
www.allitebooks.com

http://www.allitebooks.org

Flex on Java
BERNERD ALLMON
JEREMY ANDERSON

1 1

M A N N I N G

Greenwich
(74ü w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901
Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

© Recognizing the importance of preserving what has been written, it is Manning's policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
180 Broad St.
Suite 1323
Stamford, CT 06901

Development Editors:

Copyeditor:
Typesetters:

Cover designer:

Nermina Pascal-Miller
Sebastian Stirling
Betsey Henkels
Dennis Dalinnik
Marija Tudor

ISBN 9781933988795
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - MAL - 16 15 14 13 12 11 10

www.allitebooks.com

http://www.manning.com
mailto:orders@manning.com
http://www.allitebooks.org

contents
foreword xi

preface xiii

acknowledgments xv

about this book xvii

author online xix

about the authors xx

about the cover illustration xxi

PARTI LAYING THE FOUNDATION 1

J Some Flex with your Java? 3

1.1 A whirlwind tour of Flex 5
MXMLandActionScript 5' The Rex SDK 6

Flash Player 10 6

1.2 Creating an application in Flex 7

1.3 Finding the right tools and patterns 8
Building a Flex interface. 9 • Integrating with web

services 9 • Integration with BlazeDS, logging, and

messaging 10 • Securing Hex applica tions 10 • Crea ting

custom Flex controls with Dégrafa I I ' Desktop 2.0

with Adobe AIR I I ' Flex and Grails 11

1.4 Summary 11

V

www.allitebooks.com

http://www.allitebooks.org

X C O N T E N T S

Beginning with Java 12

2.1 Working with AppFuse 13

2.2 Generating the application structure with Maven 13
Download and install the JDK 14 • Download and install

MySQL 15 • Download and install Maven 15 • Create a

Maven multimodule project 16 1 Maven provides a build able

project 18* Running the NexBugs web application 19

2.3 Build the model objects 20

2.4 Build the DAOs 23

2.5 Build the services 24

2.6 Wiring things together with Spring 2V

2.7 Constructing the web tier 28
Building Struts 2 action classes 28 • Editing the issue

menu item 30 • Adding JSP resources 30 • Adding

property resources 33 • Configuring the struts.xml 34

Configuring Hibernate 36

2.8 Summary 37

Getting rich with Flex 38

3.1 Generating the application structure 38

3.2 Configuring the flex-bugs-ria module 40

3.3 Configure Maven for the flex-bugs-web module 42

3.4 Adding a wrapper for our SWF 44

3.5 "Hello World!" in Flex 44

3.6 Developing the FlexBugs application 46
Introducing ViewStack 47 * HeaderView 49 • FooterView

Master view 52 • Detail view 53 • Commen ts view 54

3.7 Laying out the components 55

3.8 Creating a pop-up component 57

3.9 The finished application 58

3.10 Summary 59

Connecting to web services 60

4.1 Model View Presenter 61

4.2 Web services in Flex 62

4.3 Dispatching and handling events 63
Creating a custom ei>ent, 63 • Event, dispatching 64

www.allitebooks.com

http://www.allitebooks.org

C O N T E N T S vii

4.4 Creating Issue and Comment transfer objects 65

4.5 Enhancing the master view 66
Creating a Presenter for the master view 67 * Creating an

Issue Model 69 • Updating the master view 70

4.6 Enhancing the detail view 72
Creating a DetailPresenter 72 • Updating the

IssueModel 75 • Updating the detail view 76

4.7 Enhancing the comments view 77
Creating a comments presenter 77 • Creating a

comment model 80 • CommentView 81

4.8 Adding a pop-up form for editing comments 83
Updating the CommentPresenter 83 • Updating the

CommentModel 85 • Creating the pop-up

component 85* Updating CommentsListView 87

4.9 Summary 88

PART II BLAZEDS REMOTING 89

5 BlazeDS remoting and logging 91

5.1 Introducing BlazeDS 92

5.2 Getting BlazeDS 93

5.3 Building a BlazeDS configuration Maven module 94

Configuring BlazeDS 96
5.4 Exposingjava services to Flex remoting 100

Web module configura tion upda tes 100 • Expose AMF

remoting destinations 102

5.5 Connecting to Java with BlazeDS 104

5.6 Logging 105
BlazeDS logging 105 • Built-in BlazeDS benchmarking 107

5.7 Summaiy 110

Flex messaging 112

6.1 Setting up BlazeDS for messaging 113
Modifying the: services-config.xml 113 • Updating the

webapp server-side module 114

www.allitebooks.com

http://www.allitebooks.org

viii C O N T E N T S

6.2 Modifying the client for messaging 117
Creating a ChannelSetFactory 117 • Changing

the IssueModel 118

6.3 Summaiy 120

PART III THE JOYS OF FLEX ON JAVA 121

7

8

Securing and personalizing your application 123

7.1 Authentication 124
Modifying the ChannelSetFactory 124 • Creating a

UserEvent 125 • Creating a login panel 126 • Creating a

login Presenter 128 • Creating a login manager 130

Upda ting the header 131 • Enabling security for Flex 132

7.2 Authorization 133
Hex Spring Security primer 133 • Spring Integration

Security 135 • @Secured annotations 135

Overriding default security settings 137 • Updating

IssueModel and CommentModel 138

7.3 Personalization 139
Adding the• UserServiceto the: LoginModel 140 • Updating

the LoginPresenter 141 • Updating the DetailPresenter

and CommentsListPresenter 142

7.4 Summaiy 145

Charting with Degrafa 147

8.1 Drawing in Flex 148

8.2 Common Degrafa concepts 149

8.3 Creating a pie chart for fun and profit 150
New custom ei>ent. 151 • PieChart component 152

PieChartSlice 154 • Custom ItemRenderer 155 • Presenter

for the PieChart 156 • Model for the PieChart, 158

8.4 Adding your pie chart to the application 159
Updating the GraphView 159 • Creating a Presenter for

the GraphView 161 • Creating the graph model 163

8.5 Beyond the example 165

8.6 Summaiy 167

www.allitebooks.com

http://www.allitebooks.org

X C O N T E N T S

Desktop 2.0 with AIR 168

9.1 Creating a common library 169
Creating an SWC project 170 ' Extracting common

classes 172 ' Extracting a MainCanvas 172

9.2 Creating the AIR application 174

9.3 Packaging the AIR application 176
Crea ting a project to package the AIR app 177 * Genera ting

a certificate 177 * Adding icons 178 * Adding the AIR

configuration 179 * Configuring the package build 180

9.4 Distributing the AIR application 186
Assembly configuration 187 * Updating the

build 187 * Creating a download badge 189

9.5 Summaiy 191

Testing your Flex application 192

10.1 Unit testing and TDD 193

10.2 Updating the project 194

10.3 Testing the Presenter 196
Testing refresh issues 198* Issues result event

test 199* Testing issue removed 200

Remove issue result test 201

10.4 Testing the View 202
Testing the issues set property 203 * Testing resetlssueGrid

function 204 * Testing refresh issues button click 204

Testing DataGrid item select 205

10.5 Testing the Model 206
Mocking and Remote-Object 207 * Testing

getlssues 209 * Testing get single issue 209

10.6 Continuous integration with Hudson 210
Downloading and installing Hudson 211 * Configuring

Hudson 211 * Con figuring a Hudson job 214

10.7 Summaiy 217

Flex on Grails 218

11.1 Why Groovy and Grails? 218

11.2 Downloading and installing Grails 219

www.allitebooks.com

http://www.allitebooks.org

X C O N T E N T S

11.3 Creating the Grails application 220
Create the Contact domain model 221 • Create the

ContactService 222 • Bootstrap sample data 223

11.4 Getting rich with Flex 223
Installing the Flex plugin 223 • Creating the domain classes

in Flex 224 • Creating the Flex application 225 • Adding the

RemoteSeruice 228 • Putting it all together 228

11.5 Install the Grails JMS and ActiveMQ plugins 229

11.6 Add the ActiveMQ Spring bean 230

11.7 Subscribe the Flex client to the Grails JMS service 230
Update the services-config.xml 231 • Modifying the

ContactService 232 • Update the Main, mxml 233

11.8 Summary 234

index 235

www.allitebooks.com

http://www.allitebooks.org

foreword
Every ten to fifteen years there is a radical software paradigm shift. Many of us experi-
enced die last shift as die web gained momentum and software was rebuilt for a new
and game-changing deployment model. Today we are in die midst of anodier great
software paradigm shift. User and business needs now require software to be more
usable, extensible, and portable.

Rich Internet Applications (RIAs) represent a new generation of software. As the
name implies, RIAs provide users with a rich and interactive experience. At the same
time, they offer the ease of deployment that made early web applications so successful.
RIAs are the future of software because they combine the strengths of the web deploy-
ment model with the full client capabilities of thick-client software.

Since 2004 Adobe Flex has been die most prolific toolkit for building RIAs. A pri-
mary advantage of Flex for RIA development is that it integrates easily with any back-
end technology. By providing native XML, SOAP, and Data Remoting capabilities, Flex
enables developers to build rich new UIs on top of existing services. For Java develop-
ers this combination is especially compelling because many Java systems have already
embraced service-oriented architectures with SOAP Web Services, Spring, or one of
numerous other technologies.

The union of Java on the backend and Flex on die frontend is so powerful that
hundreds of thousands of developers have already embraced this new paradigm to
create better software. You've probably picked up this book because you want to do
the same tiling—build better software. We all want to build software that we are proud
of—software that users will love. Flex on Java will teach you how to do just that.

xi

www.allitebooks.com

http://www.allitebooks.org

xii F O R E W O R D

There are many aspects to building great software. If software looks sexy but does

not per form well or is not maintainable, its value is diminished. What I love about this

book is that it teaches a holistic approach to building great software with Flex and

Java. As you would expect, you will learn how to create rich data visualizations. But,

just as importantly, you will learn how to efficiently move data between the client and

server using BlazeDS, set up unit tests, add security to an application, and more. These

are the problems we have to solve in real software. Knowing how to address these fun-

damental issues frees us to focus on what matters most—creating software that users

will love.

These are exciting times for software developers! Today we are building the next

generation of software—a generation that will be remembered as the first to be

usable, beautiful, and truly helpful. Flex on Java empowers you to create that future! I

look forward to seeing the future that YOU build with Flex and Java.

JAMES WARD

TECHNICAL EVANGELIST FOR FLEX AT ADOBE

www.jamesward.com

http://www.jamesward.com

preface
If you'd asked me a few years ago if I 'd ever write a book, I would have laughed at the
thought. All through high school and college I loathed writing anything more than a
short answer, and when it came to writing papers, I was usually one of the people ask-
ing about the minimum length required for a passing grade. Now here we are, thou-
sands of words and hundreds of pages later, and BJ and I have survived writing our
first book, twice.

So how did I go from absolutely loathing writing to being willing to dedicate so
many nights and weekends to writing this book? Since the first 1.0 release of the Flex
framework, I've been a fan. I discovered Flex while I was distaining HTML/JavaScript
and browser compatibility issues. I was trying to prototype a form-heavy application
with complex business rules and validation, struggling with goofy layout issues and
JavaScript errors, and was looking for a better solution. Although it's possible to make
rich web applications using HTML and JavaScript, it's easy to make ugly ones. Most of
the nice AJAX frameworks we take for granted today didn't exist at the time, and many
developers had absolutely no idea what AJAX was.

One night, while searching for an alternative, I ran across this excellent framework
that allowed you to write Flash-based applications using a declarative syntax and a pro-
totyping scripting language similar to JavaScript, without the cross browser issues
because it all ran in the Flash Player. So I picked up a copy of Developing Rich Clients

with Macromedia Flex by Steven Webster and Alistair McLeod and immediately fell in
love with the Flex framework. There was only one problem: it was expensive. It was
going to be a hard sell for any but the largest projects.

xiv P R E F A C E

Flex effectively dropped of f my radar as billable projects took precedence, and I

didn't have the time or desire to work on any side projects. Then in 2007 Adobe

announced that it would open source the Flex framework and portions of the Live-

Cycle Data Services server components as an open source project of its own called

BlazeDS. When I heard this announcement I figured it was time to start learning Flex

again. I had discovered a self-published book called Flexible Rails, about integrating Flex

with Ruby on Rails, and because I was already learning Ruby on Rails, this book was a

good choice. So I purchased the PDF and a few short weeks later the author, Peter Arm-

strong, announced that Manning Publications was going to publish the book.

Being a Java developer for most of my professional career, I began to think about

the lack of good books on integrating Flex with a server-side backend. There was a

plethora of Flex books available on the market; however most were written f rom the

perspective of a Flash developer and used techniques that would make any seasoned

Java developer cringe. Few discussed connecting to either LiveCycleDS or BlazeDS. So

I proposed the idea of writing a book on Flex f rom a web developer perspective to

Michael Stephens at Manning.

The book took many shapes. At one time, we contemplated writing a book on both

Java and .NET with Flex; we finally settled on an early version of what you now hold in

your hands. The main premise of the book is that you can add a Flex frontend to an

existing application. The first version of this book attempted to use an existing open

source Java web application as its sample application. When we were about two-thirds

of the way through the book, we realized that the sample application wasn't working

as intended. We 'd planned to have a sample application that would be more than just

a throwaway. We wanted the readers to develop an application that would incorporate

techniques they could apply to their everyday work, but not something so complex

that it would distract readers f rom what we were trying to accomplish—demonstrating

Flex and Java.

After much reflection and discussion on the sample application, we decided to

scrap it and use AppFuse, an open source platform for quickly building Java web appli-

cations, as the basis for our application. This allowed us to construct a sample applica-

tion in just one short chapter. AppFuse provided many functions out of the box that

we would have otherwise had to spend time discussing and setting up. Unfortunately

this also meant that much of what we had already written had to be changed, but I feel

this was a necessary change for the better.

Here we are, two years later, with a final product that I can proudly say I helped to

write. I hope that you enjoy this book and that it helps you in your journey of integrat-

ing Flex into your everyday work.

JEREMY ANDERSON

acknowledgments
This book would not have been possible if not for the hard work of many people.

We'd like to thank everyone at Manning, especially Maijan Bace and Michael Ste-
phens, for giving us the opportunity to write—and rewrite—the book. Without the
hard work and dedication of our development editors, Nermina Pascal-Miller and
Sebastian Stirling, this book would not have happened. Thanks for your guidance
and encouragement. Thanks to Karen Tegtmeyer, our review editor, for arranging
the peer reviews and to Stephen Hong, for helping to market and promote the book.
The rest of Manning's staff was patient and supportive and provided us with invalu-
able assistance to help make this book a success, in particular our copyeditor Betsey
Henkels and our proofreader Elizabeth Martin.

Special thanks go to Richard Dammkoehler for doing such an excellent j o b in his
technical review of the final manuscript shortly before it went to press.

We'd also like to express our thanks to Michael Kimsal for publishing a two-part
article based on the Grails chapter of this book in the excellent GroovyMag.

Thank you to Matt Raible for giving us AppFuse, which allowed us to build a sam-
ple application in just one short chapter, and for promoting our book in his travels.

Thanks to the Adobe team for giving the Flex framework, BlazeDS, and more to
the open source community.

Thanks to Marvin Froeder (also known as Velo) for his hard work in developing
the FlexMojos Maven plugin, which we use extensively throughout the book.

Thank you to Giacomo "Peldi" Guilizzoni, founder of the outstanding Balsamiq
Mockups tool (a fine example of an Adobe AIR application) for providing us with

xv

xvi A C K N O W L E D G M E N T S

licenses. Many of die mockups you see as illustrations throughout this book were cre-
ated using this tool.

Thanks to the following reviewers who read die manuscript at different stages of its
development and contributed invaluable feedback: Jeremy Flowers, Sopan Shewale,
Rick Evans, Christophe Bunn, Phil Hanna, Nikolaos Kaintantzis, John Griffin, Doug
Warren, Brian Curnow, and Peter Pavlovich. Thanks also to everyone who contributed
on die MEAP forum.

Last but not least, thank you to James Ward for contributing the foreword to
our book.

Jeremy Anderson
Fd like to thank God for blessing me with the talent necessary to write this book.

Second only to God is my wife Karla, who had the patience to see me through this
and keep me on task. To my children, Emily and Isaac, thanks for allowing Daddy to
hide in his basement office to write. Without their support, understanding, and sacri-
fice, this book would not have been possible.

Next, big thanks to my coauthor and partner in crime, BJ. If he hadn't jo ined me
on this venture, there might not have been a Flex on Java.

Thanks to everyone at Pillar Technology, especially Gary Gentry, Bob Meyers, Chris
Beale, Patrick Welsh, Matt VanVleet, Rich Dammkoehler—and everyone else who pro-
vided support.

Thank you to Carl Erickson and everyone at Atomic Object for helping me solidify
my interpretation of die Passive View pattern in the sample application.

BJ Allmon
Thanks to my God and Father in heaven who is the author of life. Your love
endures forever.

I 'm humbled by the patience and die love demonstrated to me by my wonderful
bride Sarah and our kids Hannah, Zacharee, Elliot, and Jennessee. Thank you for
allowing me to steal precious time away to work on this book. I love you so much!

Without my coauthor Jeremy Anderson's talent and thoughtfulness, I wouldn't
have been able to contribute to this project. Thank you Jeremy for your hard work in
leading this project!

Others who have helped me along in myjourney include Bob Myers, Christopher
Judd, Kevin Smith, Charlie Close, Gary Gentry, Richard Dammkoehler, Matt Van Vleet,
Randy Thomas, and Dan Wiebe; die many talented developers at Pillar Technology
Group including Mark Flickinger, Ankur Gupta, Beth Seabloom, and Shawn Steinb-
runner; the wonderful staff at Mettler-Toledo; die entire staff at Click4Care; the Dela-
ware City Vineyard, Vineyard Church Delaware County, Vineyard Columbus; and my
extended family.

about this book
There are many books available that are purposed for teaching technology topics
inside and out. These books are necessary for understanding how to use a technology
correctly but many times are not meant to teach you what a normal day of a develop-
ment would look like using that technology. This book was written to demonstrate prac-
tical development with two powerhouse technologies, Flex on Java. It will guide you in
building your own applications that scale for real-world business needs, leaving you
feeling equipped with the fundamentals that are pertinent to the software feature or
task at hand.

Throughout the book, the fundamentals of building testable and rich UIs that
communicate with a powerful server side are brought together in bite-sized chunks.
The topic of building a robust Flex client that sits on top of a Java server-side applica-
tion will be discussed throughout as it pertains to the integration of the two and pass-
ing data back and forth.

Along with the main topic of integrating Flex with Java, topics such as Maven,
Spring integration, adding security and personalization, charting, messaging, AIR
desktop applications, logging, continuous integration, AppFuse, and even Flex on
Grails will be demonstrated.

Who should read this book
This book is geared toward developers with a need for creating rich applications, on a
budget, with Flex 4 and Java. All the tools we use for our examples are open source or
free and very proven.

xvii

xviii A B O U T T H I S B O O K

This book assumes familiarity with software development in general, specifically
Flex and Java. Though it was written with the intent to teach integration techniques
for Flex and Java, not language fundamentals, it was done so to make it easy for even
Flex or Java beginners to get rolling quickly with both.

How the book is organized
Flex on Java is made up of three parts:

• Part 1 Getting started

• Part 2 Strengthening the backend

• Part 3 Going above and beyond

We start off by introducing the two technologies and building a sample Java applica-
tion you can play with. We go on to build a Flex client for the Java application that ties
into some Java web services. Part 1 covers the first four chapters.

In chapters 5 and 6 we dive deeper into backend integration with Java on the
server side. Part 2 introduces topics that allow Flex to connect to Java through object
remoting, logging, and messaging. Using the Spring Framework for Flex integration is
very powerful and we demonstrate how that can be done.

Part 3, chapters 7-11, covers topics that are of f the beaten path, such as security
and personalization, building graphs, desktop development with AIR, unit testing, and
building a Flex and Grails application.

Code conventions
All source code in listings or in text is in a f i xed-w id th font l i k e th is to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing. At times, only the important segments of a code listing are displayed on the
page. The source code for all of the examples in full can be downloaded from the pub-
lisher's website atwww.manning.com/FlexonJava.

http://www.manning.com/FlexonJava

Author Online
The purchase of Flex on Java includes free access to a private forum run by Manning
Publications where you can make comments about die book, ask technical questions,
and receive help from die autiiors and otiier users. To access and subscribe to die
forum, point your browser to www.manning.com/FlexonJava. This page provides
information on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct in the forum.

Manning's commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and die autiiors can
take place. It's not a commitment to any specific amount of participation on the
part of the autiiors, whose contribution to the book's forum remains voluntary
(and unpaid). We suggest you try asking die authors some challenging questions,
lest their interest stray!

The Author Online forum and die archives of previous discussions will be accessi-
ble from die publisher's website as long as the book is in print.

xix

http://www.manning.com/FlexonJava

about the authors
JEREMY ANDERSON is a software developer for Pillar Technology Group, an Agi le con-

sulting f irm in the Michigan and Ohio Valley region. He is a self-proclaimed autodi-

dact, constantly tinkering with cutting edge technologies such as Groovy, Grails, and

Flex. He's been developing web-based applications on the JVM in one shape or

another for over five years. When he's not sitting behind a keyboard hacking away at

code, you can usually f ind him out on the single-track on his bike or sometimes even

on foot. He sometimes has time to update his blog http://blog.code-adept.com.

BJ ALLMON is a software developer for Pillar Technology Group. He enjoys participat-

ing in local user groups and conferences and becoming a more seasoned software

practitioner. When he is not dabbling in software development he can be found

spending time with his family of six and playing the six-string.

xx

http://blog.code-adept.com

about the cover illustration
The figure on the cover of Flex on Java is a "Soldier." The illustration is taken from a
collection of costumes of die Ottoman Empire published on January 1, 1802, by Wil-
liam Miller of Old Bond Street, London. The tide page is missing from die collec-
tion and we have been unable to track it down to date. The book's table of contents
identifies die figures in both English and French, and each illustration bears die
names of two artists who worked on it, both of whom would no doubt be surprised
to find dieir art gracing die front cover of a computer programming book...two hun-
dred years later.

The collection was purchased by a Manning editor at an antiquarian flea market in
the "Garage" on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and die transaction took place just as he was packing up his stand for
the day. The Manning editor did not have on his person the substantial amount of
cash that was required for the purchase and a credit card and check were both politely
turned down. Witii die seller flying back to Ankara tiiat evening the situation was get-
ting hopeless. What was die solution? It turned out to be notiiing more than an old-
fashioned verbal agreement sealed witii a handshake. The seller simply proposed that
the money be transferred to him by wire and die editor walked out witii the bank
information on a piece of paper and the portfolio of images under his arm. Needless
to say, we transferred die funds die next day, and we remain grateful and impressed by
this unknown person's trust in one of us. It recalls something that might have hap-
pened a long time ago.

www.allitebooks.com

http://www.allitebooks.org

xxii A B O U T T H E C O V E R I L L U S T R A T I O N

The pictures from the Ottoman collection, like the other illustrations that appear
on our covers, bring to life the richness and variety of dress customs of two centuries
ago. They recall the sense of isolation and distance of that period—and of every other
historic period except our own hyperkinetic present. Dress codes have changed since
then and the diversity by region, so rich at the time, has faded away. It is now often
hard to tell the inhabitant of one continent from another. Perhaps, trying to view it
optimistically we have traded a cultural and visual diversity for a more varied personal
life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life of two
centuries ago, brought back to life by the pictures from this collection.

Part 1

Laying the foundation

J L a r t 1 lays the foundation of Flex on Java by touring Flex, Java, and other sup-
porting technologies that you will use throughout the book.

In these first four chapters, you will build a sample Java web application to
use with numerous code examples throughout the book. The Java web applica-
tion is built using a service-oriented architecture (SOA).

After making a whirlwind tour of Flex (chapter 1), your first step (chapter 2)
is to create a Java application that will expose web services you will later use to
connect to them from a Flex client.

In chapter 3, you will create a Flex application and words like AppFuse, Flex
Mojos, and FNA enter your vocabulary.

The focus of chapter 4 is to continue building the client-side application and
you will begin building a Flex client that will connect to the Java web services
that you will choose to expose.

Some Flex iimh
your JoBi?

This chapter covers
• A brief h is to ry of Java and Flex

• A whi r lw ind tour of Flex

• M X M L and A c t i o n S c r i p t

In 1995, Sun introduced the first Java platform and gave birtii to die applet which
allowed Java applications to run inside die browser with rich functionality and all
the benefits of die Java framework, including connecting to die server side. The
applet became hugely popular for a couple of years before its popularity waned
mainly because of problems surrounding die browser plugin.

Macromedia embraced the idea of having a dedicated runtime environment for
the browser, like die Java applet, and in 1997 released die Flash Player. Adobe has
since taken over die rights to die Macromedia suite of products and helped to
evolve what is now die Flex framework and development API.

Building features in an applet from scratch or even witii other rich imple-
mentations can be expensive compared to die simplicity of using die Flex frame-
work. Figure 1.1 displays a simple Java applet data grid next to a Flex data grid.
The Flex data grid right out of die box not only looks better tiian die applet, it's

3

Spreadsheet

27 CHAPTER 1 Some Flex with your Java ?

kim. a IIHI'
-icDac d I .. I — Euntpb

R**«. l.r^^y Territory Rep Actual EltiAUl*
T & Sevthw**t

V &A
<0000
10000
aoooo

k|Q South«*tt M m Barbara J-ennm-gp 36865 <0000
10000
aoooo

Q *Outhw»»t
¥ L3 Central California

[J Seuttivwit
* U Nevada
• Northern California

Central California
Dana Hmn
Jo« Smith

29885
291X4

<0000
10000
aoooo

• _j Southern Cahfornu

Figure 1.1 Comparing a Java applet DataGrid (left) to a Flex Advanced DataGrid

much more functional with much less code overhead. The Flex DataGrid and

AdvancedDataGrid components provide built-in support for tasks such as sorting,

dragging columns, row highlighting, data nesting, and styling.

The Flash runtime provides lightweight graphics and animation capabilities in

manageable file sizes, making the player hugely successful across OSs and browser

platforms. The Flash runtime allows for rich applications to have true stateful experi-

ences and a high level o f security.

NOTE A stateful experience with Flex means that the client (Flex) will man-
age or remember everything it needs to without having to: submit to the
server side, update and manage a session or request through HTTP, and
refresh the client side with updated data after a submit with data f rom the ses-
sion or request.

In general, Java developers have successfully leveraged the principles o f object-

oriented programming (OOP) to build extremely stable, testable, and extensible

applications. Flex has become a rich internet application (RIA) solution for Java

developers because it not only bridges the gap between a solid server side and a

great UI, it is also built on top of OOP principles such as encapsulation, inheritance,

and polymorphism.

These advantages benefit other technologies besides pure Java, as you'll see in

chapter 11, when we demonstrate Flex integration with Grails, one of the hottest web

development platforms. We' l l build a simple contact management system and learn

how to get roll ing with Groovy and Grails development. Integrating Flex with Grails is

in many respects easier than integrating Flex with Java.

Flex development is now bolstered by many of the benefits of Java-like frameworks

for per forming unit testing, functional testing, and continuous integration. The com-

bination of Java and the Flex Software Development Kit (SDK) allows developers new

to the business to start building applications immediately.

A whirlwind tour of Flex 5

A thriving Flex open source community can o f fer Java developers GUI components

as simple and as complex as required. Most of tiiese custom components extend stock

Flex objects found in die Flex SDK. Adobe made Flex 3 open source, and it now has

numerous community resources. The Flex SDK witii Adobe's built-in charting compo-

nents is still commercial.

We have chosen Flex 4 witii Java because of the duality of a rich and stateful

client in conjunction witii a powerful server side. Also, Java is broadly used in die

mainstream and is die existing server-side platform for many Flex migration proj-

ects. Although there are alternative ways for doing RIA development, Flex will most

likely prove to be the superior RIA framework because of die simplicity and test-

ability it provides to developers. We ' re now ready to discuss some of Flex frame-

work features.

1.1 A whirlwind tour of Flex
It's time to take a peek at the components we'l l use throughout this book. We

won't go into too much detail about the components as that is beyond die scope of

this book. Instead, we' l l focus on die usage of components and framework in real-

world development.

1.1.1 MXML and ActionScript
At die heart o f every Flex application you'll f ind a combination of MXML files (XML

files with the .mxml extension) and ActionScript classes. These two components are

the basic building blocks of die Flex framework. The Flex compiler takes these files

and creates a small web format (SWF) file, which is executed in the Flash Player.

M X M L

MXML is an XML-based markup language similar to HTML/XHTML. The MXML syn-

tax, used to declaratively def ine your application, has numerous tags for common UI

objects, such as text input fields, radio buttons, and drop-down lists. It also has many

UI components and layout components that are common in rich client development,

such as menu bars, tabbed panels, data grids, and navigational trees. In addition, it's

possible to build custom components that extend existing ones or produce something

completely dif ferent like the f low visualization chart. Figure 1.2, which was made with

Degrafa, shows this function.

In chapter 8 we'l l be covering the Degrafa drawing API for Flex to create a pie

chart for a sample application.

ACTIONSCRIPT

ActionScript, and more specifically ActionScript 3.0, is a dynamic scripting language

based on die ECMAScript Language Specification, Third Edition. It is composed of

the language specification and die Flash Player API. It is similar to JavaScript in syntax,

so it should look familiar to any experienced web developer. Unlike JavaScript, Action-

Script is compiled into byte code before being executed, instead of being parsed and

interpreted at runtime.

6 CHAPTER 1 Some Flex with your Java ?

Figure 1.2 Flow visualization chart

NOTE Dozens of user controls, powered by ActionScript, are available witii
Flex out of the box. As we demonstrate later in tiiis book, existing compo-
nents can be extended to create your own custom components. Because your
application will always run inside die Flash Player, you don' t have to worry
about cross-browser compatibility issues either. In chapter 8 we'l l go over how
to utilize custom components in your Flex applications using ActionScript for
die purpose of reuse.

ActionScript is a dynamically typed language similar to Pytiion or Groovy and does its

type checking at runtime instead of at compile time. You have die option of directing

die compiler to per form type checking at compile time by enabling strict mode on die

compiler, but tiiis is not a good substitute for a comprehensive set o f unit tests.

The Flex SDK and Flash Player are die two key elements in making a Flex applica-

tion come to life.

1.1.2 The Flex SDK
The Flex 4 SDK comes in two flavors: die Free Adobe Flex SDK and the Open

Source Flex SDK. Both contain everytiiing you need for developing, optimizing, and

debugging Flex applications. The SDKs include die ActionScript and MXML compil-

ers, tools for creating JavaDoc-like documentation, and die Flex Framework. The

only dif ference between die two is tiiat die Free Adobe Flex SDK contains addi-

tional components that enhance the Flex application, such as tools for advanced

font encoding, tools for packaging Adobe Integrated Runtime (AIR) applications,

and die Flash Player. These extra components are not open source but have been

made available by Adobe. To learn more about the Flex SDK downloads visit http://

opensource.adobe.com/wiki/display/flexsdk/downloads.

1.1.3 Flash Player 10
Of course none of tiiis could be possible without the Flash Player 10 runtime. It is the

heart and soul o f every Flex application. Although Flash Player itself is not open

Creating an application in Flex 7

source, it has been free since its inception and can be found on nearly every computer
in the world. Flash Player gives your Flex applications the ability to execute in the
same manner and look the same no matter what browser your application runs in.
Because your Flex application runs inside Flash Player, you do not have to be con-
cerned with cross browser issues.

Adobe contributes ActionScript engine source to Mozilla
In November 2006, Adobe contributed the source code for its Act ionScr ipt virtual
machine to the Mozilla foundation, spawning the Tamarin project. Tamarin will sup-
port ECMAScr ipt Edition 3 and be integrated into the SpiderMonkey project, Mozil-
la's next generation JavaScripting engine to be included with future versions of
Mozilla (https://developer.mozi l la.org/en/Tamarin) .

Because of the widely popular Flash Player and a powerful open source SDK, Flex is a
great fit for Java developers building rich clients.

Now comes the part we've all been waiting patiently for—we're going to create a
"Hello World!" styled application in Flex.

Creating an application in Flex
Let's start by modeling our directory structure, shown
in figure 1.3, after the Maven default project struc-
ture. This will prove useful because we're using Maven
to build the FlexBugs sample application in chapter 2.

The sample application can be placed in a proj-
ect directory such as C:\de\\projects for Windows, or
/home/<YOUR_USERNAME>/development for Linux.

The main source code location for our "Hello
World!" sample application will be contained in the
src/main/flex folder. Because ActionScript follows a Figure 1 3 The folder structure for

pattern similar to Java for packages, if your Action- our "Hello World!" application is

Script class belongs to the com. example package, the formatted for the Maven build

source for this class will be contained in the src/main/
flex/com/example folder. The src/main/resources
folder should contain any resources that belong to the application but are not com-
piled with the sources. For example, any configuration files or message bundles belong
in the resources folder. The src/test/flex and src/test/resources folders are identical
to the src/main/flex and src/main/resources folders respectively, except these folders
are for the test code of the application.

For the purpose of introducing Flex code, listing 1.1 demonstrates a trivial exam-
ple of a simple Flex application. We're going to create a single .mxml file that will
print the words "Flex 4 is Fun" as seen in figure 1.4.

a . J helloviofldaop
- i j src

1= roain

O flex
resources

B Q test
Q flex
Q resources

https://developer.mozilla.org/en/Tamarin

31 CHAPTER 1 Some Flex with your Java ?

Figure 1.4
A simple Flex application

As you can see there's nothing fancy happening here and the code presented in list-

ing 1.1 is also simple.

Listing 1.1 Main.mxml

<?xml version= "1.0" encoding= "utf-8" ?> < • - © XML document declaration
<s:Application <—.

xmlns : fx= "http: //ns. adobe. com/mxml/2009 " Q MXML application root
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>

<s:VerticalLayout />
</s:layout>
< fx:Style>

.helloText {
padding-top:2 5px;
padding-left:25px;
font-weight: bold;
color: haloBlue;

}
</fx:Style>
<s:RichText styleName="helloText">

<s:text>
Flex 4 is Fun

</s:text>
</s:RichText>

</s:Application>

If you've ever done any web development, this should look familiar. MXML, like

XHTML, is nodi ing more tiian XML. A t the beginning of die file you'll see die stan-

dard XML declaration Q . Next you'll see die root node witii the def ined xml

namespaces Q , which in most Flex applications will be witiiin die <mx: A p p l i c a t i o n

element. In chapter 3, we' l l evolve this example by creating a nice Flex application. In

chapter 9, where we talk more about Adobe AIR, we' l l explain that die root node for

an AIR application is typically <mx:WindowedApplication>. Inside die <mx:Appl ica-

t ion> element is a style element Q and a single RichText element Q witii its text

attribute set to "Flex 4 is Fun".

Finding the right tools and patterns
As diis book's tide suggests, Flex on Java will focus on Flex integration with Java. Witii

that in mind, we diligently searched for die perfect ingredients to equip you with die

right tools for real-world scenarios without overcomplicating tilings.

| File : ///C :/D ocum e.. .n-debug/t est.h t m I

Flex 4 is Fun

Flex ess style support

1 » RichText element

Finding the right tools and patterns 9

We ' re not focusing on teachingjava, but we build a simple Java web application in

chapter 2. We chose frameworks that should ease the Java learning curve necessary to

get a sample application up and running fast. We won't dive deep into every part o f

Flex development. Instead, Flex on Java will provide you with simple yet powerful

examples of integrating the two technologies.

Therefore, we'l l be tackling in detail the topics outlined in the sections that follow.

1.3.1 Building a Flex interface
Often developers begin building naked UI components without being connected to a

backend server and database. A disconnected Flex client can take advantage o f mock

data and allow developers to easily prototype the UI without the complexity of exter-

nal dependencies.

This approach is demonstrated in chapter 3 where we create the beginnings o f a

rich UI for the FlexBugs sample application shown in figure 1.5.

1.3.2 Integrating with web services
What may seem unfamiliar to you in this chapter is that when we connect to the server

side we'l l be model ing our application using the Model-View-Presenter (MVP) design

pattern instead of employing the typical approach of using the mxml tag element that

doesn't scale well for most applications. Using the MVP approach, all web services calls

FlexBugs

| Retrain US! |

Add Ndw Convrtdfil Ed* UI Da;e» Commam .

Shirty Saius

Lo»n j

10:

Project [
De&CfipDon:

OsiaiitVtew (Gfa&ft Vte*

i
I

Rftpor»3 By
Reported On:
Aasiflned To:

Efrbtiaiad HOLTS:

Sovony |

J 3

Acdisfrue | Can» Cf-anges j

Copyr«ill C 2009 Fie* On Java

Figure 1.5 The FlexBugs sample Flex application

10 CHAPTER 1 Some Flex with your Java ?

will be wrapped in a Mode l object written in ActionScript. This makes changing die

implementation less painful.

Connecting to server-side services, event dispatching, and event handling are all

diings diat are critical to any Flex business application and are built into the core of

die framework. That's why in chapter 4 we'l l demonstrate connecting to die Java

server side and how to leverage the powerful Flex API for connecting to web services.

Plenty of literature, including die Flex online documentation, covers the typical

approach of connecting to services. In this book, we' l l create clean interfaces and

views as we build a well-designed Flex client that will scale on demand.

1.3.3 Integration with BlazeDS, logging, and messaging
Until fairly recently if you wanted to connect your data-driven application to a Java-

based backend, your choices were fairly limited. You could expose your Java services

as XML web services, eitiier as SOAP-based or RESTful and connect to d iem tiiis way,

write your own custom marshaler/unmarshaler based on the Adobe AMF protocol,

or pony up big bucks for a license for Adobe 's LiveCycle Data Services. With die

release o f Flex 3, Adobe decided to spawn BlazeDS, an open source project that con-

tains much of die functionality specific to connecting Flex to a Java-based service.

Integrating Flex witii Java is what tiiis book is all about. That's why chapter 5 will

demonstrate furtiier how to connect a Flex client more direcdy to die server side

using die open source BlazeDS framework. BlazeDS provides a mechanism for allow-

ing Flex to call methods on Java objects through binary serialization with die Action

Message Format or AMF. This is much faster tiian what's possible witii web services or

XML/HTTP(s) because it uses real objects and doesn't have to marshal XML.

Because logging is a critical component o f any application and development envi-

ronment, chapter 5 also covers BlazeDS logging in detail.

Real-time messaging is an important feature in most enterprise applications. Chap-

ter 6 will demonstrate how to develop Flex applications diat take advantage o f simple

polling; in chapter 11 we'l l discuss how to connect using Java Message Service (J MS).

The Flex framework provides an API diat enables distributed communication witii the

server side or communication between clients that is loosely coupled and asynchro-

nous. Flex has both a powerful and simple API for handling messaging.

1.3.4 Securing Flex applications
Many technical books skip security, but it's always the elephant in die living room

when gathering requirements for an application. It's important to understand die

security issues of Flex both to decrease risk and to minimize die cost of what can be

one of the most expensive features in any business application. Chapter 7 will demon-

strate building authentication, authorization, and personalization with Spring Secu-

rity (Aceg i) integration.

www.allitebooks.com

http://www.allitebooks.org

Summary 11

1.3.5 Creating custom Flex controls with Degrafa
Custom components are first class citizens inside the Flex framework, and many

ActionScript frameworks take advantage of this. One that really stands out is Degrafa,

which is a declarative graphics framework that provides a suite of graphics classes.

Degrafa is open source and can be used to build robust charts, tools, and other graph-

ical elements with less ef fort and complexity than other frameworks.

We' l l create a custom pie chart component that will be appropriately tied into our

sample application in chapter 8. Whi le we're at it we' l l also demonstrate creating a

DataGrid ItemRenderer and per form dynamic object creation.

1.3.6 Desktop 2.0 with Adobe AIR
A business sometimes can't live with the web alone, and when a desktop client is the

best way to go, Flex goes beyond the web with Adobe AIR. A Flex application can easily

be ported to a desktop environment with AIR. This is especially easy for well-designed

applications that allow for optimal reuse of code. Chapter 9 will demonstrate how to

allow a Flex application to live in two worlds—by demonstrating how to package and

distribute an AIR application.

1.3.7 Flex and Grails
The Groovy programming language is the first dynamic scripting language to be

adopted as a standard through the Java Community Process 0CP). The specification

for Groovy can be found under Java Specification Request (JSR) 241 at http://jcp.org/

en/jsr/detail?id=241. Groovy supports powerful features that can be found in other

languages like Python, Ruby, and Smalltalk; Grails is a full development stack for

Groovy that provides a rapid development environment for both server side and the

web that resembles and rivals the Ruby on Rails (RoR) framework. With Flex and

Grails you can quickly create a dynamic application that runs on the JVM with much

less effort. Flex integration with Groovy and Grails is covered in chapter 11.

1.4 Summary
Whether you're experienced or inexperienced in building web or desktop applica-

tions with Flex on Java, this book will teach you how to integrate Flex on Java quickly

and effectively. Combining Flex with Java allows developers to provide rich UIs with

robust server-side technologies and does so with minimal ef fort and cost. Flex and Java

are proven technologies and have continued to be improved over time and used by

many companies around the world.

In chapter 2, we lay a foundation by building a sample Java web application for use

throughout the majority of the examples in the rest of this book. This should be use-

ful if you don't already have an application or need assistance in getting started with

setting up a Flex on Java development environment. Setup-type chapters can feel

slightly mechanical because of the downloading and installation they cover. We've

tried to keep it interesting and painless while using popular development environ-

ment frameworks that the majority of you will be pleased to see utilized.

http://jcp.org/

This chapter covers
• Generat ing the appl icat ion s t r u c t u r e w i th

M a v e n

• Bui lding Java server -s ide domain o b j e c t s
and s e r v i c e s

• Bui lding a simple JSP Ul

We'll begin by creating a Java application that will expose web services so we can
later connect to them from a Flex client. We have attempted to avoid tying die
book to a specific sample application by focusing more on the concepts and tech-
niques of using various frameworks and tools. This should allow you to pick a topic
in die book tiiat interests you and get rolling on it. We'll demonstrate many topics
by using an application built in tiiis chapter called FlexBugs. If you want to follow
the samples in die book you can download die full code listings on die book's web-
site at http://manning.com/allmon. You could also replace the application con-
tents with something tiiat's more meaningful to you by changing the domain
objects to manage whatever you want, like contacts or movie favorites.

Throughout die book, especially in tiiis chapter, we leverage a few Java frame-
works diat help to lighten die amount of work required to build a fully func-
tional web application. This chapter is a bit mechanical because we need to set up

12

http://manning.com/allmon

Generating the application structure with Maven 13

a development environment. A few downloads and installs must take place if you

choose to use our samples. Feel free to browse through this chapter and skip what

you already know.

The Java frameworks used will help keep development to a minimum while

creating a sample application to work with for integration purposes. This will allow

us to focus on teaching and demonstrating how to build synergy between Flex

and Java.

We ' re building a Java application first as a basis for work in chapter 3, but you

can start witii Flex in chapter 3 if you'd like or move around die book as conve-

nient. The Java application comes first because we expect most readers to be refac-

toring existing applications to include a Flex client and tiiis will give you sometiiing

to play with quickly.

We' l l start by generating die project structure witii Apache Maven, a convention-

over-configuration project management framework. Maven will build die applica-

tion for us and speed up the development process. Af ter we have a project structure

generated, we' l l start building the server-side components while leveraging MySQL

for die database.

For die Java server-side pieces, we'l l start with creating plain old Java objects

(POJOs), Data Access Objects (DAOs), and service objects that will be exposed to a

web tier.

Let's write a simple Java server-side application using the AppFuse framework.

AppFuse was created by Matt Raible of Raible Designs to simplify die construction of

Java web applications through convention. Using AppFuse on die server side will allow

us to focus on die integration of Flex witii Java creating simple domain and service

Java objects.

Working with AppFuse
Because die layers of architecture and complexity can make approaching die building

o f a Java web application a bit daunting, AppFuse is a great technology choice because

it simplifies dealing with the layers and delivering value faster.

AppFuse allows a Java developer to quickly start focusing on business domain con-

cerns. A typical Java application will be POJO-driven and wired together through

Spring, the open source dependency injection (DI) framework. The DI design pattern

helps to build applications with loosely coupled components making your application

more flexible and testable. In addition, AppFuse comes stocked with Maven integra-

tion to make tilings even easier. Let's get things rolling by installing Maven.

Generating the application structure with Maven
To pigeonhole Maven by calling it a build system doesn't do it justice. Apache Maven

is a software project management and comprehension tool. What exactly does that

mean? A t the core o f every Maven project is a project object model , more affec-

tionately known as die POM, and f rom this POM Maven can build our application,

14 CHAPTER 2 Beginning with Java

generate reports, generate documentation, and more, all f rom a single description

of the project. To learn more about Maven check out the Apache Maven project site

at http://maven.apache.org or download the free ebook f rom Sonatype at http://

www.sonatype.com/book.

Before moving ahead with Maven, be sure you have the Java Development Kit

(JDK) version 1.5 or greater properly installed. You can fol low the next section for that

or skip it if you're ready to go. Af ter you install the JDK, be sure to install the MySQL

database as well. You'l l need MySQL installed before generating the project with the

AppFuse Maven archetype.

2.2.1 Download and install the JDK
To run any Java server-side environment, you must install and configure the JDK.

Download and install JDK 1.5+ f rom the Sun website at http://java.sun.com/javase/

downloads/index.jsp. Refer to the Java documentation for instructions on how to

install Java on your specific platform. Set up an environment variable for JAVA_HOME

that points to the JDK directory. It's also helpful to add the JDK's bin directory to the

path. Open a command prompt and type in the Java version to verily that Java is

installed correctly. The version information of the configured JDK should be pre-

sented as shown in figure 2.1.

Af ter Java is configured you can move on to setting up the open source

MySQL database.

Figure 2.1 Verify that Java is set up correctly by checking the version

http://maven.apache.org
http://www.sonatype.com/book
http://java.sun.com/javase/

Generating the application structure with Maven 15

2.2.2 Download and install MySQL
To demonstrate database integration and persistence you'll use MySQL, which is an

open source database that is extremely lightweight. Download and install MySQL 5.x

or higher f rom the MySQL website at http://dev.mysql.com/downloads/mysql.

Here you'll set up a database for the FlexBugs sample application. Af ter you have

MySQL installed pull up the command prompt and log in to MySQL using the root

account, then create the flexbugs database as shown in figure 2.2. Using the com-

mand mysql -u r oo t -p will instruct MySQL to log in to the local host instance of

MySQL using the root account. It will ask for the password. Please record the admin

account's user and password for later reference. Creating the database is as simple as

executing the command c r ea t e database f l exbugs .

Let's move on to installing Maven to create the project structure, manage the

dependencies, and build the application.

2.2.3 Download and install Maven
Maven can be downloaded at http://maven.apache.org/download.html. Be sure to

download version 2.0.9 or above. Af ter Maven is downloaded you should set up an

M2_HOME environment variable that points to the directory where Maven was

installed. The M2_HOME/bin directory will need to be set onto the path as well or

exported for any UNIX platform. For more assistance on installing or configuring

Maven refer to the Maven documentation at http://www.sonatype.com/books/

mvnex-books/reference/installation-sect-maven-install.html.

c\ C:\WIND0WS\systeiri32\cmd.exe - mysql -u root -p - J a) x

C:\Documents and Set t ings\ba l lmon>mysq l -u r oo t -
Enter password: hmmhkmmmm
Welcome to the MySQL mon i to r . Commands end w i th
Vour MySQL connec t ion id i s 4
Se r v e r v e r s i o n : 5.1.31-community MySQL Community

ip
; o i> .

Sei-uei- <CPL>

A

Type J h e l p ; * o r '\h* f o r h e l p . Type J\c* to c l e a i the bill f e r .

mysql> c r e a t e database f l e x b u g s ;
Query OK, 1 row a f f e c t e d <0.00 s e c)

mysql> 1

Figure 2.2 Using the MySQL commands to log into the database instance and create the flexbugs
database

http://dev.mysql.com/downloads/mysql
http://maven.apache.org/download.html
http://www.sonatype.com/books/

16 CHAPTER 2 Beginning with Java

2.2.4 Create a Mavert multimodule project
We're going to create a Maven multimodule project called FlexBugs. A multimodule

project could be configured manually by creating a top-level super POM, adding proj-

ects under the super POM directory, and editing the super POM to include die mod-

ules with the modules element. We ' re going to use a technique that exploits a little

known feature of the archetypexreate plugin, and the Maven site archetype to kick-

start die project.

Creating a multimodule project has many benefits, die two most important being

(1) the ability to build every artifact in a project with a simple mvn compile command

and (2) if you are using either the Maven eclipse:eclipse plugin or the idea:idea

plugin, you can enter this command at die root o f the project, and it will generate all

die project files for all o f the contained modules.

First you'll generate die top-level project using the maven-arche type -s i t e -

simple archetype:

mvn archetype:create
-DgroupId=org.foj
-Dartifactld=flex-bugs
-DarchetypeArtifactld=maven-archetype-site-simple

This generates a Maven project with the directory structure as

shown in figure 2.3.

The project generated is die minimum project setup nec-

essary to generate site documentation. The index.apt file is

die main index page for die site, and is written in die Almost

Plain Text (APT) format, which is a wiki-like format. You can

also generate a more complete site project using the maven-

a r c h e t y p e - s i t e archetype like this:

mvn archetype:create
-DgroupId=[Java:the project's group id]
-Dartifactld=[Java:the project's artifact id]
-DarchetypeArtifactld=maven-archetype-site

This will generate a project structure similar to figure 2.4.

Af ter you have generated die site project, edit die pom.xml created f rom die site

archetype plugin. Make sure that the packaging type is set to pom. We've left sections

out (denoted by ...) to be brief.

Listing 2.1 Packaging of type pom indicates a multimodule project

<proj ect>
<modelVersion>4.0.0</modelVersion>
<groupId>org.foj</groupId>
<artifactld>flex-bugs</artifactld>
<version>l. 0-SNAPSHOT</version> Q Artifact type
<packaging>pom</packaging> <1—' (jar, war, ear)

£ } flex-bugs

E src

• Q site

Q apt

Figure 2.3 The
generated top-level
Maven project

</project>

Generating the application structure with Maven 17

Because you set the packaging type to pom Q , any proj-

ects you generate f rom the root of the project direc-

tory will insert tiiemselves into the project by creating

an entry into the modules section of the pom.xml for

the site.

AppFuse comes stocked with custom Maven arche-

types, which allow AppFuse to create dif ferent flavors of

Java web applications with varying technology stacks.

You'l l use die Struts 2 Basic archetype for die FlexBugs

sample application.

In die root directory of your project tiiat you created

previously, type die command in listing 2.2.

I multi-module- project
* srt

j site
apt

J* fml
- fr

J , apt
J „ fml

xdoc
*doc

Figure 2.4 A fully dressed up
Maven site project

Listing 2.2 Create the f l e x - b u g s - w e b module for the Java server side

mvn archetype:create
-DarchetypeGroupId=org.appfuse.archetypes < — ©
-DarchetypeArtifactld=appfuse-basic-struts < — Q
-DremoteRepositories=http://static.appfuse.org/releases
-DarchetypeVersion=2 . 0 . 2 <1 .
-DgroupId=org. foj . flex-bugs <1—© Q
-Dartif actld=f lex-bugs-web <1—Q

The appfuse-basic-struts © archetype isn't a built-in Maven resource. Instead, it's

provided through a remote repository © . You provide Maven witii coordinates to die

archetype by also providing die archetypeGroupId O a n d archetypeVersion O
along with die rest of die required details. The groupld © points to die top-level proj-

ect and the artifactld © is the name of die module you are about to create.

After you've executed die command, look inside die top-level pom.xml f rom

die main project. There should now be an entry toward die bottom of die file like

the following.

<modules>
<module>flex-bugs-web</module>

</modules>

Executing die command in listing 2.2 should generate die project structure shown

in figure 2.5. Don' t be concerned witii die warnings while creating your project; tiiey

are expected. As long as you see BUILD SUCCESSFUL at the end, your project was

created successfully.

As you can see f rom figure 2.5 Maven generated die project structure and added a

couple o f files for testing.

http://static.appfuse.org/releases

18 CHAPTER 2 Beginning with Java

Figure 2.5
Generated module structure using the
appfuse-basic-struts archetype

2.2.5 Maven provides a buildable project
If you look in die src/main/ java/org/ fo j package you'll f ind a source file

called App.java, and in die s r c/ t e s t / j a va/o r g/ f o j package you'll f ind a unit

test called AppTest.java. Remove both files as you will not need diem.

Notice that Maven appears to be building something. In fact, die f l ex -bugs-web

POM tries to build a deployable Java Web Archive or WAR but will first choke on a con-

figuration issue. If running the mvn j e t t y : r u n - w a r command witiiout changing the

configuration you'll most likely get this error.

[INFO]
[ERROR] BUILD ERROR
[INFO]
[INFO] Error executing database operation: CLEAN_INSERT

Embedded error: Access denied for user 1 root101localhost1 (using password: NO)
[INFO]
[INFO] For more information, run Maven with the -e switch

Let's first edit the POM for die f l ex -bugs-web module. This POM will be located

at die root of that module. There's a good deal going but we're going to focus on

die piece we need to change. At die bottom you need to specify your MySQL user

and password witii the values we specified when you set up MySQL earlier. Here's

an example:

B i L J flex-bugs

B ¡j J flex-bugs-web

B Q src

B l O main

B U java

B Q org

B t2| foj

_ j flex-bugs

B resources

Q META-1NF
B Q webapp

O common

o WEB-INF
Q site

B I Q test

B Q java

B ^ org

B l c l foj

.. i flex-bug5

i. *l resources

S src

Generating the application structure with Maven 19

<jdbc.urlx![CDATA[jdbc:mysql://localhost/
f lex_bugs_web?createDatabaseIfNotExist=trueS;amp; useUnicode=true&:amp;
characterEncoding=utf-8]]></jdbc.url>

<jdbc.username>root</jdbc.username>
<jdbc.password>j ava4ever</jdbc.password>

The Maven archetype we used, brought to us by AppFuse, made it extremely easy to

get to this point—far easier tiian starting f rom scratch.

2.2.6 Running the FiexBugs web application
Maven equips a developer with die ability to use die application immediately witiiout

manually deploying it anywhere. Executing die Maven j e t t y : r u n - w a r goal f rom die

f l ex -bugs-web module will gather all die resources, compile all the code and tests,

execute die unit tests, generate test reports, build a deployable WAR file, and launch

the WAR file in an embedded instance of the popular and lightweight Jetty servlet

container. Using the app fuse -bas i c - s t ru t s archetype will also generate die default

database for us and add configuration files to allow developers to quickly begin devel-

oping features.

Af ter you've run die j e t t y : run-war command, you can go to http://localhost:

8080/flex-bugs-1.0-SNAPSHC)T and log in f rom tiiere. By default, you can log in to the

application using admin for botii die username and password. Af ter logging in, you

are redirected to the administration panel as seen in figure 2.6. From tiiere you can

do basic things like editing your user profi le and managing users.

AppFuse
Providino integration and style to open source Java.

Main Menu Edit Profile Administration Logout

Welcome!
Congratulations, you have logged in successfully! Now that you've logged in, you
have the following options:

0 Edit Profile
o Upload A File

Version l . O - S N A P S H O T | XHTML Valid | C S S Valid | Logged in as: admin © ZOOS Y

Figure 2.6 AppFuse default application

http://localhost

43 CHAPTER 2 Beginning with Java

The application shows nothing glamorous at this point although everything you see

and can do has required a minor setup effort. AppFuse does much under die cov-

ers for us f rom a framework and technology perspective. It's possible tiiat getting a

project togedier witii help f rom Maven saved us a week or more o f typical Java

development time.

