
www.allitebooks.com

http:///
http://www.allitebooks.org

Apache MyFaces 1.2
Web Application Development

Building next-generation web applications with
JSF and Facelets

Bart Kummel

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

Apache MyFaces 1.2
Web Application Development

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2010

Production Reference: 1240210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-25-4

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.allitebooks.com

http:///
http://www.allitebooks.org

Credits

Author
Bart Kummel

Reviewers
Cagatay Civici

Hazem Saleh

Matthias Weßendorf

Acquisition Editor
Rashmi Phadnis

Development Editor
Darshana D. Shinde

Technical Editors
Aliasgar Kheriwala

Conrad Sardinha

Copy Editor
Sneha Kulkarni

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Dirk Manuel

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Bart Kummel is an experienced Java EE developer and architect living in
The Netherlands. He studied Electrical Engineering at the Delft University of
Technology and graduated with honor from the Hogeschool van Amsterdam, with
a specialization in Technical Computer Sciences. After his study, he started as a
developer of embedded software for a security systems manufacturer in Amsterdam.
After four years of developing embedded software, Bart switched to enterprise
software and started at Transfer Solutions B.V., based in Leerdam. Transfer Solutions
is a consulting company that specializes in Oracle and Java technology.

As a consultant for Transfer Solutions, Bart gained a lot of experience with Java EE.
For different clients, he has fulilled the roles of developer or architect in small as
well as large projects. In those projects, he has worked with various frameworks and
standards, including Oracle’s Application Development Framework (ADF), Apache
MyFaces, EclipseLink, JavaServer Faces (JSF), Java Persistence API (JPA), and Java
Messaging Service (JMS). Bart also teaches courses in Object Orientation, UML, Java,
Java EE, and ADF, at Transfer Solutions’ education department.

Bart published an article on EclipseLink in the Dutch Java Magazine, and presented
the use of AJAX capabilities in Oracle’s ADF Faces at the ODTUG Kaleidoscope
conference in 2007.

www.allitebooks.com

http:///
http://www.allitebooks.org

Acknowledgement

Writing a book is an awful lot of work. People warned me about that, but I wanted
to try it anyway. And I learned that it also gives a lot of satisfaction. I wouldn’t have
missed the experience! Writing this book wasn’t possible without the help of a lot of
people and I want to thank these people.

First of all, I would like to thank my wife for supporting me while I was writing this
book. It really means a lot to me how she gave me space to work on this project and
helped me relax when I needed to. I would also like to thank my friends and family
for their understanding when I had to cancel a party or leave early. And I would like
to thank my employer, Transfer Solutions, for giving me the opportunity to write
this book partly during work hours.

Of course, I also have a big ’thank you’ for all the Packt Publishing staff that helped
in the process. Special thanks to Joel Goveya, who helped me in keeping an eye on
the schedule. I also want to mention Gerhard Petracek. He not only did the MyFaces
project a big favor by contributing the Extensions Validator project, but he was also
of great help when I wrote the chapter on that new subproject. I also owe lots of
thanks to the many reviewers who helped me in getting the quality of my writings
to a higher level: Cagatay Civici, Anton Gerdessen, Albert Leenders, Kim Mooiweer,
Hazem Saleh, Herman Scheltinga, Reginald Sprinkhuizen, Pieter Stek, Peter
Vermaat, Matthias Weßendorf, and René van Wijk.

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewers

Cagatay Civici is the PMC member of the open source JSF implementation of
Apache MyFaces, and the project leader of the popular PrimeFaces framework.
In addition to being a recognized speaker at international conferences such as
JSFSummit, JSFDays, and local events, he’s an author and technical reviewer of
books regarding web application development with Java and JSF. Cagatay is
currently working as a consultant and instructor in the UK.

Hazem Saleh has ive years of experience in Java EE and open source technologies.
He is committed to Apache MyFaces and is the initiator of many components in the
MyFaces projects, such as Tomahawk CAPTCHA, Commons ExportActionListener,
Media, PasswordStrength, and others. He is the founder of GMaps4JSF (an
integration project that integrates Google Maps with Java ServerFaces), and is the
co-author of The Deinitive Guide to Apache MyFaces and Facelets by Apress. He is
now working for IBM Egypt as a staff software engineer, where he is recognized as a
subject matter expert in Web 2.0 technologies.

I dedicate my review efforts for the prophet Muhammad from whom
I learnt all the good things in my life.

Matthias Weßendorf is a principal software developer at Oracle. He currently
works on server-side-push support for ADF Faces and Trinidad 2.0. Matthias also
contributes to the open source community, mainly to Apache MyFaces and Apache
MyFaces Trinidad. You can follow Matthias on Twitter (@mwessendorf).

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction 9

Introducing Apache MyFaces 9
License, community, and support 10
MyFaces and Sun JSF RI 10

Subprojects of Apache MyFaces 11
Core 11
Tomahawk 12
Sandbox 13
Trinidad 13
Tobago 14
Orchestra 14
Portlet Bridge 14
Extensions Validator 14

Summary 15
Chapter 2: Getting Started 17

Coniguring the development environment 17
Coniguring Eclipse 18

Installing extra plugins 18
Installing the libraries 20
Preparing a new project 21

Coniguring JDeveloper 25
Installing the libraries 25
Preparing a new project 28

Creating a new project using Maven 33
Application server and coniguration iles 34

The web.xml coniguration ile 35
The faces-conig.xml coniguration ile 37
Settings for speciic application servers 40

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[ii]

Settings for MyFaces Core on GlassFish 40
Other application servers 41

Introduction to the example case 41
Summary 42

Chapter 3: Facelets 43
Why Facelets? 43

Content inverweaving 44
Templating 44
Don’t Repeat Yourself (DRY) 45
Expanding the Expression Language 45
Summarizing the beneits of Facelets 45

Setting up a Facelets project 46
Preparing web.xml 46
Preparing faces-conig.xml 47
Creating a test page 47
Debugging easily with Facelets 49

Templating with Facelets 51
Creating a template 51
Using the template 52
Using comments in Facelets page deinitions 55
Are Facelets iles XHTML? 57

Creating and using composition components 58
Creating a tag library 58
Creating the composition component itself 60

Identifying redundancies 60
Creating a skeleton for the composition component 61
Deining the actual composition component 62
Adding validators without violating the DRY principle 63
Putting it all together 64

Using the composition component 66
Using static functions 67
Using inline texts 69
Facelets tags overview 70

<ui:component> tag 70
<ui:composition> tag 71
<ui:debug> tag 71
<ui:decorate> tag 72
<ui:deine> tag 72
<ui:fragment> tag 73
<ui:include> tag 74
<ui:insert> tag 74
<ui:param> tag 74

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[iii]

<ui:remove> tag 75
<ui:repeat> tag 75

Summary 75
Chapter 4: Tomahawk 77

Setting up Tomahawk 78
Downloading Tomahawk 78
Coniguring web.xml 79
Resolving dependencies 80

Using extended versions of standard components 81
Extended components 83

<t:aliasBean> and <t:aliasBeanScope> components 83
<t:buffer> 83
<t:captcha> component 83

Creating basic data tables 86
Setting up a data table 87
Adding columns to the table 88
Using pagination 89
Changing the looks of the data table 91

Styling the data table itself 92
Styling the data scroller 93
Looking at the result 94

Using advanced data table features 94
Sorting 94

Improving the sort arrows 97
Showing details inline 98
Linking to an edit form 100
Grouping rows 103
Newspaper columns 104

Uploading iles 105
Working with dates and calendars 108

Using a pop-up calendar 109
Localizing the pop-up calendar 111

Using an inline calendar 112
Using the calendar in a form 113

Extra validators 115
Validating equality 115
Validating e-mail addresses 115
Validating credit card numbers 116
Validating against a pattern 116

Summary 117

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[iv]

Chapter 5: Trinidad—the Basics 119
Setting up Trinidad 120

Coniguring the web.xml ile 120
Coniguring the faces-conig.xml ile 121
Coniguring the trinidad-conig.xml ile 122
Adapting our template 122

Creating data tables 123
Adding columns 124
Using pagination 126
Displaying inline details 127
Coniguring banding and grid lines 128
Using row selection 129

Creating input and edit forms 132
Exploring the common features of input components 132

Using automatic label rendering 132
Using error message support and the required indicator 133
Using auto submit 133

Creating plain text input ields 134
Using the <tr:inputText> component in a composition component 135

Creating date input ields 136
Converting dates 137
Validating dates 138
Creating the ultimate date input composition component 140

Creating selection lists 141
Adding list contents 142
Optional empty selection for single selection lists 142
Options for all selection components 143
Checkboxes and radio buttons 143
Listboxes 144
Choice list 144
Shuttle 144
Ordering shuttle 145
Creating a universal composition component for selections 146

Creating ields for numerical input 149
Adding conversion to a ield 149
Adding validation to a ield 150
Adding a spin box to an input ield 150

File uploading 151
Meeting the prerequisites 151
Using the ile upload component 152

Creating and using a ile upload composition component 152
Saving the ile in the backing bean 153

Coniguring ile upload limits 155
Setting upload limits in web.xml 156
Setting upload limits in trinidad-conig.xml 156

http:///

Table of Contents

[v]

Using Trinidad’s hierarchical navigation features 158
Coniguring the hierarchy 158
Creating navigation panes 160
Creating breadcrumbs 161
Creating a hierarchical menu 162

Creating layouts for our pages 163
Using a border layout 163

Layout methods 164
Using group layout 165
Using a horizontal layout 166
Creating layouts for input forms 167

Grouping components 167
Label and message 168
Footer facet 168

Creating an accordion 169
Creating a tabbed panel 170
Creating a choice panel 171
Creating a radio panel 172
Displaying boxes 172
Displaying tips 174
Using a header panel 174
Using pop ups 175
Creating button bars 176
Using caption groups 177
Creating bulleted lists 179
Lay out a page by using the panel page component 180
Using the page header panel 182

Summary 183
Chapter 6: Advanced Trinidad 185

Data visualization 185
Creating the data model 186

Understanding the terminology 186
Implementing a minimal data model 186
Calculating the values 188

Initializing the data model 189
Adding a graph to a page 190

Changing data display 191
Changing the looks 191

Chart types 192
Some inal thoughts on data visualization 197

Passing on data with page lows 198
Using AJAX and Partial Page Rendering 202

http:///

Table of Contents

[vi]

Comparing full submit and partial submit 202
Using the autoSubmit and partialTriggers attributes 203
Working with partialTriggers and naming containers 207
Creating a status indicator 209
Using the addPartialTarget() method 209
Dynamically hiding or showing components 211
Polling 212
Exploring the possibilities of PPR 213

Creating dialogs 214
Building a dialog 215

Creating the backing bean for the dialog 216
Using an alternative way of returning values 218

Calling the dialog 218
Receiving the dialog’s output 219
Using inputListOfValues as an easier alternative 220
Using lightweight dialogs 221

Client-side validation and conversion 221
Deining the data structure 222
Creating the converter 224
Enabling client-side capabilities 225

Implementing the client-side code 227
Creating the validator 228

Enabling client-side capabilities 229
Implementing the client-side code 230

Wiring everything together 231
Declaring the converter and validator in
faces-conig.xml 231
Creating custom tags 232
Using the converter and validator in a page 232

Internationalization of messages 233
Changing getClientValidator() 233
Changing the JavaScript constructor 234
Formatting the error message 234

Using Trinidad’s JavaScript API 235
Writing, testing, and debugging JavaScript 235

Writing JavaScript code 235
Debugging 236
Logging 236

Summary 239
Chapter 7: Trinidad Skinning and Tuning 241

Skinning 241
Understanding the terminology 242
Setting up skinning 242

http:///

Table of Contents

[vii]

Letting the user choose the skin 244
Creating a Trinidad skin 246

Skinning components 246
Using component state selectors 247
Using component piece selectors 248
Setting global styles using alias selectors 248
Skinning icons 249
Skinning text 251

Extending skins 253
Tuning Trinidad 253

trinidad-conig.xml ile 254
web.xml ile 254
Accessibility 255

Accessibility mode (T) 255
Accessibility proile (T) 255
Lightweight dialogs (W) 256

Performance 256
Page low scope lifetime (T) 256
Uploaded ile processor (T) 256
State saving (W) 257
Application view caching (W) 258

Debugging 258
Enabling debug output (T) 259
Turning off compression and obfuscation (W) 259
Changing deployed iles (W) 260

Appearance 260
Client validation (T) 260
Output mode (T) 260
Skin family (T) 261

Localization 261
Time zone (T) 261
Two-digit year start (T) 261
Reading direction (T) 261
Number notation (T) 262

Summary 262
Chapter 8: Integrating with the Backend 263

The Model-View-Controller architecture 263
Setting up the Java EE application structure 264

Creating a skeleton EJB JAR 264
Creating an EAR to wrap them all 265

Preparing a database environment 267
Creating a database 267
Connecting to the database 268
Managing the database 269
Creating a table for employees 271

http:///

Table of Contents

[viii]

Populating the table with data 272
Implementing the Model 272

Creating an entity 272
Creating a service facade 275
Creating named queries 278
Deining persistence units 279
Deining a data source 280

Using the service facade in the View layer 281
Updating the pages 282

Limitations and problems 283
Transactions 283
Validation of data 284

Summary 284
Chapter 9: MyFaces Orchestra 285

Setting up Orchestra 286
Adapting the application structure 286
Downloading the Spring framework 287
Coniguring Spring 288

Letting Spring manage the beans 288
Coniguring the faces-conig.xml ile for Spring 293
Coniguring the web.xml ile for Spring 293
Coniguring Spring and persistence 294
Accessing the services 295

Downloading and installing Orchestra 296
Coniguring Orchestra 297

Using the Orchestra ViewController 299
Using event methods 299

Setting up Orchestra conversations 300
Creating a conversation 301
Extending the conversation 305
Ending the conversation 307

Generating forms with DynaForm 310
Installing DynaForm 310
Using DynaForm 311

Summary 313
Chapter 10: Extensions Validator 315

Setting up ExtVal 316
Basic usage 321
Complementing JPA annotations 322

Using ExtVal annotations for standard JSF validators 322
Deining length validation 323
Deining double range validation 323

http:///

Table of Contents

[ix]

Deining long range validation 323
Deining required ields 323

Using ExtVal’s additional annotations 324
Deining pattern-based validation 324
Using custom validators 325

Reusing validation 326
Applying cross validation 328

Using cross validation for date values 329
Using cross validation based on equality 330
Making a value required conditionally 331

Creating custom error messages 331
Overriding standard JSF error messages 332
Overriding ExtVal default error messages 332

Creating our own validation strategy 334
Implementing a custom validation strategy 335
Coniguring ExtVal to use a custom validation strategy 337

Using alternative coniguration add-ons 338
Testing the custom validation strategy 339
Extending ExtVal in many other ways 340

Extending ExtVal with add-ons 341
Getting add-ons for ExtVal 341
Installing ExtVal add-ons 344

Using Bean Validation 344
Setting up Bean Validation and ExtVal 345
Using Bean Validation annotations 346
Reusing validation 349

Inheriting validation 349
Using recursive validation 350
Composing custom constraints 350

Using payloads to set severity levels 353
Setting up the Continue with warnings add-on 353
Setting the severity level of a constraint 354
Setting the severity level on ExtVal Property Validation constraints 355
Setting the severity level on any constraint 356

Summary 357
Chapter 11: Best Practices 359

Preventing direct access to page deinitions 359
Using container-managed security with JSF 362

Enabling container-managed security 362
Navigating to the login page 364
Creating the login page 364

Alternatives 366
Logout link 366

http:///

Table of Contents

[x]

Component bindings 368
Keeping the state of a component 369
Summary 371

Appendices
http://www.packtpub.com/files/3254-Appendices.pdf

Index 373

The Appnedices are available for free at
.

The Appnedices are available for free at http://www.packtpub.
com/files/3254-Appendices.pdf.

http:///

Preface
Hypes and trends (such as Web 2.0) cause a change in the requirements for user
interfaces every now and then. Although a lot of frameworks are capable of meeting
these changing requirements, they often mean that you, as a developer, need
in-depth knowledge of web standards, such as XHTML and JavaScript. Apache
MyFaces hides all of the details of how the page is rendered at the client, and at the
same time offers a rich set of tools and building blocks. This can save you a lot of
time not only when you’re building a brand-new application, but also when you’re
adapting an existing application to meet new user interface requirements.

This book will teach you everything that you need to know in order to build appealing
web interfaces with Apache MyFaces, and to maintain your code in a pragmatic way.
It describes all of the steps that are involved in building a user interface with Apache
MyFaces. This includes building templates and composition components with Facelets,
and using all sorts of specialized components from the Tomahawk and Trinidad
component sets. Adding validation with MyFaces Extensions Validator as well as
using MyFaces Orchestra to manage transactions in a page low, are also covered.

Unlike comparable books, this book not only introduces Facelets as an alternative
to JSP, but actually uses Facelets in all the examples throughout this book. This
makes the book a valuable resource for Facelets examples. The book also shows how
various components of the MyFaces project can be used together, in order to deliver
the functionality of the new JSF 2.0 standard, in current projects, without the need to
upgrade your project to JSF 2.0.

This book uses a step-by-step approach, and contains a lot of tips based on
experience of the MyFaces libraries in real-world projects. Throughout the book, an
example scenario is used to work towards a fully-functional application by the end
of this book.

This step-by-step guide will help you to build a fully-functional and
powerful application.

http:///

Preface

[2]

What this book covers
Chapter 1, Introduction, introduces the Apache MyFaces project and all of its
subprojects. Forward references to other chapters are given wherever applicable.

Chapter 2, Getting Started, discusses downloading and installing the MyFaces
libraries. The set-up of two speciic IDEs is discussed, as well as the set-up of an
application server for testing. This chapter also covers the use of Maven and the
Maven artifacts that are provided by the MyFaces project.

Chapter 3, Facelets, covers the installation of Facelets into our project. It discusses
the beneits of Facelets over JavaServer Pages as a view technology for JavaServer
Faces. This chapter also introduces the most important features of Facelets. By the
end of the chapter, we have created a layout template that we can use throughout
the book, when developing our application. We will also have learned the basic
Facelets techniques that we will use in all examples throughout the book.

Chapter 4, Tomahawk, looks at the Tomahawk component set that is a part of
MyFaces. Some of the most important components from the set are covered, and
we will learn how we can use these in an optimal way, in combination with Facelets.
This chapter gives us enough information to build fully-functional JSF pages by
using Tomahawk components.

Chapter 5, Trinidad—the Basics, is the irst of three chapters covering MyFaces
Trinidad. This chapter introduces a lot of Trinidad components, including the
data input and output components. Special attention is given to the many layout
components that are available in the Trinidad library. As with Tomahawk, we will
see how we can get the most out of the combination of Trinidad and Facelets.

Chapter 6, Advanced Trinidad, introduces some more advanced features of the
Trinidad library. This includes the charting component that can be used to easily
create nice looking charts. Also, Trinidad’s page low scope feature, which enables us
to create page lows more easily, is introduced. This chapter also discusses the AJAX
or Partial Page Rendering capabilities of Trinidad, including client-side validation
and conversion. The Trinidad dialog framework is also covered.

Chapter 7, Trinidad Skinning and Tuning, is an introduction to the advanced skinning
framework that is a part of Trinidad. This chapter also discusses the most important
tuning parameters of Trinidad.

http:///

Preface

[3]

Chapter 8, Integrating with the Backend, discusses how we can integrate the frontend
that we created with some backend system, in a standard way. This chapter gives
us some basic knowledge about the Model-View-Controller architecture, and about
important standards such as Enterprise Java Beans (EJB) and the Java Persistence API
(JPA). We will use the knowledge and examples from this chapter as a starting point
for the more advanced integration topics discussed in the subsequent chapters.

Chapter 9, MyFaces Orchestra, introduces the MyFaces Orchestra library. This chapter
starts with a very brief introduction to the Spring framework, as Orchestra is based
on parts of that framework. We see how we can create a Spring application context
and then how we should use such a context in combination with Orchestra. Some
key concepts of Orchestra are introduced, such as the Orchestra ViewController
concept and the concept of conversations. This chapter concludes with a quick view
of Orchestra’s DynaForm component.

Chapter 10, Extensions Validator, is about one of the latest additions to the MyFaces
project: the Extensions Validator, or ExtVal for short. This chapter starts by teaching
us how to conigure our project to use ExtVal. We see how JPA annotations can be
used to automatically generate JSF validations. This chapter also shows us the extra
annotations that ExtVal offers to complement the JPA annotations. This chapter also
shows how we can use Bean Validation (JSR 303) annotations as an alternative to JPA
and ExtVal annotations. As a whole, this chapter is a good introduction to this very
lexible and versatile member of the MyFaces family.

Chapter 11, Best Practices, is the last chapter of this book. It discusses some best
practices with JSF in general and MyFaces in particular. This chapter describes a way
to prevent direct access to page deinitions, as well as a way to enable container-based
security in our JSF application. This chapter also shows how to create a login page by
using JSF components, and discusses how to use component bindings wisely. This
chapter concludes by discussing how to save the state of request-scoped components
in an elegant way.

Appendix A, XHTML Entities, lists all of the numeric entities that can be used in
XML documents. This list may be needed because Facelets iles must be valid, plain
XML iles, and can’t contain named entities that can be used in normal XHTML iles.

Appendix B, Trinidad Tags, gives a list of all of the tags from the Trinidad library.
This can be referred to if you forget the exact name of one of the many tags. It can
also be used to determine if a certain Trinidad tag is a naming container.

Appendix C, Trinidad Text Keys, lists the keys that Trinidad uses to lookup the
default texts that are displayed on components. These keys can be used to customize
or translate the default texts.

www.allitebooks.com

http:///
http://www.allitebooks.org

Preface

[4]

http:///

Preface

[5]

Code words in text are shown as follows: “There are two important coniguration
iles for a JSF application—web.xml and faces-config.xml.”

A block of code is set as follows:

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>

javax.faces.webapp.FacesServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<sun-web-app>

<security-role-mapping>

<role-name>user</role-name>

<group-name>miasusers</group-name>

</security-role-mapping>

<class-loader delegate="false"/>

<property name="useMyFaces" value="true"/>

</sun-web-app>

Any command-line input or output is written as follows:

connect 'jdbc:derby://localhost:1527/test;create=true';

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: “Under the
Web Tier node, we select the JSF node and then on the right-hand side, we select JSF
Page and click on OK.”

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

http:///

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support

http:///

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http:///

http:///

Introduction
This chapter introduces Apache MyFaces and its subprojects. At the end of the
chapter, you will have an idea about what can be done with MyFaces, and about
the role of the several subprojects.

We cover the following topics in this chapter:

• A brief introduction to the Apache MyFaces project
• Some insights in the history of Apache MyFaces
• An overview of all of the subprojects of Apache MyFaces

Introducing Apache MyFaces
Apache MyFaces started out back in 2002 as the irst open source implementation
of the JavaServer™ Faces (JSF) standard. In July 2004, the project became part of
Apache as an Apache Incubator project. In February 2005, MyFaces was promoted
to a top-level Apache project. By the time MyFaces was submitted as an Apache
project, it was already more than just an implementation of the standard. As the set
of components deined by the JSF standard is rather limited, MyFaces went beyond
the standard by adding more components and extended versions of the standard
components. In April 2006, the extended components were separated from the core
JSF implementation. From that moment, the components are in a subproject called
Tomahawk, and the core JSF implementation is in the Core project.

Over time, Apache MyFaces was further expanded by other subprojects. Some
of them added even more extended components, while others focused on other
extended functionalities such as persistence scopes and annotation-based validation.
Support for the use of Facelets, instead of JSP, was also added. Chapter 3 focuses
on how we can get the most out of MyFaces by using Facelets. In the remaining
chapters, we will use Facelets as the view technology.

http:///

Introduction

[10]

License, community, and support
Because it is a part of the Apache project, Apache MyFaces and all of its subprojects
are available under the terms of the liberal Apache License, Version 2.0. Judging by
the list of companies using MyFaces at the MyFaces wiki (http://wiki.apache.org/
myfaces/Companies_Using_MyFaces), Apache MyFaces is widely used, worldwide.

The MyFaces project as a whole has an active community of developers all over
the world. Many individuals, as well as a number of companies, contribute to the
projects. As one of the co-founders of the MyFaces project, the Austrian consulting
company, Irian Solutions GmbH, has a large number of employees contributing to
the project. The multinational software giant, Oracle Corporation, also has a number
of employees contributing mainly to the Trinidad subproject, which was started with
a large donation from Oracle.

Good community support for MyFaces and all subprojects is available through the
MyFaces user mailing list. Detailed information on this mailing list, as well as a
subscription link, can be found at http://myfaces.apache.org/mail-lists.html.
It is good manners to start the subject line of any message to the list with the name of
the subproject in square brackets such as [Core] or [Tomahawk]. As with most mailing
lists, it is worth searching the history to check if your question has been asked already.
A good tool to search the mailing list archives is provided by MarkMail, a link to
which is provided at the page mentioned earlier.

MyFaces and Sun JSF RI
A lot of application servers are using Sun Microsystems’ JSF Reference
Implementation (Sun JSF RI) of the JSF standard, which is also known by its code
name, Mojarra. In most cases, it is possible to replace the application server’s default
JSF implementation with MyFaces; however, this is almost never necessary. As both
the Sun JSF RI and MyFaces core implement the same standard, there should not be
much difference between using one or the other. All subprojects of Apache MyFaces
should work on both MyFaces Core and Mojarra/Sun JSF RI without any problems.

On the other hand, if your application server uses Sun JSF RI by default, switching
to MyFaces might be worth considering, especially during the development stage, as
MyFaces Core gives a lot more diagnostic and debug information in the server logs
than Mojarra does.

http:///

Chapter 1

[11]

Whatever you choose, it is always useful to know which JSF implementation you
are running your application on. When you encounter a strange problem, which
could be a bug, one of the irst questions on the mailing list will probably be what
implementation you are running. An easy way to determine which implementation
you are using is to consult the server logs of your application server. During start up,
the name and version of the JSF implementation will be written into the log ile.

Subprojects of Apache MyFaces
Apache MyFaces consists of many subprojects. Each subproject has its own release
cycle. Most projects are available for JSF 1.1 as well as JSF 1.2. We will look at each
of the subprojects briely in this section to get an idea of what can be done with
MyFaces. Where applicable, a forward reference is provided to a chapter where the
project is discussed in detail.

Note that there is much overlap in functionality between some of the subprojects,
and in particular in the component sets. This is because some component sets were
donated to the MyFaces project by different companies at different times. Each of
these component sets has its weaknesses and strengths. That being said, choosing a
component set to be used for your project may not be an easy task. The information
presented in this chapter is not suficient to make such a choice. So, it is best to read
the chapters on each component set before choosing any of them.

Core
The Apache MyFaces Core project is where it all started. It does not do much more
than implement the JSF standard. There are currently three relevant versions of
this standard:

• JSF 1.1: This version of the standard ixes some bugs in the original 1.0
version. Both the 1.0 and the 1.1 versions were speciied by the Java
Speciication Request (JSR) number JSR 127. The versions of MyFaces
Core implementing this version of JSF are numbered 1.1.x.

• JSF 1.2: This version of the JSF standard was speciied by a separate JSR, with
the number JSR 252. JSF 1.2 adds some important improvements over JSF 1.1.
The MyFaces Core versions implementing JSF 1.2 are numbered 1.2.x.

• JSF 2.0: This brand new version of JSF will be part of Java EE 6.0. JSF 2.0 is
speciied in JSR 314, which had its inal release on July 1, 2009. The versions
of MyFaces Core implementing JSF 2.0 are numbered 2.0.x. At the moment of
writing this book, only an alpha release is available.

http:///

Introduction

[12]

The Core project currently has branches for each of these JSF versions. The 1.1 and
1.2 versions are stable and are updated regularly. Work is in progress on the 2.0
version, but a stable release is not yet available, as of the time of writing this book.
In this book, we will focus on JSF 1.2. We’ll see that many features deined in the
JSF 2.0 standard are already available in JSF 1.2 through one of the many
subprojects of MyFaces.

You may have noticed that there is no chapter on the MyFaces Core project in this
book. This has to do with the fact that the MyFaces Core project implements only the
JSF standard. That means that discussing the Core project in detail would be more or
less the same as discussing the JSF standard in detail, and that is beyond the scope
of this book. However, some good books on JSF are available, and you can refer to
them. Of course, we will discuss speciic issues that we will come across when using
MyFaces Core as a JSF implementation on our application server. These issues will
be discussed in Chapter 2, Getting Started.

Tomahawk
Tomahawk has been part of the Apache MyFaces project from the very beginning.
Its main goal is to implement a larger set of components than the rather minimal set
that is deined in the JSF speciication. Tomahawk contains both extended versions of
standard JSF components and components that are not deined at all in the standard.
Some examples of components that are added by Tomahawk are:

• A CAPTCHA component
• An extensive data table component that includes pagination functionality

for larger data sets
• A ile upload component
• Various date selection components

Tomahawk also features some custom validators that make it easy to validate,
for instance, credit card numbers and email addresses.

There are two variants of Tomahawk, as follows:

• Tomahawk Core is compatible with both JSF 1.1 and JSF 1.2
• Tomahawk Core 1.2 takes advantage of some features of JSF 1.2, making it

incompatible with JSF 1.1

We will take a detailed look at Tomahawk and all of its components in Chapter 4.

http:///

Chapter 1

[13]

Sandbox
The MyFaces project also has a subproject called Sandbox. The Sandbox project is
a testing ground for new JSF components that might be added to Tomahawk in the
future. Sandbox components are generally “work in progress” and are generally not
“feature complete”. Sandbox components may or may not be promoted to the main
Tomahawk project.

Due to the dynamic character of the project and the uncertain status of its contents,
it doesn’t make sense to cover it in a book. However, if you’re looking for a special
or advanced component that cannot be found in one of the other component sets,
it may be worth looking in the Sandbox. You should realize that it might be harder
to get support for Sandbox components, and that there is some uncertainty about
their future. On the other hand, you might be able to help to get the component to
production quality so that it could be promoted to Tomahawk.

Trinidad
Trinidad is a very extensive set of JSF components. It was developed by Oracle
under the name ADF Faces. When Oracle donated this component set to the ADF
Faces project, it was renamed to Trinidad. As with the Core project, there are
two versions of Trinidad for each version of the JSF standard. Trinidad releases
numbered 1.0.x are compatible with JSF 1.1, and releases numbered 1.2.x are
compatible with JSF 1.2.

Some of the most important characteristics of Trinidad are:

• It has a large number of components. There is a component for nearly
everything, in Trinidad.

• It has many “all-in-one” components. Some of the Trinidad components
render multiple elements. With some other component sets, we need several
components to get the same effect.

• It has advanced skinning possibilities.
• It has a lot of advanced options for displaying tabular and hierarchical data.
• It has a chart component, making it fairly easy to display numeric data in a

visual way.
• It has a dialog framework, making it easy to create pop-up dialogs.
• “Partial page rendering”, client-side validation and conversion, and other

AJAX functionality are embedded in most components and is easy to add
where needed.

MyFaces Trinidad will be covered in detail in Chapters 5, 6, and 7.

www.allitebooks.com

http:///
http://www.allitebooks.org

Introduction

[14]

Tobago
Tobago is the third set of components that is a part of MyFaces. Tobago was
contributed to the MyFaces project by a German company, Atanion GmbH. The
emphasis is on separating structure from design. Tobago offers the same concept
of extended components as Trinidad does, with one component rendering several
elements. It also uses the concept of a layout manager, a little bit like “good old”
Swing does. Tobago comes with four different themes that you can choose from.
Unfortunately, there is not enough space in this book to cover this third
component library.

Orchestra
MyFaces Orchestra is aimed at making it easier to use transactions to persist data
in a database. To achieve this, extended scopes are provided, in addition to JSF’s
standard application, session, and request scopes. Orchestra is mainly useful in
applications where a lot of data is entered into a database with a JSF frontend.
Whereas the standard JSF scopes are based on how a web server works, Orchestra
focuses on what a lot of applications need, and adds a Conversation Scope, making
it easier to keep certain actions within the same Java Persistence API (JPA) transaction,
whether they are on the same page or not. Orchestra is based on parts of the Spring
2.0 framework and works with JPA-based persistence layers. Orchestra is covered in
Chapter 9 of this book.

Portlet Bridge
Portlet Bridge is one of the newer subprojects of the MyFaces project. It is still in the
alpha stage at the time of writing this book. It will be the reference implementation
of the JSR 301 standard. The JSR 301 standard is an effort to standardize the way
that JSF artifacts (pages or parts of pages) can be used as portlets within a portal
environment. Considering the stage of both the JSR 301 standard and the Portlet
Bridge subproject, it will not be covered in this book.

Extensions Validator
The Validator project was recently added under the MyFaces Extensions umbrella
project. This project was created as a separate project by its lead developer under a
different name, but joined the MyFaces project in December 2008. Although the full
name of the project is MyFaces Extensions Validator, it is mostly referred to as ExtVal.

http:///

Chapter 1

[15]

The goal of ExtVal is to eliminate the need to repeat validation code in the View
layer of a Java EE application. This is often necessary in order to give user-friendly
error messages. However, according to the Don't Repeat Yourself (DRY) principle,
repeating code is not desirable. ExtVal uses standard JPA annotations to dynamically
create JSF validations. It also adds some extra annotations for cases where a
validation cannot be expressed in a JPA annotation. Thus, ExtVal eliminates the need
to add validators to JSF pages as well as the need to repeat validation code.

It should be noted that there is a JSR with number 303 that aims to achieve a
comparable goal. JSR 303 is called bean validation, and will be part of Java EE 6.0.
ExtVal will be compatible with JSR 303 and already goes beyond what is possible
with a bare JSR 303 implementation. ExtVal will be discussed in detail in Chapter 10.

Summary
In this chapter, we learned a little about the history of Apache MyFaces and took a
quick look at several sub-projects of Apache MyFaces. We saw that, apart from the
Core implementation of the JSF standard, Apache MyFaces offers a lot of additional
libraries, making the life of a JSF developer easier and more fun.

Most subprojects of MyFaces introduced in this chapter will be discussed in much
more detail in seperate chapters of this book. We will also look into the use of these
libraries in real-life projects. A sample case will be used throughout the book, and
will be introduced in the next chapter. The next chapter will also discuss how to
prepare our development environment and our application server for use with
MyFaces and its subprojects.

http:///

http:///

Getting Started
Before we can start building a JSF application with MyFaces, we have to prepare our
development environment and our application server. This chapter focuses on both
of these things.

In this chapter we will cover the following topics:

• Installing the Apache MyFaces libraries in both Eclipse and JDeveloper
• Creating an empty project in which a JSF application with MyFaces can

be created
• The most important coniguration iles for the application server on which

the application is to be deployed
• Introduction to the example case that will be used throughout this book

Coniguring the development environment
In this section, we will discuss two Integrated Development Environments (IDEs)
that can be used for developing JSF applications with the Apache MyFaces libraries:

• Eclipse is covered because it is very widely used, freely available,
and open source

• JDeveloper is covered because it has features that are extra powerful when
used in combination with MyFaces Trinidad, and is also free to use

http:///

Getting Started

[18]

Of course, you are free to choose your own favorite IDE, but we cannot cover all
available IDEs here. The rest of the book is written to be independent of the tools
that you use. All of the examples in this book can be executed whether you use
one of the two IDEs covered here, another IDE, or no IDE at all. The downloadable
source code is created with Eclipse, but it should be possible to use it in other
environments with little effort.

In the next subsections, we describe the steps that need to be taken in order to
install the MyFaces libraries in selected IDEs for optimal integration with the IDE.
Also, the steps required to create a new project that uses those libraries are described.
In a third subsection, an alternative approach to creating a new project by using
Maven is described.

Coniguring Eclipse
For coniguring Eclipse, we use the latest stable version, that is, Eclipse
3.5—“Galileo”. Be sure to download the “Eclipse IDE for Java EE Developers”
edition. This edition already contains most of the required plugins. If you already
have Eclipse installed, be sure that you have installed at least the “Java EE
Developer tools” and the “Web developer tools” packages.

Installing extra plugins
To have better support for the various MyFaces libraries in editors, there are some
extra plugins that you may want to install:

• Web Page Editor: This is an advanced editor for JSPs and similar
technologies. The web page editor features a palette with JSF components
that you can drag-and-drop onto your pages and a “live” preview mode, al-
though the preview is still limited and certainly not “What You See Is What
You Get”.

• Apache MyFaces Trinidad Tag Support: This adds support for the
components of the Trinidad library in the Web Page Editor and property
panes. Unfortunately, the other tag libraries from MyFaces (Tomahawk and
Tobago) are not supported by this or any other plugin.

http:///

Chapter 2

[19]

Both plugins can be installed through the Eclipse update manager (Help | Install
New Software...), as shown in the following igure:

http:///

Getting Started

[20]

Installing the libraries
Now that we have Eclipse itself conigured to have all of the editors and property
panes in place, we have to install the libraries. Of course, we have to download
and unpack the libraries from the Apache MyFaces website. Each subproject of
MyFaces has its own download page. On the main download page of MyFaces,
the latest version of MyFaces core can be downloaded, and links are provided to
the download pages of the sub-projects. The main download page can be found at
http://myfaces.apache.org/download.html.

Once the libraries are downloaded and unpacked, we can tell Eclipse where
they can be found. In order to do so, we start by opening the Preferences window
by clicking on Window | Preferences. In the Preferences window, navigate to
Java | Build Path | Libraries. For each of the libraries, we perform the following
steps to create a user library deinition:

1. We click on the New... button. The New User Library window appears.
2. We have to enter a name for the library. It is advisable to include the version

number in the name, in case a newer version is added later on. For example,
we could specify “MyFaces Core 1.2.4”.

3. Now the created user library entry appears in the list. Select it and click on
the Add JARs... button. Browse to the directory where you unpacked the
downloaded library. Within the directory where the library is unpacked,
there should be a lib directory containing all the JARs that are needed. If
you downloaded MyFaces Core 1.2.4, it is probably unpacked in a directory
named myfaces-core-1.2.4-bin; and in that directory is a subdirectory
named lib. Select all the .jar iles in that directory, and then click on OK.

For easy debugging and online Javadoc reading, we can now add references to the
sources and Javadocs that are bundled with the downloaded libraries. This can be
done by selecting one of the JARs and expanding its node. Each JAR node will have
a number of child nodes, among which are at least Source attachment: (None) and
Javadoc location: (None). By selecting one of these child nodes and clicking on the
Edit... button, the location of the provided sources and Javadocs can be set. For the
MyFaces Core, the window should now look as displayed in the following image:

http:///

Chapter 2

[21]

Preparing a new project
We are now nearly inished preparing Eclipse. To make sure everything is in place,
we start a new project in Eclipse. To do so, we follow these steps:

1. Start the wizard by choosing File | New | Dynamic Web Project.
2. Choose a name for our project.
3. Under Project contents, we can just leave the Use default checkbox selected,

or choose a custom location, if we like.
4. If there is a Target runtime deinition available, we could choose one. If not,

we will just leave it at <None> and choose which server to deploy to, later.
5. Of course, we choose the latest Dynamic web module version, that is, 2.5.

http:///

Getting Started

[22]

6. Under Coniguration, we choose JavaServer Faces v1.2 Project.
7. For now, we do not choose to add our project to an EAR project. This can

always be done later on. We click on Next > to go to the next step in
the wizard.

8. In the second and third steps, we can just leave all of the defaults, and click
on Next >.

9. The fourth and last step of the wizard is again important. First, we have
to choose our JSF libraries. All of the user libraries are listed; these should
include the MyFaces libraries that we added previously. We can select the
libraries that we want to use in our project by selecting the checkboxes in the
list. The Include libraries with this application checkbox tells Eclipse to add
our JSF libraries to the WAR ile that will be deployed to the server.

10. The other options in this screen can be left at the default values for now. The
next screenshot shows how the window should look now. If everything is
alright, let’s click on the Finish button.

http:///

Chapter 2

[23]

www.allitebooks.com

http:///
http://www.allitebooks.org

Getting Started

[24]

On the right-hand side is a palette that contains the components that are ready to be
placed on a page. Sometimes, this palette is not initially shown. If that is the case,
we can make it visible through Window | Show View | Other.... The Show View
window opens; under the General node, click on Palette. Now we can just select
some components and place them on the page. Note that it’s not exactly drag-and-
drop. A component is selected by clicking on it once in the palette, and then placed
on the page by clicking on the required position in either the preview or the source
pane. The cursor changes to indicate that we are going to drop a component onto the
page. If a component is dropped on the page, we can edit its attributes by selecting
the component and then opening the Properties tab.

The following igure shows a simple login page created by using one JSF core
component (<h:panelGrid>) and two Trinidad components (<tr:outputLabel>
and <tr:inputText>). Note that the preview is far from what it will look like in
a browser, but it gives some idea about the layout of the page. Unfortunately, the
preview mode doesn’t work at all with the Tobago or Tomahawk components. For
these components, only a placeholder is shown. There aren’t any property panels
deined for either of these components.

http:///

Chapter 2

[25]

As stated before, the visual editor just gives a hint of how the page should look in a
browser. That said, the use of this visual editor is very limited. When we start using
Facelets instead of JSPs in the next chapter, we’ll see that the visual editor is even
less useful. So, the recommended way to edit JSF pages is still to use the code editor.
However, the property panes can be handy if you ind it dificult to remember all
possible attributes of the different JSF components.

If you have an application server installed and conigured, it should be possible to
build the project and deploy it to the application server to test. Note that the page
we created was just to test if everything is conigured correctly. It can be thrown
away, as we will use Facelets instead of JSP from next chapter onwards. However,
the created project might be a good starting point for the next chapters.

Coniguring JDeveloper
The Trinidad components were donated to Apache MyFaces by Oracle, and are
the former ADF Faces 10g component set. (After the donation, Oracle developed
its ADF Faces 11g component set that is not (yet) donated to Trinidad.) For this
reason, the Trinidad components are fairly well integrated with the visual editors
of Oracle’s JDeveloper development environment—a good reason to take a look at
JDeveloper and how to conigure it for use with MyFaces. There are several versions
of JDeveloper available for download from the Oracle website. All versions are
free to use and you are free to deploy any application created with JDeveloper, as
long as you don’t use Oracle’s Application Development Framework (ADF). Let’s
take a look at the latest production version of JDeveloper. At the time of writing of
this book, this happens to be JDeveloper 11.1.1. Be sure to download the “Studio
Edition” that comes with all the bells and whistles. No extra plugins have to be
installed; JDeveloper is an “all inclusive” package.

Installing the libraries
We need the same libraries that we downloaded for preparing Eclipse. If you
skipped that, download them now from http://myfaces.apache.org/download.
html. The Trinidad library does not have to be installed as it is a standard part of
the JDeveloper 11g package. (In the earlier versions of JDeveloper, Trinidad was
not included.) However, if we want to use the MyFaces core instead of the Sun JSF
RI that is delivered with JDeveloper, and/or we want to use Tobago or Tomahawk
components, we have to install these libraries.

http:///

Getting Started

[26]

To install the MyFaces Core, we follow these steps in JDeveloper:

1. Go to Tools | Manage Libraries....
2. In the Manage Libraries window, we select the irst tab, Libraries.
3. Click on New....
4. In the Create Library window, we enter a name for our library; for instance,

Apache MyFaces core 1.2.4.
5. We select the Deployed by Default checkbox to make sure that our library

will be deployed to the application server.
6. In the list box, we select the Class Path: node, and then click on Add Entry....
7. In the Select Path Entry window, we navigate to the lib directory in the

directory where we unpacked the MyFaces library. Select all of the JAR iles
in this directory, and then click on the Select button.

8. If desired, we could add a JAR with the sources in the same way, but with
the Source Path: node selected. The same goes for the documentation.

9. The Create Library window should now look more or less as shown in the
next screenshot. Click on OK to inish.

http:///

Chapter 2

[27]

10. The created library should now show up under the User node in the Manage
Libraries window, as shown in the next screenshot:

The process of adding a component library is slightly different. Let’s take Tomahawk
as an example this time:

1. Go to Tools | Manage Libraries....
2. In the Manage Libraries window, select the JSP Tag Libraries tab.
3. Make sure that the User node in the tree is selected.
4. Click on the New button.
5. Browse to the lib directory in the directory where the library (in this

example, Tomahawk) was unpacked. Only JARs that contain tag deinitions
are shown. In the case of Tomahawk, this would be tomahawk12-1.1.x.jar.

6. Select Open to add the library. JDeveloper will read the tag deinition in-
formation and use it to complete all the ields, so we don’t have to enter
a name ourselves.

http:///

Getting Started

[28]

7. The library is now added, as shown in the following screenshot:

8. Once the library has been added, we can select the Execute Tags in JSP
Visual Editor checkbox to enable the components to be rendered in the
design view of JDeveloper. Unfortunately, this option doesn’t seem to
work for Tobago or Tomahawk.

9. The Show Tag Library in Palette checkbox should be checked, unless
you don’t want to use the components that you just added.

Preparing a new project
Now, to check if adding the libraries was successful, we can create a small test
project. In JDeveloper, a project can exist only within an application. Therefore,
we have to deine an application irst by following these steps:

1. Open the New Gallery via File | New....
2. Select the General node in the tree on the left-hand side.
3. Select Generic Application from the list on the right-hand side.
4. Click on OK.
5. Now, the Create Generic Application wizard starts, and we have to come

up with a name for the application. We can also change the location on disk
where the application’s iles will be stored, and conigure a global package
name for the entire application, such as com.ourcompany.

http:///

Chapter 2

[29]

6. By clicking on Next >, we arrive at the second step of this wizard. This
is where we deine the project. We have to name our project, too. This is
because Oracle wants us to separate our model from our view in separate
projects, according to the Model-View-Controller pattern. So in this case, a
good name for our project would be View.

7. On the Project Technologies tab, we can choose which technologies are going
to be used. We are going to create a JSF project, so we just have to select JSF
and move it to the right by clicking on the appropriate arrow button. Note
that some technologies on which JSF depends are automatically selected too.
The window should now look as displayed in the following screenshot:

8. After clicking on Next >, we can accept all defaults in the last step of the
wizard, and then click on Finish.

http:///

Getting Started

[30]

Before we can use the libraries that we added to JDeveloper earlier, we have to add
them to our project as well. To do so, we right-click on our project and choose Project
Properties.... In the tree on the left-hand side, we select the node JSP Tag Libraries.
We click on the Add button, and then select the desired libraries. The libraries that
we added ourselves are under the User node, but Trinidad is a part of the JDeveloper
package and so is under the Extension node. After selecting the libraries, we click on
OK to conirm. Close the project properties by clicking on OK again.

Now, let’s create a simple test page. Right-click on our project and select New... from
the context menu to open the New Gallery. Under the Web Tier node, we select the
JSF node, and then on the right-hand side, we select JSF Page and click on OK. In
the Create JSF Page window, we just give our page a ilename, and accept all the
defaults. Our page opens in JDeveloper’s visual editor. At the bottom of the editor
are ive tabs that can be used to switch the view. The available views are:

• Design: This is a sort of What You See Is What You Get editor for JSF
pages. Although the rendering looks slightly better than the live preview of
Eclipse’s Web Page Editor, it is still not perfect. And as with Eclipse, not all
tag libraries are able to be rendered in this view. Trinidad renders ine, but
unfortunately Tomahawk and Tobago do not render here.

• Source: This view shows the source code of the JSPX ile.
• Bindings: This is a graphical editor to edit the data bindings of this page.

This is intended for use with Oracle’s ADF Bindings framework. We won’t
use this framework in this book.

• Preview: This view shows the page as it will be displayed in a browser. It
does not support editing, though.

• History: Every editor in JDeveloper has this tab. It shows the version history
of the ile.

The JSF components are listed in the Component palette that is positioned
in the upper-right corner of the screen by default. Components can be
dragged-and-dropped from the palette. They can be dropped either on the
Design view, the Source view, or in the Structure pane. At the top of the
palette is a drop-down box that can be used to select the library.

http:///

Chapter 2

[31]

The next screenshot shows a simple login page opened in the Source view
of JDeveloper:

http:///

Getting Started

[32]

The following screenshot illustrates how the same page shown in the previous
screenshot looks in the Design view:

The Preview view is shown in the following image. As you can see, the page looks
more like the way it would be rendered in a browser.

There is also a hierarchical view of the page that shows up in the Structure pane,
which is located in the lower-left corner of the screen by default. If it doesn’t show
up, it can be activated through View | Structure. The Structure pane is shown in the
next screenshot:

http:///

Chapter 2

[33]

Creating a new project using Maven
The previous subsections described how to create a new project for use with the
MyFaces libraries, using two speciic IDEs. Using Maven, it is possible to create a
new project independent of any IDE. The beneits of using Maven over manually
coniguring a project in an IDE are:

• The project structure is independent of the IDE used. If you’re working in
a team, this means that no one is forced to use a certain IDE.

• Maven can automatically perform a lot of otherwise manual steps for us.
This can save us some time when creating new projects.

• Maven resolves dependencies automatically. This means that we don’t have
to manually download the third party libraries that the MyFaces libraries
depend upon.

Using Maven to create a project also has some downsides:

• The project structure is independent of the IDE used. This means it is
sometimes hard to open a Maven-created project in an IDE that uses a
different structure.

• Maven can automatically perform a lot of otherwise manual steps for us.
Although this seems attractive, it also means that we don’t know much
of how our project is set up and this can be a pain when problems occur.

• Maven resolves dependencies automatically. This is handy, unless the
Maven repository is down or unreachable due to a irewall or proxy server.

• To be able to set up project structures automatically, Maven uses the concept
of Archetypes. That means if there isn’t an Archetype available for the com-
bination of libraries that we want to use in our project, we’ll have to create
one ourselves. That might eliminate the beneits.

Well, enough discussion about the pros and cons of Maven. Let’s see how we
can use it for our MyFaces projects. We assume that Maven is already installed
on our system. If not, we can download it from http://maven.apache.org/
download.html. In most Linux distributions, Maven can be installed through a
package manager.

The MyFaces project has created some Maven Archetypes. These can help
us to create a blank project with the MyFaces libraries in seconds. We don’t
have to download anything beforehand. We can just start Maven with the
following command:

mvn archetype:generate -DarchetypeCatalog=http://myfaces.apache.org

www.allitebooks.com

http:///
http://www.allitebooks.org

Getting Started

[34]

Maven will then download the Archetypes and all of the required libraries.
After that, a list of available Archetypes is presented and we have to choose one.
Currently, ive Archetypes are deined by the MyFaces project:

• myfaces-archetype-helloworld: This will create a simple web application
with a "hello world" page that uses MyFaces Core as the JSF implementation,
and Tomahawk as the component library.

• myfaces-archetype-helloworld-facelets: This will create the same
project as the irst Archetype, but using Facelets instead of JSPs.

• myfaces-archetype-helloworld-portlets: This will create a simple
"hello world" project that uses the MyFaces Portlet Bridge library.

• myfaces-archetype-jsfcomponents: This archetype can be used to create
an empty project as a starting point to create your own JSF component(s).

• myfaces-archetype-trinidad: Creates a "hello world" style project that
uses Trinidad as the JSF component library.

After choosing a number and pressing Enter, Maven asks us for a group ID, artifact
ID, version, and package. These are the default values used to create the project.
After we conirm these settings, Maven creates the new project for us.

Now we can work with the project, add pages, classes, and so on. When we test our
application for the irst time, we can also use Maven to compile our classes, and
build the WAR ile that can be deployed to an application server. We can tell Maven
to do so with a single command:

mvn package

This command should be issued in the directory that Maven created, and that has the
name that we entered as the artifact ID.

Application server and coniguration iles
There are many kinds of application servers, ranging from free and open source
products to very expensive commercial products. Today, some high-quality
commercial products are also available as open source products, which means that
they are free to use if you don’t need professional support by the manufacturer.
However, most of the time, the choice of the application server is not made by
a developer. The choice is often not only based on technical arguments; most of
the time, costs and company policies (such as preferred suppliers) do have their
inluence on such a choice. For that reason, we are not going to spend many pages
on different application servers here. We will just focus on the coniguration steps
that have to be made for virtually every application server when it comes to using
Apache MyFaces.

http:///

Chapter 2

[35]

You should realize that any Java EE-compliant application server bundles a
JSF implementation, because JSF is a part of the Java EE standard. Most application
servers bundle the Sun JSF Reference Implementation (RI) for that matter. But,
for example, the Apache Geronimo application server bundles the MyFaces
Core as the default JSF implementation. It is possible to supply an alternative JSF
implementation in your application.

There are two important coniguration iles for a JSF application—web.xml and
faces-config.xml. In the next section, we will discuss the basics of both of them.
Sometimes, special conigurations have to be made when using a speciic JSF library.
These speciic conigurations are discussed in other chapters.

The web.xml coniguration ile
The web.xml coniguration ile resides in the /WEB-INF/ directory of the (to be)
deployed web application. It conigures the web server part of the application. The
web.xml ile can be used to deine which ile types may be requested by users, which
directories can be accessed, and so on. With regards to JSF, the most important task
of web.xml is to tell the web server that there is such a thing as a Faces Servlet, and
that URLs containing a certain pattern should be forwarded to that Faces Servlet. A
minimal web.xml could look like this:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"
xmlns=
"http://java.sun.com/xml/ns/javaee"
xmlns:web=
"http://java.sun.com/xml/ns/javaee/web-
app_2_5.xsd"

xsi:schemaLocation=
"http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"

id="WebApp_ID" version="2.5">
<display-name>MyFaces Test Project</display-name>
<servlet>

<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

</web-app>

http:///

Getting Started

[36]

The interesting part of the ile is highlighted. The part between the <servlet>
tags tells the application server that it has to instantiate an object of the javax.faces.
webapp.FacesServlet class as a Servlet and name it Faces Servlet. It will be started
at the start up of the application. The part between the <servlet-mapping> tags tells
the web server that any URL starting with /faces/ immediately after the address of
the server and the location of the application will be handled by that Servlet.

The previous igure shows how the settings made in web.xml relect to the URL of
your application. Let’s have a look at each part of this URL:

1. The irst part of the URL represents the address of our application server.
web.xml cannot change anything here. This address depends on the domain
that our company is using, and the host name of the machine on which the
application server is running.

2. The second part of the URL is the port where the application server is
listening for requests from users. This is also beyond the inluence of web.
xml. Most application servers let you conigure this at the time of installation,
and most of the time you can change it through the administration interface
of the application server.

3. The third part of the URL is the location of our application, often called the
context root. This is needed as it is possible to run several applications
on the same application server. Most application servers take the name
of the WAR ile that is used to deploy the application as a default for the
context root. Sometimes, it is also possible to conigure the context root via
an application server speciic coniguration ile and/or via the management
interface of the application server.

4. The fourth part of our URL is the URL pattern that is conigured in the
web.xml ile. Anything that follows this pattern will be handled by the
Faces Servlet.

5. The ifth part of the URL is the name of a page. Note that there is no direct
relationship between this name in the URL and a ile on the ile system of the
application server. It is for the Faces Servlet to decide what action to take on
this ilename. However, most of the time, the Faces Servlet is conigured to
render a page based on a ile with this name that actually resides on the ile
system of the application server. But it’s good to realize that this does not
have to be the case all the time.

http:///

Chapter 2

[37]

http:///

Getting Started

[38]

Discussing all the details that can be conigured through faces-config.xml goes
beyond the scope of this book. This should be covered by any general JSF book.
Settings that are speciic to one of the MyFaces libraries will be discussed in the
appropriate chapter of this book. For easy reference, we will list the most important
top-level elements of the faces-config.xml ile here:

• application: This element is for application-wide settings and deinitions.
Things such as message bundles and locale coniguration go here. In Eclipse,
these settings can be found on the Other tab of the graphical editor. In
JDeveloper, they can be found on the Overview tab under Application.

• converter: Use this element when you’ve implemented your own Convert-
er class, in order to register it with the Faces Servlet. Edit this section on the
Component tab in Eclipse under Converters. In JDeveloper, you can ind it
on the Overview tab.

• validator: This element is for registering your own implementation
of Validator. In Eclipse, you can ind it on the Component tab under
Converters, and in JDeveloper you can ind it on the Overview tab.

• managed-bean: Depending on how the backend or model layer of an ap-
plication is set up, this element is frequently used to manage Java Beans
that form a facade or service layer between the view and the model. In
Eclipse, there’s a ManagedBean tab for editing managed beans. In
JDeveloper, managed beans can be edited on the Overview tab, under
Managed Beans.

• navigation-rule: This is probably one of the most used elements in a
typical faces-config.xml. It is used to deine the navigational structure of
the application. When editing navigation rules, you’ll be very happy with a
graphical editor. You can edit navigation rules on the Navigation Rule tab in
Eclipse, and on the Diagram tab in JDeveloper.

• render-kit: This can be used to register a custom RenderKit implement-
ation. Some component sets use their own RenderKit. In this case, you have
to register it here. It can be found on the Component tab in Eclipse and on
the Overview tab in JDeveloper.

http:///

Chapter 2

[39]

The following is an example of a small faces-config.xml ile:

<?xml version="1.0" encoding="UTF-8"?>

<faces-config xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/

javaee

http://java.sun.com/xml/ns/javaee/

web-facesconfig_1_2.xsd"

version="1.2">

<application>

<locale-config>

<default-locale>en</default-locale>

<supported-locale>en</supported-locale>

<supported-locale>en_US</supported-locale>

</locale-config>

<message-bundle>

inc.monsters.mias.Messages

</message-bundle>

</application>

<converter>

<description>Case converter for text values</description>

<converter-id>convertCase</converter-id>

<converter-class>

inc.monsters.mias.conversion.CaseConverter

</converter-class>

</converter>

<managed-bean>

<description>

A bean to hold the user’s preferences

</description>

<managed-bean-name>userPreferences</managed-bean-name>

<managed-bean-class>

inc.monsters.mias.UserPreferences

</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

<navigation-rule>

<from-view-id>*</from-view-id>

<navigation-case>

<from-outcome>login</from-outcome>

<to-view-id>/Login.xhtml</to-view-id>

</navigation-case>

http:///

Getting Started

[40]

<navigation-case>
<from-outcome>loginError</from-outcome>
<to-view-id>/LoginError.xhtml</to-view-id>

</navigation-case>
</navigation-rule>
<validator>

<validator-id>firstNameValidator</validator-id>
<validator-class>

inc.monsters.mias.validators.FirstNameValidator
</validator-class>

</validator>
</faces-config>

Settings for speciic application servers
The example case that will be introduced in the next section is tested on a GlassFish
application server. To use MyFaces Core as a JSF implementation on GlassFish, some
extra coniguration has to be done. Other application servers might need comparable
settings to be executed. We’ll focus on the extra coniguration for GlassFish in the
following subsection.

Settings for MyFaces Core on GlassFish
GlassFish comes with the Mojarra implementation of the JSF standard. Mojarra
is the reference implementation of the JSF standard, and is thus also known as Sun
JSF RI. As discussed in Chapter 1, it is not necessary to use MyFaces Core instead
of Mojarra, as both implement the same JSF standard. However, as MyFaces Core
provides more diagnostic and debug information in the server log iles, it might
be worth using MyFaces Core.

To use MyFaces Core as the JSF implementation for our application, we have to
make some additional settings in a GlassFish-speciic coniguration ile—sun-web.

xml. This ile has to be in the WEB-INF folder of our project, along with most of the
other coniguration iles, such as web.xml and faces-config.xml. The contents of
the ile should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD

Application Server 8.1 Servlet 2.4//EN"
"http://www.sun.com/software/appserver/
dtds/sun-web-app_2_4-1.dtd">

<sun-web-app>
<class-loader delegate="false"/>
<property name="useMyFaces" value="true"/>

</sun-web-app>

http:///

Chapter 2

[41]

The highlighted lines are the lines that disable the default implementation and
force GlassFish to use MyFaces Core instead. Of course, we have to make sure that
the MyFaces Core libraries are added properly to our application and conigured
correctly, as described in the previous sections.

Other application servers
If you want to use another application server with MyFaces Core as a JSF
implementation, you should refer to the documentation of that application server.
Most servers have a vendor-speciic coniguration ile named vendor-web.xml, such
as the sun-web.xml ile for GlassFish. The Apache Geronimo application server uses
MyFaces Core as the default JSF implementation, so no additional coniguration is
needed for that one.

Introduction to the example case
Throughout this book, we will be building example JSF pages to test the possibilities
of the various Apache MyFaces Core libraries. To eliminate the need to come up with
a new example every time, we are going to work on a single case in the rest of the
book. This section introduces the case.

We are building a new administrative system for our client, Monsters, Inc. (You
might know this company from the movie with the same name.) Monsters, Inc. is the
power company of Monstropolis. The company generates power by scaring children
and collecting their screams. The employees of Monsters, Inc. get to the children by
means of teleportation doors that are set up on the work loor. The company wants a
better knowledge of the performance of its employees.

