
Expert
Performance
Indexing in SQL
Server 2019

Toward Faster Results and Lower
Maintenance
—
Third Edition
—
Jason Strate

www.allitebooks.com

http://www.allitebooks.org

Expert Performance
Indexing in SQL

Server 2019
Toward Faster Results and

Lower Maintenance

Third Edition

Jason Strate

www.allitebooks.com

http://www.allitebooks.org

Expert Performance Indexing in SQL Server 2019: Toward Faster Results and
Lower Maintenance

ISBN-13 (pbk): 978-1-4842-5463-9 ISBN-13 (electronic): 978-1-4842-5464-6
https://doi.org/10.1007/978-1-4842-5464-6

Copyright © 2019 by Jason Strate

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484254639. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jason Strate
Hugo, MN, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5464-6
http://www.allitebooks.org

Thanks to my family and friends for their support while
I had to duck out early at times to try to avoid missing

deadlines on this edition.

—Jason Strate

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ���xv

About the Technical Reviewer ���xvii

Introduction ��xix

Chapter 1: Index Fundamentals �� 1

Why Build Indexes? ��� 1

Major Index Types ��� 3

Heap Tables ��� 3

Clustered Indexes �� 4

Nonclustered Indexes �� 4

Columnstore Indexes ��� 5

Other Index Types �� 6

JSON and XML Indexes�� 6

Spatial Indexes �� 7

Hash and Range Indexes ��� 8

Full-Text Search ��� 9

Index Variations ��� 9

Primary Key ��� 10

Unique Index �� 10

Included Columns �� 11

Partitioned Indexes �� 11

Filtered Indexes ��� 12

Table of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Compression and Indexing �� 13

Index Data Definition Language �� 14

Creating an Index��� 14

Altering an Index ��� 18

Dropping an Index ��� 21

Index Metadata ��� 23

sys�indexes �� 23

sys�index_columns �� 24

sys�index_resumable_operations �� 24

sys�xml_indexes �� 24

sys�selective_xml_index_paths �� 24

sys�selective_xml_index_namespaces ��� 24

sys�spatial_indexes ��� 25

sys�spatial_index_tessellations ��� 25

sys�column_store_dictionaries ��� 25

sys�column_store_segments �� 25

sys�column_store_row_groups ��� 25

sys�hash_indexes �� 26

sys�fulltext_catalogs�� 26

sys�fulltext_indexes ��� 26

sys�fulltext_index_columns ��� 26

Summary��� 26

Chapter 2: Index Storage Fundamentals �� 29

Storage Basics �� 30

Pages ��� 30

Extents ��� 31

Page Types �� 33

File Header Page ��� 34

Boot Page �� 34

Page Free Space Page ��� 35

Table of ConTenTs

vii

Global Allocation Map Page ��� 36

Shared Global Allocation Map Page ��� 36

Differential Changed Map Page ��� 37

Minimally Logged Page ��� 37

Index Allocation Map Page �� 38

Data Page �� 38

Index Page ��� 39

Large Object Page ��� 39

Organizing Pages �� 40

Heap Structure �� 40

B-Tree Structure �� 42

Columnstore Structure �� 44

Examining Pages ��� 47

Dynamic Management Functions �� 47

DBCC Commands ��� 59

Page Fragmentation �� 80

Forwarded Records ��� 81

Page Splits ��� 83

Index Characteristics �� 87

Heap �� 87

Clustered Index �� 87

Nonclustered Index �� 88

Columnstore Index ��� 89

Summary��� 90

Chapter 3: Index Metadata and Statistics �� 91

Column-Level Statistics �� 92

DBCC SHOW_STATISTICS ��� 92

Catalog Views �� 99

STATS_DATE �� 101

sys�dm_db_stats_properties ��� 102

Table of ConTenTs

viii

sys�dm_db_stats_histogram ��� 107

sys�dm_db_incremental_stats_properties �� 109

Statistics DDL �� 109

Colum-Level Statistics Summary �� 109

Index Usage Statistics ��� 110

Header Columns �� 110

User Columns �� 112

System Columns �� 119

Index Usage Stats Summary ��� 122

Index Operational Statistics �� 122

Header Columns �� 124

DML Activity ��� 125

SELECT Activity �� 128

Locking Contention �� 132

Latch Contention ��� 139

Page Allocation Cycle �� 144

Compression �� 147

LOB Access �� 149

Row Version ��� 152

Index Operational Stats Summary ��� 153

Index Physical Statistics ��� 153

Header Columns �� 154

Row Statistics �� 155

Fragmentation Statistics ��� 156

Index Physical Stats Summary �� 158

Columnstore Statistics �� 158

Columnstore Physical Stats ��� 158

Columnstore Operational Stats �� 161

Summary��� 162

Table of ConTenTs

ix

Chapter 4: XML Indexes �� 163

XML Data ��� 163

Benefits ��� 164

Cautions ��� 164

XML Indexes �� 165

Primary/Secondary XML Indexes �� 165

Selective XML Indexes ��� 171

Summary��� 176

Chapter 5: Spatial Indexing �� 177

How Spatial Data Is Indexed ��� 178

Creating Spatial Indexes ��� 181

Supporting Methods with Indexes �� 188

Understanding Statistics, Properties, and Information ��� 190

The Views �� 190

The Procedures ��� 192

Tuning Spatial Indexes �� 194

Restrictions on Spatial Indexes ��� 195

Summary��� 196

Chapter 6: Indexing Memory-Optimized Tables �� 197

Memory-Optimized Tables Overview �� 197

Hash Indexes ��� 202

Range Indexes��� 208

Summary��� 211

Chapter 7: Full-Text Indexing �� 213

Full-Text Indexing �� 213

Creating a Full-Text Example ��� 214

Creating a Full-Text Catalog �� 215

Creating a Full-Text Index �� 217

Full-Text Search Index Catalog Views and Properties ��� 223

Summary��� 228

Table of ConTenTs

x

Chapter 8: Indexing Myths and Best Practices ��� 229

Index Myths ��� 230

Myth 1: Databases Don’t Need Indexes ��� 230

Myth 2: Primary Keys Are Always Clustered �� 233

Myth 3: Online Index Operations Don’t Block �� 235

Myth 4: Any Column Can Be Filtered in Multicolumn Indexes ��� 239

Myth 5: Clustered Indexes Store Records in Physical Order �� 242

Myth 6: Indexes Always Output in the Same Order ��� 244

Myth 7: Fill Factor Is Applied to Indexes During Inserts �� 249

Myth 8: Deleting from Heaps Results in Unrecoverable Space ��� 251

Myth 9: Every Table Should Have a Heap/Clustered Index �� 253

Index Best Practices ��� 255

Index to Your Current Workload ��� 255

Use Clustered Indexes on Primary Keys by Default ��� 256

Specify Fill Factors �� 256

Index Foreign Key Columns ��� 257

Balance Index Count �� 258

Summary��� 259

Chapter 9: Index Maintenance �� 261

Index Fragmentation ��� 261

Fragmentation Operations ��� 262

Fragmentation Variants ��� 276

Fragmentation Issues �� 288

Defragmentation Options ��� 291

Defragmentation Strategies �� 296

Preventing Fragmentation ��� 307

Index Statistics Maintenance �� 309

Automatically Maintaining Statistics ��� 310

Manually Maintaining Statistics �� 312

Summary��� 318

Table of ConTenTs

xi

Chapter 10: Indexing Tools ��� 319

Missing Indexes �� 319

Explaining the DMOs ��� 321

Using the DMOs ��� 325

Database Engine Tuning Advisor ��� 330

Explaining the DTA ��� 331

Using the DTA GUI �� 333

Using the DTA Utility �� 339

Summary��� 351

Chapter 11: Indexing Strategies ��� 353

Heaps �� 353

Temporary Objects ��� 354

Other Heap Scenarios �� 358

Clustered Indexes ��� 359

Identity Sequence �� 361

Natural Key �� 363

Foreign Key �� 366

Multiple Column �� 373

Globally Unique Identifier �� 380

Nonclustered Indexes ��� 383

Search Columns �� 385

Index Intersection �� 388

Multiple Column �� 392

Covering Index ��� 394

Included Columns �� 397

Filtered Indexes ��� 403

Foreign Keys �� 408

Columnstore Index �� 413

JSON Indexing ��� 420

Table of ConTenTs

xii

Index Storage Strategies ��� 425

Row Compression �� 425

Page Compression ��� 429

Indexed Views ��� 433

Summary��� 438

Chapter 12: Query Strategies ��� 439

LIKE Comparison ��� 439

Concatenation ��� 444

Computed Columns ��� 447

Scalar Functions ��� 451

Data Conversion �� 455

Summary��� 460

Chapter 13: Monitoring Indexes ��� 461

Performance Counters �� 462

Dynamic Management Objects ��� 471

Index Usage Stats �� 471

Index Operational Stats ��� 477

Index Physical Stats �� 491

Wait Statistics �� 497

Data Cleanup ��� 501

Event Tracing ��� 502

SQL Trace ��� 503

Extended Events �� 509

Query Store ��� 513

Summary��� 514

Chapter 14: Index Analysis ��� 515

Review of Server State ��� 517

Performance Counters ��� 517

Wait Statistics �� 553

Buffer Allocation �� 569

Table of ConTenTs

xiii

Schema Discovery �� 572

Identify Heaps �� 572

Duplicate Indexes �� 574

Overlapping Indexes �� 577

Unindexed Foreign Keys �� 581

Uncompressed Indexes ��� 584

Database Engine Tuning Advisor ��� 586

Unused Indexes ��� 589

Index Plan Usage��� 591

Summary��� 594

Chapter 15: Indexing Methodology ��� 595

The Indexing Method �� 595

Implement ��� 597

Communication ��� 598

Deployment Scripts ��� 600

Execution ��� 602

Repeat ��� 603

Summary��� 603

Index ��� 605

Table of ConTenTs

xv

About the Author

Jason Strate is senior database architect and developer working in the financial services

industry. He has been making data cool again for nearly 20 years, which includes

more than a decade of consulting with companies across the United States. A previous

recipient of Microsoft Most Valuable Professional award for Data Platform (formerly

SQL Server) from 2009 to 2016, Jason’s done fun stuff like getting certifications, blogging,

authoring books, and presenting on technologies. These days, he’s most often splitting

his time between reading, karaoke, and the PASS Cloud Virtual Group.

xvii

About the Technical Reviewer

Rodney Landrum went to school to be a poet and a writer.

And then he graduated, so that dream was crushed. He

followed another path, which was to become a professional

in the fun-filled world of information technology. He has

worked as a systems engineer, UNIX and network admin,

data analyst, client services director, and finally database

administrator (DBA). The old hankering to put words on

paper, while paper still existed, got the best of him and in

2000 he began writing technical articles, some creative and

humorous, some quite the opposite. In 2010, he wrote SQL Server Tacklebox, a title

his editor disdained, but a book closest to the true creative potential he sought; he still

yearned to do a full book without a single screenshot, which he accomplished in 2019

with his first novel, Chronicles of Shameus. He currently works from his castle office in

Pensacola, FL, as a senior DBA consultant for Ntirety, a division of Hostway/Hosting.

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.simple-2Dtalk.com_books_sql-2Dbooks_sql-2Dserver-2Dtacklebox_&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=ATp2mIUhDlDGDaJJR-DBWwdevflUGjlkn7itQ4W8LDE&s=RDec6_ulY0b0VJaB54ErbbkfblQMQb3XDKyMRcf5MGk&e=

xix

Introduction

Today’s world is all about the data. From the applications to manage our lives to the

analytics we use to guide our decisions, data is everywhere. Behind data, databases

provide the engine to get to our data, but without the right indexes we lack the fuel to

access our data efficiently.

When it comes to indexes, no single structure aids in retrieving data from a database

more than an index. New features in SQL Server provide new and unique ways to

leverage and access your data, but without going back to the basics and ensuring that

the data is properly indexed, you’ll find that even the new features fail to live up to

expectations.

Indexes represent both how data is stored and the access paths by which data can be

retrieved from your database. Without indexes, a database is an unordered mess minus

the roadmap to find the information you want.

Throughout my experience working on data platforms, one of the most common

resolutions that I provide for performance tuning and application outages is to provide

the right indexes for the underlying databases. Often, the effort of adding an index or

two to the most accessed tables within a database provides significant performance

improvements—much more so than tuning the database at a per SQL statement level.

This is because an index affects many SQL statements that are being run against the

database lifting performance across the workload.

Managing indexes may seem like an easy task. Unfortunately, their seeming

simplicity is often the key to why they are overlooked. Often, there is an assumption

from developers that the database administrators will take care of indexing. Or there

is an assumption by the database administrators that the developers are building

the necessary indexes as they develop features in their applications. While these

are primarily cases of miscommunication, people need to know how to determine

what indexes are necessary and the value of those indexes. This book provides that

information.

Outside of the aforementioned scenarios is the fact that applications and the data

they use change over time. Features created and used to tune the database may not be

as useful as expected, or a small feature change may lead to a big change in how the

xx

application and underlying databases are used. All of this change affects the database

and what needs to be accessed. As time goes on, databases and their indexes need to be

reviewed to determine if the current indexing is accurate for the new load. This book also

provides information in this regard.

 What’s in This Book?
From beginning to end, this book provides information that helps build your skills from

a novice at indexing to an expert. The chapters are laid out such that you can start at any

place to fill in the gaps in your knowledge and build out from there. Whether you can

barely spell index, need to understand the fundamentals, or need to build an indexing

methodology, the information is available here.

Chapter 1 covers index fundamentals. It lays the groundwork for all of the following

chapters. This chapter provides information regarding the types of indexes available in

SQL Server. It covers some of the Primary index types and defines what these are and

how to build them. The chapter also explores the options available that can change the

structure of indexes. From fill factor to included columns, the available attributes are

defined and explained.

Chapter 2 picks up where the previous chapter left off. Going beyond defining the

indexes available, the chapter looks at the physical and logical structure of indexes and

the components that make up indexes. This internal understanding of indexes provides

the basis for grasping why indexes behave in certain ways in certain situations. As you

examine the structures of indexes, you’ll become familiar with the tools you can use to

begin digging into these structures on your own.

Armed with an understanding of the indexes available and how they are built,

Chapter 3 explores the statistics that are stored on the indexes and how to use this

information; these statistics provide insight into how SQL Server is utilizing indexes.

The chapter also provides information necessary to decipher why an index may not be

selected and why it is behaving in a certain way. You will gain a deeper understanding

of how this information is collected by SQL Server through dynamic management views

and what data is worthwhile to review.

Not every index type is fully discussed in the first chapter; the types not discussed are

covered in Chapters 4, 5, and 6. Beyond the rowstore and columnstore index structures,

there are a few other index types which are Extensible Markup Language (XML),

spatial, full-text, and semantic search. These indexes are applicable to specific situations.

InTroduCTIon

xxi

In these chapters, you’ll look into these other index types to understand what they have

to offer. You’ll also look at situations where they should be implemented.

In a similar fashion to the previous three chapters, Chapter 7 takes a dive into

memory-optimized tables. Memory-optimized tables were new to SQL Server 2014 and

provided a unique capability to provide improved performance with tables that reside in

memory when online. This chapter will look at how indexes function on these types of

tables and what restrictions still remain.

Chapter 8 identifies and debunks some commonly held myths about indexes. Also,

it outlines some best practices in regard to indexing a table. As you move into using

tools and strategies to build indexes in the chapters that follow, this information will be

important to remember.

With a firm grasp of the options for indexing, the next thing that needs to be

addressed is maintenance. In Chapter 9, you’ll look at what needs to be considered when

maintaining indexes in your environment. We’ll look at both the fragmentation of the

indexes and the underlying statistics that supports how SQL Server determines how the

index can be used.

SQL Server is not without tools to automate your ability to build indexes. Chapter 10

explores these tools and looks at ways that you can begin building indexes in your

environment today with minimal effort. The four tools discussed are the missing index

dynamic management views (DMVs), Database Engine Tuning Advisor (DTA), Query

Store, and Automatic Database Tuning. You’ll look at the benefits and issues regarding

these tools and get some guidance on how to use them effectively in your environment.

The tools alone won’t give you everything you need to index your databases. In

Chapter 11, you’ll begin to look at how to determine the indexes that are needed for

a database and a table. There are a number of strategies for selecting what indexes to

build within a database. They can be built according to recommendations by the query

optimizer. They also should be built to support metadata structures such as foreign keys.

For each strategy of indexing, there are a number of considerations to take into account

when deciding whether or not to build the index.

Part of effective indexing is writing queries that can utilize an index on a query.

Chapter 12 discusses a number of strategies for indexing. Sometimes when querying

data, the indexes that you assume will be used are not used after all. These situations

are usually tied into how a query is structured or the data that is being retrieved. Indexes

can be skipped due to SARGability issues (where the query isn’t being properly selective

on the index). They can also be skipped over due to tipping point issues, such as when

InTroduCTIon

xxii

the number of reads to retrieve data from an index potentially exceeds the reads to scan

that or another index. These issues affect index selection as well as the effectiveness and

justification for some indexes.

Today’s DBA isn’t in a position where they have only a single table to index. A

database can have tens, hundreds, or thousands of tables, and all of them need to have

the proper indexes. Beginning in Chapter 13, you’ll learn some methods to approach

indexing for a single database but also for all of the databases on a server and servers

within your environment.

 What’s New in This Edition?
With three new versions of SQL Server released since the last edition of this book,

there have been a significant number of changes to how indexes can be applied to your

databases and data. Some of the key changes to SQL Server that involve indexing are as

follows:

• Changes in indexing restrictions to memory-optimized tables and

columnstore indexes

• Improvements to maintenance processes for indexes including

improved processing and ability to pause and restart index rebuilds

• New tools to review query execution to identify and automate index

selection

• Improvements to partitioning and statistics

• Changes in dynamic management objects (DMOs) available that

improve capabilities to inspect indexes and data pages

All of these changes and more are spread throughout the book in all of the chapters.

Even though there have been a number of releases of SQL Server since the last edition,

the primary focus will be on SQL Server 2019 as the current state of SQL Server. Where

applicable, information will be included to indicate features made available since the

last edition, namely, calling out changes from SQL Server 2016 and 2017.

InTroduCTIon

xxiii

 Summary
As previously mentioned, data is important, and indexes provide the way for you to get

to that data. Through the chapters in this book, you will become armed with what you

need to know about the indexes in your environment. You will also learn how to find the

information you need to improve the performance of your environment.

InTroduCTIon

1
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_1

CHAPTER 1

Index Fundamentals
The goal of this book is to help you improve the performance of your databases through

the use of indexes. In order to accomplish this, you must first understand what indexes

are and why you need them. You need to understand the differences between how data

in a clustered index, columnstore index, and heap table is stored. You also will look at

how nonclustered and other index types are built and how indexes interact with other

indexes. This chapter will provide the building blocks for understanding the logical

design of indexes.

 Why Build Indexes?
The most important asset any business owns is its data. Databases exist to store that

data. A key piece in providing the data is delivering it efficiently. Being able to efficiently

access data improves the value that the business gains from the data. The way to do that

is through indexes.

Indexes are the means to providing an efficient access path between the user and the

data. By providing this access path, the user can ask for data from the database, and the

database will know where to go to retrieve the data and how to do so with minimal effort.

Why not just have all the data in a table and return it when it is needed? Why go

through the exercise of creating indexes? Returning data when needed is actually the

point of indexes; they provide the path that is necessary to get to the data in the quickest

manner possible. Without indexes to provide a map to where data is located, database

systems have to search through all of the available data to know that the required data

has been accessed. In today’s world where terabytes of data is common, it’s important to

be able to quickly and efficiently get to the data needed.

To illustrate, let’s consider an analogy that is often used to describe indexes—a

library. When you go to the library, there are shelves upon shelves of books. In this

library, a common task repeated over and over is finding a book. Most often you are

particular on the book that you need, and you have a few options for finding that book.

2

In the library, books are stored on the shelves using the Dewey Decimal

Classification system. This system assigns a number to a book based on its subject.

Once the value is assigned, the book is stored in numerical order within the library. For

instance, books on science are in the range of 500–599. From there, if you wanted a book

on mathematics, you would look for books with a classification of 510–519. Then to find

a book on geometry, you’d look for books numbered 516. With this classification system,

finding a book on any subject is easy and efficient. Once you know the number of the

book you are looking for, you can go directly to the stack in the library where the books

with 516 are located, instead of wandering through the library until you happen upon

the geometry books. This is exactly how indexes work; they provide an ordered manner

to store information that allows users to easily find the data.

What happens, though, if you want to find all the books in a library written by Jason

Strate? You could make an educated guess that they are all categorized under databases,

but you would have to know that for certain. The only way to do that would be to walk

through the library and check every stack. The library has a solution for this problem—

the card catalog.

Most card catalogs are available through computer terminals these days, but back

when I was a kid, they consisted of individual cards that were ordered by author, title,

subject, and category. Using the card catalog, you would be able to find the Dewey

Decimal number for any book. For instance, searching by author, you could find all

books written by Jason Strate. Thus, instead of wandering through the stacks and

checking each book to see whether I wrote it, you could instead go to the specific books

in the library written by me. In essence, this is also how indexes work. The index provides

a location of data so that queries can go directly to the data.

Without these mechanisms, finding books in a library, or information in a database,

would be difficult. Instead of going straight to the information, you’d wander through the

library aisle to aisle trying to find what you need. In smaller libraries, such as Little Free

Libraries, this isn’t much of a problem, since there are so few books. But as the library

gets larger and settles into a building, it just isn’t efficient to browse all the stacks. And

when there is research that needs to be done and books need to be found, there isn’t

time to browse through everything.

This analogy has hopefully provided you with the basis to understand the purpose

and the need for indexes. In the following sections, I’ll dissect this analogy a bit

more and pair it with the different indexing options that are available in SQL Server

databases.

Chapter 1 Index Fundamentals

3

 Major Index Types
You can categorize indexes in different ways. However, it’s essential to understand the

four major categories described in this particular section: heaps, clustered, columnstore,

and nonclustered indexes. Heaps, clustered indexes, and clustered columnstore indexes

directly affect how data in the underlying tables are stored. Nonclustered indexes are

independent of data storage. The first step toward understanding indexing is to grasp

this categorization scheme.

 Heap Tables
As mentioned in the library analogy, in a Little Free Library, the books available

change often; usually there are only one or two short shelves of books. In these

cases, the owner doesn’t spend time organizing the books under the Dewey Decimal

system. Instead, the books are placed on the shelves as they are acquired. In this

case, there is no order to how the books are stored in the library. When SQL Server

stores data in a table in a similar fashion, when the data lacks an ordered structure, it

is referred to as a heap.

In a heap, the first row added to the index is the first record in the table, the second

row is the second record in the table, the third row is the third record in the table, and

so on. There is nothing in the data that is used to specify the order in which the data has

been added. The data and records are in the table without any particular order.

When a table is first created, the initial storage structure is called a heap. This is

probably the simplest storage structure. Rows are inserted into the table in the order

in which they are added. A table uses a heap until a clustered index or clustered

columnstore index is created on the table or the table is created as memory-optimized,

discussed in Chapter 7. A table can be a heap only if there are no other index types that

define how the base data is stored on the table. Only a single heap structure is allowed

per table.

Note most people don’t consider heaps to be indexes. that’s fine. In the context
of this discussion, we will treat them as indexes as they assist in determining
where data will be located and how it will be accessed by queries.

Chapter 1 Index Fundamentals

4

 Clustered Indexes
In the library analogy, you reviewed how the Dewey Decimal system defines how books

are sorted and stored in the library. Regardless of when the book is added to the library,

with the Dewey Decimal system, it is assigned a number based on its subject and placed

on the shelf between other books of the same subject. The subject of the book, not when

it is added, determines the location of the book. This structure is the most direct method

to find a book within the library. In the context of a table, the index that provides this

functionality in a database is called a clustered index.

With a clustered index, one or more columns are selected as the key columns for the

index. Key columns are used to sort and determine where to locate data in the table.

Where a library places books on the shelves based on their Dewey Decimal number, a

clustered index determines the location of records in the table based on the logical order

of the key columns of the index.

The columns used as the key columns for a clustered index are selected based on

the most frequently used method for accessing the records in the table. For instance,

in a table with states and provinces, the most common method of finding a record

in the table would probably be through its abbreviation. In that situation, using the

abbreviation for the clustering key column would be best. With most tables, the primary

key or business key will serve as the clustered index key columns.

As with heaps, clustered indexes determine where data is located in a table.

In a clustered index, the data outside the key columns is stored alongside the key

columns. This equates to the clustered index determining the physical table itself,

just as a heap defines the table. Due to this, a table cannot have more than one

clustered index.

 Nonclustered Indexes
As was noted in my analogy, the Dewey Decimal system doesn’t account for every way

in which a person may need to search for a book. If the author or title is known but not

the subject, then the classification doesn’t really provide any value. Libraries solve this

problem with card catalogs, which provide a place to cross-reference the classification

number of a book with the name of the author or the book title. Databases are also able

to solve this problem with nonclustered indexes.

Chapter 1 Index Fundamentals

5

In a nonclustered index, columns are selected and sorted based on their values.

These columns contain a reference to the heap or clustered index location of the data

they are related to. This is nearly identical to how a card catalog works in a library. The

order of the books, or the records in the tables, doesn’t change, but a shortcut to the data

is created based on the other search criteria.

Nonclustered indexes do not have the same restrictions as heaps and clustered

indexes. There can be many nonclustered indexes on a table, in fact up to 999

nonclustered indexes. This allows alternative routes to be created for users to get to the

data they need without having to traverse all records in a table. Just because a table can

have many indexes doesn’t mean that it should, as I’ll discuss later in this book.

 Columnstore Indexes
One of the problems with card catalogs in large libraries is that there could be dozens or

hundreds of index cards that match a title of a book. Each of these index cards contains

information such as the author, subject, title, International Standard Book Number

(ISBN), page count, and publishing date, along with the Dewey Decimal number. In

nearly all cases, this additional information is not needed, but it’s there to help filter out

index cards when necessary.

Imagine if instead of dozens or hundreds of index cards to look at, you had a few

cards that had only the title and Dewey Decimal number or only the subject and Dewey

Decimal number. Basically, instead of storing all attributes together, you stored them

separately with an identifier, like a Dewey Decimal number, included to link them back

together again. For each attribute, where you previously would have had to look through

dozens or hundreds of index cards, you instead are left with a few consolidated index

cards. This type of index would be called a columnstore index.

Columnstore indexes were new to SQL Server 2012 and greatly expanded

in following SQL Server releases. Traditionally, indexes are stored in row-based

organization, also known as rowstore. This form of storage is extremely efficient when

one row or a small range is requested. When a large range or all rows are returned,

rowstores can become inefficient, especially when there are aggregations or few columns

are required. The columnstore index favors the return of large ranges of rows by storing

data in column-wise organization.

When you create a columnstore index, you include all the columns in a table. This

ensures that all columns are included in the enhanced performance benefits of the

columnstore organization. In a columnstore index, instead of storing all the columns

Chapter 1 Index Fundamentals

6

for a record together, each column is stored separately with all the other rows in an

index. The benefit of this type of index is that only the columns and rows required for a

query need to be read. In data warehousing scenarios, often less than 15 percent of the

columns in an index are needed for the results of a query.1

Because of their structure, columnstore indexes provide significant value for data

warehousing. Consider first that the index accesses only the columns required to execute

the query. Additionally, compression is greatly improved since data within a single

column has a higher likelihood for similarity. Between these two aspects, columnstore

indexes provide significant performance improvements. I’ll discuss these in more depth

in later chapters.

 Other Index Types
Besides the index types just discussed, a number of other index types are available.

These other types cover specialized search, data, and table types that don’t fit under

traditional indexing structures. These types, which are XML, spatial, hash and range,

and full-text search (FTS) indexes, each have dedicated chapters to focus on their

specialized indexing structures. While these don’t necessarily fit into the card catalog

scenario that has been outlined so far, they are important options when working with

their related data and table types. To help illustrate, I’ll show how to add some new

functionality to the library. Later chapters will further expand on the information

presented here.

 JSON and XML Indexes
Suppose you needed a method to be able to search the table of contents for all the

books in the library. A table of contents provides a hierarchical view of a book. There are

chapters that outline the main sections for the book, which are followed by subchapter

heads that provide more details of the contents of the chapter. This relationship model

is similar to how XML documents are designed; there are nodes and a relation between

them that define the structure of the information.

1 www.red-gate.com/simple-talk/wp-content/uploads/2013/07/Columnstore-Indexes-for-
Fast-DW-QP-SQL-Server-11.pdf

Chapter 1 Index Fundamentals

http://www.red-gate.com/simple-talk/wp-content/uploads/2013/07/Columnstore-Indexes-for-Fast-DW-QP-SQL-Server-11.pdf
http://www.red-gate.com/simple-talk/wp-content/uploads/2013/07/Columnstore-Indexes-for-Fast-DW-QP-SQL-Server-11.pdf

7

As discussed with the card catalog, it would not be efficient to look through every

book in the library to find those that were written by Jason Strate. It would be even less

efficient to look through all the books in the library to find out whether any of the chapters

in any of the books were written by Ted Krueger. Each book probably has more than one

chapter, resulting in multiple values that would need to be checked for each book and no

certainty as to how many chapters would need to be looked at before checking.

One method of solving this problem would be to make a list of every book in the

library and list all the chapters for each book. Each book would have one or more

chapter entries in the list. This provides the same benefit that a card catalog provides,

but for some less than standard information. In a database, this is what XML indexes and

indexing JavaScript Object Notation (JSON) can accomplish.

For every node in an XML document, an entry is made in the XML index. This

information is persisted in internal tables that SQL Server can use to determine whether

the XML document contains the data that is being queried. Similarly with JSON, the

values to index are materialized with an index on a calculated column.

Creating and maintaining XML indexes can be quite costly. Every time the index is

updated, it needs to shred all the nodes of the XML document into the XML index. The

larger the XML document, the more costly this process will be. However, if data in an

XML column will be queried often, the cost of creating and maintaining an XML index

can be offset quickly by removing the need to shred all the XML documents at runtime.

 Spatial Indexes
Every library has maps. Some maps cover the oceans; others are for continents,

countries, states, or cities. Various maps can be found in a library, each providing a

different view and information of perhaps the same areas. There are two basic challenges

that exist with all these maps. First, you may want to know which maps overlap or

include the same information. For instance, you may be interested in all the maps that

include Minnesota. The second challenge is when you want to find all the books in the

library that were written or published at a specific place. Again, in this case, how many

books were written within 25 miles of Minneapolis?

Both of these present a problem because, traditionally, data in a database is fairly

one-dimensional, meaning that data represents discrete facts. In the physical world,

data often exists in more than one dimension. Maps are two-dimensional, and buildings

and floor plans are three-dimensional. To solve this problem, SQL Server provides the

capabilities for spatial indexes.

Chapter 1 Index Fundamentals

8

Spatial indexes dissect the spatial information that is provided into a four-level

representation of the data. This representation allows SQL Server to plot out the spatial

information, both geometry and geography, in the record to determine where rows

overlap and the proximity of one point to another point.

There are a few restrictions that exist with spatial indexes. The main restriction is that

spatial indexes must be created on tables that have primary keys. Without a primary key,

the spatial index creation will not succeed. Additionally when creating spatial indexes,

they are restricted from utilizing parallel processing; and only a single spatial index

can be built on a table at a time, which impacts the speed in which they can be created.

Also, spatial indexes cannot be used on indexed views. These and other restrictions are

covered in Chapter 5.

Similar to XML indexes, spatial indexes have up-front and maintenance costs

associated with their sizes. The benefit is that when spatial data needs to be queried

using specific methods for querying spatial data, the value of the spatial index can be

quickly realized. Spatial indexes will be discussed in more depth in Chapter 5.

 Hash and Range Indexes
As books come into the library, sometimes the frequency in which they are returned

exceeds the rate in which they are placed back into the stacks. It takes time to sort the

books and put them where they go. At these times, a librarian is often there keeping track

of what is returned. For these books, the librarian can often remember which books

are where in the queue of returned books and get the book you want without the use of

the card catalog. This is in essence what memory-optimized tables do with hash and

range indexes. The only difference is that with hash and range indexes, millions of rows,

or books, can be kept in memory without needing to rely on disk-based structures to

support them.

A hash index allows a memory-optimized table to provide point lookups of data

within the table. In other words, the index, or the librarian, can remember exactly where

the book is in the table and index each time it is needed.

Alternatively, a range index provides memory-optimized tables with the capability to

efficiently identify ranges of items. For instance, if the index, or librarian, needed all the

books returned between 8 a.m. and 12 p.m., the index would be able to scan across the

rows vs. accessing rows in row-by-row operations.

Chapter 1 Index Fundamentals

9

For both range and hash indexes, there are a few things to consider. First, hash

and range indexes are allowed only on memory-optimized tables. The reference

to remembering where the books are is really what is different about hash and

range indexes over other index types. Between disk and memory, the structure of a

clustered index is relatively unchanged. With hash and range indexes, the structure

is designed specifically for fast memory access and leverages disk solely to support

transaction consistency and the ability to rebuild the index in memory when the

database comes online.

 Full-Text Search
The last scenario to consider is the idea of finding specific terms within books. Card

catalogs do a good job of providing information on finding books by author, title, or

subject. The subject of a book isn’t the only keyword you may want to use to search for

books. At the back of many books are keyword indexes to help you find other subjects

within a book. When this book is completed, there will be an index, and it will have the

entry full-text search in it with a reference to this page and other pages where this is

discussed in this book.

Consider for a moment if every book in the library had a keyword index.

Furthermore, let’s take all those keywords and place them in their own card catalog.

With this card catalog, you’d be able to find every book in the library with references

to every page that discusses full-text searches. Generally speaking, this is what an

implementation of a full-text search provides except it covers nearly all words in the

books.

 Index Variations
Up to this point, you’ve looked at the different types of indexes available within SQL

Server. These aren’t the only ways in which indexes can be defined. There are a few

index properties that can be used to create variations on the types of indexes discussed

previously. Implementing these variations can assist in implementing business rules

associated with the data and can help improve the performance of the index.

Chapter 1 Index Fundamentals

10

 Primary Key
In the library analogy, I discussed how all the books have a Dewey Decimal number.

This unique number identifies each book and where it is in the library. In a similar

fashion, one index on a table can be defined to uniquely identify records within a

table. To do this, an index is created as the primary key. There are some differences

between the Dewey Decimal number and a primary key, but conceptually they are

the same.

A primary key is used to identify a record within a table. For this reason, none of the

records in a table can have the same primary key value. Typically, a primary key will be

created on a single column, though it can be composed of multiple columns.

There are a few other things that need to be remembered when using a primary key.

First, a primary key is a unique value that identifies each record in a table. Because of

this, all values within a primary key must be populated. No null values are allowed in

a primary key. Also, there can be only one primary key on a table. There may be other

identifying information in a table, but only a single column or set of columns can be

identified as the primary key. Lastly, although it is not required, a primary key will

typically be built on a clustered index. The primary key will be clustered by default, but

this behavior can be overridden and will be ignored if a clustered index already exists.

More information on why this is done will be included in Chapter 8.

 Unique Index
As mentioned previously, there can be more than a single column or set of columns that

can be used to uniquely identify a record in a table. This is similar to the fact that there is

more than one way to uniquely identify a book in a library. Besides the Dewey Decimal

number, a book can also be identified through its ISBN. Within a database, this type of

information can be represented with a unique index.

Similar to the primary key, an index is constrained so that only a single value appears

within the index. A unique index is similar in that it provides a mechanism to uniquely

identify records in a table and can also be created across a single column or multiple

columns.

One chief difference between a primary key and a unique index is the behavior when

the possibility of null values is introduced. A unique index will allow null values within

the columns being indexed. A null value is considered a discrete value, and only one

combination of null values is allowed across the key column in a unique index.

Chapter 1 Index Fundamentals

11

 Included Columns
Suppose you want to find all the books written by Douglas Adams and find out how

many pages are in each book. You may at first be inclined to look up the books in the

card catalog and then find each book and write down the number of pages. Doing

this would be fairly time-consuming. It would be a better use of your time if instead

of looking up each book, you had that information on hand. With a card catalog,

you wouldn’t actually need to find each book for a page count, though, since most

card catalogs include the page count on the index card. When it comes to indexing,

including information outside the indexed columns is done through included

columns.

When a nonclustered index is built, there is an option to add included columns into

the index. These columns are stored as nonsorted data within the sorted data in the

index. Included columns cannot include any columns that have been used in the initial

sorted column list of the index.

In terms of querying, included columns allow users to look up information outside

the sorted columns. If everything they need for the query is in the included columns, the

query does not need to access the heap or clustered index for the table to complete the

results. Similar to the card catalog example, included columns can significantly improve

the performance of a query.

 Partitioned Indexes
Books that cover a lot of data can get fairly large. If you look at a dictionary or the

complete works of William Shakespeare, these are often quite thick. Books can get large

enough that the idea of containing them in a single volume just isn’t practical. The best

example of this is an encyclopedia.

It is rare that an encyclopedia is contained in a single book. The reason is quite

simple—the size of the book and the width of the binding would be beyond the

ability of nearly anyone to manage. Also, the time it takes to find all the subjects in

the encyclopedia that start with the letter S is greatly improved because you can go

directly to the S volume instead of paging through an enormous book to find where

they start.

Chapter 1 Index Fundamentals

12

This problem isn’t limited to books. A problem similar to this exists with tables.

Tables and their indexes can get to a point where their size makes it difficult to continue

to maintain the indexes in a reasonable time period. Along with that, if the table has

millions or billions of rows, being able to scan across limited portions of the table vs. the

whole table can provide significant performance improvements. To solve this problem

on a table, indexes have the ability to be partitioned.

Partitioning can occur on both clustered and nonclustered indexes. It allows an

index to be split along the values supplied by a function. By doing this, the data in the

index is physically separated into multiple partitions, while the index itself is still a single

logical object.

 Filtered Indexes
By default, nonclustered indexes contain one record in them for every row in the table

for which the index is associated. In most cases, this is ideal and provides the index an

opportunity to assist in selectivity for any value in the column.

There are atypical situations where including all the records in a table in an index is less

than ideal. For instance, the set of values most often queried may represent a small number

of rows in a table. In this case, limiting the rows in the index will reduce the amount of work

a query needs to perform, resulting in an improvement in the performance of the query.

Another could be where the selectivity of a value is low compared to the number of rows

in the table. This could be an active status or shipped Boolean values; indexing on these

values wouldn’t drastically improve performance, but filtering to just those records would

provide a significant opportunity for query improvement.

To assist in these scenarios, nonclustered indexes can be filtered to reduce the

number of records they contain. When the index is built, it can be defined to include or

exclude records based on a simple comparison that reduces the size of the index.

Besides the performance improvements outlined, there are other benefits to using

filtered indexes. The first improvement is reduced storage costs. Since filtered indexes

have fewer records in them, because of the filtering, there will be less data in the index,

which requires less storage space. Another benefit is reduced maintenance costs. Similar

to the reduced storage costs, since there is less data to maintain, less time is required to

maintain the index.

Chapter 1 Index Fundamentals

13

 Compression and Indexing
Today’s libraries have a lot of books in them. As the number of books increases, there

comes a point where it becomes more and more difficult to manage the library with the

existing staff and resources. Because of this, there are a number of ways that libraries

find to store books, or the information within them, to allow better management without

increasing the resources required to maintain the library. As an example, books can be

stored on microfiche or made available only through electronic means. This provides the

benefits of reducing the amount of space needed to store the materials and allows library

patrons a means to look at more books more quickly.

Similarly, indexes can reach the point of becoming difficult to manage when

they get too large. Also, the time required to access the records can increase beyond

acceptable levels. There are two types of compression available in SQL Server: row-level

and page- level compression.

With row-level compression, an index compresses each record at the row level. When

row-level compression is enabled, a number of changes are made to each record. To

begin with, the metadata for the row is stored in an alternative format that decreases

the amount of information stored on each column, but because of another change, it

may actually increase the size of the overhead. The main changes to the records are

numerical data changes from fixed to variable length and blank spaces at the end of

fixed-length string data types that are not stored. Another change is that null or zero

values do not require any space to be stored.

Page-level compression is similar to row-level compression, but it also includes

compression across a group of rows. When page-level compression is enabled,

similarities between string values in columns are identified and compressed. This will be

discussed in detail in Chapter 2.

With both row-level and page-level compression, there are some things to be

taken into consideration. To begin with, compressing a record takes additional central

processing unit (CPU) time. Although the row will take up less space, the CPU is the

primary resource used to handle the compression task before it can be stored. Along

with that, depending on the type of data in your tables and indexes, the effectiveness of

the compression will vary.

Chapter 1 Index Fundamentals

14

 Index Data Definition Language
Similar to the richness in types and variations of indexes available in SQL Server, there

is also a rich data definition language (DDL) that surrounds building indexes. In this

section, you will examine the DDL for building indexes. First, you’ll look at the CREATE

statement and its options and pair them with the concepts discussed previously in this

chapter.

For the sake of brevity, I won’t discuss the backward-compatible features of the index

DDL; you can find information on those features in SQL Docs for SQL Server 2012. I’ll

discuss XML and spatial indexes and full-text search further in later chapters.

 Creating an Index
Before an index can exist within your database, it must first be created. This is

accomplished with the CREATE INDEX syntax shown in Listing 1-1. As the syntax

illustrates, most of the index types and variations previously discussed are available

through the basic syntax.

Listing 1-1. CREATE INDEX Syntax

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name

 ON <object> (column [ASC | DESC] [,...n])

 [INCLUDE (column_name [,...n])]

 [WHERE <filter_predicate>]

 [WITH (<relational_index_option> [,...n])]

 [ON { partition_scheme_name (column_name)

 | filegroup_name

 | default

 }

]

 [FILESTREAM_ON { filestream_filegroup_name | partition_scheme_name |

"NULL" }]

[;]

The choice between CLUSTERED and NONCLUSTERED indexing determines whether an

index will be built as one of those two basic types. Excluding either of these types will

default the index to nonclustered.

Chapter 1 Index Fundamentals

15

The uniqueness of the index is determined by the UNIQUE keyword; including it

within the CREATE INDEX syntax will make the index unique. The syntax for creating an

index as a primary key will be included later in this chapter.

The <object> option determines the base object over which the index will be built.

The syntax allows for indexes to be created on either tables or views. The specification of

the object can include the database name and schema name, if needed.

After specifying the object for the index, the sorted columns of an index are listed.

These columns are usually referred to as the key columns. Each column can appear

in the index only a single time. By default, the columns will be sorted in the index in

ascending order, but descending order can be specified instead. An index can include up

to 32 columns as part of the index key with a total size not to excess 1,700 bytes. Prior to

SQL Server 2016, it was 16 columns and 900 bytes.

As an option, included columns can be specified on any nonclustered index, which

are added after the key columns for the index. There is no option for either ascending

or descending since included columns are not sorted. Between the key and nonkey

columns, there can be up to 1,023 columns in an index. The size restriction on the key

columns does not affect included columns.

If an index will be filtered, this information is specified next. The filtering criteria are

added to an index through a WHERE clause. The WHERE clause can use any of the following

comparisons: IS , IS NOT , = , <> , != , > , >= , !> , < , <= , and !<. Also, a filtered index

cannot use comparisons against a computed column, a user-defined type (UDT) column, a

spatial data type column, or a HierarchyID data type column.

You can use a number of options when creating an index. In Listing 1-1, there is

a segment for adding index options, noted by the tag <relational_index_option>.

These index options control both how indexes are created and how they will function

in some scenarios. Listing 1-2 provides the DDL for the available options available for

CREATE INDEX.

Listing 1-2. CREATE INDEX Options

PAD_INDEX = { ON | OFF }

 | FILLFACTOR = fillfactor

 | SORT_IN_TEMPDB = { ON | OFF }

 | IGNORE_DUP_KEY = { ON | OFF }

 | STATISTICS_NORECOMPUTE = { ON | OFF }

 | STATISTICS_INCREMENTAL = { ON | OFF }

Chapter 1 Index Fundamentals

16

 | DROP_EXISTING = { ON | OFF }

 | ONLINE = { ON | OFF }

 | RESUMABLE = {ON | OF }

 | MAX_DURATION = <time> [MINUTES]

 | ALLOW_ROW_LOCKS = { ON | OFF }

 | ALLOW_PAGE_LOCKS = { ON | OFF }

 | MAXDOP = max_degree_of_parallelism

 | DATA_COMPRESSION = { NONE | ROW | PAGE}

 [ON PARTITIONS ({ <partition_number_expression> | <range> }

 [, ...n])]

Each of the options allows for different levels of control on the index creation

process. Table 1-1 lists all the options available for CREATE INDEX. In later chapters, I’ll

discuss examples and strategies for applying them. You can find more information on

the CREATE INDEX syntax and examples of its use in SQL Docs for SQL Server.

Table 1-1. CREATE INDEX Syntax Options

Option Name Description

FILLFACTOR defines the amount of empty space to leave in each data page of an

index when it is created. this is applied only at the time an index is

created or rebuilt.

PAD_INDEX specifies whether the FILLFACTOR for the index should be applied to the

nonleaf data pages for the index. the PAD_INDEX option is used when

data manipulation language (dml) operations that lead to excessive

nonleaf-level page splitting need to be mitigated.

SORT_IN_TEMPDB determines whether to store temporary results from building the index

in the tempdb database. this option will increase the amount of space

required.

IGNORE_DUP_KEY Changes the behavior when duplicate keys are encountered when

performing inserts into a table. When enabled, rows violating the key

constraint will fail. When the default behavior is disabled, the entire insert

will fail.

(continued)

Chapter 1 Index Fundamentals

17

Table 1-1. (continued)

Option Name Description

STATISTICS_

NORECOMPUTE

specifies whether any statistics related to the index should be re-created

when the index is created.

STATISTICS_

INCREMENTAL

specifies whether statistics collected for the index should be created on

the index as a whole or per partition.

DROP_EXISTING determines the behavior when an index of the same name on the table

already exists. By default, when OFF, the index creation will fail. When set

to ON, the index creation will overwrite the existing index.

ONLINE determines whether a table and its indexes are available for queries

and data modification during index operations. When enabled, locking

is minimized, and an intent shared is the primary lock held during index

creation. When disabled, the locking will prevent data modifications to the

index and underlying table for the duration of the operation. ONLINE is an

enterprise edition–only feature.

RESUMABLE Identifies whether an indexing operation will be resumable. new for sQl

server 2019.

MAX_DURATION determines the max number of minutes for a resumable indexing

operation to execute for until pausing. new for sQl server 2019.

ALLOW_ROW_LOCKS determines whether row locks are allowed on an index. By default, they

are allowed.

ALLOW_PAGE_LOCKS determines whether page locks are allowed on an index. By default, they

are allowed.

MAXDOP Overrides the server-level maximum degree of parallelism during

the index operation. the setting determines the maximum number of

processors that an index can utilize during an index operation.

DATA_COMPRESSION determines the type of data compression to use on the index. By

default, no compression is enabled. With this, both page- and row-level

compression types can be specified.

Chapter 1 Index Fundamentals

18

To demonstrate the CREATE INDEX syntax, let’s build an index on the table Sales.

SalesOrderDetail in AdventureWorks2017. The key column for the index is ProductId

with the columns OrderQty and UnitPrice included as nonkey columns. Additionally,

the index will be PAGE compressed. The code in Listing 1-3 builds this index.

Listing 1-3. CREATE INDEX Example

USE AdventureWorks2017;

GO

CREATE INDEX IX_Sales_SalesOrderDetail_ProductId

ON Sales.SalesOrderDetail (ProductID)

INCLUDE (OrderQty, UnitPrice)

WITH (DATA_COMPRESSION = PAGE);

 Altering an Index
After an index has been created, there will be a need, from time to time, to modify the

index. There are a few reasons to alter an existing index. First, the index may need to be

rebuilt or reorganized as part of ongoing index maintenance. Also, some of the index

options, such as the type of compression, may need to change. In these cases, the index

can be altered, and the options for the indexes are modified.

To modify an index, you use the ALTER INDEX syntax. Listing 1-4 shows the basic

syntax for altering indexes.

Listing 1-4. ALTER INDEX Syntax

ALTER INDEX { index_name | ALL }

 ON <object>

 { REBUILD

 [[PARTITION = ALL] [WITH (<rebuild_index_option> [,...n])]

 | [PARTITION = partition_number [WITH (<single_partition_rebuild_

index_option> [,...n])]]]

 | DISABLE

 | REORGANIZE

 [PARTITION = partition_number]

 [WITH (LOB_COMPACTION = { ON | OFF })]

Chapter 1 Index Fundamentals

19

 | SET (<set_index_option> [,...n])

 | RESUME [WITH (<resumable_index_options>,[...n])]

 | PAUSE

 | ABORT

 } [;]

When using the ALTER INDEX syntax for index maintenance, there are two options

in the syntax that can be used. These options are REBUILD and REORGANIZE. The REBUILD

option re-creates the index using the existing index structure and options. It can also be

used to enable a disabled index. The REORGANIZE option re-sorts the leaf-level pages of

an index. This is similar to reshuffling the cards in a deck to get them back in sequential

order. Both of these options will be discussed more thoroughly in Chapter 6.

Additionally, the ALTER INDEX syntax can be used to disable an index. This is

accomplished through the DISABLE option under the ALTER INDEX syntax. A disabled

index will not be used or made available by the database engine. After an index is

disabled, it can be reenabled only by altering the index again with the REBUILD option.

Beyond those functions, many of the index options available through the CREATE

INDEX syntax are also available with the ALTER INDEX syntax. The ALTER INDEX syntax

can be used to modify the compression of an index. It can also be used to change the

fill factor or the pad index settings. Depending on the changing needs for the index,

this syntax can be used to change any of the available options, though there are some

limitations with how the options are used. When you REBUILD ALL partitions on an

index, you can modify all of the same options that were available with the CREATE

INDEX syntax, as shown in Listing 1-5. However, when you REBUILD a single partition,

the list of options available is greatly reduced, as shown in Listing 1-6. This is because the

overall index isn’t changing, just the partition and the unavailable options apply to the

entire index.

Listing 1-5. ALTER INDEX Rebuild Options

PAD_INDEX = { ON | OFF }

 | FILLFACTOR = fillfactor

 | SORT_IN_TEMPDB = { ON | OFF }

 | IGNORE_DUP_KEY = { ON | OFF }

 | STATISTICS_NORECOMPUTE = { ON | OFF }

 | STATISTICS_INCREMENTAL = { ON | OFF }

 | ONLINE = { ON [(<low_priority_lock_wait>)] | OFF }

Chapter 1 Index Fundamentals

20

 | RESUMABLE = { ON | OFF }

 | MAX_DURATION = <time> [MINUTES}

 | ALLOW_ROW_LOCKS = { ON | OFF }

 | ALLOW_PAGE_LOCKS = { ON | OFF }

 | MAXDOP = max_degree_of_parallelism

| DATA_COMPRESSION = { NONE | ROW | PAGE }

 [ON PARTITIONS ({<partition_number> [TO <partition_number>] } [, ...n])]

Listing 1-6. ALTER INDEX Single Partition Rebuild Options

SORT_IN_TEMPDB = { ON | OFF }

 | MAXDOP = max_degree_of_parallelism

 | RESUMABLE = { ON | OFF }

 | MAX_DURATION = <time> [MINUTES}

 | DATA_COMPRESSION = { NONE | ROW | PAGE } }

 | ONLINE = { ON [(<low_priority_lock_wait>)] | OFF }

For REORGANIZE, the options for ALTER INDEX are limited to LOB_COMPACTION,

shown in Listing 1-7. With LOB_COMPACTION, when set to ON, the reorganization will

attempt to compact large object (LOB) pages, allowing space within the index associated

with these pages to be reduced and released. Without activating this, the reorganization

will not release these pages.

Listing 1-7. ALTER INDEX Reorganize Options

LOB_COMPACTION = { ON | OFF }

Similar to the CREATE INDEX syntax, starting with SQL Server 2019, it is possible to

resume ALTER INDEX statements. Listing 1-8 shows that for the ALTER INDEX syntax,

the options available are similar to CREATE INDEX with the exception of the inclusion of

the low priority lock wait, which is discussed in the next paragraph.

Listing 1-8. ALTER INDEX Resumable Options

MAXDOP = max_degree_of_parallelism

 | MAX_DURATION =<time> [MINUTES]

 | <low_priority_lock_wait>

Chapter 1 Index Fundamentals

21

The low priority lock wait provides the ALTER INDEX syntax the ability to predefine

how it will behave when blocked by a SCH-M lock, shown in Listing 1-9. This is

supported on REBUILD, REORGANIZE, and resumable options. This option allows the

ALTER INDEX to terminate its own or other transactions that are blocking the ALTER

INDEX operation after a set amount of time. This can be useful when you have a queue

of ALTER INDEX statements waiting to execute and one of them gets held up by another

transaction.

Listing 1-9. ALTER INDEX Low Priority Lock Wait Options

WAIT_AT_LOW_PRIORITY (MAX_DURATION = <time> [MINUTES] ,

 ABORT_AFTER_WAIT = { NONE | SELF | BLOCKERS })

It is worth mentioning that there is one type of index modification that is not possible

with the ALTER INDEX syntax. When altering an index, the key and included columns

cannot be changed. To accomplish this, the CREATE INDEX syntax is used with the DROP_

EXISTING option.

As an example of the ALTER INDEX syntax, we’ll disable the index built in the

last section. Using the script in Listing 1-10, the index is disabled, and as previously

mentioned the index still exists as metadata without the underlying data structure. For

more information on the ALTER INDEX syntax and examples of its use, you can search for

it in SQL Docs.

Listing 1-10. ALTER INDEX Example

USE AdventureWorks2017;

GO

ALTER INDEX IX_Sales_SalesOrderDetail_ProductId

ON Sales.SalesOrderDetail

DISABLE;

 Dropping an Index
There will be times when you no longer need an index. The index may no longer be

necessary because of changing usage patterns of the database, or the index may be

similar enough to another index that it isn’t useful enough to warrant its existence.

Chapter 1 Index Fundamentals

22

To drop, or remove, an index, you use the DROP INDEX syntax. This syntax includes

the name of the index and the table, or object, that the index is built against. Listing 1-11

shows the syntax for dropping an index. Starting with SQL Server 2016, DROP INDEX

syntax supports the IF EXISTS clause, allowing you to drop indexes without first

checking to verify that the indexes exist.

Listing 1-11. DROP INDEX Syntax

DROP INDEX [IF EXISTS]

 index_name ON <object>

 [WITH (<drop_clustered_index_option> [,...n])]

Besides just dropping an index, you can include a few additional options. These

options primarily apply to dropping clustered indexes. Listing 1-12 details the options

available to use for a DROP INDEX operation.

Listing 1-12. DROP INDEX Options

 MAXDOP = max_degree_of_parallelism

 | ONLINE = { ON | OFF }

| MOVE TO { partition_scheme_name (column_name)

 | filegroup_name

 | "default"

 }

[FILESTREAM_ON { partition_scheme_name

 | filestream_filegroup_name

 | "default" }]

When a clustered index is dropped, the base structure of the table will change from

clustered to heap. When built, a clustered index defines where the base data for a table

is stored. When making a change from the clustered to the heap structure, SQL Server

needs to know where to place the heap structure. If the location is anywhere other than

the default filegroup, it will need to be specified. The location for the heap can be a single

filegroup or defined by a partitioning scheme. This information is set through the MOVE

TO option. Along with the data location, the FILESTREAM location may also need to be set

through these options.

Chapter 1 Index Fundamentals

23

The performance impact of the drop index operation may be something that you

need to consider. Because of this, there are options in the DROP INDEX syntax to specify

the maximum number of processors to utilize along with whether the operation should

be completed online. Both of these options function similar to the options of the same

name in the CREATE INDEX syntax.

To remove the index used in the last two sections, we can use the code in Listing 1-13

to drop the index. For more information on the DROP INDEX syntax and examples of its

use, you can search in SQL Docs.

Listing 1-13. ALTER INDEX Example

USE AdventureWorks2017;

GO

DROP INDEX IX_Sales_SalesOrderDetail_ProductId ON Sales.SalesOrderDetail;

 Index Metadata
Before going too deep into indexing strategies, it is important to understand the

information available in SQL Server on the indexes. When there is a need to understand

or know how an index is built, there are catalog views that can be queried to provide this

information. Four catalog views are available for indexes. User and system databases

have these catalog views in them, and only specific indexes that are unique to each

database in which they are queried will be returned. Each of these catalog views provides

important details for each index.

 sys.indexes
The sys.indexes catalog view provides information on each index in a database. For

every table, index, or table-valued function, there is one row within the catalog view.

This provides a full accounting of all indexes in a database.

The information in sys.indexes is useful in a few ways. First, the catalog view

includes the name of the index. Along with that is the type of the index, identifying

whether the index is clustered, nonclustered, and so forth. Along with that information

are the properties on the definition of the index. This includes the fill factor, the filter

definition, the uniqueness flag, and the other items that were used to define the index.

Chapter 1 Index Fundamentals

24

 sys.index_columns
The sys.index_columns catalog view lists all the columns included in an index. For each

key and included column that is a part of an index, there is one row in this catalog view.

For each of the columns in the index, the order of columns is included along with the

order in which the column is sorted in the index.

 sys.index_resumable_operations
The sys.index_resumable_operations catalog view lists the execution status for

resumable index rebuilds. For each index rebuild that is paused or currently executing,

there is a record in this catalog view. The view describes the DDL for the resumable

index rebuild operation and provides a state to identify if it is running or paused.

 sys.xml_indexes
The catalog view sys.xml_indexes is similar to sys.indexes. This catalog view returns

one row per XML index in a database. The chief difference with this catalog view is that

it also provides some additional information. The view includes information on whether

the XML index is a Primary or Secondary XML index. If the XML index is a Secondary

XML index, the catalog view includes a type for the Secondary index.

 sys.selective_xml_index_paths
The sys.selective_xml_index_paths catalog view is a subset of the indexes in sys.

indexes, which contains only Selective XML indexes. For each Selective XML created for

an XPath, there is one entry in this catalog view.

 sys.selective_xml_index_namespaces
The sys.selective_xml_index_namespaces catalog view identifies the namespace

associated with Selective XML indexes. For each namespace associated with an XML

index, there is an entry in this catalog view identifying the namespace and indicating if it

is the default.

Chapter 1 Index Fundamentals

25

 sys.spatial_indexes
The sys.spatial_indexes catalog view is also similar to sys.indexes. This catalog

view returns one row for every spatial index in a database. The main difference with

this catalog view is that it provides additional information on spatial indexes. The view

includes information on whether the spatial index is a geometric or geographic index.

 sys.spatial_index_tessellations
The sys.spatial_index_tessellations catalog view augments the sys.spatial_indexes

catalog view. This catalog view details the bounding boxes and grids associated with a

spatial index.

 sys.column_store_dictionaries
The sys.column_store_dictionaries catalog view supports columnstore indexes.

This catalog view returns one row for each column in a columnstore index. The data

describes the structure and type of dictionary built for the column.

 sys.column_store_segments
The sys.column_store_segments catalog view supports columnstore indexes by

returning at least one row for every column in a columnstore index. Columns can have

multiple segments of approximately 1 million rows each. The rows in the catalog view

describe base information on the segment (e.g., whether the segment has null values

and what the minimum and maximum data IDs are for the segment).

 sys.column_store_row_groups
The sys.column_store_row_groups catalog view supports maintenance of columnstore

segments by return per-segment rowgroup details. This catalog view returns information

on the number of rows in the rowgroup along with the current state of the rowgroup and

its physical location in the database.

Chapter 1 Index Fundamentals

26

 sys.hash_indexes
The sys.hash_indexes catalog view is similar to sys.indexes but contains an additional

column that pertains specifically to hash indexes on memory-optimized tables. The

additional column is bucket_count, for the count of the number of buckets created for

the index. In the context of a hash index, buckets refer to the number of locations that

are created to store values in the index. The relationship between buckets and indexed

values is detailed in Chapters 2 and 7.

 sys.fulltext_catalogs
The sys.fulltext_catalogs catalog view contains one row for every full-text catalog in

a database.

 sys.fulltext_indexes
The sys.fulltext_indexes catalog view contains one row for every full-text index in a

database. The view describes the full-text catalog that the index is a part of and provides

details on the state of the index and how it is being updated.

 sys.fulltext_index_columns
The sys.fulltext_index_columns catalog view supports sys.fulltext_indexes. It

contains one row for every column associated with a full-text index.

 Summary
This chapter presented a number of fundamentals related to indexes. You looked at

the type of indexes available within SQL Server. From heaps to nonclustered to spatial

indexes, you looked at the type of the index and related it to the library Dewey Decimal

system as a real-world analogy to indexing. This example helped illustrate how each of

the index types interacted with the others and the scenarios where one type can provide

value over another.

Chapter 1 Index Fundamentals

27

Next, you looked at the data definition language for indexes. Indexes can be

created, modified, and dropped through the DDL. DDL has a lot of options that

can be used to finely tune how an index is structured to help improve its usefulness

within a database.

This chapter also included information on the metadata, or catalog views, available

on indexes within SQL Server. Each of the catalog views provides information on the

structure and makeup of the index. This information can assist in researching and

understanding the view that is available.

The details in this chapter provide the framework for what will be discussed in later

chapters. By leveraging this information, you’ll be able to look deeper into your indexes

and start applying the appropriate strategies to index your databases.

Chapter 1 Index Fundamentals

29
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_2

CHAPTER 2

Index Storage
Fundamentals
Where the previous chapter discussed the logical design and syntax of indexes, this

chapter will focus on the physical implementation of indexes. An understanding of the

way in which indexes are laid out and interact with each other at the implementation

and storage level will help you become better acquainted with the benefits that indexes

provide and why they behave in certain ways.

To get to this understanding, the chapter will start with some of the basics about data

storage. First, you’ll look at data pages and how they are laid out. This examination will

detail what comprises a data page and what can be found within it. Also, you’ll examine

the dynamic management functions (DMFs) and DBCC commands that can be used to

inspect pages in the index.

From there, you’ll look at the three ways in which pages are organized for storage

within SQL Server. These storage methods relate back to heap, clustered, nonclustered,

and columnstore indexes. For each type of structure, you’ll examine how the pages

are organized within the index. You’ll also examine the requirements and restrictions

associated with each index type.

You will finish this chapter with a deeper understanding of the fundamentals of

index storage. With this information, you’ll be better able to deal with, understand, and

expect behaviors from the indexes in your databases.

30

 Storage Basics
SQL Server uses a number of structures to store and organize data within databases.

In the context of this book and chapter, you’ll look at the storage structures that relate

directly to tables and indexes. You’ll start by focusing on pages and extents and how they

relate to one another. Then you’ll look at the different types of pages available in SQL

Server and relate each of them back to indexes.

 Pages
The most basic storage area is a page. Pages are used by SQL Server to store everything

in the database. Everything from the rows in tables to the structures used to map out

indexes at the lowest levels is stored on a page.

When space is allocated to database data files, all the space is divided into pages.

During allocation, each page is created to use 8 KB (8,192 bytes) of space, and pages

are numbered starting at 0, incrementing 1 for every page allocated. When SQL Server

interacts with the database files, the smallest unit in which an input/output (I/O)

operation can occur is at the page level.

There are three primary components to a page: the page header, records, and the

offset array, as shown in Figure 2-1. All pages begin with the page header. The header is

96 bytes and contains meta-information about the page, such as the page number, the

owning object, and the type of page. If rows will be stored on the pages, such as with data

and index pages, the end of the page will contain an offset array. The offset array is 36

bytes and provides pointers to the byte location of the start of rows on the page. Between

these two areas are 8,060 bytes where records and other page data are stored.

Figure 2-1. Page structure

Chapter 2 Index Storage FundamentalS

31

If the page includes an offset array, it begins at the end of the page. As rows are

added to a page, the row is added to the first open position in the records area of the

page. After this, the starting location of the page is stored in the last available position

in the offset array. For every row added, the data for the row is stored further away from

the start of the page, and the offset is stored further away from the end of the page, as

shown in Figure 2-2. Reading from the end of the page backward, the offset can be used

to identify the starting position of every row, sometimes referred to as a slot, on the page.

While the basics of pages are the same, there are a number of ways in which pages

are used. These uses include storing data pages, index structures, and large objects.

These uses and how they interact with a SQL Server database will be discussed later in

this chapter.

 Extents
Moving up from pages, the next basic structure of the database are extents. These are

groups of eight pages. An extent is simply eight physically contiguous data pages in a

data file. All pages belong to an extent, and extents can’t have fewer or more than eight

pages. There are two types of extents used by SQL Server databases: mixed and uniform

extents.

In mixed extents, the pages can be allocated to multiple objects. For example, when

a table is first created and there are fewer than eight pages allocated to the table, it will

be built as a mixed extent. The table will use mixed extents as long as the total size of the

table is less than eight pages, as shown in Figure 2-3. By using mixed extents, databases

can reduce the amount of space allocated to small tables.

Figure 2-2. Row placement and offset array

Chapter 2 Index Storage FundamentalS

32

Once the number of pages in a table exceeds eight pages, it will begin using uniform

extents. In a uniform extent, all pages in the extent are allocated to a single object in the

database (see Figure 2-4). Because of this, pages for an object will be contiguous, which

increases the number of pages of an object that can be read in a single read. For more

information on the benefits of contiguous reads, see Chapter 6.

Since SQL Server 2016, the use of uniform extents has become default behavior

for all extent allocations for all databases. The behavior can be modified using the

MIXED_PAGE_ALLOCATION database option, which will default the allocations to use

mixed extents. With SQL Server 2014 and earlier versions, the behavior was opposite

and defaulted to allocating mixed extents. And this behavior could be modified in those

versions using trace flag 1118, which would modify SQL Server to using uniform extents,

Figure 2-3. Mixed extent

Figure 2-4. Uniform extent

Chapter 2 Index Storage FundamentalS

33

as is the current default behavior. While this may be a bit confusing, the important thing

to remember is that SQL Server defaults to using uniform extents which mitigates a

significant amount of page allocation contention issues.

 Page Types
There are many ways in which a page can be used in a database. For each of these uses,

there is a type associated with the page that defines how the page is being used. The page

types available in a SQL Server database are

• File header page

• Boot page

• Page Free Space (PFS) page

• Global Allocation Map (GAM) page

• Shared Global Allocation Map (SGAM) page

• Differential Changed Map (DIFF) page

• Minimally Logged (ML) page

• Index Allocation Map (IAM) page

• Data page

• Index page

• Large object (Text and Image) page

The next few sections will expand on the types of pages and explain how they are

used. While not all of page types deal directly with indexing, each will be defined and

explained to help provide an understanding of the total picture. With every database,

there are similarities in which the pages are laid out. For instance, in the first file of

every database, the pages are laid out as shown in Figure 2-5. There are more page types

available than the figure indicates, but as the examinations of each page type will show,

only those in the first few pages are fixed. Many of the others appear in patterns that are

dictated by the data in the database.

Chapter 2 Index Storage FundamentalS

34

Note database log files don’t use the page architecture. page structures apply
only to database data files. a discussion of log file architecture is outside the scope
of this book.

 File Header Page
The first page in any database data file is the file header page, shown in Figure 2-5. Since

this is the first page, it is always numbered 0. The file header page contains metadata

information about the database file. The information on this page includes

• File ID

• Filegroup ID

• Current size of the file

• Max file size

• Sector size

• LSN information

There are a number of other details about the file on the file header page, but

basically the information is immaterial to indexing internals.

 Boot Page
The boot page is similar to the file header page in that it provides metadata information.

This page, though, provides metadata information for the database itself instead of

for the data file. There is one boot page per database, and it is located on page 9

Figure 2-5. Data file pages

Chapter 2 Index Storage FundamentalS

35

in the first data file for a database (see Figure 2-5). Some of the information on the boot

page includes the current version of the database, the create date and version for the

database, the database name, the database ID, and the compatibility level.

One important attribute on the boot page is the attribute dbi_dbccLastKnownGood.

This attribute provides the date that the last known DBCC CHECKDB completed

successfully. While database maintenance isn’t within the scope of this book, regular

consistency checks of a database are critical to verifying that data remains available.

 Page Free Space Page
To track whether pages have space available for inserting rows, each data file contains

Page Free Space (PFS) pages. These pages, which are the second page of the data file (see

Figure 2-5) and located every 8,088 pages after that, track the amount of free space in the

database. Each byte on the PFS page represents one subsequent page in the data file and

provides some simple allocation information regarding the page; namely, it determines

the approximate amount of free space on the page.

When the database engine needs to store LOB data or data for heaps, it needs to

know where the next available page is and how full the currently allocated pages are.

This functionality is provided by PFS pages. Within each byte are flags that identify the

current amount of space that is being used. Bits 0–2 determine whether the page is in

one of the following free space states:

• Page is empty.

• 1–50 percent full.

• 51–80 percent full.

• 81–95 percent full.

• 96–100 percent full.

Along with free space, PFS pages also contain bits to identify a few other types of

information for a page. For instance, bit 3 determines whether there are ghost records on

a page. Bit 4 identifies whether the page is part of the Index Allocation Map, described

later in this chapter. Bit 5 states whether the page is in a mixed extent. And finally, bit 6

identifies whether a page has been allocated.

Chapter 2 Index Storage FundamentalS

36

Through the additional flags, or bits, SQL Server can determine what and how a page

is being used from a high level. It can determine whether it is currently allocated. If not,

is it available for LOB or heap data? If it is currently allocated, the PFS page then provides

the first purpose described earlier in this section.

Finally, when the ghost cleanup process runs, the process doesn’t need to check

every page in a database for records to clean up. Instead, the PFS page can be checked,

and only those pages with ghost records need to be accessed.

Note the indexes themselves handle free space and page allocation for non-loB
data and indexes. the allocation of pages for these structures is determined by the
definition of the structure.

 Global Allocation Map Page
Similar to the PFS page is the Global Allocation Map (GAM) page. This page determines

whether an extent has been designated for use as a uniform extent. A secondary purpose

of the GAM page is helping determine whether the extent is free and available for

allocation.

Each GAM page provides a map of all subsequent extents in each GAM interval.

A GAM interval consists of the 64,000 extents, or 4 GB, that follow the GAM page. Each

bit on the GAM page represents one extent following the GAM page. The first GAM page

is located on page 2 of the database file (see Figure 2-5).

To determine whether an extent has been allocated to a uniform extent, SQL Server

checks the bit in the GAM page that represents the extent. If the extent is allocated, then

the bit is set to 0. When it is set to 1, the extent is free and available for other purposes.

 Shared Global Allocation Map Page
Nearly identically to the GAM page is the Shared Global Allocation Map (SGAM) page.

The primary difference between the pages is that the SGAM page determines whether an

extent is allocated as a mixed extent. Like the GAM page, the SGAM page is also used to

determine whether pages are available for allocation.

Each SGAM page provides a map of all subsequent extents in each SGAM interval.

An SGAM interval consists of the 64,000 extents, or 4 GB, that follow the SGAM page.

Chapter 2 Index Storage FundamentalS

37

Each bit on the SGAM page represents one extent following the SGAM page. The first

SGAM page is located on page 3, after the GAM page of the database file (see Figure 2-5).

The SGAM pages determine when an extent has been allocated for use as a mixed

extent. If the extent is allocated for this purpose and has a free page, the bit is set to 1.

When it is set to 0, either the extent is not used as a mixed extent or it is a mixed extent

with all pages in use.

 Differential Changed Map Page
The next page to discuss is the Differential Changed Map (DCM) page. This page is

used to determine whether an extent in a GAM interval has changed. When an extent

changes, a bit value is changed from 0 to 1. These bits are stored in a bitmap row on the

DCM page with each bit representing an extent.

DCM pages are used to track which extents have changed between full database

backups. Whenever a full database backup occurs, all the bits on the DCM page are reset

to 0. The bit then changes back to 1 when a change occurs within the associated extent.

The primary use for DCM pages is to provide a list of extents that have been modified

for differential backups. Instead of checking every page or extent in the database to see

whether it has changed, the DCM pages provide the list of extents to back up.

The first DCM page is located at page 6 of the data file. Subsequent DCM pages occur

for each GAM interval in the data file.

 Minimally Logged Page
After the DCM page is the Minimally Logged (ML) page, formerly known as the Bulk

Changed Map page. The ML page is used to indicate when an extent in a GAM interval

has been modified by a minimally logged operation. Any extent that is affected by a

minimally logged operation will have its bit value set to 1, and those that have not will be

set to 0. The bits are stored in a bitmap row on the ML page with each bit representing an

extent in the GAM interval.

As the former name of ML pages implied (Bulk Changed Map), these pages are

used in conjunction with the BULK_LOGGED recovery model. When the database uses

this recovery model, the ML page is used to identify extents that were modified with a

minimally logged operation since the last transaction log backup. When the transaction

log backup completes, the bits on the ML page are reset to 0.

Chapter 2 Index Storage FundamentalS

38

The first ML page is located at page 7 of the data file. Subsequent ML pages occur for

each GAM interval in the data file.

 Index Allocation Map Page
Most of the pages discussed so far provide information about whether there is data on the

pages they cover. More important than whether a page is open and available, SQL Server

needs to know whether the information on a page is associated to a specific table or

index. The pages that provide this information are the Index Allocation Map (IAM) pages.

Every table or index first starts with an IAM page. This page indicates which extents

within a GAM interval, discussed previously, are associated with the table or index. If

a table or index crosses more than one GAM interval, there will be more than one IAM

page for the table or index.

There are four types of pages that an IAM page associates with a table or index. These

are data, index, large object, and small-large object pages. The IAM page accomplishes

the association of the pages to the table or index through a bitmap row on the IAM page.

Besides the bitmap row, there is also an IAM header row on the IAM page. The IAM

header provides the sequence number of IAM pages for a table or index. It also contains

the starting page for the GAM interval that the IAM page is associated with. Finally, the

row contains a single-page allocation array. This is used when less than an extent has

been allocated to a table or index.

The value in understanding the IAM page is that it provides a map and root through

which all the pages of a table or indexes come together. This page is used when all of the

extents for a table or index need to be determined.

 Data Page
Data pages are the most prevalent type of pages in any database. Data pages are used to

store the data from rows in the database’s tables. Except for a few data types, all data for a

record is located on data pages. The exception to this rule is columns that store data in LOB

data types. That information is stored on large object pages, discussed later in this section.

An understanding of data pages is important in relation to indexing internals. The

understanding is important because data pages are the most common pages that will be

looked at when looking at the internals of an index. When you get to the lowest levels of

the index, data pages will always be found.

Chapter 2 Index Storage FundamentalS

39

 Index Page
Similar to data pages are index pages. These pages provide information on the structure

of indexes and where data pages are located. For clustered indexes, the index pages are

used to build the hierarchy of pages that are used to navigate the clustered index. With

nonclustered indexes, index pages perform the same function but are also used to store

the key values that comprise the index.

As mentioned, index pages are used to build the hierarchy of pages within an

index. To accomplish this, the data contained in an index page provides a mapping of

key values and page addresses. The key value is the key value from the index that the

first sorted row on the child table contains, and the page address identifies where to

locate this.

Index pages are constructed similarly to other page types. The page has a page

header that contains all the standard information, such as page type, allocation unit,

partition ID, and allocation status. The row offset array contains pointers to where the

index data rows are located on the page. The index data rows contain two pieces of

information: the key value and a page address (these were described earlier).

Understanding index pages is important since they provide a map of how all the data

pages in an index are hooked together.

 Large Object Page
As previously discussed, the limit for data on a single page is 8 KB. The maximum size,

though, for some data types can be as high as 2 GB. For these data types, another storage

mechanism is required to store the data. For this, there is a large object page type.

The data types that can utilize LOB pages include text, ntext, image,

nvarchar(max), varchar(max), varbinary(max), and xml. When the data for one of

these data types is stored on a data page, the LOB page will be used if the size of the row

will exceed 8 KB. In these cases, the column will contain references to the LOB pages

required for the data, and it will be stored on LOB pages instead (see Figure 2-6).

Chapter 2 Index Storage FundamentalS

40

 Organizing Pages
So far you’ve looked at the low-level components that make up the internals for

indexing. While these pieces are important to indexing, the structures in which these

components are organized are where the value of indexing is realized. SQL Server

utilizes a number of different organizational structures for storing data in the database.

The organizational structures in SQL Server are

• Heap

• Balanced-tree (B-tree)

• Columnar

These structures all map to specific index types that will be discussed later in this

chapter. In this section, you’ll examine each of the ways to organize pages to build that

understanding.

Note In the structures for organizing indexes, the levels of the index that contain
index pages are considered nonleaf levels. When referencing levels that contain
data pages, the levels are called leaf levels.

 Heap Structure
The default structure for organizing pages is called a heap. Heaps occur when a B-tree

structure, discussed in the next section, is not used to organize the data pages in a table.

Conceptually, a heap can be envisioned to be a pile of data pages in no particular order,

Figure 2-6. Data page link to the LOB page

Chapter 2 Index Storage FundamentalS

41

as shown in Figure 2-7. In the example, the only way to retrieve all of the “Madison”

records is to check each page to see whether “Madison” is on the page.

From an internals perspective, though, heaps are more than a pile of pages. While

unsorted, heaps have a few key components that organize the pages for easy access. All

heaps start with an IAM page, shown in Figure 2-8. IAM pages, as discussed, map out

which extents and single-page allocations within a GAM interval are associated with an

index. For a heap, the IAM page is the only mechanism for associating data pages and

extents to a heap. As mentioned, the heap structure does not enforce any sort of ordering

on the pages that are associated with the heap. The first page available in a heap is the

first page found in the database file for the heap.

Figure 2-7. Heap pile example

Figure 2-8. Heap structure

Chapter 2 Index Storage FundamentalS

42

The IAM page lists all the data pages associated with the heap. The data pages for the

heap store the rows for the table, with the use of LOB pages as needed. When the IAM page

has no more pages available to allocate in the GAM interval, a new IAM page is allocated

to the heap, and the next set of pages and their corresponding rows are added to the heap,

as detailed in Figure 2-1. As the image shows, a heap structure is flat. From top to bottom,

there is only ever one level from the IAM pages to the data pages of the structure.

While a heap provides a mechanism for organizing pages, it does not relate to an

index type. A heap structure is used when a table does not have a clustered index.

When a heap stores rows in a table, the rows are inserted without an enforced order.

This happens because, as opposed to a clustered index, a sort order based on specific

columns does not exist on a heap.

 B-Tree Structure
The second available structure that can be used for indexing is the Balanced-tree, or

B-tree, structure. It is the most commonly used structure for organizing indexes in SQL

Server and is used by both clustered and nonclustered indexes.

In a B-tree, pages are organized in a hierarchical tree structure, as shown in Figure 2- 9.

Within the structure, pages are sorted to optimize searches for information within the

structure. Along with the sorting, relationships between pages are maintained to allow

sequential access to pages across the levels of the index.

Similar to heaps, B-trees start with an IAM page that identifies where the first page

of the B-tree is located within the GAM interval. The first page of the B-tree is an index

page and is often referred to as the root level of the index. As an index page, the root level

contains key values and page addresses for the next pages in the index. Depending on

the size of the index, the next level of the index may be data pages or additional index

pages.

If the number of index rows required to sort all the rows on the data pages exceeds

the space available, then the root page will be followed by another level of index pages.

Additional levels of index pages in a B-tree are referred to as intermediate levels. In

many cases, indexes built with a B-tree structure will not require more than one or two

intermediate levels. Even with a wide indexing key, millions to billions of rows can be

sorted with just a few levels.

Chapter 2 Index Storage FundamentalS

43

The next level of pages below the root and intermediate levels of the indexes,

referred to as the nonleaf levels, is the leaf level (see Figure 2-9). The leaf level contains all

the data pages for the index. The data pages are where all the key values and the nonkey

values for the row are stored. Nonkey values are never stored on the index pages.

Another differentiator between heaps and B-trees is the ability within the index

levels to perform sequential page reads. Pages contain previous page and next page

properties in the page headers. With index and data pages, these properties are

populated and can be used to traverse the B-tree to find the next requested row from

the B-tree without returning to the root level of the index. To illustrate this, consider a

situation where you request the rows with key values between 925 and 3,025 from the

index shown in Figure 2-9. Through a B-tree, this operation can be done by traversing

the B-tree down to key value 925, shown in Figure 2-10. After that, the rows through key

value 3,025 can be retrieved by accessing all pages after the first page in order, finishing

the operation when the last key value is encountered.

Figure 2-9. B-tree structure

Chapter 2 Index Storage FundamentalS

44

One option available for tables and indexes is the ability to partition these structures.

Partitioning changes the physical implementation of the index and how the index and

data pages are organized. From the perspective of the B-tree structure, each partition in

an index has its own B-tree. If a table is partitioned into three different partitions, there

will then be three B-tree structures for the index.

 Columnstore Structure
Columnstore, first introduced with SQL Server 2012, introduces a new organizational

structure, which is based on Microsoft’s Vertipaq technology. The columnstore structure

is used by the clustered and nonclustered columnstore index types. The columnstore

structure diverges from the traditional method of storing and indexing data from a row-

wise to a column-wise format. This means that instead of storing all the values for a row

with all the other values in the row, the values are stored with the values of the same

column grouped together. For instance, in the example in Figure 2-11, instead of four

row “groups” stored on the page, three column “groups” are stored.

Figure 2-10. B-tree sequential read

Chapter 2 Index Storage FundamentalS

45

The physical implementation of the columnstore structure does not introduce

any new page types; it instead utilizes existing page types. Like other structures, a

columnstore begins with an IAM page, shown in Figure 2-12. From the IAM page are

LOB pages that contain the columnstore information. For each column stored in the

columnstore, there are one or more segments. Segments contain up to about 1 million

rows worth of data for the columns that they represent. An LOB page can contain one or

more segments, and the segments can span multiple LOB pages.

Within each segment is a hash dictionary that is used to map the data that comprises

the segment of the columnstore. The hash dictionary also contains the minimum and

maximum values for the data in the segment. This information is used by SQL Server

during query execution to eliminate segments during query execution.

Figure 2-11. Row-wise vs. column-wise storage

Figure 2-12. Columnstore structure

Chapter 2 Index Storage FundamentalS

46

One of the advantages of the columnstore structure is its ability to leverage

compression. Since each segment of the columnstore structure contains the same

type of data, both from a data type and from a value perspective, SQL Server has a

greater likelihood of being able to utilize compression on the data. The compression

used by the columnstore is similar to page-level compression. It utilizes dictionary

compression to remove similar values throughout the segment. There are two

main differences between page and columnstore compressions. First, while page

compression is optional, columnstore compression is mandatory and cannot be

disabled. Second, page compression is limited to compressing the values on a single

page. Alternately, columnstore compression is for the entire segment, which may span

multiple pages or could have multiple segments on the same page. Regardless of the

number of pages or segments on a page, columnstore compression is contained to

the segment.

Another advantage of the columnstore is that only the columns requested from

the columnstore are returned. It is often recommended not to use SELECT * when

writing queries; instead, the best practice is to only SELECT the columns that are

required. Unfortunately, even when this practice is followed, indexes based on heaps

and B-trees read all the columns for the row from disk into memory. The practice

reduces some network traffic and streamlines execution, but it doesn’t assist with

the bottleneck of reading data from disk. Columnstore indexes address this issue by

reading from disk only the columns that are requested and moving that data into

memory. Along these same lines, according to Microsoft, queries often access only

10–15 percent of the available columns in a table.1 The reduction in the columns

retrieved from a columnstore structure will have a significant impact on performance

and I/O.

While the columnar structure is unchanged between clustered and nonclustered

columnstore indexes, there are a few points of distinction between the two that are

important to be aware of. A clustered columnstore index has an additional structure,

called the deltastore, which allows write operations on the index. While segments of

both types of columnstore are read-only, the deltastore allows insert, update, and delete

actions against the index. Also, a clustered columnstore is the base copy of the data;

it doesn’t have a clustered index or heap that it relies on for a full copy of the data.

1 “Columnstore Indexes: A New Feature in SQL Server known as Project ‘Apollo,’ ” Microsoft SQL
Server Team Blog, http://blogs.technet.com/b/dataplatforminsider/archive/2011/08/04/
columnstore-indexes-a-new-feature-in-sql-server-known-as-project-apollo.aspx

Chapter 2 Index Storage FundamentalS

http://blogs.technet.com/b/dataplatforminsider/archive/2011/08/04/columnstore-indexes-a-new-feature-in-sql-server-known-as-project-apollo.aspx
http://blogs.technet.com/b/dataplatforminsider/archive/2011/08/04/columnstore-indexes-a-new-feature-in-sql-server-known-as-project-apollo.aspx

47

All data is stored in a clustered columnstore index. Alternatively, the nonclustered

columnstore index requires a traditional clustered index on the data it is using and

generally represents a duplication of the data in the database.

Warning the tools used in the next section are undocumented and unsupported.
they do not appear in Books online, and their functionality can change without
notice. that being said, these tools have been around for quite some time, and
there are many blog posts that describe their behavior. You can find additional
resources for using these tools at www.sqlskills.com. When using older
versions of SQl Server, it will be important to understand these tools, since the
previously described dmFs may not be available.

 Examining Pages
The first part of this chapter outlined the types of pages found in SQL Server databases.

On top of that, you’ve looked at the structures available for organizing and managing the

relationship between pages within your databases. In this next section, you will look at

how to use dynamic management functions and DBCC commands to examine pages in

your database. For current versions of SQL Server, you’ll be able to use the DMFs, but on

older releases you’ll need to use the DBCC commands.

By using these tools, you’ll gain the foundation from which you’ll be able to look at

the behaviors of indexes in this chapter and throughout the rest of the book. Also, this

will provide you with the knowledge to do your own exploration of indexes and data in

your databases.

 Dynamic Management Functions
There are two dynamic management functions you’ll be using to examine the pages

within your SQL Server databases. These are

• sys.dm_db_database_page_allocations

• sys.dm_db_page_info

Chapter 2 Index Storage FundamentalS

http://www.sqlskills.com

48

 sys.dm_db_database_page_allocations

The DMF sys.dm_db_database_page_allocations provides information on page

allocations within a database. The function can be used to investigate indexes and their

associated pages. It can also be used to identify how extents have been allocated and

whether the extents being used are mixed or uniform.

The DMF provides data similar to that which is provided from DBCC EXTENTINFO

and DBCC IND, which are described later. An advantage of using the DMF is that the results

can be filtered and merged with other DMFs. Additionally, it provides details on all pages

allocated to an index even those without data on them. One restriction of the output is that it

only returns pages associated with data allocation, such as the data, index, and IAM pages.

Listing 2-1 shows the syntax for using sys.dm_db_database_page_allocations. The

execution requires five parameters, which are defined in Table 2-1.

Listing 2-1. sys.dm_db_database_page_allocations Syntax

SELECT * FROM sys.dm_db_database_page_allocations ({database_id},

{TableId | NULL}, {IndexId | NULL}, { PartitionId | NULL },

{DETAILED | LIMITED})

Table 2-1. Parameters for sys.dm_db_database_page_allocations

Parameter Description

@DatabaseId database from which to return the page listing for tables and indexes.

the parameter is required and accepts the use of the DB_ID() function.

@TableId Object_id for the table from which to return the page listing. the parameter is

required and accepts the use of the OBJECT_ID() function. NULL can also be

used to return all tables.

@IndexId Index_id from the table that the page list is from. the parameter is required

and accepts the use of NULL to return information for all indexes.

@PartionId Id of the partition that the page list is returning. the parameter is required and

accepts the use of NULL to return information for all indexes.

@Mode defines the mode for returning data. the options are DETAILED and LIMITED.

With LIMITED, the information is limited to page metadata, such as page

allocation and relationship information. under the DETAILED mode, additional

information is provided, such as page type and interpage relationship chains.

Chapter 2 Index Storage FundamentalS

49

When executing sys.dm_db_database_page_allocations, results include the

columns defined in Table 2-2. For every page allocation, there will be one row in the

results.

Table 2-2. Columns for sys.dm_db_database_page_allocations

DMF Column Description

database_id Id of the database.

object_id object Id for the table or view.

index_id Id for the index.

partition_id partition number for the index.

rowset_id partition Id for the index.

allocation_unit_id Id of the allocation unit.

allocation_unit_type type of allocation unit.

allocation_unit_type_desc description of the allocation unit.

data_clone_id unknown.

clone_state unknown.

clone_state_desc unknown.

extent_file_id File Id of the extent.

extent_page_id page Id for the extent.

allocated_page_iam_file_id File Id for the index allocation map page associated with

the page.

allocated_page_iam_page_id page Id for the index allocation map page associated

with the page.

allocated_page_file_id File Id of the allocated page.

allocated_page_page_id page Id for the allocated page.

is_allocated Indicates whether a page is allocated.

is_iam_page Indicates whether a page is the index allocation page.

is_mixed_page_allocation Indicates whether a page is allocated.

(continued)

Chapter 2 Index Storage FundamentalS

50

With this DMF, there are a couple of use cases we can investigate that can help to

demonstrate leveraging sys.dm_db_database_page_allocations. To begin, you want to

create a database for this chapter and a table that has twelve rows in it using Listing 2-2.

