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Introduction
	

Overview
	

Functional	programming	is	experiencing	a	resurgence	with	languages	like	Python,
Haskell,	and	Scala.	C++	and	Java	have	also	added	functional	features,	such	as	lambdas
and	futures.	Writing	C++	in	a	functional	style	using	const	variables,	functions	without	side
effects,	recursive	functions,	and	function	objects	results	in	code	that	is	often	simpler	and
easier	to	maintain	and	understand,	especially	when	poorly	documented.	This	book
explores	functional	techniques	in	C++	code	and	their	advantages	and	disadvantages.

	



Side	effects
	

One	of	the	most	important	features	of	functional	programming	is	that	programs	are	written
almost	exclusively	without	side	effects.	According	to	Wikipedia,	a	function	has	a	side
effect	if,	in	addition	to	returning	a	value,	it	also	modifies	some	state	or	has	an	observable
interaction	with	calling	functions	or	the	outside	world.	For	example,	a	function	might
modify	a	global	variable	or	static	variable,	modify	one	of	its	arguments,	raise	an
exception,	write	data	to	a	display	or	file,	read	data,	or	call	other	side-effecting	functions.
[1]

	

Functions	without	side	effects	are	generally	referred	to	as	“pure”	functions,	and	are	the
norm	for	functional	languages.	These	functions	only	produce	output	variables	based	on	the
input	arguments.	However,	C++	code	commonly	includes	functions	with	mutable
arguments,	references	global,	static,	or	member	variables,	or	calls	other	non-pure
functions.

	

A	useful	property	of	pure	functions	is	that	when	called	with	the	same	arguments	always
results	in	the	same	output.	Due	to	this,	functional	languages	can	cache	the	reproducible
result	using	a	process	called	“memoization”	for	following	calls	to	pure	functions.	A	non-
pure	function	is	based	on	some	external	state	or	changes	an	external	state,	which	is	often
difficult	to	reproduce,	test,	or	understand.

	



Sequences
	

STL	algorithms	are	generally	based	on	iterating	over	a	sequence	of	values	or	objects
accessed	between	the	“begin”	and	“end”	iterators.	The	typical	segmentation	of	a	list	in	a
functional	language	is	between	the	head	object	and	tail	list.	STL	containers	provide	the
head	object	by	dereferencing	the	“begin”	iterator,	and	the	tail	list	is	available	between	the
“next”	iterator,	accessed	by	std::next(begin),	and	the	“end”	iterator.	Additionally,	an	empty
list	is	when	the	“begin”	and	“end”	iterator	are	equal,	such	that	there	are	no	objects
between	them.	The	Algorithm	chapter	uses	this	model	of	a	sequence,	extensively.

	



Compiler
	

The	Apple	LLVM	version	6.1.0	compiler	was	used	to	compile	the	samples	in	this	book
using	the	“-O3”	option	that	includes	tail-call	optimization.	This	optimization	setting	is
necessary	in	release	and	debug	mode	builds	with	deep	recursion,	since	the	program	will
exceed	the	stack	size	without	it	and	result	in	a	segmentation	fault.	The	option	“-
std=c++11”	was	also	used	for	building	all	of	the	code	samples.	For	code	samples	related
to	C++14,	the	“-std=c++14”	option	was	used	instead.

	



Performance
	

Functional	programming	generally	involves	an	abstraction	penalty	that	prevents	the	code
from	achieving	the	absolute	optimal	performance,	however,	that	is	rarely	necessary	for	an
entire	program.	Often,	only	small,	performance	critical	sections	of	a	program	need	to	be
optimized	for	good	performance.	Restricting	side	effects	to	those	sections	allows	nearly
optimal	performance	while	maintaining	readable	and	error	free	code	throughout	the
remaining	parts.



Algorithms
Recursive	functions
	

Recursive	functions	are	a	staple	of	functional	languages	and	many	algorithms	are	more
easily	implemented	than	with	a	strictly	iterative	formulation.	A	difficulty	with	recursive
algorithms	is	a	computer’s	stack	limit,	which	will	be	violated	with	too	many	recursive
calls.	Modern	C++	compilers	implement	tail-call	optimization,	and	properly	structured
tail-recursive	functions	are	not	limited	by	the	stack	size.	The	compiler	generates	code	that
does	not	add	a	stack	frame	and	will	not	exceed	the	stack	limit	with	a	high	number	of
recursive	calls.

	

This	chapter	covers	recursive	implementations	of	STL	algorithms,	and	most	are
implemented	with	tail-recursion.	Some	algorithms	include	non-tail-recursive
implementations	for	exposition	or	when	they	are	found	to	compile	to	code	that	will	not
exceed	the	stack.	All	of	the	functions	in	this	chapter	were	tested	with	a	very	large
recursion	depth,	and	none	resulted	in	a	segmentation	fault.

	

Most	of	the	algorithms	covered	in	this	chapter	are	non-modifying	algorithms	that	will	not
modify	the	data	processed	by	the	algorithm.	These	algorithms	can	process	data	accessed
by	const	iterators	that	transform	the	data	without	changing	it.	Iterative	implementations	of
these	algorithms	are	available	for	comparison	at	the	website	http://cplusplus.com	here:

<algorithm>	http://www.cplusplus.com/reference/algorithm/

<numeric>

http://www.cplusplus.com/reference/numeric/

	

	

http://cplusplus.com
http://www.cplusplus.com/reference/algorithm/
http://www.cplusplus.com/reference/numeric/


all_of
	

The	all_of	algorithm	returns	true	if	all	of	the	elements	of	a	sequence	are	true	when
individually	passed	to	the	unary	predicate.	This	algorithm	checks	each	element	until	the
predicate	returns	false	or	reaches	the	end	of	the	sequence.	Since	the	AND	operator	(&&)
short-circuits	evaluation	if	the	argument	to	the	left	of	it	is	false,	the	all_of	function	on	the
right	side	of	it	will	not	be	called	and	the	recursion	will	stop.

	

recursive::all_of

template<class	InputIterator,

									class	UnaryPredicate>

bool	all_of	(InputIterator	first,

													InputIterator	last,

													UnaryPredicate	pred)

{

			if	(first	==	last)	return	true;

			return	pred(*first))	&&

					all_of(std::next(first),	last,	pred);

}

	

	

Most	of	the	algorithms	in	this	chapter	start	with	a	conditional	statement	that	checks
whether	the	end	of	the	sequence	has	been	reached	and	the	first	and	last	iterator	are	equal.
It	is	followed	by	the	logic	implemented	by	the	algorithm.	The	following,	tail	recursive
version	uses	an	additional	if-conditional	for	checking	the	predicate	applied	to	the	first
element.

	

recursive::all_of

template<class	InputIterator,

									class	UnaryPredicate>

bool	all_of	(InputIterator	first,



													InputIterator	last,

													UnaryPredicate	pred)

{

			if	(first	==	last)	return	true;

			if	(!pred(*first))	return	false;

			return	all_of(std::next(first),	last,	pred);

}

	

	

Neither	of	these	implementations	resulted	in	a	segmentation	fault	from	exceeding	the
stack,	while	the	first	one	is	more	succinct.	An	implementation	with	only	a	single	return
statement	is	possible	using	the	OR	operator	(||).

	

recursive::all_of

template<class	InputIterator,

									class	UnaryPredicate>

bool	all_of	(InputIterator	first,

													InputIterator	last,

													UnaryPredicate	pred)

{

		return

				(first	==	last)	||

				pred(*first))	&&

				all_of(std::next(first),	last,	pred);

}

	

	

This	single	statement	captures	the	recursive	tail	condition	in	the	algorithm	calculation.



any_of
	

The	any_of	algorithm	applies	a	unary	predicate	to	elements	of	a	sequence	and	returns	true
if	the	predicate	returns	true	for	any	of	the	elements.	It	returns	false	for	a	sequence	with
zero	elements.

	

recursive::any_of

template<class	InputIterator,

									class	UnaryPredicate>

bool	any_of	(InputIterator	first,

													InputIterator	last,

													UnaryPredicate	pred)

{

		if	(first	==	last)	return	false;

		return	pred(*first))	||

					any_of(std::next(first),	last,	pred);

}

	

	

Due	to	short-circuit	evalution,	if	the	predicate	returns	true,	the	recursive	call	to	any_of		on
the	right	side	of	the	OR	operator	will	not	be	called.	The	following,	tail	recursive	version
reproduces	the	short-circuit	evaluation	and	returns	before	the	recursive	call	if	the	predicate
is	true.

	

recursive::any_of

template<class	InputIterator,

									class	UnaryPredicate>

bool	any_of	(InputIterator	first,

													InputIterator	last,

													UnaryPredicate	pred)

{

		if	(first	==	last)	return	false;

		if	(pred(*first))	return	true;

		return	any_of(std::next(first),	last,	pred);

}

	



	

Neither	of	these	implementations	resulted	in	a	segmentation	fault	from	exceeding	the
stack,	while	the	first	one	seems	more	succinct.

	



none_of
	

The	none_of	algorithm	returns	true	if	the	predicate	is	false	for	all	of	the	elements	of	the
sequence	or	the	sequence	is	empty.	Otherwise,	the	algorithms	returns	false.	The	algorithm
is	almost	identical	to	the	all_of	algorithm,	but	takes	the	negation	of	the	predicate.

	

recursive::none_of

template<class	InputIterator,

									class	UnaryPredicate>

bool	none_of(

		InputIterator	first,

		InputIterator	last,

		UnaryPredicate	pred)

{

		if	(first	==	last)	return	true;

		return	!pred(*first)	&&

				none_of(std::next(first),	last,	pred);

}

	

	

The	none_of	algorithms	is	implementable	with	the	all_of	algorithm	and	a	lambda	that
negates	the	predicate.	Lambda’s	are	discussed	at	length	in	a	later	chapter,	and	in	this	case
it	is	used	to	create	the	lambda	passed	to	the	all_of	function.