Therefore, every scarer should log his activities in the new system. Every time a child
is scared, the scarer should log:

• At which time the scaring started
• How much time it took to scare the child and collect the scream
• How much energy was produced
• Through which door he reached the child
• How brave the kid was on the braveness scale
• Who was the scare assistant

http:///

Getting Started

[42]

The loor manager must have the possibility to get a list of top scarers on a daily,
weekly, and monthly basis. He or she also needs an overview of the total generated
energy daily, weekly, and monthly. The system is also used by the Human Resources
department to store personal information of all employees, and to keep track of their
salaries and bonuses. Floor managers can assign bonuses to scarers that perform
better than expected.

Throughout the rest of this book, we will build parts of the administrative system
that will be used by the company to measure the performance of
their employees.

Summary
In this chapter we had a look at the possibilities of two IDEs (Eclipse and JDeveloper)
with regards to creating JSF applications that use Apache MyFaces components. We
learned how to conigure both IDEs to work with MyFaces. We saw that both have
the capability to edit JSP iles in a graphical way. We also saw that, unfortunately,
not all component libraries are supported by those graphical editors. And we also
saw how we can set up a project that uses MyFaces with Maven. In the second
section of this chapter, we learned about the purpose of the web.xml and faces-
config.xml coniguration iles. The third section introduced a business case that will
be used throughout the rest of the book to base the examples on.

The next chapter will introduce Facelets, the view technology that we’ll be using
instead of JSP in the rest of the book.

http:///

Facelets
One of the strong properties of JSF is the fact that it has the ability to use various
view technologies. The default view technology in JSF 1.x is JavaServer Pages (JSP).
Because the JSP standard was deined before JSF even existed, it was never
optimized for use with JSF. Therefore, JSP has quite a few shortcomings as a view
technology for JSF. Facelets aims to overcome these shortcomings. Although Facelets
is not an oficial standard yet, it doesn’t make sense not to use it. In JSF 2.0, Facelets
is part of the standard and is the preferred view technology.

Facelets is not part of Apache MyFaces. This chapter is included in this book as not
much documentation is available on Facelets yet.

After reading this chapter, you should be able to:

•	 Convince anyone that Facelets should be used as the view technology for any
new JSF project

•	 Set up a JSF project with Facelets
•	 Create and use Facelets page templates
•	 Create and use you own composition components with Facelets

Why Facelets?
Facelets has a lot of improvements over JSP as a view technology for JSF. This section
provides an overview of the most important improvements of Facelets over JSP,
starting with content interweaving, in the next subsection.

www.allitebooks.com

http:///
http://www.allitebooks.org

Facelets

[44]

Content inverweaving
One of the things that makes the combination of JSF with JSP complicated is the
problem of content interweaving. Although the situation is somewhat improved
since JSF 1.2 and JSP 2.1, both technologies still create their own representation of a
page in memory. This is not only ineficient, but can also generate problems if JSF
components are mixed with non-JSF content. (Think of problems with regards to
the order in which elements are shown in the rendered page, and for user interface
elements that are not aware of each other.) For that reason, it is advisable not to make
such mix-ups when using JSP.

Facelets ixes this issue by creating a single component tree. This tree contains both
JSF components and non-JSF elements such as plain text and XHTML. Because of
this, it is possible to mix XHTML markup with JSF components and use Expression
Language in all elements, even in plain text. This means we can use each of them for
the tasks they’re good at. XHTML is perfect for creating a nice layout, while most JSF
components specialize in user interaction and data entry. It also means that we can
let a web designer design a plain XHTML page and simply add our JSF components
to that page. A nice example of the beneits of Facelets’ content interweaving solution
is given in the Using inline texts section of this chapter.

Templating
JSP has no built-in templating system, and neither has JSF. In plain JSP
(without JSF), the lack of a templating system could be compensated by using
<jsp:include> component. It wasn’t a perfect solution, but it did the job. With
JSF, the inclusion of JSP (fragments) is no longer an option. (It is possible to use the
<jsp:include> component with the JSF <f:subview> component, but that’s still
not a real templating system.) Some JSF component libraries try to ill this gap by
introducing components that act as a kind of template. For example, Trinidad has
a <tr:panelPage> component that divides the page in several areas for content,
navigation, and branding. This only solves part of the problem. For example,
although such a component helps to make the page layout consistent, we still have
to add the navigation component(s) to every page. Another downside of such a
component is that it isn’t very lexible—we don’t have much inluence over the
positioning of the items on the page.

So, it is clear that we need a proper templating solution for JSF. We must be able to
deine a layout that is applied to every page. Also, should we ever want to change
the layout for all pages, it should not be necessary to edit all the pages. Facelets gives
us such a solution; see the Templating with Facelets section of this chapter for details.

http:///

Chapter 3

[45]

Don’t Repeat Yourself (DRY)
Don’t Repeat Yourself (DRY) is one of the most important paradigms in
programming. Code that isn’t DRY is harder to maintain and more sensitive to
bugs. Unfortunately, JSF with JSP makes it very hard not to repeat ourselves, in a
number of ways. For instance, the lack of a templating solution can lead to repeated
navigation and layout code on every page.

But on a smaller scale, there are unnecessary repetitions too. In a form, for example,
you have to add a separate label and text ield for every ield. If we have our label
texts in a resource bundle and we use the (database) ield names as keys in that
bundle, we only need one key (the ield name) for both the label and the ield.
Wouldn’t it be nice if we could compose our own component that ties together
a label and a ield based on that single key? Facelets gives us the opportunity
to do so! See the section Creating and using composition components for details.
(Some component libraries solve this problem by adding their own composition
components. This can be a good solution in many cases, but being able to compose
our own components gives us far more lexibility.)

Expanding the Expression Language
JSF deines a very useful Expression Language (EL). With this EL, it is easy to refer
to the properties of JavaBeans; but sometimes we will want to execute a function.
This is not easy to achieve in the standard JSF EL. Facelets gives us the possibility to
register any static Java method that is to be called from within an EL expression. An
example will be given in the Using Static Functions section of this chapter.

Summarizing the beneits of Facelets
As we have seen in this section, there are many rather fundamental reasons why
Facelets is a better option than JSP for the view technology in our JSF project. Some
of the problems with JSP can be solved by components. However, that is not always
the best way of solving these problems, and often leads to a sub-optimal solution.
With Facelets, most of JSP’s shortcomings can be overcome in a more fundamental
way, and without the need for a special component set. So let’s see how we can set
up our project to use Facelets, in the next section.

http:///

Facelets

[46]

Setting up a Facelets project
Of course, installing Facelets starts with downloading it. The Facelets library can
be downloaded from https://facelets.dev.java.net/. The latest release can
be found through Documents & iles in the Project tools menu. Stable releases are
under the releases node of the tree menu. Unzip the downloaded ile to the location
where all other JSF libraries are stored.

Now that we have the Facelets library, we need to make sure that it will be in the
WEB-INF/lib directory of our web application. We can follow the same procedure
as described in Chapter 2, where we added the other JSF libraries. Make sure that
you select the appropriate option to force the Facelets library to be included on
deployment. Only the jsf-facelets.jar ile is needed, which is in the root of the
Facelets distribution.

Preparing web.xml

http:///

Chapter 3

[47]

Preparing faces-conig.xml
This is the part where we really activate Facelets. We tell JSF to use an alternative
view handler. This means that the render response and restore view phases will
be executed by this alternative view handler, which is Facelets in our case. Deining
an alternative view handler is done by adding the following code snippet to the
faces-config.xml ile:

<application>

<view-handler>

com.sun.facelets.FaceletViewHandler

</view-handler>

</application>

If there is already an application section in the faces-config.xml, we could
simply add the highlighted part of the above code snippet to that section.

Creating a test page
Now let’s test if the Facelets installation has succeeded. Let’s create a standard
XHTML page. It will look like this:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Insert title here</title>

</head>

<body>

</body>

</html>

The irst thing we have to do is expand the XML namespace of our document to
include both the Facelets and JSF namespaces. This will change the <html> tag to
something like this:

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core">

http:///

Facelets

[48]

Note that the default preix for the Facelets namespace is ui.

Now, as we have extended our namespace, we can add some components.
Let’s create a simple login page for the MIAS system. It could look as follows:
(The <?xml> and <!DOCTYPE> declarations are omitted for brevity.)

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core">

<head>

<f:loadBundle basename="inc.monsters.mias.Messages"

var="msg"/>

<title>Login</title>

</head>

<body>

<h:form id="login">

<h:panelGrid columns="4">

<h:outputLabel value="#{msg.userName}" />

<h:inputText value="#{loginBean.userName}"

id="userName" required="true">

<f:validateLength minimum="6"/>

</h:inputText>

<h:outputText value="*"/>

<h:message for="userName"/>

<h:outputLabel value="#{msg.password}" />

<h:inputSecret value="#{loginBean.password}"

id="password" required="true">

<f:validateLength minimum="3"/>

</h:inputSecret>

<h:outputText value="*"/>

<h:message for="password"/>

<h:outputLabel value="" />

<h:commandButton value="OK"

action="#{loginBean.login}" />

<h:outputLabel value="" />

<h:outputLabel value="" />

</h:panelGrid>

</h:form>

</body>

</html>

http:///

Chapter 3

[49]

http:///

Facelets

[50]

Now when we run our page, we can activate the debug window by pressing CTRL
+ SHIFT + D. The pop up might be blocked by the browser’s pop-up killer. It might
be a good idea to disable the pop-up killer for the domain in which your server is
running (in a development environment, this is typically localhost). An example of
a debug window is shown in the next screenshot:

The window has two expandable sections. The irst section shows the component
tree that was used to render the page. The second section shows all JSF-scoped
variables, separated up per scope.

http:///

Chapter 3

[51]

http:///

Facelets

[52]

<title>

<ui:insert name="title">** NO TITLE SET **

</ui:insert>

</title>

</head>

<body>

<div id="header">

<ui:insert name="header">

<ui:include src="header.xhtml" />

</ui:insert>

</div>

<div id="content">

<h2><ui:insert name="title" /></h2>

<ui:insert name="content" />

</div>

<div id="footer">

<ui:insert name="footer">

<ui:include src="footer.xhtml" />

</ui:insert>

</div>

</body>

</html>

Note how we can reuse a deined value. The title is used both in the <head>
and content sections. We also added an <f:loadBundle> component to load
our message bundle, so we don’t have to worry about that in the individual
page deinitions.

Using the template
Now we will use the template that we created. Let’s refactor our login page to use
the template. To use a template, we can use the <ui:composition> tag. If we saved
our template with the name template.xhtml, then we can use it by adding the
following line to our login page:

<ui:composition template="template.xhtml">

Now Facelets will apply the template to our page. But we still have to let Facelets
know what values to insert in the placeholders. This can be done by using the
<ui:define> tag. To deine a title for our page, we could add the following to
our page:

<ui:define name="title">Login</ui:define>

http:///

Chapter 3

[53]

We can also nest a whole tree of components in the <ui:define> section, as shown
in the following code snippet:

<ui:define name="content">

<h:form id="login">

<h:panelGrid columns="4">

<h:outputLabel value="#{msg.userName}" />

<h:inputText value="#{loginBean.userName}"

id="userName" required="true">

<f:validateLength minimum="6"/>

</h:inputText>

<h:outputText value="*"/>

<h:message for="userName"/>

<h:outputLabel value="#{msg.password}" />

<h:inputSecret value="#{loginBean.password}"

id="password" required="true">

<f:validateLength minimum="3"/>

</h:inputSecret>

<h:outputText value="*"/>

<h:message for="password"/>

<h:outputLabel value="" />

<h:commandButton value="OK"

action="#{loginBean.login}" />

</h:panelGrid>

</h:form>

</ui:define>

In this code snippet, we simply pasted all of the content of the original login page
into the appropriate <ui:define> section. The whole page should now look as listed
here. (Again, the <?xml> and <!DOCTYPE> declarations are omitted for brevity.)

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core">

<body>

<ui:composition template="templates/template.xhtml">

<ui:define name="title">Login</ui:define>

<ui:define name="content">

<h:form id="login">

<h:panelGrid columns="4">

<h:outputLabel value="#{msg.userName}" />

<h:inputText value="#{loginBean.userName}"

id="userName" required="true">

<f:validateLength minimum="6"/>

www.allitebooks.com

http:///
http://www.allitebooks.org

Facelets

[54]

http:///

Chapter 3

[55]

</ui:define>

</ui:composition>

Although this is a valid XML and works ine with Facelets, it might be harder to edit
or preview with (X)HTML-oriented editors. However, it has the advantage of being
a bit shorter, and will prevent confusion about elements that are in the ile but not
rendered because they’re outside the <ui:composition> element.

Using comments in Facelets page deinitions
It’s a good habit to add comments to your source code iles. In the examples
presented here, comments are left out to save space, and because an explanation is
given in the text anyway. But if you write your own Facelets page deinitions, it’s a
good idea to add comments where applicable. That said, some caution is required in
regard to comments in Facelets. Facelets adds comments to the JSF component tree
just as it does with XHTML elements, plain text, and JSF components. This can cause
unexpected behavior sometimes. Consider this code snippet:

<h:panelGrid columns="4">

<h:outputLabel value="#{msg.userName}" />

<h:inputText value="#{loginBean.userName}"

id="userName" required="true">

<f:validateLength minimum="6"/>

</h:inputText>

<h:outputText value="*"/>

<h:message for="userName"/>

<h:outputLabel value="#{msg.password}" />

<h:inputSecret value="#{loginBean.password}"

id="password" required="true">

<f:validateLength minimum="3"/>

</h:inputSecret>

<h:outputText value="*"/>

<h:message for="password"/>

<!-- This empty label is added to position the

OK button aligned with the input fields -->

<h:outputLabel value="" />

<h:commandButton value="OK"

action="#{loginBean.login}" />

</h:panelGrid>

http:///

Facelets

[56]

We would expect it to render as shown in the next igure:

But as the comment is treated like a component, <h:panelGrid> reserves a cell
for it. The result is shown in the next image:

Further proof of this can be found in the debug window. As shown in the next
screenshot, the component tree shows our comment as a separate component.

http:///

Chapter 3

[57]

Now, how do we prevent this from happening without having to remove all of the
comments? The only thing we have to do is to set an extra context parameter in
our web.xml ile, as shown in the following code snippet:

<context-param>

<param-name>facelets.SKIP_COMMENTS</param-name>

<param-value>true</param-value>

</context-param>

This will force Facelets to simply skip all comments in the page deinition iles.
As the default value of this context parameter is false, comments are not skipped
by default.

Are Facelets iles XHTML?
Although the iles are saved with the .xhtml extension, Facelets iles are clearly
not really XHTML iles. They’re just XML iles that Facelets parses to XHTML that
can be displayed in a browser. But it is convenient to handle them as XHTML most
of the time. For example, if you have a web designer in your team, he or she can
simply create a template as a valid XHTML ile. You can either add the <ui:insert>
tags yourself, or tell him or her how to do it themselves. However, there are some
limitations to this because of the fact that the resulting Facelets pages and templates
are not real XHTML.

In (X)HTML, a huge list of named entities is deined. This is frequently used to insert
special characters in an XHTML document. For example, is frequently used
to insert a “non-breaking space”, and © is used to insert a © sign. As Facelets
pages are not XHTML, these entities cannot be used. Only the named entities that are
deined as part of the XML standard can be used. The XML-named entities are listed
in the table that we are about to see. As an alternative to named entities, numbered
entities can be used. Appendix A contains a list of all HTML numbered entities.

Named entity Symbol Number
& & &

< < <

> > >

' ' '

" " "

http:///

Facelets

[58]

An alternative to using XML entities is to use Unicode characters. In this case, you
should make sure that the page deinitions are stored in a UTF-8 ile format and that
the application server is conigured to use UTF-8. The browser client should also be
able to receive UTF-8 pages. In short, using Unicode characters instead of entities
increases the risk of special characters getting “lost in translation”.

Creating and using composition
components
At irst, you might be wondering why you should ever create your own components.
Especially when you look at those extensive sets of readymade components in
the Trinidad, Tobago, and Tomahawk project, you might wonder why there is
still a need to create your own composition components. The reason is simple—no
one but you can create a component that exactly its your needs and application.
This means that you often have to combine different components, validators,
and converters.

Combining is not a problem, but what if you have to make the same combination
of components a couple of times? Then you’re breaking the DRY principle; you are
repeating yourself! We will look at the login page of the MIAS system as an example.
As this is a rather simple page with a very limited number of ields, the beneits of
using composition components are perhaps not that clear to see in this example. But
imagine if the page is twice as large and you have dozens of pages like that in your
project. In this case, you can imagine that a lot of repetition can be prevented by
using composition components.

Creating a tag library

http:///

Chapter 3

[59]

Let’s name our tag library deinition ile mias.taglib.xml. An empty tag library
deinition looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE facelet-taglib PUBLIC

"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"

"facelet-taglib_1_0.dtd">

<facelet-taglib>

<namespace>http://www.monsters.inc/</namespace>

</facelet-taglib>

The highlighted line deines the XML namespace. Although this is a URL, it does
not have to point to an existing website. It is only used as a unique identiier by
which we can refer to this tag library (just like packages in Java). Now let’s add a
component to the library:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE facelet-taglib PUBLIC

"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"

"facelet-taglib_1_0.dtd">

<facelet-taglib>

<namespace>http://www.monsters.inc/</namespace>

<tag>

<tag-name>field</tag-name>

<source>field.xhtml</source>

</tag>

</facelet-taglib>

The highlighted lines show a new tag deinition. The tag has only a tag-name and
a source. The source must be the ilename of an existing ile; this ile contains the
deinition of the composition component. The tag-name is the name of the tag that
is used in the Facelets page deinitions. As with normal component libraries, we will
assign a short preix to our namespace. In this way, we are able to add tags such as
<prefix.tag-name /> to our page deinitions, as we will see next.

Once we have deined our tag library, we have to let Facelets know that there is a tag
library, and where this can be found. This can be done by adding some lines to our
web.xml ile:

<context-param>

<param-name>facelets.LIBRARIES</param-name>

<param-value>/WEB-INF/tags/mias.taglib.xml</param-value>

</context-param>

http:///

Facelets

[60]

Adding these lines to our web.xml ile will tell Facelets that there is a tag library
deined by a ile that can be found at /WEB-INF/tags/mias.taglib.xml. Note that
the ile is placed in a subdirectory called tags. It’s a good idea to keep tag (library)
deinitions separate from “ordinary” pages.

Creating the composition component itself
Now comes the interesting part. Let’s create our own component. The next
subsections discuss the steps involved in doing this.

Identifying redundancies
To determine how our component should look, let’s take a closer look at a part of
the login page that we created in the Templating section:

<h:outputLabel value="#{msg.userName}" />

<h:inputText value="#{loginBean.userName}"

id="userName" required="true">

<f:validateLength minimum="6"/>

</h:inputText>

<h:outputText value="*"/>

<h:message for="userName"/>

We can see that ive components are used for one single input ield:

•	 <h:outputLabel>: To render the label for the ield
•	 <h:inputText>: To render the input ield itself
•	 <f:validateLength>: To set a minimum length
•	 <h:outputText>: To render an asterisk (*) to indicate that the ield

is required
•	 <h:message>: To render possible error messages

Note that a lot of redundant information is present:

•	 The fact that the ield is required is relected by the required="true"
attribute in the <h:inputText> component, and by the extra
<h:outputText> component

•	 The name or ID of the component ("userName") is used four times in
this code snippet

http:///

Chapter 3

[61]

We want a component that does exactly the same as the six JSF components in the
code snippet that we just saw, but requires only one line of code in our page, such
as this:

<mias:field id="userName" required="true"

bean="loginBean" min="6"/>

Creating a skeleton for the composition component
To create our composition component, we simply create an XHTML ile, as we did
for our page deinitions. As with a page deinition, a composition component starts
with a <ui:composition> tag. So, an empty component looks like this:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:c="http://java.sun.com/jstl/core"

xmlns:fn="http://java.sun.com/jsp/jstl/functions"

xmlns:mias="http://www.monsters.inc/mias">

<ui:composition>

<!-- component definition goes here -->

</ui:composition>

</html>

Note that everything outside the <ui:composition> tag will be ignored by Facelets,
but is necessary for the page to be valid XHTML. Apart from the ui, h, and f
namespaces, we also include the c and fn namespaces. Facelets allows us to use the
JSP Standard Tag Library (JSTL) for some scripting-like features. If we want to use
the JSTL, we have to include its namespaces. Our own namespace (mias) is included
to enable the nesting of our own components.

http:///

Facelets

[62]

Deining the actual composition component
Now let’s build the actual deinition of the component. As mentioned earlier, we
would like a required attribute that sets the input component’s required attribute
and renders an asterisk (*) next to the input box. It would be nice if we could leave
out the required attribute if an input value is not required, saving some extra
typing. This can be accomplished as follows:

<c:if test="#{empty required}">
<c:set var="required" value="false" />

</c:if>

We use the <c:if> function from the JSTL to test if the required attribute is set. If it
is not set, we use <c:set> to set it to the default value—false. Now we can use the
required variable throughout the rest of our component without having to worry
about whether it is set or not.

The next thing to do is to add the label for our input ield. That’s pretty
straightforward:

<h:outputLabel value="#{msg[id]}" />

We simply add an <h:outputLabel> component with the correct value. For the value,
we assume that a message bundle is bound to the msg variable. In this case, this is a
pretty safe assumption as the component will only be used in our own application
and have we already added a <f:loadBundle> component to our template. By using
the [] operator instead of the . (dot) operator, the value of id will be substituted. If
we had used the dot operator, id would have been interpreted as a string literal. So if
we make sure that the message bundle contains a key that is identical to the id of our
component, a nice text label will be printed next to the input ield.

Now we have to add the input ield itself. This is a little bit more complex. As we
want the “password behavior” as an optional feature of our component, we’ll have
to add either <h:inputText> or <h:inputSecret>, depending on the secret
variable. We can use the <c:choose> statement of the JSTL, as shown in the
following code snippet:

<c:choose>
<c:when test="#{secret}">

<h:inputSecret value="#{bean[id]}" id="#{id}"
required="#{required}" />

</c:when>
<c:otherwise>

<h:inputText value="#{bean[id]}" id="#{id}”
required="#{required}" />

</c:otherwise>
</c:choose>

http:///

Chapter 3

[63]

If the value of secret evaluates to true, we use an <h:inputSecret> component.
In all other cases (including the case that secret is not deined at all), we use an
<h:inputText> component. To get the value from the bean, we use the [] operator,
as we did with the message bundle.

Adding validators without violating the
DRY principle
We’re not inished with our input ield yet. We still have to add the length
validators, depending on the values of minLength and maxLength. The dificulty is
that we don’t want to add a validator if no minimum or maximum length is set. If
only a minimum limit is set, we don’t want to set a maximum limit, and vice versa.
To accomplish this, we could use another <c:choose> as follows:

<c:choose>

<c:when test="#{not empty minLength

and empty maxLength}">

<f:validateLength minimum='#{minLength}'/>

</c:when>

<c:when test="#{empty minLength

and not empty maxLength}">

<f:validateLength maximum='#{maxLength}'/>

</c:when>

<c:when test="#{not empty minLength

and not empty maxLength}">

<f:validateLength minimum='#{minLength}'

maximum='#{maxLength}'/>

</c:when>

</c:choose>

However, it would be against the DRY principle to add this lengthy code block inside
both the <h:inputSecret> and <h:inputText> tags. To avoid this redundancy, we
create another composite component and call it lengthValidator. This component
contains the code that we just saw, nested within a <ui:composition> tag. We can
now use this component within our input ields:

<c:choose>

<c:when test="#{secret}">

<h:inputSecret value="#{bean[id]}" id="#{id}"

required="#{required}">

<mias:lengthValidator minLength="#{minLength}"

maxLength="#{maxLength}"/>

</h:inputSecret>

</c:when>

http:///

Facelets

[64]

<c:otherwise>

<h:inputText value="#{bean[id]}" id="#{id}"

required="#{required}">

<mias:lengthValidator minLength="#{minLength}"

maxLength="#{maxLength}"/>

</h:inputText>

</c:otherwise>

</c:choose>

Note how the values of minLength and maxLength are passed through. Also note
that if minLength and maxLength are both not set, <mias:lengthValidator> will
not render any component at all.

Putting it all together
We are nearly inished now. We only have to add the required indicator and
the <h:message> component. That’s straightforward:

<h:outputText value="#{required ? '*' : ' '}"/>

<h:message for="#{id}"/>

We use the JSTL conditional operator to render an asterisk if required evaluates
to true, and a space otherwise. We could have chosen to not render anything
at all if required was not true, but that could have caused problems with the
<h:panelGrid> component. To summarize, the complete component now looks
like this:

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:c="http://java.sun.com/jstl/core"

xmlns:fn="http://java.sun.com/jsp/jstl/functions"

xmlns:mias="http://www.monsters.inc/mias">

<ui:composition>

<c:if test="#{empty required}">

<c:set var="required" value="false" />

</c:if>

<h:outputLabel value="#{msg[id]}" />

<c:choose>

<c:when test="#{secret}">

<h:inputSecret value="#{bean[id]}" id="#{id}"

required="#{required}">

<mias:lengthValidator minLength="#{minLength}"

maxLength="#{maxLength}" />

http:///

Chapter 3

[65]

</h:inputSecret>

</c:when>

<c:otherwise>

<h:inputText value="#{bean[id]}" id="#{id}"

required="#{required}">

<mias:lengthValidator minLength="#{minLength}"

maxLength="#{maxLength}" />

</h:inputText>

</c:otherwise>

</c:choose>

<h:outputText value="#{required ? '*' : ' '}"/>

<h:message for="#{id}"/>

</ui:composition>

</html>

The lengthValidator component is deined as follows:

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:c="http://java.sun.com/jstl/core"

xmlns:fn="http://java.sun.com/jsp/jstl/functions"

xmlns:mias="http://www.monsters.inc/mias">

<ui:composition>

<c:choose>

<c:when test="#{not empty minLength

and empty maxLength}">

<f:validateLength minimum='#{minLength}'/>

</c:when>

<c:when test="#{empty minLength

and not empty maxLength}">

<f:validateLength maximum='#{maxLength}'/>

</c:when>

<c:when test="#{not empty minLength

and not empty maxLength}">

<f:validateLength minimum='#{minLength}'

maximum='#{maxLength}'/>

</c:when>

</c:choose>

</ui:composition>

</html>

http:///

Facelets

[66]

Using the composition component

http:///

Chapter 3

[67]

Using static functions
Another powerful feature of Facelets is the possibility to create static functions. Static
functions let you expand the possibilities of the JSF Expression Language. You can,
in fact, conigure any static Java function that is on the classpath to be available as a
static function in the Expression Language. This is fairly simple to do.

Let's assume that the CEO of Monsters, Inc—Mr. Waternoose—wants to add an
inspirational quote of the day to the login page of the MIAS system. Let’s see how
we can implement this by using the Facelets static function feature. First, we need a
static method that returns a quote. As we want to display the author of the quote as
well, let’s create two functions, as follows:

package inc.monsters.mias;

public class FaceletsFunctions {

private static Quote lastQuote;

private static Quotes quotesList;

private static Quotes getQuotes() {

if (quotesList == null) {

// fill the quotes list from a file or something

}

return quotesList;

}

public static String getQuoteOfTheDay() {

lastQuote = getQuotes().getRandomQuote();

return lastQuote.getText();

}

public static String getAuthorOfTheDay() {

if (null == lastQuote) {

return "";

} else {

return lastQuote.getAuthor();

}

}

}

We assume that there is a Quotes class that can return a random Quote object. A
Quote object has both a getText() method and a getAuthor() method. The full
source code of this example is available for download at my website (http://www.
bartkummel.net) and contains the full implementation, including the code to read
the quotes from an XML ile.

http:///

Facelets

[68]

Next, we have to deine the highlighted methods as static EL functions. This can be
done in the mias.taglib.xml ile that we created in the previous section:

<function>

<function-name>getQuoteOfTheDay</function-name>

<function-class>

inc.monsters.mias.FaceletsFunctions

</function-class>

<function-signature>

java.lang.String getQuoteOfTheDay()

</function-signature>

</function>

<function>

<function-name>getAuthorOfTheDay</function-name>

<function-class>

inc.monsters.mias.FaceletsFunctions

</function-class>

<function-signature>

java.lang.String getAuthorOfTheDay()

</function-signature>

</function>

Note that all class names—including the class names of classes from the Java
API—are fully qualiied class names. In this example, the methods do not accept
any arguments, but it is possible to accept arguments–simply put the types of the
arguments in function-signature. Remember to use fully qualiied names, unless
you’re using primitive types.

There isn’t much more to discuss about deining static functions. Let’s have a look
instead at how we can use them. We can now add the quote of the day to the login
page, as shown in the following example:

<ui:composition template="templates/template.xhtml">

<ui:define name="title">Login</ui:define>

<ui:define name="content">

<h:form id="login">

<h:panelGrid columns="4">

<mias:field id="userName" bean="#{loginBean}"

required="true" minLength="6" />

<mias:field id="password" bean="#{loginBean}"

required="false" minLength="3"

secret="true" />

<h:outputLabel value="" />

<h:commandButton value="OK"

action="#{loginBean.login}" />

http:///

Chapter 3

[69]

</h:panelGrid>

</h:form>

<i>

<h:outputText value="#{mias:getQuoteOfTheDay()}" />

</i>

<h:outputText value="#{mias:getAuthorOfTheDay()}" />

</ui:define>

</ui:composition>

As you can see, we can now call our static methods as we would call any other
Expression Language function. This feature can be used in various ways. A common
use is to create a function that checks whether a user has a certain role. By returning
a boolean, such a method can be used to enable or disable certain components. Static
functions can also be used for various internationalization tasks, or to create all sorts
of functions that you are missing in the standard Expression Language.

Using inline texts
Facelets is, in a lot of ways, more “relaxed” than JSP as a view technology for JSF.
One of the ways is the way we can use inline texts. With JSF, you always need
a component to render text on the output. This can make our page deinitions
more complicated than necessary. Facelets will keep the XHTML tags that we
mix with our JSF components, and will also retain any plain texts. (This is called
content interweaving.) This means that we no longer need JSF components for
rendering static elements on a page. We can even incorporate some dynamic or
internationalized texts, because Facelets allows us to use Expression Language
within inline texts. This means, the quote of the day example from the previous
section can be rewritten in a more elegant way, as follows:

<ui:composition template="templates/template.xhtml">

<ui:define name="title">Login</ui:define>

<ui:define name="content">

<h:form id="login">

<h:panelGrid columns="4">

<mias:field id="userName" bean="#{loginBean}"

required="true" minLength="6" />

<mias:field id="password" bean="#{loginBean}"

required="false" minLength="3"

secret="true" />

<h:outputLabel value="" />

<h:commandButton value="OK"

action="#{loginBean.login}" />

</h:panelGrid>

http:///

Facelets

[70]

</h:form>

<i>#{mias:getQuoteOfTheDay()}</i>

#{mias:getAuthorOfTheDay()}

</ui:define>

</ui:composition>

Of course, this feature should be used wisely. For most dynamic content, a JSF
component (or, of course, a composition component) is the right answer. But there
are cases, as we just saw, where some dynamically-generated inline text is more
elegant.

Facelets tags overview
This section provides an overview of all the tags in the Facelets namespace. This is a
useful reference. Some tags are not covered in the previous sections. You don’t need
these (not previously covered) tags to get started with Facelets, but they may come in
handy for advanced users. These tags are given a slightly longer description here.

<ui:component> tag
The <ui:component> tag is nearly the same as the <ui:composition> tag. It can be
used to make a composition component out of several JSF components, as discussed
in the Creating and using composition components section of this chapter. The difference
between the <ui:component> tag and the <ui:composition> tag is that the former
adds the composed components as one single component to the JSF component tree,
whereas the latter adds every component of the composition to the tree separately.

This can be used in combination with components that depend on the number of child
components that they have, such as the <h:panelGrid> component. If you compose
a composition component out of three components, these components will get a
separate cell each in the generated grid if we use <ui:composition> tag. But if we use
<ui:component> tag instead, the three components will be added to a single cell. If
we replace <ui:composition> tag with <ui:component> tag in our field.xml and
render the login page without changing it, it will look like the following image:

The reason for this is that the label, input ield, required indicator, and message
component have been added as a single component to the JSF component tree.
This means that the <h:panelGrid> component counts them as one component.
Of course, this isn’t very useful in this example, but it can be useful in some cases.

http:///

Chapter 3

[71]

As the <ui:component> tag adds its children as a component to the JSF component
tree, the component can be bound to a backing bean by using the binding attribute.
This means that we can access the composition component from within our Java
code, just as any other JSF component.

The following are the attributes of the <ui:component> tag:

•	 template: The URI where the template can be found. For example,
templates/template.xhtml.

•	 binding: An optional bean variable to which the generated component
will be bound.

<ui:composition> tag
The <ui:composition> tag can be used to create a composition component out
of multiple JSF components. There can only be one <ui:composition> tag in a
given ile. Everything that is outside the <ui:composition> tag will be ignored by
Facelets. More information, and an example, can be found in the Creating and using
composition components section of this chapter.

The following is the only attribute of <ui:composition> tag:

•	 template: The URI where the template can be found. For example,
templates/template.xhtml.

<ui:debug> tag
The <ui:debug> tag can be used to enable the debug feature of Facelets and assign
a shortcut key to it. Adding the following code to any page will enable the debug
feature on that page:

<ui:debug hotkey="d" rendered="true"/>

In this example, the shortcut key for activating the debug window is
CTRL + SHIFT + D. Any other letter can be used. If the rendered attribute is set to
false, the debug feature will be disabled. This is useful if you want to dynamically
enable or disable the debug feature with Expression Language.

The following are the attributes of <ui:debug> tag:

•	 hotkey: Deines which key to use (in combination with CTRL and SHIFT)
for activating the debug window

•	 rendered: Can be set to false to disable the debug functionality

http:///

Facelets

[72]

<ui:decorate> tag
The <ui:decorate> tag is an alternative to the <ui:composition> tag, for use with
a template. In the Using the template section, we used the <ui:composition> tag with
the template attribute to tell Facelets to use the template that we created earlier. A
side effect of the <ui:composition> tag is that all of the code outside this tag will be
ignored by Facelets. Most of the time, this is perfectly ine, but sometimes we might
want to add content before or after the template. This could be the case if we want to
add extra information to the XHTML head, which is already deined in the template.
Suppose we want to add a meta tag to our head, we could change the example from
the Using the template section to the following:

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core">

<head>

<meta name="keywords" content="login,mias"/>

</head>

<body>

<ui:decorate template="templates/template.xhtml">

<ui:define name="title">Login</ui:define>

<ui:define name="content">

<!-- page content left out for brevity -->

</ui:define>

</ui:decorate>

In this example, Facelets will merge the elements from the <head> section of
the template with the elements from this page. However, care should be taken
if we had added a <title> tag to the <head> tag. In this example, the title of the
template would be overwritten by the title set in our example page.

The following is the only attribute of the <ui:decorate> tag:

•	 template: The URI where the template can be found. For example
templates/template.xhtml.

<ui:deine> tag
As we have seen in the Using the template section, the <ui:define> tag is used to
deine named content that is to be inserted in a template. The name given in the name
attribute should match the name of a <ui:insert> tag in the template.

http:///

Chapter 3

[73]

The following is the only attribute of the <ui:define> tag:

•	 name: The name of the corresponding <ui:insert> tag where the deined
content should be inserted

<ui:fragment> tag
The <ui:fragment> tag is to the <ui:component> tag what the <ui:decorate>
tag is to the <ui:composition> tag. So, the <ui:fragment> tag will add all of its
children to the component tree as a single component, just like <ui:component> tag
does. But instead of ignoring everything outside the tag, as the <ui:component>
tag does, this tag will cause everything outside of the tag to be rendered just as the
<ui:decorate> tag does. To minimize the confusion, the following table gives an
overview of the four ways to add components to the tree.

Everything outside
the tag is ignored

Wraps children in a
single component

binding
supported

<ui:composition> Yes No No
<ui:component> Yes Yes Yes
<ui:decorate> No No No
<ui:fragment> No Yes Yes

To summarize, one could say that <ui:composition> tag is, most of the time,
the best solution for composition components. The <ui:component> tag can be
used if a composition component should act more like a single component. The
<ui:decorate> tag is useful if we want to override things in a template but we don’t
have an appropriate <ui:insert> “hook” for it. The <ui:fragment> tag can be used
in the rare case that we want to create some sort of “on the ly” component.

The following are the attributes of the <ui:fragment> tag:

•	 id: An optional unique ID for the component that will be generated.
If omitted, Facelets will generate a unique ID for you.

•	 binding: An optional bean variable to which the generated component
will be bound.

http:///

Facelets

[74]

<ui:include> tag
The <ui:include> tag includes other iles. This is very useful when creating a
template where some parts of the template are deined in a separate ile, as discussed
in the Creating a template section of this chapter.

The following is the only attribute of the <ui:include> tag:

•	 src: The URI of the ile to include

<ui:insert> tag
The <ui:insert> tag is used in a template to generate the placeholders where
content is substituted when the template is used. See the Creating a template section
of this chapter for more information.

Following is the only attribute of the <ui:insert> tag:

•	 name: The name that a <ui:define> component can refer to

<ui:param> tag
The <ui:param> tag can be used instead of the <ui:define> tag. Whereas the
<ui:define> tag passes content snippets to the template, the <ui:param> tag
passes only values. The value to be passed has to be speciied in the value attribute.

An extra feature of the <ui:param> tag is that it can be used in combination with
the <ui:include> tag. For example, if we want to pass the title of the page to our
header.xhtml ile, we could use the following code:

<ui:include src="header.xhtml">

<ui:param name="title" value="MIAS"/>

</ui:include>

We can now use title as an Expression Language variable in the header.xhtml.

Following are the attributes of the <ui:param> tag:

•	 name: The name of the variable by which the value will be referred to
•	 value: The value to bind to the variable

http:///

Chapter 3

[75]

<ui:remove> tag
The <ui:remove> tag can be used to exclude a part of the ile from the result. There’s
not much use for this tag other than quickly disabling a set of lines for testing or
debugging. The tag has no attributes. Everything inside of the <ui:remove> tag will
be ignored, and everything outside of it will be rendered normally.

<ui:repeat> tag
The <ui:repeat> tag is a replacement for the <c:forEach> tag from the JSTL.
Although most of the JSTL can be used without any problems with Facelets, the
<c:forEach> tag can be problematic. Therefore, the <ui:repeat> tag has been
introduced. For example, if we want to create a list of all users, we could use the
following code:

<ui:repeat value="#{loginBean.users}" var="user">

#{user}

</ui:repeat>

Summary
In this chapter, we saw the many improvements that Facelets introduces over JSP.
We saw that it doesn’t make any more sense to use JSP as view technology for
new JSF projects. Creating templates with Facelets was introduced, and we saw
how we can use a previously-generated template. We also looked into generating
composition components, which turned out to be a very powerful feature of Facelets.

We saw how composition components can help us to obey the DRY paradigm. We
saw that composition components, once created, can be used in the same way as any
other JSF component. Some more advanced and very useful features, such as inline
texts and static functions, were also introduced. The chapter concluded with an
overview of all speciic Facelets tags.

You should understand that this is only an introduction to Facelets. There is a lot
more to Facelets than can be covered in a single chapter.

In the next chapter, we will dive into the extensive collection of advanced JSF
components that MyFaces Tomahawk has to offer.

http:///

http:///

Tomahawk
Tomahawk is the set of components that was originally developed together with
the irst version of MyFaces Core. Tomahawk was designed to extend the standard
JSF components in two ways. First, all of the existing standard components were
extended with some extra features; second, some extra components were added to
expand the possibilities even further. This chapter focuses on how the Tomahawk
components extend the JSF standard. We only cover the JSF 1.2 version of Toma-
hawk. And, of course, we will pay some extra attention to learn how to use the
Tomahawk components in conjunction with Facelets.

After reading this chapter, you will be able to:

• Download and conigure Tomahawk.
• Create feature-rich data tables by using Tomahawk components. You can use

features such as data pagination, inline details, row banding, and so on.
• Create inline and pop-up calendars to let users choose a date on

an input form.
• Create ile upload capabilities on an input form.
• Use the CAPTCHA component to make sure that your input form is illed

in by a human, and not by a machine.
• Use some specialized validators to validate email addresses, credit card

numbers, and to check for equality.
• Use the regular expression validator for all other validation needs.

http:///

Tomahawk

[78]

Setting up Tomahawk
To use the Tomahawk component set, we irst have to do some set up. The following
steps have to be taken:

1. Download Tomahawk and add it to our project
2. Make some settings in the web.xml ile
3. Add some extra libraries to resolve a few dependencies

The following subsections will focus on each of these tasks.

Downloading Tomahawk

http:///

Chapter 4

[79]

Coniguring web.xml
Tomahawk uses a special Extensions Filter. This ilter is used to serve common re-
sources such as images and JavaScript iles. These resources are needed by some of
the components, and are provided in the Tomahawk JAR ile. The Extensions Filter
can provide resources transparently; it doesn’t matter if the resources are located as
separate iles within the project or in a JAR ile in the classpath. We have to add some
lines to our web.xml ile to make this extensions ilter work.

First, we have to deine the ilter itself:

<filter>

<filter-name>MyFacesExtensionsFilter</filter-name>

<filter-class>

org.apache.myfaces.webapp.filter.ExtensionsFilter

</filter-class>

<init-param>

<param-name>uploadMaxFileSize</param-name>

<param-value>20m</param-value>

</init-param>

</filter>

The filter-name can be anything, but it’s a good idea to choose a descriptive name.
The filter-class is the fully-classiied name of the Filter implementation that
is provided by Tomahawk. This class can be found in the Tomahawk JAR. The
ExtensionsFilter is also used to handle ile uploads for the <t:inputFileUpload>
component. Therefore, we have to set the maximum ile size for uploads here. Any
ile size can be set, and the following sufixes can be used:

• No sufix for bytes
• k for kilobytes
• m for megabytes
• g for gigabytes

Now that the ilter is deined, we have to add at least one ilter mapping to make it
work. Tomahawk uses two ilter mappings.

The irst ilter mapping looks like this:

<filter-mapping>

<filter-name>MyFacesExtensionsFilter</filter-name>

<servlet-name>Faces Servlet</servlet-name>

</filter-mapping>

http:///

Tomahawk

[80]

The filter-name value refers to the name that we deined in the ilter deinition. The
servlet-name refers to the name that we gave to our Faces Servlet. If you gave your
Faces Servlet another name, make sure that you use that name here. This mapping will
cause all pages that are handled by the Faces Servlet to pass the through the Extensions
Filter. This enables the Extensions Filter to scan each page for links to resources, and
then change those links so they point to the Extensions Filter.

In the second ilter mapping, we need to map a URL preix to the Extensions Filter.
This will cause all requests that start with this pattern to be routed directly to the
Extensions Filter. The Extensions Filter can then serve up the requested resource.
This ilter mapping looks like this:

<filter-mapping>
<filter-name>MyFacesExtensionsFilter</filter-name>
<url-pattern>

/faces/myFacesExtensionResource/*
</url-pattern>

</filter-mapping>

Again, the filter-name should match the name deined in the ilter deinition. The
url-pattern can be anything, but it should start with the pattern that is used for
the Faces Servlet (/faces/* in our case). It is also a good idea to have some relation
between the name of the ilter and the second part or the URL pattern. Now we’re
ready to go!

Resolving dependencies
Various Tomahawk components depend on one or more external libraries, which are
not distributed within the Tomahawk package. Unfortunately, these dependencies
are not very well documented by the Tomahawk project itself. Of course, you don’t
need to download the dependencies yourself if you’re using Maven. But if you're
not, you can refer to the following table to resolve the dependencies manually:

Library Version Needed by
Apache Batik 1.6 <t:captcha>
Apache Commons IO 1.3.2 <t:inputFileUpload>

Apache Commons Validator 1.3.1 Tomahawk validator components

The listed versions apply to Tomahawk 1.1.9. You should understand that different
versions of Tomahawk may depend on different versions of the listed libraries, or even
on other libraries. More information can be found in the section of this chapter where
the “needed by” components are discussed. We’re inished coniguring Tomahawk
now, so let’s have a look at the Tomahawk components, in the next sections.

http:///

Chapter 4

[81]

Using extended versions of standard
components
As mentioned in the introduction, Tomahawk offers an extended version of every
component that is in the standard JSF component set. The following table lists the
extra attributes that can be used on all Tomahawk components:

Attribute Type Description

disabledOnClientSide boolean If the standard disabled attribute is set
to true, the component will be disabled
and the value of the component will not be
submitted on a postback of the containing
form. This disabledOnClientSide
attribute will not only render a disabled
component, but will also render a hidden
input ield, causing the value of the
component to be submitted with the con-
taining form.

displayValueOnly boolean If set to true, only the value of the com-
ponent is rendered, without an input
widget. Of course, <h:outputText> tag
could be used instead, but by using this
attribute, this behavior can be activated
through Expression Language.

displayValueOnlyStyle String This is the equivalent of the
standard style attribute when
displayValueOnly is true.

displayValueOnlyStyleClass String This is the equivalent of the standard
styleClass attribute when
displayValueOnly is true.

enabledOnUserRole String This attribute will render the component
on which it is used as disabled if the user
is not in the given role. This assumes that
standard Java EE security mechanisms
(JAAS) are in use.

http:///

Tomahawk

[82]

Attribute Type Description

visibleOnUserRole String This attribute will render the component
invisible if the user does not have the given
role assigned to them. This assumes that
standard Java EE security mechanisms
(JAAS) are in use.

forceIdIndex boolean The Tomahawk components that are in a
repeating part of the page (such as a list or a
data table) and have forceId set to true,
will have a numeric row index appended
to their id, to guarantee the uniqueness
of the ID. If forceIndex is set to false,
the row index will not be appended.
However, this does not seem to work with
Facelets, as Facelets generates an error
before the HTML is rendered if a duplicate
id is found inside a repeating piece of the
component tree, even if forceIdIndex is
true.

As a conclusion, one can say that today most of the functionality that the extra
attributes can be achieved with Facelets. For example, the behavior of the
displayValueOnly attribute can be mimicked by using a Facelets composition
component that renders an <h:outputText> component or an input component,
depending on a condition. Although the use of displayValueOnly might seem
simpler, the advantage of the solution with Facelets is that it can be used with all
sorts of components, and not just the Tomahawk components.

For the user-role related attributes, there is a good alternative too. There is a
JSF-Security project (see http://jsf-security.sourceforge.net/) that extends
the JSF expression language with a securityScope, making it easy to write,
for example:

<h:inputText enabled="#{securityScope.userInRole['xyz']}">

instead of:
<t:inputText enabledOnUserRole="xyz">

Again, the solution that uses enabledOnUserRole seems a little shorter and
simpler, but the solution that uses JSF-Security also works with non-Tomahawk
components. In general, one could say that the extra attributes that Tomahawk adds
to the standard components were perhaps useful in the early days of JSF when the
Tomahawk component set was designed. But nowadays, there are more universal
solutions that work with any JSF component. Far more interesting are some of the
extended components, which we’ll explore in the next section.

http:///

Chapter 4

[83]

Extended components
The extended components are the more interesting part of Tomahawk.
Unfortunately, the extended components do not seem to be designed as a
coherent set. It seems more like a collection of useful components, designed by
different persons, on different occasions. But that does not mean that none of
these components are useful! This section covers the most interesting extended
components from the Tomahawk set. In addition, some components that are of no
use when using Facelets are listed, to save you the work of iguring out yourself that
you don’t need them.

<t:aliasBean> and <t:aliasBeanScope>
components
The <t:aliasBean> and <t:aliasBeanScope> components allow us to deine one
or more aliases for beans or literal values. The alias name can be referred to from all
the children of the component. These two components can be seen as a work-around
for the lack of such a feature in JSF. However, Facelets offers us better solutions, such
as composition components and templates. So when using Facelets, there’s no need
for the <t:aliasBean> and <t:aliasBeanScope> components.

<t:buffer>
The <t:buffer> component is another example of a work-around that we don’t
need anymore. In JSF 1.1, all components were created and rendered in the order
in which they appeared in the JSF tree. This meant that it was not possible to refer
to a component that was lower on the page. Tomahawk’s <t:buffer> component
provided a work-around for that, but this issue was ixed in JSF 1.2, so we don’t need
the <t:buffer> component anymore.

<t:captcha> component
This component will render a so-called CAPTCHA (Completely Automated Public
Turing test to tell Computers and Humans Apart) image. As the acronym says, this
can be used as a way to verify that information on a page was really entered by a
human and not some robot that tries to post spam. This method is often used by
online publishing systems and discussion forums. If you’re building an application
for internal use, it probably doesn’t make sense to use CAPTCHA.

In case we need it, here’s how to use Tomahawk’s <t:captcha> component.
The component can be added to a page like this:

<t:captcha captchaSessionKeyName="#{bean.sessionKeyName}" />

http:///

Tomahawk

[84]

This will render an image with garbled text. An input ield where the user can enter
the code should be added manually. The component will put the “correct answer” in
the given variable in the bean. If the expression in the captchaSessionKeyName does
not point to a variable in a bean, a variable with the given name will be created in the
session scope.

As an example, we could add a CAPTCHA to the MIAS login page. The
<h:panelGrid> section on that page can be altered as shown in the following code:

<h:panelGrid columns="4">

<mias:field id="userName" bean="#{loginBean}"

required="true" minLength="6" />

<mias:field id="password" bean="#{loginBean}"

required="false" minLength="3" secret="true" />

<h:outputLabel />

<t:captcha captchaSessionKeyName="captcha" />

<h:outputLabel />

<h:outputLabel />

<mias:field id="captcha" bean="#{loginBean}"

required="true" >

<f:validator validatorId="mias.captchaValidator" />

</mias:field>

<h:outputLabel />

<h:commandButton value="OK" action="#{loginBean.login}" />

<h:outputLabel />

<h:outputLabel />

</h:panelGrid>

We used empty <h:outputLabel> components to put the image in the correct
column of the grid. Note that we don’t use a bean variable, but let the <t:captcha>
component put the correct answer in a session variable. We added an extra input
ield, using our <mias:field> composition component, where the user has to enter
the text that he sees in the CAPTCHA image. We created a custom validator, which
we added to the input ield. The custom validator compares the session variable with
the user input. The validator’s validate() method is implemented as follows:

public void validate(FacesContext context,

UIComponent toValidate,

Object o)

throws ValidatorException {

boolean valid = true;

String value = "";

if (null != o && o instanceof String) {

http:///

Chapter 4

[85]

Most of the code is just standard validator stuff. The interesting line is highlighted.
The method uses a object to retrieve the value of the
session variable, as follows

When using this component, you might run into a situation where the image is not
rendered. The tip we are about to see tells us how this can be resolved.

Image not rendered?
The component uses some AWT classes to render the
image. Using Abstract Window Toolkit (AWT) on an application server
may cause problems because AWT will try to access the display of the
machine, which may not be allowed (the server may not have a display
at all). An indication that you’re having this problem is

 in the log iles of the application server, with the
following message: Can’t connect to X11 window server using ’:0.0’ as
the value of the DISPLAY variable.
As it is not necessary to use the display, you can conigure the Java
Virtual Machine (JVM) on which the application server is running to
be “headless”. In this case, AWT will not try to open the display. To do
this, use the JVM option. Depending on
which application server you’re using, you’ll have to add this option via
some administration interface, or you’ll have to edit the startup script for
the application server.

value = (String) o;

if (!value.equals(getCaptcha(context))) {

valid = false;

}

} else {

valid = false;

}

if (!valid) {

// throw ValidatorException

}

}

Most of the code is just standard validator stuff. The interesting line is highlighted.
The getCaptcha() method uses a FacesContext object to retrieve the value of the
session variable, as follows

private String getCaptcha(FacesContext context) {

return (String)context.getExternalContext()

.getSessionMap().get("captcha");

}

When using this component, you might run into a situation where the image is not
rendered. The tip we are about to see tells us how this can be resolved.

Image not rendered?
The <t:capthca> component uses some AWT classes to render the
image. Using Abstract Window Toolkit (AWT) on an application server
may cause problems because AWT will try to access the display of the
machine, which may not be allowed (the server may not have a display
at all). An indication that you’re having this problem is java.lang.
InternalError in the log iles of the application server, with the
following message: Can’t connect to X11 window server using ’:0.0’ as
the value of the DISPLAY variable.
As it is not necessary to use the display, you can conigure the Java
Virtual Machine (JVM) on which the application server is running to
be “headless”. In this case, AWT will not try to open the display. To do
this, use the -Djava.awt.headless=true JVM option. Depending on
which application server you’re using, you’ll have to add this option via
some administration interface, or you’ll have to edit the startup script for
the application server.

http:///

Tomahawk

[86]

http:///

Chapter 4

[87]

Setting up a data table
First, we have to create a new page called Kids.xhtml. To add a data table to this
page, we use the <t:dataTable> component. This component has several attributes,
of which the most important ones are:

• var: This attribute sets the name of the variable that will contain a data
object for each row in the table. This works just like the var attribute of the
standard JSF <h:dataTable> component. In our table, each row will show
the data for a speciic kid. So, kid seems to be a good name for our variable.

• value: This must be a JSF EL expression that evaluates to a list of rows.
The result of the expression can be of one of the following types:

° java.util.List

° java.sql.ResultSet

° javax.servlet.jsp.jstl.sql.Result

As our getKids() method returns a List of Kid objects, the value expression
can be something like #{kidsList.kids} in our case.

• rows: This attribute controls the pagination behavior of the data table. If this
attribute is not set (or is set to 0), then all of the rows in the data set will be
shown at once. This can be handy for small data sets. If this attribute is set to
a value larger than 0, then that value will be used as the maximum number
of rows that will be shown on a screen. The user will then have to use the
pagination controls to navigate through the pages. Our kid database contains
1,000 kids, so that will not it on a single screen. Let’s settle for 20 rows on a
screen in our example.

• id: This attribute gives a unique name to the table. This is necessary, for ex-
ample, for a <t:dataScroller> component to be able to refer to the table
(we will see this in detail in the Using pagination section). kids would be a
good ID for our table.

Combining all of this, our table component would look like this:

<t:dataTable var="kid" value="#{kidsList.kids}"

rows="20" id="kids">

http:///

Tomahawk

[88]

Adding columns to the table
Now that we have good values for the attributes of the <t:dataTable> component
itself, we’ll have to add column deinitions to our table; otherwise the table wouldn’t
be able to display any data. A column can be added by a <h:column> component or
a <t:column> component. The <t:column> component is an extended version of the
<h:column> component. One of the extra options that the Tomahawk variant of the
column component offers is the possibility to use column spanning. We will use this
option to have a single header ("Name") above the columns for irst name and last
name. A deinition of these columns would look like this:

<t:column headercolspan="2">
<f:facet name="header">

<h:outputText value="Name" />
</f:facet>
<h:outputText value="#{kid.firstName}" />

</t:column>
<t:column>

<h:outputText value="#{kid.lastName}" />
</t:column>

The headercolspan attribute is set to 2, which forces the header of the irst column
to span over the irst two columns of the table. The header itself is deined within
the <f:facet> component with the name header. In this case, the Name literal text
is used. An <h:outputText> component is used to render the value for the column.
In the irst column, the value is deined by a piece of JSF EL—#{kid.firstName}.
In this piece of EL, kid is the variable that was deined by the var attribute of the
<t:dataTable> component. As we know that this will be a Kid object, we can use
the firstName and lastName attributes to get the data from the object. (At runtime,
this will cause the getFirstName() and getLastName()methods to be called on
each Kid object in the List.) The second column deinition does not have a header
facet, as the header of the irst column will also span over this column.

If we added all of the columns to our table in this way, the column deinition section
in our page would be rather lengthy. We would also have some repetition, as the
deinition of the column header would contain a name that is very similar to the
name of the bean property that gives us our data. It’s probably a good idea to use
a construction as we did for the input ields on the login page, creating a Facelets
composition component, and smart usage of the resource bundle. Based on the code
that we just saw, the main part of our composition component deinition will look
like the following code:

<t:column headercolspan="#{headerColSpan}">
<f:facet name="header">

<h:outputText value="#{msg[headerName]}" />
</f:facet>

http:///

Chapter 4

[89]

<h:outputText value="#{bean[columnName]}">
<ui:insert />

</h:outputText>
</t:column>

The headerColSpan variable is used to be able to set column spanning. We should
add some extra code to set a smart default value (1) in case no headerColSpan is
set. The headerName variable is used to look up the text for the column header in the
message bundle. Some extra conditional code should set the value of headerName
to the same value as columnName if no headerName is set. In this way, we can leave
out a separate header name for most columns and the header text will be looked up
in the message bundle by using the columnName. The bean variable should be set to
the object containing the row data (kid in our case). The <ui:insert> component
is added to be able to add some extra components, such as converters, within the
<h:outputText> component.

We can use the code that we just saw to create a new column.xhtml ile. If we
register this ile in our mias.taglib.xml ile, and add the extra checks that we
just discussed to it, we can use our composition component to reduce the column
deinition to just a few lines of code:

<mias:column columnName="firstName" bean="#{kid}"
headerColSpan="2" headerName="name" />

<mias:column columnName="lastName" bean="#{kid}" />
<mias:column columnName="age" bean="#{kid}" />
<mias:column columnName="lastScared" bean="#{kid}" />
<mias:column columnName="braveness" bean="#{kid}">

<f:convertNumber minFractionDigits="1"
maxFractionDigits="1"
minIntegerDigits="1"
maxIntegerDigits="2" />

</mias:column>

The <f:convertNumber> component is added to format the double that is returned
by the getBraveness() method, so that only one decimal place is shown.

Using pagination
As we set the rows attribute of our table to 20, only the irst 20 rows of data will
be shown. To give the user the opportunity to browse through all of the data,
we need to add pagination controls. For this very purpose, Tomahawk has the
<t:dataScroller> component. Let’s have a look at the most important attributes of
this component:

• for: This attribute is used to associate the <t:dataScroller> component
with a <t:dataTable> component. The id of the <t:dataTable> com-
ponent should be used, which in our case is kids.

http:///

Tomahawk

[90]

• paginator: By default, the <t:dataScroller> component will show a
paginator, which is a list of page numbers. The user can click on a page
number to jump directly to that page. The paginator is also used to indicate
the current page, giving the user a sense of where he or she is within the
data set. By setting this attribute to false, the paginator will be omitted.
However, this is not advisable, as there will be no indication of the current
position within the dataset.

• paginatorMaxPages: This is the maximum number of pages that will be
shown in the paginator. The paginator will always try to position the current
page in the center with the same number of pages before and after the current
page. (Of course, this is not possible for the irst few and last few pages of the
set.) Therefore, choosing an odd number of pages will give the best results.

• fastStep: The <t:dataScroller> component has the possibility to add
controls for skipping more than one page at a time, which is called “fast
forward” and “fast rewind”. This attribute deines how many pages are
skipped when this control is used. It makes sense to choose a value near the
paginatorMaxPages value because in that case, the user can use the “fast”
controls to skip beyond the boundary of the visible page numbers.

The controls for browsing have to be added via facets. The <t:dataScroller>
component deines six facets:

• first and last are used to skip to the irst or last page of the set.
• previous and next are used to browse to the previous or next page in

the set.
• fastrewind and fastforward are used to skip a number of pages. How

many pages are to be skipped is set by the fastStep attribute of the
<t:dataScroller> component.

If a facet is left out, the associated control will not be added. For smaller data sets,
fastrewind and fastforward can probably be left out. The contents of the facets
will be shown as a link within the web page. If a facet contains only text, a simple
link containing the given text will be added. Although texts such as “previous” and
“last” could be used, this is probably not the most intuitive solution for the user. It
makes sense to use some arrow-shaped images instead. In our example, the code
could look like this:

<t:dataScroller id="scroller" for="kids" fastStep="10"

paginatorMaxPages="9">

<f:facet name="first">

<t:graphicImage url="../images/start.png"

border="0" />

</f:facet>

http:///

Chapter 4

[91]

<f:facet name="last">

<t:graphicImage url="../images/end.png"

border="0" />

</f:facet>

<f:facet name="previous">

<t:graphicImage url="../images/back.png"

border="0" />

</f:facet>

<f:facet name="next">

<t:graphicImage url="../images/forward.png"

border="0" />

</f:facet>

<f:facet name="fastforward">

<t:graphicImage url="../images/fastforward.png"

border="0" />

</f:facet>

<f:facet name="fastrewind">

<t:graphicImage url="../images/fastbackward.png"

border="0" />

</f:facet>

</t:dataScroller>

Note that a <t:graphicImage> component is used to render an image within the
facets. The border attribute is used to remove the border from the image. As the
image is formatted as an HTML hyperlink, a border will be added by default. (Of
course, it would be better to remove the border by using CSS, because then we
wouldn’t have to repeat the border="0" setting for each image.)