Listing 2-2. Script for Creating dbo.IndexInternalsOne with 12 Rows

USE master;

GO

CREATE DATABASE Chapter2Internals;

GO

USE Chapter2Internals;

GO

CREATE TABLE dbo.IndexInternalsOne

(

 RowID INT IDENTITY(1, 1),

 FillerData CHAR(8000)

);

DMF Column Description

page_free_space_percent percentage of space free on the page.

page_type page type Id for the allocated page.

page_type_desc description of the page type.

page_level level of the page in the B-tree index.

next_page_file_id File Id for the next page.

next_page_page_id page Id for the next page.

previous_page_file_id File Id for the previous page.

previous_page_page_id page Id for the previous page.

is_page_compressed Indicates whether the page is compressed.

has_ghost_records Indicates whether the page has ghost records.

Table 2-2. (continued)

Chapter 2 Index Storage FundamentalS

51

GO

INSERT INTO dbo.IndexInternalsOne

DEFAULT VALUES;

GO 12

After creating the table, you’ll use the script in Listing 2-3 to show how SQL Server

stored the records in the table and how you can examine them with sys.dm_db_

database_page_allocations. As Figure 2-13 shows, there is one Index Allocation Map

page allocated to the table, which is within a mixed page allocation. This means the

multiple indexes can use that extent to allocate these pages. And then there are eight

pages allocated to the first data page extent of the index starting at page 312 and another

four pages allocated from an extent starting at page 320. Additionally, you see that there

are four pages allocated but not assigned a page type on the extent at page 320. This

demonstrates and confirms what was discussed in the previous section on heap structures.

There’s an index allocation map and extents with data pages allocated to that map.

Listing 2-3. Extent Allocation with sys.dm_db_database_page_allocations

SELECT DPA.extent_file_id,

 DPA.extent_page_id,

 DPA.page_type_desc,

 DPA.allocation_unit_type_desc,

 DPA.is_iam_page,

 DPA.is_mixed_page_allocation,

 COUNT(*) AS page_count

FROM sys.dm_db_database_page_allocations(DB_ID(), OBJECT_ID('dbo.

IndexInternalsOne'), NULL, NULL, 'DETAILED') DPA

GROUP BY DPA.extent_file_id,

 DPA.extent_page_id,

 DPA.page_type_desc,

 DPA.allocation_unit_type_desc,

 DPA.is_iam_page,

 DPA.is_mixed_page_allocation

ORDER BY DPA.extent_page_id,

 DPA.page_type_desc;

Chapter 2 Index Storage FundamentalS

52

Index allocation map pages are always part of a mixed extent, since the allocation

determines the index mapping for multiple tables. To demonstrate, you can run the

script in Listing 2-4 which creates a second table that includes a clustered index via a

primary key. Reviewing the results in Figure 2-14, the six rows were added to an extent

that starts at page 328, bypassing the four pages that were allocated, but not used in the

previous table. The index allocation map page though belongs to the same extent as that

of dbo.IndexInternalsOne, which starts at page 232, showing that this extent is indeed

mixed. Additionally, you’ll see that an index page is allocated to the table to support the

B-tree structure of the clustered index.

Listing 2-4. Script for Creating dbo.IndexInternalsTwo with 12 Rows

USE Chapter2Internals;

GO

CREATE TABLE dbo.IndexInternalsTwo

(

 RowID INT IDENTITY(1, 1) PRIMARY KEY,

 FillerData CHAR(8000)

);

GO

INSERT INTO dbo.IndexInternalsTwo

DEFAULT VALUES;

GO 6

SELECT DPA.extent_file_id,

 DPA.extent_page_id,

 DPA.page_type_desc,

 DPA.allocation_unit_type_desc,

 DPA.is_iam_page,

 DPA.is_mixed_page_allocation,

 COUNT(*) AS page_count

Figure 2-13. Extent allocation results for dbo.IndexInternalsOne

Chapter 2 Index Storage FundamentalS

53

FROM sys.dm_db_database_page_allocations(DB_ID(), OBJECT_ID('dbo.

IndexInternalsTwo'), NULL, NULL, 'DETAILED') DPA

GROUP BY DPA.extent_file_id,

 DPA.extent_page_id,

 DPA.page_type_desc,

 DPA.allocation_unit_type_desc,

 DPA.is_iam_page,

 DPA.is_mixed_page_allocation

ORDER BY DPA.extent_page_id,

 DPA.page_type_desc;

Beyond extent-level details, you can use this DMF to investigate indexes down to

the page level to understand all pages allocated to the table and the order in which they

relate to other pages in an index. Using the script in Listing 2-5, you can once again see,

in Figure 2-15, that the extent starting on page 232 includes the allocated pages 235 and

236 for the index allocation maps. And the page allocated to the extent starting at page

312 includes pages 312, 313, and so on which is similar to the extent starting at page 328

which includes pages 328, 329, and so on. Add to this the ability to see per page the page

level within the B-tree and the connections between pages, verifying the ability to move

up and down the index and from page to page at the data pages.

Listing 2-5. Script for Reviewing All Allocated Pages

SELECT DPA.page_type_desc,

 DPA.allocation_unit_type_desc,

 DPA.object_id,

 DPA.index_id,

 DPA.extent_page_id,

 DPA.allocated_page_iam_page_id,

 DPA.allocated_page_page_id,

Figure 2-14. Extent allocation results for dbo.IndexInternalsTwo

Chapter 2 Index Storage FundamentalS

54

 DPA.page_level,

 DPA.next_page_page_id,

 DPA.previous_page_page_id

FROM sys.dm_db_database_page_allocations(DB_ID(), OBJECT_ID('dbo.

IndexInternalsTwo'), NULL, NULL, 'DETAILED') DPA

 sys.dm_db_page_info

Another dynamic management function that helps us understand how indexes operate

is sys.dm_db_page_info. This DMF provides page header row information for database

pages. This information includes number of slots, free bytes, minimally logged status,

ghost records, and page linking details.

Listing 2-6 shows the syntax for using sys.dm_db_page_info. The execution requires

four parameters, which are defined in Table 2-3. While Microsoft states that these

parameters can be NULL, that is not the case, and the function errors when NULL values

are provided.

Listing 2-6. sys.dm_db_page_info Syntax

SELECT * FROM sys.dm_db_database_page_allocations ({database_id},

{FileId}, {PageId}, {DETAILED | LIMITED})

Figure 2-15. Extent allocation results for reviewing all allocated pages

Chapter 2 Index Storage FundamentalS

55

When executing sys.dm_db_page_info, results include the columns defined in

Table 2-4. For every page requested, there will be one row of header information in the

results.

Table 2-3. Parameters for sys.dm_db_database_page_allocations

Parameter Description

@DatabaseId database from which to return the page header information.

@FileID FileId for the page that will be returned.

@PageId Page_id for the page that will be returned.

@Mode defines the mode for returning data. the options are DETAILED and LIMITED.

With LIMITED, the information is limited to page metadata. under the

DETAILED mode, page descriptive columns will be populated.

Table 2-4. Columns for sys.dm_db_page_info

Column Name Description

database_id Id of the database.

file_id Id of the data file.

page_id Id of the page.

page_header_version Version of the page header.

page_type Id for the page type.

page_type_desc text description of the page type.

page_type_flag_bits type flag bits in the page header.

page_type_flag_bits_desc type flag bits description in the page header.

page_flag_bits Flag bits in the page header.

page_flag_bits_desc Flag bits text description in the page header.

page_lsn log sequence number associated with last page modification.

page_level level of the page in the index.

object_id Id of the object associated with the page.

(continued)

Chapter 2 Index Storage FundamentalS

56

Column Name Description

index_id Id of the index.

partition_id Id of the partition.

alloc_unit_id Id of the allocation unit.

is_encrypted Indicates whether a page is encrypted.

has_checksum Indicates whether a page has a checksum value.

checksum Checksum value for a page.

is_iam_page Indicates whether a page is the index allocation page.

is_mixed_extent Indicates whether a page is part of a mixed extent.

has_ghost_records Indicates whether the page has ghost records.

has_version_records Indicates whether the page has version records.

has_persisted_version_records Indicates whether the page has persisted version records.

pfs_page_id page Id of the pFS page associated with this page.

pfs_is_allocated Indicates whether the pFS page has allocated this page.

pfs_alloc_percent allocation percentage as indicated by the pFS page.

pfs_status Bit value for the pFS status.

pfs_status_desc text description of the pFS status.

gam_page_id page Id of the gam page associated with this page.

gam_status Id value indicating the gam status of this page.

gam_status_desc text description of the gam status of this page.

sgam_page_id page Id of the Sgam page associated with this page.

sgam_status Id value indicating the Sgam status of this page.

sgam_status_desc text description of the Sgam status of this page.

diff_map_page_id page Id of the differential map page associated with this page.

diff_status Id value indicating the differential map status of this page.

diff_status_desc text description of the differential map status of this page.

Table 2-4. (continued)

(continued)

Chapter 2 Index Storage FundamentalS

57

Column Name Description

ml_map_page_id page Id of the minimally logged page associated with this page.

ml_status Id value indicating the minimally logged page status of this page.

ml_status_desc text description of the minimally logged page status of this page.

prev_page_file_id File Id for the next page.

prev_page_page_id page Id for the next page.

next_page_file_id File Id for the previous page.

next_page_page_id page Id for the previous page.

fixed_length unknown.

slot_count total number of used and unused slots.

ghost_rec_count number of records marked as ghost on the page.

free_bytes number of free bytes on the page.

free_bytes_offset offset of free space at the end of data area.

reserved_bytes number of reserved bytes on the page.

reserved_bytes_by_xdes_id Space contributed by m_xdesId to m_reservedCnt.

xdes_id latest transaction contributed by m_reserved.

Table 2-4. (continued)

You can use this header information to identify how pages are interrelated between

different structures, such as PFS pages, or use it to inspect pages to verify checksum

or number of slots and free space. To demonstrate, run the code in Listing 2-7, which

retrieves all page allocations for the two previously created tables and retrieves page

header information for all of the assigned pages.

Listing 2-7. Query Using sys.dm_db_page_info

SELECT T.name,

 DPA.page_type_desc,

 DPI.page_id,

 DPI.pfs_page_id,

 DPI.gam_page_id,

Chapter 2 Index Storage FundamentalS

58

 DPI.sgam_page_id,

 DPI.diff_map_page_id,

 DPI.ml_map_page_id,

 DPI.prev_page_page_id,

 DPI.next_page_page_id,

 DPI.fixed_length,

 DPI.slot_count,

 DPI.free_bytes

FROM sys.dm_db_database_page_allocations(DB_ID(), NULL, NULL, NULL,

'DETAILED') DPA

 INNER JOIN sys.tables T ON T.object_id = DPA.object_id

 CROSS APPLY sys.dm_db_page_info(DPA.database_id, DPA.allocated_page_

file_id, DPA.allocated_page_page_id, DEFAULT) DPI;

Once executed, you’ll have results similar to those in Figure 2-16. In these results,

we see the same previous and next page connections for dbo.IndexInternalsTwo, but no

page IDs listed for dbo.IndexInternalsone. Additionally, the PFS, GAM, SGAM, DIFF, and

ML pages are identified for both tables, which are the same since the database is smaller

than the threshold required for having multiples of these page types. Lastly, you’ll see

the number of slots, length, and free bytes per page. Of note, page 329, which is the index

page for dbo.IndexInternalsTwo, has six slots, one for each page that the index page

manages in the clustered index.

Figure 2-16. Page header results from sys.dm_db_page_info

Chapter 2 Index Storage FundamentalS

59

 DBCC Commands
While you can do a lot of exploration of data structures with the dynamic management

functions previously described in this chapter, there will be some occasions where you

will want to dig deeper. To accomplish this in SQL Server, you can use the following

DBCC commands:

• DBCC EXTENTINFO

• DBCC IND

• DBCC PAGE

In the next few sections, we’ll explore these commands and review some examples of

leveraging them in databases.

 DBCC EXTENTINFO

The first DBCC command to explore is DBCC EXTENTINFO. Similar to sys.dm_db_

database_page_allocations, this command provides information about extent

allocations that occur within a database. This identifies how extents have been allocated

and whether the extents being used are mixed or uniform. Listing 2-8 shows the syntax

for using DBCC EXTENTINFO. When using the command, there are four parameters that

can be populated; these are defined in Table 2-5.

Listing 2-8. DBCC EXTENTINFO Syntax

DBCC EXTENTINFO ({database_name | database_id | 0}

 , {table_name | table_object_id}, { index_name | index_id | -1}

 , { partition_id | 0}

Chapter 2 Index Storage FundamentalS

60

When executing DBCC EXTENTINFO, a dataset is returned. The results include the

columns defined in Table 2-6. For every extent allocation, there will be one row in

the results. Since extents are comprised of eight pages, there can be as many as eight

allocations for an extent when there are single-page allocations, such as when mixed

extents are used. When uniform extents are used, there will be only one extent allocation

and one row returned for the extent.

Table 2-6. DBCC EXTENTINFO Output Columns

Parameter Description

file_id File number where the page is located.

page_id page number for the page.

pg_alloc number of pages allocated from the extent to the object.

ext_size Size of the extent.

object_id object Id for the table.

index_id Index Id associated with the heap or index.

Table 2-5. DBCC EXTENTINFO Parameters

Parameter Description

database_name |

database_id

Specifies either the database name or the database Id where the page will

be retrieved. If the value 0 is provided for this parameter or the parameter is

not set, then the current database will be used.

table_name |

table_object_id

Specifies which table to return in the output by providing either the table

name or the object_ID for the table. If no value is provided, the output will

include results for all tables.

index_name |

index_id

Specifies which index to return in the output by providing either the index

name or the index_ID. If -1 or no value is provided, then the output will

include results for all indexes on the table.

partition_id Specifies which partition of the index to return in the output by providing the

partition number. If 0 or no value is provided, then the output will include

results for all partitions on the index.

(continued)

Chapter 2 Index Storage FundamentalS

61

To demonstrate how the command works, let’s walk through a couple examples to

observe how extents are allocated. In the first example, shown in Listing 2-9, we’ll reuse

the dbo.IndexInternalsOne from the last section and run the DBCC EXTENTINFO

command against that.

Listing 2-9. DBCC EXTENTINFO dbo.IndexInternalsOne

USE Chapter2Internals

GO

DBCC EXTENTINFO(0, IndexInternalsOne, -1)

In the results from the DBCC command, shown in Figure 2-17, you can see that there

are 13 total pages allocated to the table. The items of interest in these results are the

pg_alloc and ext_size columns. In the first row, the pages allocated are nine,

accounting for the index allocation map page and eight pages of the extent. In the

second row, there are 4 pages allocated, which is the balance of the 12 records inserted

into the table. Both rows should have 8 for the extent size, since uniform extents are

allocated.

Figure 2-17. DBCC EXTENTINFO for pages in dbo.IndexInternalsOne

Parameter Description

partition_number partition number for the heap or index.

partition_id partition Id for the heap or index.

iam_chain_type the type of Iam chain the extent is used for. Values can be in-row data,

loB data, and overflow data.

pfs_bytes Bytes array that identifies the amount of free space, whether there are

ghost records, whether the page is an Iam page, whether it is allocated,

and whether it is part of a mixed extent.

Table 2-6. (continued)

Chapter 2 Index Storage FundamentalS

62

In SQL Server versions prior to SQL Server 2016, the behavior will be quite different

since it will leverage single-page allocations for each transaction until the first extent is

filled. This behavior change is due to the behavior of trace flag 1118 becoming default

behavior for SQL Server.

Though DBCC EXTENTINFO doesn’t provide as much detail as sys.dm_db_

database_page_allocations, it can be useful for identifying extents assigned to a table,

especially when using SQL Server versions prior to SQL Server 2012.

 DBCC IND

The next command that can be used to investigate indexes and their associated pages

is DBCC IND. This command returns a list of all the pages associated with the requested

object, which can be scoped to the database, table, or index level, also similar to

sys.dm_db_database_page_allocations. Listing 2-10 shows the syntax for using

DBCC IND. When using the command, there are three parameters that can be populated;

these are defined in Table 2-7.

Listing 2-10. DBCC IND Syntax

DBCC IND ({'dbname' | dbid}, {'table_name' | table_object_id},

 {'index_name' | index_id | -1})

Table 2-7. DBCC IND Parameters

Parameter Description

database_name |

database_id

Specifies either the database name or the database Id where the page

list will be retrieved. If the value 0 is provided for this parameter or the

parameter is not set, then the current database will be used.

table_name |

table_object_id

Specifies which table to return in the output by providing either the table

name or the object_ID for the table. If no value is provided, the output

will include results for all tables.

index_name |

index_id

Specifies which index to return in the output by providing either the index

name or the index_ID. If -1 or no value is provided, the output will include

results for all indexes on the table.

Chapter 2 Index Storage FundamentalS

63

DBCC IND returns a dataset when executed. For every page that is allocated to the

requested objects, one row is returned in the dataset; the columns are defined in Table 2- 8.

Unlike the previous DBCC EXTENTINFO, DBCC IND does explicitly return the IAM page in the

results.

Within the results from DBCC EXTENTINFO is a PageType column. This column

identifies what type of page is returned through the DBCC command. The page types can

include data, index, GAM, or any other of the page types discussed earlier in the chapter.

Table 2-9 shows a full list of the page types and the value identifying the page type.

Table 2-8. DBCC IND Output Columns

Column Description

PageFID File number where the page is located.

PagePID page number for the page.

IAMFID File Id where the Iam page is located.

IAMPID page Id for the page in the data file.

ObjectID object Id for the associated table.

IndexID Index Id associated with the heap or index.

PartitionNumber partition number for the heap or index.

PartitionID partition Id for the heap or index.

iam_chain_type the type of Iam chain the extent is used for. Values can be in-row data,

loB data, and overflow data.

PageType number identifying the page type. these are listed in table 2-9.

IndexLevel level at which the page exists in the page organizational structure. the

levels are organized from 0 to n, where 0 is the lowest level of the index

and n is the index root.

NextPageFID File number where the next page at the index level is located.

NextPagePID page number for the next page at the index level.

PrevPageFID File number where the previous page at the index level is located.

PrevPagePID page number for the previous page at the index level.

Chapter 2 Index Storage FundamentalS

64

The primary benefit of using DBCC IND is that it provides a list of all pages for a

table or index with their locations in the database. You can use this to help investigate

how indexes are behaving and where pages are ending up. To put this information into

action, we’ll walk through a couple of scenarios.

For the first example, you’ll revisit the tables created in the last section and examine

the output for each of these in comparison to the DBCC EXTENTINFO output. The code

example includes DBCC IND commands for IndexInternalsOne and IndexInternalsTwo,

shown in Listing 2-11. The database ID passed in is 0 for the current database, and the

index ID is set to -1 to return pages for all indexes.

Listing 2-11. DBCC IND Example

USE Chapter2Internals;

GO

DBCC IND (0, 'IndexInternalsOne',-1);

Table 2-9. Page Type Mappings

Page Type Description

1 data page.

2 Index page.

3 large object page.

4 large object page.

8 global allocation map page.

9 Share global allocation map page.

10 Index allocation map page.

11 page Free Space page.

13 Boot page.

15 File header page.

16 differential Changed map page.

17 minimally logged page.

Chapter 2 Index Storage FundamentalS

65

In the DBCC EXTENTINFO example, there were two extent allocations for the table

IndexInternalsOne, shown in Figure 2-17. These results show that there were 13 pages

allocated to the table. The DBCC IND results, shown in Figure 2-18, detail all the pages

that were part of two extent allocations.

In these results, there was a single IAM page and twelve data pages allocated to the

table. Where DBCC EXTENTINFO provided page 312 as the start of the extent allocations,

containing nine pages, it was not possible to identify where the IAM page was based on

that. It was instead in another extent that the results did not list, and the results for DBCC

IND identify it as being on page 235. The benefit of using DBCC IND for listing the pages

for an index is that you get the exact page numbers without having to make any guesses.

Also, note that the index level in the results returns as level 0 with no intermediate levels.

As stated earlier, heap structures are flat, and the pages are in no particular order.

As mentioned, the tables in the previous example were organized in a heap structure.

For the next example, you’ll observe what the output from DBCC IND is when examining

a table with a clustered index. In Listing 2-12, first the table dbo.IndexInternalsThree

is created with a clustered index on the RowID column. Then, you’ll insert four rows.

Finally, the example executes DBCC IND on the table.

Listing 2-12. DBCC IND Clustered Index Example

USE Chapter2Internals

GO

CREATE TABLE dbo.IndexInternalsThree

 (

 RowID INT IDENTITY(1,1)

 ,FillerData CHAR(8000)

Figure 2-18. DBCC IND for dbo.IndexInternalsOne

Chapter 2 Index Storage FundamentalS

66

 ,CONSTRAINT PK_IndexInternalsThree PRIMARY KEY CLUSTERED (RowID)

)

GO

INSERT INTO dbo.IndexInternalsThree DEFAULT VALUES

GO 4

DBCC IND (0, 'IndexInternalsThree',-1)

Figure 2-19 shows the results from this example involving dbo.IndexInternalsThree.

Notice the change in how IndexLevel is being returned as compared to the previous

example (Figure 2-18).

In this example, the index level for the third row in the results has an IndexLevel of

1 and also a PageType of 2, which is an index page. With these results, there is enough

information to rebuild the B-tree structure for the index, as shown in Figure 2-20. The

B-tree starts with the IAM page, which is page number 1:237. This page is linked to page

1:361, which is an index page at index level 1. Following that, pages 1:360, 1:362, 1:363,

and 1:364 are at index level 0 and doubly linked to each other.

Figure 2-20. DBCC IND for dbo.IndexInternalsThree

Figure 2-19. DBCC IND for dbo.IndexInternalsThree

Chapter 2 Index Storage FundamentalS

67

Through both of these examples, you examined how to use DBCC IND to investigate

the pages associated with a table or an index. As the examples showed, the command

provides the information on all the pages of the table or index, including the IAM page.

These pages include the page numbers to identify where they are in the database. The

relationships between the pages are also included, even the next and previous page

numbers that are used to navigate the index for B-tree indexes.

As previously noted, sys.dm_db_database_page_allocations can provide this same

information and much more. To demonstrate this, Listing 2-13 shows how to get DBCC

IND information from the sys.dm_db_database_page_allocations. If you compare the

outputs, you’ll note that they are nearly identical; there are a few instances where NULL

and 0 are returned differently. With this ability, you should use the DMF in favor of using

the DBCC command.

Listing 2-13. DBCC IND Output from sys.dm_db_database_page_allocations

USE Chapter2Internals;

GO

SELECT

allocated_page_file_id AS PageFID

,allocated_page_page_id AS PagePID

,allocated_page_iam_file_id AS IAMFID

,allocated_page_iam_page_id AS IAMPID

,object_id AS ObjectID

,index_id AS IndexID

,partition_id AS PartitionNumber

,rowset_id AS PartitionID

,allocation_unit_type_desc AS iam_chain_type

,page_type AS PageType

,page_level AS IndexLevel

,next_page_file_id AS NextPageFID

,next_page_page_id AS NextPagePID

,previous_page_file_id AS PrevPageFID

,previous_page_page_id AS PrevPagePID

Chapter 2 Index Storage FundamentalS

68

FROM sys.dm_db_database_page_allocations(DB_ID(), OBJECT_ID('dbo.

IndexInternalsTwo'), 1, NULL, 'DETAILED')

WHERE is_allocated = 1;

GO

DBCC IND (0,'dbo.IndexInternalsTwo',1)

 DBCC PAGE

The last command available for examining pages is DBCC PAGE. While the other two

commands provide information on the pages associated with tables and indexes, the

output from DBCC PAGE provides a look at the contents of a page. Also, even with the

dynamic management functions, you’ll still need to use DBCC PAGE since much of its

capabilities are not yet available through DMFs. Listing 2-14 shows the syntax for using

DBCC PAGE.

Listing 2-14. DBCC PAGE Syntax

DBCC PAGE ({ database_name | database_id | 0}, file_number, page_number

 [,print_option ={0|1|2|3}])

The DBCC PAGE command accepts a number of parameters. Through the

parameters, the command is able to determine the database and specific page

requested, which is then returned in the requested format. Table 2-10 details the

parameters for DBCC PAGE.

Table 2-10. DBCC PAGE Parameters

Parameter Description

database_name |

database_id

Specifies either the database name or the database Id where the page will be

retrieved. If the value 0 is provided for this parameter or the parameter is not

set, the current database will be used.

file_number Specifies the file number for the data file in the database from where the

page will be retrieved.

page_number Specifies the page number in the database file that will be retrieved.

(continued)

Chapter 2 Index Storage FundamentalS

69

Note By default, the DBCC PAGE command outputs its messages to the SQl
Server event log. In most situations, this is not the ideal output mechanism. trace
flag 3604 allows you to modify this behavior. By utilizing this trace flag, the output
from the DBCC statements returns to the messages tab in SQl Server management
Studio (SSmS).

Through DBCC PAGE and its print options, everything that is on a page can be

retrieved. There are a few reasons why you might want to look at the contents of a page.

To start with, looking at an index or data page can help you understand why an index is

behaving in one manner or another. You gain insight into how the data within the row is

structured, which may cause rows to be larger than expected. The sizes of rows do have

an important impact on how indexes behave since as a row gets larger, the number of

pages required to store the index increases. An increase in the number of pages for an

index increases the resources required to use the index, which results in longer query

Parameter Description

print_option Specifies how the output should be returned. there are four print options

available:

0—page header only: returns only the page header information.

1—hex rows: returns the page header information, all the rows on the page,

and the offset array. In this output, each row is returned individually.

2—hex data: returns the page header information, all the rows on the page,

and the offset array. unlike option 1, the output shows all the rows as a single

block of data.

3—data rows: returns the page header information, all the rows on the

page, and the offset array. this option differs from the other options in that

the data in the columns for the row is translated as listed with their column

names.

this parameter is optional, and 0 is used as the default when no option is

selected.

Table 2-10. (continued)

Chapter 2 Index Storage FundamentalS

70

times and, in some cases, a change in how or which indexes will be utilized. Another

reason to use DBCC PAGE is to observe what happens to a data page when certain

operations occur. As the examples later in this chapter will illustrate, DBCC PAGE can be

used to uncover what happens during page splits and forwarded record operations.

To help demonstrate how to use DBCC PAGE, you’ll run through a few demonstrations

with each of the print options. These demos will be based on the code in Listing 2-15,

which uses sys.dm_db_database_page_allocations to identify page numbers for

the examples. For each example, you’ll look at some of the ways the results can differ

between page types. While the page numbers in your database may differ slightly, the

demos are based on an IAM page of 238, index page of 377, and data pages of 376 and

378, as shown in Figure 2-21.

Listing 2-15. DBCC IND Query for DBCC PAGE Examples

USE [Chapter2Internals];

GO

CREATE TABLE dbo.IndexInternalsFour (

 RowID INT IDENTITY(1, 1) NOT NULL,

 FillerData VARCHAR(2000) NULL,

 CONSTRAINT PK_IndexInternalsFour

 PRIMARY KEY CLUSTERED ([RowID] ASC));

INSERT INTO dbo.IndexInternalsFour (FillerData)

VALUES (REPLICATE(1, 2000)),

(REPLICATE(2, 2000)), (REPLICATE(3, 2000)),

(REPLICATE(4, 2000)), (REPLICATE(5, 25));

SELECT allocated_page_file_id AS PageFID,

 allocated_page_page_id AS PagePID,

 allocated_page_iam_file_id AS IAMFID,

 allocated_page_iam_page_id AS IAMPID,

 index_id AS IndexID,

 allocation_unit_type_desc AS iam_chain_type,

 page_type_desc,

 page_level AS IndexLevel,

 next_page_file_id AS NextPageFID,

Chapter 2 Index Storage FundamentalS

71

 next_page_page_id AS NextPagePID,

 previous_page_file_id AS PrevPageFID,

 previous_page_page_id AS PrevPagePID

FROM sys.dm_db_database_page_allocations(DB_ID(), OBJECT_ID('dbo.

IndexInternalsFour'), 1, NULL, 'DETAILED')

WHERE is_allocated = 1;

Page Header–Only Print Option

The first print option available for DBCC PAGE is the page header only where print_

option equals 0. With this option, only the page header is returned in the output from

the DBCC command. The page header is returned with all DBCC PAGE requests; using this

option just limits the results to only the page header. Two sections are returned as part of

the page header.

The first section returned is the buffer information. The buffer provides information

on where the page is currently located in memory in SQL Server. To read a page, the

page must first be retrieved from disk and placed in memory. This section provides the

address that could be used to find the memory location of the page.

The second section is the actual page header. The page header contains a number

of attributes that describe the page and the contents of the page. Not all the attributes

are currently in use by SQL Server, but there are a number of attributes that are worth

understanding. These key attributes are listed and defined in Table 2-11.

Figure 2-21. Page allocations for dbo.IndexInternalsFour

Chapter 2 Index Storage FundamentalS

72

To demonstrate the use of DBCC PAGE for the page header–only option, the code

in Listing 2-16 can be used. Your results should be similar to those in Figure 2-22. In

these results, you can see the page number at the top of the page indicating that it is

page 1:377. The m_type is 2, which translates to being an index page. The m_slotCnt

shows that there are two rows on the page. Referring to Figure 2-22, the row count would

correlate to the two index records needed to map data pages 1:376 and 1:378 to the

index. Finally, the allocation statuses show that the page is allocated on the GAM page, it

is 0 percent full (per PFS page), and the page has been changed since the last full backup

(per the DCM page).

Table 2-11. Page Header Key Attribute Definitions

Attribute Definition

m_pageId File Id and page number for the page.

m_type the type of page returned; see the page type list in table 2-5.

Metadata: AllocUnitId allocation unit Id that maps from the catalog view sys.

allocation_units.

Metadata: PartitionId partition Id for the table or index. this maps to partition_ID in

the catalog view sys.partitions.

Metadata: ObjectId object Id for the table. this maps to the object_ID in the catalog

view sys.tables.

Metadata: IndexId Index Id for the table or index. this maps to the index_ID in the

catalog view sys.indexes.

m_prevPage previous page in the index structure. this is used in B-tree indexes

to allow reading sequential pages along index levels.

m_nextPage next page in the index structure. this is used in B-tree indexes to

allow reading sequential pages along index levels.

m_slotCnt number of slots, or rows, on the page.

Allocation Status lists the locations of the gam, Sgam, pFS, dIFF (or dCm), and ml

(or BCm) pages for the page requested. It also includes the status

for each from those metadata pages.

Chapter 2 Index Storage FundamentalS

73

Listing 2-16. DBCC PAGE with Page Header–Only Print Option

DBCC TRACEON(3604)

DBCC PAGE(0,1,377,0)

As the page header–only option shows, there is a lot of useful information in the page

header. In fact, you are provided with enough information to envision how this page

relates to the other pages in the index and the extent it occupies. This information is

similar to sys.dm_db_page_info, but from this point forward, DBCC PAGE provides more

information than the DMF.

Hex Rows Print Option

The next print option available for DBCC PAGE is the hex rows print option, where

print_option equals 1. This print option expands on the previous option adding into

the output an entry for every slot on the page and the offset array that describes the

location of each slot on the page.

Figure 2-22. DBCC PAGE output for page header–only print option

Chapter 2 Index Storage FundamentalS

74

The data section of the page repeats for every row that is on the page and contains all

the metadata and the data associated with that row. For the metadata, the row includes

the slot number, page offset, record type, and record attributes. This information helps

define the row and what contributes besides the size of the data to the row size. At the

end of the slot is a memory dump of the row. The memory dump displays the row in a

hex format that, while not easily read by humans, contains all the data for the row. For

more on the attributes and their definitions, see Table 2-12.

The offset array is the last section of information included in the hex rows option

results. The offset array contains two pieces of information for each row on the table.

The first piece of information is the slot number with its hex representation. The second

piece is the byte location for the slot on the page. With these two pieces of information,

any row on the page can be located and returned.

For the hex rows example, you’ll continue to investigate the index page (1:279) that

you looked at in the previous section. This time, you’ll use the hex rows print option,

which is when a print_option of 1 is used in DBCC PAGE, as shown in Listing 2-17.

The results for the DBCC PAGE command will be longer than the previous execution since

this time it includes the row data with the page header. To focus on the new information,

Table 2-12. Hex Rows Key Attribute Definitions

Attribute Definition

Slot the position of the row on the page. the count is 0 based and starts

immediately after the page header.

offset physical byte location of the row on the page.

length the length of the row on the page.

record type the type of row. Some possible values are INDEX_RECORD and PRIMARY_

RECORD.

record attributes list of attributes on the row that contribute to the size of the row. these can

include the NULL_BITMAP and VARIABLE_COLUMNS array.

record Size the length of the row on the page.

memory dump the memory location for the data on the page. For the hex rows option, it is

limited to the information in that slot. the memory address is provided, and

afterward a hex dump of the data is stored in the slot.

Chapter 2 Index Storage FundamentalS

75

the buffer and page header results have been excluded in the sample output in Figure 2-23.

In the data section, there are two slots shown, slot 0 and slot 1. These slots map to the two

index rows on the page, which can be verified through the record type of INDEX_RECORD

for each of the rows. The hex data for the rows contains the page and range information

for the index record, but that isn’t translated with this print option. The last section has the

offset table containing the slot information for both of the rows on the table. Note that the

offset ends with 0 and counts up from the bottom. This matches to how the offset array was

described earlier in the chapter. The rows start after the header incrementing up, while the

offset array starts at the end of the page incrementing backward. In this manner, new rows

can be added to the table without reorganizing the page.

Listing 2-17. DBCC PAGE with Hex Rows Print Option

DBCC TRACEON(3604)

DBCC PAGE(0,1,377,1)

Figure 2-23. DBCC PAGE output for hex rows print option

Chapter 2 Index Storage FundamentalS

76

The hex rows print option is a bit more useful than the first print option. It includes

the page header information but expands on it to provide insight into the actual rows

on the page. This information can prove valuable when you want to look at a row to

determine its size on the page and why it may be larger than expected.

Hex Data Print Option

The third print option available for DBCC PAGE is the hex data print option, where

print_option equals 2. This print option, like the previous option, starts with the output

from the page header–only print option and adds to it. The information added through

this option includes the hex output of the data section of the page and the offset array.

With the data section, the page is output complete and unformatted as it appears on the

actual page. The output in this format can be useful when you want to see the page in its

raw form.

To demonstrate the hex data print option, you’ll use the script in Listing 2-18. In it

the DBCC PAGE command is used to retrieve the page from dbo.IndexInternalsFour that

contains the last row. This row contains 25 fives in the FillerData column.

Listing 2-18. DBCC PAGE with Hex Data Print Option

USE Chapter2Internals

GO

DBCC TRACEON(3604)

DBCC PAGE(0,1,377,2)

In the results, shown in Figure 2-24, the output contains a large block of characters

in the data section. The block contains three components. On the far left is page address

information, such as 0x0000003BCEBF8000. The page address identifies where on

the page the information is located. The middle section contains the hex data that is

contained in that section of the page. The right side of the character block contains the

character representation of the hex data. For the most part, this data is not legible, except

when it comes to character data being stored from character data types, such as char

and nchar.

Chapter 2 Index Storage FundamentalS

77

Initially, the hex data print option may seem less useful than the other print options.

In many situations, this will be the case. The true value in this print option is that DBCC

PAGE doesn’t try to interpret the page for you. It displays the page as is. With the other

print options, the output will sometimes be reordered to conform to expected slot

orders; an example of this is demonstrated in Chapter 8.

Row Data Print Option

The last print option available for DBCC PAGE is the row data print option, where

print_option equals 3. The output from this print option can change depending on the

type of page that is being requested. The basic information returned for most pages is

identical to that returned from the hex rows print option: the data split per row in the hex

format. The output varies, though, when it comes to data pages and index pages. For these

page types, this print option provides some extremely useful information about the page.

Figure 2-24. DBCC PAGE output for hex data print option

Chapter 2 Index Storage FundamentalS

78

Note You can use the WITH TABLERESULTS option with DBCC PAGE to output
the results from the command to a resultset instead of messages. this option is
useful when you want to insert the results returned from the DBCC command into
a table.

To show the differences between the data and index page outputs, let’s walk through

another example. This example will use the table dbo.IndexInternalsFour that was

created in Listing 2-10. In the demo for this print option, shown in Listing 2-19, you’ll

execute DBCC PAGE against one of the data pages and the index page for the table.

Listing 2-19. DBCC PAGE with Row Data Print Option

USE Chapter2Internals

GO

DBCC TRACEON(3604)

DBCC PAGE(0,1,378,3) -- Data page

DBCC PAGE(0,1,377,3) -- Index page

Comparing the results from the data page, shown in Figure 2-25, to the output

from the hex data print option, shown in Figure 2-24, there is one major difference.

Underneath the hex memory dump for the slot, all the column details from the row are

decoded and presented in a legible format. It starts with slot 0 column 1, which contains

the RowID column, which it shows to have a value of 5. The next column, column 2, is the

FillerData column, which contains 25 fives. For each of these columns, the physical

length is noted along with the offset of the value within the row. The last value provided

on the data section of the page is the KeyHashValue. This value isn’t actually stored

on the page. Instead, it is a hash value that was created when the page was placed in

memory based on the keys on the page. This value is shown in tools that are used by SQL

Server to report information about pages back to the end user; you may have seen this

value before while investigating deadlocks.

Chapter 2 Index Storage FundamentalS

79

With the index page, there isn’t a change in the message output from other page

types. Instead, the difference with this page is the resultset. Instead of just a message

output, a table is also returned. The table returns one row for every index row on the

page. Reviewing the output for the index page, shown in Figure 2-26, there are two rows

returned. The first row indicates that page 1:376 is the child page to the index page. It

also shows that the key value for the index is RowID, which is NULL for the first index row.

This means that this is the start of the index and no values are limiting the first values

on the child page. The second row maps to page 1:378 with a key value of 5. In this case,

the key value indicates that the first row on the child page has a RowID of 5. Since the key

value can change from index to index, the results from the DBCC PAGE command with

these options will change as well. For every index variation, the output will return the

relevant values for the index.

Figure 2-25. DBCC PAGE output for row data print option for data page

Chapter 2 Index Storage FundamentalS

80

The row data print option is one of the most useful options for the DBCC PAGE

command. For data pages, it provides total insight into the data stored on the page, how

much space it takes up, and its position. This allows you a direct line into understanding

why only certain rows may be fitting on the page and why, for instance, a page split may

have occurred. The resultset from the index page output is equally as useful. The ability

to map the index rows to pages and return the key values can provide much insight into

how the index is organized and how the pages are laid out.

 Page Fragmentation
As discussed throughout this chapter, SQL Server stores information in the database on

8 KB pages. In general, records in tables are limited to that size; if they are smaller than 8

KB, SQL Server stores more than one record per page. One of the problems with storing

more than a single record per page is handling situations where the total size of all the

records on a page exceeds 8 KB of space. In these situations, SQL Server must change

how the records on a page are stored. Depending on how the pages are organized, there

are two ways in which SQL Server will handle the situations: forwarded records and

page splits.

Note this discussion does not consider two situations where single records can
be larger than a page. these other situations are row-overflow and large objects.
With row overflow, SQl Server will allow a single record on a page to exceed the
8 KB in certain situations. also, when large object values exceed the 8 KB size,
they utilize loB pages instead of data pages. these do not have a direct impact on
the page fragmentation discussed in this section.

Figure 2-26. DBCC PAGE output for row data print option for index page

Chapter 2 Index Storage FundamentalS

81

 Forwarded Records
The first method for managing records when they exceed the size of a data page is

through forwarded records. This method applies only when the heap structure is used.

With forwarded records, when a row is updated and no longer fits on the data page, SQL

Server will move that record to a new data page in the heap and add pointers between

the two locations. The first pointer identifies the page on which the record now exists,

often called the forwarded record pointer. The second is on the new page, pointing back

to the original page on which the forwarded record existed; it’s called the back pointer.

As an example of how this works, let’s walk through a logical example of how

forwarding operates. Consider a page, numbered 100, that exists on a table using a heap

(see Figure 2-27). This page has four rows on it, and each row is approximately 2 KB in

size, totaling 8 KB in space used. If the second row is updated to 2.5 KB in size, it will no

longer be able to fit on the page. SQL Server selects another page in the heap or allocates

a new page to the heap, the page numbered 101 in this case. The second row is then

written to that page, and the pointer to the new page replaces the row on page 100.

Taking this logical example further, the next thing to do is examine how records are

forwarded on a table. For example, create a table named dbo.HeapForwardedRecords,

shown in Listing 2-20. To represent the rows from the logical example, you’ll use the

sys.objects table to add 24 rows to dbo.HeapForwardedRecords. Each of these rows

has a RowID to identify the row and 2,000 characters, resulting in four rows per page in

the table. Using sys.dm_db_index_physical_stats, you can verify (see Figure 2-28) that

there are six pages in the table with a total of 24 records.

Figure 2-27. Forwarded record process diagram

Chapter 2 Index Storage FundamentalS

82

Listing 2-20. Forwarded Record Scenario

USE AdventureWorks2017

GO

CREATE TABLE dbo.HeapForwardedRecords

(

 RowId INT IDENTITY(1,1)

 ,FillerData VARCHAR(2500)

);

INSERT INTO dbo.HeapForwardedRecords (FillerData)

SELECT TOP 24 REPLICATE('X',2000)

FROM sys.objects;

DECLARE @ObjectID INT = OBJECT_ID('dbo.HeapForwardedRecords');

SELECT object_id, index_type_desc, page_count, record_count, forwarded_

record_count

FROM sys.dm_db_index_physical_stats (DB_ID(), @ObjectID, NULL, NULL,

'DETAILED');

The next step in the demonstration is to cause forwarded records in the table. To do

this, you’ll update every other row in the table to expand the values of FillerData from

2,000 to 2,500 characters, shown in Listing 2-21. As a result, two of the rows will be too

large to fit in the space remaining on the pages where these rows are located. Instead of

8 KB of data, there will be about 9 KB being written to the 8 KB page.

As a result, SQL Server will need to move records off the page to complete the

updates. Since moving one of the records off the page will leave enough room on the

page for the second row, only one record will be forwarded. The output from sys.dm_

db_index_physical_stats (see Figure 2-29) verifies that this is the case. The page count

increases to nine, and six records are logged as being forwarded. One item of particular

interest is the record count. While the number of rows in the table did not increase, there

Figure 2-28. Physical state of dbo.HeapForwardedRecords before forwarding
records

Chapter 2 Index Storage FundamentalS

83

are now six additional records in the table. This is because the original record for the row

is still in the original position with a pointer to another record elsewhere that contains

the data for the row.

Listing 2-21. Script to Cause Forwarded Records

USE AdventureWorks2017

GO

UPDATE dbo.HeapForwardedRecords

SET FillerData = REPLICATE('X',2500)

WHERE RowId % 2 = 0;

DECLARE @ObjectID INT = OBJECT_ID('dbo.HeapForwardedRecords');

SELECT object_id, index_type_desc, page_count, record_count, forwarded_

record_count

FROM sys.dm_db_index_physical_stats (DB_ID(), @ObjectID, NULL, NULL,

'DETAILED');

The problem with forwarded records is that they cause rows in the table to have

records in two locations, resulting in an increase in the amount of I/O activity required

when retrieving data from and writing data to the table. The larger the table and the

higher the number of forwarded records, the more likely that forwarded records can

have a negative impact on performance.

 Page Splits
The second approach for handling pages where the size of the rows on the page exceeds

the size of the page is performing the page split. A page split is used on any index

that is implemented under the B-tree index structure, which includes clustered and

nonclustered indexes. With page splits, if a row is updated to a size that will no longer fit

Figure 2-29. Physical state of dbo.HeapForwardedRecords after forwarding
records

Chapter 2 Index Storage FundamentalS

84

on the data page on which it currently exists, SQL Server will take half the records on the

page and place them on a new page. Then SQL Server will attempt to write the data for

the row to the page again. If the data will then fit on the page, the page will be written. If

not, then the process will be repeated until it fits on the page.

To explain how page splits operate, let’s walk through an update that results in a

page split. Similar to the previous section, consider a table with a page numbered 100

(see Figure 2-30). There are four rows stored on page 100, and each is approximately

2 KB in size. Suppose that one of the rows, such as the second row, is updated to 2.5 KB

in size. The data for the page will be 8.5 KB, which exceeds the available space, which

causes a page split to occur. To split the page, a new page is allocated, numbered 101,

and half the rows on the page (the third and fourth row) are written to the new page. At

this point, the second row can be written to the page since there is now 4 KB of open

space on the page.

To demonstrate how page splits occur on a table, let’s walk through an example

similar to the one already described, which causes page splits to occur on the table. To

start the example, create the table dbo.ClusteredPageSplits, provided in Listing 2-22.

Into this table you’ll insert 24 records that are about 2 KB in length. This should result

in four rows per page and six data pages allocated to the table. Look at the information

on index level 0, which is the leaf level. Since the table is using a B-tree, through the

clustered index there will be an additional page that is used for the index tree structure.

On index level 1, there are six records, which reference the six pages in the index. You

can confirm this information with Figure 2-31.

Figure 2-30. Page split process diagram

Chapter 2 Index Storage FundamentalS

85

Listing 2-22. Page Split Scenario

USE AdventureWorks2017

GO

CREATE TABLE dbo.ClusteredPageSplits

(

 RowId INT IDENTITY(1,1)

 ,FillerData VARCHAR(2500)

 ,CONSTRAINT PK_ClusteredPageSplits PRIMARY KEY CLUSTERED (RowId)

);

INSERT INTO dbo.ClusteredPageSplits (FillerData)

SELECT TOP 24 REPLICATE('X',2000)

FROM sys.objects;

DECLARE @ObjectID INT = OBJECT_ID('dbo.ClusteredPageSplits');

SELECT object_id, index_type_desc, index_level, page_count, record_count

FROM sys.dm_db_index_physical_stats (DB_ID(), @ObjectID, NULL, NULL,

'DETAILED');

Causing the page splits on the table can be done by updating some of the records to

exceed the size of the page. You’ll do this by issuing an UPDATE statement that increases

the FillerData column in every other row from 2,000 to 2,500 characters in length, using

the script in Listing 2-23. The resulting rows on each page will be 9 KB in size, which, like

the previous example, exceeds the available page size, thus causing SQL Server to use

page spits to free up space on the page.

Investigating the results (Figure 2-32) after the page splits have occurred shows the

effect of the page splits on the table. For starters, instead of 6 pages at the leaf level of

the index, at index level 0 there are 12 pages. As mentioned, when a page split occurs,

the page is split in half, and a new page is added. Since all the data pages were updated

Figure 2-31. Physical state of dbo.ClusteredPageSplits before page splits

Chapter 2 Index Storage FundamentalS

86

in the table, all the pages were split, resulting in a doubling of the pages at the leaf level.

The only change at index level 0 was the addition of six pages to reference the new pages

in the index.

Listing 2-23. Script to Cause Page Splits

USE AdventureWorks2017

GO

UPDATE dbo.ClusteredPageSplits

SET FillerData = REPLICATE('X',2500)

WHERE RowId % 2 = 0;

DECLARE @ObjectID INT = OBJECT_ID('dbo.ClusteredPageSplits');

SELECT object_id, index_type_desc, index_level, page_count, record_count

FROM sys.dm_db_index_physical_stats (DB_ID(), @ObjectID, NULL, NULL,

'DETAILED');

There are two distinctions between page splits and forwarded records that are worth

mentioning. First, when the page splits occurred, the number of records on the data

pages did not increase. A page split moves the location of records to make room for the

records within the logical index ordering. The second is that page splits do not increase

the record count. Since page splits have made room for the records, there is no need for

additional records to point to where data is stored.

Page splits can lead to performance issues similar to forwarded records. These

performance issues occur both when the page split is occurring and afterward. During

the page splits, the page that is being split needs to be locked exclusively while the

records are split between two pages. This means that there can be contention when

someone needs to access a row other than the one being updated when the page split

happens. After the page is split, the physical order of the data pages in the index is

almost always not in their logical order within the index. This interrupts SQL Server’s

Figure 2-32. Physical state of dbo.ClusteredPageSplits after page splits

Chapter 2 Index Storage FundamentalS

87

ability to perform contiguous reads, decreasing the amount of data that can be read in

single operations. Also, the more pages that need to be read into memory for a query to

execute, the slower the query will perform compared to the same results on fewer pages.

 Index Characteristics
The first part of this chapter discussed the physical structures that are used to store

indexes. In those sections, a clear line between the types of indexes available and these

structures was not defined. In this section, the main index types for SQL Server will be

discussed, along with the indexing structure that they use. For each, you’ll learn about

the requirements and restrictions associated with the indexes.

 Heap
The first index type to discuss is the heap. As pointed out earlier in the book, a heap is

not actually a type of index. It is instead the result of the lack of a clustered index on a

table. A heap index will, as the name implies, use the heap structure for organizing pages

in a table.

There is only a single requirement for creating a table with a heap. The requirement

is that a clustered index can’t already be created on the table. If there is a clustered index,

then a heap will not be used. Heaps and clustered indexes are mutually exclusive. Also,

provided there is not a clustered index, there can be only a single heap on a table. The

heap is used to store the data pages for the index, and this is done only once.

The primary concern when using heaps is that the data in the heaps is not ordered.

There is no column that determines the sort for the data on the pages. The result of this

is that, without other supporting nonclustered indexes, queries will always be forced to

scan the information in the table.

 Clustered Index
The second index type is the clustered index. Clustered indexes utilize a B-tree for

storing data. For all practical purposes, a clustered index is the opposite of a heap.

When a clustered index is built on a table, the heap is replaced with the B-tree structure,

organizing the pages according to the key columns of the clustered index. The B-tree for

a clustered index includes data pages with all the data for the rows in the table.

Chapter 2 Index Storage FundamentalS

88

Clustered indexes have a few restrictions when considering the columns for the

index. The first restriction is that the total length for the key columns cannot exceed 900

bytes. Second, the clustering key in a clustered index must be unique. If columns in a

clustering key are not unique, SQL Server will add a hidden uniquifier column to the row

when it is stored. The uniquifier is a 4-byte numeric value that is added to nonunique

clustering keys to enforce uniqueness. The uniquifier size is not considered part of the

900-byte limit.

When building clustered indexes, there are a few things to consider. First, there can

be only a single clustered index per table. Since the clustered index is stored in the order

of the clustering key and the data in the row is stored with the key, there can’t be an

alternative sort on top of the table sorting it in a second manner. Also, when building a

clustered index on an existing table with a heap, be sure to have enough space available

for a second copy of the data. Until the build of the index is completed, both copies of the

data will exist.

As will be discussed in later chapters, it is often preferable to create clustered indexes

on all tables. This preference is not an absolute, and there are situations where clustered

indexes are not appropriate. You will need to investigate in your own databases to

determine which structure is best. Simply use this preference as a starting point.

 Nonclustered Index
The next index type to discuss is the nonclustered index. Nonclustered indexes are

similar to clustered indexes in a couple ways. For starters, nonclustered indexes use the

B-tree structure for storing data. They are also limited to 900 bytes for their key columns.

Beyond the similarities to clustered indexes, there are some differences. First,

there can be more than one nonclustered index on a table. In fact, there can be up to

999 nonclustered indexes on a table, each with no more than 16 columns. This upper

limit isn’t an invitation to create that many indexes; it is just an indication to the total

number of nonclustered indexes that can be created. However, with filtered indexes, it

may sometimes be worthwhile to create more indexes on a table than was traditionally

considered appropriate. Also, instead of having a leaf level where data is stored in the

B-tree, nonclustered indexes have page references to the locations in either the heap or

clustered index on the table where the data is located.

Chapter 2 Index Storage FundamentalS

89

 Columnstore Index
The last index type discussed in this section is the columnstore index. Columnstore

indexes use the columnstore structure, as the name implies. Columnstore indexes can

be of both clustered and nonclustered types.

A number of restrictions need to be considered with both types of columnstore

indexes. The first is that not all data types are available to be used in columnstore

indexes. The data types that cannot be used are binary, varbinary, ntext, text, image,

nvarchar(max), varchar(max), uniqueidentifier, rowversion, sql_variant, decimal

(with greater than 18 digits), datetimeoffset, xml, and CLR-based types. While all

columns in a table should be added to a clustered index, there is a limit of 1,024 columns

in a columnstore index. Also, because of the nature of columnstore indexes, the index

cannot be unique, be clustered, contain included columns, or have an ascending or

descending order designated. Also, there can be only a single columnstore index on a

table. This restriction is not a problem since it is advisable to include every column in a

table in the columnstore index.

Additionally, with nonclustered columnstore indexes, there are a couple of

additional restrictions. To begin with, a columnstore index is read-only. Once it has been

created, there can be no data modifications to the data in the table. For this reason, it

is often worthwhile to partition the underlying table to reduce the amount of data that

needs to be contained in a columnstore index and to allow rebuilding of the index when

new data is added to the table.

Clustered columnstore indexes, on the other hand, have some additional capabilities

beyond nonclustered columnstore indexes. Clustered columnstores are writeable,

which is allowed through a deltastore that is a hidden heap table that stores new rows

as they are received and compresses them into columnstore rowgroups over time. The

distinction of clustered in the case of clustered columnstore indexes indicates that it

is the structure that all the data in a table is stored in. This means there are no other

structures, such as a heap, that contain data in addition to the columnstore index.

When using columnstore indexes, there are some features within SQL Server that

they cannot be combined with. Since columnstore uses its own compression technology,

it can’t be combined with row or page compression. It can’t be used with replication,

change tracking, or change data capture. These technologies would not make sense with

columnstore since they assist in read-write scenarios, while columnstore indexes are

read-only. The last feature restrictions are filestream and filetable, which can’t be used

with columnstore.

Chapter 2 Index Storage FundamentalS

90

 Summary
In this chapter, you looked at the components that are used as the building blocks for

indexes. Now you have the fundamental foundation necessary to create indexes that

will behave in the ways that you expect and anticipate. To review, you looked at the

different types of pages that SQL Server uses to store data in the database and how these

pages are arranged together in extents. Then you looked at the available structures for

organizing pages, not for physical storage but in a logical fashion in order to access the

data on those pages. Then you looked at the tools available for investigating the pages

and structures of indexes through DBCC commands. The chapter concluded with a review

of how the structures for indexes are associated with the available index types.

Chapter 2 Index Storage FundamentalS

91
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_3

CHAPTER 3

Index Metadata and
Statistics
Now that you understand the logical and physical fundamentals of indexes, you should

look at the way in which statistics are stored for indexes. These statistics provide insight

into how SQL Server can utilize and is utilizing indexes. It also provides the information

needed to decipher why an index may not be selected and how it is behaving. This

chapter will provide you with a deeper understanding about where and how this

information is collected. You’ll investigate some additional DBCC commands and

dynamic management objects (DMOs) that are available and see how that information

comes to be.

There are four domains of information that the statistics in this chapter will cover.

The first domain is column-level statistics. This provides the query optimizer with

information on the population of data within a column and, thus, an index. The next

domain is index usage statistics. Information here provides insight into whether and

how an index is being used. The third domain is operational statistics. This information

is similar to usage statistics but provides deeper insight. The last domain of information

is physical statistics, and it provides insight into the physical characteristics of the index

and how the index is distributed within the database.

Additionally, in this chapter, you’ll review the metadata and statistics that are

available for columnstore indexes and explore the information that is collected.

This information provides an understanding of what is being stored by the

columnstore index and how it might impact the performance of queries against

columnstore indexes.

92

 Column-Level Statistics
Let’s begin by looking at the first domain of statistics information, column-level statistics.

This area is one of the most important within SQL Server when it comes to indexes. Column-

level statistics provide information on how data and its values are distributed across the

key column(s) of an index. SQL Server uses this information to determine the anticipated

frequency and distribution of values within an index; this is referred to as cardinality.

Through cardinality, the query optimizer develops cost-based execution plans to

find the best execution plan for executing the submitted request. If the statistics for an

index are incorrect or no longer represent the data in the index, then the plan that is

created will, likely, be inefficient. It is important to understand and be able to interact

with statistics to be certain that indexes in your environment not only exist but also

provide their expected benefits.

Note Often when indexes are rebuilt to “fix” performance issues, the
fragmentation is usually not the cause or direct solution to the issue. When rebuilt,
indexes receive new statistics, and execution plans related to those indexes need
to be recompiled, either of which is the likely cause of the performance issue vs.
any index fragmentation.

There are many ways to interact with statistics within SQL Server. You’ll review some

of the most common mechanisms in the sections to follow. With each of these methods,

you’ll look what they are, what they provide, and the value in using each method.

 DBCC SHOW_STATISTICS
The first, and likely most familiar, way to interact with statistics is through the DBCC

command SHOW_STATISTICS. This command will return the statistics for the requested

database object, either a table or an indexed view. The information returned is a

statistics object that includes three different components: the header, the histogram,

and the density vector. Each of these components provides SQL Server with an

understanding of the data available in the index.

Returning the statistics object can be done with the DBCC syntax in Listing 3-1.

This syntax accepts the name of the table or indexed view for the statistics, and then

Chapter 3 Index Metadata and StatIStICS

93

the target is returned. The target is either the name of the index or the column-level

statistics that were created.

Listing 3-1. DBCC SHOW_STATISTICS Syntax

DBCC SHOW_STATISTICS (table_or_indexed_view_name , target)

[WITH [< options >]

There are four options that can be included with the DBCC command: NO_INFOMSGS,

STAT_HEADER, DENSITY_VECTOR, and HISTOGRAM. Any or all of these options can be

included in a comma-separated list.

The option NO_INFOMSGS suppresses all informational messages when the DBCC

command is executed. These are error messages generated with severity from 0 to 10,

with 10 being the highest severity error. In most cases, since these error messages are

informational, they are not of value when using this DBCC statement.

The options STAT_HEADER, DENSITY_VECTOR, and HISTOGRAM limit the output from

the DBCC command. If one or more of the options are included, then only the statistics

components for the items included will be returned. If none of these is selected, then all

the components are included. There is STATS_STREAM option that won’t be discussed

because it is not supported and may not be included in future releases.

With the DBCC command defined, let’s walk through each of the statistics components.

Each will be defined, and then an example of their contents from the AdventureWorks2017

database will be explored. The results that you’ll be reviewing can be created with Listing 3-2.

Listing 3-2. DBCC SHOW_STATISTICS for Index on Sales.SalesOrderDetail Table

USE AdventureWorks2017

GO

DBCC SHOW_STATISTICS ('Sales.SalesOrderDetail'

, PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID)

 Stats Header

The stats header is the metadata portion of the statistics object. These columns, listed

in Table 3-1, are primarily informational. They inform on the number of rows that were

considered when building the statistics and how those rows were selected through

filtering. Table 3-1 also includes information on when the statistics were last updated,

which can be useful when investigating potential issues with the quality of statistics.

Chapter 3 Index Metadata and StatIStICS

94

Table 3-1. Stats Header Columns from DBCC SHOW_STATISTICS

Column Name Description

Name name of the statistics object. For index statistics, this is the same

name as the index.

Updated date and time that the statistics were last updated.

Rows total number of rows in the table or indexed view when the statistics

were last updated. For filtered statistics or indexes, the count pertains

to the number of rows that matched the filter criteria.

Rows Sampled total number of rows sampled for statistics calculations. histogram

and density values are estimates when the Rows Sampled value is

less than the value in Rows.

Steps number of steps in the histogram. each step spans a range of column

values followed by an upper-bound column value. the histogram steps

are defined on the first key column in the statistics. the maximum

number of steps is 200.

Density Calculated as 1/distinct values for all values in the first key column of

the statistics object, excluding the histogram boundary values. as of

SQL Server 2008, this value is no longer used by SQL Server.

Average Key Length average number of bytes per value for all the key columns in the

statistics object.

String Index Indicates whether the statistics object contains string summary

statistics to improve the cardinality estimates for query predicates that

use the LIKE operator.

Filter Expression When populated, this is the predicate for the subset of table rows

included in the statistics object.

Unfiltered Rows total number of rows in the table before applying the filter expression.

If Filter Expression is NULL, Unfiltered Rows is equal to

Rows.

Persisted Sample

Percent

added in SQL Server 2016, shows the sample percentage to use for

updates to the statistics. If zero, then there is no sample percentage

set for the statistics.

Chapter 3 Index Metadata and StatIStICS

95

Reviewing the stats header information for PK_SalesOrderDetail_SalesOrderID_

SalesOrderDetailID on Sales.SalesOrderDetail, shown in Figure 3-1, you’ll see a

number of items of interest. First, since the Rows and Rows Sampled values are the same,

you know that the statistics are not based on estimates. Next, the statistics were last

updated on October 27, 2017 (though this value may differ in your database). Another

item is that there are 163 steps, of a possible max 200 steps, in the statistics histogram.

The number of steps is equal to ranges. In this case, 163 steps mean there are 163 ranges,

each with an upper-bound value in the statistics. The upper-bound value defines the

max value within the range. If step 1 had an upper-bound value of 42, then step 1 would

cover values 0–42. The next step would then start with 43 and include values up through

its upper-bound. Note the lack of a filtered expression and unfiltered rows; neither the

index nor statistics are filtering out rows. Lastly, the Persisted Sample Percent is set to

0, which means all rows were sampled for the statistics, which can be confirmed by

comparing Rows with Rows Sampled.

Figure 3-1. Stats header for index on Sales.SalesOrderDetail table

 Density Vector

The next portion of the statistics components is the density vector. The density vector

describes the columns within a statistics object. There is a row for each key value in

the statistics or index object. For instance, if there are two columns in an index named

SaleOrderID and SalesOrderDetailID, there will be two rows in the density vector.

The density vector will have a row for SaleOrderID and a row for SaleOrderID and

SalesOrderDetailID, shown in Figure 3-2. There are three pieces of information

available for density vector: the density, average length, and columns included in the

vector (column names detailed in Table 3-2).

Figure 3-2. Sample of the density vector for index on Sales.SalesOrderDetail table

Chapter 3 Index Metadata and StatIStICS

96

The value of the density vector is that it helps the query optimizer adjust cardinality

for multiple column statistics objects. As we’ll discuss in the next section, the ranges

within the histogram are based solely on the first column of the statistics object, and

the density provides an adjustment between when single or multicolumn queries are

executed. While the focus for updating statistics is often on changes in the histogram, the

density vector provides a valuable means to adjust ranges in the histogram to adjust for

differences in the distribution of data in beyond the first column of the index.

Table 3-2. Density Vector Columns from DBCC SHOW_STATISTICS

Column Name Description

All Density returns the density for each prefix of columns in the statistics object, one

row per density. the density is calculated as 1/distinct column values. the

closer the density is to 1, the more uniform the values in the columns.

Average Length average length, in bytes, to store the column values for each level of the

density vector.

Columns names of columns in each density vector level.

 Histogram

The last piece from the DBCC SHOW_STATISTICS output is the histogram. The

histogram provides the details of the statistics object that the query optimizer uses to

determine cardinality. When building the histogram, SQL Server calculates a number

of aggregates that are based on either a statistics sample or all the rows in the table or

view. The aggregates measure the frequency in which values occur and group the values

into no more than 200 segments, or steps. For each of these steps, a distribution of the

statistics columns is computed that includes the number of rows in the step, the upper

bound of the step, the number of rows matching the upper bound, the distinct rows

in the step, and the average number of duplicate values in the step. Table 3-3 lists the

columns that match these aggregates. With this information, the query optimizer is able

to estimate the number of rows returned for ranges of values in an index, thus allowing it

to calculate a cost associated with retrieving the row.

Chapter 3 Index Metadata and StatIStICS

97

Table 3-3. Histogram Columns from DBCC SHOW_STATISTICS

Column Name Description

RANGE_HI_KEY Upper-bound column value for a histogram step. the column value is

also called a key value.

RANGE_ROWS estimated number of rows whose column value falls within a

histogram step, excluding the upper bound.

EQ_ROWS estimated number of rows whose column value equals the upper

bound of the histogram step.

DISTINCT_RANGE_ROWS estimated number of rows with a distinct column value within a

histogram step, excluding the upper bound.

AVG_RANGE_ROWS average number of rows with duplicate column values within

a histogram step, excluding the upper bound (RANGE_ROWS/

DISTINCT_RANGE_ROWS for DISTINCT_RANGE_ROWS > 0).

As mentioned in the first section, there are 163 steps in the histogram. In Figure 3-2,

which includes a number of rows from the histogram, you can see how a few of the steps

in Sales.SalesOrderDetail are aggregated. If you look at the second item in Figure 3- 3,

it shows the RANGE_HI_KEY value of 43692; this means that all SalesOrderID values

between 43660 and 43692 are included in these estimates. There are 282 rows in this

series, based on the RANGE_ROWS value, with 32 distinct rows in the series. Translating

these numbers to the SalesOrderDetail table, there are 32 distinct SalesOrderID

values with 282 SalesOrderDetailID items between them. Lastly, there are 28

SalesOrderDetailID items for SalesOrderID 43692.

Chapter 3 Index Metadata and StatIStICS

98

Figure 3-3. Sample of the histogram for index on Sales.SalesOrderDetail table

This leaves one last column to look at: AVG_RANGE_ROWS. The value in this column

is quite important and can result in a lot of pain when statistics are out-of-date. It states

how many rows can be expected when any one value or range of values from the statistics

are retrieved. To check the accuracy of the range average, execute Listing 3-3, which will

aggregate some of the values in the second step. After it is complete, the results (shown

in Figure 3-4) will show that the averages closely match the average range rows value

of 8.8125.

Listing 3-3. Query to Check AVG_RANGE_ROWS Estimate

USE AdventureWorks2017

GO

SELECT (COUNT(*)*1.)/COUNT(DISTINCT SalesOrderID) AS AverageRows

FROM Sales.SalesOrderDetail

WHERE SalesOrderID BETWEEN 43672 AND 43677;

SELECT (COUNT(*)*1.)/COUNT(DISTINCT SalesOrderID) AS AverageRows

FROM Sales.SalesOrderDetail

WHERE SalesOrderID BETWEEN 43675 AND 43677;

SELECT (COUNT(*)*1.)/COUNT(DISTINCT SalesOrderID) AS AverageRows

FROM Sales.SalesOrderDetail

WHERE SalesOrderID BETWEEN 43675 AND 43680;

Chapter 3 Index Metadata and StatIStICS

99

This histogram is a valuable tool to use when the statistics of an index are in

question. If there is a need to determine why a query is behaving in a specific manner or

you need to check why a query plan is estimating rows as it is, the histogram can be used

to validate these behaviors and results.

 Catalog Views
Using DBCC SHOW_STATISTICS provides the most detailed information on query

optimization statistics. It does, however, rely on the user knowing that the statistics exist.

With index statistics, it is easy to know about the statistics since all indexes have statistics.

Column-level statistics require an alternative method for discovering the statistics. This

is accomplished through two catalog views: sys.stats and sys.stats_columns.

 sys.stats

The catalog view sys.stats returns one row for every query optimization statistics

object that exists within the database. Whether the statistic was created based on an

index or column, the statistics object is listed in the view. Table 3-4 lists the columns in

sys.stats.

Figure 3-4. Results of AVG_RANGE_ROWS estimate validation

Chapter 3 Index Metadata and StatIStICS

100

Table 3-4. Columns for sys.stats

Column Name Data Type Description

object_id int Id of the object to which these statistics

belong.

name sysname name of the statistics. this value must be

unique for every object_id.

stats_id int Id of the statistics (unique within the object).

auto_created bit Statistics were autocreated by the query

processor.

user_created bit Statistics were explicitly created by the user.

no_recompute bit Statistics were created with the NORECOMPUTE

option.

has_filter bit Indicates whether the statistics are aggregated

based on a filter or subset of rows.

filter_definition nvarchar(max) expression for the subset of rows included in

filtered statistics.

is_temporary bit Indicates whether the statistics are temporary.

added in SQL Server 2012.

is_is_incremental bit Indicates whether the statistics are temporary.

added in SQL Server 2014.

has_persisted_sample bit Indicates whether the statistics have a persisted

sample rate. added in SQL Server 2019.

stats_generation_

method

int Flag identifying the generation method for the

statistics. added in SQL Server 2019.

stats_generattion_

method_desc

varchar(80) text description identifying the generation

method for the statistics. added in SQL

Server 2019.

Chapter 3 Index Metadata and StatIStICS

101

 sys.stats_columns

As a companion to sys.stats, the catalog view sys.stats_columns provides one row for

every column within a statistics object. Table 3-5 lists the columns in sys.stats_columns.

Table 3-5. Columns for sys.stats

Column Name Data Type Description

object_id int Id of the object of which this column is part.

stats_id int Id of the statistics of which this column is part.

stats_column_id int 1-based ordinal within a set of stats columns.

column_id int Id of the column from sys.columns.

 STATS_DATE
When it comes to statistics, one of the most important questions that is asked is

whether the statistics are out-of-date. A frequent method for determining whether

statistics are out-of-date is through the STATS_DATE function. The STATS_DATE function

provides the date of the most recent update to statistics. The syntax for the function,

shown in Listing 3-4, accepts an object_id and stats_id. In the case of indexes, the

stats_id is the same value as the index_id.

Listing 3-4. STATS_DATE Syntax

STATS_DATE (object_id , stats_id)

While the STATS_DATE function is routinely used to identify out-of-date statistics, that

approach isn’t effective for this task. The date that statistics were last updated does not

necessarily reflect anything about the rate at which data has changed. A table that hasn’t

had an update in years with stats that are months old won’t have out-of-date statistics,

while a table with constant inserts, updates, and deletes with stats that were updated the

previous day could have statistics that no longer represent the values in the index. While

the function can be useful as a catchall for indexes whose statistics change slowly, it

should be used with caution due to the example just given.

Chapter 3 Index Metadata and StatIStICS

102

 sys.dm_db_stats_properties
A better method for identifying the rate of change in statistics, which provides a

qualifier that is reflective of the data, is the sys.dm_db_stats_properties DMO. The

DMO, introduced in SQL Server 2008, provides the details on the number of rows that

have changed since the statistics were last updated. The syntax for sys.dm_db_stats_

properties, shown in Listing 3-5, accepts an object_id and stats_id. As with STATS_

DATE, stats_id is the same value as the index_id. Table 3-6 lists the columns in sys.

dm_db_stats_properties.

Listing 3-5. Syntax for sys.dm_db_stats_properties

sys.dm_db_stats_properties (object_id, stats_id)

Table 3-6. Columns for sys.dm_db_stats_properties

Column Name Data Type Description

object_id int Id of the object in question.

stats_id int Id of the statistics. For indexes, the Id matches the

index Id.

last_updated datetime2(7) date and time that the statistics were last updated.

rows bigint total number of rows in the table or indexed view

when the statistics were last updated. For filtered

statistics or indexes, the count pertains to the number

of rows that matched the filter criteria.

rows_sampled bigint total number of rows sampled for statistics

calculations. histogram and density values are

estimates when the rows_sampled value is less than

the value in rows.

steps int number of steps in the histogram. each step spans a

range of column values followed by an upper-bound

column value. the histogram steps are defined on

the first key column in the statistics. the maximum

number of steps is 200.

(continued)

Chapter 3 Index Metadata and StatIStICS

103

Since sys.dm_db_stats_properties provides the opportunity for a better quality

of understanding whether statistics are out-of-date, let’s take a look at the output to

see how changes to values in a table affect the modification_counter column. To do

this, you’ll start by creating the table dbo.SalesOrderHeaderStats, with Listing 3-6,

and a number of indexes. To investigate modification_counter, you’ll use the query in

Listing 3-7 to see the changes in the column. From Figure 3-5, you see there are 20,000

rows in the table with a current modification_counter value of 0 for every index and

statistic listed.

Listing 3-6. Prepare Tables for sys.dm_db_stats_properties Review

USE AdventureWorks2017

GO

DROP TABLE IF EXISTS dbo.SalesOrderHeaderStats;

SELECT SalesOrderID

,OrderDate

,SalesOrderNumber

INTO dbo.SalesOrderHeaderStats

FROM Sales.SalesOrderHeader

WHERE SalesOrderID <= 63658

CREATE CLUSTERED INDEX CIX_SalesOrderHeaderStats

 ON dbo.SalesOrderHeaderStats(SalesOrderID)

Column Name Data Type Description

unfiltered_rows bigint total number of rows in the table before applying the

filter expression. If Filter Expression is NULL,

unfiltered_rows is equal to rows.

modification_

counter

bigint Count of the total number of inserted, deleted, or

updated rows since the last time statistics were

updated for the table.

persisted_sample_

percent

Float added in SQL Server 2016.

Table 3-6. (continued)

Chapter 3 Index Metadata and StatIStICS

104

CREATE INDEX CIX_SalesOrderHeaderStats_OrderDate

 ON dbo.SalesOrderHeaderStats(OrderDate)

CREATE INDEX CIX_SalesOrderHeaderStats_SalesOrderNumber

 ON dbo.SalesOrderHeaderStats(SalesOrderNumber)

Listing 3-7. sys.dm_db_stats_properties Query for dbo.SalesOrderHeaderStats

USE AdventureWorks2017

GO

SELECT

 OBJECT_SCHEMA_NAME(s.object_id)

 +'.'+OBJECT_NAME(s.object_id) AS object_name

 ,s.name as statistics_name

 ,x.last_updated

 ,x.rows

 ,x.rows_sampled

 ,x.steps

 ,x.unfiltered_rows

 ,x.modification_counter

FROM sys.stats s

 CROSS APPLY sys.dm_db_stats_properties(s.object_id, s.stats_id) x

WHERE s.object_id = OBJECT_ID('dbo.SalesOrderHeaderStats')

Figure 3-5. Query results for sys.dm_db_stats_properties on
dbo.SalesOrderHeaderStats

Now that you have a table to work with, let’s look at what happens when changes

occur to the data in the table. For the examples, you’ll look at five different queries,

provided in Listing 3-8. The first updates the OrderDate column resulting in 40 rows

changed. The second query updates 50 rows where the SalesOrderNumber is updated

to the same value it currently contains. The third query updates the SalesOrderNumber

column again but reverses the value for the same 50 rows. The fourth query inserts

Chapter 3 Index Metadata and StatIStICS

105

11,465 records into the table. The final query deletes the first 20,000 records from the

table. Between each of the queries, execute the code in Listing 3-7; doing so will result in

the output in Figure 3-6.

Listing 3-8. Sample DML Queries on dbo.SalesOrderHeaderStats

USE AdventureWorks2017

GO

UPDATE dbo.SalesOrderHeaderStats

set OrderDate = GETDATE()

WHERE SalesOrderID % 500 = 1

--execute code in Listing 3-7

UPDATE dbo.SalesOrderHeaderStats

SET SalesOrderNumber = SalesOrderNumber

WHERE SalesOrderID % 400 = 1

--execute code in Listing 3-7

UPDATE dbo.SalesOrderHeaderStats

SET SalesOrderNumber = REVERSE(SalesOrderNumber)

WHERE SalesOrderID % 400 = 1

--execute code in Listing 3-7

SET IDENTITY_INSERT dbo.SalesOrderHeaderStats ON

INSERT INTO dbo.SalesOrderHeaderStats (SalesOrderID

,OrderDate

,SalesOrderNumber)

SELECT SalesOrderID

,OrderDate

,SalesOrderNumber

FROM Sales.SalesOrderHeader

WHERE SalesOrderID > 63658

SET IDENTITY_INSERT dbo.SalesOrderHeaderStats OFF

Chapter 3 Index Metadata and StatIStICS

106

--execute code in Listing 3-7

DELETE FROM dbo.SalesOrderHeaderStats

WHERE SalesOrderID <= 63658

--execute code in Listing 3-7

Figure 3-6. Query results for sys.dm_db_stats_properties for sample queries on
dbo.SalesOrderHeaderStats

Reviewing the results in Figure 3-6 provides some interesting insight into

how the modification_counter column is populated. To summarize, any insert,

update, or delete is considered a single change for the index and statistics. Looking

at the results for query 1, the 40 rows changed the result in modification_counter

for CIX_SalesOrderHeaderStats_OrderDate to increase to 40. Similarly, when

SalesOrderNumber is changed in queries 2 and 3, each query results in an increase of 50

to modification_counter, whether the value changed or not. Increasing the number of

records causes all three indexes to increase the modification_counter value by 11,465,

which coincides with the number of records inserted. Finally, in the query 5 results,

you see the 20,000 records were deleted. Interestingly enough, in the results for the last

query, the statistics from CIX_SalesOrderHeaderStats were updated to better reflect the

changes in values in the index.

While sys.dm_db_stats_properties doesn’t provide a list of all distinct records in a

table and the impact that might have on statistics, it does provide details that identify the

volume of change on an index and the statistics that support it. When trying to determine

whether an index has statistics that may be out-of-date, this DMO is extremely useful.

Chapter 3 Index Metadata and StatIStICS

107

 sys.dm_db_stats_histogram
While getting the histogram for statistics can be done with DBCC SHOW_STATISTICS,

SQL Server 2016 introduced the DMO function sys.dm_db_stats_histogram. This

function returns output similar to the DBCC command with the added benefit that it

can be joined with other DMOs to increase the usability of this data. The syntax for the

function, shown in Listing 3-9, accepts an object_id and stats_id with the columns

listed in Table 3-7 returned in the output.

Listing 3-9. Syntax for sys.dm_db_stats_histogram

sys.dm_db_stats_histogram (object_id, stats_id)

Table 3-7. Columns for sys.dm_db_stats_histogram

Column Name Data Type Description

object_id int Id of the object in question.

stats_id int Id of the statistics. For indexes, the Id matches the

index Id.

step_number int number of steps in the histogram. Max value 200.

range_high_key sql_variant Upper-bound column value for a histogram step. the

column value is also called a key value.

range_rows real estimated number of rows whose column value falls

within a histogram step, excluding the upper bound.

equal_rows real estimated number of rows whose column value equals

the upper bound of the histogram step.

distinct_range_rows bigint estimated number of rows with a distinct column value

within a histogram step, excluding the upper bound.

average_range_rows real average number of rows with duplicate column

values in the histogram step, excluding the upper

bound (range_rows/distinct_range_rows for

distinct_range_rows > 0).

Chapter 3 Index Metadata and StatIStICS

108

If you combine sys.stats with sys.dm_db_stats_histogram, as is done with

Listing 3-10, you can get the histogram for all statistics on Sales.SalesOrderDetail.

This provides information on all of the steps and their range values. Scroll through

the results, shown in Figure 3-7, to rows 163 and 164; and you’ll see where the

range_high_key value changes from numeric to character data with the change

between the statistics and steps.

Listing 3-10. sys.dm_db_stats_histogram Query for Sales.SalesOrderDetail

USE AdventureWorks2017;

GO

SELECT h.object_id,

 h.stats_id,

 h.step_number,

 h.range_high_key,

 h.range_rows,

 h.equal_rows,

 h.distinct_range_rows,

 h.average_range_rows

FROM sys.stats s

 CROSS APPLY sys.dm_db_stats_histogram(s.object_id, s.stats_id) h

WHERE s.object_id = OBJECT_ID('Sales.SalesOrderDetail');

Figure 3-7. Query results for sys.dm_db_stats_histogram on Sales.SalesOrderDetail

This new function is a great addition to your abilities to view and inspect histograms.

For example, if you had multiple indexes and statistics on a column, you could write

a query that includes just those statistics and then filter the range_high_key to only

include the steps that match the records that you are concerned about. At that point, you

can see the average_range_rows and get an understanding on why SQL Server may have

chosen one index over another.

Chapter 3 Index Metadata and StatIStICS

109

 sys.dm_db_incremental_stats_properties
With incremental index maintenance, which is discussed in Chapter 9, statistics also

require the ability for incremental updates to support that feature. As a companion to

sys.dm_db_stats_properties, the function sys.dm_db_incremental_stats_properties

provides visibility to stats properties of incremental statistics and indexes. The syntax

for sys.dm_db_incremental_stats_properties, shown in Listing 3-11, includes the same

two parameters as the other functions, object_id and stats_id. The columns returned are

identical to those in Table 3-6 except this function includes a partition_number column

indicating the partition for the incremental statistics.

Listing 3-11. Syntax for sys.dm_db_incremental_stats_properties

sys.dm_db_incremental_stats_properties (object_id, stats_id)

 Statistics DDL
This section has primarily focused on discussing index-level statistics. Index statistics

are automatically created when an index is created and automatically dropped when

the index is dropped. Statistics can also be created and provide significant value on

nonindexed columns. When manually creating or dropping statistics on nonindexed

columns, there are two DDL statements that can be used to accomplish this: CREATE

and DROP STATISTICS. Since they are outside the scope of this book, they will not

be discussed. The third DDL statement, UPDATE STATISTICS, applies to all statistics

including the index-level statistics. Since UPDATE STATISTICS is primarily tied to index

maintenance, it is discussed in Chapter 7.

 Colum-Level Statistics Summary
Query optimization statistics are a vital piece of indexing. They provide the information

that the query optimizer requires in order to build cost-based query plans. Through this

process, SQL Server can identify high-quality plans through their calculated costs. In

this section, you looked at how statistics are stored and the tools you can use in order to

investigate and begin to understand the statistics that are stored for an index.

Chapter 3 Index Metadata and StatIStICS

110

 Index Usage Statistics
The next domain of information to take a look at is index usage stats. Index usage

statistics are accumulated through the DMO sys.dm_db_index_usage_stats. This DMO

returns counts of different types of index operations and when the operation was last

performed. Through this information, you can discern how frequently an index is being

used and how current that usage is.

The DMO sys.dm_db_index_usage_stats is a dynamic management view (DMV).

Because of this, it does not require any parameters. It can be joined to other tables

or views through any of the JOIN operators. Indexes appear within the DMV after the

indexes have been used for the first time or since the reset of the statistics.

Note along with restarting the SQL Server service, closing or detaching a
database will reset all the statistics for an index that have been accumulated in
sys.dm_db_index_usage_stats.

Within the DMV sys.dm_db_index_usage_stats, three types of data are provided:

header columns, user statistics, and system statistics. In the next few sections, you will

explore each to gain an understanding of what information they hold and how you can

use it.

 Header Columns
The header columns for the DMV provide referential information that can be used to

determine for which index the statistics were accumulated. Table 3-8 lists the columns

that are part of this. These columns are primarily used to join the DMV to system catalog

views and other DMOs.

Table 3-8. Header Columns in sys.dm_db_index_usage_stats

Column Name Data Type Description

database_id smallint Id of the database in which the table or view is defined.

object_id int Id of the table or view in which the index is defined.

index_id int Id of the index.

Chapter 3 Index Metadata and StatIStICS

111

One of the first things that can be done with sys.dm_db_index_usage_stats is to

check to see whether an index has been used since the last time the statistics in the DMV

were reset. Using the header columns, similar to the T-SQL statement in Listing 3-12,

can provide a list of the indexes that have not been used. If you are using the

AdventureWorks2017 database, your results will look similar to those in Figure 3-8. In

these results, indexes that have not been used are returned.

Listing 3-12. Query for Header Columns in sys.dm_db_index_usage_stats

USE AdventureWorks2017

GO

SELECT TOP 10 OBJECT_NAME(i.object_id) AS table_name

 ,i.name AS index_name

 ,ius.database_id

 ,ius.object_id

 ,ius.index_id

FROM sys.indexes i

 LEFT JOIN sys.dm_db_index_usage_stats ius

 ON i.object_id = ius.object_id

 AND i.index_id = ius.index_id

 AND ius.database_id = DB_ID()

WHERE ius.index_id IS NULL

AND OBJECTPROPERTY(i.object_id, 'IsUserTable') = 1

ORDER BY table_name, index_name

Figure 3-8. sys.dm_db_index_usage_stats header columns query results

Chapter 3 Index Metadata and StatIStICS

112

This type of information can be useful for managing the indexes in your databases.

It is an excellent resource for identifying the indexes that have not been used in a while.

This strategy of index management is discussed further in later chapters.

 User Columns
The next set of columns in the DMV sys.dm_db_index_usage_stats is the user columns.

The user columns provide insight into how indexes are being specifically used within

query plans. The columns are listed in Table 3-9; they include statistics on how many

times each operation occurred and the time at which the last one occurred.

Table 3-9. User Columns in sys.dm_db_index_usage_stats

Column Name Data Type Description

user_seeks bigint aggregate count of seeks by user queries.

user_scans bigint aggregate count of scans by user queries.

user_lookups bigint aggregate count of bookmark/key lookups by user queries.

user_updates bigint aggregate count of updates by user queries.

last_user_seek datetime date and time of last user seek.

last_user_scan datetime date and time of last user scan.

last_user_lookup datetime date and time of last user lookup.

last_user_update datetime date and time of last user update.

sys.dm_db_index_usage_stats monitors four types of index operations. These are

represented through the columns user_seeks, user_scans, user_lookups, and user_

updates.

The first of the index usage columns is user_seeks. The operations for this column

occur whenever a query executes and returns a single row or range of rows for which

it has a direct access path. For instance, if a query executes and retrieves all the sales

details for a single order or a small range of orders, similar to the queries in Listing 3-13,

the query plan for these would use a seek operation (see Figure 3-9).

Chapter 3 Index Metadata and StatIStICS

113

Listing 3-13. Index Seek Queries

USE AdventureWorks2017

GO

SELECT * FROM Sales.SalesOrderDetail

WHERE SalesOrderID = 43659;

SELECT * FROM Sales.SalesOrderDetail

WHERE SalesOrderID BETWEEN 43659 AND 44659;

Figure 3-9. Query plans for seek queries

After running the queries from Listing 3-13, the DMV sys.dm_db_index_usage_stats

will be counted into the user_seeks column. Listing 3-14 provides a query to investigate

this. If you are following along, you should see the results in Figure 3-10. As the results

show, the value in the user_seeks column is 5, which matches the count of operations

from Listing 3-13. Based on this, you know that two queries were executed using the

index and both were able to utilize the index to go directly to rows that were requested.

Chapter 3 Index Metadata and StatIStICS

114

Listing 3-14. Query for index_seeks from sys.dm_db_index_usage_stats

USE AdventureWorks2017

GO

SELECT TOP 10

 OBJECT_NAME(i.object_id) AS table_name

 ,i.name AS index_name

 ,ius.user_seeks

 ,ius.last_user_seek

FROM sys.indexes i

 INNER JOIN sys.dm_db_index_usage_stats ius

 ON i.object_id = ius.object_id

 AND i.index_id = ius.index_id

 AND ius.database_id = DB_ID()

WHERE ius.object_id = OBJECT_ID('Sales.SalesOrderDetail');

Figure 3-10. Query results for index_seeks

The next usage column is user_scans. The value of this column is increased

whenever a query executes, and it must scan through every row of an index. For instance,

consider a query on sales details that is unfiltered and must return all records or a query

that is filtered on a column that is unindexed. Both of these queries, shown in Listing 3-15,

are asking SQL Server for either everything it has in a table or a few rows that it doesn’t

have a location on. The only way to accommodate this request would be through a scan of

the SalesOrderDetail table. Figure 3-11 shows the execution plans for these two queries.

Listing 3-15. Index Scan Queries

USE AdventureWorks2017

GO

SELECT * FROM Sales.SalesOrderDetail;

SELECT * FROM Sales.SalesOrderDetail

WHERE CarrierTrackingNumber = '4911-403C-98';

Chapter 3 Index Metadata and StatIStICS

115

When index scans occur, they can be seen in sys.dm_db_index_usage_stats. The

query in Listing 3-16 provides a view in the DMV to see the accumulation of the scans.

Since there were two scans, one for each of the two queries, the results in Figure 3-12

show that there have been two operations under user_scans. This information can be

useful when trying to troubleshoot situations where there are large numbers of scans on

a table. By looking at this information, you are able to find the indexes with high scans

and then begin to look at why queries using those indexes are using scans over more

optimal operations such as index seeks.

Listing 3-16. Query for index_scans from sys.dm_db_index_usage_stats

USE AdventureWorks2017

GO

SELECT TOP 10

 OBJECT_NAME(i.object_id) AS table_name

 ,i.name AS index_name

 ,ius.user_scans

 ,ius.last_user_scan

Figure 3-11. Query plans for seek queries

Chapter 3 Index Metadata and StatIStICS

116

FROM sys.indexes i

 INNER JOIN sys.dm_db_index_usage_stats ius

 ON i.object_id = ius.object_id

 AND i.index_id = ius.index_id

 AND ius.database_id = DB_ID()

WHERE ius.object_id = OBJECT_ID('Sales.SalesOrderDetail');

Figure 3-12. Query results for index_scans

The third column in the DMV is user_lookups. User lookups occur when a seek on

a nonclustered index occurs but the index does not have all of the required columns in

it to satisfy the query. When this happens, the query must look up the columns from the

clustered index. An example would be a query against the SalesOrderDetail table that

is returning the ProductID and CarrierTrackingNumber columns, which is filtered on

ProductID; Listing 3-17 shows this query. Figure 3-13 shows the query plan from this

query. The query plan shows a seek on the nonclustered index and a key lookup on the

clustered index.

Listing 3-17. Index Lookup Query

USE AdventureWorks2017

GO

SELECT ProductID, CarrierTrackingNumber

FROM Sales.SalesOrderDetail

WHERE ProductID = 778

GO

Chapter 3 Index Metadata and StatIStICS

117

In sys.dm_db_index_usage_stats, there will be a tally of one for both user_seeks

and user_lookups. To access these values, use Listing 3-18, which will return the results

in Figure 3-14. Patterns between these columns can help with determining proper

clustering keys or identifying when to modify indexes to avoid the key lookups. Key

lookups aren’t necessarily bad but can be a performance bottleneck if overused and

left unchecked. I’ll discuss more on what to look for in regard to user_lookups in later

chapters.

