managed to clear an area of the forest, but it wasn’t quite
enough to let him land the jet safely. He would have destroyed
one last tree.

Johnson knew his training had prepared him well for this
moment. It would require precision and timing to release the
Hustler payload at the right time. He drew his breath and hit
the button marked ‘Release’ one final time.

The target below him exploded into a fiery ball of flame.

Seconds later, the Hustler was touching down on the ground.
Captain Matt Johnson breathed a sigh of relief.

Until the next time…

Our Forest Bomber game is almost finished. The gameplay elements

are all in place, and so all that is required is a scoreboard and some

feedback to the user at the end of each level or when it is game over.

50

 Step 9: Display scoreboard and messages
The scoreboard (Figure 5-1) will appear along the top of the game screen

and display the

• Score

• Level

• High score

 Scoreboard background
Let’s begin by drawing a solid background for our scoreboard area. We will

keep the color the same light blue as the sky. Add code listing 18 at line 219.

There are only two lines of code here, but they do quite a lot.

Line 220 creates the rectangle dimensions for our scoreboard

background. We will use a variable to store this shape – scoreboard_

background_rect.

To draw a rectangle, we need four pieces of information:

• The number of pixels from the left of the screen to the

left of the rectangle

Figure 5-1. Forest Bomber scoreboard

Figure 5-2. Forest Bomber code listing 18

Chapter 5 Forest BomBer part 4: Wrapping it up

51

• The number of pixels from the top of the screen to the

top of the rectangle

• The width of the rectangle

• The height of the rectangle

For our scoreboard rectangle, we will use the following values:

• Left: 0 to begin at the left-hand side of the screen

• Top: 0 to begin at the top of the screen

• Width: SCREEN_WIDTH (remember this is a constant

which stores the width of the screen, 640)

• Height: LINE_HEIGHT (which is initialized to 18 at the

start of the program) and SCOREBOARD_MARGIN (which is

initialized to 4 at the start of the program). The actual

height of the scoreboard will be LINE HEIGHT + 2 ×

SCOREBOARD_MARGIN, which is 26.

Line 221 draws the rectangle using the Pygame draw.rect command.

It requires three pieces of information to draw the rectangle:

• The surface to draw on, in our case the game window

variable game_screen.

• The color of the rectangle. Here we use the constant

LIGHT_BLUE, one of the colors we initialized at the

start of the program.

• The dimensions of the rectangle, which are held in

the variable scoreboard_background_rect set up in

line 220.

Chapter 5 Forest BomBer part 4: Wrapping it up

52

Key learning to draw a rectangle, we need four pieces of
information: left, top, width, and height.

the pygame draw.rect command can be used to draw a rectangle.

 Display the score
We want to display the game score in the top left-hand corner of the

screen. Add code listing 19 at line 223.

Line 223 initializes the variable score_text. Let’s look at what score_

text will store:

• The text ‘Score: ’

In computer programming, we call any sequence of

characters a string. So ‘Score: ’ is a string.

• The variable score

We want to join the value stored in the variable score

onto the end of the string ‘Score: ’. In order to do this,

we need to convert the number held in score to a string.

The Python str function converts a number to a string

so that it can be joined onto other strings. We will learn

more about the meaning of the term function in later

chapters.

Figure 5-3. Forest Bomber code listing 19

Chapter 5 Forest BomBer part 4: Wrapping it up

53

Let’s use an example to illustrate how this works. If score is 120,

score_text would be a string variable and would have the value ‘Score:

120’. Note that we show strings within quote marks, but when the program

is run, the quotes would not be displayed.

Line 224 takes our score_text variable and uses the Pygame font.

render command to convert it to a format than can be displayed on

a Pygame surface. The font will be rendered in one of our previously

initialized colors, PURPLE.

Line 225 uses the blit command to display the rendered text on

the game screen. It displays the text at the coordinates (SCOREBOARD_

MARGIN,SCOREBOARD_MARGIN). We have already seen that SCOREBOARD_

MARGIN was initialized to 4 at line 20 of the program, so our text will be

displayed at the top-left corner of the screen but with a 4-pixel padding.

Key learning a sequence of characters is called a string.

str function must be used to join a numeric value onto a string.

the pygame font.render command is used to display text in
pygame.

Run the program, and you should see the score appearing in the top

left-hand corner of the screen.

 Display the level
It would be useful if Forest Bomber could display the current level of the

game. We will add four lines of code to display the level in the center of the

scoreboard.

Add code listing 20 at line 227.

Chapter 5 Forest BomBer part 4: Wrapping it up

54

This code is very similar to the code which we used to display the

score. The main difference is the way in which we center the text. To center

a block of text in Pygame, we need to

• Calculate the width of the rendered rectangle which is

holding the text.

• Subtract the width of the text rectangle from the overall

screen width and divide by 2.

This will give is the point at which to place our rendered text so that it

is perfectly centered.

 Display the high score
We don’t actually have any code to handle the high score yet, other than

initializing the variable hi_score to 0 in line 60 of the program.

The logic which calculates the high score is actually fairly simple:

• If during the game the score goes above the previous

highest score, then the new high score should become

the score.

Add code listing 21 at line 197 to handle the high score logic.

Figure 5-4. Forest Bomber code listing 20

Chapter 5 Forest BomBer part 4: Wrapping it up

55

Next, add code listing 22 at line 231 to display the high score at the

upper right of the scoreboard.

Run the game – we now have a fully functioning scoreboard located

along the top of the screen.

 Display messages
Our final task is to display some messages at the end of the game or when

the level has been cleared to give the player a bit of feedback and to tell

them what to do next.

Figure 5-5. Forest Bomber code listing 21

Figure 5-6. Forest Bomber code listing 22

Chapter 5 Forest BomBer part 4: Wrapping it up

56

There are three different circumstances for which we want to display a

message:

• Game over because the plane exploded.

• Game over because all four levels have been cleared.

• A level has been cleared.

In each case, we will also tell the user that they can hit the return key to

continue.

We can work out if the game is over because the variable plane_

exploded will be True.

We can work out if the level has been cleared because the variable

level_cleared will be True.

We can use the following line of code (Figure 5-7) to test if the game is

over or the level has been cleared.

We can now use more specific if statements to decide which message

should be displayed.

To test if it is game over, use the code in Figure 5-8.

To test if the player has cleared all four levels, use the code in Figure 5- 9.

Figure 5-9. Tests if player has cleared all levels

Figure 5-8. Tests if game is over

Figure 5-7. Tests if game is over or level is cleared

Chapter 5 Forest BomBer part 4: Wrapping it up

57

To test if one of the levels 1–3 has been cleared, we can use an else

statement. An else statement is used with if and elif statements to say

‘Well, if it was none of the above, then do this.’

The logic to an else statement looks like this:

if it is game over

run this code

else if the player has cleared all levels

run this code

else

run this code

So the code following the else statement will run if it is not game over

and the player has not cleared all levels. Therefore, it can only be that the

player has completed one of the levels 1–3.

Displaying a message on screen in Pygame is relatively straightforward.

Getting the message to appear neatly is a bit trickier. We want our

messages to be displayed

• As white text

• On a blue rectangle

• Centered vertically

• Centered horizontally

Add code block 23 (Figure 5-10) at line 241 which will work out the

correct text message to be displayed.

Chapter 5 Forest BomBer part 4: Wrapping it up

58

Now insert code block 24 (Figure 5-11) at line 269. Take particular

care when entering lines 274 and 276. They are actually both single lines

of code, but they are too long to fit a single line, and so they wrap over two

separate lines. To enter these lines, type the code up to and including the

command and then hit return. The cursor will line up in the correct place.

We won’t be examining this code block too closely, but in summary it

does all of the math needed to draw the blue box and center the text neatly

on top of it.

Figure 5-10. Forest Bomber code listing 23

Chapter 5 Forest BomBer part 4: Wrapping it up

59

Run the game. A message should be displayed when it is game over or

when a level is cleared.

Key learning the python else statement is used with if and
elif and will be executed if none of the previous statements
evaluate to true.

Congratulations – you have completed your first full Python/Pygame

game.

Now you are probably thinking something along the lines of ‘OK…but I

only understood a little of how Forest Bomber works, and there’s certainly

no way I could write my own game!’

This is to be expected. We have covered a lot of complex programming

concepts writing Forest Bomber. Instead, here are the five key learning

elements that you should hopefully be able to take away from coding

Forest Bomber:

Figure 5-11. Forest Bomber code listing 24

Chapter 5 Forest BomBer part 4: Wrapping it up

60

Forest Bomber five key learning elements:

 1. a variable is used to store a value. each variable has its own
unique name.

 2. to add a value onto a variable, we use +=.

 3. to test if two values are equal, we use ==.

 4. the blit keyword is used to draw graphics onto the screen
at given coordinates.

 5. the if keyword is used to make a decision, and it is
commonly used with elif and else.

Chapter 5 Forest BomBer part 4: Wrapping it up

61© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_6

CHAPTER 6

Snapper part 1:
In the woods

Charlotte was awake even before her alarm clock told her it
was time to get up. She pulled back the curtains just far enough
to see that the sun was already beating down. It was Saturday
morning, and today was going to be a perfect day for it.

Charlotte sprang out of bed, threw on her clothes, and began
packing the equipment that she would need for the day
ahead: a rucksack, a cheese sandwich, plenty of water, and
most importantly her prized possession – the Canon SLR
camera that her grandfather had given her when she was just
8 years old.

 Getting started
Snapper is a simple first-person shooting game where the aim is to target

forest animals. However, as we don’t actually want to kill any of our furry

friends, we will be using a camera instead of a gun.

The animals will appear in random locations around the forest

backdrop. To make the game more challenging, an animal will only appear

for a brief period of time before going into hiding again.

62

Now that we have the overall game idea, we need to break it down into

smaller steps:

 1. Set up the game environment.

 2. Initialize variables.

 3. Display the background.

 4. Draw and move the camera.

 5. Show an animal.

 6. Hide an animal.

 7. Take a photograph.

 8. Game over.

 9. Scoreboard.

You will spot that some of these steps are very similar to the Forest

Bomber design, but steps 4–7 are different.

Let’s check out how the finished game will look (Figure 6-1).

The player will move the camera using the mouse, and the animals (in

this example a rabbit) will appear at a random location on screen.

The player must try and photograph each animal before it hides again.

Clicking the mouse button will take a photograph.

Chapter 6 Snapper part 1: In the woodS

63

 Step 1: Set up the game environment
The setup for Snapper is very similar to that of Forest Bomber, and indeed

all of the games covered in this book. Enter code listing 1 (Figure 6-2).

Figure 6-1. Snapper design

Chapter 6 Snapper part 1: In the woodS

64

As with Forest Bomber, we import some Python and Pygame libraries and

some colors; and then from line 17 onward, we set up some of the constant

values that we will be using in the program. Enter code listing 2 (Figure 6-3).

Figure 6-2. Snapper code listing 1

Figure 6-3. Snapper code listing 2

Chapter 6 Snapper part 1: In the woodS

65

We also need to

• Set up the game window (lines 31–38).

• Load the Snapper graphics (lines 42–53).

• Load the Snapper audio files (lines 55 and 56).

 Step 2: Initialize variables
Remember a variable is like a box. It stores a piece of information or data

to be used in the program. At the beginning of the program, we give each

variable an initial value, and we call this process initialization. Figure 6-4

shows the first set of variables used in Snapper.

Notice def main(): at line 59. This indicates that everything that follows

is the main part of the program. Pay particular attention to the indentation

from line 61 onward, and remember that each level of indentation should

be exactly four spaces (or one tab) from the left-hand side.

 Boolean variables
Let’s take a closer look at the first three variables shown in the code listing:

mouse_button_pressed, snap_visible, and miss_visible. Each of these

variables will store one of two possible values:

True or False

Figure 6-4. Snapper code listing 3

Chapter 6 Snapper part 1: In the woodS

66

As we learned in Chapter 3, variables that store only True or False are

known as Boolean variables.

• mouse_button_pressed is set to False to indicate that

the mouse button has not been pressed. Later in the

program, we will set the value of mouse_button_pressed

to True when the player clicks the mouse button.

• snap_visible and miss_visible are also set to False.