Changing the looks of the data table
A data table will be rendered as a standard XHTML table with table rows (<tr>) and
table cells (<td>). We have to add some CSS styling to make these tables look good
and (thus) easy to read. Data tables are not the only components that use XHTML
tables. So it is probably not a good idea to deine CSS styles for all XHTML <table>
elements and their children. Tomahawk offers a lot of possibilities to set CSS classes
for components. We can use these classes to apply the CSS styles to only those
XHTML elements that we want the styles to be applied to.

http:///

Tomahawk

[92]

This section focuses on giving our components the correct classes. Diving into the
details of CSS styling goes beyond the scope of this book. However, a basic example
can be found in the source code for this book. Tomahawk components not only have
the possibility to add classes to components, but also to provide inline CSS styling.
As it is never a good idea to mix style and structure, we will focus on using classes.

Styling the data table itself
Although it is possible to give every XHTML element an ID, it is probably neither
desirable nor necessary. If we start out by giving our data table a CSS class, we can
use this class to refer to both the table and all of its child XHTML elements. We add a
CSS class to our table by changing the table deinition to:

<t:dataTable var="kid" value="#{kidsList.kids}"
rows="20" id="kids"
styleClass="tDataTable">

We can now use the name tDataTable in our CSS ile in order to apply some styling
to the table:

.tDataTable {
border: 2px solid black;

}

Now, if we want to set the margin and padding for the cells of the table, we don’t
have to give the cells a class just for this. We can simply use the class of the parent
table element:

.tDataTable td {
padding: 2px;
margin: 2px;

}

However, there are some things for which we do need some extra CSS classes.
A common way to make data tables more readable is to apply a different
background color to odd and even rows. The Tomahawk <t:dataTable>
component uses the same solution as the standard <h:dataTable> component—we
can deine a comma-separated list of style classes:

<t:dataTable var="kid" value="#{kidsList.kids}"
rows="20" id="kids"
styleClass="tDataTable"
rowClasses="rowOdd,rowEven">

http:///

Chapter 4

[93]

The style classes will be applied to the <tr> elements repeatedly. We are not limited
to two-style classes. For example, if we add some extra space after each ifth row, we
could even change the rowClasses value to:

rowClasses="rowOdd,rowEven,rowOdd,rowEven,rowFifth,

rowEven,rowOdd,rowEven,rowOdd,rowTenth"

For columns, there is comparable functionality. This is very handy, for example, to
change the text alignment for numeric columns. The name of the attribute is not hard
to guess—columnClasses. To right-align the age, scare date, and braveness columns
in our example, we can expand the table deinition to:

<t:dataTable var="kid" value="#{kidsList.kids}"
rows="20" id="kids"
styleClass="tDataTable"
rowClasses="rowOdd,rowEven"
columnClasses="textColumn,textColumn,numberColumn,

numberColumn,numberColumn">

Styling the data scroller
Just like the <t:dataTable> component, the <t:dataScroller> component has a
styleClass attribute. The data scroller will be rendered as a single row XHTML
table. The CSS class will be applied to that table. We can use the data scroller’s class
to apply extra formatting, such as slightly smaller text, no coloring for followed links,
and so on.

To apply a different style to the number of the current page, the <t:dataScroller>
component has an extra attribute—paginatorActiveColumnClass. The given class
name will be applied to the <td> element in the single row table that contains the
number of the current page.

http:///

Tomahawk

[94]

Looking at the result
Applying the discussed styling to our data table will result in a stylish, readable
table, as can be seen in this screenshot:

Using advanced data table features
In many data-centric applications, just displaying data “as is” in a stylish table isn’t
enough. Luckily, Tomahawk offers us a lot of advanced data table features, which
we will explore in this section.

Sorting
A very common requirement is that tables need to be sortable. A lot of users expect
data to be sortable on a speciic column by clicking on that column’s header.
Tomahawk makes it very easy to implement a sorting feature by taking much of
the work out of our hands. The simplest way to make a table sortable is by setting
the sortable attribute of the <t:dataTable> component to true. In this case,
the <t:dataTable> component will make every column in the table sortable.
Unfortunately, this feature does not work if a Facelets composition component is
used to deine each column, which is the case in our example. This is due to the way
the auto sorting feature is implemented in Tomahawk, as explained in the following
information box.

http:///

Chapter 4

[95]

http:///

Tomahawk

[96]

<c:when test="#{sortable}">

<t:commandSortHeader columnName="#{columnName}"

arrow="true"

propertyName="#{columnName}">

<h:outputText value="#{msg[headerName]}" />

</t:commandSortHeader>

</c:when>

<c:otherwise>

<h:outputText value="#{msg[headerName]}" />

</c:otherwise>

</c:choose>

</f:facet>

<h:outputText value="#{bean[columnName]}">

<ui:insert />

</h:outputText>

</t:column>

In the irst highlighted line, we simply pass the value of sortable to the
<t:dataTable> component. The second highlighted line is a <c:when> test from
the standard JSTL library. The code within that block will only be executed if
sortable is true. If sortable is not true, the code in the <c:otherwise> block
will be executed. In this way, the <t:commandSortHeader> component will only be
added to the column header when sortable is true. Note how we reuse the value
of columnName for both the columnName attribute and the propertyName attribute.
The <t:ouputText> component that renders the contents of the column heading is
showing up twice in the code, which is not DRY, but there seems to be no elegant
way to prevent this.

We can now update our column deinitions to set which columns are sortable and
which are not:

<t:dataTable var="kid" value="#{kidsList.kids}"

rows="20" id="kids" styleClass="tDataTable"

rowClasses="rowOdd,rowEven"

columnClasses="alignLeft,alignLeft,alignRight,

alignRight,alignRight">

<mias:column columnName="firstName" bean="#{kid}" />

<mias:column columnName="lastName" bean="#{kid}"

sortable="true" />

<mias:column columnName="age" bean="#{kid}"

sortable="true" />

<mias:column columnName="lastScared" bean="#{kid}"

sortable="true" />

<mias:column columnName="braveness" bean="#{kid}"

sortable="true">

http:///

Chapter 4

[97]

http:///

Tomahawk

[98]

Showing details inline
A nice feature of Tomahawk’s <t:dataTable> component is the possibility to show
extra detailed information per row within the table. This can either be used to show
related records if a relational database is used, or just some additional ields that are
not shown as table columns. We are going to take the latter approach to explore the
possibilities of this feature in our kids overview page.

There are currently two properties of our Kid object that are not showing in our
table—the birthDate and the country. Let’s add an inline detail view to show
those properties. First, we have to prepare our <t:dataTable> component to be
able to show inline details:

<t:dataTable var="kid" value="#{kidsList.kids}"

rows="20" id="kids"

styleClass="tDataTable"

rowClasses="rowOdd,rowEven"

columnClasses="alignLeft,alignLeft,alignRight,

alignRight,alignRight"

varDetailToggler="detailToggler">

We only have to declare a variable to which a “detail toggler” object will be
assigned—see the highlighted line in the previous code. We can use this to
dynamically show or hide the details on a per-row basis.

We also need an extra column where the show/hide link will appear for each
row. As this column will not show a property of a bean, we have to adapt our
column.xhtml a little to allow “custom” contents. We only have to change the
section where the cell contents are rendered:

<c:choose>

<c:when test="#{custom}">

<ui:insert />

</c:when>

<c:otherwise>

<h:outputText value="#{bean[columnName]}">

<ui:insert />

</h:outputText>

</c:otherwise>

</c:choose>

http:///

Chapter 4

[99]

We wrap this section in a <c:choose> tag and add a test to check if the custom
attribute is set to true. If so, we don’t add an <h:outputText> component, but just
accept all of the child components via a <ui:insert> tag—see the highlighted rows
in the previous code. The contents of the <c:otherwise> branch are the unchanged
lines that we had before this change. Now we can add the column for the show/hide
links in our Kids.xhtml page:

<mias:column columnName="details" custom="true">

<h:commandLink action="#{detailToggler.toggleDetail}">

<h:outputText value=

"#{detailToggler.currentDetailExpanded

? msg.hide : msg.show}"/>

</h:commandLink>

</mias:column>

The action attribute of the <h:commandLink> component takes care of calling the
toggleDetail property on the detailToggler object. (Remember, we assigned the
name detailToggler via the varDetailToggler attribute of the <t:dataTable>
component.) We use an EL conditional expression within the <h:ouptutText>
component to show different texts if the detail section is expanded.

Now the only thing we have to do is to deine what is to be displayed if the detail
section is expanded. For that, a facet is deined in the <t:dataTable> component.
We just have to ill it with some JSF code in order to render the contents of the
detail section:

<t:dataTable ...>

<f:facet name="detailStamp">

<h:panelGrid columns="4">

<mias:field id="birthDate" bean="#{kid}"

readOnly="true"/>

<mias:field id="country" bean="#{kid}"

readOnly="true"/>

</h:panelGrid>

</f:facet>

</t:dataTable>

http:///

Tomahawk

[100]

We added the facet to our <t:dataTable> component and added some code to it.
We decided to keep it relatively simple and just added a <h:panelGrid> component
and two <mias:field> tags. If we had used a relational database and wanted to
show related records, we could have added a second data table instead of the panel
grid. The following igure shows the adapted data table with two “expanded” rows:

Note that all rows are “collapsed” by default. Should you want to have all rows
“expanded” by default, you can add detailStampExpandedDefault="true" to
the <t:dataTable> component.

Linking to an edit form
What’s the use of an application if it isn’t possible to edit any data? Let’s see how we
can link to an edit form directly from our data table. In this way, the user can select
a row to edit and go to the edit form in just one click. We have to choose where to
add the link to the edit page. We can make one of the existing columns into a link or
add a new column with a dedicated edit link. Although the former method seems
eficient, it is not always clear to the user what will happen when he or she clicks on
the link. So let’s choose the latter method, adding an extra column.

http:///

Chapter 4

[101]

We again have to use the “custom” option of our <mias:column>
composition component:

<mias:column columnName="edit" headerName="emptyTableHeader"

custom="true">

<t:commandLink action="edit" immediate="true">

<h:outputText value="#{msg.edit}" />

<t:updateActionListener

property="#{editKidForm.selectedKid}"

value="#{kid}"/>

</t:commandLink>

</mias:column>

The contents of this column consists of a <t:commandLink> component, which
has two children. The irst child is an ordinary <h:outputText> component that
renders the text for the link. The second child (highlighted) is the interesting part.
The <t:updateActionListener> component will assign the value deined by the
value attribute to the variable deined by the property attribute. In this way, the
Kid object of the applicable row will be assigned to the selectedKid property of the
editKidForm object. For this to work, we have to deine a session scope managed
bean that has a selectedKid property and that can be used as backing bean for the
edit form. Let’s call this managed bean EditKidForm.java:

public class EditKidForm {

private Kid selectedKid;

public void setSelectedKid(Kid selectedKid) {

this.selectedKid = selectedKid;

this.firstName = selectedKid.getFirstName();

this.lastName = selectedKid.getLastName();

this.birthDate = selectedKid.getBirthDate();

this.age = selectedKid.getAge();

this.lastScared = selectedKid.getLastScared();

this.braveness = selectedKid.getBraveness();

this.country = selectedKid.getCountry();

}

...

}

(Note that only a part of the class is shown here.)

http:///

Tomahawk

[102]

The setSelectedKid() method both saves a reference to the Kid object and copies
all of the properties of the Kid object into private variables of the bean itself. We
can now use these private properties in our form. The reason that we don’t use the
properties of the Kid object in our form directly is that we don’t want the Kid object
to be updated if the page is submitted, but want it to be updated only if a speciic
action is performed. Therefore, we also implement an apply() method and a
save() method:

public String save() {
doApply();
return "ok";

}

public String apply() {
doApply();
return "apply";

}

private void doApply() {
if(selectedKid != null) {

selectedKid.setFirstName(firstName);
selectedKid.setLastName(lastName);
selectedKid.setBirthDate(birthDate);
selectedKid.setLastScared(lastScared);
selectedKid.setBraveness(braveness);
selectedKid.setCountry(country);
age = selectedKid.getAge();

}
}

Note that the value of age is reinitialized at the end of the doApply() method.
This is because it is a calculated value. Also note that the only difference between
save() and apply() is the String value that they return. This value is used to either
navigate back to the page with the table, or to stay on the edit page.

Now, only if the save() or apply() methods are called, the values of the form are
saved into the Kid object. Let’s see how we use this in our form. We will create a new
XHTML ile. Let’s call it EditKidForm.xhtml. The main content section of this ile
looks like the following code:

<h:panelGrid columns="4">
<mias:field id="firstName" bean="#{editKidForm}" />
<mias:field id="lastName" bean="#{editKidForm}" />
<mias:field id="birthDate" bean="#{editKidForm}" />
<mias:field id="age" bean="#{editKidForm}"

readOnly="true"/>
<mias:field id="country" bean="#{editKidForm}" />
<mias:field id="braveness" bean="#{editKidForm}" />
<h:outputLabel />

http:///

Chapter 4

[103]

<h:panelGroup>
<h:commandButton value="#{msg.apply}"

action="#{editKidForm.apply}"/>
<h:commandButton value="#{msg.ok}"

action="#{editKidForm.save}"/>
<h:commandButton value="#{msg.cancel}"

action="cancel" immediate="true" />
</h:panelGroup>
<h:outputLabel />
<h:outputLabel />

</h:panelGrid>

This is just a straightforward JSF data entry form, and no special Tomahawk features
are used here. To make the actions a bit clearer, please refer to the next image. This
image is a screenshot of the “Navigation Rule” view of the faces-config.xml ile
in Eclipse.

That's all there is to do for the edit form. Most of this is just standard JSF stuff. The
most important part is the use of the <t:updateActionListener> component, which
saves us the work of writing our own action listener. Note that we could have used
the <f:setPropertyActionListener> component from the standard JSF library as
well. This component works more or less the same, except that the property attribute
is called target.

Grouping rows
The <t:dataTable> components also offer the possibility to group rows. In our
example, we could group by age. Grouping by a speciic column is as simple as
adding groupBy="true" to the <t:column> component. This means that if we
want to use this feature, then we have to extend our <mias:column> composition
component to pass on the value of the groupBy attribute. This will change the
column deinition in our column.xhtml ile to:

<t:column headercolspan="#{headerColSpan}" id="#{columnName}"

sortable="#{sortable}" groupBy="#{groupBy}">

http:///

Tomahawk

[104]

http:///

Chapter 4

[105]

http:///

Tomahawk

[106]

fos.write(photoFile.getBytes());

fos.close();

} catch (FileNotFoundException e) {

// handle exception ...

} catch (IOException e) {

// handle exception ...

}

}

}

Notice how the getName() and getBytes() methods of the UploadedFile object are
used to get the name and the contents of the uploaded ile. A string constant (IMAGE_
DIRECTORY) is used to prepend the ilename with the path to the directory where
the images are stored. The exception-handling code is left out here, for brevity. (This
is “proof of concept” code. Of course, all sorts of errors can occur with directory
creation, and the fos.close() statement should be in the inal block, to name just a
few shortcomings).

Now we can expand the form itself to incorporate an upload ield. To be consistent,
we create a new Facelets composition component called <mias:fileUploadField>.
Here’s the most important part of the deinition of this component:

<c:if test="#{empty required}">

<c:set var="required" value="false" />

</c:if>

<h:outputLabel value="#{msg[id]}:" />

<t:inputFileUpload id="#{id}"

value="#{bean[id]}" />

<h:outputText value="#{required ? '*' : ' '}"/>

<h:message for="#{id}"/>

Note that this is largely analogous to how we deined the <mias:field> component.
The most important part is, of course, the highlighted statement, where the
<t:inputFileUpload> component is used. <t:inputFileUpload> has a few
interesting attributes:

• accept: As stated on the MyFaces website, This property appears to have no
purpose at all. It certainly has no documentation. However, a little test shows that
Tomahawk 1.1.9 seems to simply ignore this attribute. Perhaps some sensible
behavior will be implemented in a newer version of Tomahawk.

• value: This attribute must be an EL expression that evaluates to a property
of the UploadedFile type. In our example, the photoFile property of the
EditKidForm backing bean is a good candidate.

http:///

Chapter 4

[107]

http:///

Tomahawk

[108]

http:///

Chapter 4

[109]

pop up or something similar to input a date. To cater for this need, Tomahawk offers
us two different date input components—<t:inputCalendar> and <t:inputDate>.
The former displays a little calendar, either inline or as a pop up. The latter displays
separate ields for day, month, and year, where the month ield is displayed as a
drop-down list. Both can optionally let the user enter a time, too. We will only take
a look at the <t:inputCalendar> component in this book. The <t:inputDate>
component has some issues with Facelets and also lacks the possibility to change the
order of the day, month, and year ields. This makes this component rather useless.

The <t:inputCalendar> component can display calendars either inline or as pop
up. If the pop up is used, the date will be displayed in an ordinary input ield with
a button beside it that will show the pop up when clicked. If no pop up is used, no
input ield will be rendered; only a calendar will be shown inline, where the user can
select a date by clicking on the date in the calendar.

Using a pop-up calendar
Whether the <t:inputCalendar> component will be rendered as pop up or
displayed inline is determined by the renderAsPopup attribute. The default value
is true, so if this attribute is left out, the component will be rendered as a pop up.
If it is set to false, an inline calendar will be rendered. There are a lot of attributes
involved in showing the pop up. These are listed in the following table:

Attribute Default Description
renderAsPopup true If this is set to true, or is not present, the

component will render a pop-up calendar;
if false, an inline calendar will be
rendered.

addResources true If this is set to false, no links to JavaScript
or CSS iles will be added to the head of
the rendered XHTML page. You’ll have to
add these links yourself. This can be handy
if some other component shares the same
JavaScript and CSS dependencies.

popupDateFormat The
default
short
format
for the
conigured
locale.

This attribute is intended to set a format
string for the input ield. However,
the implementation seems to be
buggy. Luckily, there’s an alternative
to using this attribute—just add a
<f:convertDateTime> as a child
component of the <t:inputCalendar>
component.

http:///

Tomahawk

[110]

Attribute Default Description
popupTodayDateFormat Sets the date format string for the current

date, which is displayed at the bottom of
the pop up.

id Randomly
generated
ID.

This attribute sets a unique ID for every
component.

value Should be an expression that evaluates to a
bean property that will hold the date value.

javascriptLocation Some additional JavaScript resources are
required in order to render the pop-up
calendar on the client side. These .js iles
are supplied within the Tomahawk JAR.
If you want to serve them from another
location, or want to use an adapted
JavaScript, you can point to the directory
where those .js iles reside.

styleLocation As with the JavaScript resources, this can be
used to specify an alternate location for the
CSS resources that are used for the pop-up
calendar. If not supplied, the CSS iles will
be served from the Tomahawk JAR.

popupSelectMode "day" This is the unit the user may select from the
pop up, and can be one of the following:
"day": Allow the user to select a day
"week": Only allow the user to select a
week
"month": Only allow the user to select a
month
"none": Don’t allow the user to select
anything
In week or month mode, the irst day of the
week or month will be returned as a date. It
is the responsibility of the backing code to
interpret this date as a week or month.

renderPopupButtonAsImage false If this attribute is set to true, then
the button that activates the pop up
will be replaced by a calendar icon. A
default image is available, but a custom
image can be set as well using the
popupButtonImageUrl attribute.

http:///

Chapter 4

[111]

Attribute Default Description
popupButtonImageUrl The URL of an image that will be used for

the icon that activates the pop-up window.
If renderPopupButtonAsImage is set to
false, this attribute is ignored.

popupButtonString "..." Sets the text that will be displayed
on the button that triggers the
pop up. This is only applicable if
renderPopupButtonAsImage is false.

popupLeft false If this attribute is set to true, then the
pop-up calendar will be rendered on the
left-hand side of the button (or icon) instead
of on the right-hand side.

Localizing the pop-up calendar
Localization is never easy when it comes to dates. Luckily, the hardest part of
localization is done by the <t:inputCalender> component itself. So we don’t have
to worry about the names of the days and months, the irst day of the week, and
things like that. However, there are some texts rendered in the pop-up calendar
that are not localized automatically. Therefore, some extra attributes are supplied in
which we can set these values. Of course, we can use our resource bundle to supply
these values in different languages. The following table lists all of the localization
attributes for the pop-up calendar:

Attribute Default text Description
popupButtonString ... The text on the button that

triggers the pop up.
popupGotoString Go To Current Month The current date is displayed at

the bottom of the pop up. If this
date is clicked, the calendar will
scroll to the current month. This
text will be displayed as a tooltip
for the current date.

popupScrollLeftMessage Doesn’t work in Tomahawk 1.1.9
popupScrollRightMessage Doesn’t work in Tomahawk 1.1.9
popupSelectDateMessage Doesn’t work in Tomahawk 1.1.9
popupSelectMonthMessage Doesn’t work in Tomahawk 1.1.9
popupSelectYearMessage Doesn’t work in Tomahawk 1.1.9
popupTodayString Today is Will be prepended to the current

date, which is displayed at the
bottom of the pop up.

http:///

Tomahawk

[112]

Attribute Default text Description
popupWeekString Wk To the left of the calendar, a

column with week numbers is
shown. This text will be used as
header for that column.

Using an inline calendar
Although they are both rendered by the same JSF component, the inline calendar is
an entirely different thing to the pop-up calendar. So when we set renderAsPopup
to false, we have to deal with a totally different calendar. Whereas the pop-up
calendar works with CSS “themes”, the inline calendar has to be styled by hand.
A couple of attributes are used to set the CSS classes for the various parts of the
inline calendar. You have to assign a class name via these attributes, and then
supply the CSS styling for these classes via a stylesheet. The available attributes are
monthYearRowClass, weekRowClass, currentDayCellClass, and dayCellClass.
The irst two are applied to a <tr> element, and the last two are applied to a <td>
element. See the following image for further clariication:

currentDayCellClass

dayCellClass

monthYearRowClass

weekRowClass

http:///

Chapter 4

[113]

Using the calendar in a form
To use the <t:inputCalendar> in our input form, we have to create another Facelets
composition component, let’s call it <mias:dateField>. The most important part of
the dateField.xhtml ile looks like this:

<c:if test="#{empty popup}">
<c:set var="popup" value="true" />
</c:if>

<h:outputLabel for="#{id}" value="#{msg[id]}:" />
<t:inputCalendar id="#{id}" value="#{bean[id]}"
renderAsPopup="#{popup}"
required="#{required}"
renderPopupButtonAsImage="false"
popupGotoString="#{msg.gotoCurrentMonth}"
popupTodayString="#{msg.todayIs}"
popupWeekString="#{msg.wk}"
popupTodayDateFormat="#{msg.datePattern}"

styleClass="inlineCalendar"
currentDayCellClass="currentDayCell"
dayCellClass="dayCell"
monthYearRowClass="monthYearRow"
weekRowClass="weekRow">
<f:convertDateTime pattern="#{msg.datePattern}"/>
</t:inputCalendar>
<h:outputLabel value="" />
<h:message for="#{id}"/>

The following points should be noted:

• We use only one component to render either an inline or a pop-up calendar.
The renderAsPopup=#{popup} code ensures that we can use the popup
argument of our composition component to switch between the two.

• Some arguments are only applicable to either the inline calendar or the
pop-up calendar. That’s why some empty lines have been added. The irst
group of arguments applies to both, the second group applies to only the
pop-up calendar, and the third group applies to only the inline calendar.

• The date pattern for the <f:convertDateTime> converter component, as
well as for the popupTodayDateFormat argument that applies to the pop-up
calendar, is served from the application’s message bundle, making it easy to
localize the pattern.

http:///

Tomahawk

[114]

Without using CSS, the inline calendar does not look very nice and is also pretty
useless, as there is no way to see what the selected date is. To achieve a basic look
as shown in the previous image, the following CSS styling should be applied:

.inlineCalendar td {

background-color: silver;

text-align: center;

font-size: small;

}

.inlineCalendar a {

text-decoration: none;

color: black;

}

.inlineCalendar a:visited {

text-decoration: none;

color: black;

}

.inlineCalendar a:active {

text-decoration: none;

color: black;

}

.inlineCalendar td.currentDayCell {

border: 1px solid red;

font-weight: bold;

}

.inlineCalendar td.dayCell {

border: 1px solid silver;

}

.inlineCalendar .monthYearRow td {

font-weight: bold;

}

.inlineCalendar .weekRow td{

background-color: white;

font-weight: bold;

}

The highlighted lines apply styling to the selected date. Also note that three
deinitions are added for .inlineCalendar a, .inlineCalendar a:visited, and
.inlineCalendar a:active. These are to ensure that the date numbers that are
rendered as XHTML hyperlinks do not get the default formatting for unvisited,
visited, and active hyperlinks, because that would not make any sense here.

http:///

Chapter 4

[115]

We can now use our <mias:dateField> component in the same way as we use
the <mias:field> component in our form:

<mias:dateField id="birthDate" bean="#{editKidForm}"

required="true" popup="true" />

Extra validators
Tomahawk adds some extra validators in addition to the standard JSF validators.
We’ll have a quick look at these in the next sections.

Validating equality
The <t:validateEqual> component can be used to ensure that the values entered in
two different ields are equal to each other. This is, of course, useful for a password
change form that has a “new password” ield and a “conirm new password” ield.
The usage is as follows:

<h:inputField id="newPassword" value="#{bean.newPassword}"/>

<h:inputField value="#{bean.newPasswordConfirm}">

<t:validateEqual for="newPassword" />

</h:inputField>

Note how the for attribute in the validator refers to the id of the irst input ield.

Validating e-mail addresses
To validate an e-mail address, a special <t:validateEmail> validator component is
available. This uses the e-mail validation of the Apache Commons Validator library,
which is rather strict. For example, the address has to end with a top-level domain.
That means this e-mail validator does not allow internal e-mail addresses without a
top-level domain. This should not be a problem, as such e-mail addresses are rarely
used these days. The e-mail validator does not have any special attributes, so the
usage is pretty simple:

<h:inputField value="#{bean.emailAddress}">

<t:validateEmail />

</h:inputField>

http:///

Tomahawk

[116]

Validating credit card numbers
The <t:validateCreditCard> component may come in handy when you’re building
a webshop. It checks if the given string is a valid credit card number. If desired, certain
credit card types can be excluded. The recognized credit card types are:

• amex for American Express cards
• discover for Discover cards
• mastercard for Master Card cards
• none to allow none of the credit card types
• visa for Visa cards

By default, all card types are allowed. By setting a card type attribute to false, the
corresponding card type is disabled. The following example adds credit card number
validation for Master Card and Visa credit cards:

<h:inputField value="#{bean.creditCardNumber}">

<t:validateCreditCard amex="false" discover="false" />

</h:inputField>

Note that a clever thing to do is to use Expression Language for the Boolean card
type values, and then implement a back-end data structure to enable or disable the
credit card types.

Validating against a pattern
The most versatile of the Tomahawk validators is without a doubt the
<t:validateRegExpr> component. This validates the user’s input against a regular
expression. Regular expressions are a very powerful way of specifying text matching
patterns, albeit somewhat hard to read by humans. Regular expressions can often
save you a lot of custom code. Regular expressions are often used to validate phone
numbers, email addresses, postal codes, and so on.

The regular expression validator can be used as follows:

<h:inputField value="#{bean.postalCode}">

<t:validateRegExpr pattern="[0-9]{4}[A-Z]{2}" />

</h:inputField>

http:///

Chapter 4

[117]

http:///

http:///

Trinidad—the Basics
Trinidad started its life as Oracle ADF Faces, before Oracle donated it to the Apache
MyFaces project. When creating ADF Faces, Oracle focused on creating a set of
components that offers a complete solution for building rich web applications. Oracle
designed the components to be fully-featured yet not too complicated. This resulted in
an extensive set of components that are versatile and easy to use. The components are
well designed and their looks can be customized by using skins. All of the Trinidad
components were designed to be part of a set. The components have a lot of shared
functionality, and have a consistent look and feel. If you have worked with one of the
components, then you will ind that the other components of the set work just as you
would expect them to.

In this chapter we will explore many different components of the Apache MyFaces
Trinidad project. We will have a look at the data input components, as well as the
output components. Special attention will be given to the many layout components
of Trinidad. Of course, we will keep using Facelets as the view technology and we
will see how we can get the most out of the combination of Facelets and Trinidad.

After reading this chapter, you will be able to:

•	 Set up a JSF project to use Trinidad
•	 Build data-entry pages using Trinidad’s input components
•	 Represent tabular data in nice, formatted, sortable, and pageable tables

with Trinidad table components
•	 Create a navigation structure for you application
•	 Use the navigation structure to dynamically generate navigation controls

on your pages
•	 Lay out your pages with the many layout components that come

with Trinidad

http:///

Trinidad—the Basics

[120]

Setting up Trinidad

http:///

Chapter 5

[121]

<servlet-name>resources</servlet-name>
<url-pattern>/adf/*</url-pattern>

</servlet-mapping>

The resource Servlet is mapped to the /adf/* URL. This is a remainder from the
days before Oracle donated its ADF Faces components to the MyFaces project. The
URL cannot be changed, as some parts of Trinidad expect to be able to access CSS
and JavaScript iles via this URL.

In order to let Trinidad play nice with Facelets, we have to add one extra piece of
coniguration to our web.xml ile:

<context-param>
<param-name>

org.apache.myfaces.trinidad.ALTERNATE_VIEW_HANDLER
</param-name>
<param-value>

com.sun.facelets.FaceletViewHandler
</param-value>

</context-param>

This makes the Trinidad components aware of the fact that Facelets is being used
instead of JSP, as the view technology.

Coniguring the faces-conig.xml ile

http:///

Trinidad—the Basics

[122]

Coniguring the trinidad-conig.xml ile
Trinidad also introduces another coniguration ile—trinidad-config.xml. As the
name implies, this ile can be used to adjust several Trinidad-speciic settings. This
ile is optional, which means that we don’t have to create it if Trinidad’s default
values are ine for our project. A basic trinidad-config.xml ile looks like this:

<?xml version="1.0"?>
<trinidad-config xmlns=

"http://myfaces.apache.org/trinidad/config">
<debug-output>true</debug-output>
<skin-family>minimal</skin-family>

</trinidad-config>

Setting debug-output to true will cause Trinidad to add some helpful comments
to the generated pages, and format the XHTML nicely. Of course, this comes
at the expense of performance, so you should disable this setting in production
environments.

The skin-family setting can be used to select an alternative skin for Trinidad. See the
section on skinning in Chapter 7. Many more settings can be made in the trinidad-
config.xml ile, which will be discussed where applicable throughout this chapter.
See the Tuning Trinidad section in Chapter 7 for an overview of all options.

Adapting our template
In order to get the most out of Trinidad, we’ll have to adapt our template slightly.
Trinidad has a special component for rendering the <html>, <head>, and <body>
XHTML tags. The rationale behind this <tr:document> tag is that the generated
document doesn’t necessarily have to be an XHTML document. By plugging in a
different renderer, Trinidad is able to render pages optimized for mobile devices,
or even for text-based interfaces, such as telnet. Although you may not be planning
to add these features to your application, it’s always a good idea to include such
options, if it is relatively simple. The inclusion of <tr:document> is also necessary if
we want to use Trinidad’s skinning features, as it takes care of loading the skin’s CSS
and JavaScript iles. See Chapter 7 for more on skinning.

So, basically, we have to remove all <html>, <head>, and <body> tags from our
documents. In the case of our template.xhtml ile (see Chapter 3, Facelets), this will
cause some trouble because this is the only place where we add some actual content
to the <head>. Luckily, <tr:document> has a metaContainer facet that lets us add
content to the XHTML <head>. So our template.xhtml will now look as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"

http:///

Chapter 5

[123]

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<tr:document xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:tr="http://myfaces.apache.org/trinidad">

<f:facet name="metaContainer">
<h:panelGroup>

<link rel="stylesheet"
href="/MIAS/templates/mias.css"/>

<title>
<ui:insert name="title">

** NO TITLE SET **
</ui:insert>

</title>
</h:panelGroup>

</f:facet>
<!-- rest of template left out for brevity -->
</tr:document>

Note that we have enclosed all of the contents of the metaContainer facet in a
<h:panelGroup>. This is because a facet cannot have more than one child component
at the top level. For consistency, we should change all of the other .xhtml documents
by removing the <html>, <head>, and <body> tags, and adding a <tr:document>
component. But note that Facelets will ignore those <tr:document> components
anyway, because they’re outside the <ui:composition> tag.

Creating data tables
The <tr:table> component is a powerful component for rendering data tables. Let’s
explore its possibilities by building a page similar to the one that we built in the
previous chapter. The basic table deinition we’re starting out with is very similar to
the irst table deinition that we used in our Tomahawk example in the previous
chapter:

<tr:table var="kid" value="#{kidsList.kids}"

rows="20" id="kids">

There are some important differences that are not visible in this simple deinition,
though. These are as follows:

•	 Although, in our example, the #{kidsList.kids} still evaluates to a simple
java.util.List, we could have used an object of type org.apache.
myfaces.trinidad.model.CollectionModel instead. In fact, Trinidad will
automatically convert our simple List to a CollectionModel anyway.

http:///

Trinidad—the Basics

[124]

•	 By setting rows to 20, Trinidad will not only limit the number of rows in the
table to 20, but will also automatically add controls for navigating through
the data set, should it contain more than 20 rows. No separate pagination
control is needed. As a free bonus, this pagination feature uses AJAX to get
the data from the server; we get that for free.

Adding columns
A <tr:table> component can only have <tr:column> components for the columns,
so we can’t use the standard <h:column> component. The <tr:column> component
has some extra features; one of these is a quick way to set the header text, which
makes the use of a facet superluous. The other extra feature is the possibility to
create column groups by nesting several <tr:column> components. This will cause
the column header to span over all of the columns in the group. A simple column
deinition for two columns grouped together could look like this:

<tr:column headerText="Name">
<tr:column>

<h:outputText value="#{kid.firstName}" />
</tr:column>
<tr:column>

<h:outputText value="#{kid.lastName}" />
</tr:column>

</tr:column>

Note how the headerText attribute saves us some typing—at the expense of lexibility,
of course. But let’s take our Facelets approach to table columns and see how we
can create a <mias:column> composition component optimized for Trinidad. This
composition component also has to allow us to use advanced features such as sorting
and column groups. Suppose we’ve already created a column.xhtml ile, as described
in the Chapter 3, Facelets. The main content could look similar to this:

<tr:column id="#{columnName}" sortProperty="#{columnName}"
sortable="#{sortable}"
headerText="#{msg[headerName]}">

<c:choose>
<c:when test="#{custom}">

<c:set var="headerName" value=""/>
<c:set var="custom" value=""/>
<ui:insert />

</c:when>
<c:otherwise>

<h:outputText value="#{bean[columnName]}">
<ui:insert />
</h:outputText>

</c:otherwise>
</c:choose>

</tr:column>

http:///

Chapter 5

[125]

http:///

Trinidad—the Basics

[126]

maxFractionDigits="1"

minIntegerDigits="1"

maxIntegerDigits="2" />

</mias:column>

<mias:column columnName="edit"

headerName="emptyTableHeader" custom="true">

<tr:commandLink action="edit" immediate="true">

<tr:image source="../images/pencil.png"

inlineStyle="border-width: 0px;" />

<tr:setActionListener to="#{editKidForm.selectedKid}"

from="#{kid}"/>

</tr:commandLink>

</mias:column>

</tr:table>

A few interesting things can be said about this piece of code:

•	 We’ve nested the irst name and last name columns into a column group.
Note the custom="true" setting on the enclosing <mias:column>.

•	 We’ve used the same custom setting in another way for the last column,
which contains a link to the edit form. The <tr:image> component will
render a nice pencil icon to click on. We’ve used a little bit of inline CSS to
remove the border that otherwise would have been added to the image.

•	 The <tr:setActionListener> component is used to copy the object
contained in the kid variable to the selectedKid property of the backing
bean of the edit form. The <tr:setActionListener> is more-or-less
equivalent to the <t:updateActionListener> component from the
Tomahawk component library.

Using pagination
As stated earlier, pagination can be activated by setting the rows attribute of the
<tr:table> to some value larger than 0. A pagination control is then automatically
added to the table by Trinidad. This control will consist of two links: one page back
and one page forward. If the total size of the data set is known, a drop-down list will
be added between the links that allows the user to jump directly to a certain page
within the set. The pagination controls will be added at the top of the table. Extra
controls can be added at this position by using the actions facet. An example of a
pagination control is shown in the following image:

http:///

Chapter 5

[127]

The table keeps the row number of the irst row in the current page in an attribute
called first. This attribute can also be used to jump to a speciic page without
using the pagination control. We could, for example, use a literal value or a piece of
expression language to set the start position of the table.

It is also possible to perform some special actions when the table jumps to another
page. We can use the rangeChangeListener attribute to register a “listener method”
that will be called every time the table has updated its first attribute. We should
use expression language to point to a method in one of our managed beans. As
mentioned before, the pagination mechanism gets new pages of data from the server
via AJAX. This means that, instead of refreshing the whole page, only the contents of
the table are replaced.

Displaying inline details
Just like the Tomahawk <t:dataTable> component, the Trinidad <tr:table>
component can show extra details in a collapsible detail view. How the details
are displayed is deined in a facet called detailStamp. With Tomahawk, we had
to add a trigger ourselves to show and hide the details; Trinidad does that for us,
automatically. This comes at a price, though—we cannot choose where the detail
toggle is shown. It is always at the beginning of the row. So to add an inline detail
view, the only thing that we have to do is to add this facet to our <tr:table>:

<f:facet name="detailStamp">

<h:panelGroup>

<mias:field id="birthDate" bean="#{kid}" readOnly="true">

<f:convertDateTime pattern="#{msg.datePattern}" />

</mias:field>

<mias:field id="country" bean="#{kid}" readOnly="true"/>

</h:panelGroup>

</f:facet>

http:///

Trinidad—the Basics

[128]

The <tr:table> has the option to display two links in the table header, to show or
hide all of the inline details at once. This option is disabled by default, and can be
enabled by setting the allDetailsEnabled attribute of the <tr:table> to true. The
following image shows how the inline details of the example above are rendered.
Note that each row in the table can show or hide its details individually:

Coniguring banding and grid lines
By default, all rows in the Trinidad table have the same background, and grid
lines are placed between every row and column. This can be changed by using the
following attributes of the <tr:table> component:

•	 rowBandingInterval: An integer value that sets the interval of the
“banding” effect on the rows. If this attribute is set to 1, the background will
change for every alternate row. If it is set two 2, the background will change
after every two rows, and so on.

•	 columnBandingInterval: The banding effect can also be applied to
columns in a similar way to the rowBandingInterval.

•	 horizontalGridVisible: This enables or disables the grid lines between
the rows.

•	 verticalGridVisible: This enables or disables the grid lines between
the columns.

http:///

Chapter 5

[129]

The actual appearance of the banding effect and the grid lines depends on
the skin that is used. See the Skinning section in Chapter 7.

Using row selection
The Trinidad data table component can be conigured to allow the user to select a
single row or multiple rows in the table. For example, this can be very useful if we
want to perform certain actions on a selected set of rows. Let’s see how we can use this
feature to allow the user of MIAS to delete one or more selected kids from the system.

First, we have to enable multiple selection for the table. This is done by setting the
rowSelection attribute of the <tr:table> component to multiple. Other valid
values are single and none, of which the latter is the default. Setting rowSelection
to multiple will add an extra column to the left of the table, with a selection box
in each row. If we set rowSelection to single, this column will contain radio
buttons instead of checkboxes, thus allowing only one column to be selected. See
the following screenshot as an example:

http:///

Trinidad—the Basics

[130]

Now that we have multiple row selection enabled, we have to add a button to allow
the user to do something with their selection. Let’s use the actions facet to add a
<tr:commandButton> to the header of our table:

<tr:table var="kid" value="#{kidsList.kids}" rows="20"

id="kids" rowSelection="multiple"

binding="#{kidsTable.table}">

....

<f:facet name="actions">

<tr:commandButton

actionListener="#{kidsTable.deleteSelected}"

text="#{msg.delete}"/>

</f:facet>

</tr:table>

Note that we reference a new managed bean twice—kidsTable. This is a backing
bean that we use for our page-speciic Java code.

The irst highlighted line in the previous code binds the table component to a vari-
able in our bean so that we have access to our table component from within our
Java code. The second highlighted line registers a method in our bean as an action
listener that will be called whenever the button is clicked. The deinition of our
backing bean in the faces-config.xml is straightforward:

<managed-bean>

<managed-bean-name>

kidsTable

</managed-bean-name>

<managed-bean-class>

inc.monsters.mias.backing.KidsTable

</managed-bean-class>

<managed-bean-scope>

session

</managed-bean-scope>

</managed-bean>

Now comes the hard part. We have to write some code for our action listener method
that will delete the selected kids when the button is clicked. Let’s take a step-by-step
approach. First, we will create our class and add a variable to hold a reference to the
<tr:table> component:

public class KidsTable {

private UIXTable table;

public UIXTable getTable() {

return table;

}

http:///

Chapter 5

[131]

public void setTable(UIXTable table) {

this.table = table;

}

}

The UIXTable type is the class that implements the table component. Its fully
classiied name is org.apache.myfaces.trinidad.component.UIXTable. Now
we’re going to use the table component to delete the selected rows from the system.

public void deleteSelected(ActionEvent event) {

Object oldRowKey = getTable().getRowKey();

Iterator<Object> selectedKeys =

getTable().getSelectedRowKeys().iterator();

Map<Integer, Kid> map = Util.getKidsMap();

while(selectedKeys.hasNext()) {

Object key = selectedKeys.next();

getTable().setRowKey(key);

Kid kid = (Kid) getTable().getRowData();

map.remove(kid.getId());

}

getTable().setSelectedRowKeys(null);

getTable().setRowKey(oldRowKey);

}

}

In the irst line, we save the current row key into the local variable oldRowKey. We
need that to make sure we leave the table in the same state at the end of the method.
The second line retrieves an Iterator that can iterate over the set of selected row
keys. The third line uses a utility method to get access to the underlying data model.
Note that we could have used getTable().getValue() instead. But in this case, we
used a java.util.Map to implement our data model. And because the <tr:table>
component only accepts java.util.Lists or arrays as the data model, we used
the values() method of our Map and populated a List with those values. So a
getValue() method on our table object will only give us the values from our Map,
but we need the Map itself to remove entries from it.

In the while loop, we use our Iterator to iterate over the keys of the selected rows.
For each key we can use the setRowKey() method on the table to make the row with
that key the current row. After that, we can use the getRowData() method to get the
data of the row that we just made the current row. That data has to be a Kid object,
so we can get its ID and use it to remove the object from the map. After the while
loop, we call setSelectedRowKeys(null) to reset the selected rows. Next, we
will call setRowKey() to make the row that was current at the start of our method
current again.

http:///

Trinidad—the Basics

[132]

So much for the <tr:table> component. In the next section, we’re going to create
input and edit forms by using various Trinidad components.

Creating input and edit forms
Trinidad has an extensive list of input components that can be used on input and
edit forms. The Trinidad input components have a lot in common. Therefore, we’ll
irst have a look at the common features that all Trinidad input components share.
After that, we will cover the speciic features of the individual input components.

Exploring the common features of input
components
The Trinidad input components have a lot of extra features when compared to
the standard JSF components. One of the most notable differences is the
all-in-one approach that all of Trinidad’s input components have in common.
This means that a single input component can be used to render the component
itself, as well as the associated label, an associated error message component, and
an indicator for required ields. To nicely align these “embedded” components, a
<tr:panelFormLayout> component can be used. This is discussed in the Creating
layouts for our pages section at the end of this chapter.

Using automatic label rendering
As mentioned earlier, all Trinidad input components have the ability to automat-
ically render a label that is associated with the component. For rendering the
label, a few attributes are of interest:

•	 label: A string that will be used as the text for the associated label. Of
course, expression language can be used to get this text from a message
bundle.

•	 accessKey: A single character that will be used as the “access key” (or
“mnemonic”) for this component. This means that the user can quickly jump
to this ield by typing this character. If the character is a part of the label text,
then this character will be displayed with an underline.

•	 labelAndAccessKey: With this attribute, the label and access key can be set
in one step. The string should contain the text that will be shown on the label,
where we have to prepend the access character by an ampersand (&), for ex-
ample, "First &name". In this case, the label will show First name, and the
ield will get the focus when the user types n.

http:///

Chapter 5

[133]

•	 simple: If this attribute is set to true, the automatic generation of a label and
error message component will be disabled. This also means that the label,
accessKey, labelAndAccessKey, and showRequired (see the next section)
attributes will be ignored.

Using error message support and the required
indicator
As mentioned earlier, the input components also add message support
automatically. This can be disabled by setting the simple attribute to true, as
discussed in the previous section. If the required attribute is set to true, the form
cannot be submitted if the ield is empty, just as with the standard JSF input controls.
But Trinidad will also add a visual indicator to show the user that the ield is
required. This automatic addition of a required indicator can be disabled by setting
the showRequired attribute to false.

There is also an attribute called requiredMessageDetail that can be used to set a
custom error message that will be shown if the form is submitted while the ield is
empty. You can use the placeholder {0} in this string, which will be replaced by the
text of the label that is associated with the component.

Using auto submit
All Trinidad input components have an auto submit feature, which can be enabled
by setting the autoSubmit attribute on the component to true. If auto submit is
enabled, the entire enclosing form will be submitted whenever the value of the
component changes. This can be useful when some calculated value needs to be
updated and the calculation is made in the data model. However, you should realize
that all form validation will be triggered when the page is submitted. This means
that an auto submission triggered by component A can cause a validation error on
component B to be ired. You should also be aware that auto submit will generate
extra data trafic and, depending on how a submit is handled at the server side, may
have some impact on the performance of your application. On the other hand, with
auto submit, nice AJAX behavior can be implemented easily.

http:///

Trinidad—the Basics

[134]

Creating plain text input ields
The <tr:inputText> component is the normal text input component of Trinidad.
Apart from the common Trinidad input features, the following attributes are also
important:

•	 secret: If this attribute is set to true, the input ield can be used for pass-
word input. The actual input will be hidden from the user. (Standard JSF has
a separate <h:inputSecret> component for this.) secret does not work if
the number of rows (see the fourth attribute, below) is larger than 1.

•	 autoComplete: By default, the user’s browser will remember values that were
previously entered in a speciic text ield, and will perform some kind of auto
completion. By setting autoComplete to false, this behavior will be disabled.

•	 columns: This can be used to set the width of the text ield. One column
approximately corresponds to the space of a single character.

•	 rows: This is the number of rows of the input ield. The default is 1. If it’s
larger than one, the secret attribute will be ignored.

•	 wrap: This sets the wrapping behavior for multiline inputs. The possible
values are:

	° "soft": This is the default. Text will automatically be
wrapped if it doesn’t it on a single line. The text that will
be submitted will not contain any carriage returns.

	° "hard": Text will only be wrapped if it contains a
carriage return.

	° "off": Wrapping is disabled. This means that all text will be
on a single line, and a scroll bar will appear if the text doesn’t
it on the line.

•	 maximumLength: Sets the maximum number of characters that can be
entered in the ield. This should not be confused with a validator. Setting
the maximumLength will simply not allow the user to type more characters
without giving a prompt. Set this attribute to 0 to let the user enter an
unlimited amount of characters. (0 is also the default.)

http:///

Chapter 5

[135]

http:///

Trinidad—the Basics

[136]

The irst three lines after the <ui:composition> tag are for setting the correct default
for the autoComplete attribute. Normally, we just don’t set it if we want the default.
However, because we want to be able to set it via our composition component, we
have to set it here. When it is not set on the composition component, it will cause
the default to be an empty string, and setting autoComplete to an empty string is
not the same as leaving it out. In most cases where a boolean is used, setting it to an
empty string will cause it to be interpreted as false, as is the case with the required
attribute here.

The highlighted lines are a work-around for the bug mentioned in the previous tip.
We set a very large number (equal to Integer.MAX_VALUE) as the maximum length
if it is empty. If we don’t do that, the component would erroneously interpret that
as a maximumLength of 0, which wouldn’t allow us to type any text. This shows
another beneit of using composition components. If we weren’t using composition
components, we would have to apply this work-around to all of the places where we
used the <tr:inputText> component with more than one row.

The <tr:inputText> component declaration in our composition component is
actually pretty long. That’s because the <tr:inputText> component has a lot of
optional attributes that we do not want to hide from the users of our composition
component, which means we have to pass them on.

Note how we reused the id of our component three times—for the id itself, for
the ield name within the bean, and for the key to look up the label text in the
resource bundle.

Creating date input ields
The <tr:inputDate> component lets users select a date by typing it or selecting it
from a pop-up calendar. This component is fairly easy to use; most of its behavior is
the same as the <tr:inputText> component. The differences are:

•	 The <tr:inputDate> component will automatically add a converter to the
input ield that will convert the typed value into a date (and will cause an
error if the input value can’t be converted to a date). This default converter
uses the “short” date format that is deined for the current locale. To use
another format, we can add a <f:convertDateTime> converter with the
desired format.

•	 An icon will be rendered next to the input ield that will open a pop-up
window with a calendar if the user clicks on it. If Trinidad’s “lightweight
dialogs” feature is enabled (see the Tuning Trinidad section in Chapter 7),
the pop up will be rendered via DHTML. Otherwise, a new browser window
will be opened.

http:///

Chapter 5

[137]

The following image shows a date selection pop up that is rendered as a
“lightweight dialog”:

Converting dates
Trinidad offers us various possibilities for converting and validating dates, that
go beyond the JSF standard. The <tr:convertDateTime> component can be
used to convert a text string (that the user has typed) into a date. As with the
standard <f:convertDateTime> component, a pattern can be set, or a date style
can be chosen (default, short, medium, long, or full). The difference is that the
Trinidad <tr:convertDateTime> component will try harder to interpret the user
input as a date. For example, if the date pattern has a slash (/) as a separator, the
<tr:convertDateTime> component will also allow a dash (-) or a period (.) as a
separator. And if the pattern prescribes short month names (MMM), the converter will
also allow month numbers (M and MM).

As an extra bonus, the <tr:convertDateTime> component adds extended error
message support by adding the following attributes:

•	 messageDetailConvertBoth: This error message will be shown when
the conversion fails and the type attribute of the <tr:convertDateTime>
component is set to both

•	 messageDetailConvertDate: This message will be shown on conversion
failure when the type is date

•	 messageDetailConvertTime: This message will be shown when the type is
set to time and the conversion fails

http:///

Trinidad—the Basics

[138]

All three messages can use three placeholders within the message:

•	 {0}: This will be replaced by the text of the label of the input component
•	 {1}: This will be replaced by the value that the user entered
•	 {2}: This will be replaced by an example of the expected format

Validating dates
Converting a date adds some implicit validation, as you know for sure that all input
data will be a valid date. But often you need the date to be in a certain range, or
before, or after, a certain date. Trinidad offers us a <tr:validateDateTimeRange>
component to make this an easy job. This validator takes the following attributes:

•	 minimum: No dates before this date can be entered. This can be an expression
that evaluates to a date, or a String literal that contains a date formatted in
the following pattern: yyyy-MM-dd. (There is a bug with the literal values.
See the next tip.)

•	 maximum: No dates after this date can be entered. The same input restrictions
as with the minimum apply.

•	 messageDetailMinimum and messageDetailMaximum: The error message
that will be shown if the date is before the minimum or after the maximum
date. The following placeholders can be used in the error message:

	° {0}: This will be replaced by the label of the associated
component

	° {1}: This will be replaced by the value that is entered by the
user

	° {2}: This will be replaced by the minimum or maximum date
•	 messageDetailNotInRange: This error message will be shown if both the

minimum and maximum are set, and the date is outside that range. We can use
the following placeholders:

	° {0}: This will be replaced by the label of the associated
component

	° {1}: This will be replaced by the value that the user entered
	° {2}: This will be replaced by the minimum date, or the lower

end of the range
	° {3}: This will be replaced by the maximum date, or the upper

end of the range

http:///

Chapter 5

[139]

	
	

	

	

	

	

	

http:///

Trinidad—the Basics

[140]

http:///

Chapter 5

[141]

Note how we added two validators to our composition component. They will be
inserted at the position of the <ui:insert> tag in the component deinition. The
irst validator is added to make sure that no “last scared” date can be added before
the birth date of the kid. The second validator forces “scare dates” to be on working
days only.

Creating selection lists
Trinidad has quite a few components for letting the user choose one or more options
from a list. The following table gives an overview of the options:

One Multiple

Checkboxes /
radio buttons

<tr:selectOneRadio> <tr:selectManyCheckbox>

List <tr:selectOneListbox> <tr:selectManyListbox>

Pull-down list <tr:selectOneChoice>

not available

Shuttle

not available

<tr:selectManyShuttle>

http:///

Trinidad—the Basics

[142]

Adding list contents
All of these components require a child component that ills the list of options. A
single <f:selectItems> component can be used, or one or more <f:selectItem>
components or <tr:selectItem> components can be used. We’ll use the
<tr:selectItem> components here, as they offer us the most lexibility. The list with
four colors from the example images in the table could thus be created as follows:

<tr:selectItem value="1" label="green"

shortDesc="the color green" />

<tr:selectItem value="2" label="yellow"

shortDesc="the color yellow" />

<tr:selectItem value="3" label="red"

shortDesc="the color red"

disabled="true"/>

<tr:selectItem value="4" label="blue"

shortDesc="the color blue" />

Note that the shortDesc attribute will be used by the component to render a tool
tip where possible. Also note that the “red” option is disabled, which means that
the user cannot choose this color.

Although ixed lists are nice for demonstrations, most of the time the list of possible
values will (and should) be generated by some backend system. Now, assume that
we get a java.util.List of ColorBean objects from one of our beans. We could
then change our ixed list into this:

<c:forEach var="color" items="#{bean.colors}">

<tr:selectItem value="#{color.value}"

label="#{color.name}"

shortDesc="#{color.description}"

disabled="#{!color.enabled}" />

</c:forEach>

This example assumes that the ColorBean class has the value, name, description,
and enabled members.

Optional empty selection for single selection lists
All of the single selection components (<tr:selectOneChoice>,
<tr:selectOneRadio>, and <tr:selectOneListbox>) have an unselectedLabel
attribute. If this attribute is not empty, its value will be shown as the irst item in the
list, and selecting it will be equal to selecting nothing. This means that the validation
will fail if the component’s required attribute is true. Otherwise, a null value will
be passed to the variable that is referenced in the value attribute.

http:///

Chapter 5

[143]

Options for all selection components
All selection components have the ability to add a value change listener. By using
expression language, you can set the value of valueChangeListener to a method on
a backing bean, like this:

valueChangeListener="#{myBackingBean.selectionChanged}"

This will cause the selectionChanged() method to be called every time the
selection changes. This value change listener method could look as follows:

import javax.faces.event.ValueChangeEvent;
public class MyBackingBean {

// other methods ...
public void selectionChanged(ValueChangeEvent event) {

// do something
}

}

The selection components also have an attribute called valuePassThru. This
attribute’s default value is false. If it is set to true, then the value of the
selectItem component will be passed to the client as the index of the item in the
choice list. Otherwise, an integer index would have been generated. You may need
this feature if you want to use a client-side JavaScript function that does need the
value of the selectItem component.

Checkboxes and radio buttons
The <tr:selectManyCheckbox> and <tr:selectOneRadio> components render a
list of checkboxes and radio buttons respectively. This is mainly useful for relatively
short lists. The beneit of this type of lists is that the user can see all possible choices
at once. For making multiple choices, the checkbox approach is also the most
intuitive. Both components have a layout attribute, which can be set to horizontal
or vertical. The former value will cause the checkboxes or radio buttons to be on a
single line. The latter value (which is also the default) will cause the boxes or buttons
to be stacked vertically.

http:///

Trinidad—the Basics

[144]

Listboxes
Listboxes look identical, no matter which of the two components—
<tr:selectManyListbox> or <tr:selectOneListbox>—is used. Using a listbox
doesn’t make much sense for single selection, though. A choice list (or “combobox”;
see next section) is just as easy to use and takes up much less space on the screen.
For longer lists, where multiple selections can be made, the use of a listbox does
make sense. In such a case, a list of checkboxes would probably take up too much
space on the screen, whereas a listbox uses a scroll bar to minimize the space used.
However, it is less intuitive to the user because he or she has to hold down the SHIFT
or CTRL key while selecting multiple items. Both the <tr:selectManyListbox> and
<tr:selectOneListbox> components have a size attribute that can be used to set
the number of items that are visible without using the scroll bar.

Choice list
The choice list (also called “combobox” or “pull-down list”) is only available for
single selections. It is easy to use for both short and medium-size lists. For very long
lists, it may be dificult to use, depending on how the user’s browser renders the list
if it doesn’t it on one screen. The largest beneit of the choice list is, of course, that
it takes up little space on the screen. There are no special formatting options for this
component.

Shuttle
Although it takes up a lot of screen space, the shuttle offers a user-friendly way of choos-
ing multiple items from a long list. The user may need some time to get used to this
component, as shuttles are not used very often. The shuttle consists of two lists—one
containing all unselected items, and the other containing the selected ones. Between the
two lists are controls to move selected items or all items from left to right, or the other
way round. Unlike the other selection components, the <tr:selectManyShuttle>
component has a lot of special features, which are listed here:

•	 The leadingHeader and trailingHeader attributes allow us to add a head-
er above the list of available items (leading) and the list of selected items
(trailing). The reason the terms leading and trailing are used instead of left
and right is that the lists will be shown in a different order if used in a page
that uses a right-to-left layout (for right-to-left languages).

•	 The leadingDescShown and trailingDescShown are boolean attributes
that control whether an extra text ield is shown below each of the lists.
This extra text ield will contain the description of the irst selected item
in the list. The description is taken from the shortDesc attribute on the
<tr:selectItem> component.

http:///

Chapter 5

[145]

•	 Like the listboxes, the shuttle has a size attribute that determines the size of
the lists. Both lists will have the same size. The size must be between 10 and
20. Sizes lower than 10 will be interpreted as 10, and sizes over 20 will be
interpreted as 20.

•	 Although the shuttle has a label attribute, no label will be shown. The
value of the label attribute will only be used to identify the shuttle in
error messages.

•	 The <tr:selectManyShuttle> component has a facet called filter. The
purpose of this facet is to allow you to add a control that the user may use to
ilter the contents of the leading list (the list with available items). However,
there’s no special mechanism provided to implement this, meaning that we’ll
have to implement a iltering function ourselves. The contents of this facet
will be rendered above the leading list. This will cause the leading list to start
a bit lower on the page than the trailing list, which does not look very nice.

•	 There are also two facets called leadingFooter and trailingFooter, which
can be used to add components just below the leading or trailing list. There’s
only limited space reserved for this, so the height of the contents of these
footers should not exceed 26 pixels.

The controls to move items from the leading to the trailing list and back are rendered
as simple hyperlinks by default, with the labels Move, Move all, Remove, and
Remove all. An example is shown in the overview of selection components a few
pages back. It is probably more intuitive for the users to replace these text links by
some arrow-shaped icons. This can be done by using Trinidad’s skinning features
that will be discussed in Chapter 7.

Ordering shuttle
There’s also a component called <tr:selectOrderShuttle>. This is almost the same
as the <tr:selectManyShuttle> component, except that it adds the possibility to
order the selected items. Four extra controls are added to the side of the trailing list for
that purpose. The <tr:selectOrderShuttle> component also has an extra attribute,
reorderOnly. If set to true, this attribute will cause the leading list to disappear.
Therefore, you should make sure that the items to reorder are already selected.

http:///

Trinidad—the Basics

[146]

Creating a universal composition component for
selections
As we did for text input ields and date ields, we can use Facelets’ composition
component feature to create a single component that can be used for selections. Of
course, we could create a component that can create all sorts of selection lists, but it
is probably a better idea to irst determine which types of selection lists are needed
in an application. For our MIAS example application, let’s assume that we only need
a single selection. Now let’s see how we can create a composition component that
meets all of our selection needs.