Listing 3-18. Query for index_lookups from sys.dm_db_index_usage_stats

SELECT TOP 10

 OBJECT_NAME(i.object_id) AS table_name

 ,i.name AS index_name

 ,ius.user_seeks

 ,ius.user_lookups

 ,ius.last_user_lookup

FROM sys.indexes i

 INNER JOIN sys.dm_db_index_usage_stats ius

 ON i.object_id = ius.object_id

 AND i.index_id = ius.index_id

 AND ius.database_id = DB_ID()

WHERE ius.object_id = OBJECT_ID('Sales.SalesOrderDetail');

Figure 3-13. Query plans for seek and key lookup

Chapter 3 Index Metadata and StatIStICS

118

The last of the index operations is user_updates. The user_updates column is not

limited to update operations on a table. In actuality, it covers all INSERT, UPDATE, and

DELETE operations that occur on a table. To demonstrate this, you can execute the code

in Listing 3-19. This code will insert a record into the SalesOrderDetail table, then

update the record, and finally delete the record from the table. Since the execution plans

for these are complex because of foreign key relationships, they have not been included

in this example.

Listing 3-19. Index Update Queries

USE AdventureWorks2017

GO

INSERT INTO Sales.SalesOrderDetail

(SalesOrderID, CarrierTrackingNumber, OrderQty, ProductID, SpecialOfferID,

UnitPrice, UnitPriceDiscount, ModifiedDate)

SELECT SalesOrderID, CarrierTrackingNumber, OrderQty, ProductID,

SpecialOfferID, UnitPrice, UnitPriceDiscount, GETDATE() AS ModifiedDate

FROM Sales.SalesOrderDetail

WHERE SalesOrderDetailID = 1;

UPDATE Sales.SalesOrderDetail

SET CarrierTrackingNumber = '999-99-9999'

WHERE ModifiedDate > DATEADD(d, -1, GETDATE());

DELETE FROM Sales.SalesOrderDetail

WHERE ModifiedDate > DATEADD(d, -1, GETDATE());

At the completion of the execution of the code listing, there were three operations

that occurred on the table. For each of these operations, sys.dm_db_index_usage_stats

accumulated one tick in the user_updates column. Execute the code in Listing 3-20 to see

the activity that occurred on the index. The results will be similar to those in Figure 3- 15.

Besides the changes made to the clustered index for SalesOrderDetail, the updates made

Figure 3-14. Query results for index_lookups

Chapter 3 Index Metadata and StatIStICS

119

to the nonclustered indexes are also included. Being able to see the effects of an insert,

update, or delete on a table can help provide an understanding of the impact of users and

the volatility of your data.

Listing 3-20. Query for index_updates from sys.dm_db_index_usage_stats

USE AdventureWorks2017

GO

SELECT TOP 10

 OBJECT_NAME(i.object_id) AS table_name

 ,i.name AS index_name

 ,ius.user_updates

 ,ius.last_user_update

FROM sys.indexes i

 INNER JOIN sys.dm_db_index_usage_stats ius

 ON i.object_id = ius.object_id

 AND i.index_id = ius.index_id

 AND ius.database_id = DB_ID()

WHERE ius.object_id = OBJECT_ID('Sales.SalesOrderDetail');

Figure 3-15. Query results for index_updates

 System Columns
The last set of columns in sys.dm_db_index_usage_stats is the system columns. The

system columns return the same general information as the user columns, except these

values are from the perspective of background processes. Whenever something triggers

within SQL Server, such as a triggered statistics update, that activity will be tracked

through these columns. Table 3-10 lists the system columns.

Chapter 3 Index Metadata and StatIStICS

120

For the most part, these columns can be ignored. It is good, though, to understand

how they are aggregated. To see an example, execute the code in Listing 3-21, which may

run up to a minute. This will change a majority of the rows in the SalesOrderDetail

table. Since more than 20 percent of the rows have changed, an automatic statistics

update will be triggered. The statistics update is not directly related to user activity and is

instead a background, or system, process.

Listing 3-21. Update for Sales.SalesOrderDetail

USE AdventureWorks2017

GO

UPDATE Sales.SalesOrderDetail

SET UnitPriceDiscount = 0.01

WHERE UnitPriceDiscount = 0.00;

After the update has completed, run the T-SQL statements in Listing 3-22. This code

will return results from sys.stats and the system columns from sys.dm_db_index_usage_

stats, shown in Figure 3-16. Within these is the system_scans column which shows

three system scans have occurred on Sales.SalesOrderDetail. These related to statistics

updates, one of which occurred on the UnitPriceDiscount column. Looking at the times

when the statistics were created, you can see that they were on CarrierTrackingNumber,

then SalesOrderDetailId, ModifiedDate, and finally UnitPriceDiscount.

Table 3-10. System Columns in sys.dm_db_index_usage_stats

Column Name Data Type Description

system_seeks bigint number of seeks by system queries.

system_scans bigint number of scans by system queries.

system_lookups bigint number of lookups by system queries.

system_updates bigint number of updates by system queries.

last_system_seek datetime time of last system seek.

last_system_scan datetime time of last system scan.

last_system_lookup datetime time of last system lookup.

last_system_update datetime time of last system update.

Chapter 3 Index Metadata and StatIStICS

121

Listing 3-22. Query for System Columns in sys.dm_db_index_usage_stats

USE AdventureWorks2017

GO

SELECT S.object_id,

 S.name,

 S.auto_created,

 STATS_DATE(S.object_id, S.stats_id),

 X.stats_column_names

FROM sys.stats S

 CROSS APPLY

(

 SELECT STRING_AGG(C.name, ',') AS stats_column_names

 FROM sys.stats_columns SC

 INNER JOIN sys.columns C

 ON C.object_id = SC.object_id

 AND C.column_id = SC.column_id

 WHERE S.object_id = SC.object_id

 AND S.stats_id = SC.stats_id

) X

WHERE S.object_id = OBJECT_ID('Sales.SalesOrderDetail');

SELECT OBJECT_NAME(i.object_id) AS table_name

 ,i.name AS index_name

 ,ius.system_seeks

 ,ius.system_scans

 ,ius.system_lookups

 ,ius.system_updates

 ,ius.last_system_seek

 ,ius.last_system_scan

 ,ius.last_system_lookup

 ,ius.last_system_update

FROM sys.indexes i

Chapter 3 Index Metadata and StatIStICS

122

 INNER JOIN sys.dm_db_index_usage_stats ius

 ON i.object_id = ius.object_id

 AND i.index_id = ius.index_id

 AND ius.database_id = DB_ID()

WHERE ius.object_id = OBJECT_ID('Sales.SalesOrderDetail');

Figure 3-16. sys.stats and sys.dm_db_index_usage_stats system columns query
results

From a usefulness perspective, there isn’t much of anything that can be gleaned from

these columns. They are just the result of background processes and are more there to

inform what is happening with indexes in the background.

 Index Usage Stats Summary
In this section, I discussed the statistics found in DMV sys.dm_db_index_usage_stats.

This DMV provides some extremely useful statistics about how and if indexes are being

used in the database. By monitoring these statistics over the long run, you will be able to

understand which indexes are providing some of the most value. Strategies for using all

these columns to index for performance will be discussed in Chapter 8.

 Index Operational Statistics
The third area of statistics to consider is index operational stats. These statistics are

presented to users through the DMO sys.dm_db_index_operational_stats. From a high

level, this DMO provides low-level information on I/O, locking, latching, and access

methods that occur on indexes. Through this low-level information, you can identify

indexes that may be encountering performance issues and start to understand what is

leading to those performance issues. At the end of this section, you will understand the

statistics provided in the DMO and know how to investigate indexes through these statistics.

Chapter 3 Index Metadata and StatIStICS

123

Unlike the DMO in the previous section, sys.dm_db_index_operational_stats is a

dynamic management function (DMF). Because of this, the DMF requires a number of

parameters to be supplied when it is used. Table 3-11 details the parameters for the DMF.

Table 3-11. Parameters for sys.dm_db_index_operational_stats

Parameter Name Data Type Description

database_id smallint Id of the database where the indexes reside. providing the

value 0, NULL, or DEFAULT will return index information for all

databases. the function DB_ID can be used in this parameter.

object_id int Object Id of the table or view for which statistics should be

returned. providing the value 0, NULL, or DEFAULT will return

index information for all tables or views in the database.

index_id int Index Id of the index for which statistics should be returned.

providing the value -1, NULL, or DEFAULT will return

statistics for all indexes on the table or view.

partition_number int partition number on an index in which statistics should be

returned. providing the value 0, NULL, or DEFAULT will

return statistics information for all partitions on an index.

Through the parameters, statistics on indexes can be as widely or narrowly focused

as necessary. This flexibility is useful since sys.dm_db_index_operational_stats

does not allow the use of the CROSS APPLY or OUTER APPLY operator. When passing the

parameters into the DMF, the syntax for doing so is defined in Listing 3-23.

Listing 3-23. Index Operational Stats Syntax

sys.dm_db_index_operational_stats (

 { database_id | NULL | 0 | DEFAULT }

 , { object_id | NULL | 0 | DEFAULT }

 , { index_id | 0 | NULL | -1 | DEFAULT }

 , { partition_number | NULL | 0 | DEFAULT }

)

Chapter 3 Index Metadata and StatIStICS

124

Note the dMF sys.dm_db_index_operational stats can accept the use
of the transact SQL functions DB_ID() and OBJECT_ID(). these functions can
be used for the parameters database_id and object_id, respectively.

 Header Columns
To start looking at the statistics, you need to identify the header columns that will be

used with all the resulting queries. For every row that is returned through the DMF,

there will be a database_id, object_id, index_id, and partition_number. These

columns are defined further in Table 3-12. As is implied through the partition_number,

the granularity of the results for this DMF is at the partition level. For nonpartitioned

indexes, the partition number will be 1.

Table 3-12. Header Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

database_id smallint Id of the database on which the table or view is defined.

object_id int Id of the table or view on which the index is defined.

index_id int Id of the index.

partition_number int 1-based partition number within the index or heap.

hobt_id bigint Id used to identify the heap or B-tree (hobt) associated

with an index partition. new since SQL Server 2016.

The header columns provide the basis for understanding to which indexes the

statistics apply. This will help provide perspective regarding the statistics returned. Also,

they can be used to join to catalog views, such as sys.indexes, to provide the names of

the indexes.

The useful information in this DMF comes in the rest of the columns returned by the

function. The information that can be returned provides insight into DML activity, the

page allocation cycle, data access patterns, index contention, and disk activity. In the

following sections, you’ll look into the columns of the DMF that provide statistics for this

information.

Chapter 3 Index Metadata and StatIStICS

125

 DML Activity
The place to begin when investigating the operation stats on an index is with the DML

activity on the index. Table 3-13 lists the columns that represent this activity. These

columns provide a count of the number of rows that are affected by DML operations.

The statistics that follow are similar to those in sys.dm_db_index_usage but with a few

differences in perspective that will be discussed next.

Table 3-13. DML Activity Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

leaf_insert_count bigint Cumulative count of leaf-level rows inserted.

leaf_delete_count bigint Cumulative count of leaf-level rows deleted.

leaf_update_count bigint Cumulative count of leaf-level rows updated.

leaf_ghost_count bigint Cumulative count of leaf-level rows that are marked to

be deleted but not yet removed.

nonleaf_insert_count bigint Cumulative count of inserts above the leaf level.

For heaps, this value will always be 0.

nonleaf_delete_count bigint Cumulative count of deletes above the leaf level.

For heaps, this value will always be 0.

nonleaf_update_count bigint Cumulative count of updates above the leaf level.

For heaps, this value will always be 0.

Within sys.dm_db_index_operational_stats, there are two areas where DML activity

can be tracked. These are at the leaf and nonleaf levels. These areas of DML activity were

discussed in Chapter 2; for more information on leaf and nonleaf pages, refer to that chapter.

The difference between these two types of data changes is important to help identify

whether there are changes as a result of DML operations. This means that leaf-level DML

activity is a direct result of INSERT, UPDATE, and DELETE statements. The nonleaf-level

DML activity happens when leaf-level activity results in a change in how the index is

structured and isn’t something that can be directly impacted with an INSERT, UPDATE, or

DELETE statement.

Both leaf-level and nonleaf-level DML activities are broken apart into statistics based

on the type of DML operation that has occurred. As previously indicated, DML activity

monitors INSERT, UPDATE, and DELETE activities. For each of these operations, there is a

Chapter 3 Index Metadata and StatIStICS

126

column in sys.dm_db_index_operational_stats. Additionally, there is a column that

counts records that have been ghosted off the leaf-level DML activity.

During DELETE operations, rows affected by the statement are deleted in a two-phase

operation. Initially, the records are marked for deletion. When this occurs, the records

are referred to as being ghosted; the rows in this state are counted in leaf_ghost_count.

At regular intervals, a cleanup thread within SQL Server will go through and perform

an actual delete operation on rows marked as ghosted. At that point, the records will

be counted in the leaf_delete_count. This process helps in the performance of delete

operations since the actual delete of a row happens after the transaction is committed.

Also, in the event of transaction rollback, the ghost flag on a row is all that needs to

change rather than an attempt to re-create the row in the table. This activity occurs only

at the leaf level; nonleaf pages are deleted whenever all the rows associated with the

pages have been deleted or otherwise removed.

As mentioned, this DML activity on this DMF is similar to that found in sys.

dm_db_index_usage_stats. While it is similar, there are some stark differences. The first

difference is that the information in sys.dm_db_index_operational_stats is much

more granular than that in sys.dm_db_index_usage_stats. Operational stats report

down to the leaf and nonleaf levels; usage stats do not. Along with the granularity is the

difference in how the counts are tabulated. Usage stats count one for every plan that

performs the operation on the index; whether 0 or 100 rows, the stats are collected.

Operational stats differ in that the count increments for every row that has the DML

operation performed. To summarize the difference, usage stats aggregate when the index

is used, and operational stats aggregate based on how much of the index is used.

The code in Listing 3-24 illustrates how operational stats are tabulated. In the listing,

79 rows are added to the table dbo.Karaoke. Then 44 rows are deleted from the table.

This is followed by 35 rows being updated in the table. The last query returns operational

stats based on the DML activity. Figure 3-17 shows the results of the final query.

Listing 3-24. DML Activity Script

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.Karaoke') IS NOT NULL

 DROP TABLE dbo.Karaoke;

Chapter 3 Index Metadata and StatIStICS

127

CREATE TABLE dbo.Karaoke

(

 KaraokeID INT

,Duet BIT

,CONSTRAINT PK_Karaoke_KaraokeID PRIMARY KEY CLUSTERED (KaraokeID)

);

INSERT INTO dbo.Karaoke

 SELECT ROW_NUMBER() OVER (ORDER BY t.object_id)

 ,t.object_id % 2

 FROM sys.tables t;

DELETE FROM dbo.Karaoke

WHERE Duet = 0;

UPDATE dbo.Karaoke

SET Duet = 0

WHERE Duet = 1;

SELECT OBJECT_SCHEMA_NAME(ios.object_id) + '.' + OBJECT_NAME(ios.object_id)

AS table_name

 ,i.name AS index_name

 ,ios.leaf_insert_count

 ,ios.leaf_update_count

 ,ios.leaf_delete_count

 ,ios.leaf_ghost_count

FROM sys.dm_db_index_operational_stats(DB_ID(),NULL,NULL,NULL) ios

 INNER JOIN sys.indexes i

 ON i.object_id = ios.object_id

 AND i.index_id = ios.index_id

WHERE ios.object_id = OBJECT_ID('dbo.Karaoke')

ORDER BY ios.range_scan_count DESC;

Figure 3-17. DML activity query results (result may vary on your system)

Chapter 3 Index Metadata and StatIStICS

128

The value in looking at the DML activity in an index is to help you understand what is

happening to the data in an index. For example, if a nonclustered index is being updated

often, it may be beneficial to look at the columns in the index to determine whether the

volatility of the columns matches the benefit of the index. It is good to look at the indexes

with high amounts of DML activity and consider whether the activity matches your own

understanding of the database platform.

 SELECT Activity
After DML activity, the next area of information that can be looked at is the information

on SELECT activity. The SELECT activity columns, shown in Table 3-14, identify the type

of physical operation that was used when queries were executed. There are three types

of access that SQL Server collects information on: range scans, singleton lookups, and

forwarded records.

Table 3-14. Access Pattern Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

range_scan_count bigint Cumulative count of range and table scans started

on the index or heap.

singleton_lookup_count bigint Cumulative count of single row retrievals from the

index or heap.

forwarded_fetch_count bigint Count of rows that were fetched through a

forwarding record.

 Range Scan

Range scans occur whenever a range of rows or a table scan is used to access data.

When considering a range of rows, it can be anywhere from 1 to 1,000 or more rows. The

number of rows in the range is not material in how SQL Server accesses the data. With

table scans, the number of rows is also not important, but you already, likely, assume

that it includes all records in the table. In sys.dm_db_index_operational_stats, these

values are stored in the column range_scan_count.

Chapter 3 Index Metadata and StatIStICS

129

To see this information collected in range_scan_count, execute the code in

Listing 3-13 and Listing 3-15 from the previous section. Before doing this, take the

AdventureWorks2017 database offline and then bring it back online which will reset

the statistics returned from the DMOs. In these two code samples, four queries will be

executed. The first two will result in index seeks in the query plan, shown in Figure 3-9.

And the second two queries result in index scans, as shown in the execution plans in

Figure 3-11. Running the code in Listing 3-25 will show, as displayed in Figure 3-18, that

all four queries used a range scan to retrieve the data from the table.

Listing 3-25. Query for range_scan_count from sys.dm_db_index_operational_

stats

USE AdventureWorks2017

GO

SELECT OBJECT_NAME(ios.object_id) AS table_name

 ,i.name AS index_name

 ,ios.range_scan_count

FROM sys.dm_db_index_operational_stats(DB_ID(),OBJECT_ID('Sales.

SalesOrderDetail'),NULL,NULL) ios

 INNER JOIN sys.indexes i

 ON i.object_id = ios.object_id

 AND i.index_id = ios.index_id

ORDER BY ios.range_scan_count DESC;

Figure 3-18. Query results for range_scan_count

 Singleton Lookup

The next statistics column collected on SELECT activity is singleton_lookup_count.

Values in this column are increased whenever the key lookup, formerly bookmark

lookup, is used. In general terms, this is the same type of information as collected in

the column user_lookups in sys.dm_db_index_usage_stats. There is a significant

difference, though, between user_lookups and singleton_lookup_count. When a key

lookup is used, user_lookups will increment by one to indicate that the index operation

Chapter 3 Index Metadata and StatIStICS

130

had been used. With singleton_lookup_count, for every row that uses the key lookup

operation, the value in this column will increase by one.

For instance, running the code in Listing 3-17 will result in a key lookup. This can be

validated by examining the execution plan, shown in Figure 3-13. The statistics from this

were discussed previously and shown in Figure 3-19. The new information to look at can

be investigated by running the T-SQL statement in Listing 3-26. In the results, you can

see that instead of there being a value of 1 in singleton_lookup_count, the value is 243.

This is an important distinction for this column. Rather than knowing that key lookups

have occurred, this statistic provides information on the scope of the lookups. You could

consider that if the ratio of singleton lookups to range scans was high, there may be other

indexing alternatives to consider.

Listing 3-26. Query for singleton_lookup_count from sys.dm_db_index_

operational_stats

USE AdventureWorks2017

GO

SELECT OBJECT_NAME(ios.object_id) AS table_name

 ,i.name AS index_name

 ,ios.singleton_lookup_count

FROM sys.dm_db_index_operational_stats(DB_ID(),OBJECT_ID('Sales.

SalesOrderDetail'),NULL,NULL) ios

 INNER JOIN sys.indexes i

 ON i.object_id = ios.object_id

 AND i.index_id = ios.index_id

ORDER BY ios. singleton_lookup_count DESC;

Figure 3-19. Query results for singleton_lookup_count

Chapter 3 Index Metadata and StatIStICS

131

 Forwarded Fetch

The last column of statistics collected on SELECT activity is forwarded_fetch_count.

As discussed in Chapter 2, forwarded records occur in heaps when a record increases

in size and can no longer fit on the page that it is currently on. The column forwarded_

fetch_count increases by one every time a record forward operation occurs.

To demonstrate, the code in Listing 3-27 builds a table with a heap and populates it

with some values. Then an UPDATE statement increases the size of every third row. The

size of the new row will exceed the available space on the page, resulting in a forwarded

record.

Listing 3-27. T-SQL Script for Forwarded Records

USE AdventureWorks2017

GO

CREATE TABLE dbo.ForwardedRecords

 (

 ID INT IDENTITY(1,1)

 ,VALUE VARCHAR(8000)

);

INSERT INTO dbo.ForwardedRecords (VALUE)

SELECT REPLICATE(type, 500)

FROM sys.objects;

UPDATE dbo.ForwardedRecords

SET VALUE = REPLICATE(VALUE, 16)

WHERE ID%3 = 1;

Once the script is completed, the sys.dm_db_index_operational_stats script in

Listing 3-28 can be used to view the number of times that forwarded records have been

fetched. In this case, the 222 records that were forwarded resulted in a forwarded_

fetch_count of 222, shown in Figure 3-20. This column is useful when looking into the

performance counter Forwarded Records/sec. Reviewing this column will help identify

which heap is leading to the counter activity, providing a focus on the exact table to

investigate.

Chapter 3 Index Metadata and StatIStICS

132

Listing 3-28. Query for forwarded_fetch_count from sys.dm_db_index_

operational_stats

SELECT OBJECT_NAME(ios.object_id) AS table_name

 ,i.name AS index_name

 ,ios.forwarded_fetch_count

FROM sys.dm_db_index_operational_stats(DB_ID(),OBJECT_ID('dbo.

ForwardedRecords'),NULL,NULL) ios

 INNER JOIN sys.indexes i

 ON i.object_id = ios.object_id

 AND i.index_id = ios.index_id

ORDER BY ios.forwarded_fetch_count DESC

Figure 3-20. Query result for forwarded_fetch_count

 Locking Contention
As data is used within SQL Server databases, it is locked to provide consistency in

the data that users are requesting and to prevent others from receiving incorrect

results. At times, locking for one user can interfere with another user. To best monitor

locking, sys.dm_db_index_operational_stats provides columns that detail the

counts on locks and time spent waiting for locks to occur. Table 3-15 lists three groups

of columns. There are three types of locks that are tracked in sys.dm_db_index_

operational_stats to provide insight into locking contention: row locks, page locks,

and index lock promotion.

Chapter 3 Index Metadata and StatIStICS

133

 Row Lock

The first set of columns consists of the row lock columns. These columns include

row_lock_count, row_lock_wait_count, and row_lock_wait_in_ms. Through these

columns, you are able to measure the number of locks that occur on a row and then

whether there was any contention when acquiring the row lock. Row lock contention

can often be observed by its effect on transaction performance through blocking and

deadlocking.

To demonstrate how this information is collected, execute the code in Listing 3- 29.

In this script, rows from the Sales.SalesOrderDetail table are retrieved based on

ProductID. In the AdventureWorks2017 database, the query retrieves 44 rows.

Table 3-15. Index Contention Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

row_lock_count bigint Cumulative number of row locks requested.

row_lock_wait_count bigint Cumulative number of times the database engine

waited on a row lock.

row_lock_wait_in_ms bigint total number of milliseconds the database engine

waited on a row lock.

page_lock_count bigint Cumulative number of page locks requested.

page_lock_wait_count bigint Cumulative number of times the database engine

waited on a page lock.

page_lock_wait_in_ms bigint total number of milliseconds the database engine

waited on a page lock.

index_lock_promotion_

attempt_count

bigint Cumulative number of times the database engine

tried to escalate locks.

index_lock_promotion_

count

bigint Cumulative number of times the database engine

escalated locks.

Chapter 3 Index Metadata and StatIStICS

134

Listing 3-29. T-SQL Script to Generate Row Locks

USE AdventureWorks2017

GO

ALTER INDEX ALL ON Sales.SalesOrderDetail REBUILD;

SELECT SalesOrderID

 ,SalesOrderDetailID

 ,CarrierTrackingNumber

 ,OrderQty

FROM Sales.SalesOrderDetail

WHERE ProductID = 710;

To observe the row locks that were acquired by the query, use the row lock columns

in the query provided in Listing 3-30. In these results, you see that for each row that was

returned by the query against Sales.SalesOrderDetail, there is one lock included in

the results of sys.dm_db_index_operational_stats, shown in Figure 3-21. As a result,

there were 44 row locks placed on the index IX_SalesOrderDetail_ProductID.

Note that there is no information returned for the row_lock_wait_count and

row_lock_wait_in_ms columns. This is because the script was not blocked by any other

query. Had the query in Listing 3-29 been blocked by another transaction, then the

values in these columns would have incremented.

Listing 3-30. Query for Row Locks in sys.dm_db_index_operational_stats

USE AdventureWorks2017

GO

SELECT OBJECT_NAME(ios.object_id) AS table_name

 ,i.name AS index_name

 ,ios.row_lock_count

 ,ios.row_lock_wait_count

 ,ios.row_lock_wait_in_ms

FROM sys.dm_db_index_operational_stats(DB_ID(),OBJECT_ID('Sales.

SalesOrderDetail'),NULL,NULL) ios

 INNER JOIN sys.indexes i

Chapter 3 Index Metadata and StatIStICS

135

 ON i.object_id = ios.object_id

 AND i.index_id = ios.index_id

ORDER BY ios.range_scan_count DESC;

Figure 3-21. Query results for row locks

 Page Lock

The next set of columns are the page lock columns. The columns in this group have

similar characteristics to the row lock columns, with the exception that they are scoped

at the page level instead of the row level. For every page that relates to an accessed row,

a page lock is acquired. These columns are page_lock_count, page_lock_wait_count,

and page_lock_wait_in_ms. When monitoring for locking contention on an index, it is

important to look at both the page and row levels to identify whether the contention is on

the individual rows being accessed or possibly different rows accessed on the same pages.

To review the differences, let’s continue with the query from Listing 3-29 but retrieve

the page lock statistics that were collected in sys.dm_db_index_operational_stats for

the query. This information is available using the script in Listing 3-31. The results this

time are a bit different than those for the row locks. For the page locks, see Figure 3- 22;

there are only two page locks on the index IX_SalesOrderDetail_ProductID.

Along with that, there are 44 page locks on PK_SalesOrderDetail_SalesOrderID_

SalesOrderDetailID, which did not encounter any row locks.

Listing 3-31. Query for Page Locks in sys.dm_db_index_operational_stats

USE AdventureWorks2017

GO

SELECT OBJECT_NAME(ios.object_id) AS table_name

 ,i.name AS index_name

 ,ios.page_lock_count

 ,ios.page_lock_wait_count

 ,ios.page_lock_wait_in_ms

Chapter 3 Index Metadata and StatIStICS

136

FROM sys.dm_db_index_operational_stats(DB_ID(),OBJECT_ID('Sales.

SalesOrderDetail'),NULL,NULL) ios

 INNER JOIN sys.indexes i

 ON i.object_id = ios.object_id

 AND i.index_id = ios.index_id

ORDER BY ios.range_scan_count DESC;

Figure 3-22. Query results for page locks

The statistics for the locking behavior may not make sense initially, until you

consider the activity that occurred when the query (from Listing 3-29) executed. When

the query executed, it utilized an index seek and a key lookup (see the execution plan

in Figure 3-23). The index seek on IX_SalesOrderDetail_ProductID accounts for the

2 page locks and the 44 row locks. There were 44 rows that matched the predicate for

the query, and they spanned 2 pages. The 44 page locks on PK_SalesOrderDetail_

SalesOrderID_SalesOrderDetailID are the result of the key lookup operations that

occurred for all the rows from IX_SalesOrderDetail_ProductID. Together, the row and

page lock columns help describe the activity that occurred.

Figure 3-23. Execution plan for SELECT query

Chapter 3 Index Metadata and StatIStICS

137

While row locking and page locking are useful for identifying when contention

exists, there is one piece about locking that it does not provide. There is no information

collected in the DMO about the types of locks that are being placed. All the locks could

be shared locks, or they could also be exclusive locks. The lock wait count provides scope

around the frequency of incompatible locks on the tables and the duration of those

locks, but the locks themselves are not identified.

 Lock Escalation

The last piece with locking contention to pay attention to is the amount of lock

escalation that is occurring in the database. When the number of locks acquired for

a transaction exceeds the locking threshold on an SQL Server instance, the locks will

escalate to the next higher level of locking. This escalation can happen at the page,

partition, and table levels. There are a number of reasons for escalating locks on a

database. One reason is that locks require memory, so the more locks there are, the more

memory is required and the more resources are needed to manage locks. Another reason

is that many individual low-level locks open the opportunity for blocking to escalate into

deadlocking. For these reasons, it is important to pay attention to lock escalations.

To help provide an understanding of lock escalation, let’s use a modification of

the demo query that was used previously in this section. Instead of selecting 44 rows,

though, you’ll update all the rows where ProductID is less than or equal to 712 (see

Listing 3-32). The update will just change ProductID to its current value so as not to

permanently change the data in AdventureWorks2017.

Listing 3-32. T-SQL Script to Generate Lock Promotion

USE AdventureWorks2017

GO

UPDATE Sales.SalesOrderDetail

SET ProductID = ProductID

WHERE ProductID <= 712

Now with the example script execution, you’ll need to review the statistics in sys.

dm_db_index_operational_stats to see whether there were any lock escalations by using

the script in Listing 3-33. As the output from the script shows (Figure 3-24), the column

index_lock_promotion_attempt_count recorded four events for PK_SalesOrderDetail_

SalesOrderID_SalesOrderDetailID and IX_SalesOrderDetail_ProductID. This means

Chapter 3 Index Metadata and StatIStICS

138

that there were four opportunities for lock escalation that were triggered. Looking

at the column index_lock_promotion_count, there was one lock escalation on IX_

SalesOrderDetail_ProductID. Translating the results into less technical terms, for the

two indexes there were four times when SQL Server considered whether a lock escalation

was appropriate for the query. At the fourth check on IX_SalesOrderDetail_ProductID,

SQL Server determined that a lock escalation was needed, and the lock was escalated.

Listing 3-33. Query for Lock Escalation in sys.dm_db_index_operational_stats

USE AdventureWorks2017

GO

SELECT OBJECT_NAME(ios.object_id) AS table_name

 ,i.name AS index_name

 ,ios.index_lock_promotion_attempt_count

 ,ios.index_lock_promotion_count

FROM sys.dm_db_index_operational_stats(DB_ID(),OBJECT_ID('Sales.

SalesOrderDetail'),NULL,NULL) ios

 INNER JOIN sys.indexes i

 ON i.object_id = ios.object_id

 AND i.index_id = ios.index_id

ORDER BY ios.range_scan_count DESC;

Figure 3-24. Query results for lock escalation

Monitoring lock escalation goes hand in hand with monitoring row and page locks.

When row and page lock contention increases, either through increased frequency

or through duration of lock waits, evaluating lock escalation can help identify the

number of times SQL Server considers escalating locks and when those locks have been

escalated. In some cases where tables are improperly indexed, locks can escalate more

frequently and lead to increased blocking and potentially deadlocking.

Chapter 3 Index Metadata and StatIStICS

139

 Latch Contention
Locking isn’t the only type of contention that indexes can encounter. In addition to locking,

there is latch contention. Latches are short, lightweight data synchronization objects. From

a high level, latches provide controls on memory objects while activities are executing.

One example of a latch is when data is transferred from disk to memory. If there are disk

bottlenecks while this occurs, latch waits will accumulate while the disk transfer completes.

The value in this information is that when latch waits are occurring, the columns (shown in

Table 3-16) provide a mechanism to track the waits down to specific indexes, thus allowing

you to focus on where indexes are stored as part of index management.

Table 3-16. Latch Activity Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

page_latch_wait_

count

bigint Cumulative number of times the database engine waited

because of latch contention.

page_latch_wait_

in_ms

bigint Cumulative number of milliseconds the database engine

waited because of latch contention.

page_io_latch_

wait_count

bigint Cumulative number of times the database engine waited on

an I/O page latch.

page_io_latch_

wait_in_ms

bigint Cumulative number of milliseconds the database engine

waited on a page I/O latch.

tree_page_latch_

wait_count

bigint Subset of page_latch_wait_count that includes only the

upper-level B-tree pages. this is always 0 for a heap.

tree_page_latch_

wait_in_ms

bigint Subset of page_latch_wait_in_ms that includes only the

upper-level B-tree pages. this is always 0 for a heap.

tree_page_io_

latch_wait_count

bigint Subset of page_io_latch_wait_count that includes only

the upper-level B-tree pages. this is always 0 for a heap.

tree_page_io_

latch_wait_in_ms

bigint Subset of page_io_latch_wait_in_ms that includes only

the upper-level B-tree pages. this is always 0 for a heap.

Chapter 3 Index Metadata and StatIStICS

140

 Page I/O Latch

When it comes to page I/O latches, two sets of data are collected: page-level latching

and tree page latching. Page-level latching occurs when data pages at the leaf levels of

an index, the data pages, need to be retrieved (as opposed to tree page latching, which

happens at all the other levels of the index). Both of these statistics are measures of the

number of latches created while moving data into the buffer and any time related to

delays. Whenever time is accumulated in page_io_latch_wait_in_ms or tree_page_

io_latch_wait_in_ms, it correlates to increases in wait times for the PAGEIOLATCH_*

wait types.

To better understand how page I/O latches occur and the statistics you can collect,

you’ll review an example that will cause these waits to occur. In this demonstration,

you’ll return all the data from Sales.SalesOrderDetail, Sales.SalesOrderHeader, and

Production.Product via the script in Listing 3-34. Before executing the script, the buffer

cache will be purged to force SQL Server to have to retrieve the data for the pages from

disk. Be sure to use this script only on a nonproduction server where clearing the buffer

cache will not impact other processes.

Listing 3-34. T-SQL Script to Generate Page I/O Latch

USE AdventureWorks2017

GO

DBCC DROPCLEANBUFFERS

GO

SELECT *
FROM Sales.SalesOrderDetail sod

INNER JOIN Sales.SalesOrderHeader soh ON sod.SalesOrderID = soh.SalesOrderID

INNER JOIN Production.Product p ON sod.ProductID = p.ProductID;

When the query completes, a number of page I/O latches will have occurred while

populating the pages for the tables and indexes into the buffer cache. To review the page

I/O latches, query against sys.dm_db_index_operational_stats on the page I/O latch

columns using the script in Listing 3-35. The results, shown in Figure 3-25, indicate that

there were page I/O latch waits on all three of the tables in the example query, including

a whole 1 millisecond incurred on Sales.SalesOrderHeader. The results here are highly

Chapter 3 Index Metadata and StatIStICS

141

dependent on the underlying storage, so if your numbers are radically different, that’s a

difference in hardware performance vs. an issue with the query. If they are excessively

high, you may want to consider some analysis of the disk system.

Listing 3-35. Query for Page I/O Latch Statistics in sys.dm_db_index_

operational_stats

USE AdventureWorks2017

GO

SELECT OBJECT_SCHEMA_NAME(ios.object_id) + '.' + OBJECT_NAME(ios.object_id)

as table_name

 ,i.name as index_name

 ,page_io_latch_wait_count

 ,page_io_latch_wait_in_ms

 ,CAST(1. * page_io_latch_wait_in_ms

 / NULLIF(page_io_latch_wait_count ,0) AS decimal(12,2)) AS page_io_

avg_lock_wait_ms

FROM sys.dm_db_index_operational_stats (DB_ID(), NULL, NULL, NULL) ios

INNER JOIN sys.indexes i ON i.object_id = ios.object_id AND i.index_id =

ios.index_id

WHERE i.object_id = OBJECT_ID('Sales.SalesOrderHeader')

OR i.object_id = OBJECT_ID('Sales.SalesOrderDetail')

OR i.object_id = OBJECT_ID('Production.Product')

ORDER BY 5 DESC;

Figure 3-25. Query results for page I/O latch

Chapter 3 Index Metadata and StatIStICS

142

 Page Latch

The other kind of latching related to indexes that can occur in databases is page latching.

Page latching covers any latching that occurs on nondata pages. Page latches include

allocation of GAM and SGAM pages and DBCC and backup activities. As pages are

allocated by different resources, contention can occur, and monitoring page latches can

uncover this activity.

When it comes to an index, one common scenario in which page latches can occur is

when a “hotspot” develops on an index because of frequent inserts or page allocations.

To demonstrate this scenario, you’ll create the table dbo.PageLatchDemo in Listing 3- 36.

Next, using your preferred load generator tool, execute five sessions of the code in

Listing 3-37. To generate the load for this example, five query windows in SQL Server

Management Studio run a copy of the load query. Through this example, hundreds

of rows will be inserted quickly into the same series of pages, and numerous page

allocations will be made. Since these inserts will be so close, a “hotspot” will be created,

which will lead to page latch contention.

Listing 3-36. T-SQL Script to Generate Page Latch Scenario

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.PageLatchDemo') IS NOT NULL

 DROP TABLE dbo.PageLatchDemo;

CREATE TABLE dbo.PageLatchDemo

(

PageLatchDemoID INT IDENTITY (1,1)

,FillerData bit

,CONSTRAINT PK_PageLatchDemo_PageLatchDemoID PRIMARY KEY

CLUSTERED (PageLatchDemoID)

);

Chapter 3 Index Metadata and StatIStICS

143

Listing 3-37. T-SQL Script to Generate Page Latch Load

USE AdventureWorks2017

GO

INSERT INTO dbo.PageLatchDemo

 (FillerData)

SELECT t.object_id % 2

FROM sys.tables t;

GO 5000

To verify that the page latch contention did occur, use the script provided in

Listing 3-38. The results, provided in Figure 3-26, show that there were numerous page

latches and delays associated with them. In this example, the delay per page latch was

over 20 milliseconds. In more critical situations, these values will be much higher and will

help you identify when an index is interfering with accessing or writing data to an index.

Listing 3-38. Query for Page Latch Statistics in sys.dm_db_index_operational_stats

SELECT OBJECT_SCHEMA_NAME(ios.object_id) + '.' + OBJECT_NAME(ios.object_id)

as table_name

,i.name as index_name

,page_latch_wait_count

,page_latch_wait_in_ms

,CAST(100. * page_latch_wait_in_ms

 / NULLIF(page_latch_wait_count ,0) AS decimal(12,2)) AS page_avg_

lock_wait_ms

FROM sys.dm_db_index_operational_stats (DB_ID(), NULL, NULL, NULL) ios

INNER JOIN sys.indexes i ON i.object_id = ios.object_id AND i.index_id =

ios.index_id

WHERE i.object_id = OBJECT_ID('dbo.PageLatchDemo');

Figure 3-26. Query results for page latch

Chapter 3 Index Metadata and StatIStICS

144

Note page I/O and page latch contentions are highly dependent on hardware.
Your results for the demonstration queries in this section will not identically match
the results shown.

 Page Allocation Cycle
As a result of the DML activity, leaf and nonleaf pages are allocated or deallocated

from indexes from time to time. Monitoring page allocations is an important part of

monitoring an index (see Table 3-17 for options). Through this monitoring, it is possible

to get a handle on how an index is “breathing” between maintenance windows. This

breathing activity is the relationship between pages allocated to indexes through

inserts and page splits and then the removal, or merging, of pages through deletes. By

monitoring this activity, you can better maintain your indexes and get an idea of when it

would be useful to increase the index FILLFACTOR value.

Table 3-17. Page Allocation Cycle Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

leaf_allocation_count bigint Cumulative count of leaf-level page allocations in

the index or heap.

nonleaf_allocation_count bigint Cumulative count of page allocations caused by

page splits above the leaf level.

leaf_page_merge_count bigint Cumulative count of page merges at the leaf level.

nonleaf_page_merge_count bigint Cumulative count of page merges above the

leaf level.

As an example of how page allocation occurs on a table, execute the script in

Listing 3-39. In this script, the table dbo.AllocationCycle is created. Afterward, 100,000

rows are inserted into the table. Since this is a new table, there is no contention on page

allocations, and data is added in an orderly fashion. At this point, pages have been

allocated to the table, and the allocations relate specifically to these inserts. This script

will run for a minute or more. Be sure that Include Actual Execution Plan is not enabled

when this is executed.

Chapter 3 Index Metadata and StatIStICS

145

Listing 3-39. T-SQL Script to Generate Page Allocations

USE AdventureWorks2017;

GO

SET NOCOUNT ON

DROP TABLE IF EXISTS dbo.AllocationCycle;

CREATE TABLE dbo.AllocationCycle (

 ID INT IDENTITY,

 FillerData VARCHAR(1000),

 CreateDate DATETIME,

 CONSTRAINT PK_AllocationCycle PRIMARY KEY CLUSTERED (ID)

);

GO

INSERT INTO dbo.AllocationCycle (FillerData, CreateDate)

VALUES (NEWID(), GETDATE());

GO 100000

To verify the allocations, you can check the leaf and nonleaf allocation columns

leaf_allocation_count and nonleaf_allocation_count from sys.dm_db_index_

operational_stats. Using the script in Listing 3-40, you see that there are 758

allocations at the leaf level and 3 at the nonleaf level (see Figure 3-27). This is an

important point to remember whenever using these columns: a portion of the pages

allocated can be insert-related.

Listing 3-40. Query for Page Latch Statistics in sys.dm_db_index_operational_

stats

USE AdventureWorks2017

GO

SELECT OBJECT_SCHEMA_NAME(ios.object_id) + '.' + OBJECT_NAME(ios.object_id)

as table_name

 ,i.name as index_name

 ,ios.leaf_allocation_count

 ,ios.nonleaf_allocation_count

 ,ios.leaf_page_merge_count

Chapter 3 Index Metadata and StatIStICS

146

 ,ios.nonleaf_page_merge_count

FROM sys.dm_db_index_operational_stats(DB_ID(), OBJECT_ID('dbo.

AllocationCycle'), NULL,NULL) ios

 INNER JOIN sys.indexes i ON i.object_id = ios.object_id AND i.index_id =

ios.index_id;

Figure 3-27. Query results for insert page allocations

Note after SQL Server 2014, the behavior for these columns changed. On bulk
inserts, only a single page is recorded for the leaf_allocation_count.

At the start of this section, there was a reference to using page allocations to monitor

for page splits and to identify where modifications to the fill factor can be useful. To

understand this, you first need to generate page splits on the dbo.AllocationCycle

table. You can do so using the script in Listing 3-41. This script increases the length of the

FillerData column on every third row to 1,000 characters.

Listing 3-41. T-SQL Script to Increase Page Allocations

USE AdventureWorks2017;

GO

UPDATE dbo.AllocationCycle

SET FillerData = REPLICATE('x',1000)

WHERE ID % 3 = 1;

Once the data is modified, the results from executing the sys.dm_db_index_

operational_stats query in Listing 3-40 change drastically. With the size of the rows

expanding, the number of pages allocated jumps up to 9,849 with a total of 35 nonleaf

pages (Figure 3-28). Since the order of the rows hasn’t changed, this activity is related to

page splits from expanding the sizes of the rows. By monitoring these statistics, indexes

affected by this pattern of activity can be identified.

Chapter 3 Index Metadata and StatIStICS

147

 Compression
While not the most exciting set of columns, there are two columns in sys.dm_db_index_

operational_stats that are used for monitoring compression. These columns, listed in

Table 3-18, count the number of attempts that have been made at compressing a page

and then the number of successful attempts in doing so. The primary value in these

columns is providing feedback on PAGE-level compression. Failures can lead to decisions

to remove compression because it is usually not practical to have compression enabled

when there is a high rate of failure with compression.

Table 3-18. Compression Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

page_compression_

attempt_count

bigint number of pages that were evaluated for PAGE-level

compression for specific partitions of a table, index, or

indexed view. Includes pages that were not compressed

because significant savings could not be achieved.

page_compression_

success_count

bigint number of data pages that were compressed by using

PAGE-level compression for specific partitions of a

table, index, or indexed view.

Figure 3-28. Query results for update page allocations

Page compression can fail when the cost to compress the data exceeds the value in

uncompressing that data later. This is typically found in data that has low patterns of

repeating data, such as images. When image data is compressed, it often does not receive

sufficient benefit from the compression, and SQL Server will not store the page as a

compressed page. To demonstrate this, execute the code in Listing 3-42, which creates a

table with page compression enabled and inserts a number of images into it.

Chapter 3 Index Metadata and StatIStICS

148

Listing 3-42. T-SQL Script to create table with page compression

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.PageCompression') IS NOT NULL

 DROP TABLE dbo.PageCompression;

CREATE TABLE dbo.PageCompression(

 ProductPhotoID int NOT NULL,

 ThumbNailPhoto varbinary(max) NULL,

 LargePhoto varbinary(max) NULL,

 CONSTRAINT PK_PageCompression PRIMARY KEY CLUSTERED (ProductPhotoID))

 WITH (DATA_COMPRESSION = PAGE);

INSERT INTO dbo.PageCompression

SELECT ProductPhotoID

 ,ThumbNailPhoto

 ,LargePhoto

FROM Production.ProductPhoto;

The insert into the table doesn’t fail, but are all the pages compressed? To find out,

execute the script in Listing 3-43; it returns the page_compression_attempt_count

and page_compression_success_count columns. As the results show (Figure 3-29), 7

pages were successfully compressed, but another 46 pages failed to compress. With this

ratio of success to failures for page compression, it is easy to see that the value of page

compression on the clustered index on dbo.PageCompression is not very high.

Listing 3-43. Query for page compression attempts in sys.dm_db_index_

operational_stats

USE AdventureWorks2017

GO

SELECT OBJECT_SCHEMA_NAME(ios.object_id) + '.' + OBJECT_NAME(ios.object_id)

as table_name

,i.name as index_name

,page_compression_attempt_count

,page_compression_success_count

Chapter 3 Index Metadata and StatIStICS

149

FROM sys.dm_db_index_operational_stats (DB_ID(), OBJECT_ID('dbo.

PageCompression'), NULL, NULL) ios

 INNER JOIN sys.indexes i ON i.object_id = ios.object_id AND i.index_id

= ios.index_id;

Figure 3-29. Query results for compression

 LOB Access
The next group of columns in sys.dm_db_index_operational_stats pertains to large

objects (LOBs). They provide information on the number of pages fetched and the size of

those pages. Also, there are columns that measure the amount of LOB data that is pushed

off and pulled into rows. Table 3-19 lists all these columns and others in this group.

Table 3-19. LOB Access Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

lob_fetch_in_pages bigint Cumulative count of LOB pages retrieved from the

LOB_DATA allocation unit. these pages contain data

that is stored in columns of type text, ntext, image,

varchar(max), nvarchar(max), varbinary(max),

and xml.

lob_fetch_in_bytes bigint Cumulative count of LOB data bytes retrieved.

lob_orphan_create_

count

bigint Cumulative count of orphan LOB values created for bulk

operations.

lob_orphan_insert_

count

bigint Cumulative count of orphan LOB values inserted during

bulk operations.

row_overflow_fetch_

in_pages

bigint Cumulative count of row-overflow data pages retrieved

from the ROW_OVERFLOW_DATA allocation unit.

row_overflow_fetch_

in_bytes

bigint Cumulative count of row-overflow data bytes retrieved.

(continued)

Chapter 3 Index Metadata and StatIStICS

150

The LOB access columns can be useful in determining the volume of large object

activity and when data may be moving from large object to in-row-overflow storage. This

is important when you are seeing performance issues related to retrieving or updating

LOB data. For instance, the column lob_fetch_in_bytes measures the bytes from LOB

columns retrieved by SQL Server for the index.

To demonstrate some LOB activity, run the script in Listing 3-44. This script doesn’t

represent all the possible activity, but it does cover the basics. At the start of the script,

the table dbo.LOBAccess is created with the column LOBValue, which uses a large object

data type. The first operation against the table inserts ten rows that are narrow enough

that the LOBValue values can be stored on the data page with the rows. The second

operation increases the size of the LOBValue column forcing it to expand outside the 8 KB

max for a data row. The final operation retrieves all the rows from the table.

Listing 3-44. T-SQL Script to create table with LOB data

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.LOBAccess') IS NOT NULL

 DROP TABLE dbo.LOBAccess;

CREATE TABLE dbo.LOBAccess

 (

 ID INT IDENTITY(1,1) PRIMARY KEY CLUSTERED

 ,LOBValue VARCHAR(MAX)

Column Name Data Type Description

column_value_push_

off_row_count

bigint Cumulative count of column values for LOB data and row-

overflow data that is pushed off-row to make an inserted

or updated row fit within a page.

column_value_pull_

in_row_count

bigint Cumulative count of column values for LOB data and row-

overflow data that is pulled in-row. this occurs when an

update operation frees up space in a record and provides

an opportunity to pull in one or more off-row values from

the LOB_DATA or ROW_OVERFLOW_DATA allocation unit

to the IN_ROW_DATA allocation unit.

Table 3-19. (continued)

Chapter 3 Index Metadata and StatIStICS

151

 ,FillerData CHAR(2000) DEFAULT(REPLICATE('X',2000))

 ,FillerDate DATETIME DEFAULT(GETDATE())

);

INSERT INTO dbo.LOBAccess (LOBValue)

SELECT TOP 10 'Short Value'

FROM Production.ProductPhoto;

UPDATE dbo.LOBAccess

SET LOBValue = REPLICATE('Long Value',8000);

SELECT * FROM dbo.LOBAccess;

Using the LOB access columns listed in Table 3-20, you can observe what happens

under the covers with the script in Listing 3-45. As the output in Figure 3-30 shows, the

column column_value_push_off_row_count tracked ten row operations on the index

where the row moved in-row data off into large object storage. The operation coincided

with the update that increased the length of the rows. The other two statistics that were

accumulated, lob_fetch_in_pages and lob_fetch_in_bytes, detail the number of

pages and the size of the data retrieved during the SELECT statement. As these statistics

show, the LOB access statistics provide granular tracking of LOB activity.

Listing 3-45. Query for LOB access in sys.dm_db_index_operational_stats

USE AdventureWorks2017

GO

SELECT OBJECT_SCHEMA_NAME(ios.object_id) + '.' + OBJECT_NAME(ios.object_id)

as table_name

 ,i.name as index_name

 ,lob_fetch_in_pages

 ,lob_fetch_in_bytes

 ,lob_orphan_create_count

 ,lob_orphan_insert_count

 ,row_overflow_fetch_in_pages

 ,row_overflow_fetch_in_bytes

 ,column_value_push_off_row_count

 ,column_value_pull_in_row_count

Chapter 3 Index Metadata and StatIStICS

152

FROM sys.dm_db_index_operational_stats (DB_ID(), OBJECT_ID('dbo.

LOBAccess'), NULL, NULL) ios

INNER JOIN sys.indexes i ON i.object_id = ios.object_id AND i.index_id =

ios.index_id;

Table 3-20. Row Version Columns in sys.dm_db_index_operational_stats

Column Name Data Type Description

version_generated_

inrow

bigint number of in-row version records retained by snapshot

isolation transaction.

version_generated_

offrow

bigint number of off-row version records retained by

snapshot isolation transaction.

ghost_version_inrow bigint number of in-row ghost version records retained by

snapshot isolation transaction.

ghost_version_offrow bigint number of off-row ghost version records retained by

snapshot isolation transaction.

insert_over_ghost_

version_inrow

bigint number of in-row inserts over ghost version records

retained by snapshot isolation transaction.

insert_over_ghost_

version_offrow

bigint number of off-row inserts over ghost version records

retained by snapshot isolation transaction.

Figure 3-30. Query results for LOB access

 Row Version
The last group of columns in sys.dm_db_index_operational_stats report on version

counts within indexes due to snapshot isolation columns. These columns are new to

SQL Server 2019. While this book won’t demonstrate their use within snapshot isolation

levels, they are included in the chapter for completeness.

Chapter 3 Index Metadata and StatIStICS

153

 Index Operational Stats Summary
This section discussed the statistics available in the DMO sys.dm_db_index_

operational_stats. While it isn’t a DMO that is widely used, it does provide a lot of

low-level detail regarding indexes that can be leveraged to dig deep into how indexes

are behaving. From the columns on DML and SELECT activity to locking contention to

compression, the columns in this DMO provide a wealth of information.

 Index Physical Statistics
The last area of statistics that SQL Server collects is the index physical stats. These

statistics report information about the current structure of the index along with the

physical effect of insert, update, and delete operations on indexes. These statistics are

collected in the DMO sys.dm_db_index_physical_stats.

Just like sys.dm_db_index_operational_stats, sys.dm_db_index_physical_stats

is a dynamic management function. To use the DMF, a number of parameters need to be

supplied when it is used. Listing 3-46 details the parameters for the DMF.

Listing 3-46. Parameters for sys.dm_db_index_physical_stats

sys.dm_db_index_physical_stats (

 { database_id | NULL | 0 | DEFAULT }

 , { object_id | NULL | 0 | DEFAULT }

 , { index_id | NULL | 0 | -1 | DEFAULT }

 , { partition_number | NULL | 0 | DEFAULT }

 , { mode | NULL | DEFAULT }

)

The mode parameter for sys.dm_db_index_physical_stats accepts one of five

values: DEFAULT, NULL, LIMITED, SAMPLED, or DETAILED. DEFAULT, NULL, and LIMITED are in

effect the same value and will be described together. Table 3-21 lists the parameters.

Note the dMF sys.dm_db_index_physical_stats can accept the use of
the transact SQL functions DB_ID() and OBJECT_ID(). these functions can be
used for the parameters database_id and object_id, respectively.

Chapter 3 Index Metadata and StatIStICS

154

When executed, there are three areas of information that are reported from the DMF:

header columns, row statistics, and fragmentation statistics. One word of caution: This

DMF gathers the information that it reports as it is executed. If your system is heavily

used, this DMF can interfere with production workloads.

 Header Columns
The first set of columns returned from sys.dm_db_index_physical_stats are the header

columns. These columns provide metadata and descriptive information around the

types of information that are included in that row of the results. The header columns for

this are listed in Table 3-22. The most important information to pay attention to when

looking at the header columns are the alloc_unit_type_desc and index_level. These

two columns provide information on what type of data is being reported on and where in

the index the statistics are originating from.

Table 3-21. Parameters for sys.dm_db_index_physical_stats

Parameter Name Description

LIMIted the fastest mode that scans the smallest number of pages. For an index,

only the parent-level pages of the B-tree are scanned. In a heap, only the

associated pFS and IaM pages are examined.

SaMpLed this mode returns statistics based on a 1 percent sample of all the pages

in the index or heap. If the index or heap has fewer than 10,000 pages,

detaILed mode is used instead of SaMpLed.

detaILed this mode scans all pages, both leaf and nonleaf, of an index and returns

all statistics.

Chapter 3 Index Metadata and StatIStICS

155

 Row Statistics
The second group of columns in sys.dm_db_index_physical_stats are the row

statistics columns. These columns provide statistics on the rows contained in the index,

shown in Table 3-23. From the number of pages in the index to the record count, these

columns provide some general statistics along these lines. There are a few items of

interest in these columns that can be quite useful.

Table 3-22. Header Columns for sys.dm_db_index_physical_stats

Column Name Data Type Description

database_id smallint database Id of the table or view.

object_id int Object Id of the table or view that the index is on.

index_id int Index Id of an index.

partition_number int 1-based partition number within the owning object: a

table, view, or index.

index_type_desc nvarchar(60) description of the index type.

hobt_id bigint heap or B-tree Id of the index or partition.

alloc_unit_type_desc nvarchar(60) description of the allocation unit type.

index_depth tinyint number of index levels.

index_level tinyint Current level of the index.

Table 3-23. Row Statistics Columns for sys.dm_db_index_physical_stats

Column Name Data Type Description

page_count bigint total number of index or data pages.

record_count bigint total number of records.

ghost_record_count bigint number of ghost records ready for removal by the

ghost cleanup task in the allocation unit.

version_ghost_record_count bigint number of ghost records retained by an outstanding

snapshot isolation transaction in an allocation unit.

min_record_size_in_bytes int Minimum record size in bytes.

(continued)

Chapter 3 Index Metadata and StatIStICS

156

The first items of interest are the columns ghost_record_count and version_ghost_

record_count. These columns provide a breakdown of the ghost_record_count found

in sys.dm_db_index_operational_stats.

The next column to check is forwarded_record_count. This column provides an

accounting to the number of forwarded records in a heap. This was discussed some in

sys.dm_db_index_operational_stats with the forwarded_fetch_count column. In

that DMF, the count was because of the number of times that forwarded records were

accessed. In sys.dm_db_index_operational_stats, the count refers to the number of

forwarded records that exist within the table.

The last column to look at is compressed_page_count. The compressed page count

provides a count of all the pages in an index that have been compressed. This helps

provide a measure of value in having pages compressed by PAGE-level compression.

 Fragmentation Statistics
The last group of statistics in the DMF are the fragmentation statistics. For the most part,

fragmentation is what most frequently turns people to looking at sys.dm_db_index_

physical_stats. Fragmentation occurs in indexes when rows are inserted or modified

in an index where the row no longer fits on the page where the index should be placed.

When this happens, the page is split to move half of the page to another page. Since

there usually isn’t a contiguous page available after the page that has been split, the page

gets moved to an available free page. This results in gaps in an index where pages are

expected to be continuous, preventing SQL Server from completing sequential reads

while reading an index on disk.

Column Name Data Type Description

max_record_size_in_bytes int Maximum record size in bytes.

avg_record_size_in_bytes float average record size in bytes.

forwarded_record_count bigint number of records in a heap that have forward

pointers to another data location.

compressed_page_count bigint the number of compressed pages.

Table 3-23. (continued)

Chapter 3 Index Metadata and StatIStICS

157

There are four columns, shown in Table 3-24, that provide the information needed to

analyze the state of fragmentation within an index. Each of these helps provide a view on

the extent of the fragmentation and assists in determining how to resolve or mitigate the

fragmentation.

Table 3-24. Fragmentation Statistics Columns for sys.dm_db_index_physical_stats

Column Name Data Type Description

avg_fragmentation_

in_percent

float Logical fragmentation for indexes or extent fragmentation

for heaps in the IN_ROW_DATA allocation unit.

fragment_count bigint number of fragments in the leaf level of an IN_ROW_DATA

allocation unit.

avg_fragment_size_

in_pages

float average number of pages in one fragment in the leaf level

of an IN_ROW_DATA allocation unit.

avg_page_space_

used_in_percent

float average percentage of available data storage space used

in all pages.

The first fragment column is the avg_fragmentation_in_percent. This column

provides a percent count of the amount of fragmentation in an index. As fragmentation

increases, SQL Server will likely see an increase in the amount of physical I/Os required

to retrieve data from the database. Using this column, you can build a maintenance plan

to mitigate fragmentation by either rebuilding or reorganizing the index. The general

guideline is to reorganize indexes with less than 30 percent fragmentation and to rebuild

indexes with more than 30 percent fragmentation.

The next column, fragment_count, provides a count of all the fragments in an

index. For each fragment created in an index, this column will summarize a count of

those pages.

The third column is avg_fragment_size_in_pages. This column represents the

average number of pages that are in each fragment. The higher this value is and the

closer it is to page_count, the less I/O that SQL Server requires to read the data.

The last column is avg_page_space_used_in_percent. This column provides

information on the amount of space available on pages. An index with little DML activity

should be as close to 100 percent as possible. If there are no updates expected on an

index, the goal should be to have the index as compacted as possible.

Chapter 3 Index Metadata and StatIStICS

158

 Index Physical Stats Summary
The primary purpose in looking at sys.dm_db_index_physical_stats is to help guide

index maintenance. Through this DMF, statistics at every level of an index can be

analyzed. Through this, the appropriate amount of maintenance for each level of an

index can be identified. Whether the need is to defragment the index, modify the fill

factor, or pad the index, the information in sys.dm_db_index_physical_stats can help

guide this activity.

 Columnstore Statistics
As discussed in the last chapter, columnstore indexes use a structure quite different from

the typical B-tree or heap, sometimes considered rowstores. Due to these differences,

there are some differences in the statistics collected for these indexes that relate to the

underlying architecture and how it is accessed. To provide visibility to these different

aspects, there are two DMOs that focus on the physical and operational statistics for

columnstore statistics.

 Columnstore Physical Stats
The first piece to look at is the physical statistics being collected on columnstore indexes.

This information can be accessed through the DMO sys.dm_db_column_store_row_

group_physical_stats. This DMO has a row-per-rowgroup within a columnstore index.

Recalling in the last chapter, there will be a rowgroup per column and up to one per

million records in the table.

 Header Columns

As you’ve started with the previous sections, we’ll start with the header columns for the

DMO. Since there is a row-per-rowgroup, each row will include object_id, index_id,

partition_number, row_group_id, and delta_store_hobt_id. These columns are

defined further in Table 3-25. Like other indexes, the partition_number validates that

columnstore indexes can be partitioned. For nonpartitioned columnstore indexes, the

partition number will be 1.

Chapter 3 Index Metadata and StatIStICS

159

 Statistics Columns

The statistics columns for sys.dm_db_column_store_row_group_physical_stats

provide a lot of metadata for columnstore indexes that can assist in understanding

how the columnstore is constructed. The statistics, defined in Table 3-26, provide

insight necessary for managing your columnstore indexes. For example, you can

leverage total_rows and deleted_rows to determine the portion of a rowgroup that is

still active. In some cases, aggressive modifications on a rowgroup could leave empty

rowgroups on your tables. Also, when the rowgroups are smaller than the million rows,

the state, trim reason, and transition to compressed information can help identify how

rowgroups are being compressed. For instance, if you have a large number of small

rowgroups that are being closed due to BULKLOAD, it may be worthwhile to rebuild

those rowgroups or make modification to the load process to try to aim for rowgroups

with more rows.

Table 3-25. Header Columns in sys.dm_db_column_store_row_group_

physical_stats

Column Name Data Type Description

object_id int Id of the table or view on which the index is defined.

index_id int Id of the index.

partition_number int 1-based partition number within the index or heap.

row_group_id bigint Id of the rowgroup.

delta_store_hobt_id bigint Id of hobt_id of the rowgroup deltastore. If nULL, there

is not an associated deltastore for the rowgroup.

Chapter 3 Index Metadata and StatIStICS

160

Table 3-26. Stats Columns in sys.dm_db_column_store_row_group_physical_stats

Column Name Data Type Description

state tinyint Id number associated with state_description.

state_desc nvarchar(60) description of the rowgroup state, which can

be InVISIBLe, Open, CLOSed, COMpreSSed, or

tOMBStOne.

total_rows bigint Full count of rows in the rowgroup including any row

that has been marked deleted.

deleted_rows bigint number of rows in the rowgroup marked for deletion.

size_in_bytes bigint Size of the rowgroup in bytes.

trim_reason tinyint Id number associated with the trim_reason_desc.

trim_reason_desc nvarchar(60) description of why a COMpreSSed rowgroup has

less than the million-row maximum of rows, which

can be nO_trIM, BULKLOad, rOerG, dICtIOnarY

SIZe, MeMOrY LIMItatIOn, reSIdUaL rOW GrOUp,

StatS MISMatCh, or SpILLOVer.

transition_to_

compressed_state

tinyint Id number associated with the transition_to_

compressed_state_desc.

transition_to_

compressed_state_

desc

nvarchar(60) description of how the rowgroup transitions from

a deltastore to a rowgroup, which includes nOt

appLICaBLe, Index BUILd, tUpLe MOVer, reOrG

nOrMaL, reOrG FOrCed, BULKLOad, or MerGe.

has_vertipaq_

optimization

bit Boolean identifying whether Vertipaq optimization

was used during compression. When not used,

compression will not be as efficient as when it is

used.

generation bigint rowgroup generation associated with this rowgroup.

created_time datetime2 Clock time for when this rowgroup was created.

closed_time datetime2 Clock time for when this rowgroup was closed.

Chapter 3 Index Metadata and StatIStICS

161

 Columnstore Operational Stats
The other piece for columnstore indexes is to look at their operational statistics through

the DMO sys.dm_db_column_store_row_group_operational_stats. This DMO also

returns one row per rowgroup within a columnstore index. Recalling in the last chapter,

there will be a rowgroup per column and up to one per million records in the table.

 Header Columns

The header columns for sys.dm_db_column_store_row_group_operational_stats are

similar to those of the columnstore physical stats DMO. The exception is that there isn’t

a deltastore reference, meaning this DMO returns the columns object_id, index_id,

partition_number, and row_group_id. These columns are defined in Table 3-27.

Table 3-27. Header Columns in sys.dm_db_column_store_row_group_

operational_stats

Column Name Data Type Description

object_id int Id of the table or view on which the index is defined.

index_id int Id of the index.

partition_number int 1-based partition number within the index or heap.

row_group_id bigint Id of the rowgroup.

 Statistics Columns

The interesting information for sys.dm_db_column_store_row_group_operational_stats

comes from the stats columns. In these columns, defined in Table 3-28, there are details

about the number of scans for the rowgroup, the number of times the delete rows were

scanned, and the number of times the partition for the columnstore was scanned. This

can help you identify how useful the rowgroup and its min and max values are for the

queries that access the table and determine when the number of deleted rows might be

becoming a hindrance to the usefulness of the rowgroup when they are being excessively

accessed. Additionally, you can see if there are locks and blocking transactions

negatively impacting the accessibility of the rowgroup, helping you know when there are

potential IO or transactional bottlenecks that need to be addressed.

Chapter 3 Index Metadata and StatIStICS

162

Table 3-28. Stats Columns in sys.dm_db_column_store_row_group_

operational_stats

Column Name Data Type Description

scan_count int number of scans through the rowgroup since the last SQL restart.

delete_buffer_

scan_count

int number of times the delete buffer was used to determine deleted

rows in this rowgroup. this includes accessing the in-memory

hashtable and the underlying B-tree.

index_scan_count int number of times the columnstore index partition was scanned.

this is the same for all rowgroups in the partition.

rowgroup_lock_

count

bigint Cumulative count of lock requests for this rowgroup since the last

SQL restart.

rowgroup_lock_

wait_count

bigint Cumulative number of times the database engine waited on this

rowgroup lock since the last SQL restart.

rowgroup_lock_

wait_in_ms

bigint Cumulative number of milliseconds the database engine waited

on this rowgroup lock since the last SQL restart.

 Summary
In this chapter, you looked at the statistical information available in SQL Server on

indexes. From statistics on cardinality to the physical layout of an index, you learned

what information is available and how to retrieve it. For the most part, this information is

the tip of the iceberg. In upcoming chapters, you’ll leverage this information by looking

at the statistics that have been captured and leveraging them to improve your ability to

index your database.

Chapter 3 Index Metadata and StatIStICS

163
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_4

CHAPTER 4

XML Indexes
The past couple chapters focused on indexing what is commonly referred to as

structured data, where there is a common schema and organization around the data

and its storage. In this chapter and the next few chapters, the indexing focus shifts to

unstructured and semistructured data. With both structured and unstructured data, the

task of indexing is to gain optimal efficiency for retrieving and manipulating data, but the

data types that represent these types of data have differences in how they are stored in

the database. These differences dictate how and why indexing is implemented as well as

how the indexes are used by the query optimizer.

SQL Server has a specialized data type for storing the most common type of

unstructured and semistructured data, XML. This chapter explores the types of indexes

offered by SQL Server for dealing with XML data. The chapter will also show the impact

of those indexes on the types of queries that can be written against XML data using

XQuery and the impact on the choices made by the optimizer.

 XML Data
Extensible Markup Language (XML) was developed through the 1990s and introduced

as a standard by the World Wide Web Consortium in February 1998. XML data has

been stored in databases for years but until SQL Server 2005 did not have a dedicated

data type or access methods. When introduced, the XML data type extended the

capabilities of SQL Server to appropriately manage this different data structure.

With the acceptance of XML, the use and size of the total XML content within SQL

Server databases grew. The growth was spurred by the advantages that XML offered

application developers.

164

 Benefits
The introduction of the XML data type allowed for the full capability of XML storage

inside an SQL Server database. This included the ability to retrieve XML contents

based on queries written against the XML itself. The strongest support that XML offers

developers is that it is both text-based and, nominally, self-documenting. Being text-

based means that XML is easily passed from one application to another, regardless of

underlying operating system or programming language. The self-documenting nature of

XML means that you don’t need to actually have a structure defined in the same way as

columns and tables are defined within a database. Instead, the elements and properties

of the XML will tell you what they are. XML is referred to as semistructured because there

is generally a template defining an expected structure in order to help validate that any

given set of XML is considered to be well-formed.

Indexing XML can be a huge benefit if you are doing a lot XML processing on your

system. The largest benefit for XML indexes will be in situations where you have large

amounts of XML stored but you’re retrieving only small subsets of that XML. XML

indexes benefit this situation greatly. If you have a lot of queries on your XML, you may

also see improvements here when XML indexes are implemented.

 Cautions
Although the XML data type sounds like a perfect fit for every instance of XML, some

considerations should be contemplated when designing a column in SQL Server that

will be storing XML. One of the most critical is that the XML content should be well-

formed. This ensures that the XML data type and features provided to utilize the data

most efficiently are used to their full advantage. XML columns are stored as binary

large objects, more commonly known as BLOBs. This storage means that runtime

querying of the content is resource-intensive and slow in most cases. With any task that

involves data retrieval, efficiency of that retrieval is of concern. In SQL Server, indexing

is paramount to how efficient or nonefficient this can be. A complete lack of indexing or

too many indexes will affect any data manipulation task. The XML data type also falls

into this requirement. XML indexing is unique compared to the other indexing methods

in SQL Server.

Chapter 4 XML IndeXes

165

 XML Indexes
XML indexes fall into two main categories: Primary/Secondary and Selective XML

indexes. The main difference between these index types is how much of the XML data is

included within the index. For Primary/Secondary indexes, all paths, nodes, and values

are included in the index. This works well when it is unknown what portions of the XML

will be most accessed. Alternatively, if only a limited portion of the XML will be accessed,

then a Selective XML index can provide better performance since the volume of data

indexed is reduced. The next two sections will explore and fully explain these categories

of XML indexes.

 Primary/Secondary XML Indexes
As the name implies, there are two types of indexes that fall under Primary/Secondary

XML indexes, which are Primary and Secondary indexes. These two index types provide

an indexing relationship within the XML documents similar to the relationship between

clustered and nonclustered indexes. When implementing XML indexes, some basic rules

apply to each:

• Only one Primary XML index can exist on a column, though multiple

Primary XML indexes can exist on a table.

• Primary XML indexes cannot exist without a clustered index on the

primary key of the table that the XML column is in. This clustered

index is required for partitioning the table, and the XML index can

use the same partitioning scheme and functioning.

• Primary XML indexes include all paths, tags, and values of the XML

content.

• A Secondary XML index cannot exist without a Primary XML index.

• A Secondary XML index extends the Primary index including paths,

values, and properties.

To demonstrate the Primary/Secondary XML indexes, we’ll use the

AdventureWorks2017 database and the table [Sales].[Store]. This table has an existing

Primary XML index on [Demographics] that will need to be dropped using the code in

Listing 4-1.

Chapter 4 XML IndeXes

166

Listing 4-1. Drop the Existing Primary XML Index on [Sales].[Store]

DROP INDEX IF EXISTS [PXML_Store_Demographics] ON [Sales].[Store]

Using this table, let’s first get a benchmark of the cost to execute an example query.

In the query, in Listing 4-2, we’ll query [Sales].[Store] for the stores with annual sales

equal to $1,500,000. For a query returning less than 200 records, the cost is 12.751, shown

in Figure 4-1, which is quite expensive. This is due to the XML Reader with XPath filter,

which had to shred the entire XML document for all rows to find the requested records,

which is an extremely slow and resource-intensive process.

Listing 4-2. Query on [Sales].[Store] for AnnualSales

WITH XMLNAMESPACES

(DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/

StoreSurvey')

SELECT BusinessEntityID, Name, Demographics

FROM [Sales].[Store]

WHERE Demographics.exist('/StoreSurvey/AnnualSales[.=1500000]') = 1;

Note this chapter will use comparisons of estimated subtree cost vs. logical
reads to demonstrate the value of XML indexes. While most analysis in this book
focuses on reducing IO through the use of indexes, parsing XML is generally a
computationally expensive operation which is why we will focus on query cost. You
could alternatively look at statistics time to compare the CpU time changes.

Figure 4-1. XML query cost with no XML indexes

Chapter 4 XML IndeXes

167

This query approach is costly, yet efficient with a small amount of data in the table.

However, in real life, tables can become quite large, surpassing the point in which

scanning through multiple XML documents is efficient. For instance, imagine if a point-

of- sale system stored receipt information in XML documents for each sale. With this kind

of data volume, performance would begin to suffer quickly.

 Primary XML Index

Now that we know the cost of our example query without any XML indexes, let’s look

at what happens when we add a Primary XML index. Using the CREATE INDEX code

in Listing 4-3, create the Primary XML index. More information on this syntax is in

Chapter 1. This will create a Primary XML index on the Demographic column.

Listing 4-3. Primary XML Index on [Sales].[Store]

CREATE PRIMARY XML INDEX [PXML_Store_Demographics] ON [Sales].[Store]

([Demographics])

As previously stated, when the Primary XML index is created, all of the paths,

tags, and nodes are indexed. For each of these items, a record is created in the XML

index that contains that item along with information on how that item appears in the

XML document and which row in the table is associated with the item. It’s important

to understand this because XML indexes will often dramatically increase the storage

footprint of the underlying table. To demonstrate, run the code in Listing 4-4 to see the

number of records and pages for each index. As the results in Figure 4-2 demonstrate,

the number of records in the Primary XML index greatly exceeds the number of records

in the table by a factor of 13.

Listing 4-4. Primary XML Index on [Sales].[Store]

SELECT [i].[name]

 ,[i].[index_id]

 ,[IPS].[index_level]

 ,[IPS].[index_type_desc]

 ,[IPS].[fragment_count]

 ,[IPS].[avg_page_space_used_in_percent]

 ,[IPS].[record_count]

 ,[IPS].[page_count]

Chapter 4 XML IndeXes

168

FROM [sys].[dm_db_index_physical_stats](DB_ID(N'AdventureWorks2017'),

OBJECT_ID(N'Sales.Store'), NULL, NULL, 'DETAILED') AS [IPS]

 INNER JOIN [sys].[indexes] AS [i]

 ON [i].[object_id] = [IPS].[object_id]

 AND [i].[index_id] = [IPS].[index_id]

WHERE [IPS].[index_type_desc] <> 'NONCLUSTERED INDEX'

ORDER BY [i].[index_id]

 ,[IPS].[index_level];

With the Primary XML index in place, let’s execute the code from Listing 4-2.

Reviewing the execution plan, you can see that the execution plan takes on an

extremely different pattern, as shown in Figure 4-3. Instead of an estimated subtree

cost of over 12, this has been reduced to 0.1535; and the XML Reader with XPath

filter is replaced by a clustered index scan of the Primary XML index. Under the

covers, the query is still scanning the table, but it is doing so with much less effort.

With larger tables, this indexing change will dramatically decrease the total duration

of the query itself.

Figure 4-2. Physical stats after creating Primary XML index

Figure 4-3. XML query cost with Primary XML index

Chapter 4 XML IndeXes

169

You can now see that the optimizer is able to make choices that are more evenly

balanced. The clustered index scan of the PointOfSale table is actually as high an

estimated cost as the clustered index seek against the XML index you created. This

shift in where the work is occurring within the query engine will result in improved

performance.

Caution If you create and then drop a primary XML index, any secondary XML
indexes will also be dropped because they are dependent on the primary. no
warning will be shown for this action.

 Secondary XML Index

Secondary XML indexes provide the ability to further improve querying XML data. With

Secondary XML indexes, you’ll choose between the PATH, VALUE, and PROPERTY types

when building the index. What these options do is determine which elements from the

Primary XML index will be included in the Secondary XML index. These options provide

performance improvements based on the types of queries that are often run against the

XML documents. For instance, if more queries are accessing property elements, then the

PROPERTY type for the Secondary XML index would be appropriate.

Going back to our example query in Listing 4-2, the existing function call we are

using is using both a path and value. Since we are first searching for a path to check a

value and other paths are not being accessed, we’ll create a Secondary XML index using

PATH. The syntax for the CREATE INDEX statement is provided in Listing 4-5. Note that

the CREATE INDEX syntax now includes a USING statement that references the Primary

XML index and has the FOR PATH clause.

Listing 4-5. Creating a Secondary Index

CREATE XML INDEX [SXML_Store_Demographics] ON [Sales].[Store]

(Demographics)

USING XML INDEX [PXML_Store_Demographics]

FOR PATH;

Once you have created the Secondary XML index, we’ll run our example query from

Listing 4-2 again to see how the execution plan is changed. As shown in Figure 4- 4, the

execution plan is again dramatically improved. The estimated subtree cost has been

Chapter 4 XML IndeXes

170

reduced by about half from 0.1535 to 0.0888, and the clustered index scan on the Primary

XML index is replaced with an index seek on the Secondary XML index. Now the highest-

cost item on the query is the clustered index scan on the table’s clustered index. In

essence, through the use of the Secondary XML index, we’ve nearly removed the expense

associated with accessing the XML data.

With the Secondary XML index, you’ll find that it will in some cases be nearly as large

as the Primary XML index. This is demonstrated by running the code in Listing 4-4, which

shows in Figure 4-5 that the same number of records is in the Primary and Secondary XML

indexes. In this case, this is to be expected since all of the data in the XML documents is

values at XML paths. The advantage of the Secondary XML index in this case is an ordering

based on those paths that allow the XML indexes to be more selective, as previously

discussed.

Although sys.dm_db_index_physical_stats is beneficial for finding information

needed to maintain all indexes, including XML indexes, there is a system view

specifically for XML indexing named sys.xml_indexes. This system view shows all the

options that have been applied to an XML index. Information returned by the view can

Figure 4-4. XML query cost with Secondary XML index

Figure 4-5. Physical stats after creating Secondary XML index

Chapter 4 XML IndeXes

171

be useful in further maintaining an index, by knowing the type and other options set.

This view is inherited from sys.indexes and returns the same columns and information

as sys.indexes. Shown in Figure 4-6, the following additional columns also exist:

• using_xml_index_id: The parent index to a Secondary index. As

discussed, Secondary indexes require a Primary index to exist before

creation. This column will be NULL for Primary XML indexes and used

only for Secondary indexes.

• secondary_type: A flag specifying the type upon which a Secondary

index is based. Each Secondary index is based on a specific type

(V = VALUE, P = PATH, R = PROPERTY). For Primary XML indexes, this

column is NULL.

• secondary_type_desc: A description of the Secondary index type.

The values for the description map to those described in the

secondary_type column.

We need to consider the storage impact of Primary and Secondary XML indexes

because the more data that is in the table and the more often we INSERT, UPDATE, and

DELETE that data, the more of an impact these indexes will have on those operations.

You’ll want to weigh the performance improvement of a Secondary XML index against

the time it will take to maintain it to decide whether to create the index. Strive to strike

a balance between hardware resources, storage, index usefulness, number of indexes

created, and number of times an index may actually be needed when building Primary

and Secondary XML indexes.

 Selective XML Indexes
Introduced in SQL Server 2012, Selective XML indexes address a significant problem

with Primary/Secondary XML indexes. XML documents can be extremely large.

Applying an index to the entire document has major performance implications both for

creating the index and for maintaining it over time. Also, these excessively large indexes

Figure 4-6. Results from sys.xml_indexes query

Chapter 4 XML IndeXes

172

can add to the storage woes that are a frequent problem within organizations. Also, when

an index becomes excessively large, it may not function as well as it did when it was

smaller. Because of all this, the Selective XML index was introduced.

Selective XML indexes allow you to define a subset of the XML document that you

want to index. This makes for smaller, more agile indexes that are targeted to specific

paths within the XML. When the index gets created, the document is parsed, and the

XML is shredded. The shredded values are then stored in standard relational storage

within your database. In addition to the Selective XML index, you can add Secondary

indexes based on the nodes within the path that defines the Selective XML index.

Selective XML indexes can achieve large performance benefits over a standard XML

index. However, if you have ad hoc queries that may go for all sorts of different elements

within the XML document, the standard XML index may perform much better. Also,

if you have a large number of node paths, you may see better performance from the

standard XML index.

To create a Selective XML index, you must meet the following criteria:

• The table must have a clustered primary key.

• The key size is limited to 128 bytes.

• The key columns are limited to 15.

The Selective XML will not be used for query() or modify() method within your

XQuery statements. It will support exist(), value(), and nodes(). If you use query()

and modify() together, it will assist in a simple node lookup, but that’s all.

To see the Selective XML index in action, you’ll need to create one. The script in

Listing 4-6 creates a path within the Selective XML index. In this case, since we are only

accessing annual sales in the XML document, we’ll limit our Selective XML index to that

XML path.

Listing 4-6. Script for Creating a Selective XML Index

CREATE SELECTIVE XML INDEX [SEL_XML_Store_Demographics_AnnualSales]

ON [Sales].[Store] (Demographics)

WITH XMLNAMESPACES

(DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/

StoreSurvey')

FOR (AnnualSales = '/StoreSurvey/AnnualSales');

Chapter 4 XML IndeXes

173

After creating the Selective XML index, we’ll return to our example query from

Listing 4-2 again to see the impact on the execution plan. As shown in Figure 4-7, the

estimated subtree cost is comparable to having the Secondary XML index in place, but

it’s slightly more expensive with the Selective XML index. To understand why SQL Server

made this choice, run the code in Listing 4-4 to see the storage footprint. As Figure 4-8

shows, the Selective XML index is substantially smaller than the Secondary XML index.

Instead of potentially accessing 41 pages and 9,113 records, the Selective XML index is

limited to 701 records across 5 pages, which justifies the extra cost for the clustered index

scan on the Selective XML index.

Figure 4-7. XML query cost with Selective XML index

Figure 4-8. Physical stats after creating Selective XML index

While this provides a much improved opportunity for XML indexing, there is an

important restriction that should be considered. If your queries change to the point

where the Selective XML index doesn’t cover the query, then performance will degrade.

While this is an obvious statement, we don’t often have to consider this with indexes

since traditionally indexes cover all data within a column.

Chapter 4 XML IndeXes

174

To demonstrate this scenario, let’s add another XML element to the query to filter

on BusinessType. Shown in Listing 4-7, we’ll add the exist() to the WHERE clause and

also drop the previously created Primary/Secondary XML indexes to prevent them from

interfering with the output. Generally, if you have Selective XML indexes, you would not

also have Primary/Secondary XML indexes.

Listing 4-7. Query on [Sales].[Store] for AnnualSales and BusinessType

DROP INDEX IF EXISTS [SXML_Store_Demographics] ON [Sales].[Store];

DROP INDEX IF EXISTS [PXML_Store_Demographics] ON [Sales].[Store];

WITH XMLNAMESPACES

(DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/

StoreSurvey')

SELECT BusinessEntityID, Demographics

FROM [Sales].[Store]

WHERE Demographics.exist('/StoreSurvey/AnnualSales[.=1500000]') = 1

AND Demographics.exist('/StoreSurvey/BusinessType[.="OS"]') = 1

After running the code in Listing 4-7, we see that the performance of the query

has degraded substantially. The reason for the degradation is the inclusion of the

XML Reader with XPath filter, which increases the estimated subtree cost, as shown in

Figure 4-9. This isn’t as terrible as the first iteration we had with this query, because the

Selective XML index is still assisting with reducing the number of records where the

entire XML document needs to be scanned with the function. But it is a degradation, and

with large tables, this could cause a significant issue.

Figure 4-9. XML query cost with Selective XML index and XML element not
included

Chapter 4 XML IndeXes

175

Fortunately, Selective XML indexes provide flexibility to get around and tune for

issues such as this. Specifically, the FOR clause, shown in Listing 4-8, can be extended

to include multiple XML nodes and paths. In this case, we are adding BusinessType to

the index. As expected, and shown in Figure 4-10, the change in this index improves the

performance of the query by dropping the estimated subtree cost to 0.108 by adding a

second clustered index scan operation on the Selective XML index.

Listing 4-8. Script for Creating a Selective XML Index

DROP INDEX IF EXISTS [SEL_XML_Store_Demographics_AnnualSales] ON [Sales].

[Store];

CREATE SELECTIVE XML INDEX [SEL_XML_Store_Demographics_AnnualSales

BusinessType]

ON [Sales].[Store] (Demographics)

WITH XMLNAMESPACES

(DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/

StoreSurvey')

FOR (AnnualSales = '/StoreSurvey/AnnualSales',

BusinessType = '/StoreSurvey/BusinessType');

And as we’ve looked at previously, we’ll again review the storage impact of extending

the index by running Listing 4-4. Reviewing Figure 4-11, we see that even by increasing

the number of elements in the index, we haven’t significantly changed the storage

footprint of the index. It’s still 701 records across 6, instead of 5, pages.

Figure 4-10. XML query cost with Selective XML index on two elements

Chapter 4 XML IndeXes

176

While the Selective XML index is a more complicated aspect of XML indexing, you

can see that getting started with it is not that difficult. The Selective XML index also

supports more sophisticated XQuery than the examples in this chapter so that you can

be extremely precise in exactly which segments of your XML document will be indexed.

 Summary
This chapter covered the need to be able to search and index the unstructured and

semistructured data that can now be stored within SQL Server. XML indexes provide

developers and database administrators with the options to improve the performance

of searches through XML documents. This benefits queries both by filtering data in

XML documents and by retrieving the data for display. Selective XML indexes offer the

opportunity to get a more granular and detailed approach to your XML indexing. Just

remember that XML indexes require quite considerable additional disk space, so you

should plan your systems accordingly.

Figure 4-11. Physical stats after creating Selective XML index on two elements

Chapter 4 XML IndeXes

177
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_5

CHAPTER 5

Spatial Indexing
The next type of indexing we need to look at is spatial indexing, which relates to

the spatial data types. Introduced in SQL Server 2008, spatial data types advance

the storage capabilities of SQL Server allowing data that defines shape and location

information. Before these enhancements, spatial data was often stored as string or

numeric values without meaning within the database and required cumbersome

conversions and calculations to resolve the information into something

meaningful.

As part of the spatial data support, SQL Server introduced the GEOMETRY and

GEOGRAPHY data types. These types support planar and geodetic data, respectively.

Planar data is composed of lines, points, and polygons on a 2D plane, while geodetic

data is composed of the same but on a geodetic ellipsoid, a fancy term describing a map

of Earth. In simple terms, you can look at these two data types like so: GEOMETRY is a

flat representation of the shape described, and GEOGRAPHY encompasses a rounded

global representation.

Spatial data indexes are unique in how they are created and interpreted. Each index

is composed of a set of grids. These grids consist of a set of cells, laid out kind of like a

square spreadsheet. The grids can be up to 16 × 16 and as small as 4 × 4. The cells within

the grid contain the values that define the objects that define the spatial data being

stored. There is a distinct difference between the GEOGRAPHY and GEOMETRY data types in

this type of indexing. The GEOMETRY data type requires a bounding box, which is a limit

on the size of the area defined by the index. The GEOGRAPHY data type does not have a

bounding box since it’s basically bound by the size of the planet.

This chapter will explore spatial indexes, their behaviors, and their use within

queries to help enhance the performance of your spatial data.

178

 How Spatial Data Is Indexed
The grids that make up a spatial index are actually nested within each other. At the top

layer, known as level 1, you can have, for example, a 4 × 4 grid. Each cell within that level

1 grid then contains another grid, consisting of the number of cells defined for that level,

in this example 4 × 4. This second grid defines level 2. The cells in level 2 each have a grid

that defines level 3, and the cells there contain another grid, level 4. Figure 5-1 shows

how a GEOMETRY index consists of these four levels. The index is then made up of these

four grids, each one being composed of a series of cells. This layering and grid hierarchy,

called decomposing, is created when the index is created.

As many as 4 billion cells are possible, as shown in Figure 5-1. This is important

when creating the index and determining what density to use at creation. Each layer, or

level, can have a specified density. There are three levels of density (low = 4 × 4, medium

= 8 × 8, and high = 16 × 16). If the density is omitted at the time an index is created, the

default is medium. Manipulating the density is most commonly useful for tuning the

actual space of the index. All layers may not be required at a high density. Save space by

not using more density than you need.

All this is necessary because the actual storage of the information from within these

grids is the same B-tree that is used to store standard indexes. But the definitions within

the storage, and obviously the retrieval of those definitions, are radically different within

spatial indexes than they are within standard indexes. To get the information into the

B-tree, additional processing on top of the grid is necessary.

Figure 5-1. Grid storage representation of the GEOMETRY index storage and cells

Chapter 5 Spatial indexing

179

The next step in the indexing process that SQL Server performs is tessellation.

Tessellation is the process that places or fits the objects into the grid hierarchy starting

at layer 1. This process may require only the first layer of the grid but can require all four

depending on the objects involved. Tessellation is essentially taking all the data from

the spatial column and placing it onto the grids in cells while retaining each cell that is

touched. The index then knows exactly how to go back to find the cells in each grid when

a request is evaluated, using the B-tree.