When the player attempts to take a photograph, we will

display a tick or a cross over the camera image to show

whether or not they snapped the animal, as shown in

Figure 6-5.

Finally, line 67 hides the mouse pointer. This is important because we

don’t want the pointer to appear when we move the mouse around the

game window. We want to show the camera image in its place.

Key learning a Boolean variable can store one of two values: True
or False.

 Dictionaries
There are still some more variables that need to be initialized at the start of

the game. One of these is a special type of variable used in Python called a

dictionary. A dictionary is useful when storing multiple data items about

an object. Each value in a dictionary can be identified by its unique key.

Figure 6-5. Showing what happens when snap_visible (left) and
miss_visible (right) are True

Chapter 6 Snapper part 1: In the woodS

67

The animals dictionary is shown in Figure 6-6. You might want to take

a deep breath before keying it into your program!

Care should be taken when typing the animals dictionary into the

program. Every bracket, every comma, and every quote mark must be

included; or the program will not work. Pay attention to the brackets also –

they are curly brackets { } as opposed to curved brackets ().

By now you will be wondering what is the point of the animals

dictionary. It stores data about all of the animals in the Snapper game. This

will make more sense if we zoom in on one of the lines. Let’s say line 73.

Line 73 is a dictionary element. It stores information about animal_1.

animal_1 is known as the key of this dictionary element, and everything

after it is the value. The value stored is itself a dictionary which stores the

data about animal_1, specifically

• type: The type of animal (can be rabbit, owl, squirrel,

or deer)

• x_loc: The x coordinate of the location where the

animal will appear on screen

Figure 6-6. Snapper code listing 4

Chapter 6 Snapper part 1: In the woodS

68

• y_loc: The y coordinate of the location where the

animal will appear on screen

• time: The length of time before the animal hides again

• points: The score multiplier that will be awarded if the

animal is successfully photographed

All 23 animals in the game are stored in the animals dictionary.

Key learning a dictionary is used to store data items in key/value
pairs.

We just have a few more variables to initialize before we can crack on

with the main game code. These are shown in Figure 6-7.

These variables can be described as follows:

• no_animal_timer: Used to measure the time between

one animal hiding and another animal appearing

• animal_visible: Boolean value used to indicate

whether an animal is presently being shown on screen

• score: The current game score

• lives: The number of lives the player has remaining

• hi_score: The current game high score

Figure 6-7. Snapper code listing 5

Chapter 6 Snapper part 1: In the woodS

69

 Step 3: Display the background
With all variables now initialized, our next step is to display the game

background. Enter the remaining code shown in Figure 6-8.

When we coded Forest Bomber, we used a while True loop, and we

can see it again here at line 107. But what does it do? It is a loop which

will go round and round forever. A while True loop is useful in game

programming because we want our game code to loop continually – or at

least until the player quits the game.

• Lines 113–115 deal with the user quitting the game

by clicking the close button. When this happens, a

QUIT event will be triggered, and this code will be run,

exiting the Snapper program.

• Line 118 uses blit to draw the background onto

the screen at coordinates (0,0). We saw this in Forest

Bomber.

Figure 6-8. Snapper code listing 6

Chapter 6 Snapper part 1: In the woodS

70

• Line 121 seems to be very similar to line 118, but it uses

foreground_image as opposed to background_image.

Why is this? foreground_image is actually an overlay

image. It has cutouts, and this is where the animals

will appear. foreground_image sits directly on top of

background_image. You can get a better idea of how

this will work if you open the file foreground.png

which is one of the Snapper image files.

• Finally, lines 127 and 128 will start the main program –

that is everything that comes after the line def main():.

Key learning a while True loop will repeat forever.

Once again, it has taken us some time to write a lot of code, with only

a single static screen to show for our efforts. In the following chapters, we

will develop the actual Snapper game functionality…

Chapter 6 Snapper part 1: In the woodS

71© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_7

CHAPTER 7

Snapper part 2: Say
cheese

Charlotte waved goodbye to her mother as she started off on
the trail heading north toward the forest. The sun’s rays
warmed her back as she walked, with only the occasional
birdsong cutting through the tranquility of the day.

After what seemed like no time at all, Charlotte found herself
walking between the trees, their leaves and branches forming
a shaded canopy above her head. She had arrived at a place
that she knew well and which would give her an unobscured
view of a clearing directly ahead.

Charlotte unpacked her Canon SLR and waited patiently.

In the last chapter, we set up the game environment and initialized

the variables (including the animals dictionary variable which stores

data about each of Snapper’s animals). We also displayed the screen

background.

Our next steps are the following:

 4. Draw and move the camera.

 5. Show an animal.

 6. Hide an animal.

72

 Step 4: Draw and move the camera
 The mouse pointer
The camera’s movement is going to be controlled by the mouse. We can do

this quite easily. Insert the code shown in Figure 7-1 at line 117.

Line 118 gets the current mouse location using the Pygame mouse.get_

pos() function. We store the mouse position in the variable mouse_pos.

The mouse position is stored as two values, one for the x coordinate of

the mouse and the other for the y coordinate. To access the x coordinate, we

use mouse_pos[0], and to access the y coordinate, we use mouse_pos[1].

We set the center of the camera to the x and y coordinates of the mouse

in lines 121 and 122.

Next, we need to actually draw (blit) the camera onto the game

background. Enter code listing 8 (Figure 7-2) at line 130 of the program.

Figure 7-1. Snapper code listing 7

Chapter 7 Snapper part 2: Say CheeSe

73

Lines 131–134 draw either the normal camera image or the flash

camera image. The if statement at line 131 works out whether snap_

visible or miss_visible is True. We will make use of these variables

later in the code, but for now we can see from looking back at lines 64

and 65, they are both initialized to False and so the camera_image will be

displayed by line 134.

Run the program and move the mouse – the camera should move

around the screen. That’s pretty neat, but notice that the camera disappears

off the edge of the screen. We don’t want that to happen, so let’s fix it. Add

the code from Figure 7-3 at line 124.

Figure 7-2. Snapper code listing 8

Figure 7-3. Snapper code listing 9

Chapter 7 Snapper part 2: Say CheeSe

74

What’s going on here?

• Lines 124 and 125 get the camera width and height and

store each in a variable.

• Lines 128 and 129 prevent the camera from going off

the left edge of the screen, while lines 130 and 131

prevent it from going off the right edge of the screen.

• Lines 133 and 134 prevent the camera from moving off

the top of the screen, while lines 135 and 136 stop it

from going below the scoreboard which will appear at

the bottom of the screen.

Key learning pygame.mouse.get_pos() can be used to get the
coordinates of the mouse pointer.

 Step 5: Show an animal
 Using the dictionary
Remember that the data for all 23 animals is held in a fairly large dictionary

called animals.

Our next challenge is to display one of the 23 animals on screen –

but which one should we show? We want our program to choose one

of the animals at random. Making random choices is one of the core

fundamentals of game programming. After all, who wants to play a game

that does exactly the same thing every time?

Chapter 7 Snapper part 2: Say CheeSe

75

Add the two new lines of code shown in Figure 7-4 at lines 98 and 99.

Line 98 makes use of Python’s random.choice function which picks

an item from a list at random. Our code picks a random animal from the

animals dictionary.

In fact, random.choice actually gets one of the random animal keys,

for example, animal_14 or animal_21. What we really want is the animals

dictionary represented by that key. Line 99 initializes the animal variable

with the dictionary represented by the random key.

For example, let’s say that line 98 randomly selected the key animal_7.

Line 99 stores the dictionary representing animal_7 in the animal variable,

so animal would look like this:

{'type': 'rabbit', 'x_loc': 265, 'y_loc': 318, 'time': 60,

'points': 10}

Now that we have a random animals dictionary, let’s use it to display the

animal on screen. Remember that 'type' stores the type of animal to be

displayed, while 'x_loc' and 'y_loc' are the animal’s coordinates.

Figure 7-4. Snapper code listing 10

Chapter 7 Snapper part 2: Say CheeSe

76

Add the block of code shown in Figure 7-5 at line 143 of the program.

Notice that we are drawing the animal after the background but before

the foreground overlay. With blit, each image is drawn on top of any

previously drawn images. In Snapper we draw the screen elements in the

following order:

• The background

• The animal

• The foreground overlay

Using the foreground overlay in this way, we can partially hide our

animals behind trees, bushes, or even hills.

Examining code listing 11 we can see that:

• Line 143 uses a Boolean variable called animal_visible

which was initialized to True at the start of the program.

Later in the program we will set it to False to hide the

animal, but for now animal_visible is True. When set

to True, the code between lines 145 and 156 will run,

and the correct animal image will be displayed.

Figure 7-5. Snapper code listing 11

Chapter 7 Snapper part 2: Say CheeSe

77

• Lines 145 and 146 get the values of the animal’s x

and y coordinates from the animals dictionary. To

get a dictionary item from a dictionary, we use the

dictionary’s key. So

animal.get('x_loc'))

gets the x_loc from the animals dictionary.

• Lines 149–156 work out the type of animal and then

display its image at coordinates [animal_x,animal_y].

Again, notice the use of the dictionary key to get the

animal type:

animal.get('type')

Now when you run the program, a random animal should be

displayed. Quit the game, and then run it again. A different animal should

be displayed in a new location.

Key learning Use random.choice to randomly select an item
from a list.

to get a value from a dictionary, use dictionary_name.
get('key_name').

 Step 6: Hide an animal
Now that we have a random animal on screen, we want it to remain visible

for a short time and then disappear. If the animal didn’t disappear it would

make it too easy to take a photograph and the game would become boring.

Chapter 7 Snapper part 2: Say CheeSe

78

 Setting a timer
If we look again at the animals dictionary, we will see that each animal has

a key 'time'. The value represented by the key 'time' is the length of time

that the animal will remain on screen.

Before we can hide an animal, we need to first get the time value by

using the 'time' key.

Add line 100 as shown in Figure 7-6.

Line 100 assigns the dictionary value of the animal ‘time’ to the

animal_timer.

Next we have to count down the timer and hide the animal when it

reaches 0. Add code listing 13 as shown in Figure 7-7.

Figure 7-6. Snapper code listing 12

Figure 7-7. Snapper code listing 13

Chapter 7 Snapper part 2: Say CheeSe

79

Lines 142–148 handle our animal timer, but how do they work?

• Line 142 checks the animal_visible Boolean variable,

and if it is True (the animal is currently on screen) we

subtract 1 from the value of animal_timer at line 143.

In Python, we subtract a value from a variable using

-= (also note that we can add a value onto a variable

using +=).

Because the entire game code runs in a while True

loop, the program will keep looping, subtracting 1

from animal_timer each time through the loop until

the timer hits zero.

• Line 146 checks to see if animal_timer has reached 0.

We have already learned that we use == in Python to

check if two values are equal.

• If the animal_timer equals zero, then line 147

initializes a new variable called no_animal_timer. no_

animal_timer is used in a similar way to animal_timer,

but it counts down the time until the next animal is

displayed.

We set no_animal_timer to a random value so

that the length of time between one animal hiding

and the next animal appearing is always different.

Python’s random.randint() function generates a

random integer. In this case, we stipulate that the

random number should be between 30 and 120.

• Finally at line 148, we set the animal_visible Boolean

to False. Recall that we only display an animal if

animal_visible is True. By setting the value of this

variable to False, no animal will be displayed.

Chapter 7 Snapper part 2: Say CheeSe

80

You may be wondering what these timer numbers actually equate to

in real time. Look to the very bottom of the Snapper code, and you will see

the line

clock.tick(60)

In simple terms, it means that the while True loop will execute 60

times every second. So if we look back at our dictionary, we see that the

time value for animal_1 (a rabbit) is 60. That means it will be displayed on

screen for exactly one second. By comparison, animal_23 (a deer) has the

time value set to 90, so this animal will stay on screen for 1.5 seconds.

(Cheat hint: If you want to make the game easier, increase these time

values.)

 Rectangles
The code in Figure 7-7 has some additional lines which we have not

explained yet.

Lines 150–160 are used to work out the size and location of the animal

image currently on screen. Each image is actually a rectangle. We won’t

go into this code in much detail at the moment other than to say we use it

to work out if the camera is on top of the animal when the player takes a

photograph.

Key learning We can use -= to subtract a value from a variable,
for example, animal_timer -= 1 will subtract 1 from the variable
animal_timer.