To be able to render different types of single selection lists with one composition
component, we need an attribute to set the list type; let’s call that attribute type.
We can then use a JSTL <c:choose> element to render one of Trinidad’s choice list
components, depending on the value of type. This will result in code like this:

<ui:composition>

<c:if test="#{empty type}">

<c:set var="type" value="choice" />

</c:if>

<c:choose>

<c:when test="#{type == 'radio'}">

<tr:selectOneRadio value="#{bean[id]}" id="#{id}"

required="#{required}"

readOnly="#{readOnly}"

label="#{msg[id]}:"

partialSubmit="#{partialSubmit}"

autoSubmit="#{autoSubmit}">

<mias:items items="#{items}"

itemValue="#{itemValue}"

itemLabel= "#{itemLabel}"/>

</tr:selectOneRadio>

</c:when>

<c:when test="#{type == 'listBox'}">

<!-- tr:selectOneListbox omitted for brevity -->

</c:when>

<c:otherwise> <!-- "choice" is the default type -->

<tr:selectOneChoice value="#{bean[id]}" id="#{id}"

required="#{required}"

readOnly="#{readOnly}"

label="#{msg[id]}:"

partialSubmit="#{partialSubmit}"

autoSubmit="#{autoSubmit}">

<mias:items items="#{items}"

http:///

Chapter 5

[147]

itemValue="#{itemValue}"

itemLabel= "#{itemLabel}"/>

</tr:selectOneChoice>

</c:otherwise>

</c:choose>

</ui:composition>

The code for this composition component is longer than other components that
we created. This is because of the <c:choose> element, which is needed to render
different components depending on the value of the type attribute. We use an
extra composition component to render the items for the lists, in order to prevent
repetition of the code. We pass the values of items, itemValue, and itemLabel
to this component. The following listing shows how we could create this items
component:

<ui:composition>

<c:if test="#{not (empty itemValue and empty itemLabel)}" >

<c:if test="#{empty itemValue}">

<c:set var="itemValue" value="#{id}" />

</c:if>

<c:if test="#{empty itemLabel}">

<c:set var="itemLabel" value="#{id}" />

</c:if>

</c:if>

<c:if test="#{empty itemValue and empty itemLabel}" >

<c:forEach var="item" items="#{items}">

<tr:selectItem value="#{item}" label="#{item}" />

</c:forEach>

</c:if>

<c:if test="#{not (empty itemValue and empty itemLabel)}" >

<c:forEach var="item" items="#{items}">

<tr:selectItem value="#{item[itemValue]}"

label="#{item[itemLabel]}" />

</c:forEach>

</c:if>

</ui:composition>

We will distinguish two different types of lists here. The irst one is the most simple.
For this list, we assume that the value to be shown to the user is the same as the
value to be set. In other words, when items contains a list of Strings, we show
each String as an option in the list, and when the user selects one item, the selected
String is copied in the ield where the selection should be stored. In this case, we
don’t use the itemValue and itemLabel attributes.

http:///

Trinidad—the Basics

[148]

The second type of list is a bit more complicated. For this list, we assume that items
is a list of objects. The values of itemLabel and itemValue point to a property
that each object in the list should have. For each object in the list, the value of the
property that corresponds with itemLabel is shown to the user. When the user
selects an item from the list, the value of the property identiied by itemValue is
stored. Let’s explore an example to make this clearer. Suppose we want the user to
select a country from a list, and we have a list of Country objects, where a country
object has two properties: code and name, as shown:

public class Country {

private String name;

private String code;

public String getName() {

return name

}

public void setName(String name) {

this.name = name;

}

public String getCode() {

return code;

}

public void setCode(String code) {

this.code = code;

}

}

Of course, we want to store the value of code, and not the value of name. Not only
because it is more eficient to store a two-letter code instead of a name, but also
because the two-letter country codes are language independent. However, we want
to present a list of full names of the countries, as we don’t expect the user to know
all of the country codes. So we want to display name in our choice list. With the
previously created composition component, we can achieve this as follows:

<mias:selectField id="country"

bean="#{editKidForm.selectedKid}"

type="choice"

items="#{mias:getCountries()}"

itemValue="code"

itemLabel="name" />

http:///

Chapter 5

[149]

We use a Facelets static function here to get the list of countries;
#{mias:getCountries()} will return a List of Country objects. The itemValue
attribute is set to "code", so the country code will be stored in the Kid object. By
setting itemLabel to "name", we make sure the full name of the country is shown in
the selection list. The full example code for the composition component, as well as the
country selection example, can be found in the source code of the example application
that can be downloaded from the author's website: http://www.bartkummel.net.

Creating ields for numerical input
Trinidad has several ways to make the input and validation of numerical values
easier. Let’s have a look at the possibilities.

Adding conversion to a ield
Trinidad has its own <tr:convertNumber> converter, which has nearly the same
functionality as the standard <f:convertNumber> converter. The only difference
is that Trinidad’s converter adds the possibility to use custom error messages. The
converter component has a few extra attributes for setting custom error messages;
the one you should use depends on whether you’re using a standard type or using
your own pattern. Each message (regardless of the type) can have at least two
placeholders—{0} will be replaced by the label of the associated input component
and {1} will be replaced by the value that the user entered. In the following table,
you can ind which message attribute should be used:

Value of type Value of pattern Message attribute to use
currency <empty> messageDetailConvertCurrency

number <empty> messageDetailConvertNumber

percent <empty> messageDetailConvertPercent

<empty> custom pattern messageDetailConvertPattern

The messageDetailConvertPattern message can have a third placeholder ({2})
that will be replaced by a custom pattern. Although this sounds useful, you should
bear in mind that most users don’t understand regular expressions.

http:///

Trinidad—the Basics

[150]

Adding validation to a ield
As with conversion, Trinidad also has two number validation components that,
compared to their counterparts from the JSF standard implementation, only
offer custom error messages as extra functionality. The following table lists the
message attributes that can be used. These attributes can be used on both the
<tr:validateLongRange> and <tr:validateDoubleRange> validation components.

Value of maximum Value of minimum Message attribute to use
set empty messageDetailMaximum

empty set messageDetailMinimum

set set messageDetailNotInRange

The next table lists the placeholders that can be used with the various message
attributes, and what they will be replaced with:

messageDetailMaximum messageDetailMinimum messageDetailNotInRange
{0} The label of the associated input component
{1} The value the user entered
{2} The maximum value The minimum value The minimum value
{3} n/a n/a The maximum value

Adding a spin box to an input ield
To enter integer values, sometimes a spin box can be an easy way to set the value,
especially if the range of values is not too long. To use a spin box for integer
input, Trinidad has the <tr:inputNumberSpinbox> component. This component
behaves and looks much like a normal <tr:inputText> component, except that
two little buttons are rendered at one side of the component. These buttons allow
the user to increment or decrement the value of the input ield. By default, the
number is incremented or decremented by 1, but the step size can be conigured
by the stepSize attribute. Of course, maximum and minimum attributes can also be
conigured. The values of these three attributes must all be integer values, so it is not
possible to use fractions. The <tr:inputNumberSpinbox> component has an implicit
number converter, so only numbers can be entered into the input ield.

http:///

Chapter 5

[151]

File uploading
As the JSF standard does not say anything about uploading iles from a JSF page,
every component set library offers its own solution for this, and so does Trinidad.
Handling ile uploads involves some extra steps, which are described in this section.
As in the Tomahawk chapter, we are going to add a photo upload facility to the edit
kid form as an example.

Meeting the prerequisites
File uploading depends on the Trinidad ilter. So before you continue, make sure you
have conigured this correctly, as described in the Setting up Trinidad section at the
beginning of this chapter.

We also have to make sure that the XHTML form that is generated as a part of
our page accepts iles for upload. This means that the enctype attribute of the
XHTML <form> tag has to have the multipart/form-data value. If we are using a
standard <h:form> component to render the <form> tag, we should set these values.
However, as we’re using a <tr:form> tag in our application, we can simply set
usesUpload to true and the Trinidad form component will set the correct values in
the XHTML form tag for us.

There is one complication, though. We have our <tr:form> tag in our Facelets
template. This means that all forms will be conigured for uploading if we simply
add the usesUpload="true" setting to this tag. So we have to use an expression, as
shown in the following code snippet from template.xhtml:

<div id="content">

<tr:form usesUpload="#{usesUpload}">

...

<h2> <ui:insert name="title" /> </h2>

<ui:insert name="content" />

</tr:form>

</div>

Now we can set the usesUpload variable to true in the pages where we need upload
facilities, like in this snippet from the EditKid.xhtml page:

<ui:composition template="templates/template.xhtml">

<ui:define name="title">Edit kid</ui:define>

<ui:param name="usesUpload" value="true"/>

<ui:define name="content">

...

</ui:composition>

http:///

Trinidad—the Basics

[152]

Using the ile upload component
Now that the prerequisites have been met, we can start using the <tr:inputFile>
component. We can use it just like any other input component; it shares the same
common features of Trinidad, such as embedded labels and indicators for required
ields. We can simply bind the value attribute of the <tr:inputFile> component
to a property in a backing bean. That property has to be of the type org.apache.
myfaces.trinidad.model.UploadedFile. Of course, we have to take some special
actions to save the uploaded data to the ile system. Let’s see how we can do this.

Creating and using a ile upload composition
component
Of course, we want to add the upload component to our pages, using a composition
component that has a similar interface as the other composition components that we
created previously. Let’s see how we can create such a composition component. The
composition component can be fairly simple, as shown in the following code snippet
from the fileUploadField.xhtml ile:

<ui:composition>

<c:if test="#{empty required}">

<c:set var="required" value="false" />

</c:if>

<tr:inputFile id="#{id}" value="#{bean[id]}"

label="#{msg[id]}:" required="#{required}"/>

</ui:composition>

We can now add our composition component to the form in the EditKid.xhtml
page:

<ui:define name="content">

<tr:panelFormLayout>

...

<mias:fileUploadField id="photoFile"

bean="#{editKidForm}" />

<mias:photoField id="photoUrl"

bean="#{editKidForm}" />

...

</tr:panelFormLayout>

</ui:define>

Note that parts of the page have been omitted, to save space.

http:///

Chapter 5

[153]

Note that photoFile is a property of the editKidForm bean and not of the
selectedKid object that we use for the other ields in the form. This is because the
Kid object that selectedKid points to doesn’t know how to store a ile. We therefore
let the editKidForm backing bean store the ile and update the Kid object. Note
that we also created a <mias: photoField> composition component that uses a
<tr:image> component internally to render the photo once it is uploaded. In the
source code that can be downloaded from the author's website the full example can
be found.

Saving the ile in the backing bean
We have to write some code in our backing bean in order to save the ile to the ile
system. Before we get started, let’s have a quick look at some useful methods of the
UploadedFile class that we can use:

•	 dispose(): This will clear all of the resources that were allocated for this ile.
•	 getContentType(): This method will return a String containing the MIME

type of the uploaded ile, such as "image/png" or "text/html".
•	 getFilename(): This will return the original ilename of the uploaded ile.
•	 getInputStream(): This will return a java.io.InputStream that we can

use to read the contents of the uploaded ile. This method may throw a java.
io.IOException.

•	 getLength(): This method returns the size of the ile in bytes.

With these methods, we can copy the uploaded ile to the ilesystem upon sub-
mission of the form. A method that performs this copy action is shown below:

private void savePhoto() {
UploadedFile photoFile = getPhotoFile();
if (photoFile != null) {
// Save the filename in the Kid object
selectedKid.setPhoto(photoFile.getFilename());
// Check if the directory exists
File f = new File(IMAGE_DIRECTORY);
if (!f.exists()) {
f.mkdir();
}
// Create the file, delete it if it already exists
f = new File(IMAGE_DIRECTORY + photoFile.getFilename());
if(f.exists()) {
f.delete();
}
FileOutputStream fos = null;
InputStream is = null;
try {
fos = new FileOutputStream(f);
is = photoFile.getInputStream();

http:///

Trinidad—the Basics

[154]

// Copy the bytes

byte[] buffer = new byte[4096];

for (int n; (n = is.read(buffer)) != -1;) {

fos.write(buffer, 0, n);

}

fos.close();

} catch (FileNotFoundException e) {

// handle exception

} catch (IOException e) {

// handle exception

} finally {

try {

fos.close();

} catch (IOException e) {

// handle exception

} finally {

try {

is.close();

} catch (IOException e) {

// handle exception

}

}

}

}

}

Note that only the ilename is saved in the Kid object. Also note that all images are
stored in the same directory. Depending on the requirements, this is not always
desirable, as it allows the users to overwrite each other’s images. If the uploaded
images belong to a single user, a solution can be to append the username to the
path. The ile itself is copied to a directory in the ilesystem. To be able to display the
uploaded image later on, we have to add a method that reconstructs the full path to the
ile from the ilename that is saved to the Kid object. Such a method is shown below:

public String getPhotoUrl() {

String photoFileName = selectedKid.getPhoto();

if (photoFileName != null) {

photoFileName = "/photos/" + photoFileName;

} else {

photoFileName = "";

}

return photoFileName;

}

http:///

Chapter 5

[155]

http:///

Trinidad—the Basics

[156]

Setting upload limits in web.xml
The following web.xml snippet shows how to set the application wide ile
upload limits:

<context-param>
<param-name>

org.apache.myfaces.trinidad.UPLOAD_MAX_MEMORY
</param-name>
<param-value>102400</param-value>

</context-param>
<context-param>

<param-name>
org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE

</param-name>
<param-value>2048000</param-value>

</context-param>
<context-param>

<param-name>
org.apache.myfaces.trinidad.UPLOAD_TEMP_DIR

</param-name>
<param-value>/tmp/uploads/</param-value>

</context-param>

The UPLOAD_MAX_MEMORY parameter sets the maximum size of the in-memory part
of the ile. In this example, the size is set to 102400 bytes, which is 100 kB. The
maximum disk space for an uploaded ile is set by the UPLOAD_MAX_DISK_SPACE
parameter. In this example it is set to 2048000 bytes, which is 2,000 kB. The default
upload directory is set by the UPLOAD_TEMP_DIR parameter, and is set to /tmp/
uploads/ in this example.

Setting upload limits in trinidad-conig.xml
As described earlier, setting the upload limits in trinidad-config.xml has the
beneit of being able to make the upload limits user-conigurable. If upload limits are
set in trinidad-config.xml, any upload limits parameter in web.xml are ignored
by Trinidad. Suppose we have a bean called Preferences.java that holds the
preferences, like in the following example:

public class Preferences {

private long maxUploadMemory = 1024L;

private long maxUploadDiskSpace = 204800L;

private String tempDir = "/tmp/uploads";

public long getMaxUploadMemory() {

return maxUploadMemory;

}

http:///

Chapter 5

[157]

http:///

Trinidad—the Basics

[158]

Using Trinidad’s hierarchical navigation
features
Trinidad has a navigation framework for page navigation. The framework is based
on the assumption that the project is organized around a hierarchical navigation
structure. Let’s explore the possibilities of this navigation framework by adding
some navigation to our MIAS example program. Let’s create a super simple
hierarchical structure like the following:

Home Start.jspx

+- Kids overview Kids.jspx

| +- Edit kid EditKid.jspx

+- Employee overview Employees.jspx

+- Edit employee EditEmployee.jspx

Coniguring the hierarchy
The Trinidad navigation framework lets us deine this structure in an XML ile; let’s
call it menu.xml. For the structure proposed before, the contents of that ile should
look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<menu xmlns="http://myfaces.apache.org/trinidad/menu"

resourceBundle="inc.monsters.mias.Messages"

var="msg">

<itemNode id="menu0" focusViewId="/Start.xhtml"

label="#{msg.home}" action="start">

<itemNode id="menu00" focusViewId="/Kids.xhtml"

label="#{msg.kids}" action="kids">

<itemNode id="menu000" focusViewId="/EditKid.xhtml"

label="#{msg.editKid}" action="edit"/>

</itemNode>

<itemNode id="menu01" focusViewId="/Employees.xhtml"

label="#{msg.employees}" action="employees">

<itemNode id="menu010"

focusViewId="/EditEmployee.xhtml"

label="#{msg.editEmployee}" action="edit"/>

</itemNode>

</itemNode>

</menu>

http:///

Chapter 5

[159]

Note that we used our existing resource bundle for the labels of the itemNodes. It
is important to understand that this ile does not replace the navigation rules that
are set in faces-config.xml. The only thing that this ile does is to help the various
navigation components to determine the navigation path to a certain page. We have
to make sure that the action and focusViewId attributes of every itemNode element
correspond to the pages and outcomes, in the faces-config.xml ile. Compare the
actions and focusViewIds from the XML that we just saw with the following image.
Note that the "start", "kids", and "employees" actions don’t have a from-view-id
speciied (indicated in the image by the page icon with a * character). This is done to
make sure that we can navigate to the associated pages from wherever we are. This
saves us from having to deine all possible paths in our faces-config.xml.

http:///

Trinidad—the Basics

[160]

The navigation components that we’re going to use later on cannot read the
menu.xml ile themselves. Therefore, we need a managed bean that does this for
us. Trinidad comes with an XMLMenuModel class that we can use. We can conigure
it as a managed bean in the faces-config.xml ile:

<managed-bean>

<managed-bean-name>miasMenu</managed-bean-name>

<managed-bean-class>

org.apache.myfaces.trinidad.model.XMLMenuModel

</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

<managed-property>

<property-name>source</property-name>

<value>/WEB-INF/menu.xml</value>

</managed-property>

</managed-bean>

Note that the managed bean is request scoped. This means that for every request,
a bean is instantiated and the menu.xml ile is read. This is done so that the beans
always know the current location within the hierarchy.

Creating navigation panes
Now that we have conigured our navigation hierarchy, we can use this hierarchy
with several navigation components. Let’s start by adding a simple list of links
to our Start.xhtml page. We can use the <tr:navigationPane> component for
that purpose:

<tr:navigationPane var="node" value="#{miasMenu}"

level="1" hint="list">

<f:facet name="nodeStamp">

<tr:commandNavigationItem text="#{node.label}"

action="#{node.doAction}"/>

</f:facet>

</tr:navigationPane>

http:///

Chapter 5

[161]

The value attribute of the <tr:navigationPane> component refers to our managed
bean, which we called "miasMenu". The var attribute deines the name of the
variable that we can use in every navigation node. This works just like rows in a
table, where we deine a var that we can use in every row. A <tr:navigationPane>
component can show one level at a time. To make sure that the links to the pages
Kids.xhtml and Employees.xhtml are shown, we set the level attribute to 1. If
we set it to 0, which is also the default, the top level (in our case only Start.xhtml)
will be shown. The nodeStamp facet will be repeated for every node at the given
level. The <tr:commandNavigationItem> works just like a <tr:commandButton> of
<tr:commandLink>—if a user clicks on it, the associated action will be performed.
How the <tr:commandNavigationItem> component will be rendered depends on the
value of the hint attribute of the <tr:navigationPane> component. The following
table shows the possible values, and an example of the result of each. Note that the
exact appearance can be changed by Trinidad’s skinning facilities; see Chapter 7.

Hint Example Description
bar A bar with links.

tabs A bar with tabs. If you have such a bar on
every page, it seems to the user as if he or
she is selecting tabs.

buttons Not exactly what you’d expect, given the
hint. More or less same as the bar, but
without a background.

choice A choice list with a Go button. This might
be handy if there are a lot of navigation
items, but otherwise it just requires an extra
click by the user.

list A bullet list of links.

Creating breadcrumbs
The same navigation hierarchy can also be used to add breadcrumbs. Suppose we
would like to indicate to the user where he or she is in the hierarchy, we could add a
<tr:breadCrumbs> component to our page template to achieve that. This component
is very similar to the <tr:navigationPane> component. It doesn’t have a level
attribute, of course. This snippet can be added to our template to add breadcrumbs
to every page:

<tr:breadCrumbs var="crumb" value="#{miasMenu}"

orientation="horizontal">

http:///

Trinidad—the Basics

[162]

<f:facet name="nodeStamp">

<tr:commandNavigationItem text="#{crumb.label}"

action="#{crumb.doAction}"/>

</f:facet>

</tr:breadCrumbs>

The orientation attribute defaults to horizontal. If we set it to vertical, the
breadcrumbs will be displayed as an indented list. The following image shows an
example of the breadcrumbs on the Edit employee page.

Creating a hierarchical menu
We can also use our navigation hierarchy to display a hierarchical menu. For this
we can use the <tr:navigationTree> component. The usage of this component is
almost the same as for the other two navigation components. We could add it to one
of our pages, as follows:

<tr:navigationTree var="node" value="#{miasMenu}">

<f:facet name="nodeStamp">

<tr:commandNavigationItem text="#{node.label}"

action="#{node.doAction}"/>

</f:facet>

</tr:navigationTree>

There’s one important difference with the <tr:breadCrumbs> component that you
should keep in mind. For the breadcrumbs to show even on the edit pages, we had
to add those edit pages to our navigation hierarchy. If we use the same hierarchy
for the <tr:navigationTree>, we get direct links to the edit pages in our menu.
That’s not what we want, as the edit pages don’t make any sense if no entity is
selected to edit. There’s no elegant solution for this, other than using either the
<tr:breadCrumbs> or the <tr:navigationTree> component in one project—but
not both of them.

http:///

Chapter 5

[163]

Creating layouts for our pages
Trinidad offers a set of layout components that help us to lay out our pages. In a
way, they are comparable to layout managers in Java Swing. Layout components can
easily be recognized by their names, which are always in the form <tr:panel...
Layout>, where ... indicates the type of layout. Just like Swing layout managers,
pretty much every layout you like can be achieved by nesting different layout
components. Layout components do not add visible elements to the page; they only
position their children.

There are also a lot of <tr:panel...> components that do add visual elements to
the page and position their children. These components can be recognized by their
names, which also start with panel, but do not end with Layout.

Using a border layout
The <tr:panelBorderLayout> component behaves a bit like a BorderLayout
manager in Swing. The <tr:panelBorderLayout> component places its children in
the center. It has 12 facets that are placed around the child component(s) that are in
the center. The following image displays how the contents of the facets are placed
around the center. Of course, not all facets have to be used. We can simply leave out
the facets that we don’t need.

Note that on the left and right sides, some facets share the same position. This
means that they are mutually exclusive. So you should either use left, innerLeft,
innerRight, and right or start, innerStart, innerEnd, and end. The difference
is that the left and right facets are always placed to the left or right, whereas the start
and end facets are placed according to the reading direction of the current locale. So
in a right-to-left language, the contents of the start facet are placed to the right of
the center, while the same contents are placed to the left of the center in a left-to-right
language.

http:///

Trinidad—the Basics

[164]

Layout methods
The <tr:panelBorderLayout> component can use two different layout methods.
They can be set by using the layout attribute:

•	 layout="positioned": The size of the facets can be set by using attributes
of the <tr:panelBorderLayout> component. For the top and bottom facets,
only the height can be set. For the left, right, start, and end facets, only the
width can be set. The available attributes are—topHeight, innerTopHeight,
bottomHeight, innerBottomHeight, leftWidth, innerLeftWidth,
startWidth, innerStartWidth, innerEndWidth, endWidth,
innerRightWidth, and rightWidth. All CSS style units can be used for the
sizes—em, ex, px, in, cm, mm, pt, pc, and %. The default for all facets is 25%.

•	 layout="expand": The component is automatically expanded over the
available space to it the child components and the contents of the facets.
This is also the default behavior if no layout method is set. If this layout
method is selected, the size attributes (topHeight, innerLeftWidth, and
so on) are ignored.

An example usage of the component is shown next:

<tr:panelBorderLayout bottomHeight="100px"

layout="positioned">

<f:facet name="innerLeft">innerLeft</f:facet>

<f:facet name="innerRight">innerRight</f:facet>

<f:facet name="bottom">bottom</f:facet>

child </

tr:panelBorderLayout>

In this example, the text “child” goes in the center with the texts “innerLeft” and
“innerRight” to the left and right, and the text “bottom” below it. The area in
which the bottom contents are added will be 100-pixel high.

http:///

Chapter 5

[165]

	

	
	

http:///

Trinidad—the Basics

[166]

<f:facet name="separator">•</f:facet>

</tr:panelGroupLayout>

The • entity is displayed as a bullet character. The following image shows
how this example will be rendered when the layout attribute is set to vertical or
default instead of horizontal:

horizontal vertical default

No separator is placed inside the group of buttons that is grouped by the
<tr:group> components. Of course, the button bars are just used as an
example here—there are a lot of other situations where we could use the
<tr:panelGroupLayout> component, such as vertically stacking various elements
on a page, creating a “ilm strip” of images, and so on.

Using a horizontal layout
The <tr:panelHorizontalLayout> component is much like the
<tr:panelGroupLayout> component with its layout attribute set to horizontal.
The differences are as follows:

•	 The <tr:panelHorizontalLayout> component has, obviously, no layout
attribute that can be used to change the layout.

•	 The <tr:panelHorizontalLayout> has two extra attributes that can be used
to change the alignment of the child elements within the available space:

	° halign: Sets the horizontal alignment. Valid values are
right, start, left, end, and center. start is equivalent to
left in right-to-left locales, or to right in right-to-left locales;
end is analogous.

	° valign: Sets the vertical alignment. Valid values are middle,
top, baseline, and bottom.

Just like the <tr:panelGroupLayout> component, the
<tr:panelHorizontalLayout> component has a separator facet.

http:///

Chapter 5

[167]

Creating layouts for input forms
The purpose of the <tr:panelFormLayout> layout component is to align various
input components and their labels, automatically. This works very well if you use
the Trinidad input components with their label or labelAndAccesKey attributes.
In most cases, the default behavior might be good enough for your needs. However,
there are some ways to inluence the appearance of our input forms.

The <tr:panelFormLayout> component is capable of distributing its child
components over multiple columns. This is controlled by the rows and maxColumns
attributes. The maxColumns attribute sets the maximum number of columns that will
be used. This maximum is guaranteed. The rows attribute determines after how many
rows a new column should be started. However, if there are more components in the
form than the value of rows multiplied by the value of maxColumns, the number of
rows will automatically be increased. Thus, the number of rows is not guaranteed.

The width of the labels and the components is automatically determined by the
form layout component. However, this process can be inluenced by using the
labelWidth and fieldWidth attributes. Both attributes accept absolute values (in
pixels) as well as percentages. The latter is the preferred way to inluence the width.
If percentages are used, the labelWidth and fieldWidth values should always
add up to exactly 100%. If they don’t, the <tr:panelFormLayout> component will
change the percentages such that they add up to exactly 100%. Most of the time we
won’t need these attributes, but they may be useful when we’re trying to line up two
different <tr:panelFormLayout> components on one page.

Grouping components
The grouping of components is also supported by the <tr:panelFormLayout>
component. You can group components by surrounding them with a <tr:group>
component. Groups of components will be separated by a visual separator. The form
layout component will keep groups together if multiple columns are used, which
means that a group will always be in one column. The form layout component will
count every row in a group as a row in the total form. However, if a group has more
rows than the value of the rows attribute of the form layout component, then the
group will still be in a single column of the form.

http:///

Trinidad—the Basics

[168]

Label and message
Although the <tr:panelFormLayout> component works very well with all
of Trinidad’s input components, sometimes there may be the need to use
another component. Or we might want to combine two or more components
in a form as if they’re one, with a single label. For these cases, there is the
<tr:panelLabelAndMessage> component. We can simply put everything that
should be handled as one component as a child of the <tr:panelLabelAndMessage>
component. We can use either the label attribute or the labelAndAccesKey attribute
to set the label, just as we do for normal Trinidad input components. We should not
forget to set simple to true for all Trinidad input components that we add as children
to the <tr:panelLabelAndMessage> component.

The following image shows an input form formatted with a <tr:panelFormLayout>
component, without setting either the width attributes, or the rows or maxColumns
attributes. As you can see, separators are added between groups of components that
are grouped with a <tr:group> component.

Footer facet
The <tr:panelFormLayout> component has a facet called footer that can be used
to add buttons to the form. In the previous example, a <tr:panelButtonBar>
component containing three buttons is added to the footer facet as follows:

<f:facet name="footer">

<tr:panelButtonBar>

<h:commandButton value="#{msg.apply}"

action="#{editKidForm.apply}" />

<h:commandButton value="#{msg.ok}"

http:///

Chapter 5

[169]

action="#{editKidForm.save}" />

<h:commandButton value="#{msg.cancel}"

action="cancel" immediate="true" />

</tr:panelButtonBar>

</f:facet>

Creating an accordion
The accordion component is mainly meant for navigation purposes. It wraps around
multiple <tr:showDetailItem> components. Normally, a <tr:showDetailItem>
component shows a link that unveils some details below it when clicked. Grouped in
a <tr:panelAccordion> component, the <tr:showDetailItem> components work
together; some sections are closed automatically when others are opened. The exact
behavior depends on two attributes, as described in the following table:

discloseMany discloseNone Description
false false This is the default setting. There is always exactly

one child expanded. By selecting one child, any other
expanded child will be collapsed. It is not possible to
collapse a child by clicking on it.

false true Only one child can be expanded at a time, but it is
also possible to collapse all children.

true false Multiple children can be expanded at the same time.
Children can be collapsed, but at least one child will
stay expanded.

true true Multiple children can be expanded at the same
time. Children can be collapsed and it is possible to
collapse all children at the same time.

The contents of the <tr:showDetailItem> component are not formatted in any
special way. So if we want to have—for example—a list of hyperlinks in each section
of the accordion, we have to take extra provisions to make sure that the hyperlinks
are stacked vertically. This can be done by using a <tr:panelGroupLayout>
component with the layout attribute set to vertical, like in the following example:

<tr:panelAccordion discloseMany="false" discloseNone="true">
<tr:showDetailItem text="Apache MyFaces websites">

<tr:panelGroupLayout layout="vertical">
<tr:goLink text="Main website"

destination="http://myfaces.apache.org"/>
<tr:goLink text="Wiki"

destination="http://wiki.apache.org/myfaces/"/>
</tr:panelGroupLayout>

</tr:showDetailItem>

http:///

Trinidad—the Basics

[170]

<tr:showDetailItem text="Book resources">
<tr:panelGroupLayout layout="vertical">

<tr:goLink text="Packt publishing"
destination="http://www.packtpub.com/"/>

<tr:goLink text="Example sources"
destination="http://code.google.com/p/jee-examples/"/>
<tr:goLink text="Author's weblog"

destination="http://www.bartkummel.net"/>
</tr:panelGroupLayout>

</tr:showDetailItem>
</tr:panelAccordion>

The following image shows how this example could be displayed. Note that in the
image, the links line up nicely with the text of the headers. This is not the default.
Some CSS had to be applied to the <tr:panelGroupLayout> components to achieve
this—inlineStyle="margin-left: 17px;". Should you want to change the overall
appearance of the accordion, the only way to do so is to use Trinidad’s skinning
capabilities. (See Chapter 7).

Creating a tabbed panel
The tabbed panel has a lot in common with the accordion. Like the accordion, the
<tr:panelTabbed> component wraps around multiple <tr:showDetailItem>
components. The difference is that always exactly one detail item is shown. Another
big difference with the <tr:panelAccordion> component is the appearance. As the
name of the component suggests, the <tr:panelTabbed> component renders a set
of tabs, where the currently-selected tab is rendered on top of the unselected tabs.
Unfortunately, in the default skin of Trinidad, the tabs don’t really look like tabs.
This can be solved by a custom skin, though. The tab bar can be positioned at the top,
bottom, or both by setting the position attribute to above, below, or both. The latter
is the default value. Here’s an example of its use. Note the similarity with the code
for an accordion that we just saw.

<tr:panelTabbed position="above">
<tr:showDetailItem text="Apache MyFaces websites">

<tr:panelGroupLayout layout="vertical">
<tr:goLink text="Main website"

destination="http://myfaces.apache.org"/>

http:///

Chapter 5

[171]

<tr:goLink text="Wiki"
destination="http://wiki.apache.org/myfaces/"/>

</tr:panelGroupLayout>
</tr:showDetailItem>
<tr:showDetailItem text="Book resources">

<tr:panelGroupLayout layout="vertical">
<tr:goLink text="Packt publishing"

destination="http://www.packtpub.com/"/>
<tr:goLink text="Example sources"

destination="http://code.google.com/p/jee-examples/"/>
<tr:goLink text="Author's weblog"

destination="http://www.bartkummel.net"/>
</tr:panelGroupLayout>

</tr:showDetailItem>
</tr:panelTabbed>

This code leads to the layout as displayed in the following screenshot:

Creating a choice panel
The <tr:panelChoice> component is also built around the same principles as the
<tr:panelAccordion> and <tr:panelTabbed> components. It has to have one
or more <tr:showDetailItem> components as children. The <tr:panelChoice>
component will be rendered as a combobox with the value of the text attribute of
each of the <tr:showDetailItem> components’ children as options. Whenever
an option is chosen, the contents of the corresponding <tr:showDetailItem>
component are shown. The position of the combobox can be set by the position
attribute. When set to top, the combobox will be above the contents of the
<tr:showDetailItem> components. When set to start, it will be to the left of the
contents, or to the right in a right-to-left language. By using the alignment attribute,
the alignment of the combobox relative to the contents of the <tr:detailItem>
components can be set to either top, start, end, bottom, or center. The following is
an example:

<tr:panelChoice label="Links to..." position="top"

alignment="center">

<tr:showDetailItem text="Apache MyFaces websites">

<tr:panelList>

<tr:goLink text="Main website"

destination="http://myfaces.apache.org"/>

<tr:goLink text="Wiki"

http:///

Trinidad—the Basics

[172]

destination="http://wiki.apache.org/myfaces/"/>

</tr:panelList>

</tr:showDetailItem>

<tr:showDetailItem text="Book resources">

<tr:panelList>

<tr:goLink text="Packt publishing"

destination="http://www.packtpub.com/"/>

<tr:goLink text="Example sources"

destination="http://code.google.com/p/jee-examples/"/>

<tr:goLink text="Author's weblog"

destination="http://www.bartkummel.net"/>

</tr:panelList>

</tr:showDetailItem>

</tr:panelChoice>

In the example that we just saw, a <tr:panelList> component is used to group the
items within the <tr:showDetailItem> components. The following image shows
how this is rendered:

Creating a radio panel
The <tr:panelRadio> component is much like the <tr:panelChoice> component.
The only difference is that the <tr:panelRadio> component renders a list of radio
buttons instead of a combobox.

Displaying boxes
The <tr:panelBox> component is, not surprisingly, meant for displaying boxes. A
box has some special features, such as the possibility to display an icon (via the icon
attribute) and a title (via the text attribute) on top and four built-in color schemes. By
default, a box takes up all available horizontal space and just as much vertical space as
needed to display its children. The width can be changed by using the inlineStyle
attribute and setting it to a ixed or relative width via CSS. The color scheme can be
chosen by setting the background attribute to light, medium, dark, or transparent.
The exact meaning of this scheme can be altered by the skin that is in use.

http:///

Chapter 5

[173]

In the following example, a <tr:outputFormatted> component is used to ill the
box with formatted text; but any other component could have been used. Also, the
number of child components of the <tr:panelBox> component is not limited to one.
However, should you want to have more than one child component, you should be
aware that you have to use some layout component to lay out the child components
in the way that you want.

<tr:panelBox icon="../images/exclamation.png"

text="Warning!" background="light"

inlineStyle="width:500px;">

<tr:outputFormatted value="You should be aware that a lot of
monsters work at this scaring facility. It is their
job to scare kids in order to collect their screams. People with (a
history of) heart problems are advised not to get scared. Please read
our disclaimer for information about
liability."/>

</tr:panelBox>

Note that some escaped HTML tags are used in the text that ills the
<tr:outputFormatted> component. The following image shows the box that is
produced by this code, where the background attribute is set to (from top to bottom)
light, medium, dark, and transparent:

http:///

Trinidad—the Basics

[174]

Displaying tips
The tip panel is a fairly simple component as it doesn’t have any special attributes.
It renders its children in a special style, and adds an indicator to identify it as a tip
to the user. This may, for example, be useful if it is not entirely obvious what values
may be entered in a form. Let’s add a tip to the EditKid.xhtml page, to tell the user
that he can use the braveness calculator to calculate the braveness of the kid. We add
the following code just above the input ield for braveness:

<tr:panelTip>

<tr:outputText value="#{msg.bravenessCalcTip}"/>

</tr:panelTip>

The result of this is shown in the following image:

http:///

Chapter 5

[175]

<tr:outputText value="Please contact the system

administrator for more information. "/>

</tr:panelHeader>

</tr:panelHeader>

<tr:panelHeader messageType="error"

text="System temporary out of order" >

<tr:outputText value="The system is temporary out of order

due to planned maintenance."/>

<tr:panelHeader text="Who to contact">

<tr:outputText value="Please contact the system

administrator for more information. "/>

</tr:panelHeader>

</tr:panelHeader>

The example that we just saw generates the same content twice. The irst time, no
messageType is set, and thus the default header formatting is used and a custom icon
can be added, as can be seen in the following image:

If the messageType is set to error for the second time, the header will be displayed
in another color, as can be seen in the following image:

Using pop ups
The <tr:panelPopup> component renders a clickable link that displays a pop up
when clicked. The contents of the pop up can be anything. If more than one child
components are used for the contents of the pop up, it is best to use a layout panel to
position the children as desired. The text attribute sets the text of the link, whereas
the title attribute sets the text for the title bar of the pop up. If the title attribute is
omitted, no title bar is added to the pop up. An example of the usage is given next:

<tr:panelPopup text="More information"

title="Websites related to this book">

<tr:panelGroupLayout layout="vertical">

<tr:goLink text="Packt publishing"

http:///

Trinidad—the Basics

[176]

destination="http://www.packtpub.com/"/>

<tr:goLink text="Example sources"

destination="http://code.google.com/p/jee-examples/"/>

<tr:goLink text="Author's weblog"

destination="http://www.bartkummel.net"/>

</tr:panelGroupLayout>

</tr:panelPopup>

The result of this example is shown in the following image:

Creating button bars
Button bars can be produced easily by using the <tr:panelButtonBar> component.
It behaves more-or-less the same as a <tr:panelGroupLayout> component with
layout set to horizontal. Unlike the group layout component, the button bar
component does not have a separator facet, but applies some default spacing to
buttons. Buttons that are grouped in a <tr:group> component are spaced a bit
tighter than ungrouped buttons. Another difference is that <tr:panelButtonBar>
has a semantical meaning, which gives skins the opportunity to apply special
formatting to button bars, although the default skin does not take advantage of this
opportunity. The <tr:panelButtonBar> component has a halign attribute that
can take a value of right, start, left, end, or center in order to align the buttons.
Depending on the reading direction of the language of the user’s browser, start is
equivalent to left or right and for end it’s the other way around. An example of
the usage can be found in the EditKid.xhtml page:

<tr:panelFormLayout>

...

<f:facet name="footer">

<tr:panelButtonBar halign="right">

<tr:commandButton text="#{msg.apply}"

id="btnApply" partialSubmit="false"/>

<tr:commandButton text="#{msg.ok}"

action="#{editKidForm.save}"/>

<tr:commandButton text="#{msg.cancel}"

http:///

Chapter 5

[177]

action="cancel" immediate="true" />

</tr:panelButtonBar>

</f:facet>

</tr:panelFormLayout>

This results in the button bar at the bottom of the “edit kid” form, which is shown in
the following image:

Using caption groups
The caption group panel is meant to group a set of related controls within a form.
As such, it can be seen as an alternative to grouping items in a form by using the
<tr:group> component. Although the <tr:group> component doesn’t have any
means to inluence the appearance of the grouping, the <tr:panelCaptionGroup>
component has a facet called caption. This can be used to add a caption to the
group, including all extra items that we would like, such as icons or formatted text.
Should we want a text-only caption formatted in a default way, we could use the
captionText attribute of the <tr:panelCaptionGroup> component instead, thus
eliminating the need for a facet and extra components in it.

As an example, we could change the form in EditKid.xhtml to use the
<tr:panelCaptionGroup> components for grouping:

<tr:panelCaptionGroup captionText="Name and birth date">

<tr:panelFormLayout>

http:///

Trinidad—the Basics

[178]

<mias:field id="firstName" required="true"

bean="#{editKidForm.selectedKid}"

maximumLength="30"/>

...

</tr:panelFormLayout>

</tr:panelCaptionGroup>

<tr:panelCaptionGroup>

<f:facet "caption">

<tr:image source="../images/pencil.png"/>

</f:facet>

<tr:panelFormLayout>

<mias:selectField id="country" type="choice"

bean="#{editKidForm.selectedKid}"

items="#{mias:getCountries()}"

itemValue="name" itemLabel="name" />

...

<f:facet name="footer">

<tr:panelButtonBar halign="right">

...

</tr:panelButtonBar>

</f:facet>

</tr:panelFormLayout>

</tr:panelCaptionGroup>

In the previous example, we’ve used two <tr:panelCaptionGroup> components.
The irst one uses the captionText attribute to set the caption, whereas the
second one uses the caption facet to set an icon as the caption. Note that the
<tr:panelFormLayout> has to be inside the <tr:panelCaptionGroup> component,
which requires an extra <tr:panelFormLayout> component. That’s a problem,
because the two <tr:panelFormLayout> components will not line up their labels
nicely, as can be seen in the next image. This, combined with the fact that nowadays
user interface specialists advise the use of simple separator lines over boxes like
the caption group, the <tr:panelCaptionGroup> component does not seem to
be a very usable component. Using the <tr:group> component within a single
<tr:panelFormLayout> component seems to be a much more elegant way of
grouping ields.

http:///

Chapter 5

[179]

Creating bulleted lists
The list panel component is an easy way to make bullet lists. All child items of
the <tr:panelList> component are stacked vertically, and are preixed with a
bullet. Longer lists can be split up and spread across multiple columns. This works
more-or-less the same as with the <tr:panelFormLayout> component. The rows
attribute sets the number of rows per columns, and the maxColumns attribute sets the
maximum number of columns. The <tr:panelList> component tries to obey both
settings, but the maxColumns attribute takes precedence. This means that the number
of rows per column may be larger than the rows attribute if the maximum number
of columns is reached. When the items are distributed over multiple columns, the
<tr:panelList> component tries to distribute them evenly.

As an example, we could replace the table on the Employees.xhtml page with a
simple bulleted list of employees, where each employee’s name can be clicked on, to
link to the edit page for that employee.

<tr:panelList rows="5">
<c:forEach var="emp" items="#{empsList.employees}">

<tr:commandLink action="edit">
<tr:outputText value="#{emp.firstName} #{emp.lastName}" />
<tr:setActionListener from="#{emp}"

to="#{pageFlowScope.selectedEmployee}" />
</tr:commandLink>

</c:forEach>
</tr:panelList>

http:///

Trinidad—the Basics

[180]

In this example, the rows attribute is set to 5. In the following image, the list has
seven employees. To keep the number of rows below six and distribute the items as
evenly as possible, the irst column has four employees and the second has three.

Lay out a page by using the panel page
component
It seems that the <tr:panelPage> component was designed as a work-around for
the lack of templates in JSF. It has a lot of facets with names such as navigation1,
appCopyright, and so on. Each facet will be placed at a certain position on the page.
All facets surround the direct children of the <tr:panelPage> component, which
should be the main content of the page. As we have a good templating solution with
Facelets, the use of this component no longer seems necessary. For completeness, a
list of all facets is given in the following table:

Facet name Description
appCopyright Area for copyright information. This will be rendered at the bottom

of the page, just above the contents of appPrivacy. In the default
skin, this area is rendered with a smaller font.

appPrivacy Area for privacy disclaimers and the like, which is rendered at
the bottom of the page, between the appCopyright and the
appAbout contents. Also in a smaller font, just like appAbout and
appCopyright.

appAbout Area meant for information about the application, which is typically
a link to the vendor or the IT department. This will be rendered at
the bottom of the page. In the default skin, this area is rendered with
a smaller font.

branding This is the area where the (company) logo and the name of the
application should go. It’s rendered in the top-left corner of the page.

infoFootnote Region reserved for footnotes speciic to a certain page. This is
rendered at the bottom of the page, above the copyright information.

http:///

Chapter 5

[181]

Facet name Description
infoReturn Area reserved for a “return to some page” link. This is rendered

below the footnote, and above the copyright. In the default skin, a
separator line is rendered above this area.

infoStatus Area for status information. This seems the ideal place for a
<tr:messages> component. It is rendered just above the
main content.

infoUser This area is reserved for user information, such as the username of
the logged-in user, a logout link, and/or a link to the user’s proile.
This is rendered just above the infoStatus contents, and aligned to
the right.

location Reserved for location information. This is the place for breadcrumbs
or process trains, and is rendered just above the infoStatus
contents, and left aligned.

navigation1 The <tr:panelPage> component has room for three levels
of navigation, in addition to the navigationGlobal area.
navigation1 is rendered right aligned, just below the
navigationGlobal content. navigation2 is rendered
below navigation1, and is left aligned. navigation1 and
navigation2 are meant for horizontal-oriented navigation
components such as tab bars and the like. navigation3 is rendered
below navigation2 and to the left of the main content, and is
meant for vertical-oriented navigation components such as tree
menus.

navigation2

navigation3

navigationGlobal This section is meant for global navigation, such as “home”, “sign
out”, “help”, and so on. This is rendered in the top-right corner of
the page.

search The search region of the page. This is meant for application or
system-wide searches, and is rendered below navigation2 and
to the right of navigation3. In the default skin, a separator line is
rendered below the search area.

http:///

Trinidad—the Basics

[182]

The following image shows the positioning of the facets:

Using the page header panel
The <tr:panelPageHeader> component is much like the <tr:panelPage>
component, except that it is only meant for the page header and not for the whole
page. Child components that are not in one of the facets don’t get rendered. The
following table lists all of the facets, along with descriptions of them:

http:///

Chapter 5

[183]

Facet name Description
branding This component deines three levels of branding.

The irst, branding, will be rendered in the top-left
corner of the page. The second, brandingApp, will
be rendered just to the right of the irst-level branding.
brandingAppContextual will be rendered below the
irst two levels.

brandingApp

brandingAppContextual

menuSwitch This is rendered in the top-right corner. This area is meant
for some global pull-down menu.

navigation1 This is rendered right-aligned, just below the menuSwitch
contents.

navigation2 This is rendered left-aligned, below the three branding
areas.

navigationGlobal This is meant for global navigation, as on the
<tr:panelPage> component. It is rendered just to the
left of the menuSwitch contents.

The following image gives an idea of the positioning of the facets:

Summary
In this chapter, we saw how to use the many components of Apache MyFaces
Trinidad to build usable and consistent-looking pages. We also learned how to use
the common features that most Trinidad components share. We learned how useful
it is to have a well-designed set of components that are all designed around the same
principles. The more advanced topics of Trinidad are covered in the next chapter.

http:///

http:///

Advanced Trinidad
Apache MyFaces Trinidad is an extensive JSF library that goes far beyond supplying
fancy JSF components. This chapter continues where the previous chapter left off,
covering the more advanced features of Trinidad.

After reading this chapter, you will be able to:

•	 Add charts to your user interface
•	 Pass data from one page to another using the pageFlowScope
•	 Make your user interface more responsive and interactive using

Partial Page Rendering (PPR, aka AJAX)
•	 Create pop-up dialogs
•	 Perform validation and conversion on the client side; write, test,

and debug JavaScript code for client-side validation and conversion

Data visualization
Trinidad has a data visualization component that is able to visualize numerical data
in an appealing way. This component relies on a special data model that we have to
implement. This section focuses on implementing that data model, and also gives an
overview of the most important options of the visualization component itself.

http:///

Advanced Trinidad

[186]

Creating the data model
The chart component expects a number of methods to be present in order to get
the data to be visualized. One would expect these methods to be deined in a Java
interface, as is common practice. However, the Trinidad project only supplies
an abstract class that has to be extended, which is the org.apache.myfaces.
trinidad.model.ChartModel class. This class deines three methods that have to be
implemented regardless of which visualization type will be chosen. Apart from these
three methods, the class has a number of methods that are not abstract, but that can
be overridden in a subclass. Some of them are needed for some speciic visualization
types, whereas others are meant to provide optional data such as extra labels.

Understanding the terminology
Before we start implementing a data model, it’s good to have a look at the ter-
minology used in the Trinidad ChartModel. Here’s a list of the most important
terms used:

•	 Series: This is a list of data points that can be shown in a chart. Often, mul-
tiple series are shown in a single chart. For example, if the quarterly results
over the past two years of two companies are compared, there’s one series
for each company.

•	 Group: This is a set of data points from multiple series that share a position
on the horizontal axis. In the quarterly results example, there’s a group for
each quarter.

•	 X axis: This is the axis where the groups are displayed. Most of the time,
this will be the horizontal axis. However, there are some chart types where
the axes are rotated, for example with a “horizontal bar” graph. For rotated
graphs, the X axis is the vertical axis.

•	 Y axis: This is the axis where the values are shown. Most of the time, this is
the vertical axis, except for the rotated graphs.

Implementing a minimal data model
Let’s start by implementing a minimal data model that is useful for most of the
visualization types. Suppose we want to create a chart that displays the average
braveness factor of kids per age. We could create a class like this:

public class AgeVsBraveness extends ChartModel {
private List<Kid> kids;
private List<List<Double>> data;

private void calculate() {
// do some math...

}

http:///

Chapter 6

[187]

@Override
public List<String> getGroupLabels() {

calculate();
List<String> x = new ArrayList<String>();
for(int i = 0; i < data.size(); i++) {

x.add("" + i);
}
return x;

}

@Override
public List<String> getSeriesLabels() {

calculate();
List<String> x = new ArrayList<String>();
x.add("Braveness");
return x;

}

@Override
public List<List<Double>> getYValues() {

calculate();
return data;

}
}

We assume that kids references the main kids list of the application. The
calculate() method will calculate the average braveness factor for each age.
The result is put into a two-dimensional structure, a List of Lists. The inner
Lists are Lists of Doubles. This data structure is the required return type of the
getYValues() method. Therefore, this method can be fairly simple, as long as we
know that the calculate() method will ill the structure.

The idea is that a single chart can visualize several series of data. Perhaps one would
expect that every List of Doubles represents one series of data, but it is a bit more
complicated than that. Every Nth value in every List of Doubles contains a value
of series N. So if we have a single series of data, we need as many Lists of Doubles
as we have values, and every List has only one Double value in it. If we have more
than one series, this can be confusing sometimes.

http:///

Advanced Trinidad

[188]

The following image tries to clarify it a bit by giving an example:

List<List> List<Double>

2.31.5 7.86.2

9.56.1 5.33.7

4.64.5 3.98.1

3.35.3 9.11.8

1
s
t

s
e
r
i
e
s

2
n
d

s
e
r
i
e
s

3
r
d

s
e
r
i
e
s

4
t
h

s
e
r
i
e
s

The getSeriesLabels() method should return a List of Strings containing a
name for each series. So this list should contain exactly as many Strings as there
are values in our Lists of Doubles. In our case, this list contains only one String.
However, note that we cannot return a simple String; we have to wrap it in a List.

The third and last method that has to be implemented is the getGroupLabels()
method. This method also has to return a List of Strings, but this list should
contain the labels that will be displayed on the X axis. So the length of this list should
be the same as the number of Lists of Doubles in the data set. In our example, we
know that every element in a data series corresponds to an age. So, we can simply
start counting at zero and add one for every label until we have as many labels as
the Double values in the data set. This is exactly what the code in the example does.
But because the group labels are returned as a List of Strings, we are not limited to
numerical labels.

Calculating the values
It’s nice to have labels and everything, but one of the most important things of a
chart is the data. Let’s see how we can calculate the values that we need for our “Age
Vs. Braveness” chart. In the previous example, we created a calculate() method
that did the math. Now let’s see how we can implement this method:

private void calculate() {
data = new ArrayList<List<Double>>();

for(int i = 0; i < 12; i++) {
data.add(new ArrayList<Double>());
data.get(i).add(0.0);

}

for(Kid kid: getKids()) {
int age = kid.getAge();
double braveness = kid.getBraveness();

http:///

Chapter 6

[189]

double oldValue = data.get(age).get(0);
double newValue;

if (0.0 == oldValue) {
newValue = braveness;

} else {
newValue = (oldValue + braveness) / 2.0;

}

data.get(age).set(0, newValue);
}

}

The irst for loop creates 12 Lists of Doubles, and ills each list with one double.
The second loop iterates over all Kid objects. Depending on the age of the kid, the
braveness factor of the kid is used to update the average braveness of all kids with
the same age. Note that comparing double values with == is generally not a good
idea. In this example, there’s no problem because we compare with 0.0.

Initializing the data model
Now that we’ve implemented a data model for our graph, we can start using it
to create the graphs. Before adding a graph to a page, we have to make sure the
<tr:graph> component that we’re going to use can access our calculated data. The
most elegant way of doing this is to use a backing bean. So let’s create a simple
backing bean:

package inc.monsters.mias.backing;

import inc.monsters.mias.data.Kid;
import inc.monsters.mias.data.statistics.AgeVsBraveness;

import java.util.List;

public class Statistics {
private AgeVsBraveness ageVsBraveness;
private List<Kid> kids;

public List<Kid> getKids() {
return kids;

}

public void setKids(List<Kid> kids) {
this.kids = kids;

}

public AgeVsBraveness getAgeVsBraveness() {
if(null == ageVsBraveness) {

ageVsBraveness = new AgeVsBraveness();

http:///

Advanced Trinidad

[190]

This backing bean has a of s that is passed to the object to
provide it with data. In the highlighted method, we use lazy
initialization to create an object only once when needed. Now we
have to declare this backing bean in our ile and make sure the

 property of the bean gets a reference to the main list of kids. This can be done
as follows:

We use expression language to refer to another managed bean that we use to
initialize the property of our bean.

You may wonder why we don’t instantiate an instance of
 as a managed bean directly. While this can be

done, it is not very elegant—especially when we want to use more
than one implementation in a single page. In this case,
we can simply add another member to our backing
bean, instead of having to create an extra managed bean for every

 that we add. The source code that can be downloaded
from the author’s website () has an
example of a page that uses multiple s.

Adding a graph to a page
Everything is now set to add a graph to a page. We can either add it to an existing
page, or create a new page for it. Whatever we do, adding the graph to a page is as
simple as adding a single JSF component to that page:

ageVsBraveness.setKids(getKids());
}
return ageVsBraveness;

}
}

This backing bean has a List of Kids that is passed to the AgeVsBraveness object to
provide it with data. In the highlighted getAgeVsBraveness() method, we use lazy
initialization to create an AgeVsBraveness object only once when needed. Now we
have to declare this backing bean in our faces-config.xml ile and make sure the
kids property of the bean gets a reference to the main list of kids. This can be done
as follows:

<managed-bean>
<managed-bean-name>statistics</managed-bean-name>
<managed-bean-class>inc.monsters.mias.data.backing.Statistics
</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>

<property-name>kids</property-name>
<property-class>java.util.List</property-class>
<value>#{kidsList.kids}</value>

</managed-property>
</managed-bean>

We use expression language to refer to another managed bean that we use to
initialize the kids property of our bean.

You may wonder why we don’t instantiate an instance of
AgeVsBraveness as a managed bean directly. While this can be
done, it is not very elegant—especially when we want to use more
than one ChartModel implementation in a single page. In this case,
we can simply add another member to our statistics backing
bean, instead of having to create an extra managed bean for every
ChartModel that we add. The source code that can be downloaded
from the author’s website (http://www.bartkummel.net) has an
example of a page that uses multiple ChartModels.

Adding a graph to a page
Everything is now set to add a graph to a page. We can either add it to an existing
page, or create a new page for it. Whatever we do, adding the graph to a page is as
simple as adding a single JSF component to that page:

<tr:chart value="#{statistics.ageVsBraveness}"
type="verticalBar"
inlineStyle="width:800px; height:600px;"/>

http:///

Chapter 6

[191]

The value attribute takes a reference to an object that subclasses the ChartModel
class. In our case, this is the ageVsBraveness member of the statistics bean
we created earlier. The type attribute sets the type of chart that will be generated.
The Chart types section shows an overview of all available types. The <tr:chart>
component itself does not have any size attributes. As shown in the next example,
we can use inlineStyle instead, to set a size.

Changing data display
The <tr:chart> attribute has a lot of attributes that change the way the data is
displayed in a chart. The following table gives an overview of these attributes:

Attribute Description
XMajorGridLineCount By default, for every “label” that is returned by the

getGroupLabels() method, a grid line is drawn. By setting
this attribute to a value other than -1, this behavior can be
overridden. We can set any positive number of grid lines. The
lines will be distributed evenly, regardless of the number of
group labels.

YMajorGridLineCount Controls the number of grid lines on the vertical axis. The
default value is 3.

YMinorGridLineCount Meant to set the number of secondary (minor) grid lines
between two primary (major) grid lines. Currently only works
with “gauge” charts.

maxPrecision Sets the number of decimals for the values that are displayed
on the Y axis. The default is 0, which means that no decimals
are displayed.

Changing the looks
There are a lot of attributes that can be used to change the look of the generated
graph. The following table lists them all:

Attribute Description
animationDuration By default, the chart will be animated the irst time it is displayed.

This attribute sets the duration of the animation in milliseconds.
Set it to 0 to disable animation. The default value is 1000.

gradientsUsed For chart types that have areas that are illed with colors, such as
bar and pie charts. If set to true, which is the default, the areas
are illed with a gradient. If set to false, the areas are illed with
a solid color.

http:///

Advanced Trinidad

[192]

Attribute Description
legendPosition The position of the legend. The legend (or key) helps the user to

determine which color is used to visualize each data series. Valid
values are none, bottom, end, top, and start. none will hide
the legend, start and end will put the legend on the left or right
of the chart, depending on the reading direction of the current
language. The default is bottom.

perspective By default, the charts are rendered with a semi-3D look. This can
be disabled by setting perspective to false.

tooltipsVisible Speciies whether or not tool tips should be displayed if the mouse
cursor hovers over the chart. If set to true, a tool tip with the
name of the series and the value will be displayed if the mouse
pointer is over a data point in the chart. The default value is true.

Chart types
The <tr:chart> component can render different types of charts. The following
table lists all possible types, along with an example of each type and some
explanatory notes:

type and example Notes

verticalBar

A simple bar chart. If more than one series of
data is available, each label on the X axis gets
several bars in different colors.

horizontalBar

This is basically a rotated version of the normal
bar chart. Note that although the values are
returned by a method called getYValues(),
the values are actually displayed on the X axis
in this chart.

http:///

Chapter 6

[193]

type and example Notes

stackedVerticalBar

A stacked version of the standard bar chart. If
only one series of data is available, the result is
exactly the same as with the normal bar chart.

stackedHorizontalBar

A rotated version of the
stackedVerticalBar type.

line

This chart type plots the data points on the grid
and draws a line between them.

http:///

Advanced Trinidad

[194]

type and example Notes

area

This is nearly the same as the line type, but now
the area below the line is illed.

stackedArea

A stacked version of the area chart.

barLine

A combination of bars and lines. The even data
series (0, 2, 4, 6, ...) are plotted as bars and the
odd data series (1, 3, 5, 7, ...) are plotted as
lines.

http:///

Chapter 6

[195]

type and example Notes

radar

A radar plot.

radarArea

A radar plot where the area within the line gets
illed. It is possible to use multiple data series,
but the result is hard to read as all colors blend
together in the center.

pie

The pie type renders as a normal pie chart. All
data should be in the irst List of Doubles. If
the data model returns more than one List of
Doubles, more pie charts will be rendered—
one for each List. Note that no values are
displayed on the chart; the value of a part will
be shown if the mouse pointer is positioned
above the part.

http:///

Advanced Trinidad

[196]

type and example Notes

funnel

The funnel chart behaves the same as a pie
chart, only the form factor is different.

circularGauge

The circularGauge mode can be used to
visualize a single value. An example usage
could be to display a system status on a start
page. As there is only a single value, it is not
possible for this chart type to automatically
guess a good value for the minimum and
maximum values on the scale. Therefore we
should make sure that the getMaxYValue()
and getMinYValue() methods in our
ChartModel subclass return the correct values.

semiCircularGauge

The semiCircularGauge mode behaves
exactly in the same way as the circularGauge
mode, except for the fact that it renders the
gauge in a semi-circle instead of a circle.

http:///

Chapter 6

[197]

type and example Notes

scatterPlot

The scatterPlot lets you deine data
points by their X and Y values. To use this
type of chart, the getXValues() method
should return exactly as many values as the
getYValues() method does. The values at
the same position in both data sets form a pair
that together determine the location of a dot in
the scatter plot. A scatter plot can have multiple
data series.

XYLine

A XYLine plot is more or less the same as a
scatter plot, but with the dots connected by a
line.

http:///

Advanced Trinidad

[198]

The Trinidad charting component was added to Trinidad after it was donated to
Apache. For that reason, it is not (yet) as tightly integrated as the other Trinidad
components. For example, the <tr:chart> component does not use Trinidad’s
skinning capabilities to change its look. On a more subjective note, it seems the chart
component is not as well thought through and rock solid as other parts of Trinidad.
The component could be improved, for example, by using Java interfaces where
applicable, and by better hiding the internal implementation from the programmer.
That said, <tr:chart> is still a useful component for adding charts to a user
interface in a not too complicated way. And, of course, anyone is free to submit
improvements to the Trinidad project.