So far, I’ve gone over how the cells in a grid are filled and how the overall tessellation

process is achieved. Having the cells in a grid storage and tessellation process, however,

doesn’t sit well in theory because there are openings for the cells to be misused or

not used efficiently based on the extreme number of touched cells to retain. With the

GEOMETRY data type and indexes created on it, the bounding box is required because SQL

Server needs a finite space. Creating such a box is done by using the coordinates xmin,

xmax and ymin, ymax. The result can be visualized as a square having the x-coordinate

and y-coordinate of the lower-left corner and the x-coordinate and y-coordinate of the

upper-right corner. What is most critical when determining the bounding box with an

index on a GEOMETRY data type is to ensure that all the objects are within the bounding

box, without making the bounding box excessively large, with lots and lots of empty

cells, a balancing act. An index will be effective only for the objects, or shapes, within

the bounding box. Not containing objects within a bounding box could severely impact

performance and cause poor performance with spatial queries.

Furthermore, to retain the ability to use an index efficiently in the tessellation

process, rules are applied. These rules are as follows:

Covering rule: The covering rule is the most basic rule applied in

tessellation. Not to be confused with the common term covering

index, this rule states that any cell that is completely covered is not

recorded individually for that object. Covered cells are counted

for the object. Not storing covered cells saves processing and data

storage time and space.

Cells-per-object rule: The cells-per-object rule is a more in-depth

rule that applies a limit to the number of cells that can be counted

for a specific object. In Figure 5-2, the circle shown covers 2 cells

in level 1 and 14 in level 2. The circle is tessellated to the second

layer because of a cells-per-object default of 16. If the circle did

cover more than 16 cells at level 2, tessellation would not continue

Chapter 5 Spatial indexing

180

through to level 2. Since the object would cover a lot more than 16

cells at level 3, tessellation stops here. Tuning the cells per object

can enhance the accuracy of an index. Tuning this value based

on the data stored can be very effective. Given the importance

of the cells-per-object rule, the setting is exposed in a dynamic

management view, sys.spatial_index_tessellations. You will

review this setting later in this chapter.

Deepest cell rule: The last rule of the tessellation process is the

deepest cell rule. As discussed, each layer of grids and the cells

within them are referenced in each deeper layer. So in Figure 5- 2,

cells defined in level 2 are the only ones needed to completely refer

to any other levels, in this case level 1, effectively. This rule cannot

be broken and is built into the optimizer’s processing of retrieving

the data from the index.

With the GEOGRAPHY type, there is the added challenge of projecting the form in a

flattened representation through the tessellation process. This process first divides the

GEOGRAPHY grid into two hemispheres. Each hemisphere is projected onto the facets of a

quadrilateral pyramid and flattened, and then the two are joined into a non-Euclidean

plane. Once this process is complete, the plane is decomposed into the aforementioned

grid hierarchy.

Figure 5-2. Visual representation of an object and how many cells the object
covers within the grid layers

Chapter 5 Spatial indexing

181

 Creating Spatial Indexes
The Create Spatial Index statement has most of the same options of a normal

clustered or nonclustered index. However, there are specific options that are also

required for this index type, as listed in Table 5-1.

Take the CREATE TABLE statement in Listing 5-1 as an example.

Listing 5-1. CREATE TABLE with a GEOMETRY Data Type

USE AdventureWorks2017

GO

Table 5-1. Spatial Index Options

Option Name Description

USING the USING clause specifies the spatial data type. this will be

GEOMETRY_GRID or GEOGRAPHY_GRID and cannot be NULL.

WITH GEOMETRY_GRID,

GEOGRAPHY_GRID

the WITH options include the setting of the tessellation schema for

either the GEOMETRY_GRID or the GEOGRAPHY_GRID based on the

column data type.

BOUNDING_BOX the BOUNDING_BOX is used in the GEOMETRY data type to define

the bounding box of the cells. this option does not have defaults

and must be specified when creating indexes on the GEOMETRY

data type. the CREATE SPATIAL INDEX IDX_CITY_GEOM

(in listing 5-1) shows the syntax for this option. Setting the

BOUNDING_BOX is done by setting the xmin and ymin and xmax

and ymax coordinates, like so: BOUNDING_BOX = (XMIN =

xmin, YMIN = ymin, XMAX = xmax, YMAX = ymax).

GRIDS the GRIDS option is used for altering the density of each grid layer.

all layer defaults are medium density but can be altered to low or

high to further tune spatial indexes and density settings.

Chapter 5 Spatial indexing

182

CREATE TABLE CITY_MAPS (

 ID BIGINT PRIMARY KEY

 IDENTITY(1, 1),

 CITYNAME NVARCHAR(150), CITY_GEOM GEOMETRY

);

GO

This table will consist of the primary key, the city name, and then a GEOMETRY column

that holds map data for the city itself. The city’s density may affect tuning the cells-per-

object rule in tessellation as well as the density of each layer in the grid hierarchy.

To index the CITY_GEOM column, the CREATE statement in Listing 5-2 would be used

with a grid layer density of LOW for the first two layers and then MEDIUM and HIGH for the

third and fourth layers. This density change allows for tuning the object in the index and

the covering cells as the layers go deeper in the grid. The cells-per-object setting is 24

maximum cells an object can cover. The bounding box coordinates are also set.

Listing 5-2. Definition of a Spatial Index on a GEOMETRY Column

USE AdventureWorks2017

GO

CREATE SPATIAL INDEX IDX_CITY_GEOM

ON CITY_MAPS (CITY_GEOM)

USING GEOMETRY_GRID

WITH (

BOUNDING_BOX = (xmin=-50, ymin=-50, xmax=500, ymax=500),

GRIDS = (LOW, LOW, MEDIUM, HIGH),

CELLS_PER_OBJECT = 24,

PAD_INDEX = ON);

To utilize and test the index created, you will need to review the estimated and actual

execution plans to determine whether the index has been used. In the case of spatial

data, reviewing the actual results that a query will yield is also beneficial. SQL Server

Management Studio has a built-in spatial data viewer that can be used for reviewing

spatial data.

Chapter 5 Spatial indexing

183

Listing 5-3 creates a table that can benefit from spatial indexing. The table is created

to store ZIP codes and other data from the US Census Bureau. This table will be created

in the AdventureWorks2014 database.

Listing 5-3. Creating a Table to Hold GEOMETRY-Related Data

USE AdventureWorks2017

GO

CREATE TABLE dbo.tl_2017_us_county (

 STATEFP CHAR(2) NULL,

 COUNTYFP CHAR(3) NULL,

 COUNTYNS CHAR(8) NULL,

 GEOID CHAR(5) NULL,

 NAME CHAR(100) NULL,

 NAMELSAD CHAR(100) NULL,

 LSAD CHAR(2) NULL,

 CLASSFP CHAR(2) NULL,

 MTFCC CHAR(5) NULL,

 CSAFP CHAR(3) NULL,

 CBSAFP CHAR(5) NULL,

 METDIVFP CHAR(5) NULL,

 FUNCSTAT CHAR(1) NULL,

 ALAND FLOAT NULL,

 AWATER FLOAT NULL,

 INTPTLAT CHAR(11) NULL,

 INTPTLON CHAR(12) NULL,

 GEOM GEOMETRY NULL

);

The GEOM column will store the GEOMETRY data. This column will be used to query the

data from SQL Server Management Studio to show the imaging that can be done from

other applications.

Chapter 5 Spatial indexing

184

Note For the examples in this chapter, a shape file and the tool Ogr2Ogr are
required. the shape file will come from tiger/line Shapefile, 2017, nation, US,
Current County and equivalent national Shapefile available at www2.census.
gov/geo/tiger/TIGER2017/COUNTY/tl_2017_us_county.zip. and
Ogr2Ogr is available in OSgeo4W from http://download.osgeo.org/
osgeo4w/osgeo4w-setup-x86_64.exe. When installing the application, only
install the gdal package. after installation, run the powerShell command [envi
ronment]::SetenvironmentVariable(“gdal_data”, “C:\OSgeo4W64\share\gdal”,
“Machine”) to set an environment variable. Finally, from the directory where the
geography files were extracted to, run the command C:\OSgeo4W64\bin\ogr2ogr
-f “MSSQlSpatial” MSSQl:“server=localhost;database=adventureWorks2017;
trusted_connection=yes;” -nln “tl_2017_us_county” -a_srs “eSpg:4269” -lco
“geOM_tYpe=geography” -lco “geOM_naMe=geog4269” “tl_2017_us_county.
shp” -s_srs epSg:4269 -t_srs epSg:26713.

Reviewing the actual data from a query of a GEOMETRY data type column is not useful

in the normal grid and tabular resultset from within SSMS. To take advantage of the

spatial data features, using the Spatial Results tab in SSMS is much more effective. Given

the table from Listing 5-3, a simple SELECT on the column GEOM can be executed, and

the results of the SELECT statement will automatically generate the Spatial Results tab.

For example, the query in Listing 5-4 will result in an image generated of the state of

Washington, coding each county area in a different color.

Listing 5-4. Initial Query for Pulling Back Spatial Data

USE AdventureWorks2017

GO

SELECT *
FROM dbo.tl_2017_us_county AS tuc

WHERE tuc.STATEFP = '41';

Click the Spatial Results tab in the result window of SSMS to reveal the image

generated by the query. You should see something like that in Figure 5-3.

Chapter 5 Spatial indexing

https://www2.census.gov/geo/tiger/TIGER2017/COUNTY/tl_2017_us_county.zip
https://www2.census.gov/geo/tiger/TIGER2017/COUNTY/tl_2017_us_county.zip
http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86_64.exe
http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86_64.exe

185

The query in Listing 5-4 used a standard column, STATEFP, to filter the information

so that you are looking only at counties within a particular state. Before using this data,

though, it’s a good idea to ensure that you are working with only good shapes within

the GEOM column. It is possible to have improper data stored, so cleaning your data may

be required. To do this, you can use the MakeValid() method to modify any GEOMETRY

instances, making them valid. According to the documentation from Microsoft, using

the function can cause shapes to “shift slightly,” but the extent to which it may affect the

shapes under your control is unclear. Executing Listing 5-5 will result in an update to any

invalid GEOMETRY instances in the GEOM column.

Figure 5-3. Output from spatial query against county data

Chapter 5 Spatial indexing

186

Listing 5-5. Using MakeValid() to Correct Any Invalid GEOMETRY Instances

USE AdventureWorks2017

GO

UPDATE dbo.tl_2017_us_county

SET GEOM = GEOM.MakeValid();

The MakeValid() method should be used sparingly, and all invalid GEOMETRY

instances that are found should be reviewed in a production setting. You should plan on

reviewing your shapes after using the MakeValid() function because it could possibly

modify those shapes.

You can also use the spatial columns to filter the data being returned based on the

behavior of locations and distances. Listing 5-6 shows an example of invoking one of

the special methods that have been defined to work with spatial information. The query

returns the ten counties closest to the county of Tulsa in Oklahoma (see Figure 5-4).

Listing 5-6. Query for the Top Ten Closest ZIP Codes to a Given Point

USE AdventureWorks2017

GO

DECLARE @polygon GEOMETRY;

SELECT @polygon = tuc.GEOM

FROM dbo.tl_2017_us_county AS tuc

WHERE tuc.NAME = 'Tulsa';

SELECT TOP 10

 tuc.GEOM,

 tuc.GEOM.STDistance(@polygon),

 tuc.NAME

FROM dbo.tl_2017_us_county AS tuc

WHERE tuc.GEOM.STDistance(@polygon) IS NOT NULL

 AND tuc.GEOM.STDistance(@polygon) < 1

ORDER BY tuc.GEOM.STDistance(@polygon);

Chapter 5 Spatial indexing

187

The query from Listing 5-6 creates the execution plan shown in Figure 5-5.

Figure 5-4. Narrowing the results of the ZIP code data using STDistance()

Figure 5-5. Execution plan generated from STDistance() without indexing

Chapter 5 Spatial indexing

188

If you review the Spatial Results tab, the northeast corner of Oklahoma containing the ten

counties will look like Figure 5-4. However, the query’s execution plan shown in Figure 5-5

is less than ideal, with an index scan on the clustered index created from the primary key

and a high-cost filter operation. With the use of the STDistance predicate, the query is a

candidate for using an index on the GEOMETRY column, so an index should be added.

 Supporting Methods with Indexes
With GEOMETRY and GEOGRAPHY data types, only certain methods are supported with

the use of indexes. The STDistance() method will support indexing, which would

benefit the query shown in Listing 5-6. Before diving deeply into indexing the query, the

methods that do support indexing should be pointed out. These methods have rules in

how respective predicates are written. The following is a list of supported methods for

the GEOMETRY type:

• GEOMETRY.STContains() = 1

• GEOMETRY.STDistance() < number

• GEOMETRY.STDistance() <= number

• GEOMETRY.STEquals() = 1

• GEOMETRY.STIntersects() = 1

• GEOMETRY.STOverlaps() = 1

• GEOMETRY.STTouches() = 1

• GEOMETRY.STWithin() = 1

And the following are the supported methods for the GEOGRAPHY type:

• GEOGRAPHY.STIntersects() = 1

• GEOGRAPHY.STEquals() = 1

• GEOGRAPHY.STDistance() < number

• GEOGRAPHY.STDistance() <= number

For both GEOMETRY and GEOGRAPHY, to return any result that is not null, the first

parameter and the second parameter must have the same spatial reference identifier

(SRID), which is a spatial reference system based on a specific ellipsoid used to flatten or

round the earth.

Chapter 5 Spatial indexing

189

Recall that the query used in Figure 5-6 to return the counties around Tulsa uses

the STDistance() method in the expression STDistance(@polygon) < 1. Based on the

methods supported and analyzing the options and CREATE syntax for spatial indexing,

you could use the INDEX CREATE statement shown in Listing 5-7 in an attempt to

optimize the query.

Listing 5-7. CREATE Statement for a Spatial Index

USE AdventureWorks2017

GO

CREATE SPATIAL INDEX IDX_COUNTY_GEOM ON dbo.tl_2017_us_county

(

GEOM

) USING GEOMETRY_GRID

WITH (

BOUNDING_BOX =(-91.513079, -87.496494, 36.970298, 36.970298),

GRIDS =(LEVEL_1 = LOW,LEVEL_2 = MEDIUM,LEVEL_3 = MEDIUM,LEVEL_4 = HIGH),

CELLS_PER_OBJECT = 16,

PAD_INDEX = OFF, SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY];

GO

Executing the query in Listing 5-6 results in the much different execution plan,

shown in Figure 5-6. It results in a shorter duration when executing and returning the

results, plus spatial results. The largest difference in the execution plan is the use of the

index IDX_COUNTY_GEOM.

Figure 5-6. Optimized details of a tuned execution plan using spatial data

Chapter 5 Spatial indexing

190

You can see an overall improvement and more optimal execution plan from the

creation of the spatial index. The index and optimal execution plan are good, but

validating the actual improvement by checking the overall duration in execution

time should not be skipped. Capturing the execution time using Extended Events, an

overall review of the execution of the statement can be retrieved. In the case of the

query that searches for the counties near Tulsa, the results with the index in place

return 500 milliseconds. Dropping the index and executing the same query returns

1,500 milliseconds for total execution time. This test is extremely basic, but it’s a solid

foundation upon which you can begin to form a strategy for indexing existing spatial

data to improve overall performance.

 Understanding Statistics, Properties, and
Information
Indexes in general have many data management views and functions that make the

administration of the indexes much easier and more efficient than manual statistics

gathering. With spatial indexes, there are additional catalog views that are added to assist

in the unique settings and administration of them. In addition to the views, there are also

some built-in procedures that you can invoke to get information about spatial indexes.

 The Views
There are two catalog views: sys.spatial_index and sys.spatial_index_tessellation.

The sys.spatial_index view provides the type and tessellation scheme as well as basic

information about each spatial index. The spatial_index_type column returned by sys.

spatial_index returns a 1 for GEOMETRY indexes and a 2 for GEOGRAPHY indexes. Listing 5-8

is an example query against the view, and Figure 5-7 shows the results.

Listing 5-8. Query to Retrieve Metadata About Spatial Indexes

USE AdventureWorks2017

GO

SELECT name,

 type_desc,

 spatial_index_type,

Chapter 5 Spatial indexing

191

 spatial_index_type_desc,

 tessellation_scheme

FROM sys.spatial_indexes;

Now query the sys.spatial_index_tessellation view to see the parameters of

the index and the tessellation scheme. Listing 5-9 is the query, and Figure 5-8 shows the

results.

Listing 5-9. Query to Retrieve Information About Tessellation

USE AdventureWorks2017

GO

SELECT tessellation_scheme,

 bounding_box_xmax,

 bounding_box_xmin,

 bounding_box_ymax,

 bounding_box_ymin,

 level_1_grid_desc,

 level_2_grid_desc,

 level_3_grid_desc,

 level_4_grid_desc,

 cells_per_object

FROM sys.spatial_index_tessellations;

Figure 5-7. Querying sys.spatial_indexes and results showing IDX_WIZIP_GEOM
index

Figure 5-8. Querying sys.spatial_index_tessellations and partial results

Chapter 5 Spatial indexing

192

Both of these catalog views can be joined on the object_id to become extremely

useful for tuning and maintenance tasks. At times, it may prove effective to manipulate

and re-create indexes as needed when the spatial data dictates.

 The Procedures
In addition to the catalog views, four other procedures have been provided internally

for further analysis of the spatial indexes. These procedures return a complete listing of

properties that are set on the indexes. The four procedures and their parameters are as

follows:

sp_help_spatial_GEOMETRY_index [@tabname =] 'tabname'

 [, [@indexname =] 'indexname']

 [, [@verboseoutput =] 'verboseoutput'

 [, [@query_sample =] 'query_sample']

sp_help_spatial_GEOMETRY_index_xml [@tabname =] 'tabname'

 [, [@indexname =] 'indexname']

 [, [@verboseoutput =]'{ 0 | 1 }]

 [, [@query_sample =] 'query_sample']

 [,.[@xml_output =] 'xml_output']

sp_help_spatial_GEOGRAPHY_index [@tabname =] 'tabname'

[, [@indexname =] 'indexname']

[, [@verboseoutput =] 'verboseoutput']

[, [@query_sample =] 'query_sample']

sp_help_spatial_GEOGRAPHY_index_xml [@tabname = 'tabname'

[, [@indexname =] 'indexname']

[, [@verboseoutput =] 'verboseoutput']

[, [@query_sample =] 'query_sample']

[,.[@xml_output =] 'xml_output']

Listing 5-10 is an example showing how to execute these stored procedures. The

example returns information about the GEOMETRY index IDX_COUNTY_GEOM created earlier

in Listing 5-7. Figure 5-9 shows the results.

Chapter 5 Spatial indexing

193

Listing 5-10. Investigating the Geometry Index

USE AdventureWorks2017

GO

DECLARE @Sample GEOMETRY

 = 'POLYGON((-90.0 -180.0, -90.0 180.0, 90.0 180.0, 90.0 -180.0,

-90.0 -180.0))';

EXEC sp_help_spatial_GEOMETRY_index 'dbo.tl_2017_us_county', 'IDX_COUNTY_

GEOM', 0, @Sample;

This information can be useful for adjusting the index to make it function better. The

information returned functions in a similar way to the statistics for an index. You can see

how many objects are available in each of the levels of the index. You can also see how

it returns data that matches the provided query sample. Seeing that a particular number

of intersecting objects match the query sample shows you whether a given object will

be returned by the index. You can also see the percentage of objects in the index that

are not returned from the query sample by comparing the objects in the index to the

ones that match. All this helps you understand how well the index is meeting your query

requirements.

Figure 5-9. sp_help_spatial_GEOMETRY_index example and results (results
may vary)

Chapter 5 Spatial indexing

194

 Tuning Spatial Indexes
As you saw in Listing 5-7, when a spatial index is created, you have some options.

Manipulating these options allows you to adjust the behavior of your spatial index.

Some experimentation will be necessary to arrive at the right set of options for the

optimal behavior of your index. Use a combination of the execution plan and the query

performance metrics just as you did earlier in this chapter.

For a GEOMETRY column, you can add a bounding box to the index. This limits the

area that the index covers, which can allow you to create an index that can help satisfy

certain query criteria better than a general index. For example, if I change the bounding

box and re-create the index as in Listing 5-11, I see about a 10 percent reduction in

execution time.

Listing 5-11. Adjusting the Bounding Box of the Spatial Index

USE AdventureWorks2017

GO

CREATE SPATIAL INDEX IDX_COUNTY_GEOM ON dbo.tl_2017_us_county

(

GEOM

)USING GEOMETRY_GRID

WITH (

BOUNDING_BOX =(-96.9, -95.3, 36.4, 36.6),

GRIDS =(LEVEL_1 = LOW,LEVEL_2 = MEDIUM,LEVEL_3 = MEDIUM,LEVEL_4 = HIGH),

CELLS_PER_OBJECT = 16,

PAD_INDEX = OFF, SORT_IN_TEMPDB = OFF, DROP_EXISTING = ON,

ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY];

GO

By changing the bounding box, some objects are excluded from the index.

Depending on your data and the parameters used in the index, performance may

not improve with more items filtered out from the index. Due to this complexity with

spatial indexes, it is important to test and verify that you achieve the performance

improvements you are seeking. Of course, making changes to improve the queries for

one set of counties could lead to poor performance for other counties in the United

States. As you can see, there is no easy answer here.

Chapter 5 Spatial indexing

195

Another adjustment you can make is to change the grids of the index. The choice

made in the examples so far is a fairly standard choice if you’re not sure how your data is

distributed and if you’re unsure of how many matches you’re likely to get from any one

query. If your query has a higher percentage of inclusive results, a different distribution

on the grids can result in higher speed. It’s largely a question of experimentation. But,

just as with the bounding box, changing the grid distribution for one dataset could hurt

another. You’ll have to perform rigorous testing to get this right.

Using the same example, if I were to make the level 1 grid into a HIGH detailed grid,

I would lose 10 percent of my performance, making the query run slower. Changing it

to MEDIUM neither benefited nor hurt the execution time. In this case, adjusting the grid

levels in any combination didn’t result in a significant improvement in speed, but having

the HIGH level of detail on either level 1 or level 2 of the grid would negatively impact

performance. With this experiment complete, I would choose to leave the default grids

alone in this instance.

 Restrictions on Spatial Indexes
Spatial indexes provide some unique features and restrictions. The following is a

comprehensive list of restrictions for spatial indexing:

• Spatial indexes require an existing clustered index.

• A spatial index can be created only on a column of type GEOMETRY or

GEOGRAPHY.

• Spatial indexes can be defined only on a table that has a primary key.

The maximum number of primary key columns on the table is 15.

• The maximum size of index key records is 895 bytes. Larger sizes raise

an error.

• The use of Database Engine Tuning Advisor is not supported.

• You cannot perform an online rebuild of a spatial index.

• Spatial indexes cannot be specified on indexed views.

Chapter 5 Spatial indexing

196

• You can create only up to 249 spatial indexes on any of the spatial

columns in a supported table. Creating more than one spatial index

on the same spatial column can be useful, for example, to index

different tessellation parameters in a single column.

• You can create only one spatial index at a time.

• An index build of spatial data cannot use available process

parallelism.

 Summary
Indexing spatial data is a complicated form of data storage and manipulation. This chapter

covered the main points of how spatial data is processed and stored to help in managing

and reviewing an implementation of the spatial data types in databases.

With spatial indexes, you now have the ability to quickly determine whether points

lie within regions or whether regions overlap other regions. Instead of having to fully

render each spatial artifact, spatial indexes allow queries to quickly calculate the results

of the spatial function. Remember to always examine the execution plan to ensure that

the spatial index is actually being used.

Chapter 5 Spatial indexing

197
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_6

CHAPTER 6

Indexing Memory-
Optimized Tables
The past few chapters have focused on specialized indexing-related data types in

SQL Server. SQL Server also offers specialized tables that reside in memory called

memory- optimized, or in-memory, tables. Introduced in SQL Server 2014, these

tables reside fully within memory while SQL Server is running relying on disk-based

structures only for ensuring the ability to recover from service restarts.

With memory-optimized tables being primarily memory based, this has a significant

impact on the traditional structures of a table and its indexes. In this chapter, you’ll look

at how the changes for memory-optimized tables affect your ability to index these tables

and how to create the ideal indexes.

Note Depending on the source and conversation, memory-optimized tables
are also referred to as in-memory OLTP and Hekaton. This book will use the term
memory-optimized tables since it aligns to the terminology used in Microsoft
Books Online.

 Memory-Optimized Tables Overview
Before digging into the indexing options for memory-optimized tables, let’s start with

the basics of memory-optimized tables. A memory-optimized table is a new table type

introduced in SQL Server 2014. Unlike traditional tables, along with their indexes,

memory-optimized tables reside entirely in memory. Memory-optimized tables

198

are supported through disk structures but are not reliant on them for transactional

processing. This differs compared to traditional tables, where the table is based on disk

storage and typically only a portion of the table and its indexes are in memory.

The value provided by memory-optimized tables is the performance gains that

creating tables in this fashion provides for a database. By hosting and managing the

entire table in memory, transactions do not need to wait for the disk to bring data to

memory for transaction processing to proceed.

The implementation of memory-optimized tables results in a few changes to

the way in which tables are architected in SQL Server. First, since the tables are now

memory resident, it makes more sense for them to be structured in a manner that is

optimal for accessing the data in memory vs. retrieving a subset of the data from disk.

For this reason, memory-optimized tables use hash and range indexes vs. B-trees

for storing data. Additionally, the tables don’t synchronize to disk or move around

in memory like a traditional table, removing the need for latching between disk and

memory structures.

To create memory-optimized tables in a database, there are a few things that need

to be prepared within a database. To begin, a filegroup dedicated to memory-optimized

data needs to be added to the database with a file to support the memory-optimized

tables. Additionally, the database should have the property MEMORY_OPTIMIZED_ELEVATE_

TO_SNAPSHOT enabled in most scenarios. This property hints to all transactions against

memory-optimized tables to set the isolation level to SNAPSHOT. In Listing 6-1, the

database MemOptIndexing is prepared using these settings.

Listing 6-1. Preparing Database for Memory-Optimized Tables

USE master

GO

IF EXISTS(SELECT * FROM sys.databases WHERE name = 'MemOptIndexing')

DROP DATABASE MemOptIndexing

GO

CREATE DATABASE MemOptIndexing

GO

ALTER DATABASE MemOptIndexing

ADD FILEGROUP memoryOptimizedFG CONTAINS MEMORY_OPTIMIZED_DATA

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

199

--This file location may change in your environment

ALTER DATABASE MemOptIndexing

ADD FILE (name='memoryOptimizedData',

filename= 'C:\Program Files\Microsoft SQL Server\MSSQL15.MSSQLSERVER\MSSQL\

DATA\memoryOptimizedData')

 TO FILEGROUP memoryOptimizedFG

ALTER DATABASE MemOptIndexing SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT=ON

GO

Note The file location for the filestream indicated in Listing 6-1 may need to
change to fit your environment.

To see how to create a memory-optimized table, review the code in Listing 6-2. In this

code example, you create the table dbo.SalesOrderHeader. There are two items to be

aware of in the table schema. First, the option that creates the table as a memory- optimized

table is the MEMORY_OPTIMIZED=ON option. The second is the inclusion of a NONCLUSTERED

HASH index on the table to index the data within memory. Other than those items, the table

is much like any other table created in SQL Server.

Listing 6-2. Create Memory-Optimized Table

USE MemOptIndexing

GO

IF OBJECT_ID('dbo.SalesOrderHeader') IS NOT NULL

 DROP TABLE dbo.SalesOrderHeader

CREATE TABLE dbo.SalesOrderHeader(

 SalesOrderID int NOT NULL,

 OrderDate datetime,

 DueDate datetime,

 ShipDate datetime,

 [Status] tinyint,

 CONSTRAINT IX_SalesOrderHeader_Hash PRIMARY KEY

 NONCLUSTERED HASH (SalesOrderID)

 WITH (BUCKET_COUNT = 35000))

 WITH (MEMORY_OPTIMIZED = ON)

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

200

IF OBJECT_ID('tempdb..#tempHeader') IS NOT NULL

 DROP TABLE #tempHeader

SELECT SalesOrderID

 ,OrderDate

 ,DueDate

 ,ShipDate

 ,[Status]

INTO #tempHeader

FROM AdventureWorks2017.sales.SalesOrderHeader

INSERT INTO dbo.SalesOrderHeader

SELECT SalesOrderID

 ,OrderDate

 ,DueDate

 ,ShipDate

 ,[Status]

FROM #tempHeader

SET STATISTICS IO ON

SET STATISTICS TIME ON

PRINT 'Memory Optimized Table'

SELECT *
FROM dbo.SalesOrderHeader

ORDER BY SalesOrderID

PRINT 'Traditional Table'

SELECT *
FROM AdventureWorks2017.sales.SalesOrderHeader

ORDER BY SalesOrderID

SET STATISTICS IO OFF

SET STATISTICS TIME OFF

The additional code in Listing 6-2 inserts data into MemOptIndexing.dbo.

SalesOrderHeader and queries that same data. To demonstrate the impact of querying

the data in a memory-optimized table, a similar query against AdventureWorks2017.

sales.SalesOrderHeader is included. Examining the results, shown in Listing 6-3,

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

201

provides a few insights into memory-optimized tables. First, there is no I/O impact

from the memory-optimized tables. While the AdventureWorks2017.sales.

SalesOrderHeader query requires 689 reads, there are no reads for MemOptIndexing.

dbo.SalesOrderHeader. Second, the amount of CPU time for MemOptIndexing.dbo.

SalesOrderHeader is much lower, at 16 ms, than the CPU time for the query against

AdventureWorks2017.sales.SalesOrderHeader, which is 78 ms.

Listing 6-3. Output from Creating and Querying Memory-Optimized Table

(31465 row(s) affected)

(31465 row(s) affected)

Memory Optimized Table

 SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 0 ms.

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 0 ms.

(31465 row(s) affected)

 SQL Server Execution Times:

 CPU time = 16 ms, elapsed time = 310 ms.

Traditional Table

 SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 0 ms.

(31465 row(s) affected)

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads

0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

 SQL Server Execution Times:

 CPU time = 78 ms, elapsed time = 785 ms.

 SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 0 ms.

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

202

While there are many more aspects of memory-optimized tables that can be

discussed, this overview is intended to provide some of the most basic aspects. The rest

of this chapter will examine indexing of memory-optimized tables. While memory-

optimized tables are completely in memory, indexes are still required. Being in memory

doesn’t prevent the need to find specific data or filter resultsets. And as mentioned in

Chapter 1, indexes provide the mechanism for providing a path to data.

To support indexing of memory-optimized tables, SQL Server supports two indexing

options. These are hash and range indexes. Each memory-optimized table can support

up to eight indexes. If a primary key is defined, this will be supported by one of the two

index types and be one of the allowed indexes. If there is no primary key defined, the

table must be created with at least one index. Additionally, memory-optimized tables

do not allow indexing changes after creation, so you will need to define all indexes for a

memory-optimized table when it is created.

The remainder of this chapter will focus on the hash and range types of indexes with

considerations for building each of them against a memory-optimized table.

Note Index operations for memory-optimized tables are nonlogged activities
since they occur only within memory and have no impact on the state of the data
stored in the table.

 Hash Indexes
The first index type for memory-optimized tables is the hash index. Hash indexes

separate the data in the table into a fixed number of buckets. Rows inserted into the table

then use a hash function to assign rows to the available buckets. These buckets provide

the ability for queries to return specific rows based on the point lookup operations. Hash

indexes are designed for types of query workloads where individual rows from the tables

need to be retrieved.

When creating hash indexes, the number of buckets to create is a function of the

number of rows planned, or expected, for the table. If there will be a large number of

rows, a larger bucket count is required. This is an important part of creating and tuning

hash indexes on memory-optimized tables. As the number of rows in each bucket

increases, the time required to retrieve data increases. The ratio of rows to buckets is

something that needs to be carefully considered.

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

203

It is generally recommended to over-allocate buckets to hash indexes, with the range

of buckets recommended to be between two and five times the number of rows. While

this is the recommended practice, it is important to consider how you will be using the

tables within your environment and size the buckets accordingly.

To demonstrate the impact of bucket size, Listing 6-4 creates two memory-optimized

tables. Both tables have 1,000,000 rows in them, with the first table having 1,000

buckets and the second having 1,000,000 buckets. With this configuration, there will

be approximately 1,000 rows per bucket for the first table and 1 row per bucket in the

second table.

Listing 6-4. Create Memory-Optimized Tables with Hash Indexes

USE MemOptIndexing

GO

IF OBJECT_ID('dbo.SalesOrderHeader_low') IS NOT NULL

 DROP TABLE dbo.SalesOrderHeader_low

CREATE TABLE dbo.SalesOrderHeader_low(

 SalesOrderID int NOT NULL

 ,Column1 uniqueidentifier

 ,CONSTRAINT IX_SalesOrderHeader_Hash_low PRIMARY KEY

 NONCLUSTERED HASH (SalesOrderID)

 WITH (BUCKET_COUNT = 1000))

 WITH (MEMORY_OPTIMIZED = ON);

WITH L1(z) AS (SELECT 0 UNION ALL SELECT 0)

, L2(z) AS (SELECT 0 FROM L1 a CROSS JOIN L1 b)

, L3(z) AS (SELECT 0 FROM L2 a CROSS JOIN L2 b)

, L4(z) AS (SELECT 0 FROM L3 a CROSS JOIN L3 b)

, L5(z) AS (SELECT 0 FROM L4 a CROSS JOIN L4 b)

, L6(z) AS (SELECT TOP 1000000 0 FROM L5 a CROSS JOIN L5 b)

INSERT INTO dbo.SalesOrderHeader_low

SELECT ROW_NUMBER() OVER (ORDER BY z) AS RowID, NEWID()

FROM L6;

GO

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

204

IF OBJECT_ID('dbo.SalesOrderHeader_high') IS NOT NULL

 DROP TABLE dbo.SalesOrderHeader_high

CREATE TABLE dbo.SalesOrderHeader_high(

 SalesOrderID int NOT NULL

 ,Column1 uniqueidentifier

 ,CONSTRAINT IX_SalesOrderHeader_hash_high PRIMARY KEY

 NONCLUSTERED HASH (SalesOrderID)

 WITH (BUCKET_COUNT = 1000000))

 WITH (MEMORY_OPTIMIZED = ON);

WITH L1(z) AS (SELECT 0 UNION ALL SELECT 0)

, L2(z) AS (SELECT 0 FROM L1 a CROSS JOIN L1 b)

, L3(z) AS (SELECT 0 FROM L2 a CROSS JOIN L2 b)

, L4(z) AS (SELECT 0 FROM L3 a CROSS JOIN L3 b)

, L5(z) AS (SELECT 0 FROM L4 a CROSS JOIN L4 b)

, L6(z) AS (SELECT TOP 1000000 0 FROM L5 a CROSS JOIN L5 b)

INSERT INTO dbo.SalesOrderHeader_high

SELECT ROW_NUMBER() OVER (ORDER BY z) AS RowID, NEWID()

FROM L6;

Warning The code in Listing 6-4 can take up to 5 minutes to execute.

Prior to executing the next piece of code for this demo, create an Extended Events

session based on the Query Detail Tracking template. The session should be created

with the default configuration and then launched to the Extended Events live data

viewer. Add the columns session_id, statement, writes, physical_reads, logical_

reads, duration, and cpu_time to the live viewer window. Lastly, filter the session_id in

the output by the session_id values for Listing 6-5, 6-6, 6-8, and 6-9 and the event name

sql_statement_completed.

When you execute a query against both tables to return the same row, shown in

Listing 6-5, you get a slight performance difference between the two. In this sample

execution, the execution time for the first query was 359 μs vs. 48 μs, shown in Figure 6-1.

While this difference is small in total duration, the difference between them for the same

query is significant. In solutions where memory-optimized tables will be used to retrieve

results, this kind of performance difference can be important.

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

205

Listing 6-5. Query Memory-Optimized Tables with Hash Indexes

USE MemOptIndexing

GO

SET STATISTICS TIME ON

PRINT 'Memory Optimized Table with 1000 buckets'

SELECT *
FROM dbo.SalesOrderHeader_low

WHERE SalesOrderID = 42

ORDER BY SalesOrderID

PRINT 'Memory Optimized Table with 1,000,000 buckets'

SELECT *
FROM dbo.SalesOrderHeader_high

WHERE SalesOrderID = 42

ORDER BY SalesOrderID

SET STATISTICS TIME OFF

It’s important not to interpret the results of the last script to indicate that a 1:1 ratio of

buckets to rows is the best practice. If you run another set of queries that retrieves more

than a single row, in this case the rows between 42 and 420 being returned as shown in

Listing 6-6, the performance profile changes. In this case, the performance advantage

shifts to buckets with more rows. The results now are 86,973 μs for the query on the first

table vs. 101,127 μs for the second table’s query, as shown in Figure 6-2.

Figure 6-1. Duration for memory-optimized table queries with hash indexes

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

206

Listing 6-6. Query Memory-Optimized Tables with Hash Indexes

USE MemOptIndexing

GO

SET STATISTICS TIME ON

PRINT 'Memory Optimized Table with 1000 buckets'

SELECT *
FROM dbo.SalesOrderHeader_low

WHERE SalesOrderID BETWEEN 42 AND 420

ORDER BY SalesOrderID

PRINT 'Memory Optimized Table with 1,000,000 buckets'

SELECT *
FROM dbo.SalesOrderHeader_high

WHERE SalesOrderID BETWEEN 42 AND 420

ORDER BY SalesOrderID

SET STATISTICS TIME OFF

When working with hash indexes, it is important to understand how SQL Server is

using the buckets in the hash. One important thing to note is that just because there are

enough buckets for each table to have their own bucket, that doesn’t mean each row

will get its own bucket. To review the statistics for hash indexes created in this chapter,

run the query in Listing 6-7 that accesses the DMV sys.dm_db_xtp_hash_index_stats.

This DMV provides information on the number of buckets and how those buckets are

populated.

Figure 6-2. Duration for memory-optimized table queries with hash indexes

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

207

Listing 6-7. Query to Review Hash Index Statistics

USE MemOptIndexing

GO

SELECT OBJECT_NAME(hs.object_id) AS object_name

,i.name as index_name

,hs.total_bucket_count

,hs.empty_bucket_count

,FLOOR((CAST(empty_bucket_count as float)/total_bucket_count) * 100) AS

empty_bucket_percent

,hs.avg_chain_length

,hs.max_chain_length

FROM sys.dm_db_xtp_hash_index_stats AS hs

INNER JOIN sys.indexes AS i ON hs.object_id=i.object_id AND hs.index_id=i.

index_id

Reviewing the results of Listing 6-7, provided in Figure 6-3, you can see there

are a few interesting items to notice. To start, the first index with the 1,000 buckets

specified (SalesOrderHeader_low) actually has 1,024 buckets for the index. This

is because buckets are created in allocations that align to the power of two. This

is the same reason there are 1,048,576 buckets for the 1,000,000 bucket index on

SalesOrderHeader_high. The next interesting piece is the number of empty buckets

in the hash index on SalesOrderHeader_high. With 1,000,000 rows and more than a

million buckets, there are still 37 percent of the buckets that are empty. This happens

because with the deterministic hashing function, some hashed values are repeated

within the range of values before all the buckets are utilized. This is something to

consider when building hash indexes, especially when aiming to have a 1:1 ratio of

buckets to rows.

Figure 6-3. Output from hash bucket statistics query

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

208

Note The query performance details were captured using an extended events
session based on the Query Detail Tracking template with a filter for the session
that included the demonstration queries. you can find more information on building
sessions at www.simple-talk.com/sql/database-administration/
getting-started-with-extended-events-in-sql-server-2012/.

Hash indexes with memory-optimized tables are an important indexing

choice when there will be many queries that will access individual rows and seek

operations that will provide optimal plans. When building the tables and hash

indexes, focus on setting the number of buckets to a size that presents a reasonable

ratio of rows to buckets with consideration for the number of rows that will be

retrieved through queries.

 Range Indexes
The second type of index that is supported for memory-optimized tables is the range

index. Range indexes are used to support, as the name implies, range scans of data,

along with ordered scans. They leverage a variation of a B-tree, which Microsoft is calling

a Bw-tree. The key difference between these two structures is the reference between

the nodes in the Bw-tree, which refers to memory locations vs. physical page location.

When it comes to determining whether to include a range index on a memory-optimized

table, the primary consideration will be whether there will be range scans or ORDER BY

statements that the table needs to support.

Note you can find more information on Bw-trees at http://research.
microsoft.com/pubs/178758/bw-tree-icde2013-final.pdf.

To create a range index on a memory-optimized table, you declare the index

within the schema of the table by indicating a NONCLUSTERED index with the key values.

As shown in Listing 6-8, the index IX_SalesOrderHeader is a range index on the

SalesOrderID column. Unlike hash indexes, there are no other configuration items to

consider, and the indexes don’t need any bucket consideration when they are created.

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

http://www.simple-talk.com/sql/database-administration/getting-started-with-extended-events-in-sql-server-2012/
http://www.simple-talk.com/sql/database-administration/getting-started-with-extended-events-in-sql-server-2012/
http://research.microsoft.com/pubs/178758/bw-tree-icde2013-final.pdf
http://research.microsoft.com/pubs/178758/bw-tree-icde2013-final.pdf

209

Listing 6-8. Create Table with Range Index

USE MemOptIndexing

GO

IF OBJECT_ID('dbo.SalesOrderHeader_high_range') IS NOT NULL

 DROP TABLE dbo.SalesOrderHeader_high_range

CREATE TABLE dbo.SalesOrderHeader_high_range(

 SalesOrderID int NOT NULL

 ,Column1 uniqueidentifier

 ,CONSTRAINT IX_SalesOrderHeader_hash_high_range PRIMARY KEY

 NONCLUSTERED HASH (SalesOrderID)

 WITH (BUCKET_COUNT = 1000000)

 ,INDEX IX_SalesOrderHeader NONCLUSTERED (SalesOrderID)

)

 WITH (MEMORY_OPTIMIZED = ON);

WITH L1(z) AS (SELECT 0 UNION ALL SELECT 0)

, L2(z) AS (SELECT 0 FROM L1 a CROSS JOIN L1 b)

, L3(z) AS (SELECT 0 FROM L2 a CROSS JOIN L2 b)

, L4(z) AS (SELECT 0 FROM L3 a CROSS JOIN L3 b)

, L5(z) AS (SELECT 0 FROM L4 a CROSS JOIN L4 b)

, L6(z) AS (SELECT TOP 1000000 0 FROM L5 a CROSS JOIN L5 b)

INSERT INTO dbo.SalesOrderHeader_high_range

SELECT ROW_NUMBER() OVER (ORDER BY z) AS RowID, NEWID()

FROM L6;

To demonstrate the value of the range index on memory-optimized tables, let’s use

the table created in Listing 6-8 on some queries that will leverage range scans. For this,

you will use Listing 6-9, which queries the new table (dbo.SalesOrderHeader_high_

range) and the table previously created with just a hash index (dbo.SalesOrderHeader_

high). By executing a query against both of those tables for the rows with SalesOrderID

between 100 and 10,000, you can see there is a big difference in the execution time. The

query with just the hash index on the table runs in 216 ms (see Figure 6-4), while the

query against the table with the range index runs in 97 ms. In this case, range indexes

provide a substantial performance improvement.

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

210

Listing 6-9. Query Memory-Optimized Tables with Range Scan

USE MemOptIndexing

GO

SET STATISTICS TIME ON

SELECT *
FROM dbo.SalesOrderHeader_high

WHERE SalesOrderID BETWEEN 100 AND 10000

ORDER BY SalesOrderID

SELECT *
FROM dbo.SalesOrderHeader_high_range

WHERE SalesOrderID BETWEEN 100 AND 10000

ORDER BY SalesOrderID

SET STATISTICS TIME OFF

In a similar fashion, ORDER BY statements are also greatly improved when range

indexes on memory-optimized tables are available. Using the code in Listing 6-10, you

run two queries against the same tables from the previous demonstration. In this case,

using the output in Figure 6-5, you see that the range scan took 462 μs compared to

the 240,733 μs that the hash index requires. Again, you get a substantial performance

improvement through the use of the range index.

Listing 6-10. Query Memory-Optimized Tables with ORDER BY Statement

USE MemOptIndexing

GO

SET STATISTICS TIME ON

Figure 6-4. Duration for memory-optimized table queries with range scan

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

211

SELECT TOP 100 *
FROM dbo.SalesOrderHeader_high

ORDER BY SalesOrderID

SELECT TOP 100 *
FROM dbo.SalesOrderHeader_high_range

ORDER BY SalesOrderID

SET STATISTICS TIME OFF

Similar to hash indexes, range indexes provide a substantial performance

improvement opportunity when creating memory-optimized tables. The need to

perform range scans and order results is a common scenario in many applications.

These operations are greatly improved by the use of range indexes.

 Summary
This chapter looked at the types of indexes available for memory-optimized tables.

These options, which include hash and range indexes, are the power behind the ability

for memory-optimized tables to provide the incredible performance that they deliver.

As demonstrated, each index type aligns to different querying patterns on your tables,

and it is important to understand those patterns to build the right indexes for your

memory- optimized tables and the workloads that they support.

Figure 6-5. Duration for memory-optimized table queries with TOP clause and
ORDER BY

CHaPTer 6 InDexIng MeMOry-OPTIMIzeD TaBLes

213
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_7

CHAPTER 7

Full-Text Indexing
SQL Server supports mechanisms that allow you to store large amounts of unstructured

text information. Since SQL Server 2008, one of those mechanisms has been the MAX

lengthused with the variable-length character data types VARCHAR and NVARCHAR. This

means you can store up to 2 GB worth of character information within a single column.

While SQL Server can store this information, the 1,700-byte limit for nonclustered

indexes and 900-byte limit on clustered indexes make indexing through traditional

means a challenge. Fortunately, SQL Server offers another indexing mechanism for

searching within these large data types, where full-text indexing comes into play.

 Full-Text Indexing
Full-text search indexing is another indexing feature in SQL Server, outside the normal

indexing methods and objects. This chapter will briefly describe the full-text search

architecture, storage, and indexing for optimal performance.

Full-text search (FTS) allows you to store large amounts of text-based content.

This content can include a number of document types including formats such as Word

document (.docx) files. This storage is then in BLOB (binary large object) columns

instead of plain-text data. The ability to search and store content of an unstructured

nature provides a number of opportunities in a database management system.

Document retention is one such opportunity; it allows you to store documents for

vast lengths of time at a much lower cost. The search abilities allow for querying this

content for all types of needs. Imagine a shipping company that creates thousands of

shipping documents from a template created in plain text. Those documents create a

massive initiative for retention purposes to ensure shipments can be tracked for later

needs. Storage warehouse rooms cost money to maintain. When the task of researching a

specific shipment arises, the hours taken for that task are significant.

214

Now imagine this shipping company is using the FTS feature and an indexing

structure. The documents are scanned with systems that read the text into a system

that later inserts this data into a SQL Server database. This allows for a full-text search

of specific account numbers, shipping invoices, and any distinct text in the documents

needed for later review. An index just like a book index can be created, making it even

quicker to find specific documents. Going further, FTS lets you search for specific

content in the documents themselves. If a request comes in to find all shipping

documents that were sent by a specific freight company on a specific trailer, the FTS

capabilities allow the information to be retrieved in a fraction of the time as compared to

a manual process.

 Creating a Full-Text Example
Now that you understand the concept of FTS, let’s look at the indexing strategy. Full-

text indexes are essentially the backbone of searching and querying the data. This data

can be a number of data types including char, varchar, nchar, nvarchar, xml, and

varbinary. While it is possible to use text, ntext, and image, it's best to avoid

their use since they are on the deprecation list. The data types varchar,

nvarchar, and varbinary provide equivalent types, respectively. In fact, utilizing

varchar(max) on most 64-bit systems has outperformed other data types in tests by the

DataCAT team, as described in “Best Practices for Integrated Full Text Search (iFTS) in

SQL 2008” (https://techcommunity.microsoft.com/t5/DataCAT/Best-Practices-

for-Integrated-Full-Text-Search-iFTS-in-SQL-2008/ba-p/305000).

For the remainder of this section on full-text search indexing, the contents of

the white paper “Optimizing Your Query Plans with the SQL Server 2014 Cardinality

Estimator” by Joseph Sack have been inserted into the sample table using the script in

Listing 7-1. I’ll use the document to demonstrate full-text indexing. You can find the

document in Books Online or download it from http://bit.ly/1II5UfU and place it in

the directory c:\temp. Additionally, the full-text catalog feature needs to be installed in

order to successfully run all the code in this chapter. Full-text catalog is not a feature that

is installed by default, so you may need to address that first.

Chapter 7 Full-text IndexIng

https://techcommunity.microsoft.com/t5/DataCAT/Best-Practices-for-Integrated-Full-Text-Search-iFTS-in-SQL-2008/ba-p/305000
https://techcommunity.microsoft.com/t5/DataCAT/Best-Practices-for-Integrated-Full-Text-Search-iFTS-in-SQL-2008/ba-p/305000
http://bit.ly/1II5UfU

215

Note For all versions of SQl Server, to build full-text index on Microsoft Office
documents, the Filter pack IFilters must be installed. download and install
Microsoft Office 2010 Filter packs from https://support.microsoft.com/
en-us/help/945934/how-to-register-microsoft-filter-pack-
ifilters-with-sql-server. Be sure to follow the additional steps to run
sp_fulltext_service and restart the SQl Server instance.

 Creating a Full-Text Catalog
Using AdventureWorks2017, a table can be prepared that will be used for full-text

searching. Using the varbinary(max) data type allows the import of most document

types and images. In Listing 7-1, the CREATE TABLE and INSERT statements prepare the

objects needed to create a full-text search index.

Listing 7-1. CREATE TABLE and INSERT Statements Used with Full-Text Search

USE AdventureWorks2017

GO

DROP TABLE IF EXISTS dbo.SQLServerDocuments;

CREATE TABLE dbo.SQLServerDocuments (

 SQLServerDocumentsID INT IDENTITY(1, 1),

 DocType VARCHAR(6),

 DOC VARBINARY(MAX),

 CONSTRAINT PK_SQLServerDocuments PRIMARY KEY CLUSTERED

 (SQLServerDocumentsID)

);

GO

DECLARE @worddoc VARBINARY(MAX);

SELECT @worddoc = CAST(bulkcolumn AS VARBINARY(MAX))

FROM OPENROWSET(BULK 'c:\temp\Optimizing Your Query Plans with the SQL

Server 2014 Cardinality Estimator.docx', SINGLE_BLOB) AS x;

Chapter 7 Full-text IndexIng

https://support.microsoft.com/en-us/help/945934/how-to-register-microsoft-filter-pack-ifilters-with-sql-server
https://support.microsoft.com/en-us/help/945934/how-to-register-microsoft-filter-pack-ifilters-with-sql-server
https://support.microsoft.com/en-us/help/945934/how-to-register-microsoft-filter-pack-ifilters-with-sql-server

216

INSERT INTO dbo.SQLServerDocuments

 (DocType, DOC)

VALUES ('docx', @worddoc);

GO

When creating an FTS index, a full-text catalog must first be created. Since SQL

Server 2008, the catalog is now contained in the database as a definition. The catalog

itself is now a virtual object and greatly enhances the performance by eliminating I/O

bottlenecks. A catalog contains all the properties that are searchable.

The catalog is the link to the full-text index. Before we get started, let’s review the

syntax for CREATE FULLTEXT CATALOG, which is shown in Listing 7-2.

Listing 7-2. The CREATE FULLTEXT CATALOG Syntax

CREATE FULLTEXT CATALOG <catalog name>

WITH <catalog specific options>

AS DEFAULT

AUTHORIZATION <the owners name – ownership>

ACCENT_SENSITIVITY = <ON|OFF>;

The first option that should be considered in the creation of a catalog is the AS

DEFAULT setting. Commonly, full-text indexes are created without thought of the catalog

to which they should be applied. If the catalog is omitted in the index creation, the

catalog that has been set as the default will be used.

Authorization and accent sensitivity are specific in the CREATE command. When

omitting the authorization option, ownership will fall under dbo. This is the same for

most objects in SQL Server when ownership is not declared. It is recommended that you

assign ownership for managing security and grouping objects under the proper areas.

When specifying a user for ownership, you must specify a username matching one of the

following:

• The name of the user running the statement

• The name of a user that the user executing the command has

impersonate permissions for

• The database owner or system administrator

Chapter 7 Full-text IndexIng

217

Accent sensitivity dictates whether the catalog will be accent sensitive or insensitive.

For example, with accent insensitive, the words “piñata” and “pinata” will be treated

as the same words. Be sure to research whether accent sensitivity should be on or off

prior to the creation of the catalog. If this option is changed, the full-text indexes on the

catalog must be rebuilt.

For creating a full-text catalog on the white paper, execute the statement in Listing 7-3.

For this catalog, we’ll use the default options for the syntax, which sets accent sensitivity

to the collation of the table.

Listing 7-3. Creating a New Full-Text Catalog

CREATE FULLTEXT CATALOG WhitePaperCatalog AS DEFAULT;

 Creating a Full-Text Index
With the catalog created and the decision made for how you want to handle catalogs,

accent sensitivity, and ownership, now you need to make some decisions and apply

some restrictions to the creation of the full-text index. The most critical of these

decisions is the requirement of a key index.

 Syntax

The syntax in Listing 7-4 is used to create the full-text index. Table 7-1 describes the

different options available.

Listing 7-4. CREATE FULLTEXT INDEX Syntax

CREATE FULLTEXT INDEX ON <table name>

(<column name>)

KEY INDEX <index name [must be specified]>

ON <catalog filegroup>

WITH <index options>

CHANGE_TRACKING = <Manual | Auto | Off>

STOPLIST = <default system or specified StopList name>;

Chapter 7 Full-text IndexIng

218

In most other CREATE INDEX statements, the basic syntax and options are alike with

slight modifications. With FTS index creation, you can see there is a completely different

set of options and considerations. The initial CREATE FULLTEXT INDEX is the same as any

CREATE INDEX, with the given table required and then column to index. After this, the

other options are not typical to normal index creations.

Table 7-1. Full-Text Index Options

Option Name Description

TYPE COLUMN Specifies the name of the column that holds the document type for

documents loaded in BlOB types, such as .doc, .pdf, and .xls. this

option is used only for varbinary, varbinary(max), and image

data types. If this option is specified on any other data type, the CREATE

FULLTEXT INDEX statement will throw an error.

LANGUAGE alters the default language that is used for the index with the following

variations and options:

• the language can be specified as string, integer, or hexadecimal.

• If a language is specified, the language is used when a query is run

using the index.

• When a language is specified as a string value, the syslanguages

system table must correspond to the language.

• If a double-byte value is used, it is converted to hexadecimal at

creation time.

• Word breakers and stemmers for the specific language must be

enabled, or an SQl Server error will be generated.

• non-BlOB and non-xMl columns containing multiple languages

should follow the 0 × 0 neutral language setting.

• For BlOB and xMl types, language types in the documents

themselves will be used. For example, a Word document with a

language type of russian or lCId 1049 will force the same setting

in the index. use sys.fulltext_languages to review all the

language types and lCId codings available.

(continued)

Chapter 7 Full-text IndexIng

219

 Key Indexes

Choosing the key index can be a straightforward choice given the restrictions of the

key index being a unique, single-key, and non-nullable column. A primary key will

commonly work well for this, like the primary key shown in Listing 7-1 on the dbo.

SQLServerDocuments table. However, consideration should be given to the size of the key.

Table 7-1. (continued)

Option Name Description

KEY INDEX every full-text index requires an adjoining unique, single-key, non-null

column to be designated. Specify the column in the same table using

this option.

FULLTEXT_CATALOG_

NAME

If the full-text index is not to be created using the default catalog,

specify the catalog name using this option.

CHANGE_TRACKING determines how and when an index is populated. Options are MANUAL,

AUTO, and OFF [NO_POPULATION]. the MANUAL setting requires

ALTER FULLTEXT INDEX ... START UPDATE POPULATION to be

executed before the index is populated. the AUTO setting populates the

index at creation time and automatically updates based on changes that

are made ongoing. this is the default setting if CHANGE_TRACKING is

omitted in the CREATE statement. the OFF [NO_POPULATION] setting

is used to completely turn population off for the index, and SQl Server

will not retain a list of changes. the index is populated upon creation

one time unless the NO_POPULATION is specified.

STOPLIST Specifies a Stoplist that will essentially stop certain words from being

indexed. OFF, SYSTEM, and a custom Stoplist are available options.

the OFF setting will not use a Stoplist and will have more overhead

on performance of population of the index. the SYSTEM is the default

Stoplist created already. a user-created Stoplist is a Stoplist that was

created that can be used in association with an index.

SEARCH PROPERTY

LIST

Specifies the search property list to associate with the full-text index.

property lists allow greater control of full-text search by allowing

differentiation of search between properties of a document, such as title

or tags.

Chapter 7 Full-text IndexIng

220

Ideally, a 6-byte key is recommended and documented as optimal to reduce overhead

on I/O and CPU resource consumption. Recall that one of the restrictions of the unique

key is that it cannot exceed 900 bytes. If this maximum restriction is met, the population

will fail. Resolving the problem could force a new index and alteration of the table itself to

occur. This could create costly downtime for tables that are in high-use situations.

 Population

Change tracking in full-text indexing should be weighed heavily when creating full-text

indexes. The default setting of AUTO may have overhead that can affect the performance

negatively if the contents of the column being indexed change frequently. For example,

a system that is storing shipping invoices that never change and are inserted only once

a month would not likely benefit from AUTO being set. A MANUAL population would most

likely be better run at a given time by using the SQL Server Agent based on the loading

of the contents in the table. Although not common, some systems are static and loaded

only one time. This would be an ideal situation for using the OFF setting, with the initial

population being performed only at that time.

The last option for population is incremental population. It is an alternative to

manual population. Incremental population is the same concept as an incremental

update to data. As you run through the data and changes are made, they are tracked.

Think of merge replication as a comparison. Merge replication retains changes by the

use of triggers and insert/update/delete tracking rows into merge system tables. At a

given point in time, a DBA can set a synchronization schedule to process those changes

and replicate them to the subscribers. This is the same way incremental population

functions. By using a timestamp column in the table, the changes are tracked. Only

those that are found needing a change are processed. This does mean the requirement

for a timestamp column on the table must be met in order to perform incremental

populations. For data that has an extreme amount of change, this may not be ideal.

However, for data that changes randomly and seldomly, incremental population may be

suited for the installation.

 StopLists

StopLists are extremely useful in managing what not to populate. This can improve the

population performance by bypassing what are known as noise words. As an example,

consider the sentence “A dog chewed through the fiber going to the SAN causing the

disaster and recovery plans to be used for the SQL Server instance.” In this sentence,

Chapter 7 Full-text IndexIng

221

you would most likely want fiber, SAN, disaster, recovery, and SQL or Server indexed.

The A, the, to, and be words would not be ideal. These are considered noise words and

are not part of the population process. As you can imagine, the use of StopList can be

extremely helpful in the overall population performance and parsing of the content. Use

of the StopList can be specific to languages as well. For example, la in French would be

specified over the in English.

To create a custom StopList, use the CREATE FULLTEXT STOPLIST statement as shown

in Listing 7-5. The system default StopList can be used to pregenerate all the noise words

already identified as such. For the white paper example, the name of the StopList would

be WhitePaperStopList.

Listing 7-5. Creating a Full-Text StopList

CREATE FULLTEXT STOPLIST WhitePaperStopList FROM SYSTEM STOPLIST;

To view the StopList, use the system views sys.fulltext_stoplists and sys.

fulltext_stopwords. The sys.fulltext_stoplists view will hold metadata related to

the stoplists that are created on the SQL Server instance. Determine the stoplist_id

to join to sys.fulltext_stopwords to show a complete listing of the words. Alone, this

StopList is no better than the system default StopList. To add words to the StopList,

use the ALTER FULLTEXT STOPLIST statement in Listing 7-6’s example. That example

removes Downtime as a word to be excluded.

Listing 7-6. Modifying a Full-Text Stoplist

ALTER FULLTEXT STOPLIST WhitePaperStopList ADD 'Downtime' LANGUAGE 1033;

To review the StopList words, run the query shown in Listing 7-7.

Listing 7-7. Using sys.fulltext_stoplists to Review StopList Words

SELECT lists.stoplist_id,

 lists.name,

 words.stopword

FROM sys.fulltext_stoplists AS lists

JOIN sys.fulltext_stopwords AS words

 ON lists.stoplist_id = words.stoplist_id

WHERE words.language = 'English'

ORDER BY lists.name;

Chapter 7 Full-text IndexIng

222

You can see the query results in Figure 7-1; the word Downtime has been successfully

added.

With the catalog, StopList, and key index availability within the primary key

SQLServerDocumentsID in the table created in Listing 7-1, you can create a full-text index

on the DOC column in the same table from Listing 7-1. To create a full-text index, use the

CREATE FULLTEXT INDEX statement (see Listing 7-8).

Listing 7-8. CREATE FULLTEXT INDEX Statement

CREATE FULLTEXT INDEX ON dbo.SQLServerDocuments

(

DOC

TYPE COLUMN DocType

)

KEY INDEX PK_SQLServerDocuments

ON WhitePaperCatalog

WITH STOPLIST = WhitePaperStopList;

Once the index is created, population will begin since there was no option added for

CHANGE_TRACKING. Later in the chapter, I’ll show how to monitor the catalog and see the

status. It might take a while to load depending on the size of your document. The default

AUTO setting takes effect. To query the content of the SQLServerDocuments table and DOC

column, you can run a CONTAINS statement to return a specific word. Listing 7-9 shows

an example of such a statement.

Figure 7-1. Query results of a StopList

Chapter 7 Full-text IndexIng

223

Listing 7-9. Using CONTAINS to Query for a Specific Word

SELECT ssd.DOC,

 ssd.DocType

FROM dbo.SQLServerDocuments AS ssd

WHERE CONTAINS (ssd.DOC, 'statistic');

Figure 7-2 shows the execution plan from the query.

By searching by means of CONTAINS(ssd.DOC,'statistic'), the execution plan in

Figure 7-2 shows the operation on FulltextMatch. It also returns the white paper with a

document type of .docx as a match for this word search.

 Full-Text Search Index Catalog Views and Properties
SQL Server provides a wealth of information about indexes in general. Performance,

configurations, usage, and storage are just a few. As with normal index objects, full-text

indexes require the same attention and detail to maintenance and options set to ensure

they consistently benefit the overall performance rather than hinder it.

Table 7-2 describes the catalog views available to full-text search.

Figure 7-2. Execution plan of CONTAINS and FTS index usage

Chapter 7 Full-text IndexIng

224

Table 7-2. Full-Text Catalog Views

Catalog View Name Description

sys.fulltext_catalogs lists all full-text catalogs and high-level properties.

sys.fulltext_document_types returns a complete list of document types that are

available for indexing. each of these document types

will be registered on the instance of SQl Server.

sys.fulltext_index_catalog_usages

sys.fulltext_index_columns lists all columns that are indexed.

sys.fulltext_index_fragments lists all details of the full-text index fragments

(storage of the inverted index data).

sys.fulltext_indexes lists every full-text index and properties set on the

indexes.

sys.fulltext_languages lists all the available languages on the instance to

full-text indexing.

sys.fulltext_semantic_language_statistics_

database

lists semantic language statistics databases

installed.

sys.fulltext_semantic_languages list all of the languages with statistics models

registered.

sys.fulltext_stoplists lists every Stoplist created.

sys.fulltext_stopwords lists all StopWords in the database.

sys.fulltext_system_stopwords lists the preloaded system StopWords.

For informational purposes, while reviewing catalogs, properties, and status results

for population, invoke the FULLTEXTCATALOGPROPERTY function, as shown in Listing 7-10.

Listing 7-10. Querying Properties from Full-Text Index

FULLTEXTCATALOGPROPERTY ('catalog_name' ,'property')

The returned information will provide a wealth of detail on the state of the catalog

including population status. The catalog_name parameter will take any catalog created,

and then a listing of properties can be utilized to return the specific information

required. Table 7-3 lists the properties you can pass.

Chapter 7 Full-text IndexIng

225

For example, to show the population status of the WhitePaperCatalog catalog used

earlier, you can use the statement in Listing 7-11. The result should be 0 for idle, since the

index only has the single document and no other queries are running against the index.

Table 7-3. Full-Text Catalog Properties

Property Name Description

AccentSensitivity Catalog’s current accent sensitivity setting. this returns 0, which

means insensitive, and 1, which means sensitive.

IndexSize logical size in megabytes of the catalog.

ItemCount the total items that have been indexed in the catalog.

LogSize Backward capability property. this returns 0.

MergeStatus returns 0 if no master merge is in progress and 1 if a master

merge is in progress.

PopulateCompletionAge the elapsed time since index population, in seconds, measured

since 01/01/1990 00:00:00. this will always return 0 if the

population has not run yet.

PopulateStatus PopulateStatus can return ten different values:

0: Idle.

1: Full population in progress.

2 : paused.

3 : the population has been throttled.

4 : the population is recovering.

5 : the status is shut down.

6 : Incremental population is currently in progress.

7 : the status is currently building an index.

8 : the disk is full.

9 : Change tracking.

UniqueKeyCount number of individual full-text index keys in the catalog.

ImportStatus returns 0 when the full-text catalog is not being imported and 1

when it is being imported.

Chapter 7 Full-text IndexIng

226

Listing 7-11. FULLTEXTCATALOGPROPERTY to Return Population Status of a

Catalog

SELECT FULLTEXTCATALOGPROPERTY('WhitePaperCatalog','PopulateStatus');

Catalogs and the referencing indexes can be reviewed by executing sys.fulltext_

index_catalog_usages. This catalog view returns all the indexes that have been

referenced from it, as shown in Listing 7-12.

Listing 7-12. Utilizing sys.fulltext_index_catalog_usages

SELECT OBJECT_NAME(ficu.object_id) [Object Name],

 ficu.index_id,

 ficu.fulltext_catalog_id

FROM sys.fulltext_index_catalog_usages AS ficu;

Figure 7-3 shows the results, which show SQLServerDocuments is using a catalog

associated with itself, while JobCandidate, ProductReview, and Document are using a

shared full-text catalog. It is important to note that you are able to use a single catalog

across multiple tables.

For detailed information on all catalogs and settings currently applied to them, query

sys.fulltext_catalogs. This catalog view is helpful in determining the default catalog

and property status indicators, such as is_importing that shows whether the catalog is

in the process of being imported.

For a detailed review of the full-text indexes in the database, you can use sys.

fulltext_indexes along with joining catalog views to create a more meaningful

resultset. Important information from this catalog view consists of the full-text catalog

name and properties; change tracking property, crawl type, and state; and the StopList

set to be used.

Figure 7-3. Results from sys.fulltext_index_catalog_usages

Chapter 7 Full-text IndexIng

227

The query in Listing 7-13 returns an information resultset of all indexes including

catalog and StopList information for the index.

Listing 7-13. Using All the Catalog Views for Full-Text Index Information

SELECT idx.is_enabled,

 idx.change_tracking_state,

 idx.crawl_type_desc,

 idx.crawl_end_date [Last Crawl],

 cat.name,

 CASE WHEN cat.is_accent_sensitivity_on = 0 THEN 'Accent

InSensitive'

 WHEN cat.is_accent_sensitivity_on = 1 THEN 'Accent Sensitive'

 END [Accent Sensitivity],

 lists.name,

 lists.modify_date [Last Modified Date of StopList]

FROM sys.fulltext_indexes idx

INNER JOIN sys.fulltext_catalogs cat

 ON idx.fulltext_catalog_id = cat.fulltext_catalog_id

INNER JOIN sys.fulltext_stoplists lists

 ON idx.stoplist_id = lists.stoplist_id;

Figure 7-4 shows the results of the catalog view query. This can be extremely useful

when tuning full-text catalogs. For instance, if the index is out-of-date, you’ll be able to

identify when it was last updated or crawled. Or if you’d tuned a full-text index to remove

noise by adding to the StopList, knowing when that change occurred in relation to the

last crawl can help identify why the performance did not improve.

Figure 7-4. Query results for full-text index information

Chapter 7 Full-text IndexIng

228

 Summary
This chapter outlined how to create and query from a full-text index. The need to be

able to filter and query on large documents and free-form text is just as important as

being able to use traditional structured indexes. With full-text indexing, you can examine

not only the contents of a column but also the contents of a file within a column,

allowing applications to much better identify documents and other artifacts that match

contextually with the requests being submitted.

Chapter 7 Full-text IndexIng

229
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_8

CHAPTER 8

Indexing Myths and Best
Practices
In the past few chapters, we’ve defined indexes and showed how they are structured. In

the upcoming chapters, you’ll be looking at strategies to build indexes and ensure that

they behave as expected. In this chapter, we’ll dispel some common myths and show

how to build the foundation for creating indexes.

Myths result in an unnecessary burden when attempting to build an index. Knowing

the myths associated with indexes can prevent you from using indexing strategies

that will be counterproductive. The following are the indexing myths discussed in this

chapter:

• Databases don’t need indexes.

• Primary keys are always clustered.

• Online index operations don’t block.

• Any column can be filtered in multicolumn indexes.

• Clustered indexes store records in physical order.

• Indexes always output in the same order.

• Fill factor is applied to indexes during inserts.

• Deleting from heaps results in unrecoverable space.

• Every table should be a heap or have a clustered index.

230

When reviewing myths, it’s also a good idea to take a look at best practices. Best

practices are like myths in many ways in the sense that they are commonly held

beliefs. The primary difference is that best practices stand up to scrutiny and are useful

recommendations when building indexes. This chapter will examine the following best

practices:

• Index to your current workload.

• Use clustered indexes on primary keys by default.

• Properly target database-level fill factors.

• Properly target index-level fill factors.

• Index unique and foreign key columns.

• Balance index count.

 Index Myths
One of the problems that people encounter when building databases and indexes is

dealing with myths. Indexing myths originate from many different places. Some come

from previous versions of SQL Server and its tools or are based on former functionality.

Others come from the advice of others, based on conditions in a specific database that

don’t match those of other databases.

The trouble with indexing myths is that they cloud the water of indexing strategies.

In situations where an index can be built to resolve a serious performance issue, a myth

can sometimes prevent the approach from being considered. Throughout the next few

sections, we’ll cover a number of myths regarding indexing, and I’ll do my best to dispel

them.

 Myth 1: Databases Don’t Need Indexes
Usually, in an application that is being developed, one or more databases are created to

store data for the application. In many development processes, the focus is on adding

new features with the expectation that “performance will work itself out.” An unfortunate

result is that there are many databases that get developed and deployed without indexes

being built because of the belief that they aren’t needed.

Chapter 8 IndexIng Myths and Best praCtICes

231

Along with this, there are database developers who believe their databases are

somehow unique from other databases. The following are some reasons that are heard

from time to time:

• “It’s a small database that won’t get much data.”

• “It’s just a proof of concept and won’t be around for long.”

• “It’s not an important application, so performance isn’t important.”

• “The whole database already fits into memory; indexes will just make

it require more memory.”

• “I am going to use this database only for inserting data; I will never

look at the results.”

Each of these reasons is easy to break down. In today’s world of big data, even

databases that are expected to be small can start growing quickly as they are adopted.

Besides that, small in terms of a database is definitely in the eye of the beholder.

Any proof of concept or unimportant database and application wouldn’t have been

created if there wasn’t a need or someone wasn’t interested in expending resources

for the features. Those same people likely expect that the features they asked for will

perform as expected. Lastly, fitting a database into memory doesn’t mean it will be

fast. As was discussed in previous chapters, indexes provide alternative access paths

for data, with the aim of decreasing the number of pages required to access the data.

Without these alternative routes, data access will likely require reading every page of

a table.

These reasons may not be the ones you hear concerning your databases, but they

will likely be similar. The general idea surrounding this myth is that indexes don’t help

the database perform better. One of the strongest ways to break apart this excuse is by

demonstrating the benefits of indexing against a given scenario.

To demonstrate, let’s look at the code in Listing 8-1. This code sample creates the

table MythOne. Next, you will find a query similar to one in almost any application. In the

output from the query, in Listing 8-2, the query generated 1,496 reads.

Chapter 8 IndexIng Myths and Best praCtICes

232

Listing 8-1. Table with No Index

USE AdventureWorks2017;

GO

SELECT * INTO MythOne

FROM Sales.SalesOrderDetail;

GO

SET STATISTICS IO ON

SET NOCOUNT ON

GO

SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty,

ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal

FROM MythOne

WHERE CarrierTrackingNumber = '4911-403C-98';

GO

SET STATISTICS IO OFF

GO

Listing 8-2. I/O Statistics for Table with No Index

Table 'MythOne'. Scan count 1, logical reads 1496, physical reads 0, read-

ahead reads 0,

lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

It could be argued that 1,496 isn’t a lot of input/output (I/O). This might be true

given the size of some databases and the amount of data in today’s world. But the I/O of

a query shouldn’t be compared to the performance of the rest of the world; it needs to be

compared to its potential I/O, the needs of the application, and the platform on which it

is deployed.

Improving the query from the previous demonstration is as simple as adding an

index on the table on the CarrierTrackingNumber column. To see the effect of adding an

index to MythOne, execute the code in Listing 8-3. With the index created, the reads for

the query were reduced from 1,496 to 15 reads, shown in Listing 8-4. With just a single

index, the I/O for the query was reduced by nearly two orders of magnitude. Suffice it to

say, an index in this situation provides a significant amount of value.

Chapter 8 IndexIng Myths and Best praCtICes

233

Listing 8-3. Adding an Index to MythOne

CREATE INDEX IX_CarrierTrackingNumber ON MythOne (CarrierTrackingNumber)

GO

SET STATISTICS IO ON

SET NOCOUNT ON

GO

SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty,

ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal

FROM MythOne

WHERE CarrierTrackingNumber = '4911-403C-98';

GO

SET STATISTICS IO OFF

GO

Listing 8-4. I/O Statistics for Table with an Index

Table 'MythOne'. Scan count 1, logical reads 15 physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

I’ve shown in these examples that indexes do provide a benefit. If you encounter a

situation where there is angst for building indexes on a database, try to break down the

real reason for the pushback and provide an example similar to the one presented in

this section. In Chapter 11, we’ll discuss approaches that can be used to determine what

indexes to create in a database.

 Myth 2: Primary Keys Are Always Clustered
The next myth that is quite prevalent is the idea that primary keys are always clustered.

While this is true in many cases, you cannot assume that all primary keys are also

clustered indexes. Earlier in this book, we discussed how a table can have only a single

clustered index on it. If a primary key is created after the clustered index is built, then the

primary key is to be created as a nonclustered index.

Chapter 8 IndexIng Myths and Best praCtICes

234

To illustrate the indexing behavior of primary keys, we’ll use a script that includes

building two tables. We’ll build the first table, named dbo.MythTwo1, and then create a

primary key on the RowID column. For the second table, named dbo.MythTwo2, after it is

created, the script will build a clustered index before creating the primary key. The code

for this is in Listing 8-5.

Listing 8-5. Two Ways to Create Primary Keys

USE AdventureWorks2017;

GO

CREATE TABLE dbo.MythTwo1

 (

 RowID int NOT NULL

 ,Column1 nvarchar(128)

 ,Column2 nvarchar(128)

);

ALTER TABLE dbo.MythTwo1

ADD CONSTRAINT PK_MythTwo1 PRIMARY KEY (RowID);

GO

CREATE TABLE dbo.MythTwo2

 (

 RowID int NOT NULL

 ,Column1 nvarchar(128)

 ,Column2 nvarchar(128)

);

CREATE CLUSTERED INDEX CL_MythTwo2 ON dbo.MythTwo2 (RowID);

ALTER TABLE dbo.MythTwo2

ADD CONSTRAINT PK_MythTwo2 PRIMARY KEY (RowID);

GO

SELECT OBJECT_NAME(object_id) AS table_name

 ,name

 ,index_id

 ,type

Chapter 8 IndexIng Myths and Best praCtICes

235

 ,type_desc

 ,is_unique

 ,is_primary_key

FROM sys.indexes

WHERE object_id IN (OBJECT_ID('dbo.MythTwo1'),OBJECT_ID('dbo.MythTwo2'));

After running the code segment, the final query will return results like those shown

in Figure 8-1. This figure shows that PK_MythTwo1, which is the primary key on the first

table, was created as a clustered index. Then on the second table, PK_MythTwo2 was

created as a nonclustered index.

The behavior discussed in this section is important to remember when building

primary keys and clustered indexes. If you have a situation where they need to be

separated, the primary key will need to be defined after the clustered index or as a

NONCLUSTERED index.

 Myth 3: Online Index Operations Don’t Block
One of the advantages of SQL Server Enterprise Edition is the ability to build indexes

online. During an online index build, the table on which the index is being created

will still be available for queries and data modifications. This feature is extremely

useful when a database needs to be accessed and maintenance windows are short to

nonexistent.

A common myth with online index rebuilds is that they don’t cause any blocking.

Of course, like any of these myths, this one is false. When using an online index operation,

there is an intent shared lock held on the table for the main portion of the build. At the

finish, either a shared lock, for a nonclustered index, or a schema modification lock, for a

clustered index, is held for a short time while the operation moves in the updated index.

This differs from an offline index build where the shared or schema modification lock is

held for the duration of the index build.

Figure 8-1. Primary key sys.indexes output

Chapter 8 IndexIng Myths and Best praCtICes

236

Of course, you will want to see this in action; to accomplish this, you will create a

table and use Extended Events to monitor the locks that are applied to the table while

creating indexes with and without the ONLINE options. To start this demo, execute the

code in Listing 8-6. This script creates the table dbo.MythThree and populates it with

10 million records. The last item it returns is the object_id for the table, which is

needed for the subsequent parts of the demo. For this example, the object_id for

dbo.MythThree is 624721278.

Note the demos for this myth all require sQL server enterprise or developer
edition.

Listing 8-6. MythThree Table Create Script

USE AdventureWorks2017

GO

CREATE TABLE dbo.MythThree

 (

 RowID int NOT NULL

 ,Column1 uniqueidentifier

);

WITH L1(z) AS (SELECT 0 UNION ALL SELECT 0)

, L2(z) AS (SELECT 0 FROM L1 a CROSS JOIN L1 b)

, L3(z) AS (SELECT 0 FROM L2 a CROSS JOIN L2 b)

, L4(z) AS (SELECT 0 FROM L3 a CROSS JOIN L3 b)

, L5(z) AS (SELECT 0 FROM L4 a CROSS JOIN L4 b)

, L6(z) AS (SELECT TOP 10000000 0 FROM L5 a CROSS JOIN L5 b)

INSERT INTO dbo.MythThree

SELECT ROW_NUMBER() OVER (ORDER BY z) AS RowID, NEWID()

FROM L6;

GO

SELECT OBJECT_ID('dbo.MythThree')

GO

Chapter 8 IndexIng Myths and Best praCtICes

237

To monitor those events in this scenario, you’ll use Extended Events to capture the

lock_acquired and lock_released events fired during index creation. Open sessions in

SSMS for the code in Listing 8-7 and Listing 8-8. Before running, update the session_id

from Listing 8-8 for the session_id in Listing 8-7; for this scenario, the session_id is 42.

Apply the same update with the object_id. After the Extended Events session is

running, you can use the live view to monitor the locks as they occur.

Listing 8-7. Extended Events Session for Lock Acquired and Released

IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name =

'MythThreeXevents')

 DROP EVENT SESSION [MythThreeXevents] ON SERVER

GO

CREATE EVENT SESSION [MythThreeXevents] ON SERVER

ADD EVENT sqlserver.lock_acquired(SET collect_database_name=(1)

 ACTION(sqlserver.sql_text)

 WHERE [sqlserver].[session_id]=(42) AND [object_id]=(624721278)),

ADD EVENT sqlserver.lock_released(

 ACTION(sqlserver.sql_text)

 WHERE [sqlserver].[session_id]=(42) AND [object_id]=(624721278))

ADD TARGET package0.ring_buffer

GO

ALTER EVENT SESSION [MythThreeXevents] ON SERVER STATE = START

GO

In the example from Listing 8-8, two indexes are created, one built ONLINE and the

other with the default option, or offline. To see what locks are acquired and released,

observe the locking behavior in the live viewer. By default, only the name and timestamp

appear in the live viewer. The live viewer allows for customizing the columns that are

displayed. In Figure 8-2, the columns object_id, mode, resource_type, and sql_text

have been added to the defaults name and timestamp. To add additional columns, right-

click a column header and select “Choose columns.”

Chapter 8 IndexIng Myths and Best praCtICes

238

Listing 8-8. Online Index Operations on Nonclustered Index Creation

USE AdventureWorks2017

GO

CREATE INDEX IX_MythThree_ONLINE ON MythThree (Column1) WITH (ONLINE = ON);

GO

CREATE INDEX IX_MythThree ON MythThree (Column1);

GO

When the index is created with the ONLINE option, note that in Figure 8-2 SCH_S

(Schema_Shared) and S (Shared) locks are acquired and released within milliseconds

of each other. Because these locks are acquired and released throughout the index

creation process, other transactions can continue to occur against the table. The SCH_S

locks ensure that the schema of the table does not change, while the S locks pages from

inserts, updates, and deletes. Because these locks are acquired for very short amounts of

time, they allow the table to be available throughout the index creation process.

Note If you do not see any results from the extended events session, it’s likely
due to a mismatch between the object_id for Myththree and the object_id traced
through the extended events session.

With the default index creation, which does not use the ONLINE option, the S locks

are held for the entirety of the index build. Shown in Figure 8-3, the S lock is taken before

the SCH_S lock and isn’t released until after the index is build. The result is that the index

is unavailable during the index build.

Figure 8-2. Index creation with ONLINE option

Chapter 8 IndexIng Myths and Best praCtICes

239

 Myth 4: Any Column Can Be Filtered in Multicolumn
Indexes
The next common myth with indexes is that regardless of the position of the column in

an index, the index can use that column in an ordered search to filter data within the

index. As with the other myths discussed so far in this chapter, this one is also incorrect.

An index does not need to use all the columns in an index. It does, however, need to start

with the leftmost column in an index when performing an ordered search and use the

columns from left to right, in their order, within the index. This is why the order of the

columns in an index is so important.

To demonstrate this myth, you will run through a few examples, shown in Listing 8-9.

In the script, a table is created based on Sales.SalesOrderHeader with a primary key on

SalesOrderID. To test the myth of searching all columns through multicolumn indexes,

an index with the columns OrderDate, DueDate, and ShipDate is created.

Listing 8-9. Multicolumn Index Myth

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.MythFour') IS NOT NULL

 DROP TABLE dbo.MythFour

GO

SELECT SalesOrderID, OrderDate, DueDate, ShipDate

INTO dbo.MythFour

FROM Sales.SalesOrderHeader;

GO

Figure 8-3. Index creation without ONLINE option

Chapter 8 IndexIng Myths and Best praCtICes

240

ALTER TABLE dbo.MythFour

ADD CONSTRAINT PK_MythFour PRIMARY KEY CLUSTERED (SalesOrderID);

GO

CREATE NONCLUSTERED INDEX IX_MythFour ON dbo.MythFour (OrderDate, DueDate,

ShipDate);

GO

With the test objects in place, the next thing to check is the behavior of the queries

against the table that could potentially use the nonclustered index. First, we’ll run a

query that uses the leftmost column in the index. Listing 8-10 gives the code for this. As

shown in Figure 8-4, by filtering on the leftmost column, the query uses a seek operation

on IX_MythFour.

Listing 8-10. Query Using Leftmost Column in Index

USE AdventureWorks2017

GO

SELECT OrderDate FROM dbo.MythFour

WHERE OrderDate = '2011-07-17 00:00:00.000'

Next, you’ll look at what happens when querying from the other side of the index

key columns. In Listing 8-11, the query filters the results on the rightmost column of

the index. The execution plan for this query, shown in Figure 8-5, uses a scan operation

on IX_MythFour. Instead of being able to go directly to the records that match the

OrderDate, the query needs to check all records to determine which match the filter.

While the index is used, it isn’t able to filter the rows based on the sort within the index.

Figure 8-4. Execution plan for leftmost column in index

Chapter 8 IndexIng Myths and Best praCtICes

241

Listing 8-11. Query Using Rightmost Column in Index

USE AdventureWorks2017

GO

SELECT ShipDate FROM dbo.MythFour

WHERE ShipDate = '2011-07-17 00:00:00.000'

At this point, we’ve seen that the leftmost column can be used for filtering and that

filtering on the rightmost column can use the index but cannot use it optimally with a

seek operation. The last validation is to check the behavior of columns in an index that

are not on the left or right side of the index. In Listing 8-12, a query is included that uses

the middle column in the index IX_MythFour. As with any execution plan, the execution

plan for the middle column query, shown in Figure 8-6, uses the index but also uses a

scan operation. The query is able to use the index but not in an optimal fashion.

Listing 8-12. Query Using Middle Column in Index

USE AdventureWorks2017

GO

SELECT DueDate FROM dbo.MythFour

WHERE DueDate = '2011-07-17 00:00:00.000'

Figure 8-5. Execution plan for rightmost column in index

Chapter 8 IndexIng Myths and Best praCtICes

242

The myth of how columns in a multicolumn index can be used is one that can

sometimes be confusing. As the examples showed, queries can use the index regardless

of which columns of the index are being filtered. The key is to effectively use the index.

To accomplish this goal, filtering must start on the leftmost column of the index. And

when that isn’t the typical use case, either reorder the columns of the index or create

additional indexes.

 Myth 5: Clustered Indexes Store Records in Physical
Order
One of the more pervasive myths commonly held is the idea that a clustered index

stores the records in a table in their physical order when on disk. This myth seems to be

primarily driven by confusion between what is stored on a page and where records are

stored on those pages. As was discussed in Chapter 2, there is a difference between data

pages and records. As a refresher, you’ll see a simple demonstration that dispels this myth.

To begin this example, execute the code in Listing 8-13. The code in the example

will create a table named dbo.MythFive. Then, it will add three records to the table. The

last part of the script will output, using sys.dm_db_database_page_allocations, the

page location for the table. In this example, the page with the records inserted into dbo.

MythFive is page 59624, shown in Figure 8-7.

Note the dynamic management function sys.dm_db_database_page_
allocations is a replacement for DBCC IND. this function, introduced in sQL
server 2012, provides an improved interface to examining page allocations for
objects in a database over its dBCC predecessor.

Figure 8-6. Execution plan for middle column in index

Chapter 8 IndexIng Myths and Best praCtICes

243

Listing 8-13. Create and Populate MythFive Table

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.MythFive') IS NOT NULL

 DROP TABLE dbo.MythFive

CREATE TABLE dbo.MythFive

(

RowID int PRIMARY KEY CLUSTERED

,TestValue varchar(20) NOT NULL

);

GO

INSERT INTO dbo.MythFive (RowID, TestValue) VALUES (1, 'FirstRecordAdded');

INSERT INTO dbo.MythFive (RowID, TestValue) VALUES (3, 'SecondRecordAdded');

INSERT INTO dbo.MythFive (RowID, TestValue) VALUES (2, 'ThirdRecordAdded');

GO

SELECT database_id, object_id, index_id, extent_page_id, allocated_page_

page_id, page_type_desc

FROM sys.dm_db_database_page_allocations(DB_ID(), OBJECT_ID('dbo.

MythFive'), 1, NULL, 'DETAILED')

WHERE page_type_desc IS NOT NULL

GO

The evidence to dispel this myth can be uncovered with the DBCC PAGE command.

To do this, use the PagePID identified in Listing 8-13 with page_type_desc of DATA_PAGE.

Since there is only a single data page for this table, that is where the data will be located.

(For more information on DBCC commands, see Chapter 2.)

Figure 8-7. sys.dm_db_database_page_allocations output

Chapter 8 IndexIng Myths and Best praCtICes

244

For this example, Listing 8-14 shows the T-SQL required to look at the data in

the table. This command outputs a lot of information that includes some header

information that isn’t useful in this example. The portion that you need is at the end,

with the memory dump of the page, as shown in Figure 8-8. In the memory dump, the

records are shown in the order in which they are placed on the page. As the dump shows

from reading the far-right column, the records are in the order in which they are added

to the table, not the order that they will appear in the clustered index.

Listing 8-14. Create and Populate MythFive Table

DBCC TRACEON (3604);

GO

DBCC PAGE (AdventureWorks2017, 1, 59624, 2);

GO

Based on this evidence, it is easy to discern that clustered indexes do not store

records in the physical order of the index. If this example were expanded, you would be

able to see that the pages are in physical order, but the rows on the pages are not.

 Myth 6: Indexes Always Output in the Same Order
One of the more common myths that pertain to indexes is that they guarantee the output

order of results from queries. This is not correct. As previously described in this book, the

purpose of indexes is to provide an efficient access path to the data. That purpose does

Figure 8-8. Page contents portion of DBCC PAGE output

Chapter 8 IndexIng Myths and Best praCtICes

245

not guarantee the order in which the data will be accessed. The trouble with this myth

is that, oftentimes, SQL Server will appear to maintain order when queries are executed

under certain conditions, but when those conditions change, the execution plans

change, and the results are returned in the order that the data is processed vs. the order

that the end user might desire.

To explore this myth, you’ll first look at how conditions can change on a query that

is using clustered index. In Listing 8-15, there is a single query, repeated twice, for the

Sales.SalesOrderHeader and Sales.SalesOrderDetail tables that is performing a

simple aggregation. This is something that might appear in many types of use cases for

SQL Server.

Listing 8-15. Unordered Results with Clustered Index

USE AdventureWorks2017

GO

SELECT soh.SalesOrderID, COUNT(*) AS DetailRows

FROM Sales.SalesOrderHeader soh

 INNER JOIN Sales.SalesOrderDetail sod ON soh.SalesOrderID = sod.