Before we start development o f die FlexBugs sample application download the

source code at https://ilexonjava.googlecode.com/svn/ilex-bugs/trunk.

Build the model objects
A model object is a POJO tiiat is persistable and mapped to die database. In our exam-

ple we're using AppFuse with die Spring framework and Hibernate to manage per-

forming database operations for objects tiiat are mapped to a database.

Let's start with Issue. j ava as seen in listing 2.3. For the FlexBugs application you

need sometiiing to store issues and comments. An issue describes sometiiing that

needs f ixing to meet a requirement. This could be a bug, a new feature, a refactor, or

an optimization. A single issue can have many comments so a relationship is built

between the issue and comment objects.

Listing 2.3 The I s s u e model object

package org. foj . model; <1—Q Model Java package

import org. apache. commons . lang. builder. EqualsBuilder; < — Q Import declarations

J ©Entity
public class Issue extends BaseObject implements Serializable {

Java persistence
framework

private Long id;
private String project;
private String description;
private String type;
private String severity;
private String status;
private String details;
private String reportedBy;
private Date reportedOn;
private String assignedTo;
private Double estimatedHours;

1 Class instance
variables

@Id
@GeneratedValue(strategy =
public Long getldO {

return id;

public void setId(Long id)
this.id = id;

GenerationType.AUTO)

Issue extends
AppFuse BaseObject

J
Declares
database pk
relationship

?k O

"PJ
Indicates
how to
generate Id

1>

1)

"getter" method
returns Id

"setter" method
sets Id

www.allitebooks.com

https://ilexonjava.googlecode.com/svn/ilex-bugs/trunk
http://www.allitebooks.org

Build the model objects 21

(iOverride <1—.
public int hashCodeO { ^jj) hashCode

return new HashCodeBuilder(11, 37).append(id).toHashCode();
}

(iOverride <1—.
public boolean equals (Object o) { f n equals

if (null == o) return false;
if (!(o instanceof Issue)) return false;
if (this == o) return true;

Issue input = (Issue) o;
return new EqualsBuilder()

.append(this.getld(), input.getld())

.isEquals();

'' { f t toString provides
(iOverride < - J object info
public String toString() {

return new ToStringBuilder(this, ToStringStyle.MULTI_LINE_STYLE)
.append(id)
.append(proj ect)
.append(description)
.toString();

}

You'l l be storing the model objects in die org. foj .model Java package © and will use

the AppFuse framework in conjunction witii die Spring Framework and Hibernate to

simplify our application development. Spring provides DI and more while Hibernate

is a database persistence framework that enables object relational mapping framework

Q . The Id Q and GeneratedValue O annotation help to facilitate the persistence by

designating a field as a database primary key.

The Issue object is a subclass o f die AppFuse BaseObject © and contains die

instance variables © you need to describe an issue. Al l of the instance variables or

fields have die getters © and setters © required by the JavaBean specification.

NOTE Extending BaseObject requires us to override die toString
equals Q , and hashCode (JJ) metiiods because they're def ined as abstract in
the BaseObject class. T o implement these metiiods we're leveraging the
Apache Commons Builder package © for creating the elements for these
metiiods. Whenever you're implementing the Serializable interface, it's a
good idea to also implement the equals and hashCode metiiods and provide
a serialVersionUID member.

Next you'll create a model object for a comment. The Comment will be another persis-

table object. There can be many comments to a single issue. For the remainder o f the

code snippets in this chapter we' l l use "..." for trivial things like imports and getters

and setters of similar objects.

22 CHAPTER 2 Beginning with Java

Listing 2.4 The comment model object

©Entity
public class Comment extends BaseObject implements Serializable { <1—

private Long id;
private Issue issue;
private String author;
private Date createdDate;
private String commentText;

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
public Long getldO {

return id;

public void setId(Long id) {
this.id = id;

@ManyToOne(fetch = FetchType.EAGER)
public Issue getlssueO {

return issue;

public void setlssue(Issue issue) {
this.issue = issue;

(iOverride
public int hashCodeO {

return new HashCodeBuilder(11, 37).append(id).toHashCode();
}

(iOverride
public boolean equals(Object o) {

if (null == o) return false;
if (!(o instanceof Issue)) return false;
if (this == o) return true;

Issue input = (Issue) o;
return new EqualsBuilder()

.append(this.getld(), input.getld())

.isEquals();

(iOverride
public String toStringO {

return new ToStringBuilder(this, ToStringStyle.MULTI_LINE_STYLE)
.append(id)
.toString();

}

Comment 1
declaration V

A Comment has many-to-one
^ T relationship with Issue

}

Build the DAOs 23

There's not much difference between an Issue and a Comment The class fields are
related to comments and tiiere is a many-to-one relationship Q with Issue. We've also
told Hibernate that we'd like it to eagerly fetch the Issue when returning die
Comment. In typical Java web development you would keep the session open to lazily
load die Issue object only when it's referred to at runtime, but because your Flex
application runs external to the JVM you cannot take advantage of this luxury.

Now that you have your model objects built you can create a set of DAOs. You'll
need a DAO for issue and comment.

2.4 Build the DAOs
AppFuse provides generic implementations for DAOs that you can leverage if your
DAOs do nothing more than the basic create, retrieve, update, delete (CRUD) opera-
tions. Because your IssueDao will do only basic operations, there is no need to define
a concrete IssueDao. You can instead use die GenericHibernateDao which you'll see
later when you wire the beans in the application context. The CommentDao needs to
implement a couple of operations that go beyond die basic CRUD operations so you'll
first create an interface for the CommentDao.

Listing 2.5 The CommentDao.java

public interface CommentDao extends GenericDao<Comment, Long> {
List<Comment> getCommentsBylssueld(Long issueld);
void deleteAHCommentsForlssueld(Long issueld);

The CommentDao has two simple methods, one that returns a list of Comment objects by
passing in the issueld argument, and another to delete all of die Comment objects for
an issue. The second method facilitates the deleting of Issue objects. Because
Comment has a foreign key relationship with Issue, you cannot delete an Issue if any
Comments refer to it.

NOTE We defined die relationship between Comment and Issue by annotat-
ing die field with a OOneToOne annotation, and could have also defined die
reverse of that relationship in the Issue class by including a Set of Comment
objects belonging to an Issue. Because we could not lazy load those objects, it
would have forced us to eager load die Comment objects into the Set, which
would force those Comment objects to eager load their Issue objects. This
forces the Issue objects to eager load their Comments, and so on. This usually
results in a stack overflow because you've effectively got a circular reference
that causes an infinite loop of eager fetching.

Now let's implement the ComrnentDaoIm.pl.

47 CHAPTER 2 Beginning with Java

Listing 2.6 The CommentDaolmpl. java

public class CommentDaoImpl extends GenericDaoHibernate<Comment, Long>
implements CommentDao {

public CommentDaoImpl() {
super(Comment.class);

}

(iOverride
(iSuppressWarnings ("unchecked")
public List<Comment> getCommentsBylssueld(Long issueld) {

return getHibernateTemplate().find
("from Comment where issue_id = ?", issueld);

}

Much like tlie IssueDaoImpl, CommentDaoImpl extends GenericDaoHibernate but

implements CommentDao. The only interesting thing happening here is tiiat you have a

method tiiat returns a list o f Comment objects by leveraging the Hibernate template

and a query. Spring and Hibernate are a wonderful combination and make for clean

and intuitive DAOs.

Now that you've constructed die DAOs you can build services.

Build the services
Now you need to expose services to die web tier. You'l l be able to take advantage o f

tiiese services for the Flex client you'll be building. Again you'll start with interfaces

like IssueManager in listing 2.7.

Listing 2.7 The IssueManager. java

package org.foj.service;

import org.foj.model.Issue;
import javax.jws.WebService;
import java.util.List;

(iWebService
public interface IssueManager

List<Issue> g e t A H O ;
Issue get(Long id);
Issue save(Issue issue);
void remove(Long id);

You define the IssueManager as a web service by annotating it using OWebService

O - IssueManager contains methods defining your basic CRUD operations for read-

ing © and © , creating and updating Q , and deleting Q . Now let's take a look at

the CommentManager.

A IssueManager interface
declaration with
WebService annotation

Return all

1>

Q R
<j_J is

<,_r issue by its ID

1>

issues A Get specific

< - J is

_ Save issue
Delete issue

Build the services 25

Listing 2.8 The CommentManager . java

package org.foj.service;

import org.foj.model.Comment;
import javax.jws.WebService;
import java.util.List;

@WebService
public interface CommentManager

CommentManager
interface declaration
with WebService
annotation

{

List<Comment> findCommentsBylssueld(Long issueld);
void deleteAHCommentsForlssueld(Long issueld);
Comment get(Long id);
Comment save(Comment comment);
void remove(Long id);

1 ,
Remove
comment

Save
comment

Get comments
for issue Id

Delete all
comments
for issue

CommentManager is also a web service O by virtue of it having the OWebService anno-

tation just as with the IssueManager. It contains a method to return a list of Comment
objects by providing an issueld a method for deleting all comments for an issue

id Q , a method for saving a comment Q and a method for deleting a comment Q .

Now let's provide implementation for the services like IssueManagerlmpl.

Listing 2.9 The IssueManagerlmpl . java

package org.foj.service.impl;

import org.AppFuse.dao.GenericDao;
import org.foj.model.Issue;
import org.foj.service.IssueManager;
import org.foj.service.CommentManager;
import java.util.List;
import javax.jws.WebService;

(iWebService(serviceName = "IssueService",
endpointlnterface = "org.foj.service.IssueManager")

public class IssueManagerlmpl implements IssueManager {

private GenericDao<Issue, Long> issueDao;
private CommentManager CommentManager;

public IssueManagerlmpl!) { }

public IssueManagerlmpl(GenericDao<Issue, Long> issueDao,
CommentManager CommentManager) {

this.issueDao = issueDao;
this.CommentManager = CommentManager;

}

A IssueManagerlmpl
declaration with
WebService
annotation

J Default no arg
constructor

1> Constructor

public List<Issue> g e t A H O {
return issueDao.getAll();

}

Method that
returns all Issues

CHAPTER 2 Beginning with Java

public Issue get(Long id) {
return issueDao.get(id);

}

public Issue save(Issue issue) {
return issueDao.save(issue);

}

public void remove(Long id) {
commentManager.deleteAHCommentsForlssueld(id);
issueDao.remove(id);

}

Get specific issue

Save issue

1> Remove an issue

}

The IssueManagerlmpl also uses the OWebService annotation just as in the interface,

but provides die serviceName and endpo in t l n t e r f a c e attributes Q . You provide a

default no args constructor Q as well as one tiiat will be used by Spring to inject die

IssueDao and CommentManager © . Next implement die methods for returning the list

of Issue objects Q , returning a specific Issue Q , and saving an Issue Q by delegat-

ing die calls to diose metiiods to die IssueDao. The implementation for removing an

issue Q first deletes any comments for die issue by calling die CommentManager, tiien

removes die issue by calling die remove meti iod on die IssueDao. Now let's look at

die CommentManager.

Listing 2.10 The CommentManager lmpl . java

package org.foj.service.impl;

import org.foj.dao.CommentDao;
import org.foj.model.Comment;
import org.foj.service.CommentManager;
import java.util.List;
import javax.jws.WebService;

CommentManagerlmpI
declaration with

WebService annotation

(iWebService (serviceName = "CommentService",
endpointlnterface = "org.foj.service.CommentManager")

public class CommentManagerlmpI implements CommentManager {

private CommentDao commentDao;

public CommentManagerlmpI() { } J?
Default no args
constructor

public CommentManagerlmpI(CommentDao commentDao) { <—
this.commentDao = commentDao;

public List<Comment> findCommentsBylssueld(Long issueld)
return commentDao.getCommentsBylssueld(issueld);

}

public void deleteAHCommentsForlssueld(Long issueld) {
commentDao.deleteAHCommentsForlssueld(issueld);

}

Constructor sets
injected CommentDao
instance to use

JFind
comi
fori!

all
comments

issue

1 Delete all
comments
for issue

Wiring things together with Spring 27

public Comment get(Long id) {
return commentDao.get(id) ;

}

public Comment save(Comment comment) {
return commentDao.save(comment);

}

public void remove(Long id) {
commentDao.remove(id);

}

1,
Get specific
comment

Save comment

Delete comment

Like IssueManagerlmpl, CommentManagerlmpl declares itself to be a WebService O -
Next using die @WebService annotation and defines its endpoint interface and

service name you create a default no args constructor Q as well as one that will be

used by Spring to inject your CommentDao You implement the methods to get the

Comment objects for an issue deleting all the Comment objects for an issue Q , get-

ting a specific Comment saving a Comment Q , and deleting a Comment © by delegat-

ing to die CommentDAO.

NOTE AppFuse provides GenericManager implementation base classes just as
it does for DAOs, but we chose not to use them here because certain Web-
Service consumers such as Flex have difficulty dealing with web services that
return objects such as ArrayOfAnyType, which is what AppFuse will return if
we leverage the GenericManagers. T o work around this issue you'll be defin-
ing and implementing your CRUD operations for the web services explicitly.

We ' re now officially done with the server-side objects and can wire tilings together

with the Spring configuration and work on the web tier components.

Wiring things together with Spring
Spring enables developers to easily connect objects while keeping application compo-

nents loosely coupled and testable. Notice how we've wired die model, DAO, and ser-

vice objects together in die fol lowing listing. The applicationContext.xml is located in

the src\main\webapp\WEB-INF directory, with other configuration files.

Listing 2.11 The appl icat ionContext .xml

is

<!-- Add new DAOs here -->
<bean id= " issueDao" class= 0 issueDao

"org.AppFuse.dao.hibernate.GenericDaoHibernate">
<constructor-arg value="org.foj.model.Issue"/>
<property name="sessionFactory" ref="sessionFactory"/>

</bean>

<bean id="commentDao" class="org.foj.dao.impl.CommentDaoImpl">
<property name="sessionFactory" ref="sessionFactory"/>

</bean> commentDao 1

28 CHAPTER 2 Beginning with Java

<!-- Add new Managers here -->
<bean id="issueManager" class="org.foj.service.impl.IssueManagerlmpl">

<constructor-arg ref="issueDao"/>
</bean> issueManager • 1
<bean id= " commentManager" class= |J5f COmmentManager

"org.foj.service.impl.CommentManagerlmpl">
<constructor-arg ref="commentDao"/>

</bean>

The first bean you define is GenericDao for die issueDao Q . The commentDao Q is

def ined widi your concrete implementation. Next, you create Spring beans for issue-
Manager Q and commentManager Q . The constructor-arg element is used to inject

die dependencies into the service class constructor.

Now tiiat we've wired things up witii Spring let's construct the web tier starting

with Struts 2 framework action classes.

2.7 Constructing the web tier
Struts 2 applications implement the Model-View-Controller (MVC) design pattern,

which is not to be confused witii the M V P design pattern used to develop die Flex

application. The pattern encourages separation between the data model, view ele-

ments, and controllers that sit between tiiem. The M V C pattern, widely adopted in die

Java community, has made its way into otiier languages and frameworks, like Flex.

2.7.1 Building Struts 2 action classes
You'll start by building controller or action classes first, like IssueAction.

Listing 2.12 The IssueAct ion. java

package org.foj.action;
import org.AppFuse.webapp.action.BaseAction;

public class IssueAction extends BaseAction {
private IssueManager issueManager;
private CommentManager commentManager;
private List<Issue> issues;
private List<Comment> comments;
private Issue issue;
private Long id;

public void setlssueManager (IssueManager issueManager) { <1—
this.issueManager = issueManager;

}

public void setCommentManager(CommentManager commentManager) { <—
this.commentManager = commentManager;

}

IssueAction extends
AppFuse BaseAction

Setters for A
IssueManager and
CommentManager

Constructing the web tier 29

public String list() {
issues = issueManage
return SUCCESS;

issueManager.getAll(); Returns list of
Issue objects

public String deleted {
issueManager.remove(issue.getld());
saveMessage(getText("issue.deleted"));

Deletes Issue

return SUCCESS;
}

public String edit() {
if (id != null) { Edits by Issueld

issue = issueManager.get(id);
} else {
issue = new Issued;

}

comments = commentManager.findCommentsBylssueld(issue.getld());

return SUCCESS;

public String saved throws Exception {

if (delete != null) {
return delete();

}

boolean isNew = (issue.getld() == null);

issue = issueManager.save(issue);
String key = isNew ? "issue.added" : "issue.updated";
saveMessage(getText(key));

if (!isNew) {
return INPUT;

} else {
return SUCCESS;

IssueAction extends die AppFuse BaseAction © that contains many common metli-

ods diat actions rely on. IssueAction has setters for the service objects These set-

ters will be called by Spring, and their instances will be injected into the action class

during runtime. IssueAction facilitates controlling communications to the server

side f rom die web tier. It contains the methods for die view pages to list © , delete Q ,

edit Q or, most importantly, save Issue objects © .

The CommentAction object serves the same purpose for die Comment object as the

IssueAction object does for die Issue object. Al l the methods on CommentAction are

if (cancel != null) {
return CANCEL;

Saves Issue

}

}

3 0 CHAPTER 2 Beginning with Java

facilitating CRUD for the Comment POJO by calling the commentManager service. The

CommentAction class can be downloaded f rom the website if needed.

Now that die actions are in place, let's work on JSP files to create a simple UI for

managing issues.

2.7.2 Editing the issue menu item
First you have to modi fy die menu.jsp to get to the issues list.

Listing 2.13 The menu.jsp

<menu:displayMenu name="MainMenu"/>
<menu:displayMenu name= "UserMenu"/> O Adding IssueMenu item
<menu: displayMenu name= " IssueMenu"/> <—' to the JSP view file
<menu:displayMenu name="AdminMenu"/>
<menu:displayMenu name="Logout"/>

The menu JSP file reads in die menu xml data. To add the Issue menu item you

need only add a single line O to tiiis file that is located in die flex-bugs-web/src/

main/webapp/common directory. In die fol lowing listing you'll provide die xml

data for that menu item.

Listing 2.14 The menu-config.xml

<Menu name="IssueMenu" title="menu.issue"
description="Issues Menu"

roles="ROLE_ADMIN,ROLE_USER" page="/issues.html">
<Item name="Viewlssues" title="menu.viewlssues" page="/issues.html"/>

</Menu>

I A Add Issue menu item
f to menu data xml file

By adding to die existing AppFuse plumbing that creates menu items O , you quickly

gain access to new features. Let's create the IssueList.jsp that will be displayed when

you click die issues menu item.

2.7.3 Adding JSP resources
The issueList.jsp will display a list of issues and allow you to add or modi fy existing

issues. The issue and comment JSP files will reside in the ../src/main/webapp/WEB-

INF/pages directory.

Listing 2.15 The issueList . jsp

<%@ include file="/common/taglibs.jsp" %>

<head>
<titlexfmt: message key="issueList.title"/></title>
<meta content="<fmt: message key=1issueList.heading 1/>

</head>

Essential tag
O libraries bundle

" name="heading"/>

www.allitebooks.com

http://www.allitebooks.org

Constructing the web tier 31

<c:set var= " buttons " > <1—Q
<input type="button" style="margin-right: 5px"

onclick="location.href=1<c:url value="editlssue
value="<fmt:message key="button.add"/>"/>

<input type="button" onclick="location.href=
'<c:url value="/mainMenu.html"/>1"

value="<fmt:message key="button.done"/>"/>
</c:set>

<c:out value="${buttons}" escapeXml="false"/>
<s:set name="issues" value="issues" scope="request"/>

Variable holds button data

html"/>1"

Prints
button data
for display

J

Variable
represents
issues list

<display:table name="issues" class="table" requestURI="" id="issueList" <
export="false" pagesize="25 " >

<display:column property="id" sortable="true" href="editlssue.html"
paramld="id" paramProperty="id" titleKey="issue.id"/>

<display:column property="project" sortable="true"
titleKey= " issue. pro j ect " / > Displays nicely

<display: column property= " description " sortable= " false " formatted table
titleKey="issue.description"/>

<display:setProperty name="paging.banner.item_name" value="issue"/>
<display:setProperty name="paging.banner.items_name" value="issues"/>

</display:table>
<c:out value="${buttons}" escapeXml="false"/>

<script type="text/javascript">
highlightTableRows("issueList");

</script>

JavaScript highlights
table rows

To make life easier, you include a JSP that in turn includes a bundle o f tag libraries O

that are useful for die web application. You have button data that will be stored in a

variable Q and a Java Standard Tag Library (JSTI.) tag Q that will print die buttons.

You create a variable tiiat will hold a list o f issues Q f rom die request scope and an

HTML table tiiat is formatted using the included display tag library Q . A little

JavaScript is used to highlight rows of data © . Now let's have a look at the issue-

Formjsp.

Listing 2.16 The issueForm.jsp

<%@ include file="/common/taglibs.jsp" %>

<head>
<titlexfmt: message key="issueDetail.title"/></title>
<meta content="<fmt: message key=1issueDetail.heading 1/>"/>

</head>

"s" Struts 2 A
form tag in

action

<s:form id="issueForm" action="savelssue" method="post" validate="true">
<s:hidden name="issue.id" value="%{issue.id}"/>

Form text <s:textfield key="issue.project" required=
"true" cssClass="text medium"/>

<s:textfield key="issue.description" required="true"
cssClass="text medium"/>

f ' input fields

55 CHAPTER 2 Beginning with Java

<s:textfield key="issue.type" required="true" cssClass="text medium"/>
<s:textfield key="issue.severity" required="true" cssClass="text medium"/>
<s:textfield key="issue.status" required="true" cssClass="text medium"/>
<s:textarea key="issue.details" required="true" cssClass="text medium"/>

<li class="buttonBar bottom"> <—I
<s: submit cssClass= " button" method= " save" A CRUD Button bar

key="button.save" theme="simple"/>
<c:if test="${not empty issue.id}">

<s:submit cssClass="button" method="delete"
key="button.delete" onclick="return confirmDelete(1 issue 1) "

theme="simple"/>
</c: if >
<s:submit cssClass="button" method="cancel"

key="button.cancel" theme="simple"/>
< /1 i>

</s:form>

<c:if test="${not empty issue.id}">

<s:form id="commentsForm" action="editComment
method="post" validate="true">

<s:set name="comments" value="comments" scope="request"/>
<s:hidden name="issue.id" value="%{issue.id}"/>
<display:table name="comments" class="table"

requestURI="" id="commentList" export="false" pagesize="25">
<display:column property="id" sortable="true" href="editComment.html"

paramld="id" paramProperty="id" titleKey="comment.id"/>
<display:column property="author"

sortable="true" titleKey="comment.author"/>
<display:column property="commentText"

sortable="false" titleKey="comment.commentText"/>

<display:setProperty name="paging.banner.item_name" value="comment"/>
<display:setProperty name="paging.banner.items_name" value="comments"/>

</display:table>

<s:submit cssClass="button" key="button.add" theme="simple"/>
</s:form>

</c:if>

<script type="text/javascript">
highlightTableRows("commentList");

</script>
<script type="text/javascript">

Form.focusFirstElement($("issueForm"));

</script>

Obviously, tlie issueForm.jsp will allow a user to add or edit an issue. If you peek into

die included src/main/webapp/common/taglibs.jsp you'll notice that the Struts 2 tag

libraries are included and the letter "s" was used for die tag prefix Q . The Struts 2

textf ield elements Q map to an Issue object. The button bar created will contain

I Comments
Struts 2 form

JavaScript
assigns focus

Constructing the web tier 33

Save, Delete, and Cancel buttons The Delete button will display only if the issue has

an id or already exists. Let's keep moving and build the commentForm.jsp.

Listing 2.17 The commentForm.jsp

<%@ include file="/common/taglibs.jsp" %>

<head>
<titlexfmt:message key="commentDetail.title"/></title>
<meta content="<fmt:message key=1commentDetail.heading 1/>"/>

</head>

<s:form id="commentForm" action="saveComment" method="post" validate="true">
<s:hidden name="comment.id" value="%{comment.id}"/>
<s:hidden name="issue.id" value="%{issue.id}"/>
<s:textfield key="comment.author" required="true" cssClass="text medium"/>
<s:textfield key="comment.createdDate" required="false"

cssClass="text medium"/>
<s:textarea key="comment.commentText" required="false"

cssClass="text medium"/>

<li class="buttonBar bottom">
<s:submit cssClass="button" method="save"

key="button.save" theme="simple"/>
<c:if test="${not empty comment.id}">

<s:submit cssClass="button" method="delete"
key="button.delete" onclick="return confirmDelete(1 comment1) "

theme="simple"/>
</c : i f >
<s:submit cssClass="button" method="cancel"

key="button.cancel" theme="simple"/>
< /1 i>

</s:form>

As die name suggests, die commentForm.jsp provides a Struts 2 form for updating

new or existing comments. When submitted, die form will call the comment man-

ager's saveComment method. Now that you have the JSP files in place we'l l need to add

those properties so that they have real values.

2.7.4 Adding property resources
For the application's messages to be localized, we've leveraged die Java resource bun-

dle framework. Add the properties shown in the fol lowing listing to the Application-

Resources.properties file located in die flex-bugs-web/src/main/resources directory.

Listing 2.18 The Appl icat ionResources.propert ies

-- menu/link messages --
menu.issue=Issues
menu.viewIssues=View Issues

-- issue form --
issue.id=Id

3 4 CHAPTER 2 Beginning with Java

issue.proj ect=Project
issue.description=Description
issue.added=Issue has been added successfully,
issue.updated=Issue has been updated successfully,
issue.deleted=Issue has been deleted successfully.

-- issue list page --
issueList.title=Issue List
issueList.heading=Issues

-- issue detail page --
issueDetail.title=Issue Detail
issueDetail.heading=Issue Information

-- comment form --
comment.id=Id
comment.author=Author
comment.issueld=lssue Id
comment.createdDate=Created Date
comment.commentText=Details
comment.added=Comment has been added successfully,
comment.updated=Comment has been updated successfully,
comment.deleted=Comment has been deleted successfully.

-- issue list page --
commentList.title=Comment List
commentList.heading=Comments

-- issue detail page --
commentDetail.title=Comment Detail
commentDetail.heading=Comment Information

If more language support is needed, add die same properties with the respective

translation to the appropriate properties file in the same directory. Now let's wire up

die view components with Struts 2.

2.7.5 Configuring the struts.xml
To wire up the JSP view components to the controller objects, you can use the

struts.xml located in die src/main/resources directory. This listing demonstrates

die wiring you need for the issues management.

Listing 2.19 The st ruts .xml

<package>

<! — Add additional actions here -->
<action name="issues"

class="org.foj.action.IssueAction" method="list">
<result>/WEB-INF/pages/issueList.j sp</result>

</action>

<action name="editlssue"
class="org.foj.action.IssueAction" method="edit">
<result>/WEB-INF/pages/issueForm.j sp</result>

i A issues action loads
If issueList.jsp

i A editlssue loads
If issueForm.jsp

Constructing the web tier 35

<result name="error">/WEB-INF/pages/issueList.jsp</result>
</action>

<action name="savelssue" savelssue loads
issueForm class= " org. foj . action. IssueAction" method= " save" > | ISSlierorm

<result name="input">/WEB-INF/pages/issueForm.jsp</result>
<result name="cancel" type="redirect-action">issues</result>
<result name="delete" type="redirect-action">issues</result>
<result name="success" type="redirect-action">

<param name="actionName">editlssue</param>
<param name="id">${issue.id}</param>

</result>
</action>
<action name="comments" class="org.foj.action.CommentAction"

method="list">
<result>/WEB-INF/pages/commentList.j sp</result>

</action>

<action name="editComment" class="org.foj.action.CommentAction"
method="edit">
<result>/WEB-INF/pages/commentForm.j sp</result>
<result name="error">/WEB-INF/pages/commentList.j sp</result>

</action>
<action name="saveComment" class="org.foj.action.CommentAction"

method="save">
<result name="input">/WEB-INF/pages/commentForm.j sp</result>
<result name="cancel" type="redirect-action">

<param name="actionName">editlssue</param>
<param name="id">${issue.id}</param>

</result>
<result name="delete" type="redirect-action">

<param name="actionName">editlssue</param>
<param name="id">${issue.id}</param>

</result>
<result name="success" type="redirect-action">

<param name="actionName">editlssue</param>
<param name="id">${issue.id}</param>

</result>
</action>

</package>

Struts 2 makes it simple to wire up the view components quickly and make changes.

As you can see, die issues action © will load die issueList. j sp whenever die

list() med iod is invoked. In die same way, editlssue © will load the issue-
Form. jsp when the edit () method is called and if tiiat doesn't work, it will go back to

the list page. The savelssue action © will persist an issue by taking the input f rom

the issueForm.jsp.
The remainder o f die IssueAction is more o f the same but pertains to issue

comments.

36 CHAPTER 2 Beginning with Java

2.7.6 Configuring Hibernate
The final step is to configure the POJOs with the Hibernate session factory. That way

when the app is loaded into memory, Hibernate recognizes tiiese objects. You do

diis through the hibernate.cfg.xml located in die src/main/resources directory.

Listing 2.20 The hibernate.cfg.xml

<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate
Configuration DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-configurâtion-3.0.dtd">

<hibernate-configuration>
<session-factory>

<mapping class="org.AppFuse.model.User"/>
<mapping class="org.AppFuse.model.Role"/>
<mapping class="org.foj.model.Issue"/>
<mapping class="org.foj.model.Comment"/>

</session-factory>
</hibernate-configuration>

In this simple configuration, you create a class mapping Q for each of die model

objects, Issue and Comment. Rebuild the application witii the mvn jetty:run-war
command, then refresh your browser. The Issues button should be available as seen in

figure 2.7.

AppFuse
Providing integration and style to open source Java.

Main Menu Edit Profile Issues Administration Logout

Issues
Add | Done [

No issues found.

Id Project Description

Nothing found to display.

Add | Done |

Version l .O -SNAPSHOT | XHTML Valid ! C S S Valid | Logged in as: admin © 2008 Your <

I A Adding issue
If and comment

Figure 2.7 The issues list page with the integrated Issues menu button

http://hibernate.sourceforge.net/hibernate-configur%c3%a2tion-3.0.dtd

Summary 37

2.8 Summary
In this chapter we set up a Java web application using the AppFuse framework. App-

Fuse simplified the plumbing involved in building a typical Java web application by

using many popular frameworks, for example Struts 2, Spring, and Hibernate.

In die next chapter we'l l start building the rich interface for the sample applica-

tion in Flex. In die fol lowing chapters we' l l begin to connect die Flex front end to the

Java application using web services and BlazeDS.

Getting rich wit

This chapter covers
• Creat ing a Flex pro ject using a rchetype

• Creat ing a Flex f rontend for the sample
appl icat ion

• Add ing a wrapper for an S W F

In chapter 2 we introduced you to AppFuse and created our sample issue track-
ing application. Now it's time to begin creating the Flex frontend for our sample
application. We'll start by incrementally building up the view layer, introducing
you to a few of the pertinent concepts of Flex. This chapter is not meant to be a
comprehensive guide to die Flex framework by any stretch of the imagination, so
you should be able to follow along without much trouble. If you want a more in-
depth look at the Flex framework refer to Flex 4 in Action by Tariq Ahmed, Dan
Orlando, John C. Bland II, and Joel Hooks (to be published by Manning in Sep-
tember 2010).

3.1 Generating the application structure
You need to create a Flex application. Because you'll be using the Flex Mojos
Maven plugin you'll be creating the application in a manner similar to what you

38

Generating the application structure 39

FNA (FNA is Not AppFuse)
Fo lks at A d o b e C o n s u l t i n g have s ta r ted a new pro ject at Goog le C o d e ca l led
FNA , w h i c h s t a n d s for FNA is Not A p p F u s e (h t t p : / / c o d e . g o o g l e . e o m / p / f n a - v 2 /) .
T h e FNA pro ject has similar g o a l s to that of A p p F u s e in that they are a t tempt ing
to c r e a t e a f ramework that enab les deve lopers to j u m p - s t a r t the i r RIA appl ica-
t ions w i t h Flex and Java . W e have dec ided aga ins t using th i s f ramework for th i s
book , but feel the pro ject has potent ia l and w a r r a n t s a look at if you are s tar t ing
a new pro ject .

used for die AppFuse portion of the application. We've taken the liberty of creat-

ing a Maven archetype to minimize the amount of manual work required to create

the project structure.

Let's get started. Open a command prompt and navigate to die root directory o f

our application. Enter the fol lowing command to create our Flex application.

$ mvn archetype-create -DarchetypeGroupId=org.foj \
-DarchetypeArtifactld=flex-mojos-archetype \
-DarchetypeVersion=l.O-SNAPSHOT \
-DgroupId=org.foj \
-Dartifactld=flex-bugs-ria \
-DremoteRepositories=http://flexonj ava.googlecode.com/svn/repository

This will create a Flex project that slightly resembles a standard Maven project.

Because tiiis is not a Java project, the project structure varies slightly. The sources for

our Flex application will go in the sre/main/flex folder, and die tests in sre/test/flex

folder. Maven will also modi fy our main project pom.xml and add tiiis project as a

module as shown here.

Listing 3.1 Parent pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

<modules>
<module>flex-bugs-ria</module>
<module>flex-bugs-web</module>

</modules>

</project>

Now tiiat the project has been created you need to configure die Flex Mojos plugins

for both the Flex project and die AppFuse project.

http://code.google.eom/p/fna-v2/
http://flexonj
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd

63 CHAPTER 3 Getting rich with Flex

Configuring the flex-bugs-ria module
For this application we chose to use the Flex Mojos plugin to leverage the powerful

dependency management facilities of Maven as well as to avoid writing yet another

Ant build script.

Listing 3.2 The pom.xmi for the Flex application

<?xml version="1.0"?>
<project>

<parent>
<artifactld>flex-bugs</artifactld>
<groupId>org.foj</groupId>
<version>l. 0-SNAPSHOT</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<groupId>org.foj</groupId>
<artifactld>flex-bugs-ria</artifactld>
<packaging>swf</packaging>
<version>l. 0-SNAPSHOT</version>

<properties>
<flexmojos.version>3.2.0</flexmojos.version>

</properties>

»
S

Define parent pom

This module's groupld
This module's artifactld

© Packaging type J

L

This module's
version

Flex-Mojos
version

<build>
<sourceDirectory>src/main/flex</sourceDirectory>
<testSourceDirectory>src/test/flex</testSourceDirectory>

<finalName>flex-bugs-ria</finalName>
<plugins>

<plugin>
<groupId>org.sonatype.flexmoj os</groupId>
<artifactld>flexmoj os-maven-plugin</artifactld>
<version>${flexmoj os.version}</version>
<extensions>true</extensions>
<configuration>

<targetPlayer>10.0.0</targetPlayer>
<locales>

<locale>en_US</locale>
</locales>

</configuration>
<dependencies>

<dependency>
<groupId>com.adobe.flex</groupId>
<artifactId>compiler</artifactld>
<version>4.0.0.7219</version>
< type>pom</type>

</dependency>
</dependenc i e s >

</plugin>
</plugins>

</build>

© Specify so
Y and test s<
I directorie

' source
t source

directories

1>
Final name
for artifact

0 Flex-mojos-plugin

www.allitebooks.com

http://www.allitebooks.org

Configuring the flex-bugs-ria module 41

<repositories>
<repository>

<id>flexmojos-repository</id>
<url>http://repository.sonatype.org/content/

groups/flexgroup/</url>
</repository>

</repositories>
<pluginRepositories>

<pluginRepos i tory>
<id>flexmojos-repository</id>
<url>http://repository.sonatype.org/content/

groups/flexgroup/</url>
</pluginRepos i tory>

</pluginRepositories>
<dependencies>

<dependency>
<groupId>com.adobe.flex.framework</groupId>
<artifactld>flex-framework</artifactld>
<version>4.0.0.7219</version>
< type>pom</type>

</dependency>
<dependency>

<groupId>com.adobe.flex.framework</groupId>
<artifactId>playerglobal</artifactld>
<version>4.0.0.7219</version>
<classifier>10</classifier>
<type>swc</type>

</dependency>
<dependency>

<groupId>org.sonatype.flexmoj os</groupId>
<artifactld>flexmoj os-unittest-support</artifactld>
<version>${flexmoj os.version}</version>
<type>swc</type>
<scope>test</scope>

</dependency>
</dependenc i e s >

</project>

Listing 3.2 shows the resulting pom.xml for the Flex application after you generate

the project using the mvn archetype : c r ea t e command shown in section 3.1. Because

this is part o f a multimodule project, die pom.xml lists the parent module's POM as

the parent for this project © . Next you'll see die values you specified for die groupld

© and a r t i f a c t l d © defined, as well as the packaging type © of swf because this

project is our Flex application and will be compiled to an SWF file.

NOTE You may need to associate die SWF file with the Standalone Flash
Player or your build may time out trying to run the F lexUni t tests. Because
F lexUni t requires the Flash runtime to run its test suites, Maven will try to
execute the resulting SWF file for your test suite using the default applica-
tion for SWF files. You can add a file association in Windows tiirough the
Windows Explorer Folder Options and on a Mac by using die file's context
sensitive menu. See the documentation athttps://docs.sonatype.org/display/
FLEXMOJOS/Running+unit+tests for more information.

Flex Mojos
repository at
Sonatype

Flex and unit
testing
dependencies

http://repository.sonatype.org/content/
http://repository.sonatype.org/content/
https://docs.sonatype.org/display/

65 CHAPTER 3 Getting rich with Flex

Next you set the project's version which is set to 1. O-SNAPSHOT. We def ine

the final name of our artifact so that the SWF that is generated will not have die

version information as part of the f i lename Q . The archetype also defines a com-

mon property Q for die Flex Mojos version so that you can be sure that the plugin

Q and any dependencies 0 def ined for die Flex Mojos are using the same ver-

sion. You're also overriding die version for the Flex compiler here to compile it

with the Flex 4 compiler and target version of Flash Player. Because this is not your

typical Maven project, the pom.xml defines the source and test-source directory

locations Q . It also defines the repository and plugin repository locations (|j) for

die Flex Mojos plugins and dependencies because they don't exist in die central

Maven repository.

Configure Maven for the flex-bugs-web module
Now that you've configured Maven to build the Flex application, you need to make

minor modifications to the pom.xml for the f l ex -bugs-web module in order to get

die Flex application to be copied over to die appropriate place in the web applica-

tion. To accomplish this, you'll use the maven-dependency-plugin.

Listing 3.3 Configuring the m a v e n - d e p e n d e n c y - p l u g i n

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

Maven-dependency-plugin A <build>
<plugins>

<plugin>
<artifactld>maven-dependency-plugin</artifactld>
<executions>

<execution>
<id>unpack-config</id>
<goals> A Unpack-config

<goal>unpack-dependencies</goal> execution
</goals>
<phase>generate-resources-;/phase>
<configuration>

<outputDirectory>
${proj ect.build.directory}/${proj ect.build.finalName}/WEB-INF/flex

</outputDirectory>
<includeGroupIds>${proj ect.groupId}</includeGroupIds>
<includeClassifiers>resources</includeClassifiers>
<excludeTransitive>true</excludeTransitive>
<excludeTypes>j ar,swf</excludeTypes>

</configuration>
</execution> Configuration for unpack-config execution

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd

Configure Maven for the flex-bugs-web module 4 3

Q Copy-swf
' execution

<execution>
<id>copy-swf</id>
<phase>process-classes</phase>
<goals>
<goal>copy-dependencies</goal>

</goals>
<configuration>
<stripVersion>true</stripVersion>
<outputDirectory>

${project.build.directory}/${proj ect.build.finalName}
</outputDirectory>

<includeTypes>swf</includeTypes>
</configuration>

</execution>
</executions>

</plugin> Configuration for copy-swf execution Q

</project>
Listing 3.3 shows tlie plugin configuration O needed for your web application to
properly resolve die dependency for die Flex application and ensure tiiat the SWF file
is placed correctly.

First define an execution tiiat you'll call unpack-conf ig © and tell Maven to exe-
cute tiiis during die generate-resources phase of the build, and call the unpack-
dependencies goal on tiiis plugin. In the configuration Q you tell the plugin to limit
the scope of what is affected by tiiis execution to artifacts with the same groupld as
your project and to artifacts of type resources. This will be utilized in chapter 5 as you
create a common project for all of the configuration files for BlazeDS that need to be
shared between the web application and die Flex application.

The Maven build lifecycle
Maven follows the convention over configuration paradigm in the build lifecycle
aspect , and many others. The folks who designed Maven realized that there are
many common steps in every build and developed the concept of the build lifecycle
around it. The default lifecycle flows through the following build phases (in order):

• validate
• compile
• test
• package
• integration-test
• verify
• install
• deploy

For more information on Maven and the build lifecycle, read Maven: The Definitive
Guide, a free ebook by Eric Redmond available at http://www.sonatype.com/prod-
ucts/maven/documentat ion/book-defguide.

http://www.sonatype.com/prod-

67 CHAPTER 3 Getting rich with Flex

The second execution that you define Q is copy-swf, and it will do exactly that. You

configure this execution to run during the p r o c e s s - c l a s s e s phase of die build lifecy-

cle and execute die copy-dependencies goal to copy the SWF file f rom the Flex proj-

ect into the target fo lder to be placed in die proper location before Maven creates the

final WAR file © . Next let's take a look at how to create an HTML wrapper, or in this

case a JSP wrapper for our Flex application.

Adding a wrapper for our SWF
Adobe provides numerous templates for creating HTML wrapper files for your SWF,

located in die /templates directory of your Flex SDK installation. There is everything

f rom the basic no frills wrapper, to wrappers that include functionality to detect

whether the client has die correct version of the Flash Player installed, and whether to

support deep linking and history for your application.

NOTE Normally die HTML wrapper would be an HTML file in your web appli-
cation. Because the SiteMesh filter in AppFuse is configured to decorate any-
thing with a .html extension, we decided the easiest way to circumvent this
filter was to make the wrapper a JSP file.

For this application, copy the contents o f the client-side-detection-with-history fo lder

including die index.template.html, AC_OETagsjs file, and die history fo lder f rom die

/templates directory of your Flex SDK installation to the src/main/webapp directory

of die f l ex -bugs-web project. Rename the index.template.html file flexbugs.jsp, and

replace die placeholders in die file with the values shown in listing 3.4.

Listing 3.4 H T M L wrapper values

${title} -> FlexBugs
${version_major} -> 9
${version_minor} -> 0
${required_revision} -> 28
${width} -> 100%
${height} -> 100%
${application} -> flex-bugs-ria
${bgcolor} -> #869ca7
${swf} -> flex-bugs-ria.swf

We aren't go ing into detail about what is contained in flexbugs.jsp because it's likely

you won't have to change anything inside of it in die future. Learn more about the

HTML templates that Flex provides in die LiveDocs at Adobe 's website at http://live-

docs. adobe. com/flex/3/html/wrapper_04.html#l78239.

"Hello World!" in Flex
Now that you have the web application configured to properly resolve the Flex appli-

cation dependency, have placed die resulting SWF file properly, and have die HTML

wrapper configured, let's write a "Hel lo World! " application in Flex to verify that

"Hello World!" in Flex 45

everything is working as expected. In die src/main/flex fo lder o f the f lex -bugs-r ia

project create a Main.mxml file for die Flex application.

Listing 3.5 Hello World! in Flex

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:view="org.foj.view.*"
minWidth='950'
minHeight="600"
height="100%"
width="100%">

Flex Application
root component

<s:layout>
<s:VerticalLayout/>

</s:layout>
<s:SimpleText text="Hello World!"/>

</s:Application>

J
J>

J?
Setting layout

SimpleText
component

Shown is a minimal "Hel lo World! " application in Flex. It consists o f only die root

Application component Q , a layout definition © and a single SimpleText compo-

nent G which has its text property set to "Hello World! "

Maven and heap space
Y o u may run into heap s p a c e problems w h e n compi l ing y o u r Flex app l icat ion w i t h
the Flex M o j o s , and y o u r bui ld may fail w i t h a m e s s a g e similar to the fo l lowing:

[INFO]
[ERROR] FATAL ERROR
[INFO]
[INFO] Java heap space
[INFO]
[INFO] Trace
java.lang.OutOfMemoryError: Java heap space

T o fix th i s issue, you need only def ine an env i ronment var iable named MAVEN_OPTS
and s e t i ts va lue to "-Xmx512m" ad just ing the memory size as needed (h t tps ://
d o c s , s o n a t y p e . o r g / d i s p l a y / F L E X M O J O S / F A Q) .

To build die Flex application you first need to run mvn install f rom die flex-bugs-ria

directory. That's it. This will build die flex-bugs-ria project, and deploy the result-

ing artifact into your local Maven repository so tiiat die flex-bugs-web project can

include it as a dependency in its pom.xml. Af ter it finishes building you can navigate

to die ilex-bugs-web directory and run the application by typing mvn jetty: run-war
on die command line. This will start up a Jetty instance and deploy your WAR inside

this instance so that you can visually verify everytiiing is working. When you see the

output shown in die fol lowing listing, you know tiiat your application is running.

http://ns.adobe.com/mxml/2009

69 CHAPTER 3 Getting rich with Flex

Listing 3.6 Console output from the m a v e n - j e t t y - p l u g i n

2009-03-28 19:31:14.206::INFO: Started SelectChannelConnectorSO.0.0.0:8080
[INFO] Started Jetty Server
[INFO] Starting scanner at interval of 3 seconds.

Open your favorite browser and navigate to http://localhost:8080/flexbugs.jsp and

you should see a screen similar to figure 3.1.

This sanity check is not terribly exciting, but you can see that the application is

configured correctly. Now that you have the obligatory "Hel lo World! " application out

of the way, let's get on with the task of developing die real application.

Developing the FlexBugs application
To begin developing die application, you should have an idea of what you would like

it to look like. Figure 3.2 shows a mockup.

The application is divided into three main areas in a modi f ied master/detail view

with a second detail view for any comments on die selected issue. The application can

also be divided into header, footer, and main application areas. Def ining the applica-

tion in these terms achieves a couple of objectives. By separating the application into

these dif ferent pieces, you can create separate mxml files to help keep die code man-

ageable. By breaking up our application into separate mxml files, you can reuse parts

of the application.

« n o http://lot alhosrSOSO/flexbugs.jsp

J [+ rthttp://iocairiost:8080/*iext>ugs.jsp ~ c] f t y cc
Hello Wo'd!

Figure 3.1 Our "Hello World!" application

http://localhost:8080/flexbugs.jsp
http://lot
http://iocairiost:8080/*iext%3eugs.jsp

Developing the FlexBugs application 47

Header Section

FlexBugs Application

Master View

Commenls V iew

F M I W 4 ' I.
b*p « - v ir-- tj w

I]

BH
i.'.r i -'.v.**' tm w

I PHrtiVlr» [Orjpn-rtrM j

t^/Tiyi' UKrt Flu J m

Figure 3.2 A mockup of the FlexBugs application
Footer Sect ion

Next we're going to decompose die application into manageable chunks. We' l l start

by introducing some of die container and navigation components we'll be using to

build diis application starting widi die ViewStack navigation component.

3.6.1 Introducing ViewStack
ViewStack is a navigation component

diat allows you to stack a collection of

views and selectively display diem.

Unlike traditional web applications,

Flex applications typically don't have

many pages. A Flex application typi-

cally has one application diat will

change its view state depending on

which part of die application is active.

The ViewStack is one of die Flex

components diat allows you to do

diis by bringing die active view to die

foreground and hiding die inactive

views in die background as shown in

f igure 3.3.

You can control die ViewStack
in a number of ways, die most com-

mon of which is to utilize one of die Figure 3.3 How the ViewStack works

71 CHAPTER 3 Getting rich with Flex

navigation components such as the LinkBar, ButtonBar, or ToggleButtonBar. For

the FlexBugs application we'l l leverage the ToggleButtonBar to facilitate switching

the view state. In the top-right corner o f the figure 3.2 mockup you'll see buttons

labeled Details View and Graph View; these are the two views that we'l l use of in

this application. We' l l develop die details view in this chapter and die graph view in

chapter 10 when we talk more about graphing components.

Listing 3.7 Defining the V i e w S t a c k s

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
minWidth='950'
minHeight="600"
height="100%"
width="100%">

<s:layout>
<s : VerticalLayout/> Define view stack A

</s:layout>

<mx:ViewStack id="mainViewStack" width="100%" height="100%"> <1—

<mx:Canvas id="viewl" label="Details View">
<mx:Text text="Put the details view stuff here..."/>

</mx:Canvas>

<mx:Canvas id="view2" label="Graph View">
<mx:Text text="Put some graphs here..."/>

</mx:Canvas>
</mx:ViewStack>

</s:Application>

Listing 3.7 shows the Main.mxml after you add the ViewStack components to the

application. After you remove our HelloWorld code, create a ViewStack element O

and give it an id o f mainViewStack; this will become important later when you define

die ToggleButtonBar as the dataProvider attribute, for the ToggleButtonBar will be

set to this ViewStack component. You want this ViewStack to use up all available hori-

zontal and vertical space so set its width and height to 100%.

Next add two Canvas components Q and Q to the ViewStack giving them ids of

viewl and view2 respectively. These two Canvas components will be the two main

views the ToggleButtonBar will control. The label attribute of these two components

will be displayed as die text o f the two ToggleButton controls, so you set those to

Details View and Graph View, respectively. Inside these two Canvas containers put

Text components as placeholders, so you can see how the ToggleButtonBar will con-

trol die two view states in the next section.

A Add first view
If component

A Add second view
If component

http://ns.adobe.com/mxml/2009

Developing the FlexBugs application 49

• a org
• U f o j

• • view

3.6.2 HeaderView
Before you go much furtiier witii building up die appli-

cation create the header view so you can control die view

states diat you just created. In die src/main/flex folder cre-

ate die directory structure shown in figure 3.4 to house die

view components.

ActionScript and Flex fol low a similar packaging struc-

ture as Java so you will leverage tiiat aspect in order to keep

the source files organized in die same manner you would in a Java project. Inside

o f die view folder create a new file called Header.mxml, where you will put the code

for die header for die application.

Figure 3.4 Folder
structure for view
components

Listing 3.8 Header.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
width="100%"
height="60">

<s:layout>
<s:HorizontalLayout/>

</s:layout>

< fx:Script>
<![CDATA[
import mx.containers.ViewStack;

public var viewStack:ViewStack;]]>
</fx:Script>
<mx:Spacer width="5"/>
<s:SimpleText text="FlexBugs Application"

height="100%"
fontSize="32 "
fontWeight="bold"
verticalAlign="middle"/>

<mx:Spacer width="100%"/>
<s:VGroup height="100%">

<mx:Spacer height="100%"/>
<mx:ToggleButtonBar dataProvider="viewStack"/>

</s:VGroup>
<mx:Spacer width="5"/>

J
J

Component
extends Group

Define layout

J» Import and declare
ViewStack member variable

Text field
for Title

</s :Group>
ToggleButtonBar for

controlling ViewStack

Spacers
for layout

Listing 3.8 shows the code for die Header.mxml component. There's not much to it.

The component itself extends the Group component Q , and defines its layout © as

being Hor izonta lLayout , meaning tiiat all the components inside it will be laid out

horizontally as opposed to vertically or absolutely. Next you define a public member

variable © , which will be used to allow die main application to pass in the ViewStack

http://ns.adobe.com/mxml/2009

73 CHAPTER 3 Getting rich with Flex

that the ToggleButtonBar Q will control. To do tiiat you create a Script block and

enclose some ActionScript inside a CDATA section, so that any characters that may

potentially be parsed as XML are handled correctly.

For the Application Title you have a SimpleText component Q with a couple of

attributes def ined on it. The first one is die text attribute, which sets the text to be

displayed in die application. Flex has support for CSS styles similar to those in web

applications. Finally there are Spacer elements Q , which you use to make sure every-

thing is laid out properly. The Spacer elements do just what you would expect; they

take up space and fill in blank space so that you can effectively lay out components in

die application.

Listing 3.9 Adding the header to Main.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:view="org.foj.view.*"
minWidth='950'
minHeight="600"
height="100%"
width="100%">

<s:layout>
<s:VerticalLayout/>

</s:layout>

<view:Header viewStack="{mainViewStack}"/>
<mx:ViewStack id="mainViewStack" width="10

<mx:Canvas id="viewl" label="Details View">
<mx:Text text="Put the details view stuff here..."/>

</mx:Canvas>

<mx:Canvas id="view2" label="Graph View">
<mx:Text text="Put some graphs here..."/>

</mx:Canvas>
</mx:Viewstack>

</s:Application>

The preceding listing shows die updated Main.mxml file that includes die Header,

mxml component you just created. First you def ined a custom namespace for die

view components by adding die code shown at Q . Next add the custom component

to the Main.mxml by using this custom namespace prefix and pass in a reference to

die ViewStack component by using the binding expression {mainViewStack} Q .
Now you should be able to build and run die application as outlined earlier, and be

presented with a screen that resembles figure 3.5.

When you click the ToggleButtons in the upper-right corner, you should see the

text in die main part of the application change. Next let's build a simple footer com-

ponent for the application.

Added namespace
for view components

A Added header
to application

'%" height=" 100%" >

www.allitebooks.com

http://ns.adobe.com/mxml/2009
http://www.allitebooks.org

Developing the FlexBugs application 51

^ o o flexbugs.jsp
1 I + 11 h!tp: / /local host 8080/ftexbugi/flexbugs ,js p* C | (Or Google

FlexBugs Application
| Data s View J Graph View j

Pui tne retails siuffhare „
s View J Graph View j

Figure 3.5 The header view added.

3.6.3 FooterView
Inside die same fo lder where you created the Header.mxml in die previous section,

create another file named Footer.mxml. Though it may seem like overkill to separate

the footer into its own M X M L file, we'l l do it anyway just to get you in die habit o f sys-

tematically breaking your Flex application into smaller, more manageable pieces.

Listing 3.10 Footer .mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
width="100%"
height="40">

<s:layout>
<s:HorizontalLayout/>

</s:layout>
<mx:Spacer width="100%"/>
<s:SimpleText text="Copyright © 2009 Flex On Java"

height="100%"
verticalAlign="middle"
textAlign="center"/>

<mx:Spacer width="100%"/>

</s:Group>

The code in the preceding listing shows the footer file. Like the header, the footer

extends die Group component. It contains only a single SimpleText component,

which contains die copyright information, and sets its textAlign attribute to center.
Once again you leverage a couple of Spacer elements to assist in layout.

Listing 3.11 Main.mxml updated wi th footer

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"

http://ns.adobe.com/mxml/2009
http://ns.adobe.com/mxml/2009

52 CHAPTER 3 Getting rich with Flex

xmlns:view="org.foj.view.*"
minWidth='950'
minHeight="600"
height="100%"
width="100%">

<s:layout>
<s:VerticalLayout/>

</s:layout>

</mx:ViewStack>

<view:Footer/> J? Added footer
to Main.mxml

</s:Application>

Next you add the footer Q to die application much as you did earlier for die header.

Near the end of the Main.mxml, place die tag for the footer. Next let's move on to cre-

ating the v iew component for the master view.

3.6.4 Master view
Now you're getting to the more interesting parts. The master view if you'll recall f rom

figure 3.2 consists o f a few components. At the top resides a data grid component with

two buttons for adding and removing issues.