Passing on data with page lows

http:///

Chapter 6

[199]

Imagine that we have an “Employees” page with a table, as shown in the previous
image. If the user clicks on the pencil icon in one of the rows, he’ll navigate to
an “Edit Employee” page where the data for the employee that was on the row
where he clicked can be edited. The described navigation is shown at the top of the
next image. The user starts at the “Start” page, navigates to “Employees”, goes to
“Edit Employee” by selecting an employee from the table, and then goes back to
“Employees” once he has inished editing the selected employee:

Start Employees
Edit

Employee
Employees

Application scope

Session scope

Page flow scope

Request

scope

Request

scope

Request

scope

Request

scope

Below the navigation in the image, the bars indicate the lifetime of the various
scopes. The application scope is already there if the user starts his navigation at the
“Start” page. At that moment, the session scope is created and stays alive as long as
the user keeps using the system. There’s a new request scope created every time a
new page is requested from the server, and the request scope only lives during the
processing of this request. The page low scope starts its life when the user selects an
employee to edit. The page low scope stays alive until the user navigates away from
the page on which it was created, in this example this is the “Employees” page. To
cut a long story short, the page low scope does live exactly as long as needed.

http:///

Advanced Trinidad

[200]

What is not relected in the image is what happens if the user opens a link in a new
window or browser tab. Imagine that the user opens the “Edit Employee” link in
a new browser tab. He or she returns to the “Employees” page and uses the “edit
employee” link of another employee to open the “Edit employee” page for that
employee in another browser tab. Of course, the user expects to be able to edit both
selected employees without any problem. If we had used the session scope to store
the selected employee, the irst selected employee gets overwritten by the second, as
there is only one session scope for the user. Using the page low scope can solve this
problem. As we will see, a new page low scope will be created every time an “edit
employee” link is used. So in our example, both new browser tabs will get their own
page low scope, preventing the selected employee from being overwritten by any
next selection. In this way the user can edit multiple employees simultaneously, in
different browser tabs.

There’s one thing that we’ll have to keep in mind, though. As the page low scope is
not a standard part of JSF 1.2, the page low scope does have some limitations:

•	 We cannot deine managed beans in pageFlowScope from our
faces-config.xml ile.

•	 We cannot use variables that are stored in the page low scope without
prepending them with pageFlowScope. For example, if we have a variable
name stored in the session scope, we can refer to it as #{name}. But if we
store the same variable in the page low scope, we have to refer to it as
#{pageFlowScope.name}.

Now let’s see how we can use the page low scope in our MIAS application. Let’s
start with the table. The part where the column with the pencil icons gets deined
could look as follows:

<mias:column columnName="edit" headerName="emptyTableHeader"
custom="true">
<tr:commandLink action="#{empsTable.edit}"
immediate="true">
<tr:image source="../images/pencil.png"
inlineStyle="border-width: 0px;" />
</tr:commandLink>
</mias:column>

Note the <tr:commandLink> component, where an action is set. This refers to a
method in the empsTable backing bean. This method has to get the value of the emp
variable for the row in the table where the user clicked. Then, that value has to be
copied to a variable that can be used by the edit page:

public String edit() {

FacesContext context = FacesContext.getCurrentInstance();

ELResolver elr = context.getApplication().getELResolver();

http:///

Chapter 6

[201]

Employee employee = (Employee)

elr.getValue(context.getELContext(), null, "emp");

if (employee == null) {

return null;

}

RequestContext requestContext = RequestContext.getCurrentInstance();

requestContext.getPageFlowScope().put("selectedEmployee",

employee);

return "edit";

}

While this code is not too complicated, it still involves a lot of steps just to copy a
value. Luckily, Trinidad also offers us the <tr:setActionListener> component.
This component is made for this task. We can just add it as a child of our
<tr:commandLink> component:

<mias:column columnName="edit" headerName="emptyTableHeader"

custom="true">

<tr:commandLink action="edit" immediate="true">

<tr:image source="../images/pencil.png"

inlineStyle="border-width: 0px;" />

<tr:setActionListener from="#{emp}"

to="#{pageFlowScope.selectedEmployee}" />

</tr:commandLink>

</mias:column>

This action listener component will take the value of the variable in the from
attribute and copy it to the variable in the to attribute. Now we don’t need Java
code in our backing bean to do this copy operation. Regardless of the method that we
use—Java code or <tr:setActionListener>—a new page low scope gets created
as soon as we put our selected employee into it. Once we’ve copied the selected
employee into the selectedEmployee variable in the page low scope, we can refer
to it in our edit page. For example, to create an edit ield for the last name of the
employee, we could add the following to our edit page:

<mias:field id="lastName" required="true"

bean="#{pageFlowScope.selectedEmployee}"/>

http:///

Advanced Trinidad

[202]

Using AJAX and Partial Page Rendering

http:///

Chapter 6

[203]

With PPR, we can tell a <tr:commandButton> component (or a <tr:commandLink>
component) to do a partial submit instead. In this case, a piece of JavaScript will post
the form data to the server and wait for the response from the server while the browser
keeps displaying the page. After the JavaScript code receives the answer from the
server, it will update the page accordingly. You can see this happening when you push
a button and the progress indicator of your browser doesn’t start moving.

We can use network monitoring software to intercept the requests to the server
and the answers from the server, in order to investigate the difference more
quantitatively. Eclipse has a built-in TCP / IP monitor that can be used for this. With
this tool, we can look at the data trafic generated by a single push on the Apply
button on the EditKid.xhtml page of our example application. The following table
lists the results of a single measurement with this tool:

Partial submit Full submit Factor

Number of requests 1 3 3.0
Total bytes sent 900 1,884 2.1
Total bytes received 661 40,559 61.4

While this is by far not a scientiic measurement, it is clear that we can save a
lot of data trafic between the browser and the server by using partial submits.
Enabling partial submits is as simple as setting the partialSubmit attribute of a
<tr:commandButton> or <tr:commandLink> component to true.

While this can be a nice way to make web applications more responsive, this is
not the “sexy” AJAX stuff that people are looking for. So let’s explore some more
PPR possibilities.

Using the autoSubmit and partialTriggers
attributes
One of the typical AJAX-like tricks is to update a part of a page without the need for
the user to press a button. This can be achieved by using the autoSubmit attribute
on a Trinidad input component. By setting this attribute to true, the value will be
submitted to the server every time the user edits the contents, without the need for
a button to be pressed. Let’s see how we can apply this in a simple example. In the
EditKid.xhtml page in our example application, we have a date ield where the
birth date of a kid can be entered and we also have a read-only ield that displays the
age of the child. Until now, the age of the child was updated only when we clicked
on the Apply button.

http:///

Advanced Trinidad

[204]

To enable automatic submission of the value of the birth date ield, we have to set
the autoSubmit attribute on that component to true. But that’s not the only thing
we have to do. We also have to tell the age component to update itself whenever the
birth date gets updated. This can be done by setting the partialTriggers attribute
of the age ield. This attribute should contain a list of IDs of components to “listen”
to. So in our case, the id of the component to listen to is birthDate. Let’s see how
this sums up in our page:

<mias:dateField id="birthDate"

bean="#{editKidForm.selectedKid}"

required="true"

popup="true"

autoSubmit="true" />

<mias:field id="age"

bean="#{editKidForm.selectedKid}"

readOnly="true"

partialTriggers="birthDate"/>

The additions that are needed to let the age be automatically updated whenever the
birth date changes are highlighted. Note that we have to make sure that our Facelets
composition components “forward” the autoSubmit and partialTriggers values
to the Trinidad components that they use internally. For example, the deinition of
the <mias:dateField> component should look like this:

<c:if test="#{empty autoSubmit}">

<c:set var="autoSubmit" value="false" />

</c:if>

<tr:inputDate value="#{bean[id]}" id="#{id}"

required="#{required}" readOnly="#{readOnly}"

label="#{msg[id]}:"

autoSubmit="#{autoSubmit}">

<tr:convertDateTime pattern="#{msg.datePattern}"/>

<ui:insert />

</tr:inputDate>

The irst three highlighted lines make sure that a default value is set if the
autoSubmit attribute was not set in the calling page. Then we “forward” the value
of the autoSubmit variable to the autoSubmit attribute of the <tr:inputDate>
component in the fourth highlighted line.

http:///

Chapter 6

[205]

http:///

Advanced Trinidad

[206]

http:///

Chapter 6

[207]

Working with partialTriggers and naming
containers
Some components are naming containers. This means that their id attribute is re-
quired. Appendix B contains a list of all of the Trinidad components, and whether
or not they are naming containers. To refer to other components, for example the
partialTriggers attribute, some special rules apply with regards to naming
containers. We are going to apply these rules to an example. Assume that we have
the following page structure:

<tr:form id="form">

<tr:subform id="subForm1">

<tr:subform id="subForm2">

<tr:inputText id="input1" autoSubmit="true" />

</tr:subform>

</tr:subform>

<tr:subform id="subForm3">

<tr:subform id="subForm4">

<tr:inputText id="input2" />

</tr:subform>

</tr:subform>

</tr:form>

Now if we want to add a partialTriggers attribute to the second <tr:inputText>
component, and we want that to be triggered by the irst <tr:inputText>
component, how should we refer to that component? We have to traverse the page
hierarchy from where we are to the component that we want to refer to. We irst go
up the hierarchy until we reach a component that both components have as a parent;
in our example this would be the <tr:form> component. Then we go down through
the hierarchy again, until we reach the component that we want to refer to.

While traversing through the hierarchy, we assemble the “path” to our component
as follows:

•	 To pop out the current naming container, two colons have to be added to
the path

•	 For each additional naming container that we pass on our way up through
the hierarchy of the page, we have to add an extra colon

•	 As we reach the highest level that is needed before we can go down through
the hierarchy, we add the ID of that naming container, followed by a colon

•	 For each naming container that we pass on our way down the hierarchy,
we have to add its ID, followed by a single colon

•	 We end, of course, with the ID of the component that we want to refer to

http:///

Advanced Trinidad

[208]

Now let’s traverse, step-by-step, through the hierarchy of our example, as shown in
the following image:

<tr:form id="form">

<tr:subform id="subForm1">

<tr:subform id="subForm2">

<tr:inputText id="input1" autoSubmit="true" />

</tr:subform>

</tr:subform>

<tr:subform id="subForm3">

<tr:subform id="subForm4">

<tr:inputText id="input2" />

</tr:subform>

</tr:subform>

</tr:form>

1

2

3

4

5

6

The following table shows what is added to our “path” for each step:

Step Add to path Explanation
1 (nothing) Going up without passing a naming container.
2 :: Popping out the irst naming container, add a double colon.
3 : Popping out another naming container, add a single colon.
4 (nothing) form is the irst element that has both components as child. As it is

not a naming container, we don’t have to add its ID to the path.
5 subForm1: Going down in the hierarchy and passing a naming container, add

its name followed by a colon.
6 subForm2: Going down in the hierarchy and passing a naming container, add

its name followed by a colon.
7 input1 Finally reaching the component that we want to refer to, add its ID to

the path.

Having followed these steps, our complete path now is
:::subForm1:subForm2:input1. So if we add it to the component, our
code becomes:

<tr:form id="form">

<tr:subform id="subForm1">

<tr:subform id="subForm2">

<tr:inputText id="input1" autoSubmit="true" />

</tr:subform>

</tr:subform>

<tr:subform id="subForm3">

<tr:subform id="subForm4">

<tr:inputText id="input2"

partialTriggers=":::subForm1:subForm2:input1"/>

http:///

Chapter 6

[209]

</tr:subform>

</tr:subform>

</tr:form>

Creating a status indicator
As stated earlier, the status indicator of the browser will not move when data
is transferred through partial requests. Should we want to show the user that
something is happening in the background—for example, if we know that the
retrieval of data will take a long time—there is a special status indicator component
that can be used: <tr:statusIndicator>. We can just put one or more of these
on our page and it will automatically show the user that there is something going
on in the background. The indicator has only two states: “ready” and “busy”. By
default, the status indicator will show a round icon that starts to spin when the state
is “busy”. This appearance can be overridden by the use of Trinidad’s skinning
capabilities—as with every Trinidad component. (See the next chapter for an
introduction to skinning.) If we would like to have a status indicator on every page,
it would be a good idea to put the status indicator in our page template.

Using the addPartialTarget() method
Sometimes we may want to trigger a partial refresh of a component from within the
Java code of one of our backing beans. For example, we may have a data table on our
page that we want to refresh only if we know that the data has really changed. In
this case, we can call the addPartialTarget()method on the current RequestScope
object. We can also use this method to partially refresh a non-Trinidad component
that doesn’t have a partialTriggers attribute. Let’s look at an example to see how
to use this method.

On the Kids.xhtml page, we have a table showing all of the kids in the database. We
can remove kids from the system by selecting them in the table and then clicking on
the Delete button. Currently, the button performs a full submit of the page. We can
change this into a partial submit, as follows:

<tr:table var="kid" value="#{kidsList.kids}" rows="20"

id="kids" rowSelection="multiple"

binding="#{kidsTable.table}">

...

<f:facet name="actions">

<tr:commandButton

actionListener="#{kidsTable.deleteSelected}"

text="#{msg.delete}"

partialSubmit="true"/>

http:///

Advanced Trinidad

[210]

</f:facet>

</tr:table>

But if we now click on the button, the table does not get refreshed. Of course, the
easiest way to ix this is to give the table a partialTriggers attribute. But let’s say
we want to be super-eficient and want to prevent the table from being refreshed
if no kid was deleted because of some error. In such a case, we have to enforce
refreshing in the backing bean code. To do that, we have to add some lines to the
action listener method in the KidsTable.java backing bean code:

public void deleteSelected(ActionEvent event) {
Object oldRowKey = getTable().getRowKey();

Iterator<Object> selectedKeys =
getTable().getSelectedRowKeys().iterator();

Map<Integer, Kid> map = Util.getKidsMap();

int deleted = 0;
while(selectedKeys.hasNext()) {

Object key = selectedKeys.next();
getTable().setRowKey(key);
Kid kid = (Kid) getTable().getRowData();
map.remove(kid.getId());
deleted++;

}

getTable().setSelectedRowKeys(null);
getTable().setRowKey(oldRowKey);

if(deleted > 0) {
RequestContext rc = RequestContext.getCurrentInstance();
rc.addPartialTarget(getTable());

}
}

We add a counter (deleted) to see if any kids get deleted. Only if deleted >
0 at the end of the method, we get the RequestContext instance and call the
addPartialTarget() method. The argument is the UIXTable object that is returned
by the getTable() accessor method. Note that we have to have access to the UI object
via binding, otherwise we don’t have an object to pass to the addPartialTarget()
method. In this case, we already had access to the UI object by using the
binding="#{kidsTable.table}" attribute of the table deinition.

http:///

Chapter 6

[211]

Dynamically hiding or showing components
A common requirement of interactive pages is to dynamically show or hide certain
sections of a page. This can be done easily with Trinidad’s PPR framework, but
some caution should be taken. Each JSF component has a rendered attribute that
determines if the component will be rendered or not. We could dynamically show
or hide a component by manipulating this rendered attribute by some expression.

Let’s take the Employees.xhtml page as an example. We added a list of employees
below the table, and we want to show or hide this list dynamically, depending on
whether or not a checkbox is selected. To achieve this, we start by adding a boolean
property showAsList to the backing bean of the page, EmployeesList.java:

public class EmployeesTable {

private UIXTable table;

private boolean showAsList = false;

public boolean isShowAsList() {

return showAsList;

}

public void setShowAsList(boolean showAsList) {

this.showAsList = showAsList;

}

...

}

Now we can edit the page as follows:

<tr:selectBooleanCheckbox id="checkBox" autoSubmit="true"

label="Show list"

value="#{empsTable.showAsList}"/>

<tr:panelGroupLayout partialTriggers="checkBox">

<tr:panelHeader rendered="#{empsTable.showAsList}"

text="List of employees"

inlineStyle="margin-top: 20px;">

<tr:panelList>

<!-- generate the list of employees here... -->

</tr:panelList>

</tr:panelHeader>

</tr:panelGroupLayout>

http:///

Advanced Trinidad

[212]

The <tr:selectBooleanCheckbox> component has an id, and has autoSubmit set
to true. Note that we’ve surrounded the <tr:panelHeader> component by an extra
<tr:panelGroupLayout> component that has its partialTriggers attribute set to
checkBox, which is the id of the <tr:selectBooleanCheckbox> component. The
<tr:panelHeader> component inside the <tr:panelGroupLayout> component has
it’s rendered attribute bound to the same property in the backing bean where the
<tr:selectBooleanCheckbox> component stores its value.

It is important to understand that we couldn’t leave out the <tr:panelGroupLayout>
component and simply add partialTriggers="checkBox" to the
<tr:panelHeader> component. This is because of the way things get processed on
the server. If a component’s rendered attribute is false, the component does not
get added to the component tree that is built on the server every time that the page
gets rendered. If the component is not in the component tree, it cannot be triggered
by another component. That’s why we always need a parent component to have its
partialTriggers attribute set to the id of the triggering component.

By the way, there are much more elegant ways to achieve the same result. In the
previous example, we could have surrounded the <tr:panelHeader> component by
a <tr:showDetail> component. In this case, we wouldn’t need to add a property to
our backing bean and we wouldn’t have to iddle with partialTriggers. But there
may be situations where the presented approach will be useful.

Polling
Sometimes we may want to refresh a part of a page on a timely basis—for example,
because the data that is displayed can be changed by other users frequently. In this
case, we can use the <tr:poll> component. The <tr:poll> component performs
a partial submit at a given interval. We can refresh other elements by referring to
the <tr:poll> element in the partialTriggers attribute. For a simple example, we
could use this to display the current time on any page. Assume that we have a bean
that returns the current time, as follows:

public Date getTime() {

return new Date();

}

Now we can add the following fragment to our page to display the time:

<tr:poll interval="900" id="poll"/>

<tr:outputText value="#{bean.time}"

partialTriggers="poll" >

<tr:convertDateTime pattern="hh:mm:ss" />

</tr:outputText>

http:///

Chapter 6

[213]

	

	

	

http:///

Advanced Trinidad

[214]

Apart from these ideas, it’s good to realize that a lot of Trinidad components have
some PPR usage embedded; we don’t have to do anything to get PPR in our
application if we use these components. The components with embedded PPR are:

•	 The <tr:panelTabbed> and <tr:panelAccordion> components show
their children through PPR requests

•	 Expanding and collapsing content with <tr:showDetail> and
<tr:showDetailHeader> components, and within <tr:table> and
<tr:treeTable> components, as well as expanding and collapsing the
<tr:tree> components will result in PPR requests instead of full submits

•	 Navigating through large data sets with the “paging” control of the
<tr:table> and <tr:treeTable> components automatically uses PPR to
refresh only the data in the table instead of the whole page if the next set of
rows is retrieved

•	 When sorting is enabled in a <tr:table> or <tr:treeTable> component,
the sorted rows are also retrieved from the server with PPR

•	 When selecting a date with a <tr:chooseDate> component, the calendar
information is retrieved from the server via PPR

•	 The dialog framework (see the next section) also uses some built-in
PPR functionality

Creating dialogs
Using dialogs in web applications is never a trivial thing to do. Trinidad doesn’t offer
us a solution that makes using dialogs trivial, but the Trinidad dialog framework
does make the use of dialogs a lot easier. Before we dive into this dialog framework,
let’s briely understand what the unique features of a dialog are. According to
Wikipedia (http://en.wikipedia.org/wiki/Dialog_box), a dialog (box) is:

a special window, used in user interfaces to display information to the user, or to
get a response if needed.

From a software engineering perspective, we should also realize that the same dialog
box can potentially be used from different screens in an application. This means that a
dialog should not have to know anything about the page it is called from. Now let’s see
how the Trinidad dialog framework helps us to create dialogs that can return values
to their calling pages without any knowledge of the calling page. We’ll do this by
building an example dialog. We’ll build a “braveness calculator” that can calculate the
braveness factor of a kid. We will do this by selecting one of the predeined reactions
that comes closest to the reaction of the kid when the monster entered the kid’s room
to scare the kid. The age of the kid will also be taken into account.

http:///

Chapter 6

[215]

Building a dialog
We can build the page that will render our dialog just like any other page we’ve built
so far:

<ui:composition template="templates/dialog.xhtml">
<ui:define name="title">#{msg.bravenessCalc}</ui:define>
<ui:define name="content">

<tr:panelFormLayout>
<tr:group>

<mias:field id="age" bean="#{bravenessCalc}"
readOnly="true" />

<mias:selectField
id="selectedReaction"
bean="#{bravenessCalc}"
type="radio"
items="#{bravenessCalc.childReactions}"
itemValue="value"
itemLabel="reactionDescription"
partialSubmit="true" autoSubmit="true"/>

</tr:group>
<mias:field id="braveness" bean="#{bravenessCalc}"

partialTriggers="selectedReaction"/>
<f:facet name="footer">

<tr:panelButtonBar>
<tr:commandButton value="#{msg.ok}"

action="#{bravenessCalc.done}"/>
<tr:commandButton value="#{msg.cancel}"

immediate="true"
action="#{bravenessCalc.cancel}"/>

</tr:panelButtonBar>
</f:facet>

</tr:panelFormLayout>
</ui:define>

</ui:composition>

In the irst line, we use a special dialog template instead of our default template. This
dialog template is essentially not much more than the standard template without the
header with the company logo. We use a backing bean called bravenessCalc for
this page. Note that the irst ield is read only, and is illed by the age property from
that backing bean. The second input control is a set of radio buttons, where the kid’s
reaction to the monster can be selected. The autoSubmit attribute is set to true, in
order to force a submission whenever the selection is changed. The partialSubmit
attribute is set to true, in order to prevent the autoSubmit attribute from submitting
the entire page, but instead forcing a partial submission via AJAX requests. See the
Using AJAX and Partial Page Rendering section for more details.

http:///

Advanced Trinidad

[216]

The footer of the form contains two buttons: an OK button and a Cancel button. Both
<tr:commandButton> components call a method from the backing bean via their
action attribute. Note that apart from the different template, we don’t have any
dialog-speciic code here.

Creating the backing bean for the dialog
In the backing bean, we do have dialog-speciic stuff. Let’s be complete this time
and take a look at the backing bean class as a whole:

package inc.monsters.mias.backing;

import java.util.ArrayList;
import java.util.List;

import org.apache.myfaces.trinidad.context.RequestContext;

public class BravenessCalc {
private List<KidsReaction> childReactions;
private int selectedReaction;
private int age;
private double braveness;
public BravenessCalc() {
childReactions = new ArrayList<KidsReaction>();
// fill the list with KidsReaction objects
}

http:///

Chapter 6

[217]

public List<KidsReaction> getChildReactions() {
return childReactions;

}

public void setChildReactions(List<KidsReaction>
childReactions) {

this.childReactions = childReactions;
}

public int getSelectedReaction() {
return selectedReaction;

}

public void setSelectedReaction(int selectedReaction) {
this.selectedReaction = selectedReaction;

}

public int getAge() {
RequestContext rc = RequestContext.getCurrentInstance();
age = (Integer)rc.getPageFlowScope().get("kidsAge");
return age;

}

public double getBraveness() {
braveness = ((12.0 - (double)getAge())

* (10.0/12.0)
* ((double)getSelectedReaction() + 1.0)
* (10.0 / (double)childReactions.size()))

/ 10.0;
return braveness;

}

public String done() {
RequestContext rc = RequestContext.getCurrentInstance();
rc.returnFromDialog(getBraveness(), null);
return null;

}

public String cancel() {
RequestContext rc = RequestContext.getCurrentInstance();
rc.returnFromDialog(null, null);
return null;

}
}

http:///

Advanced Trinidad

[218]

The lines in code that are speciic to dialogs are highlighted in the class declaration
that we just saw. In the getAge() method, we use Trinidad’s RequestContext class
to get access to the page low scope and get the value of the kidsAge property from
that scope. This assumes that the calling page has put a value there before calling the
dialog. The done() and cancel() methods are nearly identical. They both call the
returnFromDialog() method on the RequestContext. This is needed to close the
dialog. The difference is that the done() method calls the getBraveness() method
to pass the calculated braveness to the returnFromDialog() method. This method
then passes this value to the calling page. Now we have input via the page low
scope and output via the returnFromDialog() method. Both ensure that we don’t
have to know anything about the calling page.

Using an alternative way of returning values
In case we don’t want to write special methods in our backing bean, we can
alternatively use the <tr:returnActionListener> component to return values.
This component will call the returnFromDialog() method for us with a value that
we deine in the value attribute. The <tr:returnActionListener> component
has to be a child of a component that would otherwise have called an action, such
as a <tr:commandButton> or <tr:commandLink> component. So we could remove
the done() and cancel() methods from our bean and instead change the button
deinitions as follows:

<tr:commandButton text="#{msg.ok}">

<tr:returnActionListener value="#{bravenessCalc.braveness}"/>

</tr:commandButton>

<tr:commandButton text="#{msg.cancel}" immediate="true" >

<tr:returnActionListener />

</tr:commandButton>

Calling the dialog
Now that our dialog is inished, we want to call it from one of our pages. To be able
to do so, we irst have to create a navigation rule for our dialog. This is done in the
faces-config.xml ile:

<navigation-rule>

<display-name>*</display-name>

<from-view-id>*</from-view-id>

<navigation-case>

<from-outcome>dialog:bravenessCalc</from-outcome>

<to-view-id>/Braveness.xhtml</to-view-id>

</navigation-case>

</navigation-rule>

http:///

Chapter 6

[219]

This is just an ordinary navigation rule except from the <from-outcome> part. Note
that we have prepended the name of our outcome with dialog:. This tells Trinidad
to treat this navigation rule as navigation to a dialog. Without the dialog: preix, the
dialog wouldn’t work as expected. Now let’s see how we can call the dialog from our
EditKid.xhtml page:

<tr:panelLabelAndMessage for="braveness"
labelAndAccessKey="#{msg.braveness}:">

<tr:inputText id="braveness"
value="#{editKidForm.braveness}"
simple="true"
binding="#{editKidForm.bravenessInput}" />

<tr:commandButton text="#{msg.calculate}"
partialSubmit="true"
useWindow="true"
action="dialog:bravenessCalc"
id="calcButton">

<tr:setActionListener to="#{pageFlowScope.kidsAge}"
from="#{editKidForm.age}"/>

</tr:commandButton>
</tr:panelLabelAndMessage>

In comparison with the original page, we’ve added a button to the right of the
braveness input ield that will open the braveness calculator dialog. To help the
<tr:panelFormLayout> component keep the labels and components lined up,
we’ve put the <tr:inputText> and the <tr:commandButton> components inside
a <tr:panelLabelAndMessage> component. Note that the <tr:commandButton>
component has dialog:bravenessCalc as an action. This tells Trinidad to
open our dialog whenever the button is clicked. But before the dialog opens, we
have to put the input parameter into the pageFlowScope. This is done by the
<tr:setActionListener> component.

Receiving the dialog’s output
Once the dialog closes, we want to receive the output value(s) from the
dialog, of course. We need some extra attributes for the <tr:inputText> and
<tr:commandButton> components to achieve that. The extra attributes are
highlighted in the following code snippet:

<tr:panelLabelAndMessage for="braveness"
labelAndAccessKey="#{msg.braveness}:">

<tr:inputText id="braveness"
value="#{editKidForm.braveness}"
simple="true"
binding="#{editKidForm.bravenessInput}"
partialTriggers="calcButton"/>

<tr:commandButton text="#{msg.calculate}"

http:///

Advanced Trinidad

[220]

partialSubmit="true"
useWindow="true"
action="dialog:bravenessCalc"
returnListener="#{editKidForm.bravenessCalcReturn}"
id="calcButton">

<tr:setActionListener to="#{pageFlowScope.kidsAge}"
from="#{editKidForm.age}"/>

</tr:commandButton>
</tr:panelLabelAndMessage>

The returnListener attribute will tell Trinidad which method to call in order
to process the output values of the dialog. The partialTriggers attribute is
needed to make sure that the <tr:inputText> component gets updated when we
return from the dialog. To make the whole thing works, we have to implement the
bravenessCalcReturn method in our editKidForm bean. That method could look
like this:

public void bravenessCalcReturn(ReturnEvent event) {
if (event.getReturnValue() != null) {

getBravenessInput().setSubmittedValue(null);
getBravenessInput().setValue(event.getReturnValue());

}
}

The getBravenessInput() method is just a getter method that accesses the input
component that is made accessible by using its bindings attribute to bind it to this
bean. The setSubmittedValue(null) call will reset the component and, of course,
the call to setValue() will set a new value in it. We used the getReturnValue()
method of the ReturnEvent to get the return value of the dialog.

Using inputListOfValues as an easier
alternative
While it’s not rocket science to create a dialog as described in the previous
section, it isn’t trivial either. Some custom methods in backing beans are needed,
although we might not want to do other things besides just passing the values.
Therefore, a simpler but less lexible solution is offered as an alternative: the
<tr:inputListOfValues> component. This component replaces the separate input
ield and button, and handles the receipt of output values from the dialog. It doesn’t
change the deinition of the dialog itself. We could rewrite the part of the EditKid.
xhtml page where we call the dialog, as follows:

<tr:inputListOfValues id="braveness"
value="#{editKidForm.braveness}"
action="dialog:bravenessCalc"
labelAndAccessKey="#{msg.braveness}:">

http:///

Chapter 6

[221]

<tr:setActionListener to="#{pageFlowScope.kidsAge}"
from="#{editKidForm.age}"/>

</tr:inputListOfValues>

Note that we still use the dialog:bravenessCalc navigation case to navigate to the
dialog. So, there won’t be any changes in the faces-config.xml ile, compared to
the earlier situation. We also need the <tr:setActionListener> component to put
the input value(s) for the dialog in the pageFlowScope. But we don’t need a return
listener to receive the output value from the dialog. The <tr:inputListOfValues>
component puts the output value of the dialog into its integrated input ield
automatically, so we can remove the bravenessCalcReturn() method from our
bean. The <tr:inputListOfValues> component does not use a button to launch
the dialog, but uses a clickable icon instead. By default, a lashlight icon is used,
as displayed in the next image. This icon can be overridden by pointing the icon
attribute to a custom image.

Using lightweight dialogs
By default, all Trinidad dialogs are created as new browser windows with the
standard browser menu and button bar hidden. This way of creating dialogs has
some drawbacks. Most browsers have a built-in pop-up blocker that will block this
kind of dialogs. And creating a new browser window is also a relatively heavy
operation, so it might take a while before the dialog appears.

To overcome these drawbacks, Trinidad has the option to use “lightweight dialogs”
instead. By setting an application-wide coniguration property, all dialogs will be
created inside the current page by using some JavaScript. The only thing we have
to do to enable this feature is set the value of the org.apache.myfaces.trinidad.
ENABLE_LIGHTWEIGHT_DIALOGS context variable to true in the web.xml ile. The
Tuning Trinidad section in the next chapter has detailed instructions on how to set
the context variables.

Client-side validation and conversion
Apart from refreshing only a portion of a page with Partial Page Rendering, another
important property of “AJAX” or “Web 2.0” applications is that the validation
of input takes place at the client—in other words, in the browser. From a user’s
perspective, the advantage is that this type of validation is often faster. Another
advantage for the user is that the validation can be triggered per ield, so he or she
gets an error message immediately if invalid data is entered.

http:///

Advanced Trinidad

[222]

From a developer’s perspective, an extra bonus of client-side validation is that it can
save a lot of trafic to the server because a form will only be submitted when it is valid.
On the other hand, a downside of client-side validation is that validation code gets
spread over the project even more. And as a browser cannot run Java code locally,
client-side validation code has to be written in JavaScript, the web browser’s language.

The good news is that we get a lot of client-side validation for free with Trinidad.
Whenever we use one of Trinidad’s <tr:validateXXX> components, we will
get client-side validation for free. This also goes for Trinidad’s converters, the
<tr:convertXXX> components. These converters will also be executed at the client
side. The set of validators is pretty versatile. In particular, the <tr:validateRegExp>
component is very lexible.

Nevertheless, there may always be a situation where the standard validators can’t
do the job. In this case, we can use the standard JSF API to create our own custom
validator. Trinidad offers us an elegant way of extending that custom validator with
client-side capabilities. Unfortunately, Trinidad cannot magically write JavaScript
code for us, so we’ll still need to write some JavaScript. Although we focus on the
client-side stuff in this section, we will work through a complete example, as creating
custom validators is not an everyday task—not even for experienced JSF developers.

A good reason why standard validators may be inadequate can be a validation that
has to be done on a custom data structure. In this case, the input value (always a
String) must be converted irst, so we also need a custom converter. In the rest
of this section we’re going to build a data structure, a converter, and a validator.
The data structure in our example is a list of foods that can be used to store a list of
favorite foods for each kid in the system. We want the user to be able to enter the list
in a simple input box, where the items are separated by some separator character.

Deining the data structure
Let’s deine a simple data structure for our food list. We create a new class called
FoodList in the inc.monsters.mias.data package. It’s not much more than a thin
wrapper around a java.util.List:

package inc.monsters.mias.data;

import java.util.ArrayList;

import java.util.List;

public class FoodList {

List<String> list;

public FoodList() {

http:///

Chapter 6

[223]

this.list = new ArrayList<String>();

}

public void add(String food) {

list.add(food);

}

public List<String> getAsList() {

return list;

}

public String toString() {

return toStringWithSeparator(" ");

}

public String toStringWithSeparator(String separator) {

StringBuilder sb = new StringBuilder();

for(String food : list) {

sb.append(separator);

sb.append(food);

}

if (sb.length() > 0) {

// Use substring to remove leading separator

return sb.toString().substring(separator.length());

} else {

return "";

}

}

}

And, of course, we extend our Kid class with getters and setters for the favorite
food list:

public FoodList getFavouriteFood() {

return favouriteFood;

}

public void setFavouriteFood(FoodList favouriteFood) {

this.favouriteFood = favouriteFood;

}

http:///

Advanced Trinidad

[224]

Creating the converter
Creating a converter for this data type is pretty straightforward. As the separator
character for the list of food is not ixed, we have to make it conigurable. For now,
we start with a private property and getter and setter methods. Later on, we’ll see
how we can pass values from our converter tag to this property. Of course, we have
to implement the javax.faces.convert.Converter interface and the two methods
that are in that interface. This is how our converter class would look without
client-conversion capabilities:

package inc.monsters.mias.conversion;

import inc.monsters.mias.data.FoodList;

import java.util.Collection;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.convert.Converter;

public class FoodListConverter implements Converter {

private String separator = " ";

public Object getAsObject(FacesContext context,

UIComponent component,

String string) {

String[] list = string.split(getSeparator());

FoodList foodList = new FoodList();

for(String food : list) {

foodList.add(food);

}

return foodList;

}

public String getAsString(FacesContext context,

UIComponent component,

Object foodList) {

if(foodList != null) {

return ((FoodList)foodList)

.toStringWithSeparator(getSeparator());

} else {

return "";

http:///

Chapter 6

[225]

}

}

	

	

	

	

http:///

Advanced Trinidad

[226]

Let’s see how this changes our previously-created FoodListConverter class:

package inc.monsters.mias.conversion;

import inc.monsters.mias.data.FoodList;

import java.util.Collection;
import javax.faces.component.UIComponent;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;

import org.apache.myfaces.trinidad.convert.ClientConverter;

public class FoodListConverter implements Converter, ClientConverter {

// Left out the unchanged server side conversion code...

public String getClientLibrarySource(FacesContext context){
ExternalContext ec = context.getExternalContext();
return ec.getRequestContextPath() +
"/scripts/FoodListConverter.js";
}

public String getClientScript(FacesContext context,
UIComponent arg1component) {
return null;
}

public String getClientConversion(FacesContext context,
UIComponent component) {
return "new FoodListConverter('"+getSeparator()+"');";
}

public Collection<String> getClientImportNames() {
return null;
} }

The getClientLibrarySource() method uses the ExternalContext to get the
request context path, and appends the location of the JavaScript ile that contains
the JavaScript implementation of the converter. (We’re going to write that one later
on.) The getClientScript() method just returns null because we do not use inline
JavaScript here. The most interesting method here is the getClientConversion()
method. This returns a string that will be evaluated as JavaScript to instantiate a new
FoodListConverter object on the client side.

http:///

Chapter 6

[227]

We should remember that we have to implement a constructor that accepts a
separator in the JavaScript implementation. Note that the separator is put between
single quotes. (In JavaScript, strings may be either between single or double quotes.
This comes in handy now; otherwise we would have had to escape the double-
quote characters, making the line even more unreadable than it already is.) The
getClientImportNames() method also returns null because we don’t use any of
the built-in Trinidad conversion scripts.

Implementing the client-side code
Now comes the tricky part—implementing the client-side converter in JavaScript.
Trinidad gives us some JavaScript APIs that are very similar to the JSF server-side con-
version APIs. Although JavaScript doesn’t have something that is similar to interfaces
in Java, Trinidad has deined a virtual interface that we have to implement for the
client-side conversion to work. Let’s see how we can implement this “interface”:

function FoodListConverter(separator) {
this.separator = separator; }

FoodListConverter.prototype = new TrConverter();

FoodListConverter.prototype.getAsString = function (value, label) {
return value.toString(); }

FoodListConverter.prototype.getAsObject = function (value, label) {
return new FoodList(value, this.separator); }

The irst three lines are the JavaScript equivalent of a constructor. Note that
this constructor takes a single argument, which is the separator. This is stored
in a member variable called this.separator. The line FoodListConverter.
prototype = new TrConverter(); lets the FoodListConverter class inherit from
the TrConverter class. The prototype keyword is the JavaScript way to access
a class deinition. The JavaScript functions getAsString() and getAsObject()
are the JavaScript equivalents of the methods with the same name in the Java im-
plementation. Note that a FoodList object is used to do the real conversion work.
Let’s see how we can implement such a FoodList class in JavaScript:

function FoodList(value, separator) {

this.separator = separator;

this.foodlist = value.split(separator); }

FoodList.prototype.toString = function() {

http:///

Advanced Trinidad

[228]

var result = ""

for (food in this.foodlist) {

result += this.separator + food;

}

return result.substring(this.separator.length);

}

Again, we start with a constructor. In this case, the constructor takes two arguments:
a value that should be an input string that can be split into separate food names,
and a separator. The separator is stored “as is” in the object. The value is split
into an array of strings that is stored in the foodlist variable in the object. Apart
from the constructor, we also have a toString() function that concatenates
the elements of the foodlist array to a single string, where the elements are
separated by this.separator. As we can only return a single JavaScript ile in the
getClientLibrarySource() method, the easiest way to make sure that the client-
side FoodListConverter has access to the FoodList class is to put both in the same
FoodListConverter.js ile. This is possible because JavaScript doesn’t put any
restrictions on how many classes can be in a ile.

Creating the validator
For the validator, we also start with a basic server-side validator class that imple-
ments the javax.faces.validator.Validator interface. We’ve decided that a
valid food name may only contain letters. Let’s see how we can implement this:

package inc.monsters.mias.validators;

import java.util.Collection;

import inc.monsters.mias.data.FoodList;

import javax.faces.application.FacesMessage; im-
port javax.faces.component.UIComponent; import
javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

public class FoodListValidator implements Validator {

public void validate(FacesContext context,
UIComponent component,
Object value)
throws ValidatorException {

int errors = 0;
StringBuilder wrong = new StringBuilder();
for (String food : ((FoodList) value).getAsList()) {

http:///

Chapter 6

[229]

if (!food.matches("[A-Za-z]*")) {
if (errors > 0) {

wrong.append(" ");
}
wrong.append(food);
errors++;

}
}

if (errors > 0) {
FacesMessage msg = new FacesMessage();
msg.setSeverity(FacesMessage.SEVERITY_ERROR);
msg.setSummary("Validation Error");
msg.setDetail(wrong.toString() +

(errors == 1
? " is not a valid food name"
: " are not valid food names"));

throw new ValidatorException(msg);
}

}
}

Most of the code is only used for generating a nice error message. The two
highlighted lines are essential for the validation itself. The irst deines a loop over all
of the items in the incoming FoodList object. The second highlighted line validates a
single item in the food list against a regular expression that allows only letters.

Enabling client-side capabilities
To enable client-side validation for our validator, we have to start by implementing
the org.apache.myfaces.trinidad.validator.ClientValidator interface, which
is very similar to the ClientConverter interface. Our FoodListValidator.java
class will change as follows:

package inc.monsters.mias.validators;

import java.util.Collection;

import inc.monsters.mias.data.FoodList;
import javax.faces.application.FacesMessage; im-
port javax.faces.component.UIComponent; import
javax.faces.context.ExternalContext; import
javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

import org.apache.myfaces.trinidad.validator.ClientValidator;

public class FoodListValidator implements Validator, ClientValidator {

http:///

Advanced Trinidad

[230]

// Unchanged validate() method is left out here...

public Collection<String> getClientImportNames() {
return null;

}

public String getClientLibrarySource(FacesContext context){
ExternalContext ec = context.getExternalContext();
return ec.getRequestContextPath() +

"/scripts/FoodListValidator.js";
}

public String getClientScript(FacesContext context,
UIComponent component) {

return null;
}

public String getClientValidation(FacesContext context,
UIComponent component) {

return "new FoodListValidator();";
}

}

As you can see, the four methods that are prescribed by the ClientValidator
interface are nearly identical to the ones we implemented in our converter.

Implementing the client-side code
As with the converter, implementing the client-side code is the trickiest part,
especially when you don’t have much JavaScript experience, which is true for a lot
of Java EE developers. Again, Trinidad offers us a JavaScript API that is very similar
to the server-side API for validation in standard JSF. Let’s see how we can build a
client-side validator using this API:

function FoodListValidator() {

}

FoodListValidator.prototype = new TrValidator();

FoodListValidator.prototype.validate =

function(value, label, converter) {

if(value != null) {

var expr = /^[A-Za-z]*$/

for(var i = 0; i < value.foodlist.length; i++) {

if(! expr.test(value.foodlist[i])) {

var msg = new TrFacesMessage(

http:///

Chapter 6

[231]

"Validation Error",

value.foodlist[i] + " is not a valid food name.",

TrFacesMessage.SEVERITY_ERROR);

throw new TrValidatorException(msg);

}

}

}

}

As with the converter, we start with a constructor for the FoodListValidator
object. We don’t have any arguments, so the constructor is empty. We cannot
remove the empty constructor, though, as JavaScript doesn’t create a default
constructor for us. Then we have the FoodListValidator.prototype = new
TrValidator(); line, which makes our class inherit from the TrValidator class.
The most important part here is the validate() function. Note that the same regular
expression is used for validation, except that in JavaScript, regular expressions
are surrounded by the /^ and $/ characters instead of quotes. A TrFacesMessage
object is used for the error message in case an invalid food name is detected. This
is similar to the FacesMessage object on the server side. The same goes for the
TrValidatorException that is thrown, similarly to ValidatorException in Java.

Wiring everything together
Now that we have implemented our data structure, converter, and validator on both
the server side and the client side, we have to do some “wiring” to make it work.
This subsection outlines the steps we have to take.

Declaring the converter and validator in
faces-conig.xml
First, we have to declare our converter and validator in the faces-config.xml ile
of our project. This is pretty straightforward. Just add the following to the ile:

<converter>

<converter-id>foodListConverter</converter-id>

<converter-class>

inc.monsters.mias.conversion.FoodListConverter

</converter-class>

</converter>

<validator>

<validator-id>foodListValidator</validator-id>

<validator-class>

inc.monsters.mias.validators.FoodListValidator

http:///

Advanced Trinidad

[232]

</validator-class>

</validator>

Creating custom tags
Once we’ve declared our converter and validator in the faces-config.xml ile,
we can use them with the general <f:validator> and <f:converter> tags. Our
validator, for example, could be used as follows:

<f:validator validatorId="foodListValidator" />

However, we cannot pass attributes this way, which is needed for our converter. To
be able to pass parameters to our converter, we have to deine a custom tag using
Facelets. This can be done by adding the following lines to our mias.taglib.xml
ile, where a lot of other custom tags are already deined:

<tag>
<tag-name>convertFoodList</tag-name>
<converter>

<converter-id>foodListConverter</converter-id>
</converter>

</tag>
<tag>

<tag-name>validateFoodList</tag-name>
<validator>

<validator-id>foodListValidator</validator-id>
</validator>

</tag>

We’ve added our validator too, just for the convenience of having our own tag. Note
that we didn’t deine which arguments our tag should have. Facelets automatically
calls a setter method in the converter class if it inds an attribute on the custom tag.
Although this may sound easy, it has the disadvantage that an incorrectly-spelled
attribute name in a page won’t generate an error, and thus can easily be overlooked.
So if you ever notice a custom validator that seems not to work, start by checking if
the attributes used in the tag correspond exactly to the properties in the class that
implements the validator.

Using the converter and validator in a page
Now let’s see how we can use our custom converter and validator in a page. Let’s
add a “favorite food” ield to our EditKid.xhtml page, and add the converter and
validator to it:

<mias:field id="favouriteFood"
bean="#{editKidForm.selectedKid}"
partialTriggers="btnApply">

<mias:convertFoodList separator=" " />

http:///

Chapter 6

[233]

<mias:validateFoodList />
</mias:field>

Note that the partialTriggers attribute of the input ield is set to the id of the
apply button. We have to make sure that the apply button has its partialSubmit
property set to true in order to enable client-side validation. In this case, Trinidad
will validate on the client side before a partial submit to the server is executed. If
validation fails, no data is submitted to the server.

Internationalization of messages
Until now, we have added hardcoded error messages to our JavaScript iles. Of
course, we want our error messages to be taken from our message bundle, as for
all other user interface elements, which will enable easy internationalization of our
application. To achieve this, we can use the constructor of our client-side validation
object to pass an error message that we look up from the message bundle. We have
to change our JavaScript code a bit to make use of these messages. That’s a nice
opportunity to also have a look at an extra JavaScript API that Trinidad offers us—
TrFastMessageFormatUtils.

Changing getClientValidator()
First things irst. Let’s start by changing the getClientValidation() method in
our FoodListValidator.java class that returns the JavaScript code that is needed
to instantiate our JavaScript FoodListValidator object:

public String getClientValidation(FacesContext context,
UIComponent component) {

String bndl = context.getApplication().getMessageBundle();
Locale locale = context.getViewRoot().getLocale();
ResourceBundle msg = ResourceBundle.getBundle(bndl, locale);
return "new FoodListValidator('"

+ msg.getString("NoValidFoodErrorTitle")
+ "', '"
+ msg.getString("NoValidFoodError")
+ "');";

}

The getMessageBundle() method returns the base name of the message bundle
that is conigured for the application. The getLocale() method of the ViewRoot
object returns the current locale. With both the base name and the current locale, we
can get a ResourceBundle object where we can look up the error messages. In the
return statement, we compose a string that calls a FoodListValidator constructor
with an error title and an error message. Note that we have to deine values for
NoValidFoodErrorTitle and NoValidFoodError in our message bundle.

http:///

Advanced Trinidad

[234]

Changing the JavaScript constructor
Of course, we also have to change the JavaScript constructor to make sure that
the error title and error message get stored inside the FoodListValidator object.
That’s easy:

function FoodListValidator(errorTitle, errorMessage) {
this.errorTitle = errorTitle;
this.errorMessage = errorMessage;

}

Formatting the error message
At the client side, we don’t have the luxury of the Java API with its numerous text
manipulation methods. Luckily, Trinidad has the TrFastMessageFormatUtils
API, which at least gives us some formatting options. There’s a
TrFastMessageFormatUtils.format()method that takes a format string and
an unlimited list of arguments. The format string can contain only indexed
placeholders, marked by braces. For example:

{0} is not valid food

The indexes start at 0. Assume that we add to our message bundle:

NoValidFoodError={0} is not valid food

We can adapt our JavaScript validate() function to format the error message
as follows:

FoodListValidator.prototype.validate =
function(value, label, converter) {

if(value != null) {
var expr = /^[A-Za-z]*$/
for(var i = 0; i < value.foodlist.length; i++) {

if(! expr.test(value.foodlist[i])) {
var msg = TrFastMessageFormatUtils

.format(this.errorMessage,
value.foodlist[i]);

var fmsg = new TrFacesMessage(
this.errorTitle,
msg,
TrFacesMessage.SEVERITY_ERROR);

throw new TrValidatorException(fmsg);
}

}
}

}

http:///

Chapter 6

[235]

First, we format the error message by making a call to TrFastMessageFormatUtils.
format(). The irst parameter is the format string (this.errorMessage), and
the second parameter is the value that will be substituted at the position of the
placeholder {0}. Then we call the TrFacesMessage constructor as we did before,
except that we now use our formatted error message and the title that was set by
the constructor.

Using Trinidad’s JavaScript API
While implementing our client-side converter and validator, we used some methods
from the Trinidad JavaScript API. This API has more methods than the ones we used
so far. For example, there are methods to easily submit a form via an AJAX request
or to create custom AJAX requests from scratch. The main beneit of using Trinidad’s
API functions is that we don’t have to care about the differences between various
browsers, as this is taken care of by the JavaScript library of Trinidad.

The AJAX and Partial Page Rendering (PPR) section in the Developer Guide on the
Trinidad website (http://myfaces.apache.org/trinidad/devguide/ppr.html)
has some examples of the usage of the Trinidad JavaScript API. But apart from
these examples, no further documentation on this API is available. This limits the
usability of the API drastically. We should also ask ourselves if it is desirable to use
custom JavaScript in our application. Isn’t it one of the goals of JSF to eliminate the
need to write this sort of code ourselves? But if we end up writing custom JavaScript
anyway, we now know there is an API that we could use.

Writing, testing, and debugging JavaScript
As writing JavaScript code is not a common task for many Java EE developers, let’s
have a quick look at some tooling for testing and debugging JavaScript code. Once
you get started with JavaScript, you’ll soon ind out why these are very useful.

Writing JavaScript code
Most programmer-oriented text editors have code highlighting and code completion
for JavaScript. Most IDEs should also have these options too. However, we should
realize that most of the time those editors are not as sophisticated as the Java editor of a
modern Java IDE. One of the dificulties with JavaScript is that it is loosely typed. This
highly limits the possibilities for auto completion and error detection. The fact that
JavaScript code doesn’t get compiled removes an extra opportunity to detect errors.

http:///

Advanced Trinidad

[236]

Debugging
As JavaScript code mostly runs within a browser, it makes perfect sense to integrate
a JavaScript debugger in a browser. This is exactly what the Firebug extension does
for Firefox—it lets you look at the source code of any page that loads in Firefox. It is
also possible to see referenced iles such as CSS stylesheets and JavaScript source iles.
Breakpoints can be set to see if a certain line of JavaScript code is executed, and from a
breakpoint one can execute the code step-by-step just as with a Java debugger. Firebug
can be downloaded from the website http://getfirebug.com/.

It may also be necessary to debug the interaction of custom JavaScript code with
Trinidad’s built-in JavaScript. So when debugging client-side code, it is a good idea
to put Trinidad in the debug mode to prevent JavaScript code from being obfuscated.
The Debugging subsection of the Tuning Trinidad section in Chapter 7 discusses the
various coniguration options for debugging with Trinidad.

Logging
Logging can be very useful when testing and debugging. There’s no standard way of
logging in JavaScript (yet), but the same Firebug plugin for Firefox offers an API that
can be used to send log messages to the JavaScript console of the Firebug plugin. While
it goes beyond the scope of this book to cover all of the features of Firebug, let’s use
a small example to see some nice possibilities of this plugin. With a call to console.
log(), we can write any message to the Firebug console from our JavaScript code. We
could extend our validate() JavaScript function with some logging:

FoodListValidator.prototype.validate =
function(value, label, converter) {

console.log('FoodListValidator.validate("'
+ value + '", "' + label + '", "'
+ converter + '")');

if(value != null) {
console.log('Value is not null.');
var expr = /^[A-Za-z]*$/
for(var i = 0; i < value.foodlist.length; i++) {

console.log('Food: "' + value.foodlist[i] + '".');
if(! expr.test(value.foodlist[i])) {
console.log('"' + value.foodlist[i]

+ '" is not valid.');
var msg = new TrFacesMessage(

"Validation Error",
value.foodlist[i]

+ " is not a valid food name.",
TrFacesMessage.SEVERITY_ERROR);

throw new TrValidatorException(msg);
}

http:///

Chapter 6

[237]

console.log('"' + value.foodlist[i]
+ '" is valid.');

}
}

The log lines are highlighted, and the other lines are left unchanged. In the
following two images, the irst shows the log entries created when an invalid
food name is entered, and the second shows the log entries created when valid
data is entered.

http:///

Advanced Trinidad

[238]

We can see that in the second case, the last line in the console shows an HTTP POST
request, meaning that the form data is being submitted to the server. In the irst case,
there is no HTTP POST because the data was invalid, and so no data is submitted to
the server.

More information about Firebug’s logging possibilities can be found on the Firebug
and Logging page on Firebug’s website—http://getfirebug.com/logging.html.

http:///

Chapter 6

[239]

Summary
This chapter covered the more advanced features of Trinidad. We saw that apart
from the advanced components, Trinidad also has data visualization capabilities,
as well as AJAX functionality. We also saw how we can simplify data low with
Trinidad’s page low scope. This chapter also introduced the dialog framework,
and client-side validation and conversion.

In the next chapter, we’ll explore Trinidad’s skinning capabilities, and take a
look at the various ways of tuning Trinidad for optimal performance, accessibility,
and appearance.

http:///

http:///

Trinidad Skinning and Tuning
Trinidad is a highly-conigurable framework. The look and feel of Trinidad’s
components can be changed in every little detail by using Trinidad’s skinning capab-
ilities. The behavior of the Trinidad framework as a whole can be changed by using
the tuning parameters in coniguration iles. This chapter gives an introduction to
Trinidad skinning, and an overview of the most important tuning options.

After reading this chapter, you will:
•	 Understand the basics of Trinidad skinning
•	 Be able to create a custom skin with the help of a web designer
•	 Know where to set the tuning parameters of Trinidad
•	 Have an overview of the most important tuning parameters of Trinidad

Skinning
Trinidad has the possibility for skinning. This means that you can customize the look
and feel of every Trinidad component to it your taste or company style. Skinning is
done by means of Cascading Style Sheets (CSS). So, depending on how far you want
to diverge from the default skin, a level of experience with CSS is needed. Given the
large number of components that Trinidad has, you can imagine that skinning every
little detail of all available components can be an awful lot of work.

The good news is that the Trinidad skinning mechanism makes good use of the
cascading part of CSS, and even takes it a level higher. For example, if we only want
to change some colors, we can do just that and inherit all of the defaults from the
default skin. In this section, we will focus on the Trinidad-speciic stuff. Diving into
CSS and explaining how to use it is beyond the scope of this book. Should we want
to create an advanced skin, probably the best thing to do is to ask a professional web
designer to help us with the CSS. The professional designer probably should read
this section as well, because Trinidad has its own special CSS extensions that get
processed at the server side to generate a standard CSS ile for the client.

http:///

Trinidad Skinning and Tuning

[242]

	

	

	
	

	

http:///

Chapter 7

[243]

http:///

Trinidad Skinning and Tuning

[244]

Letting the user choose the skin
Sometimes you may want to let the user choose which skin he wants to use. This
can be useful if you have a skin with extra accessibility features for speciic users,
or if you create a hosted application that is used by different clients, and each client
has its own skin. It is not that hard to make the skin conigurable. We can make use
of the fact that it is possible to use JSF expression language within the trin-
idadconfig.xml ile. Of course, we need a bean to hold the user’s preference. Let’s
create a Preferences.java ile:

package inc.monsters.mias;

import java.util.List;

public class Preferences {
private String skinFamily;
private List<String> availableSkinFamilies;

public String getSkinFamily() {
return skinFamily;
}
public void setSkinFamily(String skinFamily) {
this.skinFamily = skinFamily;
}

public List<String> getAvailableSkinFamilies() {
return availableSkinFamilies;
}

public void setAvailableSkinFamilies(
List<String> availableSkinFamilies) {
this.availableSkinFamilies = availableSkinFamilies;
} }

That’s pretty straightforward—just a bean with two properties and the accessors for
those properties. We can add this class to the session scope as a managed bean, so
that every user has his or her own preferences bean, including the initialization of the
bean. This means that we have to add the following to our faces-config.xml ile:

<managed-bean>

<managed-bean-name>preferences</managed-bean-name>

<managed-bean-class>inc.monsters.mias.Preferences

</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

<managed-property>

<property-name>skinFamily</property-name>

http:///

Chapter 7

[245]

<property-class>java.lang.String</property-class>

<value>mias</value>

</managed-property>

<managed-property>

<property-name>availableSkinFamilies</property-name>

<property-class>java.util.List</property-class>

<list-entries>

<value-class>java.lang.String</value-class>

<value>minimal</value>

<value>mias</value>

</list-entries>

</managed-property>

</managed-bean>

Note that we add two values to the list of available skins:

•	 mias is the name of the skin family that we are going to create
•	 minimal is the name of the default skin that is part of the Trinidad package

Now, we have to create a page that lets the user change the value of the skinFamily
property in the preferences bean. Let’s call that page Preferences.xhtml:

<ui:composition template="templates/template.xhtml">

<ui:define name="title">Preferences</ui:define>

<ui:define name="content">

<tr:panelFormLayout>

<mias:selectField type="radio"

items="#{preferences.availableSkinFamilies}"

bean="#{preferences}" id="skinFamily" />

<f:facet name="footer">

<tr:panelButtonBar>

<tr:commandButton text="#{msg.apply}"

action="apply" />

<tr:commandButton text="#{msg.ok}"

action="ok"/>

<tr:commandButton text="#{msg.cancel}"

action="cancel"

immediate="true" />

</tr:panelButtonBar>

</f:facet>

</tr:panelFormLayout>

</ui:define>

</ui:composition>

http:///

Trinidad Skinning and Tuning

[246]

http:///

Chapter 7

[247]

http:///

Trinidad Skinning and Tuning

[248]

It’s not relevant if disabled is a valid pseudo class in CSS. Trinidad will take care
of rendering a valid CSS. Of course, the Trinidad component must have a disabled
state; otherwise this would not make sense.

Using component piece selectors
Most Trinidad components consist of multiple pieces that can be styled separately.
To do so, we have to identify each piece in the skinning ile. There’s a special syntax
for this. Pieces of components are identiied by the component name and the name
of the piece, separated by two colons (::). So the syntax is much like the syntax
for styling component states, except that we now use a double colon instead of a
single colon. For example, if we want to style the tab piece of a <tr:panelTabbed>
component, we could write:

af|panelTabbed::tab {

background-color: gray;

border-top: 1pt solid navy;

border-bottom: 1pt solid navy;

}

It’s also possible to combine the state and piece syntax. For example, we could write:

af|inputText:readOnly:disabled::content {

color: gray;

}

This will give the content piece of the <af:inputText> component a gray color if it
is in the disabled or readOnly state.

A list of all Trinidad components, and their pieces and states can be found on the
Trinidad website at http://myfaces.apache.org/trinidad/skin-selectors.
html#ComponentLevelSelectors.

Setting global styles using alias selectors
Given the large number of components, it is very undesirable to set the same colors
and font names for every component that you want to style. In that case, should you
ever want to change the overall color or font, you’d have to change it all over the CSS
ile. In normal CSS, you can use the fact that there’s a ixed hierarchy. For example,
it is a common practice to set the base colors and fonts in the style for the <body>
elements, and derive the other elements’ styles from that one. Trinidad skinning uses
another approach.

http:///

Chapter 7

[249]

Trinidad skinning uses alias selectors to deine global styles that can be referred
to by the speciic component styles. An alias selector always starts with a period
(.) and ends with :alias. Most alias selectors have a rather narrow deinition of
what they style. Most of them only set a color or a font. In this way, combinations of
several alias selectors can be made to achieve the desired style for a component. For
example, to set the default font family for the entire skin, we could write:

.AFDefaultFontFamily:alias {
font-family: "Times New Roman", times, serif;

}

This will only set the font family. If we want to change the font size too, we should
add another alias selector—.AFDefaultFont:alias. This one is meant to set the
font family, the default size, and the default weight. However, we don’t want to
repeat the font family, as we have already deined it. So we need a way to refer to an
already deined style. For that reason the -tr-rule-ref:selector() syntax exists.
We can use it as shown here:

.AFDefaultFont:alias {
-tr-rule-ref:selector(".AFDefaultFontFamily:alias");
font-size: 12pt;
font-weight: normal;

}

This will set the font size to 12 points and the default weight to normal. The font
family is the same as the one that is deined in the .AFDefaultFontFamily:alias
selector.

An overview of all available alias selectors is available on the Trinidad website
at http://myfaces.apache.org/trinidad/skin-selectors.html#Global
Selectors. You should be aware that a lot of aliases will have calculated
values if we don’t set them explicitly. For example, the background colors
for the .AFVeryDarkBackground:alias, .AFMediumBackground:alias, and
.AFLightBackground:alias selectors will be calculated based on the background
color value of the .AFDarkBackground:alias selector.

Skinning icons
Some components use icons. These can be skinned too, which is useful for making
a consistent skin with matching colors. Icons are set with the content keyword, as
shown here:

af|inputDate::launch-icon {
content:url(/skins/suede/images/dp.gif);
width: 19; height: 24;

}

http:///

Trinidad Skinning and Tuning

[250]

Note that the URL of the image starts with a slash (/). This means that the URL is
relative to the context root of the application. There are four ways of specifying a URL:

•	 Relative to the CSS ile: A URL should not start with a slash. In this example,
it would be images/dp.gif, as the images directory is in the same directory
as the skin’s CSS ile. To go up a level in the directory structure, ../ can be
used.