SalesOrderID

 GROUP BY soh.SalesOrderID;

GO

DBCC FREEPROCCACHE

DBCC SETCPUWEIGHT(1000)

GO

SELECT soh.SalesOrderID, COUNT(*) AS DetailRows

FROM Sales.SalesOrderHeader soh

 INNER JOIN Sales.SalesOrderDetail sod ON soh.SalesOrderID = sod.

SalesOrderID

 GROUP BY soh.SalesOrderID;

GO

DBCC FREEPROCCACHE

DBCC SETCPUWEIGHT(1)

GO

Chapter 8 IndexIng Myths and Best praCtICes

246

The conditions in which the two queries execute vary a bit. The first query is running

under the standard SQL Server cost model and generates an execution that performs a

couple index scans and a stream aggregation to return the results, shown in Figure 8-9.

The results from the query, provided in Figure 8-10, provide support that SQL Server will

return data in the desired output, provided that the SaleOrderID column is the column

that the user wants sorted.

But what happens if the conditions on the SQL Server change but the business rules

do not? The second query executed in Listing 8-15 is the same query, but with a change

in conditions. For this example, the DBCC command SETCPUWEIGHT is leveraged to

change the cost of the execution plan. The change in cost results in the use of the parallel

Figure 8-10. Results from default aggregation execution plan

Figure 8-9. Default aggregation execution plan

Chapter 8 IndexIng Myths and Best praCtICes

247

execution plan, shown in Figure 8-11. A side effect of the parallel plan is a change in

the order in which the results of the query are returned, shown in Figure 8-12. While

the results appear to still be ordered and the logic of the query hasn’t changed, the first

records returned are different. This occurs because one of the parallel threads returned

its results faster than some others.

Warning do not use DBCC SETCPUWEIGHT in production code to control
parallelism or for any other reason. this DBCC command is strictly available to control
environmental variables within sQL server to test and validate execution plans.

The second condition to consider is when business rules change for a query. For

instance, maybe a set of results wasn’t originally filtered, but after a change to the

application, the query may change to using a different set of indexes. This can also

result in a change in the order of the results, such as when a query changes from using a

clustered index to a nonclustered index.

Figure 8-11. Aggregation execution plan with parallelism

Figure 8-12. Aggregation execution plan with parallelism

Chapter 8 IndexIng Myths and Best praCtICes

248

To demonstrate this change in behavior, execute the code in Listing 8-16. This code

runs two queries. Both of the queries return SalesOrderID, CustomerID, and Status. For

the purposes of the example, the business rule dictates that the results must be sorted by

SalesOrderID. In this case, the results from the first query are sorted as the business rule

states, shown at the top of Figure 8-13. But in the second query, when the logic changes

to request fewer rows by adding a filter, the results are no longer ordered, shown at the

bottom of Figure 8-13. The cause of the change comes from a change in the indexes that

SQL Server is using to execute the query. The change in indexes drives the results to be

processed, and ordered, in the manner in which those indexes sort the data.

Listing 8-16. Unordered Results with Nonclustered Index

USE AdventureWorks2017

GO

SELECT SalesOrderID, CustomerID, Status

FROM Sales.SalesOrderHeader soh

GO

SELECT SalesOrderID, CustomerID, Status

FROM Sales.SalesOrderHeader soh

WHERE CustomerID IN (11020, 11021, 11022)

GO

Figure 8-13. Query results demonstrating effect of filtering on order

Chapter 8 IndexIng Myths and Best praCtICes

249

In these examples, you looked at just a couple of the conditions that can change

when it comes to how SQL Server will stream the results from a query. While an index

might provide results from the query in the order desired this time, there is no guarantee

that this will not change. Don’t rely on indexes to enforce ordering. Don’t rely on being

clever to get the results ordered as desired. Rely on the ORDER BY clause to get the results

ordered as required.

 Myth 7: Fill Factor Is Applied to Indexes During Inserts
When the fill factor is set on an index, it is applied to the index when the index is built,

rebuilt, or reorganized. Unfortunately, with this myth, many people believe that fill factor

is applied as records are inserted into a table. In this section, we’ll investigate this myth

and see that it is not correct.

To begin pulling this myth apart, let’s look at what most people believe. In the myth, the

thought is that if a fill factor has been specified when rows are added to a table, the fill factor

is used during the inserts. To dispel this portion of the myth, execute the code in Listing 8-17.

In this script, the table dbo.MythSeven is created with a clustered index with a 50 percent fill

factor. That means that 50 percent of every page in the index should be left empty. With the

table built, you’ll insert records into the table. Finally, you’ll check the average amount of

space available on each page through the sys.dm_db_index_physical_stats DMV. Looking

at the results of the script, included in Figure 8- 14, the index is using 95 percent of every

page vs. the 50 percent that was specified in the creation of the clustered index.

Listing 8-17. Create and Populate MythSeven Table

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.MythSeven') IS NOT NULL

 DROP TABLE dbo.MythSeven;

GO

CREATE TABLE dbo.MythSeven

 (

 RowID int NOT NULL

 ,Column1 varchar(500)

);

GO

Chapter 8 IndexIng Myths and Best praCtICes

250

ALTER TABLE dbo.MythSeven ADD CONSTRAINT

 PK_MythSeven PRIMARY KEY CLUSTERED (RowID) WITH(FILLFACTOR = 50);

GO

WITH L1(z) AS (SELECT 0 UNION ALL SELECT 0)

, L2(z) AS (SELECT 0 FROM L1 a CROSS JOIN L1 b)

, L3(z) AS (SELECT 0 FROM L2 a CROSS JOIN L2 b)

, L4(z) AS (SELECT 0 FROM L3 a CROSS JOIN L3 b)

, L5(z) AS (SELECT 0 FROM L4 a CROSS JOIN L4 b)

, L6(z) AS (SELECT TOP 1000 0 FROM L5 a CROSS JOIN L5 b)

INSERT INTO dbo.MythSeven

SELECT ROW_NUMBER() OVER (ORDER BY z) AS RowID, REPLICATE('X', 500)

FROM L6;

GO

SELECT object_id, index_id, avg_page_space_used_in_percent

FROM sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID('dbo.MythSeven'),

NULL,NULL,'DETAILED')

WHERE index_level = 0;

Sometimes when this myth is dispelled, the belief is reversed, and it is believed

that fill factor is broken or doesn’t work. This is also incorrect. Fill factor isn’t applied to

indexes during data modifications. As stated previously, it is applied when the index is

rebuilt, reorganized, or created. To demonstrate this, you can rebuild the clustered index

on dbo.MythSeven with the script included in Listing 8-18.

Listing 8-18. Rebuild Clustered Index on MythSeven Table

USE AdventureWorks2017

GO

ALTER INDEX PK_MythSeven ON dbo.MythSeven REBUILD

SELECT object_id, index_id, avg_page_space_used_in_percent

Figure 8-14. Fill factor myth on inserts

Chapter 8 IndexIng Myths and Best praCtICes

251

FROM sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID('dbo.MythSeven'),

NULL,NULL,'DETAILED')

WHERE index_level = 0

After the clustered index is rebuilt, the index will have the specified fill factor, or close

to the value specified, as shown in Figure 8-15. The average space used on the table,

after the rebuild, changed from 95 to 51 percent. This change is in alignment with the fill

factor that was specified for the index.

When it comes to fill factor, there are a number of myths surrounding the index

property. The key to understanding fill factor is to remember when and how it is applied.

It isn’t a property enforced on an index as it is used. It is, instead, a property used to

distribute data within an index when it is created or rebuilt.

 Myth 8: Deleting from Heaps Results in Unrecoverable
Space
Heaps are an interesting structure in SQL Server. In Chapter 2, you examined how they

aren’t really an index but just a collection of pages for storing data. One of the index

maintenance tasks that will be a part of the next chapter is recovering space from heap

tables. As will be more deeply discussed in that chapter, when rows are deleted from

a heap, the pages associated with those rows are not removed from the heap. This is

generally referred to as bloat within the heap.

An interesting side effect of the concept of heap bloat is the myth that bloat never

gets reused. The space stays in the heap and is not recoverable until the heap is rebuilt.

Fortunately, for heaps and database administrators, this isn’t the case. When data is

removed from a heap, the space that the data previously held is made available for future

inserts into the table.

To demonstrate how this works, you’ll build a table using the code in Listing 8-19.

The demonstration creates a heap named MythEight and then inserts 400 records,

which results in 100 pages of data. This page count can be validated with the page_count

column in the first resultset in Figure 8-16. The next part of the script deletes every other

Figure 8-15. Fill factor myth after index rebuild

Chapter 8 IndexIng Myths and Best praCtICes

252

row that was inserted into the heap. Generally, this should leave each page with half as

many rows as it had previously, shown in the second resultset in Figure 8-16. The last

part of the script reinserts 200 rows into the MythEight table, returning the row count to

400 records and reusing the previously used pages that had data removed from them.

There is a slight growth in the page count from the last resultset in Figure 8-16, but most

of the new rows fit into the space already allocated.

Listing 8-19. Reusing Data from the MythEight Heap

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.MythEight') IS NOT NULL

 DROP TABLE dbo.MythEight;

CREATE TABLE dbo.MythEight

(

 RowId INT IDENTITY(1,1)

 ,FillerData VARCHAR(2500)

);

INSERT INTO dbo.MythEight (FillerData)

SELECT TOP 400 REPLICATE('X',2000)

FROM sys.objects;

SELECT OBJECT_NAME(object_id), index_type_desc, page_count, record_count,

forwarded_record_count

FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('dbo.MythEight'),

NULL, NULL, 'DETAILED');

DELETE FROM dbo.MythEight

WHERE RowId % 2 = 0;

SELECT OBJECT_NAME(object_id), index_type_desc, page_count, record_count,

forwarded_record_count

FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('dbo.MythEight'),

NULL, NULL, 'DETAILED');

Chapter 8 IndexIng Myths and Best praCtICes

253

INSERT INTO dbo.MythEight (FillerData)

SELECT TOP 200 REPLICATE('X',2000)

FROM sys.objects;

SELECT OBJECT_NAME(object_id), index_type_desc, page_count, record_count,

forwarded_record_count

FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('dbo.MythEight'),

NULL, NULL, 'DETAILED');

As the demonstration for this myth shows, space in a heap that previously held data

is released for reuse by the table. For heaps that have a lot of data coming in and out of

the table, there isn’t a significant need to monitor for page reuse, and the myth can be

considered inaccurate. With heaps that have a lot of data removed without the intention

to replace the data, you are able to recover the space with ALTER TABLE ... REBUILD.

The syntax and impact of this statement are discussed in the next chapter.

 Myth 9: Every Table Should Have a Heap/Clustered Index
The last myth to consider is twofold. On the one hand, some people will recommend

you should build all your tables with heaps. On the other hand, others will recommend

that you create clustered indexes on all your tables. The trouble is that this viewpoint

will exclude considering the benefits that each of the structures can offer on a table. The

viewpoint makes a religious-styled argument for or against ways to store data in your

databases without any consideration for the actual data that is being stored and how it is

being used.

Figure 8-16. Heap reuse query results

Chapter 8 IndexIng Myths and Best praCtICes

254

Some of the arguments against the use of clustered indexes are as follows:

• Fragmentation negatively impacts performance through

additional I/O.

• The modification of a single record can impact multiple records in

the clustered index when a page split is triggered.

• Excessive key lookups will negatively impact performance through

additional I/O.

Of course, there are some arguments against using heaps:

• Excessive forwarded records negatively impact performance through

additional I/O.

• Removing forwarded records requires a rebuild of the entire table.

• Nonclustered indexes are required for efficient filtered data access.

• Heaps don’t automatically release pages when data is removed.

The negative impacts associated with either clustered indexes or heaps aren’t

the only things to consider when deciding between one and the other. Each has

circumstances where they will outperform the other.

For instance, clustered indexes perform best in the following circumstances:

• The key on the table is a unique, ever-increasing key value.

• The table has a key column that has a high degree of uniqueness.

• Ranges of data in a table will be accessed via queries.

• Records in the table will be inserted and deleted at a high rate.

On the other hand, heaps are ideal for some of the following situations:

• Data in the table will be used only for a limited amount of time where

index creation time exceeds query time on the data.

• Key values will change frequently, which in turn would change the

position of the record in an index.

• You are inserting copious numbers of records into a staging table.

• The primary key is a nonascending value, such as a unique identifier.

Chapter 8 IndexIng Myths and Best praCtICes

255

Although this section doesn’t include a demonstration of why this myth is false, it is

important to remember that both heaps and clustered indexes are available and should

be used appropriately. Knowing which type of index to choose is a matter of testing, not

a matter of doctrine.

A good resource to consider for those in the “cluster everything camp” is the

Fast Track Data Warehouse Architecture white paper (https://msdn.microsoft.

com/en-us/library/hh918452.aspx). The white paper addresses some significant

performance improvements that can be found with heaps and also the point in which

these improvements dissipate. The white paper helps show how changes in I/O system

technologies, with flash and cache-based devices, can change patterns and practices

in regard to heaps and clustered indexes. This helps to promote the idea of validating

myths and best practices from time to time.

 Index Best Practices
Similar to myths are the indexing best practices. A best practice should be considered

the default recommendation that can be applied when there isn’t enough information

available to validate proceeding in another direction. Best practices are not the only

option and are just a place to start from when working with any technology.

When using a best practice provided from someone else, such as those appearing in

this chapter, it is important to check them out for yourself first. Always take them with a

grain of salt. You can trust that best practices will steer you in the correct direction, but

you need to verify that it is appropriate to follow the practice.

Given the preceding precautions, there are a number of best practices that can be

considered when working with indexes. This section will review these best practices and

discuss what they are and what they mean.

 Index to Your Current Workload
The most important aspect of indexing your databases is to index to how you are using

your databases today, not based on yesterday, not based on the data you expect years in

the future, but today.

The indexing that you build for today will likely not be the indexing that will be

needed in databases in the future. For this reason, the first best practice is to continuously

review, analyze, and implement changes to the indexes in your environment. Realize that

Chapter 8 IndexIng Myths and Best praCtICes

https://msdn.microsoft.com/en-us/library/hh918452.aspx
https://msdn.microsoft.com/en-us/library/hh918452.aspx

256

regardless of how similar two databases are, if the data in the databases and users are

not the same, then the indexing for the two databases will likely need to be different.

A detailed conversation on monitoring and analyzing indexes is in Chapters 13 and 14.

With this bit out of the way, let’s look at some other best practices for indexing.

 Use Clustered Indexes on Primary Keys by Default
The next best practice is to use clustered indexes on primary keys by default. This may

seem to run contrary to the nineth myth presented in this chapter. Myth 9 discussed

whether to choose clustered indexes or heaps as a matter of doctrine. Whether the

database was built with one or the other, the myth would have you believe that if your

table design doesn’t match the myth, it should be changed regardless of the situation.

This best practice recommends using clustered indexes on primary keys as a starting

point.

By clustering the primary key of a table by default, there is an increased likelihood

that the indexing choice will be appropriate for the table. As stated earlier in this chapter,

clustered indexes control how the data in a table is stored. Many primary keys, possibly

most, are built on a column that utilizes the identity property that increments as each

new record is added to the table. Choosing a clustered index for the primary key will

provide the most efficient method to access the data.

 Specify Fill Factors
Fill factor controls the amount of free space left on the data pages of an index after an

index is built or defragmented. This free space is made available to allow for records on

the page to expand with the risk that the change in record size may result in a page split.

This is an extremely useful property of indexes to use for index maintenance. Modifying

the fill factor can mitigate the risk of fragmentation. A more thorough discussion of fill

factor is presented in Chapter 6. For the purposes of best practices, you are concerned

with the ability to set the fill factor at the database and index levels.

 Database-Level Fill Factor

As already mentioned, one of the properties of SQL Server is the option to set a default

fill factor for indexes. This setting is a SQL Server–wide setting and can be altered in the

properties of SQL Server on the Database Properties page. By default, this value is set to

Chapter 8 IndexIng Myths and Best praCtICes

257

zero, which equates to 100. Do not modify the default fill factor to anything other than

0, or 100, which has the same impact. Doing so will change the fill factor for every index

in the database to the new value; this will add the specified amount of free space to all

indexes the next time indexes are created, rebuilt, or reorganized.

On the surface, this may seem like a good idea, but this will blindly increase the size

of all indexes by the specified amount. The increased size of the indexes will require

more I/O to perform the same work as before the change. For many indexes, making this

change would result in a needless waste of resources.

 Index-Level Fill Factor

At the index level, you should modify the fill factor for indexes that are frequently

becoming heavily fragmented. Decreasing the fill factor will increase the amount of free

space in the index and provide additional space to compensate for the changes in record

length leading to fragmentation. Managing fill factor at the index level is appropriate

since it provides the ability to tune the index precisely to the needs of the database.

 Index Foreign Key Columns
When a foreign key is created on a table, the foreign key column in the table should

be indexed. This is necessary to assist the foreign key in determining which records

in the parent table are constrained to each record in the referenced table. This is

important when changes are being made against the referenced table. The changes in

the referenced table may need to check all the rows that match the record in the parent

table. If an index does not exist, then a scan of the column will occur. On a large parent

table, this could result in a significant amount of I/O and potentially some concurrency

issues.

An example of this issue would be state and address tables. There would likely be

thousands or millions of records in the address table and maybe a hundred records in

the state table. The address table would include a column that is referenced by the state

table. Consider whether one of the records in the state table needed to be deleted. If

there wasn’t an index on the foreign key column in the address table, then how would

the address table identify the rows that would be affected by deleting the state record?

Without an index, SQL Server would have to check every record in the address table.

If the column is indexed, SQL Server would be able to perform a range scan across the

records that match to the value being deleted from the state table.

Chapter 8 IndexIng Myths and Best praCtICes

258

By indexing your foreign key columns, performance issues, such as the one

described in this section, can be avoided. The best practice with foreign keys is to

index their columns. Chapter 11 includes more details on this best practice and a code

example.

 Balance Index Count
As previously discussed in this book, indexes are extremely useful for improving the

performance when accessing information in a record. Unfortunately, indexes are not

without costs. The costs to having indexes go beyond just space within your database.

When you build an index, you need to consider some of the following:

• How frequently will records be inserted or deleted?

• How frequently will the key columns be updated?

• How often will the index be used?

• What processes does the index support?

• How many other indexes are on the table?

These are just some of the first considerations that need to be accounted for when

building indexes. After the index is built, how much time will be spent updating and

maintaining the index? Will you modify the index more frequently than the index is used

to return results for queries? How many columns are in the table, and are there more

indexes than columns?

The trouble with balancing the index count on a table is that there is no precise

number that can be recommended. Deciding on the number of indexes that it makes

sense to have on a table is a per-table decision. You don’t want too few, which may

result in excessive scans of the clustered index or heap to return results. Also, the table

shouldn’t have too many indexes, where more time is being spent keeping the index

current than returning results. My rule of thumb on transactional systems is that if a table

has more than ten indexes on it, it is increasingly likely that there are too many indexes

on the table.

Chapter 8 IndexIng Myths and Best praCtICes

259

 Summary
This chapter looked at some myths surrounding indexes as well as some best practices.

For both areas, you investigated what some commonly held beliefs are and were

presented some details around each of them.

With the myths, you looked at a number of ideas that are generally believed about

indexes that are in fact not true. The myths covered clustered indexes, fill factor, the

column makeup of indexes, and more. The key to how to view anything that is believed

about indexes that may be a myth is to take it upon yourself to test it.

You also looked at best practices. The best practices provided in the chapter should

be the basis on which indexes for your databases can be built. I defined what a best

practice is and what it is not. Then I discussed a number of best practices that can be

considered when indexing your databases.

Chapter 8 IndexIng Myths and Best praCtICes

261
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_9

CHAPTER 9

Index Maintenance
Like anything in life, indexes require maintenance. Over time, the performance benefits

of indexes can wane or, through data modifications, their sizes and the underlying

statistics can drift and bloat. To prevent these issues, indexes must be maintained. If you

do so, your database will remain a lean, mean query-running machine.

When it comes to maintenance, there are five areas to consider:

• Index fragmentation

• Heap bloat and forwarding

• Columnstore fragmentation

• Statistics

• In-memory statistics

Each plays a key role in maintaining a properly indexed and well-performing

database.

This chapter explores all these areas. You’ll learn about issues that arise from not

maintaining indexes and review strategies for implementing a maintenance process.

To illustrate how fragmentation occurs, there will be a number of simple demos. The

statistics conversation will expand on the items discussed in Chapter 3 and lay out how

to update statistics to keep them accurate.

 Index Fragmentation
The first maintenance issue that can lead to a degradation of index performance is

index fragmentation. Fragmentation happens when the pages in an index are no longer

physically sequential.

262

While index fragmentation generated a much greater concern in previous versions

of SQL Server and with old storage systems, it is still something to be concerned with in

SQL Server. The main issue that arises with fragmentation is an increase in the amount

of space required to store the index due to pages being split and in many cases left half

empty. This excess space impacts the amount of space the database uses on disk, within

memory, and through the CPU as it processes the data.

There are a few events in SQL Server that can lead to index fragmentation:

• INSERT operations

• UPDATE operations

• DELETE operations

• DBCC SHRINKDATABASE operations

As you can see, except for selecting data from the database, pretty much everything that

you can do to an index can lead to fragmentation. Unless your database is read-only, you

must pay attention to fragmentation and address it in an index before it becomes an issue.

 Fragmentation Operations
The best way to understand fragmentation is to see it in action. In Chapter 3, you

looked at the information returned by the dynamic management object (DMO) sys.

dm_index_physical_stats. In this section, you’ll review a number of scripts that cause

fragmentation and then use the DMO to investigate the amount of fragmentation that

has occurred.

As mentioned, fragmentation occurs when physical pages within an index are not

sequential. When an insert occurs and the new row is not placed at the ending of the pages

for the index, the new row will be placed on a page that already has other rows on it. If

there is not enough room on the page for the new row, then the page will split—leading to

fragmentation of the index. Fragmentation is the physical result of page splits in the index.

 Insert Operations

The first operation that can lead to index fragmentation is an INSERT operation. This isn’t

usually considered the most likely operation to result in fragmentation, but there are

database design patterns that can lead to fragmentation. There are two areas in which

INSERT operations can lead to fragmentation: clustered and nonclustered indexes.

Chapter 9 Index MaIntenanCe

263

The most common pattern for designing clustered indexes is to place the index

on a single column with a value that is ever-increasing. This is often done using an

int data type and the IDENTITY property. When this pattern is followed, the chances

of fragmentation occurring during inserts are relatively rare. Unfortunately, this isn’t

the only clustered index pattern that exists, and the others lead to fragmentation. For

example, using business keys or uniqueidentifier data type values often causes

fragmentation.

Clustered indexes that use uniqueidentifier data type values often use the NEWID()

function to generate a random, unique value to serve as the clustering key. This value

is unique but not ever-increasing. The most recent value generated may or may not be

after the previous value. Because of this, when a new row is inserted into the clustered

index, it is most likely to be placed between a number of other rows already in the index.

And, as mentioned, if there isn’t enough room in the index, fragmentation will occur.

To demonstrate fragmentation caused by the use of uniqueidentifier data

type values, try the code in Listing 9-1. This code creates a table named dbo.

UsingUniqueidentifier. It is populated with rows from sys.columns, and then a

clustered index is added. At this point, all the pages in the indexes are physically

sequential. Run the code in Listing 9-2 to view the results shown in Figure 9-1; these

results show that the average fragmentation for the index is 0.00 percent.

Listing 9-1. Populate Uniqueidentifier Table

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.UsingUniqueidentifier') IS NOT NULL

 DROP TABLE dbo.UsingUniqueidentifier;

CREATE TABLE dbo.UsingUniqueidentifier

(

RowID uniqueidentifier CONSTRAINT DF_GUIDValue DEFAULT NEWID()

,Name sysname

,JunkValue varchar(2000)

);

Chapter 9 Index MaIntenanCe

264

INSERT INTO dbo.UsingUniqueidentifier (Name, JunkValue)

SELECT name, REPLICATE('X', 2000)

FROM sys.columns

CREATE CLUSTERED INDEX CLUS_UsingUniqueidentifier ON dbo.UsingUnique

identifier(RowID);

Listing 9-2. View INSERT Index Fragmentation

USE AdventureWorks2017

GO

SELECT index_type_desc

 ,index_depth

 ,index_level

 ,page_count

 ,record_count

 ,CAST(avg_fragmentation_in_percent as DECIMAL(6,2)) as avg_frag_in_percent

 ,fragment_count AS frag_count

 ,avg_fragment_size_in_pages AS avg_frag_size_in_pages

 ,CAST(avg_page_space_used_in_percent as DECIMAL(6,2)) as avg_page_space_

used_in_percent

FROM sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID('dbo.UsingUnique

identifier'),NULL,NULL,'DETAILED')

With the table built with a clustered index based on uniqueidentifier data

types, you are now ready to perform an INSERT into the table to see the effect that the

insert has on the index. To demonstrate, insert all the rows in sys.objects into dbo.

UsingUniqueidentifier using the code in Listing 9-3. After the insert, you can review

the fragmentation of the index in the results, using Listing 9-2 again. Your results should

be similar to those shown in Figure 9-2, which shows fragmentation in the clustered

index at over 70 percent at index level 0 after adding 689 rows to the table.

Figure 9-1. Starting fragmentation results (results may vary)

Chapter 9 Index MaIntenanCe

265

Listing 9-3. INSERT into Uniqueidentifier Table

USE AdventureWorks2017

GO

INSERT INTO dbo.UsingUniqueidentifier (Name, JunkValue)

SELECT name, REPLICATE('X', 2000)

FROM sys.objects

As this code sample demonstrated, clustered indexes that are based on values that

are not ever-increasing result in fragmentation. The best example of this type of behavior

is through the use of uniqueidentifiers. This can also happen when the clustering

key is a computed value or based on a business key. When looking at business keys, if a

random purchase order is assigned to an order, then that value will likely behave similar

to a uniqueidentifier data type value.

The other way in which INSERT operations can affect fragmentation is on the

nonclustered indexes. While the clustered index values may be ever-increasing values,

the values for the columns in the nonclustered index won’t necessarily have that same

quality. A good example of this is when indexing the name of a product in a nonclustered

index. The next record inserted into the table may start with the letter M and will need to

be placed near the middle of the nonclustered index. If there isn’t room at that location,

a page split will occur, and fragmentation will result.

To demonstrate this behavior, add a nonclustered index to the table dbo.

UsingUniqueidentifier that you used in the previous demonstrations. Listing 9-4

shows the schema for the new index. Before inserting more records to see the effect of

inserting into a nonclustered index, run Listing 9-2 again. Your results should be similar

to those in Figure 9-3.

Figure 9-2. Post-INSERT fragmentation results (percentage results may vary)

Chapter 9 Index MaIntenanCe

266

Listing 9-4. Create Nonclustered Index

USE AdventureWorks2017

GO

CREATE NONCLUSTERED INDEX IX_Name ON dbo.UsingUniqueidentifier(Name)

INCLUDE (JunkValue);

At this point, you need to insert more records into dbo.UsingUniqueidentifier.

Use Listing 9-3 again to insert more records into the table and then use Listing 9-4

to view the state of fragmentation in the nonclustered index. With this complete,

your nonclustered index has gone from no fragmentation to more than 40 percent

fragmentation, as shown in Figure 9-4.

Whenever you perform INSERT operations, there is always a way in which

fragmentation can occur. This will happen on both clustered and nonclustered indexes.

 Update Operations

Another operation that can lead to fragmentation is an UPDATE operation. There are two

main ways in which an UPDATE operation will result in fragmentation. First, the data in

the record no longer fits on the page on which it currently resides. Second, the key value

for the index changes, and the index location for the new key value is not on the same

page or doesn’t fit on the page where the record is destined. In both of these cases, the

page splits, and fragmentation occurs.

Figure 9-3. Nonclustered index fragmentation results

Figure 9-4. Nonclustered Post-INSERT fragmentation results

Chapter 9 Index MaIntenanCe

267

To demonstrate how these situations lead to fragmentation, you’ll first look at how

increasing the size of a record in an update can lead to fragmentation. For this, you’ll

create a new table and insert a number of records into it. Then you’ll add a clustered

index to the table. The code for this is in Listing 9-5. Using the script from Listing 9-6

again, you can see that there is no fragmentation on the clustered index, as the results in

Figure 9-5 show. One thing to pay attention to with these fragmentation results is that the

average page space used is almost 90 percent. Because of this, any significant growth in

record size will likely fill the available space on the pages.

Listing 9-5. Create Table for UPDATE Operations

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.UpdateOperations') IS NOT NULL

 DROP TABLE dbo.UpdateOperations;

CREATE TABLE dbo.UpdateOperations

(

RowID int IDENTITY(1,1)

,Name sysname

,JunkValue varchar(2000)

);

INSERT INTO dbo.UpdateOperations (Name, JunkValue)

SELECT name, REPLICATE('X', 1000)

FROM sys.columns

CREATE CLUSTERED INDEX CLUS_UsingUniqueidentifier ON dbo.

UpdateOperations(RowID);

Listing 9-6. View UPDATE Index Fragmentation

USE AdventureWorks2017

GO

SELECT index_type_desc

 ,index_depth

 ,index_level

 ,page_count

Chapter 9 Index MaIntenanCe

268

 ,record_count

 ,CAST(avg_fragmentation_in_percent as DECIMAL(6,2)) as avg_

fragmentation_in_percent

 ,fragment_count

 ,avg_fragment_size_in_pages

 ,CAST(avg_page_space_used_in_percent as DECIMAL(6,2)) as avg_page_

space_used_in_percent

FROM sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID('dbo.UpdateOperations'),

NULL,NULL,'DETAILED')

Now increase the size of some of the rows in the index. To accomplish this, execute

the code in Listing 9-7. This code will update the JunkValue column for every five rows

from a 1,000-character value to a 2,000-character value. Using Listing 9-2 to view current

index fragmentation, you can see that, through the results in Figure 9-6, the clustered

index is now more than 99 percent fragmented and the average page space used has

dropped to about 50 percent. As this code demonstrates, when a row increases in size

during an UPDATE operation, there can be significant amount of fragmentation.

Listing 9-7. Create Table for UPDATE Operations

USE AdventureWorks2017

GO

UPDATE dbo.UpdateOperations

SET JunkValue = REPLICATE('X', 2000)

WHERE RowID % 5 = 1

Figure 9-5. Initial UPDATE fragmentation results

Figure 9-6. UPDATE fragmentation results after record length increase

Chapter 9 Index MaIntenanCe

269

As mentioned, the second way in which an index can incur fragmentation is by

changing the key values for the index. When the key values for an index change, the

record may need to change its position in the index. For instance, if an index is built

on the name of the product, then changing the name from Acme Mop to XYZ Mop will

change where the product name will be placed in the sorting for the index. Changing the

location of the record in the index may place the record on a different page, and if there

isn’t sufficient space on the new page, then a page split and fragmentation may occur.

To demonstrate this concept, execute Listing 9-8 and then use Listing 9-6 to obtain

the results shown in Figure 9-7. You will see that for the new nonclustered index, there is

no fragmentation.

Note If key values for a clustered index change often, that may indicate that the
key values selected for the clustered index are inappropriate.

Listing 9-8. Create Nonclustered Index for UPDATE Operations

USE AdventureWorks2017

GO

CREATE NONCLUSTERED INDEX IX_Name ON dbo.UpdateOperations(Name) INCLUDE

(JunkValue);

At this point, you need to modify some key values. Using Listing 9-9, perform UPDATE

activity on the table and update one of every nine rows. To simulate changing the key

values, the UPDATE statement reverses the characters in the column. This small amount

of activity is enough to cause a significant amount of fragmentation. As the results in

Figure 9-8 illustrate, the nonclustered index went from no fragmentation to more than

30 percent fragmentation.

Figure 9-7. UPDATE fragmentation results after adding nonclustered index

Chapter 9 Index MaIntenanCe

270

One thing to note is that the fragmentation on the clustered index did not change

with these updates. Not all updates will result in fragmentation—only those that move

data around because of space being unavailable on the pages where the records are

currently stored.

Listing 9-9. UPDATE Operation to Change Index Key Value

USE AdventureWorks2017

GO

UPDATE dbo.UpdateOperations

SET Name = REVERSE(Name)

WHERE RowID % 9 = 1

 Delete Operations

The third type of operation that causes fragmentation is DELETE operation. Deletes are

a bit different in nature in that they create fragmentation within a database. Instead

of relocating pages because of page splits, a delete can lead to pages being removed

from an index. Gaps will then appear in the physical sequence of pages for the index.

Since the pages are no longer physically sequential, they are considered fragmented—

especially since once the pages are deallocated from the index, they can be reallocated

to other indexes for a more traditional form of fragmentation.

To demonstrate this type of behavior, create a table, populate it with a number of

records, and then add a clustered index. Listing 9-10 shows the script for these tasks. Run

the script followed by the script from Listing 9-11 to get the current fragmentation for the

clustered index. Your results should match those in Figure 9-9. As you can see from the

average fragmentation in percent column (avg_fragmentation_in_percent), there is no

fragmentation currently in the index.

Figure 9-8. UPDATE fragmentation results after changing index key values

Chapter 9 Index MaIntenanCe

271

Listing 9-10. Creating a Table for DELETE Operation

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.DeleteOperations') IS NOT NULL

 DROP TABLE dbo.DeleteOperations;

CREATE TABLE dbo.DeleteOperations

(

RowID int IDENTITY(1,1)

,Name sysname

,JunkValue varchar(2000)

);

INSERT INTO dbo.DeleteOperations (Name, JunkValue)

SELECT name, REPLICATE('X', 1000)

FROM sys.columns

CREATE CLUSTERED INDEX CLUS_UsingUniqueidentifier ON dbo.

DeleteOperations(RowID);

Listing 9-11. View DELETE Index Fragmentation

USE AdventureWorks2017

GO

SELECT index_type_desc

 ,index_depth

 ,index_level

 ,page_count

 ,record_count

 ,CAST(avg_fragmentation_in_percent as DECIMAL(6,2)) as avg_

fragmentation_in_percent

 ,fragment_count

 ,avg_fragment_size_in_pages

 ,CAST(avg_page_space_used_in_percent as DECIMAL(6,2)) as avg_page_

space_used_in_percent

FROM sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID('dbo.DeleteOperations'),

NULL,NULL,'DETAILED')

Chapter 9 Index MaIntenanCe

272

Now, to demonstrate fragmentation caused by DELETE operations, you’ll delete

every other 50 records in the table using the code in Listing 9-12. As before, you’ll

use Listing 9-11 to view the state of fragmentation in the index. The results, shown

in Figure 9-10, indicate that the DELETE operation resulted in about 13 percent

fragmentation. With DELETE operations, the rate in which fragmentation usually occurs

isn’t too fast. Also, since the fragmentation is not the result of page splits, the order of the

pages does not become physically out of order. Instead, there are gaps in the contiguous

pages. However, pages left empty could be reused in future INSERT and UPDATE

transactions which could result in the pages then being physically out of order.

Listing 9-12. Performing DELETE Operation

USE AdventureWorks2017

GO

DELETE dbo.DeleteOperations

WHERE RowID % 100 BETWEEN 1 AND 50

As a final note on DELETE operations, the fragmentation may not appear immediately

after the DELETE operation. When records are to be deleted, they are first marked for

deletion before the record itself is actually deleted. While it is marked for deletion, the

record is considered to be a ghost record. During this stage, the record is logically deleted

but is physically still present in the index. At a future point, after the transaction has been

committed and a CHECKPOINT has completed, the ghost cleanup process will physically

remove the row. At this time, the fragmentation will show in the index.

Figure 9-9. Fragmentation results before DELETE operation

Figure 9-10. Fragmentation results after DELETE

Chapter 9 Index MaIntenanCe

273

 Shrink Operations

The last type of operation that leads to fragmentation is when databases are shrunk.

Databases can be shrunk using either DBCC SHRINKDATABASE or DBCC SHRINKFILE. These

operations can be used to shrink the size of a database or its files. When they are used,

the pages at the end of a data file are relocated toward the beginning of the data file. For

their intended purpose, shrink operations can be effective tools.

Unfortunately, these shrink operations do not take into account the nature of the

data pages that are being moved. To the shrink operation, a data page is a data page.

The priority of the operation is that pages at the end of the data file find a place at the

beginning of the data file. As discussed, when the pages of an index are not physically

stored in order, the index is considered fragmented.

To demonstrate the fragmentation damage that a shrink operation can cause,

you’ll create a database and perform a shrink on it; the code appears in Listing 9-14.

In this example, there are two tables: FirstTable and SecondTable. Some records will

be inserted into each table. The inserts will alternate back and forth with three inserts

into FirstTable and two inserts into SecondTable. Through these inserts, there will

be alternating bands of pages allocated to the two tables. Next, SecondTable will be

dropped, which will result in unallocated data pages between each of the bands of pages

for FirstTable. Using Listing 9-13 again will show that a small amount of fragmentation

exists on FirstTable, shown in Figure 9-11.

Listing 9-13. View Index Fragmentation from Shrink

Use Fragmentation

GO

SELECT index_type_desc

 ,index_depth

 ,index_level

 ,page_count

 ,record_count

 ,CAST(avg_fragmentation_in_percent as DECIMAL(6,2)) as avg_

fragmentation_in_percent

 ,fragment_count

Chapter 9 Index MaIntenanCe

274

 ,avg_fragment_size_in_pages

 ,CAST(avg_page_space_used_in_percent as DECIMAL(6,2)) as avg_page_

space_used_in_percent

FROM sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID('dbo.FirstTable'),

NULL,NULL,'DETAILED')

Listing 9-14. Shrink Operation Database Preparation

USE master

GO

IF EXISTS (SELECT * FROM sys.databases WHERE name = 'Fragmentation')

DROP DATABASE Fragmentation

GO

CREATE DATABASE Fragmentation

GO

Use Fragmentation

GO

IF OBJECT_ID('dbo.FirstTable') IS NOT NULL

 DROP TABLE dbo.FirstTable;

CREATE TABLE dbo.FirstTable

(

RowID int IDENTITY(1,1)

,Name sysname

,JunkValue varchar(2000)

,CONSTRAINT PK_FirstTable PRIMARY KEY CLUSTERED (RowID)

);

INSERT INTO dbo.FirstTable (Name, JunkValue)

SELECT TOP 750 name, REPLICATE('X', 2000)

FROM sys.columns

IF OBJECT_ID('dbo.SecondTable') IS NOT NULL

 DROP TABLE dbo.SecondTable;

Chapter 9 Index MaIntenanCe

275

CREATE TABLE dbo.SecondTable

(

RowID int IDENTITY(1,1)

,Name sysname

,JunkValue varchar(2000)

,CONSTRAINT PK_SecondTable PRIMARY KEY CLUSTERED (RowID)

);

INSERT INTO dbo.SecondTable (Name, JunkValue)

SELECT TOP 750 name, REPLICATE('X', 2000)

FROM sys.columns

GO

INSERT INTO dbo.FirstTable (Name, JunkValue)

SELECT TOP 750 name, REPLICATE('X', 2000)

FROM sys.columns

GO

INSERT INTO dbo.SecondTable (Name, JunkValue)

SELECT TOP 750 name, REPLICATE('X', 2000)

FROM sys.columns

GO

INSERT INTO dbo.FirstTable (Name, JunkValue)

SELECT TOP 750 name, REPLICATE('X', 2000)

FROM sys.columns

GO

IF OBJECT_ID('dbo.SecondTable') IS NOT NULL

 DROP TABLE dbo.SecondTable;

GO

Figure 9-11. Fragmentation of FirstTable after inserts

Chapter 9 Index MaIntenanCe

276

With the database prepared, the next step is to shrink the database, the purpose

of which is to recover the space that SecondTable has been allocated and trim down

the size of the database to only what is needed. To perform the shrink operation, use

the code in Listing 9-15. When the SHRINKDATABASE operation completes, you can see

in Figure 9-12 that running the code from Listing 9-13 causes the fragmentation for

the index to increase from just over 2 percent fragmentation to more than 35 percent

fragmentation. This is a significant change in fragmentation on a database with just

a single table. Consider the effect of a shrink operation on a database with dozens,

hundreds, or thousands of indexes.

Listing 9-15. Shrink Operation

DBCC SHRINKDATABASE (Fragmentation)

This has been a simple example of the damage in terms of fragmentation that a

shrink operation can have on an index. As was evident even with this example, the

shrink operation led to a significant amount of fragmentation. Most SQL Server database

administrators will agree that shrink operations should be an extremely rare operation

on any database. Many DBAs are also of the opinion that this operation should never be

used on any database for any reason. The guideline that is most often recommended is

to be extremely cautious when shrink database operations are performed. Also, don’t get

caught in a cycle of shrinking a database to recover space and causing fragmentation and

then expanding the database through defragmenting the indexes. This is only a waste

of time and resources that could be better spent on real performance and maintenance

issues.

 Fragmentation Variants
Traditionally, when people discuss index fragmentation, the primary focus is

on fragmentation within the clustered or nonclustered index. This isn’t the only

consideration to keep in mind when considering index fragmentation. You also need

to consider whether the table or index has bloat, forwarding, or segmentation, each of

Figure 9-12. Fragmentation of FirstTable after shrink operation

Chapter 9 Index MaIntenanCe

277

which is a variation on the idea of index fragmentation. In this section, we’ll review two

other areas in which fragmentation-type maintenance can be required on tables:

• Heap bloat and forwarding

• Columnstore fragmentation

 Heap Bloat and Forwarding

The first area we’ll cover is heap bloat and forwarding. As discussed in Chapter 3, heaps

are collections of unordered pages in which data for a table is stored. As new rows are

added to the table, the heap grows, and new pages are allocated. Insert and update

operations can cause changes to heaps that can require maintenance on the table.

To begin, you’ll look at bloating within a heap. For heaps, bloating occurs when

records are deleted from the heap without being reused for new records. As discussed in

Chapter 8, this isn’t a matter of records going to new pages but an overall decline in the

number of records in the table. The pages will be reused, but when they aren’t, the pages

remain allocated, and this can have an impact on performance.

To demonstrate this activity, let’s review the script in Listing 9-16. In the script, it

starts with a heap table that has 400 records inserted into it, and then half the records are

deleted, leaving 200 records in the table. As shown in Figure 9-13, the record count for the

table reflects these changes, but in both cases the DMV results show that there are 100

pages associated with the table. This is because pages are not removed from a heap unless

maintenance activities force this to occur. Through the ALTER TABLE statement on dbo.

HeapTable with the REBUILD option, the table is rebuilt, and the excess pages are flushed.

Listing 9-16. Impact of Deletes on Heap Page Allocations

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.HeapTable') IS NOT NULL

 DROP TABLE dbo.HeapTable;

CREATE TABLE dbo.HeapTable

(

 RowId INT IDENTITY(1,1)

 ,FillerData VARCHAR(2500)

);

Chapter 9 Index MaIntenanCe

278

INSERT INTO dbo.HeapTable (FillerData)

SELECT TOP 400 REPLICATE('X',2000)

FROM sys.objects;

SELECT OBJECT_NAME(object_id), index_type_desc, page_count, record_count,

forwarded_record_count

FROM sys.dm_db_index_physical_stats (DB_ID(),OBJECT_ID('dbo.HeapTable'),

NULL,NULL,'DETAILED');

SET STATISTICS IO ON;

SELECT COUNT(*) FROM dbo.HeapTable;

SET STATISTICS IO OFF;

DELETE FROM dbo.HeapTable

WHERE RowId % 2 = 0;

SELECT OBJECT_NAME(object_id), index_type_desc, page_count, record_count,

forwarded_record_count

FROM sys.dm_db_index_physical_stats (DB_ID(),OBJECT_ID('dbo.HeapTable'),

NULL,NULL,'DETAILED');

SET STATISTICS IO ON;

SELECT COUNT(*) FROM dbo.HeapTable;

SET STATISTICS IO OFF;

ALTER TABLE dbo.HeapTable REBUILD;

SELECT OBJECT_NAME(object_id), index_type_desc, page_count, record_count,

forwarded_record_count

FROM sys.dm_db_index_physical_stats (DB_ID(),OBJECT_ID('dbo.HeapTable'),

NULL,NULL,'DETAILED');

SET STATISTICS IO ON;

SELECT COUNT(*) FROM dbo.HeapTable;

SET STATISTICS IO OFF;

Chapter 9 Index MaIntenanCe

279

To help emphasize that the pages are still in the table, Figure 9-14 shows the pages

that are read when counting all rows in the table, further demonstrating that there are

100 pages being accessed. When considering the impact on performance for heaps after

a delete, if there is an excessive number of pages in a heap compared to the amount of

data, this will increase the amount of effort required by SQL Server to execute the query.

In the case of this demonstration, the COUNT(*) queries are processing twice the amount

of data that is required.

The other area of consideration for the maintenance of heaps is the volume of

forwarded records in the table. Forwarded records, discussed in Chapter 3, are records

within a heap that no longer fit in the original location in which they were added to

the heap. To accommodate the change in the size of the record, the record is stored on

another page, and the previous record location includes a pointer to the new location.

The impact of this change is an increase in the number of pages in the heap, because

new pages are added for existing records, and it takes an additional I/O operation to go

from the first page to the forwarded page when looking up a record. While this may not

Figure 9-14. I/O impact from deletes on a heap

Figure 9-13. Results from deleting from a heap

Chapter 9 Index MaIntenanCe

280

appear to be a huge issue, in aggregate the accumulated impact of forwarded records

increases the amount of I/O for a system and adds to latency in query execution.

To demonstrate the impact of forwarded records on queries, execute the code in

Listing 9-17. This script creates a table with a heap, runs a number of queries, updates

the records to cause forwarding of heap records to occur, and then completes by

reexecuting the previous collection of queries.

Listing 9-17. Forwarded Record Impact on Query Performance

SET NOCOUNT ON

IF OBJECT_ID('dbo.ForwardedRecords') IS NOT NULL

 DROP TABLE dbo.ForwardedRecords;

CREATE TABLE dbo.ForwardedRecords

 (

 ID INT IDENTITY(1,1)

 ,VALUE VARCHAR(8000)

);

CREATE NONCLUSTERED INDEX IX_ForwardedRecords_ID ON dbo.

ForwardedRecords(ID);

INSERT INTO dbo.ForwardedRecords (VALUE)

SELECT REPLICATE(type, 500)

FROM sys.objects;

SET STATISTICS IO ON

PRINT '*** No forwarded records'

SELECT * FROM dbo.ForwardedRecords;

SELECT * FROM dbo.ForwardedRecords

WHERE ID = 40;

SELECT * FROM dbo.ForwardedRecords

WHERE ID BETWEEN 40 AND 60;

SET STATISTICS IO OFF

Chapter 9 Index MaIntenanCe

281

UPDATE dbo.ForwardedRecords

SET VALUE =REPLICATE(VALUE, 16)

WHERE ID%3 = 1;

SET STATISTICS IO ON

PRINT '*** With forwarded records'

SELECT * FROM dbo.ForwardedRecords;

SELECT * FROM dbo.ForwardedRecords

WHERE ID = 40;

SELECT * FROM dbo.ForwardedRecords

WHERE ID BETWEEN 40 AND 60;

SET STATISTICS IO OFF

There are three queries from Listing 9-17 that are included to demonstrate the

impact of forwarded records on heaps:

• SELECT *: To demonstrate the impact of an index scan

• SELECT with equality predicate: To demonstrate the impact on a

singleton lookup

• SELECT with inequality predicate: To demonstrate the impact on a

range lookup

For the SELECT * query, before the forwarded records are in the heap, the

query executes with 99 reads, shown in Figure 9-15. After the forwarded records are

introduced, the reads increase to 561. This increase is because of the new pages added

to the heap to accommodate the increases in the row sizes. With the second query, the

singleton lookup grows from three reads to four reads, which represents the additional

read required to go from the original location for the record to the forwarding location.

In the last query, the range query with the lookup executes with 23 reads, but after the

forwarded records are added to the table, the reads jump to 30 reads.

Chapter 9 Index MaIntenanCe

282

The overall effect of the forwarded records is an increase in reads. While the

increase may not be significant from a per-query basis, over time the impact adds up.

Scans of heaps with forwarded records access more pages, and lookups require an

extra I/O. Reducing the impact of forwarded records in heaps is an important part of

maintaining indexes and maintaining performance.

 Columnstore Fragmentation

Columnstore indexes are one of SQL Server’s newer features. An interesting component

of columnstore indexes is the read-only nature of the segments. As discussed in

Chapter 2, when new columnstore indexes are added to a delta table, the delta table is

eventually compressed into a columnstore format. Also, since the segments are read-

only, deletes don’t immediately impact the segments, resulting in fragments of the

read-only segments that contain data that is no longer part of the table.

To demonstrate both of these concepts, execute the code in Listing 9-18 to prepare

a table with a clustered columnstore index. After the table is built, the two sets of rows

are inserted. The first set contains 1,000 rows, and the index is reorganized to force

the rowgroup to compress to columnstore format. The second set contains 105,000

rows, which is more than the 104,000 threshold that automatically triggers use of the

columnstore format. As shown in Figure 9-16, the inserted records are all compressed to

columnstore format.

Note depending on your environment, the script in Listing 9-18 can take a while
to run.

Figure 9-15. I/O statistics for forwarded record queries

Chapter 9 Index MaIntenanCe

283

Listing 9-18. Prepare Columnstore Table

USE ContosoRetailDW

GO

IF OBJECT_ID('dbo.FactOnlineSalesCI') IS NOT NULL

 DROP TABLE dbo.FactOnlineSalesCI

CREATE TABLE dbo.FactOnlineSalesCI(

 [OnlineSalesKey] [int] NOT NULL,

 [DateKey] [datetime] NOT NULL,

 [StoreKey] [int] NOT NULL,

 [ProductKey] [int] NOT NULL,

 [PromotionKey] [int] NOT NULL,

 [CurrencyKey] [int] NOT NULL,

 [CustomerKey] [int] NOT NULL,

 [SalesOrderNumber] [nvarchar](20) NOT NULL,

 [SalesOrderLineNumber] [int] NULL,

 [SalesQuantity] [int] NOT NULL,

 [SalesAmount] [money] NOT NULL,

 [ReturnQuantity] [int] NOT NULL,

 [ReturnAmount] [money] NULL,

 [DiscountQuantity] [int] NULL,

 [DiscountAmount] [money] NULL,

 [TotalCost] [money] NOT NULL,

 [UnitCost] [money] NULL,

 [UnitPrice] [money] NULL,

 [ETLLoadID] [int] NULL,

 [LoadDate] [datetime] NULL,

 [UpdateDate] [datetime] NULL

)

INSERT INTO dbo.FactOnlineSalesCI

SELECT *

FROM dbo.FactOnlineSales

Chapter 9 Index MaIntenanCe

284

CREATE CLUSTERED COLUMNSTORE INDEX FactOnlineSalesCI_CCI ON dbo.

FactOnlineSalesCI

DECLARE @we int= 1

WHILE @we <= 5

BEGIN

 INSERT INTO dbo.FactOnlineSalesCI

 SELECT TOP 1000 *

 FROM dbo.FactOnlineSales

 ALTER INDEX ALL ON dbo.FactOnlineSalesCI REORGANIZE

 WITH (COMPRESS_ALL_ROW_GROUPS =ON)

 SET @we += 1

END

WHILE @we <= 10

BEGIN

 INSERT INTO dbo.FactOnlineSalesCI

 SELECT TOP 105000 *

 FROM dbo.FactOnlineSales

 SET @we += 1

END

SELECT*

FROM sys.column_store_row_groups

WHERE object_id=OBJECT_ID('dbo.FactOnlineSalesCI')

ORDER BY row_group_id DESC

Figure 9-16. Columnstore rowgroup resultset

Chapter 9 Index MaIntenanCe

285

The piece that is interesting at this point is that the rowgroups created are much

smaller than the max size for a rowgroup, of about 1 million rows. And since they are

smaller, there may be an opportunity to optimize the number of pages that they use

by increasing the number of records per rowgroup. This can be done by maintaining

the columnstore index and rebuilding it. To show the value in rebuilding columnstore

indexes, execute the code in Listing 9-19. Through this, you can see that the logical

reads before the rebuild are 83,423 over two scan operations and then drop to 833

logical reads after the rebuild, shown in Figure 9-17. This is an almost 100 percent drop

in pages accessed. If you consider the effect of this type of maintenance over large fact

tables using columnstore indexes, these types of excessive allocation of pages will greatly

impact performance. Additionally, comparing Figures 9-16 and 9-18, the table also has

far fewer rowgroups, from 34 to 14 after the columnstore index rebuild.

Listing 9-19. Impact of Inserts on Columnstore Table

USE ContosoRetailDW

GO

SET STATISTICS IO ON

SELECT DateKey,COUNT(*)

FROM dbo.FactOnlineSalesCI

GROUP BY DateKey

ALTER INDEX ALL ON dbo.FactOnlineSalesCI REBUILD

SELECT DateKey,COUNT(*)

FROM dbo.FactOnlineSalesCI

GROUP BY DateKey

SET STATISTICS IO OFF

SELECT *

FROM sys.column_store_row_groups

WHERE object_id = OBJECT_ID('dbo.FactOnlineSalesCI')

ORDER BY row_group_id DESC

Chapter 9 Index MaIntenanCe

286

The next type of fragmentation that occurs with columnstore indexes is through

delete operations. While this is called fragmentation, in actuality when deletes occur on

columnstore indexes, the rows are not removed from the indexes; they are only marked

as deleted. Because of this, pages allocated to a clustered columnstore index that have all

their records deleted will still be active within the index.

To show how this impacts, you’ll use the script in Listing 9-20 to delete all the

2007 data from the table. Then another statement will rebuild the columnstore index.

Between these operations, you’ll run an aggregate query to provide an operation to see

the impact of deletes on the I/O of queries.

Listing 9-20. Delete Operations on a Clustered Columnstore Index

USE ContosoRetailDW

GO

SET STATISTICS IO ON

SELECT DateKey,COUNT(*)

FROM dbo.FactOnlineSalesCI

GROUP BY DateKey

Figure 9-17. I/O statistics for columnstore table inserts

Figure 9-18. Rowgroup statistics after columnstore index rebuild

Chapter 9 Index MaIntenanCe

287

DELETE FROM dbo.FactOnlineSalesCI

WHERE DateKey <'2008-01-01'

SELECT DateKey,COUNT(*)

FROM dbo.FactOnlineSalesCI

GROUP BY DateKey

ALTER INDEX ALL ON dbo.FactOnlineSalesCI REBUILD

SELECT DateKey,COUNT(*)

FROM dbo.FactOnlineSalesCI

GROUP BY DateKey

SET STATISTICS IO OFF

After running these queries and the index is rebuilt, the results are fairly interesting.

If you start with the first query, there are 659 logical reads for the aggregate query, shown

in Figure 9-19. Deleting a year’s worth of data results in the aggregate query requiring

79,982 logical reads, which is an increase from the original query with 365 fewer rows

returned. This is because of the pages required to manage the deleted rows. After

rebuilding, the number of I/Os drops significantly to 444 logical reads.

Through the addition of new rows and the deletion of existing rows, there are reasons

to consider the maintenance requirements of columnstore indexes. The issues that affect

these indexes are not the same as those of traditional clustered indexes, but they are

significant nonetheless.

Figure 9-19. Statistics I/O results for delete operation demonstration

Chapter 9 Index MaIntenanCe

288

 Fragmentation Issues
You’ve seen a number of ways in which indexes can become fragmented, but there

hasn’t been a discussion about why this is important. There are a couple important

reasons why fragmentation within indexes can be a problem:

• Index I/O

• Contiguous reads

As the fragmentation of an index increases, each of these two areas affects the index’s

ability to perform well. In some worst-case scenarios, the level of fragmentation can be

so severe that the query optimizer will stop using the index in query plans.

 Index I/O

I/O is an area of SQL Server where it is easy to have performance bottlenecks; likewise,

there are a multitude of solutions to help mitigate the bottlenecks. From the perspective

of this chapter, you are concerned with the effect of fragmentation on I/O.

Since page splits are often the cause of fragmentation, they provide a good place to

start investigating the effect of fragmentation on I/O. To review, when a page split occurs,

half the contents on the page are moved off the page and onto another page. Generally

speaking, if the original page was 100 percent full, then both pages would be about 50

percent full. In essence, it will take two I/Os to read from storage the same amount of

information that required one I/O prior to the page split. This increase in I/Os will drive

up reads and writes and thus can have a negative effect on performance.

To validate that effect of fragmentation on I/O, let’s walk through another

fragmentation example. This time you’ll build a table, populate it with some data, and

perform an update to generate page splits and fragmentation. The code in Listing 9- 22

will perform these operations. The last portion of the script will query sys.dm_db_

partition_stats to return the number of pages that have been reserved for the index.

Execute the fragmentation script from Listing 9-21. You’ll see the index at this point is

more than 99 percent fragmented, and the results from Listing 9-14 show the index is

using 209 pages. See Figure 9-20 for the results.

Chapter 9 Index MaIntenanCe

289

Listing 9-21. View Index Fragmentation for I/O Example

SELECT index_type_desc

 ,index_depth

 ,index_level

 ,page_count

 ,record_count

 ,CAST(avg_fragmentation_in_percent as DECIMAL(6,2)) as avg_

fragmentation_in_percent

 ,fragment_count

 ,avg_fragment_size_in_pages

 ,CAST(avg_page_space_used_in_percent as DECIMAL(6,2)) as avg_page_

space_used_in_percent

FROM sys.dm_db_index_physical_stats(DB_ID(),OBJECT_ID('dbo.IndexIO'),NULL,

NULL,'DETAILED')

Listing 9-22. Script to Build Index I/O Example

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.IndexIO') IS NOT NULL

 DROP TABLE dbo.IndexIO;

CREATE TABLE dbo.IndexIO

(

RowID int IDENTITY(1,1)

,Name sysname

,JunkValue varchar(2000)

);

INSERT INTO dbo.IndexIO (Name, JunkValue)

SELECT name, REPLICATE('X', 1000)

FROM sys.columns

CREATE CLUSTERED INDEX CLUS_IndexIO ON dbo.IndexIO(RowID);

Chapter 9 Index MaIntenanCe

290

UPDATE dbo.IndexIO

SET JunkValue = REPLICATE('X', 2000)

WHERE RowID % 5 = 1

SELECT we.name, ps.in_row_reserved_page_count

FROM sys.indexes we

INNER JOIN sys.dm_db_partition_stats ps ON we.object_id = ps.object_id AND

we.index_id = ps.index_id

WHERE we.name = 'CLUS_IndexIO'

But would removing the fragmentation from the index have a noticeable impact

on the number of pages in the index? As the demo will demonstrate, reducing

fragmentation does have an impact.

Continuing, the next thing to do is to remove the fragmentation from the index.

To accomplish this, execute the ALTER INDEX statement in Listing 9-23 to remove the

fragmentation. In the rest of the chapter, we’ll discuss the mechanics of removing

fragmentation from an index, so for the time being, this statement won’t be explained.

The effect of this command is that all the fragmentation has been removed from the

index. Figure 9-21 shows the results from Listing 9-23. They show that the number

of pages that the index is using dropped from 585 to 417. The effect of removing the

fragmentation is an impressive reduction of almost 30 percent in pages in the index.

Listing 9-23. Script to Rebuild Index to Remove Fragmentation

USE AdventureWorks2017

GO

ALTER INDEX CLUS_IndexIO ON dbo.IndexIO REBUILD

SELECT we.name, ps.in_row_reserved_page_count

FROM sys.indexes we

INNER JOIN sys.dm_db_partition_stats ps ON we.object_id = ps.object_id AND

we.index_id = ps.index_id

WHERE we.name = 'CLUS_IndexIO'

Figure 9-20. Fragmentation of CLUS_IndexIO

Chapter 9 Index MaIntenanCe

291

This proves that fragmentation can have an effect on the number of pages in an

index. The more pages in an index, the more reads are required to get the data you need.

Reducing the count of pages can help with allowing SQL Server databases to process

more data in the same number of reads or to improve the speed in which they read the

same information across fewer pages.

 Contiguous Reads

The other negative effect that fragmentation can have on performance relates to

contiguous reads. Within SQL Server, contiguous reads affect its ability to utilize read-

ahead operations. Read-ahead allows SQL Server to request pages into memory that are

expected to be used. Rather than waiting for an I/O request to be generated for the page,

SQL Server can read large blocks of pages into memory with the expectation that the

data pages will be used by the query in the future.

Going back to indexes, we previously discussed how fragmentation within an index

occurs as a result of breaks in the continuity of physical data pages in an index. Every

time there is a break in the physical pages, I/O operations must change the place in

which data is being read from SQL Server. This is how fragmentation creates a hindrance

in contiguous reads.

 Defragmentation Options
SQL Server offers a number of ways in which fragmentation can be removed or mitigated

within an index. Each of the methods has pros and cons associated with using it. In this

section, you’ll look at the options and the reasons for using each one.

 Index Rebuild

The first method for removing fragmentation from an index is to rebuild the index.

Rebuilding an index builds a new contiguous copy of the index. When the new index

is complete, the existing index is dropped. Index rebuild operations are accomplished

through either a CREATE INDEX or ALTER INDEX statement. Typically, indexes with more

Figure 9-21. Page count resulting from rebuild operations

Chapter 9 Index MaIntenanCe

292

than 30 percent fragmentation are considered good candidates for index rebuilds. Note

that 30 percent and lower levels of fragmentation in most databases will not show as a

large negative impact on performance. The usage of 30 percent is a good starting point,

but each database and index usage should be reviewed and adjusted if performance

shows more negative effects with less than 30 percent fragmentation of the index.

The chief benefit of performing an index rebuild is that the resulting new index

has contiguous pages. When an index is highly fragmented, sometimes the best way to

resolve the fragmentation is to simply start over with the index and rebuild. Another

benefit of rebuilding an index is that the index options can be modified during the

rebuild. Lastly, for most indexes, the index can remain online while it is being rebuilt.

Note Since SQL Server 2012, clustered indexes with varchar(max),
nvarchar(max), varbinary(max), and XML data types can be rebuilt online.
Clustered indexes still cannot be rebuilt online when they contain the following
data types: image, ntext, or text. also, online rebuilds are limited to SQL Server
enterprise, developer, and evaluation editions. additionally, online rebuilds require
double the space for the index since both the old and new versions of the index
need to exist to complete the rebuild, which can be a problem with larger tables.

The first option for rebuilding an index is to use the CREATE INDEX statement, shown

in Listing 9-24. This is accomplished through the use of the DROP_EXISTING index option.

There are a few reasons to choose the CREATE INDEX option instead of ALTER INDEX:

• The index definition needs to be changed, such as when the columns

need to be added or removed or their order needs to change.

• The index needs to be moved from one filegroup to another.

• The index partitioning needs to be modified.

Listing 9-24. Index Rebuild with CREATE INDEX

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name

 ON <object> (column [ASC | DESC] [,...n])

 [INCLUDE (column_name [,...n])]

 [WHERE <filter_predicate>]

 [WITH (<relational_index_option> [,...n])]

Chapter 9 Index MaIntenanCe

293

 [ON { partition_scheme_name (column_name)

 | filegroup_name

 | default

 }

]

 [FILESTREAM_ON { filestream_filegroup_name | partition_scheme_name |

"NULL" }]

[;]

<relational_index_option> ::=

 DROP_EXISTING = { ON | OFF }

 | ONLINE = { ON | OFF }

 | RESUMABLE = {ON | OF }

 | MAX_DURATION = <time> [MINUTES]

The other option is the ALTER INDEX statement, shown in Listing 9-25. This option

utilizes the REBUILD option in the syntax. Conceptually, this accomplishes that same

thing as the CREATE INDEX statement but with the following benefits:

• More than one index on a table can be rebuilt in a single statement.

• A single partition of an index can be rebuilt.

Listing 9-25. Index Rebuild with ALTER INDEX

ALTER INDEX { index_name | ALL }

 ON <object>

 { REBUILD

 [[PARTITION = ALL]

 [WITH (<rebuild_index_option> [,...n])]

 | [PARTITION = partition_number

 [WITH (<single_partition_rebuild_index_option>

 [,...n])

]

]

]

Chapter 9 Index MaIntenanCe

294

The primary downside to index rebuilds is the amount of space that is required for

the index during the rebuild operation. At a minimum, there should be 120 percent

of the size of the current index available within the database for the rebuilt index. The

reason for this is that the current index will not be dropped until after the rebuild is

completed. For a short time, the index will exist twice in the database.

There are two ways to mitigate some of the space required for an index during a

rebuild. First, the SORT_IN_TEMPDB index option can be used to reduce the amount of

space needed for intermediate results. You will still need room in the database for two

copies of the index, but the 20 percent buffer won’t be necessary. The second way to

mitigate space is to disable the index prior to the rebuild. Disabling an index drops the

index and data pages from an index while retaining the index metadata. This will allow

a rebuild of the index in the space that the index previously occupied. Be aware that the

disabling option applies only to nonclustered indexes.

A new option with SQL Server 2019 is the ability to resume index builds. When

you are building an index online, you can set the RESUMABLE option to ON and the

MAX_DURATION to the number of minutes you want the index to run until it should

stop. When the index rebuild stops, the old index remains available, and the completed

portion of the rebuild is stored until a time when the rebuild is restarted. Additionally,

if an index rebuild fails with the RESUMABLE option set to ON, this will allow the index

rebuild to be restarted. This can be extremely useful if the transaction log runs out of

space or someone kills the index rebuild operation.

 Index Reorganization

An alternative to an index rebuild is to reorganize an index. This type of defragmentation

happens just as it sounds. Data pages in the index are reordered across the pages already

allocated to the index. After the reorganization is complete, the physical order of pages

in an index matches the logical order of pages. Indexes should be reorganized when

they are not heavily fragmented. In general, indexes fragmented less than 30 percent are

reorganization candidates.

To reorganize an index, the ALTER INDEX syntax is used (see Listing 9-26) with

the REORGANIZE option. Along with that option, the reorganization allows for a single

partition to be reorganized. The REBUILD option does not allow this.

Chapter 9 Index MaIntenanCe

295

Listing 9-26. Index Reorganization with ALTER INDEX

ALTER INDEX { index_name | ALL }

 ON <object>

 | REORGANIZE

 [PARTITION =partition_number]

 [WITH (LOB_COMPACTION = { ON | OFF })]

There are a couple of benefits to using the REORGANIZE option. First, indexes are

online or available for use by the optimizer in a new execution plan or in cached

execution plans for the duration of the reorganization. Second, the process is designed

around minimal resource usage, which significantly lowers the chance that locking and

blocking issues will occur during the transaction.

The downside to index reorganizations is that the reorganization uses only the data

pages already allocated to the index. With fragmentation, the extents allocated to one

index can often be intertwined with the extents allocated to other indexes. Reordering the

data pages won’t make the data pages any more contiguous than they currently are, but it

will make certain that the pages allocated are sorted in the same order as the data itself.

 Drop and Create

The third way to defragment an index is to simply drop the index and re-create it. We

include this option for completeness, but note that it is not widely practiced or advised.

There are a few reasons that illustrate why dropping and creating can be a bad idea.

First, if the index is a clustered index, then all the other indexes will need to be

rebuilt when the clustered index is dropped. Clustered indexes and heaps use different

structures for identifying rows and storing data. The nonclustered indexes on the table

will need information on where the record is and will need to be re-created to obtain this

information.

Second, if the index is a primary key or unique, there are likely other dependents

on the index. For instance, the index may be referenced in a foreign key. Also, the index

could be tied to a business rule, such as uniqueness, that cannot be removed from the

table, even in a maintenance window.

Chapter 9 Index MaIntenanCe

296

The third reason to avoid this method is that it requires knowledge of all properties

on an index. With the other strategies, the index retains all the existing index properties.

By having to re-create the index, there is a risk that a property or two may not be retained

in the DDL for the index and important aspects of an index could be lost.

Lastly, after an index is dropped from that table, it cannot be used. This should be an

obvious issue, but it’s often overlooked when considering this option. The purpose of an

index is usually the performance improvements that it brings; removing it from the table

takes those improvements with it.

 Defragmentation Strategies
So far we’ve discussed how fragmentation occurs, why it is an issue, and how it can be

removed from indexes. It is important to apply this knowledge to the indexes in your

databases. In this section, you will learn two ways in which the defragmentation of

indexes can be automated.

 Maintenance Plans

The first automation option available is defragmentation through maintenance plans,

which offer the opportunity to quickly create and schedule maintenance for your

indexes that will either reorganize or rebuild your indexes. For each of the types of index

defragmentation, there is a task available in the maintenance plans.

There are a couple of ways in which maintenance plans can be created. For the

purposes of brevity, we will assume you are familiar with maintenance plans in SQL

Server and thus will focus on the specific tasks related to defragmenting indexes.

Reorganize Index Task

The first task available is the Reorganize Index Task. This task provides a wrapper for the

ALTER INDEX REORGANIZE syntax from the previous section. Once configured, this task

will reorganize all the indexes that match the criteria for the task.

Chapter 9 Index MaIntenanCe

297

There are a few properties that need to be configured when using the Reorganize

Index Task (see Figure 9-22):

• Connection: The SQL Server instance the task will connect to when it

executes.

• Database(s): The databases the task will connect to for reorganizing.

The options for this property are

• All databases.

• All system databases.

• All user databases.

• These specific databases (a list of available databases is included

and one must be selected).

• Ignore databases where the state is not online.

• Object: Determines whether the reorganization will be against tables,

views, or tables and views.

• Selection: Specifies the tables or indexes affected by this task. This is

not available when Tables and Views is selected in the Object box.

• Compact large objects: Determines whether the reorganization uses

the option ALTER INDEX LOB_COMPACTION = ON.

• Scan type: Indicates how you want SQL Server to gather the statistics

for the remaining options. The available options are Fast, Sampled, or

Detailed.

• Optimize index only if: Provides ability to limit reorganization by

percent fragmentation, page count, and whether the index was used

in the last 7 days.

Chapter 9 Index MaIntenanCe

298

The index stats options were new for SQL Server 2016 and are a great addition to this

feature. In environments that don’t have DBAs actively managing the indexes within a

server, this is a great option for ensuring indexes are being maintained.

Rebuild Index Task

The other task available is the Rebuild Index Task. This task provides a wrapper for the

ALTER INDEX REBUILD syntax. Once configured, this task rebuilds all the indexes that

match the criteria for the task.

Similar to the Reorganize Index Task, the Rebuild Index Task has a number of

properties that need to be configured before using it (see Figure 9-23):

• Connection: The SQL Server instance the task will connect to when it

executes.

• Database(s): The databases the task will connect to for rebuilding.

The options for this property are

• All databases.

• All system databases.

Figure 9-22. Properties window for Reorganize Index Task

Chapter 9 Index MaIntenanCe

299

• All user databases.

• These specific databases (a list of available databases is included

and one must be selected).

• Ignore databases where the state is not online.

• Object: Determines whether the rebuild will be against tables, views,

or tables and views.

• Selection: Specifies the tables or indexes affected by this task. This is

not available when Tables and Views is selected in the Object box.

• Default free space per page: Specifies whether the rebuild should

use the current fill factor on the index.

• Change free space per page to: Allows the rebuild to specify a new fill

factor when the index is rebuilt.

• Sort results in tempdb: Determines whether the rebuild uses the

option ALTER INDEX SORT_IN_TEMPDB = ON.

• MAXDOP: Determines the max degree of parallelism for the rebuild,

which determines the max number of CPU threads SQL Server can

use to rebuild the index.

• Keep index online while re-indexing: Determines whether the

rebuild uses the option ALTER INDEX ONLINE = ON. For indexes that

cannot be rebuilt online, there is an option to determine whether

to skip or rebuild the index offline. Along with that, you can set Low

Priority Used to determine if blocking will cancel an index rebuild

and whether it cancels itself or blockers and after how much time.

• Scan type: Indicates how you want SQL Server to gather the statistics

for the remaining options. The available options are Fast, Sampled, or

Detailed.

• Optimize index only if: Provides ability to limit rebuild by percent

fragmentation, page count, and whether the index was used in the

last 7 days.

Chapter 9 Index MaIntenanCe

300

And like the reorganization task, the index stats options were added in with SQL

Server 2016. And in similar fashion, these changes make the rebuild task a viable option

for environments that don’t have dedicated database administration resources or when

you are looking to keep the index maintenance simple and without custom code to

manage the process.

Figure 9-23. Properties window for Rebuild Index Task

Chapter 9 Index MaIntenanCe

301

Maintenance Plan Summary

Maintenance plans offer a way to get started with removing fragmentation from your

indexes right away. The tasks can be configured and scheduled in a matter of minutes. Since

the addition of the SQL Server 2016 enhancements, there are a great choice for managing

index maintenance. The only real reason to use other options, such as T-SQL scripts, is

when you need additional functionality like custom logging or custom resume logic.

 T-SQL Scripts

An alternative approach to defragmenting databases is to use a T-SQL script to defragment

the indexes intelligently. In this section, we’ll walk through the steps necessary to defragment

all the indexes in a single database. The main advantage of this choice is the ability to keep

everything in a single process, and there’s no chance that both tasks could affect an index.

The script will pick the indexes that will best benefit from defragmentation, determine

whether to rebuild or reorganize, and ignore those that would receive little or no benefit.

To accomplish the filtering, you’ll apply some defragmentation best practices that

help determine whether to defragment the index and what method should be applied.

The guidelines that you will use are the following:

• Reorganize indexes with less than 30 percent fragmentation.

• Rebuild indexes with 30 percent or more fragmentation.

• Ignore indexes that have less than 1,000 pages.

• If you have Enterprise Edition, use online rebuilds when the data

needs to be accessible during maintenance.

• If the clustered index is being rebuilt, rebuild all indexes in the table.

Note Just because an index is fragmented doesn’t mean that it should be always
be defragmented. When dealing with indexes for small tables, there isn’t always
a lot of benefit in defragmenting the index. For instance, an index having fewer
than eight pages will fit into one extent, and thus there is no benefit in terms of
reduced I/O from defragmenting that index. Some Microsoft documentation and
SQL Server experts recommend not defragmenting tables with fewer than 1,000
pages. Whether that value is appropriate for your database is dependent on your
database, but it is a starting point for building index maintenance strategies.

Chapter 9 Index MaIntenanCe

302

There are a few steps that a defragmentation script will perform to intelligently

defragment the indexes:

 1. Collect fragmentation data.

 2. Determine what indexes to defragment.

 3. Build the defragmentation statement.

Before starting on the fragmentation steps, you need a template for the index

maintenance script. The template, shown in Listing 9-27, declares a number of variables

and utilizes a CURSOR to loop through each of the indexes and perform the necessary

index maintenance. The variables are set at the DECLARE statement with the thresholds

defined at the start of this section. Also in the template is a table variable that is used to

store intermediate results on the state of fragmentation in the database.

Listing 9-27. Index Defragmentation Script Template

DECLARE @MaxFragmentation TINYINT=30

,@MinimumPages SMALLINT=1000

,@SQL nvarchar(max)

,@ObjectName NVARCHAR(300)

,@IndexName NVARCHAR(300)

,@CurrentFragmentation DECIMAL(9, 6)

DECLARE @FragmentationState TABLE

(

SchemaName SYSNAME

,TableName SYSNAME

,object_id INT

,IndexName SYSNAME

,index_id INT

,page_count BIGINT

,avg_fragmentation_in_percent FLOAT

,avg_page_space_used_in_percent FLOAT

,type_desc VARCHAR(255)

)

Chapter 9 Index MaIntenanCe

303

INSERT INTO @FragmentationState

<Script to Collect Fragmenation Data (Listing 9-28)>

DECLARE INDEX_CURSE CURSOR LOCAL FAST_FORWARD FOR

<Script to Identify Fragmented Indexes (Listing 9-29)>

OPEN INDEX_CURSE

WHILE 1=1

BEGIN

 FETCH NEXT FROM INDEX_CURSE INTO @ObjectName, @IndexName

 ,@CurrentFragmentation

 IF @@FETCH_STATUS <> 0

 BREAK

<Script to Build Index Defragmentation Statements(Listing 9-30)>

 EXEC sp_ExecuteSQL @SQL

 END

CLOSE INDEX_CURSE

DEALLOCATE INDEX_CURSE

To get started, you need to collect fragmentation data on the indexes and populate

them into the table variable. In the script in Listing 9-28, the DMF sys.dm_db_index_

physical_stats is used with the SAMPLED option. This option is used to minimize the

impact that executing the DMF will have on the database. Included in the results are the

schema, table, and index names to identify the index that is being reported on, along

with the object_id and index_id. Statistical columns on the index fragmentation from

the DMF are included in the columns page_count, avg_fragmentation_in_percent, and

avg_page_space_used_in_percent. The last column in the results is has_LOB_column.

This column is the result of a correlated subquery that determines whether any of the

columns in the index are LOB types, which disallow online index rebuilds.

Chapter 9 Index MaIntenanCe

304

Listing 9-28. Script to Collect Fragmentation Data

SELECT

 s.name as SchemaName

 ,t.name as TableName

 ,t.object_id

 ,we.name as IndexName

 ,we.index_id

 ,x.page_count

 ,x.avg_fragmentation_in_percent

 ,x.avg_page_space_used_in_percent

 ,we.type_desc

FROM sys.dm_db_index_physical_stats(db_id(), NULL, NULL, NULL, 'SAMPLED') x

 INNER JOIN sys.tables t ON x.object_id = t.object_id

 INNER JOIN sys.schemas s ON t.schema_id = s.schema_id

 INNER JOIN sys.indexes we ON x.object_id = we.object_id AND x.index_id =

we.index_id

WHERE x.index_id > 0

AND x.avg_fragmentation_in_percent > 0

AND alloc_unit_type_desc = 'IN_ROW_DATA'

The results of the query in Listing 9-28 will vary for every reader. In general, the

results should be similar to those in Figure 9-24, which include clustered, nonclustered,

and XML indexes from the AdventureWorks2017 database.

The next step in the defragmentation script is to build the list of indexes that

need to be defragmented. The list of indexes, created through Listing 9-29, is used to

populate the cursor. The cursor then loops through each of the indexes to perform the

defragmentation. One point of interest in the script is that for clustered indexes, all the

underlying indexes will be rebuilt. This isn’t a requirement when defragmenting indexes,

but it is something that can be considered. When there are just a few indexes on a table,

Figure 9-24. Query results for table fragmentation data

Chapter 9 Index MaIntenanCe

305

this may be a worthwhile way to manage them. As the count of indexes increases, this

may become less appealing. The results from this query should look similar to those in

Figure 9-25.

Listing 9-29. Script to Identify Fragmented Indexes

SELECT QUOTENAME(x.SchemaName)+'.'+QUOTENAME(x.TableName)

 ,CASE WHEN x.type_desc = 'CLUSTERED' THEN 'ALL'

 ELSE QUOTENAME(x.IndexName) END

 ,x.avg_fragmentation_in_percent

FROM @FragmentationState x

LEFT OUTER JOIN @FragmentationState y ON x.object_id = y.object_id AND

y.index_id = 1

WHERE (

 x.type_desc = 'CLUSTERED'

 AND y.type_desc = 'CLUSTERED'

)

 OR y.index_id IS NULL

ORDER BY x.object_id

 ,x.index_id

The last part of the template is where the magic happens. In other words, the script

in Listing 9-30 is used to construct the ALTER INDEX statement that is used to defragment

the index. At this point, the level of fragmentation is checked to determine whether to

issue a REBUILD or REORGANIZATION. For indexes that can support ONLINE index rebuilds,

a CASE statement adds the appropriate syntax.

Figure 9-25. Indexes for rebuild/reorganize operations

Chapter 9 Index MaIntenanCe

306

Listing 9-30. Script to Build Index Defragmentation Statements

SET @SQL = CONCAT('ALTER INDEX ', @IndexName,' ON ',@ObjectName,

 CASE WHEN @CurrentFragmentation <= 30 THEN ' REORGANIZE;'

 ELSE ' REBUILD' END,

 CASE WHEN CONVERT(VARCHAR(100), SERVERPROPERTY('Edition')) LIKE

'Enterprise%'

 OR CONVERT(VARCHAR(100), SERVERPROPERTY('Edition')) LIKE 'Developer%'

 THEN ' WITH (ONLINE=ON, SORT_IN_TEMPDB=ON) ' END, ';');

Note One of the improvements to SQL Server 2017 enterprise edition is the
ability to perform online index rebuilds when the index contains columns with large
object (LOB) data types.

Combining all these pieces into the template from the beginning of this section

to create an index defragmentation script provides similar functionality to that of the

maintenance plan tasks. With the ability to set the size and fragmentation levels in which

the defragmentation occurs, this script removes the fragmentation from indexes that

really need the work done on them vs. just defragmenting every index in the database.

Using Extended Events on AdventureWorks2017 to trace the output of the script reveals

that the ALTER INDEX syntax for the results of the previous queries is similar to that in

Listing 9-31.

Listing 9-31. Index Defragmentation Statements

ALTER INDEX ALL ON [HumanResources].[EmployeePayHistory] REBUILD WITH

(ONLINE=ON, SORT_IN_TEMPDB=ON) ;

ALTER INDEX ALL ON [HumanResources].[JobCandidate] REORGANIZE; WITH

(ONLINE=ON, SORT_IN_TEMPDB=ON) ;

ALTER INDEX ALL ON [dbo].[AllocationCycle] REBUILD WITH (ONLINE=ON, SORT_

IN_TEMPDB=ON) ;

ALTER INDEX ALL ON [dbo].[PageCompression] REORGANIZE; WITH (ONLINE=ON,

SORT_IN_TEMPDB=ON) ;

ALTER INDEX ALL ON [Sales].[SalesPersonQuotaHistory] REBUILD WITH

(ONLINE=ON, SORT_IN_TEMPDB=ON) ;

Chapter 9 Index MaIntenanCe

307

As the code in this section demonstrated, using a T-SQL script can be much more

complicated than just using the maintenance plan tasks. The upside to the complexity

is that once the script is complete, it can be wrapped in a stored procedure and used

on all your SQL Server instances. This script is meant as a first step in automating

defragmentation with T-SQL scripts. It doesn’t account for partitioned tables and doesn’t

check to see whether the index is being used before rebuilding or reorganizing the index.

On the upside, rather than driving a truck through your databases and re-indexing

everything, a scripted solution can intelligently decide how and when to defragment

your indexes.

Note For a complete index defragmentation solution, check out Ola hallengren’s
index maintenance scripts at https://ola.hallengren.com.

 Preventing Fragmentation
Fragmentation within an index is not always a foregone conclusion. There are some

methods that can be utilized to mitigate the rate in which fragmentation occurs. When

you have indexes that are often affected by fragmentation, it is advisable to investigate

why the fragmentation is occurring. There a few strategies that can help mitigate

fragmentation; these are fill factor, data typing, and default values.

 Fill Factor

Fill factor is an option that can be used when building or rebuilding indexes. This

property is used to determine how much space per page should be left available in the

index when it is first created or the next time it is rebuilt. For instance, with a fill factor

of 75, about 25 percent of every data page is left empty.

If an index encounters a significant or frequent amount of fragmentation, it is

worthwhile to adjust the fill factor to mitigate the fragmentation. By doing this, the

activities that are causing fragmentation should be less impactful, which should reduce

the frequency that the index needs to be defragmented.

By default, SQL Server creates all indexes with a fill factor of 0. This is a

recommended value for both the server and database levels. Not all indexes are created

equal, and fill factor should be applied as it is needed, not as a blanket insurance policy.

Also, a fill factor of 0 is the same as a fill factor of 100.

Chapter 9 Index MaIntenanCe

https://ola.hallengren.com

308

The one downside of fill factor is that leaving space available in data pages means

that the index will require more data pages for all the records in the index. More pages

means more I/O and possibly less utilization of the index if there are alternate indexes to

select from.

 Data Typing

Another way to avoid fragmentation is through appropriate data typing. This strategy

applies to data types that can change length depending on the data that they contain.

These are data types such as VARCHAR and NVARCHAR, which have lengths that can change

over time.

In many cases, variable-length data types are a great fit for columns in a table. Issues

arise when the volatility of the data is high and the length of the data is volatile as well.

As the data changes length, there can be page splits, which lead to fragmentation. If the

length volatility occurs across significant portions of the index, then there may also be

significant numbers of page splits and thus fragmentation.

A great example of bad data typing comes from my experience with the first data

warehouse that I worked with. The original design for many of the tables included a

column with a data type of VARCHAR(10). The column was populated with dates in the

format of yyyymmdd, with values similar to 20191011. As part of the import process, the

date values were updated into a format of yyyy-mm-dd. When the import was moved

to production and millions of rows were being processed at a time, the increase in

the length of the column from eight to ten characters led to an astounding level of

fragmentation because of page splits. Resolving the problem was as simple as changing

the data type of the column from VARCHAR(10) to CHAR(10).

Such simple solutions can apply to many databases. It just requires a bit of

investigation into why the fragmentation is occurring.

 Default Values

The proper application of default values may not seem to be something that can assist in

preventing fragmentation, but there are some scenarios in which it can have a significant

effect on fragmentation. The poster child for this type of mitigation is when databases

utilize the uniqueidentifier data type.

Chapter 9 Index MaIntenanCe

309

In most cases, uniqueidentifier values are generated using the NEWID() function.

This function creates a globally unique identifier (GUID) that should be unique across

the entire planet. This is useful for generating unique identifiers for rows but is likely

scoped larger than that of your database. In many cases, the unique value probably

needs to be unique for the server or just the table.

The main problem with the NEWID() function is that generating the GUID is not

a sequential process. As demonstrated at the beginning of the chapter, using this

function to generate values for the clustered index key can lead to severe levels of

fragmentation.

An alternative to the NEWID() function is the NEWSEQUENTIALID() function. This

function returns a GUID just like the other function but with a couple variations on

how the values are generated. First, each GUID generated by the function on a server

is sequential to the last value. The second variation is that the GUID value generated is

unique only to the server that is generating it. If another SQL Server instance generates

a GUID with this function for the same table, it is possible that duplicate values will

be generated and the values will not be sequential since these are scoped to the

server level.

With these restrictions in mind, if a table must use the uniqueidentifier data type,

the NEWSEQUENTIALID() function is an excellent alternative to the NEWID() function. The

values will be sequential, and the amount of fragmentation encountered will be much

lower and less frequent.

 Index Statistics Maintenance
In Chapter 3, we discussed the statistics collected on indexes. These statistics provide

crucial information that the query optimizer uses to compile execution plans for queries.

When this information is out-of-date or inaccurate, the database will provide suboptimal

or inaccurate query plans.

For the most part, index statistics do not require much maintenance. In this section,

we’ll look at the processes within SQL Server that can be used to create and update

statistics. We’ll also look at how you can maintain statistics in situations where the

automated processes cannot keep up with the rate of data change within an index.

Chapter 9 Index MaIntenanCe

310

 Automatically Maintaining Statistics
The easiest way to build and maintain statistics in SQL Server is to just let SQL Server

do it. There are three database properties that control whether SQL Server will

automatically build and maintain statistics:

• AUTO_CREATE_STATISTICS

• AUTO_UPDATE_STATISTICS

• AUTO_UPDATE_STATISTICS_ASYNC

By default, the first two properties are enabled in databases. The last option is

disabled by default. In most cases, all three of these properties should be enabled.

 Automatic Creation

The first database property is AUTO_CREATE_STATISTICS. This database property directs

SQL Server to automatically create single-column statistics that do not have statistics.

From the perspective of indexes, this property does not have an impact. When an index

is created, a statistics object is created for the index.

 Automatic Updating

The next two properties are AUTO_UPDATE_STATISTICS and AUTO_UPDATE_STATISTICS_

ASYNC. At a high level, these two properties are quite similar. When an internal threshold

is surpassed, SQL Server will initiate an update of the statistics object. The update occurs

to keep the values within the statistics object current with the cardinality of values within

the table.

The threshold for triggering a statistics update can change from table to table.

The threshold is based on a couple of calculations relating to the number of rows that

have changed. For an empty table, when more than 500 rows are added to the table, a

statistics update will be triggered. If the table has more than 500 rows, then statistics

will be updated when 500 rows plus at most 20 percent of the cardinality of rows have

been modified. At this point, SQL Server will schedule an update to the statistics. As the

number of rows in the table increases, then the 20 percent threshold decreases, which

accommodates the need to update statistics more frequently when there are larger

numbers of rows within a table. At about 500,000 rows, the percentage drops to about 5

percent and then less than 1 percent for over 1 billion rows. This is the behavior that was

previously available through trace flag 2371, which is on by default since SQL Server 2016.

Chapter 9 Index MaIntenanCe

311

When the statistics update occurs, there are two modes in which it can be

accomplished: synchronously and asynchronously. By default, statistics update

synchronously. This means that when statistics are deemed out-of-date and require an

update, the query optimizer will wait until after the statistics have been updated before it

will compile an execution plan for the query. This is extremely useful for tables that have

data that is volatile. For instance, the statistics for a table before and after a TRUNCATE

TABLE would be quite different. Optionally, statistics can be built asynchronously

through enabling the AUTO_UPDATE_STATISTICS_ASYNC property. This changes how the

query optimizer reacts when an update statistics event is triggered. Instead of waiting

for the statistics update to complete, the query optimizer will compile an execution plan

based on the existing statistics and use the updated statistics for future queries after the

update completes. For databases with high volumes of queries and data being pushed

through, this is often the preferred manner of updating statistics. Instead of occasional

pauses in transactional throughput, the queries will flow through unencumbered, and

plans will update as improved information is available.