Listing 3 .12 MasterV iew.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
layout="vertical"
title="Issues"
width="100%"
height="100%"> J Extending

Panel

<mx:DataGrid id="masterViewDataGrid" width="100%" height="100%">
<mx:columns>

" id" <mx:DataGridColumn dataField=
headerText

<mx:DataGridColumn dataField=
headerText

<mx:DataGridColumn dataField=
headerText

<mx:DataGridColumn dataField=
headerText

<mx:DataGridColumn dataField=
headerText

<mx:DataGridColumn dataField=

"ID" width="70"/>
proj ect"
"Project" width="120"/>
description"
"Description"/>
issue-type"
"Type" width="120"/>
severity"
"Severi ty" width="7 0"/>
status"

DataGrid O

headerText="Status" width="100"/>
</mx:columns>
</mx:DataGrid>
<mx:ControlBar width="100%">

<mx:Button label="Add New Issue"/>
J ControlBar for

Add/Delete buttons

http://ns.adobe.com/mxml/2009

Developing the FlexBugs application 53

<mx:Button label="Remove Selected Issue"/>
</mx:ControlBar>

</mx:Panel>

Create a file inside die org/foj/view folder called MasterView.mxml. This will contain

the code to create die master view, shown in listing 3.12. This component will be

based on the Panel component Q , which is one of the layout containers available in

the Flex framework. The Panel component provides us witii a title bar area where we

can provide die group of components contained within a meaningful title much like

the <legend> tag in HTML, or a group box control, for those more familiar witii desk-

top development.

DataGrid © is used to display tabular data, and is one of the fundamental con-

trols used in data-driven applications. The DataGrid and its big brother Advanced-
DataGrid let you edit rows of data witiiin the table cells. For die application, we'l l

f o rego that functionality in favor o f using a detail view. A ControlBar © at die

bottom of the Panel will contain die buttons for adding and removing issues f rom

the application.

3.6.5 Detail view
Next we're going to develop die detail view, where you will allow die users of die appli-

cation to modi fy the data fields for die issues displayed in die master view. DetailView
has a form containing die fields tiiat can be updated for the issues in die application.

Begin just as you did earlier for the master view, by creating a file named Detail-

View.mxml in die org/foj/view folder. The fol lowing listing shows the code we'l l be

adding to tiiat file.

Listing 3.13 Detai lView.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx: Panel xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spar
xmlns:mx="library://ns.adobe.com/flex/hal
layout="vertical"
title="Details"
width="100%"
height="100%">

<mx:Form id="issueDetailForm" width="100%">
<mx:FormItem label="ID:" width="100%">

<mx:Text id="issueld"/>
</mx:FormItem>
<mx:FormItem label="Project:" width="100%">

<mx:Textlnput id="projectName"
width="100%"/>

</mx:FormItem>
<mx:FormItem label="Description :" width="100%">

<mx:Textlnput id="issueDescription"
width="100%"/>

</mx:FormItem>

k"

J
J

Extends Panel

Form container

Formltem
components

http://ns.adobe.com/mxml/2009

5 4 CHAPTER 3 Getting rich with Flex

<mx:FormItem label="Type:" width="100%">
<mx:ComboBox id="issueType"/>

</mx:FormItem>
<mx:FormItem label="Severity:" width="100%">

<mx:ComboBox id="issueSeverity"/>
</mx:FormItem>
<mx:FormItem label="Status:" width="100%">

<mx:ComboBox id="issueStatus"/>
</mx:FormItem>
<mx:FormItem label="Details:" width="100%">

<mx:TextArea id="issueDetails"
width="100%"
height="100"/>

</mx:FormItem>
<mx:FormItem label="Reported By:" width="100%">

<mx:TextInput id="issueReportedBy"
width="100%"/>

</mx:FormItem>
<mx:FormItem label="Reported On:" width="100%">

<mx:DateField id="issueReportedOn"
width="100%"/>

</mx:FormItem>
<mx:FormItem label="Assigned To:" width="100%">

<mx:Textlnput id="issueAssignedTo"
width="100%"/>

</mx:FormItem>
<mx:FormItem label="Estimated Hours:" width="100%">

<mx:Textlnput id="issueEstimatedHours"
width="100%"/>

</mx:FormItem>
</mx:Form>

<mx:ControlBar>
<mx:Button id="saveChangesButton" label="Save Changes"/>
<mx:Button id="cancelChangesButton" label="Cancel Changes"/>

</mx:ControlBar>

</mx:Panel>

Similar to tlie master view, the details view component will be based of f of die Pane 1 layout

container Q . Add a Form © container to help organize die input fields that will be used

to ultimately update die issues in the application. Unlike in H T M L , the Form container

in the Flex framework serves no other purpose than to group form controls on the page.

You do not need to wrap fields in a Form tag to submit data to the backend; it's there for

aesthetics. Inside die Form wrap each input f ield inside ofaFormltem© component that

provides styling, a label, and layout for each of the f o rm fields. A ControlBar © contains

die buttons that control saving the data and canceling die edits.

3.6.6 Comments view
The final section of die application we'l l lay out is the comments view, which will list

any comments added to die issues. First create the CommentsView.mxml file in the

org/foj/view folder just as you did for all o f die other view components. For this L i s t

ControlBar

Laying out the components 55

component we're going to display die comment text; you could easily create a custom

ItemRenderer for die List items similar to what we'l l do in chapter 8 for die custom

chart that we'l l create.

Listing 3.14 CommentsView.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
layout="vertical"
title="Comments"
width="100%"
height="100%">

<mx:List id="commentsList"
width="100%"
height="100%"
labelField="commentText">

</mx:List>

<mx:ControlBar>
<mx:Button id="addButton"

label="Add New Comment"/>
<mx:Button id="editButton"

label="Edit Comment"/>
<mx:Button id="deleteButton"

label="Delete Comment"/>
</mx:ControlBar>

</mx:Panel>

The code for die comments view is based on die Panel component O - Next add a

List component Q , which you'll use to contain a list of die comments. At the bottom

of the Panel add a ControlBar © to hold die three Button components Q we'l l

def ine to operate on the comments.

Laying out the components
Now diat you've got all of die components defined, let's add them to die Main.mxml

and define die overall application layout. In Flex, all components can be laid out

widiin odier containers generally in one of tiiree ways—horizontally, vertically, or

absolutely. In most cases it's best to go witii eitiier horizontal or vertical layouts, espe-

cially if you want your application to resize appropriately. To achieve the layout you

want you'll need to nest layout containers as illustrated in figure 3.6.

Figure 3.6 shows die nesting of layout containers that was necessary to duplicate

what was shown in die mockup shown in figure 3.1. Listing 3.15 shows the updated

Main.mxml with all of die layout components necessary.

J

J»

1>

Extending Panel

List for comments

ControlBar for buttons

Buttons for
operations on
comments

http://ns.adobe.com/mxml/2009

79 CHAPTER 3 Getting rich with Flex

Canvas
HDividedBox

VDividedBox

MasterView

Comments View

DetailView

Footer

Figure 3.6
Layout for the application

Listing 3.15 Laying out the application

?xml version="1.0" encoding="utf-8"?>
s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:view="org.foj.view.*"
minWidth='950'
minHeight="600"
height="100%"
width="100%">

<s:layout>
<s:VerticalLayout/>

</s:layout>

<view:Header viewStack="{mainViewStack}"/>
0 Canvas

<mx:ViewStack id="mainViewStack" width="100%" height="100%">

<mx:Canvas id="viewl" label= "Details View"> <1—
<mx: HDividedBox width= " 100% " height= " 100% " > © HDividedBox

<mx: VDividedBox width= " 70% " height= " 100% " > < — © VDividedBox
<view: MasterView id= "masterView" height= " 60% "/> <—, MasterView
<view: CommentsView id= " commentsView" height= " 40% "/> <1— Q component

< /mx: VDividedBox>
<view:DetailView id="detailsView" width="30%"/>

</mx:HDividedBox>

</mx:Canvas>
CommentsView component © I DetailView

component

http://ns.adobe.com/mxml/2009

Creating a pop-up component 57

<mx:Canvas id="view2" label="Graph View">
<mx:Panel title="Graph View" width="100%" height="100%">

<mx:Text text="Put some graphs here..."/>
</mx:Panel>

</mx:Canvas>
</mx:ViewStack>

<view:Footer/>

</s:Application>

As illustrated in figure 3.6, you start out with a Canvas © container to hold all die

nested layout containers for die main ViewStack. Inside of tiiis you create an

HDividedBox, © setting its width and height to 100%, so it will take up all available

space. Widi in tiiat you place a VDividedBox © , which will contain die MasterView ©
and die CommentsView © . Lasdy you add die DetailView © , which will occupy die

right side o f die HDividedBox. The application is almost complete. Next let's create a

component to use as a modal popup to edit die comments in die List view of die

CommentsView component.

Creating a pop-up component
The final component you'll develop in tiiis chapter is a modal pop-up form tiiat

you'll wire into the application in the next chapter to add new comments and edit

existing ones.

Figure 3.7 is a screenshot of the pop up. Listing 3.16 shows the code for the

pop up.

Add/Edit Comment

Auinor:

Date:

Comment:

Save Comment \ j Cancel

E

Figure 3.7 Pop up for editing comments

81 CHAPTER 3 Getting rich with Flex

Listing 3.16 EditCommentForm.mxml

<?xml version="1.0" ?>
<mx:TitleWindow

xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
title="Add/Edit Comment"
height="400"
width="500">

<mx:Form width="100%">
<mx:FormItem label="Author:" width="100%">

<mx:Textlnput id="author"
width="100%"/>

</mx:FormItem>
<mx:FormItem label="Date:" width="100%">

<mx:DateField id="commentDate"
width="100%"
formatString="MM/DD/YYYY"/>

</mx:FormItem>
<mx:FormItem label="Comment:" width="100%">

<mx:TextArea id="commentText"
width="100%"
height="200"/>

</mx:FormItem>
</mx:Form>

<mx:ControlBar>
<mx:Button id="saveButton" label="Save Comm
<mx:Button id="cancelButton" label="Cancel"

</mx:ControlBar>

</mx:TitleWindow>

The pop-up window is fairly simple. You define die component to extend die

TitleWindow component © , which you'll typically use for pop ups. Next you add a

Form and a number of FormI terns © j u s t as you did earlier for the DetailView. The

ControlBar © added to the window holds die Button components for controlling die

pop up.

The finished application
The final design is far f rom finished, but we're done for now. This is as good a time as

any to build die application and see die progress you've made. The application won't

be functional until the end of die next chapter, but it's always reassuring to see what

die finished product will look like anyway.

From die root of die f lex-bugs-ria project run die command mvn install. The

build should complete successfully. If not double-check die code to ensure tiiat it

matches the code shown in die listings. Next, inside the root of die flex-bugs-web
project run die mvn jetty: run-war command to start up die embedded Jetty web con-

tainer and deploy die war file. When die container is up and running, navigate to http://

localhost:8080/flexbugs.jsp and you should see sometiiing that resembles figure 3.8.

© En
< - J Ti.

1>

Extends
TitleWindow

Add Form

J ControlBar

.ent" />
/>

http://ns.adobe.com/mxml/2009

Summary 59

+ • h!tp:/.i local host:6080,rflexbugs /flexbugs jsp# C] Q,* G o o g l e

FlexBugs Application

j Refresh List |

| Details \Aew | Graph View

10:

Project
Description:

T>i>e:
Severity-
Status:
Details:

Reported By:
Report«» On:
Assigned To:

Estimated Hours:

«n

H3

[Aoa Issue J [Cancel Changes |

Copyright$ 2009 Flex On Java

a

Figure 3.8 The finished application

3.10 Summary
This chapter moved quickly and only briefly introduced many of die components

available to you in die Flex framework. You started witii an idea of what you wanted

the application to look like and decomposed tiiat into several smaller components. By

doing that you made die code more manageable, and as you'll see in die next chapter,

you made the presentation models and event handling easier to handle. When you

had all die pieces built up, you could illustrate basics of layout containers in Flex and

put die application together. We ' re hopeful tiiat you were able to fol low along; if you

feel like you need more information about layouts and die components of the Flex

framework, a good place to start would be the LiveDocs at http://help.adobe.com/

en_US / flex/using/index.html.

Now that you've built up the Flex application and laid out die components, where

do you go f rom here? In die next chapter you're going to begin connecting the Flex

application to the Java backend you developed in chapter 2 using the WebService

component. In chapter 5 you'll refactor tiiis to use the BlazeDS framework to talk

directiy to the Java application.

http://help.adobe.com/

This chapter covers
• Mode l V iew Presenter

• Event d ispatch ing and handl ing

• Cal l ing a w e b s e r v i c e

• In te r faces and v i e w s

In chapter 3 you designed die UI for the Flex application, but it won't be useful
until it can communicate with a server-side component. In tiiis chapter you're
going to continue building up the client-side application. Many Flex books attempt
to hide complexity when dealing witii client-side code and ActionScript, usually by
having you create all your WebService components and event handling code in
your MXML files. This solution, as many developers agree, does not scale well and
quickly shows its warts in any but die most trivial application.

We've decided instead to architect die client-side code in such a manner as
to not only scale well, but also isolate your View from Presentation and from
external services. This allows the application to be flexible enough to easily
refactor and replace one implementation of external service with another with
minimal code changes. You could, tiierefore, painlessly change your application

60

Model View Presenter 61

from calling web services to leveraging BlazeDS as you'll see in chapter 5. You'll do

this by using MVP.

Because a good portion of the interaction between the Flex framework and the

server-side occurs as asynchronous calls, we'l l go over events and event handling.

We' l l cover how to utilize events to facilitate communication between separate sec-

tions of the application. We' l l also learn how to create the WebService component

and call the web services you def ined in the application in chapter 2. By the end of

this chapter you should have a functioning application that communicates with the

Java server side.

Model View Presenter
To build the backend for the Flex application, we're going to make use of a popular

GUI architectural pattern called Mode l View Presenter, and more specifically a varia-

tion o f that pattern called Passive View. As you may have guessed already, the MVP pat-

tern consists o f three main components: a Model , a View, and a Presenter, as shown in

figure 4.1. By leveraging the Passive View architecture you are able to create what

Michael Feathers describes as a "Humble Dialog Box" (http://www.objectmentor.

com/resources/articles/TheHumbleDialogBox.pdf) . The primary reason to fol low

this style o f deve lopment is that you are able to remove as much logic f rom the UI

as possible

Figure 4.1 shows the relationship among the three components o f the MVP pat-

tern. The first element o f the MVP triad is the Presenter. As the diagram shows, all

information flows f rom the Presenter to either the Mode l or View. The Mode l and

View are isolated from each other and should have no knowledge of each other or o f

the Presenter.

All communication with the Presenter should be done through events. The Pre-

senter is then responsible for maintaining the state o f the application, making calls to

Presenter

Figure 4.1
The relationship between the Model, View,
and Presenter

http://www.objectmentor

85 CHAPTER 4 Connecting to web services

What about data binding?
For those of you who are familiar wi th Flex, you'll notice sooner or later that we 've
decided not to use the built-in data binding functionality that Flex provides.
Because we're following the Passive View pattern for this application, we' re relying
on the Presenter to push any changes to the data being displayed to the view. The
main reason is for testabil ity. It 's much easier to unit test the presentation behav-
ior if it is in the Presenter than in the V iew.

the Model and updating the View when necessary. Read more about the MVP pattern
and the Passive View pattern at Martin Fowler's blog at (http://martinfowler.com/
eaaDev/PassiveScreen.html).

Web services in Flex
It is fairly common to use web services for application integration, especially when
there are disparate platforms involved. Because of die availability of XML parsers for
most every common programming language in use today, web services are a prime
candidate for applications to share information with each otiier.

There are two major styles of web services:

• SOAP-based, which are primarily service-oriented

• RESTful, which are primarily resource-oriented

For this application you'll use the WebService component to talk to the SOAP-based
web services you created in chapter 1. In die example we won't use die HTTP-
Service component to connect to RESTful web services, but it's similar enough to
using the WebService component you should be able to modify die code witiiout
too much effort.

Exposing your business functionality via web services has the least impact on your
server-side code, as it doesn't couple die application to the clients that will be consum-
ing the service. As you'll see in chapter 5, when we expose a service for consumption
using BlazeDS, the remote service is coupled only to clients who can communicate
using die AMF binary protocol that BlazeDS uses.

Web services are commonly used to integrate applications especially if they run on
different platforms. As it happens, Flex falls into this category because it needs to
communicate witii the server side, which is most likely not written in ActionScript.
With that in mind, die fine folks at Adobe have made integrating a Flex application
with a back end using web services a fairly trivial endeavor. Most Flex books show you
how to call your web services by creating the service components directly in die MXML
files, but because we're striving for reusability, maintainability, and clean code, we're
going to encapsulate the WebService objects in our model.

http://martinfowler.com/

Dispatching and handling ez>ents 63

4.3 Dispatching and handling events
Dispatching and handling events is fundamental to Flex development, and also to

development using die Passive View pattern described previously. Al l interaction with

the Presenter is done through dispatching events. In this section we'l l discuss how to

enable communication between the parts of the application via events.

4.3.1 Creating a custom event
Many components in Flex have their own built-in events, such as the click event on

a button. If you want to send any data along witii your event, such as which row in a

DataGrid was selected, you'll need to create your own custom event class tiiat extends

the f l a s h , events . Event class.

NOTE Like Java, ActionScript uses packages to logically group related classes
and avoid naming conflicts. T o declare that a class belongs to a particular
package, use the package keyword, fol lowed by die package name with a set
o f braces containing die code belonging to that package. Then place die class
file in a fo lder structure corresponding to the package name you defined. If
your package name is com. example, die class must be located in a com/exam-
p l e fo lder of your source tree.

To differentiate between events, you can either create a separate subclass for each

event tiiat you wish to react to, or create fewer events and use the type attribute to fil-

ter out only die events you want to add event listeners for.

Listing 4.1 UlEvent .as

package org.foj.event {

import flash.events.Event;

public class UIEvent extends Event { <•

public static var SELECTED_ISSUE_CHANGED:String =
"selectedlssueChanged";

public static var REFRESH_ISSUES_BUTTON_CLICKED:String
"refreshButtonClicked";

public static var REMOVE_ISSUE_BUTTON_CLICKED:String =
"removeButtonClicked";

public static var SAVE_ISSUE_BUTTON_CLICKED:String =
"saveIssue";

public static var SELECTED_ISSUE_SAVED:String =
"selectedlssueSaved";

public static var CANCELLED_ISSUE_EDIT:String =
"cancelledlssueEdit";

public static var SELECTED_COMMENT_CHANGED:String =
"selectedCommentChanged";

public static var ADD_NEW_COMMENT_BUTTON_PRESSED:String =
"addNewComment";

S Extending
Event

Constants for
event type

64 CHAPTER 4 Connecting to web services

public static var EDIT_COMMENT_BUTTON_PRESSED:String =
"editComment";

public static var DELETE_COMMENT_BUTTON_PRESSED:String =
"deleteComment";

public static var SAVE_COMMENT_BUTTON_PRESSED:String =
"saveComment";

public static var CANCEL_EDIT_COMMENT_BUTTON_PRESSED:String =
"cancelEditComment";

public static var COMMENTS_UPDATED:String =
"commentsUpdated";

public var data : *;

public function UIEvent(type : String,
bubbles : Boolean = true,
cancelable : Boolean = false)

J

{

Constants for
event type

Variable for 1Variable f
sending
information
with event

super(type, bubbles, cancelable);
Q Constructor

In listing 4.1 you've created a custom event class called UIEvent O a n d def ined con-

stants for die dif ferent types o f events that will be dispatched © . There's also a

def ined field called data © tiiat will accept any type of variable. This will hold any

kind of payload you pass witii die event. As a last step overload die constructor Q and

specify default values for whetiier or not die events should bubble up the chain and

be cancelable. Next you'll look at how to dispatch tiiese events.

4.3.2 Event dispatching
For the application to react to events, you first have to dispatch diem. Because every

component in Flex is an ancestor of UlComponent, you have die ability to dispatch

an event by simply calling die dispatchEvent method witiiin your M X M L ; event bub-

bling only travels upward toward a component's parent. For the application to work

as you expect, you need a mechanism to allow sibling components to intercept events

being dispatched to notify you of a button being clicked, or die selected item in a

DataGrid being changed. To accomplish this you will create an EventDispatcher-
Factory so tiiat all event dispatching and subscribing happens with die same Event-
Dispatcher object.

Listing 4.2 EventDispatcherFactory .as

package org.foj.event {
import flash.events.EventDispatcher;

public class EventDispatcherFactory{ O Singleton instance
private static var „instance: EventDispatcher; <1—* of EventDispatcher

Creating Issue and Comment transfer objects 65

public static function getEventDispatcher():EventDispatcher {
if (_instance == null) {
.instance = new EventDispatcher () ; Factory method

} get EventDispatcher
return .instance;

}

1er O

Listing 4.2 shows the code for the EventDispatcherFactory. There's not much to it. It

consists of a factory meti iod getEventDispatcher Q , which returns a singleton

instance of an EventDispatcher You'l l use tiiis instance of EventDispatcher to

dispatch and subscribe to events. That way any part of die application can dispatch

and react to events regardless of where it exists in die application's hierarchy of com-

ponents and classes. Now that you have die custom events and a way to dispatch diem,

let's move on to enhancing die application to make it more interactive and useful.

Creating Issue and Comment transfer objects
To ease handling die responses f rom calling web services, you need to duplicate die

data objects def ined in chapter 1 in ActionScript so that you can effectively deal witii

the data on die client side.

Listing 4.3 Issue.as

package org.foj.dto {

public class Issue {

public var id:int;
public var project: String;
public var description:String;
public var type:String;
public var severity: String;
public var status : String;
public var details : String;
public var reportedBy: String;
public var reportedOn: Date ;
public var assignedTo: String;
public var estimatedHours:Number;

public function Issue(issue : * = null) {
if (issue != null) {

this.id = issue.id;
this.project = issue.project;
this.description = issue.description;
this.type = issue.type;
this.severity = issue.severity;
this.status = issue.status ;
this.reportedBy = issue.reportedBy;
this.reportedOn = issue.reportedOn;
this.assignedTo = issue.assignedTo;

Public member
variables

Convenience
constructor

89 CHAPTER 4 Connecting to web services

this.estimatedHours = issue.estimatedHours;
this.details = issue.details;

}

Listing 4.3 shows the Issue data object. There's not much to it. It contains several

public member variables Q , which match the properties in its Java counterpart. Then

you define a convenience constructor Q for constructing an Issue because the Web-
Service will not return actual Issue objects, but rather construct an ObjectProxy,
which is an anonymous dynamic object that contains the same properties as the Issue
object. You define a constructor that allows you to create an Issue object f rom tiiis

ObjectProxy.

Listing 4.4 Comment.as

package org.foj.dto {

public class Comment {

public var id:int;
public var issue:Issue;
public var author:String;
public var createdDate:Date;
public var commentText:String;

public function Comment(comment:* = null) {
if (comment != null) {

this.id = comment.id;
this.author = comment.author;
this.createdDate = comment.createdDate;
this.commentText = comment.commentText;
this.issue = new Issue(comment.issue);

}

Listing 4.4 shows the Comment data object, which looks similar to die Issue data

object. It contains a few member variables O and a convenience constructor © .

Next let's get down to die task of enhancing die UI by applying die M V P pattern to

die application.

Enhancing the master view
The first part o f the application that you'll be enhancing is the master view. You'l l

start by creating the Presenter for the master view. Then you'll create the Issues

model, which will encapsulate die interaction witii the web services you created in

chapter 1. When you're done, update die view to dispatch the necessary events to

function properly.

Public member
variables

Convenience
constructor

Enhancing the comments view 67

4.5.1 Creating a Presenter for the master view
Because the Presenter is responsible for most of what goes on in the application, it will

be the first part of the M V P triad that you'll be creating. The Presenter for the master

view part of the application needs only a couple of di f ferent events to react to.

Because the application is stateful by nature, you need to refresh die list of Issues
whenever any of the issues are changed, tiiat is, an issue is created or removed, when-

ever an individual issue is updated, or when die user clicks the Refresh Issues button.

The Presenter also needs to react when die user clicks die Remove Issue button. The

fol lowing listing shows the code for the MasterPresenter class.

Listing 4.5 MasterPresenter .as

package org.foj.presenter {

public class MasterPresenter { __
View

private var _view:MasterViewComponent; <-l O Model
private var _issueModel:SoapIssueModel; J
public function MasterPresenter(view:MasterViewComponent = null) {

this._issueModel = new SoapIssueModel();
this ._view = view; Constructor

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.REFRE SH_IS SUE S_BUTTON_C LICKED, <

getlssues);
EventDispatcherFactory.getEventDispatcher()

. addEventListener (UIEvent. SELECTED_ISSUE_SAVED, <1
getlssues);

EventDispatcherFactory.getEventDispatcher()
. addEventListener (UIEvent. CANCELLED_ISSUE_EDIT, <1

getlssues);
EventDispatcherFactory.getEventDispatcher()

.addEventListener(UIEvent.REMOVE_ISSUE_BUTTON_CLICKED, <1
removeIssue);

i Subscribing to events

Getting private function getlssues(event:UIEvent = null):void {
CursorManager. setBusyCursor () ; A the issues
_issueModel.getlssues(new AsyncResponder(getlssuesResult,

handleError));
}

private function removelssue(event:UIEvent):void {
CursorManager.setBusyCursor();
var selectedlssue:Issue = event.data;
_issueModel.removelssue(selectedlssue.id,

new AsyncResponder(removelssueResult, handleError));
}

private function getlssuesResult(event:ResultEvent,
token:AsyncToken = null):vo

CursorManager.removeBusyCursor();

1>
Removing
an issue

Responding to A
getlssues result I

iid { <1—1

91 CHAPTER 4 Connecting to web services

var issues = new ArrayCollection();
for each(var item:Object in event.result) {
var issue:Issue = new Issue(item);
issues.addltem(issue);

}

_view.masterViewDataGrid.dataProvider = issues;

private function removelssueResult(event:ResultEvent,
token:AsyncToken = nul"'

new UIEvent(UIEvent.SELECTED_ISSUE_CHANGED);
itemChangedEvent.data = new Issued;
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(itemChangedEvent);
getlssues();

The Master Presenter contains references to the other two pieces of the M V P triad,

die view O and die model © . The constructor © takes as an argument its view.
These actions are necessary because you'll be constructing the Presenters in the view

components as they're created. The view will tiien pass in a reference to itself when

creating the Presenter. You then create an instance of the Mode l you'll be calling and

register a few event listeners for die events tiiat the Presenter needs to react to Q .

Metiiods are called as a result o f die events being f ired by the View. The first

method getlssues Q is called to react to events that require die application to

refresh the DataGrid. It first calls the CursorManager to change the mouse cursor

to the busy cursor. Then it calls the Model 's getlssues metiiod, passing in an Async-
Responder, which is a way to provide callback metiiods to the Mode l to call when a

result is returned.

When a ResultEvent is f ired by die Model , it calls the getlssuesResult O call-

back metiiod, which changes die mouse cursor back to die normal cursor and

updates the DataGrid by setting its dataProvider property to the collection of

Issues returned f rom the Model . As stated earlier, die web service returns a collec-

tion of ObjectProxy objects you need to iterate tiirough to create actual Issue
objects for the view.

There are also metiiods to handle when die user clicks on die Remove Issue but-

ton © and its callback for a successful return A simple and generic error han-

dling function © returns the cursor to the normal state, and pops up an Alert box

CursorManager.removeBusyCursor();
_view.masterViewDataGrid.selectedlndex = -1;
var itemChangedEvent:UIEvent =

private function handleError(event:FaultEvent,
token:AsyncToken = null):void {

CursorManager.removeBusyCursor();
Alert.show(event.message.toString());

Enhancing the master view 69

WebServices, AsyncToken, and IResponder
In F lex , ca l l s to remote s e r v i c e s happen a s y n c h r o n o u s l y , and return an Async-
Token o b j e c t that you c a n use to add c a l l b a c k s to be e x e c u t e d w h e n e i ther a
ResultEvent or FaultEvent re turns as a result of the remote se rv i ce cal l . One
w a y to bind t h e s e event handlers to an AsyncToken is to add an o b j e c t that con-
forms to the iResponder in ter face, s u c h as an AsyncResponder, w h i c h t a k e s in a
ca l lback to cal l on a ResultEvent and one to cal l if it returns a FaultEvent
i ns tead in i ts c o n s t r u c t o r .

containing the error message returned f rom die remote call. Obviously you'll want to

replace tiiis simplistic error handling when developing real applications, but for the

simple example, tiiis will suffice. Now let's create the Mode l component.

4.5.2 Creating an Issue Model
The next component in die M V P triad that you'll implement is die Model . The Mode l

in MVP, sometimes referred to as die Domain Model , represents die core o f the busi-

ness domain and is often responsible for manipulating data in a relational database,

or in tiiis case calling an external service that will handle persisting the data.

Listing 4.6 IssueModel .as

package org.foj.model {
import mx.rpc.AsyncToken;
import mx.rpc.IResponder;
import mx.rpc.soap.WebService;
import org.foj.dto.Issue;
public class IssueModel {

private var _issueService:WebService;

J Create new
WebService

public function IssueModel() {
_issueService = new WebService();
_issueService.wsdl =

"http://localhost:8080/services/IssueService?wsdl
if (_issueService.canLoadWSDL()) {
_issueService.loadWSDL();

}

public function getlssues(responder:IResponder):void {
var token:AsyncToken = _issueService.getAll();
token.addResponder(responder);

}

J
" i

Set its wsdl
property

Load the wsdl

1> getlssues

public function removelssue(id:Number, responder:IResponder):void {
var token:AsyncToken = _issueService.remove(id);
token.addResponder(responder);

}

removelssues n

http://localhost:8080/services/IssueService?wsdl

70 CHAPTER 4 Connecting to web services

Listing 4.6 shows the code for die IssueModel so far. In the constructor, you create a
WebService object © and set its wsdl property to http://localhost:8080/services/
IssueServicePwsdl

Using WebService destinations
If you prefer not to hardcode the WebService URL inside your Model c lasses, you
can set up the WebService destination metadata in the services-config.xml config-
uration file. Using this approach enables you to refer to the WebService by its
destinationlD in order to load the WSDL rather than using a URL to the WSDL.

To use this approach you'll need to replace the sect ions of code where you set the
wsdl property on your WebService objects like _issueService.wsdl wi th code
that sets the destination property to the destination name you configured in the
services-config.xml. By leveraging Maven profiles along with its resource filter-
ing you can put property placeholders in your services-config.xml and define dif-
ferent destinations for your web services in the Maven profiles for the different
environments. For more information on using Maven profiles and resource filtering,
refer to the Maven reference at ht tp ://www.sonatype.com/books/mvnref -book/
reference/public-book.html. We'l l cover working wi th destinations in chapter 5
when discussing BlazeDS remoting.

Next you need to call the loadWSDL method Q on die WebService so tiiat die Web-
Service will download die WSDL and be able to make calls against die web service.
This is a necessary step when defining your WebService in ActionScript as opposed to
using die WebService M X M L tag. As die final steps, you define die two business metii-
ods getlssues © and removelssue © . which call die web service and add die
responder callback you passed in from the Presenter as a responder to the Async-
Token. Let's wrap up tiiis MVP triad by refactoring die MasterView.

4.5.3 Updating the master view
Now tiiat we've got the Presenter and Model in place, let's update die MasterView to
add functionality.

Listing 4.7 MasterView.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
layout="vertical"
title="Issues"
width="100%"
height="100%" fl
creationComplete= " init () " > <1—I

< fx:Script>
<![CDATA[

creationComplete
event

http://localhost:8080/services/
http://www.sonatype.com/books/mvnref-book/
http://ns.adobe.com/mxml/2009

Enhancing the comments view 71

import mx.events.ListEvent;
import org.foj.dto.Issue;
import org.foj.event.EventDispatcherFactory;
import org.foj.event.UIEvent;
import org.foj.presenter.MasterPresenter;

private var presenter:MasterPresenter;

private function init():void {
presenter = new MasterPresenter(this);
refreshList();

}

{

J

J

Bootstrapping
Presenter

refreshList
private function refreshList():void

var refreshEvent:UIEvent =
new UIEvent(UIEvent.REFRESH_ISSUES_BUTTON_CLICKED);

EventDispatcherFactory.getEventDispatcher()
.dispatchEvent(refreshEvent);

} selectedltemChanged Q

private function selectedltemChanged(event:ListEvent):void {
var itemChangedEvent:UIEvent =

new UIEvent(UIEvent.SELECTED_ISSUE_CHANGED);
itemChangedEvent.data = masterViewDataGrid.selectedltem as Issue;
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(itemChangedEvent);

private function removeSelectedlssue():void {
var selectedlssue:Issue =

masterViewDataGrid.selectedltem as Issue;
var removeEvent:UIEvent =

new UIEvent(UIEvent.REMOVE_ISSUE_BUTTON_CLICKED);
removeEvent.data = selectedlssue;
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(removeEvent);
}

]]>
</fx:Script>

<mx:DataGrid id="masterViewDataGrid"
width="100%"
height="100%"
itemClick="selectedltemChanged(event);

<mx:columns>
<mx:DataGridColumn dataField=

headerText
<mx:DataGridColumn dataField=

headerText
<mx:DataGridColumn dataField=

headerText
<mx:DataGridColumn dataField=

headerText
<mx:DataGridColumn dataField=

headerText
<mx:DataGridColumn dataField=

removeSelectedlssue

J datagrid
itemClick event

" id"
="ID" width="50"/>
"proj ect"
= "Project" width="120"/>
"description" width="200"
="Description"/>
"type"
="Type" width="120"/>
"severity"
="Severity" width="70"/>
"status"

headerText="Status" width="100"/>

DataGridColumn
bindings

72 CHAPTER 4 Connecting to web services

</mx:columns>
</mx:DataGrid>

<mx: ControlBar width= 11100% 11 > © Refresh List
<mx: Button label= " Refresh List" click= " ref reshList () "/> <—I dick event
<mx:Button label="Remove Selected Issue"

click="removeSelectedlssue()"
enabled="{masterViewDataGrid.selectedltem != null}"/>

</mx:ControlBar>
, 1 : ©

Remove Selected
</mx: Panel> Issue click event

Listing 4.7 shows the updated MasterView.mxml. The first change is the addition of

a handler for the creationComplete event of die component Q . You use tiiis event

to help bootstrap the Presenter © and make a call to die refreshList © meti iod to

populate the DataGrid automatically on startup. The refreshList method is used

to respond to the click event on the Refresh List button as well © . Next you define

an event handler meti iod called selectedltemChanged © • which responds to any

clicks within die DataGrid © .
You also define an event handler method called removeSelectedlssue © to

respond to any clicks of die Remove Selected Issue button © . To ensure tiiat this but-

ton is enabled only when we have an actively selected row in the DataGrid, we've

bound the enabled property o f die button to the selectedltem property o f die

DataGrid. We've bound die DataGridColumn items © in die DataGrid to die proper-

ties def ined on die Issue data object earlier. This will allow die DataGrid to bind the

column values to die objects in its data provider.

4.6 Enhancing the detail view
The next MVP triad you'll create is for die detail view. Just as you did in die previous

section, you'll begin by creating the Presenter, tiien add the necessary metiiods to the

IssueModel, and finish by enhancing die View.

4.6.1 Creating a DetailPresenter
The DetailPresenter must maintain more state tiian the MasterPresenter. Because

the code necessary for the DetailPresenter is more complex, we'l l break it up into

smaller chunks, starting with listing 4.8.

Listing 4.8 Detai lPresenter.as

package org.foj.presenter {

public class DetailPresenter { __
Selected issue J private var _issue: Issue; <]—I B View

private var _view:DetailView; <1—I B Model
private var _issueModel: IssueModel; <1—I

public function DetailPresenter(view:DetailView) {

Enhancing the detail view 73

this._issueModel = new SoapIssueModel();
this._view = view;
this._issue = new Issued;
view.issueTypes = new ArrayCollection(

["Bug", "Feature Request", "Enhancement"]
) ;

view.severityTypes = new ArrayCollection!
["Minor", "Major", "Severe"]
) ;

view.statusTypes = new ArrayCollection!
["Open", "In Progress", "On Hold", "Finished"]
) ;

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.SELECTED_ISSUE_CHANGED,

changedlssue);
EventDispatcherFactory.getEventDispatcher()

.addEventListener(UIEvent.SAVE_ISSUE_BUTTON_CLICKED,
savelssue);

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.CANCELLED_ISSUE_EDIT,

cancelChanges);

6 Initialize
components

Populate
combo boxes

A Add event
listeners

The DetailPresenter not only holds references to die View Q and Model Q , it also

needs to hold a reference to die currendy selected issue O f rom die DataGrid in die

MasterView. In die constructor you initialize the Model, set the View to what is being

passed in, and create an empty Issue object Q . Next die Presenter sets die possible

values in die combo boxes for die issue types, severity, and status Q by creating Array-
Collections with the possible values and setting the dataProvider property of the cor-

responding ComboBox. Then you add event listeners Q to respond to die events tiiat

the DetailView will fire, as well as the changed issue event that die MasterView fires

when die selected item in the DataGrid changes. The fol lowing listing shows die rest of

the code for die DetailPresenter.

Listing 4.9 Detai lPresenter.as (cont inued)

private f"
retur:

}

private
this..
_view
_view
_view
_view
_view
_view

J
Get property for

unction get selectedlssue (): Issue { <1—I selected issue
n this._issue;

selected issue function set selectedlssue(issue : Issue) : void {
_issue = issue;
.issueld = issue.id == 0 ? "" : issue.id.toString();
.project = issue.project;
.description = issue.description;
•type = issue.type;
.severity = issue.severity;
.status = issue.status;

^ ^ p Set property for

97 CHAPTER 4 Connecting to web services

_view.details = issue.details ;
_view.reportedBy = issue.reportedBy;
_view.reportedOn = issue.reportedOn;
_view.assignedTo = issue.assignedTo;
_view.estimatedHours = isNaN(issue.estimatedHours) ?

"" : issue.estimatedHours.toString();
_view.addEditLabel = issue.id == 0 ?

"Add Issue" : "Save Issue";

private function savelssue (event : UIEvent = null) : void { <1—,
_issue.project = _view.project; A Save issue
_issue.description = _view.description;
_issue.type = _view.type;
_issue.severity = _view.severity;
_issue.status = _view.status ;
_issue.details = _view.details ;
_issue.reportedOn = _view. reportedOn;
_i s sue. reportedBy = _view.reportedBy;
_issue.assignedTo = _view.assignedTo;
_issue.estimatedHours = !isNaN(Number(_view.estimatedHours)) ?

Number(_view.estimatedHours) : null;

_issueModel.savelssue(_issue,
new AsyncResponder(savelssueResult, handleError));

'' Q Cancel

private function cancelChanges(event :UIEvent = null) : void { <—' changes
selectedlssue = new Issued;

A Selected Issue
private function changedlssue(event:UIEvent):void { <—' changed

selectedlssue = event.data;
' Save issue result O

private function savelssueResult(resultEvent:ResultEvent,
token : AsyncToken = null) :void { <1—'

selectedlssue = new Issue(resultEvent.result);
var event:UIEvent = new UIEvent(UIEvent.SELECTED_ISSUE_SAVED);
event.data = _issue;
EventDispatcherFactory.getEventDispatcher().dispatchEvent(event);

}

private function handleError(event:FaultEvent,
token :AsyncToken = null) :void { <—,

Alert.show(event.message.toString());
j Error handler Q

You then create get and set properties Q , Q for tlie currently selected issue. The get

property will return the current issue; the set property will update all die form fields

in the view so tiiat they match die currendy selected issue.

Next you've def ined a method to handle saving die Issue Q , which gets die values

f rom the view and updates die currently selected Issue before calling die save lssue

Enhancing the comments view 75

Properties in ActionScript
ActionScript , unlike Java, has first-class support for properties similar to other lan-
guages such as C#, Ruby, and Groovy. This g ives you the ability to get and set val-
ues on a variable as if it were a public member variable on the class, instead of
having to do getxxx () and setxxx () methods as you would in Java.

The syntax for defining g e t / s e t properties is as follows:

public function get name():String {
return _name;

}
public function set name(value:String):void {
_name = value;

Many developers use the convention of prefixing the private member variables with
an underscore (_) so that the compiler can figure out if you are trying to reference
the private member variable or the g e t / s e t property in the class. One of the advan-
tages of using g e t / s e t properties is that it removes the need to define a lot of
getxxx/setxxx methods that do nothing beyond gett ing and setting the private
variable. Using properties al lows you to define your member variables as public. If
you need to encapsulate logic when member variables are accessed, you can easily
refactor your c lass to use a g e t / s e t property, and none of the c lasses that use it
will have to change as a result.

method on die model. The method tiiat responds to die Cancel Changes button
being clicked Q sets the selected issue to a brand new Issue object. Whenever die
SELECTED_ISSUE_CHANGED event is fired, die changedlssue 0 metiiod is called and
sets die selected Issue by using the set property you defined earlier. You create die
handlers for die savelssueResult Q and die error handler Q to handle die result
from calling die IssueModel.

4.6.2 Updating the IssueModel
Now diat you've implemented die Presenter for die details view, let's do die same for
the new methods in the IssueModel to support the updated functionality.

Listing 4.10 IssueModel.as

package org.foj.model {

public function getlssue(id:Number, responder:IResponder):void {
var token:AsyncToken = _issueService.get(id);
token.addResponder(responder);

}

getlssue

savelssue

public function savelssue(issue:Issue, responder:IResponder):void {
var token:AsyncToken = _issueService.save(issue);

' J

76 CHAPTER 4 Connecting to web services

token.addResponder(responder);
}

}
}

Just as before, the methods in the IssueModel are fairly simple. The g e t l s sue O

method takes an id parameter to find a specific Issue as well as an IResponder to add

a responder to the token returned f rom die call to the WebService. The save lssue ©

method takes in an Issue object to pass along to die WebService to persist, as well as

an IResponder.

4.6.3 Updating the detail view
The last part of die MVP triad tiiat needs to be updated now is die Deta i lV iew. List-

ing 4.11 shows die updated version of die Detai lView.mxml after you add die neces-

sary methods to dispatch the events to save an Issue or cancel die changes.

Listing 4.11 Detai lView.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
layout="vertical"
title="Details"
width="100%"
height="100%"
creationComplete="init()">

< fx:Script>
<![CDATA[

import mx.collections.ArrayCollection;
import org.foj.event.EventDispatcherFactory;
import org.foj.event.UIEvent;
import org.foj.presenter.DetailPresenter;
private var _presenter:DetailPresenter;
private function init():void {

_issueType.selectedlndex = -1;
_issueSeverity.selectedlndex = -1;
_issueStatus.selectedlndex = -1;
_presenter = new DetailPresenter(this);

}

J creationComplete

J initialization

J
saveChanges

private function saveChanges():void {
var saveEvent:UIEvent = new UIEvent(UIEvent.SAVE_ISSUE_BUTTON_CLICKED);
EventDispatcherFactory.getEventDispatcher().dispatchEvent(saveEvent);

} cancelChanges
private function cancelChanges():void {

var cancelEvent:UIEvent = new UIEvent(UIEvent.CANCELLED_ISSUE_EDIT);

http://ns.adobe.com/mxml/2009

Enhancing the comments view 77

EventDispatcherFactory.getEventDispatcher().dispatchEvent(cancelEvent);
}

]]>

</fx:Script>

<mx:Form id="_issueDetailForm" width="100%">

</mx:Form>

<mx:ControlBar>
<mx:Button id="_saveChangesButton"

label="Add Issue"
click="saveChanges()"/>

<mx:Button id="_cancelChangesButton"
label="Cancel Changes" click

</mx:ControlBar>

</mx:Panel>

You tell tlie component to call the i n i t © method to initialize tlie component when

the creat ionComplete O event is fired. Inside die i n i t method, you bootstrap die

Presenter just as you did earlier in the MasterView. You also set die s e l e c t ed l t em

property on the tiiree combo boxes to -1, so they don't have a value selected when

the component is first created. Then you add an event handler for die click event

on die saveChangesButton 0 called saveChanges 0 . Inside the saveChanges

method you dispatch an event signaling that die button has been clicked. As a final

step, you add an event handler cancelChanges 0 for die click event on die cance l -

ChangesButton 0 and it dispatches an event notifying die application that tlie but-

ton had been clicked.

4.7 Enhancing the comments view
You've almost finished enhancing die sample application. The last part that needs to

be updated is die comments view. You'll start by creating an MVP triad just as before.

Later you'll add a modal pop up to add new comments and edit existing comments.

Let's get started.

4.7.1 Creating a comments presenter
Creating tlie Presenter for the comments view of tlie application will be just like cre-

ating the last two Presenters. The CommentsListPresenter will be responsible f o r

maintaining more state than the previous Presenters. It will need to maintain a

re ference to not only the currendy selected issue, but also the currently selected

comment, to properly persist die Comment objects. Because die code for die Comments-

L i s t P r e s e n t e r is rather lengtiiy, we' l l break it up. The fo l lowing listing shows tlie

first section in which you def ine which events this Presenter will listen for and a

couple o f get/set properties.

0 click event on
^ T saveChangesButton

=" cancelChanges () " /> <1—i

dick event on I
cancelChangesButton 0

101 CHAPTER 4 Connecting to web services

Listing 4.12 CommentsListPresenter.as

package org.foj.presenter {

public class CommentsListPresenter {
private var _selectedlssue:Issue; Maintaining private var _selectedComment: Comment; « State
private var _commentModel:CommentModel;
private var _view:CommentsView;
private var _popl:EditCommentForm;

public function CommentsListPresenter(view:CommentsView = null) {
this._commentModel = new CommentModel();
this. _view = view; Constructor •I
EventDispatcherFactory.getEventDispatcher()

.addEventListener(UIEvent.SELECTED_ISSUE_CHANGED, <—i £Vent
changeSelectedlssue) ; Q listeners

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.DELETE_COMMENT_BUTTON_PRESSED,

removeComment);
EventDispatcherFactory.getEventDispatcher()

.addEventListener(UIEvent.SELECTED_COMMENT_CHANGED,
changeSelectedComment);

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.COMMENTS_UPDATED,

refreshComments);

private function get selectedlssue():Issue {
return this._selectedlssue;

private function set selectedlssue (issue: Issue) : void { selectedlssue
this._selectedlssue = issue;
_view.addCommentButton.enabled = issue.id > 0;

private function get selectedComment():Comment {
return this._selectedComment;

}

Q get property for
^ J selectedlssue

set property for

J get property for
selectedComment

private function set selectedComment(comment:Comment):void {
this._selectedComment = comment;
_view.editCommentButton.enabled = comment != null; set property for

_view. deleteCommentButton. enabled = comment != null; selectedComment
a : ©

}

First you define variables to maintain die state © . Then you define a constructor ©

diat takes in a reference to die View tiiat tiiis Presenter is created for. Next you initial-

ize the Model, and add a few event listeners © for die Presenter so it can react prop-

erly to specific events.

Enhancing the comments view 79

Once again you're leveraging get and set properties in this Presenter, using die set
property to trigger whether or not certain elements o f the view should be enabled.

You start by creating a get property for the currendy selected issue Q , and in its corre-

sponding set property you determine whetiier or not to enable the Add Com-

ments button based on whetiier or not the currently selected issue's id property is

greater tiian zero, indicating it has been saved. You do tiiis to make sure that the user

can't save a comment for an Issue tiiat has not been persisted to die backend previ-

ously. You create a get property for die currendy selected comment Q as well as a set
property for the selected comment Q . Similar to the last set property, you use tiiis

opportunity to enable or disable die Edit Comment and Delete Comment buttons

based on whether or not tiiere is a comment selected in die List component contain-

ing die comments.

Listing 4.13 CommentsListPresenter .as (cont inued)

private function changeSelectedlssue(event:UIEvent):void { <
selectedlssue = event.data;
selectedComment = null; Handler for

- , , , selectedlssue changing V refreshComments() ; 6 6

}

F°R JH
;ing O

private function changeSelectedComment(event:UIEvent):void {
selectedComment = event.data;

j Handler
selectedComment changing

private function removeComment(event:* = null) :void { <—.
CursorManager. setBusyCursor () ; Q removeComment
_commentModel.removeComment(selectedComment.id,

new AsyncResponder(removeCommentResult, handleError));
}

private function refreshComments(event:* = null):void {
CursorManager.setBusyCursor() ;
_commentModel.getCommentsForlssueld(selectedlssue.id,

new AsyncResponder(loadCommentsResult, handleError));
}

1>
refresh
comments list

private function removeCommentResult(event:ResultEvent,
token:AsyncToken = null):void {

CursorManager.removeBusyCursor() ;

.1 ref reshComments () ; removeCommentResult
}

private function loadCommentsResult(event:ResultEvent,
token:AsyncToken = null):void {

CursorManager.removeBusyCursor() ;
var comments:ArrayCollection = new ArrayCollection();
for each (var result:* in event.result) { M^ loadCommentsResult 0 comments.addltem(new Comment(result)); **
}
_view.commentsList.dataProvider = comments;

80 CHAPTER 4 Connecting to web services

_view.commentsList.selectedlndex = -1;
selectedComment = null;

}

private function handleError(event:FaultEvent,
token:AsyncToken = null):void {

CursorManager.removeBusyCursor();
Alert.show("Error occured: " + event.message);

}
} }

Listing 4.13 shows the rest of the code for the CommentsListPresenter. First you

define a med iod to handle changes to the selected issue © , where you set die selected

issue f rom die data passed along in die event. You tiien set the selected comment to

null, and refresh die list of comments to be displayed. When someone clicks on a

comment in die List view of the CommentsView, die selectedCommentChanged ©
method will be called, where you set die selected comment to die comment in die

incoming event.

The next med iod you define handles die user clicking die Remove Comment

button © . You first tell die CursorManager to set die busy cursor, as you did earlier

in die odier Presenters. Then you make a call to die CommentModel to remove die

selected comment. When the result comes back © f rom die call to the Comment-
Model you remove the busy cursor and tell die Presenter to refresh die list of com-

ments for die view.

To refresh die list of comments you created a function called ref reshComments © ,
which makes a call to the CommentModel to retrieve a list of comments for a given issue

id. When die result comes back f rom this call © , you iterate tiirough the list o f

ObjectProxy instances that come back f rom the WebService and use die convenience

constructor you def ined at die beginning of tiiis chapter to create a list of Comment
objects. You then set the dataProvider property of the List component in the view to

this list of Comment objects and remove die busy cursor. Last you create a simple error

handler © as you did for die two Presenters you created earlier.

4.7.2 Creating a comment model
Odier than the method names, die CommentModel will look similar to the IssueModel
you created earlier.

Listing 4.14 CommentModel .as

package org.foj.model {

import mx.rpc.AsyncToken;
import mx.rpc.IResponder;
import mx.rpc.soap.WebService;

public class CommentModel {
private var _commentService:WebService;

handleError

Enhancing the comments view 81

public function SoapCommentModel () { <1—.
_commentService = new WebService () ; A Constructor
_commentService.wsdl =

"http://localhost:8080/services/CommentService?wsdl";
if (_commentService.canLoadWSDL()) {
_commentService.loadWSDL();

getCommentsForlssueld Q

public function getCommentsForlssueld (issueld:Number, <1—
responder:IResponder):void {

var token:AsyncToken = _commentService.findCommentsBylssueld(issueld);
token.addResponder(responder);

* ** removeComment J public function removeComment(id:Number,
responder :IResponder):void {

var token :AsyncToken = _commentService.remove(id);
token.addResponder(responder);

}
} }

In the constructor O you create a new WebService component and set its wsdl prop-

erty to die W S D L for die web service. Then just as you did earlier, you tell die Web-
Service to load die W S D L so you can make calls to it. Next you define die two

mediods needed for die application to function, the getCommentsForlssueld Q and

the removeComment Q methods.

4.7.3 CommentView
Now that you have die metiiods implemented in die CommentModel, you can update die

CommentsListView component to enable it to respond to user interaction. Listing 4.15

shows the updated CommentsListView.mxml file. For now, you're going to respond

only to clicks in die List component containing die comments and the Remove Com-

ment button. In die next section you'll start implementing the modal pop up that will

allow you to add and edit comments.

Listing 4.15 CommentsListV iew.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Panel xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:mx="library://ns.adobe.com/flex/halo"
layout="vertical"
title="Comments"
width="100%"
height=" 100%" O creationComplete
creationComplete= " init () " > <1—I

< fx:Script>
<![CDATA[

import org.foj.event.EventDispatcherFactory;
import org.foj.event.UIEvent;
import org.foj.presenter.CommentsListPresenter;

http://localhost:8080/services/CommentService?wsdl
http://ns.adobe.com/mxml/2009

105 CHAPTER 4 Connecting to web services

private var _presenter:CommentsListPresenter;
private function init() :void { © init

_presenter = new CommentsListPresenter(this);
}

J »

removeComment
private function removeComment():void {

commentsList.selectedlndex = -1;
var removeCommentEvent:UIEvent =

new UIEvent(UIEvent.DELETE_COMMENT_BUTTON_PRESSED);
EventDispatcherFactory.getEventDispatcher()

private function selectedltemChanged(event:Event):void { <—I
var commentChangedEvent:UIEvent =

new UIEvent(UIEvent.SELECTED_COMMENT_CHANGED);
commentChangedEvent.data = commentsList.selectedltem;
EventDispatcherFactory.getEventDispatcher().dispatchEvent

(commentChangedEvent);
}

</fx:Script>
<mx:List id="_commentsList"

width="100%"
height=11100%11 © itemClick event
itemClick="selectedltemChanged(event) " <—I
labelField="commentText">

</mx:List>
<mx:ControlBar>

<s:Button id="_addCommentButton"
label="Add New Comment"
enabled="false"/>

<s:Button id="_editCommentButton"
label="Edit Comment"
enabled="false"/>

<s:Button id="_deleteCommentButton"
label=" Delete Comment" © dick event
click= " removeComment () " <—I
enabled="false"/>

</mx:ControlBar>
</mx:Panel>

Again, you use the creationComplete event © to call the init method © where you

bootstrap the Presenter. You tiien create an event handler named removeComment ©
to handle die user clicking die Delete Comment button © . Inside this meti iod you set

die selectedlndex to -1 so no items are selected in die List and dispatch an event

notifying the rest of the application that the button has been clicked. Next you define

an event handler method selectedltemChanged © to handle die user selecting an

item in the List component © .

Adding a pop-up form for editing comments 83

Add/Edit Comment

Author :

1 G Dote: / /

Comment;

Sove Comment I Cancel |

Figure 4.2 Wireframe of pop up for editing comments

4.8 Adding a pop-up form for editing comments
Al l that's left to complete the sample application is creating a pop up for adding and

editing comments. Figure 4.2 shows a wireframe mockup of the pop up. It's a fairly

simple pop-up dialog tiiat consists o f a text input for the autiior's name, the date the

comment was created, and a text area for entering die comment details.

Now tiiat you see what you want to build, let's get started. The fol lowing section

illustrates how you build die pop up, starting with updating the Comment Presenter.