•	 Relative to the context root: A URL should start with a single slash, as in
the previous example.

•	 Relative to the server: This can be used to link to an image in another
application on the same server. Of course, we need to be sure that the other
application will always be available on the same server. Server-relative URLs
start with a double slash, such as //OtherContextRoot/images/dp.gif.

•	 Absolute: Absolute URLs are not very lexible and should be used
with caution. They start with http://. In the previous example, the
corresponding absolute URL could be something like http://mias. mon-
sters.inc:8080/MIAS/skins/suede/images/dp.gif. This example shows
the main problem with using absolute URLs in this context—if an absolute
URL is used in a skin CSS ile, the CSS has to be adapted whenever the
application gets deployed to another application server or even if the port of
the server changes.

In some cases, you might want to use a text indicator instead of an image. In
this case, the url() part can be replaced by the desired text in quotes, like the
following example:

.AFErrorIcon:alias {

content: '!'; }

The example we just saw shows a global icon that is set by using an alias, and can
be used by multiple Trinidad components. An overview of alias selectors for global
icons can be found at http://myfaces.apache.org/trinidad/skin-selectors.
html#Global_Icon_Selectors. There are also some component-speciic icons that
can be set by using part selectors of the components, as shown by the example at
the start of this section. Refer to the list of component selectors at http://myfaces.
apache.org/trinidad/skin-selectors.html#ComponentLevelSelectors to ind
out which icon parts are deined for a certain component.

http:///

Chapter 7

[251]

Skinning text
Trinidad skinning also allows us to change text elements that are part of the Trinidad
components. This can be useful if we’re not satisied with the default texts of the
components. Let’s take the <tr:selectManyShuttle> component as an example.
As we saw in Chapter 5, by default this component renders text links that can be
used to move items from the unselected list to the selected list, and the other way
around. The texts are Move, Move All, Remove, and Remove All, as shown in the
following image:

We already discussed that this isn’t very intuitive. This can, of course, be solved
by adding arrow-shaped icons to the links. An alternative solution is to apply a
minimalist style and use the < and > characters. We can use the > character instead
of Move, >> instead of Move All, and so on. Let’s see how we can implement this.

First, we have to add a line to our trinidad-skins.xml ile to let Trinidad know
that we use custom texts for our skin:

<?xml version="1.0" encoding="UTF-8"?>

<skins xmlns="http://myfaces.apache.org/trinidad/skin">

<skin>

<id>mias.desktop</id>

<family>mias</family>

<render-kit-id>org.apache.myfaces.trinidad.desktop

</render-kit-id>

<style-sheet-name>skins/mias/mias-skin.css

</style-sheet-name>

<extends>suede</extends>

<bundle-name>inc.monsters.mias.Messages

</bundle-name>

</skin>

</skins>

http:///

Trinidad Skinning and Tuning

[252]

The changed lines are highlighted. We should always point to a message bundle
that is in the classpath. In this example, we chose to use our application-wide
message bundle. This way, we only have to translate a single ile if we want to
internationalize our application. But if we want to create a “self-contained” skin
that can be reused in different projects, we can also refer to a message bundle that is
inside the skin’s JAR ile, as long as it is on the classpath.

In our message bundle, we should use the keys that refer to the text part of the
component that we want to change. Appendix E has a list of all of the keys and the
default texts for the Trinidad components in Trinidad 1.2.12. Unfortunately, the
Trinidad project doesn’t provide any oficial list of these keys. However, they can be
found in the CoreBundle.xrts ile in the Trinidad source repository.

For the proposed changes to the <tr:selectManyShuttle> component, we should
add the following lines to our Messages.properties ile:

af_selectManyShuttle.MOVE_ALL = >>

af_selectManyShuttle.MOVE = >

af_selectManyShuttle.REMOVE_ALL = <<

af_selectManyShuttle.REMOVE = <

If we have multiple Messages.properties iles for different languages, we
shouldn’t forget to add these lines to each of these iles. Otherwise, the changed
labels will only appear in the default language. The following image shows how the
default texts are now replaced by the < and > signs in the shuttle component:

We shouldn’t forget that the resource bundle keys are applied to one speciic
component type only. For example, there is also a <tr:selectOrderShuttle>
component. This component still uses the Move and Remove texts, unless we also add
four key / value pairs starting with af_selectOrderShuttle to our message bundle.

http:///

Chapter 7

[253]

Extending skins

http:///

Trinidad Skinning and Tuning

[254]

trinidad-conig.xml ile
The trinidad-config.xml is a coniguration ile speciic to Trinidad. It should be
placed in the WEB-INF directory, under the root of a deployment ile (JAR, WAR,
or EAR). A minimal trinidad-config.xml looks like this:

<?xml version="1.0"?>

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">

</trinidad-config>

Inside the <trinidad-config> element, several coniguration elements can be
added in a random order. They are covered in the rest of this section.

Although there is one single trinidad-config.xml ile for a single application, it is
possible to have different settings for (groups of) users, as JSF Expression Language
can be used inside trinidad-config.xml. An example of the use of this feature is
given in the Letting the user choose the skin section at the beginning of this chapter.

web.xml ile
The web.xml ile is the top-level coniguration ile for any Java EE web application. It
also resides in the WEB-INF directory. Some tuning parameters for Trinidad are set as
context parameters in the web.xml ile. Context parameters can be added to the
web.xml ile as follows:

<context-param>

<param-name> <!-- name goes here --> </param-name>

<param-value> <!-- value goes here --> </param-value>

</context-param>

In the rest of this section, only the name and possible values of context parameters
are mentioned. They should always be added to the web.xml ile inside a <context-
param> element, as shown in the previous code snippet.

In the following subsections, various related tuning options are grouped together,
regardless of wether they are a web.xml options or trinidad-config.xml options.
The ile where each setting can be changed is indicated in the subsection heading,
with (T) for trinidad-config.xml and (W) for web.xml.

http:///

Chapter 7

[255]

Accessibility
Trinidad has a couple of ways of coniguring accessibility options at the application
level. Remember that the settings made in trinidad-config.xml can use Expression
Language to make them differ for different users.

Accessibility mode (T)
The <accessibility-mode> element in the trinidad-config.xml ile can be used
to choose between three different modes:

•	 default: Trinidad output supports most accessibility options by default.
•	 inaccessible: To minimize the output size, accessibility features can be

turned off entirely, resulting in smaller pages that are not accessible for
people with disabilities.

•	 screenReader: If you know beforehand that users with screen readers are
going to use your application, you could use this setting. Output is optimized
for screen reading, but other users may be negatively affected by this setting.

Accessibility proile (T)
The <accessibility-profile> element can be used to enable some speciic
accessibility options. You can conigure more than one option in the same
<accessibility-profile> element by separating them by whitespace characters.
The following options exist:

•	 high-contrast: Output is optimized for use with high contrast settings on
the client side

•	 large-fonts: Output is optimized for use with large font settings on the
client side

These settings are not intended to change the appearance for all users, but rather to
take some precautions in the output to prevent accessibility settings on the client side
from breaking the functionality of the application. This feature depends on support
by the skin that is used. At the moment, Trinidad’s default skin does not take
advantage of this setting.

http:///

Trinidad Skinning and Tuning

[256]

Lightweight dialogs (W)
By default, the Trinidad dialog framework uses browser window pop ups to render
dialogs. However, these may be blocked by a pop-up blocker. To circumvent this,
you can tell Trinidad to use “lightweight dialogs” instead. Lightweight dialogs are
inline frames that are rendered atop the main content, like a pop up. Lightweight
dialogs can be enabled by setting the org.apache.myfaces.trinidad.ENABLE_
LIGHTWEIGHT_DIALOGS context parameter in the web.xml ile to true. The default is
false.

Performance
The irst thing you have to check as far as performance is concerned is if the various
debugging options are disabled, as they all add some overhead that will decrease the
performance of the application. Apart from that, several speciic options exist to ine-
tune the performance of the application.

Page low scope lifetime (T)
Perhaps the name of this setting is not entirely right. The <page-flow-scope-
lifetime> element in the trinidad-config.xml ile sets the number of
pageFlowScope instances that are kept in memory. (There may be a relation with the
lifetime of pageFlowScope instances, but still the name seems a little odd.) As this
is a true application-wide setting, no Expression Language can be used inside this
element. The default value is 15. Increasing this value may cause the application to
use more memory.

Uploaded ile processor (T)
A default implementation of the org.apache.myfaces.trinidad.webapp.
UploadedFileProcessor interface is provided by Trinidad. This should be suficient
for most ile uploads. However, when ile uploading performance is critical, you
might want to implement your own UploadedFileProcessor implementation.
In this case, you should use the <uploaded-file-processor> element in
the trinidad-config.xml ile to conigure the fully-classiied name of your
implementation class.

http:///

Chapter 7

[257]

State saving (W)
State saving is an important process in JSF applications in general. It’s all about saving
the state of the application between requests for a particular client. The standard JSF
parameter javax.faces.STATE_SAVING_METHOD in web.xml can be used to choose
between state saving on the client or the server. The latter is JSF’s default setting. In
case client-side state saving is chosen, the method of state saving on the client can be
further reined by some Trinidad-speciic settings in the web.xml ile:

•	 The standard JSF way to save the state on the client is by putting the entire
state in a single, hidden form ield on the client. However, Trinidad uses
another tactic. It saves the state on the session and saves only a token on the
client to uniquely identify the state. This behavior can be controlled by the
org.apache.myfaces.trinidad.CLIENT_STATE_METHOD context parameter
in web.xml. Set it to all to get the standard JSF method, or set it to token to
get the Trinidad behavior. The latter is the default.

•	 If client-side token state saving is conigured, the maximum number of
tokens can be set with the org.apache.myfaces.trinidad.CLIENT_STATE_
MAX_TOKENS context parameter. It defaults to 15. This means that if the user
navigates to the 16th page, the state of the irst page will be forgotten. You
might want to increase the value if users use the back button a lot, or have
multiple windows or tabs open at the same time.

•	 Another optimization for client-side token state saving that Trinidad does
is caching the view root for every token. This can increase eficiency for
applications that make a lot of AJAX requests to the server, as the view root
now doesn’t have to be built from scratch for each AJAX request that has
to be handled. However, there are some known issues with Tomahawk’s
<t:saveState> component and Facelets template texts appearing twice. This
behavior can be turned off by setting the org.apache.myfaces.trinidad.
CACHE_VIEW_ROOT context parameter to false. The default is true.

The Trinidad developers recommend using client-side state saving with the
token method for best performance. If your application server is low on memory,
the all option for client-side state saving will save you memory at the expense of
lower performance.

http:///

Trinidad Skinning and Tuning

[258]

Application view caching (W)
For improved scalability, Trinidad has a built-in caching mechanism for the view
state at the application level. It caches the initial view state of every page at the
application level, as the initial view state is identical for every user. This saves the
server from building an initial view state tree from the page deinition every time a
page is viewed. Only when a user posts data back to the server, an individual view
state of that page is created for the unique user.

However, there are some downsides to this caching mechanism. First, changes to
pages are only detected upon application server restart, making it less practical to
use this caching during development. Second, there are ways to break the assertion
that the initial view state of a page is identical for every user:

•	 If you use non-JSF conditionals (such as <c:if> or <c:choose>) to
dynamically add or remove JSF components from the component tree.
This can be worked around by using the rendered attribute of the
component instead of surrounding it by a conditional element.

•	 If you use an iterator component (such as <c:forEach> or <tr:forEach>)
to add components to the tree. This may sometimes be worked around
by using a single component instead. For example, you could use the
<f:selectItems> component instead of the <f:selectItem> component
surrounded by the <c:forEach> component.

If you can live with the downsides, the application view caching mechanism can be
enabled by the org.apache.myfaces.trinidad.USE_APPLICATION_VIEW_CACHE
context parameter in the web.xml ile. Set it to true to enable caching, or false to
disable it.

Debugging
Trinidad has some options for easy debugging. They all come with a performance
penalty, so don’t forget to turn them off in your production environment!

http:///

Chapter 7

[259]

Enabling debug output (T)
Trinidad can generate a lot of useful debug output in both the generated XHTML
code and the server logs. Of course, this comes with a performance penalty, so you
should make sure that debug output is turned off in production environments. For
debugging, a lot of useful information is generated, such as:

•	 Extra comments in the generated XHTML, such as markers that indicate by
which JSF component a piece of code was generated.

•	 Extra warnings in the server log if invalid XHTML code is generated. For
example, nesting errors can be detected easily this way. These errors may
have stayed unattended otherwise, as most browsers try to always render a
page, even if the XHTML is not valid.

•	 Indented XHTML code. Normally, the generated XHTML is not indented to
save processing time and bandwidth. But for debugging, it is nice to have
more readable code.

Debug output can be turned on by adding the <debug-output> element to the
trinidad-config.xml ile. Values can be true (debug output on) or false (debug
output off). The default value is false.

Turning off compression and obfuscation (W)
By default, Trinidad uses compression and obfuscation on JavaScript and CSS to
optimize the size of the separate JavaScript and CSS iles. For debugging and /
or skin development, it may be useful to disable these optimizations during the de-
velopment stage. Remember to turn the optimizations on again in your production
environment!

•	 Obfuscation of JavaScript can be turned off by setting the org.apache.
myfaces.trinidad.DEBUG_JAVASCRIPT context parameter in web.xml to
true

•	 Compression of CSS class names can be turned off by setting the org.
apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION context
parameter in web.xml to true

http:///

Trinidad Skinning and Tuning

[260]

Changing deployed iles (W)
When developing, it may be useful to be able to apply changes directly to
deployed iles, instead of redeploying the entire application on every change. Some
combinations of IDEs and application servers can do this transparently. For this to
work, Trinidad can be conigured to monitor ile changes. This comes at the expense
of extra overhead, so it is a good idea to not use this in production environments. File
monitoring can be turned on by setting the org.apache.myfaces.trinidad.CHECK_
FILE_MODIFICATION context parameter in the web.xml ile to true.

Appearance
Several global-tuning options regarding the appearance of the application exist.
The following subsections cover them.

Client validation (T)
Client validation can be conigured in the trinidad-config.xml ile by adding the
<client-validation> element. Three different values can be set:

•	 inline: Client-side validation results are presented the same way as
server-side validation results—via the message areas in the pages. This
is the default.

•	 setalert: Results of client-side validation are shown to the user by means of
a JavaScript alert pop up. This way the user can notice a difference between
validation that is executed on the client side and validation that is executed
on the server side. Users may ind these pop ups annoying, though.

•	 disabled: No client-side validation will be performed.

Output mode (T)
Through the <output-mode> element in the trinidad-config.xml ile, Trinidad
can be conigured to produce output that is optimized for printing or e-mailing. The
following values can be set:

•	 default: Output optimized for on-screen display; this is the default setting
•	 printable: Output optimized for printing
•	 email: Output pages are optimized to be able to send them by e-mail

http:///

Chapter 7

[261]

Skin family (T)
As described in the Skinning section, the <skin-family> element can be used to
select which skin is used. The value should be the skin family name of the desired
skin. The default value is minimal, which is the name of the default skin family.

Localization
Localization often goes automatically by coniguring the correct locale. However,
some localization settings can be overridden in the application coniguration.
This may be useful for overriding locale settings with static defaults for all users,
or to enable the user to conigure his or her own settings. Each of the following
subsections discusses a localization-related setting.

Time zone (T)
A time zone can be conigured in the trinidad-config.xml ile to display times
in the correct time zone. By default, Trinidad’s DateTimeConverter tries to use the
time zone setting of the user’s browser to determine the time zone. However, you
might want to have a time zone setting in your application instead. In this case, you
could bind the <time-zone> element in the trinidad-config.xml ile to a java.
util.TimeZone object.

Two-digit year start (T)
Another setting for the DateTimeConverter is the <two-digit-year-start>
element in trinidad-config.xml. This helps the converter to interpret two-digit
year values when parsing date strings. The default setting is 1950, which means that
values below 50 are interpreted as years past 2000; while values from 50 and up
are interpreted as years before 2000. This setting also allows Expression Language,
enabling you to make a user setting out of it if desired.

Reading direction (T)
In some languages, such as Arabic and Hebrew, text is written and read from right to
left instead of left to right. Normally, Trinidad will automatically choose the correct
text direction based on the conigured locale. Should you want to override the setting
of the locale, then you can use this setting. It is set by adding a <right-to-left>
element to the trinidad-config.xml ile and setting it to true or false, either by a
literal value or by a JSF expression that evaluates to a Boolean.

http:///

Trinidad Skinning and Tuning

[262]

Number notation (T)
Normally, Trinidad’s NumberConverter derives its notation from the current locale.
However, should you want to override this with a ixed value or a value that can
be conigured from within your application, the <number-grouping-separator>
component, the <decimal-separator> component, and the <currency-code>
component settings in the trinidad-config.xml ile can be used. All three accept
either a ixed character or an expression that evaluates to a Character.

Summary
This last chapter of the three chapters on Trinidad introduced Trinidad’s skinning
capabilities. We also had a look at the various ways to tune Trinidad for optimal
performance, accessibility, and appearance. In the next chapter, we will see how we
can integrate our web application with a backend system.

http:///

Integrating with the Backend
As the MyFaces project is largely about view technologies, we have focussed on the
view layer until now. For the sake of simplicity, we did not care about persisting our
data in a database or something similar. However, in a real-world application, we
do need a persistence solution most of the time. That’s why we’ll have a quick look
at integrating our JSF web application with a backend solution. We will only look at
some basics here, as lots of books could be written about backend technologies. (And
luckily, many good books on the topic are already available.) This chapter focuses on
using Java persistence, as it is included within the Java EE standard without the use
of any additional libraries.

In this chapter we will learn about the following topics:

•	 Basic knowledge about the Model-View-Controller design pattern
•	 Basic knowledge about Enterprise JavaBeans (3.0)
•	 Basic knowledge about the Java Persistence API (1.0)
•	 Using Enterprise JavaBeans (EJB) facades in your web applications
•	 Limitations and problems of using EJB without additional frameworks

The Model-View-Controller architecture
It is a common practice to implement the Model-View-Controller (MVC) design
pattern in a Java EE application. In fact, parts of the Java EE standard are designed
around this pattern. The goal of the MVC pattern is to separate business logic from
the user interface. The MVC pattern splits an application into three separate parts,
each with its own responsibilities, as follows:

•	 Model: This part is responsible for manipulating application data. In other
words, the Model implements the business logic.

http:///

Integrating with the Backend

[264]

•	 View: This part is responsible for presenting the contents of the Model
to the user, and providing ways for the user to send data or commands
to the application.

•	 Controller: This part deines the behavior of the application, and is
responsible for receiving the user’s input.

So far in this book, we have only created a view and a controller for an application.
In a JSF-based application, the View consists of all of the JSP or Facelets pages. The
JSF Controller and all of the backing beans together form the Controller of the
application. We bundled these parts into a Web Archive, a WAR ile, in order to
deploy it to an application server.

As we just discussed, the Model layer of the application implements the business
logic, and is responsible for persisting application data. In a typical application, this
layer is bundled into its own JAR ile. In this chapter we will look at the EJB 3.0
and JPA 1.0 frameworks that are part of the Java EE standard. These can help us to
implement a Model layer for our application.

Setting up the Java EE application
structure
In a typical Java EE application, persistence services reside in their own archive.
They are referred to as an EJB JAR (Enterprise JavaBean JAR). In order to let our web
application (the View and Controller) and the persistence services (the Model)
easily work together, both the EJB JAR and our previously-generated WAR are
wrapped within a single Enterprise Archive (EAR). So let’s irst create a skeleton
EJB JAR and EAR.

Creating a skeleton EJB JAR
An EJB JAR is nothing more than a simple JAR that contains Java classes in a package
structure. What distinguishes an EJB JAR from a normal JAR is the fact that there
are some extra iles in the META-INF directory inside the JAR ile. In a normal JAR
ile, this directory only contains the MANIFEST.MF ile. In an EJB JAR, the META-INF
directory also contains some extra iles. See the following table for an overview:

Filename Mandatory Description
MANIFEST.MF mandatory Nothing special compared to a normal JAR’s

MANIFEST.MF.
ejb-jar.xml mandatory Deployment descriptor for the EJB JAR. An example of

a minimal ejb-jar.xml ile is given after this table.

http:///

Chapter 8

[265]

Filename Mandatory Description
persistence.xml optional Coniguration ile for the Java Persistence API (JPA).
orm.xml optional Optional coniguration ile for coniguring

object-relational mapping without using annotations.
Because the use of annotations is the default, this ile
can be omitted most of the time.

application server
speciic

optional Some application servers deine speciic
coniguration iles for EJB JARs.

http:///

Integrating with the Backend

[266]

Filename Mandatory Description
MANIFEST.MF mandatory Nothing special compared to a normal JAR’s

MANIFEST.MF.
application.xml mandatory Deployment descriptor for the EAR that describes

the structure of the application. An example of an
application.xml ile is given after this table.

In our case, we could have a MIAS-EAR.ear ile that contains our previously-created
MIAS.war ile and our newly created MIAS-EJB.jar ile. This structure should be
relected in the application.xml ile, as follows:

<?xml version="1.0" encoding="UTF-8"?>

<application

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:application="http://java.sun.com/xml/ns/

javaee/application_5.xsd"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application_5.xsd"

version="5">

<display-name>MIAS-EAR</display-name>

<module>

<web>

<web-uri>MIAS.war</web-uri>

<context-root>MIAS</context-root>

</web>

</module>

<module>

<ejb>MIAS-EJB.jar</ejb>

</module>

</application>

As you can see, this is nothing more than a relection of the internal directory
structure of the EAR, along with a little bit of extra information.

http:///

Chapter 8

[267]

http:///

Integrating with the Backend

[268]

	

	

	

http:///

Chapter 8

[269]

(=Java DB) database.
•	 //localhost:1527: The database is installed on the localhost machine. 1527

is the default port number on which Java DB listens for new connections.
•	 /test: The name of the database that we wish to connect to is test.
•	 ;create=true: If no database with the name test exists, Java DB will

create one.

Don’t forget the trailing ;. ij will do nothing if a command does not end with ;.
To verify that we’re really connected, we can use the following command as an
example:

show schemas;

This will cause a list of database schemas to be displayed.

Managing the database
Using a command-line tool such as ij is perhaps not the easiest way to manage a
database. Luckily, there are easier alternatives, of which we will look into one briely,
here. Recent versions of the Eclipse IDE have a Data Source Explorer, which is a
part of the Data Tools Platform. This can be made visible by selecting the Database
Development perspective via Window | Open Perspective | Other... | Database
Development | OK. Now, let’s see how we can connect to our Java DB database
from the Data Source Explorer.

1. In the Data Source Explorer pane is a folder called Database Connections. To
create a new database connection, right-click on that folder and select New...:

http:///

Integrating with the Backend

[270]

2. The New Connection Proile window appears. Select Derby as the
Connection Proile Type and give the connection a sensible name.

3. Click on Next > to go to the following screen:

4. Make sure that Derby Client JDBC Driver is selected in the Drivers com-
bobox. If this is not available, then you can create a new driver deinition via
the New Driver Deinition button (), which is located to the right of
the combobox. If Derby Client JDBC Driver is already available in the list,
you can skip to step 7.

5. In the New Driver Deinition window on the Name/Type tab, you can just
select the latest version of the Derby JDBC Client driver. You can keep the
default name.

6. On the Jar List tab, make sure that the selected JAR is in the same directory
where your Java DB database is located. If this is not the case, remove
the JAR and add a new one via the Remove JAR/Zip and Add JAR/Zip...
buttons.

http:///

Chapter 8

[271]

7. Back in the New Derby Connection Proile window, enter a database name,
and make sure that the Create database (if required) option is selected. All
other options can be left at the default settings.

8. For User name and Password, any values can be entered, as long as they are
at least three characters long. By default, no authentication is required to
connect to the Java DB database.

Once the connection has been deined and opened, the Data Source Explorer can
be used to browse the Java DB database. By default, several schemas exist in the
database—one of them being APP. This is the schema that can be used for application
data. In a newly-created database, this schema is empty.

Creating a table for employees
As an example, we will create a table for employees. This table will later be used to
persist Employee objects. We can use some simple SQL commands to create the table.
They can either be typed into Java DB’s ij tool or in the SQL Scrapbook of Eclipse’s
Data Source Explorer. (The latter is available by right-clicking on the database
connection in the Data Source Explorer and choosing Open SQL Scrapbook.) To
create a table for employees, the following SQL command can be issued:

CREATE TABLE app.employees (
ID INTEGER GENERATED ALWAYS AS IDENTITY CONSTRAINT

employees_pk PRIMARY KEY,
first_name VARCHAR(50) NOT NULL,
last_name VARCHAR(50) NOT NULL,
job_title VARCHAR(50) NOT NULL,
hire_date DATE NOT NULL,
birth_date DATE NOT NULL,
salary INTEGER

);

http:///

Integrating with the Backend

[272]

Populating the table with data
For testing our application later on, it is handy if the table already contains some
data. We can manually insert some data via either ij or the SQL Scrapbook by
issuing a series of insert statements, like this:

INSERT INTO app.employees (first_name, last_name, birth_date,
hire_date, job_title, salary)

VALUES ('Henry.J.', 'Waternoose', DATE('1953-05-11'),
DATE('1990-04-01'), 'Chief Executive Officer', 5000);

INSERT INTO app.employees (first_name, last_name, birth_date,
hire_date, job_title, salary)

VALUES ('James.P.', 'Sullivan', DATE('1978-04-06'),
DATE('1999-07-15'), 'Senior Scarer', 2500);

INSERT INTO app.employees (first_name, last_name, birth_date,
hire_date, job_title, salary)

VALUES ('Mike', 'Wazowski', DATE('1984-12-03'),
DATE('2003-11-01'), 'Junior Scarer', 2000);

The data can be veriied by issuing the following select statement:

SELECT * FROM app.employees;

Now that we have a database up and running, and it has been populated with some
data, we’re ready to start implementing the Model layer of our application.

Implementing the Model
Now that we have prepared the structure for our Java EE application, it’s time
to focus on the implementation of the Model layer—in other words, creating the
contents for our EJB JAR.

Creating an entity
As stated in the introduction of this chapter, we are going to use Enterprise
JavaBeans (EJB) 3.0 and Java Persistence API (JPA) 1.0, both of which are part of the
Java EE 5 standard. In the JPA, persistent data is represented by special objects called
entities. Therefore, to be able to use persistent Employee data in our application, we
need an Employee entity deinition. In JPA, an entity deinition is nothing more than
a Java class with some extra annotations.

http:///

Chapter 8

[273]

We will base our entity on the table that we created earlier. This means that for
every column in the table we need a bean property in our class. Where needed, JPA
annotations should be added. This will lead to an entity class that looks like this:

package inc.monsters.mias.data;

import java.io.Serializable;
import javax.persistence.*;
import java.util.Date;

@Entity
@Table(name="EMPLOYEES", schema="APP")
public class Employee implements Serializable {
private static final long serialVersionUID = 1L;
private int id;
private Date birthDate;
private String firstName;
private Date hireDate;
private String jobTitle;
private String lastName;
private int salary;
public Employee() {

}
@Id
@GeneratedValue(strategy=GenerationType.AUTO)
public int getId() {
return this.id;
}

public void setId(int id) {
this.id = id;
}

@Temporal(TemporalType.DATE)
@Column(name=""BIRTH_DATE")
public Date getBirthDate() {
return this.birthDate;
}

public void setBirthDate(Date birthDate) {
this.birthDate = birthDate;
}
@Column(name="FIRST_NAME")
public String getFirstName() {
return this.firstName;
}

http:///

Integrating with the Backend

[274]

public void setFirstName(String firstName) {
this.firstName = firstName;

}

@Temporal(TemporalType.DATE)
@Column(name="HIRE_DATE")
public Date getHireDate() {

return this.hireDate;
}

public void setHireDate(Date hireDate) {
this.hireDate = hireDate;

}

@Column(name="JOB_TITLE")
public String getJobTitle() {

return this.jobTitle;
}

public void setJobTitle(String jobTitle) {
this.jobTitle = jobTitle;

}

@Column(name="LAST_NAME")
public String getLastName() {

return this.lastName;
}

public void setLastName(String lastName) {
this.lastName = lastName;

}

public int getSalary() {
return this.salary;

}

public void setSalary(int salary) {
this.salary = salary;

}
}

The @Entity annotation at the top marks this class as being an entity class. The
@Table annotation is added because the name of the database table is different from
the name of the entity. It is also added to include information on which database
schema the table is in. On the getId() method, two annotations are set. The @Id
annotation marks the id property as being the primary key in the database table.
This means that the JPA framework knows that this property can be used to uniquely
identify an entity object. The @GeneratedValue annotation tells JPA that the
database will generate a value for this ield every time that a new record is inserted.

http:///

Chapter 8

[275]

http:///

Integrating with the Backend

[276]

As per the EJB 3.0 standard, such a service interface is called a Session Bean.
For each Session bean, EJB requires that we deine an interface and create an
implementation. Let’s focus on the interface irst. Suppose we need only two
functionalities: to be able to get a list of all employees, and to update an Employee
object with new data. Our interface could then look like this:

package inc.monsters.mias.data.facade;

import inc.monsters.mias.data.Employee;
import java.util.List;

public interface EmployeeService {
public List<Employee> getEmployees();
public void updateEmployee(Employee emp); }

That’s pretty simple, isn’t it? But now we have to implement this interface. Let’s see
how this can be done:

package inc.monsters.mias.data.facade;

import inc.monsters.mias.data.Employee;

import java.util.List;

import javax.ejb.Stateless;
import javax.persistence.*

@Stateless
public class EmployeeServiceBean implements EmployeeService {

@PersistenceContext(unitName="MIAS-EJB")
private EntityManager em;

public EmployeeServiceBean() {
}
@Override
public List<Employee> getEmployees() {
Query q = em.createNamedQuery("Employee.all");
return q.getResultList();
}

@Override
public void updateEmployee(Employee emp) {
if (null == em.find(Employee.class, emp.getId())) {
throw new IllegalArgumentException(

http:///

Chapter 8

[277]

"Unknown employee id: " + emp.getId());
}

em.merge(emp);
}

}

A lot of interesting things can be noted about this implementation. Let’s start at the
top. The class is preceded by a @Stateless annotation. This tells the EJB framework
that this is a Stateless Session Bean that does not have a state to preserve. This means
that a call to any method of this bean does not depend on values that might be set
by a previous call to any method of the class. Now look at the name of the class. As
per convention, the name of the implementation class is the same as the name of the
interface that it implements, with Bean appended to it.

Next, we have a private member variable called em, which is of the EntityManager
type. EntityManager is a class provided by the JPA framework. It has a lot of methods
that are needed for managing entities. The @PersistenceContext annotation ensures
that the EJB framework will inject a reference to an EntityManager object whenever an
instance of the EmployeeServiceBean class is created. Of course, this EntityManager
does need a database connection. This is why the annotation has the unitName="MIAS-
EJB" attribute. This tells the JPA framework to look for a persistence unit with the
name MIAS-EJB. We’ll see how to create this, later on.

This brings us to the getEmployees() method, which is a pretty short method. First,
a Query object is created, and then the getResultList() method is called on that
Query object. In order for the createNamedQuery() method to work, a named query
should be deined in the Employee entity, which we will look at in the next section.
As an alternative, the createQuery() method could be used. This method accepts a
String containing the query directly. However, it might be a good idea to keep all
queries with the entity object that they are related to. This also helps to reuse queries
instead of writing the same query several times.

The updateEmployee() method is a bit more complicated. It takes an Employee
object as an argument. It is expected that this Employee object has updated data
that is not in the database. In the irst line, the find() method is called on the
EntityManager object. This method takes a class and a value. The class must be
an entity class corresponding to some database table. The value should be such
that it can be a valid primary key value in that table. In this case, we are using the
find() method to verify that the entity already exists in the database, otherwise we
wouldn’t be able to update it. If find returns null, then the entity does not exist, and
thus we throw an exception.

http:///

Integrating with the Backend

[278]

http:///

Chapter 8

[279]

Although this is simple, it is more elegant to group all queries together as named
queries. This also has the beneit that we don’t have to repeat ourselves if we need
the same query more than once. Named queries can be deined by adding some
annotations just before the deinition of our entity class. In this case, the irst lines of
our Employee class become:

@Entity
@Table(name="EMPLOYEES", schema="APP")
@NamedQueries({

@NamedQuery(name="Employee.all",
query="SELECT emp FROM Employee emp"),

@NamedQuery(name="Employee.byId",
query="SELECT emp FROM Employee emp

WHERE emp.id = :id")
})
public class Employee implements Serializable {
...

}

The name of the named query can be used to refer to a call to createNamedQuery(),
as is shown in the example in the Creating a service facade section of this chapter.

Deining persistence units
To deine a persistence unit, we need a persistence.xml ile. This ile should be
created in the META-INF directory of our EJB JAR. In our case, the ile could look
like this:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="1.0"

xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/

persistence

http://java.sun.com/xml/ns/

persistence/persistence_1_0.xsd">

<persistence-unit name="MIAS-EJB">

<jta-data-source>jdbc/miasDataSource</jta-data-source>

</persistence-unit>

</persistence>

The name of the unit is important here. This is the name that is referred to in the
@PersistenceContext(unitName="MIAS-EJB") annotation in our service bean.
Another important thing is the <jta-data-source> element. This binds the
persistence unit to a data source. The data source has to be provided by the Java EE
container. We will discuss this in more detail later.

http:///

Integrating with the Backend

[280]

Deining a data source
To deine a data source, we have to conigure the application server. We cannot
cover the steps needed for every application server, here. In this section, we see how
we can conigure a data source on a GlassFish application server. As the steps to be
taken are similar for most application servers, it should be possible to igure out how
it can be done for any other application server. The steps are as follows:

1. Log in to the administration interface of the application server.
For a typical GlassFish installation, the login page can be reached
via http://localhost:4848. The default username is admin and
the password is adminadmin.

2. Navigate to Resources | JDBC | Connection Pools. In the right half
of the screen, click on the New... button.

3. In the New JDBC Connection Pool (Step 1 of 2) screen, enter the following
data:

	° Name: JavaDBConnectionPool
	° Resource Type: javax.sql.DataSource
	° Database vendor: Derby

4. Click on Next.
5. In Step 2 of 2, make sure that the Datasource Classname is set to org.

apache.derby.jdbc.ClientDataSource. Other settings can be left with
their default values. Also make sure that, under Additional Properties, at
least the following properties are set:

	° PortNumber: 1527

http:///

Chapter 8

[281]

	° ServerName: localhost
	° DatabaseName: mias

6. Click on Finish.
7. After creating a connection pool, we still have to create a data source based

on that pool. To do so, navigate to Resources | JDBC | JDBC Resources.
8. Click on the New... button at the top of the table, in the right half of

the screen.
9. In the New JDBC Resource screen, make sure that the following data is set:

	° JNDI name: jdbc/miasDataSource
	° Pool Name: JavaDBConnectionPool
	° Status: enabled

The JNDI name is the name that is referred to in the <jta-data-source>
element in the persistence.xml ile. The Pool Name is the name of the
Connection Pool that was created in steps 2 to 5.

Using the service facade in the
View layer
Now that we’ve created our service facade, it’s time to adapt our web application
to use this service facade instead of the dummy objects we used so far. For the
Employees, we had a managed bean that contained a list of employees. To get access
to our persisted Employee objects, we have to call the methods in our service facade
from the backing bean of our page. We already have the EmployeesTable backing
bean, so let’s add some methods there to access our facade:

private List<Employee> empList;

public List<Employee> getEmployees() {
if (null == empList) {

empList = service.getEmployees();
}
return empList;

}

public void saveSelected(ActionEvent event) {
RequestContext rc = RequestContext.getCurrentInstance();
Employee emp = (Employee) rc.getPageFlowScope()

.get("selectedEmployee");
service.updateEmployee(emp);

}

http:///

Integrating with the Backend

[282]

The getEmployee() method simply delegates the call to the service. The result is
stored in a member variable. Combined with the null check, this guarantees that
the getEmployees() method on the facade will only be called once during the
lifetime of the EmployeesTable bean. This is important for good performance of the
application, as getter methods in JSF managed beans can be called more than once
during the lifecycle.

The saveSelected() method has to get the selectedEmployee object from
the page low scope irst, and then call the updateEmployee() method with the
selectedEmployee. But the interesting question here is: How is the service
variable declared, and how did it get a reference to our service bean in the EJB JAR?
The answer: is we should declare service as being of the EmployeeService type. To
get a reference to our service bean, we just have to put an @EJB annotation before it.
So the declaration of this member variable will look like this:

@EJB

private EmployeeService service;

The @EJB annotation will cause the EJB framework to look for an Enterprise Java
Bean of the EmployeeService type. As our EmployeeServiceBean class implements
the EmployeeService interface, and is an EJB, thanks to the @Stateless annotation,
it satisies both. So at runtime, a reference to our service bean will be injected.

Updating the pages
Now, we have to adapt our pages to use the new methods, instead of the managed
bean. In our Employees.xhtml page, we only have to change the value property of
the <tr:table> element, as follows:

<tr:table var="emp"

value="#{empsTable.employees}"

rows="20"

id="kids"

rowBandingInterval="1"

horizontalGridVisible="false"

rowSelection="multiple"

binding="#{empsTable.table}">

http:///

Chapter 8

[283]

In the EditEmployee.xhtml page, we have to add action listeners to the OK and
Apply buttons. This will make the button deinitions look like:

<tr:panelButtonBar>

<tr:commandButton text="#{msg.apply}"

action="apply"

partialSubmit="true" id="btnApply"

actionListener="#{empsTable.saveSelected}"/>

<tr:commandButton text="#{msg.ok}"

action="ok"

actionListener="#{empsTable.saveSelected}"/>

<tr:commandButton text="#{msg.cancel}"

action="cancel"

immediate="true" />

</tr:panelButtonBar>

The highlighted lines are added; the rest is unchanged. It is important to note that
very little changes are needed in the pages. As the properties of our new entity
objects are the same as the properties that our dummy objects had, we can still refer
to them via the JSF Expression Language.

Limitations and problems
Although EJB 3.0 is a very elegant framework, it has some limitations. These
limitations will not show up in simple applications like the one we used as an
example in this book, but in real-life applications, they will.

Transactions
One of the limitations that you can come across when using JSF for the View and
Controller, and EJB for the Model, is the lack of coordination between JSF and EJB
when it comes to transactions. In databases, all changes to data happen within
a transaction. In the example in this chapter, we updated a single row in the
EMPLOYEES table. The container will simply start a transaction just before the update
takes place, and close the transaction immediately after the update. But in more
complex applications, it is often necessary to perform multiple actions within a single
transaction. This is the case when related records are updated, added, or removed.
A database transaction can only be closed if all of the constraints are satisied.

http:///

Integrating with the Backend

[284]

For example, there might be a foreign key constraint saying that a record in a
Departments table can only be removed if no employees are working in that
department. Imagine a reorganization of the company where a certain department
will be abolished. All employees of that department will be transferred to other
departments. The transfer of those employees, as well as the removal of the
department, must take place in a single transaction. This is because, in case the
transfer of a single employee doesn’t succeed due to some other constraint, the whole
transaction can then be canceled.

Now back to our Java EE application. The problem is that the JSF framework has no
idea what a transaction is. As long as transactions are opened and closed within a
single screen, there’s no real problem. However, when we need to keep a transaction
open, spanning over multiple screens, things can get very complicated.

Validation of data
According to the Model-View-Controller pattern, validation of data should take
place in the Model layer of the application because validation can be seen as
business logic. In most real-life applications, data validation is implemented in the
Model layer. But as we want to give our users fast feedback on entered data, a lot of
validation is often duplicated in the View layer. This can create all sorts of problems,
especially when validation rules change and the Model layer is updated, but the
View layer is forgotten.

Having no validation in the Model and completely depending on the View for
validation is not an option. Validation belongs in the Model layer. There could be a
second interface (for example, a Web Service) that is built on the same model. Having
no validation in the model could allow the second interface to enter invalid data.

Summary
In this chapter, we learned the basics of EJB and JPA by implementing a simple
persistent Model layer for our web application. We also discussed some of the
limitations and problems that arise when using JSF in combination with “plain” EJBs.

In the next chapters, we will have a look at the MyFaces subprojects that can help us
overcome the limitations and problems discussed in the last section of this chapter.
MyFaces Orchestra, discussed in the next chapter, can help us solve the problems
with transactions, and MyFaces Extensions Validator (ExtVal) can help us deine
our validations in a single place. MyFaces ExtVal will be covered in Chapter 10.

http:///

MyFaces Orchestra
The MyFaces Orchestra project contains various tools and goodies that are focussed
on making Java EE application development easier and more productive. In partic-
ular, the conversations feature is very powerful as it gives us an elegant way
to handle persistence transactions that have to span multiple screens. By using this
feature, we can solve one of the shortcomings mentioned at the end of the previous
chapter. This chapter guides you through the basic setup of Orchestra, which is not
trivial as it also involves adding the Spring framework to the project. After the setup,
we will look at Orchestra’s conversations feature. We will also have a quick look at
some other useful Orchestra features.

It should be noted here that some of the shortcomings that Orchestra ixes are also
ixed in the JSF 2.0 speciications. But as JSF is still a View-oriented standard, it
cannot offer the tight integration with a persistence layer that Orchestra uses to
automatically manage transactions for us.

After reading this chapter, you will be able to:

•	 Add the Spring framework to a web application project
•	 Conigure a basic Spring application context
•	 Set up a web project to use MyFaces Orchestra
•	 Use Orchestra’s ViewController concept
•	 Conigure and use Orchestra conversations
•	 Generate a simple form with Orchestra’s DynaForm component

http:///

MyFaces Orchestra

[286]

Setting up Orchestra
This section outlines the steps needed to prepare our project to use MyFaces
Orchestra. This involves changing the structure of our application, adding and
coniguring the Spring framework, and adding the Orchestra libraries.

Adapting the application structure
Orchestra runs in the web application container (the WAR ile). To be able to
manage transactions in the persistence framework, Orchestra must have access
to the persistence classes. (Obviously, this isn’t necessary if we don’t want to use
Orchestra’s persistence support.) This means that we can’t put our persistence classes
into a separate EJB container. Fortunately, as Orchestra uses Spring, we don’t need
an EJB container because Spring is capable of performing the tasks that are typically
done by an EJB container. Also, using both Spring and a separate EJB container
would make things overly complex.

Of course, putting the persistence and presentation layer in the same container has
some down-sides too. For very large applications, we no longer have the option to
run both layers on different servers in order to spread the load. As an alternative,
clustering of the Web Container can be an option. And for small and medium-sized
applications, this shouldn’t be an issue at all.

It is also a good idea to have presentation logic and persistence in different projects
during development. However, using Orchestra doesn’t prevent us from doing so.
We have to change the application structure a bit to be able to use different projects.
Instead of putting our Entities, persistence.xml, and Service Beans into a special
EJB JAR, we put them into an “ordinary” JAR. We put this JAR in the lib directory
of the enclosing EAR. In this way, the WAR, which is also a part of the EAR, has
access to it. The following image gives a schematic overview of this structure:

optional

entities,

persistence.xml
and services

view and controller

http:///

Chapter 9

[287]

The most important contents of each of the contained archives are listed in the
following table:

Archive Contents

MIAS-Entities.jar Entities: Empoyee.java, Kid.java.

Coniguration ile: persistence.xml (in META-INF).

Service Facade: EmployeeService.java, KidService.java,
EmployeeServiceBean.java, KidServiceBean.java.

MIAS.war All other stuff, such as *.xhtml pages, faces-config.xml,
backing beans, and so on.

Downloading the Spring framework
As Orchestra makes use of the Spring framework, we have to add the Spring
framework to our web application ile (WAR ile) as a dependency. Orchestra
requires at least Spring 2.0. The current production version at the time of writing
this book is 2.5.6, which works ine with Orchestra, so let’s take that one. It can be
downloaded from

. On this page, we’re asked about our personal details. However, this can
easily be skipped by clicking on the I’d rather not ill in the form. Just take me to
the download page link below the form. This brings us to the actual download page.
Although the current development release is at the top of the list, we’re probably
better off with the current GA release of the Spring Framework, which is just below
the development build. Choose the version “with dependencies”, to make sure that
we have all of the JARs on which Spring depends, readily available when we need
them later on.

Now we have to make sure that at least all JARs in the directory of the
downloaded archive are added to the directory of our WAR ile. (In
Eclipse, this can be done by selecting Properties from the context menu of the project
and then going to Java Build Path|Libraries, and adding a “user library” via the
Add Library... button.)

Extra dependency
It turns out that at least in our example application, we also need the

 ile to be in the classpath. This JAR can also
be added to the directory of our WAR. If you downloaded
the “with dependencies” version of the Spring Framework, this JAR can
be found in the directory of the downloaded archive. (Of
course, this dependency is automatically resolved if you use Maven.)

As Orchestra makes use of the Spring framework, we have to add the Spring
framework to our web application ile (WAR ile) as a dependency. Orchestra
requires at least Spring 2.0. The current production version at the time of writing
this book is 2.5.6, which works ine with Orchestra, so let’s take that one. It can be
downloaded from http://www.springsource.com/products/spring-community-
download. On this page, we’re asked about our personal details. However, this can
easily be skipped by clicking on the I’d rather not ill in the form. Just take me to
the download page link below the form. This brings us to the actual download page.
Although the current development release is at the top of the list, we’re probably
better off with the current GA release of the Spring Framework, which is just below
the development build. Choose the version “with dependencies”, to make sure that
we have all of the JARs on which Spring depends, readily available when we need
them later on.

Now we have to make sure that at least all JARs in the dist directory of the
downloaded archive are added to the WEB-INF/lib directory of our WAR ile. (In
Eclipse, this can be done by selecting Properties from the context menu of the project
and then going to Java Build Path|Libraries, and adding a “user library” via the
Add Library... button.)

Extra dependency
It turns out that at least in our example application, we also need the
cglib-nodep-2.1_3.jar ile to be in the classpath. This JAR can also
be added to the WEB-INF/lib directory of our WAR. If you downloaded
the “with dependencies” version of the Spring Framework, this JAR can
be found in the lib/cglib directory of the downloaded archive. (Of
course, this dependency is automatically resolved if you use Maven.)

http:///

MyFaces Orchestra

[288]

Coniguring Spring
Although Spring coniguration is a bit out of scope for this book, in the next sections
some basic information is provided to get you started should you have no experience
with Spring. If you want to read more on Spring, the Spring project itself provides
some excellent reference documentation on its website: http://www.springsource.
org/documentation.

Letting Spring manage the beans

http:///

Chapter 9

[289]

</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

</managed-bean>

In Spring’s applicationContext.xml ile, this will become:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/

spring-beans-2.0.xsd>

<bean id="bravenessCalc"

class="inc.monsters.mias.backing.BravenessCalc"

scope="request"/>

</beans>

Note that the subelements of the <managed-bean> element are replaced by attributes
of the <bean> element. It is also good to realize that Spring also has a request scope,
just like JSF. Now let’s take a slightly more complicated example from the faces-
config.xml ile:

<managed-bean>

<managed-bean-name>miasMenu</managed-bean-name>

<managed-bean-class>

org.apache.myfaces.trinidad.model.XMLMenuModel

</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

<managed-property>

<property-name>source</property-name>

<value>/WEB-INF/menu.xml</value>

</managed-property>

</managed-bean>

http:///

MyFaces Orchestra

[290]

This deinition of the bean that holds our menu structure also has managed
properties. In Spring syntax, this will become:

<bean id="miasMenu"

class="org.apache.myfaces.trinidad.model.XMLMenuModel"

scope="request">

<property name="source" value="/WEB-INF/menu.xml"/>

</bean>

Notice how the subelements of the <managed-property> element are again replaced
by attributes in the Spring coniguration ile.

Spring can also handle more complicated properties, such as lists and maps. Take,
for example, the bean that we use to store the user’s preferences, which is deined in
the faces-config.xml ile as follows:

<managed-bean>

<managed-bean-name>preferences</managed-bean-name>

<managed-bean-class>inc.monsters.mias.Preferences

</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

<managed-property>

<property-name>skinFamily</property-name>

<property-class>java.lang.String</property-class>

<value>mias</value>

</managed-property>

<managed-property>

<property-name>availableSkinFamilies

</property-name>

<property-class>java.util.List</property-class>

<list-entries>

<value-class>java.lang.String</value-class>

<value>minimal</value>

<value>suede</value>

<value>mias</value>

</list-entries>

</managed-property>

</managed-bean>

In Spring’s applicationContext.xml ile, this will become:

<bean id="preferences"

class="inc.monsters.mias.Preferences"

scope="session">

<property name="skinFamily" value="mias"/>

<property name="availableSkinFamilies">

http:///

Chapter 9

[291]

<list>

<value>minimal</value>

<value>suede</value>

<value>mias</value>

</list>

</property>

</bean>

The injection of lists and list items is similar in both frameworks. It should be noted
that in this case the session scope is used, as Spring has such a scope (just like JSF).
On a side note, all of these examples show that Spring’s bean deinition syntax is
generally more compact than the managed bean deinition syntax of JSF.

One last example shows us some more differences between the two frameworks. In
our faces-config.xml, we conigured a java.util.HashMap as a managed bean
containing the login names and passwords for the application as follows:

<managed-bean>

<managed-bean-name>loginsmap</managed-bean-name>

<managed-bean-class>java.util.HashMap

</managed-bean-class>

<managed-bean-scope>application</managed-bean-scope>

<map-entries>

<map-entry>

<key>James.P.Sullivan</key>

<value>n@viLLus</value>

</map-entry>

<map-entry>

<key>Mike.Wazowski</key>

<value>iksW0z@w</value>

</map-entry>

</map-entries>

...

</managed-bean>

<managed-bean>

<managed-bean-name>loginBean</managed-bean-name>

<managed-bean-class>inc.monsters.mias.LoginBean

</managed-bean-class>

<managed-bean-scope>request</managed-bean-scope>

<managed-property>

<property-name>logins</property-name>

<value>#{loginsmap}</value>

</managed-property>

</managed-bean>

http:///

MyFaces Orchestra

[292]

The HashMap is deined at application scope. It is then injected into the loginBean
by the use of JSF Expression Language—#{loginsmap}. In the Spring XML ile, we
cannot use Expression Language. Spring does not have an application scope either,
and the way we deine a Map as a Spring bean is also slightly different. Let’s see how
we do these things in the applicationContext.xml ile:

<bean id="loginsmap"

class="org.springframework.beans.factory.config.MapFactoryBean"

scope="singleton">

<property name="sourceMap">

<map>

<entry key="James.P.Sullivan" value="n@viLLus"/>

<entry key="Mike.Wazowski" value="iksW0z@w"/>

<entry key="Celia.Mae" value="e@M"/>

<entry key="Henry.J.Waternoose" value="es00nRet@w"/>

<entry key="Abominable.Snowman" value="n@mw0nZ"/>

<entry key="Randall.Boggs" value="sGG0b"/>

<entry key="Roz" value="Z0r"/>

</map>

</property>

</bean>

<bean id="loginBean"

class="inc.monsters.mias.LoginBean"

scope="request">

<property name="logins" ref="loginsmap"/>

</bean>

We have replaced the application scope by Spring’s singleton scope. A
singleton-scoped bean in Spring is a bean of which one and only one instance will be
created in the whole application. That’s pretty much like JSF’s application scope. It
is important to note that we didn’t use java.util.HashMap as the class of our bean,
but instead we used a MapFactoryBean from the Spring framework. That’s because
Spring doesn’t have a <map-entries> element, like JSF. (Of course, JSF uses some
kind of factory too, under the hood.) The last important thing in this example is how
we inject the loginsmap bean into the loginBean. We use a <property> element.
However, instead of a value attribute, we use a ref attribute this time that lets us
refer to another bean in the Spring context.

http:///

Chapter 9

[293]

Coniguring the faces-conig.xml ile for Spring
After creating all of the bean deinitions in the applicationContext.xml ile, we
shouldn’t forget to remove all managed bean deinitions from the faces-config.
xml ile. Otherwise, we will end up with double bean deinitions.

You might wonder how we can reference our beans in the JSF Expression Language,
now that they’re managed by Spring. JSF doesn’t have any Spring support
embedded, so we need to add that. For this reason, the Spring framework provides
a special Expression Language resolver. The only thing we have to do is add that
resolver to our faces-config.xml ile, as shown in the following example:

<el-resolver>

org.springframework.web.jsf.el.SpringBeanFacesELResolver

</el-resolver>

Coniguring the web.xml ile for Spring
To bootstrap Spring, we need to add some listeners to our web.xml coniguration ile.
This is fairly straightforward:

<listener>

<listener-class>

org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

<listener>

<listener-class>

org.springframework.web.context.request.RequestContextListener

</listener-class>

</listener>

The irst listener is responsible for the initial context loading. The second listener
enables Spring to correctly initialize scopes, such as the request scope and the
session scope.

http:///

MyFaces Orchestra

[294]

Coniguring Spring and persistence

http:///

Chapter 9

[295]

Note that the last line uses a namespace that is not already in our
applicationContext.xml ile. This means that we have to add it at the top of the
ile. The irst lines of the ile thus become:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:tx="http://www.springframework.org/schema/tx"

xmlns:context="http://www.springframework.org/schema

/context"

xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans

/spring-beans-2.0.xsd

http://www.springframework.org/schema/tx

http://www.springframework.org/schema/tx

/spring-tx-2.0.xsd

...

Accessing the services
In the standard EJB approach that we used in the previous chapter, the services
were injected into our backing beans by means of the @EJB annotation. As we’re
using Spring instead of EJB now, we cannot use this approach anymore. But because
Spring is a dependency injection framework, it shouldn’t be too dificult to have the
services injected. We can use Spring’s auto wire feature, which makes this very easy.
Let’s have a look at the kidsTable bean, which backs the Kids.xhtml page. We can
declare that bean in the applicationContext.xml ile, as follows:

<bean name="kidsTable"

class="inc.monsters.mias.backing.KidsTable"

scope="request"

autowire="byName"/>

The autowire attribute is set to byName. This means that Spring will look for beans
that can be injected based on the name of the property and the bean. So in case of the
injection of a service bean into our KidsTable bean, we have to make sure that the
name of the service bean corresponds to the name of the property in the KidsTable
bean. So let’s declare our kids service bean as follows, in the applicationContext.
xml ile:

<bean name="kidService"

class="inc.monsters.mias.data.facade.KidServiceBean"/>

http:///

MyFaces Orchestra

[296]

Now we have to make sure that the KidsTable backing bean has a
setKidService() method, and Spring will do the rest for us:

public class KidsTable {

private KidService kidService;

...

public KidService getKidService() {

return kidService;

}

public void setKidService(KidService kidService) {

this.kidService = kidService;

}

...

}

Downloading and installing Orchestra

http:///

Chapter 9

[297]

Coniguring Orchestra
Now we can inally start coniguring Orchestra. First, we have to add one extra
listener to our web.xml ile:

<listener>

<listener-class>

org.apache.myfaces.orchestra.conversation.servlet

.ConversationManagerSessionListener

</listener-class>

</listener>

The rest of the Orchestra coniguration is done in the Spring applicationContext.
xml ile. The irst thing we have to do there is to include the default Orchestra
initialization, as follows:

<import resource="classpath*:

/META-INF/spring-orchestra-init.xml" />

Note the classpath*: preix—this causes Spring to search the whole classpath
for the given ile, so that it can be found inside the Orchestra JAR. One of the most
important things to do is to conigure at least one custom Orchestra scope. We’ll
deine two scopes here, which are more-or-less standard. One scope is called
conversation.manual, and the other is called conversation.access. The former
can be used for conversations that are to be started and ended manually. The latter
scope can be used for conversations that are ended automatically by Orchestra. (We
will discuss these in more detail, later.) Let’s see how we conigure these scopes in
the applicationContext.xml ile:

<bean class="org.springframework.beans.factory.config
.CustomScopeConfigurer">

<property name="scopes">
<map>

<entry key="conversation.manual">
<bean class="org.apache.myfaces.orchestra

.conversation.spring

.SpringConversationScope">
<property name="timeout" value="30" />
<property name="advices">

<list>
<ref bean=
"persistentContextConversationInterceptor"/>

</list>
</property>

</bean>
</entry>
<entry key="conversation.access">

http:///

MyFaces Orchestra

[298]

<bean class="org.apache.myfaces.orchestra

.conversation.spring

.SpringConversationScope">

<property name="timeout" value="30" />

<property name="advices">

<list>

<ref bean=

"persistentContextConversationInterceptor"/>

</list>

</property>

<property name="lifetime" value="access"/>

</bean>

</entry>

</map>

</property>

</bean>

As you can see, this is, in fact, just another Spring bean deinition. In this case, we
have a CustomScopeConfigurer bean that gets a Map of scopes injected into it.
That Map, in turn, contains two Spring beans that implement the scopes. Note that
the only difference between the two scopes (apart from their name, of course) is
that the conversation.access has an extra property of lifetime, which is set to
access. Also notice the persistentContextConversationInterceptor bean that
gets injected into both beans. You might have noticed that there is no bean with that
name already, and that is correct. We have to deine that bean:

<bean id="persistentContextConversationInterceptor"

class="org.apache.myfaces.orchestra.conversation

.spring.PersistenceContextConversationInterceptor">

<property name="persistenceContextFactory"

ref="persistentContextFactory"/>

</bean>

This leaves us with another bean, persistentContextFactory, that yet has to be
deined. We deine it as follows:

<bean id="persistentContextFactory"

class="org.apache.myfaces.orchestra.conversation

.spring.JpaPersistenceContextFactory">

<property name="entityManagerFactory"

ref="entityManagerFactory"/>

</bean>

http:///

Chapter 9

[299]

As you can see, the persistentContextFactory needs a bean called
entityManagerFactory. We already created that one when we were coniguring
Spring to work with our persistence unit.

Using the Orchestra ViewController
Orchestra promotes the use of the “one bean per page” paradigm. This often-used
pattern means that every view (page) has only one bean associated with it. All of the
server-side code that is speciic to a certain page is put into the bean that is associated
with that page. The Orchestra ViewController makes the association between the
page and the bean a bit tighter, and has some convenient features. To deine a bean
as a ViewController for a speciic page, the @ViewController annotation can be
used. The next example shows how the KidsTable bean that is associated with the
Kids.xhtml page is deined as being the ViewController of that Kids.xhtml page.

@ViewController(viewIds={"Kids.xhtml"})

public class KidsTable {

...

}

Note that the viewIds parameter is in plural form—a comma-separated list can be
used to make this bean the ViewController of multiple views.

Using event methods
The Orchestra ViewController framework has the possibility to call a method on
a ViewController bean for certain JSF events. Annotations can be used to mark a
method in a ViewController bean as a handler for a certain event. The following table
gives an overview of the available events:

Event Annotation Description
initView @InitView This event will be ired after the JSF RESTORE_

VIEW phase. This is just after the HTTP request
reaches the server. The initView event handler
can be used to perform initialization in a
ViewController bean.

preProcess @PreProcess This event will be ired before the JSF INVOKE_
APPLICATION phase. At this point, all validation
and conversion has inished, and any values
submitted in the request are applied to the model.
So in this event handler, the application’s model
can be used.

http:///

MyFaces Orchestra

[300]

Event Annotation Description

http:///

Chapter 9

[301]

http:///

MyFaces Orchestra

[302]

The controller class has a kidService and employeeService because both Kid
and Employee objects have to be updated. The selectedKid member variable will
contain the Kid object that the user has selected to edit. Now let’s declare this class in
the applicationContext.xml ile, as follows:

<bean name="editKidController"
class="inc.monsters.mias.controller.EditKidController"
scope="conversation.manual"
orchestra:conversationName="editKidConversation"
autowire="byName"/>

The most important line here is scope="conversation.manual". This will cause
the bean to be put in the manual conversation scope. If the bean is referenced and
no conversation exists, Orchestra will automatically create a new conversation. The
orchestra:conversationName attribute gives the conversation a name, which is
needed if we want to refer to this conversation later on. Also note the autowire
setting. This will cause the kidService and employeeService member variables to
be populated with the correct beans automatically, by Spring.

Now we have to edit our EditKidForm backing bean. The selectedKid, which is
now contained in the EditKidController, was previously in this bean and should
be removed. We also have to add a member variable and accessor methods for the
EditKidController.

package inc.monsters.mias.backing;

// Imports hidden for brevity.