If you are in an environment that disabled AUTO_UPDATE_STATISTICS in previous SQL

Server versions, you should consider enabling it now with AUTO_UPDATE_STATISTICS_

ASYNC. The most common reason to disable AUTO_UPDATE_STATISTICS in the past was

the delay caused by the update of statistics. With the option to enable AUTO_UPDATE_

STATISTICS_ASYNC, those performance concerns can likely be mitigated.

 Preventing Auto Update

Depending on the indexes on a table, there will be times in which automatically updating

the indexes will do more harm than good. For instance, an automatic statistics update on

a large table may lead to performance issues while the statistics object is updated. In that

situation, the existing statistics object may be good enough until the next maintenance

window. There are a number of ways in which AUTO_UPDATE_STATISTICS can be disabled

on an individual statistics object rather than across the entire database:

• Executing an sp_autostats system store procedure on the statistics

object

• Using the NORECOMPUTE option on the UPDATE STATISTICS or CREATE

STATISTICS statement

• Using STATISTICS_NORECOMPUTE on the CREATE INDEX statement

Chapter 9 Index MaIntenanCe

312

Each of these options can be used to disable or enable the AUTO_UPDATE_STATISTICS

option on indexes. Before disabling this feature, always be sure to validate that the

statistics update is truly necessary.

 In-Memory Statistics

When considering statistics, one area where statistics are created and used a bit

differently are with in-memory tables. It’s important to understand that statistics cannot

be generated automatically on in-memory tables and that they always require a full scan.

Add to this, natively compiled stored procedures on in-memory tables retrieve statistics

only when the stored procedure is compiled or when SQL Server restarts. This means

that when considering the impact of statistics on indexes, in-memory tables require

additional care in timing the maintenance for the statistics.

 Manually Maintaining Statistics
There will be times when the automated processes for maintaining statistics will not be

good enough. This is often tied to situations where the data is changing but not enough

has changed to trigger a statistics update. A good example of when this can happen is

when update statements change the cardinality of the table without affecting a large

number of rows. For instance, if 10 percent of a table was changed from a large number

of values to a single value, then the plan for querying the data could end up being

suboptimal. In situations like this, you need to be able to get in and manually update

statistics. As with index fragmentation, there are two methods for manually maintaining

statistics:

• Maintenance plans

• T-SQL scripts

In the next sections, you’ll look at each of these methods and walk through how they

can be implemented.

Chapter 9 Index MaIntenanCe

313

 Maintenance Plans

Within maintenance plans, there is a task that allows statistics maintenance. This task is

the Update Statistics Task, aptly named for exactly what it accomplishes. When using this

task, there are a number of properties that can be configured to control its behavior (see

Figure 9-26):

• Connection: The SQL Server instance the task will connect to when it

executes.

• Database(s): The databases the task will connect to for rebuilding.

The options for this property are

• All databases.

• All system databases.

• All user databases.

• These specific databases (a list of available databases is included

and one must be selected).

• Ignore databases where the state is not online.

• Object: Determines whether the rebuild will be against tables, views,

or tables and views.

• Selection: Specifies the tables or indexes affected by this task. This is

not available when Tables and Views is selected in the Object box.

• Update: For each table, determines whether all existing statistics,

column statistics only (using WITH COLUMN clause), or index statistics

only (using WITH INDEX clause) are updated.

• Scan type: A choice between a full scan of all leaf-level pages of the

indexes and “Sample by,” which will scan a percentage or number of

rows to build the statistics object.

Chapter 9 Index MaIntenanCe

314

Unlike the maintenance plans previously discussed, the Update Statistics Task

doesn’t have deeper controls to help determine whether the statistics should be

updated. A useful option would be to limit the statistics updates to a specified date

range, which would reduce the number of statistics updated during each execution. For

the most part, the lack of that option is not a deal-breaker. Statistics updates aren’t like

indexes where each update requires enough space to rebuild the entire index. However,

it would be good to be able to retain the current sample scan type since that can have an

effect on performance and may not result in desired performance with a one-size-fits-all

approach.

 T-SQL Scripts

Through T-SQL, there are a couple alternative approaches for updating statistics:

using stored procedure or using DDL statements. Each of these approaches has pros

and cons. In the next sections, you’ll look at each one and why it may be a worthwhile

approach.

Figure 9-26. Properties window for Update Statistics Task

Chapter 9 Index MaIntenanCe

315

Stored Procedure

Within the master database, there is a system stored procedure named sp_updatestats

that allows for updating all statistics within a database. Since it is a system stored

procedure, it can be called from any database to update the statistics in the database in

which it is called from.

When sp_updatestats is executed, it runs the UPDATE STATISTICS statement,

described in the next section, using the ALL option. The stored procedure accepts a

single parameter named resample, shown in Listing 9-32. The resample parameter

accepts only the value resample. If this value is supplied, then the stored procedure uses

the RESAMPLE option of UPDATE STATISTICS. Otherwise, the stored procedure uses the

default sampling algorithm in SQL Server.

Listing 9-32. sp_updatestats Syntax

sp_updatestats [[@resample =] 'resample']

One benefit to using sp_updatestats is that it will update the statistics only for items

in which there have been modifications to the data. The internal counter that is used to

trigger automatic statistics updates is checked to make certain that only statistics that

have been changed will be updated. Additionally, the resample option uses the most

recently used sample rate for the statistics.

In situations where a statistics update is needed, the sp_updatestats is a great tool

for updating statistics on just those that have the potential for being out-of-date since the

last update. Where the Update Statistics Task is an oversized blanket that smothers the

entire database, sp_updatestats is a comforter that covers just the right places.

DDL Command

The other option for updating statistics is through the DDL command UPDATE

STATISTICS, shown in Listing 9-33. The UPDATE STATISTICS statement allows for finely

tuned statistics updates on a per-statistics basis with a number of options for how to

collect and build statistics information.

Chapter 9 Index MaIntenanCe

316

Listing 9-33. UPDATE STATISTICS Syntax

UPDATE STATISTICS table_or_indexed_view_name

 [

 {

 { index_or_statistics_name }

 | ({ index_or_statistics_name } [,...n])

 }

]

 [WITH

 [

 FULLSCAN

 [[,] PERSIST_SAMPLE_PERCENT = { ON | OFF }]

 | SAMPLE number { PERCENT | ROWS }

 [[,] PERSIST_SAMPLE_PERCENT = { ON | OFF }]

 | RESAMPLE

 [ON PARTITIONS ({ <partition_number> | <range> } [, ...n])]]

 [[,] [ALL | COLUMNS | INDEX]

 [[,] NORECOMPUTE]

 [[,] INCREMENTAL = { ON | OFF }]

 [[,] MAXDOP = max_degree_of_parallelism]

] ;

The first parameter to set when using UPDATE STATISTICS is table_or_indexed_

view_name. This parameter references the table in which the statistics will be updated.

With the UPDATE STATISTICS command, only one table or view can have its statistics

updated at a time.

The next parameter is index_or_statistics_name. This parameter is used to

determine whether a single statistic, list of statistics, or all statistics on a table will be

updated. To update just a single statistic, include the name of the statistic after the name

of the table or view. For a list of statistics, the names of the statistics are included in a

comma-separated list within parentheses. If no statistics are named, then all statistics

will be considered for updating.

After the parameters are set, it is time to add applicable options to the UPDATE

STATISTICS command. This is where the power and flexibility of the syntax really shines.

Chapter 9 Index MaIntenanCe

317

These parameters allow the statistics to be finely tuned to the data available in them to

get the right statistics for the right table and the right index:

• FULLSCAN: When the statistics object is built, all rows and pages in the

table or view are scanned. For large tables, this may have an effect on

performance while creating the statistics. Basically, this is the same

as performing a SAMPLE 100 PERCENT operation.

• SAMPLE: The statistics object is created using either a count or a

percentage sample of the rows in the table or view. When the sample

rate is not selected, SQL Server will determine an appropriate sample

rate based on the number of rows in the table.

• RESAMPLE: Updates the statistics using the sample rate from the last

time that the statistics were updated. For instance, if that last update

used a FULLSCAN, then a RESAMPLE will result in a FULLSCAN as well.

• PERSIST_SAMPLE_PERCENT: Determines whether the defined sample

rate should be persisted into the statistics as their future default value

for when default values are not specified.

• ALL | COLUMNS | INDEX: Determines whether column statistics,

index statistics, or both should be updated.

• NORECOMPUTE: Disables the option for the query optimizer to request

an automatic update to the statistics. This is useful for locking in

statistics that shouldn’t change or are optimal with the current

sample. Take caution when using this on tables that have frequent

data modifications and make certain there are other mechanisms in

place to update the statistics as needed.

• INCREMENTAL: When enabled, statistics are created as per-partition

statistics which allows statistics to be updated per partition using the

ON PARTITIONS clause.

• MAXDOP: Determines the max degree of parallelism for the statistics

update operation and overrides the max degree of parallelism

configuration for the server.

The first three options in this list are mutually exclusive. You are able to select only

one of the options. Selecting more than one of those options will generate an error.

Chapter 9 Index MaIntenanCe

318

Since UPDATE STATISTICS is a DDL command, it can easily be automated in a

fashion similar to that used to defragment indexes. For brevity, a sample script is not

included, but the template for the index fragmentation maintenance could be used as

a starting point. As mentioned in the previous section, sp_updatestats uses UPDATE

STATISTICS under the covers. This DDL command is a powerful way to update statistics

as needed in your databases without doing more than is really necessary. To continue

the analogy from the previous section, using UPDATE STATISTICS replaces the blanket

and comforter with a handmade sweater.

 Summary
In this chapter, you learned about a number of maintenance considerations that are

part of indexing a table. These break down to managing the fragmentation of indexes

and managing their statistics. With index fragmentation, you saw ways in which indexes

can become fragmented, why it is an issue, and strategies to remove the fragmentation.

These maintenance tasks are critical for making certain that SQL Server can use indexes

to the best of its ability. Along with the maintenance activity, the statistics on the indexes

must also be maintained. Out-of-date or inaccurate statistics can lead to execution plans

that do not match the data in the table. Without proper execution plans, performance

will suffer regardless of the indexes in place.

Chapter 9 Index MaIntenanCe

319
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_10

CHAPTER 10

Indexing Tools
When it comes to indexing, Microsoft currently has two tools built into SQL Server that

can be used to help identify indexes that can improve database performance. These

are the missing index dynamic management objects (DMOs) and the Database Engine

Tuning Advisor (DTA). Both tools are useful to assist with indexing databases and can

provide valuable input when working on tuning a database. Microsoft is developing

a new Automatic Index Management tool, which is currently available in Azure SQL

Database. This is not included in SQL Server 2019 at the time of this writing.

This chapter delves into both the missing index and Database Engine Tuning

Advisor indexing tools. The chapter is divided into two sections that each describe the

capabilities of each tool. We then walk through how the tools can be used to provide

assistance with indexing. Throughout the chapter, you will also learn about the pros and

cons of using each of these tools.

 Missing Indexes
The missing index DMOs are a set of management objects that provide indexing

feedback from the query optimizer. When the query optimizer compiles an execution

plan, it can identify when materializing statistics for a set of columns into a physical

index would improve performance. In these situations, the query optimizer will compile

the results and store the information in the missing index DMOs.

There are a couple of benefits that the missing index DMOs provide. First, the

missing index information is collected from the query optimizer without any action

required on your part. Unlike Extended Events and other performance monitoring tools,

you don’t need to configure and enable it in order for information to be collected. The

other thing to consider is that the missing index information is based on actual activity

occurring on the SQL Server instance. The index suggestions aren’t based on a test

load you believe might happen in production but rather on the production load itself.

320

As the usage patterns of the data in a database change, so too will the missing index

recommendations.

Despite the benefits provided by the missing index DMOs, you must take into

account a few considerations when using them. The limitations on the missing index

DMOs can be summarized into the following categories:

• Size of queue

• Depth of analysis

• Accuracy

• Type of indexes

The size of the queue for missing indexes is one of the limitations that is easy to miss.

Regardless of the number of databases on the SQL Server instance, there can be no more

than 600 missing index groups. Once 600 missing index groups have been identified, the

query optimizer will stop reporting new missing index suggestions. It will not make any

determinations to decide whether a new possible missing index is of better quality than

items already reported; the information is just not collected.

Note As with other dynamic management objects, the information within the
missing index DMOs resets when SQL Server restarts and gets dropped for a
database whenever the database is brought offline.

When considering the information in missing indexes, the depth of the analysis is

a limitation that needs to be considered whenever you are reviewing the suggestions.

The query optimizer considers only the current plan and whether the missing index

would benefit the execution plan. Sometimes, adding the missing index to the database

will result in a new plan with a new missing index suggestion. These suggestions are

only a first pass at improving performance on an execution plan. The other half of this

limitation is that the missing index details don’t include tests to determine whether

the order of the columns in the missing index suggestion is optimal. When looking at

missing index suggestions, it will be necessary to test in order to determine the proper

column order.

The third limitation of the missing index suggestion is the accuracy of the

information returned with the statistics. There are two things that need to be considered

with this limitation. First, when the queries use inequality predicates, the cost

ChApter 10 InDexIng tOOLS

321

information is less effective than those returned with equality predicates. Second, it is

possible to return the same missing index suggestion with multiple cost estimates. How

and where the missing index would be leveraged may change the cost estimate that is

calculated. For each cost estimate, a missing index suggestion will be logged.

Lastly, the missing index tool is limited in the types of indexes it can suggest. The

main limitation is index types and the inability of missing indexes to suggest clustered,

XML, spatial, or columnstore indexes. The suggestions also will not include information

on when to make an index filtered. Along these same lines, suggestions may, at times,

contain only INCLUDE columns. When this happens, one of the INCLUDE columns will

need to be designated as the key column.

Note Missing index information for a table will be dropped whenever there are
metadata operations made on the table. For instance, when a column is added
to a table, the missing index information will be dropped. A less obvious example
is when an index on a table changes. In this case as well, the missing index
information will be dropped.

 Explaining the DMOs
There are four DMOs that can be used to return information on missing indexes. Each

DMO provides a portion of the information needed to build indexes that the query

optimizer can use to improve the performance of a query. The DMOs for missing indexes

are as follows:

• sys.dm_db_missing_index_details

• sys.dm_db_missing_index_columns

• sys.dm_db_missing_index_group_stats

• sys.dm_db_missing_index_group

In the next four sections, I’ll review each of the dynamic management objects and

look at how each provides information on how to identify missing indexes.

ChApter 10 InDexIng tOOLS

322

 sys.dm_db_missing_index_details

The DMO sys.dm_db_missing_index_details is a dynamic management view that

returns a list of missing index suggestions. Each row in the dynamic management view

(DMV) provides a single suggested missing index. The columns in Table 10-1 provide

information on the database and the table to create the index on. It also includes the

columns that should comprise the key and the included columns for the index.

Table 10-1. Columns in sys.dm_db_missing_index_details

Column Name Data Type Description

index_handle int Unique identifier for each missing index

suggestions. this is the key value for this DMV.

database_id smallint Identifies the database where the table with the

missing index resides.

object_id int Identifies the table where the index is missing.

equality_columns nvarchar(4000) Comma-separated list of columns that contribute

to equality predicates.

inequality_columns nvarchar(4000) Comma-separated list of columns that contribute

to inequality predicates.

included_columns nvarchar(4000) Comma-separated list of columns needed as

covering columns for the query.

statement nvarchar(4000) name of the table where the index is missing.

There are two columns in sys.dm_db_missing_index_details that are used to

identify key columns on missing index suggestions. These are equality_columns and

inequality_columns. The equality_columns are generated when there is a comparison

in the query plan that makes a direct comparison. For instance, when the filter for a

query is ColumnA = @Parameter, this is an equality predicate. The inequality_columns

details are created when any nonequal filter is used in a query plan. Examples of this are

when there are greater than, less than, or NOT IN comparisons being used.

When it comes to the included_columns information, this is generated when there

are columns that are not part of the filter but that would be used to allow the index to

cover the query request using a single index. Included columns are covered in more

ChApter 10 InDexIng tOOLS

323

depth in Chapter 8. Suffice it to say, the use of included columns will help prevent the

query plan from having to use a key lookup in the execution plan if the missing index is

created.

 sys.dm_db_missing_index_columns

The next DMO is sys.dm_db_missing_index_columns, which is a dynamic management

function (DMF). This function returns a list of columns for each missing index listed in

sys.dm_db_missing_index_details. To use the DMF, an index_handle is passed into

the function as a parameter. Each row in the resultset represents a column in the missing

index suggestion from sys.dm_db_missing_index_details and repeats the information

in equality_columns, inequality_columns, and included_columns. Table 10-2 lists the

output for sys.dm_db_missing_index_columns.

Table 10-2. Columns in sys.dm_db_missing_index_columns

Column Name Data Type Description

column_id int ID of the column.

column_name sysname name of the table column.

column_usage varchar(20) Description of how the column will be used in the index.

The primary information in this DMF is the column_usage column. For every row,

this column will return one of the following values: EQUALITY, INEQUALITY, or INCLUDE.

These values map to equality_columns, inequality_columns, and included_columns

in sys.dm_db_missing_index_details. Depending on the type of usage in the former

DMV, the use will be the same for this DMF.

 sys.dm_db_missing_index_groups

The DMV sys.dm_db_missing_index_groups is the next missing index DMO. The DMV

returns a list of missing index groups paired with missing index suggestions. Table 10-3

lists the columns for sys.dm_db_missing_index_groups. Although this DMV supports

the ability for many-to-many relationships within missing index suggestions, they are

always made in a one-to-one relationship.

ChApter 10 InDexIng tOOLS

324

 sys.dm_db_missing_index_group_stats

The last missing index DMO is the DMV sys.dm_db_missing_index_group_stats. The

information in this DMV contains statistics on how the query optimizer would expect to

use the missing index if it were built. From this, using the columns in Table 10-4, you can

determine which missing indexes would provide the greatest benefit and the scope to

which the index will be used.

Table 10-3. Columns in sys.dm_db_missing_index_groups

Column Name Data Type Description

index_group_handle int Identifies a missing index group. this value joins to group_

handle in sys.dm_db_missing_index_group_stats.

index_handle int Identifies a missing index handle. this value joins to index_

handle in sys.dm_db_missing_index_details.

Table 10-4. Columns in sys.dm_db_missing_index_group_stats

Column Name Data Type Description

group_handle int Unique identifier for each missing index group. this is the key

value for this DMV. All queries that would benefit from using

the missing index group are included in this group.

unique_compiles bigint Count of the execution plan compilations and recompilations

that would benefit from this missing index group.

user_seeks bigint Count of seeks in user queries that would have occurred

if the missing index had been built.

user_scans bigint Count of scans in user queries that would have occurred

if the missing index had been built.

last_user_seek datetime Date and time of last user seek from user queries that

would have occurred if the missing index had been built.

last_user_scan datetime Date and time of last user scans from user queries that

would have occurred if the missing index had been built.

(continued)

ChApter 10 InDexIng tOOLS

325

 Using the DMOs
Now that the missing index DMOs have been explained, it is time to look at how they

can be used together to provide missing index suggestions. You may have noticed that

the results of the missing index DMOs have been referred to as suggestions instead of

recommendations. This variation in wording is intentional. Typically, when someone

receives a recommendation, it is fully thought through and ready to be implemented.

This is not so with the missing index DMOs; thus, they are referred to as suggestions.

With the suggestions from the missing index DMOs, you have a starting point to

begin looking at and building new indexes. There are two things that are important to

consider when looking at missing index suggestions. First, variations of each missing

index suggestion may appear multiple times in the results. It is not recommended that

Column Name Data Type Description

avg_total_user_cost float Average cost of the user queries that could be reduced

by the index in the group.

avg_user_impact float Average percentage benefit that user queries could

experience if this missing index group had been

implemented.

system_seeks bigint Count of seeks in system queries that would have

occurred if the missing index had been built.

system_scans bigint Count of scans in system queries that would have

occurred if the missing index had been built.

last_system_seek datetime Date and time of last system seek from system queries that

would have occurred if the missing index had been built.

last_system_scan datetime Date and time of last system scans from system queries that

would have occurred if the missing index had been built.

avg_total_system_cost float Average cost of the system queries that could be

reduced by the index in the group.

avg_system_impact float Average percentage benefit that system queries could

experience if this missing index group had

been implemented.

Table 10-4. (continued)

ChApter 10 InDexIng tOOLS

326

each of these variations be implemented. Common patterns within the suggestions

should be found. An index that covers a few of the suggestions is usually ideal. Second,

when more than one column is suggested, the order of the columns needs to be tested to

determine which is optimal.

To help explain how the missing index DMOs work and are related to one another,

I’ll walk you through an example that includes a few SQL statements. These statements,

shown in Listing 10-1, execute a few queries against the SalesOrderHeader table in the

AdventureWorks2017 database. For each of the queries, the filtering is on either the

DueDate or OrderDate column, or both.

Listing 10-1. SQL Statements to Generate Missing Index Suggestions

USE AdventureWorks2017

GO

SELECT DueDate FROM Sales.SalesOrderHeader

WHERE DueDate = '2014-07-01 00:00:00.000'

AND OrderDate = '2014-06-19 00:00:00.000'

GO

SELECT DueDate FROM Sales.SalesOrderHeader

WHERE OrderDate Between '20140601' AND '20140630'

AND DueDate Between '20140701' AND '20140731'

GO

SELECT DueDate, OrderDate FROM Sales.SalesOrderHeader

WHERE DueDate Between '20140701' AND '20140731'

GO

SELECT CustomerID, OrderDate FROM Sales.SalesOrderHeader

WHERE OrderDate Between '20140601' AND '20140630'

AND DueDate Between '20140701' AND '20140731'

GO

If you examine the execution plan for any of the example queries, you’ll see that they

each use a clustered index scan to satisfy the query. Figure 10-1 shows the execution

plan for the first query. In this execution plan, there is an indication that there is a

missing index that could help improve the performance of the query and an index scan

across the table’s clustered index.

ChApter 10 InDexIng tOOLS

327

To see more details on this missing index suggestion, you need to look at the missing

index DMOs. A query against the missing index DMOs will look similar to Listing 10-2.

The query includes the equality, inequality, and included column information that was

described earlier. The query includes two calculations not previously described: the

calculations for Impact and Score.

The Impact calculation helps identify missing index suggestions that will have the

highest overall impact across multiple query executions. This is calculated by adding

the potential seeks and scans on the missing index based on the average impact; the

resulting value represents the total improvement across all queries that might have used

the index. The higher the value, the more improvement the index could provide.

The Score calculation also helps to identify missing index suggestions that will

improve query performance. The difference between Impact and Score is the inclusion

of the average total user cost. For the Score calculation, the average total user cost is

multiplied by the Impact score and divided by 100. The inclusion of the cost value helps

differentiate between expensive and inexpensive queries when deciding whether to

consider the missing index. For instance, a missing index suggestion that provides an 80

percent improvement on queries with an average cost value of 1,000 would likely provide

a better return that a 90 percent improvement for a query with an average cost value of 1.

Listing 10-2. Query for Missing Index DMOs

SELECT

 DB_NAME(database_id) AS database_name

 ,OBJECT_NAME(object_id, database_id) AS table_name

 ,mid.equality_columns

 ,mid.inequality_columns

 ,mid.included_columns

Figure 10-1. Execution plan for first query from Listing 10-1

ChApter 10 InDexIng tOOLS

328

 ,(migs.user_seeks + migs.user_scans) * migs.avg_user_impact AS Impact

 ,migs.avg_total_user_cost * (migs.avg_user_impact / 100.0) * (migs.

user_seeks + migs.user_scans) AS Score

 ,migs.user_seeks

 ,migs.user_scans

FROM sys.dm_db_missing_index_details mid

 INNER JOIN sys.dm_db_missing_index_groups mig ON mid.index_handle =

mig.index_handle

 INNER JOIN sys.dm_db_missing_index_group_stats migs ON mig.index_

group_handle = migs.group_handle

WHERE DB_NAME(database_id) = 'AdventureWorks2017'

ORDER BY migs.avg_total_user_cost * (migs.avg_user_impact / 100.0) * (migs.

user_seeks + migs.user_scans) DESC

Figure 10-2 shows some results from executing this query.

Figure 10-2. Results from missing index query

With the results from the missing index query, shown in Figure 10-2, there are a few

items to consider from these suggestions. First, there are quite a few similarities between

the suggestions. The predicate columns between each of the suggestions include the

OrderDate and DueDate, except for one missing index. Since the column order has

not been tested, the optimal column order could go either way. To satisfy the missing

index suggestion, one possible index could have the key column DueDate followed by

OrderDate. This configuration would create an index that would satisfy all four of the

missing index items.

The next item to look at is included_columns. For two of the suggestions, there are

included_columns values listed. On the fourth missing index suggestion, it suggests

including the column OrderDate. Since it will be one of the key columns of the index, it

doesn’t need to be included. The other column, from the third missing index suggestion,

is the CustomerID column. While only one index needs this column, as an included

column, the addition of this column would likely be negligible since it is a narrow

column. You would also want to add this column to the index.

ChApter 10 InDexIng tOOLS

329

After looking at these results, you’ve seen four missing index suggestions and ended

up with a suggestion for one index that can cover all four of the missing index items. If

you build the index using a DDL statement similar to that in Listing 10-3, you will end up

with an index that solves these missing indexes. If we execute the queries in Listing 10-1

again, we see that all of the queries are using index seeks on the new index, shown in

Figure 10-3.

Listing 10-3. Index from Missing Index DMOs

CREATE NONCLUSTERED INDEX missing_index_SalesOrderHeader

ON Sales.SalesOrderHeader([DueDate], [OrderDate])

INCLUDE ([CustomerID])

Figure 10-3. Execution plans for queries after missing index creation

ChApter 10 InDexIng tOOLS

330

Note there are many negative opinions regarding the value of the Database
engine tuning Advisor. In my opinion, this is a tool that fills a role and
provided a sufficient workload is used with the tool, it will return worthwhile
recommendations. these recommendations provide a better starting point for
tuning a database than starting with nothing.

 Database Engine Tuning Advisor
The other indexing tool available in SQL Server is the Database Engine Tuning Advisor.

This tool allows SQL Server to analyze a workload from a file, a table, the plan cache,

or Query Store. The output of the DTA can assist in providing recommendations for

indexing and configuring partitions for the workload. The chief benefit of using the tool

is that it doesn’t require a deep understanding of the underlying databases to make the

recommendations.

Whether working with a single query or a full day’s workload, DTA provides index

recommendations for the following types of objects:

• Rowstore and columnstore tables for both clustered and

nonclustered indexes

• Aligned or nonaligned partitions

• Views could support indexing

With the sessions in DTA, you’re able to really focus the recommendations on what

you expect from your environment. You are able to leverage workload based on your

environment, whether transactional or analytical and set the focus on both reads and

writes so that you get index recommendations that align to your needs. You even have

the ability to modify the environment to look for indexing recommendations for changes

in disk space.

Once the analysis is completed, DTA provides a number of reports and outputs. This

information allows you to review the recommendations and develop an understanding

for how it will impact the database.

ChApter 10 InDexIng tOOLS

331

Although the DTA has quite a few capabilities, there are also a number of limitations

on the tools. The following are some of these limitations:

• Not able to recommend indexes on system tables.

• Cannot add or drop unique indexes or indexes that enforce primary

key or unique constraints.

• May provide variations in recommendations on some workloads.

The DTA samples data while it executes, which will influence the

recommendations.

• Unable to tune trace tables on remote servers.

• Constraints placed on tuning workloads can have a negative impact

on suggestions if the tuning session exceeds the constraints.

Note the DtA often suffers a bad rap as an indexing tool. this is mostly because
of abuse and misuse by others who have used it. When using the tool, be sure to
validate any change that is recommended and test any changes thoroughly before
applying them in a production environment.

 Explaining the DTA
There are two ways in which users can interact with the DTA. These are the graphical

user interface (GUI) and the command-line utility. Both of these methods offer most of

the same capabilities. Depending on your comfort level, you can choose either.

The GUI tool, which we will use throughout most of this chapter, provides a wrapper

for the DTA. It allows you to select from the available options, and it enables you to view

the tuning sessions that were previously executed. If you want to view tuning results, the

GUI is well-suited to the task. Tuning sessions can be configured and executed through

the GUI.

The command-line utility provides the same capabilities as the GUI when it comes

to configuring and executing sessions. The command-line utility can be configured

through either switches or an XML configuration file. Both of these options allow

database administrators (DBAs) and developers to build processes to automate tuning

activities for reviewing and analyzing workloads and to build an index tuning process

that allows the DBA to work with results instead of going through the motions of setting

ChApter 10 InDexIng tOOLS

332

up and configuring the tuning sessions. You will learn more about integrating the DTA

utility into a performance tuning methodology in Chapter 15.

With both tools, two general areas of configuration need to occur. The first

determines how the tuning session will interact and makes suggestions with the physical

design structures (PDSs). The second determines which type of partitioning strategy the

DTA should employ when trying to tune the database.

There are two parts to the options on how physical design structure suggestions will

be generated. The first option you configure is which type of PDS to utilize in the tuning.

The physical design structure can be augmented to include considering filtered and

columnstore indexes. The options for physical design structure use are as follows:

• Indexes and indexed views.

• Indexes (default option).

• Evaluate utilization of existing PDSs only.

• Indexed views.

• Nonclustered indexes.

The next PDS option is the partitioning to consider in the index tuning. DTA offers

to use no partitioning, aligned partitioning, or full partitioning. With full partitioning,

recommendations will consider whether a table should include indexes that are

partitioned and nonpartitioned.

The last PDS option determines which objects to keep within the database. This

option can help ensure that the tuning recommendations do not adversely affect tuning

that was previously tested and deployed. The following are the options for PDS items to

retain in the database:

• Do not keep any existing PDSs.

• Keep all existing PDSs (default option).

• Keep aligned partitioning.

• Keep indexes only.

• Keep clustered indexes only.

Outside these options, there are some few other options that can be configured.

These options configure how long the tuning session will run which can be important

if you need to run through a lot of databases, or with a large workload, you want to

ChApter 10 InDexIng tOOLS

333

prevent it from running too long. Additionally, you can define the max disk space for

the recommendations and max columns for each index. The last setup option indicates

whether index recommendations can or must be able to be deployed online.

Note Before following along in the next section, run the code in Listing 10-1. If
the index in Listing 10-3 has been created, drop the index using the DROP INDEX
statement provided in Listing 10-4.

Listing 10-4. DDL Statement to Drop Index missing_index_SalesOrderHeader

DROP INDEX IF EXISTS Sales.SalesOrderHeader.missing_index_SalesOrderHeader;

 Using the DTA GUI
As mentioned earlier in the chapter, one of the ways to interact with the DTA is through

the GUI. In this section, you’ll look at a scenario demonstrating how to use the DTA

for index tuning. There are a few methods for launching the tool. The first option is

within SQL Server Management Studio (SSMS). Within SSMS, you can choose Tools ➤

Database Engine Tuning Advisor from the menu bar. The other option is to open the

Database Engine Tuning Advisor 18 from Microsoft SQL Server Tools 18 on the Start

menu.

After launching the DTA, you will be prompted to connect to a SQL Server instance.

Once connected, the tool will open a new tuning session for configuration. Figure 10-4

shows a DTA session.

ChApter 10 InDexIng tOOLS

334

In the session launch screen on the General options tab, there are a few things to

configure initially. To start, there is the session name. The session name can be any value

you desire. The default value includes your username with the date and time. Next,

select the type of workload that will be used. There are four options for the workload:

• File: A file containing SQL Trace output, an XML configuration, or

SQL scripts.

• Table: SQL Server database table containing SQL Trace output.

Before using the table, be sure the trace populating it has been

completed.

• Plan cache: The plan cache of the SQL Server that the tuning session

is connected to. This capability was introduced in SQL Server 2012

and provides a powerful mechanism to tune execution plans that are

being used in your SQL Server environment.

Figure 10-4. General configuration screen from the Database Engine Tuning
Advisor

ChApter 10 InDexIng tOOLS

335

• Query Store: The Query Store for the selected database(s) that the

tuning session is connected to. This option was introduced in SQL

Server 2016 and similar to the plan cache provides an excellent

mechanism for tuning a real-world workload with minimal effort.

Each of the workloads can be used to provide recommendations. Through each

of these workload sources, there is an opportunity to tune pretty much any type of

workload that is needed. For the purposes of this exercise, select the plan cache option.

The next step is to select the database and tables to tune. With large databases, it

will be critical to select only the tables that are part of the workload and for which index

recommendations are needed. When the DTA executes, it will generate statistics based

on information in the table, and the fewer tables that need to be considered, the faster

the tuning session can complete. Check the box in the “Select databases and tables to

tune” section next to the AdventureWorks2017 database before continuing.

Caution Do not use the DtA in your production SQL Server environment. the tool
uses brute-force tactics to identify index recommendations and create hypothetical
indexes to support this effort. running the tool in production can adversely affect
the performance of other workloads on the server. Consider running the DtA from
a command line and on a remote SQL Server for analyzing production databases.
this technique will be demonstrated later in this chapter and discussed further in
Chapter 15.

With the General options configured, the next step is to configure the Tuning Options

settings. On the screen shown in Figure 10-5, deselect the “Limit tuning time” option.

For the other options, leave them as the default selections. These should be as follows:

• Physical design structures (PDS) to use in database: Indexes

• Partitioning strategy to employ: No partitioning

• Physical design structures (PDS) to keep in database: Keep all

existing PDS

The next step is to start the Database Engine Tuning Advisor. This can be

accomplished through the toolbar or the menu, by selecting Actions ➤ Start Analysis.

After starting the DTA, the Progress tab will open, as shown in Figure 10-6.

ChApter 10 InDexIng tOOLS

336

Figure 10-5. Tuning Options configuration screen from Database Engine Tuning
Advisor

Figure 10-6. Progress screen from the Database Engine Tuning Advisor

ChApter 10 InDexIng tOOLS

337

After a few minutes, the tuning session will complete, though this will depend

entirely on your computer’s workload. With the indexes from Listing 10-1,

the results should be similar to those in Figure 10-7. In these results, there are

two recommendations. While the names will vary in your environment, the

recommendations should be as follows:

• Index on OrderDate and then DueDate including CustomerID

• Statistics on OrderDate and then DueDate

Figure 10-7. Recommendations from the Database Engine Tuning Advisor

This index is similar to the suggestion previously found with the missing index

DMOs. In situations where there are multiple recommendations provided, you will

need to go through the same considerations that were part of reviewing the suggestions

from the missing index DMOs, such as “Can the recommendations be consolidated?”

Additionally, when statistics are recommended, do they match an index that will be

created enough that the index can provide the statistics required for queries? To remove

any item from the list of recommendations, simply deselect the check box, and it will not

be included in any of the recommendation outputs.

At this point, there are a few options that can be used to apply the indexes:

• Apply the indexes: To apply the indexes, select Actions in the

menu bar and select Apply Recommendations. In the Apply

Recommendations window that comes up, leave the default, Apply

Now, selected and click OK.

• Apply the indexes in the future: To apply the indexes in the future,

select Actions in the menu bar and select Apply Recommendations.

In the Apply Recommendations window that comes up, select

“Schedule for later.” Alter the scheduled date as desired and click

ChApter 10 InDexIng tOOLS

338

OK. This will create the SQL Agent job. Ensure the SQL Agent is

running and the agent service account has the required permissions

to apply the indexes.

• Save recommendations: To save recommendations, click the

Save Recommendations icon in the menu bar and press the key

combination Ctrl+S; or, select Actions ➤ Save Recommendations in

the menu bar.

If the recommendations are saved, they will create a script like the one in Listing 10- 5.

Before applying indexes from the DTA, it is recommended that the names of indexes

be changed to match your organization’s index naming standards. You will want to also

consider whether to apply compression to the index; generally, it is recommended to

do so. And when it comes to statistics, it’s not as important to add these for a couple

reasons. First, SQL Server will create statistics as needed behind the scenes, removing

the need for you to build your own statistics. Second, indexes include statistics and

usually provide what is required.

Listing 10-5. Database Engine Tuning Advisor Index Recommendations

use [AdventureWorks2017]

go

CREATE NONCLUSTERED INDEX [_dta_index_SalesOrderHeader_8_1922105888__K4_

K3_11] ON [Sales].[SalesOrderHeader]

(

 [DueDate] ASC,

 [OrderDate] ASC

)

INCLUDE([CustomerID]) WITH (SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF,

ONLINE = OFF) ON [PRIMARY]

go

By using the DTA through its GUI, you are able to make quick work of a workload.

The recommendations returned provide a level of index tuning above using the missing

index DMOs. In essence, they provide a brute-force indexing exercise to improve

performance without improving code. Instead of spending many hours on tuning that

can be resolved with a few new indexes, you can focus your time on performance tuning

issues that are beyond just adding an index.

ChApter 10 InDexIng tOOLS

339

Note When the DtA is terminated while processing, it will sometimes leave
behind hypothetical indexes that were used while it was investigating possible
indexes that could improve an environment. A hypothetical index is an index that
contains only statistics and no data. these indexes can be identified through the
is_hypothetical column in sys.indexes. If they exist in your environment,
they should always be dropped.

 Using the DTA Utility
The GUI isn’t the only way to use the DTA within your SQL Server environment. The

other method is through the command line with the DTA utility. What DTA utility lacks

in an interactive interface, it makes up for with the flexibility to leverage the DTA utility

in scripts and automation.

The syntax for using the DTA utility, shown in Listing 10-6, includes a number of

arguments. These arguments, defined in Table 10-5, allow the DTA utility to contain the

same features and flexibility of the GUI. Instead of clicking through a number of screens,

the configuration information is passed in through the arguments.

Listing 10-6. DTA Utility Syntax

dta

[-?] |

[

 [-S server_name[\instance]]

 { { -U login_id [-P password] } | –E }

 { -D database_name [,...n] }

 [-d database_name]

 [-Tl table_list | -Tf table_list_file]

 { -if workload_file | -it workload_trace_table_name | -ip | -ipf }

 { -ssession_name | -IDsession_ID }

 [-F]

 [-of output_script_file_name]

 [-or output_xml_report_file_name]

 [-ox output_XML_file_name]

 [-rl analysis_report_list [,...n]]

ChApter 10 InDexIng tOOLS

340

 [-ix input_XML_file_name]

 [-A time_for_tuning_in_minutes]

 [-n number_of_events]

 [-m minimum_improvement]

 [-fa physical_design_structures_to_add]

 [-fi filtered_indexes]

 [-fc columnstore_indexes]

 [-fp partitioning_strategy]

 [-fk keep_existing_option]

 [-fx drop_only_mode]

 [-B storage_size]

 [-c max_key_columns_in_index]

 [-C max_columns_in_index]

 [-e | -e tuning_log_name]

 [-N online_option]

 [-q]

 [-u]

 [-x]

 [-a]

]

Table 10-5. DTA Utility Arguments

Argument Description

-? returns help information, including a list of all arguments.

-A provides a time limit, in minutes, in which the DtA utility will spend tuning the

workload. the default time limit is 8 hours, or 640 minutes. Setting the limit to 0 will

result in an unlimited tuning session.

-a After the workload is tuned, the recommendations are applied without further

prompting.

-B Specifies the maximum size, in megabytes, that recommended indexes can consume.

By default, this value is set to either three times the current raw data size or the free

space on attached disk drives plus raw data size, whichever is smaller.

(continued)

ChApter 10 InDexIng tOOLS

341

Table 10-5. (continued)

Argument Description

-c Maximum number of key columns that DtA will recommend in an index. this value

defaults to 16. the restriction does not include INCLUDED columns.

-C Maximum number of columns that DtA will recommend in an index. the value defaults

to 16 but can be raised as high as 1024, the maximum columns allowed in an index.

-d Identifies the database that the DtA session connects to when the session begins. Only

a single database can be specified for this argument.

-D Identifies the databases that the DtA session will tune the workload against. One or

more databases can be specified for this argument. to add multiple databases to

a session, either include all the database names in a comma-separated list in one

argument or add one argument per database.

-e Identifies the name of the logging table or file where the DtA session will output events

that could not be tuned. When specifying a table name, use the three-part naming

convention of [database_name].[schema_name].[table_name]. With an output

file, the extension for the file should be .xml.

-E Sets the database connection using a trusted connection. the required argument if

-U is not used.

-F grants DtA permission to overwrite an output file if it already exists.

-fa Identifies the types of physical design structures that the DtA session can include in

the recommendations. the default value for this argument is IDx. the available values

are as follows:

• IDX_IV: Indexes and indexed views

• IDX: Indexes only

• IX: Indexed views only

• NCL_IDX: nonclustered indexes only

-fi Allows the DtA session to include recommendations for filtered indexes.

-fc Allows the DtA session to include recommendations for columnstore indexes.

(continued)

ChApter 10 InDexIng tOOLS

342

(continued)

Table 10-5. (continued)

Argument Description

-fk Sets the limitations on the existing physical design structures that the DtA session can

modify in the recommendations. the available values are as follows:

• NONE: no existing structures

• ALL: All existing structures

• ALIGNED: All partition-aligned structures

• CL_IDX: All clustered indexes on tables

• IDX: All clustered and nonclustered indexes on tables

-fp Determines whether partitioning recommendations can be included in the DtA session

recommendations. the default value for this argument is NONE. the available values

are as follows:

• NONE: no partitioning

• FULL: Full partitioning

• ALIGNED: Aligned partitioning

-fx Limits the DtA session to only including recommendations to drop existing

physical design structures. Lightly used indexes in the session are evaluated, and

recommendations for dropping them are provided. this argument cannot be used with

the arguments -fa, -fp, and -fk ALL.

-ID Sets a numerical identifier for the DtA session. either this argument or -s must be

specified.

-ip Set the source of the workload for the DtA session to the plan cache. the top –n plan

cache events for the databases specified with argument –D are analyzed.

-ipf Sets the source of the workload for the DtA session to the plan cache. the top –n plan

cache events for all databases are analyzed.

-if Sets the source of the workload for the DtA session to a file source. the path and file

name are passed in through this argument. the file must be SQL Server profiler trace

file (trc), SQL file (sql), or SQL Server trace file (log).

ChApter 10 InDexIng tOOLS

343

(continued)

Table 10-5. (continued)

Argument Description

-it Sets the source of the workload for the DtA session to a table. When specifying a table

name, use the three-part naming convention of [database_name].dbo.[table_

name]. the schema for the table must be dbo.

-ix Identifies an xML file containing the configuration information for the DtA session.

the xML file must conform to the DTASchema.xsd (which is located at http://

schemas.microsoft.com/sqlserver/2004/07/dta/dtaschema.xsd).

-m Sets the minimum percentage of improvement that a recommendation must provide.

-n Sets the number of events in the workload that the DtA session should tune. When

specified for a trace file, the order of the events selected is based on the decreasing

order of duration.

-N Determines whether the physical design structures are created online or offline. the

available values are as follows:

• OFF: no objects are created online.

• ON: All objects are created online.

• MIXED: Objects are created where possible.

-of Configures the DtA session to output the recommendations in a t-SQL format in the

path and file specified.

-or Configures the DtA session to output the recommendations to a report in an xML

format. When a file name is not provided, a file name based on the session (-s) name

will be used.

-ox Configures the DtA session to output the recommendations in an xML format in the

path and file specified.

-P Sets the password to be used for the SQL login in the database connection.

-q Sets the DtA session to execute in quiet mode.

ChApter 10 InDexIng tOOLS

http://schemas.microsoft.com/sqlserver/2004/07/dta/dtaschema.xsd
http://schemas.microsoft.com/sqlserver/2004/07/dta/dtaschema.xsd

344

Table 10-5. (continued)

Argument Description

-rl Configures the reports that will be generated by the DtA session. One or more reports

can be selected in a comma-separated list. the available values are as follows:

• ALL: All analysis reports

• STMT_COST: Statement cost report

• EVT_FREQ: event frequency report

• STMT_DET: Statement detail report

• CUR_STMT_IDX: Statement-index relations report (current configuration)

• REC_STMT_IDX: Statement-index relations report (recommended configuration)

• STMT_COSTRANGE: Statement cost range report

• CUR_IDX_USAGE: Index usage report (current configuration)

• REC_IDX_USAGE: Index usage report (recommended configuration)

• CUR_IDX_DET: Index detail report (current configuration)

• REC_IDX_DET: Index detail report (recommended configuration)

• VIW_TAB: View-table relations report

• WKLD_ANL: Workload analysis report

• DB_ACCESS: Database access report

• TAB_ACCESS: table access report

• COL_ACCESS: Column access report

-S Sets the instance of SQL Server to be used for the DtA session.

-s Sets the name of the DtA session.

-Tf Identifies the name of a path and file containing a list of tables to be used for tuning. the

file should contain one table per line using the three-part naming convention. After each

table name, the number of rows can be specified to tune the workload for a scaled version

of the table. If -Tf and -Tl is omitted, the DtA session will default to using all tables.

-Tl Sets a list of tables to be used for tuning. each table should be listed using the three-

part naming convention, with each table name separated by a comma. If -Tf and -Tl

are omitted, the DtA session will default to using all tables.

-U Sets the username to be used for the SQL login in the database connection. the

required argument if -E is not used.

-u Launches the gUI interface for the DtA with all of the configuration values specified the

to the DtA utility.

-x Starts the DtA session and exists upon completion.

ChApter 10 InDexIng tOOLS

345

Using the DTA utility is fairly easy. You’ll look at two scenarios of using the tool that

provide different outcomes. In the first scenario, you’ll use the DTA utility to recommend

indexing changes with allowing only nonclustered indexing changes. For the second

scenario, the DTA utility will be configured to recommend any change to the indexing

that would improve the performance of the workload. In both scenarios, you’ll use the

plan cache for SQL Server as the workload source. To populate the plan cache, execute

the query in Listing 10-7.

Listing 10-7. Scenario Setup

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.SalesOrderDetail') IS NOT NULL

 DROP TABLE dbo.SalesOrderDetail;

SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty,

ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal,

rowguid, ModifiedDate

INTO dbo.SalesOrderDetail

FROM Sales.SalesOrderDetail;

CREATE CLUSTERED INDEX CL_SalesOrderDetail ON dbo.SalesOrderDetail

(SalesOrderDetailID);

CREATE NONCLUSTERED INDEX IX_SalesOrderDetail ON dbo.SalesOrderDetail

(SalesOrderID);

GO

SELECT SalesOrderID, CarrierTrackingNumber

INTO #temp

FROM dbo.SalesOrderDetail

WHERE SalesOrderID = 43660;

DROP TABLE #temp;

GO 1000

SELECT SalesOrderID, OrderQty

INTO #temp

FROM dbo.SalesOrderDetail

ChApter 10 InDexIng tOOLS

346

WHERE SalesOrderID = 43661;

DROP TABLE #temp;

GO 1000

For the first scenario, you’ll build a command-line script similar to the one

shown in Listing 10-8. For your environment, the server name (-S) will be different.

The rest, however, will be the same. The database (-D and –d arguments) will be

AdventureWorks2017. The source of the workload will be the plan cache (-ip argument).

The name of the session (-s argument) is "First Scenario."

Listing 10-8. First Scenario DTA Utility Syntax

"C:\Program Files (x86)\Microsoft SQL Server Management Studio 18\Common7\

dta"

-S localhost -E

-D AdventureWorks2017

-d AdventureWorks2017

-ip

-s "First Scenario"

-Tl AdventureWorks2017.dbo.SalesOrderDetail

-of "C:\Temp\First Scenario.sql"

-fa NCL_IDX

-fp NONE

-fk ALL

With the DTA utility syntax prepared, the next step is to execute the script through

the Command Prompt window. Depending on your SQL Server instance and the

amount of information in the plan cache, the execution may take a few minutes. When

it completes, the output in the Command Prompt window will look similar to the output

shown in Figure 10-8. This output indicates that the file C:\Temp\First Scenario.sql

contains the recommendations for tuning the query in Listing 10-7.

ChApter 10 InDexIng tOOLS

347

Based on the arguments passed into the DTA utility and the current workload,

the recommendation from the first scenario tuning session includes the creation of

two nonclustered indexes and statistics on two columns, shown in Listing 10-9. These

indexes function as covering indexes for the queries in Listing 10-7; as a result, the

key lookup is no longer required as part of the execution plan. The statistics provide

information that SQL Server can use to build good plans for queries on the columns

used in the query.

Note Listing 10-9 creates the dbo.SalesOrderDetail table.

Listing 10-9. First Scenario DTA Utility Output

use [AdventureWorks2017]

go

CREATE NONCLUSTERED INDEX [_dta_index_SalesOrderDetail_8_2119678599__K1_

K2_3] ON [dbo].[SalesOrderDetail]

(

 [SalesOrderID] ASC,

 [SalesOrderDetailID] ASC

)

INCLUDE([CarrierTrackingNumber]) WITH (SORT_IN_TEMPDB = OFF, DROP_EXISTING

= OFF, ONLINE = OFF) ON [PRIMARY]

go

Figure 10-8. Command Prompt window for first scenario

ChApter 10 InDexIng tOOLS

348

CREATE NONCLUSTERED INDEX [_dta_index_SalesOrderDetail_8_2119678599__K1_

K2_4] ON [dbo].[SalesOrderDetail]

(

 [SalesOrderID] ASC,

 [SalesOrderDetailID] ASC

)

INCLUDE([OrderQty]) WITH (SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE

= OFF) ON [PRIMARY]

go

CREATE STATISTICS [_dta_stat_2119678599_2_1] ON [dbo].[SalesOrderDetail]

([SalesOrderDetailID], [SalesOrderID])

go

The downside to the arguments that were selected in the first scenario is that there

isn’t any information included that helps determine the value in adding this index and

the statistics. For the next scenario, you’ll learn how to obtain that information along

with moving deeper into providing recommendations on the physical structure of your

databases.

To begin the next scenario, you’ll use the same database and query. The arguments,

though, will be modified slightly to accommodate the new goals, as shown in Listing 10- 10.

First, you’ll change the name of the session (-s) to "Second Scenario." Next, change the

allowed physical structure changes (argument –fa) from nonclustered indexes only

(NCL_IDX) to indexes and indexed views (IDX_IV). The final change, for the reporting

output, is to add the report list (argument –rl) to the script with the all analysis reports

(ALL) option.

Listing 10-10. Second Scenario DTA Utility Syntax

"C:\Program Files (x86)\Microsoft SQL Server Management Studio 18\Common7\dta"

-S localhost

-D AdventureWorks2017

-d AdventureWorks2017

-ip

-s "Second Scenario"

-Tl AdventureWorks2017.dbo.SalesOrderDetail

ChApter 10 InDexIng tOOLS

349

-of "C:\Temp\Second Scenario.sql"

-fa IDX_IV

-fp NONE

-fk ALL

-rl ALL

Executing the DTA utility using the second scenario produces entirely different

results from the first scenario. Instead of recommending nonclustered indexes, the

second scenario recommends a change in the clustered key columns. With this solution,

the DTA session identified the SalesOrderID column as the column frequently used to

access data and recommended that as the clustered index. Listing 10-11 shows these

recommendations.

Listing 10-11. Second Scenario DTA Utility Output

use [AdventureWorks2017]

go

CREATE NONCLUSTERED INDEX [_dta_index_SalesOrderDetail_8_2119678599__K1_

K2_3] ON [dbo].[SalesOrderDetail]

(

 [SalesOrderID] ASC,

 [SalesOrderDetailID] ASC

)

INCLUDE([CarrierTrackingNumber]) WITH (SORT_IN_TEMPDB = OFF, DROP_EXISTING =

OFF, ONLINE = OFF) ON [PRIMARY]

go

CREATE NONCLUSTERED INDEX [_dta_index_SalesOrderDetail_8_2119678599__K1_

K2_4] ON [dbo].[SalesOrderDetail]

(

 [SalesOrderID] ASC,

 [SalesOrderDetailID] ASC

)

INCLUDE([OrderQty]) WITH (SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE =

OFF) ON [PRIMARY]

go

ChApter 10 InDexIng tOOLS

350

CREATE STATISTICS [_dta_stat_2119678599_2_1] ON [dbo].[SalesOrderDetail]

([SalesOrderDetailID], [SalesOrderID])

go

The one other difference with the second scenario is the creation of an XML report

file. The session used the ALL option for the –rl argument, which includes all the reports

listed for the argument in Table 10-5. These reports provide information regarding the

statements that were tuned, the costs associated with the statements, the amount of

improvement the recommendations provide, and much more (Figure 10-9). Through

these reports, you are provided the information needed to make decisions about which

recommendations to apply to your databases.

Figure 10-9. Sample report output from DTA utility

One thing to remember with the last two scenarios is that the table being tuned was

tuned in a vacuum. There were no constraints or foreign key relationships on the table

that need to be considered. In the real world, this won’t be the way your database is

designed, and foreign key relationships will affect how recommendations are provided.

Also, the load for these scenarios contained only two queries. When building your

workloads, be sure to use a sample that is representative of your environment.

ChApter 10 InDexIng tOOLS

351

Through the DTA scenarios provided in this section, you’ve laid a foundation for

using tools in your index tuning activities. Not only can the DTA identify missing indexes,

but, given a workload, it can also help identify where clustered indexes and partitioning

can assist with performance. The physical changes that DTA can provide could be

extremely useful when you quickly need to address performance issues with a database.

 Summary
This chapter walked you through using the built-in indexing tools available in SQL

Server. Each of these tools can be a great addition to your SQL Server tool belt. They

allow you to dig in and start making informed indexing decisions without expending a

lot of effort.

When it comes to the missing index DMOs, you are working with index suggestions

based on existing activity on the SQL Server instance. These are real-world applications,

and they represent areas where you can almost immediately begin to build solutions to

improve performance.

The DTA, while not as readily available as the missing index DMOs, allows you

to tune indexes from a single query to a full workload with minimal effort. The new

option to tune the contents of the plan cache allows you to leverage the work currently

being done in an environment to build recommendations without the need to create a

workload.

ChApter 10 InDexIng tOOLS

353
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_11

CHAPTER 11

Indexing Strategies
Indexing databases is often thought of as an art where the database is the canvas and

the indexes are the paints that come together to form a beautiful tapestry of storage

and performance. A little color here, a little color there, and paintings will take shape.

In much the same way, a clustered index on a table and then a few nonclustered

indexes can result in screaming performance as beautiful as any masterpiece. Going a

little too abstract or minimalist with your indexing might make you feel good, but the

performance will let you know it isn’t too useful.

As colorful as this analogy is, there is more science behind designing and applying

indexes than there is artistry. A few columns pulled together because they might work

well together is often less beneficial than an index built upon well-established patterns.

The indexes that are based on tried-and-true practices are often the best solutions. In

this chapter, we’ll walk through a number of patterns to help identify potential indexes.

 Heaps
There are few valid cases for using heaps in your databases. The general rule of thumb

for most DBAs is that all tables in a database should be built with clustered indexes

instead of heaps. While this practice rings true in many situations, there are situations

when using a heap is acceptable and preferred. This section looks at one of these

scenarios and discusses the other situations in generalities. The reason for being generic

is that it is difficult to make blanket statements about when to use a heap instead of a

clustered index (which will be explained more later in the section).

354

 Temporary Objects
One of the situations in which heaps are useful is with temporary objects, such as

temporary tables and table variables. When we use these objects, we often create them

without thinking or considering building a clustered index on them. The result is that we

use more heaps on tables than we think we do.

Consider for a moment the last time you created a table variable or a temporary

table. Did the syntax for the object specifically create a CLUSTERED index or a PRIMARY

KEY with the default configuration? If not, then the temporary object was created as a

heap. This isn’t really a problem. It is common in most workloads—not necessarily a

call to arms to change your coding practices. As will be demonstrated in the examples in

this section, the performance difference between a temporary object with a heap and a

clustered index can be immaterial.

For this example, let’s start with a simple use case for a temporary table. The example

uses the table Sales.SalesOrderHeader from which we’ll retrieve a few rows based on

a SalesPersonID and then insert them into a temporary table. The temporary table will

be used to return all rows from Sales.SalesOrderDetail that match the results in the

temporary table. Two versions of the example will be used to demonstrate how using a

heap or a clustered index on the temporary table doesn’t change the query execution.

In the first version of the example, shown in Listing 11-1, the temporary table

is built using a heap. This is the method that people often use to create temporary

objects. As the execution plan in Figure 11-1 shows, when the temporary table is

accessed, identified by the arrow, a table scan is used to access the rows in the object.

This behavior is expected with a heap. Since the rows aren’t ordered, there is no way to

access specific rows without checking all the rows first. To find all the rows in Sales.

SalesOrderDetail that match those in the temporary table, the execution plan uses a

nested loop with an index seek.

Listing 11-1. Temporary Object with Heap

USE AdventureWorks2017

GO

IF OBJECT_ID('tempdb..##TempWithHeap') IS NOT NULL

 DROP TABLE ##TempWithHeap

Chapter 11 IndexIng StrategIeS

355

CREATE TABLE ##TempWithHeap

 (

 SalesOrderID INT

);

INSERT INTO ##TempWithHeap

SELECT SalesOrderID

FROM Sales.SalesOrderHeader

WHERE SalesPersonID = 283;

SELECT sod.* FROM Sales.SalesOrderDetail sod

 INNER JOIN ##TempWithHeap t ON t.SalesOrderID = sod.SalesOrderID;

GO

In the second version of the script, shown in Listing 11-2, the temporary table is

created instead with a clustered index on the SalesOrderID column. The index is the

only difference between the two scripts. This difference results in a slight change in the

execution plan. Figure 11-2 shows the clustered index version of the execution plan. The

difference between the two plans is that instead of a table scan, there is a clustered index

scan against the temporary table. While these are different operations, the work done by

both is essentially the same. During query execution, all rows in the temporary object are

accessed while joining them to rows in Sales.SalesOrderDetail.

Figure 11-1. Execution plan for heap temporary object

Chapter 11 IndexIng StrategIeS

356

Listing 11-2. Temporary Object with Clustered Index

USE AdventureWorks2017

GO

IF OBJECT_ID('tempdb..##TempWithClusteredIX') IS NOT NULL

 DROP TABLE ##TempWithClusteredIX

CREATE TABLE ##TempWithClusteredIX

 (

 SalesOrderID INT PRIMARY KEY CLUSTERED

)

INSERT INTO ##TempWithClusteredIX

SELECT SalesOrderID

FROM Sales.SalesOrderHeader

WHERE SalesPersonID = 283

SELECT sod.* FROM Sales.SalesOrderDetail sod

INNER JOIN ##TempWithClusteredIX t ON t.SalesOrderID = sod.SalesOrderID

GO

Note Since SQL Server 2014, table variables can have both clustered and
nonclustered indexes on them. the requirement is that the indexes are created
when the variable is declared. ddL operations are not allowed on table variables
after they are defined.

Figure 11-2. Execution plan for clustered temporary object

Chapter 11 IndexIng StrategIeS

357

In queries similar to the example in this section, the execution plans for temporary

tables with heaps and clustered indexes are nearly the same. As with all rules, there may

be exceptions where performance will differ. A good example of when using a

heap can affect performance is the T-SQL syntax that leverages a sort in its execution.

Listing 11-3 shows a specific example using EXISTS in the WHERE clause. Figure 11-3

shows the execution plan for the query. Before the nested loop joins to resolve the

EXISTS predicate, the data must first be sorted. In this case, the use of a heap has

hindered the performance of the query because the heap table forces a sort operation.

With small datasets, the performance difference may not be noticeable. As the size of the

dataset increases, little changes such as the inclusion of a sort operation can compound

the performance of your queries.

Listing 11-3. EXISTS Example

USE AdventureWorks2017

GO

SELECT sod.* FROM Sales.SalesOrderDetail sod

WHERE EXISTS (SELECT * FROM ##TempWithHeap t WHERE t.SalesOrderID =

sod.SalesOrderID);

GO

SELECT sod.* FROM Sales.SalesOrderDetail sod

WHERE EXISTS (SELECT * FROM ##TempWithClusteredIX t WHERE t.SalesOrderID =

sod.SalesOrderID);

Chapter 11 IndexIng StrategIeS

358

 Other Heap Scenarios
Generally, the other scenarios where using heaps makes sense are few and far between.

The reason using temporary objects makes sense is because of the low frequency in

which the data will be accessed compared to the amount of time it will take to create a

structure, such as a clustered index, to support the performance. This scenario can also

carry over the staging tables, since the data is usually inserted and modified a couple

times before moving it to its final destination.

In high-insert environments, it might seem to make sense to use heaps to avoid

the overhead of maintaining the B-tree. The trouble with this scenario is that the gains

on inserts are offset by the need to access the data, which requires other nonclustered

indexes, which then have sort orders to maintain.

When confronted with a situation for using heaps on your tables, first look at

whether clustered indexes can be proven to be a burden on the storage of the data before

using them. And before looking to the heap, also consider whether newer indexing

Figure 11-3. EXISTS example execution plan

Chapter 11 IndexIng StrategIeS

359

structures such as clustered columnstore indexes or memory-optimized tables provide

the performance required.

The main point of this section is that heaps are used more often in the real world

than many people realize. While most practices rail against their use, there are some

cases and situations where they are a good fit and others where it doesn’t matter whether

they are there or not. As the discussion moves into clustered indexes, you will see why it

is usually a good idea to default to clustered indexes and use heaps in situations where

either it won’t matter, such as most use cases with temporary objects, or they outperform

clustered indexes.

 Clustered Indexes
Throughout this book, the value of and preference for using a clustered index as the

structure for organizing the data pages of a table has been discussed. Clustered indexes

organize the data in their tables based on the key columns for the clustered indexes.

All the data pages for the index are stored logically according to the key columns. The

benefit of this is optimal access to the data through the key columns.

New tables should almost always be built with clustered indexes. The question,

though, when building the tables is what should be selected for the key columns in the

clustered index. There are a few characteristics that most often are attributed to well-

defined clustered indexes. These characteristics are

• Static

• Narrow

• Unique

• Ever-increasing

There are a number of reasons that each of these attributes helps create a well-

defined clustered index.

First, a clustered index should be static. The key columns defined for the clustered

index should be expected to be static for the lifetime of the row. By using a static value,

the position of the row in the index will not change when the row is updated. When

nonstatic key columns are used, the position of the row in the clustered index can

change, which may require the row to be inserted on a different page. Also, nonclustered

Chapter 11 IndexIng StrategIeS

360

indexes would need to be modified to change the key columns’ values stored in those

indexes, since clustered index key columns are included in nonclustered indexes. All of

this together leads to the potential for fragmentation in the clustered and nonclustered

indexes on a table.

The next attribute that a clustered index should have is that it is narrow. Ideally, there

should be only a single column for the clustered index key. These columns should be

defined with the smallest data type reasonable for that data being stored in the table.

Narrow clustered indexes are important because the clustered index key for every row is

included in all nonclustered indexes associated with the table. The wider the clustered

index key, the wider all nonclustered indexes will be, and the more pages they will

require. As discussed in other sections, the more pages in an index, the more resources

are required to use the index. This can affect the performance of queries.

Clustered indexes should also be unique. Clustered indexes store a single row in a

single location in the index; for duplicate rows within the key columns of a clustered

index, the uniquifier provides the uniqueness required for the row. When the uniquifier

is added to a row, it is extended by 4 bytes, which changes how narrow the clustered

index is and results in the same concerns that are associated with a non-narrow

clustered index. You can find more information on the uniquifier in Chapter 2.

Lastly, a well-defined clustered index will be based on an ever-increasing value.

Using an ever-increasing clustered key causes new rows to be added to the end of the

clustered index. Placing new rows at the end of the B-tree reduces the fragmentation that

would likely occur if the rows were inserted in the middle of the clustered index.

One additional consideration when selecting the clustered index key columns is that

they represent the columns in the row that will most frequently be used to access the

row. Are there specific columns or values that will most often be used to retrieve rows

from the table? If so, these columns are good candidates for the clustering index key.

In the end, queries against the table will perform best when they can access data through

the path of least resistance.

While considering the previous guidelines for selecting clustered index strategies,

there are a number of patterns that can be used to identify and model clustered indexes.

The clustered index patterns are

• Identity Sequence

• Natural Key

• Foreign Key

Chapter 11 IndexIng StrategIeS

361

• Multiple Column

• Globally Unique Identifier

In the rest of this section, we’ll walk you through each of the patterns, describing

each and how to identify when to utilize the pattern.

 Identity Sequence
The most frequent pattern for building a clustered index is to pair it with a column on a

table that has been configured to be ever-increasing using either the IDENTITY property

or the SEQUENCE object. In this pattern, the IDENTITY column is often also the PRIMARY

KEY on the table. The data type is usually an integer, which includes tinyint, smallint,

int, and bigint. The primary benefit of this pattern is that it achieves all the attributes

of a well-defined clustered index. It is static, narrow, unique, and ever-increasing. When

you consider how the data in the table will be accessed, in most cases the key value will

most often be used to access rows in the table.

One distinction of the Identity Sequence pattern is that the column used for the

clustered index key has no relationship between the data in the row and the clustered

index key. To implement the pattern, a new column is added to the table that contains

the IDENTITY property or SEQUENCE default. This column is then set as the clustered

index key and often the PRIMARY KEY as well.

Examples of this pattern can be found in nearly all databases. Creating a table with

this pattern would look similar to the CREATE TABLE statements in Listing 11-4. Both

tables are built to contain fruit: two apple rows, a banana row, and a grape row are

inserted. The Color column would not have been a good clustering key since it does

not identify the rows in the table. The FruitName column could have identified the

rows in the table, except it isn’t unique across the table, which would have required the

uniquifier and lead to a larger clustering key. Indexing the table to the Identity Sequence

pattern, a FruitID column is created.

Listing 11-4. Creating and Populating Table for Identity Sequence Pattern

USE AdventureWorks2017

GO

IF OBJECT_ID('IndexStrategiesFruit_Identity') IS NOT NULL

 DROP TABLE IndexStrategiesFruit_Identity

Chapter 11 IndexIng StrategIeS

362

CREATE TABLE dbo.IndexStrategiesFruit_Identity

(

FruitID int IDENTITY(1,1)

,FruitName varchar(25)

,Color varchar(10)

,CONSTRAINT PK_Fruit_FruitID_Idnt PRIMARY KEY CLUSTERED (FruitID)

);

INSERT INTO dbo.IndexStrategiesFruit_Identity(FruitName, Color)

VALUES('Apple','Red'),('Banana','Yellow'),('Apple','Green'),('Grape','Green');

SELECT FruitID, FruitName, Color

FROM dbo.IndexStrategiesFruit_Identity;

IF OBJECT_ID('IndexStrategiesFruit_Sequence') IS NOT NULL

 DROP TABLE IndexStrategiesFruit_Sequence

IF OBJECT_ID('FruitSequence') IS NOT NULL

 DROP SEQUENCE FruitSequence

CREATE SEQUENCE FruitSequence AS INTEGER

 START WITH 1;

CREATE TABLE dbo.IndexStrategiesFruit_Sequence

(

FruitID int DEFAULT NEXT VALUE FOR FruitSequence

,FruitName varchar(25)

,Color varchar(10)

,CONSTRAINT PK_Fruit_FruitID_Seq PRIMARY KEY CLUSTERED (FruitID)

);

INSERT INTO dbo.IndexStrategiesFruit_Sequence(FruitName, Color)

VALUES('Apple','Red'),('Banana','Yellow'),('Apple','Green'),('Grape','Green');

SELECT FruitID, FruitName, Color

FROM dbo.IndexStrategiesFruit_Sequence;

Chapter 11 IndexIng StrategIeS

363

One of the effects of using the Identity Sequence pattern is that the value for the

clustering key column has no relationship to the information that it represents. In the

query output from Listing 11-1, which is shown in Figure 11-4, the value of 1 is assigned

to the first row inserted for both resultsets. Then, a value of 2 is assigned for the next

row and so on. As more rows are added, the FruitID column increments and doesn’t

require any single piece of information in the record in order to designate the instance of

information.

Note SEQUENCE was a new object in SQL Server 2012. through sequences,
ranges of numeric values can be generated, which are either ascending or
descending. a sequence is not associated with any specific table. If you are
unfamiliar with using SEQUENCE, it is recommended that you consider using
sequences over IDENTITY for performance and control purposes. they are outside
the context of this book.

 Natural Key
In some cases, using a natural key in the data for the clustering key is as valid as adding

an identity column to the table to use for the Identity Sequence pattern. A natural key is a

column in the data that can uniquely identify one row from all the other rows. The cases

where using a natural key is valid can be identified when there is a natural key in the data

that meets the attributes of a well-defined clustering key. When using natural keys for

Figure 11-4. Results for Identity Sequence pattern

Chapter 11 IndexIng StrategIeS

364

clustering keys, they are not likely to be ever-increasing, but they should still be unique,

narrow, and static.

A common example of when a natural key may be used instead of an identity

column is when looking at tables that contain one- or two-character abbreviations for

the information they represent. These abbreviations may be for the status of an order,

the size of a product, or a list of states or provinces. Compared to using an int, which is

4 bytes, in the Identity Column pattern, using a char(1) or char(2) data type with the

Natural Key pattern will result in a clustering key that is more narrow than the former.

Another example is using dates in the yyyymmdd or timestamp format on date tables.

The Natural Key pattern also has the additional benefit of providing an easier-to-

decipher key value. When using the Identity Sequence pattern, there is no inherent

meaning when the clustering key has a value of 1 or 7. These values are meaningless—

intentionally so. With the Natural Key pattern, the abbreviations of O and C represent

real information (Opened and Closed, respectively).

As a simple example of the Natural Key pattern, let’s consider a table that contains

states and their abbreviations. We’ll also include the name of the country for the

states. Listing 11-5 shows the SQL to create and populate the table. The table has a

StateAbbreviation column, which is a char(2). Since this is a narrow, unique, and

static value for each state, the clustered index is created on the column. Next, a few rows

are added to the table for the four states that the fictitious database requires.

Listing 11-5. Creating and Populating Table for Natural Key Pattern

USE AdventureWorks2017

GO

CREATE TABLE dbo.IndexStrategiesNatural

(

StateAbbreviation char(2)

,StateName varchar(25)

,Country varchar(25)

,CONSTRAINT PK_State_StateAbbreviation PRIMARY KEY CLUSTERED

(StateAbbreviation)

);

Chapter 11 IndexIng StrategIeS

365

INSERT INTO dbo.IndexStrategiesNatural(StateAbbreviation, StateName, Country)

VALUES('MN','Minnesota','United States')

,('FL','Florida','United States')

,('WI','Wisconsin','United States')

,('NH','New Hampshire','United States');

SELECT StateAbbreviation, StateName, Country

FROM dbo.IndexStrategiesNatural;

In situations where the natural key matches the Natural Key pattern, the technique

in Listing 11-5 can be a useful way of selecting the clustering key column. Reviewing the

contents of dbo.IndexStrategiesNatural (shown in Figure 11-5), the four rows are in

the table, and using StateAbbreviation in another table as a foreign key value can be

useful since the value MN has some inherent meaning.

This pattern may seem ideal and more worthwhile than the Identity Column

pattern—especially since the value of the clustering key helps describe the data.

However, there are a few downsides to using this pattern, which relate to the attributes

that can make it a well-defined clustering key.

First, let’s consider the uniqueness of the clustering key. Provided that the use cases

for the database and table never change, there can be trust that the values will remain

unique. What happens, though, when the database needs to be used in an international

context? If states for other countries such as the Netherlands need to be included,

there is a great potential for data issues. In the Netherlands, FL is the abbreviation for

Flevopolder, and NH is the abbreviation for Noord-Holland. Sending an order to Florida

that should go to Flevopolder can have serious business consequences. To retain the

uniqueness, something outside of the two-character abbreviation would need to be

added to the natural key and clustering key.

Figure 11-5. Results for Natural Key pattern

Chapter 11 IndexIng StrategIeS

366

Changing the natural key would then affect the narrowness of the clustering key.

There are probably two approaches that could be taken to address this problem. The

first option is to add another column to the natural key to identify whether a state

abbreviation belongs to one country or another. The second option is to increase the

size of the state abbreviation to include a country abbreviation in the same column.

With either of the solutions, the size of the clustering key will exceed the 4 bytes used to

maintain a narrow clustering key through the use of an int data type and the Identity

Column pattern.

Additionally, always consider whether natural keys are truly static. State

abbreviations can change. While this doesn’t happen too often—the last change in the

United States happened in 1987 when state abbreviations were all standardized—it will

happen occasionally with nearly all types of natural keys. One example is the country

of Yugoslavia with its six republics, which became their own countries. Another is the

Soviet Union, which evolved into the Russian Federation, which led to the formation of

numerous other countries. As static as values such as state and country abbreviations

may seem, on a grander scale there is variance. Also, looking to your applications, status

codes that represent the states of a workflow may be accurate today but could have new

and different meanings in the future.

Lastly, sometimes apparent natural keys can be made of data that shouldn’t be

widely distributed. For years, government identifiers, like Social Security Number, were

often used for natural keys in databases, often in healthcare and educational systems.

While this did an adequate job of identifying an individual, it definitely isn’t information

that should be easily available to database users. In most modern databases, government

identifiers now need to be encrypted, which can cause immense problems when these

types of natural keys are used for clustered indexes and potentially as primary keys.

The Natural Key pattern for selecting what an index does is a valid pattern for

designing clustered indexes. As the example showed, it can be unique, narrow, and

static. Look at the current and future applications of the table before using a natural key

for the clustered index.

 Foreign Key
One of the most often overlooked patterns for creating clustered indexes is to use a

foreign key column in the clustering keys for the table. The Foreign Key pattern is not

appropriate for all foreign keys but does have its use in designs where there is a one-

to- many relationship between information in a header table and the related detail

Chapter 11 IndexIng StrategIeS

367

information. The Foreign Key pattern contains all the attributes that are part of a well-

defined clustering key. There are, though, a few caveats with a few of the attributes.

Implementing this pattern is similar to the way you implement the Identity Column

pattern. The pattern contains two tables that have columns with the IDENTITY property set

on them. Listing 11-6 shows an example. In the example, there are three tables created.

The first is the header table, named dbo.IndexStrategiesHeader, with a clustered index

built on the HeaderID column. The next table is the first version of the detail table, named

dbo.IndexStrategiesDetail_ICP. The table is designed as a child to the header table, the

clustered index is built using the Identity Column pattern, and an index on the HeaderID

column is used to improve performance. The third table is also a detail table, named

dbo.IndexStrategiesDetail_FKP; this table is designed using the Foreign Key pattern.

Instead of clustering the table on the column with the IDENTITY property, the clustered

index includes two columns. The first column is the column from the parent table, HeaderID,

and the second is the primary key for this table, DetailID. To provide sample data,

sys.indexes and sys.index_columns are used to populate all the tables.

Listing 11-6. Creating and Populating Tables for Foreign Key Pattern

USE AdventureWorks2017

GO

CREATE TABLE dbo.IndexStrategiesHeader

(

HeaderID int IDENTITY(1,1)

,FillerData char(250)

,CONSTRAINT PK_Header_HeaderID PRIMARY KEY CLUSTERED (HeaderID)

);

CREATE TABLE dbo.IndexStrategiesDetail_ICP

(

DetailID int IDENTITY(1,1)

,HeaderID int

,FillerData char(500)

,CONSTRAINT PK_Detail_ICP_DetailID PRIMARY KEY CLUSTERED (DetailID)

,CONSTRAINT FK_Detail_ICP_HeaderID FOREIGN KEY (HeaderID) REFERENCES

IndexStrategiesHeader(HeaderID)

);

Chapter 11 IndexIng StrategIeS

368

CREATE INDEX IX_Detail_ICP_HeaderID ON dbo.IndexStrategiesDetail_ICP

(HeaderID)

CREATE TABLE dbo.IndexStrategiesDetail_FKP

(

DetailID int IDENTITY(1,1)

,HeaderID int

,FillerData char(500)

,CONSTRAINT PK_Detail_FKP_DetailID PRIMARY KEY NONCLUSTERED (DetailID)

,CONSTRAINT CLUS_Detail_FKP_HeaderIDDetailID UNIQUE CLUSTERED (HeaderID,

DetailID)

,CONSTRAINT FK_Detail_FKP_HeaderID FOREIGN KEY (HeaderID) REFERENCES

IndexStrategiesHeader(HeaderID)

);

GO

INSERT INTO dbo.IndexStrategiesHeader(FillerData)

SELECT CONVERT(varchar,object_id)+name

FROM sys.indexes

INSERT INTO dbo.IndexStrategiesDetail_ICP

SELECT ish.HeaderID, CONVERT(varchar,ic.index_column_id)+'-'+FillerData

FROM dbo.IndexStrategiesHeader ish

 INNER JOIN sys.indexes i ON ish.FillerData = CONVERT(varchar,

i.object_id)+i.name

 INNER JOIN sys.index_columns ic ON i.object_id = ic.object_id AND

i.index_id = ic.index_id

INSERT INTO dbo.IndexStrategiesDetail_FKP

SELECT ish.HeaderID, CONVERT(varchar,ic.index_column_id)+'-'+FillerData

FROM dbo.IndexStrategiesHeader ish

 INNER JOIN sys.indexes i ON ish.FillerData = CONVERT(varchar,

i.object_id)+i.name

 INNER JOIN sys.index_columns ic ON i.object_id = ic.object_id AND

i.index_id = ic.index_id

Chapter 11 IndexIng StrategIeS

369

At this point, you have three tables designed using the two clustered index patterns,

Identity Sequence and Foreign Key. The key to this pattern is to design the table as such

that in their common usage patterns the data will be returned as efficiently as possible.

There are two use cases that are common in this type of a scenario. The first is returning

the header and all the detail rows for one row in the header table. The second is to return

multiple rows from the header table and all the related rows from the detail table.

First, let’s examine the differences in performance for returning one row from the

header table and all the related detail rows. The code in Listing 11-7 executes this use

case against both clustered indexing patterns. As expected, the dataset returned by

both queries is the same. The difference lies in the statistics and query plan for the two

queries. First, let’s look at the statistics output when STATISTICS IO is used during the

first use case (shown in Figure 11-6). The reads for the Identity Column pattern show

that there were four reads as opposed to two reads by the Foreign Key pattern. While

these numbers are low, this is a twofold difference that could impact your database

significantly if these are highly utilized queries. The big difference in execution, though,

can be seen when reviewing the execution plans for the two queries (Figure 11-7). For

the first query, to retrieve the results, an index seek, key lookup, and nested loop are

required against the detail table. Compare this to the second query, which obtains the

same information using a clustered index seek. This example clearly indicates that the

Foreign Key pattern performs better than the Identity Column pattern.

Listing 11-7. Single Header Row on Foreign Key Pattern

Use AdventureWorks2017

GO

SET STATISTICS IO ON

SELECT ish.HeaderID, ish.FillerData, isd.DetailID, isd.FillerData

FROM dbo.IndexStrategiesHeader ish

 INNER JOIN dbo.IndexStrategiesDetail_ICP isd ON ish.HeaderID =

isd.HeaderID

WHERE ish.HeaderID = 10

SELECT ish.HeaderID, ish.FillerData, isd.DetailID, isd.FillerData

FROM dbo.IndexStrategiesHeader ish

 INNER JOIN dbo.IndexStrategiesDetail_FKP isd ON ish.HeaderID =

isd.HeaderID

WHERE ish.HeaderID = 10

Chapter 11 IndexIng StrategIeS

370

Figure 11-7. Execution plans for single header row on Foreign Key pattern

Figure 11-6. Results for single header row on Foreign Key pattern

Chapter 11 IndexIng StrategIeS

371

With the success of the first use case, let’s examine the second use case. In this

example, shown in Listing 11-8, the queries will retrieve multiple rows from the header

table and will retrieve the data from the detail table that matches the HeaderID from

the header rows. Again, the data returned by the queries using both of the clustered

index patterns is the same, and there are performance differences between the two

executions. The first difference is in the STATISTICS IO output, shown in Figure 11-8.

In the first execution, there are 158 reads on the header table and 44 reads on the detail

table. Comparing those to the four reads on the header and eight reads on the detail for

the Foreign Key pattern, it’s clear that the Foreign Key pattern performs better. In fact,

the reads are a magnitude lower for the Foreign Key over the Identity Column pattern.

The reason for the performance difference can be explained through the execution plan

shown in Figure 11-9. In the execution plan, the first query requires a clustered index

scan on the detail table to return the rows from the detail table. The second query, using

the Foreign Key pattern, does not require this and uses a clustered index seek.

Listing 11-8. Multiple Header Row on Foreign Key Pattern

Use AdventureWorks2017

GO

SET STATISTICS IO ON

SELECT ish.HeaderID, ish.FillerData, isd.DetailID, isd.FillerData

FROM dbo.IndexStrategiesHeader ish

 INNER JOIN dbo.IndexStrategiesDetail_ICP isd ON ish.HeaderID =

isd.HeaderID

WHERE ish.HeaderID BETWEEN 10 AND 50;

SELECT ish.HeaderID, ish.FillerData, isd.DetailID, isd.FillerData

FROM dbo.IndexStrategiesHeader ish

 INNER JOIN dbo.IndexStrategiesDetail_FKP isd ON ish.HeaderID =

isd.HeaderID

WHERE ish.HeaderID BETWEEN 10 AND 50;

Chapter 11 IndexIng StrategIeS

372

Figure 11-9. Execution plans for multiple header row on Foreign Key pattern

Figure 11-8. Results for multiple header row on Foreign Key pattern

Through the two use cases in this section, we can see how the Foreign Key pattern

can outperform the Identity Column pattern. However, there are things that need to be

considered in databases before implementing this pattern. The chief question that needs

to be answered is whether rows will most often be retrieved going through the primary

key of the detail table or its foreign key relationship to the header table. Not all foreign

Chapter 11 IndexIng StrategIeS

373

keys are suited for this clustered index pattern; it is valid only when there is a header-to-

detail relationship between tables.

As mentioned, there are a few caveats regarding the attributes of a well-defined

clustered index when using the Foreign Key pattern. In regard to being narrow, the

pattern is not as narrow as the Identity Column pattern. Instead of a single integer-based

column, two of them make up the clustering keys. When using the int data type, this will

increase the size of the clustering key from 4 bytes to 8 bytes. While not an overly large

value, it will impact the size of the nonclustered indexes on the table. In most cases, the

clustering keys under the Foreign Key pattern will be static. There is a chance that the

header row for some detail rows will need to change from time to time, maybe when

two orders are logged and need to be merged for shipping. For this reason, the Foreign

Key pattern isn’t entirely static. The key can change, but it shouldn’t change frequently.

If there are frequent changes, you should reconsider using this clustered index pattern.

The last attribute that has a caveat is whether the clustering keys are ever-increasing. In

general, this should be the case. The typical insert pattern is to create a header and the

detail records. In this situation, the header rows are created and inserted sequentially,

followed by their detail records. If there is a delay in writing the detail records or more

detail records are added to a header row at a later date, the key won’t be ever-increasing.

As a result, there could be additional fragmentation and maintenance associated with

this clustered index pattern.

The Foreign Key pattern is not a clustered index pattern that will be applicable in

all databases. When it is, though, it is quite beneficial and can alleviate performance

issues that may not be as obvious as other issues. It is important to consider using this

pattern when designing clustered indexes and to review the caveats associated with it to

determine whether it is the right fit.

 Multiple Column
The next pattern that can be used to design clustered indexes is the Multiple Column

pattern. In this pattern, two or more tables have a relationship to a third table that allows

for many-to-many relationships to exist between the information. For instance, there

might be a table that stores employee information and another that contains job roles. To

represent the relationship, a third table is used. Through the Multiple Column pattern,

instead of using a new column with the IDENTITY property on it, the columns used for

the relationship serve as the clustering keys.

Chapter 11 IndexIng StrategIeS

374

The Multiple Column pattern is similar to the Foreign Key pattern and provides

many of the same performance enhancements as the previous pattern. As you will

soon see, there is often one column or another in the many-to-many relationship table

that is the best candidate for clustering key. Similar to the other patterns, this pattern

also adheres to most of the attributes for a well-defined clustered index. The pattern

is unique and mostly narrow and static; these properties will be apparent as you walk

through an example of the Multiple Column pattern.

To demonstrate the Multiple Column pattern, let’s begin by defining a few tables and

their relationships. To start, there are tables that will store information about employees

and job roles, named dbo.Employee and dbo.JobRole, respectively. Two tables named

dbo.EmployeeJobRole_ICP and dbo.EmployeeJobRole_MCP are used to represent

the Identity Column and Multiple Column patterns in the example relationships

(see Listing 11-9). The example script includes insert statements to provide some sample

data to use. Also, nonclustered indexes are created on the tables to provide a real-world

scenario.

Listing 11-9. Multiple Column Pattern Script

USE AdventureWorks2017

GO

CREATE TABLE dbo.Employee (

EmployeeID int IDENTITY(1,1)

,EmployeeName varchar(100)

,FillerData varchar(1000)

,CONSTRAINT PK_Employee PRIMARY KEY CLUSTERED (EmployeeID));

CREATE INDEX IX_Employee_EmployeeName ON dbo.Employee(EmployeeName);

CREATE TABLE dbo.JobRole (

JobRoleID int IDENTITY(1,1)

,RoleName varchar(25)

,FillerData varchar(200)

,CONSTRAINT PK_JobRole PRIMARY KEY CLUSTERED (JobRoleID));

CREATE INDEX IX_JobRole_RoleName ON dbo.JobRole(RoleName);

Chapter 11 IndexIng StrategIeS

375

CREATE TABLE dbo.EmployeeJobRole_ICP (

EmployeeJobRoleID int IDENTITY(1,1)

,EmployeeID int

,JobRoleID int

,CONSTRAINT PK_EmployeeJobRole_ICP PRIMARY KEY CLUSTERED

(EmployeeJobRoleID)

,CONSTRAINT UIX_EmployeeJobRole_ICP UNIQUE (EmployeeID, JobRoleID))

CREATE INDEX IX_EmployeeJobRole_ICP_EmployeeID ON dbo.EmployeeJobRole_

ICP(EmployeeID);

CREATE INDEX IX_EmployeeJobRole_ICP_JobRoleID ON dbo.EmployeeJobRole_

ICP(JobRoleID);

CREATE TABLE dbo.EmployeeJobRole_MCP (

EmployeeJobRoleID int IDENTITY(1,1)

,EmployeeID int

,JobRoleID int

,CONSTRAINT PK_EmployeeJobRoleID PRIMARY KEY NONCLUSTERED

(EmployeeJobRoleID)

,CONSTRAINT CUIX_EmployeeJobRole_ICP UNIQUE CLUSTERED (EmployeeID,

JobRoleID));

CREATE INDEX IX_EmployeeJobRole_MCP_JobRoleID ON dbo.EmployeeJobRole_

MCP(JobRoleID);

INSERT INTO dbo.Employee (EmployeeName)

SELECT OBJECT_SCHEMA_NAME(object_id)+'|'+name

FROM sys.tables;

INSERT INTO dbo.JobRole (RoleName)

VALUES ('Cook'),('Butcher'),('Candlestick Maker');

INSERT INTO dbo.EmployeeJobRole_ICP (EmployeeID, JobRoleID)

SELECT EmployeeID, 1 FROM dbo.Employee

UNION ALL SELECT EmployeeID, 2 FROM dbo.Employee WHERE EmployeeID / 4 = 1

UNION ALL SELECT EmployeeID, 3 FROM dbo.Employee WHERE EmployeeID / 8 = 1;

Chapter 11 IndexIng StrategIeS

376

INSERT INTO dbo.EmployeeJobRole_MCP (EmployeeID, JobRoleID)

SELECT EmployeeID, 1 FROM dbo.Employee

UNION ALL SELECT EmployeeID, 2 FROM dbo.Employee WHERE EmployeeID / 4 = 1

UNION ALL SELECT EmployeeID, 3 FROM dbo.Employee WHERE EmployeeID / 8 = 1;

The first test against the example tables will look at querying against all three tables

to retrieve information on employee names and job roles. These queries, shown in

Listing 11-10, retrieve information based on the RoleName from dbo.JobRole. In the

code, the two versions of the EmployeeJobRole table are created with different clustering

keys. This results in a drastic difference in the execution plans, shown in Figure 11-10

and Figure 11-11, from the test queries. The first execution plan using the table with the

Identity Column pattern applied to it is more complex than the execution plan for the

second query and has 61 percent of the cost compared to the other plan. The second

plan, which has its clustering keys based on the Multiple Column pattern, has fewer

operations and accounts for 39 percent of the execution. The main difference between

the two plans is that using the Multiple Column pattern allows the clustered index to

cover table access based on a column that is likely to be used to frequently access rows

in the table, in this case the JobRoleID column. Using the other pattern does not provide

this benefit and represents a data access path that will not likely be used, except maybe

when needing to delete the row.