4.8.1 Updating the CommentPresenter
First let's add die methods you need to die CommentPresenter for die pop-up dialog.

Listing 4.16 Adding a pop up to CommentListPresenter .as

private var _popl: EditCommentForm; <1—© Pop up component

public function CommentsListPresenter(view:CommentsView = null) { < —

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.ADD_NEW_COMMENT_BUTTON_PRESSED,

addNewComment) ; Add more
EventDispatcherFactory. getEventDispatcher () event listeners ©

. addEventListener (UIEvent. EDIT_COMMENT_BUTTON_PRESSED,
editComment);

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.SAVE_COMMENT_BUTTON_PRESSED,

saveComment);
EventDispatcherFactory.getEventDispatcher()

.addEventListener(UIEvent.CANCEL_EDIT_COMMENT_BUTTON_PRESSED,
cancelEdit);

107 CHAPTER 4 Connecting to web services

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.COMMENTS_UPDATED,

refreshComments);

}

S addNewComment
private function addNewComment(event:* = null):void {

selectedComment = new Comment();
selectedComment.issue = selectedlssue;
_popl = PopUpManager.createPopUp((_view as UlComponent).root,

EditCommentForm, true) as EditCommentForm;
PopUpManager.centerPopUp(_popl as UlComponent);

private function editComment(event:* = null):void {
_popl = PopUpManager.createPopUp((_view as UlComponent).root,

EditCommentForm, true) as EditCommentForm;
PopUpManager.centerPopUp(_popl as UlComponent);
_popl.author.text = selectedComment.author;
_popl.commentDate.selectedDate = selectedComment.createdDate;
_popl.commentText.text = selectedComment.commentText;

}

editComment

private function saveComment(event:* = null):void {
CursorManager.setBusyCursor();
selectedComment.author = _popl.author.text;
selectedComment.createdDate = _popl. commentDate.selectedDate;
selectedComment.commentText = _popl.commentText.text;

J saveComment

_commentModel.saveComment(selectedComment,
new AsyncResponder(saveCommentResult, handleError));

G cancelEdit
private function cancelEdit(event:* = null) :void { <—I

removePopUp();
}

private function saveCommentResult(event:ResultEvent,
token:AsyncToken = null) :void { <1—i

CursorManager.removeBusyCursor();
selectedComment = event.result as corment; saveCommentResult handler O
var commentsChangedEvent:UIEvent =

new UIEvent(UIEvent.COMMENTS_UPDATED);
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(commentsChangedEvent);
removePopUp();

}

private function removePopUp():void {
PopUpManager.removePopUp(_popl as UlComponent);

}

removePopUp

Change the CommentPresenter to declare a member variable for die pop up itself

Next add event listeners Q to respond to user clicks on die buttons on die Comments-

View and die pop up you're going to create.

Adding a pop-up form for editing comments 85

Define an event handler for die Add New Comment Q button, set die selected
comment to a brand new comment and create the pop up using die PopupManager.
The call to createPopUp takes three parameters: die component that will be die par-
ent of die pop up, pop up class, and whetiier or not die pop up should be modal. Set
the parent for die pop up to be die root application component so that when you call
centerPopUp on the PopUpManager in die next line it will center relative to the whole
application instead of to die CommentView.

The next event handler, editComment © starts out in a manner similar to die
addNewComment handler. You create a pop up using the PopUpManager and center it,
then update the fields in die pop up with the values from die currendy selected com-
ment. When die user clicks the Save Comment button in die pop up, the saveComment
© handler is called. You tiien take all the values from die pop up and update the cur-
rendy selected comment and make a call to die CommentModel to save die comment.
When the user clicks die Cancel Changes button on die pop up, die cancelEdit Q
metiiod is called, where you remove the pop up.

When die result comes back from the call to save the comment, die saveComment-
Result handler Q is called. There you update die selected comment with die result
from die web service call, then trigger the List to update by dispatching an event sig-
naling diat the comments have changed and remove die pop up Q .

4.8.2 Updating the CommentModel
Next you add another metiiod to the CommentModel to call the web service and save
a comment.

Listing 4.17 CommentModel.as

public function saveComment(comment:Comment,
responder:IResponder):void {

var token:AsyncToken = _commentService.save(comment);
token.addResponder(responder);

}

Listing 4.17 shows the method you add to the CommentModel to save comments. This
metiiod is just like every other call we've made to die WebService. It delegates die call
to the web service and adds a responder to die token so die application can react
when the result comes back from the asynchronous call to the web service.

4.8.3 Creating the pop-up component
Now you can create die actual pop up component tiiat you'll use to create new com-
ments as well as edit existing ones. Even though you're instantiating the pop up in
ActionScript by making calls to the PopUpManager, it's easiest to define this actual com-
ponent in MXML just as with all die otiier View components. Listing 4.18 shows the
contents of the EditCommentForm.mxml file defining the pop up.

109 CHAPTER 4 Connecting to web services

Listing 4.18 EditCommentForm.mxml

<?xml version="1.0" ?>
<mx:TitleWindow

xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="library://ns.adobe.com/flex/halo"
title="Add/Edit Comment"
height="400"
width="500">

1>
Extends
TitleWindow

< fx:Script>
<![CDATA[

import org.foj.event.EventDispatcherFactory;
import org.foj.event.UIEvent;

private function saveComment():void {
var saveEvent:UIEvent =

new UIEvent(UIEvent.SAVE_COMMENT_BUTTON_PRESSED);
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(saveEvent);
}

J

J

saveComment
eventHandler

private function cancelChanges():void {
var cancelEvent:UIEvent =

new UIEvent(UIEvent.CANCEL_EDIT_COMMENT_BUTTON_PRESSED);
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(cancelEvent);
}

cancelChanges
eventHandler

]]>
</fx:Script>

<mx:Form width="100%">
<mx:FormItem label="Author:"

width="100%">
<mx:Textlnput id="_author"

width="100%"/>
</mx:FormItem>
<mx:FormItem label="Date:"

width="100%">
<mx:DateField id="_commentDate"

width="100%"
formatString="MM/DD/YYYY"/>

</mx:FormItem>
<mx:FormItem label="Comment:"

width="100%">
<mx:TextArea id="_commentText"

width="100%"
height="200"/>

</mx:FormItem>
</mx:Form>

<mx:ControlBar>
<mx:Button id="_saveButton"

label="Save Comment"
click="saveComment()"/>

J Form

1> ControlBar

http://ns.adobe.com/mxml/2009

Adding a pop-up form for editing comments 87

<mx:Button id="_cancelButton"
label="Cancel"
click="cancelChanges()"/>

</mx:ControlBar>
</mx:TitleWindow>

The code for die pop up looks similar to die DetailsView for the issues. The main dif-

ference is this component extends die TitleWindow O component instead of the

Panel component. Most o f die pop up windows you'll create will extend tiiis compo-

nent. You dien define a couple o f methods © , © to react to die button clicks of the pop

up to dispatch UIEvents for die application to listen for. Just as with the DetailView,
you use die Form component © for convenient layout of the form fields and labels for die

pop up. You dien create a ControlBar © to hold die Save Comment and Cancel buttons.

4.8.4 Updating CommentsListView
The only tiling left is to update the CommentsListView to dispatch the necessary

events for die Add Comment and Edit Comment buttons.

Listing 4.19 Updated CommentListV iew.mxml

private function addNewComment():void {
var addNewCommentEvent:UIEvent =

new UIEvent(UIEvent.ADD_NEW_COMMENT_BUTTON_PRESSED);
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(addNewCommentEvent);
}

private function editComment():void {
var editCommentEvent:UIEvent =

new UIEvent(UIEvent.EDIT_COMMENT_BUTTON_PRESSED);
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(editCommentEvent);
}

addNewComment

editComment

<mx:ControlBar>
<s:Button id="addCommentButton"

label="Add New Comment"
click="addNewComment()"
enabled="false"/>

<s:Button id="editCommentButton"
label="Edit Comment"
click="editComment()"
enabled="false"/>

<s:Button id="deleteCommentButton"
label="Delete Comment"
click="removeComment()"
enabled="false"/>

</mx:ControlBar>

© dick handlers
on the buttons

The first two changes to die CommentsListView are adding methods © , © to be

called when die Add New Comment and Edit Comment buttons are clicked. These

111 CHAPTER 4 Connecting to web services

will create and dispatch UIEvents like every otiier view you've def ined so far. Then you

update die buttons tiiemselves Q so that they will call die metiiods you def ined when

diey are clicked.

Summary
In diis chapter you explored die architectural elements tiiat make up a well-designed,

flexible, and maintainable RIA. You learned how to apply the MVP pattern to die code

and how following diat pattern, you effectively separate die areas of concern into tiieir

isolated parts. Af ter you abstracted the calls to external services in the Model, you dis-

covered how easy it would be to potentially replace this portion of die code witiiout

affecting any odier part of die code.

In the next chapter you'll build upon what you've assembled in diis chapter and

introduce die Spring BlazeDS Integration framework and BlazeDS remoting.

Part 2

BlazeDS remoting

n the tlie first of two chapters in part 2, you'll dive into BlazeDS remoting,
learning the basics of BlazeDS and refactoring die example application to take
advantage of it. In a nutshell, BlazeDS is a collection of Java components that
you can deploy witii your web application for AMF/HTTP communication
between Flex and Java. BlazeDS also supports messaging. BlazeDS is basically a
subset of the commercial Flex Data Services offering from Adobe, and although
you can do many tilings with BlazeDS, certain functions like clustering and
advanced binding techniques can only be accomplished witii the full-blown Flex
Data Services.

In chapter 6, you'll take die next step in evolving our Flex and Java communi-
cations and take advantage of real-time messaging between the two using
BlazeDS messaging. The chapter exploits the use of the Flex Messaging API and
simple polling to receive updates from die server when changes in die model
have occurred.

You will learn how to set up BlazeDS logging, performance benchmarking,
and Flex Messaging.

BlazeDS remoti
and loggi

This chapter covers
• Bui lding a B lazeDS Conf igurat ion Modu le

• Flex and Java communicat ion w i t h B lazeDS

• Spring B lazeDS Integrat ion f ramework

• Logging e v e n t s and per fo rmance s t a t i s t i c s

In previous chapters you built a Flex client application using the MVP design pat-
tern and connected it to Java through web services. Now you're going to move from
XML/HTTP web services and try remoting.

For Action Message Format communication, or AMF, Flex provides die
RemoteObject component tiiat uses Adobe's own AMF binary protocol to com-
municate with die server. This means you'll need a process running on die
server side, such as BlazeDS, tiiat understands how to serialize and deserialize
the AMF protocol.

In the next section we introduce you to BlazeDS and begin integrating with
our sample application. We'll be using the FlexBugs sample application but it
would be equally useful to wire up your own slice of functionality to see it work for
your own purposes.

91

115 CHAPTER 5 BlazeDS remoting and logging

Introducing BlazeDS
A Flex client typically runs in a web browser or through the AIR desktop application
platform. BlazeDS comes into the technology stack for use when the client needs to
communicate witii a Java application on the server that is commonly powered by a
service-oriented architecture (SOA). Figure 5.1 shows die basic anatomy of a BlazeDS
application framework.

In a nutshell, BlazeDS is a collection of Java components that you can deploy witii
your web application for AMF/HTTP communication between Flex and Java. BlazeDS
also supports messaging. BlazeDS is basically a subset of die commercial Flex Data Ser-
vices offering from Adobe, and although you can do many tilings with BlazeDS, cer-
tain functions like clustering and advanced binding techniques can only be
accomplished witii the full-blown Flex Data Services.

NOTE In Adobe's words, BlazeDS is die server-based Java remoting and
web messaging technology tiiat enables developers to easily connect to
back-end distributed data and push data in real-time to Adobe® Flex® and
Adobe AIR™ applications for more responsive rich Internet application
(RIA) experiences.

You may be asking, "Why would I use BlazeDS instead of web services?" One of the
biggest advantages to using die AMF protocol for communication is performance.
Adobe's James Ward put together a nice application called BlazeBench (http://www.
jamesward.com / wordpress/2007/12/12/blazebench-why-you-want-amf-and-blazeds/),
which benchmarks metiiods of communicating to die server side from a web applica-
tion, including Flex, and displays the different aspects of die transaction. Figure 5.2
shows a sample output from BlazeBench.

It may be difficult to see in die screenshot, but die total execution time for an
operation using Flex AMF3 is by far quicker for round-trip time to die server, and

Flash Player or Air Platform

Flex Client (SWF)

BlazeDS components

RemoteObject
HTTPService/WebServise

Producer/Consumer

Figure 5.1 The BlazeDS architecture

MessageBrokerServlet

Message Broker

Service

Destination

Adapter

http://www

Getting BlazeDS 93

R<KW WOO * C2lp * E*»cut#

Ajai HTML 5ervef built HTML tabic A|a> HTML

Aja* SOAP SOAPW HTML tsHe AjwSOAP

I juXX.
A|flj JSON

XML to HTML t»bte
JSON to HTML tttte Ajax JSON

Octo JSON to Dqo FlltcilngTaWe
UHto XML

Flex SOAP AS
Fta SOAPE4X

Ftot XML AS

LwdbXHL
Flex SOAP AS
Fl»» SOAP E4X

XML to grid
SOAP » A5 itjecti
SOAP to 6 « Ot*«ti

UHto XML
Flex SOAP AS

Fta SOAPE4X
Ftot XML AS

Flex XML AS XML to AS CtfKts Flex xml E4X
Fie* XML E4X XML to E4X ttfKts Flex AHF3
FlexAMFi
Flex Paged

S«rv*r t««< Tim

O.Omi IDs
• Data Bandwidth

Ajan HTML
Ajax SOAP

Lsuto XML
Flex SOAP AS

Flex SOAPE4X

Flex XML E4X •
Flex AMF3 •

Figure 5.2 Comparing performances of various methods of transferring data from the server side to
the client

it has the smallest data bandwidtii for die transmission as well as the shortest

parse time.

Getting BlazeDS
You're in luck if you are using Maven to build your web application. Af ter much

persistence f rom the development community, tiiere are now BlazeDS JARs in the

main Maven repository. Add die dependencies shown in listing 5.1 in your pom.xml

to include the BlazeDS libraries in your application and they are downloaded

fo r you.

Listing 5.1 Adding BlazeDS to your pom.xml

<dependency>
<groupId>com.adobe.blazeds</groupId>

<artifactId>blazeds-core</artifactld>
<version>3.2.0.3978</version>

</dependency>
<dependency>

<groupId>com.adobe.blazeds</groupId>
<artifactId>blazeds-common</artifactld>
<version>3.2.0.3978</version>

</dependency>
<dependency>

<groupId>com.adobe.blazeds</groupId>
<artifactId>blazeds-proxy</artifactld>
<version>3.2.0.3978</version>

</dependency>

117 CHAPTER 5 BlazeDS remoting and logging

<dependency>
<groupId>com.adobe.blazeds</groupId>
<artifactId>blazeds-remoting</artifactld>
<version>3.2.0.3978</version>

</dependency>
<dependency>

<groupId>org.springframework.flex</groupId>
<artifactld>spring-flex</artifactld>
<version>l.0.0.RELEASE</version>

</dependency>

We've also included die Spring-Flex artifact because you're going to use this frame-

work for communicating with server-side destinations. The Spring BlazeDS Integration

reduces the complexity in configuring BlazeDS.

For diose not using Maven, you have to jump

through a couple o f hoops to get the proper

libraries in your application. Adobe doesn't pro-

vide die JAR files direcdy on the BlazeDS down-

loads page (http://opensource.adobe.com/wiki/

display/blazeds/Release+Builds); it provides only

die binary distribution as a WAR file, a turnkey

solution which contains a ready-to-use Tomcat

instance with sample applications, and a source

download. The easiest way to get the JAR is to

get die WAR distribution and extract them out

o f the WEB-INF/lib directory. Thankfully every-

thing you need to add to your web application

is diere including all die dependencies. Figure 5.3

shows the libraries contained in the WEB-INF/

lib directory.

Now let's get BlazeDS connected up in a more modular way witii Maven.

Building a BlazeDS configuration Maven module
To share configuration dependencies between die Java

web application and die Flex client you're going to cre-

ate a BlazeDS configuration module. The directory struc-

ture will look like die one in figure 5.4. You can create

this module at the same level as die f l ex -bugs-web mod-

ule and the f l e x - b u g s - r i a module.

As you can see die only tiling needed is the resources

directory for die BlazeDS configuration files and die

POM descriptor and a Maven assembly. Remember that

die project structure can be generated much as was dem-

onstrated in chapters 2 and 3. If you don't generate

d iem with die Maven archetype you must specify in die

I n g o n H | © |<H

r r f tackport-util-com went.jar
2 (fgatevtayadapier.jar
f <ommons-co<lec-1.3.jar
11 (ommons-tittpcl«nt-3.0.1.jar
2 (ommons-logging.jar
J (OiKurrenl.jaf
2 flex-meisaging-tortirrajnjar
g flex-messaging-tore.jar
f flex-messaging-opl.jar
± flex-messagirtg-proxy jar
2 flen-mss sagi ng-remoti ng.jar
2 xalan.jar

Figure 5.3 BlazeDS libraries and
their dependencies

3 Q flex-bugs
• flex-bugs-blaze-conftg

El src
0 Ù main

assembly
resources

Flex-bugs-ria
j flex-bugs-web

Figure 5.4 BlazeDS
configuration module project
structure

http://opensource.adobe.com/wiki/

Building a BlazeDS configuration Marien module 95

top-level POM (flex-bugs) a new module, and you must associate die BlazeDS configu-

ration as a dependency for die other projects.

Next modi fy die module's POM descriptor file.

Listing 5.2 BlazeDS configuration module P O M

<?xml version="1.0"?>
<project>

<parent>
<artifactld>flex-bugs</artifactld>
<groupId>org.foj</groupId>
<version>l. C)-SNAPSHOT</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<groupId>org.foj</groupId>
<artif actld>f lex-bugs-blaze-conf ig</artif actld> © Coordinates indicate
<packaging>pom</packaging> <1—* packaging
<version>l.C)-SNAPSHOT</version>

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactld>maven-assembly-plugin</artifactld> <1—1 Using Maven
<executions> Q assembly plugin

<execution>
<id>Package BlazeDS configuration</id>
<goals>

<goal>single</goal>
</goals> © Assembly happens
<phase>package</phase> <h-T during package phase
<configuration>

<descriptors>
<descriptor>src/main/assembly/resources.xml</descriptor>

</descriptors>
</conf iguration> Path to assembly

, . . instructions </execution>
' 1 nbly I
ions ©

</executions>
</plugin>

</plugins>
</build>

</dependenc i e s >

</project>

Because you created diis module only to share its resources between die client and

server modules you can specify die packaging type of pom © and specify tiiat you've

chosen to use the maven-assembly-plugin © to zip up resources © during the pack-

age phase © . This POM basically instructs Maven to collect into a zip file the resources

you need to share.

Listing 5.3 shows the contents o f die resources.xml descriptor file found in die

src/main/assembly folder o f die f l e x -bugs -b la ze - con f i g module.

96 CHAPTER 5 BlazeDS remoting and logging

Maven assembly install and deploy
T h e M a v e n f ramework automat ica l l y instal ls and dep loys anyth ing built th rough the
c o n t e x t of an assembly . For instal lat ion, M a v e n insta l ls the a r t i fac t (s) into y o u r
local repos i tory l oca ted typ ica l l y in the .m2 d i rec tory , w h i c h is usual ly found in y o u r
home d i rec tory . M a v e n dep loys a r t i fac ts if the d is t r ibut ion m a n a g e m e n t is speci -
f ied w i t h s n a p s h o t or re lease repos i to r ies def ined. For dep loyment , a va l id M a v e n
repos i tory , l ike S o n a t y p e ' s o w n Nexus repos i tory , is required.

Listing 5.3 resources.xml

<assembly>
<id>resources</id>
<formats>

<format>zip</format>
</formats>
<includeBaseDirectory>false</includeBaseDirectory>
<fileSets>

<fileSet>
<directory>src/main/resources«/directory>
<outputDirectoryx/outputDirectory>

</fileSet>
</fileSets>

</assembly>

J

1>

Assembly format

To include in assembly

This assembly instructs Maven to create a zip file O with the files listed in die f i l e s e t

Q . That is where you'll be adding our two BlazeDS configuration files that need to be

shared across modules.

5.3.1 Configuring BlazeDS
BlazeDS uses a couple of key configuration files that by convention are put in a f lex

fo lder under WEB-INF. You could put them wherever you like, but by placing d iem

under die WEB-INF folder, you make d iem accessible only to your web application,

and you can feel safe knowing any sensitive information, such as passwords in your

proxy-config.xml, are safe f rom prying eyes.

The first file we'l l look at is services-config.xml.

Listing 5.4 serv ices-conf ig .xml

<?xml version="1.0" encoding="UTF-8"?>
<services-config>

<services>
<service-include file-path="proxy-config.xml"/>

<default-channels>
<channel ref="my-amf"/>

</default-channels>

J Import the
proxy-config.xml

</services>

Building a BlazeDS configuration Marien module 97

<channels> O Channel definition

<channel-definition id="my-amf" class="mx.messaging.channels.AMFChannel">
<endpoint

url="http: //{server.name}:{server.port}/messagebroker/amf "
class="flex.messaging.endpoints.AMFEndpoint"/>

</channel-def inition> E n d P o i n t U r l w i t h

property names

</channels>

</services-config>

S O

This is how the basic services-config.xml file should look for BlazeDS. There are a cou-

ple of sections to note here. First you tell the services-config.xml file to import die

proxy-config.xml O and where to f ind it. Next in die channels definition Q you

define an AMF channel and point it at a servlet tiiat you'll def ine in die web.xml later.

It's also possible to use properties for the channel definition that transform into

their real values when die application starts. It's common to do tiiis for the endpoint

u r l attribute Using the { server .name} and { s e r v e r . p o r t } properties allows the

application to be ported witiiout having to hard code different static values each time it

needs to be deployed in a dif ferent environment. Refer to die BlazeDS documentation

at http://opensource.adobe.com/wiki/display/blazeds/Developer+Documentation if

you need more information on how to tweak the configuration.

Flash Player Security and RPC
W h e n e v e r y o u a t t e m p t to rece ive data from a remote se rv i ce , F lash Player c h e c k s
the domain name of the remote se rv i ce locat ion and c o m p a r e s it to the domain
name of y o u r Flex app l i ca t ion ' s locat ion . If the t w o do not match , the data c a n n o t
be loaded from the remote serv ice . T h e eas ies t w a y to remedy th i s s i tuat ion is to
host y o u r Flex app l icat ion on the same domain as your remote se rv i ces . If th i s is
not poss ib le you have a few opt ions . Y o u c a n c r e a t e a c r o s s d o m a i n . x m l file to allow
F lash app l i ca t ions outs ide of y o u r domain to use the remote s e r v i c e s . Y o u c a n cre-
ate a serv le t in y o u r w e b app l icat ion to a c t as a proxy for the F lash appl icat ion , or
y o u c a n conf igure B lazeDS to do th i s by using the p roxy - con f ig . xml .

The last configuration fi le we' l l examine fo r now is proxy-config.xml.

Listing 5.5 proxy-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<service id="proxy-service"
class="flex.messaging.services.HTTPProxyService">

<properties>
<connection-manager>

<max-total-connections>100</max-total-connections>
<default-max-connections-per-host>2</default-max-connections-per-host>

</connection-manager>

http://opensource.adobe.com/wiki/display/blazeds/Developer+Documentation

121 CHAPTER 5 BlazeDS remoting and logging

<allow-lax-ssl>true</allow-lax-ssl>
</properties>
<adapters>
<adapter-definition id="http-proxy"

class="flex.messaging.services.http.HTTPProxyAdapter"
default="true"/>

<adapter-definition id="soap-proxy"
class="flex.messaging.services.http.SOAPProxyAdapter"/>

</adapters>
<default-channels>
<channel ref="my-amf"/>

</default-channels>
<destination id="DefaultHTTP">
</destination>

</service>

In tlie proxy-config.xml file you can configure any server-side proxies you need to
leverage, if, for instance, you're communicating with web services outside your
domain and have no control over placing a crossdomain.xml file on die server.

Widi BlazeDS configured and ready to go, you can now get on with die tasks of
modifying some of your services to communicate via AMF.

Where's the remoting-config.xml?
Great question! The BlazeDS examples in this book take advantage of a brand new
Spring BlazeDS Integration framework brought to us by SpringSource. Spring
BlazeDS Integration allows you to set up remoting destinations by annotating a
Java c lass and specific methods that need to be exposed to Flex through remoting.
You can still choose to hand-wire the X M L instead of using the annotations but we
recommend the use of the Spring BlazeDS Integration annotations and will demon-
strate them in this chapter.

Visit the BlazeDS developer documentation if your project requires the remoting-
config.xml at h t tp ://opensource .adobe.com/wik i/d isp lay/b lazeds/Deve loper+
Documentation

In die next sections we're going to start off simple by showing you how to connect to a
POJO on the server side and get more complicated and leverage die powerful Spring
Framework to communicate with a fully injected Spring bean.

ADD THE BLAZEDS CONFIG MODULE TO THE TOP-LEVEL POM
To configure die top-level POM, open and edit die pom.xml file in die flex-bugs direc-
tory and add die f lex-bugs-blaze-conf ig module.

Listing 5.6 Adding BlazeDS config module to the top-level pom.xml

<modules>
<module>flex-bugs-blaze-config</module>

http://http.HTTPProxyAdapter
http://opensource.adobe.com/wiki/display/blazeds/Developer+

Building a BlazeDS configuration Marien module 99

<module>flex-bugs-ria</module>
<module>flex-bugs-web</module>

</modules>

Next associate the dependency with die f l ex -bugs-web module and f l e x - b u g s -

r i a module.

UPDATE THE FLEX AND JAVA WEB MODULES
Now you can add die configuration module to die otiier projects as a dependency by

editing their respective POM files for the flex-bugs-web/pom.xml.

Listing 5.7 Adding the BlazeDS config dependency to the Java w e b module

<dependencies>
<dependency>

<groupId>org.foj</groupId>
<artifactld>flex-bugs-blaze-config</artifactld>
<version>l. C)-SNAPSHOT</version>
<classifier>resources</classifier>
<scope>provided</scope>
<type>zip</type> <

</dependency>

1
r

BlazeDS configuration
module dependency
declaration

Use resources classifier
and provided scope

</ dependencies>

Type element is type
of artifact produced
by assembly

As you can see, you add die new dependency to die dependencies element © in

each module's pom and you are done. Because die scope is provided, it will not add

the resources © to the WAR. You had to specify the type © because it's a zip and

not die default type. You'l l be getting them f rom the Flex module by editing die

POM descriptor in die f l e x - b u g s - r i a module.

Listing 5.8 Adding the BlazeDS config dependency to the Flex module

1,
Maven-dependency-
plugin definition

Invoke unpack-
dependencies goal

J Execute goal during
generate-resources phase

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactld>maven-dependency-plugin</artifactld>
<executions>

<execution>
<id>unpack-config</id>
<goals>

<goal>unpack-dependencies</goal> <
</goals>
<phase>generate-resources-;/phase>
<configuration>

<outputDirectory>${proj ect.build.directory}/
generated-resources-;/outputDirectory>

<includeArtifactlds>flex-bugs-blaze-config</includeArtifactlds>
<includeGroupIds>${proj ect.groupId}</includeGroupIds>
<excludeTransitive>true</excludeTransitive>

</configuration>
</execution>

</executions>
</plugin>

r Output directory
to unpack zip file

Include flex-bugs-
blaze-config artifact

1 0 0 CHAPTER 5 BlazeDS remoting and logging

There are many ways to share configurations, and as you see, you can use the maven-

dependency-plugin © . You execute the unpack-dependencies goal © during die

genera te - resources phase © and must choose an output directory © in order to

unzip die file where you want. You may have noticed that you used die built-in maven

property $ { p r o j e c t . bu i l d , d i r e c t o r y } , which equates to die location of the target

directory. Now you must indicate what to unpack. This is where you specify die f l e x -

bugs-b laze -conf i g artifact © .

Af ter the configuration is completed for die shared configuration approach, you

can start integrating Flex with Java through the use of BlazeDS AMF remoting!

5.4 Exposing Java services to Flex remoting
In this section you'll demonstrate how to configure and expose Java services to Flex

through the use of BlazeDS and Spring annotations. First you'll modi fy die web mod-

ule configuration, then modi fy die Java code. For demonstration purposes you'll use

the FlexBugs sample application.

5.4.1 Web module configuration updates
First you'll modi fy die f l ex -bugs-web module's configuration to enable it for remot-

ing. You'l l start with the applicationContext.xml file located in die /flex-bugs-web/

src/main/webapp/WEB-INF directory.

Listing 5.9 Appl icat ionContext .xml

<?xml version= "1.0" encoding= "UTF-8 " ?> Update schema namespace A
<beans xmlns="http://www.springframework.org/schema/beans" <1—'

xmlns:security="http://www.springframework.org/schema/security"
xmlns : xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-

2.0.4.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-

2. 5.xsd"
default-lazy-init=11 true11 > © Enable annotations

<context: annotation-conf ig /> <_l © Usecomponent
<context:component-scan base-package="org.foj" /> <—I scanner

<!-- Add new DAOs here -->
<bean id="issueDao" class="org.appfuse.dao.hibernate.GenericDaoHibernate">

<constructor-arg value="org.foj.model.Issue"/>
<property name="sessionFactory" ref="sessionFactory"/>

</bean>
<bean id="commentDao" class="org.foj.dao.impl.CommentDaoImpl">

<property name="sessionFactory" ref="sessionFactory"/>
</bean>

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/security
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/context
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-

Exposingjava services to Flex remoting 101

<! — Add new Managers here -->
<bean id="issueService" class="org.foj.service.impl.IssueManagerlmpl">

<constructor-arg ref="issueDao"/>
<constructor-arg ref="commentService"/>

</bean>

<bean id="commentService" class="org.foj.service.impl.CommentManagerlmpl">
<constructor-arg ref="commentDao"/>

</bean>
<! — Add new Actions here -->

</beans>

To take advantage o f the Spring BlazeDS Integration you must add die appropriate

schema changes and namespace elements O - Because you'll be using annotations to

expose your services to BlazeDS remoting destinations, you must enable annotations

© and use the component scanner © to help Spring f ind the annotations you're

going to define.

Next, by convention, you must create a flex-spring-servlet.xml configuration file, as

seen in listing 5.10, because the framework depends on it.

NOTE The naming of die flex-spring-servlet.xml file is important because die
framework scans for it by convention, and die application will fail to start up
properly without it.

Later, you'll use the flex-spring-servlet.xml file to help configure the messaging service.

Listing 5.10 f lex-spring-servlet .xml plumbing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:flex="http://www.springframework.org/schema/flex"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex-1.0.xsd">

</beans>

Last, you need to add a new servlet definition to the web.xml so that your Flex applica-

tion can communicate with the server-side application. Listing 5.11 shows the changes

that need to be made to die web.xml of our web application module.

Listing 5.11 web.xml

<servlet>
<servlet-name>f lex-spring</servlet-name> < — © Servlet name
<serviet-class>

org. springf ramework. web. servlet. DispatcherServlet <1—,
</serviet-class> Q Servlet class
<load-on-startup>l</load-on-startup>

</servlet>

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/flex
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex-1.0.xsd

102 CHAPTER 5 BlazeDS remoting and logging

<serviet-mapping>
<serviet-name>flex-spring</serviet-name>
<url-pattern>/messagebroker/*</url-pattern> A definition

</servlet-mapping>
Servlet mapping

This is a typical Java web application servlet mapping where you define a servlet name O

and a servlet class Q to dispatch actions to whenever a URL pattern © match is found.

Now let's begin working witii code by modifying the server-side classes.

5.4.2 Expose AMF remoting destinations
Connecting to POJOs on the server side is trivial after you've got BlazeDS configured

properly. To illustrate connecting to a POJO f rom Flex, we 're going to use the Flex-

Bugs application by exposing the IssueManager interface to Flex remoting using the

Spring BlazeDS Integration framework.

UPDATES TO ISSUE CODE
This is the code for die IssueManager Impl that we' l l be connecting to.

Listing 5 .12 IssueManager . java

package org.foj.service;

import org.foj.model.Issue;
import org.springframework.flex.remoting.RemotingDestination; <
import org.springframework.flex.remoting.Remotinglnclude;
import javax. jws .WebService; Import Spring BlazeDS __

Integration classes O
@WebService

RemotingDestination exposes
© issueService to Flex remoting

à
Remotelnclude
annotation

@RemotingDestination(channels = {"my-amf"})
public interface IssueManager {

@RemotingInclude
j ava. util. List<Issue> g e t A H O ;

@RemotingInclude
Issue get(Long id) ;

@RemotingInclude
Issue save(Issue issue);
@RemotingInclude
void remove(Long id);

As you can see, not much had to change to expose die I s sueServ i ce metiiods to

Flex. The first step was to import die Spring BlazeDS Integration classes needed Q .

The Spring classes help by supplying die ©Remot ingDest inat ion and ©Remoting-

lnc lude annotations.

Next, you added the ©Remot ingDest inat ion "my-amf' The ©Remoting-

Des t ina t i on must match die one def ined in die services-config.xml BlazeDS configu-

ration file. This annotation exposes this class as a destination for any Java class that

implements die IssueManager interface. This means tiiat the IssueManager Impl Java

Exposingjava services to Flex remoting 1 0 3

class, the class that implements the IssueManager, will be exposed as an AMF remote

service and not just XML/HTTP.

The Spring BlazeDS Integration framework removed the need for having to define

this metadata through the remoting-config.xml configuration file. You don't use a

remoting-config.xml file with the BlazeDS Integration framework.

You can now annotate each method tiiat you need to expose with die ORemoting-
Include Q annotation and you are done! The @Remo ting Include annotation exposes

the method over die ©RemotingDestination.
If needed, die Spring BlazeDS Integration framework's remoting package also

provides a ORemotingExclude annotation for intentionally excluding methods. Now

let's move on to making changes to die Flex client to take advantage of die exposed

A M F service.

UPDATES TO COMMENTS CODE
Now that you have everytiiing in place for the issue code, you'll need to make the same

types of changes to die CommentManager interface. The fol lowing listing shows the

CommentManager. java class changes.

Listing 5.13 CommentManager . java

package org.foj.service;
import org.foj.model.Comment;
import org.springframework.flex.remoting.RemotingDestination;
import org.springframework.flex.remoting.Remotinglnclude;
import javax.jws.WebService;
import java.util.List;

@WebService
@RemotingDestination(channels = {"my-amf"})
public interface CommentManager {

@RemotingInclude
List<Comment> findCommentsBylssueld(Long issueld);

@RemotingInclude void deleteAHCommentsForlssueld(Long issueld);

@RemotingInclude
Comment get(Long id) ;

@RemotingInclude
Comment save(Comment comment);
@RemotingInclude
void remove(Long id);

As you can see you didn't need to change any of the application code to expose die

CommentManager to remoting. Al l you had to do was add die necessary imports,

include die ©RemotingDestination, and add die appropriate ©Remotinglnclude
annotations for the methods you need exposed.

1 0 4 CHAPTER 5 BlazeDS remoting and logging

Now you have a Java server side tiiat is set up for BlazeDS remoting. You tackled

much of the Java configuration through Spring's robust Flex BlazeDS Integration

framework and its extremely useful annotations.

5.5 Connecting to Java with BlazeDS
With the Java remoting services ready to go you can begin die work on the Flex cli-

ent to connect to the exposed service objects and metiiods. Let's start with die

Issue object.

Listing 5.14 Issue.as

package org.foj.dto {

[RemoteClass(alias="org.foj.model.Issue")]
public class Issue {

That wasn't complicated. You only had to associate this object with the server side

equivalent by using die RemoteClass annotation © which you need because it allows

you to map domain objects between Flex and Java by specifying the Java package and

class name.

TIP Without correctly specifying die RemoteClass, any attempts at persisting
Issue objects will fail because BlazeDS will not know what server-side object
die Flex object is bound to.

Next you need to modi fy the IssueModel class to call die POJO.

Listing 5.15 IssueModel .as

package org.foj.model {
import mx.rpc.AsyncToken;
import mx.rpc.IResponder;
import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
import mx.rpc.remoting.RemoteObj ect;
import org.foj.dto.Issue ;
public class IssueModel {

private var _issueService:RemoteObject;
public function IssueModel() {

_issueService = new RemoteObject();
_issueService.destination = "issueService";

}

public function getlssues(responder :IResponder) : void {
var asyncToken:AsyncToken = _issueService.getAll();
asyncToken.addResponder(responder);

}

A RemoteClass
< 1 _J annotation

^ C y Create RemoteObject

^ ^ p Set destination

}

Logging 1 0 5

Again a few tilings have to change, and yet only minor ones are required to take advan-

tage o f the performance increases of BlazeDS remoting. In die IssueModel you are now

using die Flex RemoteObject O for communication to die issueService instead of the

WebService object. When you construct a new IssueModel you set die RemoteObject
destination © as die issueService you def ined earlier in our applicationConfig.xml.

That's it. Really!

NOTE Names of the RemoteObject instance variables map to die bean name
in die Spring applicationContext.xml file. Be sure these names are correct!

With all of diat out of the way you should be able to run your application and see tiiat

it's now populating the DataGrid with data f rom our issueService through BlazeDS

rather than the web services you created in chapter 4.

5.6 Logging
Since the inception of programming, developers have always found ways to enable

applications to communicate what they are doing. This comes in all di f ferent forms,

f rom logging basic information to fatal exceptions during the application runtime.

With die FlexBugs sample application, you need to log the Java server-side events and

the BlazeDS-specific events, and gather performance statistics.

Building the FlexBugs application with AppFuse simplified this task by configuring

the popular log4j framework for logging Java application messages. Now you must

inform the log4j framework that you want to log even more for BlazeDS.

5.6.1 BlazeDS logging
Adding BlazeDS into the mix was beneficial. But adding any library or framework to

benefit die application presents new challenges; you must collect information f rom

the library to better understand what is happening when you use it.

Thankfully, SpringSource recognized tiiis with the Spring BlazeDS Integration

framework and added a new logging object to its core package. The CommonsLogging-
Target class allows for automatic logging of events f rom BlazeDS into the application's

existing logging configuration.

CONFIGURE LOG4J FOR BLAZEDS FILE LOGGING
You have to configure an application to print messages to the console or even a log

file in a couple of places. The first place, as seen in listing 5.16, is the log4j.xml config-

uration file found in die flex-bugs-web module, which can be found in the flex-bugs-

web/src/main/resources directory.

Listing 5.16 log4j .xml

<appender name="FILE" class="org.apache.log4j.RollingFileAppender"> <1—
<param name="File" value=" f lexbugs. log"/> <I—| log4j
<layout class= " org. apache. log4j . PatternLayout" > <1—i Log file 1 rolling file

Log file layout definition Q name © appender O

1 0 6 CHAPTER 5 BlazeDS remoting and logging

<param name="ConversionPattern"
value="%d [flex-bugs-web] %p [%t] %c{l}.%M(%L) | %m%n"/> <—i

</layout> ConversionPattern I
</appender> configuration O

<appender name= " CONSOLE" class= " org. apache. log4j . ConsoleAppender" > <1—i
<layout class= " org. apache. log4j . PatternLayout" > ConsoleAppender 1

<param name= "ConversionPattern" configuation w
value="%d [flex-bugs-web] %p [%t] %c{l}.%M(%L) | %m%n"/>

</layout>
</appender> A blazeds logger

<logger name=" f lexbugs" > <—I definition A |_0ggjng |eVel
<level value= "DEBUG" /> <1-J
<appender-ref ref="FILE" /> <1—L

<appender-ref ref ="CONSOLE" /> <—, © File appender
</logger> Q Console appender

As seen in listing 5.16 tlie log4j configuration can be trivial and yet extremely robust.

Log4j itself allows for outputting to botii die console and to a file. In die example you

specified a RollingFileAppender © so you can keep log messages and continue to

add to that file as you use die application.

You must specify die log file name as flexbugs.log © . Log4j requires the file

parameter and doesn't provide a default. It's also possible to specify a patii to die

file in diis parameter. It will place die flexbugs.log file at the root of die flex-bugs-

web directory.

Log4j also enables various layout styles. By choosing to use die PatternLayout ©
you can specify what you want your messages to look like and what information should

be in the log message. You do this by defining die ConversionPattern parameter © .

There are otiier patterns to choose f rom but we chose this one to give us additional

flexibility. The first tiling to notice about the log message pattern is that it will prefix

each message witii [flex-bugs-web]. It then assigns other parameters for printing the

message. For more on log4j configuration go tdittp://www.scribd.com/doc/7679107/

Log4j-Quick-Reference.

You also include an appender for die console © . Console appending is especially

helpful during software development. Writing the logs to a file is valuable not just for

development but also for production environments.

Finally you need to create die logger itself. Here you created a logger named

blazeds © . You configure die logger to output at die DEBUG level © and append the

messages to both our RollingFileAppender and die ConsoleAppender by tiieir

respective reference names FILE © and CONSOLE © . Log4j is ready to create a log file

for your application.

CONFIGURE BLAZEDS TO OUTPUT TO LOG4J
Setting up the logging of BlazeDS is a two-step process. Now that you have a log-

ger available specifically for BlazeDS you can configure BlazeDS to work with log4j.

Listing 5.17 shows the necessary changes to die services-config.xml file, located in

die directory.

http://www.scribd.com/doc/7679107/

Logging 1 0 7

Listing 5.17 services-config.xml

<logging>
<target class="org.springframework.flex.core.CommonsLoggingTarget"

level="All">
<properties>
<categoryPrefix>flexbugs</categoryPrefix>

</properties>
</target>

</logging>
J Category prefix

Logging
level

Logger
class , O

The BlazeDS configuration is simple. You specify the Spring framework's Commons-
LoggingTarget class O , the logging level you desire Q , and die categoryPref ix
which points to the log4j.xml logger named f lexbugs © . The CommonsLoggingTarget
can be configured to output more—or less—information from BlazeDS events through
its properties and logging categories by using filters.

BlazeDS/LCDS logging categories
Several categor ies are available for helping to filter out specific logging messages.
Logging can be performance-intensive so it 's wise to log only what you absolutely
need to provide the best support for the application. For more on the categor ies
available or to know what you can filter out of the logs, see the API documentation
for the CommonsLoggingTarget at http://static.springsource.org/spring-f lex/docs/
l .O .x/ javadoc-api/org/spr ingframework/f lex/core/CommonsLoggingTarget .html .

Now diat logging has been configured for BlazeDS it's time to see die results.

VIEW THE FLEXBUGS LOG FILE

If you fire up your sample application you'll find a log file available. If you're using die
FlexBugs samples and run die command mvn clean jet ty :run-war on die f l e x -
bugs-web module, after performing an mvn clean i n s t a l l on die f lex-bugs-conf ig
module, you'll find the log file in die flex-bugs-web directory.

Figure 5.5 shows die logging messages going to die console.
Toward die bottom of figure 5.5 you'll find an AMF log event showing an issue com-

pleted for adding die BlazeDS logging to die log4j configuration. In that event you can
see that the issue was serialized through AMF/HTTP with all the issue details. If you
open the log file you'll find die same results and logging of die BlazeDS events.

5.6.2 Built-in BlazeDS benchmarking
One nice feature of BlazeDS is its built-in ability to acquire performance results on
its processing of messages. In tiiis example you'll configure the BlazeDS services-
config.xml to retrieve the message times and size. These measurements are great for
development but shouldn't be enabled for production because they cause perfor-
mance degradation. This may seem counterproductive but it's not. It's good to assure

http://static.springsource.org/spring-flex/docs/

131 CHAPTER 5 BlazeDS remoting and logging

Figure 5.5 Console log of BlazeDS events

that you have the best performance possible for your production environments at all
times to keep the users delighted.

To enable BlazeDS performance collection, open up the services-config.xml for
editing. Listing 5.18 shows the changes to the my-amf configuration.

Logging affects performance
A developer must choose wisely the messages that are logged in a production envi-
ronment. You shouldn't keep log messages in an application that were only trou-
bleshooting messages or sloppy in loop count logging that spits out a bunch of
unimportant things for every element in a col lect ion of objects. To put it simply,
logging affects performance, especially when writing out to file 10. Make sure that
debugging is not enabled in production unless it 's absolutely necessary. Also be
sure to only log INFO type messages when they are helpful or required.

Logging 109

L i s t i n g 5 . 1 8 s e r v i c e s - c o n f i g . x m l

<channel-definition id="my-amf" class="mx.messaging.channels.AMFChannel">
<endpoint url="http://{server.name}:{server.port}/

{context.root}/messagebroker/amf "
class="flex.messaging.endpoints.AMFEndpoint"/>

<properties>
<record-message-times>true</record-message-times>

<record-message-sizes>true</record-message-sizes>
</properties>
</channel-definition>

I n l i s t ing 5 .18 y o u e n a b l e d t h e p e r f o r m a n c e t r a c k i n g p r o p e r t i e s f o r r e c o r d i n g b o t i i

m e s s a g e t i m e s a n d sizes. I t 's a s i m p l e B o o l e a n tiiat c a n b e se t t o f a l se f o r p r o d u c t i o n

e n v i r o n m e n t c o n f i g u r a t i o n . A d d i n g d i e s e p r o p e r t i e s a l l ows f o r t h e a u t o m a t i c l o g g i n g

o f this i n f o r m a t i o n . T h i s is a g r e a t w a y t o g a i n i n s i g h t i n t o t h e o b j e c t s y o u ' r e s e n d i n g

b a c k a n d f o r t i i b e t w e e n t h e c l i e n t a n d server . I f y o u w e r e t o c r e a t e a n e w issue i n F l e x -

B u g s y o u w o u l d s e e s o m e t h i n g l i k e t h e d i sp l ay i n f i g u r e 5.6.

A Message t imes
^ T conf igurat ion

Message sizes
© conf igurat ion

- i a | , x | ca C:\WINOQW5\system32\emd.eHe - mvn clean |Ptty:run-w.ir
s e ruerPos t f l dap te rEx te rna lT ime - 0*0
rece iueT ime <=
messageSize - 0*0
overhead! i roe a 0 . 0
recordMessageS iees • f a l s e
se rve rPos t f ldap te rT ime - 0 . 0

1.25535258483SE12
<Byte Ar ray » 7 , Length 16>
<Byte Array « 8 , Length 16>
<Byte Array t»9. Length 16>
S e r i a l i z i n g AMF/HTTP response
Ue r s i on : 3

<Message 80 ta rge tURI =/6/onBesult , responselJRI =>
< E x t e r n a l i z a b l e Ob j ec t H0 1 DSK ')

(E x t e r n a l i z a b l e Ob j ec t HI ' f l e x . m e s s a g i n g . i o . A r r a y C o l l e c t i o n ' >
(A r r ay tt2>

10] a (Typed Ob j ec t W3 ' o r g _ f o j . r i o d e l . I s s u e ' >
id " 2 . 0
p r o j e c t • " P l e xBugs "
reportedOn = 2009-10-12 00 :00 :00 .0
d e t a i l s » "Need per formance me t r i c s in p l ace f o r BlazeDS messages s i

;:e and any o the r important d e t a i l s . "
s t a tus " " F i n i s h e d "
repor tedBy • "BJ A l lmon"
d e s c r i p t ion = "Add Per formance M e t r i c s "
ass ignedTo • "BJ flllmon"
s e v e r i t y - " M a j o r "
t ype D "Fea ture Reques t "
est imatedHours • 1.5

(O b j e c t «5>
DSMPIO = (Typed Ob jec t ttfi ' f l e x .messag ing .messages .MessagePe r f o r r cance in f

o ' >

serye rPreAdapte rT ime 3 0 .0
se rwerPreAdapte rExte rna lT ime - 0 . 0
irrfoType = n u l l
sendTine - 1.2S5352SB4835E12
recordMessageTimes • f a l s e
seruerPrePusl iTime • 0 .0
pushedFlag - Fa l se
se ruerPos tAdapte rEx te rna lT ime = 0 .0
r ece iueT ime - 0 .0
messacfeS i z c = 835 .0
ouerheAdlinie • 0 . 0
r ecordMessageS i zes - f a l s e
se ruerPos tAdapterT ime • 0 . 0

1.2SS3S2S8483SE12

3

Figure 5 . 6 B l a z e D S M e s s a g e P e r f o m a n c e l n f o in action

1 1 0 CHAPTER 5 BlazeDS remoting and logging

As seen in figure 5.6 you now have an additional log message direcdy under the

insertion of a new issue for the project FlexBugs. The BlazeDS Me s sage Performance-

U t i l s class shows the sendTime and tire messageSize that you def ined in tire ser-

vices-config.xml. You can see that tire sendTime is equal to 1.25ms and a message size

of 835.0 bytes.

In general, the f l ex .messages .messag ing .MessagePer formanceUt i l s class pro-

vides metrics drat describe tire size and timing of a message sent f rom a client to tire

server and its server response message. Performance information can be captured

when tire record-message-t imes and record-message-s i zes are configured to

TRUE. From tirere it's possible to set up more performance-gathering metrics in tire

client. Configuring tire client would mean creating a response acknowledgment or

message handler.

NOTE The BlazeDS development guide instructs developers to not activate
more than one performance measurement at a time because of tire extra per-
formance hit that each measurement adds to the application runtime. Use
drem wisely. If you truly have performance issues you may consider other
means for performance testing like an open source tool or commercial alter-
native. Using a separate tool for performance testing would allow tire BlazeDS
configuration to stay true to its production environment configuration dur-
ing tire performance testing.

For more on how to configure message performance logging through a message

event handler refer to tire BlazeDS development guide at http://livedocs.adobe.com/

blazeds/l/blazeds_devguide/help.html?content=mp i_3.html.

5.7 Summary
In dris chapter you refactored out the XML/HTTP web service implementation and

replaced it witir BlazeDS AMF remoting. The web service implementations had tire

least impact on tire server side but required more work to be done on the client side,

because we're not receiving first class objects in the responses. When you switched to

using BlazeDS to communicate witir tire server side you gained in performance witir-

out increasing tire complexity of tire application.

Using tire Spring BlazeDS Integration framework reduced tire amount of configu-

ration typically required to set up remoting destinations. It also gave you a handful of

useful annotations and otirer features that reduced tire complexity o f the application

even more. As you'll continue to see throughout tire remainder o f the book, tire

Spring BlazeDS Integration simplifies tire code and makes building robust Flex and

Java applications much easier.

You also configured logging to be sure drat you can capture tirose important appli-

cation activities in a log file. Setting up tire logging for BlazeDS events was a simple

task using both log4j and tire Spring BlazeDS Integration framework logger class.

http://livedocs.adobe.com/

Summary 111

BlazeDS also enables die gathering o f performance measurements on a channel ser-

vice. With that you were able to pump performance stats on message size and time to

your log file.

In the next chapter you'l l take the next step in evolving our Flex and Java

communications and take advantage of real-time messaging between the two using

BlazeDS messaging.

Flex messM^n^ o
This chapter covers
• Set t ing up B lazeDS for messag ing

• Us ing the Flex M e s s a g i n g API

• Creat ing a poll ing channel

The Flex Messaging API, bundled with BlazeDS, provides asynchronous messaging,
which you can use to create a better user experience by enabling your application
to refresh itself in real time whenever anyone using the application makes any
changes. The BlazeDS MessageService allows bidirectional communication
between Flex clients and die server side.

In general, you want to use messaging to notify the client of changes. This will
fire off an event to refresh die FlexBugs issues list. Figure 6.1 demonstrates tiiis use
of messaging.

This chapter will exploit the use of the Flex Messaging API and simple polling to
receive updates from the server when changes in die model have occurred.
Changes will cause an event to be dispatched tiiat will refresh the master view and
ultimately the list of issues.

The details of messaging operations depend on your needs and die style of
underlying messaging architecture you've chosen; for example, client-to-client,

112

Setting up BlazeDS for messaging 1 1 3

JMS, Flex to POJO, orJavaBean messaging. On top of that, it's possible to configure the

client to per form simple or long poll ing or even streaming. Al l these scenarios for

messaging are useful and have accompanying benefits and consequences. It's always

best to start with tire simple approach before moving to tire complex.

6.1 Setting up BlazeDS for messaging
Little configuration is needed to set up a simple messaging architecture drat allows

a Flex client to subscribe to a server-side component. It's also good to use a messag-

ing API drat is agnostic to tire underlying messaging architecture. This makes it easy

to start witir a simple server side, say with POJOs, and expand to something like JMS

if necessary.

6.1.1 Modifying the services-config.xml
You first modi fy tire services-config.xml file. If working in the FlexBugs sample appli-

cation, it is found in tire b l a ze - con f i g module. The services-config.xml file is located

in tire src/main/resources directory.

You want to prepare tire server side witir a new channel definition for poll ing as

seen in listing 6.1. For brevity we've excluded elements o f tire file that have already

been discussed and are not going to change.

Listing 6.1 Adding the polling channel-definition to serv ices-conf ig .xml

<?xml version="1.0" encoding="UTF-8"?>
<services-config>

<channels> A Channel-definition
• •• T declaration

<channel-def inition id= "my-polling-amf " <—I
class="mx.messaging.channels.AMFChannel">

<endpoint url="http://{server.name}:{server.port}/{context.root}/
messagebroker/amfpolling"

class= " flex. messaging. endpoints . AMFEndpoint" / > <1—i
<properties> Endpoint url ©

<polling-enabled>true</polling-enabled> <l—i
© Polling is enabled

1 1 4 CHAPTER 6 Flex messaging

<polling-interval-seconds>4</polling-interval-seconds>
</properties>

</channel-definition> D Polling interval
</channels>

</services-config>

All you need to do to set up die channel definition is specify an id © and endpoint
and enable polling The channel definition for die my-polling-amf channel ©

will be used by Flex when contacting the server.
The endpoint element Q provides a URL that must be unique from other end-

points, and die endpoint class for die server. The endpoint is used by die channel ser-
vice to do its business in regards to client-side and server-side communication.

Properties defining the channel are nested in a properties element. The channel
definition contains behaviors that allow it to be configured in a variety of ways. In our
example, you have simple polling enabled Q and die polling interval Q set to poll at
every 4 seconds. Simple polling is generally less efficient tiian long polling because it
continues to ping the server at each specified interval and receives acknowledgments
even when tiiere are no changes, and die acknowledgments are empty. Long polling
allows die client to ping die server; the server keeps die request and returns an
acknowledgment when tiiere is a message.

Polling performance
When selecting a polling mechanism, consider which solution would require the
least amount of overhead. Both simple and long polling can be server-side intensive
if there are numerous messages being passed back and forth and an abundance of
users. Even though long polling is generally more efficient than simple, it 's possible
that an application wi th many users wi th frequent changes could cause more cl ient
and server friction and be less responsive than controll ing polling wi th the simple
approach. If long polling is an option, streaming should be a consideration as well .
Streaming is similar but keeps a connect ion open instead of opening and closing
one between each transmission.

The changes to the services-config.xml were die only changes necessary for die con-
figuration module to add a polling channel. Now let's move on to die webapp mod-
ule changes.

6.1.2 Updating the webapp server-side module
Now diat you've tackled the channel definition in the services-config.xml file you can
move on to modifying the webapp. We'll start witii the flex-spring-servlet.xml and
applicationContext.xml changes, then move on to changes in die Java code.

Setting up BlazeDS for messaging 1 1 5

MODIFY THE FLEX-SPRING-SERVLET.XML
You start by editing tire flex-spring-servlet.xml found in tire src/main/webapp/WEB-

INF directory o f the flex-bugs-web module. Here you will be adding a new Spring-

managed MessageBroker, MessageService, and MessageDestination for your new

poll ing channel.

Listing 6.2 Adding MessageBroker , M e s s a g e S e r v i c e , and M e s s a g e D e s t i n a t i o n

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:flex="http://www.springframework.org/schema/flex"
xmlns : xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex-1.0.xsd">

<flex :message-broker> <—n
<f lex: remoting-service def ault-channels= "my-amf "/> O Added message-broker

<flex:message-service default-channels="my-polling-amf" />
<flex:secured/>

</flex :message-broker> • vice Q Added message-service

^ ^ P Added message-destination
<flex :remoting-destination ref="userDao"/>
<flex : message-destination id="flexMessage"/>

</beans>

In the listing you added tire Spring message - se r v i c e Q that points to tire my-

po l l i n g - am f channel you def ined in tire services-config.xml. Because you are using

a Spring-managed MessageBroker Q , you can specify the message destination © by

adding tire element and giving it tire id you want to refer to in tire server-side imple-

mentation. You will use tire message destination to send messages f rom the server-

side objects.

MODIFY THE APPLICATIONCONTEXT.XML
The last bit of configuration detail is found in the Spring applicationContext.xml.

This file is also located in tire src/main/webapp/WEB-INF directory o f tire f l e x - b u g s -

web module. The code listed here shows tire two Spring beans you need to define in

the applicationContext.xml.