	

recursive::none_of

template<class	InputIterator,

									class	UnaryPredicate>

bool	none_of	(InputIterator	first,

													InputIterator	last,

													UnaryPredicate	pred)

{

		return

				all_of(std::next(first),

											last,

											[&](auto	x){	return	!pred(x);	});

}

	



	

The	lambda	is	a	C++14-style	generic	lambda	with	an	“auto”	argument	type,	and	it	is
possible	to	use	a	C++11-style	lambda	with	the	argument	type	being	“typename
std::iterator_traits<InputIterator>::value_type”.

	



for_each
	

The	for_each	algorithm	applies	a	function	object	to	every	element	of	a	sequence,	and
returns	the	function	object	as	the	result.

	

recursive::for_each

template<class	InputIterator,

									class	Function>

Function

for_each(

		InputIterator	first,

		InputIterator	last,

		Function	fn)

{

		if	(first	==	last)	return	fn;

		fn(*first);

		return	for_each(std::next(first),	last,	fn);

}

	

	

Returning	the	function	object	from	for_each	is	likely	only	valuable	for	the	case	where	the
function	object	changes	it’s	state,	since	an	object	that	is	constant	would	merely	be	the
same	as	the	function	object	passed	in.



find
	

The	find	algorithm	returns	an	iterator	to	the	first	element	that	is	equal	to	the	passed-in
value.	If	an	element	is	not	found	the	last	iterator	is	returned.

	

recursive::find

template<class	InputIterator,

									class	T>

InputIterator

find	(InputIterator	first,

						InputIterator	last,

						const	T&	val)

{

		if	(first	==	last)	return	first;

		if	(*first	==	val)	return	first;

		return	find(std::next(first),	last,	val);

}

	

	

The	last	two	lines	of	the	algorithm	are	implemented	with	the	ternary	operator	in	a	single
line	in	the	following	listing.	This	makes	the	algorithm	more	succinct.

	

recursive::find

template<class	InputIterator,

									class	T>

InputIterator

find	(InputIterator	first,

						InputIterator	last,

						const	T&	val)

{



		if	(first	==	last)	return	first;

		return	(*first	==	val)	?	first	:

				find(std::next(first),	last,	val);

}

	

	

The	ternary	operator	(?	:)	simplifies	checking	a	conditional	before	the	algorithm	recurses,
and	is	useful	for	simplifying	more	of	the	algorithms	in	this	chapter.	The	first	line	can	also
be	combined	with	the	following	line	using	the	ternary	operator	to	form	a	single	line
implementation.

	

recursive::find

template<class	InputIterator,

									class	T>

InputIterator

find(

		InputIterator	first,

		InputIterator	last,

		const	T&	val)

{

		return	(first	==	last)	?	first	:

									(*first	==	val)	?	first	:

				find(std::next(first),	last,	val);

}

	

	



find_if
	

The	find_if	algorithm	applies	a	unary	predicate	to	each	element	of	the	sequence	and
returns	an	iterator	to	the	first	element	for	which	the	predicate	returns	true.	The	algorithm
returns	the	last	iterator,	if	no	elements	are	found	for	which	the	predicate	is	true.

	

recursive::find_if

template<class	InputIterator,

									class	UnaryPredicate>

InputIterator

find_if(

		InputIterator	first,

		InputIterator	last,

		UnaryPredicate	pred)

{

		if	(first	==	last)	return	first;

		if	(pred(*first))	return	first;

		return	find_if(std::next(first),	last,	pred);

}

	

	

This	algorithm	is	also	implementable	in	fewer	lines	with	the	ternary	operator.



find_if_not
	

The	find_if_not	algorithm	applies	a	unary	predicate	to	each	element	of	the	sequence	and
returns	an	iterator	to	the	first	element	for	which	the	predicate	returns	false.

	

recursive::find_if_not

template<class	InputIterator,

									class	UnaryPredicate>

InputIterator

find_if(InputIterator	first,

								InputIterator	last,

								UnaryPredicate	pred)

{

		if	(first	==	last)	return	first;

		if	(!pred(*first))	return	first;

		return

				find_if_not(std::next(first),	last,	pred);

}

	

	

The	find_if_not	is	also	implementable	by	calling	the	find_if	algorithm	and	applying	a
negating	lambda	to	the	passed	in	predicate.

	

recursive::find_if_not

template<class	InputIterator,

									class	UnaryPredicate>

InputIterator

find_if_not(

		InputIterator	first,

		InputIterator	last,



		UnaryPredicate	pred)

{

		find_if(first,

										last,

										[&](auto	x){	return	!pred(x);	});

}

	

	

The	lambda	is	a	C++14-style	generic	lambda	with	an	“auto”	argument	type,	and	it	is
possible	to	use	a	C++11-style	lambda	with	the	argument	type	being	“typename
std::iterator_traits<InputIterator>::value_type”.

	



find_end
	

The	find_end	algorithm	finds	the	last	occurrence	of	a	subsequence	in	a	sequence.	The
algorithm	calls	a	helper	version	of	the	find_end	function	with	an	extra	argument	that
passes	the	last	occurrence	where	the	subsequence	was	found	so	far.	It	starts	by	calling	the
helper	function	with	the	“last”	iterator	as	the	initial	possible	result.	When	it	finds	a	new
occurrence	of	the	subsequence	using	the	starts_with	function,	it	updates	the	possible
result.

	

recursive::find_end

template<class	ForwardIterator1,

									class	ForwardIterator2>

bool

starts_with(ForwardIterator1	first1,

												ForwardIterator1	last1,

												ForwardIterator2	first2,

												ForwardIterator2	last2)

{

		if	(first2==last2)	return	true;

		if	(first1==last1)	return	false;

		return	(*first1	==	*first2)	&&

				starts_with(std::next(first1),

																last1,

																std::next(first2),

																last2);

}

	

template<class	ForwardIterator1,

									class	ForwardIterator2>

ForwardIterator1

find_end	(ForwardIterator1	first1,				

										ForwardIterator1	

last1,																													

										ForwardIterator2	first2,

										ForwardIterator2	last2,

										ForwardIterator1	curr)



{

		if	(first1==last1)	return	curr;

		if	(starts_with(first1,last1,first2,last2))

				return	find_end(std::next(first1),

																				last1,

																				first2,

																				last2,

																				first1);

		return	find_end(std::next(first1),

																		last1,

																		first2,

																		last2,

																		curr);

}

	

template<class	ForwardIterator1,

									class	ForwardIterator2>

ForwardIterator1

find_end(ForwardIterator1	first1,				

									ForwardIterator1	

last1,																													

									ForwardIterator2	first2,

									ForwardIterator2	last2)

{

		if	(first2==last2)	return	last1;

		return

				find_end(first1,last1,first2,last2,last1);

}

	

	

The	starts_with	function	is	also	later	used	to	calculate	the	search	algorithm.

	



find_first_of
	

The	find_first_of	function	finds	the	first	element	in	a	sequence	that	matches	one	of	the
elements	in	a	second	sequence.	The	function	calls	the	previously	defined	find	function	to
match	a	value	to	the	values	in	the	second	sequence.

	

recursive::find_first_of

	

template<class	InputIterator,

									class	ForwardIterator>

InputIterator

find_first_of(

		InputIterator	first1,

		InputIterator	last1,																																	

		ForwardIterator	first2,

		ForwardIterator	last2)

{

		if	(first1==last1)	return	last;

		if	(find(first2,last2,*first1)!=last2)

				return	first1;

		return	find_first_of(

				std::next(first1),

				last1,

				first2,

				last2);			

}

	

	



adjacent_find
	

The	adjacent_find	algorithm	returns	an	iterator	to	the	first	location	where	two	consecutive
items	in	a	sequence	are	equal.	The	iterator	points	to	the	first	of	the	two	items.	If	the
sequence	holds	fewer	than	two	items,	the	end	iterator	is	returned.

	

The	recursive	implementation	has	a	helper	function	to	accommodate	the	check	for	an
empty	sequence	in	the	main	function	and	a	check	for	the	“next”	iterator	reaching	the	end
of	the	sequence.	The	“first”	and	“next”	iterator	are	used	to	point	to	the	consecutive
elements	that	are	being	compared.

	

recursive::adjacent_find

template	<class	ForwardIterator>

ForwardIterator

adjacent_find1	(ForwardIterator	first,

																ForwardIterator	last)

{

		ForwardIterator	next	=	std::next(first);

		if	(next	==	last)	return	last;

		if	(*first	==	*next)	return	first;

		return	adjacent_find1(next,	last);

}

	

template	<class	ForwardIterator>

ForwardIterator

adjacent_find	(ForwardIterator	first,

															ForwardIterator	last)

{

		if	(first==last)	return	last;

		return	adjacent_find1(first,last);

}

	

	



count
	

The	count	algorithm	calculates	the	number	of	items	in	a	sequence	that	match	a	particular
value.	This	simple	algorithm	requires	only	two	lines	in	the	implementation.

	

recursive::count

template	<class	InputIterator,

										class	T>

typename	std::iterator_traits<

		InputIterator>::difference_type

count	(InputIterator	first,

							InputIterator	last,

							const	T&	val)

{

		if	(first==last)	return	0;

		return

				(*first==val)	+

				count(std::next(first),	last,	val);

}

	

	

The	tail-recursive	version	that	passes	the	current	count	to	the	next	count	call	is	a	little
more	complicated.	It	requires	calling	a	separate	count1	function	with	this	additional
argument.