Listing 11-10. Script for Multiple Column Pattern

USE AdventureWorks2017

GO

SELECT e.EmployeeName, jr.RoleName

FROM dbo.Employee e

INNER JOIN dbo.EmployeeJobRole_ICP ejr ON e.EmployeeID = ejr.EmployeeID

INNER JOIN dbo.JobRole jr ON ejr.JobRoleID = jr.JobRoleID

WHERE RoleName = 'Candlestick Maker'

SELECT e.EmployeeName, jr.RoleName

FROM dbo.Employee e

INNER JOIN dbo.EmployeeJobRole_MCP ejr ON e.EmployeeID = ejr.EmployeeID

INNER JOIN dbo.JobRole jr ON ejr.JobRoleID = jr.JobRoleID

WHERE RoleName = 'Candlestick Maker'

Chapter 11 IndexIng StrategIeS

377

While the benefits are significant with the first test results, they are less impressive

when looking at some other methods that can be used. For instance, say that instead

of using RoleName as the predicate, the EmployeeName was the predicate. The script in

Listing 11-11 demonstrates this scenario. Contrary to the last test script, the results this

time are no different than the others for either clustered index design (see Figure 11-12

and Figure 11-13). The cause of the identical plans in the figure is based on the decision

to optimize the clustering index keys in the Multiple Column pattern to favor the

JobRoleID. When the EmployeeID column is used to access the data, the nonclustered

Figure 11-11. Execution plan for Multiple Column pattern

Figure 11-10. Execution plan for Identity Column pattern

Chapter 11 IndexIng StrategIeS

378

index provides most of the heavy lifting, and a good, similar, plan for each query is

created. The results of this second test do not discount the use of the Multiple Column

pattern, but they do highlight that the column to lead the clustering key should be

selected after performing tests with the expected workload.

Listing 11-11. Script for Multiple Column Pattern

USE AdventureWorks2017

GO

SELECT e.EmployeeName, jr.RoleName

FROM dbo.Employee e

INNER JOIN dbo.EmployeeJobRole_ICP ejr ON e.EmployeeID = ejr.EmployeeID

INNER JOIN dbo.JobRole jr ON ejr.JobRoleID = jr.JobRoleID

WHERE EmployeeName = 'Purchasing|ShipMethod'

SELECT e.EmployeeName, jr.RoleName

FROM dbo.Employee e

INNER JOIN dbo.EmployeeJobRole_MCP ejr ON e.EmployeeID = ejr.EmployeeID

INNER JOIN dbo.JobRole jr ON ejr.JobRoleID = jr.JobRoleID

WHERE EmployeeName = 'Purchasing|ShipMethod'

Figure 11-12. Execution plan for Identity Column pattern

Chapter 11 IndexIng StrategIeS

379

There are various ways in which the Multiple Column pattern can be implemented.

The key columns in the clustered index can be reversed, which would change the

execution plans generated for the test scripts. While this pattern can be beneficial, be

cautious when using it and fully understand the workload expected before using it.

To wrap up the Multiple Column pattern, let’s review the attributes of a well-defined

clustered index. First, the values are static. If there were to be a change, it would likely be

deleting a record and inserting a new record. This is still effectively an update to mitigate

this risk attempt to lead the clustered index with the value least likely to change or have

variations in population. The second is whether the clustering key is narrow. In this

example, the key was mostly narrow. It was comprised of two 4-byte columns. If using

larger columns or more than two columns, carefully consider if this is the right approach.

The next attribute is whether the values are unique. They are in this scenario and should

be in any scenario in the real world. If not, then this pattern is naturally disqualified. Like

with the other non-Identity Column patterns, this pattern does not provide an ever-

increasing clustering key.

As a final note, fact tables in data warehouses often succumb to the temptation to

use the Multiple Column pattern. In these cases, all the dimension keys in the fact table

are placed in the clustered index. The aim in doing this is to enforce uniqueness on the

fact rows. The effect is the creation of an extremely wide clustering key, which is then

added to all the nonclustered indexes on the table. Most likely, each of the dimension

columns in the clustered key will have a separate index on the fact table. As a result,

these indexes waste a lot of space and, because of their size, perform much worse than if

the uniqueness on the fact table were constrained by a nonclustered unique index.

Figure 11-13. Execution plan for Multiple Column pattern

Chapter 11 IndexIng StrategIeS

380

 Globally Unique Identifier
The last, and definitely least beneficial, or popular, pattern for selecting a clustered index

column is to use a globally unique identifier, also known as a GUID. The GUID pattern

involves using a uniquely generated value to provide a unique value for each row in a

table. This value is not integer-based and is often chosen because it can be generated at

any location (within the topology of an application) and has a guarantee that it will be

unique. The problem this pattern solves is the need to be able to generate new unique

values while disconnecting from the source that typically controls the list of unique

values. Unfortunately, the GUID pattern causes nearly as many issues as it solves.

There are two main methods for generating GUID values. The first is through the

NEWID() function. This function generates a 16-byte hexadecimal value that is partially

based on the MAC address of the computer creating it at the time. Each value generated

is unique and can start with any value from 0 to 9 or a to f. The next value created can

be either ahead of or after the previous value in a sort. There is no guarantee that the

next value is ever-increasing. The second option for generating a GUID is through

NEWSEQUENTIALID(). This function also creates a 16-byte hexadecimal value. Unlike the

other function, NEWSEQUENTIALID() creates new values that are greater than the previous

value generated since the computer was last started. The last point is important: when

the server restarts, it is possible that new values with NEWSEQUENTIALID() will be less

than the value created before the restart. The logic for NEWSEQUENTIALID() ensures

sequential values only from the time in which the server is started.

As discussed, using the GUID pattern does not provide for an ever-increasing value.

With either NEWID() or NEWSEQUENTIALID(), there is no guarantee that the next value

will always be greater than the last value. Along with that, it does not provide a narrow

index. When storing a GUID as a uniqueidentifier, it requires 16 bytes of storage. This

is the size of four ints or two bigints. Comparatively, the GUID is quite large, and that

value will be placed in all nonclustered indexes on the table. The space used for the

GUID pattern can sometimes be worse than this, though. In some cases, when the GUID

pattern is poorly implemented, the GUID value is stored as characters that require 36

bytes to store or 72 bytes if using a Unicode data type.

Even with the failings of the GUID pattern, it does achieve some of the other

attributes of a well-defined clustering key. First, the value is unique. With both the

NEWID() and NEWSEQUENTIALID() functions, the values generated for the GUID value

are unique. The value is also static since the GUID value generated has no business,

meaning there is no reason for it to change the value.

Chapter 11 IndexIng StrategIeS

381

To demonstrate impact of implementing the GUID pattern, let’s examine its use on

a table with a comparison to a couple other implementations. In this scenario, shown in

Listing 11-12, there are three tables. Table dbo.IndexStrategiesGUID_ICP is designed

using the Identity Column pattern. Table dbo.IndexStrategiesGUID_UniqueID is built

with the GUID pattern using a uniqueidentifier, as best practices dictate. The last

script contains table dbo.IndexStrategiesGUID_String, which uses a varchar(36) to

store the GUID value. The last method is not the proper way to implement the GUID

pattern, and the analysis will help highlight that. With all three tables built, insert

statements will populate 250,000 rows to each table. The final statement in the scenario

retrieves the number of pages used by each of the tables.

Listing 11-12. Script for GUID Pattern Scenario

USE AdventureWorks2017

GO

CREATE TABLE dbo.IndexStrategiesGUID_ICP (

RowID int IDENTITY(1,1)

,FillerData varchar(1000)

,CONSTRAINT PK_IndexStrategiesGUID_ICP PRIMARY KEY CLUSTERED (RowID)

);

CREATE TABLE dbo.IndexStrategiesGUID_UniqueID (

RowID uniqueidentifier DEFAULT(NEWSEQUENTIALID())

,FillerData varchar(1000)

,CONSTRAINT PK_IndexStrategiesGUID_UniqueID PRIMARY KEY CLUSTERED (RowID)

);

CREATE TABLE dbo.IndexStrategiesGUID_String (

RowID varchar(36) DEFAULT(NEWID())

,FillerData varchar(1000)

,CONSTRAINT PK_IndexStrategiesGUID_String PRIMARY KEY CLUSTERED (RowID)

);

INSERT INTO dbo.IndexStrategiesGUID_ICP (FillerData)

SELECT TOP (250000) a1.name+a2.name

FROM sys.all_objects a1 CROSS JOIN sys.all_objects a2

Chapter 11 IndexIng StrategIeS

382

INSERT INTO dbo.IndexStrategiesGUID_UniqueID (FillerData)

SELECT TOP (250000) a1.name+a2.name

FROM sys.all_objects a1 CROSS JOIN sys.all_objects a2

INSERT INTO dbo.IndexStrategiesGUID_String (FillerData)

SELECT TOP (250000) a1.name+a2.name

FROM sys.all_objects a1 CROSS JOIN sys.all_objects a2

SELECT OBJECT_NAME(object_ID) as table_name, in_row_used_page_count, in_

row_reserved_page_count

FROM sys.dm_db_partition_stats

WHERE object_id IN (OBJECT_ID('dbo.IndexStrategiesGUID_ICP')

 ,OBJECT_ID('dbo.IndexStrategiesGUID_UniqueID')

 ,OBJECT_ID('dbo.IndexStrategiesGUID_String'))

ORDER BY 1

Figure 11-14 shows some output from this query.

Unlike the other scenarios, the use of the GUID pattern is much like the Identity

Column pattern. There are two primary differences. First, the GUID pattern does not

provide a narrow clustering key. For the clustering key with the uniqueidentifier data

type, the change in size of the clustering key requires around 400 more pages to store the

same information (see Figure 11-14). Even worse, when improperly storing the GUID in

the varchar data type, the table requires about 1,100 more pages. Without a doubt, using

the GUID pattern amounts to a lot of wasted space in the clustered index, which would

also be included in any nonclustered indexes on the table. The second issue with the

GUID pattern is tied with the ever-increasing attribute of clustered indexes. As already

discussed, GUIDs are not presented in an ordered fashion. The next value can be greater

or less than the previous value, and this leads to a random placement of rows within a

table, which results in fragmentation. For more information on index fragmentation as a

result of GUIDs, read Chapter 6.

Figure 11-14. Page counts for GUID pattern

Chapter 11 IndexIng StrategIeS

383

In regard to the last two attributes of a well-defined clustering key, the GUID pattern

does well with those. The value is static and should not be expected to change over time.

The value is also unique. It should, in fact, be unique throughout the entire database.

Even though the GUID pattern does achieve the two attributes of a well-defined

clustered index, they do not mitigate the aforementioned issues with this pattern. The

GUID pattern should be a pattern of last resort when determining how to build the

clustered index for a table.

Note Using the new sp_sequence_get_range stored procedure in
conjunction with SEQUENCEs can be a valid replacement in applications using
the uniqueidentifier pattern that would like to migrate to using an Identity
Column pattern for clustered index design.

 Nonclustered Indexes
In the previous two sections, the discussion focused on heaps and clustered indexes,

which are used to determine how to store the data. With heaps, the data is stored

unsorted. With clustered indexes, data is sorted based on one set of columns. In nearly

all databases, there will need to be other ways of accessing the data in the table that don’t

align with the sort order in which the data is stored. This is where nonclustered indexes

come in. Nonclustered indexes provide another method for accessing data in addition to

the heap or clustered index to locate data in a table.

In this section, we’ll review a number of patterns that are associated with

nonclustered indexes. These patterns will help identify when and where to consider

building nonclustered indexes. For each pattern, we’ll go through the chief components

and situations where it may be leveraged. Similar to the clustered index patterns, each

nonclustered index pattern will include a scenario or two to demonstrate the benefit of

the pattern. The nonclustered index patterns that will be discussed are

• Search Columns

• Index Intersection

• Multiple Column

• Covering Index

Chapter 11 IndexIng StrategIeS

384

• Included Columns

• Filtered Indexes

• Foreign Keys

Before you review the patterns, there are a number of guidelines that will apply to

all the nonclustered indexes. These guidelines differ from the attributes of well-defined

clustered indexes. With the attributes, one of the key goals was to adhere to them as

much as possible. With the nonclustered indexing guidelines, they form a number of

considerations that will help strengthen the case for an index but may not disqualify the

use of the index. Some of the most common considerations to think of when designing

indexes are the following:

• What is the frequency of change for the nonclustered index key

columns? The more frequent the data changes, the more often the

row in the nonclustered may need to change its position in the index.

• What frequent queries will the index improve? The greater the overall

lift an index provides, the better the database platform will operate as

a whole.

• What business needs does the index support? Infrequently used

indexes that support critical business operations can sometimes be

more important than frequently used indexes.

• What is the cost in time to maintain the index vs. the cost in time

to query the data? There can be a point where the performance

gain from an index is outweighed by the time spent creating and

defragmenting an index and the space that it requires.

As mentioned in the introduction, indexing can often feel like art. Fortunately,

science or statistics can be used to demonstrate the value of indexes. As each of these

patterns is reviewed, we’ll look at scenarios where they can be applied and use some

science, or metrics in this case, to determine whether the index provides value. The

two things that will be used to judge indexes will be reads during the execution and

complexity of the execution plan.

Chapter 11 IndexIng StrategIeS

385

 Search Columns
The most basic and common pattern for designing nonclustered indexes is to build them

based on defined or expected search patterns. The Search Columns pattern should be

the most widely known pattern but also happens to be easily, and often, overlooked.

If queries will be searching tables with contacts in them by first name, then index the

first name column. If the address table will have searches against it by city or state, then

index those columns. The primary goal of the Search Columns pattern is to reduce scans

against the clustered index and move those operations to a nonclustered index that can

provide more direct route to the data through a nonclustered index.

To demonstrate the Search Columns pattern, let’s use the first scenario mentioned

in this section, a contact table. For simplicity, the examples will use a table named dbo.

Contacts that contains data from the AdventureWorks2017 table Person.Person (see

Listing 11-13). There should be about 19,972 rows inserted into dbo.Contacts, though

this will vary depending on the freshness of your AdventureWorks2017 database.

Listing 11-13. Setup for Search Columns Pattern

USE AdventureWorks2017;

GO

CREATE TABLE dbo.Contacts (

 ContactID INT IDENTITY(1, 1),

 FirstName NVARCHAR(50),

 LastName NVARCHAR(50),

 IsActive BIT,

 EmailAddress NVARCHAR(50),

 CertificationDate DATETIME,

 FillerData CHAR(1000),

 CONSTRAINT PK_Contacts PRIMARY KEY CLUSTERED (ContactID));

INSERT INTO dbo.Contacts (

 FirstName,

 LastName,

 IsActive,

 EmailAddress,

 CertificationDate)

Chapter 11 IndexIng StrategIeS

386

SELECT pp.FirstName,

 pp.LastName,

 IIF(pp.BusinessEntityID / 10 = 1, 1, 0),

 pea.EmailAddress,

 IIF(pp.BusinessEntityID / 10 = 1, pp.ModifiedDate, NULL)

FROM Person.Person pp

 INNER JOIN Person.EmailAddress pea

 ON pp.BusinessEntityID = pea.BusinessEntityID;

With the table dbo.Contacts in place, the first test against the table is to query the

table with no nonclustered indexes built on it. In the example, shown in Listing 11-14,

the query is searching for rows with the first name of Catherine. Executing the query

shows that there are 22 rows in dbo.Contacts that match the criteria (see Figure 11-15).

To retrieve the 22 rows, SQL Server ended up reading 2,866 pages, which is all the pages

in the table. And as Figure 11-16 indicates, the page reads were the result of an index

scan against PK_Contacts on dbo.Contacts. The aim of the query is to retrieve 22 out of

the more than 19,000 rows, so checking every page in the table for rows with Catherine

for FirstName is not an optimal approach and is one that can be avoided.

Listing 11-14. Search Columns Pattern

USE AdventureWorks2017;

GO

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName

FROM dbo.Contacts

WHERE FirstName = 'Catherine';

Figure 11-15. Statistics I/O results for Search Columns pattern

Chapter 11 IndexIng StrategIeS

387

Achieving the aim of retrieving all the rows for Catherine optimally is relatively simple

by adding a nonclustered index to dbo.Contacts. In the next script (Listing 11-15), a

nonclustered index is created on the FirstName column. Besides the filter on FirstName,

the query needs to also return ContactID. Since nonclustered indexes include the

clustering index key, the value in ContactID is included in the index by default.

Executing the script in Listing 11-15 leads to substantially different results than

before the nonclustered index was added to the table. Instead of reading every page in

the table, the nonclustered index reduces the number of pages used for the query to

two pages (Figure 11-17). The reduction here is significant and highlights the power

and value in using nonclustered indexes to provide more direct access to information in

your tables on columns other than those in the clustered index keys. There is one other

change in the execution: instead of a scan against PK_Index, the execution plan now uses

an index seek against IC_Contacts_FirstName, shown in Figure 11-18. The change in the

operator is further proof that the nonclustered index helped to improve the performance

of the query.

Listing 11-15. Search Columns Pattern

USE AdventureWorks2017;

GO

CREATE INDEX IX_Contacts_FirstName ON dbo.Contacts (FirstName);

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName

FROM dbo.Contacts

WHERE FirstName = 'Catherine';

Figure 11-16. Execution plan for Search Columns pattern

Chapter 11 IndexIng StrategIeS

388

Using the Search Columns pattern is probably the most important first step in

applying nonclustered indexing patterns on your databases. It provides the alternative

paths for accessing data that can be the difference between getting your data from

a couple pages vs. thousands of pages. The Search Columns example in this section

shows building an index on a single column. The next few patterns will expand on this

foundation.

 Index Intersection
The aim of the Search Columns pattern is to create an index that will minimize the page

reads for a query and improve the performance of it. Sometimes, though, the queries

go beyond the single column example that was demonstrated. Additional columns may

be part of the predicate or returned in the SELECT statement. One of the ways to address

this is to create nonclustered indexes that include the additional columns. When there

are indexes that can satisfy each of the predicates in the WHERE clause, SQL Server can

utilize multiple nonclustered indexes to find the rows between both that match on the

clustering key. This operation is called Index Intersection.

To demonstrate the Index Intersection pattern, let’s first review what happens when

the filtering is expanded to cover multiple columns. The code in Listing 11-16 includes

the expanded SELECT statement and WHERE clause, expanding the predicate to include

rows where LastName is Cox.

Figure 11-18. Execution plan for Search Columns pattern

Figure 11-17. Statistics I/O results for Search Columns pattern

Chapter 11 IndexIng StrategIeS

389

The change in the query results in a significant change in performance over the

previous section’s results. With the additional column in the query, there are 68 pages

read to satisfy the query vs. the 2 pages when LastName was not included (Figure 11-19).

The increase in pages read is because of the change in the execution plan (Figure 11- 20).

In the execution plan, an additional two operations are added to the execution of the

query: a key lookup and a nested loop. These operators are added because the index

IX_Contacts_FirstName can’t provide all the information needed to satisfy the query.

SQL Server determines that it is still cheaper to use IX_Contacts_FirstName and look

up the missing information from the clustered index than to scan the clustered index.

The problem that you can run into is that for every row that matches on the nonclustered

index, a lookup has to be done on the clustered index. While key lookups aren’t always a

problem, they can drive up the CPU and I/O costs for a query unnecessarily.

Listing 11-16. Index Intersection Pattern

USE AdventureWorks2017;

GO

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

 LastName

FROM dbo.Contacts

WHERE FirstName = 'Catherine'

 AND LastName = 'Cox';

Figure 11-19. Statistics I/O results for Index Intersection pattern

Chapter 11 IndexIng StrategIeS

390

Leveraging the Index Intersection pattern is one of a few ways that the performance

of the query in Listing 11-16 can be improved. An index intersection occurs when

SQL Server can utilize multiple nonclustered indexes on the same table to satisfy the

requirements for a query. In the case of the query in Listing 11-16, the most direct path

for finding FirstNames was through the index IX_Contacts_FirstName. At that point,

though, to filter and return the LastName column, SQL Server used the clustered index

and performed a lookup on each row, similar to the image on the left side of Figure 11- 21.

Alternatively, if there had been an index for the LastName column, SQL Server could have

used that index with IX_Contacts_FirstName. In essence, through the Index Intersection

pattern, SQL Server is able to perform operations similar to joins between indexes on

the same table to find rows that overlap between the two, as shown on the right of

Figure 11-21.

Figure 11-20. Execution plan for Index Intersection pattern

Figure 11-21. Index seek with key lookup vs. two index seeks using Index
Intersection pattern

Chapter 11 IndexIng StrategIeS

391

To demonstrate the Index Intersection pattern and have SQL Server use index

intersection, the next example creates an index on the LastName column (Listing 11-17).

With the index IX_Contacts_LastName created, the results change significantly from

when the index had not been created. The first significant change is in the number of

reads. Instead of the 68 reads that occurred in the previous execution, there are only 5

reads (Figure 11-22). The cause of the reduction in reads is from SQL Server leveraging

index intersection in the query plan (Figure 11-23). The indexes IX_Contacts_FirstName

and IX_Contacts_LastName were used to satisfy the query without returning to the

clustered index to retrieve data for the query. This happened because the two indexes

can satisfy the query completely.

Listing 11-17. Index Intersection Pattern

USE AdventureWorks2017;

GO

CREATE INDEX IX_Contacts_LastName ON dbo.Contacts (LastName);

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

 LastName

FROM dbo.Contacts

WHERE FirstName = 'Catherine'

 AND LastName = 'Cox';

Figure 11-22. Statistics I/O results for Index Intersection pattern

Chapter 11 IndexIng StrategIeS

392

Index intersection is a feature of SQL Server that it uses to better satisfy queries when

more than one nonclustered index from the same table can provide the results for the

queries. When indexing for index intersection, the aim is to have multiple indexes based

on the Search Columns pattern that can be used together in numerous combinations

to allow for a variety of filters. One key thing to remember with the Index Intersection

pattern is that you can’t tell SQL Server when to use index intersection; it will opt to use it

when it is appropriate for the request, underlying indexes, and data.

 Multiple Column
The examples in the previous two sections focused on indexes that included a single key

column in the index. Nonclustered indexes, though, can have up to 16 columns. While

being narrow was an attribute of a well-defined clustered index, the same does not

always apply to nonclustered indexes. Instead, nonclustered indexes should contain as

many columns as necessary to be used by the most queries possible. If many queries will

use the same columns as predicates, it is often a good idea to include them all in a single

index.

A simple method for demonstrating an index using the Multiple Column pattern

is to use the same query from the previous section and apply this pattern to it. In that

query, two indexes were built, one each on the FirstName and LastName columns. For

the Multiple Column pattern, the new index will include both the columns together

(Listing 11-18).

Figure 11-23. Execution plan for Index Intersection pattern

Chapter 11 IndexIng StrategIeS

393

As the statistics indicate (Figure 11-24), by using the Multiple Column pattern, there

is a reduction in the number of reads necessary to return the request results. Instead of

five reads from the Index Intersection pattern, there are only two reads with the Multiple

Column pattern. Additionally, the execution plan (shown in Figure 11-25) has been

simplified. There is only an index seek on the index IX_Contacts_FirstNameLastName.

Listing 11-18. Multiple Column Pattern

USE AdventureWorks2017;

GO

CREATE INDEX IX_Contacts_FirstNameLastName

 ON dbo.Contacts (FirstName, LastName);

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

 LastName

FROM dbo.Contacts

WHERE FirstName = 'Catherine'

 AND LastName = 'Cox';

Figure 11-24. Statistics I/O results for Multiple Column pattern

Figure 11-25. Execution plan for Multiple Column pattern

Chapter 11 IndexIng StrategIeS

394

The Multiple Column pattern is as important to implement as the Search Columns

pattern when indexing your databases. This pattern can help reduce the number of

indexes used by putting the columns together that are most often used in predicates.

While this pattern does contradict some of the value of the Index Intersection pattern,

the key between them is balance. In some cases, relying on index intersection on single-

column indexes will provide the best performance for a table with many variations on

the query predicates. In other times, wider indexes with specific orders to the columns

will be beneficial. Try both patterns and apply them in the manner that provides the best

overall performance. Remember indexes can always be removed if they don’t work out.

 Covering Index
The next indexing pattern to be aware of is the Covering Index pattern. With the Covering

Index pattern, columns outside the predicates are added to an index’s key columns to

allow those values to be returned as part of the SELECT clauses of queries. This pattern

has been a standard indexing practice for a while with SQL Server. Enhancements in

how indexes can be created, though, make this pattern less useful than it was in the past.

I am discussing it here because it is a common pattern that most already know.

To begin looking at the Covering Index pattern, we’ll first need an example to define

the problem that the index solves. To show the issue, the next test query will include

the IsActive column in the SELECT list (Listing 11-19). With this column added, the I/O

statistics increase again from two reads to five reads, shown in Figure 11-26. The change

in performance is directly related to the change in the execution plan (see Figure 11-27)

that includes a key lookup and a nested loop. As with the previous examples, as items

not included in the nonclustered index are added to the query, they need to be retrieved

from the clustered index, which contains all the data for the table.

Listing 11-19. Covering Index Pattern

USE AdventureWorks2017;

GO

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

 LastName,

 IsActive

Chapter 11 IndexIng StrategIeS

395

FROM dbo.Contacts

WHERE FirstName = 'Catherine'

 AND LastName = 'Cox';

Ideally, you want an index in place that can accommodate the filters on the index

and can also rerun the columns requested in the SELECT list. The Covering Index pattern

can fulfill these requirements. Even though IsActive is not one of the predicates for

the query, it can be added to the index, and SQL Server can use that key column to

return the column values with the query. To demonstrate the Covering Index pattern,

let’s create an index that has FirstName, LastName, and IsActive as the key columns

(see Listing 11-20). With the index IX_Contacts_FirstNameLastName in place, the reads

return to two per execution (see Figure 11-28). The execution plan is also now using only

an index seek (see Figure 11-29).

Figure 11-26. Statistics I/O results for Covering Index pattern

Figure 11-27. Execution plan for Covering Index pattern

Chapter 11 IndexIng StrategIeS

396

Listing 11-20. Covering Index Pattern

USE AdventureWorks2017

GO

CREATE INDEX IX_Contacts_FirstNameLastNameIsActive ON dbo.Contacts(FirstName,

LastName, IsActive);

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

 LastName,

 IsActive

FROM dbo.Contacts

WHERE FirstName = 'Catherine'

 AND LastName = 'Cox';

The Covering Index pattern can be quite useful and has the potential to improve

performance in many areas. In the last few years, the use of this pattern has diminished.

This change in use is primarily being driven by the availability of the option to include

columns in indexes, which was introduced with SQL Server 2005.

Figure 11-28. Statistics I/O results for Covering Index pattern

Figure 11-29. Execution plan for Covering Index pattern

Chapter 11 IndexIng StrategIeS

397

Note Some consider covering indexes and indexes with included columns the
same thing. While very similar, the key difference between the two is the location
of the columns as part of the key or data included in the index.

 Included Columns
The Included Columns pattern is a close cousin to the Covering Index pattern. The

Included Columns pattern leverages the INCLUDE clause of the CREATE and ALTER INDEX

syntax. The clause allows nonkey columns to be added to nonclustered indexes, similar

to how nonkey data is stored on clustered indexes. This is the primary difference

between the Included Columns and Covering Index patterns, where the additional

columns in the Covering Index are key columns on the index. Like clustered indexes, the

nonkey columns that are part of the INCLUDE clause are not sorted, although they can be

used as predicates in some queries.

The use case for the Included Columns pattern comes from the flexibility that it

provides. It is generally the same as the Covering Index pattern, and sometimes the

names are used interchangeably. The key difference, which is demonstrated in this

section, is that the Covering Index pattern is limited by the sort order of all the columns

in the index. The Included Columns pattern can avoid this potential issue by including

nonkey data, thereby increasing its flexibility of use.

Before demonstrating the flexibility of the Included Columns pattern, let’s first

examine another index against the dbo.Contacts table. In Listing 11-21, the query is

filtering just on a FirstName value of Catherine and returning the ContactID, FirstName,

LastName, and EmailAddress columns. This query request differs from the other

examples because it now includes the EmailAddress column. Since this column is not

included in any of the other nonclustered indexes, none of them can fully satisfy the

query. As a result, the execution plan utilizes IX_Contacts_FirstName to identify the

Catherine rows and then looks up the rest of the data from the clustered index, shown

in Figure 11-30. With the key lookup, the reads for the query also increase to 68 reads

(see Figure 11-31), as they have in previous examples.

Chapter 11 IndexIng StrategIeS

398

Listing 11-21. Included Columns Pattern

USE AdventureWorks2017;

GO

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

 LastName,

 EmailAddress

FROM dbo.Contacts

WHERE FirstName = 'Catherine';

To improve the performance of this query, another index based on either the

Multiple Column pattern or the Covering Index pattern could be created. The trouble

with these options, though, is that the resulting index would have the same limitations

as the queries that they could improve. Instead, a new index based on the Included

Columns pattern will be created. This new index, shown in Listing 11-22, has FirstName

Figure 11-30. Statistics I/O results for Included Columns pattern

Figure 11-31. Execution plan for Included Columns pattern

Chapter 11 IndexIng StrategIeS

399

as the key column and includes LastName, IsActive, and EmailAddress as the nonkey

columns. Even though the IsActive column is not used in the index, it is being included

to allow additional flexibility for the index, which a later example in this section will

utilize. With the index in place, the performance of the query in Listing 11-22 improves

significantly. In this example, the reads drop from the previous 68 per execution to 3

reads (see Figure 11-32). In the execution plan, the key lookup and nested loop are no

longer needed; instead, there is just the index seek, which is now using the index

IX_Contacts_FirstNameINC (see Figure 11-33).

Listing 11-22. Included Columns Pattern

USE AdventureWorks2017

GO

CREATE INDEX IX_Contacts_FirstNameINC ON dbo.Contacts(FirstName)

 INCLUDE (LastName, IsActive, EmailAddress);

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

 LastName,

 EmailAddress

FROM dbo.Contacts

WHERE FirstName = 'Catherine';

Figure 11-32. Statistics I/O results for Included Columns pattern

Figure 11-33. Execution plan for Included Columns pattern

Chapter 11 IndexIng StrategIeS

400

While the number of reads is slightly higher with an index created with the Included

Columns pattern, there is flexibility with the index that offsets that difference. With each

of the examples in this chapter, a new index has been added to the table dbo.Contacts.

At this point, there are six indexes on the table, each serving a different purpose and four

leading with the same column, FirstName. Each of these indexes takes up space and

requires maintenance when the data in dbo.Contacts is modified. In active tables, this

amount of indexing could have a negative impact on all activity on the table.

The Included Columns pattern can assist with this issue. In cases where there are

multiple indexes with the same leading key column, it is possible to consolidate those

indexes into a single index using the Included Columns pattern with some of the key

columns added to the index instead as nonkey columns. To demonstrate, first remove

all the indexes that start with FirstName, except for the one created using the Included

Columns pattern (script provided in Listing 11-23).

Listing 11-23. Dropping Indexes in Included Columns Pattern

USE AdventureWorks2017

GO

DROP INDEX IF EXISTS IX_Contacts_FirstNameLastName ON dbo.Contacts

GO

DROP INDEX IF EXISTS IX_Contacts_FirstNameLastNameIsActive ON dbo.Contacts

GO

DROP INDEX IF EXISTS IX_Contacts_FirstName ON dbo.Contacts

GO

The dbo.Contact table now has only three indexes on it. There is the clustered

index on the ContactID column, a nonclustered index on LastName, and an index on

FirstName with the columns LastName, IsActive, and EmailAddress included as data on

the index. With these indexes in place, the queries from the previous patterns, shown in

Listing 11-24, need to be tested against the table.

There are two points to pay attention to regarding how the queries perform with

the Included Columns pattern vs. with the other patterns. First, all the execution plans

for the queries, shown in Figure 11-34, are utilizing index seek operations. The seek

operation is expected for the query that is just filtering on FirstName, but it can also be

used when there is an additional filter on LastName. SQL Server can do this because

Chapter 11 IndexIng StrategIeS

401

underneath the index seek, it is performing a range scan of the rows that match the first

predicate and then removing the LastName results that don’t have the value of Cox. The

second item to notice is the number of reads for each of the queries, shown in Figure 11- 35.

The reads increased from two to three. While this constitutes a 50 percent increase in

reads, the performance change is not significant enough to justify creating four indexes

when one index can adequately provide the needed performance.

Listing 11-24. Other Queries Against Included Columns Pattern

USE AdventureWorks2017;

GO

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName

FROM dbo.Contacts

WHERE FirstName = 'Catherine';

SELECT ContactID,

 FirstName,

 LastName

FROM dbo.Contacts

WHERE FirstName = 'Catherine'

 AND LastName = 'Cox';

SELECT ContactID,

 FirstName,

 LastName,

 IsActive

FROM dbo.Contacts

WHERE FirstName = 'Catherine'

 AND LastName = 'Cox';

Chapter 11 IndexIng StrategIeS

402

The Included Columns pattern for building nonclustered indexes is an important

pattern to utilize when creating indexes. When used with specific queries that result

in lookup operations, it provides improved read and execution performance. It also

provides opportunities to consolidate similar queries to reduce the number of indexes

on the table while still providing performance improvements over situations where the

indexes do not exist.

Figure 11-34. Statistics I/O results for Included Columns pattern

Figure 11-35. Execution plan for Included Columns pattern

Chapter 11 IndexIng StrategIeS

403

 Filtered Indexes
In some tables in your databases, there are rows with certain values that will rarely, or

never, be returned in the resultset as part of the applications using the databases. In

these cases, it might be beneficial to remove the rows as an option to be returned by

the resultset. In some other situations, it may be useful to identify a subset of data in a

table and create indexes. Instead of querying across millions or billions of records in

the table, you can utilize indexes that cover the hundreds or thousands of rows that the

query needs to return results. Both of these situations identify scenarios where using the

Filtered Indexes pattern can help improve performance.

The Filtered Indexes pattern utilizes, as the name suggests, the filtered index feature

that was introduced with SQL Server 2005. When using filtered indexes, a WHERE clause is

added to a nonclustered index to reduce the rows that are contained within the index.

By including only the rows that match the filter of the WHERE clause, the query engine has

to consider only those rows in building an execution plan; moreover, the cost of scanning

a range of rows is less expensive than if all the rows were included in the index.

To illustrate the value in using filtered indexes, consider a scenario where only a

small subset of the table has values in the column that is being filtered. Listing 11-25

considers variations of a query. In the first version, the rows where CertificationDate

has a value are returned. The second version returns only rows that have a

CertificationDate between January 1, 2005, and February 1, 2005. With both of these

queries, there is no index on the table that will provide an optimal plan for execution

since all 2,866 pages of the index are accessed during execution (see Figure 11-36).

Examining both execution plans (Figure 11-37) shows that a clustered index scan of

dbo.Contacts is utilized to find the rows that match the CertificationDate predicate.

An index on the CertificationDate column could, as the missing index hint suggests,

improve the performance of the query.

Listing 11-25. Filtered Indexes Pattern

USE AdventureWorks2017;

GO

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

Chapter 11 IndexIng StrategIeS

404

 LastName,

 CertificationDate

FROM dbo.Contacts

WHERE CertificationDate IS NOT NULL

ORDER BY CertificationDate;

SELECT ContactID,

 FirstName,

 LastName,

 CertificationDate

FROM dbo.Contacts

WHERE CertificationDate

BETWEEN '20110101' AND '20110201'

ORDER BY CertificationDate;

Figure 11-36. Statistics I/O results for Filtered Indexes pattern

Figure 11-37. Execution plan for Filtered Indexes pattern

Chapter 11 IndexIng StrategIeS

405

Before applying the missing index suggestion, you should consider how the index

will be used in this and future queries. In this scenario, assume that there will never be a

query that uses CertificationDate when the value is NULL. Does it make sense then to

store the empty values for all the NULL rows in the index? Given the stated assumption, it

doesn’t make sense; doing so would waste space in the database and potentially lead to

execution plans that were not optimal if the index on CertificationDate was skipped

because the reads for a scan were high enough that other indexes were selected.

In this scenario, it makes sense to filter the rows in the index. To do so, the index is

created like any other index, except that a WHERE clause is added to the index (see

Listing 11-26). When creating filtered indexes, there are a few things to keep in mind

about the WHERE clause. To start with, the WHERE clause must be deterministic. It

can’t change over time depending on the results of functions within the clause. For

instance, the GETDATE() function can’t be used since the value returned changes every

millisecond. The second restriction is that only simple comparison logic is allowed. This

means that the BETWEEN and LIKE comparisons can’t be used. For more information on

the restrictions and limitations with filtered indexes, refer to Chapter 2.

Executing the CertificationDate queries from Listing 11-26 shows that the filtered

index provides a significant impact on the performance for the query. In regard to the

reads incurred, there are now only 2 reads as opposed to the 2,866 reads before the

index was applied (see Figure 11-38). Also, the execution plans now use index seeks for

both queries instead of the clustered index scans, as shown in Figure 11-39. While these

results are to be expected, the other consideration with the index is that the new index

is comprised of only two pages. As you can see in Figure 11-40, the number of pages

required for the entire index is substantially less than the clustered index and the other

nonclustered indexes.

Listing 11-26. Filtered Indexes Pattern

USE AdventureWorks2017

GO

CREATE INDEX IX_Contacts_CertificationDate ON dbo.

Contacts(CertificationDate)

 INCLUDE (FirstName, LastName)

 WHERE CertificationDate IS NOT NULL;

Chapter 11 IndexIng StrategIeS

406

SET STATISTICS IO ON;

SELECT ContactID,

 FirstName,

 LastName,

 CertificationDate

FROM dbo.Contacts

WHERE CertificationDate IS NOT NULL

ORDER BY CertificationDate;

SELECT ContactID,

 FirstName,

 LastName,

 CertificationDate

FROM dbo.Contacts

WHERE CertificationDate

BETWEEN '20110101' AND '20110201'

ORDER BY CertificationDate;

SET STATISTICS IO OFF;

SELECT OBJECT_NAME(object_id) as table_name

 ,CASE index_id

 WHEN INDEXPROPERTY(object_id , 'IX_Contacts_CertificationDate',

'IndexID') THEN 'Filtered Index'

 WHEN 1 THEN 'Clustered Index'

 ELSE 'Other Indexes' END As index_type

 ,index_id

 ,in_row_data_page_count

 ,in_row_reserved_page_count

 ,in_row_used_page_count

FROM sys.dm_db_partition_stats

WHERE object_id = OBJECT_ID('dbo.Contacts');

Chapter 11 IndexIng StrategIeS

407

Including only a subset of the rows in a table within an index has a number of

advantages. One advantage is that since the index is smaller, there are fewer pages in the

index, which translates directly to lower storage requirements for the database. Along

the same lines, if there are fewer pages in the index, there are fewer opportunities for

index fragmentation and less effort required to maintain the index. The final advantage

of filtered indexes relates to performance and plan quality. Since the values in the

filtered index are limited, the statistics for the index are limited as well. Since there are

fewer pages to traverse in the filtered index, a scan against a filtered index is almost

always less of an issue than a scan on the clustered index or heap.

Figure 11-38. Statistics I/O results for Filtered Indexes pattern

Figure 11-39. Execution plan for Filtered Indexes pattern

Figure 11-40. Page count comparison for filtered index

Chapter 11 IndexIng StrategIeS

408

There are a few situations where using the Filtered Indexes pattern can and should

be used when creating indexes. The first situation is when you need to place an index on

a column that is configured as sparse. In this case, the expected number of rows that will

have the value will be small compared to the total number of rows. One of the benefits

of using sparse columns is avoiding the storage costs associated with storing NULL

values in these columns. Make certain that the indexes on these columns don’t store

the NULL values by not using filtered indexes. The second situation is when you need to

enforce uniqueness on a column that can have multiple NULL values in it. Creating the

filtered index as unique where the key columns are not NULL will bypass the restrictions

on uniqueness that allow only a single NULL value in the columns. In this case, you can

ensure that Social Security Numbers in a table are unique when they are provided.

The last situation that is a good fit for filtered indexes is when queries need to be run

that don’t fit the normal index profile for a table. In this case, there might be a query for

a one-off report that needs to retrieve a few thousand rows from the database. Instead

of running the report and dealing with the potential scan of the clustered index or heap,

create filtered indexes that mimic the predicates of the query. This will allow the query

to be quickly executed, without having to spend the time building indexes that contain

values the query would never have considered.

As this section has detailed, the Filtered Indexes pattern is one that can be useful

in a variety of situations. Be sure to consider it in your indexing. Often, when the first

use for a filtered index is found, there are others that start appearing, and we’ll identify

situations with selecting and modifying data, as earlier, that can benefit from its use.

 Foreign Keys
The last nonclustered index pattern is the Foreign Keys pattern. This is the only pattern

that relates directly to objects in the database design. Foreign keys provide a mechanism

to constrain values in one table to the values in rows in another table. This relationship

provides referential integrity that is critical in most database deployments. However,

foreign keys can sometimes be the cause of performance issues in databases without

anyone realizing that they are interfering with performance.

Since foreign keys provide a constraint on the values that are possible for a column,

there is a check that is done when the values need to be validated. There are two types

of validations that can occur with a foreign key. The first happens on the parent table,

dbo.ParentTable, and the second happens on the child table, dbo.ChildTable (see

Figure 11-41). Validations occur on dbo.ParentTable whenever rows are modified in

Chapter 11 IndexIng StrategIeS

409

dbo.ChildTable. In these cases, the ParentID value from dbo.ChildTable is validated

with a lookup of the value in dbo.ParentTable. Usually, this does not result in a

performance issue since ParentID in dbo.ParentTable will likely be the primary key in

the table and also the column upon which the table is clustered. The other validations

occur on dbo.ChildTable when there are modifications to dbo.ParentTable. For

instance, if one of the rows in dbo.ParentTable were to be deleted, then dbo.ChildTable

would need to be checked to see whether the ParentID value is being used in that table.

This validation is where the Foreign Keys pattern needs to be applied.

To demonstrate the Foreign Keys pattern, you will first need a couple tables for

the examples. The code in Listing 11-27 builds two tables, dbo.Customer and dbo.

SalesOrderHeader. For these tables, a foreign key relationship exists between them on

the CustomerID columns. For every dbo.SalesOrderHeader row, there is a customer

associated with the row. Conversely, every row in dbo.Customer can relate to one or

more rows in dbo.SalesOrderHeader.

Listing 11-27. Setup for Foreign Keys Pattern

USE AdventureWorks2017

GO

CREATE TABLE dbo.Customer(

 CustomerID int

 ,FillterData char(1000)

 ,CONSTRAINT PK_Customer_CustomerID PRIMARY KEY CLUSTERED (CustomerID)

);

Figure 11-41. Foreign key relationship

Chapter 11 IndexIng StrategIeS

410

CREATE TABLE dbo.SalesOrderHeader(

 SalesOrderID int

 ,OrderDate datetime

 ,DueDate datetime

 ,CustomerID int

 ,FillterData char(1000)

 ,CONSTRAINT PK_SalesOrderHeader_SalesOrderID

 PRIMARY KEY CLUSTERED (SalesOrderID)

 ,CONSTRAINT GK_SalesOrderHeader_CustomerID_FROM_Customer

 FOREIGN KEY (CustomerID) REFERENCES dbo.Customer(CustomerID)

);

INSERT INTO dbo.Customer (CustomerID)

SELECT CustomerID

FROM Sales.Customer;

INSERT INTO dbo.SalesOrderHeader

 (SalesOrderID, OrderDate, DueDate, CustomerID)

SELECT SalesOrderID, OrderDate, DueDate, CustomerID

FROM Sales.SalesOrderHeader;

In the example, you want to observe what happens in dbo.SalesOrderHeader when

a row in dbo.Customer is modified. To demonstrate activity on dbo.Customer, the script

in Listing 11-28 executes a DELETE on the table on the row where CustomerID equals 701.

This row should have no rows in dbo.SalesOrderHeader. Even though this is the case,

the foreign key does require that a check be made to determine whether there are rows

in dbo.SalesOrderHeader for that CustomerID. If so, then SQL Server would error on the

delete. Since there are no rows in dbo.SalesOrderHeader, the row in dbo.Customer can

be deleted.

The execution identifies a couple potential performance problems with the delete.

First, with only one row being deleted, there are a total of 4,516 reads (see Figure 11-42).

Of the reads, 3 occur on dbo.Customer, while 4,513 occur on dbo.SalesOrderHeader.

The reason for this is the clustered index scan that had to occur on dbo.

SalesOrderHeader (shown in Figure 11-43). The scan occurred because the only way to

check which rows were using Customer equal to 701 is to scan all the rows in the table.

There is no index that can provide a faster path to verifying whether the value was being

used.

Chapter 11 IndexIng StrategIeS

411

Listing 11-28. Foreign Keys Pattern

USE AdventureWorks2017

GO

SELECT MAX(c.CustomerID)

 FROM dbo.Customer c

 LEFT OUTER JOIN dbo.SalesOrderHeader soh ON c.CustomerID =

soh.CustomerID

 WHERE soh.CustomerID IS NULL;

SET STATISTICS IO ON;

DELETE FROM dbo.Customer

WHERE CustomerID = 701;

Figure 11-42. Statistics I/O results for Foreign Keys pattern

Figure 11-43. Execution plan for Foreign Keys pattern

Chapter 11 IndexIng StrategIeS

412

Improving the performance of the DELETE on dbo.Customer can be done simply

through the Foreign Keys pattern. An index built on dbo.SalesOrderHeader on the

CustomerID column will provide a reference point for validation with the next delete

operation (see Listing 11-29). Reviewing the execution with the index in place yields quite

different results. Instead of 4,513 reads on dbo.SalesOrderHeader, there are now only two

reads against that table (see Figure 11-44). This change is, of course, because of the index

that was created on the CustomerID column (see Figure 11-45). Instead of a clustered

index scan, the delete operation can utilize an index seek on dbo.SalesOrderHeader.

Listing 11-29. Foreign Keys Pattern

USE AdventureWorks2017

GO

CREATE INDEX IX_SalesOrderHeader_CustomerID ON dbo.

SalesOrderHeader(CustomerID);

SELECT MAX(c.CustomerID)

 FROM dbo.Customer c

 LEFT OUTER JOIN dbo.SalesOrderHeader soh ON c.CustomerID =

soh.CustomerID

 WHERE soh.CustomerID IS NULL;

SET STATISTICS IO ON

DELETE FROM dbo.Customer

WHERE CustomerID = 700

Figure 11-44. Statistics I/O results for Foreign Keys pattern

Chapter 11 IndexIng StrategIeS

413

The Foreign Keys pattern is important to keep in mind with building foreign key

relationships between tables. The purpose of those relationships is to validate data, and

you need to be certain that the indexes to support that activity are in place. Don’t use

this pattern as an excuse to remove validation from your databases; instead, use it as

an opportunity to properly index your databases. If the column needs to be queried to

validate and constrain the data, it will likely be accessed by applications when the data

needs to be used for other purposes.

 Columnstore Index
As the size of databases have grown, there are more and more situations where

traditional clustered and nonclustered indexes don’t adequately provide the

performance needed for calculating results. This is primarily a pain with large data

warehouses, and for this problem, the columnstore index was introduced in SQL Server

2012. Previous chapters discussed how the columnstore utilizes column-based storage

vs. row-based storage. This section looks at some guidelines with both clustered and

nonclustered versions of columnstore indexes and how to recognize when to build a

columnstore index. After the guidelines, an example implementing a columnstore index

will be provided.

Figure 11-45. Execution plan for Foreign Keys pattern

Chapter 11 IndexIng StrategIeS

414

Note the columnstore examples in this section utilize the Microsoft Contoso BI
demo dataset for retail Industry. this database has a fact table with more than 8
million records. It is available for download at www.microsoft.com/download/
en/details.aspx?displaylang=en&id=18279.

The key to using columnstore indexes is to be able to properly identify the situations

where they should be applied. While it could be useful with some OLTP databases to

use the columnstore index, this is not the target scenario. While the performance of the

columnstore index could be useful in an OLTP database, the restrictions associated with

this index type prevent using it in a meaningful way in OLTP databases. The columnstore

index is primarily useful for data warehouses, where aggregations across numerous

rows are required and few columns will be returned. With the column-wise storage and

built-in compression, this index type provides a way to get to the data requested as fast

as possible without having to load columns that are not part of the query. Within your

data warehouse, columnstore indexes are geared toward fact tables vs. dimension tables.

Columnstore indexes really prove their worth when they are used on large tables. The

larger the table, the more a columnstore index will be able to improve performance

over traditional indexes. Additionally, when considering data warehouse queries, one

common quality that they share is aggregations and subsets of the available columns.

Through the aggregations, the batch mode processing of columnstore indexes provides

greater performance improvements. The fewer columns in the queries means less data

is loaded into memory, as only the columns being accessed are used in the context of the

query.

When a scenario for using a columnstore index is discovered, there are a couple

of things to first consider. Since columnstore indexes can be both clustered and

nonclustered, the first decision is which type to use. With clustered columnstore indexes,

all the data in the table is stored with the index, meaning that only one copy of the data

appears in the database. Since it is all the data, the results in all the columns from the

table appear in the columnstore index. In most cases, this will be preferred.

Alternatively, the columnstore index can be nonclustered. This provides the ability

to limit the number of columns that are part of the index. In some cases, where the table

has many columns, this may be useful. The nonclustered index will rely on a clustered

index being part of the table, which means that nonclustered columnstore indexes

increase the overall storage footprint of the table.

Chapter 11 IndexIng StrategIeS

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=18279
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=18279

415

Nonclustered columnstore indexes have more considerations when creating them,

so there are a number of guidelines to remember when building the them. First, the

order of the columns in the nonclustered columnstore index does not matter. Each

column is stored separate from the other columns, and there are no relationships

between them until they are materialized together again during execution. The

next thing to remember is that all columns in the table that will be leveraged by the

columnstore index must appear in the columnstore index. If a column from a query does

not appear in the nonclustered columnstore index, then the index cannot be used.

If you are using SQL Server versions prior to SQL Server 2017, it’s important to

remember that nonclustered columnstore indexes are read-only, and any table or

partition that has a nonclustered columnstore index built upon it will be placed in a

read-only state. To modify the table, the nonclustered columnstore index will need to

be disabled or dropped and then rebuilt or created after the updates are completed.

This limitation does not affect clustered columnstore indexes and was lifted from

nonclustered columnstore indexes with SQL Server 2017.

A limitation that affects both types of columnstore indexes is length of time that it

takes to create the index. In many cases, it can take four to five times longer to create

a columnstore index than it does to build a clustered or nonclustered index. For more

information on columnstore indexes, see Chapter 2.

Before demonstrating the value in columnstore indexes, let’s look at a demonstration

of a query against a data warehouse with traditional indexing. In Listing 11-30, the query

is summarizing SalesQuantity values by CalendarQuarter and ProductCategoryName.

Executing the query does not take a substantial amount of time; Figure 11-46 shows an

elapsed time of 4,293 ms (or 4.2 seconds), with a little less than 20,000 reads on dbo.

FactSales. The results are reasonable for the current volume of records, but consider

if the table had 10 or 100 times as many rows. At what point would the 4.2 seconds of

execution grow outside the acceptable execution time?

Note Because of the size of the execution plans, they are not being included
in the columnstore index examples. and since this section is relying on CpU time
to demonstrate performance, they are run multiple times to ensure that disk to
memory performance is not a factor.

Chapter 11 IndexIng StrategIeS

416

Listing 11-30. Columnstore Index

USE ContosoRetailDW

GO

SET STATISTICS IO ON

SET STATISTICS TIME ON

SELECT dd.CalendarQuarter

 ,dpc.ProductCategoryName

 ,COUNT(*) As TotalRows

 ,SUM(SalesQuantity) AS TotalSales

FROM dbo.FactSales fs

 INNER JOIN dbo.DimDate dd ON fs.DateKey = dd.Datekey

 INNER JOIN dbo.DimProduct dp ON fs.ProductKey = dp.ProductKey

 INNER JOIN dbo.DimProductSubcategory dps ON dp.ProductSubcategoryKey =

dps.ProductSubcategoryKey

 INNER JOIN dbo.DimProductCategory dpc ON dps.ProductCategoryKey =

dpc.ProductCategoryKey

GROUP BY dd.CalendarQuarter

 ,dpc.ProductCategoryName;

To test the performance with a nonclustered columnstore index on dbo.FactSales,

let’s add a new index to the table. As stated in the guidelines in this section, all the

columns in dbo.FactSales are added to the columnstore index, shown in Listing 11- 31.

With the index in place, the performance of the query changes dramatically. From a

timing perspective, the query completes in 286 ms, shown in Figure 11-47, which is an

improvement of over 15 times the performance without the nonclustered columnstore

index. Additionally, the number of I/Os dropped from nearly 20,000 to 2,608.

Figure 11-46. Statistics I/O results for clustered index on fact table

Chapter 11 IndexIng StrategIeS

417

Listing 11-31. Adding Nonclustered Columnstore Index

USE ContosoRetailDW

GO

CREATE NONCLUSTERED COLUMNSTORE INDEX IX_FactSales_CStore ON dbo.FactSales (

 SalesKey, DateKey, channelKey, StoreKey, ProductKey, PromotionKey,

CurrencyKey, UnitCost, UnitPrice,

 SalesQuantity, ReturnQuantity, ReturnAmount, DiscountQuantity,

DiscountAmount, TotalCost, SalesAmount,

 ETLLoadID, LoadDate, UpdateDate);

SET STATISTICS IO ON;

SET STATISTICS TIME ON;

SELECT dd.CalendarQuarter

 ,dpc.ProductCategoryName

 , COUNT(*) As TotalRows

 ,SUM(SalesQuantity) AS TotalSales

FROM dbo.FactSales fs

 INNER JOIN dbo.DimDate dd ON fs.DateKey = dd.Datekey

 INNER JOIN dbo.DimProduct dp ON fs.ProductKey = dp.ProductKey

 INNER JOIN dbo.DimProductSubcategory dps ON dp.ProductSubcategoryKey =

dps.ProductSubcategoryKey

 INNER JOIN dbo.DimProductCategory dpc ON dps.ProductCategoryKey =

dpc.ProductCategoryKey

GROUP BY dd.CalendarQuarter

 ,dpc.ProductCategoryName;

Figure 11-47. Statistics I/O results for nonclustered columnstore index

Chapter 11 IndexIng StrategIeS

418

As mentioned, the clustered columnstore index is preferred; since this is the

preference, let’s look at the impact of using a clustered columnstore index on dbo.

FactSales. Since you are creating a clustered index on the table, we’ll use the script in

Listing 11-32 to create a new table called dbo.FactSales_CCI, populate it with the same

data in dbo.FactSales, and add the clustered columnstore index to it.

When you use the same aggregate query from the previous examples, the

performance value of the clustered columnstore is evident. Considering the execution

time (shown in Figure 11-48), it drops further to 164 ms, which is more than 26 times

faster than the fact table with the clustered index. The I/Os are reduced as well with

only 1,309 I/Os for the execution. While the I/O footprint is similar to the nonclustered

columnstore, remember that the clustered columnstore is stored only a single time and

the values in it can be modified.

Listing 11-32. Create Fact Table with Clustered Columnstore Index

USE ContosoRetailDW

GO

IF OBJECT_ID('dbo.FactSales_CCI') IS NOT NULL

 DROP TABLE FactSales_CCI

CREATE TABLE dbo.FactSales_CCI(

 SalesKey int NOT NULL,

 DateKey datetime NOT NULL,

 channelKey int NOT NULL,

 StoreKey int NOT NULL,

 ProductKey int NOT NULL,

 PromotionKey int NOT NULL,

 CurrencyKey int NOT NULL,

 UnitCost money NOT NULL,

 UnitPrice money NOT NULL,

 SalesQuantity int NOT NULL,

 ReturnQuantity int NOT NULL,

 ReturnAmount money NULL,

 DiscountQuantity int NULL,

 DiscountAmount money NULL,

 TotalCost money NOT NULL,

Chapter 11 IndexIng StrategIeS

419

 SalesAmount money NOT NULL,

 ETLLoadID int NULL,

 LoadDate datetime NULL,

 UpdateDate datetime NULL

)

INSERT INTO dbo.FactSales_CCI

SELECT * FROM dbo.FactSales

CREATE CLUSTERED COLUMNSTORE INDEX FactSales_CStore ON dbo.FactSales_CCI

SET STATISTICS IO ON;

SET STATISTICS TIME ON;

SELECT dd.CalendarQuarter

 ,dpc.ProductCategoryName

 , COUNT(*) As TotalRows

 ,SUM(SalesQuantity) AS TotalSales

FROM dbo.FactSales_CCI fs

 INNER JOIN dbo.DimDate dd ON fs.DateKey = dd.Datekey

 INNER JOIN dbo.DimProduct dp ON fs.ProductKey = dp.ProductKey

 INNER JOIN dbo.DimProductSubcategory dps ON dp.ProductSubcategoryKey =

dps.ProductSubcategoryKey

 INNER JOIN dbo.DimProductCategory dpc ON dps.ProductCategoryKey =

dpc.ProductCategoryKey

GROUP BY dd.CalendarQuarter

 ,dpc.ProductCategoryName;

Figure 11-48. Statistics I/O results for clustered columnstore index

Chapter 11 IndexIng StrategIeS

420

With the recent additions to SQL Server, columnstore indexes are a significant

improvement in the way in which data warehouses are indexed. These performance

improvements open opportunities to scale the databases even further than is

possible with traditional indexes. Scenarios where only millions of rows are able to be

summarized in results will now be able to scale to billions of rows. Additionally, since

all columns can be included in the columnstore indexes, the effort and requirement for

continuous maintenance and tuning of indexes in data warehouses are dramatically

reduced.

Note the next section utilizes the WorldWideImporters databases which can be
downloaded from https://github.com/Microsoft/sql-server-samples/
releases/tag/wide-world-importers-v1.0.

 JSON Indexing
SQL Server 2016 introduced the ability to process JSON (JavaScript Object Notation)

data within SQL Server. JSON defines methods of structuring data that are easy for both

applications and people to read and write. Due to this ease, it’s become very popular

within application development.

Instead of tags and attributes that are used in XML, JSON leverages brackets,

colons, and quotes to define entity-attribute relationships. As an example, Listing 11-33

contains an XML document that defines extra information regarding an employee of

WideWorldImporters. That same information represented by JSON is shown in

Listing 11-34. Comparing the two, the JSON is quite a bit easier to read and understand

than the same data represented as XML.

Listing 11-33. XML Example

<CustomFields>

 <OtherLanguages>

 <Language>Polish</Language>

 <Language>Chines</Language>

 <Language>Japanese</Language>

 </OtherLanguages>

Chapter 11 IndexIng StrategIeS

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0

421

 <HireDate>2008-04-19T00:00:00</HireDate>

 <Title>Team Member</Title>

 <PrimarySalesTerritory>Plains</PrimarySalesTerritory>

 <CommissionRate>0.98</CommissionRate>

</CustomFields>

Listing 11-34. JSON Example

{

"OtherLanguages": ["Polish","Chinese","Japanese"] ,

"HireDate":"2008-04-19T00:00:00",

"Title":"Team Member",

"PrimarySalesTerritory":"Plains",

"CommissionRate":"0.98"

}

While SQL Server can now process JSON data, Microsoft implemented JSON a

bit different than how XML and spatial were implemented. Instead of a dedicated

data type, JSON data is stored in columns defined with the data types varchar(max)

and nvarchar(max). Then the information within the data can be retrieved using the

functions JSON_VALUE or JSON_QUERY. The advantage of this implementation is that

there are no special indexing types associated with JSON data, which is why there isn’t

a chapter dedicated to JSON indexing. Instead, JSON data takes advantage of existing

indexing capabilities by using computed columns persisted through indexes.

Before we start with how to index JSON data, let’s start with an example of how the

JSON functions work and their effect on performance. To start, create the table dbo.

People from Application.People in WideWorldImporters, provided in Listing 11-35. In

that table, we’ll include a column for HireDate that retrieves the HireDate from the JSON

document in CustomFields.

Chapter 11 IndexIng StrategIeS

422

Listing 11-35. JSON Example Setup

USE WideWorldImporters;

GO

DROP TABLE IF EXISTS dbo.People;

CREATE TABLE [dbo].[People]

(

 [PersonID] [INT] NOT NULL,

 [FullName] [NVARCHAR](50) NOT NULL,

 [CustomFields] [NVARCHAR](MAX) NULL,

 [HireDate] AS JSON_VALUE([CustomFields], N'$.HireDate'),

 [Junk] [VARCHAR](4000) NULL,

 CONSTRAINT [PK_People]

 PRIMARY KEY CLUSTERED ([PersonID])

);

GO

INSERT INTO dbo.People

(

 PersonID,

 FullName,

 CustomFields,

 Junk

)

SELECT PersonID,

 FullName,

 CustomFields,

 REPLICATE('x', 4000) AS Junk

FROM Application.People;

GO

If we query dbo.People, using the code in Listing 11-36, we’ll find that we get the

desired results from the JSON data, through the computed column. Unfortunately, to

retrieve these results, SQL Server is the clustered index, shown in Figure 11-50. The

impact of this scan is that all 1,111 rows in the table are accessed which the statistics

output in Figure 11-49 indicates and leads to 762 reads for the query.

Chapter 11 IndexIng StrategIeS

423

Listing 11-36. Query Computed JSON Column

USE WideWorldImporters;

GO

SET STATISTICS IO ON;

SELECT PersonID,

 HireDate

FROM dbo.People

WHERE HireDate IS NOT NULL;

To alleviate the performance impact of the computed JSON column, we can add an

index to the computed column, as shown in Listing 11-37, and then execute the query

against dbo.People again. This time the performance is greatly improved. Instead of 762

reads, Figure 11-51 shows that there are only 3 reads. Additionally, the execution plan in

Figure 11-52 indicates that an index seek on the index added was used.

Figure 11-49. Statistics I/O results for computed JSON column

Figure 11-50. Execution plan for computed JSON column

Chapter 11 IndexIng StrategIeS

424

Listing 11-37. Index and Query JSON Computed Column

USE WideWorldImporters;

GO

CREATE INDEX IX_People_HireDate ON dbo.People (HireDate);

GO

SET STATISTICS IO ON;

SELECT PersonID,

 HireDate

FROM dbo.People

WHERE HireDate IS NOT NULL

By leveraging computed columns, JSON data can be easily and efficiently

accessed within your databases. And rather than needing to learn about new indexing

technologies to gain that efficiency, you are able to leverage existing features. This makes

it easier to both adopt and support JSON and efficient query access to that data.

Figure 11-52. Execution plan for computed and indexed JSON column

Figure 11-51. Statistics I/O results for computed and indexed JSON column

Chapter 11 IndexIng StrategIeS

425

 Index Storage Strategies
The strategies in the chapter up to this point have primarily focused on improving the

performance queries using indexes through the key and nonkey column design of the

index. There are other options that can be used in conjunction to column selection that

can be considered in the design of indexes. These alternative strategies all relate to the

way in which indexes are stored in the database.

There are two options available for addressing how an index stores its data. The basic

premise for both of these options is that the smaller the index, the fewer pages that it will

contain and the fewer reads and writes that will be required when querying the data.

The first option available is row compression, and the second is page compression. Both

of these options provide the potential for substantial storage savings and performance

improvements.

Note the use of row and page compressions is limited to SQL Server enterprise
edition.

 Row Compression
The first way to reduce the size of an index is by reducing the size of the row on the index.

Row compression achieves this by altering the way in which data is stored in a row. Row

compression can be used on heaps or clustered and nonclustered indexes. There are a

few things that occur on a row when row compression is enabled. These are as follows:

• Modification of the metadata for the row.

• Fixed-length character data is stored in a variable-length format.

• Numeric-based data types are stored in variable-length format.

With the metadata changes, the information stored for each column is generally

reduced compared to a nonrow compression record. Excessive bits in the row overhead

are removed, and the information is streamlined to reduce waste. There is an exception

to this change, though: some of the changes to fixed-length data types may result in a

larger row overhead to accommodate for the additional information required for data

length and offset values.

Chapter 11 IndexIng StrategIeS

426

For fixed-length character data, white space is removed from the end of values in the

column. This information is not lost, and the behavior of fixed-length data types, such as

char and nchar, is unaffected. The difference is only in the manner in which the data is

stored. For binary data, trailing zeros on the value are removed, similar to white space.

Information on the characters removed from a column is stored in the row overhead.

Numeric data types are probably the most changed data types with row compression.

For these data types, the data type is stored in the smallest form possible for the data

type. This means a column with the bigint data type, which typically requires 8 bytes,

would require only 1 byte if the value stored is between 0 and 255. At the value 256, the

column would then store the value in 2 bytes. This progression continues until the need

to store the value in 8 bytes is reached. This applies to all the numeric-based data types,

including smallint, int, bigint, decimal, numeric, smallmoney, money, float, real,

datetime, datetime2, datetimeoffset, and timestamp.

To demonstrate, you first need a table on which to implement compression, which

is provided in Listing 11-38. This script creates two tables, dbo.NoCompression and dbo.

RowCompression. Let’s use these tables to demonstrate the effect of row compression on

the size of the table, through the clustered index, and on query performance.

Listing 11-38. Setup for Row Compression

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.NoCompression') IS NOT NULL

 DROP TABLE dbo.NoCompression;

IF OBJECT_ID('dbo.RowCompression') IS NOT NULL

 DROP TABLE dbo.RowCompression;

SELECT SalesOrderID

 ,SalesOrderDetailID

 ,CarrierTrackingNumber

 ,OrderQty

 ,ProductID

 ,SpecialOfferID

 ,UnitPrice

 ,UnitPriceDiscount

 ,LineTotal

Chapter 11 IndexIng StrategIeS

427

 ,rowguid

 ,ModifiedDate

INTO dbo.NoCompression

FROM Sales.SalesOrderDetail;

SELECT SalesOrderID

 ,SalesOrderDetailID

 ,CarrierTrackingNumber

 ,OrderQty

 ,ProductID

 ,SpecialOfferID

 ,UnitPrice

 ,UnitPriceDiscount

 ,LineTotal

 ,rowguid

 ,ModifiedDate

INTO dbo.RowCompression

FROM Sales.SalesOrderDetail;

Implementation of row compression relies on the use of DATA_COMPRESSION index

options on the CREATE or ALTER INDEX statement. Compression can be used on either

clustered or nonclustered indexes. For row compression, the ROW option is shown in

Listing 11-39. In this example, a clustered index is added to both of the example tables.

The impact of using row compression on this table is impressive; there is a reduction

of more than 35 percent in the number of pages required for the clustered index (see

Figure 11-53).

Listing 11-39. Implementing Row Compression

USE AdventureWorks2017

GO

CREATE CLUSTERED INDEX CLIX_NoCompression ON dbo.NoCompression

 (SalesOrderID, SalesOrderDetailID);

CREATE CLUSTERED INDEX CLIX_RowCompression ON dbo.RowCompression

 (SalesOrderID, SalesOrderDetailID)

 WITH (DATA_COMPRESSION = ROW);

Chapter 11 IndexIng StrategIeS

428

SELECT OBJECT_NAME(object_id) AS table_name

 ,in_row_reserved_page_count

FROM sys.dm_db_partition_stats

WHERE object_id IN (OBJECT_ID('dbo.NoCompression'),OBJECT_ID('dbo.

RowCompression'));

Storage isn’t the only place where there is an improvement; there is also an

improvement in query performance. To demonstrate this benefit, execute the code

in Listing 11-40. In this script, two queries are executed against the tables from the

previous example. While the business rules for the queries are identical, there is more

than a 36 percent reduction in page reads for the table with row compression. By just

adding compression to the index, the resources required for the query are reduced, and

performance is improved without a change to the query design (Figure 11-54).

Listing 11-40. Row Compression Query

USE AdventureWorks2017

GO

SET STATISTICS IO, TIME ON

SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber

FROM dbo.NoCompression

WHERE SalesOrderID BETWEEN 51500 AND 52000;

SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber

FROM dbo.RowCompression

WHERE SalesOrderID BETWEEN 51500 AND 52000;

Figure 11-53. Row compression output

Chapter 11 IndexIng StrategIeS

429

There are a number of things that need to be considered when implementing row

compression on an index. First, the amount of compression achieved by any use of

compression will vary depending on the data types implemented and the data being

stored. The improvement will, and should be expected to, vary per table and over time.

Compression can’t be enabled if the maximum possible size of the row exceeds 8,060

bytes (including the size of the data and the row overhead). Nonclustered indexes

will not inherit the compression settings of the clustered index or heap; this must

be specified when the index is created. However, clustered indexes will inherit the

compression settings of the heap they are being created on if none is specified.

Row compression is a useful mechanism for altering how indexes are stored. It

reduces the size of rows, which has the dual benefit of improving query performance and

reducing storage requirements for indexes. The main thing to be concerned with when

implementing row compression is the additional overhead associated with its use; this

overhead materializes as a slight increase in CPU utilization which is usually offset by the

reduced effort to process the query, as shown in Figure 11-54. Unless you can prove that

row compression is causing issues, it’s probably best to always leverage row compression

at a minimum on indexes.

 Page Compression
The other method to reduce the size of an index is by using variable-length data types

and removing repeating values on a page. SQL Server accomplishes this through the

page compression option on indexes. Like row compression, this compression type can

Figure 11-54. Row compression query statistics

Chapter 11 IndexIng StrategIeS

430

be applied to heaps or clustered and nonclustered indexes. There are three components

of page compression:

• Row compression

• Prefix compression

• Dictionary compression

The row compression component of page compression is identical to the row

compression option. Before compressing a page, the row on the page is first compressed.

The next step in page compression is accomplished through prefix compression.

Prefix compression scans columns and removes similar values and groups them in the

page header. For instance, if a number of columns start with abc, this value is placed

in the page header, and the value is replaced in the column with a location identifying

what values have been replaced. If another column contains the value abcd, a reference

to the abc value in the page header is included, changing the column value to 0d. This

is continued for all columns to remove the most prevalent patterns and reduce the

information stored per row of the column.

The last step in page compression is the dictionary compression. Through dictionary

compression, the values in all columns are checked for repeating values. Continuing the

previous example, if there are values in two columns across multiple rows that match

the 0d value, then that value is placed in the page header, and a reference to the value

is stored in those columns. This is done across the entire page, reducing the repeated

prefix-compressed values.

For a demonstration of the benefits of page compression, let’s expand on the example

from the row compression section. To start the example, execute the script in Listing 11-41.

This creates the dbo.PageCompression table similar to the tables from the previous example.

Listing 11-41. Setup for Page Compression

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.PageCompression') IS NOT NULL

 DROP TABLE dbo.PageCompression;

SELECT SalesOrderID

 ,SalesOrderDetailID

 ,CarrierTrackingNumber

Chapter 11 IndexIng StrategIeS

431

 ,OrderQty

 ,ProductID

 ,SpecialOfferID

 ,UnitPrice

 ,UnitPriceDiscount

 ,LineTotal

 ,rowguid

 ,ModifiedDate

INTO dbo.PageCompression

FROM Sales.SalesOrderDetail;

Implementing page compression is nearly the same as row compression. Both

utilize the DATA_COMPRESSION option, with the PAGE option for page compression. To see

the effect of page compression on the tables, execute the code in Listing 11-42. In this

example, the effect of page compression has significantly more impact on the table than

was observed with row compression. This time the number of pages used by the table

decreases by 55 percent, as shown in Figure 11-55.

Listing 11-42. Implementing Page Compression

USE AdventureWorks2017

GO

CREATE CLUSTERED INDEX CLIX_PageCompression ON dbo.PageCompression

 (SalesOrderID, SalesOrderDetailID)

 WITH (DATA_COMPRESSION = PAGE);

SELECT OBJECT_NAME(object_id) AS table_name

 ,in_row_reserved_page_count

FROM sys.dm_db_partition_stats

WHERE object_id IN (OBJECT_ID('dbo.NoCompression'),OBJECT_ID('dbo.

PageCompression'));

Figure 11-55. Page compression output

Chapter 11 IndexIng StrategIeS

432

The improvements from page compression are not limited to just storing the index.

These improvements continue to querying the table. Comparing the previous results

against dbo.NoCompression to those against dbo.PageCompression (Listing 11-43)

shows that the savings in reads continue with page compression. In this case, the reads

decreased to 29 (see Figure 11-56), which is more than a 55 percent decrease in I/O cost.

Listing 11-43. Page Compression Query

USE AdventureWorks2017

GO

SET STATISTICS IO, TIME ON

SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber

FROM dbo.PageCompression

WHERE SalesOrderID BETWEEN 51500 AND 52000;

The considerations for page compression are similar in nature to those for row

compression with the addition of a few additional items. First, because of the nature in

which page compression is implemented, there are times when SQL Server will decide

that the rate of compression for a page is not sufficient to justify the cost of compressing

the page. In these cases, SQL Server will attempt to compress the page but will record

a failure of the page compression and store the page without the benefit of page

compression over row compression. It is important to monitor the rate in which page

compression attempts do not succeed since they can indicate when there is low value in

using page compression on an index. This is discussed further in Chapter 3.

Next, the CPU cost for page compression is much higher than with row compression

or without compression. If there are not sufficient CPU resources available, this can lead

to other performance issues. Lastly, page compression is not ideal for tables and indexes

that expect frequent data modifications. Compressing and uncompressing a page to

modify a single row can have a significant impact on CPU.

Figure 11-56. Page compression query statistics

Chapter 11 IndexIng StrategIeS

433

Both row and page compression can provide substantial cost savings to indexing

solutions. Consider both when looking at index designs. Doing so will provide

performance improvements in situations where other solutions may not have yielded

the desired results.

Note You can find additional considerations related to compression in the Books
Online topic “data Compression” at https://docs.microsoft.com/en-us/
sql/relational-databases/data-compression/data-compression.

 Indexed Views
In many cases, the way in which data is stored in the database does not fully represent

the information that the users need to retrieve from the database. To solve this, you can

build queries to pull the data that users need together into resultsets that they can more

easily consume. In the process of performing these activities, you can aggregate data to

provide the results at the level of detail in which users require.

As an example, users may want to see the total amount sold for a product across

all the orders in a database but without including information on the detail items. In

most situations, retrieving this information is not an issue. However, in some cases,

performing that aggregation on the fly can create bottlenecks in the database. While

indexes can assist in streamlining the aggregations, they sometimes do not provide the

needed cost improvement to achieve the required performance.

One possible solution for this issue is to create indexes on a view in the database.

The view can be created to provide the summary and aggregations that are required, and

an index can be used to materialize the information in the view into an aggregated form.

When indexing a view, the results of the query are stored in the database in much the

same way as any table is stored. By storing this information ahead of time, queries that

use the aggregations in the view can obtain improved response time.

Before looking at how to implement a view, let’s first walk through the problem

outlined earlier with retrieving summary information for products. In this case, suppose

that there is a need for summary information for all products at the product subcategory

level. The query for this, provided in Listing 11-44, would need to provide a sum

aggregation of the LineTotal OrderQty values and then an average of the UnitPrice.

While the number of reads for the query isn’t substantially high (see Figure 11-57),

Chapter 11 IndexIng StrategIeS

https://docs.microsoft.com/en-us/sql/relational-databases/data-compression/data-compression
https://docs.microsoft.com/en-us/sql/relational-databases/data-compression/data-compression

434

suppose that in this database it was considered too high for a query to be released

into production. Examining the execution plan, provided in Figure 11-58, you see that

while not overly complicated, the plan includes a number of steps and would not be

considered a trivial plan.

Listing 11-44. Expensive Aggregation Query

USE AdventureWorks2017

GO

IF OBJECT_ID('dbo.ProductSubcategorySummary') IS NOT NULL

 DROP VIEW dbo.ProductSubcategorySummary;

SET STATISTICS IO ON;

SELECT psc.Name

 ,SUM(sod.LineTotal) AS SumLineTotal

 ,SUM(sod.OrderQty) AS SumOrderQty

 ,AVG(sod.UnitPrice) AS AvgUnitPrice

FROM Sales.SalesOrderDetail sod

 INNER JOIN Production.Product p ON sod.ProductID = p.ProductID

 INNER JOIN Production.ProductSubcategory psc ON p.ProductSubcategoryID =

psc.ProductSubcategoryID

GROUP BY psc.Name

ORDER BY psc.Name;

Figure 11-57. Statistics I/O results for expensive aggregation

Chapter 11 IndexIng StrategIeS

435

As mentioned, a solution for this performance problem can be found through

creating a view for the query in Listing 11-43 and adding an index to the view. There are a

number of things to consider when adding indexes to views. Some of the more important

considerations are the following:

• All columns in the view must be deterministic.

• The view must be created using the SCHEMA_BINDING view option.

• The clustered index must be created as unique.

• Tables referenced in the view must use two-part naming.

• If aggregating values, the COUNT_BIG() function must be included.

• Some aggregations, such as AVG(), are disallowed in indexed views.

Additional consideration when creating indexed views is included in the Books

Online topic “Create Indexed Views” (https://docs.microsoft.com/en-us/sql/

relational-databases/views/create-indexed-views?).

The first step in creating an indexed view is to create the underlying view. Given the

considerations listed, the query in Listing 11-44 cannot be directly turned into a view.

The query must be changed to remove the AVG function and include the COUNT_BIG

function. While this change removes one of the required data elements from the output,

you will be able to calculate that value after indexing the view. Along with that, the view

definition must include the WITH SCHEMABINDING option. The end result is the view

definition in Listing 11-45. The last step is to create a unique clustered index on the table

using the Name column from the Production.ProductSubcategory table.

Figure 11-58. Execution plan for expensive aggregation

Chapter 11 IndexIng StrategIeS

https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?
https://docs.microsoft.com/en-us/sql/relational-databases/views/create-indexed-views?

436

Listing 11-45. Indexed View

USE AdventureWorks2017

GO

CREATE VIEW dbo.ProductSubcategorySummary

WITH SCHEMABINDING

AS

SELECT psc.Name

 ,SUM(sod.LineTotal) AS SumLineTotal

 ,SUM(sod.OrderQty) AS SumOrderQty

 ,SUM(sod.UnitPrice) AS TotalUnitPrice

 ,COUNT_BIG(*) AS Occurrences

FROM Sales.SalesOrderDetail sod

 INNER JOIN Production.Product p ON sod.ProductID = p.ProductID

 INNER JOIN Production.ProductSubcategory psc ON p.ProductSubcategoryID =

psc.ProductSubcategoryID

GROUP BY psc.Name;

GO

CREATE UNIQUE CLUSTERED INDEX CLIX_ProductSubcategorySummary

 ON dbo.ProductSubcategorySummary(Name)

With the indexed view in place, the next step is to test how the view performs

compared to the original query. Before executing the code in Listing 11-46, first look

at the second query that is using the TotalUnitPrice and Occurrences columns to

generate AvgUnitPrice. While you can’t include the AVG function in the definitions for

indexed views, you can arrive at the same results with minimal effort.

After executing the queries in Listing 11-46, you will notice that the queries

performed substantially better than in the example in Listing 11-44. Instead of more

than 1,200 reads, there are only 2 reads required (see Figure 11-59), and the execution

plan (Figure 11-60) is quite a bit simpler. Instead of numerous operators, the plan was

simplified to three operators.

Chapter 11 IndexIng StrategIeS

437

Listing 11-46. Indexed View

USE AdventureWorks2017;

GO

SET STATISTICS IO ON;

SELECT psc.Name,

 SUM(sod.LineTotal) AS SumLineTotal,

 SUM(sod.OrderQty) AS SumOrderQty,

 AVG(sod.UnitPrice) AS AvgUnitPrice

FROM Sales.SalesOrderDetail sod

 INNER JOIN Production.Product p

 ON sod.ProductID = p.ProductID

 INNER JOIN Production.ProductSubcategory psc

 ON p.ProductSubcategoryID = psc.ProductSubcategoryID

GROUP BY psc.Name

ORDER BY psc.Name;

SELECT Name,

 SumLineTotal,

 SumOrderQty,

 TotalUnitPrice / Occurrences AS AvgUnitPrice

FROM dbo.ProductSubcategorySummary

ORDER BY Name;

Figure 11-59. Statistics I/O results for Indexed View pattern

Chapter 11 IndexIng StrategIeS

438

Another peculiar thing occurred in the execution that you may notice. Both the

query against the base tables and the query against the view performed identically after

implementing the indexed view. This is one of the added benefits of indexed views.

When SQL Server is determining the execution plan for the first query, it is able to

deduce that there is an indexed view that can cover the same logic as the query, even

though the calculation for the average column is not the same.

Indexed views are an extremely useful tool when multiple tables need to be joined

together in a single unit to reduce the I/O required to join the data at runtime. While there

are a number of restrictions associated with indexed views, there are numerous benefits,

including the ability to use indexed views in situations like the one in Listing 11-46. When you

have views and queries with the same shape that are used frequently, consider whether an

inclusion of the view can provide the benefit that indexes on the base tables do not provide.

 Summary
This chapter focused on how and when to apply indexes to tables in a number of

situations. Each example demonstrated how to apply a particular index pattern to

the situation to improve the performance with indexing. The chapter covered the

limited, yet valid, instances for using heaps. It then went on to identify the various

options and manners for building clustered indexes. With nonclustered indexes, the

example demonstrated the options for adding to your clustered indexes in order to add

performance on columns outside of the clustering key. The chapter also included an

example of implementing columnstore indexes and discussed when to apply this type of

index. Overall, these patterns provide the groundwork for identifying the types of indexes

that are required on tables in databases, and they provide the basis for being able to

compare and contrast one index to another.

Figure 11-60. Execution plan for Indexed View pattern

Chapter 11 IndexIng StrategIeS

439
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_12

CHAPTER 12

Query Strategies
In the previous chapter, we looked at strategies to identify potential indexes for your

databases. That, though, is often only half the story. Once the indexes have been created,

you would expect performance within the database to improve, leading you then to

the next bottleneck. Unfortunately, coding practices and selectivity can sometimes

negatively influence the application of indexes to queries. And sometimes how the

database and tables are being accessed will prevent the use of some of the most

beneficial indexes in your databases.

This chapter covers a number of querying strategies where indexes may not be used

as you may have expected. These scenarios are

• LIKE comparison

• Concatenation

• Computed columns

• Scalar functions

• Data conversions

In each scenario, we’ll look at the circumstances around them and why they don't

work as expected. Then we’ll see some ways to mitigate the issues and some tips on

how to use the right index in the right place. By the end of the chapter, we’ll be more

prepared to recognize situations that will hamper your ability to index the database for

performance, and we’ll have the tools to begin mitigating these risks.

 LIKE Comparison
When looking at the impact of queries on the use of indexes, the first place to start is

with the LIKE comparison. The LIKE comparison allows searches in columns on any

single character or pattern. If you need to find all the values in a table that start with the

440

letters AAA or BBB, the LIKE comparison provides this functionality. In these searches,

the query can read through the index and find the values that match to the characters

or pattern, since the index is sorted. Problems can arise when using this comparison in

queries to find values that contain or end with a character or pattern.

In this situation, the sort of the index becomes immaterial because statistics are

collected only on the left edge of character values. The likelihood that the letter B

appears in the first value in the index is equal to it appearing in the last value in the

index. To determine which records in the table have a B in the column, all rows must

be checked. There are no statistics available to identify the likelihood or location

occurrences. Without reliable statistics to use, SQL Server will not know what index to

use to satisfy a query and may end up using a poor execution plan.

To understand the problems that can occur with the LIKE comparison, we’ll walk

through a few demonstrations that show both scenarios and their related statistics. Let’s

start with querying the Person.Address table for records where AddressLine1 starts with

710 (see Listing 12-1). A review of the STATISTICS IO output in Figure 12-1 shows the

query required three logical reads. Examining the execution plan in Figure 12-2 shows

an index seek on the nonclustered index, which results in three logical reads.

Listing 12-1. Query for Addresses Beginning with 710

USE AdventureWorks2017

GO

SET STATISTICS IO ON;

SELECT AddressID, AddressLine1, AddressLine2, City, StateProvinceID,

PostalCode

FROM Person.Address

WHERE AddressLine1 LIKE '710%';

Figure 12-1. STATISTICS IO for addresses beginning with 710

Chapter 12 Query StrategieS

441

In this situation, the LIKE comparison worked well and the execution plan, statistics,

and I/O were all appropriate for the request. Unfortunately, as mentioned, this isn’t the

only manner in which LIKE comparisons can be used. The comparison can be used to

find values within a column. Consider a scenario where you need to find all the addresses

that match a specific street name of a road, such as Longbrook (see Listing 12-2). With

this query, the execution plan uses a scan on the nonclustered index and requires 216

logical reads, as shown in Figure 12-3. Figure 12-4 shows the execution plan.

Listing 12-2. Query for Addresses Containing “Longbrook

USE AdventureWorks2017

GO

SET STATISTICS IO ON;

SELECT AddressID, AddressLine1, AddressLine2, City, StateProvinceID,

PostalCode

FROM Person.Address

WHERE AddressLine1 LIKE '%Longbrook%';

Figure 12-2. Execution plan for addresses beginning with 710

Figure 12-3. STATISTICS IO for addresses containing “Longbrook”

Chapter 12 Query StrategieS

442

In this scenario, the table and index were both small. The difference between

an index seek and an index scan was not too extreme. Consider if this scenario was

happening in your production system with one of the larger tables in your databases.

Instead of being able to quickly filter out records that match the search values, SQL

Server is required to look through all rows. And while that time may be just tens of

seconds to complete, it opens the opportunity for blocking and deadlocking issues,

which will further slow down queries in your environment.

A popular method of avoiding this situation is to declare that wildcards are never

allowed on the left edge of searches. Unfortunately, this is a fairly unrealistic expectation.

There are few business managers in the world that would agree to require their users to

enter all possible street number combinations in an attempt to find every address that

matched the street name search. Just reading it here sounds silly.

A less popular but much more appropriate and useful solution to this scenario is to

create a full-text index on the table. A contributing factor to full-text indexes being less

popular than nonclustered indexes is because of the difference in building and creating

them, which has made them less familiar to most people. With a full-text index, words

within one or more columns are cataloged, along with their position in the table. This

enables the query to search quickly for the discrete values within a column value without

having to check all the records in an index.

To use a full-text index on the Person.Address table, you must first build a full-text

catalog, as shown in Listing 12-3. After that, the full-text index is created and includes the

column that will be searched in the queries. Lastly, the query needs to be modified to use

one of the full-text predicate functions. In this example, you will be using the CONTAINS

function.

Figure 12-4. Execution plan for addresses containing “Longbrook”

Chapter 12 Query StrategieS

443

Listing 12-3. Query for Addresses Using CONTAINS

USE AdventureWorks2017

GO

SET STATISTICS IO ON;

CREATE FULLTEXT CATALOG ftQueryStrategies AS DEFAULT;

CREATE FULLTEXT INDEX ON Person.Address(AddressLine1)

KEY INDEX PK_Address_AddressID;

GO

SELECT AddressID, AddressLine1, AddressLine2, City, StateProvinceID,

PostalCode

FROM Person.Address

WHERE CONTAINS (AddressLine1,'Longbrook');

With the full-text index in place, the performance of the search for streets named

Longbrook is similar to the first search where the query was looking for addresses

starting with 710. In the execution plan in Figure 12-6, instead of a scan of the

nonclustered index, the query is using a seek operation on the clustered index with a

table-valued function lookup against the full-text index. As a result, instead of the 216

logical reads when using the LIKE comparison, using the full-text index requires only

12 logical reads (shown in Figure 12-5). The difference in reads provides a substantial

improvement in performance over the first search attempt.

For more information on full-text indexes, read Chapter 6.

Figure 12-5. STATISTICS IO for addresses using CONTAINS

Chapter 12 Query StrategieS

444

 Concatenation
Another scenario that can wreak havoc on indexing strategies is the use of

concatenation. Concatenation is when two or more values are appended to one another.

When this happens in a WHERE clause, it can often lead to poor performance that wasn’t

expected.

To demonstrate this scenario, consider a query for someone with the name Gustavo

Achong. Searching for this value requires using the FirstName and LastName columns,

which are concatenated together with a space between the columns. Listing 12-4 shows

the query. A script to build an index on these columns is also included in the code

listing. The execution plan generated for this query, shown in Figure 12-8, shows that

the new index is used but operation is a scan instead of a seek, which would be more

desirable. Even though the leading left edge of the index matches the left-side values

of the concatenated values, the index is not able to determine where to find the values

in the index. This results in the index using 99 logical reads to return the query results,

shown in Figure 12-7.

Figure 12-6. Execution plan for addresses using CONTAINS

Chapter 12 Query StrategieS

445

Listing 12-4. Query with Concatenation

USE AdventureWorks2017

GO

SET STATISTICS IO ON;

CREATE INDEX IX_PersonContact_FirstNameLastName ON Person.Person

(FirstName, LastName)

GO

SELECT BusinessEntityID, FirstName, LastName

FROM Person.Person

WHERE CONCAT(FirstName,' ',LastName) = 'Gustavo Achong'

Figure 12-7. STATISTICS IO for concatenation

Figure 12-8. Execution plan for concatenation

As mentioned, using a scan on the index is not necessarily a bad thing. However,

using a scan when there are a lot of concurrent users or data modifications occurring

could lead to a performance issue. When it comes to larger tables with millions or more

records, this can possibly lead to a lack of scalability for the database.

You might think that removing the space between the first and last names is a good

idea (see Listing 12-5), since then it’s using the two columns from the index we created.

The major issue with this solution is that it doesn’t work. As the execution plan in

Figure 12-10 shows, it’s nearly identical to the one with the space in the concatenated

value with the same 99 reads as well (shown in Figure 12-9).