<bean id="defaultMessageTemplate"
class="org.springframework.flex.messaging.MessageTemplate" />

<bean id="issueService" class="org.foj.service.impl.IssueManagerlmpl">
<constructor-arg ref="issueDao"/>
<constructor-arg ref="commentService"/>
<constructor-arg ref="defaultMessageTemplate"/>

</bean>

So that you can push messages to tire message destination f rom your Java objects,

Spring has given us tire MessageTemplate helper class. Inject an instance o f tire

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/flex
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex-1.0.xsd

1 1 6 CHAPTER 6 Flex messaging

MessageTemplate into the i s sueSe rv i c e and use it in die IssueManagerlmpl.

Because the MessageTemplate is configured as a Spring bean, it autodetects the

MessageBroker. Otherwise, it would need to be configured.

MODIFY THE ISSUEMANAGERIMPL
Now diat you have die Spring configuration squared away, you can take advantage of

die injected MessageTemplate object by adding it to die IssueManagerlmpl class as

seen in listing 6.3.

Listing 6.3 Adding the injected M e s s a g e T e m p l a t e

import org.springframework.flex.messaging.MessageTemplate;

(iWebService(serviceName = "IssueService",
endpointlnterface = "org.foj.service.IssueManager")

public class IssueManagerlmpl implements IssueManager {
private GenericDao<Issue, Long> issueDao;
private CommentManager commentManager;
private MessageTemplate messageTemplate;

public IssueManagerlmpl(GenericDao<Issue, Long> issueDao,
CommentManager commentManager,
MessageTemplate messageTemplate)

{
this.issueDao = issueDao;
this.commentManager = commentManager;
this .messageTemplate = messageTemplate; <—,

A MessageTemplate
<]_! field

^ ^ Constructor
arguments

Set messageTemplate

public Issue save(Issue issue) {

String messageBody = "Issue was saved";
messageTemplate.send("flexMessage", messageBody);
return issueDao.save(issue);

}

public void remove(Long id) {
commentManager.deleteAHCommentsForlssueld(id);

String messageBody = "Issue was removed";
messageTemplate.send("flexMessage", messageBody);
issueDao.remove(id);

}

To take advantage o f die Spring MessageTemplate, you first create a private f ield to

store the MessageTemplate instance Q that you inject. Because you are injecting

through the constructor © you set the private f ield Q to equal die injected instance.

In the example you will use die MessageTemplate to send die client a text message

notification. This message will let the client know tiiat a refresh is needed. You wire up

Updated save
13 method

J Updated remove
method

Modifying the client for messaging 1 1 7

the notification to the save Q and remove © methods and pass a message to die cli-
ent indicating that die issue was eitiier saved or removed.

Now diat all the necessary changes are in place for simple messaging witii Spring
and Flex, it's time to update the Flex client.

6.2 Modifying the client for messaging
The Flex client changes are extremely simple. The use of die MVP design pattern iso-
lates die changes to only two locations. We're going to create a ChannelSetFactory to
leverage the power of the ChannelSet object for communicating with BlazeDS, and
we'll modify the IssueModel object to receive the issue model updates from the poll-
ing channel.

6.2.1 Creating a ChannelSetFactory
Similar to die approach you took earlier witii the EventFactory, you create a single-
ton instance of a ChannelSet and retrieve it so tiiat all your components are using the
same ChannelSet. Using a ChannelSet allows you to leverage communication chan-
nels such as AMFChannel, HTTPChannel, StreamingAMFChannel, and StreamingHTTP-
Channel at the same time, creating redundancy and fail-safes that help guarantee your
data gets transmitted. To do tiiis you'll create a ChannelSetFactory in the f lex-bugs-
l i b module.

Listing 6.4 ChannelSetFactory.as

package org.foj.model {
import mx.messaging.ChannelSet;
import mx.messaging.channels.AMFChannel;

public class ChannelSetFactory {

private static var _messagingChannelSet:ChannelSet;

public function ChannelSetFactory!) { }

o si
<hJ in

Singleton
instance

J
Static
factory
method public static function getMessagingChannel():ChannelSet {

if (_messagingChannelSet == null) {
var pollingChannel:AMFChannel = new AMFChannel("my-polling-amf",

"http://localhost:8080/flexbugs/messagebroker/amfpolling");
_messagingChannelSet = new ChannelSet();
_messagingChannelSet.addchannel(pollingChannel); AMFChannel

}

return _messagingChannelSet;

The code for die ChannelSetFactory is similar to the EventDispatcherFactory.
Start by declaring your private instance variable to hold the ChannelSet then
define a static factory method tiiat the rest of the application will use to retrieve

http://localhost:8080/flexbugs/messagebroker/amfpolling

118 CHAPTER 6 Flex messaging

the ChannelSet Inside tiiis meti iod you check to see if die instance has been

instantiated; if not create one and assign your AMFChannel to it Al l tirat's left is

to return die ChannelSet to the caller. Next let's look at modifying die IssueModel to

leverage tiiis ChannelSet.

6.2.2 Changing the IssueModel
The final task to perform, in your sample messaging design, is to fire o f f an event

when tire client receives a push notification message which should refresh tire issue

master view DataGrid. You do tiris by adding a Consumer o f tire messaging channel.

Listing 6.5 The I s s u e M o d e l message Consumer

package org.foj.model {

Import Flex
MessageEvent class

import mx.messaging.events.MessageEvent;

public class IssueModel {

private var _issueService:RemoteObject;

public function IssueModel() {

var defaultChannelSet:ChannelSet = ChannelSetFactory.getDefaultchannel();

_issueService = new RemoteObject();
_issueService.destination = "issueService";
_issueService.ChannelSet = defaultChannelSet;

var messagingChannelSet:ChannelSet
= ChannelSetFactory.getMessagingChannel(); J Get messaging

ChannelSet

var consumer : Consumer = new Consumer();
consumer.destination = "flexMessage";
consumer.ChannelSet = messagingChannelSet;
consumer.addEventListener(MessageEvent.MESSAGE, messageHandler);
consumer.subscribe ();

private function messageHandler(event:MessageEvent):void{
var eventDispatcher:EventDispatcher =

EventDispatcherFactory.getEventDispatcher();

var refreshEvent:UIEvent = new
UIEvent(UIEvent.REFRESH_ISSUES_BUTTON_CLICKED);
eventDispatcher.dispatchEvent(refreshEvent);

Flex Consumer Q

<—

messageHandler Q

}
}

Modifying the client for messaging 119

In the IssueModel you receive notification of changes through the built-in Flex Mes-
saging API. After importing the MessageEvent class Q , you need to get an instance of
the messaging AMF ChannelSet from the ChannelSetFactory

Next you need to create a Flex Consumer Q and establish its properties. You con-
figured die consumer's destination to be the f lexMessage destination, defined in die
f l ex -spr ing -se rv l e t .xml. The consumer's ChannelSet was set to die one you got
from the ChannelSetFactory.

The event listener is an important piece. It allows you to invoke a metiiod when a
consumer receives a message from die server. You declared that you wanted die event
to be die MessageEvent type Message and tiiat the method to call is messageHandler
O Finally, you subscribe to die server-side message destination by calling con-
sumer .subscribe().

Now that your Flex client is set up to subscribe to a messaging destination, you can
see it in action. This is possible by opening up two different browser instances; make
changes in one while keeping an eye on the other as in figure 6.2 where die browser
snippet on die left shows the issue form that persisted die issue and die browser on
the right automatically gets the update.

Changes should be noticeable in the issues DataGrid as changes occur in the
application to the issues. The changes will occur within 4 seconds, as specified in
the channel definition. That's all there is to setting up a simple messaging solution
with Flex!

Piojiit

Dsscrtpknn:
"Ci

sevwitf
Btttttt:

Details:

fi ['[j't'j J
Ritprtso On;
Assured To:

Es& mated Hours;

M3I0F

This is a sample ertilicl :£5UG

JS

| save issue | | cared cnargas |

FlexBugs

My FlOjOCt DESC

| Refresh usi |

Figure 6.2 Trying out the messaging using two browsers

120 CHAPTER 6 Flex messaging

6.3 Summary
In this chapter you configured BlazeDS, Spring, and a Flex client for a simple messag-
ing architecture. You changed certain Java service methods so drat drey would notify
tire client of changes and made changes to the IssueModel to listen as a consumer.
Using tire Flex messaging API you used a Consumer to subscribe to tire messaging
channel service and received dynamic updates for tire Issues master view. You will
take messaging a step farther by configuring JMS when discussing Flex witir Grails.

In tire next chapter you will take a peek at securing and personalizing an applica-
tion. The Spring security framework will be used with its annotation to provide great
flexibility witir the least amount of complexity.

Part 3

The joys of Flex on Java

J L a r t 3, chapters 7 through 11, goes beyond what you'd find in most books
on Flex and Java. You will cover topics like security and personalization
because most applications need to implement a security strategy, and personal-
ization usually comes next.

You will also cover charting with Degrafa, an open source Flex drawing API,
and adding a chart to tire example application.

One feature that sets tire Flex framework apart from other web frameworks is
its ability to run as a native desktop application. With this in mind, you will refac-
tor the example application to include a deployment to tire desktop version of
the application.

Because writing code without tests is irresponsible, these final chapters
demonstrate how to test your Flex application with FlexUnit. We not only pro-
vide basics on test-driven development (TDD), we break down the example
application's structure and show you how to maintain good coverage across tire
entire application.

The last chapter covers Flex and Grails development. This is an exciting com-
bination of technologies. You will quickly construct a new example application
with Grails and build a Flex frontend for it.

Securing
persona

your applic

This chapter covers
• Authent i ca t ion

• Author i zat ion

• Personal izat ion

In the past couple of chapters you've experienced some of tire great integration
features that BlazeDS gives us. Now you're going to take integration one step fur-
ther as you strengthen your application and add security features.

You'll leverage tire existing security infrastructure provided by AppFuse and not
have to spend precious time on tire particulars of setting up a Lightweight Direc-
tory Access Protocol (LDAP) server, authenticating against Active Directory, and
creating Access Control Lists (ACLs). There are plenty of resources on tire web that
cover these advanced topics, which are beyond the scope of our goals for tiris chap-
ter. The information you cover in tiris chapter should be sufficient for about 90% of
the applications that you'll encounter.

You'll take an iterative approach to adding security to tire sample application,
starting by adding simple login and logout functionality, allowing tire application
to authenticate using tire same mechanism that AppFuse uses internally. You'll
build upon drat by adding security constraints to the services and lock down tire

123

124 CHAPTER 7 Securing and personalizing your application

destructive metiiod calls to only users belonging to specific roles. You'll also learn
about an often-overlooked aspect of security, personalization. Before getting started,
let's cover basic concepts of die Spring Security framework.

7.1 Authentication
The simplest form of security tiiat you can add to die application is to allow a user to
enter his user name and password and autiienticate using the server side. For many
applications this is usually sufficient. There are many strategies for authenticating
users, from rolling your own authentication methods and exposing diem as remote
services for die application to use, to implementing basic authentication measures
using the web server, or in your case using a security framework like Spring Security.

AppFuse provides, out of die box, a simple autiientication mechanism based on
user information being stored in die database, so you don't need to go through the
trouble of setting up an autiientication provider. The big advantage to leveraging a
framework like Spring Security is that you can change out the mechanism for authen-
tication from a database table to an LDAP server witiiout having to change anything in
your Flex application. So now let's get started witii implementing the components you
need to allow users to autiienticate using your application.

7.1.1 Modifying the ChannelSetFactory
Even though all the remote components that you use to communicate witii external
services have methods supporting sending credentials for authentication, this is not
an ideal solution because the application would need to hold die username and pass-
word, in order for you to manually pass diem along with every remote metiiod call you
made. Not only is tiiis tedious, it's error prone. Instead you'll leverage die ChannelSet
to autiienticate the user to the server side and maintain a session until you either close
the application or log out.

To do this you'll modify the ChannelSetFactory tiiat you created in the last chap-
ter as shown in listing 7.1

Channels and ChannelSets
Flex uses different methods of communicating wi th BlazeDS on the server side
depending on the type of communication: AMFChannel, HTTPChannel, stream-
ingAMFChanne1, and streamingHTTPChannel. These channels encapsulate the
behavior of connect ing and maintaining communications wi th the BlazeDS compo-
nents on the server side. You may recall that when setting up BlazeDS you config-
ured an AMFChannel in the services-config.xml file providing a means of connecting
to BlazeDS using your RemoteObject components. The Flex remoting components
such as RemoteObject allow you to assign a set of these channels for use by the
components, giving you fallback and failover behavior out of the box, as well as
allowing users to authenticate to the server side.

Authentication 125

Listing 7.1 ChannelSetFactory .as

package org.foj.model {
import mx.messaging.ChannelSet;
import mx.messaging.channels.AMFChannel;
public class ChannelSetFactory {

private static var _defaultChannelSet:ChannelSet;
private static var _messagingChannelSet:ChannelSet;
public function ChannelSetFactory() { }

public static function getDefaultchannel():ChannelSet {
if (_defaultChannelSet == null) {
var channel:AMFChannel = new AMFChannel("my-amf",

"http://localhost:8080/flexbugs/messagebroker/ai
_defaultChannelSet = new ChannelSet();
_defaultChannelSet.addchannel(channel);

}

return _defaultChannelSet;
}

public static function getMessagingChannel():ChannelSet {
if (_messagingChannelSet == null) {
var pollingChannel:AMFChannel = new AMFChannel("my-polling-amf",

"http://localhost:8080/flexbugs/messagebroker/amfpolling");
_messagingChannelSet = new ChannelSet();
_messagingChannelSet.addchannel(pollingChannel);

}

return _messagingChannelSet;
}

} }

You start by declaring a private instance variable to hold tire ChannelSet O - Then you

add another static factory method drat tire rest o f tire application will use to retrieve

the ChannelSet © . Inside this method you check to see if tire instance has been

instantiated, and if not create one and assign your AMFChannel to it Then return

the ChannelSet to tire caller.

Next let's create the custom event class for your login panel to use.

7.1.2 Creating a UserEvent
The UserEvent class should look familiar; it's anotirer custom event class just like tire

one you created for tire rest of tire events that your application uses. You're creating

this one separate f rom the other event class, because it is a separate area of concern

f rom UI events. This will make it easier to extract tire login panel to a separate

library later, by keeping all o f tire login functionality separate f rom tire rest of the

application logic.

J Singleton
instance

J Static factory
method

1>
AMF

m f " > ; « Channel

http://localhost:8080/flexbugs/messagebroker/ai
http://localhost:8080/flexbugs/messagebroker/amfpolling

126 CHAPTER 7 Securing and personalizing your application

Listing 7.2 UserEvent .as

package org.foj.event {
import flash.events.Event;

public class UserEvent extends Event{

public static var LOGIN_BUTTON_PRESSED:String =
"loginButtonPressed";

public static var LOGOUT_BUTTON_PRESSED:String
"logoutButtonPressed";

public static const USER_LOGGED_IN:String =
"userLoggedln";

public static const CURRENT_USER_UPDATED:String
"currentUserUpdated";

public var data : *;

public function UserEvent(type : String,
bubbles : Boolean = true,
cancelable : Boolean = false)

{
super(type, bubbles, cancelable);

}

} }

Listing 7.2 shows your custom UserEvent. You begin just as you did in die last event

class by def ining constants to describe what events you'll be using tiiis class for Q .

Next you define a data member variable to carry any data with die event if necessary

Next you declare an overloaded constructor © and inside tiiis is a call to die base

constructor in die Event class Q . Now tiiat you've def ined die custom event, let's put

it to use and start to create die login panel.

7.1.3 Creating a login panel
There are many ways to implement die login functionality. You can create a separate

login screen, a pop up, or implement it inline. Because you're not going to attempt to

prevent users f rom accessing and browsing the application unless they're logged in,

having a separate login screen that takes users away f rom the application doesn't

make sense. Neiti ier does blocking die application with a modal dialog forcing d iem

to login, so you're going witii the simplest possible solution, which is to present the

user with a couple of fields in die upper-right side of die application for entering the

username and password.

The login panel will use a ViewStack just as your main application does, so tiiat as

users log in, the look of the login panel will change to reflect that die user has logged

in successfully as shown in figure 7.1. When die user logs out, die view will change

back to the initial logged out state.

J Event type
constants

J Data field

1,

Call to

Overloaded
constructor

super

Authentication 127

FlexBugs Application I i S I

I o vV. \

IID Pr«|«t I Plat flugj i O* Hi
\

FlexBugs Application

IÜ pT«J«t 1W1« Typ. Swrlfy StdM
] Pl*x bp r«*n l It 1 O htM

Z W«rM (toafcMttan a «Wu> I'j wM dental fUw Ina 1 Acttr*

X

|i 0«tJill to,] ütäth V*m \

JO; [l_
TM*: Ir«lur« |.j~

Figure 7.1 Logging in to the application

Listing 7.3 LoginPanel.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
creationComplete="init()">

<s:layout>
<s:HorizontalLayout/>

</s:layout>

< fx:Script>
<![CDATA[
import mx.messaging.ChannelSet;

import org.foj.event.EventDispatcherFactory;
import org.foj.event.UserEvent;
import org.foj.model.ChannelSetFactory;
import org.foj.presenter.LoginPresenter;

private var presenter:LoginPresenter;

private function init():void {
presenter = new LoginPresenter(this);

}

private function login():void {
var loginEvent:UserEvent =

new UserEvent(UserEvent.LOGIN_BUTTON_PRESSED);
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(loginEvent);
}

private function logout():void {
var logoutEvent:UserEvent =

new UserEvent(UserEvent.LOGOUT_BUTTON_PRESSED);
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(logoutEvent);
}

]]>
</fx:Script>

Extends Group

Set layout for
component

s
1>

Presenter for
login component

Init method

1 »
Event handler for
the login button

1>
Event handler for
the logout button

http://ns.adobe.com/mxml/2009

128 CHAPTER 7 Securing and personalizing your application

<mx:Spacer width="100%"/>

<mx:ViewStack id="loginStack"
paddingTop="5"
paddingBottom="5">

<mx:HBox id="loggedOut">
<mx:FormItem label="Username">

<mx:Textlnput id="usernamelnput" width="150"/>
</mx:FormItem>
<mx:FormItem label="Password">

<mx:Textlnput id="passwordlnput" width="150"
displayAsPassword="true"/>
</mx:FormItem>
<mx:Button id=" loginLink" label="Login" c l i c k = " l o g i n () " / >

</mx:HBox>
<mx:HBox id= " loggedln" > <1—,

<mx: Spacer width= " 100% "/> Q Loggedln view
<mx:Text id="loginLabel" text="Logged in as: "/>
<mx:Text id="userName"/>
<mx:Button id="logoutLink" label="Logout" c l i ck= " l o gou t () " />

</mx:HBox>
</mx:Viewstack>

</s:Group>

Listing 7.3 shows the code fo r our LoginPanel. As with most of our otiier compo-

nents, diis panel will extend the Group component Q , and you define its layout to be

horizontal Q . Next you define a private member variable for your Presenter Q and

initialize it in your init method Q passing in a reference to die panel in die construc-

tor. Then you define a couple of event handlers for die login button being clicked Q

as well as the logout button being clicked © . These two event handlers fol low the

same pattern tiiat you established in chapter 3. They create die appropriate User-
Event and dispatch it for your Presenter, and anyone else who is concerned can react.

You define die visual components starting with defining a ViewStack Q that will

allow you to switch between die states that are possible for die login panel. Inside of

die ViewStack component you create two HBox components, one for die loggedOut
view state © and one for die loggedln view state Q . Now you need to create die Pre-

senter for the LoginPanel.

7.1.4 Creating a login Presenter
The LoginPresenter class starts out simply. It follows die same general pattern tiiat all

of the previous Presenters have, only having to react to a couple of button presses and

not having to maintain any kind of state just yet.

Listing 7.4 LoginPresenter.as

package org.foj.presenter {

View stack

1> LoggedOut view

public c lass LoginPresenter {

Authentication 129

private var _view:LoginPanel;
private var _model:LoginModel;

public function LoginPresenter(view:LoginPanel) {
this._view = view;
this._model = new LoginModel();

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UserEvent.LOGIN_BUTTON_PRESSED,
login);

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UserEvent.LOGOUT_BUTTON_PRESSED,
logout);

}

private function login(event:UserEvent = null):void {
var responder:IResponder = new AsyncResponder(

loginResult, handleError);
_model.login(_view.usernamelnput.text,

_view.passwordlnput.text, responder);
}

private function logout(event:UserEvent = null):void {
var responder:IResponder = new AsyncResponder!

logoutResult, handleError);
_model.logout(responder);

}

private function loginResult(event:ResultEvent,
token:Object = null):void {

_view.loginStack.selectedChild = _view.loggedln;
_view.passwordlnput.text = "";

View

Model

J Add event
listener for
login

Add event
listener for
logout

Event
handlerfor
login event

Event
handler for

O logout event

Event
handler for

O login result

Alert.show("You have logged in as: " + event.result.name);
}

private function logoutResult(event:ResultEvent,
token:Object = null):void {

_view.loginStack.selectedChild = _view.loggedOut;
Alert.show("You have successfully logged out");

}

private function handleError(event:FaultEvent,
token:AsyncToken =

CursorManager.removeBusyCursor();
Alert.show(event.fault.faultstring);

}

null):void {

Event
handler for
logout result

Error
O handler

You start your Presenter by defining die _v i ew O and _model © instance vari-

ables. In die constructor you assign die view reference passed in to your instance

variable and create a new instance of your model. Then you add an event listener

for LOGIN_BUTTON_PRESSED event © , assigning the login handler and an event

listener for die LOGOUT_BUTTON_PRESSED event Q , assigning die logout handler Q

to it.

1 3 0 CHAPTER 7 Securing and personalizing your application

Inside die login handler, you create an AsyncResponder to pass into tire model,

pointing it to the loginResult handler method Q and the error handler Q . Then

you call tire login method on your mode l passing in tire username, password, and

tire responder. Inside the logout handler, you similarly create a responder pointing

to the logoutResult © and error handler methods, tiren call the logout method

on your model passing in tire responder.

When tire login method f rom tire model responds, your login result handler is

invoked, and switches tire current view state of tire login panel, blanks out tire pass-

word box contents so drat tire user will be forced to type in a password the next time

she tries to login, and displays an Alert stating that she has logged in successfully. On

tire other side of tire equation, when the logout method f rom tire model responds,

tire logout result handler is called, which switches tire view stack back to tire initial

logged out state, and alerts tire user that she has logged out.

7.1.5 Creating a login manager
Now drat tire Presenter is created, you need to implement tire model so that you can

audrenticate users against tire application. The fol lowing listing shows tire LoginModel
for tire LoginPanel.

Listing 7.5 LoginModel .as

package org.foj.model {
import mx.messaging.ChannelSet;
import mx.rpc.AsyncToken;
import mx.rpc.IResponder;
import mx.rpc.remoting.RemoteObj ect;

public class LoginModel {

private var _def aultChannelSet: ChannelSet; Get default A
ChannelSet public function LoginModel() {

_defaultChannelSet = ChannelSetFactory.getDefaultchannel(); <
}

public function login(username:String,
password:String, O Login
responder:IResponder):void { method

if (!_defaultChannelSet.authenticated) {
var token:AsyncToken = _defaultChannelSet.login(username, password);
token.addResponder(responder);

}

public function logout(responder:IResponder):void {
var token:AsyncToken = _defaultChannelSet.logout();
token.addResponder(responder);

}

J Logout
method

Authentication 131

The model for die LoginPanel is simple to start with. Inside die constructor for die

model, you get die default ChannelSet f rom your ChannelSetFactory O - a n (i assign

it to an instance variable. Inside of die login method Q , you first check to see if die

user is already logged in, as tiiis sometimes results in an error condition, and BlazeDS

will complain about the ChannelSet being already autiienticated. If die user is not

logged in, it will tiien call the login method on die ChannelSet. The logout method

Q calls logout on the ChannelSet, not having to worry about checking to see if die

user is currendy logged in.

7.1.6 Updating the header
Now you need to update your Header.mxml to include die newly created LoginPanel.

Listing 7.6 Header.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:view="org.foj.view.*"
width="100%"
height="100">

<s:layout>
<s:HorizontalLayout/>

</s:layout>

< fx:Script>
<![CDATA[
import mx.containers.ViewStack;

public var viewStack:ViewStack;]]>
</fx:Script>

<mx:Spacer width="5"/>
<s:SimpleText text="Flex Bugs Application"

height="100%"
fontSize="32 "
fontWeight="bold"
verticalAlign="middle"/>

<mx:Spacer width="100%"/>
<s:VGroup height="100%">

<view:LoginPanel height="100%"/>
<s:HGroup id="toggleButtonPanel" width="100%">

<mx:Spacer width="100%"/>
<mx:ToggleButtonBar dataProvider="viewStack"/>

</s:HGroup>
</s:VGroup>
<mx:Spacer width="5"/>

^ ^ LoginPanel

</s:Group>

http://ns.adobe.com/mxml/2009

132 CHAPTER 7 Securing and personalizing your application

The changes necessary to add the login panel to tire header are trivial. You've made a

few minor tweaks to tire layout and spacing components and only had to add one line

of X M L to add tire LoginPanel O to tire header. When drat is done, all tirat's left is to

configure BlazeDS to enable security.

7.1.7 Enabling security for Flex
In order to enable security for our application, you need to make a small modification

to the flex-spring-servlet.xml context file.

Listing 7.7 f lex-spring-servlet .xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:flex="http://www.springframework.org/schema/flex"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex-1.0.xsd">

<flex:message-broker>
<flex:secured/>

</flex:message-broker>
</beans>

With all of that in place, it's time to run tire application and log in. By default, two

users are created in AppFuse, a regular user witir the R0LE_USER authority and an

administrator witir tire ROLE_ADMIN authority. The regular user's username is user witir

a password of user; and in case you hadn't guessed, tire administrator's username is

admin with a password of admin. A f ter you build and run tire application you should

be presented witir something that looks like figure 7.2.

L o g in with tire user and user account, and you'll be presented with an Alert

window telling you drat you've successfully logged in. If you mistype tire password,

you should be presented witir an error message stating that your credentials were

Username user Password Login

[Details View | Graph View

Severity Status

null null
ID:

Project: test

Description: test

Figure 7.2 The login panel in action

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/flex
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/flex
http://www.springframework.org/schema/flex/spring-flex-1.0.xsd

Authentication 133

incorrect. This was the first piece o f functionality you wanted to implement in this

chapter. Now let's move on to adding autiiorization to die application.

7.2 Authorization
Sometimes authenticating the users isn't enough. You might want to be able to selec-

tively secure specific parts of the application and not others. You can allow users who

are not logged in to be able to browse die list of open bugs and comments, but

restrict logging new bugs to autiienticated users. This is where autiiorization comes

into play.

Many application frameworks do not have tiiis level of support, so you end up hav-

ing to put crosscutting concerns such as autiiorization throughout die code, sur-

rounding certain functionality with checks to see if die user is autiienticated or has

permissions to access that particular piece of functionality. In this area the Spring

Security framework shines.

Spring Security leverages aspect-oriented programming (AOP) to allow you to

apply complex rules for who should be able to execute method calls. You can even get

such fine-grained control tiiat you can allow logged in users to add new issues and

comments and make changes to existing issues and comments, but restrict deleting to

administrators. We won't be discussing AOP much in tiiis book, so if you'd like to learn

more about how to use AOP witii Spring, check out Craig Walls' excellent book Spring

in Action. The third edition is to be published in December 2010. (http://manning.

com/walls4/).

7.2.1 Flex Spring Security primer
The Spring BlazeDS Integration provides several dif ferent metiiods of securing the

application. You'l l start with the broadest control and work your way to more and

more fine-grained control. The first meti iod you could use is to secure an entire AMF

channel using the flex-spring-servlet.xml as shown here, but tiiis would not be desir-

able because you lose all ability to define dif ferent levels of security for dif ferent parts

o f die application.

<flex:message-broker>
<flex:secured>

<flex:secured-channel channel="my-amf" access="ROLE_USER" />
</flex:secured>

</flex:message-broker>

The next method is to secure die application by adding security constraints

directiy to the destinations by configuring the destination in a remoting-config.xml

as shown here.

<destination id="issueService">

<security>
<security-constraints

<auth-method>Custom</auth-method>

http://manning

1 3 4 CHAPTER 7 Securing and personalizing your application

<roles>
<role>ROLE_USER</role>

</roles>
</security-constraint>

</security>
</destination>

This would apply a security constraint for the issueService, on a system-wide level,
allowing only users in the role ROLE_USER access to this destination. This method of
securing an application, while simple, will not work for what you're trying to do with
the application for a couple of reasons. This would effectively cut off any ability to do
method-level authorization for the application. In addition, you are not defining the
destinations using a remoting-config.xml. You're allowing the Spring BlazeDS Integra-
tion to dynamically configure the remoting destinations for you.

Moving on to a more finely grained security, you can set up a global method inter-
ceptor using AOP pointcut syntax to define a pattern of methods you want to secure.
The following code shows an example of this taken from the security.xml file provided
by AppFuse.

<global-method-security>
<protect-pointcut

expression=" execution(* *..service.UserManager.getUsers(..))"
access="ROLE_ADMIN"/>

</global-method-security>

This will constrain any call to a method named getUsers contained in a class or
interface named UserManager whose package name ends with " service ". As you can
see this method allows you to apply very complex patterns to define which methods
get secured.

<bean id="issueService" class="org.foj.service.impl.IssueManagerlmpl">
<constructor-arg ref="issueDao"/>
<constructor-arg ref="commentService"/>
<security:intercept-methods>

<security:protect method="save"
access="ROLE_USER,ROLE_ADMIN" />

<security:protect method="remove*"
access="ROLE_ADMIN" />

</security:intercept-methods>
</bean>

The code shows how to secure methods at the bean level in XML by using the Spring
application context. This gives you more localized control over the security than the
global method illustrated previously, keeping the security constraints closer to the code
that it affects.

public interface IssueManager {

@Secured({"ROLE_USER", "ROLE_ADMIN"})
@RemotingInclude
Issue save(Issue issue);

Authentication 135

(iSecured({"ROLE_ADMIN"})
(iRemotinglnclude
void remove(Long id);

}

The code shows die final meti iod of securing die business metiiods by using die

@Secured annotation. This is the most localized meti iod o f security and the meti iod

you're going to use in upcoming examples. This keeps the declared security con-

straints right with die code you're trying to secure. The otiier advantage to using die

annotations over the other metiiods is that if people decide to override what you've

def ined in die code, tiiey can override it using die XML configuration.

7.2.2 Spring Integration Security
In order for die Flex application to be able to take advantage o f using Spring Security

for autiiorization, you first need to add die Spring Integration Security dependency to

the pom.xml in die flex-bugs-web project.

Listing 7.8 Spring Integration Secur i ty dependency

<dependency>
<groupId>org. springf ramework. integration-;/groupId>
<artifactld>spring-integration-security</artifactld>
<version>l.0.3.RELEASE</version>

</dependency>

By adding tiiis dependency, BlazeDS will use a special LoginCommand object on die

server side that enables die Channel Set login and logout functionality to integrate

with Spring Security's authorization mechanisms by returning the username and any

authorities that the user has in the result event. It also does error translating on the

server side to translate security exceptions that may occur into their BlazeDS security

exception equivalent. Now the error can be reported back to the Flex client instead of

returning an HTTP 403 status code, which will break die application. You can read

more about die Spring Integration Security in the docs for the Spring BlazeDS Inte-

gration at http://static.springsource.org/spring-flex/docs/1.0.x/reference/html/.

7.2.3 @Secured annotations
There are a number of metiiods you can use to secure your application; we have cho-

sen to continue along the path of using annotations where possible to declare which

interface methods we want to secure and what security constraints we want to place on

them. We' l l start by adding die necessary annotations to the IssueManager.

Listing 7.9 IssueManger . java

package org.foj.service;

import org.foj.model.Issue;
import org.springframework.flex.remoting.RemotingDestination;

http://static.springsource.org/spring-flex/docs/1.0.x/reference/html/

1 3 6 CHAPTER 7 Securing and personalizing your application

import org.springframework.flex.remoting.Remotinglnclude;
import org.springframework.security.annotation.Secured;

import javax.jws.WebService;

(iWebService
@RemotingDestination(channels = {"my-amf"})
public interface IssueManager {

(iRemotinglnclude
j ava. util. List<Issue> g e t A H O ;

(iRemotinglnclude
Issue get(Long id) ;
@Secured({MROLE_USERM , "ROLE_ADMIN"})

(iRemotinglnclude
Issue save(Issue issue);

(iSecured({"ROLE_ADMIN"})
(iRemotinglnclude
void remove(Long id);

J

1 »

save method
annotation

remove method
annotation

You've added an @Secured annotation to die save method © and declared tiiat only

users having ROLE_USER and ROLE_ADMIN privileges can add and update issues. You

def ined botir roles since your roles are not overlapping, meaning that ROLE_ADMIN is

not a superset o f ROLE_USER but ratirer separate altogetirer. Next you declare tire

remove method to be usable only by those who have die ROLE_ADMIN granted to

drem © . Next you add tire necessary annotations to the CommentManager.

Listing 7.10 CommentManager . java

package org.foj.service;

import org.foj.model.Comment;
import org.springframework.flex.remoting.RemotingDestination;
import org.springframework.flex.remoting.Remotinglnclude;
import org.springframework.security.annotation.Secured;

import javax.jws.WebService;
import java.util.List;

(iWebService
@RemotingDestination(channels = {"my-amf"})
public interface CommentManager {

(iRemotinglnclude
List<Comment> findCommentsBylssueld(Long issueld);

(iSecured ({ " ROLE_ADMIN" })
(iRemotinglnclude
void deleteAHCommentsForlssueld(Long issueld);

delete AIICommentsForlssueld
method annotation

(iRemotinglnclude
Comment get(Long id)

Authentication 137

@Secured({"ROLE_USER", "ROLE_ADMIN"})
(iRemotinglnclude
Comment save(Comment comment);

(iSecured ({ " ROLE_ADMIN" })
(iRemotinglnclude
void remove(Long id);

save method
annotation

remove method
annotation

Similar to the IssueManager annotations, you start by declaring that only members

o f ROLE_ADMIN can call the deleteAHCommentsForlssueld O an(i remove Q meth-

ods. Then you declare that die save method can be called by users witii either

ROLE_USER or ROLE_ADMIN privileges Q . Notice that you never specified any security

constraints for die get methods of your services. This ensures tiiat anyone can call

them whether or not they're autiienticated to die application. Now that you've

declared the security witii annotations, you need to enable support for these annota-

tions in Spring Security.

7.2.4 Overriding default security settings
AppFuse has Spring Security installed and configured out o f die box, so to extend

upon tiiat you need to extract its security.xml configuration and put tiiat in the

flex-bugs-web project in the WEB-INF fo lder alongside die otiier Spring configura-

tion files. To do this you copy the security.xml tiiat is included in die appfuse-web-

common.war tiiat basically is overlaid on top of die flex-bugs-web.war when you build

this project.

Listing 7.11 secur i ty .xml

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/security"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"

xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/
spring-security-2.0.1.xsd">

<http auto-config="true" lowercase-comparisons="false">
<intercept-url pattern="/admin/*" access="ROLE_ADMIN"/>
<intercept-url pattern="/passwordHint.html*"

access="ROLE_ANONYMOUS,ROLE_ADMIN,ROLE_USER"/>
<intercept-url pattern="/signup.html*"

access="ROLE_ANONYMOUS,ROLE_ADMIN,ROLE_USER"/>
<intercept-url pattern="/a4j.res/*.html*"

access="ROLE_ANONYMOUS,ROLE_ADMIN,ROLE_USER"/>
<form-login login-page="/login.jsp"

authentication-failure-url="/login.j sp?error=true"
login-processing-url="/j_security_check"/>

Security by
url pattern

http://www.springframework.org/schema/security
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/

1 3 8 CHAPTER 7 Securing and personalizing your application

<remember-me user-service-ref="userDao"
key="e37 f4b31-0c45-lldd-bd0b-0800200c9a66"/>

</http>

<authentication-provider user-service-ref="userDao">
<password-encoder ref="passwordEncoder"/>

</authentication-provider>

Authentication
provider

Enable security
annotations <global-method-security

secured-annotations="enabled" j sr250-annotations="enabled">
<protect-pointcut

.service.UserManager.getUsers(..))"

iirity Q
:ions T

.service.UserManager.removeUser(..))"

expression="execution(* *.
access="ROLE_ADMIN"/>

<protect-pointcut
expression="execution(* *.
access="ROLE_ADMIN"/>

</global-method-security>
</beans:beans>

Listing 7.11 shows the modi f ied security.xml, which for tire most part is identical to

tire security.xml included in AppFuse. The first section Q , which is configured by

AppFuse, dictates which URL patterns to intercept and pass through tire security fil-

ters. You don't need to specify anytiring in this section for tire Flex application as tire

Spring Integration Security handles all the filtering for tire Flex and BlazeDS interac-

tions. The second section Q defines tire authentication provider, which in tiris case is

using tire default userDao provided by AppFuse. If you wanted to change drat metirod

of authentication to an LDAP server, for instance, you would configure it tirere.

In the last segment Q you added a couple o f attributes to the global-method-
security tag to set tire secured-annotations to enabled and tire jsr250-annotations
to enabled as well.

7.2.5 Updating IssueModel and CommentModel
Now all that's left to enable authorization to work in tire Flex application is to modi fy

tire models to use the ChannelSetFactory you created earlier. The fol lowing listing

shows tire changes for tire IssueModel.

Listing 7.12 IssueModel .as

package org.foj.model {

public class IssueModel {

private var _issueService:RemoteObject;

public function IssueModel() {
var defaultChannelSet:ChannelSet =

ChannelSetFactory.getDefaultchannel();

_issueService = new RemoteObject();
_issueService.destination = "issueService"

J Get ChannelSet

Persona liza tion 1 3 9

_issueService.channelSet = defaultChannelSet; Set channelSet
on service

As you can see the impact o f adding tiiis functionality to the Flex application is mini-

mal. First you get the default ChannelSet f rom the ChannelSetFactory © , j n s l as you

did earlier for die LoginModel, and you set the channelSet property on the

RemoteObject © to the defaultChannelSet. The fol lowing listing shows the same

changes for the CommentModel.

Listing 7.13 CommentModel .as

package org.foj.model {

public class CommentModel {
private var _commentService:RemoteObject;
public function CommentModel() {

var defaultChannelSet:ChannelSet =
ChannelSetFactory.getDefaultchannel();

_commentService = new RemoteObject();
_commentService.destination = "commentService";
_commentService.channelSet = defaultChannelSet;

}

Now you can build and run the application and

if you try to save or delete an item without being

logged in with the proper autiiorities granted,

you will be presented witii an error message like

that in figure 7.3

Again, die error handling is simple, displaying

the fault message in an Alert box. Notice that the

error message accurately describes die error. The

last security enhancement you're going to make

to die application is to add personalization.

Personalization
When you think about leveraging a security framework in the Flex application, you

probably don't tiiink about personalization, even though the two are closely related.

Recall earlier when we discussed die Spring Integration Security module, you saw

that one of die tilings returned in die ResultEvent is die username of die person

who was audienticating.

J Get ChannelSet

Set channelSet
on service

Figure 7.3 Error when trying to execute
a method without authorization

1 4 0 CHAPTER 7 Securing and personalizing your application

Now that the user has authenticated to the application, you can use the informa-

tion returned f rom the login process to get more information such as the user's first

and last names. Why not just use die username tiiat the user typed into die login box

you ask? Simple. If you wait for die login meti iod to return successfully and take die

value returned instead, you are guaranteed tiiat the user has first authenticated, and

tiiat the username returned in the ResultEvent is die correct username for tiiat user.

7.3.1 Adding the UserService to the LoginModel
Because the ResultEvent returned f rom logging in and out o f die ChannelSet only

includes the user name, you'll have to use anotiier method to get the user's full name

f rom die application. Fortunately AppFuse exposes this functionality in the userDao

object; you still have to tell BlazeDS to expose this to the Flex application. So you

need to add the fo l lowing line to the flex-spring-servlet.xml in the src/main/

webapp/WEB-INF folder of the f l ex -bugs-web project:

<flex:remoting-destination ref="userDao"/>

This one line of xml configuration accomplishes the same thing you did in chapter 5

with the ORemotingDestination annotations, the dif ference being tiiat you don't have

to crack open die AppFuse source code to expose tiiis Spring bean as a remote service

to Flex. Now let's add tiiis service to the LoginModel.

Listing 7.14 LoginModel .as

package org.foj.model {
import mx.messaging.ChannelSet;
import mx.rpc.AsyncToken;
import mx.rpc.IResponder;
import mx.rpc.remoting.RemoteObj ect;

public class LoginModel { -« „
userService

private var _userService:RemoteObject;
private var _defaultChannelSet:ChannelSet;

J
public function LoginModel() {

_defaultChannelSet = ChannelSetFactory.getDefaultchannel();
_userService = new RemoteObject();
_userService.destination = "userDao";
_userService.ChannelSet = _defaultChannelSet;

}

J»

Creating
RemoteObject

public function getUserDetails(username:String,
responder:IResponder):void {

var token:AsyncToken = _userService.loadUserByUsername(username);
token.addResponder(responder);

}

getUserDetails
method

} }

Persona liza tion 141

First you define an instance variable for tire userService O and create a new instance

o f it in the constructor Q . As witir other remote objects, you set its destination to

userDao because that is what tire Spring bean is def ined as, and you set tire channel-
Set to the defaultChannelSet that you got f rom tire ChannelSetFactory. As a final

step you define a metirod called getUserDetails © , which takes as its first argument

the username to look up and a responder to call back to when tire service returns.

Now let's update tire LoginPresenter to use this new functionality.

7.3.2 Updating the LoginPresenter
You need to make a couple of minor modifications to tire LoginPresenter to use tire

metirod you just created in the LoginModel.

Listing 7.15 LoginPresenter.as

package org.foj.presenter {

public class LoginPresenter {

private var _view:LoginPanel;
private var _model:LoginModel;
public function LoginPresenter(view:LoginPanel) {

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UserEvent.USER_LOGGED_IN,
getUserDetails);

private function loginResult(event:ResultEvent,
token:Object = null):void

_view.loginStack.selectedChild = _view.loggedln;
_view.passwordlnput.text = "";

var userLoggedlnEvent:UserEvent =
new UserEvent(UserEvent.USER_LOGGED_IN);

userLoggedlnEvent.data = event.result.name;
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(userLoggedlnEvent);
}

private function logoutResult(event:ResultEvent,
token:Object = null) :voi<

_view.userName.text = "";
_view.loginStack.selectedChild = _view.loggedOut;
Alert.show("You have successfully logged out");

var userChangedEvent:UserEvent =
new UserEvent(UserEvent.CURRENT_USER_UPDATED);

userChangedEvent.data = null;
EventDispatcherFactory.getEventDispatcher()

A Event listener for
q T user logged in

J
Event handler
for user logged
in result

A Event handler
for user logged

, out result

d {

142 CHAPTER 7 Securing and personalizing your application

. dispatchEvent (userChangedEvent) ; Eyent hand|er for Q
' user logged in I

private function getUserDetails (event:UserEvent = null) : void { <3—'
var responder:IResponder = new AsyncResponder(

getUserDetailsResult, handleError);

}
model.getUserDetails(event.data, responder); „ „ ,

~ ' ^ A Handler for
userService

private function getUserDetailsResult(event:ResultEvent, <
token:Object = null):void {

var user = event.result;
_view.userName.text = user.fullName;
Alert.show("Welcome Back " + user.fullName);
var userChangedEvent:UserEvent =

new UserEvent(UserEvent.CURRENT_USER_UPDATED);
userChangedEvent.data = user;
EventDispatcherFactory.getEventDispatcher()

.dispatchEvent(userChangedEvent);
}

result

} }

The first change you make is to add a listener for die USER_LOGGED_IN event © so that

you know when you need to update the user details. Next you make a slight modifica-

tion to the method tiiat is called when die result comes back f rom the call to log in on

die IssueModel © . Here you take the username f rom the event result and create a

new UserEvent of type USER_LOGGED_IN, and you set die event's data property to die

username. This allows you to pass along die username to whoever would want to

respond to a user logging in. You do sometiiing similar in the logged out result han-

dler © except you create a CURRENT_USER_UPDATED event to notify other parts of die

application that the currently logged in user has been changed, and set its data prop-

erty to null.
Next you define the event handler for die USER_LOGGED_IN event listener you

def ined in die constructor Q . Inside tiiis method you create an AsyncResponder
object and make a call to die getUserDetails meti iod on die IssueModel you def ined

in die previous section. When the result f rom this call comes back, it is handled by die

getUserDetailsResult method © where you update die view to show die current

user's full name, and you create a new CURRENT_USER_UPDATED event setting its data
property to the User object that came back in die ResultEvent.

Now let's look at updating the DetailPresenter and CommentsListPresenter,
which will be listening for die CURRENT_USER_UPDATED event tiiat you just added.

7.3.3 Updating the DetailPresenter and CommentsListPresenter
Now tiiat the LoginPresenter is broadcasting an event that notifies the rest o f the

application that the currently logged in user has changed, you can add event listeners

Persona liza tion 1 4 3

to the other parts o f tire application that may want to listen for that. You'l l start with

the D e t a i l P r e s e n t e r so that you can default tire text in the author field for any new

issues to tire currently logged in user. The fol lowing listing shows the changes needed

to add dris to the De ta i l P r esen te r .

Listing 7.16 Detai lPresenter

package org.foj.presenter {

J
public class DetailPresenter {

private var _currentUser:User;
private var _issue:Issue;
private var _view:DetailView;
private var _issueModel:IssueModel;

public function DetailPresenter(view:DetailView) {

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UserEvent.CURRENT_USER_UPDATED,
currentUserChanged);

Instance variable for
current user

J
Event listener
for current
user changing

private function cancelChanges(event:UIEvent = null):void {
selectedlssue = new Issued;
selectedlssue.reportedBy = _currentUser.fullName;
var event:UIEvent = new UIEvent(UIEvent.SELECTED_ISSUE_CHANGED);
event.data = selectedlssue;
EventDispatcherFactory.getEventDispatcher().dispatchEvent(event);

Event handler for A
currentUserChanged I

private function currentUserChanged (event: UserEvent): void { <1—'
_currentUser = event.data;
if (selectedlssue.id == 0) {
_view.issueReportedBy.text = _currentUser == null ?

"" :_currentUser.fullName;
}

First you add an instance variable for tire DetailPresenter to be able to cache the

current user in Q< Next you add an event listener for tire CURRENT_USER_UPDATED
event Q and point it at tire currentUserChanged event handler. Inside the cancel-
Changes event handler, which is invoked each time tire user wants to clear out the

changes made in tire detail form and creates a new issue, you set tire default for the

reportedBy property to the current user's full name Last you implement an

Q Default
author field

1 4 4 CHAPTER 7 Securing and personalizing your application

event listener for the current user changing where you set the instance variable

of current user to the user that was passed along in die event. Then you update the

reported by field on the view if die currendy displayed issue is not an existing

issue. The fol lowing listing shows the changes for the CommentsListPresenter.

Listing 7.17 CommentsListPresenter

package org.foj.presenter {

J Instance variable
for current user

public class CommentsListPresenter {

private var _currentUser:User;
private var _selectedlssue:Issue;
private var _selectedComment:Comment;
private var _commentModel:CommentModel;
private var _view:CommentsView;
private var _popl:EditCommentForm;

public function CommentsListPresenter(view:CommentsView = null) {

EventDispatcherFactory. getEventDispatcher () <—. Event listener for
.addEventListener(UserEvent.CURRENT_USER_UPDATED, Q user changed
currentUserChanged);

}

private function addNewComment(event:* = null):void {
selectedComment = new Comment();
selectedComment.issue = selectedlssue;
_popl = PopUpManager.createPopUp((_view as UlComponent).root,

EditCommentForm, true) as EditCommentForm;
_popl.author.text = _currentUser.fullName;
PopUpManager.centerPopUp(_popl as UlComponent);

}

Default
author field

private function currentUserChanged (event: UserEvent): void { <1—i
_currentUser = event.data;

} Event handler for I
user changed event O

As with die DetailPresenter, you start by def ining an instance variable to allow tiiis

Presenter to cache the currently logged in user Q . After tiiat, you add an event lis-

tener for the CURRENT_USER_UPDATED event Q pointing it to the currentUserChanged
method where you set the current user to die user passed in witii the event. Inside

die addNewComment meti iod you default die text o f die Author f ield in die comment

pop up to be die current user's full name © .

Summary 145

I B

Add/Edit Comment

Ajlhor:
Daie:

coin ment

Save Commem

Figure 7.4 Add new comment defaults Author to currently logged in user

Now build and run the application. If you log in using the Tomcat User username of

user and password of user and try to add a new comment to an issue, you should see

that the Author f ield is now defaulting to tire logged in user's full name as shown in

figure 7.4. When you log out you should see drat the fields are no longer being

defaulted to anything.

Summary
When you started this chapter, you had an application which anybody could have

added critical issues to and removed important issues f rom with no controls to pre-

vent such destructive behavior. Over tire course of tire chapter you added measures to

control access.

You started by adding the simplest of security constraints to the application, allow-

ing tire users to authenticate to the server side, although tiris doesn't do you much

good until you can control what tire users do to tire data. After you added tire authori-

zation constraints, you had fine-grained control over who could modi fy and delete the

data. This is important, because before Spring Security was developed, tire most com-

mon way to declaratively def ine security constraints this way at tire method level was to

use EJBs and container-managed security, which would probably have made tiris tight

integration difficult to create.

Even in tire fairly simple example you have been able to define three dif ferent lev-

els of security for tire application with minimal intrusion to tire existing web applica-

tion. The ability to declaratively def ine security constraints on tire business methods

1 4 6 CHAPTER 7 Securing and personalizing your application

by using either the @Secured annotations or using AOP pointcut syntax is extremely
powerful. This means that you no longer have to litter the source code with i f state-
ments checking if users are logged in and whether or not they have the right level of
access to perform the operation.

The last thing you did in the journey through this chapter was to add functionality
that doesn't do much for securing the application, but will likely delight the users for
the simple fact that the application is personalized to them. They no longer have to
type their names into the author fields when adding new issues and comments, and
can see that they are logged in, and whom they are logged in as.

In the next chapter you're going to continue enhancing the application by adding
data visualization to put a bird's-eye view on the data. You're going to tackle creating a
pie chart component from scratch using the Degrafa framework.

This chapter covers
• Int roducing the Degrafa drawing l ibrary

• Creat ing a c u s t o m P ieChar t component

• Creat ing an I temRenderer for a DataGrid

• Dynamic ob ject c reat ion

Now that your application is secured and communicating with tire server side, it's
time to add data visualization components and enable a bird's-eye view on tire data.
Adding data visualization components to your application allows people to see at a
glance tire open project issues and the number of bugs versus the number of fea-
ture requests, without having to manually count them in tire data grid in tire master
view. The data could be visualized in many ways—we'll only scratch tire surface in
this chapter.

Adobe provides data visualization components, but only when you purchase a
license for tire professional version of the Flash Builder IDE. Because our goal is to
do Flex development using only free and open source technologies, we've decided
to create our own visualization components—besides, it's more fun.

147

1 4 8 CHAPTER 8 Charting with Dégrafa

8.1 Drawing in Flex
Flex and Flash provide powerful drawing libraries tiiat we could leverage to create our

custom graph components, but we're going to leverage an open source graphics library

called Degrafa. Using Degrafa gives us die ability to declaratively build our graphing

components rather tiian having to deal witii die complex calculations involved in draw-

ing pie chart slices as illustrated in listing 8.1, which shows an example ActionScript

class specifically for drawing a pie chart slice found at http://www.adobe.com/devnet/

flash/articles/adv_draw_mediods.html. Notice how much trigonometry is involved in

creating something as simple as a pie chart slice f rom scratch.

Listing 8.1 Example of drawing in Act ionScr ipt

/*

mc.drawWedge is a method for drawing pie shaped
wedges. Very useful for creating charts. Special
thanks to: Robert Penner, Eric Mueller and Michael
Hurwicz for their contributions.

*/
MovieClip.prototype.drawWedge = function(x, y, startAngle, arc,

radius, yRadius) {

// mc.drawWedge() - by Ric Ewing (ric@formequalsfunction.com) -
version 1.3 - 6.12.2002

// x, y = center point of the wedge.
// startAngle = starting angle in degrees.
// arc = sweep of the wedge. Negative values draw clockwise.
// radius = radius of wedge. If [optional] yRadius is defined,

then radius is the x radius.
// yRadius = [optional] y radius for wedge. // ==============
// Thanks to: Robert Penner, Eric Mueller and Michael Hurwicz

for their contributions. // ==============
if (arguments.length<5) {

return;

// move to x,y position
this.moveTo(x, y);
// if yRadius is undefined, yRadius = radius
if (yRadius == undefined) {

yRadius = radius;
}
// Init vars
var segAngle, theta, angle, angleMid, segs, ax, ay, bx, by, cx, cy;
// limit sweep to reasonable numbers
if (Math.abs(arc)>360) {

arc = 3 60;
}
// Flash uses 8 segments per circle, to match that, draw in a maximum
// of 45 degree segments. First calculate how many segments are needed
// for our arc.

http://www.adobe.com/devnet/
mailto:ric@formequalsfunction.com

Common Dégrafa concepts 1 4 9

segs = Math.ceil(Math.abs(arc)/45);
// Now calculate the sweep of each segment.
segAngle = arc/segs;
// The math requires radians rather than degrees. To convert from degrees
// use the formula (degrees/180)*Math.PI to get radians.

theta = -(segAngle/180)*Math.PI;
// convert angle startAngle to radians
angle = -(startAngle/180)*Math.PI;
// draw the curve in segments no larger than 45 degrees,
if (segs>0) {

// draw a line from the center to the start of the curve
ax = x+Math.cos(startAngle/180*Math.PI)*radius;
ay = y+Math.sin(-startAngle/180*Math.PI)*yRadius;
this.lineTo(ax, ay);
// Loop for drawing curve segments
for (var i = 0; i<segs; i++) {

angle += theta;
angleMid = angle-(theta/2);
bx = x+Math.cos(angle)*radius;
by = y+Math.sin(angle)*yRadius;
cx = x+Math.cos(angleMid)*(radius/Math.cos(theta/2));
cy = y+Math.sin(angleMid)*(yRadius/Math.cos(theta/2));
this.curveTo(cx, cy, bx, by);

}
// close the wedge by drawing a line to the center
this.lineTo(x, y) ;

}

Adobe has released the specifications for its declarative graphics library, called FXG. It

appears that tire Degrafa team has collaborated with tire Adobe team to create tiris

specification, but tire FXG functionality is only a subset o f what is available f rom tire

Degrafa library. This may be a library to keep your eye on as it's being developed.

Common Degrafa concepts
Before diving into developing tire component, let's familiarize ourselves with some of

the terms and concepts that we'l l see as we work tirrough tiris example.

• Surface—This is tire base component for everything you'll do in Degrafa. Al l

odrer Degrafa components will be composed witirin a Surface.
• GeometryGroup—After tire Surface, tiris is tire next level of composition. The

GeometryGroup tag allows you to group Degrafa components to compose

an object.

• Stroke—Stroke is tire object that is used to define tire look of an object's outline,

in terms of color, thickness, and style. Degrafa provides dif ferent Stroke objects

for your use depending on tire style of stroke you want: SolidStroke, Linear-
Gradient, and RadialGradient.

• Fill—Fill refers to the appearance of tire bounded area of a graphical compo-

nent. Degrafa provides tire fol lowing fills: SolidFill, LinearGradient, Radial-
Gradient, BitmapFill, BlendFill, and ComplexFill.

150 CHAPTER 8 Charting with Dégrafa

• Shapes—Dégrafa supports drawing many different shapes out of the box, such
as Circle, Ellipse, RegularRectangle, RoundedRectangle, Polygon, and
more. For irregular shapes, Dégrafa also has an extensive library of auto shapes
and enables defining any shape you'd like by providing a Scalable Vector
Graphics (SVG) path.