	

recursive::count

template	<class	InputIterator,

										class	T>

typename	std::iterator_traits<

		InputIterator>::difference_type

count	(

		InputIterator	first,

		InputIterator	last,

		const	T&	val

		typename

				std::iterator_traits<

				InputIterator>::difference_type	c	=	0)



{

		if	(first==last)	return	0;

		return

				count1(std::next(first),

											last,

											val,

											c	+	(*first==val));

}

	

	

template	<class	InputIterator,	class	T>

typename	std::iterator_traits<

		InputIterator>::difference_type

count	(InputIterator	first,

							InputIterator	last,

							const	T&	val)

{

		return	count1(first,last,val);

}

	

	

The	count	algorithm	is	implementable	with	the	accumulate	algorithm	and	a	custom
lambda.	The	accumulate	algorithm	is	described	in	the	following	section.

	

recursive::count

#include	<numeric>

	

template	<class	InputIterator,	

										class	T>

typename	std::iterator_traits<

		InputIterator>::difference_type

count	(InputIterator	first,

							InputIterator	last,

							const	T&	val)

{

		return

				accumulate(

						first,



						last,

						0,

						[&](int	x,int	y){	return	x+(y==val);	});

}

	

	



accumulate
	

The	accumulate	algorithm	is	in	the	numeric	header	and	it	applies	a	binary	operator	to	the
“init”	value	passed	into	the	function	and	“first”	element	of	the	sequence.	The	results	of
that	operator	are	passed	as	the	“init”	value	for	the	rest	of	the	sequence.	One	of	the	most
common	uses	of	the	accumulate	algorithm	is	to	add	up	the	elements	of	a	sequence	and
return	the	mathematical	sum.

	

recursive::accumulate

template	<class	InputIterator,

										class	T,

										class	BinaryOperation>

T	accumulate	(InputIterator	first,

														InputIterator	last,

														T	init,

														BinaryOperation	op)

{

		if	(first	==	last)	return	init;

		return

				accumulate(std::next(first),

															last,

															op(init,*first),

															op);

}

	

	



count_if
	

The	count_if	algorithm	counts	the	number	of	times	a	predicate	is	true	when	applied	to	an
element	in	a	sequence.	The	algorithm	uses	the	iterator_traits	difference_type	to	determine
the	type	of	the	result	value.

	

recursive::count_if

template	<class	InputIterator,

										class	UnaryPredicate>

typename	std::iterator_traits<

		InputIterator>::difference_type

count_if	(InputIterator	first,

							InputIterator	last,

							UnaryPredicate	pred)

{

		if	(first==last)	return	0;

		return

				pred(*first)	+

				count_if(std::next(first),	last,	pred);

}

	

	



mismatch
	

The	mismatch	algorithm	finds	the	first	elements	in	two	sequences	that	do	not	match	and
returns	a	pair	of	iterators	that	point	to	the	mismatching	items.	If	all	of	the	elements	match,
the	iterator	of	the	first	sequence	equals	the	last	iterator.

	

recursive::mismatch

template	<class	InputIterator1,

										class	InputIterator2>

std::pair<InputIterator1,InputIterator2>

mismatch	(InputIterator1	first1,

										InputIterator1	last1,

										InputIterator2	first2)

{

		if	(first1==last1)

				return	std::make_pair(first1,first2);

		if	(*first1!=*first2)

				return	std::make_pair(first1,first2);

		return

				mismatch(std::next(first1),

													last1,

													std::next(first2));

}

	

	

It	is	important	that	the	second	sequence	is	not	shorter	than	the	first	sequence	or	it	may
result	in	undefined	behavior.



equal
	

The	equal	algorithm	compares	two	sequences	and	returns	true	if	the	elements	of	the	two
sequences	are	equal.	The	algorithm	is	simply,	implementable	with	the	AND	operator
(&&).

	

recursive::equal

template	<class	InputIterator1,

										class	InputIterator2>

bool	equal(InputIterator1	first1,

											InputIterator1	last1,

											InputIterator2	first2)

{

		if	(first1==last1)	return	true;

		return

				(*first1	==	*first2)	&&

				equal(std::next(first1),

										last1,

										std::next(first2));

}

	

	



advance
	

The	advance	algorithm	advances	an	iterator	“n”	times,	and	the	following	recursive	version
returns	the	resulting	iterator.	Unlike	the	STL	version	it	does	not	update	the	passed	in
iterator.

	

recursive::advance

template<class	InputIterator,

									class	Distance>

InputIterator

advance(InputIterator	it,	Distance	n)

{

		return	

				!n	?	it	:	advance(std::next(it),n-1);

}

	

	

This	simple	function	is	used	in	the	following	is_permutation	algorithm.

	



distance
	

The	distance	algorithm	counts	the	number	of	items	between	the	two	iterators	passed	to	the
function.

	

recursive::distance

template<class	InputIterator>

typename

std::iterator_traits<

		InputIterator>::difference_type

distance(InputIterator	first

									InputIterator	last)

{

		if	(first==last)	return	0;

		return	1+distance(std::next(first),last);

}

	

	

This	simple	function	is	also	used	in	the	following	is_permutation	algorithm.

	



is_permutation
	

The	is_permutation	algorithm	determines	if	two	sequences	are	permutations	of	each	other.
The	two	sequences	contain	equal	elements	in	possibly	different	orders.	The	algorithm	uses
mismatch	to	start	the	algorithm	after	the	beginning	subsequences	that	already	match.	After
that	it	calls	the	helper	is_permutation1	function,	which	iterates	over	the	elements	of	the
first	sequence.	It	checks	if	that	element	has	been	encountered	before	using	the	find
algorithm,	and	if	not	it	compares	the	number	of	occurrences	in	both	sequences	to	see	if
they	match.	The	count	comparison	is	logically	ANDed	with	the	recursive	call	to
is_permutation1.

	

recursive::is_permutation

template	<class	InputIterator1,

										class	InputIterator2>

bool

is_permutation1	(InputIterator1	first1,	

																	InputIterator1	curr,

																	InputIterator1	last1,

																	InputIterator2	first2,							

																	InputIterator2	last2)

{

		if	(curr==last1)	return	true;

		if	(find(first1,curr,*curr)==curr)

				return				

					((1+count(std::next(curr),last1,*curr))

					==	count(first2,last2,*curr))	&&

							is_permutation1(first1,

																							std::next(curr),

																							last1,

																							first2,

																							last2);

		else	return

				is_permutation1(

						first1,

						std::next(curr),

						last1,

						first2,

						last2);

}

	

template	<class	InputIterator1,

										class	InputIterator2>

bool

is_permutation(InputIterator1	first1,

															InputIterator1	last1,

															InputIterator2	first2)

{



		auto	start	=	mismatch(first1,last1,first2);

		if	(start.first==last1)	return	true;

		return

				is_permutation1(

						start.first,

						start.first,

						last1,

						start.second,

						advance(

								start.second,

								distance(start.first,last1)));

}

	

	

An	optimized	implementation	is	possible	that	checks	if	the	count	of	the	elements	in	the
second	sequence	is	greater	than	1	before	counting	the	elements	in	the	first	sequence.	This
is	left	to	the	reader	as	an	exercise.



search
	

The	search	algorithm	finds	the	first	occurrence	of	a	subsequence	in	a	sequence.	It	first
checks	if	the	subsequence	has	zero	elements	and	if	so	returns	the	first	iterator	of	the
sequence.	Otherwise,	it	calls	the	search1	helper	function,	which	iterates	over	the	sequence
and	checks	each	element	as	the	start	of	the	subsequence.	The	subsequence	is	checks	using
the	starts	with	function	used	previously	with	the	find_end	algorithm.

	

recursive::search

template<class	ForwardIterator1,

									class	ForwardIterator2>

bool

starts_with(

		ForwardIterator1	first1,

		ForwardIterator1	last1,

		ForwardIterator2	first2,

		ForwardIterator2	last2)

{

		if	(first2==last2)	return	true;

		if	(first1==last1)	return	false;

		return	(*first1	==	*first2)	&&

				starts_with(std::next(first1),

																last1,

																std::next(first2),

																last2);

}

	

template<class	ForwardIterator1,

									class	ForwardIterator2>

ForwardIterator1

search1(ForwardIterator1	first1,				

								ForwardIterator1	last1,																													

								ForwardIterator2	first2,

								ForwardIterator2	last2

)

{



		if	(first1==last1)	return	last1;

		if	(starts_with(first1,last1,first2,last2))

				return	first1;

		return

				search1(std::next(first1),

												last1,

												first2,

												last2);

}

	

template<class	ForwardIterator1,

									class	ForwardIterator2>

ForwardIterator1

search	(ForwardIterator1	first1,				

								ForwardIterator1	last1,																													

								ForwardIterator2	first2,

								ForwardIterator2	last2)

{

		if	(first2==last2)	return	first1;

		return

				search1(first1,last1,first2,last2);

}

	

	



search_n
	

The	search_n	algorithm	searches	a	sequence	for	an	item	that	equals	the	passed	value	and
which	is	repeated	“n”	times.	The	returned	result	is	an	iterator	to	the	first	instance	of	the
repeated	sequence.	The	search_n	function	calls	the	helper	function	search_n1	which
recurses	over	a	sequence	and	reduces	the	count	by	one	when	the	item	matches	the	passed
value.	It	returns	true	when	the	count	reaches	zero,	or	returns	false	when	the	match	fails.
When	it	returns	false	it	also	returns	the	next	location	where	the	search	can	restart	to	look
for	the	string	of	matches,	so	the	search	will	not	iterate	over	elements	more	than	once.	The
iterator	returned	with	the	true	value	is	meaningless	and	not	used.