Use random.randint() to generate a random number, for
example, random.randint(1, 10) will generate a random
number between 1 and 10.

Chapter 7 Snapper part 2: Say CheeSe

81

 Show another animal
Next, we need to count down the no_animal_timer and then display

another random animal on screen.

Enter the code shown in Figure 7-8 at line 162. Let’s take a look at it:

• Line 163 checks to see if the animal_visible is False;

in other words, there is no animal currently being

shown.

• If that’s the case, we subtract 1 from the no_animal_

timer at line 164.

• Line 166 checks to see if the no_animal_timer has

reached 0.

• Line 167 then checks to see if we have any lives left.

Figure 7-8. Snapper code listing 14

Chapter 7 Snapper part 2: Say CheeSe

82

• If the timer has reached 0, and we still have lives left,

we need to generate a new random animal. For now,

we will use exactly the same code as we did when

generating a random animal earlier in the program at

lines 168 and 169.

• Line 170 sets up the new animal_timer (we have seen

this before at the start of the program).

• At line 171, we set the animal_visible variable to True

so that the animal will be shown.

• Lastly, we set the values of the two Booleans snap_

visible and miss_visible to False. We will see

shortly how we make use of them.

 Building a function
Notice how we generated a random animal at two different places in the

program, once at the start of the code and then again when we wanted to

get a new animal to show. Copying code in this way is not considered good

practice. What happens, for example, if we change the code that generates

a random animal? We would have to remember to change the code in both

places.

Instead, it is better practice to build a single block of code to do this. In

programming, it is common to break a program down into smaller blocks

of code that carry out a specific task. In Python, these code blocks are

called functions.

A function is a block of code that carries out a specific job. It may

optionally return a value back into the main program when it has finished.

We will create a function to generate a random animal, and we will

call our function get_random_animal. As with naming variables, we can

Chapter 7 Snapper part 2: Say CheeSe

83

call a function anything we wish, but it is good practice for the name of the

function to describe what it does. So get_random_animal does exactly what

it says on the tin!

Enter the function code as shown in Figure 7-9 near the foot of the

program. Notice the use of two blank lines above and below the function.

Next, we need to go back to our main program and change the code so

that it makes use of this function instead.

Replace lines 98 and 99 of the program shown in Figure 7-10 with the

single line of code shown in Figure 7-11.

Similarly, replace lines 167 and 168 shown in Figure 7-12 with the

single line of code shown in Figure 7-13.

Figure 7-9. Snapper code listing 15

Figure 7-10. Code to be replaced

Figure 7-11. Snapper code listing 16

Chapter 7 Snapper part 2: Say CheeSe

84

The code works like this:

 1. The program reaches line 98:

animal = get_random_animal(animals).

 2. Python doesn’t know what get_random_animals is,

so it looks to see if there is a function by that name.

Of course, there is:

def get_random_animal(animals):

 3. Did you notice in the main program the word

animals is between the brackets? This is known as a

parameter, and we are going to pass this parameter

into the function. Remember that animals is our

dictionary which stores data about all of the animals

in Snapper.

 4. Look again at the get_random_animal function. It

also has the word animals between the brackets.

The animals dictionary will be passed from the

main program into the function where it will also be

known as animals. We can now access the animals

dictionary in our function.

Figure 7-12. Code to be replaced

Figure 7-13. Snapper code listing 17

Chapter 7 Snapper part 2: Say CheeSe

85

 5. The two lines of the function are almost exactly the

same as the two lines of code that we replaced in the

main program. However, there is one key difference.

At the end of the function, it returns the random

animal. But what does that mean? If we look back up

to line 98, we see that

animal = get_random_animal(animals).

The function therefore returns the random animal,

and it is assigned to the variable animal in the main

program.

When our main program code runs a function, we say that it calls the

function.

Don’t worry if you find the concept of functions a bit tricky to

understand – we will be revisiting functions again later in the book.

Key learning Functions are blocks of code that carry out a specific
task. parameters can be passed into a function, and a result can be
returned out of the function back to the main program.

We can see that Snapper is beginning to take shape. In the next

chapter, we will see how we can tie all the parts of the game together by

writing the code which will take a photograph.

Chapter 7 Snapper part 2: Say CheeSe

87© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_8

CHAPTER 8

Snapper part 3: Snap
ped

Charlotte lay perfectly still, her breathing almost inaudible.
All that she could hear was the sound of her own heart thump-
ing in her chest. Her eyes scanned between the trees. Over
there. Was that something moving, or was it her imagination?
A cracking twig broke the silence.

Charlotte’s gaze focused. There was something. A mere silhou-
ette, she could see a head maybe, but what was it? Too big for
a rabbit. She could almost make it out now, copper-brown fur
the color of scorched earth, a lighter tail only just visible.

A deer stood less than 30 meters in front of Charlotte, staring
right back at her.

With the most subtle of movements, she picked up her camera
and zoomed in.

So far, our game has animals appearing and then hiding, and we can

control the location of the camera by moving the mouse. In order for

Snapper to become a game, we need to be able to take photographs.

88

The final stages of the game are

 7. Taking a photograph

 8. Game over

 9. Scoreboard

 Step 7: Take a photograph
The player will take a photo by clicking the mouse button. Pygame has a

MOUSEBUTTONDOWN event which registers when the mouse button is pressed.

Add the code in Figure 8-1 at line 114. With this code, we check to see

if the mouse button is clicked and if so set the variable mouse_button_

pressed to True. Otherwise, it will remain False.

To find out what will be in the photo, we need to work out what can be

seen through the camera’s viewfinder. The viewfinder is a rectangle, the

dimensions of which we can calculate.

Figure 8-1. Snapper code listing 18

Chapter 8 Snapper part 3: Snapped

89

Add the code from Figure 8-2 at line 145 to calculate the viewfinder

rectangle.

 Rectangles collide
Next, we need to write some code to take a photograph when the mouse

button is pressed. We will build this code block up in smaller parts.

Figure 8-2. Snapper code listing 19

Figure 8-3. Snapper code listing 20

Chapter 8 Snapper part 3: Snapped

90

Insert the code shown in Figure 8-3 at line 184. There are quite a lot of

if statements here, so let’s see what each one does:

• The if statement at line 178 is relatively

straightforward – it is testing to see if a photo has been

taken. A photo will have been taken if mouse_button_

pressed has been set to True. Remember we set

mouse_button_pressed to True when Pygame detects a

MOUSEBUTTONDOWN event.

• The if statement at line 179 checks three variables.

The first two, snap_visible and miss_visible, will

be covered later. The third check is to find out whether

lives > 0. When the game is over, lives will be 0, so

here we are checking that the game is not over.

• The if statement on line 189 uses a really important

Pygame function called colliderect. colliderect is

important when writing games because it takes two

rectangles and checks if they have collided with each

other. We can use colliderect in games to test if a

missile has hit a spaceship, if a racing car has driven

over a patch of oil, or, in the case of Snapper, if the

animal is in the camera viewfinder.

colliderect takes the format rectangle_1.

collide_rect(rectangle_2).

It will return True if the rectangles have collided and

False if they have not collided.

Figure 8-4 illustrates how colliderect works.

• The if statement on line 190 tests to see if the animal

is visible. If the player takes a photo when there is no

animal, then it will count as a failed photo.

Chapter 8 Snapper part 3: Snapped

91

 Snapped it!
So the player has taken a photo if all of the following are true:

• The mouse button is pressed.

• It is not game over.

• The animal is in the camera’s viewfinder.

• The animal is actually visible.

The code between lines 191 and 193 is run when these events happen:

• Line 191 calculates how much time was left on the

timer, multiplies that by the points value for the animal,

and adds the result onto the game score.

• Line 192 sets snap_visible to True. When snap_

visible is True, a green tick will display in the camera

viewfinder, and we can’t take another photo.

• Line 193 plays an audio file – the camera shutter effect.

Figure 8-4. Illustration of the Pygame colliderect() function

Chapter 8 Snapper part 3: Snapped

92

Run the program and try to take a picture. If you are successful, you

will hear the camera shutter sound effect being played, and the camera

screen will go black. If you are unsuccessful, well, nothing happens, not yet

anyway. Let’s fix that.

 Oops, missed!
Enter the code shown in Figure 8-5. Take particular care to ensure the

indentation is exactly as shown in the code listing.

The first else statement shown at line 195 goes with the statement

if animal_visible is True:

Figure 8-5. Snapper code listing 21

Chapter 8 Snapper part 3: Snapped

93

So the else statement will be reached if animal_visible is False. If

the player tries to take a photograph when the animal is not visible (in

other words, the animal disappeared before they could take the photo),

then lines 196–198 will be run:

• Line 196 sets miss_visible to True. miss_visible is a

Boolean variable very similar to snap_visible, but it

will be used to show a red cross instead of a green tick.

• Line 197 subtracts one from the number of lives that

the player has.

• Line 198 plays a buzzer sound effect to indicate that the

photo was unsuccessful.

The second else statement at line 200 goes with the statement

if viewfinder_rect.colliderect(animal_rect):

This else statement will be reached if the viewfinder rectangle did not

collide with the animal rectangle. In other words, the player missed the

animal when they took their photograph. If this happens, lines 201–203

will be run, which as we can see do exactly the same thing as lines 196–198.

Whether the photo was successful or not, we run lines 206–208 to hide

the animal, cancel the animal timer, and start a no animal timer.

 Hit or miss?
Finally, we want to use the Boolean variables snap_visible and hit_

visible in order to display a green tick or a red cross over the viewfinder to

indicate whether or not the photograph was successful.

Chapter 8 Snapper part 3: Snapped

94

Insert the Figure 8-6 code at line 237. Take particular care with lines

239–240. This is actually one line of code split over two lines. Key it in

exactly as shown, and when you reach the comma at the end of line 239,

hit return and continue typing line 240:

• Lines 238–240 work out the dimensions of the rectangle

which will hold the snap_image or the miss_image. The

tick/cross image will be positioned in the middle of the

camera viewfinder.

• Lines 242–246 will display either the snap_image (green

tick) if snap_visible is True or the miss_image (red

cross) if miss_visible is True. Of course, if neither is

True, then neither will be displayed.

Run the game again to see this code in action.

Key learning pygame has an event MOUSEBUTTONDOWN which is
set when the mouse button is clicked.

the pygame function colliderect is used to determine if two
rectangles have collided.

Figure 8-6. Snapper code listing 22

Chapter 8 Snapper part 3: Snapped

95

 Step 8: Game over
In Snapper, the game will be over if the player’s lives reach zero. At the

moment, we have a variable lives which is initialized with three at the

start of the game and is reduced by one each time the player takes a photo

but misses the animal. However, there is nothing in the program code to

explain what to do when all the lives have run out. Let’s deal with that next.

Enter code listing 23 (Figure 8-7).

Add the game over code at line 119. Let’s take a look at how it works:

• Line 120 gets details of any key presses from the

Pygame get_pressed() function and stores them in

the variable key_pressed,

• Line 121 checks for two things:

• To see if the key pressed was RETURN

• To see if the number of lives remaining equals zero

(in other words, is it game over)

Figure 8-7. Snapper code listing 23

Chapter 8 Snapper part 3: Snapped

96

The remaining block of code will run if the game is over and the player

has pressed RETURN:

• Lines 122–123 check if the score has beaten the current

high score and, if so, set the high score to the game

score. We saw this code used in Forest Bomber.

• Lines 125–126 reset the number of lives and the score.

• Line 128 uses our get_random_animal function to get a

new random animal.

• Lines 129–130 set up the animal_timer and the no_

animal_timer.

• Finally, lines 132–135 ensure that the animal will be visible

and the snap_image and miss_image are both hidden.

And that’s it. A new game is set up ready to go. Run the code to test it.

The only thing that’s missing is a scoreboard.

 Step 9: Scoreboard
In Forest Bomber, we saw how to write code to display a scoreboard. We

will use a similar process in Snapper, but this time the scoreboard will be

displayed at the bottom of the screen.

In Snapper, we will break our scoreboard code down into two

functions:

• display_scoreboard_data to display the text on the

scoreboard

• display_game_over to display the game over message

at the end of the game

Chapter 8 Snapper part 3: Snapped

97

First, add the display_scoreboard_data function shown in Figure 8-8

at line 276.