@ViewController(viewIds={"EditKid.xhtml"})
public class EditKidForm {

private EditKidController editKidController;

public EditKidController getEditKidController() {
return editKidController;

}

public void setEditKidController(EditKidController ctrl) {
this.editKidController = ctrl;

}
}

Note that we have added a @ViewController annotation, just as we did before,
for another backing bean. Some methods for specials functions, such as the
braveness calculator, have been left out here for simplicity. Now let’s verify the bean
declaration of this bean in the applicationContext.xml ile:

http:///

Chapter 9

[303]

<bean name="editKidForm"
class="inc.monsters.mias.backing.EditKidForm"
scope="request"
autowire="byName"/>

The bean can now be put in the request scope without problems, as everything
that has to live longer than a single request can be put in the EditKidController,
which is in the conversation scope. The autowire setting will ensure that the
editKidController member variable of EditKidForm will always have a valid
reference to an EditKidController.

As the selectedKid variable is moved to another bean, we have to adapt all of
the pages where this variable is referenced. Let’s start with the EditKid.xhtml
page, which is pretty straightforward. We simply have to replace every reference
to #{editKidForm.selectedKid} by #{editKidForm.editKidController.
selectedKid}. So, for example, the “irst name” ield becomes:

<mias:field id="firstName"
bean="#{editKidForm.editKidController.selectedKid}"
required="true"
maximumLength="30"/>

In the Kids.xhtml page, the selected kid was previously put in the page low
scope. But now that we have a conversation scope, we do not need to use the
page low scope. Instead, let’s just put the selected kid on the request scope. We’ll
add some code to the EditKidController later on in order to pull the selected
kid off the request scope. In the Kids.xhtml page, we only need to change the
<tr:setActionListener> component that is under the pencil icon:

<mias:column columnName="edit"
headerName="emptyTableHeader"
custom="true">

<tr:commandLink action="edit"
immediate="true">

<tr:image source="../images/pencil.png"
inlineStyle="border-width: 0px;" />

<tr:setActionListener from="#{kid}"
to="#{requestScope.selectedKid}" />

</tr:commandLink>
</mias:column>

http:///

MyFaces Orchestra

[304]

We just changed the scope in the to attribute from pageFlowScope to requestScope,
which is the only change necessary here. Now we have to add some code to our
EditKidController to retrieve the selected kid from the request scope. We can use
a lazy initialization pattern here, that is, we just change the getSelectedKid()
method to this:

public Kid getSelectedKid() {

if(null == selectedKid) {

FacesContext ctx = FacesContext.getCurrentInstance();

Kid k = (Kid) ctx.getExternalContext()

.getRequestMap().get("selectedKid");

selectedKid = kidService.getKidById(k.getId());

}

return selectedKid;

}

This code ensures that the Kid object will only be retrieved from the request scope
if the selectedKid member variable is empty. This will only be the case if the
EditKidController object has just been created, which happens at the start of a new
conversation.

Note that after getting the Kid object from the request scope, we re-retrieve the object
from the kidService by its ID. The object that we get from the request scope is
retrieved in another transaction that was open when the table with kids was illed.
As that transaction is now closed, the Kid object that is in the request scope is
now detached. This means that it is not managed by an EntityManager any more.

By re-retrieving the object from our kidService at the start of the conversation,
we ensure that the Kid object we use in our conversation is managed by the
conversation’s EntityManager. (Orchestra guarantees that we’re using a single
EntityManager throughout the conversation.) In this way, Orchestra can monitor
changes to the Kid object throughout the conversation, and can commit any
changes to the database at the end of the conversation, if needed.

We’ve now inished the basic setup of our conversation. Note that the conversation
will start automatically when any bean that is placed into the scope of the
conversation is instantiated. In our case, there’s only one bean in the scope of
editKidConversation, and that is our EditKidController. This bean will be
instantiated by Spring’s autowire function if the EditKidForm bean is instantiated.
That happens whenever the user navigates to the EditKid.xhtml page, which can be
done by clicking on an edit link in the Kids.xhtml page.

http:///

Chapter 9

[305]

Extending the conversation
Now let’s make the conversation more interesting by adding an extra screen to edit
the “last scared” date of a kid, as described before. We start by creating a simple
page with a couple of ields and call it EditScared.xhtml:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC>

<tr:document xmlns="http://www.w3.org/1999/xhtml">

<ui:composition template="templates/template.xhtml">

<ui:define name="title”>Edit last scared</ui:define>

<ui:define name="content">

<tr:panelFormLayout>

<tr:group>

<mias:field id="firstName"

bean="#{editScaredForm.editKidController

.selectedKid}"

required="true"

readOnly="true"/>

<mias:field id="lastName"

bean="#{editScaredForm.editKidController

.selectedKid}"

required="true"

readOnly="true"/>

</tr:group>

<tr:group>

<mias:dateField id="lastScared"

bean="#{editScaredForm

.editKidController.selectedKid}"/>

<mias:selectField id="employee"

bean="#{editScaredForm

.editKidController.selectedKid}"

type="choice"

items="#{empsTable.employees}"

itemValue="id"

itemLabel="name" />

</tr:group>

<f:facet name="footer">

<tr:panelButtonBar halign="right">

<tr:commandButton text="#{msg.ok}"

actionListener=

"#{editScaredForm.editKidController.updateScareData}"

action="ok"/>

<tr:commandButton text="#{msg.cancel}"

action="cancel"

immediate="true" />

</tr:panelButtonBar>

http:///

MyFaces Orchestra

[306]

</f:facet>

</tr:panelFormLayout>

</ui:define> </

ui:composition>

</tr:document>

Note that we use the same selectedKid object from the editKidController bean
as is used in the EditKid.xhtml page. (The internal working of the components in
the mias namespace, such as the <mias:field> component, is described in previous
chapters and does not change.) The OK button has its actionListener attribute set
to #{editScaredForm.editKidController.updateScareData}. Let’s see how the
updateScareData() method in the EditKidController class can be implemented:

@Transactional(propagation=Propagation.REQUIRED,

readOnly=false)

public void updateScareData(ActionEvent event) {

Kid k = getSelectedKid();

Employee e = employeeService

.getEmployeeById(k.getEmployee().getId());

e.increaseKidsScared(); }

Two important things can be noted about this method:

•	 It is prepended by a @Transactional annotation. This ensures that the
Spring framework (and thus Orchestra) knows that this method can change
data that might have to be committed to the database at the end of the
transaction. The propagation and readOnly arguments are optional, and
could have been left out in this case, as Propagation.REQUIRED and false
are the respective default values.

•	 The Employee object is re-retrieved from the database for the same reason we
re-retrieved the Kid object at the start of the conversation.

We also need to create a backing bean for the EditScared.xhtml page. Let’s call
it EditScaredForm to it in with the naming scheme we used so far. The class only
needs a member variable and accessors for the EditKidController:

package inc.monsters.mias.backing;

// Imports omitted for simplicity

@ViewController(viewIds={"EditScared.xhtml"})
@ConversationRequire(redirect="EditKid.xhtml",
conversationNames = { "editKidController" })

public class EditScaredForm {
private EditKidController editKidController;

http:///

Chapter 9

[307]

public EditKidController getEditKidController() {

return editKidController;
}

public void setEditKidController(EditKidController ctrl) {
this.editKidController = ctrl;

}
}

The interesting thing about this class is the @ConversationRequire annotation. This
Orchestra annotation ensures that a user can’t use this page without a conversation.
So if a user ever tries to navigate to this page directly, he or she will be redirected to
the irst page of the conversation. This irst page is set by the redirect parameter of
the annotation. The conversationNames parameter is a list of conversation names
that are required for this page. In this case, there’s only one conversation required,
"editKidConverstation", which is the name that we gave to the conversation in
the applicationContext.xml ile.

Ending the conversation
Of course, the inal step is ending a conversation. If we had put our conversation in
the conversation.access scope, instead of the conversation.manual scope, no
special coniguration was needed to end the conversation. In that case, Orchestra
monitors the usage of the beans that are in the conversation scope. (In our case, this
is the editKidController bean.) Whenever a page is loaded without referencing
any bean in the scope of the conversation, Orchestra automatically ends the con-
versation. Although this may sound attractive, it also introduces a risk. You can
think of different scenarios where a page does not reference the controller, but is in
the middle of a conversation. As it is relatively simple to end a conversation
manually, it might be worth the effort to do it manually. Ending a conversation
manually also makes the end of the conversation clear in the code, which can be a
beneit if someone else has to perform maintenance on the code later.

So let’s see how we can end our “edit kid” conversation. First, let’s see at which
points we want to end the conversation:

•	 When the user clicks on the OK button in the EditKid.xhtml page, we
want to end the conversation and commit the changed data to the database.

•	 When the user clicks on the Cancel button in the EditKid.xhtml page,
the conversation must be ended without committing any changes.

•	 When the user clicks on the Apply button in the EditKid.xhtml page,
the data should be saved, but the conversation should not be ended.

http:///

MyFaces Orchestra

[308]

	

http:///

Chapter 9

[309]

http:///

MyFaces Orchestra

[310]

Generating forms with DynaForm
Apart from the conversation stuff, Orchestra also offers an extra goodie: the
<ox:dynaForm> component. As the name implies, this component dynamically
generates a form. The component expects a JavaBean and creates a ield for every
property of the bean. It uses metadata from the bean, such as the type of properties
and JPA annotations to decide what ield is needed. The length of the ield can be set,
and read-only properties result in read-only ields in the form. Let’s see how we can
use this component.

Installing DynaForm

http:///

Chapter 9

[311]

Using DynaForm
To use the DynaForm component, not much extra work needs to be done. We can
just add it to a page. The only thing we have to make sure is that we surround it
with the correct layout component. If we want a simple data-entry style form, a
<h:panelGrid> component is the appropriate choice. So let’s create a new page,
EditEmployeeDyna.xhtml, to duplicate the “edit employee” form in a dynamic way,
as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<tr:document xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:tr="http://myfaces.apache.org/trinidad"

xmlns:mias="http://www.monsters.inc/mias"

xmlns:c="http://java.sun.com/jstl/core"

xmlns:ox="http://myfaces.apache.org/orchestra/dynaForm">

<ui:composition template="templates/template.xhtml">

<ui:define name="title">Edit employee - the dynamic way

</ui:define>

<ui:define name="content">

<h:panelGrid id="employee-layout" columns="2">

<ox:dynaForm id="employee"

uri="inc.monsters.mias.data.Employee"

valueBindingPrefix=

"pageFlowScope.selectedEmployee"/>

</h:panelGrid>

<tr:panelButtonBar>

<!-- nothing changed compared to the original

EditEmployee.xhtml page -->

</tr:panelButtonBar>

</ui:define>

</ui:composition>

</tr:document>

http:///

MyFaces Orchestra

[312]

Note the extra XML namespace that has been added at the top of the ile. The
<ox:dynaForm> component has a couple of attributes:

•	 id: This is nothing special. Just give the component a unique ID within
the page.

•	 uri: The fully-classiied name of the JavaBean that is going to be edited with
the generated form.

•	 valueBindingPrefix: This is a JSF EL string (without the curly braces) that
resolves to an instance of the Java class on which the form is based. In this
example, we use an Employee object that is put on the pageFlowScope by the
Employees.xhtml page. (We just left in place the mechanism that we used
for our manually-created EditEmployee.xhtml page.)

The following image shows the form that is generated by the <ox:dynaForm>
component, based on the properties of the Employee JPA bean:

Note that id ield is read-only because the ID property of the Employee object is
annotated with @Id and @GeneratedValue. This means that it is an immutable
unique key, which will be generated by the database. Also note that the salary and
kidsScared ields are smaller than the other ields. The buttons are not generated; we
just copied them from the original page. You should realize that the Java code from
the original backing bean is reused here for updating the persistent Employee object.
In a typical use case where we have created a new page, we still have to write this
backing bean code ourselves, as DynaForm doesn’t generate it for us.

http:///

Chapter 9

[313]

Of course, much more can be said about the DynaForm component. But as long as it
is not a part of the oficial Orchestra release, a lot of details can change, so it is simply
too early to write a lot about the details of it in a book. Although the DynaForm
component is a rather powerful component, it has its limitations. Apart from the
unstable status, it has the same limitations that any automatic form generation
tool has. Automatically-generated forms are probably very usable for prototypes
and perhaps for maintenance screens in production applications. But for end-user
screens, generally much more control is needed over the various details of the form.
Most of the time, it is either not possible to control those details, or it requires just as
much work as coding the form manually. Nevertheless, there are situations where a
tool such as DynaForm can save a lot of work.

Summary
In this chapter, we learned how to add the Spring framework to a web project and
how to change the project structure to enable Spring to replace an EJB container.
We also learned how to set up Orchestra within a web project. We saw how we
can conigure conversations and how we can use this powerful concept in a web
application. We took a quick look at Orchestra’s DynaForm component, which looks
promising. Throughout the chapter we saw that some problems that Orchestra
solves are also solved in the speciications of the JSF 2.0 standard, but for the rest of
the things we will still need Orchestra once we start using JSF 2.0.

In the next chapter, we’ll explore the possibilities of MyFaces Extensions Validator—
another framework that solves a common problem in Java EE 5 applications.

http:///

http:///

Extensions Validator
A common problem with the Model-View-Controller pattern (MVC) is that often
the Don’t Repeat Yourself (DRY) principle is violated when it comes to validation
of data. The “single source of truth” with regards to validation is often either the
Model layer or the underlying database. But to be able to give the user usable,
easy-to-understand error messages, and to give those in a timely manner, we
often need to repeat a lot of validation in the View layer.

This often leads to inconsistencies in applications when the validation code in the
Model and View layers gets out of sync. This can happen because of a changed
business rule that is implemented in the Model, but the View is not updated
accordingly. Or if the View is redesigned, unintentional changes in the validation
can occur. Even when Model and View are created at the same time but by different
engineers, crippled communication between those engineers can lead to validation
code that is out of sync.

Repeating validation logic in the View layer also breaks the DRY principle at another
level. Often, information from a certain bean can be edited in different pages in the
user interface. This means that the validation has to be repeated in all of those UI
pages. So we can end up repeating the same validation logic in different pages.

Wouldn’t it be better if we didn’t have to repeat our validation code in the View
layer while keeping usable error messages, and having the validation still taking
place on the client side? This is the main reason that the “Extensions Validator”
project was added to MyFaces. The word “Extensions” refers to the fact that this
project is not about JSF components, but rather has to be seen as an extension to the
JSF Framework. The idea is that more projects can be added in the future, as further
extensions. However, for now, Validator is the only project under the “MyFaces
Extensions” umbrella that has released any software yet. As “Extensions Validator”
is a long name, the project is most of the time referred to as “ExtVal”. We’ll use this
short name throughout this chapter.

http:///

Extensions Validator

[316]

After reading this chapter, you will be able to:

•	 Set up a project to use ExtVal
•	 Use ExtVal to generate validation based on JPA annotations
•	 Use ExtVal’s added annotations for additional validation
•	 Implement cross validation using ExtVal’s annotations
•	 Use ExtVal with custom JSF validators
•	 Create custom error messages for ExtVal validations
•	 Override and extend ExtVal’s default behavior
•	 Use Bean Validation (JSR 303) annotations in combination with ExtVal
•	 Use metadata to set the severity level of constraints

Setting up ExtVal
As with all other libraries, we start by downloading ExtVal and installing it in our
project. As with many other JSF libraries, the ExtVal project has different branches
for JSF 1.1 and 1.2. The irst two digits of ExtVal’s version number are the JSF version
they are made for. So ExtVal 1.1.x is the xth version of ExtVal for JSF 1.1, whereas
ExtVal 1.2.x is the xth version for JSF 1.2. Versions of ExtVal are not released very
often. At the time of writing this book, only two oficial releases have been published
for each branch. According to the lead developer of ExtVal, a third release (1.1.3 and
1.2.3) is in the works for both branches, as well as a irst release from the new JSF 2.0
branch.

Apart from stable releases, ExtVal offers snapshot builds that are created on a regular
basis. The snapshots are created manually, which gives some guarantees about the
quality compared to automatically-created daily releases. No snapshots with major
bugs will be created. According to the lead developer of ExtVal, the snapshot builds
have “milestone quality”.

Because of some issues and limitations in ExtVal 1.2.2, a snapshot build of ExtVal
1.2.3 was used while writing this chapter. A stable release of ExtVal 1.2.3 is expected
to be available soon after the publishing date of this book. Stable releases can be
downloaded from the ExtVal download site at http://myfaces.apache.org/
extensions/validator/download.html. The downloaded ZIP ile will contain all
of the ExtVal modules, as listed in the next table. Note that more modules may be
added to ExtVal in future releases. It is also possible that additional support modules
will be provided by others. For example, a JSF component project may create a
support module to get the most out of its components with ExtVal.

http:///

Chapter 10

[317]

Regarding component support modules, it is also worth mentioning the “Sandbox
890” project, which provides proof of concept implementations of support modules
for some non-MyFaces component libraries. Currently, proofs of concept are
available for IceFaces, PrimeFaces, RichFaces, and OpenFaces. The source code for
the proofs of concept can be found at http://code.google.com/p/sandbox890/
source/browse/#svn/trunk/component-support. Ready-to-use JARs can be
downloaded from http://code.google.com/p/os890-m2-repository/source/
browse/#svn/trunk/sandbox890/sandbox890/extensions/validator/

component-support-modules.

Library Description

myfaces-extval-core-
1.2.x.jar

The core of ExtVal. This library should be added to the
project in all cases.

myfaces-extval-property-
validation-1.2.x.jar

Extension module that adds several custom ExtVal
annotations that we can use in our Model layer.

myfaces-extval-generic-
support-1.2.x.jar

Extension module for generic JSF component support.
This library should be added to the project in almost
all cases. There are two cases where we don’t need this
generic support library, which are as follows:

•	 If we’re using a support library for a speciic
component library, such as the Trinidad
support module mentioned in the following
row in this table

•	 If the component library we’re using is 100%
compliant with the JSF speciication, which is
almost never the case

If no speciic support module is in use, and it is unclear
if the generic module is needed, it is safe to add it
anyway. It is also a good idea to take a look at the
Tested Compatibility section on the ExtVal wiki, at ht-
tp://wiki.apache.org/myfaces/Extensions/
Validator/.

myfaces-extval-trinidad-
support-1.2.x.jar

Extension module that supports the MyFaces Trinidad
JSF components. If we use this one, we don’t need
the “generic support” module. The Trinidad support
module will make use of Trinidad’s client-side
validation options where possible. So we get client-side
validation based on annotations in our Model with no
extra effort.

http:///

Extensions Validator

[318]

Library Description

myfaces-extval-bean-
validation-1.2.x.jar

Extension module that adds support for Bean Validation
(JSR 303) annotations. This module will be available
from the third release of ExtVal (*.*.3). See the Using
Bean Validation section at the end of this chapter.

Snapshot builds of ExtVal can be downloaded from ExtVal’s Maven snapshot
repository, which can be found at http://people.apache.org/maven-snapshot-
repository/org/apache/myfaces/extensions/validator/. In the case
of snapshot builds, no single ZIP ile is available, and each module has to be
downloaded separately as a JAR ile. Note that if Maven is used, there is no need
to manually download the snapshots. In that case, we only have to change the
version number in the pom.xml ile to a snapshot version number, and Maven will
automatically download the latest snapshot. The following table lists the URLs
within the Maven repository from where the modules can be downloaded:

Module URL
Core myfaces-extval-core/

Property
Validation

validation-modules/myfaces-extval-property-
validation/

Generic Support component-support-modules/myfaces-extval-generic-
support/

Trinidad Support component-support-modules/myfaces-extval-trinidad-
support/

Bean Validation
(JSR 303)

validation-modules/myfaces-extval-bean-validation/

URLs in this table are relative to the URL of the Maven repository that we just
saw. After each URL, 1.2.x-SNAPSHOT/ has to be appended, where 1.2.x has to
be replaced by the appropriate version number.

Once we’ve inished downloading, we can start adding the JARs to our project.
ExtVal differs in one thing from other libraries—it needs to access our Model and
View project. So we have to add the ExtVal libraries to the lib directory of the EAR,
instead of the WAR or the JAR with the entities. Some libraries that ExtVal uses have
to be moved there as well. If we don’t do this, we’ll end up with all sorts of weird
exceptions related to class-loading errors.

Libraries that are added to the lib directory of an EAR are automatically available to
all contained WAR and JAR iles. However, depending on the IDE and build system
that we are using, we may have to take some additional steps to be able to build the
WAR and JAR with dependencies to the libraries in the EAR’s lib directory.

http:///

Chapter 10

[319]

This image shows a simpliied structure of the EAR with ExtVal’s libraries added
to it. Note that the MyFaces ExtVal and dependencies node in the image actually
represents multiple JAR iles. It is important to verify that none of the libraries
that are in the lib directory of the EAR are included in either the WAR or the
entities JAR. Otherwise, we could still encounter class-loading conlicts. The
following table lists all of the libraries that have to be moved into the EAR to
avoid these class-loading conlicts:

Library Explanation
myfaces-extval-*.jar Of course, all of the required ExtVal JARs should be in the EAR.
asm-1.5.x.jar,
cglib-2.x_y.jar

These are libraries that ExtVal depends on. They are bundled
with the ExtVal download. They’re not bundled with snapshot
releases.

jsf-facelets.jar We’re using Facelets, so ExtVal has to use it to add validations
within our Facelets pages. So if we didn’t use Facelets, this one
would not be needed.

myfaces-api-1.2.*,
myfaces-impl-1.2.*

We’re using MyFaces Core as the JSF implementation. ExtVal
will need these libs too. Note that if we use the application
server’s default JSF implementation, we don’t have to add
these either to the EAR or to the WAR.

trinidad-api-1.2.*,
trinidad-impl-1.2.*

We’re using Trinidad, and ExtVal offers some Trinidad-speciic
features through the “Trinidad support” extension. In this case,
the Trinidad libraries should be in the EAR too.

commons-*.jar Various libraries that we just mentioned depend on one or
more libraries from the Apache Commons project. They
should also be moved to the EAR ile to be sure that no class-
loading errors occur.

http:///

Extensions Validator

[320]

http:///

Chapter 10

[321]

Basic usage
After setting up ExtVal, the basic usage is very simple. Let’s explore a simple
example in our MIAS application. In our Kid.java entity, we have some JPA
annotations that map the properties of the Kid bean to a database table. Let’s take a
closer look at the lastName property of our Kid bean:

@Column(name = "LAST_NAME", nullable = false, length = 30)

private String lastName;

The @Column annotation maps the lastName property to the LAST_NAME column in
the database. It also shows some information that is derived from the table deinition
in the database. nullable = false means the database won’t accept an empty value
in this ield, and length = 30 means that no more than 30 characters can be stored in
the corresponding database column. This information could be used for validation in
our View layer. If we hadn’t used ExtVal, we would have added a required="true"
attribute to the input element in our EditKid.xhtml page. We also would have
added a <tr:validateLength> component to the input component, or we could
have set the maximumLength attribute. But all of these things would have been a
duplication of information and logic, and would thus break the DRY principle.

With ExtVal, we don’t have to duplicate this information anymore. Whenever ExtVal
encounters a nullable = false setting, it will automatically add a required="true"
attribute to the corresponding input element. In the same way, it will translate
the length = 30 from the @Column annotation into a maximumLength attribute on
the input component. The next screenshot shows ExtVal in action. (Note that all
validators, and the required and maximumLength attributes were removed from the
JSF code before the screenshot was taken.) The really nice thing about this example
is that the validations created by ExtVal make use of Trinidad’s client-side validation
capabilities. In other words, the error message is created within the user’s web
browser before any input is sent to the server.

http:///

Extensions Validator

[322]

Complementing JPA annotations
It’s nice that we can reuse our JPA annotations for validation. But the chances are
that not all validation that we want can be expressed in JPA annotations. For that
reason, ExtVal offers a set of extra annotations that we can add to our beans to
complement the implicit validation constraints that ExtVal derives from JPA
annotations. These annotations are a part of the myfaces-extval-property-
validation-1.2.x.jar library. For example, if we want to add a minimum
length to the lastName ield, we could use the @Length annotation as follows:

@Length(minimum = 5)

@Column(name = "LAST_NAME", nullable = false, length = 30)

private String lastName;

Note that if, for some reason, we couldn’t use the length = 30 setting on the
@Column annotation, the @Length annotation also has a maximum property that can
be set. The @Length annotation can be imported from the org.apache.myfaces.
extensions.validator.baseval.annotation package, which is where the
other annotations that ExtVal offers are also located. The following image shows
the minimum length validation in action:

As the example in the screenshot shows, setting a minimum input length of ive
characters for a name might not be a good idea. However, that’s an entirely
different discussion.

Using ExtVal annotations for standard JSF
validators

http:///

Chapter 10

[323]

Deining length validation
For the length validation of input strings, the @Length annotation can be used,
as shown in the previous example. This annotation relies on the javax.faces.
validator.LengthValidator to implement the validation. The following table lists
the available properties:

Property Type Explanation
minimum int The minimum length (inclusive) in characters of the input string
maximum int The maximum length (inclusive) in characters of the input string

Deining double range validation
To validate if a double value is within a certain range, the @DoubleRange annotation
can be used, which delegates the implementation of the validation to the javax.
faces.validator.DoubleRangeValidator validator. See the following table for the
available properties:

Property Type Explanation
minimum double The minimum value (inclusive) of the double input
maximum double The maximum value (inclusive) of the double input

Deining long range validation
What @DoubleRange annotation does for doubles, the @LongRange annotation
does for long values. It uses javax.faces.validator.LongRangeValidator for
the implementation:

Property Type Explanation
minimum long The minimum value (inclusive) of the long input
maximum long The maximum value (inclusive) of the long input

Deining required ields
The example given at the beginning of this section showed how ExtVal can create a
required="true" attribute based on an @Column annotation with the nullable =
false setting. If it is not possible to use this setting, ExtVal also has an alternative
@Required annotation. Just add this annotation to a ield to make it required.

http:///

Extensions Validator

[324]

Using ExtVal’s additional annotations
Apart from the annotations that correspond to the standard JSF validators, some
additional annotations exist in the Property Validation module that perform other
validations. These are listed in the following subsections.

Whereas the validations based on the JSF standard validators use the error
messages provided by the JSF validators, the additional validations cannot use
standard messages from JSF. Therefore, standard messages are provided by ExtVal.
Should you want to use your own message, all additional annotations have a
validationErrorMsgKey property that can be used to assign a message key for the
error message. We’ll discuss custom error messages in more detail later in this chapter .

Deining pattern-based validation
Validation with regular expressions is very powerful, and is very usable for
validating phone numbers, postal codes, tax numbers, and any other data that has
to it in a certain pattern. Regular expression-based validation can be added by
using the @Pattern annotation. For example, to allow only letters and spaces in the
firstName ield, we could write:

@Pattern(value="[A-Za-z]*")

@Column(name = "FIRST_NAME", nullable = false, length = 30)

private String firstName;

For completeness, the following table lists the arguments of the
@Pattern annotation:

Property Type Required Explanation
value String[] Required Array of regular expression

patterns. Be aware that if you add
more than one pattern, then the
input must match all of the newly
deined patterns. It is easy to make
any input invalid by using two pat-
terns that are mutually exclusive. In
the Creating our own validation
strategy section, we will see how we
can change this behavior.

validationErrorMsgKey String Optional Optional key for an alternative error
message.

http:///

Chapter 10

[325]

Using custom validators

http:///

Extensions Validator

[326]

The custom validator does not have to be conigured in the faces-config.xml ile
as is normally the case with JSF validators. ExtVal will add the custom validator at
runtime, when needed.

Now that we have prepared our custom validator, we can use it with the
@Validator annotation in our entities. For example, in the Kid entity:

package inc.monsters.mias.data;

import inc.monsters.mias.validators.NoBartValidator;

...

public class Kid implements Serializable {

...

@Column(name = "FIRST_NAME")

@Validator(NoBartValidator.class)

private String firstName;

...

}

Note that we have to import the NoBartValidator class, because it is referenced in
the @Validator annotation in a typesafe way.

Reusing validation
If multiple ields share the same validation rules, then according to the DRY
principle, we should not repeat these validations for all of the ields. For this reason,
the @JoinValidation annotation exists. As a simple example, we could reuse the
validation rules of the lastName ield for the firstName ield, as shown here:

@Column(name = "FIRST_NAME")

@JoinValidation(value="lastName")

private String firstName;

@Length(minimum = 5)

@Column(name = "LAST_NAME", nullable = false, length = 30)

private String lastName;

In this example, all validation of the lastName ield will be copied to the firstName
ield by ExtVal.

http:///

Chapter 10

[327]

	

	

http:///

Extensions Validator

[328]

•	 Static reference: To overcome the problems of Expression Language ref-
erence, static reference can be used as an alternative. With static reference, a
property is referenced by the fully-qualiied name of its parent class,
followed by the property name, separated by a colon. So to reference the
lastName property of Employee bean, the complete annotation could
look as follows: @JoinValidation(value="inc.monsters.mias.data.
Employee:lastName"). Note that static reference is not available in the
second release of ExtVal. So as long as there is no stable third release, we
have to use a snapshot build of ExtVal 1.2.3 to be able to use static reference.

To summarize, the easiest way to reference another validation for reuse is, of course,
local reference; but that’s only possible for properties within the same bean. To refer
to a property outside the current bean, property chain reference is a clean and easy
solution in some cases, but it can’t be used in all cases. For the cases where local or
property chain reference can’t be used, static reference is the best choice. Expression
Language reference could be used as an alternative, but it comes at the price of
breaking the MVC separation of concerns—a reason to avoid it if possible.

Applying cross validation

http:///

Chapter 10

[329]

Using cross validation for date values
Cross validation for dates is possible with the @DateIs annotation. The most
important arguments for @DateIs are listed in the following table:

Argument Required Description
type Optional The type of date comparison that has to be

executed. The possible values are:
•	 DateIsType.before: The date

to be validated has to be before the
referenced date.

•	 DateIsType.after: The date to be
validated has to be after the referenced
date.

•	 DateIsType.same: The date to be
validated has to be the same as the
referenced date. This is the default
setting. So if you leave out the type
setting, the “same” comparison will
be used.

valueOf Required The referenced date. This should be the name of
a property that contains the date to which the
entered date should be compared. More than
one date can be referenced. If that is desired, the
valueOf argument should be set to an array of
Strings, where each String references one
other value.
See the information box in the Applying Cross
Validation section for information about the
available referencing strategies.

notBeforeErrorMsgKey Optional The key that will be used to look up the er-
ror message if a DateIsType.before rule is
violated. The default key is wrong_date_
not_before.

notAfterErrorMsgKey Optional The key that will be used to look up the error
message if a DateIsType.after rule is vi-
olated. The default key is wrong_date_not_
after.

notEqualErrorMsgKey Optional The key that will be used to look up the error
message if a DateIsType.same rule is vi-
olated. The default key is wrong_date_not_
equal.

http:///

Extensions Validator

[330]

Argument Required Description
errorMessageDateStyle Optional The date format style for dates that are used

within an error message. This should be one of
the date style constants deined in java.text.
DateFormat. The default is DateFormat.
MEDIUM.

validationErrorMsgKey Optional Can be used to set the key to look up a more
general error message. Is empty by default.

Using cross validation based on equality
Two annotations exist to check if two values are equal or not—@Equals and
@NotEquals. The attributes for both annotations are the same, as listed in the
following table:

Argument Required Description
value Required The value(s) to compare to. This can be a single

String, or an array of Strings if comparison
to multiple values is required.

See the information box in the Applying Cross
Validation section for information about the
available referencing strategies.

validationErrorMsgKey Optional Can be used to override the default key that is
used to look up the error message in a message
bundle in case the validation fails. The default
value is:

•	 duplicated_content_required for
@Equals

•	 duplicated_content_denied for
@NotEquals

As an example, the @Equals annotation could be used to verify a “retype
password” ield:

@Equals(value = "password",

validationErrorMsgKey = "retype_password")

private String retypePassword;

http:///

Chapter 10

[331]

Making a value required conditionally
Another form of cross validation is making a ield required only if one or more
other ields are not empty. This can easily be accomplished with the @RequiredIf
annotation. The arguments of the @RequiredIf annotation are shown in the
following table:

Argument Required Description
valueOf Required The value(s) that should be checked to see if they

are empty or not. This can be a single String,
or an array of Strings if comparison to multiple
values is required.

See the information box in the Applying Cross
Validation section for information about the
available referencing strategies.

is Optional One of RequiredIfType.not_empty
or RequiredIfType.empty. If set to
RequiredIfType.empty, the ield will be re-
quired only if the referenced ield is empty. The
default is RequiredIfType.not_empty.

validationErrorMsgKey Optional Can be used to override the default key that is
used to look up the error message in a message
bundle, in case the validation fails. The default
value is empty_field.

This section discussed the annotations that are a part of ExtVal’s Property Validation
module. From version *.*.3 onwards, ExtVal also offers a Bean Validation module
that allows us to use annotations from the Bean Validation (JSR 303) standard,
instead of, or in combination with, ExtVal’s own annotations. See the Using Bean Val-
idation section for more information. In the following section, we will see how we
can customize all of the error messages generated by ExtVal.

Creating custom error messages
With ExtVal, the error messages shown if validation fails come from different
sources, as follows:

•	 For validation that is derived from JPA annotations, ExtVal relies on the
standard JSF validators. Hence, the error messages shown are the standard
JSF error messages. The way in which standard JSF messages can be over-
ridden is deined in the JSF standard. This is covered in the next section,
Overriding standard JSF error messages.

http:///

Extensions Validator

[332]

•	 The ExtVal annotations @Length, @DoubleRange, @LongRange, and
@Required also rely on standard JSF mechanisms for implementing the
validation. So these will lead to standard JSF error messages as well.

•	 All other ExtVal annotations have their own default error messages.
How to override these ExtVal messages is covered in the Overriding
ExtVal default error messages section.

Overriding standard JSF error messages
Although overriding standard JSF messages is not a feature of ExtVal, we cover
it briely here for convenience. Standard JSF error messages can be overridden by
coniguring a message bundle in the faces-config.xml ile, and adding certain
key/value pairs to that message bundle. In our MIAS application, we’ve conigured
a message bundle as follows:

<message-bundle>inc.monsters.mias.Messages</message-bundle>

This means that the JSF framework expects a ile called Messages.properties to
be present in the inc/monsters/mias directory. In that ile, we can conigure our
custom messages. For example, to override the default message for required ields
that are left empty, we could add the following to the ile:

javax.faces.component.UIInput.REQUIRED =

Hey dude, this field is required!

The important thing here is the key—javax.faces.component.UIInput.REQUIRED.
A list of all JSF error messages with their keys can be found in Appendix D. This
appendix also shows the placeholders that can be used in the message texts. The
placeholders will be replaced by the label of the input element that the message is
related to, and examples of good values or maximum and minimum values
where applicable.

Overriding ExtVal default error messages
ExtVal always looks in a ixed location for a message bundle; it doesn’t care about
the JSF message bundle coniguration. To change a message, we can either put a
message bundle in that default location, or we can tell ExtVal to look for the message
bundle in another location. The default message bundle that ExtVal looks for is
validation_messages in the org.apache.myfaces.extensions.validator.
custom package. Of course, we could create that package within our application
and put a validation_messages.properties ile there. But wouldn’t it be great if
we could just use our application-wide message bundle? That’s possible by telling
ExtVal to look somewhere else for a message bundle. This is done by setting a
context parameter in the web.xml ile as follows:

http:///

Chapter 10

[333]

<context-param>

<param-name>

org.apache.myfaces.extensions.validator.CUSTOM_MESSAGE_BUNDLE

</param-name>

<param-value>inc.monsters.mias.Messages</param-value>

</context-param>

Now we can put custom messages in our own Messages.properties ile. To
override the default error message for the @Pattern annotation, we could add:

no_match = Pattern not matched

But in this case, “pattern not matched” might be a bit too generic as an error message
for end users. ExtVal lets us override the error message on a per-ield basis, allowing
us to deine more speciic error messages. For example, we could have a firstName
ield with a pattern that allows only letters. Now we would like to have a message
saying that only letters are allowed in names. In that case, we could write:

@Column(name = "FIRST_NAME")

@Pattern(value="[A-Za-z]*"

validationErrorMsgKey="name_characters")

private String firstName;

Now if we add a name_characters key to our message bundle, we can set our
customized, ield-speciic message:

name_characters = A name may only contain letters

In case we want to override the default ExtVal messages, a list of the default
messages and their keys can be found in Appendix E.

http:///

Extensions Validator

[334]

http:///

Chapter 10

[335]

Although combining two regular expressions with an “and” relation might be
useful sometimes, having multiple expressions where only one of them has to be
matched can be quite powerful too. We can think of a list of patterns for various
(international) phone number formats. The input would be valid if one of the
patterns is matched. The same can be done for postal codes, social security codes,
and so on. So let’s see how we can change the behavior of ExtVal to achieve this.

Implementing a custom validation strategy
ExtVal uses the concept of Validation Strategy for every type of validation. So, if
an @Pattern annotation is used, ExtVal will use a PatternStrategy to execute
the validation. We can implement our own ValidationStrategy to override the
functionality of ExtVal’s standard PatternStrategy. The easiest way to do this is to
create a subclass of AbstractAnnotationValidationStrategy<Pattern>:

package inc.monsters.mias.extval;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.validator.ValidatorException;

import org.apache.myfaces.extensions.validator.baseval
.annotation.Pattern;

import org.apache.myfaces.extensions.validator.core
.metadata.MetaDataEntry;

import org.apache.myfaces.extensions.validator.core
.validation.strategy
.AbstractAnnotationValidationStrategy;

public class PatternOrValidationStrategy extends
AbstractAnnotationValidationStrategy<Pattern> {

@Override
protected String getValidationErrorMsgKey(Pattern annotation) {

return annotation.validationErrorMsgKey();
}

@Override
protected void processValidation(

FacesContext facesContext,
UIComponent uiComponent,
MetaDataEntry metaDataEntry,
Object convertedObject) throws ValidatorException {

Pattern annotation = metaDataEntry.getValue(Pattern.class);

http:///

Extensions Validator

[336]

boolean matched = false;
String expressions = null;

for (String expression : annotation.value()) {
if (convertedObject != null &&

java.util.regex.Pattern.compile(expression)
.matcher(convertedObject.toString()).matches()) {

matched = true;
break;

} else {
if (expressions == null) {

expressions = expression;
} else {

expressions += ", " + expression;
}

}
}

if(!matched) {
FacesMessage fm = new FacesMessage(

FacesMessage.SEVERITY_ERROR,
getErrorMessageSummary(annotation),
getErrorMessageDetail(annotation)

.replace("{0}",expressions))

throw new ValidatorException(fm);
}

}
}

The most important part of this class is, of course, the processValidation()
method. This uses the MetaDataEntry object to access the annotation that deines
the validation. By calling annotation.value(), the array of Strings that was set in
the @Pattern annotation’s value attribute is obtained. By iterating over that array,
the user input (convertedObject.toString()) is matched against each of the
patterns. If one of the patterns matches the input, the boolean variable matched is
set to true and the iteration is stopped. A ValidatorException is thrown if none of
the patterns matches the input. The else branch of the outer if statement is used to
create a list of patterns that didn’t match. That list is appended to the error message
if none of the patterns matches.

Now that we’ve created our own custom validation strategy, we will have to tell
ExtVal to use that instead of the default strategy for the @Pattern annotation. The
next section shows how to do that.

http:///

Chapter 10

[337]

Coniguring ExtVal to use a custom validation
strategy
The most straightforward way to conigure a custom Validation Strategy in ExtVal
is to write a custom Startup Listener that will add our Validation Strategy to
the ExtVal coniguration. A Startup Listener is just a JSF PhaseListener with
some speciic ExtVal functionality—it deregisters itself after being executed, thus
guaranteeing that it will be executed only once. We can simply subclass ExtVal’s
AbstractStartupListener. That way, we don’t have to implement much ourselves:

package inc.monsters.mias.extval;

import org.apache.myfaces.extensions.validator

.baseval.annotation.Pattern;

import org.apache.myfaces.extensions.validator

.core.ExtValContext;

import org.apache.myfaces.extensions.validator

.core.initializer

.configuration.StaticConfigurationNames;

import org.apache.myfaces.extensions.validator

.core.initializer

.configuration.StaticInMemoryConfiguration;

import org.apache.myfaces.extensions.validator

.core.startup.AbstractStartupListener;

public class PatternOrStartupListener

extends AbstractStartupListener {

@Override

protected void init() {

// 1.

StaticInMemoryConfiguration config

= new StaticInMemoryConfiguration();

// 2.

config.addMapping(

Pattern.class.getName(),

PatternOrValidationStrategy.class.getName());

// 3.

ExtValContext.getContext().addStaticConfiguration(

StaticConfigurationNames

.META_DATA_TO_VALIDATION_STRATEGY_CONFIG,

config);

}

}

http:///

Extensions Validator

[338]

http:///

Chapter 10

[339]

•	 One alternative is the annotation-based coniguration. In this case, custom
implementations can be annotated with special annotations, and should be
put in a special base package. At application startup, the base package will
be scanned for annotations, and the found annotations will be used to create
the necessary coniguration. See the Extending ExtVal with add-ons section
for the download location, and installation instructions for this add-on.
Some basic usage documentation is provided at http://os890.blogspot.
com/2008/10/myfaces-extval-config-extension.html.

•	 The other alternative way to conigure ExtVal is to use Java in a way that
is inspired by the way Google Guice does this sort of things. In this case, a
custom startup listener has to be created in which the Google Guice
style code can be executed. Basic usage information can be found at ht-
tp://os890.blogspot.com/2009/09/myfaces-extval-java-config-

extension.html. See the Extending ExtVal with add-ons section for the
download location and installation instructions.

Testing the custom validation strategy
Now that we’ve implemented our custom Validation Strategy, let’s do a simple test.
For example, we could add the @Pattern annotation to the firstName property of
the Kid class, as follows:

@Column(name = "FIRST_NAME")

@Pattern(value={"[A-Za-z]*", "[0-9]*"})

private String firstName;

In this case, “Shirley” would be valid input, as would be “4623”. But “Shirley7”
wouldn’t be valid, as none of the regular expressions allow both letters and digits. If
we had used the default PatternStrategy, no valid input for the firstName ield
would be possible, as the regular expressions in this example exclude each other.

Of course this test case is not very useful. As mentioned before, having different
patterns where only one of them has to be matched can be very useful for different
(international) phone number formats, postal codes, social security codes, and so on.
The example here is kept simple in order to make it easy to understand what input
will match and what input won’t match.

http:///

Extensions Validator

[340]

Extending ExtVal in many other ways
Implementing a custom Validation Strategy is just one example of the many concepts
in ExtVal that can be overridden by implementing a custom subclass, albeit one of
the most useful ones. Here’s a list of other concepts in ExtVal that can be overridden:

•	 StartupListener can be used to perform various actions at startup, such as
registering any overridden ExtVal class. See the example in the Coniguring
ExtVal to use a custom Validation Strategy section.

•	 ValidationStrategy can be used to customize the validation behavior, as
discussed in the previous section. The easiest way to implement this interface
is to subclass one of the abstract classes provided by ExtVal.

•	 MessageResolver can be used to customize the error messages.
•	 ComponentInitializer allows the initialization of components before

they are rendered. This can be used, for example, to add special client-side
validation behavior to components.

•	 MetaDataTransformer transforms constraints to an independent format
so a component initializer doesn’t have any knowledge about the annotation
used. A detailed explanation of this mechanism can be found in the Em-
power the Client section of an article about ExtVal on JSF Central,
at http://jsfcentral.com/articles/myfaces_extval_3.html.

•	 MetaDataExtractionInterceptor allows on-the-ly manipulation
of metadata.

•	 InformationProviderBean makes it possible to customize name
conventions.

•	 ProcessedInformationRecorder can be used to capture values after they
are converted by JSF. For example, the ExtVals implementation of cross
validation is based on this mechanism.

•	 RendererInterceptor is one of the base mechanisms of ExtVal that is used
to intercept renderers. All methods of javax.faces.render.Renderer can
be intercepted.

•	 NameMapper is used extensively throughout the ExtVal framework, in order
to map sources to targets. In most cases, names are mapped; for example,
annotation names are mapped to validation strategy names.

•	 ExtVal makes extensive use of the Factory design pattern, and comes with
a lot of factories that can be used when extending ExtVal. It is also possible
to override the default factories as a way of changing ExtVal’s behavior. An
overview of all of the factories can be found in the org.apache.myfaces.
extensions.validator.core.factory.FactoryNames class in the ExtVal
sources.

http:///

Chapter 10

[341]

This list can be used as a starting point for exploring the extension opportunities in
ExtVal. Some more information can be found on the ExtVal wiki at http://wiki.
apache.org/myfaces/Extensions/Validator/DevDoc and http://wiki.apache.
org/myfaces/Extensions/Validator/ConceptOverview.

Extending ExtVal with add-ons
ExtVal is a very lexible framework that was built with the possibility to extend it
in mind. As we saw in the previous section, the ExtVal framework is full of hooks
that can be a starting point for extending it. Of course, because it is an open source
framework, anyone has the opportunity to extend and modify the framework to it
his needs. This can be a challenging job, even for advanced programmers. Everyone
who has the time and knowledge should be encouraged to do so, as they can help
in improving and expanding the ExtVal framework, or any other part of MyFaces.
However, this section will focus on an easier way to expand the possibilities of the
ExtVal framework: by using add-ons.

Getting add-ons for ExtVal
As ExtVal is a relatively new project and is not yet widely used, there are currently
no “third party” open source add-ons for ExtVal. However, the lead developer of
the ExtVal project has created some very useful add-ons. The following tables give
an overview of the ExtVal add-ons that are available at the time of writing of this
chapter. Keep an eye on the weblog of ExtVal’s lead developer for the latest news
about add-ons—http://os890.blogspot.com/.

Add-on name Annotation-based coniguration.
Description Change ExtVal’s defaults by using annotations instead of creating a

startup listener. See the description in the Using alternative coniguration
add-ons section.

Documentation http://os890.blogspot.com/2008/10/myfaces-extval-
config-extension.html.

Download http://os890-m2-repository.googlecode.com/svn/tags/
os890/at/gp/web/jsf/extval/extval-annotation-based-
config-core/.

http:///

Extensions Validator

[342]

Add-on name Google Guice style coniguration.
Description Change ExtVal’s defaults by using Google Guice style coniguration

code. See the description in the Using alternative coniguration add-ons
section.

Documentation http://os890.blogspot.com/2009/09/myfaces-extval-
java-config-extension.html.

Download http://os890-m2-repository.googlecode.com/svn/tags/
os890/at/gp/web/jsf/extval/extval-java-based-config-
core/.

Add-on name Advanced metadata.
Description This is actually a collection of four add-ons that have something to do

with constraint metadata. This add-on can be used to:
•	 Conditionally exclude constraints from validation.
•	 Force priorities for certain constraints by adding special

metadata.
•	 Add “virtual” metadata to non-ExtVal constraints. An example

of the usage of this add-on can be found in the Setting the
severity level on any constraint section at the end of this chapter.

•	 Separate the metadata from the main entity class.

Documentation •	 About the collection of plugins: http://os890.blogspot.
com/2009/06/myfaces-extval-add-on-advanced-
metadata.html.

•	 About conditional metadata exclusion: http://os890.
blogspot.com/2009/06/myfaces-extval-add-on-conditional.html.

•	 About virtual metadata: http://os890.blogspot.
com/2009/06/myfaces-extval-add-on-virtual-metadata.html.

•	 About metadata priority: http://os890.blogspot.
com/2009/06/myfaces-extval-add-on-metadata-priority.html.

•	 About the metadata provider: http://os890.blogspot.
com/2009/06/myfaces-extval-add-on-metadata-
provider.html.

Download http://os890-m2-repository.googlecode.com/svn/trunk/
os890/at/gp/web/jsf/extval/extval-advanced-metadata/.

http:///

Chapter 10

[343]

Add-on name Secured Action
Description This add-on shows that ExtVal can be used for things that go beyond

input validation. It can be used to annotate JSF action methods, so that
they can only be executed if certain security rules are met.

Documentation http://os890.blogspot.com/2009/04/myfaces-extval-
add-on-securedaction.html.

Download http://os890-m2-repository.googlecode.com/svn/tags/
os890/at/gp/web/jsf/extval/extval-secure-actions/.

Add-on name Continue with warnings.
Description This add-on allows us to give certain constraint violations a “warning”

severity level, and give the user the possibility to ignore the warning.
The use of this add-on is discussed in the Using payloads to set severity
levels section.

Documentation The Using payloads to set severity levels section and http://os890.
blogspot.com/2009/10/add-on-customizable-severity-
feature.html.

Download http://os890-m2-repository.googlecode.com/svn/trunk/
os890/at/gp/web/jsf/extval/extval-continue-with-
warnings/.

http:///

Extensions Validator

[344]

Installing ExtVal add-ons
Installing an ExtVal add-on is simple. We only have to add the downloaded JAR to
the shared lib directory in which all other ExtVal JARs are located, in our EAR ile.
If we have an application that is deployed as a single WAR ile, we could simply add
the JARs to the deployed libraries of that WAR ile. This is all there is to do to install
an ExtVal add-on. Note that each add-on has its speciic usage instructions. Refer to
the documentation that is linked to in the tables in the previous section.

Using Bean Validation

http:///

Chapter 10

[345]

Setting up Bean Validation and ExtVal
To use Bean Validation, we need a JSR 303 implementation, unless we’re using
a Java EE 6 compliant application server. Currently, the only available JSR 303
implementation is the reference implementation, which is Hibernate Validator 4.0.
Hibernate Validator can be downloaded from https://www.hibernate.org/30.
html. We should make sure we download a 4.0 version, as versions before 4.0 do not
implement the JSR 303 standard. At the time of writing this chapter, the latest release
is 4.0.2 GA.

After downloading Hibernate Validator, we have to add the Bean Validation
libraries to our project. As described in the Setting up ExtVal section at the beginning
of this chapter, all libraries have to be in the shared lib directory of our EAR. We
also have to add the libraries that Hibernate Validator depends on. The following
table shows a list of libraries that have to be added to our project in order to be able
to use the Hibernate Validator. If we had used Maven, these libraries would have
been downloaded and added to our project automatically by Maven.

Library Description Where to get
hibernate-validator-
4.0.2.GA.jar

The main Hibernate
Validator library.

Included in the root directory
of the Hibernate Validator
distribution.

validation-api-
1.0.0.GA.jar

Contains all interfaces and
annotations deined by the
JSR 303 standard.

Included in the lib directory
of the Hibernate Validator
distribution.

slf4j-log4j12-1.5.6.jar,
slf4j-api-1.5.6.jar,
log4j-1.2.14.jar,
jpa-api-
2.0.Beta-20090815.jar

Runtime dependencies of
Hibernate Validator.

Included in the lib directory
of the Hibernate Validator
distribution.

activation-1.1.jar,
jaxb-api-2.1.jar,
jaxb-impl-2.1.3.jar,
stax-api-1.0-2.jar

Runtime dependencies for
Hibernate Validator. These
libraries are only needed if
we run Hibernate Validator
on a JDK 5 version. So
even if we use a Java EE 5
server that runs on a JDK
6 version, we don’t need
these libs.

Included in the lib/jdk5
directory of the Hibernate
Validator distribution.

Once we have added the Bean Validation libraries to our project, we have to make
sure that we have also added ExtVal’s Bean Validation module to our project. The
Bean Validation module is only available from ExtVal version 1.2.3 onwards. See the
Setting up ExtVal section for more details.

http:///

Extensions Validator

[346]

Using Bean Validation annotations
The basic usage of Bean Validation is very similar to the use of ExtVal’s Property
Validation annotations. There are some differences in the annotations, though. The
following table lists all of the annotations that are deined in the Bean Validation
speciication:

Annotation Attributes Description
@AssertFalse Assure that the element that is annotated is

false.
@AssertTrue Assure that the element that is annotated is

true.
@DecimalMin value The value of the annotated element must be

a numeric value greater than or equal to the
indicated value. The value attribute must
be a String that will be interpreted as a
BigDecimal string representation.

@DecimalMax value The value of the annotated element must
be a numeric value less than or equal to the
indicated value. The value attribute has the
same behavior as the value attribute of the
@DecimalMin annotation.

@Digits integer, fraction The annotated element must have a nu-
meric value that can’t have more integer
digits and fraction digits than indicated by
the integer and fraction attributes.

@Past Can be applied to java.util.Date and
java.util.Calendar elements. The value
of the annotated element must be in the
past.

@Future Can be applied to java.util.Date and
java.util.Calendar elements. The value
of the annotated element must be in the
future.

@Min value Only for integer values. The value of the
annotated element must be greater than or
equal to the given value.

@Max value Only for integer values. The value of the
annotated element must be less than or
equal to the given value.

http:///

Chapter 10

[347]

Annotation Attributes Description
@NotNull The annotated value can’t be null.
@Null The annotated value must be null.
@Pattern regexp, flags Can only be applied to Strings. The

annotated String must match the regular
expression that is given in the regexp
attribute. The lags attribute can be set to an
array of Pattern.Flag values, indicating
which lags should be set to the java.util.
regex.Pattern that will be used to match
the value against. Valid lags are UNIX_
LINES, CASE_INSENSITIVE, COMMENTS,
MULTILINE, DOTALL, UNICODE_CASE, and
CANON_EQ. See the JavaDoc documentation
for java.util.regex.Pattern for an
explanation of the lags (http://java.
sun.com/javase/6/docs/api/java/util/

regex/Pattern.html).
@Size min, max Can be applied to Strings, Collections,

Maps, and arrays. Veriies that the size of
the annotated element is between the given
min and max values, min and max values
included.

@Valid For recursive validation. See the Using
recursive validation subsection for further
explanation.

All annotations are deined in the javax.validation.constraints package. Apart
from the attributes mentioned in the previous table, all annotations (except the @
Valid annotation) have the following common attributes:

•	 message: This attribute can be used to set a custom error message that will be
displayed if the constraint deined by the annotation is not met. If we want to
set a message bundle key instead of a literal message, we should surround it
with braces. So we can set message to either "This value is not valid" or
"{inc.monsters.mias.not_valid}".

http:///

Extensions Validator

[348]

•	 groups: This attribute can be used to associate a constraint with one or
more validation processing groups. Validation processing groups can
be used to inluence the order in which constraints get validated, or to
validate a bean only partially. (See http://docs.jboss.org/hibernate/
stable/validator/reference/en/html/validator-usingvalidator.

html#validator-usingvalidator-validationgroups for more on
validation groups.)

•	 payload: This attribute can be used to attach extra meta information to
a constraint. The Bean Validation standard does not deine any standard
metadata that can be used, but speciic libraries can deine their own
metadata. This mechanism can be used with ExtVal to add severity in-
formation to constraints, enabling the JSF pages to show certain constraint
violations as warnings instead of errors. See the Using payloads to set severity
levels section for an example of this.

OK, now we know which annotations can be used. Let’s see how we can use Bean
Validation annotations on our Employee class:

// Package declaration and imports omitted for brevity
public class Employee implements Serializable {
@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private int id;
@Temporal(TemporalType.DATE)
@Column(name="BIRTH_DATE")
@Past
private Date birthDate;
@Column(name="FIRST_NAME")
private String firstName;

@Temporal(TemporalType.DATE)
@Column(name="HIRE_DATE")
@Past
private Date hireDate;
@Column(name="JOB_TITLE")
@NotNull
@Size(min=1)
private String jobTitle;
@Column(name="LAST_NAME")
private String lastName;

@Min(value=100)
private int salary;

http:///

Chapter 10

[349]

@Column(name="KIDS_SCARED")
private int kidsScared;

@OneToMany(mappedBy="employee")
private List<Kid> kids;

// Getters and setters and other code omitted.
}

The Bean Validation annotations are highlighted in the code example. Note that the
annotations are applied to the member variables here. Alternatively, we could have
applied them to the getter methods. The JPA annotations that we added in Chapter 8
are still present. In this example, the birthDate and hireDate are annotated with
@Past so that only dates in the past can be set. The jobTitle is set to have a
minimum length of one character by the @Size annotation. The salary must have a
minimum value of 100, as set by the @Min annotation.

Reusing validation
Bean Validation does not have a solution like the @JoinValidation annotation of
ExtVal’s Property Validation module. However, Bean Validation offers other ways to
avoid repetitive code and help us reusing validation. This section describes some of
the possibilities.

Inheriting validation
Constraints deined on (the properties of) super classes are inherited. This means
that if we have a super class called Person, like the following example, our Employee
class can inherit the properties—including the annotated constraints—as follows:

public class Person {
@Size(min=1)
private String firstName;

@Size(min=1)
private String lastName;

@Past
private Date birthDate;

// Getters and setters omitted.
}

No special actions have to be taken to inherit annotated validation constraints.

http:///

Extensions Validator

[350]

Using recursive validation
We can use the @Valid annotation to use recursive validation (or graph validation
as it is called in the JSR 303 speciication). The @Valid annotation can be used on
single member objects as well as on Collections. If applied to a Collection,
all objects in the collection are validated, but null values in the Collection are
ignored. For example, we could use this to validate the List of scared Kids that is
part of our Employee class, as follows:

public class Employee implements Serializable {

// Other member variables are left out here.

@OneToMany(mappedBy="employee")
@Valid
private List<Kid> kids;

// Getters and setters are omitted.
}

Now the List of Kids that is referenced by the kids variable can only contain valid
Kid objects. This means that all Bean Validation constraints that are deined on the
Kid class will be checked on all Kid objects in the List.

Composing custom constraints

http:///

Chapter 10

[351]

Deining a custom constraint involves creating a new annotation. This may look a
bit complicated at irst, but it is less complicated than it seems. Let’s see how we can
create an @Name annotation that we can use on all names in our project:

package inc.monsters.mias.data.validation;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.validation.Constraint;
import javax.validation.Payload;
import javax.validation.OverridesAttribute;
import java.lang.annotation.Retention; im-
port java.lang.annotation.Target;

import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.ANNOTATION_TYPE;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

@NotNull
@Size(min = 2)

@Constraint(validatedBy = {})
@Retention(RUNTIME)
@Target({METHOD, FIELD, ANNOTATION_TYPE})
public @interface Name {

String message() default
"{inc.monsters.mias.data.validation.Name.invalid_name}";
Class<?>[] groups() default {};

Class<? extends Payload>[] payload() default {};

@OverridesAttribute(constraint = Size.class, name = "max")
int maxLength() default 20;
}

In this example, the following interesting things can be observed:

•	 public @interface Name: This deines a new annotation—@Name.
•	 @Target: This deines on what elements the new @Name annotation can be

used. In this case, it can be used on methods, ields, and other annotations.
Most of the time, this is ine for new constraints. It is also possible to create
constraints that validate a class; in that case, TYPE should be used as the
target. (See http://docs.jboss.org/hibernate/stable/validator/
reference/en/html/validator-usingvalidator.html#d0e328 for more
information on class-level constraints.)

http:///

Extensions Validator

[352]

•	 @Retention: This deines that this annotation should be executed at runtime.
For validation constraints, this should always be set to RUNTIME.

•	 @Constraint: This identiies this annotation as being a validation constraint.
It should always be used for custom constraints.

•	 @NotNull and @Size(min=2) (right above the @Constraint annotation,
highlighted): These are the constraints that the @Name constraint is based on.
In other words, any element annotated with @Name must not be null and
must have a size of at least 2.

•	 int maxLength() default 20: This deines an attribute maxLength for the
@Name annotation, with a default value of 20. So if no maxLength is speciied,
the maxLength will be 20.

•	 @OverridesAttribute(constraint = Size.class, name = "max"):
This causes the maxLength attribute to override the max attribute of the
Size annotation.

•	 String message() default "{...}": This sets the default value of the
message attribute to a message bundle key.

Other code that is not mentioned in the bulleted list is needed for every constraint
deinition. We now have an @Name annotation that can be used on any name ield in
our project. The annotated ield cannot be empty, and should have a size of at least
2, and at most 20. The maximum size can be overridden by the maxLength attribute.
We can use it, for example, in our Employee class, as follows:

public class Employee implements Serializable {

// Other member variable are omitted.

@Column(name="FIRST_NAME")

@Name

private String firstName;

@Column(name="LAST_NAME")

@Name(maxLength = 40)

private String lastName;

// Getters and setters are omitted.

}

http:///

Chapter 10

[353]

Now, the firstName can’t be null. It must have at least 2 characters and at most 20
characters. The lastName has the same constraints, but can be up to 40 characters
long. Note how we have reached the same level of reuse as we did when we used
@JoinValidation in our Kid class earlier in this chapter. Creating our own custom
constraint may be a little more work, but it gives us a more structural way of reuse.
And we don’t get referencing problems, as we did with @JoinValidation. As a
bonus, we can reuse custom constraints over different projects. We can even create a
library of custom constraints to be used in several projects.

As an example of the lexibility and extendability of ExtVal, the next section will
show us how we can set severity levels on certain constraints that give the users the
possibility to ignore certain warnings.