	

recursive::search_n

template<class	ForwardIterator,

									class	Size,

									class	T>

std::pair<bool,ForwardIterator>

search_n1(ForwardIterator	first,

										ForwardIterator	last,

										Size	count,

										const	T&	val)

{

		if	(!count)

				return	std::make_pair(true,first);

		if	(first==last)

				return	std::make_pair(false,last);

		if	(*first	!=	val)

				return	std::make_pair(

													false,

													std::next(first));

		return	search_n1(

											std::next(first),

											last,

											count-1,

											val);



}

	

template<class	ForwardIterator,

									class	Size,

									class	T>

ForwardIterator

search_n	(ForwardIterator	first,				

										ForwardIterator	last,																													

										Size	count,

										const	T&	val)

{

		const	auto	pair	=

				search_n1(first,last,count,val);

		if	(pair.first)	return	first;

		if	(pair.second==last)	return	last;

		return

				search_n(

						pair.second,

						last,

						count,

						val);

}

	

	



min_element
	

The	min_element	algorithm	returns	an	iterator	to	the	minimum	element	in	a	sequence	of
items.	The	minimum	value	is	retrieved	by	dereferencing	the	returned	iterator.	The
algorithm	uses	a	helper	function	to	pass	the	minimum	element	as	the	algorithm	recurses.

	

recursive::min_element

template	<class	InputIterator,

										class	T>

InputIterator

min_element1(InputIterator	first,

													InputIterator	last,

													InputIterator	min)

{

		if	(first	==	last)	return	min;

		return

				min_element1(

						std::next(first),

						last,

						(*min	<	*first)	?	min	:	first);

}

	

template	<class	InputIterator>

InputIterator

min_element	(InputIterator	first,

													InputIterator	last)

{

		if	(first	==	last)	return	last;

		return

				min_element1(

						std::next(first),



						last,

						first);

}

	

	

An	implementation	of	the	max_element	or	minmax_element	would	similarly	pass	the
iterator	to	the	maximum	element	as	the	algorithm	recurses.	An	implementation	of	these
algorithms	is	left	as	an	exercise	to	the	reader.

	



adjacent_difference
	

The	adjacent_difference	algorithm	in	the	numeric	header	assigns	the	adjacent	difference	of
each	element	and	the	previous	element	of	a	sequence	is	assigned	to	the	elements	on	a
result	sequence.	This	algorithm	is	not	purely	functional,	in	that	it	does	assign	the	result	to
an	output	iterator.	It	was	implemented	recursively,	but	not	without	assignment.	The
algorithm	uses	a	helper	function	adjacent_difference1	that	recurses	over	the	elements	after
the	first	element.

	

recursive::adjacent_difference

template<class	InputIterator,

									class	OutputIterator>

OutputIterator

adjacent_difference1(

		InputIterator	first,

		InputIterator	next,

		InputIterator	last,

		OutputIterator	result)

{

		if	(next==last)	return	result;

		*result	=	*next	-	*first;

		return	adjacent_difference1(

				next,std::next(next),last,std::next(result));

}

	

template<class	InputIterator,

									class	OutputIterator>

OutputIterator

adjacent_difference(

		InputIterator	first,

		InputIterator	last,

		OutputIterator	result)

{

		if	(first==last)	return	result;

		*result	=	*first;

		return	adjacent_difference1(

				first,std::next(first),last,

				std::next(result));

}

	

	



inner_product
	

The	inner_product	algorithm	in	the	numeric	header	accumulates	the	inner_product	of	the
elements	of	two	sequences.

	

recursive::inner_product

template	<class	InputIterator1,

										class	InputIterator2,

										class	T>

T

inner_product(

		InputIterator1	first1,

		InputIterator1	last1,

		InputIterator2	first2,

		T	init)

{

		if	(first	==	last)	return	init;

		return

				inner_product(

						std::next(first1),

						last1,

						std::next(first2),

						init+(*first1)*(*first2));

}

	

	

	



partial_sum
	

The	partial_sum	algorithm	in	the	numeric	header	calculates	the	partial	sum	of	the	elements
in	a	sequence.	The	“nth”	element	in	the	output	sequence	is	assigned	the	sum	of	the	first
“n”	elements	in	the	input	sequence.	The	partial_sum	algorithm	uses	assignment	to	set	the
output	values,	so	it	is	not	strictly	free	of	side	effects.	This	implementation	maintains	the
typical	STL	interface	with	a	recursive	definition	that	uses	the	partial_sum1	helper
function.

	

recursive::partial_sum

template	<class	InputIterator,

										class	OutputIterator>

OutputIterator

partial_sum1(

		InputIterator	first,

		InputIterator	last,

		OutputIterator	result,

		typename	std::iterator_traits<

				OutputIterator>::value_type	val)

{

		if	(first==last)	return	result;

		return

		partial_sum1(

				std::next(first),

				last,

				std::next(result),

				*result	=	*first	+	val);

}

	

template	<class	InputIterator,

										class	OutputIterator>

OutputIterator



partial_sum(

		InputIterator	first,

		InputIterator	last,

		OutputIterator	result)

{

		return

				partial_sum1(first,last,result,0);

}

	

	

A	different	version	of	the	partial_sum	algorithm	that	returns	the	output	data	sequence
instead	of	assigning	the	data	to	an	output	iterator	encapsulates	the	algorithm	in	a
functional	interface	that	calls	partial_sum1	and	the	previously	defined	distance	function.	A
vector	is	constructed	in	the	function	with	a	size	of	the	input	sequence,	and	the	begin
iterator	of	the	sequence	is	passed	as	the	output	iterator.

	

recursive::partial_sum

template	<class	InputIterator,

										class	OutputIterator>

std::vector<

		typename	std::iterator_traits<

				InputIterator>::value_type>

partial_sum(

		InputIterator	first,

		InputIterator	last)

{

		std::vector<

				typename	std::iterator_traits<

						InputIterator>::value_type>

				v(distance(first,last));

		return

				partial_sum1(

						first,



						last,

						std::begin(v),

						0);

}

	

	



iota
	

The	iota	algorithm	assigns	an	iterator	an	incrementing	sequence	of	values	starting	from	the
input	value.	The	algorithm	assigns	the	values	to	an	input	iterator,	so	the	function	has	a	side
effect.	However,	it	is	implementable	recursively	with	the	standard	STL	interface	as
follows.

	

recursive::iota

template	<class	ForwardIterator,

										class	T>

void

iota(

		ForwardIterator	first,

		ForwardIterator	last,

		T	val)

{

		if	(first	==	last)	return;

		*first	=	val;

		iota(std::next(first),last,val+1);

}

	

	

A	version	of	this	algorithm	that	is	functional	would	need	to	pass	in	the	number	of	elements
to	create	which	is	implicitly	found	in	the	distance	between	the	first	and	last	iterator	of	the
previous	implementation.	This	value	could	be	retrieved	by	calling	the	begin	and	end
iterator	with	the	STL	distance	function.	The	following	implementation	calls	the	previous
version	and	returns	a	vector	with	the	increasing	elements.

	

recursive::iota

template	<class	T,

										class	Size>



std::vector<T>

iota(T	val,	Size	n)

{

		std::vector<T>	v(n);

		iota(std::begin(v),std::end(v),val);

		return	v;

}

	

	

	



Run-time	Results
	

Each	recursive	algorithm	was	run	vs.	the	STL	implementation	on	a	long	sequence	in	a
vector,	list,	and	set.	The	following	chart	shows	which	algorithm	was	faster	when	run	with
a	large	number	of	iterations.

	

Algorithm vector list set

all_of recursive same recursive

any_of same same recursive

none_of recursive same same

for_each recursive recursive recursive

find recursive recursive recursive

find_if same STL recursive

find_if_not STL same STL

find_end same STL recursive

find_first_of same STL recursive

adjacent_find STL recursive N/A

count STL same recursive

count_if STL same recursive

accumulate STL recursive STL



mismatch STL recursive STL

equal STL STL recursive

is_permutation STL recursive N/A

search STL STL STL

search_n STL recursive N/A

adjacent_difference STL recursive STL

inner_product STL recursive recursive

	

The	difference	in	speed	when	one	implementation	won	was	often	negligible.	The	point	of
this	analysis	is	not	that	one	implementation	should	be	used	over	the	other	based	on	speed,
but	that	a	recursive	implementation	is	not	necessarily	a	detriment	to	run-time	performance.

	



constexpr
	

The	constexpr	keyword	in	C++11	allows	defining	functions	that	are	evaluated	at	runtime.
All	inputs	to	a	constexpr	function	must	also	be	constexpr.	In	C++11	these	functions	should
be	single	line	functions	and	can	be	recursive.	Many	of	the	previous	functions	support	this
when	the	ternary	operator	is	used	to	handle	the	recursion	base	case.	See	the	advance
algorithm	in	this	chapter	for	an	example.	An	array	sequence	could	be	used	with	that
algorithm	since	its	iterators	can	be	returned	with	constexpr	begin/end	function.	The
following	sum	function	is	executed	at	compile	time,	thus	resulting	in	only	the	printing
with	cout	at	runtime.