Figure 8-8. Snapper code listing 24

Figure 8-9. Snapper code listing 25

Chapter 8 Snapper part 3: Snapped

98

Next, add the display_game_over function at line 291 as shown in

Figure 8-9. Note that there are two blank lines separating each function.

While the number of blank lines does not affect the program, it makes

the program that little easier to read.

We won’t look at the code held in these functions in any detail, other

than to say that they use math to align and display any text and rectangular

boxes on the screen.

It is worth noting that the display_scoreboard_data function takes in

two parameters:

• Some text which will be stored in the parameter

scoreboard_text.

• The alignment setting for the text, which will be stored

in the parameter alignment. The alignment is a string

which can be either ‘Left’ or ‘Centre’, and this function

will align the text accordingly.

A final block of code is needed to make use of these functions and

complete the Snapper game.

Add the code from Figure 8-10 at line 265.

Figure 8-10. Snapper code listing 26

Chapter 8 Snapper part 3: Snapped

99

Notice that we are calling our display_scoreboard_data function at

line 267 and again at line 270. We call the display_game_over function at

line 279.

Well done! You have now programmed two games. Don’t spend too

long playing Snapper though – I hear that planet earth is about be hit by an

alien invasion…

Chapter 8 Snapper part 3: Snapped

101© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_9

CHAPTER 9

Alien Invasion part 1:
Under attack

Commander Jennifer Fisher knew that this code red was no
drill. The intermittent bright lights that had been illuminating
the Arizona night skies above her military base for the past
month meant everyone was on high alert.

But tonight the lights were brighter, almost constant. Tonight
the lights were accompanied by a series of high-pitched beeps
and a low, almost dizzying hum.

Tonight Commander Fisher could just about make out what
appeared to be some kind of spacecraft high in the night sky.

 Getting started
Alien Invasion is a space arcade game, where the goal is to prevent earth

being invaded by alien Unidentified Flying Objects (UFOs). The player

controls a moving base and has 20 missiles to shoot down as many UFOs

as possible.

UFOs will move around the upper area of the screen and have the

ability to destroy incoming missiles with a special force field defense ray.

102

Let’s take a look at the steps involved in making Alien Invasion:

 1. Set up the game environment.

 2. Initialize variables.

 3. Display background.

 4. Drive the base.

 5. Launch missile.

 6. Move UFOs.

 7. Shoot UFOs.

 8. Game over.

 9. Scoreboard.

Again we see that steps 1, 2, 3, 8, and 9 are in common with the

previous two games. Steps 4–7 are where the interesting code will happen.

Let’s preview the Alien Invasion screen design to get a better idea of

how the finished game will look (Figure 9-1).

Chapter 9 alien invasion part 1: Under attaCk

103

 Step 1: Set up the game environment
By now, you will be familiar with the game environment setup. Enter the

code shown in Figure 9-2.

Figure 9-1. Alien Invasion screen design

Chapter 9 alien invasion part 1: Under attaCk

104

First, we set up the Python and Pygame libraries and declare a number

of constants for use in the game.

Let’s take a look at some of the more interesting constants:

• MISSILE_SPEED

The number of pixels that a missile will travel in a

frame. Increase this value to make missiles move

more quickly.

Figure 9-2. Alien Invasion code listing 1

Chapter 9 alien invasion part 1: Under attaCk

105

• GAME_MISSILES

The total number of missiles in each game. Increase

this value for a longer game.

• UFO_UPPER_Y, UFO_LOWER_Y

The UFOs will only fly between these y coordinates.

• BASE_SPEED

The number of pixels that the base will travel in a

frame. Increase this value to make the base move faster.

Next, we create a Pygame game environment and load in the images

and audio that will be used in the game. Enter code listing 2 (Figure 9-3).

Figure 9-3. Alien Invasion code listing 2

Chapter 9 alien invasion part 1: Under attaCk

106

 Step 2: Initialize variables
Add code listing 3 (Figure 9-4) to initialize the game variables.

Let’s take a look at some of these variables and what they will be used

for in the game:

• base_x, base_y

The location of the base. base_x will change as the

player moves left and right, but base_y will remain

the same throughout the game because the base

does not move up or down.

Figure 9-4. Alien Invasion code listing 3

Chapter 9 alien invasion part 1: Under attaCk

107

• missile_firing

A Boolean variable which indicates whether or not a

missile has been fired and is on the game screen.

• ufo_1, ufo_2

These are dictionaries which store data about each

UFO, namely

• x_loc, y_loc

UFO coordinates

• direction

Direction in which the UFO is travelling

• hit

Has the UFO been hit or not?

• off_time

Length of time the UFO spends off-screen after

being hit

• ray_time

Length of time the UFO blaster ray can be

operational

• speed

Speed at which the UFO moves. Notice ufo_1 is

faster than ufo_2.

• You should be able to work out the purpose of the

variables score, hi_score, missiles, and game_over at

lines 101–104.

Chapter 9 alien invasion part 1: Under attaCk

108

 Step 3: Display the background
We saw in both Forest Bomber and Snapper that we can display our

game background by using the Pygame blit command to position the

background image at coordinates (0,0). We will use the same approach

for Alien Invasion.

We also saw in both games that we can use a while True loop to make

the game run forever, or at least until the player closes the game window.

Let’s add the basic code structure shown in Figure 9-5 to our Alien

Invasion program.

Test if the game works by running the code. You should see the game

background and be able to quit by closing the game window, but that’s all.

In the next chapter, we will write the code to move the base and fire

missiles.

Figure 9-5. Alien Invasion code listing 4

Chapter 9 alien invasion part 1: Under attaCk

109© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_10

CHAPTER 10

Alien Invasion part 2:
Missile launch is Go

Commander Fisher stood inside Hangar 21, watching intently
as her team of mechanics made the final adjustments to the
MM-44 Missile Launch Vehicle (MLV). Her crew had assem-
bled and were awaiting further instruction.

‘Get the MLV started Corporal Garcia,’ Fisher shouted above
the noise that filled the hangar. ‘This time we go for real.’

The crew boarded the MLV, the engine burst into life, and
Corporal Garcia accelerated through the hangar doors and
into the Arizona night.

In this chapter, we will complete the following steps from our game

design:

 4. Drive the base.

 5. Launch missile.

 Step 4: Drive the base
The Missile Launch Vehicle is referred to as the base in the game code.

The base will move left or right, and movement will be controlled by the

arrow keys.

110

Add the code shown in Figure 10-1 at line 112. We have already seen

how Pygame stores a list of key press events which can be retrieved by

using pygame.key.get_pressed(). As before, we store the key press events

in our variable key_pressed.

Looking at this code block

• Line 113 tests to see if the left arrow key was pressed.

• If the left arrow was pressed, line 114 takes the BASE_

SPEED constant away from the base’s x coordinate.

Remember BASE_SPEED is the number of pixels that the

base will move in one frame (in our game, BASE_SPEED

is set to 6). Also remember we use -= to subtract a value

from a variable.

• Line 115 tests to see if the base’s x coordinate base_x

has gone below 0. If base_x is less than 0, this means

the base will have moved off the left-hand edge of the

screen. This is not good.

Figure 10-1. Alien Invasion code listing 5

Chapter 10 alien invasion part 2: Missile launCh is Go

111

• To resolve this issue, if base_x is less than 0, line 116

sets base_x to 0. This means that the base can never go

beyond the left-hand side of the screen.

Lines 119–122 do virtually the same thing as in the preceding text, but

instead move the base right instead of left:

• Line 119 tests to see if the right arrow key was pressed.

• If it was, line 120 adds BASE_SPEED onto base_x.

• Line 121 tests to see if the base has gone beyond the

right- hand edge of the screen.

• If the base has gone beyond the right-hand edge of the

screen, line 122 sets the base_x coordinate so that the

base is flush with the right-hand screen edge.

Of course we can’t see anything happening yet because we have not

drawn the base on the screen. Let’s do that now. Add the code shown in

Figure 10-2.

Now run Alien Invasion. The base will appear at the foot of the screen

and can be moved left or right using the arrow keys.

 Comparison operators
In Python, we can compare two values using comparison operators. We

have already encountered some comparison operators in this book. For

example, the code which tests if the base has gone beyond the left-hand

Figure 10-2. Alien Invasion code listing 6

Chapter 10 alien invasion part 2: Missile launCh is Go

112

side of the screen uses the less than (<) comparison operator, while the

code which checks if the base has gone beyond the right-hand side of the

screen uses the greater than (>) comparison operator.

This is a good opportunity to review all of the comparison operators

that can be used in Python (Table 10-1).

 Step 5: Launch missile
Now that the player is able to drive the base, the next step is to write the

code to launch a missile. In the game, a missile will be launched when

the spacebar is pressed. Once a missile has been launched, it should not

be possible to launch a second missile until the first missile has either

disappeared off the top of the screen or hit a UFO. Enter the code shown in

Figure 10-3.

Table 10- 1. Comparison operators

Comparison Operator Definition

== is equal to

!= is not equal to

> Greater than

< less than

>= Greater than or equal to

<= less than or equal to

Chapter 10 alien invasion part 2: Missile launCh is Go

113

Let’s go through this code block line by line:

• Line 125 uses an elif command as an extension of the

key_pressed if statement. This time we are testing to

see if the key pressed was SPACE. Let’s look at the line

in detail. There are three separate conditions which all

must be met in order for a missile to be fired:

• The SPACE key has been pressed.

• missile_firing is False, which means a missile

has not already been launched.

• game_over is False, which means the game is not over.

If all three of these conditions are met, we fire a missile with the code

between lines 126 and 132:

• Line 126: Sets the Boolean variable missile_firing to

True (this will prevent any other missiles being fired at

the same time).

• Line 127: Sets the x coordinate of the missile to start

a few pixels to the right of the base_x coordinate (we

add on MISSILE_PLATFORM so that the missile launch

location is in line with the missile platform).

Figure 10-3. Alien Invasion code listing 7

Chapter 10 alien invasion part 2: Missile launCh is Go

114

• Line 128: Sets the y coordinate of the missile so that its

starting position is on top of the base.

• Line 129: Reduces the number of missiles in the

game by 1.

• Line 130: Plays a fire missile sound effect.

• Lines 131 and 132: Test if the number of missiles has

dropped to zero and if so set the game_over Boolean

variable to True.

 Move the missile
Once the missile has been launched, we need to keep its y coordinate

changing; otherwise, it will not actually move. We subtract MISSILE_SPEED

from the missile’s y coordinate (missile_y).

The code in Figure 10-4 is the code that will do that.

• At line 140, we test if the missile_firing variable is

True. If it is True, then we know that a missile has been

launched and so needs to be moved. The code between

lines 141 and 143 will move the missile.

• Line 141 moves the missile upward by the number of

pixels held in the constant MISSILE_SPEED.

Figure 10-4. Alien Invasion code listing 8

Chapter 10 alien invasion part 2: Missile launCh is Go

115

• Line 142 checks to see if the missile’s y coordinate is

less than zero. If missile_y < 0, the missile has gone

off the top edge of the screen. If that happens, we set

missile_firing to False so that the player can launch

a new missile.

 Display missile
Finally, in order to see the effect of the missile being fired, we need to draw

it on the screen. Add code listing 9 (Figure 10-5) to your program.

There are actually two missile images:

• The first, missile_fired_image, is drawn when

missile_firing is True and the missile has been

launched.

• The second, missile_image, is drawn when missile_

firing is False and the missile is sitting on the top of

the base waiting to be launched.

 Logical operators
Logical operators are used with conditions (if statements, while loops) to

build more complex conditions.

Figure 10-5. Alien Invasion code listing 9

Chapter 10 alien invasion part 2: Missile launCh is Go

116

There are three logical operators:

• and

• or

• not

Let’s look at a simple if condition for a moment, one that we used

back in the Snapper program:

if lives == 0:

 display_game_over()

In this example, lives == 0 is known as an operand. An operand will

evaluate to either true (if lives equal 0) or false (if lives are not equal to 0).

We can use logical operators to join more than one operand to make a

complex condition.