Using payloads to set severity levels
As mentioned, we can use the payload attribute on every Bean Validation
annotation to pass on meta information about the constraint. With ExtVal, we can
use this to create warning messages for certain constraints. These warning messages
will appear the irst time the user submits a value that violates the constraint. The
user can either change the value or ignore the warning by submitting the value for
the second time. This section describes how we can implement this for the salary
ield of our Employee class.

Setting up the Continue with warnings add-on
Let’s start by downloading and installing the Continue with warnings add-on, as
described in the Extending ExtVal with add-ons section. Once we’ve downloaded the
JAR ile and added it to our project, we can start preparing our project to allow the
users to ignore warnings. The irst thing we’ll have to do is to add a hidden input
component to all pages where we expect warnings to be shown that the user should
be able to ignore. In our example, we only have to add this hidden component to our
EditEmployee.xhtml page, as we will only be adding a warning-level constraint
to our Employee entity. The following code snippet shows the hidden component
added to the EditEmployee.xhtml page:

<ui:composition template="templates/template.xhtml">
<ui:define name="title">Edit employee</ui:define>
<ui:define name="content">

<h:inputHidden id="extValWarnState"
value="#{extValWarnState.continueWithWarnings}"/>

<tr:panelFormLayout>
<!-- Form contents left out to save space. -->
</tr:panelFormLayout>

</ui:define>
</ui:composition>

http:///

Extensions Validator

[354]

http:///

Chapter 10

[355]

http:///

Extensions Validator

[356]

http:///

Chapter 10

[357]

@Column(nullable=false)

@VirtualMetaData(target=Column.class,

parameters=ViolationSeverity.Fatal.class)

private String lastName;

// All other variables and methods are omitted.

}

Note that the attributes of the @VirtualMetaData annotation accept exactly the same
types as the attributes of all ExtVal Property Validation annotations. That’s why we
can use the same ValdationSeverity class in this case. The target attribute is needed
to link the @VirtualMetaData annotation to the @Column annotation.

Summary
This chapter introduced MyFaces Extensions Validator, or ExtVal for short. After the
installation of ExtVal, we saw that no coniguration is needed to get started, based
on standard JPA annotations. After that, we had a look at the extra annotations that
ExtVal adds to facilitate more validation options and to enable cross validation. We
saw how we can combine ExtVal with custom JSF validators. We also looked into
creating custom error messages. We saw how we can customize and extend ExtVal
in various ways. And inally, this chapter showed us how we can integrate ExtVal
with JSR 303 Bean Validation.

This chapter has covered only the basics of what is possible with ExtVal. As ExtVal
provides a very extensible and lexible infrastructure, the possibilities are virtually
endless. More information can be found on the weblog of Gerhard Petracek, the
lead developer of ExtVal, at http://os890.blogspot.com/. Another resource of
additional information is a series of articles about ExtVal on JSF Central. The irst
article of the series can be found at http://jsfcentral.com/articles/myfaces_
extval_1.html. The easiest way to ind the other articles in the series is to just
replace the 1 in the URL by a higher number. The series currently consists of three
articles, but more may be added in the future.

The next and last chapter of this book will introduce some best practices for using the
various MyFaces libraries.

http:///

http:///

Best Practices
A lot of best practices have been discussed throughout this book. However, some
best practices didn’t it into one of the chapters. These are collected in this chapter.

After reading this chapter, you will be able to:

•	 Prevent direct access to page deinitions, bypassing the Faces Servlet
•	 Enable container-based security in your JSF application
•	 Create a login page with JSF components
•	 Use component bindings wisely
•	 Save the state of request-scoped components in an elegant way

Preventing direct access to page
deinitions
A common problem with JSF applications is that the JSP or Facelets iles that the
Faces Servlet uses to render the pages are also accessible via the ‘normal’ web server
process, bypassing the Faces Servlet. This can lead to unexpected errors, probably
something like:

java.lang.RuntimeException: Cannot find FacesContext

This section presents a simple solution to this problem. A pretty straightforward
solution is to implement a Filter that redirects requests that go directly to the page.
A simple Filter implementation could look like this:

import java.io.IOException;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

http:///

Best Practices

[360]

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class RedirectFilter implements Filter {

private final static String FACES_PREFIX = "/faces/";

private final static String FILE_EXTENSION = ".jspx";

public void init(FilterConfig config)

throws ServletException {

}

public void destroy() {

}

public void doFilter(ServletRequest servletRequest,

ServletResponse servletResponse,

FilterChain chain)

throws IOException, ServletException {

HttpServletRequest request =

(HttpServletRequest) servletRequest;

HttpServletResponse response =

(HttpServletResponse) servletResponse;

String uri = request.getRequestURI();

if (! uri.contains(FACES_PREFIX)

&& uri.endsWith(FILE_EXTENSION)) {

int filePos = uri.lastIndexOf("/");

String redirectUri = uri.substring(0, filePos)

+ FACES_PREFIX

+ uri.substring(filePos+1);

response.sendRedirect(redirectUri);

} else {

chain.doFilter(servletRequest,servletResponse);

}

}

}

http:///

Chapter 11

[361]

Note how the URI is adapted by simple String manipulations. If the URI does
contain the /faces/ preix, or does not end with .jspx, the ilter does nothing. This
is achieved by calling the doFilter method on the FilterChain object. The ilter has
to be registered in the web.xml ile by adding the following fragment:

<filter>

<filter-name>Redirect Filter</filter-name>

<filter-class>RedirectFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>Redirect Filter</filter-name>

<url-pattern>*.jspx</url-pattern>

</filter-mapping>

This tells the application server to send all URIs that end with .jspx to the ilter
named Redirect Filter, and this ilter is implemented by the RedirectFilter
class. Note that the previous implementation does not contain a package statement.
Should your ilter be in a package, then the fully-classiied name of your class should
be used in the web.xml ile.

Although the previous code was written as a proof of concept, it might be suficient
for most applications. You might argue that the ile extension and the URI preix
should be conigurable. But how often do these values change in a real-life project?
Most of the time, they don’t. So it might not be worth the hassle to make those
values conigurable.

An alternative solution to the problem is to not use a preix such as /faces/, but to
map the Faces Servlet to a ile extension instead. This can be done as shown in the
following web.xml snippet:

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>

javax.faces.webapp.FacesServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>*.xhtml</url-pattern>

</servlet-mapping>

http:///

Best Practices

[362]

In this example, the Faces Servlet is mapped to any URI ending with .xhtml. This
means that the URI that accesses a ile directly is identical to the URI that maps to
the Faces Servlet. Direct access to a ile is not possible, as the URI will be mapped to
the Faces Servlet. While that’s a simpler solution, it might not always be possible,
depending on other choices in the project.

Using container-managed security
with JSF
In the previous chapters of this book, the topic security was somewhat ignored.
That’s ine, as it would not have added much to illustrating the possibilities of the
various subprojects of MyFaces. However, a production quality application does
need some degree of security most of the time. Java EE offers a container-managed
security scheme, which allows us to add security to any Java EE application. This
Java Authentication and Authorization Service (JAAS) takes care of pretty much
everything that has to do with security. This can save us a lot of effort. Covering all
of the possibilities of JAAS goes beyond the scope of this book. There are, however,
some tricky things when it comes to using JAAS in conjunction with JavaServer
Faces, and that is what this section is focusing on.

Enabling container-managed security
Let’s quickly recall the steps needed to add security to our application. First, we have
to conigure security in our web.xml ile:

<security-constraint>

<web-resource-collection>

<web-resource-name>All Access</web-resource-name>

<url-pattern>/faces/*</url-pattern> <!-- 1 -->

</web-resource-collection>

<auth-constraint>

<role-name>user</role-name> <!-- 2 -->

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

<security-role>

<description>Application user</description>

<role-name>user</role-name> <!-- 3 -->

</security-role>

<login-config>

http:///

Chapter 11

[363]

<auth-method>FORM</auth-method> <!-- 4 -->

<realm-name>file</realm-name>

<form-login-config> <!-- 5 -->

<form-login-page>/faces/Login.xhtml

</form-login-page>

<form-error-page>/faces/LoginError.xhtml

</form-error-page>

</form-login-config>

</login-config>

In this case, we simply deny all unauthorized access to any URL starting with
/faces/ (1). We only allow users that have the role of user to log in (2). We deine

that role a few lines further on (3). Then we conigure it so that users should log in
using a custom login form (4), and URLs to the login and error pages are conigured
too (5). Note that the URLs for the login and error pages are JSF URLs that will be
processed by the JSF controller.

After coniguring security in the web.xml ile, we also have to map the roles that
we deined in our application to user groups that are known by the application
server. The way this is achieved can differ as per the application server. Generally,
it can be done in a vendor-speciic coniguration ile. For example, for the GlassFish
application server, this can be done by creating a sun-web.xml ile in the WEB-INF
directory of the WAR. This ile could look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Application Server 8.1

Servlet 2.4//EN"

"http://www.sun.com/software/appserver/dtds/sun-web-

app_2_4-1.dtd">

<sun-web-app>

<security-role-mapping>

<role-name>user</role-name>

<group-name>miasusers</group-name>

</security-role-mapping>

<class-loader delegate="false"/>

<property name="useMyFaces" value="true"/>

</sun-web-app>

http:///

Best Practices

[364]

The highlighted lines show how security mapping looks for GlassFish. For most
other application servers, the coniguration is comparable to this. Refer to the
documentation of your application server for further details. Of course, a user group
named miasusers has to be created on the application server. Generally, this should
be done inside a security realm. The exact steps to do this differ from application
server to application server, and are not covered here.

Navigating to the login page
In the previous section, we conigured JSF URLs for the login page and the error
page. So we will have to add some navigation cases to our faces-config.xml ile in
order to make those URLs work. This is pretty straightforward:

<navigation-rule>

<from-view-id>*</from-view-id>

<navigation-case>

<from-outcome>login</from-outcome>

<to-view-id>/Login.xhtml</to-view-id>

</navigation-case>

<navigation-case>

<from-outcome>loginError</from-outcome>

<to-view-id>/LoginError.xhtml</to-view-id>

</navigation-case>

</navigation-rule>

Creating the login page
The interesting part is creating the login page. The JAAS framework was created
long before JSF even existed. So the JAAS framework does not anticipate the use
of JSF pages, but expects old school JSPs instead. Unfortunately, no measures were
taken to streamline the interaction with JAAS when the JSF standard was created.
Due to this, JAAS has some requirements for the login page that are hard to meet
through the use of JSF components. For example, the action of the login form has to
be j_security_check, and the names of the username and password ields have to
be j_username and j_password. For that reason, many examples in books and on
the Web fall back on old school JSP login pages or even static HTML login pages.
Wouldn’t it be nice if we could just use a normal JSF page and use the same JSF
components that we use on all other pages? Let’s see how we can accomplish this.

http:///

Chapter 11

[365]

The main problem is that the components that normally render the HTML <form>
tag, for example <tr:form>, don’t let us deine a custom action for the <form> tag.
For the special j_security_check action to be called, the <form> tag in the rendered
HTML page should look like this:

<form action="j_security_check" method="post">

Luckily, this is fairly easy to accomplish in a Facelets page deinition:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:tr="http://myfaces.apache.org/trinidad">

<body>

<f:view>

<ui:composition template="templates/templateNoForm.xhtml">

<ui:define name="title">Login</ui:define>

<ui:define name="content">

<form method="post" action="j_security_check">

<tr:panelFormLayout>

<tr:inputText id="j_username"

required="true"

label="#{msg['userName']}:"

autoComplete="false" />

<tr:inputText id="j_password"

required="true"

label="#{msg['password']}:"

autoComplete="false"

secret="true" />

<h:commandButton value="#{msg['login']}"

id="login" />

</tr:panelFormLayout>

</form>

</ui:define> </

ui:composition>

</f:view> </body>

</html>

http:///

Best Practices

[366]

If we had used JSP instead of Facelets, we would have had to surround the HTML
<form> tag with <f:verbatim> tags. Note that we can’t use a <tr:commandButton>
here because Trinidad’s command button does expect to be surrounded by a JSF
form component such as <h:form> or <tr:form>. It should also be noted that
we used a different template (templates/templateNoForm.xhtml) because the
template we used for all other pages already includes a <tr:form> component.

Alternatives
Using an HTML <form> tag instead of a JSF form component is not an ideal solution,
but it works and is fairly easy to implement. There are, however, other approaches
to solving the login form problem. Some JSF books present a way to create a custom
JSF component that creates a complete login form. Such a JSF component can be
relatively simple because the processing of the input is done by JAAS outside of the
JSF framework. So the only thing such a component should do is render a page with
a login form. While this sounds very simple, creating a custom JSF component is
not that simple. Creating a prototype might be relatively easy, but it might be more
dificult to create a production-quality component.

Another alternative is to use a ready-made login form component. Unfortunately,
none of the MyFaces component libraries offer such a component. Of course, you
could try to ind a login component in another component library. A downside to
this could be that different component libraries do not always work well together in
a single project, and it might be dificult to get your login page in the same look and
feel as the rest of your application.

Logout link
To complete the security functionality, we also need to create a logout link. JAAS
does not have standard functionality for this, but logging out requires nothing more
than invalidating the user session, which can be done easily in a Servlet. So let’s
create a LogoutServlet.java class:

package inc.monsters.mias;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class LogoutServlet extends HttpServlet {

public LogoutServlet() {

super();

http:///

Chapter 11

[367]

}

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

request.getSession().invalidate();

response.sendRedirect("faces/Start.xhtml");

}

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

doPost(request, response);

}

}

The highlighted lines invalidate the session and then redirect the user to the start page
of the application. Because there is no logged-in user, JAAS will redirect to the login
page automatically. We should register this Servlet in our web.xml ile as follows:

<servlet>

<display-name>LogoutServlet</display-name>

<servlet-name>LogoutServlet</servlet-name>

<servlet-class>inc.monsters.mias.LogoutServlet

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>LogoutServlet</servlet-name>

<url-pattern>/logout</url-pattern>

</servlet-mapping>

Now we can add a logout link to any page. Of course, the smartest thing to do is to
add it to our template. In that case, a logout link will be available on all pages. We
could, for example, use Trinidad’s <tr:goLink> component:

<tr:goLink destination="/logout" text="Logout"/>

http:///

Best Practices

[368]

Component bindings
Sometimes, one needs to programmatically access a JSF component that is used on a
page. For such cases, all JSF components have a binding attribute that can be used
to bind the component to a property in a backing bean. An example can be found on
our Kids.xhtml page, where the delete button is bound to the kidsTable bean in
order to make it possible to dynamically enable and disable the button, depending
on the selection in the table:

<tr:commandButton actionListener="#{kidsTable.deleteSelected}"

text="#{msg.delete}"

disabled="#{!kidsTable.deleteEnabled}"

partialSubmit="true"

id="btnDelete"

binding="#{kidsTable.deleteButton}" />

The kidsTable bean has a deleteButton property:

public class KidsTable {

...

private CoreCommandButton deleteButton;

public CoreCommandButton getDeleteButton() {
return deleteButton;

}

public void setDeleteButton(
CoreCommandButton deleteButton) {

this.deleteButton = deleteButton;
}

...
}

This is all ine, and it works as intended. However, whenever you use the binding
attribute, caution should be taken. As can be seen in the previous code, the backing
bean has a property of the CoreCommandButton type that holds a reference to the
button object. It should be noted that a new button object is created for every request
in the Restore View phase of the JSF life cycle. As long as the bean that holds the
reference to this button object is in the request scope, the lifetime of both the button
object and the bean is more or less the same and everything is ine. However, if the
bean is in another scope and has a longer lifetime, there is no guarantee that the
reference that the bean holds references a valid object. Consider the case where the
bean is on the session scope and the user navigates to another page. The bean can
still hold a reference to the button from the irst page, but it doesn’t make any sense,
because that button isn’t a part of the second page.

http:///

Chapter 11

[369]

This leads to a very simple rule of thumb: Never bind a component to a bean that
is not in the request scope. Should you need to combine JSF component access with
non-request-scoped beans, you could use dependency injection to inject a reference
to your non-request-scoped bean into the request-scoped bean where all code that
manipulates the JSF component resides.

Keeping the state of a component
Converter and validator components are part of the component tree of the view.
This tree is recreated for every request. In other words, the tree lives in the request
scope. A common problem in JSF is keeping the state of converters and validators or
other components that live in the request scope. In Chapter 6, we created a custom
converter that had a conigurable separator property. This separator is part of the
state of the converter and is needed in every request. Let’s see how we can adapt that
converter to keep this state over multiple requests.

In order to be able to save the state, we have to implement the javax.faces.
component.StateHolder interface, which involves implementing four methods. If
we implement these methods, our example converter from Chapter 6 will now look
as follows:

package inc.monsters.mias.conversion;

import javax.faces.component.StateHolder;
// other import omitted

public class FoodListConverter implements Converter,
ClientConverter,
StateHolder {

private String separator;

// other members and methods omitted for brevity

public boolean isTransient() {
return false;

}

public void setTransient(boolean b) {
}

public void restoreState(FacesContext context,
Object object) {

separator = (String) object;
}

public Object saveState(FacesContext context) {
return separator;

}
}

http:///

Best Practices

[370]

The methods from the StateHolder interface are highlighted. The irst two methods
can be used to dynamically switch on or off state saving; we simply return false
here to make sure that the state will be saved all the time. Every time a request is
handled and the component is removed from memory, the saveState() method
will be called by the JSF controller. Any value that is returned will be saved and
passed to the restoreState() method whenever a new request has to be handled
and the state has to be restored.

In our case the state consists of one simple property, so the implementation can
be super simple. If more properties have to be saved, they must be wrapped in a
single object (for example, an array or a Collection) before they can be saved.
This can lead to a lot of boilerplate code just to save and restore the state. Luckily,
the MyFaces Trinidad project offers a well-designed mechanism to solve this. The
mechanism is implemented around an interface called FacesBean. If we choose to
use the FacesBean approach, our class would look like this:

package inc.monsters.mias.conversion;

import javax.faces.component.StateHolder;
import org.apache.myfaces.trinidad.bean.FacesBean;
import org.apache.myfaces.trinidad.bean.PropertyKey;
// other imports omitted

public class FoodListConverter implements Converter,
ClientConverter,
StateHolder {

private static final FacesBean.Type TYPE =
new FacesBean.Type();

private static final PropertyKey SEPARATOR =
TYPE.registerKey("foodListConverterSeparator",

String.class);
private FacesBean facesBean = new FacesBeanImpl() {

@Override
public Type getType() {

return TYPE;
}

};
// other methods omitted

public String getSeparator() {
return (String) facesBean.getProperty(SEPARATOR);

}

public void setSeparator(String separator) {
facesBean.setProperty(SEPARATOR, separator);

}

http:///

Chapter 11

[371]

public boolean isTransient() {
return false;

}

public void setTransient(boolean arg0) {
}

public void restoreState(FacesContext context,
Object state) {

facesBean.restoreState(context, state);
}

public Object saveState(FacesContext context) {
return facesBean.saveState(context);

}
}

The irst highlighted block creates a new FacesBean object by subclassing the
abstract FacesBeanImpl class, inline. This somewhat complicated approach has to
do with the typesafe way in which the FacesBean idea is implemented. We have
adapted the getSeparator() and setSeparator() methods to store the separator
value in the FacesBean, instead of in a private variable. The saving and restoring
of the state is now delegated to the FacesBean, as shown in the last two highlighted
lines. Although the FacesBean approach requires a bit more typing if we only want
to save the state of a single variable, it saves us work if we have more variables to
save. Also, it adds type safety in all cases.

Summary

http:///

http:///

Index
Symbols
<accessibility-mode> element 255
<accessibility-proile> element 255
<c:choose> element 146
<client-validation> element 260
@Column annotation 275, 323
@Constraint 352
<currency-code> component 262
@DoubleRange annotation 323
@EJB annotation 282
@Entity annotation 274
<f:convertNumber> component 89
@GeneratedValue annotation 274
<h:commandLink> component 99
<h:ouptutText> component 99
<h:outputText> component 99
@Id annotation 274
@JoinValidation annotation 327
@Length annotation 323
@LongRange annotation 323
<managed-property> element 290
<mias:ield> composition component

constructing 135
<tr:inputText> component, declaring 136

@NotNull 352
<number-grouping-separator> component

262
<output-mode> element 260
@OverridesAttribute() 352
<ox:dynaForm> component

about 312
attributes 312

<ox:dynaForm> component, attributes
id 312
uri 312

valueBindingPreix 312
<page-low-scope-lifetime> element 256
@PersistenceContext annotation 277
@Required annotation 323
@Retention 352
<right-to-left> element 261
@Size(min=2) 352
<skin-family> element 261
@Stateless annotation 277
@Table annotation 274
<t:aliasBean> 83
<t:aliasBeanScope> 83
@Target 351
<t:buffer> 83
<t:captcha> 83, 84, 85, 86
<t:commandSortHeader> component 95

attributes 95
<t:commandSortHeader> component, at-

tributes
columnName 95
propertyName 95

<t:dataScroller> component
about 89
attributes 89
facets 90

<t:dataScroller> component, attributes
fastStep 90
for 89
paginator 90
paginatorMaxPages 90

<t;dataTable> component 99
about 87
attributes 87

<t:dataTable> component, attributes
id 87
rows 87

http:///

[374]

value 87
var 87

@Temporal annotation 275
<t-graphicImage> component 91
<time-zone> element 261
<t:inputCalendar> component

about 109
attributes 109

<t:inputCalendar> component, attributes
addResources 109
id 110
javascriptLocation 110
popupButtonImageUrl 111
popupButtonString 111
popupDateFormat 109
popupLeft 111
popupSelectMode 110
popupTodayDateFormat 110
renderAsPopup 109
renderPopupButtonAsImage 110
styleLocation 110
value 110

<t:inputFileUpload> component
about 106
attributes 106

<t:inputFileUpload> component, attributes
accept 106
maxlength 107
storage 107
value 106

@Transactional annotation 309
<tr:breadCrumbs> component 161
<tr:column> component 124

features 124
<tr:commandNavigationItem> component

161
<tr:convertDateTime> component 137
<tr:convertNumber> converter 149
<tr:document> tag 122
<tr:inputDate> component 136
<tr:inputFile> component 152
<tr:inputNumberSpinbox> component 150
<tr:inputText> component 134
<tr:navigationPane> component 160
<tr:navigationTree> component 162
<tr:outputFormatted> component 173
<tr:panelAccordion> component 169

<tr:panelBorderLayout> component 163,
164

<tr:panelBox> component 172
<tr:panelButtonBar> component 168, 176
<tr:panelCaptionGroup> component 177
<tr:panelChoice> component 171
<tr:panelFormLayout> component 132
<tr:panelFormLayout> layout

component 167
<tr:panelHeader> component 174
<tr:panelHorizontalLayout> component 166
<tr:panel...Layout> component 163
<tr:panelList> component 179
<tr:panelPage> component

about 180
facets 180

<tr:panelPageHeader> component
about 182
facets 182

<tr:panelPopup> component 175
<tr:panelRadio> component 172
<tr:panelTabbed> component 170
<tr:selectItem> component 142

features 144
<tr:selectManyListbox> component 144
<tr:selectManyShuttle> component 144
<tr:selectOneChoice> component 142
<tr:selectOneListbox> component 142, 144
<tr:selectOneRadio> component 142, 143
<tr:selectOrderShuttle> component 145
<tr:showDetailItem> component 169
<tr:table> component

about 123
features 123

<tr:validateDateRestriction> 139
<tr:validateDateTimeRange> component

138
<tr:validateDoubleRange> component 150
<tr:validateLongRange> component 150
<t:validateCreditCard> component 116
<t:validateEmail> validator component 115
<t:validateEqual> component 115
<t:validateRegExpr> component 116
<two-digit-year-start> element 261
<ui:component> tag

about 70
attributes 71

http:///

[375]

<ui:composition> tag
about 71
attributes 71

<ui:debug> tag
about 71
attributes 71

<ui:decorate> tag
about 72
attributes 72

<ui:deine> tag
about 72
attributes 73

<ui:fragment> tag
about 73
attributes 73

<ui:include> tag
about 74
attributes 74

<ui:insert> tag
about 74
attributes 74

<ui:param> tag
about 74
attributes 74

<ui:remove> tag 75
<ui:repeat> tag 75
<uploaded-ile-processor> element 256
@Validator annotation 325
@ViewController annotation 299

A
Abstract Window Toolkit (AWT) 85
accessibility mode, Trinidad

about 255
default 255
inaccessible 255
screenReader 255

accessibility options, Trinidad
about 255
accessibility mode 255
accessibility proile 255
lightweight dialogs 256

accessibility proile, Trinidad
about 255
high-contrast 255
large-fonts 255

accessKey attribute 132
accordion

creating 169, 170
action attribute 99
addPartialTarget() method 209
ADF Faces project 13
advanced data table features, Tomahawk

details inline, showing 98, 99
edit form, linking to 100-103
newspaper columns 104, 105
rows, grouping 103
sort arrows, improving 97
sorting 94-97

Advanced Meta Data add-on 356
alias selectors 249
animationDuration 191
Apache Batik 80
Apache Commons IO 80
Apache Commons Validator 80
Apache Geronimo application server 35
Apache Incubator project 9
Apache MyFaces

about 9
community support 10
example use 41, 42
license 10
sub-projects 11
Sun JSF RI 10

appAbout facet 180
appCopyright facet 180
appearance, Trinidad

client validation 260
output mode 260
skin family 261

application scope 199
application structure, Orchestra

adapting 286
application view caching 258
appPrivacy facet 180
arguments, @DateIs annotation

errorMessageDateStyle 330
notAfterErrorMsgKey 329
notBeforeErrorMsgKey 329
notEqualErrorMsgKey 329
type 329
validationErrorMsgKey 330
valueOf 329

http:///

[376]

arguments, @Equals and @NotEquals
validationErrorMsgKey 330
value 330

arguments, @RequiredIf annotation
is 331
validationErrorMsgKey 331
value of 331

attributes, Tomahawk components
disabledOnClientSide 81
displayValueOnly 81
displayValueOnlyStyle 81
displayValueOnlyStyleClass 81
enabledOnUserRole 81
forceIdIndex 82
visibleOnUserRole 82

autoComplete attribute 134
autoSubmit attribute 133 203
autowire attribute 295

B
basic data tables, Tomahawk

columns, adding 88, 89
creating 86
CSS styling, adding 91
data scroller, styling 93
data table, setting up 87
pagination, using 89, 90
styling 92

Bean Validation
about 15, 344
annotations, using 346
continue with warnings add-on, setting up

353, 354
libraries, adding 345
payload attribute, using 353
reusing 349
setting up 345
severity level of constraint, setting 354, 355
severity level on any constraint, setting 356
severity level on ExtVal Property Validation

constraints, setting 355
severity levels, setting 353
using 344

Bean Validation annotations
about 349
groups attribute 348

message attribute 347
payload attribute 348
using 346

Bean Validation, reusing
custom constraints, composing 350-353
recursive validation, using 350
validation, inheriting 349

boxes
displaying 172

brandingAppContextual facet 183
brandingApp facet 183
branding facet 180-183
bravenessCalcReturn method 220
bug, partialTriggers 205
bullet lists

creating 179
button bars

creating 176

C
CAPTCHA 83
caption groups

using 177
captionText attribute 178
Cascading Style Sheets (CSS) 241
chart types

area chart 194
area chart, stacked version 194
bar line chart 194
circularGauge chart 196
funnel chart 196
line chart 193
normal bar chart, rotated version 192
pie chart 195
radar area chart 195
radar chart 195
scatterPlot chart 197
semiCircularGauge chart 196
simple bar chart 192
stackedVerticalBar, roated version 193
standard bar chart, stacked version 193
XYLine chart 197

choice panel
creating 171

ClientConverter interface
getClientConversion() method 225

http:///

[377]

getClientImportNames() method 225
getClientLibrarySource() method 225
getClientScript() method 225
implementing 225

client-side conversion
ClientConverter interface, implementing

225
client-side code, implementing 227
enabling 225

client-side validation and conversion
about 221, 222
client-side capabilities, enabling 225, 226
converter, creating 224, 225
data structure, deining 222, 223
internationalization, of messages 233
JavaScript, debugging 235
JavaScript, testing 235
JavaScript, writing 235
Trinidad JavaScript API, using 235
validator, creating 228, 229
wiring 231

client validation
about 260
alert 260
disabled 260
inline 260

ColorBean class 142
columnBandingInterval attribute 128
columns attribute 134
component bindings, JSF 368, 369
component piece selectors 248
component state selectors 247
components, Tomahawk

CAPTCHA component 12
date selection components 12
extensive data table component 12
ile upload component 12

composition components, Facelets
<h:message> component, adding 64, 65
actual composition component, deining 62
creating 58
redundancies, identifying 60
required indicator, adding 64, 65
skeleton, creating 61
tag library, creating 58, 59
using 66
validators, adding 63

constraint compositions, Bean Validation
350

container-managed security
enabling 362, 363
using, with JSF 362

content interweaving, Facelets 44
continue with warnings add-on 353
Conversation Scope 14, 300
converter

creating 224, 225
Core project

about 9-12
JSF 1.1 11
JSF 1.2 11
JSF 2.0 11
relevant versions 11

createNamedQuery() method 277
createQuery() method 277
cross validation

applying 328
using, based on equality 330
using, for date values 329
value, making required conditionally 331

CSS selector 247
custom constraints, Bean Validation

composing 350
custom error messages

creating 331
ExtVal default error messages,

overriding 332, 333
standard JSF error messages,

overriding 332
custom validation strategy

annotation-based coniguration 339
coniguring 337, 338
coniguring, alternative coniguration add-

ons used 339
creating 334
implementing 335, 336
using, in ExtVal 337, 338

custom validators
using, @Validator annotation used 325

D
data

passing, with page lows 198-201

http:///

[378]

database
connecting to 268, 269
creating 267, 268
managing 269, 270
table, creating 271
table, populating with data 272

Database Development perspective 269
database environment

preparing 267
data input ields, creating

about 136
dates, converting 137
dates, validating 138
ultimate date input component, creating

140, 141
Data Source Explorer 269
data tables, creating

about 123, 124
banding, coniguring 128
columns, adding 124-126
grid, coniguring 128
inline details, displaying 127
pagination, using 126, 127
row selection, using 129-131

Data Tools Platform 269
data visualization

about 185
chart types 192
data display, changing 191
data model, creating 186
data model, initializing 189, 190
graph, adding to page 190
graph look, changing 191
ideas 197
minimal data model, implementing 186-188
values, calculating 188, 189

dates and calendars, Tomahawk
calendar, using in form 113, 114
inline calendar, using 112
pop-up calendar, localizing 111
pop-up calendar, using 109
working with 108

debugging, Facelets 49, 50
debugging skins 242
debugging, Trinidad

about 258
compression, turning off 259

debug output, enabling 259
deployed iles, changing 260
obfuscation, turning off 259

debug output
enabling 259

detailToggler object 99
development environment

coniguring 17
Eclipse, coniguring 18
JDeveloper, coniguring 25

dialog
backing bean, creating 216-218
building 215, 216
calling 218, 219
creating 214
inputListOfValues, using as alternative

220, 221
lightweight dialogs, using 221
output, receiving 219, 220
values, returning in alternative way 218

direct access, to page deinitions
preventing 359-361

displayValueOnly attribute 82
dispose() method 153
doApply() method 102, 105
done() method 218
Dont Repeat Yourself (DRY) 45
double range validation

deining, @DoubleRange annotation
used 323

DRY principle 15
DynaForm

about 310
forms, generating with 310
installing 310
using 311-313

dynamic web project, Eclipse
preparing 21-25

E
EAR

creating 265
creating, in Eclipse 267

Eclipse
coniguring 18
extra plugins, installing 18

http:///

[379]

libraries, installing 20
new project, preparing 21
Trinidad tag support 18
web page editor 18

editKidForm bean 153
EJB 3.0

limitations 283
EJB 3.0, limitations

data validation 284
transactions 283, 284

EJB JAR
about 264
application server speciic 265
creating, in Eclipse 265
ejb-jar.xml 264
MANIFEST.MF 264
orm.xml 265
persistence.xml 265

EL 45
elements, faces-conig.xml coniguration ile

application 38
converter 38
managed-bean 38
navigation-rule 38
render-kit 38
validator 38

Employee object 277
EmployeeServiceBean class 277
endConversationAndSave() method 309
entity

creating 272-275
EntityManager object 277
event methods, Orchestra ViewController

about 299
initView 299
preProcess 299
preRenderView 300

Expression Language. See EL
extended components, Tomahawk

<t:aliasBean> 83
<t:aliasBeanScope> 83
<t:buffer> 83
<t:captcha> 83
about 83

Extensions Filter 79
Extensions Validator project 315
extra validators, Tomahawk

about 115
credit card numbers, validating 116
e-mail addresses, validating 115
equality, validating 115
user input, validating against regular

expression 116
ExtVal

about 14, 315
additional annotations, using 324
add-ons, getting 341
add-ons, installing 344
basic usage 321
Bean Validation, using 344
convention over coniguration pattern, us-

ing 320
cross validation, applying 328
custom error messages, creating 331
custom validation strategy, creating 334
extending 340
extending, with add-ons 341
extra annotations 322
factory design pattern 340
features 316
JPA annotations, complementing 322
libraries, adding to EAR 319, 320
library 317
overridden concepts 340
setting up 316

ExtVal add-ons
advanced metadata 342
annotation-based coniguration 341
description 341
documentation 341
getting 341
Google Guice style coniguration 342
installing 344
secured action 343
warnings 343

ExtVal annotations
@JoinValidation annotation 326
@Length annotation 322
@Pattern annotation 324
custom validators, using 325
double range validation, deining 323
length validation, deining 323
long range validation, deining 323
pattern-based validation, deining 324

http:///

[380]

required ields, deining 323
using, for standard JSF validators 322
@Validator annotation 325

ExtVal default error messages
overriding 332, 333

F
facade 275
Facelets

about 9, 43
beneits 45
comments, using in page deinitions 55-57
composition components, creating 58
content interweaving 44
DRY 45
EL, expanding 45
inline texts, using 69, 70
need for 43
static functions, using 67, 69
template, creating 51, 52
template, using 52-54
templating 44
templating with 51
XHTML iles 57

Facelets project
debugging 49, 50
faces-conig.xml, preparing 47
setting up 46
test page, creating 47, 49
web.xml, preparing 46

Facelets tags
<ui:component> tag 70, 71
<ui:composition> tag 71
<ui:debug> tag 71
<ui:decorate> tag 72
<ui:deine> tag 72
<ui:fragment> tag 73
<ui:include> tag 74
<ui:insert> tag 74
<ui:param> tag 74
<ui:remove> tag 75
<ui:repeat> tag 75

faces-conig.xml ile
about 37, 38
coniguring 121
coniguring, for Spring 293

elements 38
example 39, 40

Faces Servlet 35
ieldWidth attribute 167
ile upload component

creating 152
ile, saving in backing bean 153-155
using 152

ileUploadField.xhtml ile 152
ile upload limits

coniguring 155
setting, in trinidad-conig.xml 156, 157
setting, in web.xml 156

ile upload, Tomahawk 105, 106
ile upload, Trinidad

about 151
ile upload component, using 152
ile upload limits, coniguring 155
prerequisites 151

ind() method 277
FoodListConverter class 226
full submit 202

G
generic application, JDeveloper

preparing 28-32
getAge() method 218
getAgeVsBraveness() method 190
getAsObject() method 225
getAsString() method 225
getBravenessInput() method 220
getBraveness() method 89, 218
getBytes() method 106
getCaptcha() method 85
getClientConversion() 225
getClientImportNames() 225
getClientLibrarySource() 225
getClientScript() 225
getContentType() method 153
getEmployees() method 277
getFilename() method 153
getGroupLabels() method 188
getId() method 274
getInputStream() method 153
getKids() method 86
getLength() method 153

http:///

[381]

getName() method 106
getResultList() method 277
getReturnValue() method 220
getRowData() method 131
getSeriesLabels() method 188
getValue() method 131
getYValues() method 187
global styles

setting, alias selectors used 248
gradientsUsed 191

H
headercolspan attribute 88
headerColSpan variable 89
header panel

using 174
headerText attribute 124
horizontalGridVisible attribute 128

I
infoFootnote facet 180
infoReturn facet 181
infoStatus facet 181
infoUser facet 181
initView, event methods 299
inline calendar 112
inline texts, Facelets

using 69, 70
input and edit forms

creating 132
date input ields, creating 136
ields for numerical input, creating 149
plain text input ields, creating 134
selection lists, creating 141

input components
about 132
features 132

input components, features
automatic label rendering, using 132
auto submit, using 133
error message support, using 133
required indicator, using 133

input forms layouts
components, grouping 167

creating 167
footer facet 168
label 168
message 168

inputListOfValues
using, as alternative 220, 221

internationalization, of messages
about 233
error message, formatting 234, 235
getClientValidator(), changing 233
JavaScript constructor, changing 234

int maxLength() default 20 352
invalidDays attribute 139
invalidDaysOfWeek attribute 139
invalidMonths attribute 139
itemLabel attribute 147
itemValue attribute 147

J
Java Authentication and Authorization

Service (JAAS) 362
Java DB database 267
Java Persistence Query Language (JPQL)

278
JavaServer Pages. See JSP
Java Virtual Machine (JVM) 85
JDeveloper

coniguring 25
libraries, installing 25-28
new project, preparing 28

JEE application structure
EAR, creating to wrap 265, 266
setting up 264
skeleton EJB JAR, creating 264

JPA annotations
complementing 322

JPQL queries 278
JSF

login page, creating 364
login page, navigating to 364

JSF Reference Implementation 10
JSF security 362
JSP 43
JSR 303 15

http:///

[382]

K
kidsTable bean 295

L
labelAndAccessKey attribute 132
label attribute 132
labelWidth attribute 167
layout attribute 165
layout methods

expand 164
positioned 164

leadingDescShown attribute 144
leadingHeader attribute 144
legendPosition 192
length validation

deining, @Length annotation used 323
level attribute 161
library, ExtVal

myfaces-extval-core-1.2.x.jar 317
myfaces-extval-generic-support-1.2.x.jar

317
myfaces-extval-property-validation-1.2.x.jar

317
myfaces-extval-trinidad-support-1.2.x.jar

317
lightweight dialogs

using 221
lightweight dialogs, Trinidad 256
localization attributes, <t:inputCalendar>

component
popupButtonString 111
popupGotoString 111
popupScrollLeftMessage 111
popupScrollRightMessage 111
popupSelectDateMessage 111
popupSelectMonthMessage 111
popupSelectYearMessage 111
popupTodayString 111
popupWeekString 112

localization, Trinidad
about 261
direction, reading 261
number notation 262
time zone 261
two-digit year start 261

location facet 181

login page, JSF
alternatives 366
creating 364, 366
logout link 366, 367
navigating to 364

long range validation
deining, @LongRange annotation used 323

M
Maven

beneits 33
maxColumns attribute 167
maximum attribute 138
maximumLength attribute 134
maxPrecision 191
menuSwitch facet 183
merge() method 278
messageDetailConvertBoth attribute 137
messageDetailConvertDate attribute 137
messageDetailConvertPattern 149
messageDetailConvertTime attribute 137
messageDetailInvalidDays attribute 139
messageDetailInvalidDaysOfWeek at-

tribute 139
messageDetailInvalidMonths attribute 139
messageDetailMaximum attribute 138
messageDetailMinimum attribute 138
messageDetailNotInRange attribute 138
MIAS-Entities.jar 287
mias skin family, example 243
MIAS.war 287
minimal, default skin 245
minimum attribute 138
model implementation, JEE application

about 272
data source, deining 280, 281
entity, creating 272-274
named queries, creating 278
persistence units, deining 279
service facade, creating 275, 277

modules, ExtVal
bean validation 318
core 318
downloading 318
generic support 318
property validation 318

http:///

[383]

trinidad support 318
Mojarra 10, 40
MVC pattern

about 263, 264
controller 264
goal 263
model 263
view 264

MyFaces
using, on GlassFish 40

MyFaces Extensions umbrella project 14
MyFaces Orchestra

about 285
setting up 286

N
navigation1 facet 181, 183
navigation2 facet 181, 183
navigation3 facet 181
navigationGlobal facet 181, 183
new project

creating, Maven used 33
numerical input ields

conversion, adding 149
creating 149
spin box, adding 150
validation, adding 150

O
Orchestra

about 14
application structure, adapting 286
coniguring 297, 298
downloading 296
installing 296
setting up 286
Spring, coniguring 288
Spring framework, downloading 287

Orchestra conversations
creating 301-304
ending 307, 309
extending 305, 306
setting up 300, 301

Orchestra Sandbox project 310
Orchestra ViewController

about 299

event methods, using 299
using 299

orientation attributes 162
output mode

about 260
default 260
email 260
printable 260

overridden concepts, ExtVal
componentInitializer 340
InformationProviderBean 340
MessageResolver 340
MetaDataExtractionInterceptor 340
MetaDataTransformer 340
NameMapper 340
ProcessedInformationRecorder 340
RendererInterceptor 340
StartupListener 340
ValidationStrategy 340

P
page low scope 198, 301
page header panel

using 182
page layouts, creating

about 163
accordion, creating 169
border layout, using 163
boxes, displaying 172, 173
bullet lists, creating 179, 180
button bars, creating 176, 177
caption groups, using 177
choice panel, creating 171
group layout, using 165, 166
header panel, using 174, 175
horizontal layout, using 166
input forms layout, creating 167
page header panel, using 182
pop ups, using 175, 176
radio panel, creating 172
tabbed panel, creating 170
tips, displaying 174

Partial Page Rendering
about 202
addPartialTarget() method, using 209, 210
autoSubmit attribute, using 203-206

http:///

[384]

components, dynamically hiding or
showing 211, 212

full submit, comparing with partial submit
202, 203

naming containers, working with 207, 208
partial submit, comparing with full submit

202, 203
partialTriggers attribute, using 203-206
partialTriggers, working with 207, 208
polling 212
possibilities, exploring 213, 214
progress indicator, creating 209

partial submit 203
partialTriggers attribute

about 204
working with 207, 208

pattern-based validation
deining, @Pattern annotation used 324

performance, Trinidad
about 256
application view caching 258
page low scope lifetime 256
state saving 257
uploaded ile processor 256

perspective 192
pop-up calendar

about 109
localizing 111

pop ups
using 175

preProcess, event methods 299
preRenderView, event methods 300
progress indicator

creating 209
propertyName attribute 96
property reference, beans

expression language reference 327
property chain reference 327
static reference 328

pseudo selectors 247
public @interface Name 351

R
radio panel

creating 172
recursive validation, Bean Validation 350

RequestContext class 218
request scope 198, 300
required ields

deining, @Required annotation used 323
returnFromDialog() method 218
rowBandingInterval attribute 128
rows attribute 134, 167

S
Sandbox 13
savePhoto() method 105
saveSelected() method 282
search facet 181
secret attribute 134
security realm 364
selectedKid object 153
selectedKid property 101
selectionChanged() method 143
selection lists, creating

checkboxes 143
choice list 144
listboxes 144
list contents, adding 142
options, selection components 143
shuttle 144
shuttle, ordering 145
universal composition component, creating

146-149
selectItem component 143
separator facet 165
service facade

creating 275, 277
Session Bean 276
session scope 198, 300
setRowKey() method 131
setSelectedKid() method 102
setSubmittedValue(null) 220
shortDesc attribute 142
simple attribute 133
skeleton EJB JAR

creating 264
skin family 261
skinning, Trinidad. See Trinidad skinning
sortable attribute 95
speciic application servers

settings 40

http:///

[385]

Spring coniguration
about 288
beans, managing 288-292
faces-conig.xml ile, coniguring 293
for persistence 294
services, accessing 295
web.xml ile, coniguring 293

Spring framework
coniguring 288
downloading 287

standard JSF error messages
overriding 332

state saving 257
state-saving mechanism

implementing, for request-scoped
components 369-371

static functions, Facelets
using 67, 69

String message() default {...} 352
sub-projects, Apache MyFaces

about 11
Core 11
Extensions Validator 14
Orchestra 14
Portlet Bridge 14
Sandbox 13
Tobago 14
Tomahawk 12
Trinidad 13

Sun JSF RI 10

T
tabbed panel

creating 170, 171
tables

creating, <tr:table> component used 123
templating, Facelets 44
terminology, Trinidad

group 186
series 186
X axis 186
Y axis 186

text attribute 175
tip panel

displaying 174
title attribute 175

Tobago 14
Tomahawk

about 9, 12, 77
advanced data table features 94
basic data tables, creating 86
components 12
dates and calendars, working with 108
dependencies, resolving 80
downloading 78
extended components 83
extended versions, standard components

81, 82
extra validators 115
iles, uploading 105-107
setting up 78
variants 12
versions 78
web.xml, coniguring 79, 80

Tomahawk components
attributes 81

Tomahawk Core 12
Tomahawk Core 1.2 12
Tomahawk versions

JSF 1.1 78
JSF 1.2 78

tooltipsVisible 192
toStringWithSeparator() method 225
trailingDescShown attribute 144
trailingHeader attribute 144
Trinidad

<tr:column> component 124
<tr:table> component 123
about 13, 185, 241
advanced features 185
AJAX, using 202
characteristics 13
client-side conversion 221
client-side validation 221
data, passing with page lows 198
data tables, creating 123
data visualization 185
dialogs, creating 214
downloading 120
ile, uploading 151
input components 132
JSF 1.1 version 120
JSF 1.2 version 120

http:///

[386]

layout components 163
navigation framework 158
overview 119
Partial Page Rendering 202
setting up 120
skinning 241
terminology 186
tuning 253
versions 120

trinidad-conig.xml 254
trinidad-conig.xml ile

coniguring 122
Trinidad JavaScript API

about 235
debugging 236
JavaScript code, writing 235
Trinidad JavaScript APIlogging 236-238
writing 235

Trinidad navigation framework
about 158
breadcrumbs, creating 161, 162
hierarchical menu, creating 162
hierarchy, coniguring 158-160
navigation panes, creating 160

Trinidad setup
faces-conig.xml ile, coniguring 121
template, adapting 122, 123
trinidad-conig.xml ile, coniguring 122
web.xml ile, coniguring 120, 121

Trinidad skin
creating 246
extending 253

Trinidad skin, creating
component piece selectors, using 248
component state selectors, using 247
global styles, setting 248, 249
icons, skinning 249, 250
skinning components 246
text, skinning 251, 252

Trinidad skinning
about 242
render kit 242
self-contained skin, creating 243
setting up 242, 243
skin, creating 246
skin family 242
skin ID 242

skin, selecting 244-246
Trinidad tuning

about 253
accessibility options 255
appearance 260
debugging 258
localization 261
performance 256
trinidad-conig.xml 254
web.xml ile 254

U
UIXTable 131
updateEmployee() method 277
UploadedFile class 153

dispose() method 153
getContentType() method 153
getFilename() method 153
getInputStream() method 153
getLength() method 153

URL specifying ways, Trinidad skinning
absolute URL 250
relative to context root 250
relative to CSS ile 250
relative to server 250

V
validate() function 231
validate() method 84
validator

client-side capabilities, enabling 229
client-side code, implementing 230
ClientValidator interface 230
creating 228

Validator project 14
verticalGridVisible attribute 128
viewIds parameter 299
view layer, JEE application

pages, updating 282, 283
service facade, using 281, 282

Virtual Meta Data add-on 356

W
web.xml coniguration ile 35-37
web.xml ile

http:///

[387]

about 254
coniguring 120, 121
coniguring, for Spring 293

wiring
about 231
converter, declaring in faces-conig.xml 231
converter, using in page 232
custom tags, creating 232
validator, declaring in faces-conig.xml 231
validator, using in page 232

wrap attribute 134

X
XHTML iles 57
XMajorGridLineCount 191
XMLMenuModel class 160

Y
YMajorGridLineCount 191
YMinorGridLineCount 191

http:///

[388]

http:///

Thank you for buying
Apache MyFaces 1.2 Web
Application Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Apache MyFaces 1.2 Web Application Development, Packt
will have given some of the money received to the Apache project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

http:///

Apache MyFaces Trinidad 1.2:
A Practical Guide
ISBN: 978-1-847196-08-8 Paperback: 292 pages

Develop JSF web applications with Trinidad and
Seam

1. Develop rich client web applications using
the most powerful integration of modern web
technologies

2. Covers working with Seam security,
internationalization using Seam, and more

3. Get well-versed in developing key areas of web
applications

TTTaaapppeeessstttrrryyy 555::: BBBuuuiiillldddiiinnnggg WWWeeebbb
AAAppppppllliiicccaaatttiiiooonnnsss
IIISSSBBBNNN::: 999777888---111---888444777111999333---000777---000 PPPaaapppeeerrrbbbaaaccckkk::: 222888000 pppaaagggeeesss

AAA sssttteeeppp---bbbyyy---sssttteeeppp ggguuuiiidddeee tttooo JJJaaavvvaaa WWWeeebbb dddeeevvveeelllooopppmmmeeennnttt wwwiiittthhh
ttthhheee dddeeevvveeelllooopppeeerrr---fffrrriiieeennndddlllyyy AAApppaaaccchhheee TTTaaapppeeessstttrrryyy fffrrraaammmeeewwwooorrrkkk

111... LLLaaattteeesssttt vvveeerrrsssiiiooonnn ooofff TTTaaapppeeessstttrrryyy wwweeebbb dddeeevvveeelllooopppmmmeeennnttt
fffrrraaammmeeewwwooorrrkkk

222... GGGeeettt wwwooorrrkkkiiinnnggg wwwiiittthhh TTTaaapppeeessstttrrryyy cccooommmpppooonnneeennntttsss

333... GGGaaaiiinnn hhhaaannndddsss---ooonnn eeexxxpppeeerrriiieeennnccceee dddeeevvveeelllooopppiiinnnggg aaannn
eeexxxaaammmpppllleee sssiiittteee

444... PPPrrraaaccctttiiicccaaalll sssttteeeppp---bbbyyy---sssttteeeppp tttuuutttooorrriiiaaalll

PPPllleeeaaassseee ccchhheeeccckkk wwwwwwwww...PPPaaaccckkktttPPPuuubbb...cccooommm fffooorrr iiinnnfffooorrrmmmaaatttiiiooonnn ooonnn ooouuurrr tttiiitttllleeesss

http:///

ICEfaces 1.8: Next Generation
Enterprise Web Development
ISBN: 978-1-847197-24-5 Paperback: 292 pages

Build Web 2.0 Applications using AJAX Push, JSF,
Facelets, Spring and JPA

1. Develop a full-blown Web application using
ICEfaces

2. Design and use self-developed components
using Facelets technology

3. Integrate AJAX into a JEE stack for Web 2.0
developers using JSF, Facelets, Spring, JPA

Spring Web Flow 2 Web
Development
ISBN: 978-1-847195-42-5 Paperback: 272 pages

Master Spring's well-designed web frameworks to
develop powerful web applications

1. Design, develop, and test your web applications
using the Spring Web Flow 2 framework

2. Enhance your web applications with
progressive AJAX, Spring security integration,
and Spring Faces

3. Stay up-to-date with the latest version of Spring
Web Flow

4. Integrate MySQL with OpenSER

Please check www.PacktPub.com for information on our titles

http:///

http:///

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introduction
	Introducing Apache MyFaces
	License, community, and support
	MyFaces and Sun JSF RI

	Subprojects of Apache MyFaces
	Core
	Tomahawk
	Sandbox
	Trinidad
	Tobago
	Orchestra
	Portlet Bridge
	Extensions Validator

	Summary

	Chapter 2: Getting Started
	Configuring the development environment
	Configuring Eclipse
	Installing extra plugins
	Installing the libraries
	Preparing a new project

	Configuring JDeveloper
	Installing the libraries
	Preparing a new project

	Creating a new project using Maven

	Application server and configuration files
	The web.xml configuration file
	The faces-config.xml configuration file
	Settings for specific application servers
	Settings for MyFaces Core on GlassFish
	Other application servers

	Introduction to the example case
	Summary

	Chapter 3: Facelets
	Why Facelets?
	Content inverweaving
	Templating
	Don’t Repeat Yourself (DRY)
	Expanding the Expression Language
	Summarizing the benefits of Facelets

	Setting up a Facelets project
	Preparing web.xml
	Preparing faces-config.xml
	Creating a test page
	Debugging easily with Facelets

	Templating with Facelets
	Creating a template
	Using the template
	Using comments in Facelets page definitions
	Are Facelets files XHTML?

	Creating and using composition
components
	Creating a tag library
	Creating the composition component itself
	Identifying redundancies
	Creating a skeleton for the composition component
	Defining the actual composition component
	Adding validators without violating the
DRY principle
	Putting it all together

	Using the composition component

	Using static functions
	Using inline texts
	Facelets tags overview
	<ui:component> tag
	<ui:composition> tag
	<ui:debug> tag
	<ui:decorate> tag
	<ui:define> tag
	<ui:fragment> tag
	<ui:include> tag
	<ui:insert> tag
	<ui:param> tag
	<ui:remove> tag
	<ui:repeat> tag

	Summary

	Chapter 4: Tomahawk
	Setting up Tomahawk
	Downloading Tomahawk
	Configuring web.xml
	Resolving dependencies

	Using extended versions of standard components
	Extended components
	<t:aliasBean> and <t:aliasBeanScope> components
	<t:buffer>
	<t:captcha> component

	Creating basic data tables
	Setting up a data table
	Adding columns to the table
	Using pagination
	Changing the looks of the data table
	Styling the data table itself
	Styling the data scroller
	Looking at the result

	Using advanced data table features
	Sorting
	Improving the sort arrows

	Showing details inline
	Linking to an edit form
	Grouping rows
	Newspaper columns

	Uploading files
	Working with dates and calendars
	Using a pop-up calendar
	Localizing the pop-up calendar

	Using an inline calendar
	Using the calendar in a form

	Extra validators
	Validating equality
	Validating e-mail addresses
	Validating credit card numbers
	Validating against a pattern

	Summary

	Chapter 5: Trinidad—the Basics
	Setting up Trinidad
	Configuring the web.xml file
	Configuring the faces-config.xml file
	Configuring the trinidad-config.xml file
	Adapting our template

	Creating data tables
	Adding columns
	Using pagination
	Displaying inline details
	Configuring banding and grid lines
	Using row selection

	Creating input and edit forms
	Exploring the common features of input components
	Using automatic label rendering
	Using error message support and the required indicator
	Using auto submit

	Creating plain text input fields
	Using the <tr:inputText> component in a composition component

	Creating date input fields
	Converting dates
	Validating dates
	Creating the ultimate date input composition component

	Creating selection lists
	Adding list contents
	Optional empty selection for single selection lists
	Options for all selection components
	Checkboxes and radio buttons
	Listboxes
	Choice list
	Shuttle
	Ordering shuttle
	Creating a universal composition component for selections

	Creating fields for numerical input
	Adding conversion to a field
	Adding validation to a field
	Adding a spin box to an input field

	File uploading
	Meeting the prerequisites
	Using the file upload component
	Creating and using a file upload composition component
	Saving the file in the backing bean

	Configuring file upload limits
	Setting upload limits in web.xml
	Setting upload limits in trinidad-config.xml

	Using Trinidad’s hierarchical navigation features
	Configuring the hierarchy
	Creating navigation panes
	Creating breadcrumbs
	Creating a hierarchical menu

	Creating layouts for our pages
	Using a border layout
	Layout methods

	Using group layout
	Using a horizontal layout
	Creating layouts for input forms
	Grouping components
	Label and message
	Footer facet

	Creating an accordion
	Creating a tabbed panel
	Creating a choice panel
	Creating a radio panel
	Displaying boxes
	Displaying tips
	Using a header panel
	Using pop ups
	Creating button bars
	Using caption groups
	Creating bulleted lists
	Lay out a page by using the panel page component
	Using the page header panel

	Summary

	Chapter 6: Advanced Trinidad
	Data visualization
	Creating the data model
	Understanding the terminology
	Implementing a minimal data model
	Calculating the values

	Initializing the data model
	Adding a graph to a page
	Changing data display
	Changing the looks

	Chart types
	Some final thoughts on data visualization

	Passing on data with page flows
	Using AJAX and Partial Page Rendering
	Comparing full submit and partial submit
	Using the autoSubmit and partialTriggers attributes
	Working with partialTriggers and naming containers
	Creating a status indicator
	Using the addPartialTarget() method
	Dynamically hiding or showing components
	Polling
	Exploring the possibilities of PPR

	Creating dialogs
	Building a dialog
	Creating the backing bean for the dialog
	Using an alternative way of returning values

	Calling the dialog
	Receiving the dialog’s output
	Using inputListOfValues as an easier alternative
	Using lightweight dialogs

	Client-side validation and conversion
	Defining the data structure
	Creating the converter
	Enabling client-side capabilities
	Implementing the client-side code

	Creating the validator
	Enabling client-side capabilities
	Implementing the client-side code

	Wiring everything together
	Declaring the converter and validator in
faces-config.xml
	Creating custom tags
	Using the converter and validator in a page

	Internationalization of messages
	Changing getClientValidator()
	Changing the JavaScript constructor
	Formatting the error message

	Using Trinidad’s JavaScript API
	Writing, testing, and debugging JavaScript
	Writing JavaScript code
	Debugging
	Logging

	Summary

	Chapter 7: Trinidad Skinning and Tuning
	Skinning
	Understanding the terminology
	Setting up skinning
	Letting the user choose the skin

	Creating a Trinidad skin
	Skinning components
	Using component state selectors
	Using component piece selectors
	Setting global styles using alias selectors
	Skinning icons
	Skinning text

	Extending skins

	Tuning Trinidad
	trinidad-config.xml file
	web.xml file
	Accessibility
	Accessibility mode (T)
	Accessibility profile (T)
	Lightweight dialogs (W)

	Performance
	Page flow scope lifetime (T)
	Uploaded file processor (T)
	State saving (W)
	Application view caching (W)

	Debugging
	Enabling debug output (T)
	Turning off compression and obfuscation (W)
	Changing deployed files (W)

	Appearance
	Client validation (T)
	Output mode (T)
	Skin family (T)

	Localization
	Time zone (T)
	Two-digit year start (T)
	Reading direction (T)
	Number notation (T)

	Summary

	Chapter 8: Integrating with the Backend
	The Model-View-Controller architecture
	Setting up the Java EE application
structure
	Creating a skeleton EJB JAR
	Creating an EAR to wrap them all

	Preparing a database environment
	Creating a database
	Connecting to the database
	Managing the database
	Creating a table for employees
	Populating the table with data

	Implementing the Model
	Creating an entity
	Creating a service facade
	Creating named queries
	Defining persistence units
	Defining a data source

	Using the service facade in the
View layer
	Updating the pages

	Limitations and problems
	Transactions
	Validation of data

	Summary

	Chapter 9: MyFaces Orchestra
	Setting up Orchestra
	Adapting the application structure
	Downloading the Spring framework
	Configuring Spring
	Letting Spring manage the beans
	Configuring the faces-config.xml file for Spring
	Configuring the web.xml file for Spring
	Configuring Spring and persistence
	Accessing the services

	Downloading and installing Orchestra
	Configuring Orchestra

	Using the Orchestra ViewController
	Using event methods

	Setting up Orchestra conversations
	Creating a conversation
	Extending the conversation
	Ending the conversation

	Generating forms with DynaForm
	Installing DynaForm
	Using DynaForm

	Summary

	Chapter 10: Extensions Validator
	Setting up ExtVal
	 Basic usage
	Complementing JPA annotations
	Using ExtVal annotations for standard JSF validators
	Defining length validation
	Defining double range validation
	Defining long range validation
	Defining required fields

	Using ExtVal’s additional annotations
	Defining pattern-based validation
	Using custom validators

	Reusing validation

	Applying cross validation
	Using cross validation for date values
	Using cross validation based on equality
	Making a value required conditionally

	Creating custom error messages
	Overriding standard JSF error messages
	Overriding ExtVal default error messages

	Creating our own validation strategy
	Implementing a custom validation strategy
	Configuring ExtVal to use a custom validation strategy
	Using alternative configuration add-ons

	Testing the custom validation strategy
	Extending ExtVal in many other ways

	Extending ExtVal with add-ons
	Getting add-ons for ExtVal
	Installing ExtVal add-ons

	Using Bean Validation
	Setting up Bean Validation and ExtVal
	Using Bean Validation annotations
	Reusing validation
	Inheriting validation
	Using recursive validation
	Composing custom constraints

	Using payloads to set severity levels
	Setting up the Continue with warnings add-on
	Setting the severity level of a constraint
	Setting the severity level on ExtVal Property Validation constraints
	Setting the severity level on any constraint

	Summary

	Chapter 11: Best Practices
	Preventing direct access to page
definitions
	Using container-managed security
with JSF
	Enabling container-managed security
	Navigating to the login page
	Creating the login page
	Alternatives

	Logout link

	Component bindings
	Keeping the state of a component
	Summary

	Index