	

main.cpp	(C++11	and	C++14)

#include	<iostream>

#include	<array>

	

template<typename	T>

constexpr	int	sum(T	b,	T	e)

{

		return	(b==e)	?	0	:	*b	+	sum(std::next(b),e);

}

	

int	main()

{

		std::array<int,3>	a	=	{	1,2,3	};

		std::cout	<<	sum(a.begin(),a.end())	<<	std::endl;

		return	0;

}

	

	

C++14	allows	constexpr	functions	with	conditionals	and	loops,	and	it	supports	all	of	the
previous	algorithms.	None	of	the	previous	algorithms	were	defined	as	constexpr	for
simplicity.	The	following	sum	function	with	a	for	loop	is	executed	at	compile	time.

	



main.cpp	(C++14	only)

#include	<iostream>

#include	<array>

	

template<typename	T>

constexpr	int	sum(T	b,	T	e)

{

		int	result	=	0;

		for(;b!=e;++b)

		{

result	+=	*b;

		}

		return	result;

}

	

int	main()

{

		std::array<int,3>	a	=	{	1,2,3	};

		std::cout	<<	sum(a.begin(),a.end())	<<	std::endl;

		return	0;

}

	

	



Lambdas
	

C++11	introduced	lambda	functions,	or	lambdas,	as	a	language	construct	which	supports
defining	a	function	where	the	function	is	used.	The	function	is	unnamed	where	defined
and	referred	to	as	an	anonymous	function.	However,	a	lambda	can	be	assigned	to	a	named
variable	for	convenience.	A	variable	that	holds	a	lambda	must	be	declared	with	the	type
“auto”	or	a	lambda	can	be	assigned	to	a	STL	function	object,	std::function.	Lambdas	that
are	passed	to	a	function	as	a	function	object,	must	use	template	arguments	for	the	compiler
to	deduce	the	type	of	the	lambda	function.

	

The	typical	lambda	consists	of	the	capture	clause,	[],	parameter	list,	(),	return	type,	->	T,
and	lambda	function	body,	{}.	These	are	all	typical	of	a	regular	function	with	the	new,
arrow	notation	for	the	return	type,	->,	and	the	added	capture	clause	to	describe	how
variables	are	captured	for	use	in	the	lambda	body.	The	following	example	rounding
lambda,	rounds	a	floating	point	number	to	the	nearest	integer:

	

lambda

[](float	x)	->	int

{

					return	int(x+0.5f)

}

	

	

The	following	code	uses	the	functor	to	transform	a	vector	of	floating	point	values	to
integer	values.	The	return	type	is	not	necessary	in	this	case	and	left	undefined.

	

main.cpp

int	main(void)

{

		std::vector<float>	v

=	{	0,1.1f,2.2f,3.3f,4.4f,5.5f,6.6f	};



		std::vector<int>	y(v.size());

		func_wrapper<int(int)>	fib;

		std::transform(

std::begin(v),

std::end(v),

std::begin(y),

[](float	x)

{

return	int(x+0.5f);

});

	

		for(int	i=0;	i<y.size();	++i)

std::cout	<<	y[i]	<<	std::endl;

		return	0;

}

	

	



Recursive	Lambda
	

Recursive	functions	often	represent	a	succinct	and	efficient	implementation	for	many
algorithms.	Therefore,	a	recursive	lambda	is	an	interesting	twist	on	lambdas.	The	lambda
must	first	be	declared	with	a	name	so	that	the	name	is	referenced	recursively	in	itself.	The
following	code	shows	a	Fibonacci	function,	fib,	that	is	declared	and	recursively	calls	itself
in	the	lambda	passed	to	the	transform	algorithm.

	

main.cpp

int	main(void)

{

		std::vector<int>	v	=	{	0,1,2,3,4,5	};

		std::vector<int>	y(v.size());

		func_wrapper<int(int)>	fib;

		std::transform(

std::begin(v),

std::end(v),

std::begin(y),

fib	=	[fib](int	n)

{

return	(n	<=	2)?	1	:	fib(n-1)	+	fib(n-2);

});

	

		for(int	i=0;	i<y.size();	++i)

std::cout	<<	y[i]	<<	std::endl;

		return	0;

}

	

	

The	recursive	calls	to	fib	are	accomplished	with	the	following	func_wrapper	that
maintains	a	shared	pointer	to	the	function	object.

	



recursive::lambda

template	<class	T>
class	func_wrapper

{

		std::shared_ptr<std::function<T>>	func;

		func_wrapper	*captured;

	

public:

	

		func_wrapper()

	:	captured(nullptr)
		{}

	

		func_wrapper(const	func_wrapper	&)	=	default;

		func_wrapper(func_wrapper	&&)	=	default;

	

		//	non-const	copy-ctor

		func_wrapper(func_wrapper	&	f)

	:	func(f.func),

	captured(nullptr)
		{

	f.captured	=	this;
		}

	

		template	<class	U>

		const	func_wrapper	&	operator	=	(U&&	closure)

		{

	func	=	std::make_shared<std::function<T>>();

	if	(captured)

	captured->func	=	func;
	

	(*func)	=	std::forward<U>(closure);

	return	*this;
		}

	

		template	<class...	Args>

		auto	operator	()	(Args&&...	args)	const

	->	decltype((*func)(std::forward<Args>(args)…))
		{

	return	(*func)(std::forward<Args>(args)…);
		}

};

	

	



Memoization
	

A	pure	function	(without	side	effects)	always	returns	the	same	result	when	called	with	the
same	arguments.	Storing	the	result	of	the	first	call	to	a	function	for	later	retrieval,	results
in	the	ability	to	get	the	cached	value	with	the	same	set	of	arguments	passed	in	previously.
For	functions	that	take	a	long	time	to	run,	this	caching	and	retrieval	can	result	in	a	run-
time	savings.	This	technique	in	functional	programming	is	called	memoization.	A	generic
memoizer	that	stores	and	retrieves	the	arguments	and	result	from	a	function	object	is
implementable	with	a	hash_map.	The	following	implementation	uses	the	hash	function
found	in	the	Appendix	to	store	a	function	objects	arguments	and	results	the	first	time	a	set
of	arguments	are	used.	After	that	it	will	find	the	result	generated	from	these	arguments	in
the	hash	map	named	cache.	This	cache	is	set	to	be	mutable	for	using	the	function	where	it
expects	the	function	to	be	const.

	

memoizer.hpp

template<class	Sig,	class	F,

template<class…>	class	Hash=std::hash>

struct	memoizer;

	

template<class	R,	class…Args,

class	F,	template<class…>	class	Hash>

struct	memoizer<R(Args…),	F,	Hash>	{

		using	base_type	=	F;

private:

		F	base;

		mutable	std::unordered_map<

std::tuple<std::decay_t<Args>…>,

R,

Hash<std::tuple<std::decay_t<Args>…>>>	cache;

	

public:

	

		template<class…	Ts>



		R	operator()(Ts&&…	ts)	const

		{

auto	args	=	std::make_tuple(ts…);

auto	it	=	cache.find(	args	);

				if	(it	!=	cache.end())

return	it->second;

	

auto&&	retval	=	base(std::forward<Ts>(ts)…);

	

cache.emplace(	std::move(args),	retval	);

	

return	decltype(retval)(retval);

		}

		template<class…	Ts>

		R	operator()(Ts&&…	ts)

		{

auto	args	=	std::tie(ts…);

auto	it	=	cache.find(	args	);

if	(it	!=	cache.end())

return	it->second;

	

auto&&	retval	=	base(std::forward<Ts>(ts)…);

	

cache.emplace(	std::move(args),	retval	);

	

return	decltype(retval)(retval);

		}

	

		memoizer(memoizer	const&)=default;

		memoizer(memoizer&&)=default;

		memoizer&	operator=(memoizer	const&)=default;

		memoizer&	operator=(memoizer&&)=default;

		memoizer()	=	delete;



		template<typename	L>

		memoizer(	wrap,	L&&	f	):

base(	std::forward<L>(f)	)

		{}

};

	

template<class	Sig,	class	F>

memoizer<Sig,	std::decay_t<F>>	memoize(	F&&	f	)

{	return	{wrap{},	std::forward<F>(f)};	}

	

	

The	following	main	function	shows	how	to	use	the	memoizer	with	a	function	object
(sqrt_double_num).

main.cpp

class	sqrt_double_num

{

public:

		double	operator()(double	x)	const

		{

//	Long	calculation

for(int	i=0;i<100000000;++i)

x	=	sqrt(x*x);

return	x;

		}

};

	

int	main()

{

		const	auto	f

=	memoize<

double(double)>(sqrt_double_num());

		std::cout	<<	f(2.)	<<	std::endl;

		std::cout	<<	f(2.)	<<	std::endl;



		return	0;

}

	

	

The	memoize	function	creates	the	memoizer	object	with	the	sqrt_double_num	function	object.
This	function	caches	the	result	from	the	first	call	to	“f”,	and	the	second	call	looks	up	the
result	in	the	cache.	The	memoizer	does	not	support	recursion,	but	a	small	change	to	the
memoizer	and	the	function	object	will	fix	that.

	

recursive	memoizer

Change

auto&&	retval	=	base(std::forward<Ts>(ts)…);

To

auto&&	retval	=	base(*this,std::forward<Ts>(ts)…);

	

Passing	the	memoizer	to	the	function	object	allows	the	function	object	to	make	the
recursive	call	to	the	memoizer.	The	signature	of	the	parens	operator	requires	adding	the
memoizer	object	as	the	first	argument	to	the	function	object.	The	memoizer	is	called	to
retrieve	the	result	of	a	call	to	the	function	object	with	a	different	argument	as	follows.