• Repeaters—This gives you the ability to repeat a shape any number of times on
the surface.

Much like other Flex components, the Dégrafa components are considered either
container components, meaning they will contain other Dégrafa components, or
graphical elements. Figure 8.1 shows the relationship of the common components.

More than a single chapter would be needed to cover all the features that Dégrafa
offers, especially when it comes to skinning and the advanced CSS functions you can
accomplish with this powerful framework. We're only going to scratch the surface; to
learn more about Dégrafa, you can start with the Foundation section of the documen-
tation at http:^www.degrafa.org/samples/foundation.html.

8.3 Creating a pie chart for fun and profit
Now that we have some of the basic concepts, let's get on with the task of creating a
custom pie chart component. We were inspired by a blog posting by Derrick Grigg
titled appropriately enough Dégrafa Pie Chart, which can be found at http://www.
dgrigg.com/post.cfm/04/ 15/2008/Degrafa-Pie-Chart. After we decomposed it and
removed some of the extra visual effects such as tweening and gradients, it barely

Surface

GeometryGroup

Stroke

Fill

Circle

GeometryGroup

Figure 8.1 Relationship of Dégrafa components

http://www.degrafa.org/samples/foundation.html
http://www

Creating a pie chart for fun and profit 151

FlexBugs Application KW.l! VkW | Sfliptl V«» |

La» I Units
Project t S
Pr-ajeet 2 5

Ccpv-K/' ¿009 Flex On Java

Figure 8.2 Mock-up of the Graph View

resembles what we started witir. Figure 8.2 shows a mock-up of the chart we' l l be devel-

oping in this chapter.

Recall in chapter 2 you created a separate view to contain your data visualization.

For this example you'll be developing only a single pie chart component, but some of

the concepts illustrated here could potentially be applied to creating any number o f

charting components.

The component you'll develop is a combination of a pie chart and a data grid,

which will serve the purpose o f a legend for tire pie chart. Without this it may be

difficult for someone looking at tire chart to differentiate between data points on

the graph. The pie chart will consist o f tire pie chart itself and anotirer component

for each of the slices that make up tire chart. You'l l also develop a simple custom

ItemRenderer for tire chart legend to draw a simple box inside one of tire cells in

the data grid.

You'l l also be adding a label and a combo box to tire GraphView to allow tire user to

change tire data tire chart shows. By changing tire value of the combo box tire user can

show how many issues there are by project, type, status, or severity.

8.3.1 New custom event
We're going to create a new custom event for our pie chart. The reason we're creating

a new one rather than continuing to use tire UIEvent we created earlier is that if we

ever wanted to put more tiran one pie chart component into our application, we 'd

need to be able to distinguish which component f ired tire event.

152 CHAPTER 8 Charting with Dégrafa

Listing 8.2 PieChartEvent .as

package org.foj.event {
import flash.events.Event;
public class PieChartEvent extends Event{

public static const DATA_PROVIDER_UPDATED:String =
"dataProviderUpdated";
public var data:*;
public var id:*; < — © id property

public function PieChartEvent(type : String,
bubbles : Boolean = true,
cancelable : Boolean = false)

{
super(type, bubbles, cancelable);

}

This event differs f rom die one created previously in die addition of an id O prop-

erty. This is done so that die presenter can decide whetiier or not it needs to react

to die event. Witii the new event created, you can move on to creating the compo-

nent itself.

8.3.2 PieChart component
First you'll develop die view tiiat contains the pie chart and legend. You'll create these

view components in a new package, so create a file named PieChart.mxml in die org.
foj .components package of your project. The fol lowing listing shows the first part of

the code for the PieChart view.

Listing 8.3 PieChart .mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:degrafa="http://www.degrafa.com/2007"
creationComplete="init()">

<s:layout>
<s:HorizontalLayout/>

</s:layout>
< fx:Script>
<![CDATA[

import mx.collections.ICollectionView;
import org.foj.event.EventDispatcherFactory;
import org.foj.event.PieChartEvent;
import org.foj.presenter.PieChartPresenter;

private var _presenter:PieChartPresenter;
private var _dataProvider:ICollectionView;

CreationComplete
handler J

HorizontalLayout

J Define presenter
field

Define data
provider field

http://ns.adobe.com/mxml/2009
http://www.degrafa.com/2007

Creating a pie chart for fun and profit 153

private function init():void {
presenter = new PieChartPresenter (this, id); <-, p a s s c o m p o n e n t > s

© id to presenter

public function set dataProvider(dataProvider:ICollectionView):void {<
var refreshEvent:PieChartEvent =

new PieChartEvent(PieChartEvent.DATA_PROVIDER_UPDATED);
ref reshEvent. id = id; Set property for
ref reshEvent. data = dataProvider; dataprovider ©

EventDispatcherFactory.getEventDispatcher().dispatchEvent(refreshEvent);
}

</fx:Script>

</s:Group>

The code is similar to what you developed in chapter 3 when you created all the MVP

components. You set the creationComplete event © to call the init metirod. Next

you set the layout o f your component to use HorizontalLayout © . Then you declare

a couple o f private member variables for tire data provider and its presenter © , © .

Inside the init metirod you bootstrap your presenter © . Last you create a set prop-

erty © for the data provider where you create an event to notify tire presenter that tire

data provider was updated. Listing 8.4 shows the rest of your pie chart component.

Listing 8.4 PieChart .mxml (cont inued)

<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:degrafa="http://www.degrafa.com/2007"
creationComplete="init()">

</fx :Script>

<mx:Spacer width="10"/>
<degrafa : Surface id="pieSurface"

width="200" height="200">

<degrafa :GeometryGroup id="pieGroup">
<degrafa:filters>

<mx:DropShadowFilter color="0x000000"
alpha="0.5"/>

</degrafa:filters>

</degrafa :GeometryGroup>

</degrafa:Surface>
<mx:DataGrid id="legendDataGrid">

<mx:columns>

J Spacer to help lay out
the component

1
< — © Degrafa surface

Geometry group
© containing pie chart

Drop shadow
for pie chart

Legend for
pie chart

http://ns.adobe.com/mxml/2009
http://www.degrafa.com/2007

154 CHAPTER 8 Charting with Dégrafa

J
Custom
ItemRenderer <mx:DataGridColumn width="40"

sortable="false"
itemRenderer= " org. f o j . components . PieLegendRenderer" />

<mx:DataGridColumn dataField="label"
headerText="Label"/>

<mx:DataGridColumn dataField="units"
headerText="Units"/>

</mx:columns>
</mx:DataGrid>

</s:Group>

First you added a spacer Q to the component to put a bit of padding between your
pie chart and its surrounding components. Next you added a Degrafa Surface com-
ponent Q and a GeometryGroup © to hold die rest of die Degrafa components neces-
sary for the pie chart component. The GeometryGroup is die component to which
you'll add your pie chart slices when you create diem. You've also added a Drop-
ShadowFilter © to die GeometryGroup to add a bit of visual flair to die pie chart. Last
you defined the DataGrid component © for your chart legend, witii a custom Item-
Renderer © to display the color tiiat corresponds to the data in die chart, which
you'll create in a bit.

8.3.3 PieChartSlice
Now that we've defined the pie chart component, let's move on to defining die slices
diat will make up die pie chart. The pie chart slice is a ratiier simple component. We
probably could have created die pie chart slice programmatically in ActionScript,
however tiiis approach allows us to define sensible defaults declaratively in MXML,
adding behavior as well.

Listing 8.5 PieChartSlice.mxml

<?xml version="1.0" encoding="utf-8"?>
<degrafa:GeometryGroup xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:degrafa="http://www.degrafa.com/2007"
height="400"
width="400">

< fx:Script>
<![CDATA[
public function refresh():void {

this.graphics.clear();
thi s.arc.preDraw();
this.arc.draw(graphics, null);

}

]]>
</fx:Script>

<degrafa:EllipticalArc
id="arc"
width="200"

1>
Extends
GeometryGroup

1 » Your pie chart slice

J Adds EllipticalArc

http://ns.adobe.com/mxml/2009
http://www.degrafa.com/2007

Creating a pie chart for fun and profit 155

height="200"
closureType="pie"/>

</degrafa:GeometryGroup>

The pie chart slice will extend f rom GeometryGroup O instead of tire standard Flex

Group component drat you extended in chapter 2. Next you define a refresh metirod

Q to abstract behavior away f rom your presenter. Last you add an EllipticalArc
component to tire component Q and set default values such as its width, height, and

most importantly closureType property, which you set to pie.

8.3.4 Custom ItemRenderer
The next component you're going to create is tire custom ItemRenderer for tire pie

chart legend. This simple component will draw a colored box in tire data grid cell to

correspond witir tire colors of tire pie chart.

Listing 8.6 PieLegendRenderer.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:HBox xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:degrafa="http://www.degrafa.com/2007">

<mx:Spacer width="2"/>
<degrafa:Surface>

<degrafa :GeometryGroup>
<degrafa:fill>

<degrafa:SolidFill id="fill">
<degrafa:color>{data.legend}"</degrafa:color>

</degrafa:SolidFill>
</degrafa:fill>
<degrafa :RegularRectangle

J

1

Extends HBox

Spacer to
help align box

SolidFill for
rectangle

Color of
legend item

Rectangle width="20"
height="20"
fill="{fill}"/>

</degrafa:GeometryGroup>
</degrafa:Surface>

</mx:HBox>

The ItemRenderer is extending HBox O because all ItemRenderer objects for the

DataGrid component must be halo components. Add a Spacer component Q to

help align tire rectangle tire way you want it. The SolidFill component Q defines

the fill color for tire RegularRectangle Now that you've finished creating all tire

visual components for tire pie chart, let's move on to creating the Presenter. A n

implicitly def ined variable is available to tire ItemRenderer named data, which cor-

responds to tire item in tire dataProvider that you're rendering. LTse tiris implicit

variable to set tire color o f tire Fill object Q , which is contained in the legend

property of tire object.

http://ns.adobe.com/mxml/2009
http://www.degrafa.com/2007

156 CHAPTER 8 Charting with Dégrafa

8.3.5 Presenter for the PieChart
Now that all the visual components are created for die pie chart, let's create die Pre-

senter. The Presenter for the pie chart becomes more involved tiian any of your previ-

ous ones, but it shouldn't be hard to follow.

Listing 8.7 PieChartPresenter.as

package org.foj.presenter {

import com.degrafa.paint.SolidFill;
import org.foj.components.PieChart;
import mx.collections.ArrayCollection;
import org.foj.components.PieChartSlice;
import org.foj.event.EventDispatcherFactory;
import org.foj.event.PieChartEvent;
import org.foj.model.PieChartModel;

public class PieChartPresenter { _ _ . . . A Private member J private var _view: PieChart; <1—1 variables
private var _model:PieChartModel;
private var _id:String;
private var _dataProvider:ArrayCollection;

public function PieChartPresenter(view:PieChart, id:String)
this._view = view;
this._model = new PieChartModel!);
this._id = id; Constructor

EventDispatcherFactory.getEventDispatcher()
.addEventListener(PieChartEvent.DATA_PROVIDER_UPDATED,
refreshData);

1 ©

public function set dataProvider(data:ArrayCollection):void {
_view.legendDataGrid.dataProvider = data;
this ._dataProvider = data; Set property

i dataProvider

public function get dataProvider():ArrayCollection {
return this._dataProvider;

}

f for I
ider G

private function refreshData(event:PieChartEvent = null):void {
if (event.id == _id) {

changeData(event.data);
, Event handler

1 o
}

private function changeData(data :ArrayCollection) : void {
dataProvider = data;
createSlices();

} Create slices
« T

while (dataProvider.length > _view.pieGroup.numChildren) {
private function createSlices (): void { —1 method J

Creating a pie chart for fun and profit 157

_view.pieGroup.addchild(new PieChartSlice());
}
setLegendColors();
redrawSlices();

}

S Set legend
colors on data private function setLegendColors():void {

for (var i:int = 0 ; i < dataProvider.length; i++) {
dataProvider.getltemAt(i).legend = _model.getLegendColorForlndex(i);

}

A Redraw slices
private function redrawSlices (): void { <1—I after update

var currentAngle:Number = 0;
var totalUnits:Number = _model.getTotalUnits(_dataProvider);
for (var i:int = 0 ; i < _view.pieGroup.numChildren; i++) {
var slice:PieChartSlice = _view.pieGroup.getChildAt(i)

as PieChartSlice;
var legendColor:Number = _model.getLegendColorForlndex(i);
var arc:Number = i < dataProvider.length ?

_model.getAngleForltem(
dataProvider[i].units, totalUnits) : 0;

// workaround for weird display if only one arc and it's 360 degrees
arc = arc < 360 ? arc : 359.99;

1 Workaround redrawSlice(slice, currentAngle, arc, legendColor);
currentAngle += arc; }

_view.pieGroup.draw(null, null);
}

private function redrawSlice (slice: PieChartSlice, <a—,
startAngle:Number, A Redraw slice
arc:Number,
color:Number):void {

slice.arc.fill = new SolidFill(color, 1);
slice.arc.startAngle = startAngle;
slice.arc.arc = arc;
slice.refresh();

}

You first def ine private member variables to hold onto references to tire view and tire

model, the id of tire component this Presenter belongs to, and tire dataProvider for

your pie chart Q . The constructor Q for this Presenter not only takes in a reference

to the view, but also is used to bootstrap tire id for the view component because

there may be multiple pie charts contained in tire application. You also define an

event listener for tire dataProvider being updated in the view component. Next you

define a pair of get and set properties Q for the dataProvider you leverage to

update tire dataProvider property of tire legend data grid whenever the data-
Provider for tire pie chart is updated.

158 CHAPTER 8 Charting with Dégrafa

You then define die event handler meti iod for the event tiiat is f ired whenever die

da taProv ider for the view is updated Q . Inside this meti iod you check to see if the id

of the component firing the event is die same as die i d tiiat created tiiis Presenter.

That way if there are multiple pie chart components, this method can determine

whether or not it needs to react.

The c r e a t e S l i c e s © meti iod checks to see if the data provider has more ele-

ments contained in it tiian there are pie chart slices in your pie chart. If there are

more elements in the data provider, it will create more pie chart slices. In die s e t -

LegendColors Q meti iod you iterate through the items in the da taProv ider and set

die legend property of die item to the corresponding color, which you'll get f rom the

pie chart model class.

Af ter all of tiiat, refresh your pie chart with a call to the redraws 1 i c e s Q method.

This will iterate over the pie chart slices and update die data values, such as die start

angle of die slice and its arc. You iterate over the pie chart slices instead of die data

provider because tiiere may be more slices than items in the dataProv ider , and this

will draw the extra slices witii an arc o f 0. There is also a little workaround © for when

tiiere is only a single slice and its arc is 360, which sets its arc to 359.99 so tiiat it would

draw correctiy. After all of the data for the slice is updated, it is passed into die

redrawSl i ce Q meti iod to tell the slice to redraw itself.

8.3.6 Model for the PieChart
Now you only have one piece of die MVP triad to complete for your pie chart. Even

though the pie chart doesn't need to call out to any remote services, you've still refac-

tored a couple o f metiiods that could be considered business logic ratiier than presen-

tation logic and have no need to maintain any kind of state. The fol lowing listing

shows the code for die pie chart model.

Listing 8.8 PieChartModel .as

package org.foj.model {
import mx.collections.ICollectionView;

public class PieChartModel {
private var colors:Array = [

0x468966,
0xFFB03B,
0xFFF0A5,
0x999574,
0x007D9F,
0x8E2800,
0x8E28F4,
0x0528F4,
0XF42105,
0x0CF405

] ;

Array of colors
O for legend

Adding your pie chart to the application 159

public function getLegendColorForlndex(index:Number):Number {
return colors[index]; r Convenience method I

for getting color ©

public function getAngleForltem(units:Number,
totalUnits:Number):Number {
return ((((units / totalUnits) * 100) * 360) / 100) ; Calculate angle

© for item

public function getTotalUnits(dataProvider:ICollectionView):Number {
var total:Number = 0;

for each(var item:Object in dataProvider) {
total += item.units;

Calculate total number
of items for pie chart

return total;

A n array of 10 dif ferent hex values © corresponds to tire colors you want the pie chart

to use for its data points. This number could easily be increased should tire need arise

for more data points in your graphs; for tiris example this number should suffice.

Next you define a convenience method © for getting the color value for a specific

index. The metirod getAngleForltem © takes care of tire calculation for determining

the size o f tire angle for an item based on tire total number of items contained within

the pie chart and tire number o f items passed in. The last metirod you define © in

your model iterates through tire data set passed in and returns back tire total number

o f items for the pie chart.

8.4 Adding your pie chart to the application
That takes care of all of the pieces you need for tire pie chart component. Next you're

going to need to make changes to tire GraphView components in order to support it.

For tire example you'll add only a single instance of this pie chart drat you'll be able to

change the data it's visualizing with a combo box. You could just as easily display each

of drese visualizations for tire data separately. We chose tiris approach because it's an

easy way to illustrate tire event handling working for tire pie chart components

because tire data will be updated for the chart each time you select a dif ferent report-

ing point f rom tire combo box.

8.4.1 Updating the GraphView
To add tire pie chart to tire application, you'll first update the GraphView. In chapter 2

you created the GraphView with simple placeholder text; now is tire time to implement

this view. The fol lowing listing shows tire updated GraphView component after you

made tire changes to add tire pie chart.

1 6 0 CHAPTER 8 Charting with Dégrafa

Listing 8.9 GraphView.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Panel title="Graph View"

xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:components="org.foj.components.*"
width="100%"
height="100%"
creationComplete="init()">

< fx:Script>
<![CDATA[

import org.foj.event.EventDispatcherFactory;
import org.foj.event.UIEvent;
import org.foj.presenter.GraphPresenter;
private var _presenter:GraphPresenter;
private function init():void {

_presenter = new GraphPresenter(this);
refreshData();

}

Components
namespace declaration

S

Bootstrap
presenter

private function refreshData():void {
var refreshEvent:UIEvent = new UIEvent(UIEvent.REFRESH_GRAPHS);
refreshEvent.data = groupByComboBox.value;
EventDispatcherFactory.getEventDispatcher().

dispatchEvent(refreshEvent);

Refresh button
event handler

}

J Group by combo
box event handler private function changeGroupBy(event:Event):void {

var changeEvent:UIEvent = new UIEvent(UIEvent.REFRESH_GRAPHS);
changeEvent.data = groupByComboBox.value;
EventDispatcherFactory.getEventDispatcher().dispatchEvent(changeEvent);

}

</fx:Script>
<s:layout>

<s:VerticalLayout/>
</s:layout>
<mx:HBox>

<mx:Text text="Issues By: " fontWeight="bold" fontSize="16"/>
<mx:ComboBox id="groupByComboBox" change="changeGroupBy(event)"/>

</mx:HBox>

Group by
combo box J

«components:PieChart id="issuesPieChart"/>
<mx:Spacer height="100%"/>
<mx:ControlBar>

<mx:Button id="refreshButton"
label="Refresh Data"
click="refreshData()"/>

</mx:ControlBar>

Pie chart

1 » Refresh button

</s:Panel>

http://ns.adobe.com/mxml/2009

Adding your pie chart to the application 161

By now this should be almost second nature. You start by declaring tire namespace for

your pie chart components Q , and bootstrap tire presenter in tire i n i t method

Next def ine a couple of event handler methods for use when tire refresh button is

clicked Q and when the group by combo box is updated Q . Add an HBox to contain a

label component as well as the ComboBox © to switch data f ield by which tire data is

grouped in your pie chart © . Last, add a button Q to trigger a refresh on tire data

being displayed in tire pie chart.

8.4.2 Creating a Presenter for the GraphView
After you've updated tire view component for the GraphView, you need to create tire

Presenter to support it.

Listing 8.10 GraphPresenter .as

package org.foj.presenter {
import mx.collections.ArrayCollection;
import mx.controls.Alert;
import mx.managers.CursorManager;
import mx.rpc.AsyncResponder;
import mx.rpc.AsyncToken;
import mx.rpc.events.FaultEvent;
import mx.rpc.events.ResultEvent;
import org.foj.dto.Issue;
import org.foj.event.EventDispatcherFactory;
import org.foj.event.UIEvent;
import org.foj.model.IssueModel;
import org.foj.model.GraphModel;
import org.foj.view.GraphView;

public class GraphPresenter {

private var _view:GraphView;
private var _issueModel:IssueModel;
private var _model:GraphModel;

private var _groupByValues:ArrayCollection =
new mx.collections.ArrayCollection([

J ArrayCollection for
group by combo box

{ label
{ label
{ label
{ label

"Project", data: "project" },
"Status", data: "status" },
"Type", data: "type" },
"Severity", data: "severity" }

]) ;

public function GraphPresenter(view:GraphView)
this._view = view;
this._issueModel = new IssueModel();
this._model = new GraphModel();

EventDispatcherFactory.getEventDispatcher()
.addEventListener(UIEvent.REFRESH_GRAPHS,

J Constructor

EventListener for
refresh button and
combo box events

refreshGraphs);

_view.groupByComboBox.dataProvider = _groupByValues;
Set dataProvider for .
group by combo box ©

162 CHAPTER 8 Charting with Dégrafa

private function refreshGraphs(event:UIEvent = null) :void { < —
CursorManager.setBusyCursor();
_issueModel.getlssues(new AsyncResponder(getlssuesResult,

handleError)); g

Event
I handler for

© refresh event

private function getlssuesResult(event:ResultEvent,
token:AsyncToken = null):void {

CursorManager.removeBusyCursor();
var issues :ArrayCollection = new ArrayCollection(); Event handler

for result from
issue model O for each(var item:Object in event.result) {

var issue:Issue = new Issue(item);
issues.addltem(issue);

view.issuesPieChart.dataProvider =
_model.groupCollectionBy(issues,

_view.groupByComboBox.selectedltem.data);

private function handleError(event:FaultEvent, J Event handler
for errors

token :AsyncToken = null) :void {
CursorManager.removeBusyCursor();
Alert.show(event.message.toString());

}

You start by def ining an ArrayCollection o f items for die combo box © . This is an

example of die power o f a dynamic language such as ActionScript. Those familiar witii

JavaScript may recognize this as JSON notation. ActionScript allows you to create

objects like this witiiout any type of Class declaration, which is great for these one of f

throwaway objects.

Next you define die constructor © , which takes as an argument the view com-

ponent that belongs to this Presenter. Inside tiiis constructor you instantiate an

issue mode l which you use to retrieve die issues f rom the server side, as well as

an instance of the GraphModel tiiat you'll create in a moment. You then add an

event listener for die REFRESH_GRAPHS event © and map it to your handler. The

last tiling your constructor will do is set die dataProvider property o f die group-
ByComboBox © so tiiat it has the appropriate display values and data values to func-

tion correctly.

NOTE The two properties you define for die objects being passed to your
combo box have special meaning to tiiis component. The label property is
what will be displayed to die user in the combo box. The second property,
data, will be returned when using die value property for die combo box,
which is similar to how HTML drop-down boxes work.

You next def ine an event handler for when die REFRESH_GRAPHS event is triggered

© . Inside tiiis handler you make a call to die issue model to fetch die list o f issues in

Adding your pie chart to the application 1 6 3

the system. In the result event handler for tiris call Q you make a call to tire graph

model to aggregate tire data and set tire pie chart's dataProvider property to tire

result f rom this call. Last you define a generic error handler as you have in tire other

Presenters Q .

8.4.3 Creating the graph model
Now tire only thing left to do is implement your GraphModel. This model will contain

only one metirod drat is used to aggregate and format the list o f issues retrieved f rom

the issue model into a format drat your pie chart can understand.

Listing 8.11 GraphModel

package org.foj.model {

import mx.collections.ArrayCollection;

public class GraphModel {
public function GraphModel() } { Array to hold

intermediate groupings

public function groupCollectionBy(alllssues:ArrayCollection,
field:String):ArrayCollection {

var group:Array = new Array();

for each(var issue:Object in alllssues) {
if (group[issue[field]] == null) {
group[issue[field]] = 1;

} else {
group[issue[field]]++;

}
}

Iterate over
items and create
associative array

var result:ArrayCollection = new ArrayCollection() ;
for (var key:String in group) {
result.addltem({label: key, units: group[key]});

}

return result;

J ArrayCollection
for results

Iterate over
intermediate results
and build real results

The implementation for this metirod is fairly simplistic. First you create an array ©

that will be used to help group and count tire items passed in by tire property name in

the field variable. Next you iterate over tire collection of issues © . If the array does

not contain an entry already with the f ield name, add it and set its value to 1. Other-

wise increment tire value for that f ield name. Now create an ArrayCollection that

will contain tire real results that you need to return f rom this metirod Iterate over

the intermediate results Q creating a dynamic object containing the two properties

that your pie chart needs to properly display the data: label and units. Last you

return tire result ArrayCollection.

1 6 4 CHAPTER 8 Charting with Dégrafa

NOTE Concerning dynamically adding properties, recall that in your Pie-
ChartPresenter you are setting a property called legend on die results from
this function call although you never define die objects being returned as hav-
ing a legend property. This is anotiier example of how powerful, and some-
times dangerous, a dynamic language such as ActionScript can be. Because
you never defined a property named legend, ActionScript interpreted tiiis to
mean add a property to tiiis object named legend, which it did, and happily
continued on its merry way. If you fat fingered that property name somewhere
else in your code it would make for a difficult bug to track down.

With all of die components implemented, build and deploy the RIA module to the local
repository by issuing an mvn install command on the command line witiiin tiiis mod-
ule's root folder. Then change directories to die web module and run die command mvn
jetty: run-war to start up die Jetty container so you can see your hard work in action.

Keep in mind tiiat you may want to add the -Dmaven. test. skip=true option to
that command so Maven won't blow away any issues that you had entered into die
database. After Jetty starts up, if you don't have any issues created in the application,
add a few, tiien click the Graph View button in the upper-right corner and you should
see something similar to figure 8.3.

«HO Flex Bugs Q

Hex !«ot
FlexBugs Application FlexBugs Application | Details 'vfcw | GtipitVfew |
Qrapti Vtew

By: ¡IHW i-l
LatMl Unira

• Prated 1

FtexBLgs

5

2

| RUHh DH1B"1

Capyrtotu : ÎX-i Fta* Or. Java
Tr)ftif»mfig tot» from locjlhwt. .

Figure 8.3 The finished GraphView

Beyond the example 165

Next change the selected value in die combo box at die top of die page and watch

your graph and legend update to display tire data grouped by a dif ferent data point. If

you click back to tire DetailsView and add or remove issues you can come back to tiris

view and click the Refresh Data button at tire bottom of the screen and it should

update your pie chart with tire new data f rom the database.

Beyond the example
When it comes down to it, tirere isn't much that you couldn't visualize using Degrafa

and some ingenuity and imagination. There are great examples of ways to visualize your

data at the Degrafa site at http://www.degrafa.org/samples/data-visualization.html—

everything f rom bar charts, to gauges, financial data, Gantt charts, even combining

visualization with maps. There was even a recent presentation at 360|Flex Indy (http://

www.flexjunk.eom/2009/05/30/developing-a-smith-chart-using-axiis-and-degrafa/)

on creating a Smitir Chart using a data visualization framework called Axiis which is

built on Degrafa. Figure 8.4 shows more examples of data visualization components

created with Degrafa.

The Degrafa possibilities are endless; in fact someone has even created a Growl like

component for use in Flex applications (http://lukesh.wordpress.com/2009/04/04/

rawr-flexgrowl-component-available/). Figure 8.5 shows an example of tiris component.

Figure 8.4 More examples of visualization components created with Degrafa

http://www.degrafa.org/samples/data-visualization.html%e2%80%94
http://www.flexjunk.eom/2009/05/30/developing-a-smith-chart-using-axiis-and-degrafa/
http://lukesh.wordpress.com/2009/04/04/

166 CHAPTER 8 Charting with Dégrafa

Title

Grovwl Title

Description

This isa test of the growl notification system.

Acton Button Label

Click Me...

Color (HEX)

OxOOCCEE

Notification (Object)

This can be anything.

[Growl 2 (Colored Everything) •

Growl I

Growl Title

Figure 8.5 A Growl like component for Flex

You can do amazing tilings with Degrafa, whether skinning your application and com-

ponent to look like an iPhone application, or creating a rich user experience such as

Autodesk's Project Dragonfly shown in figure 8.6.

Autodesk Project Dragonfly
DESIGNER

Electronics

Flooring

Furniture

Figure 8.6 Autodesk's Project Dragonfly interactive home design software

Summary 1 6 7

The Autodesk example, which can be found at http://www.homestyler.com/, is one of
our favorite examples of what is possible with using the Degrafa library. In the Project
Dragonfly app, you can do anything from defining your floor plan to moving furni-
ture, doors, countertops, and otiier features interactively in eitiier a 2D top-down view
or a full 3D view that can be zoomed and rotated. This is a great example of an immer-
sive rich internet experience; the kind of functionality you would never expect to be
available from a web application. You're limited only by your imagination.

Summary
In this chapter we've introduced die Degrafa framework and created a custom pie
chart component. We've also introduced creating a custom ItemRenderer for dis-
playing sometiiing other than simple text inside of a DataGrid cell. And if tiiat
weren't enough we also demonstrated some of die dynamic features of die Action-
Script language by creating ad hoc objects on the fly and adding properties to those
objects at runtime.

We've also built this component in such a way that you could now easily refactor it
into a separate reusable library. It wouldn't take much effort to extract the compo-
nents you created in tiiis chapter into its own module and add diem as a dependency
to any project.

http://www.homestyler.com/

Desktop 2.0 wit^L

This chapter covers
• Creat ing a common S W C l ibrary

• Mak ing an A IR vers ion of a Flex appl icat ion

• Creat ing a key for s igning the appl icat ion

• Packag ing the appl icat ion for d istr ibut ion

• Distr ibut ing the A I R appl icat ion via the w e b

Although your Flex application is rich and engaging, some power users will want
a version tiiat tiiey can download and install locally as a desktop application.
Adobe AIR allows you to easily accomplish this otiierwise daunting task. RIAs blur
the line between traditional web applications and desktop client applications,
especially when you can convert the Flex application to a desktop application
running in the Adobe AIR runtime by changing only a couple of lines of code.
Yes, you heard tiiat right—only a couple of lines. What other framework allows
you to reuse tiiis much of the client code, going from a purely web-based experi-
ence to a desktop application?

You do want to be able to use die Flex version of your application, so you're
going to refactor all the code tiiat will be common between the Flex application
and die AIR application that you're going to build into a separate Shockwave

1 6 8

Creating a common library 1 6 9

Component (SWC) project. Then you can declare a dependency on diis SWC library

in both die AIR project and the Flex project.

After you have the common library project created, create a new Maven project for

your AIR application, which will in turn create an SWF file diat you'll use to package

and deploy your AIR application. Then you'll have to create one more project diat will

contain all of the resources necessary to package your AIR application, such as the cer-

tificate for signing die application and any assets that the application will need, such

as the icons die OS will use to display the application.

Last, we'l l look at what it takes to distribute the application via a web page and how

to let users update die version of their application quickly and painlessly. Let's get on

with the show.

Creating a common library
Because the only part of your application that will dif fer between the Flex version and

die AIR version will be die main MXML file, you can refactor all the common classes out

into a separate library. That way you can avoid duplicating classes across die two projects.

You're also going to extract die main contents of the old Main.mxml into a view

component so that die new Main.mxml contains only this new view component. This

will allow you to change the application structure and content in a single place and

enable you to build both die Flex version of the application and the AIR version witii-

out having to change eitiier of the Main.mxml files in the applications. Figure 9.1

y

Fx

Flex
Application

V

Q
Adobe AIR
Application

Figure 9.1 High-level view of desired architecture

1 7 0 CHAPTER 9 Desktop 2.0 with AIR

shows at a high level how the Flex application and AIR application relate to the view

component you're going to extract. You first need to create a new project to contain

die common elements of die application.

9.1.1 Creating an SWC project
To create your SWC project, you'll use the same archetype that you used to create your

Flex application in chapter 2. Open a command line and change the current direc-

tory to die root of die FlexBugs project hierarchy, and type the fol lowing command.

mvn archetype:create -DarchetypeGroupId=org.foj \
-DarchetypeArtifactld=flex-moj os-archetype \
-DarchetypeVersion=l.O-SNAPSHOT \
-DgroupId=org.foj \
-Dartifactld=flex-bugs-lib \
-Dversion=l.O-SNAPSHOT \
-DremoteRepositories=

http://flexonj ava.googlecode.com/svn/flex-bugs/repository

This will create a new fo lder in the FlexBugs directory named flex-bugs-lib, which con-

tains die new project.

Listing 9.1 f l e x - b u g - l i b pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd" xmlns=
"http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<modelVersion>4.0.0</modelVersion>
<parent>

<artifactld>flex-bugs</artifactld>
<groupId>org.foj</groupId>
<version>l.0-SNAPSHOT</version>

</parent>
<groupId>org.foj</groupId>
<artifactld>flex-bugs-lib</artifactld>
<version>l.0-SNAPSHOT</version>
<packaging>swc</packaging>
<name>FlexBugs common library</name>

<build>
<sourceDirectory>src/main/flex</sourceDirectory>
<testSourceDirectory>src/test/flex</testSourceDirectory>
<finalName>flex-bugs-lib</finalName>
<plugins>

<plugin>
<groupId>org.sonatype.flexmojos</groupId>
<artifactld>flexmoj os-maven-plugin</artifactld>
<version>${flexmoj os.Version}</version>
<extensions>true</extensions>
<dependencies>

<dependency>
<group!d>com.adobe.flex</group!d>

http://flexonj
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance

Creating a common library 171

<artifactId>compiler</artifactld>
<version>4.0.0.7219</version>
< type>pom</type>

</dependency>
</dependenc i e s >
<configuration>

<targetPlayer>10.0.0</targetPlayer>
<locales>

<locale>en_US</locale>
</locales>

</configuration>
</plugin>

</plugins>
</build>
<repositories>

<repository>
<id>flexmojos-repository</id>
<url>http://repository.sonatype.org/content/groups/public/</url>

</repository>
<repository>

<id>flexonjava-repository</id>
<url>http : / / f lexonj ava. googlecode. com/svn/repository-;/url>

</repository>
</repositories>
<pluginRepositories>

<pluginRepos i tory>
<id>flexmojos-repository</id>
<url>http://repository.sonatype.org/content/groups/public/</url>

</pluginRepos i tory>
</pluginRepositories>
<dependencies>

<dependency>
<groupId>com.adobe.flex.framework</groupId>
<artifactld>flex-framework</artifactld>
<version>4.0.0.7219</version>
< type>pom</type>

</dependency>
<dependency>

<groupId>com.adobe.flex.framework</groupId>
<artifactId>playerglobal</artifactld>
<version>4.0.0.7219</version>
<type>swc</type>
<classifier>10</classifier>

</dependency>
<dependency>

<groupId>org.degrafa</groupId>
<artifactld>degrafa</artifactld>
<version>Beta3.l</version>
<type>swc</type>

</dependency>
</dependenc i e s >
<properties>

<flexmojos.version>3.2.0</flexmojos.version>
</properties>

</project>

A Dégrafa
' dependency

http://repository.sonatype.org/content/groups/public/%3c/url
http://repository.sonatype.org/content/groups/public/%3c/url

172 CHAPTER 9 Desktop 2.0 with AIR

By using the archetype, the only modification you need to make to die pom.xml is to

add the dependency on Degrafa O Everytiiing else is configured for you automati-

cally by the archetype.

9.1.2 Extracting common classes
Now that die project has been created, let's look at which classes need to be moved. As

we stated at die beginning of this chapter, die only file tiiat is go ing to be dif ferent

between your Flex application and your AIR version of die application is the

Main.mxml application file at the root of your source directory. So everytiiing else is a

prime candidate to move to die new library project.

NOTE If you've checked out die source code f rom Subversion (renamed
Apache Subversion), or are using Subversion locally on the project, don' t
copy and paste die files using die command line or a file explorer window.
You' l l have to use the svn move command f rom either the command line, a
Subversion client tool such as SmartSVN, or inside die IDE if you're using one;
otherwise Subversion won't know how to track those files.

Af ter you've moved die files to die new project, add a dependency on die new library

project you created in die f lex-bugs-ria project. Open the pom.xml file in the

f lex-bugs-ria project and add die fol lowing to die dependencies section.

<dependency>
<groupId>org.foj</groupId>
<artifactld>flex-bugs-lib</artifactld>
<version>l. C)-SNAPSHOT</version>
<type>swc</type>

</dependency>

Treat the common library just as you do any otiier Maven dependency, whetiier it is

for a Java project or a Flex project. The only dif ference being die type element in

die dependency, which in tiiis instance is swc, because the dependency is an S W C
library. Now tiiat you've got the common library created, you can now create die

AIR application.

9.1.3 Extracting a MainCanvas
To avoid having to duplicate die code in the Main.mxml across two separate projects,

extract the majority of tiiat code into a separate component in the common library

project. Create a new MXML file in die org. foj .view package in the flex-bugs-lib
project and enter the code shown in listing 9.2.

Listing 9.2 MainCanvas.mxml

<?xml version="1.0" ?>
<s:Group xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark
xmlns:mx="library://ns.adobe.com/flex/halo
xmlns:view="org.foj.view.*">

<~1 Extends
O Group

http://ns.adobe.com/mxml/2009

Creating a common library 1 7 3

<s:layout>
<s:VerticalLayout/>

</s:layout>
<view:Header viewStack="{mainViewStack}"/>

<mx:ViewStack id="mainViewStack" width="100%" height="100%">

<mx:HBox id="viewl" label="Details View">
<mx:Spacer width="5"/>
<mx:HDividedBox width="100%" height="100%">

<mx:VDividedBox width="70%" height="100%">
<view:MasterView id="masterView" height="60%"/>
<view:CommentsView id="commentsView" height="40%"/>

</mx:VDividedBox>
<view:DetailView id="detailsView" width="30%"/>

</mx:HDividedBox>
<mx:Spacer width="5"/>

</mx:HBox>

<mx:HBox id="view2" label="Graph View">
<mx:Spacer width="5"/>
<view:GraphView width="100%" height="100%"/>
<mx:Spacer width="5"/>

</mx:HBox>
</mx:Viewstack>

<view:Footer/>

</s:Group>

The majority of tire code in MainCanvas.mxml is extracted f rom Main.mxml. You start

by declaring this component as extending tire Group component Q , and set its layout

vertical Q . Then paste in the rest of the code f rom the Main.mxml.

Listing 9.3 Main.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark
xmlns:mx="library://ns.adobe.com/flex/halo
xmlns:view="org.foj.view.*"
minWidth="950"
minHeight="600"
height="100%"
width="100%">

<view:MainCanvas id="app" width="100%" height="100%" />
</mx:Application>

Listing 9.3 shows tire code drat is left over in Main.mxml after you refactored every-

thing out into the MainCanvas. Start by changing the declaration for tire Application
back to use tire mx:Application tag O - There appears to be a bug in tire latest beta

version of tire Flex 4.0 SDK that ultimately prevents tire application f rom running

3 Set layout

J Changed back to
mx:Application

J MainCanvas

http://ns.adobe.com/mxml/2009

174 CHAPTER 9 Desktop 2.0 with AIR

using the newer Spark version of the Application tag. Next add in die MainCanvas ©
and set its height and width to 100% so it fills available space in die application win-

dow. Now let's continue and create die AIR application.

9.2 Creating the AIR application
As you may have guessed, die first tiling needed to create die AIR application is to cre-

ate a Maven project to hold it. Just as you did earlier, open up a command line, navi-

gate to die root fo lder for die project, and enter die fol lowing command.

mvn archetype:create -DarchetypeGroupId=org.foj \
-DarchetypeArtifactld=flex-moj os-archetype \
-DarchetypeVersion=l.O-SNAPSHOT \
-DgroupId=org.foj \
-Dartifactld=flex-bugs-air \
-Dversion=l.O-SNAPSHOT \
-DremoteRepositories=

http://flexonj ava.googlecode.com/svn/flex-bugs/repository

This will create a new module in die FlexBugs project named f l e x - b u g s - a i r . List-

ing 9.4 shows die pom.xml tiiat is generated for die f l e x - b u g s - a i r project.

Listing 9.4 f l e x - b u g s - a i r pom.xml

<?xml version="1.0"?>
<proj ect>

<parent>
<artifactld>flex-bugs</artifactld>
<groupId>org.foj</groupId>
<version>l.0-SNAPSHOT</version>

</parent>
<modelVersion>4.0.0</modelVersion>
<groupId>org.foj</groupId>
<artifactld>flex-bugs-air</artifactld>
<packaging>swf</packaging>
<version>l.0-SNAPSHOT</version>
<name>FlexBugs Air application</name>
<properties>

<flexmojos.version>3.3.0</flexmojos.version>
</properties>

<build>
<sourceDirectory>src/main/flex</sourceDirectory>
<testSourceDirectory>src/test/flex</testSourceDirectory>
<resources>

<resource>
<directory>$ {basedir} /src/main/resources-;/directory>

</resource>
<resource>

<directory>$ {basedir} / target/generated-resources-;/directory>
<filtering>true</filtering>

</resource>
</resources>

http://flexonj

Creating the Grails application 175

<finalName>flex-bugs-air</finalName>
<plugins>

<plugin>
<groupId>org.sonatype.flexmoj os</groupId>
<artifactld>flexmojos-maven-plugin</artifactld>
<version>${flexmoj os.version}</version>
<extensions>true</extensions>
<configuration>

<contextRoot>flexbugs</contextRoot>
<targetPlayer>10.0.0</targetPlayer>
<locales>

<locale>en_US</locale>
</locales>

</configuration>
<dependencies>

<dependency>
<groupId>com.adobe.flex</groupId>
<artifactId>compiler</artifactld>
<version>4.0.0.7219</version>
< type>pom</type>

</dependency>
</dependenc i e s >

</plugin>
</plugins>

</build>
<repositories>

<repository>
<id>flexmojos-repository</id>
<url>http://repository.sonatype.org/content/groups/public/</url>

</repository>
<repository>

<id>flexonjava-repository</id>
<url>http: / / f lexonj ava. googlecode. com/svn/repository-;/url>

</repository>
</repositories>
<pluginRepositories>

<pluginRepos i tory>
<id>flexmojos-repository</id>
<url>http://repository.sonatype.org/content/groups/public/</url>

</pluginRepository>
</pluginRepositories>
<dependencies>

<dependency>
<groupId>com.adobe.flex.framework</groupId>
<artifactld>air-framework</artifactld>
<version>4.0.0.7219</version>
< type>pom</type>

</dependency>
<dependency>

<groupId>org.foj</groupId>
<artifactld>flex-bugs-lib</artifactld>
<version>l.0-SNAPSHOT</version>
<type>swc</type>

</dependency>

AIR SDK
O dependency

< ~ l k Common library
G dependency

http://repository.sonatype.org/content/groups/public/%3c/url
http://repository.sonatype.org/content/groups/public/%3c/url

1 7 6 CHAPTER 9 Desktop 2.0 with AIR

<dependency>
<groupId>com.adobe.flex.framework</groupId>
<artifactld>flex-framework</artifactld>
<version>4.0.0.7219</version>
< type>pom</type>

</dependency>
<dependency>

<groupId>com.adobe.flex.framework</groupId>
<artifactId>playerglobal</artifactld>
<version>4.0.0.7219</version>
<classifier>10</classifier>
<type>swc</type>

</dependency>
</dependenc i e s >

</project>

As before, you have to make only minor modifications to die pom.xml for die AIR

module. You add the dependency on die AIR framework © and the dependency on

die common library you extracted earlier Q . Now you can create die Main.mxml for

die AIR application.

Listing 9.5 AIR Main.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:WindowedApplication xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
xmlns:view="org.foj.view.*"
minWidth=" 1024" ,. .. A WindowedApplication U
minHeight="768" r r

height="100%"
width="100%"> MainCanvas

<view:MainCanvas id="app" width="100%" height="100%" />
^ ^ Main

</s :WindowedApplication>

The code for die AIR application is almost identical to die code necessary for the Flex

application with die one major dif ference being tiiat the AIR application extends die

WindowedApplication O instead of Application as the Flex application does. Last

you need to add die MainCanvas to die AIR application Q . Next, let's look at how to

go about creating the application installer.

9.3 Packaging the AIR application
So now you've got the AIR version of die sample application created, and tiiat will

generate a dif ferent SWF tiiat you can use to package into an AIR application. To dis-

tribute this as an AIR application you need to create a project tiiat will generate an

AIR application installer for the AIR application. This will allow you to distribute die AIR

application to the users to install by either distributing the .air file that is created, or

as you'll see later in tiiis chapter, by installing it via the web.

http://ns.adobe.com/mxml/2009

Distributing the AIR application 1 7 7

NOTE Until now we've been able to get by without having to download and
install die FlexSDK. Unfortunately because of licensing restrictions, Sonatype
cannot publish tire ADT JAR to tire Maven repository. T o get around tiris,
download and install tire Flex4 SDK f rom Adobe 's site at http://www.adobe.
com/go/flex4_sdk_download.

To package tire AIR application, you use tire AIR Developer Tool (ADT) . Because tiris

tool is not a part of tire open source SDK, you'll need to manually install tire JAR file,

found in tire lib directory of your FlexSDK install, to tire local Maven repository using

the fol lowing command.

mvn install:install-file -Dfile=adt.jar -DgroupId=com.adobe \
-Dartifactld=adt -Dversion=4.0.0 -Dpackaging=jar -DgeneratePom=true

After you've got drat library installed into tire local repository you're ready to move on

to creating tire project that will contain all of tire configuration and assets necessary to

package tire AIR application.

9.3.1 Creating a project to package the AIR app
One last time you need to generate a new Maven project drat will contain all tire assets

for creating the AIR application installer package. Open a command line and navigate

to tire root of tire project and enter tire fol lowing command:

mvn archetype:create -DarchetypeGroupId=org.foj \
-DarchetypeArtifactld=flex-mojos-archetype \
-DarchetypeVersion=l.O-SNAPSHOT \
-DgroupId=org.foj \
-Dartifactld=flex-bugs-air-package \
-Dversion=l.O-SNAPSHOT \
-DremoteRepositories=

http://flexonj ava.googlecode.com/svn/flex-bugs/repository

This will create a new project fo lder named flex-bugs-air-package. Inside this proj-

ect you'll see the standard folder layout drat you've been using all along. You can

delete tire src/main/flex fo lder and the src/test folders, as you won't need them for

this project.

9.3.2 Generating a certificate
To create an AIR application installer you first generate a certificate for signing the

application. The certificate is necessary because you now are running an application

locally on the computer, which gives the application access to local resources that it

would not have had in a simple Flex application, such as tire filesystem. In light o f

that, Adobe decided to take measures to secure tire AIR installer by requiring you to

sign it with either a self-signed certificate, which we'l l be using, or a digital certificate

that you would purchase f rom a certificate authority (CA). That way nobody can tam-

per witir the application and introduce malicious software to unsuspecting users.

http://www.adobe
http://flexonj

178 CHAPTER 9 Desktop 2.0 with AIR

For the example, you'll create a self-signed certificate, but if you're distributing the

application to the masses, it would be a good idea to purchase a certificate f rom a CA

such as Thawte (http://www.tliawte.com). To generate the certificate you'll use the

ADT utility included with the FlexSDK located in the bin directory of die SDK. The

basic usage for this tool is:

adt -certificate -cn name [-ou org_unit][-o org_name][-c country] \
key_type pfx_file password

This is die basic usage o f die ADT utility that you'll use to generate the certificate.

Here is an explanation of the abbreviations and options:

• -cn: The common name of the new certificate

• -ou: The organizational unit (optional)

• -o: The organization name (optional)

• -c: The two-letter country code (optional)

• key_type: The type of key used to create die certificate, 1024-RSA or 2048-RSA

• pfx_f i le: The name of the certificate file to be created

• password: The password for die certificate you are creating

To generate your own self-signed certificate, open a command prompt and enter die

fol lowing command:

adt -certificate -cn FlexBugs 1024-RSA flexbugs.pfx java4ever

This will create a certificate file called flexbugs.pfx witii a password of java4ever. You

now need to copy this file into die src/main/resources folder of die f l e x - b u g s - a i r -

package project so that you can sign the application installer with it. Now let's see how

you add icons to die application.

9.3.3 Adding icons
Adobe AIR applications allow you to define icons tiiat the OS displays in die dock/

taskbar, programs folder, file explorer window, and more. If you don't provide a cus-

tom icon set, die OS will use a default icon. There are four common sizes of icons you

can include for the application:

• 1 6 x 1 6

• 3 2 x 3 2

• 4 8 x 4 8

• 128x128

The icon we've chosen for the application, which is shown in fig-

ure 9.2, was found at die Wikimedia Commons site at http://

commons.wikimedia.org/wiki/File:Green_bug.svg.

You can download the icon graphic f rom die Wikimedia Com-

mons site and create the icon sizes you need for the application Figure 9 2 The ic<

using your favorite image editing software, or if you'd prefer, use for the application

http://www.tliawte.com

Distributing the AIR application 1 7 9

the files included in die code download for tiris book. There is a PNG image file for

each corresponding icon size as follows.

• i con lô .png for the 1 6 x 1 6 icon

• icon32.png for the 32 x 32 icon

• icon48.png for the 48 x 48 icon

• iconl28.png for dre 128 x 128 icon

After you've created the icon files, copy them into the f l e x -bugs -a i r - package proj-

ect in dre src/main/resources/icons folder. Now that you've got all dre assets you

need to create dre AIR package, let's look at the AIR configuration necessary to pack-

age dre application.

9.3.4 Adding the AIR configuration
The last thing you need to do to package dre application as an AIR applica-

tion is to create tire application configuration file. To do tiris, create a file named

air-app.xml and place it in tire src/main/resources folder o f the f l e x - b u g - a i r -

package project.

The AIR application descriptor file is used to define various properties for tire AIR

application. The fol lowing are a few of the things you can configure using the applica-

tion descriptor:

• The required AIR runtime version

• A unique identifier for the application

• The f i lename and path for installing tire air application

• The application version

• The size and display properties o f tire application window

• Any application-specific icons

You can learn more about tire other features of tire application descriptor drat we haven't

mentioned at Adobe 's website, in tire AIR documentation located at http://help.adobe,

com/en_US/AIR/1.5/devappshtml/WS5b3ccc516d4Ibf351 e63e3d 118666ade46-7ffl.

html. Listing 9.6 shows the configuration file you'll use for tiris application.

Listing 9.6 air-app.xml

<?xml version= "1.0" encoding= "UTF-8 " ?> A I R application namespace
<application xmlns="http://ns.adobe.com/air/application/1.5">

<id>org.foj.FlexBugs</id>
J

<filename>FlexBugs</filename>
<name>FlexBugs For Desktop</name>
<version>l.0-SNAPSHOT</version>
<copyright>

Copyright © FlexOnJava 2009 http://manning.com/allmon
</copyright>

A Application
' metadata

http://help.adobe
http://ns.adobe.com/air/application/1.5
http://manning.com/allmon

180 CHAPTER 9 Desktop 2.0 with AIR

<initialWindow>
<content>flexbugs.swf</content>
<title>FlexBugs For Desktop</title>
<width>1024</width>
<height>7 68</height>
<minSize>1024 768</minSize>

</initialWindow>

<icon>
<imagel6xl6>icons/iconl6.png</imagel6xl6>
<image32x32>icons/icon32.png</image32x32>
<image48x48>icons/icon48.png</image48x48>
<imagel28xl28>icons/iconl28.png</imagel28xl28>

</icon>

Initial window

O Application icons

</application>

The root element of the application descriptor defines die version of die AIR applica-

tion you're creating, in this case version 1.5 Q . Next come elements defining the

application metadata Q starting with a unique identifier for the application. The

application installer uses this identifier to determine if die application has been previ-

ously installed on die computer. Then you define a f i lename and a descriptive name

for the application. You define your version for die application to be 1.0-SNAPSHOT,

which also happens to match the version in die pom.xml. The two versions are unre-

lated; it makes sense to keep tiiese two versions in sync.

The next section in the application configuration deals with how die application

behaves when launched Start by def ining die initial content displayed in die appli-

cation when it starts up as being the SWF for the AIR application. The title of the win-

dow is set to FlexBugs For Desktop, and you've configured die application to start with a

1024 x 762 window and also made that be die minimum size the application will run.

As a final step you configure the application to use the icons created earlier Q .

9.3.5 Configuring the package build
Before you can build and run die application you need to tweak die pom.xml that

was generated for die f l e x -bugs -a i r - package module. The pom.xml is ratiier large

so we'l l break it down and discuss each plugin separately; the first part is shown in list-

ing 9.7. The discussion continues through listing 9.11.

Listing 9.7 f l e x - b u g s - a i r - p a c k a g e pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>org.foj</groupId>
<artifactld>flex-bugs-air-package</artifactld>
<version>l.0-SNAPSHOT</version>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd

Distributing the AIR application 181

<name>FlexBugs Air Package</name>
<packaging>pom</packaging>

<build> 1, Packaging type

^ ^ p exec-maven-plugin

J Phase to execute in

1> Goal to run

Executable

<plugins>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactld>exec-maven-plugin</artifactld>
<version>l.1.l</version>
<executions>

<execution>
<phase>package</phase>
<goals>

<goal>exec</goal>
</goals>
<configuration>

<executable>j ava</executable>
<workingDirectory>

${basedir}/target/air
</workingDirectory>
<arguments>

<argument>-classpath</argument>
<classpath/>
<argument>com.adobe.air.ADT</argument>
<argument>-package</argument>
<argument>-storetype</argument>
<argument>pkcsl2</argument>
<argument>-storepass</argument>
<argument>j ava4ever</argument>
<argument>-keystore</argument>
<argument>certs/flexbugs.pfx</argument>
<argument>${basedir}/target/air/flexbugs.air</argument>
<argument>air-app.xml</argument>
<argument>flexbugs.swf</argument>
<argument>icons/iconl6.png</argument>
<argument>icons/icon32.png</argument>
<argument>icons/icon48.png</argument>
<argument>icons/iconl28.png</argument>

</arguments>
</conf iguration> Command line arguments 0

</execution>
</executions>

</plugin>

Start tire POMjust as you did for the shared BlazeDS configuration in chapter 5, setting

the packaging type to pom O - Unfortunately tire Flex-Mojos plugin you've been using

all along for building the Flex application does not include a plugin for packaging the

AIR application, so you have to use the ADT utility provided by Adobe in the SDK. To

do this use a Maven plugin called exec-maven-plugin Q . Configure tire plugin to be

executed during tire package phase of tire Maven lifecycle and to execute tire exec

goal O You'l l be executing tire Java executable Q to utilize tire ADT utility © we

described earlier. The first set o f arguments you pass into the ADT utility deal with

182 CHAPTER 9 Desktop 2.0 with AIR

the certificate you generated earlier in this chapter. Next specify the output file, the

location of the AIR application configuration, the SWF file to include in the AIR appli-

cation, and die application icons.

Listing 9.8 f l e x - b u g s - a i r - p a c k a g e pom.xml (cont inued)

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactld>maven-assembly-plugin</artifactld>
<executions>

<execution>
<id>Package AIR distribution</id>
<goals>

<goal>single</goal>
</goals>
<phase>package</phase>
<configuration>

<descriptors>
<descriptor>

src/main/assembly/resources.xml
</descriptor>

</descriptors>
</configuration>

</execution>
</executions>

</plugin>

J
1,

Assembly
plugin

Goal to
execute

Phase to
execute in

1 >
Location of resource
descriptor

Listing 9.8 shows the configuration for creating an assembly for our AIR installer. It

looks similar to the configuration you used in chapter 5. The plugin configuration

starts by def ining itself as die maven-assembly-plugin O You'll be calling die single

goal © during die package phase of die Maven lifecycle Last you tell die plugin

where to f ind die assembly descriptor Q .