For example, we used the and logical operator when deciding whether

or not to launch a missile. Look back to line 125, the elif statement

elif key_pressed[pygame.K_SPACE] and

missile_firing is False and

game_over is False:

The and logical operator is used here to ensure that each of the three

operands evaluates to true before launching the missile. The missile can

only be launched if

• The space key has been pressed:

key_pressed[pygame.K_SPACE]

• The missile has not already been fired:

missile_firing is False

Chapter 10 alien invasion part 2: Missile launCh is Go

117

• The game is not over:

game_over is False

Table 10-2 shows each of the three logical operators.

We will see an example of the or logical operator in the next chapter.

But for now, let’s get back to Alien Invasion. We have a missile launcher

which we can move left and right, and we can fire missiles, but there don’t

seem to be any aliens invading planet earth. At least not yet anyway…

Table 10-2. Logical operators

Operator Definition Example

and true if both operands evaluate to true a and b

or true if either of the operands evaluates to true a or b

not true if the operand evaluates to false not a

Chapter 10 alien invasion part 2: Missile launCh is Go

119© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_11

CHAPTER 11

Alien Invasion part 3:
And they came from
outer space

Commander Fisher peered through her binoculars, focusing
on the dark sky above. She could clearly make out two
large elliptical objects, their metallic exterior reflecting the
luminous light of the moon. There was no doubt that
these Unidentified Flying Objects were getting steadily closer
to planet earth.

Fisher had already received her orders from her commanding
officer. Attempts had been made to communicate with the
extraterrestrial spaceships, but with no success. The decision
had been taken – earth was under attack, and Fisher and her
crew were to do all in their power to defend the planet.

Commander Fisher put down the binoculars and turned to
Corporal Garcia.

‘Prepare to launch, as soon as I give the word.’

In this chapter, we will move the UFOs around the game screen

completing step 6.

120

 Step 6: Move UFOs
As there are two UFOs in the game, it makes sense to write a single

function to move them rather than repeat the code twice.

Figure 11-1 shows the code for the move_ufo function. When entering

the code, use two line spaces above and below the function.

Figure 11-1. Alien Invasion code listing 10

Chapter 11 alien invasion part 3: and they Came from outer spaCe

121

The function takes two parameters:

• The ufo dictionary which was initialized earlier in

the game

• The ufo width

There seems like quite a lot of code in the move_ufo function, but most

of it is fairly straightforward. Let’s examine it in more detail.

To understand how move_ufo works, we need first to remind ourselves

what data the UFO dictionary holds. In particular, we are interested in the

following keys:

• x_loc: The x coordinate of the UFO

• y_loc: The y coordinate of the UFO

• direction: The direction in which the UFO is moving

(left, right, up, or down)

• speed: The number of pixels that the UFO will move

in a single frame (remember ufo_1 has a greater speed

than ufo_2)

• hit: A Boolean value which will be True if the UFO has

been hit by a missile and False if it has not

Before we move the UFO, we test the dictionary key hit. We will only

move the UFO if the value of hit is False. In other words, we will not move

the UFO if it has been hit by a missile.

Lines 164–171 move the UFO by changing the value of its x or y

coordinate by the value of its speed. The multiline if statement is used to

calculate the direction in which the UFO is moving, and from that the code

decides whether to add or subtract the speed from the x or y coordinate.

Chapter 11 alien invasion part 3: and they Came from outer spaCe

122

For example

• Line 164 tests if the direction is left, and if it is, line 165

subtracts the speed from the x coordinate.

• Line 170 tests if the direction is down, and if it is, line

171 adds the speed onto the y coordinate.

 Stay on screen
Remember when we wrote the code to drive the missile launcher, we made

sure that it would not drive off the edge of the screen? We will do the same

thing with our UFOs.

• Lines 174–181 check to see if the UFO has reached the

left or right edge of the screen. If it has, it reverses the

UFO direction so that it will head the other way.

• Lines 184–191 do almost the same thing, except instead

of the edge of the screen, we use two constant variables

UFO_UPPER_Y and UFO_LOWER._Y. These are initialized

at the start of the program and are used to keep both of

the UFOs in an upper area of the screen.

For example, if the UFO is moving up and its y

coordinate becomes less than UFO_UPPER_Y, we set

the y coordinate to UFO_UPPER_Y and then change

the direction to 'down'.

Similarly, if the UFO is moving down and its y

coordinate becomes greater than UFO_LOWER_Y,

we set the y coordinate to UFO_LOWER_Y and then

change the direction to 'up'.

Chapter 11 alien invasion part 3: and they Came from outer spaCe

123

 Time for a change
Next, we will concentrate on the else statement on line 154 and the block of

code below it. This else statement will only be reached if the UFO did not go

off the edge of the screen. In this code block, we will throw in some random

movement changes to make the game more interesting and challenging.

First, we need to understand the purpose of the two constants that are

used by the code:

• RANDOM_VERTICAL_CHANGE: The chances of a change in

direction if the UFO is moving up/down. This is set to

20 at the start of the game.

• RANDOM_HORIZONTAL_CHANGE: The chances of a change

in direction if the UFO is moving left/right. This is set to

100 at the start of the game.

Line 195 tests to see if the UFO is moving up or down. Notice we have

used the or conditional operator that we described in the previous chapter.

If the UFO is moving up or down, line 196 sets the variable ufo_

direction_chance to a random number between 1 and 20.

If the UFO is not moving up or down, then it must be moving left or

right. In this case, line 198 sets the variable ufo_direction_chance to a

random number between 1 and 100.

Finally, line 200 tests to see if the random ufo_direction_chance

equals 1. If ufo_direction_chance equals 1, we change direction by

picking a random direction from the list of four UFO directions (left, right,

up, down).

In summary, during each frame, there is

• A 1 in 20 chance of a change in direction if the UFO is

moving up or down.

• A 1 in 100 chance of a change in direction if the UFO is

moving left or right.

Chapter 11 alien invasion part 3: and they Came from outer spaCe

124

 Call the function
We have written the move_ufo function, but nothing will happen yet

because it does not get called by the main program.

Figure 11-2. Alien Invasion code listing 11

Figure 11-3. Alien Invasion code listing 12

Add the code shown in Figure 11-2 at line 145 which calls the move_ufo

function for each of the UFOs.

 Display UFOs
Finally, we need to blit the two UFOs onto the screen.

Chapter 11 alien invasion part 3: and they Came from outer spaCe

125

The code shown in Figure 11-3 which displays each UFO is just a bit

more complicated than usual:

• At line 162 (and 167), we test to see if the hit_time key

in the UFO dictionary is greater than 0. If the UFO has

a hit time, it means it has been hit by a missile, and

hit_time is a countdown timer. In this case, we should

display an exploded UFO image.

• At line 164 (and 169), we test to see if the hit key in the

UFO dictionary is False. We will only display the UFO

image if hit is False, that is, the UFO has not been hit

by a missile.

Run the game. If you have written the code correctly, you should see

two UFOs buzzing about the screen. You can try to shoot them, but nothing

will happen if a missile hits them. At least, not yet…

Chapter 11 alien invasion part 3: and they Came from outer spaCe

127© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_12

CHAPTER 12

Save the planet
They were getting much closer now, and in a few seconds
Commander Fisher knew that the UFOs which she had been
monitoring for the past 20 minutes would be in range of
the MLV.

She took a breath. ‘Wait…’ she whispered to no one in
particular. ‘Wait…’

She knew that it was her time. Everything came down to this.

‘Launch missile 1!’

The first missile sped from the launcher lighting up the night
sky like an enormous firework. Fisher knew instantly that the
projectile was on target. As it shot toward the spaceship she felt
sure it would be a direct hit.

And then, seemingly out of nowhere a defense field appeared
around the spaceship and the missile exploded before making
contact.

Commander Fisher knew that she had only 19 missiles remain-
ing with which to save planet earth.

In this final part of Alien Invasion, we will write the code to shoot the

UFOs and complete the game:

 7. Shoot UFOs.

 8. Game over.

 9. Scoreboard.

128

 Step 7: Shoot UFOs
We will begin by writing the function shown in Figure 12-1 which will

determine if a UFO has been hit.

The function is passed four parameters:

• ufo: The UFO dictionary

• missile_rect: The rectangle representing the missile

• ufo_width, ufo_height: Dimensions of the UFO

The function will return a message back to the main program to

indicate whether or not the missile hit the UFO. There are three possible

messages:

• 'direct hit': The missile has hit the UFO.

• 'missile destroyed': The missile hit the UFO, but the

UFO had its protective defense ray enabled.

• 'no hit': The missile has not hit the UFO.

Figure 12-1. Alien Invasion code listing 13

Chapter 12 Save the planet

129

Line 222 builds a Pygame rectangle which represents the UFO.

Line 224 uses the Pygame colliderect function to determine whether

or not the missile rectangle has collided with the UFO rectangle.

If the missile has collided with the UFO, then it will register a direct hit

if the UFO’s ray_time value is equal to zero (i.e., it has no defense ray). If

ray_time is not zero, then the UFO has initiated its defense ray, and the

missile will be destroyed before it can hit the UFO.

Next, we must write some code to call this function and to handle the

direct hit/missile destroyed scenarios. Enter code listing 14 as shown in

Figure 12-2.

There is quite a bit of code here, but hopefully you can see that lines

152–165 deal with the ufo_1, while lines 167–180 are for ufo_2. Given

these are broadly the same, we will only review the code for ufo_1.

Figure 12-2. Alien Invasion code listing 14

Chapter 12 Save the planet

130

Line 152 tests to make sure that

• The value of 'hit' in the UFO dictionary is False – the

UFO has not been hit.

• missile_firing is True – a missile has been fired.

If both of these operands are true, then we call the check_ufo_hit

function at line 153. Remember this function will return one of three

possible values:

• 'missile_destroyed'

• 'direct_hit'

• 'no_hit'

The value returned by the function will be assigned to the variable

ufo_hit.

If the message returned is 'missile_destroyed'

• Line 155 sets missile_firing to False which will stop

the missile being displayed on screen (see line 189 – the

missile is only displayed if missile_firing is True).

• Line 156 calls pygame.mixer.stop(). This slightly

unusual instruction tells Pygame to stop any audio

that is currently being played. Because the missile has

been destroyed, we need to stop playing the missile’s

sound effect.

If the message returned is 'direct hit'

• Line 159 sets missile_firing to False to stop the

missile being displayed on screen.

• Line 160 adds 2 × the UFO_SCORE value to the current

game score. Note that for ufo_2, line 176 adds 1 × UFO_

SCORE to the score. This is because ufo_1 moves more

quickly and so is harder to hit than ufo_2.

Chapter 12 Save the planet

131

• Line 161 updates the dictionary value hit_time with

the constant UFO_HIT_TIME. We will learn later in this

chapter that 'hit_time' is a timer used to measure the

length of time the UFO should remain on screen in its

exploded state.

• Line 162 sets the dictionary value 'hit' to True to

indicate that the UFO has been hit.

• Finally, line 164 stops the missile sound effect from

playing and plays the audio file which indicates that the

spaceship has been hit.

If you run the code now, you will see some minor improvements when

a UFO has been hit by a missile, but there is still some work to be done. We

are going to add another function update_hit_ufo as shown in Figure 12- 3.

As ever, remember to use double spacing between functions.

Figure 12-3. Alien Invasion code listing 15

Chapter 12 Save the planet

132

There are two timers used in this function:

• The hit_time timer counts down the length of time the

UFO should be shown on screen in its exploded state.

Once hit_time counts down to zero, a second timer

off_time is started.

• The off_time timer measures the length of time that

the UFO should remain off-screen, until it is respawned

by lines 291–294.

Of course, we still have to add the code which will call this function

from our main program. It gets called twice, once for each UFO. Add code

listing 16 (Figure 12-4) to your program.

Run the program again; and you should find that when a UFO is hit by a

missile, it explodes for a short time, disappears briefly, and then respawns.

 Catching some rays
It feels like we have a pretty decent game here now. It’s difficult, without

being too difficult. There are some random elements which means the

player cannot predict what the UFOs are going to do next. To make the

game just that little bit harder, we will give each UFO a force field which

can destroy a missile. In the code, we will call this force field a ray.