	

main.cpp

class	factorial

{

public:

		double	operator()(

const	memoizer<double(double),factorial>&	m,

double	x)	const

		{

//	Long	calculation

if(x==1)	return	1;

return	x*m(x-1);

		}



};

	

int	main()

{

		const	auto	f

=	memoize<

double(double)>(factorial());

		std::cout	<<	f(10.)	<<	std::endl;

		std::cout	<<	f(10.)	<<	std::endl;

		return	0;

}

	

	

	

	



Lazy	Evaluation
	

The	typical	evaluation	mode	of	C++	is	eager	evaluation,	such	that	a	function	that	is	passed
arguments	evaluates	the	function	immediately.	The	following	example	evaluates	the
summation	of	both	the	even	and	odd	vectors	when	the	“eager”	function	is	called.

	

main.cpp

#include	<iostream>

#include	<numeric>

#include	<vector>

	

enum	numbers	{	EVEN,	ODD	};

	

template<typename	T>

int	eager(numbers	n,	T	even,	T	odd)

{

		if(n	==	EVEN)	return	even;

		return	odd;

}

	

int	add(const	std::vector<int>&	v)

{

		return	std::accumulate(v.begin(),v.end(),0);

}

	

int	main()

{

		std::vector<int>	even	=	{	0,2,4,6,8	};

		std::vector<int>	odd	=	{	1,3,5,7,9	};

		numbers	n	=	EVEN;

		std::cout	<<	eager(n,add(even),add(odd));



		return	0;

}

	

	

While	the	result	of	only	the	even	summation	is	used,	the	compiler	will	generate	code	that
also	computes	the	summation	of	the	odd	numbers.

	

Alternatively,	C++11	includes	the	async	function	that	is	passed	a	function	and	arguments
to	pass	to	the	function,	but	instead	of	immediately	evaluating	the	function	it	supports
delaying	evaluation	until	the	result	value	is	accessed.	The	async	function	returns	a	future
from	which	the	result	value	is	accessed.	The	function	is	run	in	the	current	thread	of	the
code	accessing	the	variable.

	

main.cpp

#include	<future>

#include	<iostream>

#include	<numeric>

#include	<vector>

	

enum	numbers	{	EVEN,	ODD	};

	

template<typename	T>

int	lazy(numbers	n,	T	even,	T	odd)

{

		if(n	==	EVEN)	return	even.get();

		return	odd.get();

}

	

int	add(const	std::vector<int>&	v)

{

		return	std::accumulate(v.begin(),v.end(),0);

}

	



int	main()

{

		std::vector<int>	even	=	{	0,2,4,6,8	};

		std::vector<int>	odd	=	{	1,3,5,7,9	};

		numbers	n	=	EVEN;

		std::cout	<<

lazy(EVEN,

std::async(std::launch::deferred,add,even),

std::async(std::launch::deferred,add,odd));

		return	0;

}

	

	

	

The	result	of	evaluating	the	function	passed	to	async,	is	accessed	from	the	future	with	the
“get”	function	call	in	the	“lazy”	function.

	

When	the	value	of	a	future	is	accessed	a	second	or	more	time,	the	value	is	not	recalculated
and	returned	using	memoization.	Memoization	was	discussed	in	the	previous	chapter.

	

The	previous	example	does	not	use	memorization	and	could	be	achieved	with	a	standard
function	object	as	shown	in	the	following	example.	The	object	is	constructed	with	the
function’s	argument,	and	the	function	is	evaluated	when	the	parentheses	operator	is	called.

	

main.cpp

#include	<future>

#include	<iostream>

#include	<numeric>

#include	<vector>

	

enum	numbers	{	EVEN,	ODD	};

	



template<typename	T,typename	U>

int	lazy(numbers	n,	T	even,	U	odd)

{

		if(n	==	EVEN)	return	even();

		return	odd();

}

	

class	functor

{

public:

		functor(const	std::vector<int>&	v)	:	v_(v)	{}

	

		int	operator()()	const

		{

return	std::accumulate(v_.begin(),v_.end(),0);

		}

private:

		const	std::vector<int>&	v_;

};

	

int	add(const	std::vector<int>&	v)

{

		return	std::accumulate(v.begin(),v.end(),0);

}

	

int	main()

{

		std::vector<int>	even	=	{	0,2,4,6,8	};

		std::vector<int>	odd	=	{	1,3,5,7,9	};

		auto	even_future

=	std::async(std::launch::deferred,add,even);

		auto	odd_future

=	std::async(std::launch::deferred,add,odd);



		numbers	n	=	EVEN;

		std::cout

<<	lazy(n,functor(even),functor(odd))

<<	std::endl;

		std::cout	<<

lazy(n,

[&](){	return	even_future.get();	},

			[&](){	return	odd_future.get();	})

<<	std::endl;

}

	

	

The	lazy	function	calls	the	parentheses	operator	of	the	functor	to	access	the	value	when	it’s
needed.	Writing	a	functor	like	this	requires	a	lot	of	boiler-plate	code,	and	this	function	is
also	called	similarly	on	the	following	line	with	a	future	from	the	async	function	by
wrapping	the	get	function	with	a	lambda.

	



Templates
	

While	many	of	the	features	C++	inherited	from	C,	such	as	const,	functions,	recursion,	etc.
are	typical	of	functional	and	imperative	programming,	C++’s	template	system	has	long
been	acknowledged	as	purely	functional.	It	is	a	functional	language	in	it’s	own	right	that	is
Turing	complete.	Templates	generally	calculate	through	C++’s	type	system,	but	also	can
calculate	with	non-types,	such	as	int	or	enums.	Programming	using	C++	templates	has
spawned	the	field	of	“Template	Metaprogramming”	that	consists	of	compile-time
calculations.	Many	C++	compilers	include	partial	evaluation	to	optimize	a	program	at
compile	time	by	evaluating	operations,	however,	there	is	no	guarantee	that	these
optimizations	will	be	done.	Template	Metaprogramming	operations	must	be	performed
due	to	the	C++	standard	requiring	that	template	arguments	and	types	must	be	fully
specified	at	compile	time.

	

main.cpp

#include	<iostream>

	

template<int	n>

struct	factorial

{

		enum	{	result	=	n	*	factorial<n-1>::result	};

};

	

template<>

struct	factorial<0>

{

		enum	{	result	=	1	};

};

	

int	main()

{

		std::cout	<<	“factorial<10>::result	=	”	<<	factorial<10>::result	<<	std::endl;

		return	0;



}

	

	

A	template	struct	acts	as	a	function	with	the	template	arguments	as	inputs,	the	enum
variable	as	the	output,	and	the	calculation	as	the	right-hand	side	of	the	enum	initialization.
The	calculation	in	the	factorial	struct	is	recursive	and	terminates	at	zero	using	a	template
specialization.

	

A	template	function	can	also	use	conditional	statements	and	have	multiple	results	as
shown	in	the	following	example	comparing	two	integers	with	the	ternary	operator.

	

main.cpp

#include	<iostream>

	

template<int	A,	int	B>

struct	compare

{

		enum	{	min	=	A	<	B	?	A	:	B	};

		enum	{	max	=	A	>	B	?	A	:	B	};

};

	

int	main()

{

		std::cout	<<	“compare<1,100>::min	=	“

<<	compare<1,100>::min	<<	std::endl;

		std::cout	<<	“compare<1,100>::max	=	“

	<<	compare<1,100>::max	<<	std::endl;

		return	0;

}

	

	

C++11	has	expanded	compile-time	calculation	using	the	constexpr	keyword	that	includes



floating-point	variables,	such	as	the	following:

	

main.cpp

#include	<iostream>

	

int	main()

{

		constexpr	double	A	=	3.14159;

		constexpr	double	B	=	100.0;

		constexpr	double	max	=	A	>	B	?	A	:	B;

		constexpr	double	min	=	A	<	B	?	A	:	B;

	

		std::cout	<<	“max(A,B)	=	”	<<	max	<<	std::endl;

		std::cout	<<	“min(A,B)	=	”	<<	min	<<	std::endl;

		return	0;

}

	

	

A	constexpr	calculation	must	have	all	input	variables	also	be	constexpr.	It	would	seem	that
an	input	variable	to	a	constexpr	could	be	just	const,	but	I	found	that	the	clang	compiler
wouldn’t	accept	that.	Function	can	also	be	declared	as	constexpr	for	compile-time
calculation	as	follows:

	

main.cpp

#include	<iostream>

	

constexpr	double	min(double	A,	double	B)

{

		return	A	<	B	?	A	:	B;

}

	



constexpr	double	max(double	A,	double	B)

{

		return	A	>	B	?	A	:	B;

}

	

int	main()

{

		constexpr	double	A	=	3.14159;

		constexpr	double	B	=	100;

	

		std::cout	<<	“A	>	B	=	”	<<	max(A,B)	<<	std::endl;

		std::cout	<<	“A	<	B	=	”	<<	min(A,B)	<<	std::endl;

		return	0;

}

	

	

Common	functional	data	structures,	such	as	lists,	can	also	be	manipulated	using	template
metaprogramming.	A	list	uses	a	nil	termination	node	and	element	nodes	that	hold	a	value
and	a	link	to	the	next	node.	These	are	implemented	with	a	simple	nil	struct	and	an	element
node	with	two	template	arguments.	The	template	arguments	represent	the	element	value
(head)	and	the	link	(tail).	A	struct/class	does	not	expose	its	template	arguments	outside	of
its	scope,	so	an	enum	exposes	the	value	and	the	typedef	exposes	the	tail.

	

main.cpp

#include	<iostream>

	

struct	nil	{};

	

template<int	head_,	typename	tail_>

struct	node

{

		enum	{	head	=	head_	};

		typedef	tail_	tail;



};

	

int	main()

{

		typedef	node<3,	node<2,	node<1,	node<0,	nil>>>>	list;

		return	0;

}

	

	

The	template-based	list	is	captured	in	the	type	definition	of	list	without	an	instance	being
instantiated.	The	“at”	algorithm,	shown	below,	extracts	the	values	of	the	list	using	a
recursive	call	to	itself	and	a	partial	template	specialization	for	the	tail	call.	(The	nil	and
node	structs	were	put	in	“list.h”.)