Next you'll configure Maven to copy die files you need to a working directory for

die ADT utility for use when building die AIR installer.

Listing 9.9 f l e x - b u g s - a i r - p a c k a g e pom.xml (cont inued)

Maven-resources-plugin '"J
J Phase to

execute in

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactld>
<executions>

<execution>
<id>air</id>
<phase>generate-resources-;/phase>
<goals>

<goal>copy-resources-;/goal>
</goals>
<configuration>

<outputDirectory>${basedir}/target/air</outputDirectory> <
<resources> 0 u t p u t directory

to copy resources to O

J Goal to
execute

<resource>

Distributing the AIR application 183

<directory>${basedir}/src/main/resources«/directory>
</resource>

</resources>
</configuration>

</execution>
</executions>

</plugin>

Resource directory 1
Earlier you configured the ADT utility to use a working directory o f target/air to do

its work in. To get all tire resources you need into drat directory leverage tire

maven-resources-p lug in O - Configure tire plugin to execute its copy-resources

goal Q during tire genera te - resources phase of tire Maven lifecycle © and tell it

to copy the resources f rom tire src/main/resources directory © to tire target/air

directory Q .

•1 gin O Maven-dependency-plugin

Goal to execute

^ ^ P Phase to execute in

Usi if Using artifact item

Listing 9.10 f l e x - b u g s - a i r - p a c k a g e (cont inued)

<plugin>
<artifactld>maven-dependency-plugin</artifactld>
<executions>

<execution>
<id>unpack-air-assets</id>
<goals>

<goal>copy</goal>
</goals>
<phase>generate-resources</phase>
<configuration>

<artifactltems>
<artifactltem>

<groupId>org.foj</groupId>
<artifactld>flex-bugs-air</artifactld>
<version>l.C)-SNAPSHOT</version>
<type>swf</type>
<overWrite>false</overWrite>
<outputDirectory>

${basedir}/target/air
</outputDirectory>
<destFileName>flexbugs.swf</destFileName>

</artifactltem>
</artifactltems>

</configuration>
</execution>

</executions>
</plugin>

Listing 9.10 shows tire configuration for unpacking the AIR SWF to be used by tire ADT

utility when building tire AIR installer. To do this use tire maven-dependency-plugin

just as you do for copying tire Flex SWF into the WAR before packaging. Configure

this plugin to execute the copy goal © during tire genera te - resources phase o f tire

Maven lifecycle © . It's going to copy the artifact you define in its configuration © .

You tell tire plugin to copy tire artifact to tire target/air directory © so that it can be

included when creating tire AIR installer.

J Output directory

1 8 4 CHAPTER 9 Desktop 2.0 with AIR

Listing 9.11 f l e x - b u g s - a i r - p a c k a g e pom.xml (cont inued)

<plugin>
<artifactld>maven-clean-plugin</artifactld>
<version>2.2</version>
<configuration>

<filesets>
<fileset>

<directory>target</directory>
</fileset>

</filesets>
</configuration>

</plugin>
</plugins>

</build>

<dependencies>
<!-- Flex ADT tool -->
<dependency>

<groupId>com.adobe</groupId>
<artifactld>adt</artifactld>
<version>4.0.0</version>
<type>jar</type>

</dependency>
<!-- Project Dependencies -->
<dependency>

<groupId>org.foj</groupId>
<artifactld>flex-bugs-air</artifactld>
<version>l. C)-SNAPSHOT</version>
<type>swf</type>

</dependency>

</dependenc i e s >
</project>

Listing 9.11 shows the rest of the pom.xml for our packaging project. You configure

one last plugin, the maven-c lean-plugin, for cleanup. Q . The only tiling left is to

declare the dependencies. The first is on die ADT utility so you can use that to build

die AIR installer. The second is on die SWF artifact for the AIR application so that

you can include it in die AIR installer.

With all of those pieces in place, you should now be able to build and install

die AIR application. Open a command line and navigate to the main project

folder, dien build die application by typing mvn c lean i n s t a l l . This will go

through and build each of die project modules. When it's finished, change into

die flex-bugs-web directory so you can start up the web application using the mvn

j e t t y : run-war command.

A f ter the web application is running, open a file explorer window and navi-

gate to the target/air directory in die f l e x -bugs -a i r - package project. Inside this

fo lder diere should be a file named flexbugs.air. This is die installer for die AIR

application. Launch the installer and you should be presented witii a screen that

looks like figure 9.3.

Maven-clean-plugin

1 » ADT dependency

AIR dependency

Distributing the AIR application 185

Application Install

Are you sure you want to install this
application to your computer?

Application: Flex Bug; For Desktoe

Cancel Install

instilling applications may present a security risk to you and your
computer. Install only from sources that you trust.

x Publisher Identity UNKNOWN
The publisher of this application cannot be determined.

x System Access: UNRESTRICTED
This application may accessvourflle system and [he Internet,
which may put your computer at risk.

Figure 9.3
Installing the
AIR application

Because you're using a self-signed certificate, the installer warns you drat it's not sure

who wrote tire application and whetirer or not they're trustworthy. Af ter you click the

Install button you will be presented witir a screen that looks like figure 9.4.

A p p l i c a t i o n Instal l

Figure 9.4
Choosing where
to install the
application

FlexBugs For Desktop

Insulation Pnftrenw

Q Start application after Installation

Installation Location:

/Applications

Cancel Continue

186 CHAPTER 9 Desktop 2.0 with AIR

FlexBugs Application

frrrtMHIiOjit

Figure 9.5 The finished AIR application

On the second screen of the installer, you're asked if you'd like to launch die appli-

cation when it's finished installing, and where you'd like to install the application. If

you checked the checkbox indicating that the application should start after installa-

tion, the application should launch and you should see something tiiat resembles

figure 9.5.

Now you've got a version of the FlexBugs application that works outside die

browser but you're stuck witii the task of distributing this application to the users. In

die next section you'll take a look at the task of creating a web page to allow you to dis-

tribute die AIR application using an installer badge, which allows users to install the

application simply by clicking the badge.

9.4 Distributing the AIR application
One of die benefits to using a web application is the ease o f distributing the appli-

cation to the people who will use it. Adobe has enabled you to streamline die distri-

bution and installation process for AIR applications by providing a SWF tiiat will

allow the users to install die AIR application by clicking a badge icon tiiat you can

place on any web page. In this next section you'll create an installer badge for the

sample application.

Distributing the AIR application 187

9.4.1 Assembly configuration
To distribute die AIR application, you first get the application installer into a place

where the users can access it via a web browser. You already have tiris mechanism in

place. You can leverage tire existing web application and copy tire AIR artifact into tire

WAR file that will be deployed to the application server, which also happens to be

where we would create the download page. To do this you'll take an approach similar

to drat you used to handle the shared BlazeDS configuration in chapter 5. Because

Maven doesn't know how to handle .air files, you can leverage tire assembly plugin.

Create a file called resources.xml inside die src/main/assembly folder of tire f l e x -

bugs-a i r -package project. This is tire file that tells Maven which files to include in

the assembly.

Listing 9.12 resources.xml

<assembly>
<id>resources</id>
<formats>

<format>zip</format>
</formats>
<includeBaseDirectory>false</includeBaseDirectory>
<fileSets>

<fileSet>
<directory>target/air</directory>
<outputDirectoryx/outputDirectory>
<includes>

<include>**/*.air</include>
</includes>

</fileSet>
</fileSets>

</assembly>

Similar to what you did earlier, configure tire assembly to be of type zip O - The

main dif ference between tiris resource configuration and what you did in chapter 5

is drat you're configuring the assembly to contain only tire .air file which is created

by tire ADT utility Q . Next you need to update the build to be able to unpack

the assembly.

9.4.2 Updating the build
To get tire AIR installer into tire web application you need to be able to extract

the AIR application f rom tire assembly you just configured. To do tiris you'll be

creating another execution in the maven-dependency-plug in section similar to tire

way in which you get tire shared BlazeDS configuration into tire WAR. Listing 9.13

shows tire configuration you'll add to the pom.xml in tire f l ex -bugs-web project.

Listing 9.13 f l e x - b u g s - w e b pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

A Format for the
assembly

A •"<
-ail
Include only
air files

http://maven.apache.org/POM/4.0.0

188 CHAPTER 9 Desktop 2.0 with AIR

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

<build>
<defaultGoal>install</defaultGoal>
<finalName>flexbugs</finalName>
<plugins>

<plugin>
<artifactld>maven-dependency-plugin</artifactld>
<executions>

<execution>
<id>unpack-blaze-config</id>

</execution>
<execution>

<id>unpack-air-package</id> O Unpack
<goals> J dependencies

Where to unpack the file 0

<goal>unpack-dependencies</goal> <—I a phase to
</goals> J execute in
<phase>generate-resources-;/phase>
<configuration>

<outputDirectory>
$ {pro j ect. build, directory} / $ {pro j ect. build, finalName} <1—'

</outputDirectory>
<includeGroupIds>${proj ect.groupId}</includeGroupIds>
<includeArtif actlds> <— , Artifact to

flex-bugs-air-package Q include
</includeArtifactlds>
<includeClassifiers>resources</includeClassifiers>
<excludeTransitive>true</excludeTransitive>
<excludeTypes>j ar,swf</excludeTypes>

</configuration>
</execution>

</executions>
</plugin>

</project>

First you create another execution inside die maven-dependency-plugin configura-

tion which you configure to execute the unpack-dependencies goal Q during the

genera te - resources phase o f die Maven lifecycle © . You want die plugin to extract

die AIR application and put it in die working directory tiiat Maven uses when packag-

ing up the WAR file © . You also need to configure die plugin to make sure tiiat it

includes only die a r t i f a c t l d you want it to unpack Q .

Next, you need to add the dependency for die assembly in the dependencies sec-

tion of the pom.xml in the f l ex -bugs-web project. Add die fol lowing dependency to

die POM:

http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd

Distributing the AIR application 189

<dependency>
<groupId>org.foj</groupId>
<artifactld>flex-bugs-air-package</artifactld>
<version>l.0-SNAPSHOT</version>
<classifier>resources</classifier>
<scope>provided</scope>
<type>zip</type>

</dependency>

With tliat in place, you can move on to creating tire download page, which will contain

the installer badge.

9.4.3 Creating a download badge
You're going to create another JSP page in tire flex-bug-web project to contain tire

install badge. Create a file inside tire src/main/webapp fo lder called download, jsp,
and enter tire code shown in listing 9.14.

Listing 9.14 download. jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'

1 http: / /www. w3 . org/TR/xhtmll/DTD/xhtmll-strict. dtd 1 >
<html xmlns=1http://www.w3.org/1999/xhtml1 lang='en' xml:lang=1 en 1>
<head>

<title>FlexBugs AIR application</title>
<meta http-equiv=1 Content-Type 1 content=1 text/html; charset=iso-8859-l1/>
<script type=1 text/javascript1 src=1js/swfobject.js1></script> <—

<script type="text/javascript">
II < • [CDATA [. .^bject I

javascript include V

var flashvars = {}; <
flashvars.airversion = '1.5';
flashvars. appname = 'Flex Bugs'; Flashvars ©
flashvars.appurl =

'${pageContext.request.scheme}://${pageContext.request.serverName}:
${pageContext.request.serverPort}${pageContext.request.contextPath}/
flexbugs.air';

flashvars.imageurl 'images/badge-icon.png'
swfobj ect.embedSWF('badge.swf',

'badge_div',
'205',
' 170 ' ,
'9.0.0',
null,
flashvars);

//]]>
</script>

</head>
<body>

<div id='badge_div'>
To install this application you will need the

Call
embedSWF

J> Placeholder div

http://java.sun.com/jsp/jstl/core
http://www.w3.org/1999/xhtml1

190 CHAPTER 9 Desktop 2.0 with AIR

Adobe Flash Player

</div>
</body>
</html>

The download page called swfobject is using a JavaScript library that makes embed-

ding Flash objects in our web page easier Q . The web page can be found at Google

Code (http://c0de.g00gle.c0m/p/swf0bject/) if you're interested in learning more

about it. Next you define a variable called f lashvars to hold the necessary configura-

tion items © . Then you use a little JSTL expression language to help build a fully qual-

if ied link for die AIR application adding tiiat to the f l a shva rs . The badge installer

seems to require a fully qualified link to die AIR installer, so we are forced to use this.

The beauty of using die JSTL instead of hard coding die URL, is that no matter where

you deploy tiiis application, that link will always work; you don't have to update it for

each environment you deploy to.

Next you tell die badge installer which icon to display in die badge so tiiat you can

customize the badge witii your own application's branding. You tiien create the badge

W O O FlexBugs AIR appl icat ion

I I ||| + Bhttp://localhost:80SQ/flexbugs/down[oad.jsp C | (O,' Gc

FlexBugs Download
Cl ick o n the b a d g e b e l o w to install the F l e x B u g s appl icat ion

FlexBufis

Figure 9.6 The install badge in action

http://www.adobe.com/products/flashplayer/1
http://c0de.g00gle.c0m/p/swf0bject/

Summary 191

using the swfobject library by calling the embedSWF function Q and pass arguments
telling it first which SWF file to create tire badge from. Next you tell tire badge which
div element in tire JSP to replace with tire content of the badge, tire size of the badge
and tire minimum version of Flash that the application supports. If you were provid-
ing an installer to tire user to install the AIR framework from, you could specify that
argument here as well. Last you provide default information in the div that lets tire
user know that this page requires Flash to use tire installer badge, and a link to down-
load the Flash runtime Q .

Now that you have all of tire pieces in place, open a command prompt and navigate
to tire root of tire project and build tire application by typingmvn clean install. When
that is done, change directories into the flex-bugs-web project and start up tire Jetty
container by running mvn jetty:run-war. When tire container has finished loading,
open a browser and navigate to http://localhost:8080/ilexbugs/downloadjsp and you
should see a screen similar to that shown in figure 9.6.

When you click tire install badge it should prompt you to install tire AIR application.

Summary
You now have successfully broken free of the browser and created an application that
power users can use standalone. Even though it took a lot of configuration, you'll
notice that you never had to change much of tire application code to get this to work.
There are not many programming languages or frameworks that will allow you to so
easily reuse tire code to create both a web-based client and a desktop client. This is
one of tire attractive features of both tire Flex framework and the Adobe AIR frame-
work. You'll discover that many of tire Flex applications can be translated into AIR
applications with minimal effort.

The Adobe AIR SDK offers much more functionality than you can accomplish with
the Flex framework alone, so if you're going to create an AIR application, don't limit
yourself to tire Flex components and APIs. The AIR application framework offers you
the ability to store information in an embedded database so that you could potentially
create an offline capable version of tire application that could sync up the local data-
base with tire master database when tire network becomes available again.

You also have the ability to read and write files to tire filesystem and even define
new file associations so that they automatically open with tire application. A fine exam-
ple of this is the Balsamiq application (http://www.balsamiq.com/), which we've been
using throughout the book to create our wireframes for tire sample application. This
application allows you to save and export tire wireframes in various formats, and even
defines a file association such that whenever you try to open a file with the extension
.bmml, it will by default launch tire Balsamiq application.

In tire next chapter we're going to show you how to test the application to ver-
ify that it does what you expect it to do. We'll introduce you to the FlexLTnit4
library and also the mock-as3 library for mocking tire dependencies. Now, let's get
on to tire testing.

http://localhost:8080/ilexbugs/downloadjsp
http://www.balsamiq.com/

mtirmyour\
Flexmpp ma tio,

This chapter covers
• Unit t e s t i n g w i t h F lex l ln i t

• M o c k tes t ing w i th mock -as3

• Leveraging the hamcres t -as3 matchers

• Generat ing a t e s t repor t

Every good programming book includes a discussion of unit testing. Whether you
follow the practice of test-driven development, which the autiiors advocate, or write
your tests after die fact, an automated suite of unit tests is a valuable accompani-
ment to your application. A comprehensive suite of unit tests proves to your cus-
tomer that the code you wrote does what it's supposed to do. It also provides
developers making changes to your code both confidence that die changes will not
break anything and up-to-date documentation in the form of unit tests. Written
documentation can easily get out of sync with die implemented code; a good suite
of passing unit tests should always be in sync with die code. You can tiiink of your
unit tests as a form of executable documentation that developers can use in the
years to come.

192

Unit testing and TDD 193

10.1 Unit testing and TDD
If you're not familiar with the practice of Test Driven Development (TDD), figure 10.1

shows the basic workflow. In a nutshell, you start by writing a failing unit test, then

write only enough implementation code to make it pass. When you get a passing test,

you start the process over again.

Writing code tiiis way has a couple of interesting side effects. The most obvious

one is diat your code is more likely to be written in a testable manner, because you're

starting with the tests first. A not so obvious ef fect of practicing TDD is that you add

only code that is absolutely necessary, and less speculative coding occurs. There are a

great many books about test-driven development available, including Test Driven:

Practical TDD and Acceptance TDD for Java Developers, by Lasse Koskela (http://manning.

com/koskela/).

It's still easy to produce code tiiat you don't need in your application. Because you

didn't let the tests drive die code, you'll have extraneous code, but it will be well

tested extraneous code. One good way to ensure that you have only code and features

that are relevant and required in your application is to practice a more ref ined tech-

nique of test-driven development called Presenter First, die main motivation behind

the Model View Presenter pattern we introduced in chapter 4. The tiiinking behind die

Presenter First approach is that your Presenter tests map closely to your user stories,

and if you write only tests that map to your user stories, you'll avoid much of die gold

plating that we developers are often guilty of—sneaking in features tiiat we think

would be useful, but don't appear in any of die requirements set forth by die cus-

tomer. For a more thorough explanation of the Presenter First approach to develop-

ment, read die article in Better Software magazine at http://www.atomicobject.com/

fi les/BigComplexTested_Feb07.pdf

Test fails j m Write code

r

Test passes

Refactor
V*

M

® Figure 10.1
TDD workflow

http://manning
http://www.atomicobject.com/

1 9 4 CHAPTER 10 Testing your Flex application

In this chapter we use the unit testing framework FlexUnit, and more specifically tire

latest incarnation of the FlexUnit4, which brings the framework more in line with cur-

rent unit testing frameworks available for Java such as JUnit4. Features introduced

with this newest version of FlexUnit include:

• N o need to inherit f rom the TestCase base class

• The addition of annotations for adding metadata to your test cases

• Easier asynchronous testing

• Introduction of Hamcrest matchers

For a comprehensive listing of all the new features in FlexUnit4, check out the docu-

mentation at http: // docs.flexunit.org/index.php?titie=FlexUnit4FeatureOverview. We

won't get into a lengthy discussion on FlexUnit and how to use tire FlexUnit frame-

work; instead, we' l l discuss the features as we introduce them in our examples.

One of tire main purposes of unit testing is to try to narrow your scope of testing as

much as possible, which is why it's called unit testing. To do that you can use a mock

testing framework to remove any external dependencies in the class you're testing. By

injecting these mocks into your class during unit testing, you're able to test how your

class interacts with its external dependencies without relying on tire existence of those

external dependencies. The mock testing framework we'l l be utilizing in this chapter

is called mock-as3. The mock-as3 project is hosted via Google Code at http://code.

google. com/p / mock-as3 /.

NOTE The mock-as3 framework is no longer being maintained but has been
replaced by tire Mockolate framework which can be found at http://github.
com/drewbourne/mockolate.

To get started unit testing in our Flex application, we' l l need to make some changes to

tire project. Let's get started.

10.2 Updating the project
Before we can start writing our first unit test, we' l l need to update tire pom.xml for

our flex-bugs-lib project to add the necessary unit testing libraries as dependencies

and also tire unit testing support for tire FlexMojos plugin that we're using for our

builds. The fol lowing listing shows tire updates that we need to add to our pom.xml.

Listing 10.1 Updated pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<build>
<sourceDirectory>src/main/flex</sourceDirectory>
<testSourceDirectory>src/test/flex</testSourceDirectory>

Test source
directory

http://code
http://github
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd
http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance

Updating the project 195

</build>

<dependencies>

<dependency>
<groupId>org.sonatype.flexmoj os</groupId>
<artifactld>flexmojos-unittest-support</artifactld>
<version>${flexmoj os.version}</version>
<type>swc</type>
<scope>test</scope>

</dependency>
<dependency> <

<groupId>com.adobe.flexunit</groupId>
<artifactld>flexunit</artifactld>
<version>4.0-beta-2</version>
<type>swc</type>
<scope>test</scope>

</dependency> <
<dependency> <

<groupId>org.hamcrest</groupId>
<artifactld>hamcrest-as3</artifactld>
<version>l.0</version>
<type>swc</type>
<scope>test</scope>

</dependency> <
<dependency> <

<groupId>mock-as3</groupId>
<artifactId>mock-as3</artifactld>
<version>l.0.0</version>
<type>swc</type>
<scope>test</scope>

</dependency> <

n FlexMojos
testing support

A FlexUnit
dependency

A Hamcrest
matcher
dependency

A Mock-as3
dependency

</dependencies>
<reporting>

<plugins>
<plugin> <1—I

<groupId>org.apache.maven.plugins</groupId>
<artifactld>maven-surefire-report-plugin</artifactld>

</plugin> <1—I
</plugins>

</reporting>
<properties>

<flexmojos.version>3.4.2</flexmojos.version>
</properties>

</project>

0 Test report
plugin

The first section of tlie pom.xml that needs to be modi f ied is die section that tells

Maven where your test sources are. You override die default location o f s r c / t e s t / j ava

1 9 6 CHAPTER 10 Testing your Flex application

with the location of src/ t e s t / f l e x O to more closely fol low the convention you're fol-

lowing for your source code. Next you add a dependency on the FlexMojos unit testing

support library Q . Then you add dependencies on die FlexUnit4 die Hamcrest

matcher library and die mock-as3 library Q . You may also notice that you've

def ined die scope of these dependencies as having test scope. That way they will not be

included in die artifact that ultimately is deployed to your application server when you

deploy your application. The last thing you added to die pom.xml is the reporting

plugin which gives you the ability to generate test reports for your unit tests.

The dependencies for die unit testing support and FlexUnit4 exist on the

Sonatype Maven repository; however die Hamcrest and mock-as3 dependencies do

not. You can eitiier download tiiose libraries and install them manually using the mvn
install: install-file plugin or use die Maven repository we have set up for the

sample code in our book using the Google Code repository.

Now that you've got the project set up and ready for testing, you'll start looking at

how to unit test your Flex application. To illustrate this you're going to test die

MasterPresenter, MasterView, and IssueModel. These classes are simple enough for

us to keep our examples short and to die point, yet tiiey contain enough functionality

to properly illustrate most o f the situations you'll need to test. To start you'll begin

with testing the MasterPresenter.

10.3 Testing the Presenter
We've chosen to start our unit testing examples with testing the Presenter, because, as

we stated earlier, die Presenter typically maps closest to your user stories, and die Pre-

senter will often be die most complex part o f die M V P triad because it has more

responsibility than die otiier two parts. First you create the unit test class for your

MasterPresenter. Create the package structure for die org. foj .presenter package

under die src/test/flex fo lder inside die flex-bugs-lib project. Next create the

MasterPresenterTest. as class inside this org. foj .presenter package. The first part

of the code for die MasterPresenterTest class is shown in listing 10.2.

Listing 10.2 MasterPresenterTest .as

package org.foj.presenter {

public class MasterPresenterTest {

public var target:MasterPresenter;

public var mockery:Mockery;
public var view:MasterView;
public var model:IssueModel;
public var mockResponder:IResponder;

public var dispatcher:EventDispatcher;

[Before(async, timeout=5000)]
public function setUp():void {

^ ^ Testing
target

Mocks and
mock control >

^ ^ p EventDispatcher

setUp method

Testing the Presenter 197

mockery = new Mockery();
mockery.prepare(MasterView);
mockery.prepare(IssueModel);
dispatcher = EventDispatcherFactory.getEventDispatcher();
Async.proceedOnEvent(this, mockery, Event.COMPLETE, 5000);

For those familiar with Java and JUnit tiris should look familiar. You name your test

class widr the convention of <ClassName>Test because tiris is tire default pattern that

Maven will use to look for test classes when running your tests during tire build pro-

cess. You start with def ining a few private member variables for tire class you're trying

to test O , tire mock control and the mock objects you'll need to interact with and

your good friend tire event dispatcher © . Because most of your classes will use tire

event dispatcher f rom the EventDispatcherFactory, you'll also need to use tiris in

your tests to ensure that your events are properly dispatched and handled.

Next you create a setup method that will be run at tire beginning of each test in

your class Q . You named your method setup merely out of habit—you could name it

whatever you like. In the previous version of FlexUnit you had to override tire setup

method f rom the base class; now tire framework uses tire [Be f o r e] annotation to

know which method to use for its setup. You also add more metadata to tire annota-

tion to tell FlexUnit that tiris test will use some asynchronous functionality and that it

should time out after 5 seconds, meaning the test will fail if it runs longer. This illus-

trates one of tire potential pitfalls o f testing with FlexUnit. If your unit tests are run-

ning long, you may end up with false positive failures and you'll f ind that periodically

you'll have tests that will time out and fail for no reason.

Inside tire setup method you set up a mock control by instantiating a new Mockery

class. Then you tell tire mock control to prepare tire mocks by calling prepare () for

each class that you'll be mocking. The last step is to tell the test to wait until tire mock

control has finished preparing by calling tire proceedOnEvent method and setting tire

event you want to proceed on to the complete event f rom your mockControl.

Then you define the counterpart to your setup method, tire teardown method Q .

As you did for tire setup, you fol low tire convention of calling tiris method tearDown

out of habit. The [A f t e r] annotation tells the framework to run this after every test

method run. The only tiring that you do inside your teardown method is to call v e r -

i f y on your mocks to ensure that everything you expected tire mocks to call was

indeed called.

[After]
public function tearDown():void {

mockery.verify(model, view); 1 > tearDown method

1 9 8 CHAPTER 10 Testing your Flex application

10.3.1 Testing refresh issues
Now that you've got the skeleton for your MasterPresenterTest written, let's start

with your first test. The first piece of functionality you're going to test would probably

come f rom a user story, the first part of which would read something like tiiis:

In order to ensure that the issues I'm viewing are up to date, when I click the Refresh
button, the application should retrieve die issues f rom die server and refresh the

data grid with the results.

The important part o f tiiis story is the when. The action identified in die when state-

ment will need to be tested by your Presenter tests. The when tiiat you will be testing is

the part of the story that states when I click the Refresh button, the application should retrieve

the issues from the server.

Listing 10.3 shouldCallGetlssuesFromModel

[Test] <i—O Test annotation
public function shouldCallGetlssuesFromModel ():void {

model = mockery, strict (IssueModel) as IssueModel; I M Create f view = mockery.strict(MasterView) as MasterView; \ mocks

mockery.mock(model) .method("getlssues") .withArgs(IResponder) .once; <1—i
target = new MasterPresenter (view, model); <]—, Mock expectation © 1 var event:UIEvent = new UIEvent(

uiEvent. REFRESH_ISSUES_BUTTON_CLICKED I ® Create target

© Create and dispatch event dispatcher.dispatchEvent(event); ^ r

}

You start by annotating your test method witii the [Tes t] annotation © . FlexUnit4

utilizes this [Tes t] annotation to know which methods are your test metiiods. Next

you create your mocks by calling die strict method on your mock control © passing

in the class tiiat you want to mock. You use strict mocks here so that if any metiiods are

called on your mocks tiiat you don't explicidy set up, your mock control will fail the

test in the teardown when you call v e r i f y . You tiien set up the expectation on your

mock © . The expectation syntax for mock-as3 is fairly self-explanatory, and most of

die time will look similar to this.

Let's stop to analyze this line o f code. The first method you're going to mock is

on die model, which is die mock for die IssueModel class. You're expecting your code

to call the getlssues metiiod, and you're going to pass in an argument o f type

IResponder and expect it only once. You could as easily put a concrete value or object

in tiiis expectation, and die mock framework would test die equality of what die

meti iod is called with. In tiiis instance you can't easily try to per form an exact match on

the IResponder; you're more interested in whetiier or not the method is called.

Next you create your target by calling die constructor and passing in die mocks

tiiat you created © . Last you simulate die behavior tiiat your view will exude. You cre-

ate a new event of type REFRESH_ISSUES_BUTTON_CLICKED and dispatch it 0 .

Testing the Presenter 1 9 9

For your code to compile, you need to change tire constructor for your Master-
Presenter class to allow injection of both tire View and the Model .

Listing 10.4 Updated Mas t e rP r e sen te r

public function MasterPresenter!
view:MasterView = null,
model:IssueModel = null) {

if (model != null) {
this._issueModel = model;

} else {
this._issueModel = new IssueModel();

}

this._view = view;

}

You first have to add in tire ability to pass in an IssueModel to tire MasterPresenter as

well as the MasterView Q . You also are defaulting it to null, which means that you

don't need to change any of tire code that you wrote earlier that doesn't pass in this

extra parameter. That's one o f tire nice things about being able to specify default

parameters. Next you add a block of code to set the issueModel to either tire value

passed into tire constructor, or instantiate a new one if nothing was passed in © . Last

you set tire view that was passed in

Now you can run the unit test and it should pass. Open a command line and navi-

gate to tire flex-bugs-lib fo lder and type mvn test. A f ter all of tire messages scroll by,

you should see tire results f rom tire tests being run.

10.3.2 Issues result event test
Now you can test the second half o f the user story f rom the previous section. To

f ind tire next when in that user story, you could rewrite tire story to read more

like this:

In order to ensure that the issues I'm viewing are up-to-date, when I click the Refresh

button, the applica tion should retrieve the issues from the server and when the result comes

back from the server, refresh the data grid with the results.

In an ideal world you would be able to capture the responder object passed into your

mock in tire test you wrote; unfortunately, as of this writing, tire mocking framework

that we're using doesn't support that. To overcome this you need to scope the meth-

ods tlrat your result events call to the public scope so that you can call it directly. List-

ing 10.5 shows tire test for tire result f rom tire call to the getlssues method on tire

IssueModel.

I A Constructor
If parameters

Setting model

^ ^ P Setting view

200 CHAPTER 10 Testing your Flex application

Listing 10.5 shouldSetlssuesPropertyOnView
[Test]
public function shouldSetlssuesPropertyOnView ():void {

model = mockery.strict(IssueModel) as IssueModel;
view = mockery.strict(MasterView) as MasterView;

< i — O Test annotation

f
Create
mocks

var issues : ICollectionView = new ArrayCollection () ; < — © Mock result data

mockery.mock(view).property("issues").withArgs(ICollectionView).once;
target = new MasterPresenter(view, model);

6
Mock property

access Create

var resultEvent: ResultEvent = w target
new ResultEvent(ResultEvent.RESULT, false, true, issues);

target.getlssuesResult(resultEvent);
} Simulate result event

n
n

You start as you did in the last test by annotating die meti iod witii the [Test] annota-

tion Q . Next create your mocks by calling strict on the mock control create an

ArrayCollection that will be included in the resultEvent No t only can you mock

method calls on your mocks, but you can also mock property access. You mock out

access to die set property issues Q . In tiiis case we're saying that the issues property

will be set witii some instance of ICollectionView. With all of the expectations set,

you can now instantiate your Presenter © with your mocks. Last you create a Result-
Event Q to simulate the model calling die event handler and call die getlssues-
Result passing in the ResultEvent.

10.3.3 Testing issue removed
The next tiling you want to test is what happens when an issue is deleted. This feature

may be described sometiiing like the following:

In order to remove issues that may be invalid or incorrect, when the user clicks the remove

issue, the application should delete the selected issue.

Again, the important part o f the user story is what's described in die when part o f the

description. In this case you want to simulate some other part of die application dis-

patching an event indicating that the Delete Issue button has been clicked.

Listing 10.6 shouldCallRemovelssueOiiModel

[Test]
public function shouldCallRemovelssueOnModel ():void {

var selectedlssue: Issue = new Issued;
selectedlssue.id = 123;

model = mockery.strict(IssueModel) as IssueModel;
view = mockery.strict(MasterView) as MasterView;
mockery.mock(model).method("removelssue")

.withArgs(selectedlssue.id, IResponder).once;

target = new MasterPresenter(view, model);

1> Test annotation

Mock
objects

1 > Mock expectation

< — © Instantiate target

Testing the Presenter 201

var event:UIEvent = new UIEvent(UIEvent.REMOVE_ISSUE_BUTTON_CLICKED);
event.data = selectedlssue;
dispatcher.dispatchEvent (event) ; Create and dispatch event n

This test follows the same pattern as the first one you wrote. You start by annotating

your test with the [Test] annotation O - Next you create an issue local variable that

you'll utilize in your mock expectation. Then you create your mocks by calling the

strict method on the mock control Af ter you've created your mocks you can

define your expectation of the removelssue method on die model being called

This expectation will take a value in trying to match the value o f the id property on

the issue you created in die test, as well as an argument o f type IResponder. Next you

instantiate your test target Q . In this test you're passing along data witii the event that

you need to dispatch Q , so you instantiate a new event and set its data property to die

issue you created in your test and dispatch it.

10.3.4 Remove issue result test
Now diat you have the first part o f die Remove Issue functionality complete, you need

to test what happens when you receive the ResultEvent f rom the IssueModel. This

test will be similar to the way you tested die result for the Refresh Issues button being

pressed earlier.

Listing 10.7 shouldResetGridAndFireSelectedlssueChangedEvent

[Test(async, timeout=8000)] <s—0 Test annotation
public function shouldResetGridAndFireSelectedlssueChangedEvent ():void {

model = mockery.strict(IssueModel) as IssueModel;
view = mockery.strict(MasterView) as MasterView; he

Create
mocks

mockery.mock(view).method("resetlssuesGrid").
withNoArgs.once;

mockery.mock(model).method("getlssues").
withArgs(IResponder).once;

Async.proceedOnEvent(thi s,
dispatcher,
UIEvent.SELECTED_ISSUE_CHANGED,

target = new MasterPresenter(view, model);

A Mock
' expectations

8 0 0 0) ;

J
J

Expected
event

Instantiate
target

I var resultEvent:ResultEvent = new ResultEvent(ResultEvent.RESULT);
target.removelssueResult(resultEvent);

Call the target

The first tiling you may notice is that die [Test] annotation Q looks more like the

setup method you def ined in listing 10.2, with the extra metadata stating that tiiis

method will use die Async .proceedOnEvent meti iod and tiiat it should time out

after 8 seconds. Next you create your mocks as before, by calling die strict meti iod

on the mock controls Q , along with setting the mock expectations that you'll call

the resetlssuesGrid meti iod on the view (you will need to define tiiis method to

202 CHAPTER 10 Testing your Flex application

get the test to compi le) , and that you'l l call the g e t l s sues met i iod on die mode l

to refresh die data grid

The call to g e t l s sues will occur as a result o f die SELECTED_ISSUE_CHANGED event

diat you're expecting to be dispatched in the event handler, and you define that

expectation next Q . This call to tire proceedOnEvent method allows you to def ine an

expectation on the test method that will fail unless the Presenter dispatches the event

you pass in as an argument to the proceedOnEvent method. You'll notice that we're

using tire dispatcher f rom the EventDispatcherFactory in this expectation as well.

This is because your application will use this to dispatch its events, and in order for

your test to work as expected, it will need to utilize tire same event dispatcher that the

application will use.

The next step is to instantiate your Presenter passing in tire mocks you created at

tire beginning of this unit test Q ; after that, you create a ResultEvent Q to call the

method that you're testing and invoke it.

Now all that's left to do is to run tire tests again. Open a command line and navi-

gate to tire f l e x - b u g s - l i b project and run tire mvn t e s t command. When the smoke

clears, you should be presented with a message telling you that you now have four

passing tests. You have merely scratched the surface with unit testing the Presenters in

this application; tire examples we presented should be enough f irepower for you to

continue to write all tire tests necessary for tire Presenters. We ' re now going to move

along to testing your View components.

10.4 Testing the View
Now that we've shown how to test your Presenters, it's time to move on and unit test

your View components. When we say unit test your View components, we 're not talking

about in browser functional testing. For that level of testing you'll want to look at

either tire FunFX (http://funfx.rubyforge.org/) testing framework or the Selenium-

Flex-API (http://c0de.g00gle.c0m/p/sfapi/). Instead we're talking about testing tire

public API exposed by your View components to tire rest of tire application. Again,

you'll start by creating the test class.

Listing 10.8 MasterViewTest

package org.foj.view {

public class MasterViewTest {

private var target:Masterview;
private var eventDispatcher:EventDispatcher;

J Test target

Event
dispatcher

[Before (async,ui)] method J setUp

public function setUp():void {
target = new MasterView () ; Q Initialize
target, initialize () ; <—1 target
eventDispatcher = EventDispatcherFactory.getEventDispatcher();

http://funfx.rubyforge.org/
http://c0de.g00gle.c0m/p/sfapi/

Testing the View 203

}

} }

You start this test by def ining a couple of private fields for your test target Q and your

event dispatcher Q . Then you define a setup meti iod Q to be called before each test

that runs. Inside of die setup meti iod you instantiate a new MasterView and initialize

it by calling the initialize meti iod Q . You do this because M X M L components have

a lifecycle o f tiieir own, and when your application starts and components are added

to your application, Flex will call these lifecycle methods and generate events. In

order for your component to properly initialize itself and all o f the child components,

you need to manually call die initialize method.

One tiling you may notice is that die test for your View component doesn't

include any mocks. Because tiiis View component doesn't have any external depen-

dencies, this test will be more of a stateful test as you assert that the state of die

components contained witiiin your view change as you expect them to when calling

the public metiiods.

10.4.1 Testing the issues set property
The first thing you'll be testing in the MasterView is the set property for the issues

data grid. By default any child components added to your M X M L component have

public access applied to them, so you could easily only allow your Presenter to access

the child components direcdy because it has a reference to the View. The not-so-good

news is not only is tiiis not easily testable, it violates the Law of Demeter (http://

c2.com/cgi/wiki?LawOfDemeter) by allowing your Presenter to call metiiods and

properties on the child components of your View.

Listing 10.9 issuesPropertySetsDataProviderOnDataGrid

[Test]
public function issuesPropertySetsDataProviderOnDataGrid():

var dataProvider:ArrayCollection = new ArrayCollection();
var issuel: Issue = new Issued;
issuel.id = 1;
dataProvider.addltem(issuel);

var issue2: Issue = new Issued;
issue2.id = 5;
dataProvider.addltem(issue2);

target.issues = dataProvider;
assertThat (target.masterViewDataGrid. dataProvider, <1—

equalTo(dataProvider)); |
}

The code for your first view test is shown in listing 10.9. Start your test by creating an

ArrayCollection with a couple o f Issue objects to call the issues set property with Q .

>id {

O Dummy data

Call issues
© set property

Assert the state

204 CHAPTER 10 Testing your Flex application

Then you call the issue set property and set it to the ArrayCollection you created © .

Next you assert drat tire dataProvider property of tire masterViewDataGrid is equal

to dre ArrayCollection you passed in © . This last line shows the Hamcrest matcher

syntax, and how readable it makes your assertions. You can clearly gather f rom that

line of code what it you expect to happen.

10.4.2 Testing resetlssueGrid function
There is one other public method that you want to test for tire MasterView, the

r e s e t l s suesGr id method. This method will make sure that there is no selected item

on tire data grid by resetting its selected index property to -1.

Listing 10.10 resetlssuesGridRemovesAllDataFromDataGrid

[Test]
public function resetlssuesGridRemovesAHDataFromDataGrid():void {

var dataProvider:ArrayCollection = new ArrayCollection!); <3
var issuel: Issue = new Issued;
issuel.id = 1;
dataProvider.addltem(issuel);

var issue2: Issue = new Issued;
issue2.id = 5;
dataProvider.addltem(issue2); ^

0 Dummy
data

target.issues = dataProvider;
target.masterViewDataGrid.selectedlndex = 1;

< i — © Set issues
< — © Select issue

target. resetlssuesGrid () ; <1—© Call resetlssuesGrid

assertThat(target.masterViewDataGrid.selectedlndex, equalTo(-l));
Assert grid reset

You start this test by creating an ArrayCollection to simulate your data grid hav-

ing data © , then set tire issues property o f your view to the sample data you

created © . Next you select an item on the grid by setting tire selectedlndex
property o f tire datagrid to 2 © . Then you call tire method you're testing © and

assert that the selectedlndex of tire DataGrid is set back to -1 © . Although we

discourage reaching into tire insides of the View's child components to directly

modi fy properties in your production code, you don't have a choice when it comes

to testing tire View.

10.4.3 Testing refresh issues button click
Now that you have tire public API tested, you still need to test that certain events are

f ired when things such as button clicks occur. The first of these tests, testing for tire

Refresh Issues button click, is shown in listing 10.11.

Testing the View 205

Listing 10.11 ref reshButtonClickTriggersUIEvent

J [Test(async)]
public function refreshButtonClickTriggersUIEvent():void {

Async.proceedOnEvent(thi s,
eventDispatcher,
UIEvent.REFRE SH_IS SUE S_BUTTON_C LICKED, 5000)

Test
annotation

proceedOnEvent

target.refreshlssuesButton.dispatchEvent(
new MouseEvent(MouseEvent.CLICK)); 1> Simulate

mouse click

This is a fairly simple test because you don't have to do any kind of setup to run it. You

start by annotating the test with die [Test] annotation and add die extra bit o f meta-

data to tell FlexUnit that this test will utilize the asynchronous features Q . Next you

set the expectation for the REFRESH_ISSUES_BUTTON_CLICKED event Q . Last you simu-

late your button click by having the refreshlssuesButton dispatch a MouseEvent o f

type CLICK © . That's all tiiere is to it. Next we're going to test something more com-

plex, the item click on die DataGrid.

10.4.4 Testing DataGrid item select
The last test we're going to write for the View before we move on to writing tests for

the model is for when a user clicks an item in die DataGrid. This test will require a bit

more setup tiian the last test you wrote, as you need to have data in your DataGrid for

the event handler to work.

Listing 10.12 selectingDataGridltemTriggersUIEvent

< i — O Test annotation

J Expected
event

[Test(async)]
public function selectingDataGridltemTriggersUIEvent():void {

Async.proceedOnEvent(thi s,
eventDispatcher,
UIEvent.SELECTED_ISSUE_CHANGED, 5000);

var dataProvider:ArrayCollection = new ArrayCollection();
var issuel: Issue = new Issued;
issuel.id = 1;
dataProvider.addltem(issuel);

var issue2: Issue = new Issued;
issue2.id = 5;
dataProvider.addltem(issue2);

target.issues = dataProvider;

target.masterViewDataGrid.dispatchEvent(
new ListEvent(ListEvent.ITEM_CLICK, false, false, 1, 2));

Simulate ItemClick

A Sample
data for
DataGrid

i c k ^ b

206 CHAPTER 10 Testing your Flex application

Again you start by annotating your test with tire [Test] annotation and adding tire

async parameter Q - Next set your expectation that the SELECTED_ISSUE_CHANGED
event will be dispatched Q . Now you need to create an ArrayCollection and popu-

late it with a couple of Issue objects, allowing you to set the dataProvider property

on tire DataGrid © so that tire DataGrid will contain tire item that you say you're

going to click. Last you simulate the user clicking an item in tire DataGrid by having it

dispatch a ListEvent o f type ITEM_CLICK © . The other parameters in tire constructor

for the ListEvent determine four things: whether tire event should bubble up

through tire parent containers, whether or not it's cancellable, tire column that you

clicked, and which row you clicked. In this instance we're simulating tire user clicking

tire first column of tire second row of tire DataGrid.
Now you should be able to run tire tests again by opening up a command line, nav-

igating to your project fo lder and typing mvn test. A f ter all of the messages scroll by

you should be presented with a message saying that all tests passed. If not, the results

of tire unit tests are located in tire target/surefire-reports directory. Now that we've

got tire View tests working, let's move on to tire Mode l tests.

10.5 Testing the Model
Now tlrat we've got the Presenter tests as well as tire View tests well under way, it's

time to look at writing tests for tire Model . The tests you'll be writing for the Mode l

will be somewhat similar to those you used to test tire Presenter in tlrat we' l l be test-

ing the interaction between tire Mode l and tire RemoteService by utilizing mock

objects and setting expectations on tire executions per formed on them. You'll start

as you did for the Presenter and View tests by creating the test class.

Listing 10.13 IssueModelTest .as

package org.foj.model {

public class IssueModelTest {

private var target:IssueModel;
private var service:MocklssueService;
private var token:AsyncToken;
private var responder:IResponder;
private var mockery:Mockery;

Private
fields

[Before(async,timeout=5000)]
public function setUp():void {

mockery = new Mockery();
mockery.prepare(MocklssueService);
mockery.prepare(AsyncToken);
mockery.prepare(IResponder);

n Setup
method

Async.proceedOnEvent(this, mockery, Event.COMPLETE, 5000);

Testing the Model 207

[After]
public function tearDown():void {
mockery.verify(service, token);

}
} }

This test class starts much like the Presenter test. You define private fields for die tar-
get class you're testing, the mocks that you'll need to interact with, and your mock
control Q . Inside your setup method, you instantiate your mock control and prepare
the various mocks tiiat you'll be using, and set die expectation to allow the test to con-
tinue only when the COMPLETE event is dispatched, ensuring that your mocks are ready
to be used © . Last you define your tearDown metiiod and put a call to die v e r i f y
metiiod on your mock control inside

10.5.1 Mocking and RemoteObject
Before you can start writing your tests for the IssueModel, there is a caveat regard-
ing die RemoteObject class. As we've mentioned before, ActionScript is a fairly pow-
erful dynamic language. For tiiose familiar with Groovy or Ruby you'll likely be
familiar with the concept of having die ability to create fluent domain specific lan-
guages (DSLs) by leveraging die method missing functionality. ActionScript also has
this ability, and the AbstractService class, which all of your remoting components
HTTPService, WebService, and RemoteObject derive from, takes advantage of tiiis to
allow you to call the remote object methods as if they were defined by these remot-
ing components.

ActionScript dynamic classes, proxies, and method missing
To learn more about how to use dynamic c lasses and implement something like
method jn l ss ing in Act ionScript , there is a good article on the FlexOnRalls blog at
ht tp ://f lexonra l ls .net/?p=95,which should get you started.

The problem witii this arises when you try to mock calls to these dynamic metiiods
that don't exist in die RemoteObject class. It would appear tiiat there is a limitation on
how the mocking framework instruments and creates mock objects—only die metii-
ods that exist in the class definition that you're mocking are able to be called. If die
metiiods don't exist, die metiiod call will be captured by die ca l lProper ty method
and exhibit die same dynamic behavior tiiat it would in your production code, which
is not what you want. To get past this, define a stub class tiiat will extend die Remote-
Object class. Inside this class you will stub out die metiiods that your remote service
exposes, then you'll mock this MocklssueService class inside of your tests so you can
properly set and verily your expectations.

Teardown
© method

http://flexonralls.net/?p=95,which

208 CHAPTER 10 Testing your Flex application

Listing 10.14 MocklssueServ ice .as

package org.foj.model {

import mx.rpc.AsyncToken;
import mx.rpc.remoting.RemoteObj ect;

public class MocklssueService extends RemoteObject {

public function getAll():AsyncToken {
return null;

}

public function get(id:*):AsyncToken {
return null;

}

public function save(issue:*):AsyncToken {
return null;

}

public function remove(id:*):AsyncToken {
return null;

}

Extends
RemoteObject

A Stubbed
methods

Start your class definition by extending RemoteObject so you can use tiiis to create a

mock and pass it to your IssueModel when you instantiate it in the test O - Next stub

out the methods tiiat you call on your RemoteObject inside die IssueModel, and

stub them to return null It doesn't matter what you put in these metiiods

because you'll be using the mock framework to define your expectations.

Listing 10.15 updated IssueModel constructor

public function IssueModel(issueService:RemoteObject = null) {
if (issueService != null) {
_issueService = issueService;

} else {
var defaultChannelSet:ChannelSet =
ChannelSetFactory.getDefaultchannel();

_issueService = new RemoteObject();
_issueService.destination = "issueService";
_issueService.channelSet = defaultChannelSet;

You updated die constructor on die IssueModel class to enable injecting the mock

RemoteObject via the constructor.

Testing the Model 209

10.5.2 Testing getlssues
Now we're ready to write the IssueModel tests. Let's start by testing tire g e t l s sues

method, which is probably tire most called method in tire IssueModel.

Listing 10.16 callsGetAHOnRemoteService

[Test]
public function callsGetAHOnRemoteService():void {

service = mockery.strict(MocklssueService) as MocklssueService;
token = mockery.strict(AsyncToken)as AsyncToken;
responder = mockery.strict(IResponder) as IResponder;

mockery.mock(service).method("getAll")
.withNoArgs.returns(token).once;

mockery.mock(token).method("addResponder")
.withArgs(responder).once;

target = new IssueModel(service);
target.getlssues(responder); J

Mocks O

Mock

expectation

Call
getlssues

You start by creating the mocks you need for this test, a mock of your Mocklssue-

Se rv i c e tlrat you defined, a mock AsyncToken, and a mock IResponder Q . Next you

define your expectations on tire mocks, starting with tire expectation to call tire

g e t A l l method with no arguments, and returning tire mock AsyncToken you created.

Then you expect tlrat the mock AsyncToken's addResponder method will be called

with the mock IResponder you created Q and use to also call tire method you're test-

ing Q . Let's look at testing tire g e t l s sue method.

10.5.3 Testing get single issue
The next method you'll test on tire IssueModel is tire g e t l s sue method, which takes

in an issue ID as the first parameter to look up an issue by its ID. It's only slightly more

involved than tire test you wrote, but still easy to follow.

Listing 10.17 callsGetOnRemoteService

[Test]
public function callsGetOnRemoteService():void {

service = mockery.strict(MocklssueService) as MocklssueService;
token = mockery.strict(AsyncToken)as AsyncToken;
responder = mockery.strict(IResponder) as IResponder;

Mocks O

var id:Number = 42; < — © ID parameter

mockery.mock(service).method("get").withArgs(id).returns(token).once;
mockery.mock(token).method("addResponder").withArgs(IResponder).once; h
target = new IssueModel(service);

target.getlssue(id, responder);
Mock expectations O

Call getlssue

210 CHAPTER 10 Testing your Flex application

You start this test the same way you did die g e t l s sues test, by creating all of the mocks

diat you need Q . You tiien define a local variable to contain the i d parameter Q tiiat

we'l l call the meti iod we're testing with. Next def ine your expectations on the mocks

Q , which look similar to the g e t l s sues test expectations, except that this time you're

expecting the ge t method on your RemoteObject to be called with die i d parameter

you def ined previously. In die last step you instantiate your IssueModel with your

mock service and call the g e t l s sue meti iod Q .

You now have a good start on die unit tests for this project. If you're feel ing ambi-

tious continue down die road of writing more tests for the project. When you're fin-

ished come back and we'l l set up a continuous integration server using Hudson. Or

come back after you've got Hudson set up. It's your choice.

10.6 Continuous integration with Hudson
When a team of two or more of developers works together, an immediate need arises

for frequent feedback on how tilings are going, as changes are committed between

team members. This is where die practice of Continuous Integration (CI) comes in to

play. Tooling, like Hudson, becomes a third party and impartial member of a team. A

good CI server provides teams witii essential feedback through the orchestration of

critical project events as they pertain to the building and stability of die source code.

It also can provide a unique look into the healtii of an application.

In this section, a Hudson CI server will be configured to:

• Listen for changes in die version control system

• Automatically build die project f rom die top-level POM when changes are

discovered

• Execute and report on unit test execution

• Fail builds upon build errors or failed tests

• Send email out to team members upon failed or corrected builds

Setting up a CI server with even the most basic configuration yields several benefits.

How a team configures and uses a CI server depends on what die application does and

what kind of feedback is necessary to ensure that everything is in a healtiiy state. Every

step, f rom code being checked into die version control system to die final verification

of the deployment, and everytiiing in between, is important.

Several plugins can be configured witii Hudson for dif ferent purposes. To

understand what kind of CI configuration best suits a team's needs a team may

consider jott ing down a list of questions that may be important to know every day

during development.

• What does die application do?

• What are die user stories? (test coverage?)

• Does die source code compile when integrated?

• Do all die unit tests run successfully?

Continuous integration with Hudson 211

• Is the code quality acceptable? (Hudson has plugins for code quality tools like

PMD, FindBugs, and otiier analysis tools.)

• Is there an unhealthy volume of TODO and FIXME annotations in the code and

what are tiiey? (Hudson has a task scanner plugin tiiat performs static analysis

and creates visibility for diese in Java code comment annotations along with

unhealthy thresholds settings.)

• Does the application deploy successfully?

• How do you verily die application and die environment(s) it has to run inside?

Now tiiat you have a feel for why you would want to have a CI environment let's move

on to getting a sample Hudson instance set up for demonstration.

10.6.1 Downloading and installing Hudson
Installing Hudson couldn't be more trivial. Hudson is a simple Java web application

and downloads as a WAR file. To download Hudson, open your browser and navigate

to http://hudson-ci.org. There you will find the latest and greatest link for download-

ing die most current release.

Hudson requires JRE 1.5 or later and can be started standalone, witiiout an appli-

cation server, by invoking the command java - j a r hudson.war, where the hudson.war

file was installed. This will f ire up Hudson inside o f an embedded Winstone servlet

container on port 8080 by default.

Hudson can also be installed into a f ixed servlet container tiiat supports Servlet 2.4/

JSP 2.0 or later, such as Glassfish, Tomcat, JBoss, and Jetty.

If problems arise during installation, consult the Hudson website for help. Let's

move on to configuring the server.

10.6.2 Configuring Hudson
If Hudson is installed correcdy you should be able to see die start screen. For tiiis sam-

ple you're using the embedded Winstone server. Open a web browser and navigate to

http://localhost:8080.Wlien diere, Hudson will present an initial start page with no

jobs configured as seen in figure 10.2.

First configure Hudson globally by selecting the Manage Hudson link. There you

can globally configure Ant, Maven, and JDK versions. Configuring things globally will

make them available for all jobs you create. Figure 10.3 displays die Hudson manage-

ment selection screen.

From the management screen select the Configure System link at die top of die

list of options. It's also possible to manage plugins, view system information, and view

logs f rom tiiis top-level screen. When you're in the configuration screen you can

begin to add die version of Maven and Java that you'd like to use globally. Figure 10.4

displays the configuration screen.

Consider die list of goals you want to accomplish for the demonstration. From the

Hudson configuration screen you want to configure a version of Maven, a JDK, and

email notification. Finally, you will save it f rom there.

http://hudson-ci.org

212 CHAPTER 10 Testing your Flex application

¿ D a s h b o a r d [H u d s o n]

Hudson
Hudson 0 I S A 6 L E A U T O BE F R E S H

• ¡ S f New J o b
W e l c o m e to Hudson ! P l e a s e c r e a t e n e w iobs to a e t s t a r t e d .

[g a d d desc r ip t ion

j H a n a a e Hudson

&Y»I<J H i r t f f r t

Build Queue
Mo builds in the queue.
Oui Id Executor 5tMus
t Status
1 Idle
Í Idle

Pagft gen f t r a ted : Nov 28, 2009 9:25:44 PM H u d s o n 1 . 3 3 6

Figure 10.2 Hudson start screen

Configuring Maven is as easy as selecting a version and instructing Hudson to automat-

ically install as seen in figure 10.5 or pointing Hudson to an installed Maven location.

Use tire default to install Maven automatically and enter a name for tire install some-

tiring meaningful for tire version. Choose tire version and installation will occur. To

Mi Marita mrfHWl llkldi«»] I t i
H u d s o n 1

Manage Hudson

d config files directly on diik.

Figure 10.3 The Hudson management selection screen

Continuous integration with Hudson 213

Ij (i, Hudson

Hudson
Hudson
ft' Men
j Manage Hudson

Build Hirtnrv

Build Queue

No builds in the queue.