Figure 12-4. Alien Invasion code listing 16

Chapter 12 Save the planet

133

Add the function update_ray (Figure 12-5) to the program code. The

function works like this:

If the ray_time is zero (there is not already a defense ray), and the UFO

has not already been hit (line 260)

• Line 261: Generates a random number between 1 and

RANDOM_RAY (set at the start of the program to 200)

• Line 262: If the randomly generated number equals 1

• Line 263: Generates a random ray_time between

RANDOM_RAY_TIME_MIN and RANDOM_RAY_TIME_MAX (set

at the start of the program to 30 and 120, respectively).

Otherwise, if there is already a ray_time (line 266)

• Line 267: Reduces the ray_time value by 1. Remember,

ray_time is a countdown timer for the defense ray.

Of course, we still need to call the function from the main program

which we do as shown in Figure 12-6.

Figure 12-5. Alien Invasion code listing 17

Chapter 12 Save the planet

134

You may already have worked out that this code by itself doesn’t do

much other than change the value of the UFO dictionary ray_time.

We need to add the code shown in Figure 12-7 to the main program to

actually display the rays on screen.

We don’t really want to get into the detail of this code, other than to say

that if the UFO ray_time > 0, then it will draw one of the ray images directly

below the spaceship.

Run the program now, and you will see that the UFOs produce the

defense rays at random. If you shoot a missile at a UFO when its rays are

active, the missile will be destroyed.

Figure 12-6. Alien Invasion code listing 18

Figure 12-7. Alien Invasion code listing 19

Chapter 12 Save the planet

135

 Step 8: Game over
The game over process will be very similar to Snapper and Forest Bomber,

but this time we will write a display_game_over function to display an

appropriate message. This function is shown in Figure 12-8.

Next, we need to add some code which will display the game over

message if the game has finished. Add code listing 21 to your program

(Figure 12-9).

Figure 12-8. Alien Invasion code listing 20

Figure 12-9. Alien Invasion code listing 21

Chapter 12 Save the planet

136

The Boolean variable game_over gets set to True when all of the

missiles have been fired. The reason we check missile_firing is that

we need the last missile to either hit a UFO or go off the screen before

finishing the game.

We have seen lines 232 and 233 in both of the previous games, and line

235 will call our game_over_function.

Test that game over works by firing 20 missiles, after which the message

should be displayed.

However, hitting the return key at the end of the game does nothing.

Let’s fix that. Add the code shown in Figure 12-10 to the program.

By now, it should be fairly obvious what this code does. We test to see

if our key_pressed list contains the return key. If it does and the game_over

Boolean is True, we reset the three variables game_over, score, and

missiles which will start a new game.

Test that the game over process works correctly now.

Figure 12-10. Alien Invasion code listing 22

Chapter 12 Save the planet

137

 Step 9: Scoreboard
The last thing we need to do to complete the game is display a scoreboard

at the top of the screen. We have seen how to do this in both the previous

programs, so it shouldn’t require too much explanation.

Add the function display_scoreboard_data as shown in Figure 12-11.

Finally, we add some code to call the scoreboard function as shown in

Figure 12-12.

Figure 12-11. Alien Invasion code listing 23

Chapter 12 Save the planet

138

And there we have it. Three hundred and ninety-three* lines of code

later, we have our Alien Invasion game!

*Actually although the listing runs to 393 lines, if you take out all of the

line breaks, it’s actually only 300, but still…

Figure 12-12. Alien Invasion code listing 24

Chapter 12 Save the planet

139© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_13

CHAPTER 13

Golf part 1: On the tee
‘So here we are in Scotland, the home of golf, on the final day
of The Open. Just three holes stand between this final pair of
players and glory. Jim, what’s your take on the events that are
about to unfold today?’

‘It’s neck and neck between Mitch Johnson and Tommy Miller
here, Corey. I couldn’t possibly pick a winner from these two…’

 Getting started
If you have made it this far, then well done! And of course, you know

what’s coming next. We have 100 lines of initialization and setup code

before we can get into the game proper. OK, let’s just roll our sleeves up

and crack on with it.

The idea behind Golf is simple. Get the ball from the tee to the hole in

as few strokes as possible. For each hole, the flag will be placed a random

distance from the tee, and the player should work out how hard to hit the

ball using a power meter/slider. The player will play three holes of golf in a

single game.

As with previous projects, let’s list the steps required to build the game

of Golf:

 1. Set up the game environment.

 2. Initialize variables.

140

 3. Display background.

 4. Display flag.

 5. Power meter.

 6. Move the ball.

 7. In the hole.

 8. Scoreboard.

Figure 13-1 shows how the screen will look.

 Step 1: Set up the game environment
As with the previous games we will begin with the game setup. Enter code

listing 1 (Figure 13-2).

Figure 13-1. Golf screen design

Chapter 13 Golf part 1: on the tee

141

While the setup of the constant variables is not the most interesting

part of writing a game, it’s worth taking a moment just to review the

purpose of some of the more interesting constants we will be using:

• SLIDER_SPEED/SLOW_SLIDER_SPEED: The speeds that

the slider moves up and down the meter. There are two

speeds because the slider slows down when it is at the

bottom of the meter.

Figure 13-2. Golf code listing 1

Chapter 13 Golf part 1: on the tee

142

• SLOW_PUTT_RANGE: The number of steps on the meter

that the power indicator will move at the SLOW_SLIDER_

SPEED. Increasing this number will make the game easier.

• BALL_STEP: The number of pixels that the golf ball

moves each frame.

• RANDOM_FLAG_MIN/RANDOM_FLAG_MAX: The range of

random flag placements. The tee is at position 1, and

the flag can be placed anywhere from position 18 to

position 30.

The remainder of the constants relate to pixel coordinates or distances

so that the different screen elements can be positioned correctly.

Enter the code which sets up the Pygame environment and loads in the

images and audio (Figure 13-3).

Figure 13-3. Golf code listing 2

Chapter 13 Golf part 1: on the tee

143

 Step 2: Initialize variables
Now add the code shown in Figure 13-4 which initializes some of the

variables that we will use in Golf.

Let’s take a moment to review some of the more important variables:

• slider_direction: The direction in which the ball on

the slider moves. slider_direction is a string variable

which can be either 'up' or 'down'.

• ball_direction: The direction in which the actual golf

ball moves. Another string variable, it can be either

'left' or 'right'.

• flag_distance: The flag position, a random number

between 18 and 30.

• flag_x: The flag’s x coordinate.

Figure 13-4. Golf code listing 3

Chapter 13 Golf part 1: on the tee

144

• Hole: The number of the hole currently being played.

• hole_strokes: A list to store the score for each of the

three holes in the round.

• round_strokes: Total number of strokes taken for the

current round.

• in_the_hole: A Boolean value to represent whether or

not the ball is in the hole.

 Variable naming conventions
We have talked a lot about variables when designing the games in this

book, but how do we decide on a variable name?

The first rule of thumb is that a variable name should clearly indicate

the purpose of the variable. Looking at golf, we have variables called

in_the_hole, flag_distance, round_strokes, and so on. These are

meaningful variable names. When computers were much less powerful

than they are today, variable names were kept as short as possible, and it

would be common for a program to be littered with variable names like a, i,

and x. This made the code much harder to read.

Second, to further aid readability in Python programs, we use what

is known as snake case. Using snake case, we write our variable names in

lower case with underscores instead of spaces.

 Constants
But what about these variables that are capitalized? These are known as

constants. Unlike normal variables, the value of a constant is not meant

to change when the program is run. In some programming languages,

it’s simply not possible to change the value of a constant once it has been

declared. In Python, technically the value of a constant can be changed,

Chapter 13 Golf part 1: on the tee

145

but we really don’t want to do that. We use capital letters to make it clear

that a constant is being used, and its value should not be changed by the

program code.

Key learning Variable names should be meaningful and written
using snake_case.

Constant names should be capitalized, and their value should not be
changed by the program code.

 Step 3: Display background
As with all of the previous games, we set up a while True loop and check

the Pygame events queue to see if a quit event has occurred. Then, we blit

our game background at position (0,0). Add code listing 4 (Figure 13-5) to

your program.

Figure 13-5. Golf code listing 4

Chapter 13 Golf part 1: on the tee

146

 Step 4: Display flag
We already know that the flag will be displayed at a random distance from

the tee (see line 91):

flag_distance = random.randint(RANDOM_FLAG_MIN, RANDOM_FLAG_MAX)

We also know that RANDOM_FLAG_MIN is a constant, initialized to 18, and

RANDOM_FLAG_MAX is a constant initialized to 30.

So flag_distance is a random number between 18 and 30.

But what are the x and y coordinates for the flag?

To calculate the flag’s x coordinate, we need to multiply the flag_

distance by the number of pixels between each flag position. We already

have a constant for this called FLAG_STEP which is set to 18 at line 49 of

the code. Finally, to ensure that the flag is centered correctly, we need to

add a few more pixels (HOLE_CENTRE) to flag_x to take into account the

hole offset.

We have actually already calculated the x coordinate at line 92 of the

program:

flag_x = flag_distance ∗ FLAG_STEP + HOLE_CENTRE

The y coordinate is a bit easier because it remains the same during the

game. There is a constant FLAG_Y which is set to 244 at line 46.

The only consideration now is to decide which flag to display, as there

are three different flag images in the game, one for each hole.

The code in Figure 13-6 draws the correct flag at the correct position.

Chapter 13 Golf part 1: on the tee

147

Run the program a few times, and the flag will appear in a different

location each time.

In the next chapter, we will develop the code to move the power meter

and hit the ball.

Figure 13-6. Golf code listing 5

Chapter 13 Golf part 1: on the tee

149© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_14

CHAPTER 14

Golf part 2: On the
green

‘And that’s a delightful shot from Johnson there, Jim. Both
players have found the green in two.’

‘It sure was, Corey. Johnson is sitting about 18 feet from the
hole with Miller maybe only 10 feet away, but with a trickier
downhill putt. You can cut the tension here with a knife…’

In the last chapter, we completed the setup and displayed the flag in a

random position. In this chapter, we will complete the following steps:

 5. Power meter.

 6. Move the ball.

 Step 5: Power meter
The power meter is used to determine the strength of the player’s shot.

The easiest solution would have been to have the player type in a number

between 1 and 30. However, we will use a power meter to make hitting a

shot that bit more difficult, and the game will look much better too.

Let’s begin by updating the slider on the power meter. The code in

Figure 14-1 shows how this is done.

150

The variable slider_timer is a timer which handles the delay as the

slider moves from one bar on the meter to the next. Line 112 subtracts

one from the timer each frame. If the timer reaches 0 (line 114), we do

two things:

 1. Move the slider up or down.

 2. Start a new timer.

Let’s look at how we move the slider first of all.

Line 117 tests the slider_direction to see if it equals 'up'.

If the slider is moving up

• Line 118 increases the shot_power by 1.

• Line 119 checks to see if the shot_power has reached

the MAX_POWER (set to 30 at the start of the program).

If shot_power equals MAX_POWER, then we set slider_

direction to 'down' so that the slider starts moving

downward.

Figure 14-1. Golf code listing 6

Chapter 14 Golf part 2: on the Green

151

If the slider is not moving up, then line 123 tests slider_direction to

see if it equals 'down'.

If the slider is moving down

• Line 124 decreases the shot_power by 1.

• Line 125 checks to see if the shot_power has reached

the MIN_POWER (set to 1 at the start of the program). If

shot_power equals MIN_POWER, then we change the

direction of the slider to 'up'.

Irrespective of whether the slider is moving up or down, if slider_

timer has reached 0, then we need a new timer. The duration of this new

timer is dependent on the current value of shot_power. Remember, when

the slider is at the bottom of the power meter, we want it to take a little

longer moving from one bar to the next. Lines 129–132 show how we

achieve this:

• Line 129 tests to see if shot_power <= SLOW_PUTT_

RANGE, which is a constant used to determine when the

slider should move more slowly. We can see from line

36 that SLOW_PUTT_RANGE is 3. Therefore, if shot_power

equals 1, 2, or 3, then the new slider_timer will be set

to SLOW_SLIDER_SPEED (which is 20).

• However, we can see that if the shot_power is anything

above 3, the new slider_timer will be set to SLIDER_

SPEED (which is 5). This means that the speed of the

slider on bars 4–30 of the power meter will be four

times as fast as the speed of the slider on bars 1–3.