	

at.cpp

#include	<iostream>

#include	“list.h”

	

template<typename	T,int	N>

struct	at

{

		enum	{	value	=	at<typename	T::tail,N-1>::value	};

};

	

template<typename	T>

struct	at<T,0>

{

		enum	{	value	=	T::head	};

};

	

int	main()

{



		typedef	node<3,	node<2,	node<1,	node<0,	nil>>>>	list;

	

		std::cout	<<	at<list,0>::value	<<	std::endl;

		std::cout	<<	at<list,1>::value	<<	std::endl;

		std::cout	<<	at<list,2>::value	<<	std::endl;

		std::cout	<<	at<list,3>::value	<<	std::endl;

		return	0;

}

	

	

The	result	of	the	“at”	algorithm	is	captured	in	the	“value”	enum,	which	also	exposes	it
outside	of	the	“at”	struct,	similar	to	the	“head”	enum	of	the	list	node.	A	similar	algorithm
that	results	in	the	size	of	the	list	is	shown	below.

	

size.cpp

#include	<iostream>

#include	“list.h”

	

template<typename	T>

struct	size

{

		enum	{	value	=	1	+	size<typename	T::tail>::value	};

};

	

template<>

struct	size<nil>

{

		enum	{	value	=	0	};

};

	

int	main()

{



		typedef	node<3,	node<2,	node<1,	node<0,	nil>>>>	list;

	

		std::cout	<<	size<list>::value	<<	std::endl;

		return	0;

}

	

	

Typical	functions	like	“if”	are	easily	implementable	as	metaprogramming	functions.

	

if.cpp

#include	<iostream>

	

template<bool	X,	typename	T,	typename	F>

struct	IF

{};

	

template<typename	T,	typename	F>

struct	IF<true,T,F>

{

		typedef	T	type;

};

	

template<typename	T,	typename	F>

struct	IF<false,T,F>

{

		typedef	F	type;

};

	

int	main()

{

		typename	IF<true,int,float>::type	vi	=	1.1f;



		typename	IF<false,int,float>::type	vf	=	1.1f;

	

		std::cout	<<	vi	<<	std::endl;

		std::cout	<<	vf	<<	std::endl;

		return	0;

}

	

	

Creating	template	data	structures	and	algorithms	is	important	to	understand	how	template
metaprogramming	works,	however,	it’s	smarter	to	not	reinvent	the	wheel.	Two	very
powerful,	template	metaprogramming	libraries,	Boost	MPL	[2]	and	Boost	Fusion	[3]
already	include	many,	useful	data	structures,	algorithms,	and	functions.

	



Boost	MPL
	

The	Boost	Metaprogramming	Library	(MPL)	is	a	thorough,	template	metaprogramming
library	for	performing	compile-time	type	manipulation,	including	data	structures
(compile-time	vector,	list,	set,	map),	iterators,	views,	metafunctions,	algorithms,	and	traits.
This	library	implemented	most	of	the	standard	C++	abstractions	in	compile-time	versions.
It	also	supports	lazy	evaluation	of	metafunctions	such	that	functions	can	be	formed	which
would	result	in	uncompilable	types,	but	they	will	not	result	in	compile	errors	if	they	are
not	evaluated.	The	Boost	MPL	documentation	is	available	online,	and	a	book	by	the
authors,	“C++	Template	Metaprogramming”	[4]	includes	an	excellent	explanation	and
many	examples.

	

The	following	code	shows	a	bit	of	what	is	possible	with	Boost	MPL.	A	collection	of	types
are	transformed	to	the	commensurate	pointer	types	for	each	element	using	the	add_pointer
metafunction.	The	last	line,	BOOST_MPL_ASSERT,	is	a	compile	time	check	that	the
transform	yields	the	same	types	as	in	vec_ptr.	The	“type”	in	the	transform	algorithm	yields
the	result	of	the	add_pointer	metafunction.	The	metafunction	uses	the	underscore
placeholder	“_”	to	represent	that	the	metafunction	is	applied	to	the	element	it	is	passed.

	

main.cpp

#include	<boost/mpl/vector.hpp>

#include	<boost/mpl/transform.hpp>

#include	<boost/mpl/equal.hpp>

#include	<string>

	

int	main()

{

		typedef	boost::mpl::vector<int,	float,	std::string	>	vec;

		typedef	boost::mpl::vector<int*,float*,std::string*>	vec_ptr;

		typedef	boost::mpl::_	_;

	

		typedef	std::add_pointer<_>	fx;

	

		typedef	boost::mpl::transform<vec,fx>::type	result;



	

		BOOST_MPL_ASSERT((	boost::mpl::equal<result,vec_ptr>	));

}

	

	

This	barely	scratches	the	surface	of	what	is	possible	with	Boost	MPL.

	



Boost	Fusion
	

Boost	Fusion	expands	on	the	MPL	by	straddling	the	compile-time	and	run-time	divide
with	data	structures	and	algorithms	that	manipulate	compile-time	structure	with	run-time
values.	A	typical	example	is	a	fixed	size	array	or	tuple,	but	Boost	Fusion	expands	on	these
with	lists,	maps,	sets,	MPL	structures,	and	more.	The	library	also	includes	iterators,	views,
and	algorithms,	and	it’s	extensible	to	support	custom	data	structures.

	

Tuples	are	a	convenient	way	to	process	a	set	of	variables	in	a	consistent	way.	The
following	code	prints	the	elements	of	a	tuple	of	different	types,	regardless	of	whether	they
type	is	an	integral,	floating-point,	or	string	type.	The	fusion,	for_each	algorithm	applies
the	print	metafunction	to	each	element	of	the	tuple.

	

main.cpp

#include	<boost/fusion/tuple.hpp>

#include	<boost/fusion/algorithm.hpp>

#include	<iostream>

#include	<string>

	

struct	print

{

		template	<typename	T>

		void	operator()(const	T	&t)	const

		{

std::cout	<<	t	<<	std::endl;

		}

};

	

int	main()

{

		typedef	boost::fusion::tuple<int,float,std::string>	tuple_type;

		tuple_type	t(2,	3.3,	“Chris”);

		boost::fusion::for_each(t,print());



}

	

	

	



Persistent	Data
	

With	most	computers	including	multiple	cores	the	fastest	way	to	speed	up	a	program	is	to
use	threading.	Persistent	data	structures	that	don’t	change	their	values	are	automatically
thread-safe,	while,	most,	common	(non-persistent)	C++	data	structures	suffer	from	the
need	to	use	mutexes	to	carefully	manage	adding,	updating,	and	removing	values.	The
following	singly-linked	list	creates	a	new	list	when	items	are	added	to	the	list,	while
reusing	the	items	at	the	tail	of	the	list.	[5]

	

main.cpp

#include	<cassert>

#include	<functional>

#include	<iostream>

#include	<initializer_list>

	

template<class	T>

class	List

{

		struct	Item

		{

Item(T	v,	std::shared_ptr<const	Item>	const	&	tail)

:	_val(v),	_next(tail)	{}

T	_val;

std::shared_ptr<const	Item>	_next;

		};

		friend	Item;

		explicit	List	(std::shared_ptr<const	Item>	const	&	items)	:
_head(items)	{}

public:

		//	Empty	list



		List()	:	_head()	{}

		//	Cons

		List(T	v,	List	tail)

:	_head(std::make_shared<Item>(v,	tail._head))	{}

		//	From	initializer	list

		List(std::initializer_list<T>	init)	:	_head()

		{

for	(auto	it	=	std::rbegin(init);

it	!=	std::rend(init);

++it)

{

_head	=	std::make_shared(*it,	_head);

}

		}

	

		bool	isEmpty()	const	{	return	!_head;	}

		T	front()	const

		{

assert(!isEmpty());

return	_head->_val;

		}

		List	popped_front()	const

		{

assert(!isEmpty());

return	List(_head->_next);

		}

		//	Additional	utilities

		List	pushed_front(T	v)	const

		{



return	List(v,	*this);

		}

		List	insertedAt(int	i,	T	v)	const

		{

if	(i	==	0)

return	pushed_front(v);

else	{

assert(!isEmpty());

return

List(front(),

popped_front().insertedAt(i	-	1,	v));

}

		}

private:

		//	Encode	a	Maybe	value	(nullptr	is	empty	list)

		std::shared_ptr<const	Item>	_head;

};

	

	

	



List	Functions
	

The	first	function	recursively	generates	a	List	from	a	pair	of	iterators,	and	works	well	for
processing	the	data	in	a	standard	container.

	

fromIterator.hpp

template<class	Beg,	class	End>

auto

fromIterator(Beg	it,	End	end)

		->	List<typename	Beg::value_type>

{

		typedef	typename	Beg::value_type	T;

		if	(it	==	end)	return	List<T>();

		return	List<T>(*it,	fromIt(std::next(it),	end));

}

	

	

This	typical	list	data	structure	of	languages	like	LISP	can	be	processed	by	many	canonical
LISP	functions.	Anyone	who	has	studied	LISP	will	recognize	these	functions.	The	concat
function	concatenates	two	lists	as	follows:

	

concat.hpp

template<class	T>

List<T>

concat(List<T>	a,	List<T>	b)

{

		if	(a.isEmpty())	return	b;

		return	List<T>(a.front(),	concat(a.popped_front(),	b));



}

	

	

	

The	following	functional,	list	functions	are	useful	for	processing	the	elements	of	a	list.
fmap	returns	a	list	with	the	elements	of	applying	the	input	function	to	each	element	of	a
list.	fmap	applies	f	to	the	first	element	and	recursively	calls	the	tail	with	fmap.