Build Executor Status
9 Status
1 Idle
2 Idle

E l

Home directory

System Message

of executors

Quiet period

SCM checkout retry count

C:\Documents and Settings\ballmon\,Hudson O

m
• ©

©
Enable security

l~~ Prevent Cross Site Request Forgery exploits

& Help make Hudson better by sending anonymous usage statistics and crash reports to the
Hudson project.

Global properties

f - Environment variables

Maven

Maven installation I ^

List of Maven insti l lations on this system, &oth rnav&n I and 2 i re
J Up ported.

Figure 10.4 Hudson configuration screen

select a version o f Maven f r om a local installation, deselect the Install automatically

checkbox. Figure 10.6 displays the result.

Enter the MAVEN_HOME, as seen in figure 10.6, by pointing to the directory where

Maven is installed. That's it I As you can see it's possible to continue adding more

Maven installations by selecting the Add Maven button.

Maven"

Maven installation n a m e |maven-2.2.1

I* Install automatically

Instal l from Apache
Version | 2,2.1 3

Add Installer

Add Maven

©

Delete Installer

Delete Maven

List of Maven installations on this system. Both maven 1 and 2 are
supported.

Figure 10.5 Maven automatic installation selection

214 CHAPTER 10 Testing your Flex application

Maven

M a van installation " a m e jmaven-2 .2 .1

MAVEFJ_HOME |c:\java\maven\apache-maven-2.2.l|

Install automatically

Delete heaven

fii : 1 Maven

Lift of Maven Installations on this system, both miutn 1 and 2 ¿re
supported,

Figure 10.6 Maven local installation

Next, configure tire JDK version used to compile tire Java source code. It's possible

tlrat tire Maven POM files will override this but tire Hudson build server must contain

tire version required by tire POM. The JDK configuration works identically to tire

Maven configuration.

Finally, you can set up the mail settings by specifying a Simple Mail Transfer Proto-

col (SMTP) server, a default domain suffix, a system admin email address, and Hudson

URL, as seen in figure 10.7.

Having email configured will allow Hudson to communicate to teams when build

failures or corrections occur. Now that Hudson is ready, let's move on to creating a j o b

for tire FlexBugs application.

10.6.3 Configuring a Hudson job
Configuring a j o b for Hudson is as simple as configuring Hudson itself. In fact,

Hudson has good support for Maven projects and handles multimodule projects

with elegance by allowing you to drill down into tire specific modules to gain fine-

grained visibility.

E-mai l Notification

SMTP server |http ;//myMailServer.com ®

Default user e-mail suffix | ©

System Admin E-mail Address lhudson@myM3ilServer.com ©

Hudson URL jhttp ;//localhost:8080| @

Advanced...

Test configuration by sending e-mail to System Admin
Address

Save

Figure 10.7 Hudson email notification

Continuous integration with Hudson 215

To create a j o b in Hudson, select die New Job link on the left side o f the screen.

Hudson will present options for what type of j o b to create with die ability to enter a

name for the j ob and to copy configuration f rom another job, if one exists. Figure 10.8

displays this initial screen.

To demonstrate Hudson you will create a j o b for die FlexBugs application and

select a Maven 2 project. Af ter you select die O K button, Hudson will present die j o b

configuration screen. This is where you will configure access to the source control sys-

tem and otiier settings that will accomplish your basic goals for building and providing

feedback to die team when changes are checked into die source control system.

O n die j o b configuration screen you will mainly go with die default settings and

start by pointing Hudson to your source control management system. Figure 10.9 dis-

plays the settings that will accomplish this with settings to check for changes every 5

minutes. This will cause a build to occur.

The next tiling to do is configure the job with the needed Maven goals. Figure 10.10

displays tiiis part of the screen. It's good to note tiiat you can point Hudson to a P O M
in any directory or even to a Maven P O M otiier than something named pom.xml. The

MAVEN_OPTS may need to be configured to increase die memory size for running

inside the standalone Winstone server, for example, -Xms256m -Xmx768m -XX:Max-
PermSize=512m.

For FlexBugs you need to call die clean install goals at die top-level POM. This will

invoke die Maven build for all modules as usual. You also added die -e for outputting

Hudson IT

Hudson
Hudson

Job name |Flex.Bugs
~ Monitor an external job

TJiis type of job allows you to record the execution of a process run outside Hudson,
even on a remote machine. This is designed so that tou can use Hudson as a dashboard
of your existing automation system. See the documentation for more details.

' Uuild a free-sty le software project
This is the central feature of Hudson. Hudson will build vour project, combining any SCM
with any build system, and this can be even used for something other than software
build,

' Build multi-configuration project (alpha)
Suitable for projects that need a Forge number of different configurations, such as testing
on multiple environments, platform-specific builds, etc.

Build a maven? project
Build a maven2 project. Hudson takes advantage of your POM files and drastically
reduces the configuration.

ra

Page generated: Nov 2®, 2009 c 32:33 PM Hudson ver, l .336

Mew Job

/ Manage Hudson

~ Build Histor*

Build Queue

No builds in tbe queue.

Build Executor Status
Statu*
1 Idle
Z Idle

Figure 10.8 Hudson job configuration start screen

216 CHAPTER 10 Testing your Flex application

Source Code Management

C None

^ CVS

** Subversion
Modules Repository URL |https://flexonje va.googlecode.corr^svrv'f lex-bugs/trunk ©P @

Local module directory (optional) | i f î)

Add mo«« locations... ®

Use update

If checked, Hudson will use 'svn update' whenever possible, making the build faster. But this causes the artifacts
from the previous build to remain when a new build starts.

Repository browser (Auto) j J

Build Triggers

Advanced... |

& Build whenever a SNAPSHOT dependency is burlt

I - Build after other projects are built

I - Build periodically

& Poll SCM

Schedule V 5 • * * * 9 $

Figure 10.9 Source code management section

stack trace information and also set up email notification. The email notification will

use tire default mail settings you established when configuring Hudson global settings.

Af ter these settings are saved you can start tire build by selecting tire Build Now link.

Build

Root POM Ipom.xml m
Goals and options | m

Advanced... |

Build Settings

I - E-mail Notification ©
Post-build Actions

I - Archive the artifacts ®
Aggregate downstream test results 6

Build other projects 9
I - Deploy artifacts to Maven repository ©

Savtt |

Figure 10.10 The build instructions and email notification settings

https://flexonje

Summary 217

From there you have a build started tiiat will check out die source code and build the

entire application while providing feedback on die status and emails on build failures

or corrections.

That's all there is to configuring a CI server f rom the ground up! As you can see

Hudson provides all kinds of options and various ways to execute a job .

10.7 Summary
In this chapter we introduced you to unit testing using FlexUnit4 and die mock-as3

mock testing framework. We also reiterated the reasoning behind die Mode l View

Presenter pattern that we introduced in chapter 4. We covered many of die common

patterns that you would have needed to test in your sample application. With die

knowledge presented in this chapter, you should be able to continue writing tests for

the rest of the functionality in the application.

Finally, you set up and configured a CI server for providing critical feedback on

how tilings are going as code is integrated into the source code repository. Hudson is

a great choice for teams needing a reliable CI server. Hudson has numerous built-in

capabilities and a vibrant user community witii plugins for almost anything.

In chapter 11 we're going to take a look at how you can quickly get a Flex applica-

tion integrated with die Grails framework. We' l l quickly introduce a simple contact

management application, and integrate it with Grails as well asJMS.

This chapter covers
• Integrat ing Flex w i t h Groovy and Grai ls

• Instal l ing the Grai ls Flex Plugin

• Expos ing a Grai ls s e r v i c e to Flex

• Integrat ing Flex w i t h J M S

Not all real-world development is against an existing application. Every once in a
while you have fun developing new code. What do you do when you want to rapidly
prototype a data-driven application with Flex? With the Flex part it's easy enough to
develop a UI, but what about die backend? You could always develop a Java-based
backend using die same metiiods and techniques we described throughout tiiis
book, or you could take advantage of another framework, such as Grails, to quickly
get your data-driven backend off die ground.

.1 Why Groovy and Grails?
Groovy has been affectionately called Java 2.0 by many in die Java world, so it
should be no surprise tiiat you can integrate with Groovy and Grails as easily—and
in some aspects more easily—as in previous chapters.

218

Downloading and installing Grails 219

Groovy is Java 2.0
"Groovy is a lot like Java 2.0, if someone set out to completely rewrite the Java
language today. Rather than replacing Java, Groovy complements it, providing a
simpler, sl icker syntax where the type checking is done dynamically at runtime.
You can use Groovy to write Java applications on the fly, to glue together Java
modules, or even to extend exist ing Java appl icat ions—you can even use Groovy
to unit test your Java code. And the beauty of it is, Groovy lets you do all these
things fas te r—somet imes a lot f a s t e r — t h a n you would if you were writing pure
Java code."

Andrew Glover from his Fluently Groovy series on IBM DeveloperWorks (http://
www.ibm.com/developerworks/edu/j -dw- java- jgroovy- i .html)

You may be wondering "Why Flex and Grails?" To which we respond, "Why not?" In
this final chapter we're going to demonstrate how you can quickly build and proto-
type data-enabled Flex applications, leveraging die rapid development provided by
Groovy and Grails coupled witii the powerful Grails plugin for Flex. Whetiier your
intent is to spike out a particular piece of functionality or to build a complete applica-
tion, there are few options tiiat will allow you to develop as rapidly as Grails.

We're going to assume tiiat you are at least somewhat familiar with botii Groovy
and Grails, but if you've never seen or done any development using either, you should
still be able to follow along. We'll show idiomatic Groovy code but won't go into too
much detail about what the code does as that is beyond die scope of tiiis chapter. If
you want to learn more about Groovy we suggest starting with the Groovy homepage
(http://groovy.codehaus.org) or by reading Groovy in Action, Second Edition by Dierk
Koenig (http://www.manning.com/koenig2/), published by Manning Publications.
In this chapter we'll be building a simplified contact management application called
Flex Contacts. You'll build a single Master-Detail screen tiiat you can use to track your
contacts as shown in figure 11.1

Before you start writing the application, you'll need to install Grails.

11.2 Downloading and installing Grails
Installing Grails is a ratiier simple task. Point your browser to the Grails project
downloads page (http://grails.org/Download) and download die appropriate distri-
bution for your platform. This chapter was written using Grails 1.1.2, which was
the latest stable distribution available at the time of writing. There is no reason to
install Groovy separately because it's included witii the Grails distribution. Grails is
available in two main forms, a binary distribution and a source distribution. Down-
load die binary distribution in either Zip or Tar/GZ format, depending on your
operating system.

After you've downloaded the binary distribution for Grails, unzip the Grails distri-
bution to a folder such as c: \dev\grails-l .1.2. Then create a GRAILS_HOME environ-
ment variable and point it to the same folder. As a last step, append GRAILS_HOME\bin

http://www.ibm.com/developerworks/edu/j-dw-java-jgroovy-i.html
http://groovy.codehaus.org
http://www.manning.com/koenig2/
http://grails.org/Download

220 CHAPTER 11 Flex on Grails

flilfl I ".i n :n.m
I ̂ I"' + ̂ -. Kh,i KIII alai:-'"t' Ill-Ill'1111,11- III-i '¿. Kq]- ~

Fiex Contacts on Grails

Liil Nam t Him I«v
Anamsn iil Man Ji mum
Allrncn l|l Any Dr h 1-111

• elttt IliHill

HI .1
fljfll?

tonIllHf •

I •-> ll

111 ll
Accreis: "» f St

city: Mnmn

STjit: MI
zip cod«; I'I-IIH

Contact Saw* I.II.II ill

Figure 11.1 The sample application

to your PATH variable so that you can run the Grails executable f rom the command

line. When you've finished, open up a command line and type g r a i l s - v e r s i o n and

you should see output similar to tiris snippet.

C:\dev> grails -version

Welcome to Grails 1.1.2 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: C:\dev\grails-l.1.2

Base Directory: C:\dev

Congratulations! You've got Grails installed and configured. Now let's move on to cre-

ating the Grails application.

11.3 Creating the Grails application
Here's where you see one of tire first examples of Grails' convention over configuration

way of doing things. To create your Grails application, you must open a command line

and navigate to tire fo lder where you want to create your Grails application, for exam-

ple c : \dev\pro j e c t s \ and type tire fol lowing command.

http://grails.org/

Creating the Grails application 221

C:\dev\projects\> grails create-app flex-contacts

With that one simple command Grails has enough information to generate your proj-

ect for you. N o hard to remember or cryptic command line parameters, one simple

concise command and Grails creates the project structure and installs all the neces-

sary dependencies. You don't even have to install a database server or servlet con-

tainer to run the application; that's all included out o f the box when you create your

Grails application. If you think tiiat was easy, wait until you see how easily you can add

functionality to your Grails application using plugins. But first, let's continue building

the Grails application by starting with defining die domain model.

11.3.1 Create the Contact domain model
Next you'll create die domain class tiiat will be responsible for holding contact infor-

mation. For this you'll need only one domain object called Contact. Create die Con-
tact object by issuing die fol lowing command:

C:\dev\projects\flex-contacts\> grails create-domain-class contact

This will create the Contact domain model class in die grails-app/domain fo lder

witiiin your flex-contacts project. In the Contact domain model, you're going to add a

few simple properties for persisting the contact information such as first name, last

name, and address information, as well as simple validation constraints. Here is what

your completed Contact.groovy file will look like.

Listing 11.1 Contact .g roovy file

class Contact {

static contstraints = {
firstName(blank: false, minLength: 4, maxLength: 15)
lastName(blank: false, minLength: 4, maxLength: 25)
address(blank:false)
city(blank:false)
state(blank: false, length: 2)
zipCode(blank: false, minLength: 5, maxLength: 10)

}

String firstName
String lastName
String address
String city
String state
String zipCode

String toStringO {
return firstName +

The Contact class contains fields tiiat you'll need to hold tilings like first name, last

name, and address © . You've also def ined a few constraints O so tiiat you can validate

<—

O Constraints

<—

© Properties

+ lastName toStringO

222 CHAPTER 11 Flex on Grails

that you get all the information you need f rom the frontend. You've also implemented

a toStringO © method to provide a more meaningful implementation than the

default. Now let's create die service tiiat you'll be exposing to the Flex application.

11.3.2 Create the ContactService
To expose your Grails application to the Flex frontend, create a service tiiat will

expose the functionality for your application to per form CRUD operations on your

Contact domain object. To do this you issue die fol lowing command on die com-

mand line:

C:\dev\projects\flex-contacts> grails create-service contact

This will create a class named ContactService, shown in listing 11.2, in the grails-

app/services folder. The ContactService will contain the metiiods you'll be exposing

to Flex to consume as a remote service. Inside die ContactService.groovy file you'll

implement a few simple metiiods to enable your Flex application to get a list of all the

contacts in the database, get a specific contact, save a contact, and delete a contact

f rom die database.

Listing 11.2 ContactServ ice .groovy file

class ContactService {

static expose = [1flex-remoting1]

boolean transactional = true
def getContacts() {

return Contact.list()
}

def get(id) {
return Contact.get(id)

}

def update(Contact contact) {
contact.save()

}

def remove(Contact contact) {
contact.delete(flush: true)

}

O Expose to Flex
< A Transactional

< - J property

A Service
methods

Most o f the ContactService class should look familiar to you. The only line tiiat

may look odd is tiiat which contains the code static expose = [1 flex-remoting 1]
O - This single line o f code is all you need to expose tiiis service to Flex so that you

can call any of the service metiiods f rom your Flex application. You also make all of

the service methods © in your service transactional by setting the transactional

property to true © . The Flex plugin for Grails, which we'l l install in a bit, follows

the Grails philosophy of convention over configuration in that it abstracts much of

Getting rich with Flex 223

the configuration that you would have needed to build had this been a Java applica-

tion leveraging either BlazeDS or LiveCycle Data Services to expose this functionality.

11.3.3 Bootstrap sample data
The last step building tire Flex client is to bootstrap your application with sample data

so tlrat you have contact information in tire database when you first run it. This will

also allow you to see tlrat the Flex remoting is working correctly. To do this you add

the code shown next to tire Boo ts t rap .g roovy file in the g ra i l s -app/con f fo lder of

your application.

Listing 11.3 BootStrap.groovy file

class Bootstrap {
def init = {servletContext ->

Contact contactl = new Contact(firstName: "Jeremy",
lastName: "Anderson", address: "123 Main St",
city: "Jenison", state: "MI", zipCode: "49428")

contactl.save()

Contact contact2 = new Contact(firstName: "BJ",
lastName: "Allmon", address: "234 Any St",
city: "Delaware", state: "OH", zipCode: "43015")

contact2.save()

}
def destroy = { }

}

Bootstrapping data in Grails allows you to have data injected into the application each

time you restart it. You do this by creating a couple of Contact objects O in your Boot-

Strap.groovy file and call save () on them to persist them to tire database. This is a

helpful feature of Grails as you move through development and beats having to manu-

ally enter contacts every time. You would typically use this file for bootstrapping any

kind of initial data in your application, such as states and state codes. Now you're

ready to begin developing the Flex frontend for tire Grails application you created.

11.4 Getting rich with Flex
Now tlrat you have created your Grails application you can move on to the task of cre-

ating tire Flex client that will integrate with Grails. You'l l start by installing the Flex

plugin for Grails, then add tire Flex application to tire Grails project.

11.4.1 Installing the Flex plugin
From tire root o f tire project directory enter tire fol lowing command to install tire Flex

plugin for tire Grails application:

C:\dev\projects\flex-contacts\> grails install-plugin flex

Sample
data

224 CHAPTER 11 Flex on Grails

This command will pull down all of die Flex libraries your application needs to be

able to compile the Flex application. This may take time because the plugin has to

pull down many dependencies. Af ter all die messages have scrolled by the plugin

should be successfully installed. Like many otiier features in Grails development,

enabling an application for Flex integration is extremely simple and declarative. N o

configuration files need to be created, though some configuration files are con-

tained witiiin the web-app/WEB-INF fo lder if you need to fine-tune die Flex com-

piler settings.

11.4.2 Creating the domain classes in Flex
You can begin the Flex development by creating a domain object in ActionScript. This

object will act a,s a, data transfer object of sorts, allowing you to deal witii full-fledged

objects when your service returns data to die client. This approach avoids having to

deal with the pseudoproxy objects tiiat Flex would wrap your objects into if it didn't

have anything to translate it into.

When you installed the Flex plugin in die previous step, it created a flex fo lder

under web-app/WEB-INF. Inside tiiis fo lder resides anotiier fo lder called user-classes,

which contains a file that clues you into where you're supposed to place your Action-

Script classes, appropriately called add_your_as_and_swc_files_here. Create a file in

die user-classes folder called Contactas.

Listing 11.4 Contact .as

package {

[Bindable]
[RemoteClass(alias = "Contact")]
public class Contact {

public function Contact!) { }

public var id:*;
public var version:*;

public var firstName:String
public var lastName:String
public var address:String
public var city:String
public var state:String
public var zipCode:String

The code should resemble die client side domain classes tiiat you created earlier for

your FlexBugs application. Take note of the annotations at the top of the file, [Bind-
able] © and [RemoteClass] Q . The [Bindable] annotation lets Flex know that

whenever one of the values changes in this object, it should notify anything else that is

bound to this object to let it know that it should update itself. We didn't utilize data

J 81
Bindable

lP Hi
r pr

RemoteClass

Hibernate specific
properties

1 Public
properties

Getting rich with Flex 225

binding in our otirer application but for this quick example we did, in order to keep

the examples shorter.

In case you have forgotten, tire [RemoteClass] annotation allows a Flex class to be

mapped to a server-side class. The Contact. as class is mapped to the Contact. groovy
domain class you created earlier. Because you're using a package structure in this triv-

ial example, you don't need to fully qualify it here; if your domain object in Grails fell

under a specific package, you would have to fully qualify that object in this annotation

for it to work correctly.

You need to add a couple o f Hibernate-specific properties Q to your Contact
domain class for your application to behave as intended, along with all tire normal

public properties Q that you need to include for tire data fields you want to be able to

be persist.

11.4.3 Creating the Flex application
Now tlrat you've got your domain object created for the client side, you'll need to cre-

ate a file to contain the main Flex application itself, which will be called main.mxml

and is created in tire web-app folder o f your Grails application.

You'l l break this down into bite-sized chunks tlrat should be easier to digest than if

you were simply presented with the end state of tire application. First you'll start by

creating tire Application object. As in the otirer sample application, your Flex appli-

cation will have tire Application element as its root node of tire MXML file as shown

in this snippet.

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:local="*"
layout="vertical"
creationComplete="contactService.getContacts()"
viewSourceURL="srcview/index.html">

</mx:Application>

Now tlrat you've got tire base application started, you're ready to start laying out tire

basic layout.

DEFINING THE LAYOUT
Look at figure 11.1 again, and take note that you've got three main containers in use

for this application. You've got the header at tire top containing tire text Flex Contacts

on Grails, and two panels containing the master view and tire details view. Let's create

the basic layout for your application. To do that you're going to leverage a couple of

layout components: HBox and Panel. We' l l break up the Main.mxml and look at each

section individually.

Listing 11.5 Main.mxml (a)

<mx: HBox width= " 100% " > <1—,
<mx:Text f ontSize= " 24 " text="Flex Contacts on Grails "/> A Header container

</mx:HBox>

http://www.adobe.com/2006/mxml

226 CHAPTER 11 Flex on Grails

<mx:HBox width="100%" height="100%">
<mx:Panel width="65%" title="Contacts" height="100%">

</mx:Panel>
<mx:Panel width="35%" title="Edit Contact" height="100%">

</mx:Panel>
</mx:HBox>

Master
view

« N M
© vi

<~1 Detai
© view

This listing shows the code used to generate die layout o f our application. In the snip-

pet we saw previously you specified tiiat your application use vertical as its main layout

method so your components will f low vertically down as you add d iem to die applica-

tion. Here you start by adding an HBox container © containing a single Text compo-

nent. This Text component contains the text for our title that appears in die header.

Next you wrap two Panel containers in another HBox so tiiey'll show up side by side in

die application. These two Panel components will house the master view © and detail

view © .

CREATING THE MASTER VIEW
Inside die first Panel container you'll create die master view using die DataGrid com-

ponent, which allows you to display tabular data ratiier painlessly.

Listing 11.6 Main.mxml (b)

<mx:DataGrid id="contactsGrid"
width=" 100%" O DataProvider
height="100%"
dataProvider="{contactsList}"
itemClick="doSelect(Contact(event.currentTarget.selectedltem))

J
<mx:columns>

<mx:DataGridColumn dataField="id" headerText="ID" width="50"/> <
<mx:DataGridColumn dataField="firstName"

headerText="First Name" width="100"/> _ ^ _ . .
DataGrid <mx:DataGridColumn dataField="lastName" .

• , „ „ , columns
headerText="Last Name" width="100"/>

<mx:DataGridColumn dataField="address" headerText="Address"/>
<mx:DataGridColumn dataField="city" headerText="City" width="120"/>
<mx:DataGridColumn dataField="state" headerText="State" width="70"/>
<mx:DataGridColumn dataField="zipCode" headerText="ZipCode"

width="100"/>
</mx:columns> <

</mx:DataGrid>
<mx:ControlBar>

<mx:Button label="Delete Contact"
enabled= " {contactsGrid. selectedltem != null}" ControlBar
click="deleteContact(selectedContact)"/>

<mx:Button label="Refresh" click="contactService.getContacts()"/>
</mx:ControlBar>

-I
This portion of the listing shows the code to create die contacts DataGrid as well as to

define die columns to be displayed. You may have noticed die items contained within

die curly braces { } ; tiiis is how to specify data binding in a Flex application. You've

Getting rich with Flex 227

bound die da taProv ider property O ° f the DataGrid to die c o n t a c t s L i s t variable,

which you'll def ine later. This is where you'll store the results f rom your RemoteObject

med iod call to get all the contacts. Notice that all of your column names Q should

match what you def ined in die Contact object you created earlier. This allows Flex to

automatically figure out which data field to map to which column.

A ControlBar © will contain all of the buttons needed to interact with this control.

CREATING THE DETAIL VIEW

Now diat the master view has been created, it's on to die detail view. The detail view

will provide a mechanism for editing and updating your contacts. Although we could

have allowed editing right in the DataGrid itself, it wouldn't have made for a good

example and doesn't show o f f die power of data binding in Flex.

Listing 11.7 Main.mxml (c)

<mx:Form id="contactForm" width="100%">
<mx:FormItem label="ID:" width="100%">

<mx:Text text="{selectedContact.id}"/>
</mx:FormItem>
<mx:FormItem label="First Name:" width="100%">

< — O The Form

<mx:Textlnput id="firstName"
</mx:FormItem>
<mx:FormItem label="Last Name:

text="{selectedContact.firstName}"/>

width="100%">
<mx:Textlnput id="lastName" text="{selectedContact.lastName}"/>

</mx:FormItem>
<mx:FormItem label="Address:" width="100%">

<mx:Textlnput id="address" text="{selectedContact.address}"/>
</mx:FormItem>
<mx:FormItem label= "City: " width= " 100% " > Formltems 0

<mx:Textlnput id="city" text="{selectedContact.city}"/>
</mx:FormItem>
<mx:FormItem label="State:" width="100%">

<mx:Textlnput id="state" text="{selectedContact.state}"/>
</mx:FormItem>
<mx:FormItem label="Zip Code:" width="100%">

<mx:Textlnput id="zipCode" text="{selectedContact.zipCode}"/>
</mx:FormItem> < —

</mx:Form>

<mx:ControlBar>
<mx:Button label="New Contact"

enabled="true" click="selectedContact = new Contact!)"/>
<mx:Button label="Save Contact"

click="updateContact(selectedContact)"/>
<mx:Button label="Reset" click="resetForm()"/>

</mx:ControlBar>

O ControlBar

Here is the code for the detail view in which you leverage anotiier container object,

the Form component O - Unlike its HTML counterpart, the Form component in Flex is

strictiy a container. You don't need to have your fields wrapped in a Form component

to post data to the server side.

228 CHAPTER 11 Flex on Grails

Inside die Form component you define a series of Formltem components Q drat

contain tire GUI form components used for data entry. These should be fairly self-

explanatory. Take note of tire data binding syntax in tire text attributes for these com-

ponents. This indicates that you'll be binding tire text values o f these components to a

variable called se lec tedContact . As a last step, you add another ControlBar © as you

did for tire master view to contain any buttons needed to control tire application.

11.4.4 Adding the RemoteService
Flex has a few components that enable it to communicate with tire server side, namely

HTTPService, WebService, and RemoteService. In a nutshell WebService facilitates

easy communication with SOAP-based web services. HTTPService allows you to con-

sume and call other web services using a variety of protocols such as XML and JSON

and is tire best choice if you're trying to interact with some sort of RESTful resource.

RemoteService leverages Adobe 's binary AMF) protocol, which tends to give tire best

performance of the three.

Listing 11.8 Adding the RemoteService

<mx:RemoteObj ect id="contactService" destination="contactService">
<mx:method name="getContacts"

result="handleGetContacts(event.result)"
fault="showFault(event)"/>

<mx:method name="update" fault="showFault(event)"/>
<mx:method name="remove" fault="showFault(event)"/>

</mx:RemoteObj ect>

As stated previously you're going to use tire RemoteObject component to facilitate

communication with the server side, and you've def ined tire methods that you'll be

calling so you can define tire callback methods that you'll be using to handle tire

results coming back f rom the server, as well as any faults.

11.4.5 Putting it ail together
You're almost done. You now put it all together and add methods that you'll call to

handle events f rom the UI.

Listing 11.9 Main .mxm (d)

<local:Contact id="selectedContact"
firstName="{firstName.text}
lastName="{lastName.text}"
address="{address.text}"
city="{city.text}"
state="{state.text}"
zipCode="{zipCode.text}"/>

<mx:ArrayCollection id="contactsList"/>

<mx:Script>
<![CDATA[

Contact

Install the GrailsJMS and ActiveMQplugins 229

import mx.rpc.events.FaultEvent;
import mx.controls.Alert;

private function doSelect(c: Contact):void {
selectedContact = c;

private function handleGetContacts(list:*):void {
contactsList.removeAll();
for each (var c:Contact in list) {

} J RemoteObject
event handler

contactsList.addltem(c);
}

J RemoteObject
fault handler private function showFault(fault:*):void {

Alert.show(fault.message);
}
private function deleteContact(selectedContact:Contact):void {

contactService.remove(selectedContact);
contactService.getContacts();

}
private function updateContact(contact : Contact):void {

contactService.update(selectedContact);
contactService.getContacts();

}
Event handlers Q

private function resetForm():void {
var tmpObj:Contact = Contact(contactsGrid.selectedltem);
contactService.getContacts();
contactsGrid.selectedltem = tmpObj;
doSelect (Contact (contactsGrid. selectedltem)) ; <1—

}
]]>

</mx:Script>

Most o f what is shown in the listing should make sense. Here you define a Contact
object in MXML ratiier tiian ActionScript O Notice that you're also per forming data

binding back to the form components, creating a two-way binding between die

selectedContact variable and the detail form. Next def ine the event handler © and

fault handler Q for die RemoteObject tiiat you def ined in listing 11.8. Last you have

all the event handlers for die components in die master view and detail view Q .

Now that you've completed this part of die application, you can start up your Grails

application by executing g r a i l s run-app and navigating to the application. Af ter your

application is running, fire up your browser and navigate to http://localhost:8080/flex-

con tacts/main.mxml and you should see sometiiing resembling figure 11.1. You've got

a functional Flex application running on Grails. Over the next few sections you're

going to modi fy this simple example to leverage JMS and ActiveMQ.

Next you're going to demonstrate die ability o f your Grails application to push data

out to die Flex application using Flex components that integrate with JMS to produce

and consume messages. This will allow you to remove die Refresh button and some of

the plumbing involved to refresh die Flex DataGr id when a user adds, edits, or deletes

11.5 Install the Grails JMS and ActiveMQ plugins

http://localhost:8080/flex-

230 CHAPTER 11 Flex on Grails

a contact. This helps clean up the client by reducing tire amount o f view logic and

complexity. To install tire Grails JMS plugin f rom tire root of tire project directory use

this snippet:

$ grails install-plugin jms

Then do the same for tire ActiveMQ plugin:

$ grails install-plugin activemq

After these plugins are installed you're ready for development. The beauty of Grails

conventions is that they hide most of tire complexity of plugging in new external frame-

works such as JMS and ActiveMQ. It's worth mentioning that tire JMS and ActiveMQ

plugins are still fairly new but seem to do tire j o b for tire most common situations.

Now that you have tire plugins for making tire application JMS-enabled, you can move

on to updating tire Grails application code. Only a few things need to happen to pro-

vide a JMS service to tire Flex client and these are described next.

11.6 Add the ActiveMQ Spring bean
There's one configuration detail you need to tend to. You need to configure tire JMS

plugin to leverage tire ActiveMQ broker. You can do this either by adding a Spring

bean to the resources.xml or by adding the bean using tire Groovy DSL approach. The

snippet that follows demonstrates adding the bean by using tire DSL approach of add-

ing your connection factory as a bean in tire resources.groovy configuration file

located in tire g ra i l s -app/con f/spr ing fo lder of tire application.

// Place your Spring DSL code here
beans = {

connectionFactory(org.apache.activemq.ActiveMQConnectionFactory) {
brokerURL = "vm://localhost"

}
}

The code shown here is the Groovy way to configure Spring beans in Grails, and

defines a connect ionFactory bean of type ActiveMQConnectionFactory and initial-

izes its brokerURL property to point at vm: / / loca lhos t . Now that you got tire configu-

ration out of tire way you can move on to tweaking the Contact domain class.

class Contact implements Serializable {
}

To store messages on a message queue the objects need to implement tire S e r i a l i z a b l e

interface. You need to update tire Contact class to implement tire S e r i a l i z a b l e inter-

face as shown previously.

11.7 Subscribe the Flex client to the Grails JMS service
Now you're ready to configure the Flex framework as a JMS consumer. First you'll start

with the BlazeDS configuration.

Subscribe the Flex client to the GrailsJMS service 231

11.7.1 Update the services-config.xml
You need to configure Flex witii a contac tsTop ic in die top-level BlazeDS configura-

tion file. When die Flex plugin is installed it places die services-config.xml inside die

/web-app/WEB-INF/flex directory. Let's edit it by adding die Flex message service

inside die services element. The full services-config.xml is included in die next listing

for clarity and to show tiiat the order of die bean definitions has significance. Inside

the services element die Grails service comes first fol lowed by die JMS configuration.

Listing 11.10 serv ices-conf ig .xml

<?xml version="1.0" encoding="UTF-8"?>
<services-config>

<services>
<service id="grails-remoting-service"

class="flex.messaging.services.RemotingService">
<adapters>

<adapter-definition id="java-object"
class="flex.messaging.services.remoting.adapters.JavaAdapter"
default="true"/>

</adapters>
</service>
<service id="grails-service"
class="org.codehaus.groovy.grails.plugins.flex.

GrailsBootstrapService"/>
<service id= "message-service" I A JMS service r class="flex.messaging.services.MessageService"

messageTypes="flex.messaging.messages.AsyncMessage">
<adapters>

<adapter-definition id="jms"
class="flex.messaging.services.messaging.adapters.JMSAdapter"
default="true"/> ,ur . . JMS adapter

</adapters>
<destination id= "contactsTopic">

<properties>
< jms>

<destination-jndi-name>contacts</destinâtion-jndi-name>
<message-type>j avax.jms.Obj ectMessage</message-type>
«connection-factory>ConnectionFactory</connection-factory>
<delivery-mode>NON_PERSISTENT</delivery-mode>
<message-priority>DEFAULT_PRIORITY</message-priority>
<acknowledge-mode>AUTO_ACKNOWLEDGE</acknowledge-mode>
<transacted-sessions>false</transacted-sessions>
<initial-context-environment>

<property>
<name>Context.PROVIDER_URL</name> y
<value>vm://localhost</value> JMS configuration © f

</property>
<property>

<name>Context.INITIAL_CONTEXT_FACTORY</name>
<value>org.apache.activemq.jndi.

ActiveMQInitialContextFactory</value>
</property>

232 CHAPTER 11 Flex on Grails

<property>
<name>topic.contacts</name>
<value>contacts</value>

</property>
</initial-context-environment>

</jms> JMS configuration (]
</properties>

</destination>
</service>

<default-channels>
<channel ref="grails-amf"/>

</default-channels>
</services>
<channels>

<channel-definition id="grails-amf"
class="mx.messaging.channels.AMFChannel">
<endpoint url="http://{server.name}:{server.port}/{context.root}/

messagebroker/amf"
class="flex.messaging.endpoints.AMFEndpoint"/>

</channel-definition>
</channels>

</services-config>

The bulk of the services-config.xml file was generated when you installed tire Flex

plugin; however you need to add a new service section for tire JMS service that you'll

be using Q , and a section stating that you'd like tire service to use tire JMS adapter

Q . You also need to configure tire JMS topic that you'll be communicating with

To see all tire options you've defined, refer to tire BlazeDS user documentation at

http://livedocs.adobe.eom/blazeds/l/blazeds_devguide/. Now let's move on to

modifying our Contac tServ ice to utilize your messaging.

11.7.2 Modifying the ContactService
The existing Contac tServ i ce class is relatively simple. Here is tire updated Contact-

Se rv i c e class with tire additions for publishing the updated contact list.

Listing 11.11 ContactServ ice updated

class ContactService {
static expose = [1flex-remoting1]
boolean transactional = true

def getContacts() {
return Contact.list()

}

def get(id) {
return Contact.get(id)

}

def update(Contact contact) {
contact, saved 0 publishContacts
publishContacts()

}
J?

http://livedocs.adobe.eom/blazeds/l/blazeds_devguide/

Subscribe the Flex client to the GrailsJMS service 233

def remove(Contact contact) {
contact.delete(flush: true)
publishContacts()

}

def private void publishContacts() {
try {

sendPubSubJMSMessage("contacts",
} catch (Exception e) {
log.error("Failed to publish contacts.",

}

J

getContacts ());

e) ;

publishContacts

sendPubSubJMSMessage

J

You add die publishContacts () 0 meti iod to publish updates to the topic you con-

f igured in die services-config.xml file. The sendPubSubJMSMessage © takes two

arguments. The first argument is die JNDI destination name def ined in your topic,

and the other is the list o f contacts. Next, you wire up the update and remove methods

to publishContacts when tiiey are invoked. Oti ier methods can be called depending

on your needs. Because a topic supports die publish/subscribe model, it is used for

one-to-many messaging which works well with die Contacts application. For one-to-

one or point-to-point messaging you would use a queue instead. To learn more about

the JMS plugin, visit die Grails website at http://www.grails.org/JMS-l-Plugin.

11.7.3 Update the Main.mxml
The final tiling to do before relaunching die contacts application is to update die Flex

client main.mxml file. You will add die JMS service to die mix and make otiier minor

changes. Let's start with die Application element.

Listing 11.12 Main.mxml (e)

<mx: Application xmlns:mx="http://www.adobe.com/2006/mxml"
xmlns:local="*"
layout="vertical"

viewSourceURL= " srcview/index. html " creationComplete

creationComplete="contactService.getContacts();jmsConsumer.subscribe()"> J
<mx:Consumer id="jmsConsumer"

destination="contactsTopic"
message="handleGetContacts(event.message.body)"
fault="showFault(event)"/>

" 4 Consumer

</mx:Application>

The Flex Consumer object © is used to connect to the contactsTopic. When die

application initializes, you need to subscribe to die contactsTopic. To do so you con-

figure die creationComplete event definition © to call subscribe on the jms-
Consumer. The consumer listens for changes f rom the ActiveMQ broker and uses die

http://www.grails.org/JMS-l-Plugin
http://www.adobe.com/2006/mxml

234 CHAPTER 11 Flex on Grails

handleGetContacts method to consume the data. This method updates die contact

list when tiiere are updates.

From here, die application will work f ine as is. There are some things to clean

up because we're now making the application JMS aware and tiiey are unneces-

sary overhead.

Listing 11.13 Main.mxml (f)

private function deleteContact(selectedContact:Contact):void {
contactService.remove(selectedContact);

}

private function updateContact(contact:Contact):void {
contactService.update(selectedContact);

}

<mx:ControlBar>
<mx:Button label="Delete Contact"

enabled="{contactsGrid.selectedltem != null}"
click="deleteContact(selectedContact)"/>

</mx:ControlBar>

You remove the calls to the getContacts () method on your RemoteObject when

deleteContact and updateContact are invoked. These calls were necessary, prior to

enabling JMS, for die DataGrid to be refreshed whenever die contact list was updated.

You can also remove die Refresh button. The Flex consumer will get updates every few

seconds and will invoke die meti iod tiiat will update die DataGrid so there's no more

need for these extra calls to the server side. The consumer itself can be further config-

ured if di f ferent timing or other options are needed.

To illustrate die push of information f rom the server to the client, start die

Grails application by opening a command line and navigating to the project folder.

Type die command grails run-app, which will start die embedded jetty container

to run the application. Now open two browsers and point them both to the Flex

application at http://localhost:8080/flex-contacts/main.mxml. Then as you make

updates in the one window, you should see the contacts being updated in die other

browser window—no more having to manually refresh die application to pick up

other user's changes.

11.8 Summary
In this final chapter we showed you how to rapidly prototype data-enabled Flex

applications using Groovy and Grails in combination with the Flex plugin for Grails.

You started by defining the domain in Grails and exposing some services for your

Flex application to use, and the Flex application itself. You then went one step fur-

ther and enabled your application to use JMS and ActiveMQ for real-time updating

of your UI.

http://localhost:8080/flex-contacts/main.mxml

index

Symbols

[After]
FlexUnit annotation 197

[Before]
FlexUnit annotation 197

[Bindable] 224
[RemoteClass] 224-225
[Test]

FlexUnit annotation 198, 200
{server.name} 97
{server.port} 97
@Entity 22
@OneToOne annotation 23
©RemotingDestination 102, 140
@RemotingExclude 103
@RemotingInclude 102
@Secured annotation 135
@WebService annotation 24

A

AbstractService 207
AC_OETagsjs 44
Access Control Lists. See ACL
Acegi 10
ACL 123
Action Message Format. See AMF
ActionScript

based on ECMAScript 5
dynamic classes 207
and mc.drawWedge 148
no class declaration 162
properties 75

Active Directory 123

Adobe AIR. Si» AIR
Adobe Integrated Runtime. See AIR
ADT 177

building AIR installer 182
generating a certificate 178

AdvancedDataGrid 53
AIR 6

adding icons 178
application distribution 186
assembly descriptor 182
and Desktop 2.0 11
how application relates to view component 170
packaging 180
properties 179

AIR application
creating 174
differs from Flex application 176
installer 176

AIR Developer Tool. See ADT
AIR installer

creating an assembly 182
security 177

air-app.xml 179
Alert 68, 130, 132, 139
Almost Plain Text. See APT
AMF 10, 91, 228

remote service 103
remoting destinations 102

AMFChannel 109, 113, 117, 125
AMFEndpoint 113
annotations

[After] 197
[Before] 197
[Bindable] 224
[RemoteClass] 225
[Test] 198, 200, 205

235

236 INDEX

Ant
Hudson version 211

AOP 133
pointcut 134

Apache Commons Builder 21
Apache Maven. See Maven
AppFuse 13

BaseAction 29
custom Maven archetypes 17
customizing the menu 30
default application 20
security 137
SiteMesh filter 44
with Spring and Hibernate 20
two users created 132
userDao object 140

Application 45, 173, 225
Application tag

bug in Spark version 174
applicationContext.xml 100
ApplicationResources.properties 33
APT 16
archetypexreate plugin 16
ArrayCollection 73, 162, 203
aspect-oriented programming. SeeAOP
Async.proceedOnEvent 201
asynchronous functionality 197
asynchronous messaging 112
AsyncResponder 68, 74, 79, 130, 142
AsyncToken 69, 79, 104, 130, 209
authentication 124-133
authorization 133-139
Autodesk Project Dragonfly 166

Balsamiq 191
BlazeBench 92
BlazeDS 10,43

adding to POM 93
basic anatomy 92
benchmarking 107
benchmarks 92
configuration 94
configuring 96
connecting to Java 104
documentation 97
instead of web services 92
logging 105
remoting destinations 101
setting up for messaging 113
setting up logging 106

blazeds-core 93
Bootstrap.groovy 223

Button 55, 77
click 77

c

CA 177
callProperty 207
certificate

self-signed 185
self-signed or digital 177

certificate authority. See CA
ChannelSet 117, 124, 130, 139
ChannelSetFactory 124, 130, 138

creating 117
CI

configuring server 210
questions 210

ComboBox 161
dataProvider 73
selectedltem 77

Comment
data object 66

CommentManager 103, 136
CommentModel

creating 80
updating 85

CommentPresenter
updating 83

comments
editing 83

comments view 54
creating Presenter 77

CommentsListPresenter
creating 77
updating 142

CommentsListView
updating 87

CommentsView 57, 81
See also comments view

common classes
extracting 172

common library
creating 169

CommonsLoggingTarget 105, 107
components

laying out 55
pop-up 57

configurations
sharing 100

console appending 106
ConsoleAppender 106
Consumer 118, 233
ContactService

modifying 232
Continuous Integration. See CI

INDEX 237

ControlBar 53, 77, 81, 221
convention over configuration 13, 220

paradigm 43
ConversionPattern 106
createSlices mediod 158
creationComplete 70, 76, 82, 153
crossdomain.xml 97
CRUD 23
CURRENT_USER_UPDATED 142
CursorManager 68, 79
custom event

creating 63

DAO 13, 24
building 23

Data Access Object. See DAO
data binding 50, 62

in Flex 226
DataGrid 154, 204, 226

dataProvider 68
display tabular data 53
populating 72

DataGridColumn 72
Dégrafa 5, 148

adding dependency on 172
common concepts 149
documentation 150
Pie Chart 150
uses 11
visualization components 165

dependency injection. See DI
detail view

component based off of Panel layout 54
enhancing 72
See also DetailView

DetailPresenter 72
changedlssue 75
savelssue 74
savelssueResult 75
updating 142

DetailView 57
form for updating 53
init 77
updating 76
See also detail view

development environment 13
DI 13

Spring provides 21
-Dmaven.test.skip=true 164
domain classes

creating in Flex 224
Domain Model. See Model
domain specific languages 207

download badge, creating 189
downloadjsp 189
DropShadowFilter 154
dynamic classes 207
dynamic language, dangerous 164
dynamically adding properties 164

ECMAScript 5
EllipticalArc 155
embedSWF 191
endpoint

must be unique 114
event

bubbling 64
dispatching 64
dispatching and handling 63
type 63

Event class 63, 126
addEventListener 78

EventDispatcher 64
addEventListener 67, 73

EventDispatcherFactory 64, 117
include in tests 197

EventFactory 117
exec-maven-plugin 181

FaultEvent 69, 80
Feathers, Michael 61
Fill object 155
Flash Builder 147
Flash Player 10

heart and soul of Flex 6
Flash Player Security

and RPC 97
flashvars 190
Flex

application
porting to a desktop environment 11

building interface 9
configure framework as a JMS consumer 230
connecting to POJO 102
creating domain classes 224
DataGrid 4
enabling security 132
how application relates to view component 170
integrating with Java 10
laying out components 55
modifying client for messaging 117
MXML files and ActionScript classes 5
specifying data binding 226

238 INDEX

Flex (continued)
stateful experience 4
vising Degrafa 148
ViewS tack

See ViewS tack
web services 62

Flex 3
open source 5

Flex application
differs from AIR application 176

Flex Data Services 92
Flex Messaging API 112
Flex Mojos 38

See also FlexMojos
Flex SDK 4

free and open source 6
FlexBugs

Maven multimodule project 16
flexbugs.air 184
flexbugsjsp 44
flex-bugs-blaze-config 95
FlexMojos

unit testing support 194,196
flex-spring-servlet.xml 101, 115, 132, 140
FlexUnit 194

asynchronous 205
proceedOnEvent 197
setUp 203
tearDown 207
[Test] annotation 201, 205
testing pitfall 197

FlexUnit4 194
add dependencies 196

FNA 39
FooterView, creating 51
Form 54, 227
Formltem 54, 228
Fowler, Martin 62
functional testing 202
FunFX 202
FXG, Adobe graphics library 149

GenericHibernateDao 23
GenericManager 27
GeometryGroup 149, 154
getlssue

testing 209
global-method-security 138
Glover, Andrew 219
Google Code 190
gradients 150
Grails 11,218

ActiveMQ plugin 229

convention over configuration 220
expose service 222
grails create-domain-class 221
grails create-service 222
install Flex plugin 223
install JMS plugin 230
installing 219
JMS plugin 229
plugins 221
running application 229

graph model
creating 163
See also GraphModel

GraphModel
implementing 163

GraphPresenter 161
GraphView

adding a label and combo box 151
Presenter 161
updating 159

Grigg, Derrick 150
Groovy

much like Java 2.0 218
specification 11

Group 49, 127, 131, 173
Flex component 155

Growl, Flex application 165

halo components 155
Hamcrest 194, 204

manually install dependencies 196
matcher library 196

HBox 155, 161
HDividedBox 57
header

updating 131
Header.mxml 49, 131
Hello World! 44
Hibernate 20, 24, 36, 225
hibernate.cfg.xml 36
HorizontalLayout 49, 127, 153
HTTPChannel 117
HTTPProxyAdapter 98
HTTPProxyService 97
HTTPService 62,207
Hudson 210-217

configure Maven 211
configuring ajob 214
email notification 211
installing 211
plugins 210

Humble Dialog Box 61

INDEX 239

I

icons
AIR applications 178

index.template.html 44
installer badge 186
IResponder 69, 76, 104, 198, 209
isNaN 74
Issue 66
IssueManager 137
IssueManagerlmpl 102
IssueModel 70, 208

changing 118
getlssues method 209
updating 75

ItemRenderer 55, 151, 154
for pie chart legend 155

J

Java
connecting with BlazeDS 104

Java 2.0 218
Java Community Process. SeeJCP
Java Development Kit. See JDK
Java Message Service. SeeJMS
Java services

exposing to Flex remoting 100
Java Standard Tag Library. SeeJSTL
Java Web Archive. See WAR
JAVA_HOME 14
java.lang.OutOfMemoryError 45
JCP 11
JDK 14

installing 14
version 211, 214

JMS 10, 113
configuration 231

jmsConsumer 233
JSON 162
JSR241 11
jsr250-annotations 138
JSTL 31

vs. hard coding 190
JUnit 197
JUnit4 194

Law of Demeter 203
layout components 225
layout containers, nesting 55
LDAP 123
Lightweight Directory Access Protocol. See LDAP

List 55, 82
selectedlndex 82

ListEvent 206
LiveCycle Data Services 10
log4j

and BlazeDS 105
configuring for BlazeDS file logging 105

loglj.xml 105
logging 105

affects performance 108
categories 107

login manager
creating 130

login panel
creating 126

LOGIN_BUTTON_PRESSED 129
LoginCommand 135
LoginModel 130, 139
LoginPanel 128
LoginPresenter

updating 141
LoginPresenter class

creating 128
LOGOUT_BUTTON_PRESSED 129

M

M2_HOME 15
Macromedia 3
Main.mxml 45
MainCanvas 172-173, 176
master view

enhancing 66
updating 70
See also MasterView

master/detail view 46
Master-Detail 219
MasterPresenter 67, 196, 199

getlssues 68
getlssuesResult 68

MasterPresenterTest 196
MasterView 57

creating view component 52
initialize 203
refreshList 72
removeSelectedlssue 72
See also master view

Maven 7
archetype 94
BlazeDS JARs 93
book 43
build lifecycle 43
convention over configuration 13
dependencies 99, 172, 184, 194
eclipse:eclipse 16

240 INDEX

Maven (continued)
Flex Mojos plugin 38
heap space 45
Hudson version 211
idea:idea plugin 16
installing 15
jetty:run-war 19
mvn archetype-create 39
resources.xml 95

Maven assembly
install and deploy 96

Maven module
building BlazeDS configuration 94

MAVEN_HOME 213
MAVEN_OPTS 45, 215
maven-assembly-plugin 95, 182
maven-clean-plugin 184
maven-dependency-plugin 42, 100, 187

copy-dependencies 44
copy-swf 44
generate-resources 43
process-classes 44
unpack-config 43

maven-resources-plugin 183
Message 119
MessageBroker 115
MessageDestination 115
MessageEvent 118
Message PerformanceUtils 110
messages

pushing 115
MessageService 115

bidirectional messaging 112
MessageTemplate 115
messaging

asynchronous 112
BlazeDS support 92
modifying client for 117

mock testing framework
mock-as3 194

mock-as3
expectations 200
manually install dependencies 196
verify 198
See also Mockolate framework

mockControl 197
Mockery 196
MocklssueService 207-208
Mockolate framework 194
mocks

calls 207
control 207
stricts 198

Model 61, 69
testing 206, 210

Model-View-Controller. See MVC
Model-View-Presenter. See MVP
MouseEvent 205
MVC 28
mvn archetypexreate 174,177
mvn install 45
mvn install:install-file 177
mvn jetty: run-war 36
MVP 9, 193

design pattern
Struts 2 28

Passive View pattern 61
MXML

and ActionScript 5-6
syntax 5

my-polling-amf 114
MySQL 13

create database 15
installing 15
user and password 18

N

navigation components 48
Nexus 96

0

object relational mapping framework 21
object-oriented programming. See OOP
ObjectProxy 66, 68, 80
OOP 4

packages 63
packaging

Flex and Java similar 49
Panel 70, 76

component 53
Passive View 61-62
PatternLayout 106
performance testing 110
personalization 124, 139-145
pie chart

adding to the application 159
colors in legend 159
creating 150-159
legend 155
model 158
slice

See PieChartSlice
See also PieChart

INDEX 241

PieChart
createSlices 158
model 158
Presenter 156
view 152

PieChart.mxml 152
PieChartEvent 151
PieChartPresenter 164
PieChartSlice 154
plain old Java object. See POJO
pointcut 134
POJO 13

connecting from Flex 102
polling

simple vs. long 114
polling mechanism

selecting 114
POM 13

artifactld 41
configure top-level 98
groupld 41
packaging 41
version 42

pom.xml
flex-bugs 40
flex-bugs-web 42
modules 98

pop-up component 57
PopupManager 85

centerPopUp 85
createPopUp 85

Presenter
for the GraphView 161
Master View 67
testing 196-202

Presenter First 193
project object model. See POM
properties

dynamically adding 164
proxy-config.xml 96-97

Raible, Matt 13
record-message-sizes 110
record-message-times 110
Refresh Issues button

testing click 204
REFRESH_GRAPHS 162
refreshComments 80
RegularRectangle 155
Remote Class 104
RemoteObject 91, 139, 207, 227

instead of WebService 105
RemoteService 206

remoting-config.xml 133
resources.xml 95, 187, 230
RESTful 10, 228
ResultEvent 68-69, 79, 139, 142, 201
RIA 4
rich internet application. See RIA
RichText 8
ROLE_ADMIN 132, 136
ROLEJJSER 132, 136
RollingFileAppender 105
RPC

and Flash Player Security 97

Scalable Vector Graphics. See SVG
SDK

See also Flex SDK
secured-annotations 138
security

overriding default settings 137
simplest form 124

security constraints
closer to code 134

security.xml 134, 137
Selenium-Flex-API 202
sendPubSubJMSMessage 233
Serializable 230

interface 21
service

building 24
service-oriented architecture. SeeSOA
services-config.xml 70, 96, 107, 113, 231
set property

testing 203
Shockwave Component. See SWC
SimpleText 50
singleton 65
SiteMesh 44
small web format. See SWF
SmartSVN 172
SMTP server 214
SOA 92
SOAP 10
SOAPProxyAdapter 98
SolidFill 155
Sonatype 14, 177

Nexus 96
Sonatype Maven repository 196
Spacer 50, 155
Spring

framework 20
wiring together with 27

Spring bean
adding to Grails 230

242 INDEX

Spring BlazeDS Integration 98
add schema changes 101
Flex remoting 102
new logging object 105
no remoting-config.xml file 103
reduces complexity 94

Spring Integration Security 135
Spring Security 10, 124, 133

advantage 124
installed on AppFuse 137

SpringSource
Spring Blaze DS Integration 98

streaming, vs. polling 114
StreamingAMFChannel 117
StreamingHTTPChannel 117
strict mocks 198
Stroke

Degrafa object 149
Struts 2 17,28

language support 34
MVC design pattern 28
tag libraries 32
wiring view components 35

stub class 207
Style 8
Subversion 172
Surface 154

base comonent in Degrafa 149
SVG 150
SWC 169

creating a project 170
SWF 5

adding a wrapper 44
associate file with Flash Player 41

swfobject 190

Tamarin 7
target/surefire-reports 206
TDD

basic workflow 193
Test Driven Development. See TDD
textAlign 51
Thawte 178
TitleWindow 58, 86-87
ToggleButton 50

ToggleButtonBar 48
tweening 150

u
UlComponent 64
UIEvent

data 64
unit testing 192

mock testing framework 194
and TDD 193-194

unit testing framework. See FlexUnit4
USER_LOGGED_IN 142
userDao 138, 140
UserEvent class

creating 125
UserService

adding to LoginModel 140

VDividedBox 57
View

testing 202
ViewStack 47, 57

in login panel 126
navigation 48

w
Walls, Craig 133
WAR 18
Ward, James 92
web services

integrating with 9
major styles 62

web.xml 101
WebService 60, 62, 70, 80, 85, 105, 207

destinations 70
loadWSDL 70
wsdl 70, 81

Wikimedia Commons 178
WindowedApplication 176
Winstone 211
wireframe 83, 191
wrapper

HTML 44

	Team rebOOk