You can change the values of SLIDER_SPEED and SLOW_SLIDER_SPEED to

make the game easier or more difficult.

Of course, all of this is going on in the background. We won’t see

anything happen until we display the power meter and slider. The code in

Figure 14-2 shows how to do this.

Chapter 14 Golf part 2: on the Green

152

First up, we only want to display the power meter if the ball has not

been hit and the ball is not in the hole. Line 138 checks these conditions

and if they are both met:

• Line 139 displays the power_meter.

• Lines 141 and 142 do some basic math to work out the

y coordinate of the slider depending on the value of

shot_power.

• Line 143 blits the slider image onto the screen.

Run the program, and you should see the slider moving up and down

the power meter, and it will move more slowly when it reaches the bottom.

 Step 6: Move the ball
The player must judge how much power their golf shot requires. If they hit

their shot while the slider is near the bottom of the power meter, the ball

will go a very short distance. Hitting a shot when the slider is near the top

of the power meter means the ball will go much further. The player hits the

ball by tapping the spacebar.

Let’s write the code to handle the spacebar event as shown in

Figure 14-3.

Figure 14-2. Golf code listing 7

Chapter 14 Golf part 2: on the Green

153

We are familiar with the code to test if a key has been pressed. We want

to hit the ball if the following three conditions have happened:

• The spacebar has been tapped.

• The ball_distance is 0 (this means the ball is not

already moving).

• in_the_hole is False (the ball is not already in the hole).

If all three of the conditions are true, we write some code to prepare

moving the ball. This code between lines 110 and 120 can be explained

as follows:

• Line 110 sets slider_direction to 'none' to stop the

slider moving up or down.

• Line 111 calculates the total number of pixels that the

ball will move by multiplying the shot_power (the value

of the slider on the power meter) by the moves_per_

flag (the number of pixels between each flag position).

The result is stored in the variable ball_distance

which we will use when actually moving the ball.

Figure 14-3. Golf code listing 8

Chapter 14 Golf part 2: on the Green

154

• Line 113 adds one onto the number of strokes in

the hole. We will look at this line in a bit more depth

shortly.

• Line 115 tests to see if the ball is moving right and then

calculates the final location of the ball by adding the

shot power onto the current location of the ball.

• The else statement at line 117 means that the ball_

direction is not 'right', and so it must be 'left'.

In this case, the final ball location is calculated by

subtracting the shot power from the current ball

location.

• Lastly, line 120 plays a sound effect of the ball hitting

the golf club.

 More about lists
We looked briefly at lists when we wrote Forest Bomber, but it’s time to

consider them in a bit more detail.

A list in Python is a container which can hold multiple elements or

objects. To create a list, we write the elements between square brackets,

separated by commas.

In Golf, we use the list hole_strokes to store the number of strokes

taken at each hole. We initialize the hole_strokes list like this:

hole_strokes = [0, 0, 0]

So the hole_strokes list has three elements.

Each item in a list can be identified by its index, but it should be noted

that the index always starts at 0 and not 1. So the three elements in the

hole_strokes list have indexes 0, 1, and 2, respectively.

Chapter 14 Golf part 2: on the Green

155

Should we wish to access a list element, we place its index in square

brackets.

So to access the first element in our hole_strokes list, we use

hole_strokes[0]

To access the third and last element in our hole_strokes list, we use

hole_strokes[2]

Let’s look again at the code which we used to update the number of

strokes for the hole when the ball was hit. It’s at line 113:

hole_strokes[hole - 1] += 1

Assuming we are on the first hole, the hole will equal 1. We want to

add 1 to the value of the first element of our list. But remember the index

always starts at 0, so actually we want to add one to hole_strokes[0].

Using hole – 1 as the index means we will reference index 0 for hole 1,

index 1 for hole 2, and index 2 for hole 3.

After the first shot has been hit, we add 1 onto hole_strokes[0], and

so the list will become

[1, 0, 0]

Key learning a list is a variable which can hold multiple elements.

We reference individual list items by using their index.

list indexes start at 0.

Chapter 14 Golf part 2: on the Green

156

 Update ball location
All we have done so far is get the ball ready to move. Now we need to move

it across the screen by the distance determined by the power meter. The

actual distance to be moved has already been calculated and stored in the

variable ball_distance. Enter code listing 9 (Figure 14-4).

Figure 14-4. Golf code listing 9

Chapter 14 Golf part 2: on the Green

157

As you can see, there is quite a bit of code in Figure 14-4, so let’s take a

closer look at what it does.

Line 150 checks to see if ball_distance > 0. The variable ball_

distance is greater than zero when the ball is moving. It will become zero

when it reaches its final destination and therefore stop moving.

Lines 152–155 update the ball’s x coordinate (stored in ball_x). If

the ball is moving to the right, we add to the x coordinate, and if the ball

is moving to the left, we subtract from the x coordinate. The amount the

ball moves each time is held in the constant BALL_STEP. BALL_STEP was

initialized to 3 at the start of the program, so the ball moves 3 pixels on

each frame.

There is an if statement at line 158 which tests the ball's x coordinate

to see

• If it is greater than SCREEN_WIDTH: Which means the ball

has rolled off the right-hand edge of the screen.

• If it is less than 0: Which means the ball has rolled of

the left-hand edge of the screen.

The code at lines 161–169 will handle the ball rolling off the edge

of the screen:

• Line 161 places the ball back at the tee by setting

ball_x to START_BALL_X.

• Line 162 resets ball_distance to 0, because the ball

should no longer be moving.

• Line 163 sets the ball_direction to go right.

• Line 164 resets the shot_power on the power meter to 1.

• Lines 167–169 reset the power meter values so that the

slider starts back at the bottom.

Chapter 14 Golf part 2: on the Green

158

If however the ball has not rolled off the edge of the screen, then we

need to update its location each frame. The code between lines 172–195

will do this:

• Line 173 subtracts 1 from the ball_distance, because

the ball has moved 1 place closer to the hole.

• Line 176 checks to see if ball_distance has become 0;

in other words, the ball has reached its destination.

If the ball has reached its destination, we check to see if it has ended

up in the hole. This will happen if the final_ball_location is equal to the

flag_distance. If the ball is in the hole, we

• Set the Boolean in_the_hole to True.

• Add the number of strokes for the hole to the overall

round_strokes.

• Play the sound of the crowd clapping.

If the ball is not in the hole, we

• Update the direction so that if the ball is to the left of

the flag, the direction will become 'right', or if the

ball is to the right of the flag, the direction will become

'left'.

• Reset the slider so that it starts at the bottom of the

power meter.

 Draw the ball
For us to see all of this code in action, we need to actually draw the ball.

Enter the code from Figure 14-5.

Chapter 14 Golf part 2: on the Green

159

The code in Figure 14-5 is fairly straightforward. The only aspect that

is worth further note is at line 220 where we add BALL_DESCENT to the ball’s

y coordinate (BALL_Y) if the ball has landed in the hole. By moving the ball

down the screen a few pixels, it will give the effect of the ball dropping into

the hole.

Run the game and see if you can get the ball in the hole.

In the next and final chapter of the book, we will pull the remaining

parts of the game together so that our Golf game runs for all three holes.

Figure 14-5. Golf code listing 10

Chapter 14 Golf part 2: on the Green

161© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2_15

CHAPTER 15

Golf part 3: It’s
in the hole

‘Incredible scenes here as Tommy Miller’s putt comes up
short by what can only be an inch. And so now Mitch
Johnson has this 18-foot putt for the Open Championship.
Over to you, Jim.’

‘Yes, Corey, the crowd hold their breath as Johnson stands over
the ball. He sends it forward, but does it have the legs? It’s
going… It’s going…’

‘It’s…’

‘in…’

‘the…’

‘HOLE!’

We have built most of the mechanics for our Golf game. Now we just

need to add the last parts of our code to finish it off. The remaining steps are

 7. In the hole

 8. Scoreboard

162

 Step 7: In the hole
In actual fact, we have already worked out if the ball is in the hole. Look

back at lines 179 and 180 where we set in_the_hole to True if the

final_ball_location was equal to the flag_distance.

First of all, we need to display a message if the ball is in the hole. We

will use a function to do this. Add the in_hole_message function shown in

code listing 11 (Figure 15-1) to your program.

Let’s look more closely at this function. We can split it into three main

parts:

• Lines 229–234 compose the message to be displayed

depending on whether or not all three holes have been

completed.

• Lines 236–240 create a rectangle to give the message a

background and then blit it onto the screen.

Figure 15-1. Golf code listing 11

Chapter 15 Golf part 3: It’s In the hole

163

• Lines 242–245 work out where to display the message

so that it is centered horizontally.

There are some useful coding techniques used here which merit

further investigation.

 Joining strings
Look again at lines 230 and 233. They use the variable message to store the

message that is to be displayed. message is a string, and it is composed of

three parts:

• Start string: ‘In the hole in’

• The number of strokes

• End string: ‘. Press RETURN to play the next hole.’

If the player completed the holes in four strokes, message would be

assigned the following:

‘In the hole in 4 strokes. Press RETURN to play the next hole.’

Did you notice how we have used the addition symbol (+) to join

multiple strings together?

However, while the start string and end string are already strings, the

variable hole_strokes is an integer. (Remember an integer stores a whole

number). In Python, we cannot directly join an integer onto a string, so we

first have to convert the integer to a string. You can see we convert hole_

strokes to a string by using Python’s str() function.

 Drawing Pygame shapes
In Pygame, we can draw a range of different shapes including lines, circles,

polygons, and rectangles.

Chapter 15 Golf part 3: It’s In the hole

164

To draw a rectangle, we use the pygame.draw.rect() function which

requires three parameters:

• The surface on which to draw the rectangle, in our case

game_screen

• The color, in our case GREY

• The rectangle object which holds the top-left x, top-left

y, width, and height of the rectangle to be drawn

Line 239 creates the rectangle shape, while line 240 actually draws the

rectangle.

 Centering text
In all of our games, we have centered text on the screen, but how do we do

that? There are four steps involved, as we can demonstrate by looking at

lines 238, 246, and 247 of the Golf code:

 1. Render the text as a surface object (line 238).

 2. Get the rectangle properties of the text object using

get_rect() (line 246).

 3. Subtract the width property of the text rectangle

from the overall screen width (SCREEN_WIDTH -

text_rect.width, line 247).

 4. Divide this value by 2 (line 247), and this will

give the x coordinate at which the text should be

displayed so that it is centered.

Chapter 15 Golf part 3: It’s In the hole

165

 Drawing Pygame text
Lines 242–244 work out the x and y coordinates of the text message to be

displayed so that it is centered.

Line 245 draws the message held in the variable text onto the game_

screen at the coordinates [message_x,message_y].

 In the hole message
We need to write the code to call our in_hole_message function.

Add the code shown in Figure 15-2 to display a message once the ball

is in the hole.

So far our game only plays one hole of golf, and we want the final game

to run over three holes. When the ball is in the hole, we need the user to hit

return to continue. Enter the code shown in Figure 15-3.

Figure 15-2. Golf code listing 12

Chapter 15 Golf part 3: It’s In the hole

166

For this code to run, there are two conditions which have to be met in

the elif statement at line 123:

• The return key must have been pressed.

• in_the_hole must be True.

If both of these conditions have occurred, then we check to see if the

game has played three holes at line 125. If all three holes have been played

• We set a new best score (best_round_strokes) at lines

127 and 128. This is similar to setting a new high score

in the way we have done in our previous games, but of

course in golf a low score is the best score.

Figure 15-3. Golf code listing 13

Chapter 15 Golf part 3: It’s In the hole

167

• We then reset the main game variables hole, hole_

strokes, and round_strokes at lines 130–132 so that

we can start a new game.

If all three holes have not yet been played, we will run the else

statement at line 134 and add one onto the current hole number at line 135.

Finally, whether we are starting a new game or just a new hole, we

set the variables for a new hole and ensure that the power meter starts

at position 1 (lines 137–148). Most importantly here, we initialize a new

random flag position at lines 145 and 146.

 Step 8: Scoreboard
The final aspect of our game is to display a scoreboard. On the scoreboard,

we want to show

• The strokes taken for each of the three holes

• The running total of the strokes for this round

• The best score for any round

We will use two functions to achieve this, display_scoreboard and

display_scoreboard_data. These functions should be inserted after the

main program, but before the in_hole_message function. Remember to use

double line spacing between each function. Code listing 15 (Figure 15-4)

and code listing 16 (Figure 15-5) should be added to your program.