	

fmap.hpp

template<class	U,	class	T,	class	F>

List<U>

fmap(F	f,	List<T>	lst)

{

		if	(lst.isEmpty())	return	List<U>();

		else

return	List<U>(f(lst.front()),

						fmap<U>(f,	lst.popped_front()));

}

	

	

The	following,	filter	function	applies	a	functor	to	each	element	of	a	list	and	returns	a	list
with	the	elements	where	the	functor	returns	true.

	

filter.hpp

template<class	T,	class	P>

List<T>

filter(P	p,	List<T>	lst)

{

		if	(lst.isEmpty())	return	List<T>();



		if	(p(lst.front()))

return	List<T>(

lst.front(),

filter(p,	lst.popped_front()));

		else

return	filter(p,	lst.popped_front());

}

	

	

The	STL	function	accumulate	is	a	functional	“fold”	operation	that	accumulates	the	values
in	a	list.	In	functional	programming	there	is	a	“right”	and	“left”	fold	dependent	upon
which	direction	the	items	accumulate	from.

	

foldr.hpp

template<class	T,	class	U,	class	F>

U

foldr(F	f,	U	acc,	List<T>	lst)

{

		if	(lst.isEmpty())	return	acc;

		else

return	f(lst.front(),

foldr(f,	acc,	lst.popped_front()));

}

	

	

A	commutative	functor	would	return	the	same	result	for	the	previous	“right”	(foldr)	fold	or
the	following	“left”	(foldl)	fold.

	

foldl.hpp



template<class	T,	class	U,	class	F>

U

foldl(F	f,	U	acc,	List<T>	lst)

{

		if	(lst.isEmpty())	return	acc;

		else

return	foldl(f,

f(acc,lst.front()),

lst.popped_front());

}

	

	

The	following	forEach	function	applies	a	functor	to	each	element	of	a	List.

	

forEach.hpp

template<class	T,	class	F>

void	forEach(List<T>	lst,	F	f)

{

		if	(!lst.isEmpty())	{

f(lst.front());

forEach(lst.popped_front(),	f);

		}

}

	

Finally	for	debugging	the	following	print	function,	which	uses	the	forEach	function,	will
print	the	elements	of	a	List.

	

print.hpp



template<class	T>

void

print(List<T>	lst)

{

		forEach(lst,	[](const	T&	v)

		{

std::cout	<<	“(”	<<	v	<<	“)	“;

		});

		std::cout	<<	std::endl;

}

	

	

This	list	data	structure	suffers	from	poor	data	locality	due	to	all	of	the	elements	being	held
by	a	shared	pointer.	Adding	elements	to	a	list	is	quick,	but	data	accesses	would	suffer	from
poor	cache	performance.	A	persistent	vector	that	creates	a	new	vector	with	each	change
operation	has	good	access,	cache	performance,	but	requires	at	least	one	large	data	copy
with	each	change.

	



Persistent	Vector
	

While	a	linked	list	data	structure	is	optimal	for	adding	items	to	a	persistent	data	structure,
it	offers	poor	performance	for	sequential	access.	A	vector	excels	in	that	case	due	to	data
elements	in	contiguous	memory	arrays	that	the	CPU	will	cache	for	optimal	performance.
A	vector	is	even	more	efficient	for	random	access	versus	a	linked	list	since	the	element
offset	from	the	array	beginning	is	easily	computed	compared	to	traversing	a	list	to	find	a
particular	element.	A	vector	has	O(1)	complexity	for	random	access	versus	O(n)	for	a
linked	list.

	

A	persistent	vector	does	not	allow	setting	elements	or	appending	elements	without
copying	the	data	to	create	a	new	vector.	The	following	vector	implementation	is	stripped
down	to	constructors,	a	getter,	a	setter,	push_back,	size,	and	begin/end	iterators.	This
covers	the	most	common	functions	of	the	STL	vector	and	implements	them	such	that	they
only	work	on	a	const	vector.

	

vector.hpp

#include	<vector>

	

template<typename	T>

class	vector

{

public:

		typedef

typename	std::vector<T>::const_iterator

const_iterator;

	

		vector()	:	v_()	{}

	

		vector(std::size_t	s,T	init)

		:	v_(s,init)

		{}

	

		vector(const	vector<T>&	v)



:	v_(v.v_)

		{}

	

		vector(vector<T>&&	other)

:	v_(std::move(other.v_))

		{}

	

		std::size_t	size()	const	{	return	v_.size();	}

	

		vector<T>	set(std::size_t	i,	const	T&	t)	const

		{

vector<T>	result(*this);

result.v_[i]	=	t;

return	result;

		}

	

		T	operator[](std::size_t	i)	const

		{

return	v_[i];

		}

	

		vector<T>	push_back(const	T&	x)	const

		{

vector<T>	result(*this);

result.v_.push_back(x);

return	result;

		}

	

		const_iterator	begin()	const	{	return	v_.begin();	}

		const_iterator	end()	const	{	return	v_.end();	}

private:

		std::vector<T>	v_;

};



	

	

The	operator=	function	is	left	off	since	element	and	vector	assignment	is	one	operation
that	is	forbidden	in	the	form	of	a	typical	STL	vector.	Instead	a	set	function	is	implemented
to	support	setting	a	particular	element.	This	operation	is	expensive	since	it	requires
copying	the	entire	vector	to	set	just	one	element.

	

All	of	the	member	functions	are	declared	const	so	the	persistent	vector	object	needs	to	be
constructed	as	a	const	vector.	This	example	shows	a	vector,	v,	constructed	with	5	elements
initialized	to	zero,	and	a	vector,	v1,	created	from	pushing	a	one	on	the	back	of	v.

	

main.cpp

#include	<iostream>

#include	“vector.hpp”

	

int	main()

{

		const	vector<int>	v(5,0);

		const	auto	v1	=	v.push_back(1);

		for(size_t	i	=	0;	i	<	v1.size();	++i)

std::cout	<<	v1[i]	<<	std::endl;

		return	0;

}

	

	

Since	the	vector	is	persistent,	the	push_back	function	must	copy	the	vector	before	adding
the	additional	element.	The	set	function	assigns	a	new	value	to	an	element	of	the	vector,
and	also	must	copy	the	vector	before	updating	the	particular	element.	This	vector	copy	in
the	push_back	and	set	function	is	expensive,	and	should	be	used	sparingly	to	since	it	is	a
O(n)	operation.	While	this	copy	penalty	may	seem	excessive	it	might	not	be	fatal	for
programs	that	would	only	perform	this	copy	during	program	initialization,	and	therefore	it
would	not	hurt	the	long-term	running	performance.

	



main.cpp

#include	<iostream>

#include	<numeric>

#include	“vector.hpp”

	

int	main()

{

		const	vector<int>	v(5,0);

		const	auto	v2	=	v.set(1,9);

		for(size_t	i	=	0;i	<	v2.size();++i)

std::cout	<<	v2[i]	<<	std::endl;

	

		return	0;

}

	

	

The	const_iterators	returned	from	the	begin	and	end	function	can	be	used	with	standard
STL	algorithms	like	the	accumulate	function.

	

main.cpp

#include	<iostream>

#include	<numeric>

#include	“vector.hpp”

	

int	main()

{

		const	vector<int>	v(5,0);

		const	auto	v1	=	v.set(1,9);

		std::cout

<<	std::accumulate(v1.begin(),v1.end(),0)

<<	std::endl;



	

		return	0;

}

	

	

The	STL	vector	includes	many	more	functions	including	assign,	insert,	erase,	etc.	These
functions	can	be	implemented	for	a	persistent	vector,	and	are	left	as	an	exercise	for	the
reader.

	



More	Persistent	Data	Structures
	

Additional	STL	data	structures,	such	as	map,	unordered_map,	list,	etc.,	could	be
implemented	as	persistent	similarly	to	the	previous	vector	data	structure.	They	would
require	copying	data	when	the	data	structures	are	updated.



Appendix
Tuple	Hash
	

To	store	and	retrieve	values	from	an	unordered	map	with	tuples	for	keys,	the	values	need
to	be	combined	via	hash	function.

	

main.cpp

#include	<tuple>

#include	<functional>

#include	<iostream>

	

size_t	hash_combiner(size_t	left,	size_t	right)	//replaceable

{	return	left^right;}

	

template<int	index,	class…types>

struct	hash_impl	{

size_t

operator()(size_t	a,

const	std::tuple<types…>&	t)	const

{

		typedef	typename	std::tuple_element<

index,	std::tuple<types…>>::type	nexttype;

		hash_impl<index-1,	types…>	next;

		size_t	b	=	std::hash<nexttype>()(std::get<index>(t));

		return	next(hash_combiner(a,	b),	t);

}

};

	

template<class…types>

struct	hash_impl<0,	types…>



{

size_t	operator()(size_t	a,	const	std::tuple<types…>&	t)	const

{

		typedef	typename	std::tuple_element<0,

std::tuple<types…>>::type	nexttype;

		size_t	b	=	std::hash<nexttype>()(std::get<0>(t));

		return	hash_combiner(a,	b);

}

};

	

namespace	std	{

		template<class…types>

		struct	hash<std::tuple<types…>>	{

				size_t	operator()(const	std::tuple<types…>&	t)	const	{

		const	size_t	begin	=

std::tuple_size<std::tuple<types…>>::value-1;

return	hash_impl<begin,	types…>()(1,	t);

}

		};

}
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