Chapter 15 Golf part 3: It’s In the hole

168

The scoreboard is split into ten equal columns as defined by

SCOREBOARD_COLUMNS.

Figure 15-5. Golf code listing 16

Figure 15-4. Golf code listing 15

Chapter 15 Golf part 3: It’s In the hole

169

The function display_scoreboard_data takes three parameters:

• The text to be displayed

• The column number at which the text should be

displayed

• The line on which to display the text (0 or 1)

The function carries out some basic arithmetic on these parameters to

work out the co-ordinates of each scoreboard element.

We can then call the function with code, for example, line 280:

display_scoreboard_data('Total', 6, 0)

This will display the text ‘Total’ at column 6 on line 0 of the scoreboard.

 Fixed loops
In programming, a fixed loop will repeat a block of code a specific number

of times. In Python, we use the for keyword when writing a fixed loop.

Let’s take a closer look at the code at line 267:

for hole_number in range (1, 4):

This code uses a for loop to repeat a fixed number of times, in this

case three. Each time through the loop, the variable hole_number will be

increased by 1. In other words, hole_number will be

• 1 the first time through the loop

• 2 the second time through the loop

• 3 the third time through the loop

Note that the loop will run three times (and not four times). A Python

for loop will repeat up to (but not including) the stop value, which in this

example is 4. So our loop starts at 1 and goes up to (but not including) 4.

Chapter 15 Golf part 3: It’s In the hole

170

It is possible to use different start and stop values for a fixed loop, for

example

• for number in range (10, 20) will loop ten times.

number will start at 10 and increase each time through

the loop, ending on 19.

• for number in range (0, 10, 2) will loop five times

and go up in increments of 2. As the loop repeats,

number will have the values 0, 2, 4, 6, and 8.

Key learning a fixed loop repeats a given number of times.

In python, fixed loops use the for keyword.

Use range to give the loop a start and stop value.

 Display the scoreboard
We need to add some code to call the display_scoreboard function and

display the scoreboard.

Add the code shown in Figure 15-6 and run the program. Grab your

clubs and go and play a round of golf.

Figure 15-6. Golf code listing 17

Chapter 15 Golf part 3: It’s In the hole

171

 Wrapping up
Congratulations! If you have reached this far in the book, you have

programmed four computer games in Python/Pygame.

Don’t worry if you found some parts of the code hard to understand;

that is only to be expected. Computer programming is not easy, and it

takes time and practice to become a good coder.

Try to take some of the skills you have learned from this book and

create your own game. Don’t try and do everything at once though, but

build your game up in steps, as we have done throughout this book.

Building games and programs in this way allows you to test each stage

before moving on to the next.

Good luck…

Chapter 15 Golf part 3: It’s In the hole

173© Mark Cunningham 2020
M. Cunningham, Game Programming with Code Angel,
https://doi.org/10.1007/978-1-4842-5305-2

Index

A
Alien invasion, 2

game environment setup
code, 103
constants, 104, 105
display background, 108
initialize variables, 106, 107

screen design, 103
steps, 102
UFOs, 101

B
Bugs, 3, 5

C
check_ufo_hit function, 130
Comparison operators, 111

D, E
Debugging, 5
def main(), 65
display_game_over

function, 98, 135
display_scoreboard_data

function, 98, 169

Display scoreboard, Forest Bomber
background

code, 50
game_screen, 51
information, 51
rectangle, 50
values, 51

high score, 54, 55
level, 53, 54
messages

circumstances, 56
code, 57, 58
else statement, 57
level_cleared, 56
plane_exploded, 56
Pygame, 57
tests, 56

score, 52–53
display_scoreboard function, 170
Drop bomb, Forest Bomber

Boolean variables, 43
else if, 44
exploding trees, 40–42
ground level, 42, 43
if statement, 46
key presses

code, 34
if statement, 35

https://doi.org/10.1007/978-1-4842-5305-2

174

move the bomb
bomb_dropped, 38
code, 37
launch, 38
Python’s comparison

operators, 39
SCREEN_HEIGHT, 39
SCREEN_WIDTH, 39

TOTAL_LEVELS, 45

F
Forest Bomber, 1

background display
background image, 19
blit command, 18
game screen, 19
Pygame coordinate

system, 18, 19
display scoreboard (see Display

scoreboard, Forest
Bomber)

draw, forest
code, 20
display tree, 22, 23
tree position, 21

draw, plane
blit command, 26
code, 25, 26
if statement, 26
plane_exploded, 26
plane_image, 27

PLANE_START_X, 27
PLANE_START_Y, 27

drop the bomb (see Drop bomb,
Forest Bomber)

game environment, 11–13
idea, 9
key learning elements, 59, 60
level 1, 10, 11
move the plane (see Move

plane, Forest Bomber)
variables initialization

forest list, 16, 17
score and lives, 13–15

Function names, 7

G
get_random_animal

function, 82
Golf, 3

build the game, 139
in hole

centering text, 164
code, 162, 163
drawing Pygame text, 165
in_hole_message

function, 165–167
joining strings, 163
pygame.draw.rect()

function, 164
initialize variables

code, 143
constants, 144

Drop bomb, Forest Bomber (cont.)

INDEX

175

display background, 145
display flag, 146
variable naming

conventions, 144
variables, 143, 144

move, ball
ball_distance, 157, 158
code, 152
conditions, 153, 154
draw, ball, 158
lists, 154, 155

power meter
code, 149, 151
conditions, 152
shot_power value, 151
test slider_direction, 150, 151
variable slider_timer, 150

scoreboard
display_scoreboard_data

function, 169
display_scoreboard

function, 170
fixed loops, 169, 170
functions, 167

screen design, 140
setup game environment

code, 141, 142
constants, 141, 142

H
Hide animal, Snapper

animal_timer, 79
animal_visible, 79

building a function
call, function, 85
code change, 83
definition, 82
parameter, 84
random animal, 82

dictionary value, 78
key time, 78
rectangle, 80
show another animal, 81, 82
while True loop, 79

I, J, K
Indentation, mistake, 6, 7
in_hole_message function, 165
Integrated development

environment (IDE), 4

L
Logical operators, 115–117
Logic error, 6

M, N, O
Missile launch vehicle (MLV)

code, 112, 113
conditions, 113, 114
display missile, 115
drive base

Alien Invasion code, 110
comparison operators,

111, 112
Pygame, 110, 111

Index

176

logical operators, 115–117
move missile, 114
shoot UFOs

check_ufo_hit function, 130
code, 128
return direct hit, 130, 131
display_game_over

function, 135, 136
display_scoreboard_data

function, 137, 138
messages, 128
parameters, 128
Pygame colliderect

function, 129
ray_time, 133, 134
timers, 132
update_hit_ufo function, 131

Missing colons, 8
Move plane, Forest Bomber

fly across
code, 27, 28
plane.x, 28
redrawing, 28, 29
while True, 28

fly down, 29
code, 29
if statement, 30
speed_boost, 30

move_ufo function
Alien Invasion code, 120
call, function, 124
display screen, 124, 125

keys, 121
parameters, 121
random movement changes

constants, 123
variable ufo_direction_

chance, 123
stay on screen, 122

P, Q
PyCharm Edu, 5
Pygame colliderect function, 129
Pygame draw.rect

command, 51, 164
Pygame font.render

command, 53
pygame.key.get_pressed(), 37
Pygame library, 4
Pygame mouse.get_pos()

function, 72
Python, 4
Python game programming

bugs/debug, 5, 6
coding, 3
IDE

PyCharm Edu, 5
Python IDLE, 4
Thonny, 5

mistakes
brackets/quotes, 7
case sensitive, 7
comment, 8
indentation, 6

Missile launch vehicle (MLV) (cont.)

INDEX

177

missing colons, 8
variable names, 7

Python IDLE, 4

R
random.choice function, 75
random.randint() function, 79, 80

S
Show animal, Snapper

animal variable, 75
animal_visible, 76
dictionary, 74, 75
foreground overlay, 76

Snapper, 2
background display

background_image, 70
code, 69
foreground_image, 70
while True loop, 69

design, 63
game environment, 63–65
hide an animal (see Hide

animal, Snapper)
mouse pointer

blit, 72
camera_image, 73
code, 72
if statement, 73
values, 72

show an animal (see Show
animal, Snapper)

steps, 62
take photograph

code, 88, 89
display scoreboard, 96, 98, 99
else statement, 92, 93
game over, 95, 96
rectangular collide, 89, 90
run program, 91, 92
use Boolean variables, 93, 94

variable initialization (see
Variable initialization,
Snipper)

T
Thonny, 5

U
Unidentified Flying Objects

(UFOs), 101
update_hit_ufo function, 131

V, W, X, Y, Z
Variable initialization, Snapper

Boolean variables, 65, 66
code, 65
dictionaries, 66

animals, 67, 68
key, 67
value, 67
variables, 68

Variable names, 7

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Coding a game
	Python and Pygame
	Choosing an IDE
	Python IDLE
	Thonny
	PyCharm Edu

	Bugs and debugging
	Common mistakes
	Indentation
	Variable and function names
	Case
	Brackets and quotes
	Missing colons

	Comments
	Time to get started…

	Chapter 2: Forest Bomber part 1: A first level
	Getting started
	Step 1: Set up the game environment
	Step 2: Initialize variables
	Score and lives
	Forest list variable

	Step 3: Display the background
	Step 4: Draw the forest
	Using math to calculate tree position
	Deciding which trees to draw

	Summary

	Chapter 3: Forest Bomber part 2: Is it a bird…?
	Step 5: Draw the plane
	Step 6: Move the plane
	Fly across the screen
	Fly down the screen

	Chapter 4: Forest Bomber part 3: Bombs away…
	Step 7: Drop the bomb
	Key presses

	Move the bomb
	Exploding trees
	Ground level
	Step 8: Game over/level up

	Chapter 5: Forest Bomber part 4: Wrapping it up
	Step 9: Display scoreboard and messages
	Scoreboard background
	Display the score
	Display the level
	Display the high score
	Display messages

	Chapter 6: Snapper part 1: In the woods
	Getting started
	Step 1: Set up the game environment
	Step 2: Initialize variables
	Boolean variables
	Dictionaries

	Step 3: Display the background

	Chapter 7: Snapper part 2: Say cheese
	Step 4: Draw and move the camera
	The mouse pointer

	Step 5: Show an animal
	Using the dictionary

	Step 6: Hide an animal
	Setting a timer
	Rectangles
	Show another animal
	Building a function

	Chapter 8: Snapper part 3: Snapped
	Step 7: Take a photograph
	Rectangles collide
	Snapped it!
	Oops, missed!
	Hit or miss?

	Step 8: Game over
	Step 9: Scoreboard

	Chapter 9: Alien Invasion part 1: Under attack
	Getting started
	Step 1: Set up the game environment
	Step 2: Initialize variables
	Step 3: Display the background

	Chapter 10: Alien Invasion part 2: Missile launch is Go
	Step 4: Drive the base
	Comparison operators

	Step 5: Launch missile
	Move the missile

	Display missile
	Logical operators

	Chapter 11: Alien Invasion part 3: And they came from outer space
	Step 6: Move UFOs
	Stay on screen
	Time for a change
	Call the function
	Display UFOs

	Chapter 12: Save the planet
	Step 7: Shoot UFOs
	Catching some rays

	Step 8: Game over
	Step 9: Scoreboard

	Chapter 13: Golf part 1: On the tee
	Getting started
	Step 1: Set up the game environment
	Step 2: Initialize variables
	Variable naming conventions
	Constants

	Step 3: Display background
	Step 4: Display flag

	Chapter 14: Golf part 2: On the green
	Step 5: Power meter
	Step 6: Move the ball
	More about lists
	Update ball location
	Draw the ball

	Chapter 15: Golf part 3: It’s in the hole
	Step 7: In the hole
	Joining strings
	Drawing Pygame shapes
	Centering text
	Drawing Pygame text
	In the hole message

	Step 8: Scoreboard
	Fixed loops
	Display the scoreboard
	Wrapping up

	Index