Chapter 12 Query StrategieS

446

Listing 12-5. Concatenation Without Spaces

USE AdventureWorks2017

GO

SET STATISTICS IO ON;

SELECT BusinessEntityID, FirstName, LastName

FROM Person.Person

WHERE CONCAT(FirstName, LastName)= 'GustavoAchong';

Figure 12-9. STATISTICS IO for concatenation without spaces

Figure 12-10. Execution plan for concatenation without spaces

Probably the best way to fix issues with concatenated values is to remove the need

to concatenate. Instead of searching for the value Gustavo Achong, search for the first

name Gustavo and the last name Achong (see Listing 12-6). When this change is made,

the query is then able to use a seek operation on the nonclustered index and return

the results with only two logical reads (see Figure 12-11). These results are a definite

improvement over when the values were concatenated together. See Figure 12-12 for the

execution plan.

Chapter 12 Query StrategieS

447

Listing 12-6. Query with Concatenation Removed

USE AdventureWorks2017

GO

SET STATISTICS IO ON;

SELECT BusinessEntityID, FirstName, LastName

FROM Person.Person

WHERE FirstName = 'Gustavo'

AND LastName = 'Achong';

Figure 12-11. STATISTICS IO for concatenation removed

Figure 12-12. Execution plan with concatenation removed

At times, you won’t have the option to remove concatenation from a query. In these

cases, there is another way to resolve index performance issues: the concatenated values

can be added to the table as a computed column. This solution, along with some of its

issues, is discussed in the next section.

 Computed Columns
Sometimes one or more columns in a table are defined as an expression. These types of

columns are referred to as computed columns. Computed columns can be useful when

you need a column to hold the result of a function or calculation that will change over

time based on the other columns in the table. Rather than spending the CPU cycles to

Chapter 12 Query StrategieS

448

make certain that all modifications to a table always include changes to all the related

columns, the components can be changed and the results computed when queried.

Note that computed columns cannot leverage the indexes on the source columns

for the computed column. To demonstrate, add two computed columns to the Person.

Person table using Listing 12-7. The first column will concatenate FirstName and

LastName together, as they were concatenated in the previous section. The second

column will multiply ContactID by EmailPromotion; this calculation doesn’t mean

anything, but it will show how this can be used with other calculation types.

Listing 12-7. Add Computed Columns to Person.Person

USE AdventureWorks2017

GO

ALTER TABLE Person.Person

ADD FirstLastName AS (FirstName + ' ' + LastName)

,CalculateValue AS (BusinessEntityID ∗ EmailPromotion);

With the columns in place, the next step is to execute a couple of queries against the

table. Execute two queries against the table using Listing 12-8. The first query is similar

to the first and last name query from the previous section (when searching for Gustavo

Achong). The second query will return all records with the CalculatedValue of 198.

Listing 12-8. Computed Column Queries

USE AdventureWorks2017

GO

SET STATISTICS IO ON

SELECT BusinessEntityID, FirstName, LastName, FirstLastName

FROM Person.Person

WHERE FirstLastName = 'Gustavo Achong';

SELECT BusinessEntityID, CalculateValue

FROM Person.Person

WHERE CalculateValue = 198;

Chapter 12 Query StrategieS

449

After executing both queries, the execution plans in Figure 12-14 show that both

used scan operations to return the query results. These results are less than ideal for

the same reasons mentioned earlier in this chapter, since they can lead to blocking and

utilize more I/O than should be necessary for the query request. By more I/O, the query

results for both require read I/Os from scanning the entire table, shown in Figure 12-13.

Figure 12-13. STATISTICS IO for computed columns

Figure 12-14. Computed column execution plans

An indexing option available for computed columns is to index the computed

columns themselves, which even SQL Server suggests as missing indexes in Figure 12- 4.

As the query for FirstLastName shows, the query can use any of the indexes on the

table. The restriction is that they can’t use them any better than if the expression for the

Chapter 12 Query StrategieS

450

computed column was in the query itself. Indexing the computed columns, as shown in

Listing 12-9, provides the necessary distribution and record information to allow queries,

such as those in Listing 12-8, to use seeks instead of scans. The index materializes the

values in the computed column, allowing quick access to the data, which results in a

significant reduction in I/O from 99 to 5 reads and 3,878 to 2 reads, shown in Figure 12-15.

Figure 12-16 shows the execution plan.

Note When indexing a computed column, the expression for the column must be
deterministic. this means that every time the expression executes with the same
variables, it will always return the same results. as an example, using GETDATE()
in a computed column expression would not be deterministic.

Listing 12-9. Computed Column Indexes

USE AdventureWorks2017

GO

CREATE INDEX IX_PersonPerson_FirstLastName ON Person.Person(FirstLastName);

CREATE INDEX IX_PersonPerson_CalculateValue ON Person.

Person(CalculateValue);

Figure 12-15. STATISTICS IO for indexed computed column

Chapter 12 Query StrategieS

451

As this section demonstrates, computed columns can be extremely useful when

expressions are needed to define values as part of a table. For instance, if an application

can only send in searches where the first and last names were combined, computed

columns can provide the data in the format that the application is sending. The columns

can use underlying indexes to return results but usually can’t fully use the statistics and

underlying sort of the data in those indexes because of the expression in the column

definition. By leveraging and indexing computed columns, you gain the benefit of having

the data in the state the application needs it while maintaining the best performance

possible.

 Scalar Functions
The previous few sections discussed filtering query results by searching within column

values or by combining values across columns. This section looks at the effect of scalar

functions used in the WHERE clauses of queries. Scalar functions provide the ability to

transform values to other values that can be more useful than the original value when

querying the database.

User-defined scalar functions can also be created and used in the WHERE clause. The

trouble with both system- and user-defined scalar functions is that if they transform

the column where the index exists, then SQL Server is unable to use them efficiently.

Figure 12-16. Indexed computed column execution plans

Chapter 12 Query StrategieS

452

Because the values of the calculations are not known until runtime, the query optimizer

does not have statistics to determine the frequency of values in the index or information

on where the calculated values are located in the index or table.

To demonstrate the effect of scalar functions on queries, consider the two queries in

Listing 12-10 that return information from Person.Person. Both queries will return all

rows that have the value Gustavo in the FirstName column. The difference between the

two queries is that the second query will use the RTRIM function in the WHERE clause on

the FirstName column.

Listing 12-10. Queries on FirstName Gustavo

USE AdventureWorks2017

GO

SET STATISTICS IO ON

SELECT BusinessEntityID, FirstName, LastName

FROM Person.Person

WHERE FirstName = 'Gustavo';

SELECT BusinessEntityID, FirstName, LastName

FROM Person.Person

WHERE RTRIM(FirstName) = 'Gustavo';

As the second execution plan in Figure 12-18 shows, when the scalar function is

added to the WHERE clause, the execution plan continues to use the same index as the

first plan did, but leverages an index scan instead of an index seek. This change increases

the I/Os from 2 to 99 (shown in Figure 12-17), which is similar to other examples. In this

example, just excluding the scalar function, as in the first query, can provide the same

results as with the function in place. That won’t be the case for all queries, but the way to

allow indexes to be best used is to move the scalar function from the key columns to the

parameters of a query.

Chapter 12 Query StrategieS

453

A good example of how scalar functions can be moved off of key columns and

into the parameters is when the functions MONTH and YEAR are used. Suppose a query

needs to return all the sales orders for the year 2001 and for December. This could be

accomplished with the first SELECT query in Listing 12-11. Unfortunately, using the

MONTH and YEAR functions changes the value of OrderDate, and the index that was built

is used but with a scan instead of a seek (see the first execution plan in Figure 12-20).

This issue can be avoided by changing the query in such a way that, instead of using the

functions, you filter against a range of values, such as in the second SELECT statement in

Listing 12-11. As the second execution shows, the query is able to return the results with

a seek instead of a scan, providing a significant reduction in reads, from 73 to 3, as shown

in Figure 12-19.

Figure 12-18. Execution plans for Gustavo queries

Figure 12-17. Execution plans for Gustavo queries

Chapter 12 Query StrategieS

454

Listing 12-11. Queries on FirstName Gustavo

USE AdventureWorks2017

GO

CREATE INDEX IX_SalesSalesOrderHeader_OrderDate ON Sales.

SalesOrderHeader(OrderDate);

SET STATISTICS IO ON;

SELECT SalesOrderID, OrderDate

FROM Sales.SalesOrderHeader

WHERE MONTH(OrderDate) = 12

AND YEAR(OrderDate) = 2012;

SELECT SalesOrderID, OrderDate

FROM Sales.SalesOrderHeader

WHERE OrderDate BETWEEN '20121201' AND '20121231';

SET STATISTICS IO OFF;

Figure 12-19. Execution plans for date queries

Chapter 12 Query StrategieS

455

It won’t always be possible to remove scalar functions from the WHERE clause of

queries. One good example of this is if leading spaces were added to a column that

should not be included when comparing the column values to parameters. In such a

situation, you will need to think a little more “outside the box.” One possible solution is

to use a computed column with an index on it, as suggested in the previous section.

The important thing to remember when dealing with scalar functions in the WHERE

clause is that if the function changes the value of a column, any index on the column

most likely won’t be able to be used as efficiently as possible with the query. If the table

is small and the queries will be infrequent, this may not be a significant problem. For

larger systems, this may be the reason behind unexpected high numbers of scans on

indexes and can lead to issues with blocking and deadlocks.

 Data Conversion
One last area where queries can negatively affect how indexes are used is when the data

types of columns change within a JOIN operation or WHERE clause. When data types

don’t match in either of those conditions, SQL Server needs to convert the values in the

columns to the same data types. If the data conversion is not included in the syntax of

the query, SQL Server will attempt the data conversion behind the scenes.

The reason that data conversions can have a negative effect on query performance

is along the same lines as the issues related to scalar functions. If a column in an index

needs to be changed from varchar to int, the statistics and other information for this

index won’t be useful in determining the frequency and location of values. For instance,

Figure 12-20. Execution plans for date queries

Chapter 12 Query StrategieS

456

the number 10 and the string "10" would likely be sorted into entirely different positions

in the same index. To illustrate the effect that data conversions can have on a query, start

by executing the code in Listing 12-12.

Listing 12-12. Data Conversion Setup

USE AdventureWorks2017

GO

SELECT BusinessEntityID

 ,CAST(FirstName as varchar(50)) as FirstName

 ,CAST(MiddleName as varchar(50)) as MiddleName

 ,CAST(LastName as varchar(50)) as LastName

INTO PersonPerson

FROM Person.Person;

CREATE CLUSTERED INDEX IX_PersonPerson_ContactID ON PersonPerson

(BusinessEntityID);

CREATE INDEX IX_PersonContact_FirstName ON PersonPerson(FirstName);

Listing 12-12 will create a table with varchar data in it. It will then add two indexes to

the table that will be used in the demonstration queries. The two sample queries, shown

in Listing 12-13, will be used to show how data conversions can affect the performance

and utilization of an index. For both queries, the RECOMPILE option is being utilized to

prevent bad parameter sniffing, which occurs when the option is not being used.

Note For more information on parameter sniffing, read paul White’s “parameter
Sniffing, embedding, and the reCOMpiLe Options” article on SQLperformance.com
at http://sqlperformance.com/2013/08/t-sql-queries/parameter-
sniffing- embedding-and-the-recompile-options.

The first SELECT query uses the @FirstName variable with the nvarchar data type.

This data type does not match the data type for the column in the table PersonContact,

so the column in the table must be converted from varchar to nvarchar. The execution

Chapter 12 Query StrategieS

http://sqlperformance.com
http://sqlperformance.com/2013/08/t-sql-queries/parameter-sniffing-embedding-and-the-recompile-options
http://sqlperformance.com/2013/08/t-sql-queries/parameter-sniffing-embedding-and-the-recompile-options

457

plan for the query (Figure 12-21) shows that the query is using an index seek on the

nonclustered index to satisfy the query, and the predicate is converting the data in the

column to nvarchar, with a key lookup on the clustered index for the columns not in the

nonclustered index. Also note that the cost for the first query is 40 percent of the total

batch, which is just the two queries.

Listing 12-13. Implicit Conversion Queries

USE AdventureWorks2017

GO

SET STATISTICS IO ON

DECLARE @FirstName nvarchar(100)

SET @FirstName = 'Gail';

SELECT FirstName, LastName FROM PersonPerson

WHERE FirstName = @FirstName

OPTION (RECOMPILE);

GO

DECLARE @FirstName varchar(100)

SET @FirstName = 'Gail';

SELECT FirstName, LastName FROM PersonPerson

WHERE FirstName = @FirstName

OPTION (RECOMPILE);

Note the additional information shown for the operators in the execution plans
is available in the properties window in SQL Server Management Studio. the
properties windows is full of useful information about the operations from the
columns that are used for estimated and actual row counts.

Chapter 12 Query StrategieS

458

One other item to note in the execution plan in Figure 12-22 is the warning included

on the SELECT operation for the first query. With the release of SQL Server 2012, there

are now new warning messages included in execution plans that contain implicit

conversions. The warning message appears as a yellow triangle with an exclamation

point in it. Checking the properties for the operator will include properties of the

operator and the warning message. These messages include information detailing what

column is being converted and the issue associated with the problem. In this case, the

issue is SeekPlan ConvertIssue. In other words, SQL Server doesn’t have statistics on

the converted data to build an execution plan that knows the frequency of the values in

the predicate.

Figure 12-21. Execution plans with implicit data conversion

Figure 12-22. Warning included with implicit conversion

The second SELECT query in Listing 12-13 uses a variable with a varchar data

type. Since this data type already matches the data type of the column in the table, the

nonclustered index can be used. As the execution plan in Figure 12-23 shows, with

matching data types the query optimizer can build a plan that knows where the rows in

the index are and can perform a seek to obtain them.

Chapter 12 Query StrategieS

459

Even though there are more operations in the second query and the complexity

seems higher which might be expected to perform worse, especially with the inclusion

of the key lookup, this isn’t the case. We can see this if we review the logical reads from

STATISTICS IO, shown in Figure 12-24. For the first query, the number of reads was 89

logical reads with an index scan on the clustered index. The second query had only 18

reads while accessing two indexes. The difference in the reads is because scanning the

clustered index requires more reads than it takes to find the subset of rows required in

the results and looking up missing columns from the clustered index.

Figure 12-24. STATISTICS IO for implicit conversion queries

Figure 12-23. Execution plans without data conversion

In this section, the discussion mostly focused on implicit data conversions. While

these can be more silent than explicit data conversions, the same concepts and

mitigations apply to these data conversions. Since they are more intentional, they should

be less frequent. Even so, when performing data conversions, pay close attention to the

data types because how they are changed will impact query performance and index

utilization.

Chapter 12 Query StrategieS

460

 Summary
In this chapter, we examined the effect that queries can have on whether indexes can

provide the expected performance improvements. There are times when a specific type

of index may not be appropriate for a situation, such as searching for values within

character values in large tables. In other situations, applying the right type of index or

function in the right place can have a significant impact on whether the query can utilize

an index.

In many of the examples in this chapter, the offending usage of an index was when it

utilized a scan on the index instead of a seek operation. For these scenarios, index seeks

were the ideal index operation. This won’t always be the case and there are situations

where scans against an index are significantly more ideal than seek operations. It’s

important to remember what type of transactions the environment is geared for and the

size of the tables that are being accessed.

The main takeaway from this chapter is that you should take care when writing

queries. The choices made when developing database code can completely unravel the

work done to properly index a database. Be sure to complement your indexes with code

that leverages them to their max.

Chapter 12 Query StrategieS

461
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_13

CHAPTER 13

Monitoring Indexes
Throughout this book, we’ve discussed what indexes are, what they do, patterns for

building them, and many other aspects for determining how a SQL Server database

should be indexed. All of that information is necessary for the final piece in indexing

your databases, analyzing your databases to determine which indexes are required. For

this, this chapter and the two following will pull together the information we need to

implement an indexing methodology.

To start, in this chapter, we’ll discuss a general practice that can be used for

monitoring indexes. It’ll include steps that can be taken to observe the behavior of

indexes and understand how they impact your environment. This methodology can be

applied to a single database, a server, or your entire SQL Server environment. Regardless

of the type of operations or business that the database supports, similar monitoring

processes can be used.

The main goal behind monitoring indexes is creating the ability to collect

information about indexes. This information will come from a variety of sources. The

sources for monitoring should be familiar because they are often used with tasks similar

to indexing, such as performance tuning. For some sources, the information will be

collected over time to provide an idea of general trends. For other sources, a snapshot

at a specific point in time is sufficient. It is important to collect information over time to

provide a baseline against which to compare performance; this will help us know when

changes in index usage and effectiveness have occurred.

As mentioned, there are a number of sources from which information will be

collected to monitor your indexes. The sources that will be discussed in this chapter are

• Performance counters

• Dynamic management objects

• Event tracing

462

For each of these sources, the subsequent sections will describe what is to be

collected and will provide guidance on how to collect this information. At the end of the

chapter, we will have a framework that is capable of providing the information necessary

to start the Analyze phase.

Note All the monitoring information from this chapter will be collected in a
database named IndexingMethod. The scripts can be run in that database or
your own performance monitoring database.

 Performance Counters
The first source of monitoring information for indexes is SQL Server performance

counters. Performance counters are metrics provided by Microsoft to measure the rate of

events or state of resources within applications and hardware on the server. With some

of the performance counters, there are general guidelines that can be used to indicate

when a problem with indexing may exist. For the others, changes in the rate or level of

the performance counter may indicate a need to change the indexing on a server.

The primary issue with using performance counters is that they represent the

server-level, or SQL Server instance–level, state of the counters. They do not indicate

at a database or table level where possible indexing issues are occurring. This level of

detail, though, is acceptable and useful when considering the other tools available for

monitoring your indexing and identifying potential indexing needs. One advantage to

collecting counter information at this level is that we are forced to consider the whole

picture and the effect of all the indexes on performance. In an isolated situation, a couple

of poorly performing indexes on a table might be acceptable. However, in conjunction

with other tables with poor indexing, the aggregate performance may reach a tipping

point where indexes need to be addressed. With the server-level statistics provided by

performance counters, we will be able to identify when this point has been reached.

There are a large number of performance counters available for both SQL Server and

Windows Server. From the perspective of indexing, though, many of the performance

counters can be eliminated. The performance counters that are most useful are

those that map to operations related to how indexes operate or are accessed, such as

forwarded records and index searches. For a definition of the performance counters

that are most useful with indexing, see Table 13-1. The reasons for collecting each of the

counters and how they impact indexing decisions will be discussed in the next chapter.

ChApTer 13 MoniToring indexes

463

There are a number of ways to collect performance counters. For the monitoring in

this chapter, we’ll use the DMV sys.dm_os_performance_counters. This DMV returns

a row for all the SQL Server counters for an instance. The values returned are the raw

values for the counters, so depending on the type of counter, the value can be a point-in-

time state value or an ever-accumulating aggregate.

Table 13-1. Index-Related Performance Counters

Option Name Description

Access Methods\Forwarded

records/sec

number of records per second fetched through forwarded record

pointers.

Access Methods\Freespace

page Fetches/sec

number of pages fetched per second within allocated pages to an

object to insert or modify a record.

Access Methods\Freespace

scans/sec

number of scans per second initiated to search for free space within

allocated pages to an object to insert or modify a record.

Access Methods\

Full scans/sec

number of unrestricted full scans per second. These can be either

base-table or full-index scans.

Access Methods\index

searches/sec

number of index searches per second. These are used to start range

scans and single index record fetches and to reposition an index.

Access Methods\page

compression attempts/sec

number of page compression attempts per second using pAge

compression, this will include failed page compressions.

Access Methods\pages

compressed/sec

number of pages compressed per second using pAge compression

Access Methods\

page splits/sec

number of page splits per second that occur as the result of

overflowing index pages.

Buffer Manager\page

Lookups/sec

number of requests to find a page in the buffer pool.

Locks(*)\Lock Wait Time (ms) Total wait time (in milliseconds) for locks in the last second.

Locks(*)\Lock Waits/sec number of lock requests per second that required the caller to wait.

Locks(*)\number of

deadlocks/sec

number of lock requests per second that resulted in a deadlock.

sQL statistics\ Batch

requests/sec

number of Transact-sQL command batches received per second.

ChApTer 13 MoniToring indexes

464

To begin collecting performance counter information for monitoring, we’ll first need

to create a table for storing this information. The table definition in Listing 13-1 provides

for this need. When collecting the performance counters, we will use a table that stores

the counter name with the value and then datestamps each row to identify when the

information was collected.

Listing 13-1. Performance Counter Snapshot Table

USE IndexingMethod;

GO

CREATE TABLE dbo.IndexingCounters

 (

 counter_id INT IDENTITY(1, 1),

 create_date DATETIME2(0),

 server_name VARCHAR(128) NOT NULL,

 object_name VARCHAR(128) NOT NULL,

 counter_name VARCHAR(128) NOT NULL,

 instance_name VARCHAR(128) NULL,

 Calculated_Counter_value FLOAT NULL,

 CONSTRAINT PK_IndexingCounters

 PRIMARY KEY CLUSTERED (counter_id)

);

GO

CREATE NONCLUSTERED INDEX IX_IndexingCounters_CounterName

ON dbo.IndexingCounters (counter_name)

INCLUDE (create_date, server_name, object_name, Calculated_Counter_value);

For the purposes of collecting information for monitoring indexing, we’ll take the

information from sys.dm_os_performance_counters and calculate the appropriate

values from the DMV. These would be the same values that are available when viewing

performance counter information from other tools, such as Performance Monitor.

There are a few steps required to populate dbo.IndexingCounters. As mentioned, the

DMV contains raw counter values. To calculate these values properly, it is necessary

to take a snapshot of the values in the DMV and then wait a number of seconds before

calculating the counter value. In Listing 13-2, the counter value is calculated after 10

seconds. Once the time has expired, the counters are calculated and inserted into the

ChApTer 13 MoniToring indexes

465

dbo.IndexingCounters tables. This script should be scheduled and executed frequently.

Ideally, we should collect this information every 1–5 minutes.

Note performance counter information can be collected more frequently. For
instance, performance Monitor defaults to every 15 seconds. For the purposes of
index monitoring, that frequency is not necessary.

Listing 13-2. Performance Counter Snapshot Script

DROP TABLE IF EXISTS #Counters;

SELECT pc.object_name,

 pc.counter_name

INTO #Counters

FROM sys.dm_os_performance_counters pc

WHERE pc.cntr_type IN (272696576, 1073874176)

 AND (

 pc.object_name LIKE '%:Access Methods%'

 AND (

 pc.counter_name LIKE 'Forwarded Records/sec%'

 OR pc.counter_name LIKE 'FreeSpace Scans/sec%'

 OR pc.counter_name LIKE 'FreeSpace Page Fetches/sec%'

 OR pc.counter_name LIKE 'Full Scans/sec%'

 OR pc.counter_name LIKE 'Index Searches/sec%'

 OR pc.counter_name LIKE 'Page Splits/sec%'

 OR pc.counter_name LIKE 'Page compression attempts/sec%'

 OR pc.counter_name LIKE 'Pages compressed/sec%'

)

)

 OR (

 pc.object_name LIKE '%:Buffer Manager%'

 AND (

 pc.counter_name LIKE 'Page life expectancy%'

 OR pc.counter_name LIKE 'Page lookups/sec%'

)

)

ChApTer 13 MoniToring indexes

466

 OR (

 pc.object_name LIKE '%:Locks%'

 AND (

 pc.counter_name LIKE 'Lock Wait Time (ms)%'

 OR pc.counter_name LIKE 'Lock Waits/sec%'

 OR pc.counter_name LIKE 'Number of Deadlocks/sec%'

)

)

 OR (

 pc.object_name LIKE '%:SQL Statistics%'

 AND pc.counter_name LIKE 'Batch Requests/sec%'

)

GROUP BY pc.object_name,

 pc.counter_name;

DROP TABLE IF EXISTS #Baseline;

SELECT GETDATE() AS sample_time,

 pc1.object_name,

 pc1.counter_name,

 pc1.instance_name,

 pc1.cntr_value,

 pc1.cntr_type,

 x.cntr_value AS base_cntr_value

INTO #Baseline

FROM sys.dm_os_performance_counters pc1

INNER JOIN #Counters c ON c.object_name = pc1.object_name

 AND c.counter_name = pc1.counter_name

OUTER APPLY (

 SELECT cntr_value

 FROM sys.dm_os_performance_counters pc2

 WHERE pc2.cntr_type = 1073939712

 AND UPPER(pc1.counter_name) = UPPER(pc2.counter_name)

 AND pc1.object_name = pc2.object_name

 AND pc1.instance_name = pc2.instance_name

) x;

ChApTer 13 MoniToring indexes

467

WAITFOR DELAY '00:00:15';

INSERT INTO dbo.IndexingCounters (

 create_date,

 server_name,

 object_name,

 counter_name,

 instance_name,

 Calculated_Counter_value

)

SELECT GETDATE(),

 LEFT(pc1.object_name, CHARINDEX(':', pc1.object_name) - 1),

 SUBSTRING(pc1.object_name, 1 + CHARINDEX(':', pc1.object_name),

LEN(pc1.object_name)),

 pc1.counter_name,

 pc1.instance_name,

 CASE

 WHEN pc1.cntr_type = 65792 THEN pc1.cntr_value

 WHEN pc1.cntr_type = 272696576 THEN

 COALESCE((1. * pc1.cntr_value - x.cntr_value) /

NULLIF(DATEDIFF(s, sample_time, GETDATE()), 0), 0)

 WHEN pc1.cntr_type = 537003264 THEN COALESCE((1. * pc1.cntr_value)

/ NULLIF(base.cntr_value, 0), 0)

 WHEN pc1.cntr_type = 1073874176 THEN

 COALESCE(

 (1. * pc1.cntr_value - x.cntr_value) / NULLIF(base.cntr_

value - x.base_cntr_value, 0)

 / NULLIF(DATEDIFF(s, sample_time, GETDATE()), 0),

 0

) END AS real_cntr_value

FROM sys.dm_os_performance_counters pc1

INNER JOIN #Counters c ON c.object_name = pc1.object_name

 AND c.counter_name = pc1.counter_name

OUTER APPLY (

 SELECT cntr_value,

 base_cntr_value,

ChApTer 13 MoniToring indexes

468

 sample_time

 FROM #Baseline b

 WHERE b.object_name = pc1.object_name

 AND b.counter_name = pc1.counter_name

 AND b.instance_name = pc1.instance_name

) x

OUTER APPLY (

 SELECT cntr_value

 FROM sys.dm_os_performance_counters pc2

 WHERE pc2.cntr_type = 1073939712

 AND UPPER(pc1.counter_name) = UPPER(pc2.counter_name)

 AND pc1.object_name = pc2.object_name

 AND pc1.instance_name = pc2.instance_name

) base;

The first time we collect performance counters for your indexes, we won’t be able to

compare the counters to other reasonable values for your SQL Server. As time goes on,

though, we can retain previous performance counter samples to make comparisons. As

part of monitoring, we will be responsible for identifying periods in which values for the

performance counters represent the typical activity for your environment. To store these

values, insert them into a table similar to the one in Listing 13-3. This table has start and

end dates to indicate the range that the baseline represents. Also, there are minimum,

maximum, average, and standard deviation columns to store values from the collected

counters. The minimum and maximum values will allow for an understanding of how

the performance counters vary. The average value provides an idea of what the counter

value will be when it is “good.” The standard deviation allows us to understand the

variability of the counter values. The lower the number, the more frequently the counter

values cluster around the average value. Higher values indicate that the counter values

vary more frequently and are often nearer to the minimum and maximum values.

Listing 13-3. Performance Counter Baseline Table

USE IndexingMethod;

GO

CREATE TABLE dbo.IndexingCountersBaseline

 (

ChApTer 13 MoniToring indexes

469

 counter_baseline_id INT IDENTITY(1, 1),

 start_date DATETIME2(0),

 end_date DATETIME2(0),

 server_name VARCHAR(128) NOT NULL,

 object_name VARCHAR(128) NOT NULL,

 counter_name VARCHAR(128) NOT NULL,

 instance_name VARCHAR(128) NULL,

 minimum_counter_value FLOAT NULL,

 maximum_counter_value FLOAT NULL,

 average_counter_value FLOAT NULL,

 standard_deviation_counter_value FLOAT NULL,

 CONSTRAINT PK_IndexingCountersBaseline

 PRIMARY KEY CLUSTERED (counter_baseline_id)

);

GO

When populating the values into dbo.IndexingCountersBaseline, there are two

steps to the population process. First, we need to collect a sample from the performance

counters that represents a typical week. If there are no typical weeks, pick this week

and collect samples for it. Once we have the typical week, the next step is to aggregate

the information into the baseline table. Aggregating the information is a matter of

summarizing the information in the table dbo.IndexingCounters for a range of days.

In Listing 13-4, the data is from August 1 to August 15, 2019. The next step is to validate

the baseline. Just because the average for the past week states that the Forwarded

Records/sec value is at 100 doesn’t mean that value is good for your baseline. Use your

experience with your servers and databases to influence the values in the baseline. Make

adjustments to the baseline as needed if there is a recent trend below or above what is

normal.

Listing 13-4. Populate Counter Baseline Table

USE IndexingMethod;

GO

DECLARE @StartDate DATETIME = '20190911',

 @EndDate DATETIME = '20190918';

ChApTer 13 MoniToring indexes

470

INSERT INTO dbo.IndexingCountersBaseline (

 start_date,

 end_date,

 server_name,

 object_name,

 counter_name,

 instance_name,

 minimum_counter_value,

 maximum_counter_value,

 average_counter_value,

 standard_deviation_counter_value

)

SELECT MIN(create_date),

 MAX(create_date),

 server_name,

 object_name,

 counter_name,

 instance_name,

 MIN(Calculated_Counter_value),

 MAX(Calculated_Counter_value),

 AVG(Calculated_Counter_value),

 STDEV(Calculated_Counter_value)

FROM dbo.IndexingCounters

WHERE create_date BETWEEN @StartDate AND @EndDate

GROUP BY server_name,

 object_name,

 counter_name,

 instance_name;

There are other ways to collect and view performance counters for your SQL

Server instances. We can use the Windows application Performance Monitor to view

performance counters in real time. It can also be used to log performance counters to a

binary or text file. The command-line utility Logman can also be used to interact with

Performance Monitor to create data collectors and start and stop them as needed. Also,

PowerShell is a possibility for assisting in the collection of performance counters.

ChApTer 13 MoniToring indexes

471

All these alternatives are valid options for collecting performance counters on your

databases and indexes. The key is that if we want to monitor your indexes, we must

collect the information necessary to know when potential indexing issues may arise. Pick

a tool that is most comfortable to use and start collecting these counters today.

 Dynamic Management Objects
Some of the best index performance information for monitoring is included in dynamic

management objects (DMOs). The DMOs contain information on logical and physical

uses for the indexes and overall physical structure. For monitoring, there are four DMOs

that provide information on the usage of the indexes: sys.dm_db_index_usage_stats,

sys.dm_db_index_operational_stats, sys.dm_db_index_physical_stats, and sys.

dm_os_wait_stats. In this section, we’ll walk through a process to monitor your indexes

using each of these DMOs.

The first three following sections will discuss the sys.dm_db_index_* DMOs.

Chapter 3 defined and demonstrated the contents of the DMOs. One thing to remember

with these DMOs is that they can be flushed through various operations on the server,

such as restarting the service or recreating the index. The fourth DMO, sys.dm_os_

wait_stats, relates to index monitoring and provides information that can help during

index analysis.

Warning The indexing dMos don’t have information at the row level to precisely
indicate when the information collected for the index has been reset. Because of
this, there can be situations where the statistics reported can be slightly higher or
lower than they actually are. While this shouldn’t greatly affect the outcome during
analysis, it is something to keep in mind.

 Index Usage Stats
The DMO sys.dm_db_index_usage_stats provides information on how indexes are

being used and when the index was last used. This information can be useful when we

want to track whether indexes are being used and which operations are being executed

against the index.

ChApTer 13 MoniToring indexes

472

The monitoring process for this DMO, which is similar to the other DMOs, consists of

the following steps:

 1. Create a table to hold snapshot information.

 2. Insert the current state of the DMO into the snapshot table.

 3. Compare the most recent snapshot to the previous snapshot and

insert the delta between the rows in the output into a history table.

To build the process, we’ll first need to create the snapshot and history tables. The

schema for these tables will be identical and will contain all the columns from the DMO

and a create_date column (see Listing 13-5). For consistency with the source DMO, the

columns for the table will match the schema of the DMO.

Listing 13-5. Index Usage Stats Snapshot Tables Stats

USE IndexingMethod;

GO

CREATE TABLE dbo.index_usage_stats_snapshot

 (

 snapshot_id INT IDENTITY(1, 1),

 create_date DATETIME2(0),

 database_id SMALLINT NOT NULL,

 object_id INT NOT NULL,

 index_id INT NOT NULL,

 user_seeks BIGINT NOT NULL,

 user_scans BIGINT NOT NULL,

 user_lookups BIGINT NOT NULL,

 user_updates BIGINT NOT NULL,

 last_user_seek DATETIME,

 last_user_scan DATETIME,

 last_user_lookup DATETIME,

 last_user_update DATETIME,

 system_seeks BIGINT NOT NULL,

 system_scans BIGINT NOT NULL,

 system_lookups BIGINT NOT NULL,

ChApTer 13 MoniToring indexes

473

 system_updates BIGINT NOT NULL,

 last_system_seek DATETIME,

 last_system_scan DATETIME,

 last_system_lookup DATETIME,

 last_system_update DATETIME,

 CONSTRAINT PK_IndexUsageStatsSnapshot

 PRIMARY KEY CLUSTERED (snapshot_id),

 CONSTRAINT UQ_IndexUsageStatsSnapshot

 UNIQUE (create_date, database_id, object_id, index_id)

);

CREATE TABLE dbo.index_usage_stats_history

 (

 history_id INT IDENTITY(1, 1),

 create_date DATETIME2(0),

 database_id SMALLINT NOT NULL,

 object_id INT NOT NULL,

 index_id INT NOT NULL,

 user_seeks BIGINT NOT NULL,

 user_scans BIGINT NOT NULL,

 user_lookups BIGINT NOT NULL,

 user_updates BIGINT NOT NULL,

 last_user_seek DATETIME,

 last_user_scan DATETIME,

 last_user_lookup DATETIME,

 last_user_update DATETIME,

 system_seeks BIGINT NOT NULL,

 system_scans BIGINT NOT NULL,

 system_lookups BIGINT NOT NULL,

 system_updates BIGINT NOT NULL,

 last_system_seek DATETIME,

 last_system_scan DATETIME,

 last_system_lookup DATETIME,

 last_system_update DATETIME,

 CONSTRAINT PK_IndexUsageStatsHistory

 PRIMARY KEY CLUSTERED (history_id),

ChApTer 13 MoniToring indexes

474

 CONSTRAINT UQ_IndexUsageStatsHistory

 UNIQUE (create_date, database_id, object_id, index_id)

);

The next piece in capturing a history of index usage stats is collecting the current

values in sys.dm_db_index_usage_stats. Similar to the performance monitor script,

the collection query, shown in Listing 13-6, needs to be scheduled to run about every

4 hours. The activity in your environment and rate in which indexes are modified

should help determine the frequency in which the information is captured. Be certain

to schedule a snapshot prior to any index defragmentation processes to capture

information that might be lost when indexes are rebuilt.

Listing 13-6. Index Usage Stats Snapshot Population

USE IndexingMethod;

GO

INSERT INTO dbo.index_usage_stats_snapshot

SELECT GETDATE(),

 database_id,

 object_id,

 index_id,

 user_seeks,

 user_scans,

 user_lookups,

 user_updates,

 last_user_seek,

 last_user_scan,

 last_user_lookup,

 last_user_update,

 system_seeks,

 system_scans,

 system_lookups,

 system_updates,

 last_system_seek,

 last_system_scan,

ChApTer 13 MoniToring indexes

475

 last_system_lookup,

 last_system_update

FROM sys.dm_db_index_usage_stats;

After populating the snapshot for the index usage stats, the delta between the most

recent and the previous snapshot needs to be inserted into the index_usage_stats_

history table. Since there isn’t anything in the rows from sys.dm_db_index_usage_stats

to identify when the stats for the index have been reset, the process for identifying when a

delta between two entries for an index exists is to remove the row if any of the statistics on

the index return a negative value. The resulting query, shown in Listing 13-7, implements

this logic along with removing any rows where no new activity has happened.

Listing 13-7. Index Usage Stats Snapshot Population

USE IndexingMethod;

GO

WITH IndexUsageCTE

 AS (SELECT DENSE_RANK() OVER (ORDER BY create_date DESC) AS HistoryID,

 create_date,

 database_id,

 object_id,

 index_id,

 user_seeks,

 user_scans,

 user_lookups,

 user_updates,

 last_user_seek,

 last_user_scan,

 last_user_lookup,

 last_user_update,

 system_seeks,

 system_scans,

 system_lookups,

 system_updates,

 last_system_seek,

 last_system_scan,

ChApTer 13 MoniToring indexes

476

 last_system_lookup,

 last_system_update

 FROM dbo.index_usage_stats_snapshot)

INSERT INTO dbo.index_usage_stats_history

SELECT i1.create_date,

 i1.database_id,

 i1.object_id,

 i1.index_id,

 i1.user_seeks - COALESCE(i2.user_seeks, 0),

 i1.user_scans - COALESCE(i2.user_scans, 0),

 i1.user_lookups - COALESCE(i2.user_lookups, 0),

 i1.user_updates - COALESCE(i2.user_updates, 0),

 i1.last_user_seek,

 i1.last_user_scan,

 i1.last_user_lookup,

 i1.last_user_update,

 i1.system_seeks - COALESCE(i2.system_seeks, 0),

 i1.system_scans - COALESCE(i2.system_scans, 0),

 i1.system_lookups - COALESCE(i2.system_lookups, 0),

 i1.system_updates - COALESCE(i2.system_updates, 0),

 i1.last_system_seek,

 i1.last_system_scan,

 i1.last_system_lookup,

 i1.last_system_update

FROM IndexUsageCTE i1

LEFT OUTER JOIN IndexUsageCTE i2 ON i1.database_id = i2.database_id

 AND i1.object_id = i2.object_id

 AND i1.index_id = i2.index_id

 AND i2.HistoryID = 2

 --Verify no rows are less than 0

 AND NOT (

 i1.system_seeks - COALESCE(i2.system_seeks, 0) < 0

 AND i1.system_scans - COALESCE(i2.system_scans, 0) < 0

 AND i1.system_lookups - COALESCE(i2.system_lookups, 0) < 0

 AND i1.system_updates - COALESCE(i2.system_updates, 0) < 0

ChApTer 13 MoniToring indexes

477

 AND i1.user_seeks - COALESCE(i2.user_seeks, 0) < 0

 AND i1.user_scans - COALESCE(i2.user_scans, 0) < 0

 AND i1.user_lookups - COALESCE(i2.user_lookups, 0) < 0

 AND i1.user_updates - COALESCE(i2.user_updates, 0) < 0

)

WHERE i1.HistoryID = 1

 --Only include rows are greater than 0

 AND (

 i1.system_seeks - COALESCE(i2.system_seeks, 0) > 0

 OR i1.system_scans - COALESCE(i2.system_scans, 0) > 0

 OR i1.system_lookups - COALESCE(i2.system_lookups, 0) > 0

 OR i1.system_updates - COALESCE(i2.system_updates, 0) > 0

 OR i1.user_seeks - COALESCE(i2.user_seeks, 0) > 0

 OR i1.user_scans - COALESCE(i2.user_scans, 0) > 0

 OR i1.user_lookups - COALESCE(i2.user_lookups, 0) > 0

 OR i1.user_updates - COALESCE(i2.user_updates, 0) > 0

);

 GO

 Index Operational Stats
The DMO sys.dm_db_index_operational_stats provides information on the physical

operations that happen on indexes during plan execution. This information can be

useful for tracking the physical plan operations that occur when indexes are used and

the rates for those operations. One of the other things this DMO monitors is the success

rate in which compression operates.

As mentioned in the previous section, the process for monitoring this DMO involves

a few simple steps. First, we’ll create tables to store snapshot and history information

on the DMO output. Then, periodic snapshots of the DMO output are inserted into

the snapshot table. After the snapshot is retrieved, the delta between the current and

previous snapshot is inserted into the history table.

The process utilizes a snapshot and history table that is nearly identical to the

schema of sys.dm_db_index_operational_stats. The chief variance in the schema is

the addition of a create_date column, used to identify when the snapshot occurred. The

code in Listing 13-8 provides the schema required for the snapshot and history tables.

ChApTer 13 MoniToring indexes

478

Note The columns version_generated_inrow, version_generated_offrow, ghost_
version_inrow, ghost_version_offrow, insert_over_ghost_version_inrow, and
insert_over_ghost_version_offrow are new in sQL server 2019. if using the code
in previous versions of sQL server, the code will need to be adjusted.

Listing 13-8. Index Operational Stats Snapshot Tables Stats

USE IndexingMethod;

GO

CREATE TABLE dbo.index_operational_stats_snapshot

 (

 snapshot_id INT IDENTITY(1, 1),

 create_date DATETIME2(0),

 database_id SMALLINT NOT NULL,

 object_id INT NOT NULL,

 index_id INT NOT NULL,

 partition_number INT NOT NULL,

 hobt_id BIGINT NOT NULL,

 leaf_insert_count BIGINT NOT NULL,

 leaf_delete_count BIGINT NOT NULL,

 leaf_update_count BIGINT NOT NULL,

 leaf_ghost_count BIGINT NOT NULL,

 nonleaf_insert_count BIGINT NOT NULL,

 nonleaf_delete_count BIGINT NOT NULL,

 nonleaf_update_count BIGINT NOT NULL,

 leaf_allocation_count BIGINT NOT NULL,

 nonleaf_allocation_count BIGINT NOT NULL,

 leaf_page_merge_count BIGINT NOT NULL,

 nonleaf_page_merge_count BIGINT NOT NULL,

 range_scan_count BIGINT NOT NULL,

 singleton_lookup_count BIGINT NOT NULL,

 forwarded_fetch_count BIGINT NOT NULL,

 lob_fetch_in_pages BIGINT NOT NULL,

 lob_fetch_in_bytes BIGINT NOT NULL,

ChApTer 13 MoniToring indexes

479

 lob_orphan_create_count BIGINT NOT NULL,

 lob_orphan_insert_count BIGINT NOT NULL,

 row_overflow_fetch_in_pages BIGINT NOT NULL,

 row_overflow_fetch_in_bytes BIGINT NOT NULL,

 column_value_push_off_row_count BIGINT NOT NULL,

 column_value_pull_in_row_count BIGINT NOT NULL,

 row_lock_count BIGINT NOT NULL,

 row_lock_wait_count BIGINT NOT NULL,

 row_lock_wait_in_ms BIGINT NOT NULL,

 page_lock_count BIGINT NOT NULL,

 page_lock_wait_count BIGINT NOT NULL,

 page_lock_wait_in_ms BIGINT NOT NULL,

 index_lock_promotion_attempt_count BIGINT NOT NULL,

 index_lock_promotion_count BIGINT NOT NULL,

 page_latch_wait_count BIGINT NOT NULL,

 page_latch_wait_in_ms BIGINT NOT NULL,

 page_io_latch_wait_count BIGINT NOT NULL,

 page_io_latch_wait_in_ms BIGINT NOT NULL,

 tree_page_latch_wait_count BIGINT NOT NULL,

 tree_page_latch_wait_in_ms BIGINT NOT NULL,

 tree_page_io_latch_wait_count BIGINT NOT NULL,

 tree_page_io_latch_wait_in_ms BIGINT NOT NULL,

 page_compression_attempt_count BIGINT NOT NULL,

 page_compression_success_count BIGINT NOT NULL,

 version_generated_inrow BIGINT NOT NULL,

 version_generated_offrow BIGINT NOT NULL,

 ghost_version_inrow BIGINT NOT NULL,

 ghost_version_offrow BIGINT NOT NULL,

 insert_over_ghost_version_inrow BIGINT NOT NULL,

 insert_over_ghost_version_offrow BIGINT NOT NULL,

 CONSTRAINT PK_IndexOperationalStatsSnapshot

 PRIMARY KEY CLUSTERED (snapshot_id),

 CONSTRAINT UQ_IndexOperationalStatsSnapshot

 UNIQUE (create_date, database_id, object_id, index_id, partition_

number)

);

ChApTer 13 MoniToring indexes

480

CREATE TABLE dbo.index_operational_stats_history

 (

 history_id INT IDENTITY(1, 1),

 create_date DATETIME2(0),

 database_id SMALLINT NOT NULL,

 object_id INT NOT NULL,

 index_id INT NOT NULL,

 partition_number INT NOT NULL,

 hobt_id BIGINT NOT NULL,

 leaf_insert_count BIGINT NOT NULL,

 leaf_delete_count BIGINT NOT NULL,

 leaf_update_count BIGINT NOT NULL,

 leaf_ghost_count BIGINT NOT NULL,

 nonleaf_insert_count BIGINT NOT NULL,

 nonleaf_delete_count BIGINT NOT NULL,

 nonleaf_update_count BIGINT NOT NULL,

 leaf_allocation_count BIGINT NOT NULL,

 nonleaf_allocation_count BIGINT NOT NULL,

 leaf_page_merge_count BIGINT NOT NULL,

 nonleaf_page_merge_count BIGINT NOT NULL,

 range_scan_count BIGINT NOT NULL,

 singleton_lookup_count BIGINT NOT NULL,

 forwarded_fetch_count BIGINT NOT NULL,

 lob_fetch_in_pages BIGINT NOT NULL,

 lob_fetch_in_bytes BIGINT NOT NULL,

 lob_orphan_create_count BIGINT NOT NULL,

 lob_orphan_insert_count BIGINT NOT NULL,

 row_overflow_fetch_in_pages BIGINT NOT NULL,

 row_overflow_fetch_in_bytes BIGINT NOT NULL,

 column_value_push_off_row_count BIGINT NOT NULL,

 column_value_pull_in_row_count BIGINT NOT NULL,

 row_lock_count BIGINT NOT NULL,

 row_lock_wait_count BIGINT NOT NULL,

 row_lock_wait_in_ms BIGINT NOT NULL,

 page_lock_count BIGINT NOT NULL,

 page_lock_wait_count BIGINT NOT NULL,

ChApTer 13 MoniToring indexes

481

 page_lock_wait_in_ms BIGINT NOT NULL,

 index_lock_promotion_attempt_count BIGINT NOT NULL,

 index_lock_promotion_count BIGINT NOT NULL,

 page_latch_wait_count BIGINT NOT NULL,

 page_latch_wait_in_ms BIGINT NOT NULL,

 page_io_latch_wait_count BIGINT NOT NULL,

 page_io_latch_wait_in_ms BIGINT NOT NULL,

 tree_page_latch_wait_count BIGINT NOT NULL,

 tree_page_latch_wait_in_ms BIGINT NOT NULL,

 tree_page_io_latch_wait_count BIGINT NOT NULL,

 tree_page_io_latch_wait_in_ms BIGINT NOT NULL,

 page_compression_attempt_count BIGINT NOT NULL,

 page_compression_success_count BIGINT NOT NULL,

 version_generated_inrow BIGINT NOT NULL,

 version_generated_offrow BIGINT NOT NULL,

 ghost_version_inrow BIGINT NOT NULL,

 ghost_version_offrow BIGINT NOT NULL,

 insert_over_ghost_version_inrow BIGINT NOT NULL,

 insert_over_ghost_version_offrow BIGINT NOT NULL,

 CONSTRAINT PK_IndexOperationalStatsHistory

 PRIMARY KEY CLUSTERED (history_id),

 CONSTRAINT UQ_IndexOperationalStatsHistory

 UNIQUE (create_date, database_id, object_id, index_id, partition_

number)

);

With the tables in place, the next step is to capture a current snapshot of the

information in sys.dm_db_index_operational_stats. The information can be

populated using the script in Listing 13-9. Since the Indexing Method is geared toward

capturing information on indexing for all databases on the server, the values for the

parameters for sys.dm_db_index_operational_stats are set to NULL. This will return

results for all partitions of all indexes on all tables in all databases on the server. Like the

index usage stats, this information should be captured about every 4 hours, with one of

the scheduled points being before the index maintenance on the server.

ChApTer 13 MoniToring indexes

482

Listing 13-9. Index Operational Stats Snapshot Population

USE IndexingMethod;

GO

TRUNCATE TABLE dbo.index_operational_stats_snapshot

INSERT INTO dbo.index_operational_stats_snapshot

SELECT GETDATE(),

 database_id,

 object_id,

 index_id,

 partition_number,

 hobt_id,

 leaf_insert_count,

 leaf_delete_count,

 leaf_update_count,

 leaf_ghost_count,

 nonleaf_insert_count,

 nonleaf_delete_count,

 nonleaf_update_count,

 leaf_allocation_count,

 nonleaf_allocation_count,

 leaf_page_merge_count,

 nonleaf_page_merge_count,

 range_scan_count,

 singleton_lookup_count,

 forwarded_fetch_count,

 lob_fetch_in_pages,

 lob_fetch_in_bytes,

 lob_orphan_create_count,

 lob_orphan_insert_count,

 row_overflow_fetch_in_pages,

 row_overflow_fetch_in_bytes,

 column_value_push_off_row_count,

 column_value_pull_in_row_count,

 row_lock_count,

ChApTer 13 MoniToring indexes

483

 row_lock_wait_count,

 row_lock_wait_in_ms,

 page_lock_count,

 page_lock_wait_count,

 page_lock_wait_in_ms,

 index_lock_promotion_attempt_count,

 index_lock_promotion_count,

 page_latch_wait_count,

 page_latch_wait_in_ms,

 page_io_latch_wait_count,

 page_io_latch_wait_in_ms,

 tree_page_latch_wait_count,

 tree_page_latch_wait_in_ms,

 tree_page_io_latch_wait_count,

 tree_page_io_latch_wait_in_ms,

 page_compression_attempt_count,

 page_compression_success_count,

 version_generated_inrow,

 version_generated_offrow,

 ghost_version_inrow,

 ghost_version_offrow,

 insert_over_ghost_version_inrow,

 insert_over_ghost_version_offrow

FROM sys.dm_db_index_operational_stats(NULL, NULL, NULL, NULL)

WHERE database_id > 4;

The step after populating the snapshot is populating the history table. As before, the

purpose of the history table is to store statistics on the deltas between two snapshots.

The deltas provide information on which operations occurred, and they also help to

timebox those operations so that, if needed, more focus can be placed on operations

during core vs. noncore hours. The business rule identifying when the statistics have

been reset is similar to index usage stats: if any of the statistics on the index return a

negative value, the row from the previous snapshot will be ignored. Also, any rows that

return all zero values will not be included. Listing 13-10 shows the code used to generate

the history delta.

ChApTer 13 MoniToring indexes

484

Listing 13-10. Index Operational Stats Snapshot Population

USE IndexingMethod;

GO

WITH IndexOperationalCTE

 AS (SELECT DENSE_RANK() OVER (ORDER BY create_date DESC) AS HistoryID,

 create_date,

 database_id,

 object_id,

 index_id,

 partition_number,

 hobt_id,

 leaf_insert_count,

 leaf_delete_count,

 leaf_update_count,

 leaf_ghost_count,

 nonleaf_insert_count,

 nonleaf_delete_count,

 nonleaf_update_count,

 leaf_allocation_count,

 nonleaf_allocation_count,

 leaf_page_merge_count,

 nonleaf_page_merge_count,

 range_scan_count,

 singleton_lookup_count,

 forwarded_fetch_count,

 lob_fetch_in_pages,

 lob_fetch_in_bytes,

 lob_orphan_create_count,

 lob_orphan_insert_count,

 row_overflow_fetch_in_pages,

 row_overflow_fetch_in_bytes,

 column_value_push_off_row_count,

 column_value_pull_in_row_count,

 row_lock_count,

 row_lock_wait_count,

ChApTer 13 MoniToring indexes

485

 row_lock_wait_in_ms,

 page_lock_count,

 page_lock_wait_count,

 page_lock_wait_in_ms,

 index_lock_promotion_attempt_count,

 index_lock_promotion_count,

 page_latch_wait_count,

 page_latch_wait_in_ms,

 page_io_latch_wait_count,

 page_io_latch_wait_in_ms,

 tree_page_latch_wait_count,

 tree_page_latch_wait_in_ms,

 tree_page_io_latch_wait_count,

 tree_page_io_latch_wait_in_ms,

 page_compression_attempt_count,

 page_compression_success_count,

 version_generated_inrow,

 version_generated_offrow,

 ghost_version_inrow,

 ghost_version_offrow,

 insert_over_ghost_version_inrow,

 insert_over_ghost_version_offrow

 FROM dbo.index_operational_stats_snapshot)

INSERT INTO dbo.index_operational_stats_history

SELECT i1.create_date,

 i1.database_id,

 i1.object_id,

 i1.index_id,

 i1.partition_number,

 i1.hobt_id,

 i1.leaf_insert_count - COALESCE(i2.leaf_insert_count, 0),

 i1.leaf_delete_count - COALESCE(i2.leaf_delete_count, 0),

 i1.leaf_update_count - COALESCE(i2.leaf_update_count, 0),

 i1.leaf_ghost_count - COALESCE(i2.leaf_ghost_count, 0),

 i1.nonleaf_insert_count - COALESCE(i2.nonleaf_insert_count, 0),

 i1.nonleaf_delete_count - COALESCE(i2.nonleaf_delete_count, 0),

ChApTer 13 MoniToring indexes

486

 i1.nonleaf_update_count - COALESCE(i2.nonleaf_update_count, 0),

 i1.leaf_allocation_count - COALESCE(i2.leaf_allocation_count, 0),

 i1.nonleaf_allocation_count - COALESCE(i2.nonleaf_allocation_count, 0),

 i1.leaf_page_merge_count - COALESCE(i2.leaf_page_merge_count, 0),

 i1.nonleaf_page_merge_count - COALESCE(i2.nonleaf_page_merge_count, 0),

 i1.range_scan_count - COALESCE(i2.range_scan_count, 0),

 i1.singleton_lookup_count - COALESCE(i2.singleton_lookup_count, 0),

 i1.forwarded_fetch_count - COALESCE(i2.forwarded_fetch_count, 0),

 i1.lob_fetch_in_pages - COALESCE(i2.lob_fetch_in_pages, 0),

 i1.lob_fetch_in_bytes - COALESCE(i2.lob_fetch_in_bytes, 0),

 i1.lob_orphan_create_count - COALESCE(i2.lob_orphan_create_count, 0),

 i1.lob_orphan_insert_count - COALESCE(i2.lob_orphan_insert_count, 0),

 i1.row_overflow_fetch_in_pages - COALESCE(i2.row_overflow_fetch_in_

pages, 0),

 i1.row_overflow_fetch_in_bytes - COALESCE(i2.row_overflow_fetch_in_

bytes, 0),

 i1.column_value_push_off_row_count - COALESCE(i2.column_value_push_off_

row_count, 0),

 i1.column_value_pull_in_row_count - COALESCE(i2.column_value_pull_in_

row_count, 0),

 i1.row_lock_count - COALESCE(i2.row_lock_count, 0),

 i1.row_lock_wait_count - COALESCE(i2.row_lock_wait_count, 0),

 i1.row_lock_wait_in_ms - COALESCE(i2.row_lock_wait_in_ms, 0),

 i1.page_lock_count - COALESCE(i2.page_lock_count, 0),

 i1.page_lock_wait_count - COALESCE(i2.page_lock_wait_count, 0),

 i1.page_lock_wait_in_ms - COALESCE(i2.page_lock_wait_in_ms, 0),

 i1.index_lock_promotion_attempt_count - COALESCE(i2.index_lock_

promotion_attempt_count, 0),

 i1.index_lock_promotion_count - COALESCE(i2.index_lock_promotion_

count, 0),

 i1.page_latch_wait_count - COALESCE(i2.page_latch_wait_count, 0),

 i1.page_latch_wait_in_ms - COALESCE(i2.page_latch_wait_in_ms, 0),

 i1.page_io_latch_wait_count - COALESCE(i2.page_io_latch_wait_count, 0),

 i1.page_io_latch_wait_in_ms - COALESCE(i2.page_io_latch_wait_in_ms, 0),

 i1.tree_page_latch_wait_count - COALESCE(i2.tree_page_latch_wait_

count, 0),

ChApTer 13 MoniToring indexes

487

 i1.tree_page_latch_wait_in_ms - COALESCE(i2.tree_page_latch_wait_

in_ms, 0),

 i1.tree_page_io_latch_wait_count - COALESCE(i2.tree_page_io_latch_wait_

count, 0),

 i1.tree_page_io_latch_wait_in_ms - COALESCE(i2.tree_page_io_latch_

wait_in_ms, 0),

 i1.page_compression_attempt_count - COALESCE(i2.page_compression_

attempt_count, 0),

 i1.page_compression_success_count - COALESCE(i2.page_compression_

success_count, 0),

 i1.version_generated_inrow - COALESCE(i2.version_generated_inrow, 0),

 i1.version_generated_offrow - COALESCE(i2.version_generated_offrow, 0),

 i1.ghost_version_inrow - COALESCE(i2.ghost_version_inrow, 0),

 i1.ghost_version_offrow - COALESCE(i2.ghost_version_offrow, 0),

 i1.insert_over_ghost_version_inrow - COALESCE(i2.insert_over_ghost_

version_inrow, 0),

 i1.insert_over_ghost_version_offrow - COALESCE(i2.insert_over_ghost_

version_offrow, 0)

FROM IndexOperationalCTE i1

LEFT OUTER JOIN IndexOperationalCTE i2 ON i1.database_id = i2.database_id

AND i1.object_id = i2.object_id

AND i1.index_id = i2.index_id

AND i1.partition_number = i2.partition_number

AND i2.HistoryID = 2

--Verify no rows are less than 0

AND NOT (i1.leaf_insert_count - COALESCE(i2.leaf_insert_count, 0) < 0

 AND i1.leaf_delete_count - COALESCE(i2.leaf_delete_count, 0) < 0

 AND i1.leaf_update_count - COALESCE(i2.leaf_update_count, 0) < 0

 AND i1.leaf_ghost_count - COALESCE(i2.leaf_ghost_count, 0) < 0

 AND i1.nonleaf_insert_count - COALESCE(i2.nonleaf_insert_count, 0) < 0

 AND i1.nonleaf_delete_count - COALESCE(i2.nonleaf_delete_count, 0) < 0

 AND i1.nonleaf_update_count - COALESCE(i2.nonleaf_update_count, 0) < 0

 AND i1.leaf_allocation_count - COALESCE(i2.leaf_allocation_count, 0) < 0

 AND i1.nonleaf_allocation_count - COALESCE(i2.nonleaf_allocation_

count, 0) < 0

ChApTer 13 MoniToring indexes

488

 AND i1.leaf_page_merge_count - COALESCE(i2.leaf_page_merge_count, 0) < 0

 AND i1.nonleaf_page_merge_count - COALESCE(i2.nonleaf_page_merge_

count, 0) < 0

 AND i1.range_scan_count - COALESCE(i2.range_scan_count, 0) < 0

 AND i1.singleton_lookup_count - COALESCE(i2.singleton_lookup_

count, 0) < 0

 AND i1.forwarded_fetch_count - COALESCE(i2.forwarded_fetch_count, 0) < 0

 AND i1.lob_fetch_in_pages - COALESCE(i2.lob_fetch_in_pages, 0) < 0

 AND i1.lob_fetch_in_bytes - COALESCE(i2.lob_fetch_in_bytes, 0) < 0

 AND i1.lob_orphan_create_count - COALESCE(i2.lob_orphan_create_

count, 0) < 0

 AND i1.lob_orphan_insert_count - COALESCE(i2.lob_orphan_insert_

count, 0) < 0

 AND i1.row_overflow_fetch_in_pages - COALESCE(i2.row_overflow_fetch_

in_pages, 0) < 0

 AND i1.row_overflow_fetch_in_bytes - COALESCE(i2.row_overflow_fetch_

in_bytes, 0) < 0

 AND i1.column_value_push_off_row_count - COALESCE(i2.column_value_

push_off_row_count, 0) < 0

 AND i1.column_value_pull_in_row_count - COALESCE(i2.column_value_

pull_in_row_count, 0) < 0

 AND i1.row_lock_count - COALESCE(i2.row_lock_count, 0) < 0

 AND i1.row_lock_wait_count - COALESCE(i2.row_lock_wait_count, 0) < 0

 AND i1.row_lock_wait_in_ms - COALESCE(i2.row_lock_wait_in_ms, 0) < 0

 AND i1.page_lock_count - COALESCE(i2.page_lock_count, 0) < 0

 AND i1.page_lock_wait_count - COALESCE(i2.page_lock_wait_count, 0) < 0

 AND i1.page_lock_wait_in_ms - COALESCE(i2.page_lock_wait_in_ms, 0) < 0

 AND i1.index_lock_promotion_attempt_count - COALESCE(i2.index_lock_

promotion_attempt_count, 0) < 0

 AND i1.index_lock_promotion_count - COALESCE(i2.index_lock_promotion_

count, 0) < 0

 AND i1.page_latch_wait_count - COALESCE(i2.page_latch_wait_count, 0) < 0

 AND i1.page_latch_wait_in_ms - COALESCE(i2.page_latch_wait_in_ms, 0) < 0

 AND i1.page_io_latch_wait_count - COALESCE(i2.page_io_latch_wait_

count, 0) < 0

ChApTer 13 MoniToring indexes

489

 AND i1.page_io_latch_wait_in_ms - COALESCE(i2.page_io_latch_wait_in_

ms, 0) < 0

 AND i1.tree_page_latch_wait_count - COALESCE(i2.tree_page_latch_wait_

count, 0) < 0

 AND i1.tree_page_latch_wait_in_ms - COALESCE(i2.tree_page_latch_wait_

in_ms, 0) < 0

 AND i1.tree_page_io_latch_wait_count - COALESCE(i2.tree_page_io_

latch_wait_count, 0) < 0

 AND i1.tree_page_io_latch_wait_in_ms - COALESCE(i2.tree_page_io_

latch_wait_in_ms, 0) < 0

 AND i1.page_compression_attempt_count - COALESCE(i2.page_compression_

attempt_count, 0) < 0

 AND i1.page_compression_success_count - COALESCE(i2.page_compression_

success_count, 0) < 0

 AND i1.version_generated_inrow - COALESCE(i2.version_generated_

inrow, 0) < 0

 AND i1.version_generated_offrow - COALESCE(i2.version_generated_

offrow, 0) < 0

 AND i1.ghost_version_inrow - COALESCE(i2.ghost_version_inrow, 0) < 0

 AND i1.ghost_version_offrow - COALESCE(i2.ghost_version_offrow, 0) < 0

 AND i1.insert_over_ghost_version_inrow - COALESCE(i2.insert_over_

ghost_version_inrow, 0) < 0

 AND i1.insert_over_ghost_version_offrow - COALESCE(i2.insert_over_

ghost_version_offrow, 0) < 0

)

WHERE i1.HistoryID = 1

--Only include rows are greater than 0

AND (

 i1.leaf_insert_count - COALESCE(i2.leaf_insert_count, 0) > 0

 OR i1.leaf_delete_count - COALESCE(i2.leaf_delete_count, 0) > 0

 OR i1.leaf_update_count - COALESCE(i2.leaf_update_count, 0) > 0

 OR i1.leaf_ghost_count - COALESCE(i2.leaf_ghost_count, 0) > 0

 OR i1.nonleaf_insert_count - COALESCE(i2.nonleaf_insert_count, 0) > 0

 OR i1.nonleaf_delete_count - COALESCE(i2.nonleaf_delete_count, 0) > 0

 OR i1.nonleaf_update_count - COALESCE(i2.nonleaf_update_count, 0) > 0

ChApTer 13 MoniToring indexes

490

 OR i1.leaf_allocation_count - COALESCE(i2.leaf_allocation_count, 0) > 0

 OR i1.nonleaf_allocation_count - COALESCE(i2.nonleaf_allocation_

count, 0) > 0

 OR i1.leaf_page_merge_count - COALESCE(i2.leaf_page_merge_count, 0) > 0

 OR i1.nonleaf_page_merge_count - COALESCE(i2.nonleaf_page_merge_

count, 0) > 0

 OR i1.range_scan_count - COALESCE(i2.range_scan_count, 0) > 0

 OR i1.singleton_lookup_count - COALESCE(i2.singleton_lookup_count, 0) > 0

 OR i1.forwarded_fetch_count - COALESCE(i2.forwarded_fetch_count, 0) > 0

 OR i1.lob_fetch_in_pages - COALESCE(i2.lob_fetch_in_pages, 0) > 0

 OR i1.lob_fetch_in_bytes - COALESCE(i2.lob_fetch_in_bytes, 0) > 0

 OR i1.lob_orphan_create_count - COALESCE(i2.lob_orphan_create_

count, 0) > 0

 OR i1.lob_orphan_insert_count - COALESCE(i2.lob_orphan_insert_

count, 0) > 0

 OR i1.row_overflow_fetch_in_pages - COALESCE(i2.row_overflow_fetch_in_

pages, 0) > 0

 OR i1.row_overflow_fetch_in_bytes - COALESCE(i2.row_overflow_fetch_in_

bytes, 0) > 0

 OR i1.column_value_push_off_row_count - COALESCE(i2.column_value_push_

off_row_count, 0) > 0

 OR i1.column_value_pull_in_row_count - COALESCE(i2.column_value_pull_

in_row_count, 0) > 0

 OR i1.row_lock_count - COALESCE(i2.row_lock_count, 0) > 0

 OR i1.row_lock_wait_count - COALESCE(i2.row_lock_wait_count, 0) > 0

 OR i1.row_lock_wait_in_ms - COALESCE(i2.row_lock_wait_in_ms, 0) > 0

 OR i1.page_lock_count - COALESCE(i2.page_lock_count, 0) > 0

 OR i1.page_lock_wait_count - COALESCE(i2.page_lock_wait_count, 0) > 0

 OR i1.page_lock_wait_in_ms - COALESCE(i2.page_lock_wait_in_ms, 0) > 0

 OR i1.index_lock_promotion_attempt_count - COALESCE(i2.index_lock_

promotion_attempt_count, 0) > 0

 OR i1.index_lock_promotion_count - COALESCE(i2.index_lock_promotion_

count, 0) > 0

 OR i1.page_latch_wait_count - COALESCE(i2.page_latch_wait_count, 0) > 0

 OR i1.page_latch_wait_in_ms - COALESCE(i2.page_latch_wait_in_ms, 0) > 0

ChApTer 13 MoniToring indexes

491

 OR i1.page_io_latch_wait_count - COALESCE(i2.page_io_latch_wait_

count, 0) > 0

 OR i1.page_io_latch_wait_in_ms - COALESCE(i2.page_io_latch_wait_in_

ms, 0) > 0

 OR i1.tree_page_latch_wait_count - COALESCE(i2.tree_page_latch_wait_

count, 0) > 0

 OR i1.tree_page_latch_wait_in_ms - COALESCE(i2.tree_page_latch_wait_

in_ms, 0) > 0

 OR i1.tree_page_io_latch_wait_count - COALESCE(i2.tree_page_io_latch_

wait_count, 0) > 0

 OR i1.tree_page_io_latch_wait_in_ms - COALESCE(i2.tree_page_io_latch_

wait_in_ms, 0) > 0

 OR i1.page_compression_attempt_count - COALESCE(i2.page_compression_

attempt_count, 0) > 0

 OR i1.page_compression_success_count - COALESCE(i2.page_compression_

success_count, 0) > 0

 OR i1.version_generated_inrow - COALESCE(i2.version_generated_

inrow, 0) > 0

 OR i1.version_generated_offrow - COALESCE(i2.version_generated_

offrow, 0) > 0

 OR i1.ghost_version_inrow - COALESCE(i2.ghost_version_inrow, 0) > 0

 OR i1.ghost_version_offrow - COALESCE(i2.ghost_version_offrow, 0) > 0

 OR i1.insert_over_ghost_version_inrow - COALESCE(i2.insert_over_ghost_

version_inrow, 0) > 0

 OR i1.insert_over_ghost_version_offrow - COALESCE(i2.insert_over_ghost_

version_offrow, 0) > 0

);

 Index Physical Stats
The last indexing DMO for monitoring indexes is sys.dm_db_index_physical_stats.

This DMO provides statistics on the current physical structure of the indexes in the

databases. The value of this information is in determining the fragmentation of the

index, which is discussed more in Chapter 6. From a monitoring perspective, we are

collecting the physical statistics to aid with later analysis. The goal is to identify potential

ChApTer 13 MoniToring indexes

492

issues that may be affecting the efficiency in how the index is stored, or vice versa, thus

impacting query performance because of how the index is stored.

With the physical stats DMO, the statistics are collected a bit differently than with

the other DMOs. The main difference between this DMO and the others is the impact

that can be placed on the database while collecting the information. While the other

two reference in-memory tables, index_physical_stats reads the pages in the index to

determine the actual fragmentation and physical layout of the indexes. Reference back

to Chapter 3 for more about the impact of using sys.dm_db_index_physical_stats. To

accommodate this difference, the statistics are stored only in a history table; the deltas

between the points in which the history is retrieved are not determined. Also, because

of the nature of the statistics contained in the DMO, there would be little value in

calculating delta values.

The first piece needed to begin collecting statistics on index physical stats is the

previously mentioned history table. This table, shown in Listing 13-11, uses the same

schema as the DMO, with the addition of the create_date column.

Tip When generating the table schema needed for the dMos, a table-valued
function first introduced in sQL server 2012 was utilized. The function sys.dm_
exec_describe_first_result_set can be used to identify the column names
and data types for a query.

Listing 13-11. Index Physical Stats History Table

USE IndexingMethod;

GO

CREATE TABLE dbo.index_physical_stats_history

 (

 history_id INT IDENTITY(1, 1),

 create_date DATETIME2(0),

 database_id SMALLINT,

 object_id INT,

 index_id INT,

 partition_number INT,

 index_type_desc NVARCHAR(60),

 alloc_unit_type_desc NVARCHAR(60),

ChApTer 13 MoniToring indexes

493

 index_depth TINYINT,

 index_level TINYINT,

 avg_fragmentation_in_percent FLOAT,

 fragment_count BIGINT,

 avg_fragment_size_in_pages FLOAT,

 page_count BIGINT,

 avg_page_space_used_in_percent FLOAT,

 record_count BIGINT,

 ghost_record_count BIGINT,

 version_ghost_record_count BIGINT,

 min_record_size_in_bytes INT,

 max_record_size_in_bytes INT,

 avg_record_size_in_bytes FLOAT,

 forwarded_record_count BIGINT,

 compressed_page_count BIGINT,

 hobt_id BIGINT NULL,

 columnstore_delete_buffer_state TINYINT NULL,

 columnstore_delete_buffer_state_desc NVARCHAR(60) NULL,

 version_record_count BIGINT NULL,

 inrow_version_record_count BIGINT NULL,

 inrow_diff_version_record_count BIGINT NULL,

 total_inrow_version_payload_size_in_bytes BIGINT NULL,

 offrow_regular_version_record_count BIGINT NULL,

 offrow_long_term_version_record_count BIGINT NULL,

 CONSTRAINT PK_IndexPhysicalStatsHistory

 PRIMARY KEY CLUSTERED (history_id),

 CONSTRAINT UQ_IndexPhysicalStatsHistory

 UNIQUE

 (

 create_date,

 database_id,

 object_id,

 index_id,

 partition_number,

 alloc_unit_type_desc,

ChApTer 13 MoniToring indexes

494

 index_depth,

 index_level

)

);

The collection of the history for index_physical_stats differs from the previous

two DMOs. Since it’s just history, there is no need to capture the snapshot information

to build the delta between the two snapshots for the history. Instead, the current

statistics are inserted directly into the history table, as shown in Listing 13-12. Also, since

index_physical_stats performs physical operations on the index while collecting

the statistics, there are a few things to keep in mind when generating the history

information. First, the script will collect information from each database independently

from the other databases through a CURSOR-drive loop. This provides a batched

separation between the collections of statistics for each database and limits the impact

of the DMO. Second, we should be certain that the query is executed during noncore

hours. The start of the daily maintenance window would be ideal. It is important that this

information is collected prior to defragmentation or re-indexing since these operations

will change the information provided by the DMO. Usually, this information is collected

as a step in the defragmentation process, which is discussed in Chapter 6. If so, there’s no

need to collect the information twice. Collect it for defragmentation and store it for later

use in monitoring indexes.

Listing 13-12. Index Physical Stats History Population

USE IndexingMethod;

GO

DECLARE @DatabaseID INT;

DECLARE DatabaseList CURSOR FAST_FORWARD FOR

SELECT database_id

FROM sys.databases

WHERE state_desc = 'ONLINE'

AND database_id > 4;

OPEN DatabaseList;

FETCH NEXT FROM DatabaseList

INTO @DatabaseID;

ChApTer 13 MoniToring indexes

495

WHILE @@FETCH_STATUS = 0

BEGIN

 INSERT INTO dbo.index_physical_stats_history (

 create_date,

 database_id,

 object_id,

 index_id,

 partition_number,

 index_type_desc,

 alloc_unit_type_desc,

 index_depth,

 index_level,

 avg_fragmentation_in_percent,

 fragment_count,

 avg_fragment_size_in_pages,

 page_count,

 avg_page_space_used_in_percent,

 record_count,

 ghost_record_count,

 version_ghost_record_count,

 min_record_size_in_bytes,

 max_record_size_in_bytes,

 avg_record_size_in_bytes,

 forwarded_record_count,

 compressed_page_count,

 hobt_id,

 columnstore_delete_buffer_state,

 columnstore_delete_buffer_state_desc,

 version_record_count,

 inrow_version_record_count,

 inrow_diff_version_record_count,

 total_inrow_version_payload_size_in_bytes,

 offrow_regular_version_record_count,

 offrow_long_term_version_record_count

)

ChApTer 13 MoniToring indexes

496

 SELECT GETDATE(),

 database_id,

 object_id,

 index_id,

 partition_number,

 index_type_desc,

 alloc_unit_type_desc,

 index_depth,

 index_level,

 avg_fragmentation_in_percent,

 fragment_count,

 avg_fragment_size_in_pages,

 page_count,

 avg_page_space_used_in_percent,

 record_count,

 ghost_record_count,

 version_ghost_record_count,

 min_record_size_in_bytes,

 max_record_size_in_bytes,

 avg_record_size_in_bytes,

 forwarded_record_count,

 compressed_page_count,

 hobt_id,

 columnstore_delete_buffer_state,

 columnstore_delete_buffer_state_desc,

 version_record_count,

 inrow_version_record_count,

 inrow_diff_version_record_count,

 total_inrow_version_payload_size_in_bytes,

 offrow_regular_version_record_count,

 offrow_long_term_version_record_count

 FROM sys.dm_db_index_physical_stats(@DatabaseID, NULL, NULL, NULL,

'SAMPLED');

ChApTer 13 MoniToring indexes

497

 FETCH NEXT FROM DatabaseList

 INTO @DatabaseID;

END;

CLOSE DatabaseList;

DEALLOCATE DatabaseList;

 Wait Statistics
One other DMO that provides information related to indexing is sys.dm_os_wait_stats.

This DMO collects information related to resources that SQL Server is waiting on in

order to start or continue executing a query or other request. Most performance tuning

methodologies include a process for collecting and analyzing wait statistics. From an

indexing perspective, there are a number of wait resources that can indicate that there

may be indexing issues on the SQL Server instance. By monitoring these statistics, we

can be informed when these issues may exist. Table 13-2 provides a short list of wait

types that most often indicate that indexing issues may exist.

Similar to performance counters, wait statistics are general indicators of health that

reflect information about the SQL Server instance as a whole. They do not point directly

to resources; instead, they collect information on when there was a wait for a specific

resource on the SQL Server instance.

Note Many performance monitoring tools from third-party vendors collect wait
statistics as a part of their monitoring. if there is a tool already installed in your
environment, check to see whether wait statistics information can be retrieved
from that tool.

ChApTer 13 MoniToring indexes

498

The process for collecting wait statistics follows the pattern of using snapshot and

history tables. To do this, the data will be collected first in a snapshot table with the deltas

between snapshots stored in a history table. The snapshot and history tables, shown in

Listing 13-13, contain the columns needed to support the snapshot and history patterns.

Listing 13-13. Wait Statistics Snapshot and History Table

USE IndexingMethod;

GO

CREATE TABLE dbo.wait_stats_snapshot

 (

 wait_stats_snapshot_id INT IDENTITY(1, 1),

 create_date DATETIME2(0),

 wait_type NVARCHAR(60) NOT NULL,

 waiting_tasks_count BIGINT NOT NULL,

 wait_time_ms BIGINT NOT NULL,

 max_wait_time_ms BIGINT NOT NULL,

 signal_wait_time_ms BIGINT NOT NULL,

 CONSTRAINT PK_wait_stats_snapshot

 PRIMARY KEY CLUSTERED (wait_stats_snapshot_id)

);

Table 13-2. Index-Related Wait Statistics

Option Name Description

CXPACKET synchronizes threads involved in a parallel query. This wait type means

a parallel query is attempting to synchronize data within a paralle query

between operators and can indicate an unbalanced workload or a worker is

blocked by a preceding request.

IO_COMPLETION indicates a wait for i/o for operation (typically synchronous) like sorts and

various situations where the engine needs to do a synchronous i/o. This wait

type represents nondata page i/os.

LCK_M_* occurs when a task is waiting to acquire a lock on an index or table.

PAGEIOLATCH_* occurs when a task is waiting on a latch for a buffer that is in an i/o request.

Long waits may indicate problems with the disk subsystem.

ChApTer 13 MoniToring indexes

499

CREATE TABLE dbo.wait_stats_history

 (

 wait_stats_history_id INT IDENTITY(1, 1),

 create_date DATETIME2(0),

 wait_type NVARCHAR(60) NOT NULL,

 waiting_tasks_count BIGINT NOT NULL,

 wait_time_ms BIGINT NOT NULL,

 max_wait_time_ms BIGINT NOT NULL,

 signal_wait_time_ms BIGINT NOT NULL,

 CONSTRAINT PK_wait_stats_history

 PRIMARY KEY CLUSTERED (wait_stats_history_id)

);

To collect the wait statistics information, the output from sys.dm_os_wait_stats is

queried. Unlike the other DMOs discussed in this chapter, there is some summarization

of the information that needs to occur prior to inserting the data. In a previous version

of SQL Server, the wait_stats DMO contains two rows for the wait type MISCELLANEOUS.

To accommodate for this variance, the sample script in Listing 13-14 uses aggregations

to get around the issue. Another difference between wait_stats_snapshot and the other

snapshots is the frequency in which the information should be collected. Wait_stats

reports information on when requested resources were not available. Being able to

tie this information to specific times of the day can be critical. As such, wait_stats

information should be collected about once every hour.

Listing 13-14. Wait Statistics Snapshot Population

USE IndexingMethod;

GO

TRUNCATE TABLE dbo.wait_stats_snapshot

INSERT INTO dbo.wait_stats_snapshot (

 create_date,

 wait_type,

 waiting_tasks_count,

 wait_time_ms,

ChApTer 13 MoniToring indexes

500

 max_wait_time_ms,

 signal_wait_time_ms

)

SELECT GETDATE(),

 wait_type,

 waiting_tasks_count,

 wait_time_ms,

 max_wait_time_ms,

 signal_wait_time_ms

FROM sys.dm_os_wait_stats;

With each snapshot collected, the delta between it and the previous snapshot needs

to be added in the wait_stats_history table. For determining when the information in

sys.dm_os_wait_stats has been reset, the column waiting_tasks_count is utilized. If

the value in the column is lower than the previous snapshot, the information in the DMO

is reset. Listing 13-15 provides the code for populating the history table.

While there are only a few wait types that point toward indexing issues, the history

table will show results for all the wait types that are encountered. The reason is that waits

on resources need to be compared to the total number of other waits that occur. For

instance, if CXPACKET is the lowest relative wait on the server, there isn’t much value in

researching the queries and determining the indexing that could reduce the occurrence

of this wait type since other issues would likely impact performance more significantly.

Listing 13-15. Wait Statistics History Population

USE IndexingMethod;

GO

WITH WaitStatCTE

 AS (SELECT create_date,

 DENSE_RANK() OVER (ORDER BY create_date DESC) AS HistoryID,

 wait_type,

 waiting_tasks_count,

 wait_time_ms,

 max_wait_time_ms,

 signal_wait_time_ms

 FROM dbo.wait_stats_snapshot)

ChApTer 13 MoniToring indexes

501

INSERT INTO dbo.wait_stats_history

SELECT w1.create_date,

 w1.wait_type,

 w1.waiting_tasks_count - COALESCE(w2.waiting_tasks_count, 0),

 w1.wait_time_ms - COALESCE(w2.wait_time_ms, 0),

 w1.max_wait_time_ms - COALESCE(w2.max_wait_time_ms, 0),

 w1.signal_wait_time_ms - COALESCE(w2.signal_wait_time_ms, 0)

FROM WaitStatCTE w1

LEFT OUTER JOIN WaitStatCTE w2 ON w1.wait_type = w2.wait_type

 AND w1.waiting_tasks_count >= COALESCE(w2.

waiting_tasks_count, 0)

 AND w2.HistoryID = 2

WHERE w1.HistoryID = 1

AND w1.waiting_tasks_count - COALESCE(w2.waiting_tasks_count, 0) > 0;

 Data Cleanup
While all the information for monitoring is needed for the index analysis, this

information is not needed indefinitely. The process for monitoring would not be

complete without tasks in place to clean up the information collected after a reasonable

amount of time. A generally acceptable schedule for cleaning up information is to purge

snapshots after 3 days and history information after 90 days.

The snapshot information is used simply to prepare the history information and is

really not needed after the delta is created. Since SQL Agent jobs can error and collection

points may be a day apart from the previous, a 3-day window generally provides the

leeway needed to support the process and accommodate any issues that may arise.

The data in the history tables is more crucial than the snapshot information and

needs to be kept longer. This information feeds the activities during index analysis. The

window for retaining this information should match the amount of time that it generally

takes to go through the Indexing Method three or more times. This way, the information

retained can be used for reference in a few cycles of the process.

When scheduling the cleanup process, it should be at least daily and during

noncore processing hours. This will minimize the amount of information deleted in

each execution and reduce the possible contention of the delete with other activity on

the server. The delete script, shown in Listing 13-16, covers each of the tables discussed

throughout this section.

ChApTer 13 MoniToring indexes

502

Listing 13-16. Index Monitoring Snapshot and History Cleanup

USE IndexingMethod

GO

DECLARE @SnapshotDays INT = 3

 ,@HistoryDays INT = 90

DELETE FROM dbo.index_usage_stats_snapshot

WHERE create_date < DATEADD(d, -@SnapshotDays, GETDATE())

DELETE FROM dbo.index_usage_stats_history

WHERE create_date < DATEADD(d, -@HistoryDays, GETDATE())

DELETE FROM dbo.index_operational_stats_snapshot

WHERE create_date < DATEADD(d, -@SnapshotDays, GETDATE())

DELETE FROM dbo.index_operational_stats_history

WHERE create_date < DATEADD(d, -@HistoryDays, GETDATE())

DELETE FROM dbo.index_physical_stats_history

WHERE create_date < DATEADD(d, -@HistoryDays, GETDATE())

DELETE FROM dbo.wait_stats_snapshot

WHERE create_date < DATEADD(d, -@SnapshotDays, GETDATE())

DELETE FROM dbo.wait_stats_history

WHERE create_date < DATEADD(d, -@HistoryDays, GETDATE())

 Event Tracing
The last set of information that should be collected for monitoring indexes is event

tracing. The trace information collects SQL statements that represent production activity

that can be used during index analysis to identify indexes that could be useful based on

the query activity in your production environment and on the data that is being stored

there. While the statistics collected so far provide information on the effect of activity on

indexes and other resource use on the SQL Server instance, event tracing collects the

ChApTer 13 MoniToring indexes

503

activity that is causing those statistics. With SQL Server, there are two methods that can

be used to collect event tracing data:

• SQL Trace

• Extended Events

For the purposes of completeness, both methods will be discussed. In my opinion,

only Extended Events should be used to collect event tracing data in SQL Server. This

is due to how well Extended Events are incorporated into SQL Server to help prevent it

from causing performance issues while monitoring. And the level of detail that it can

retrieve goes far beyond the capabilities of SQL Trace.

 SQL Trace
SQL Trace, and by extension SQL Profiler, is the original tracing tool for SQL Server.

It’s one of the most common tools that DBAs have in their back pockets and can easily

collect events in SQL Server. With SQL Trace, there are a number of areas to be careful of

when collecting information. First, SQL Trace will likely collect a lot of information, and

this will need to be accommodated. In other words, the more active the server and the

databases, the larger the trace (.trc) files will be. Along these same lines, don’t collect

the trace information on drives that are already heavily used or dedicated to data or

transaction log files. Doing this can, and likely will, impact the performance of I/O on

those drives. The end goal for monitoring is to improve the performance of the system;

care needs to be taken to minimize the impact of monitoring.

Finally, SQL Trace and SQL Profiler were deprecated in SQL Server 2012. This

doesn’t mean that these tools no longer function, but they are slated for removal in

a future SQL Server release. While SQL Trace is deprecated, it is still the ideal tool in

some scenarios for collecting trace information, such as for building workloads for the

Database Engine Tuning Advisor.

Note it is always advisable to keep apprised of deprecated features within sQL
server. For more information on deprecated features, see sQL docs at https://
docs.microsoft.com/en-us/sql/database-engine/deprecated-
database- engine-features-in-sql-server-2017?view=sql-server-
ver15.

ChApTer 13 MoniToring indexes

https://docs.microsoft.com/en-us/sql/database-engine/deprecated-database-engine-features-in-sql-server-2017?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/deprecated-database-engine-features-in-sql-server-2017?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/deprecated-database-engine-features-in-sql-server-2017?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/deprecated-database-engine-features-in-sql-server-2017?view=sql-server-ver15

504

There are four basic steps to creating a SQL Trace session:

 1. Build the trace session.

 2. Assign the events and columns to the session.

 3. Add filters to the session.

 4. Start the SQL Trace session.

The next few pages will cover these steps and describe the components used in

creating the SQL Trace session in SQL Server 2019. The script should work in earlier

versions of SQL Server.

To begin monitoring with SQL Trace, a trace session must first be created. Sessions

are created using the sp_trace_create stored procedure. This procedure accepts a

number of parameters that configure how the session will collect information. In the

example session, shown in Listing 13-17, the SQL Trace session will create files that

automatically failover when they reach the 50 MB file size limit. The file size is limited to

allow for better file management. In most environments, it’s easier to copy many 50 MB

files compared to files that are 1 GB or more. Also, the trace files are being created in c:\

temp with the file name IndexingMethod. Be sure to create this folder if it

doesn’t exist. Note that this name can be changed to anything that suits the needs of

the server and databases where the monitoring is being set up.

Listing 13-17. Create SQL Trace Session

USE master;

GO

DECLARE @rc INT,

 @TraceID INT,

 --Maximum .trc file size in MB

 @maxfilesize BIGINT = 50,

 --File name and path, minus the extension

 @FileName NVARCHAR(256) = N'c:\temp\IndexingMethod';

EXEC @rc = sp_trace_create @TraceID OUTPUT, 0, @FileName, @maxfilesize,

NULL;

ChApTer 13 MoniToring indexes

505

IF (@rc <> 0)

 RAISERROR('Error creating trace file', 16, 1);

SELECT *
FROM sys.traces

WHERE id = @TraceID;

After creating the SQL Trace session, the next step is to add events to the session.

There are two events that will collect the information that is of most value to index

monitoring: RPC:Completed and SQL:BatchCompleted. RPC:Completed returns results

whenever a remote procedure call completes; the best example of this is the completion

of a stored procedure. The other event, SQL:BatchCompleted, occurs when ad hoc and

prepared batches are completed. Between these two events, all the completed SQL

statements on the server will be collected.

To add events to the SQL Trace session, we use the sp_trace_set event stored

procedure. The stored procedure adds events and the column requested from the

event to the trace with each execution of the stored procedure. For two events with 15

columns each, the stored procedure will need to be executed 30 times. For the example

session, shown in Listing 13-18, the following columns are being collected for each of the

sessions:

• ApplicationName

• ClientProcessID

• CPU

• DatabaseID

• DatabaseName

• Duration

• EndTime

• HostName

• LoginName

• NTUserName

• Reads

• SPID

ChApTer 13 MoniToring indexes

506

• StartTime

• TextData

• Writes

We can find the codes for the events and columns in system catalog views. Events are

listed in view sys.trace_events. The columns available are listed in sys.trace_columns.

The columns view also includes an indicator to identify whether the values from the

column can be filtered, which is useful in the next step in creating SQL Trace sessions.

Listing 13-18. Add Events and Columns to SQL Trace Session

USE master;

GO

DECLARE @on INT = 1,

 @FileName NVARCHAR(256) = N'c:\temp\IndexingMethod',

 @TraceID INT;

SET @TraceID = (

 SELECT id FROM sys.traces WHERE path LIKE @FileName + '%'

);

-- RPC:Completed

EXEC sp_trace_setevent @TraceID, 10, 1, @on;

EXEC sp_trace_setevent @TraceID, 10, 10, @on;

EXEC sp_trace_setevent @TraceID, 10, 11, @on;

EXEC sp_trace_setevent @TraceID, 10, 12, @on;

EXEC sp_trace_setevent @TraceID, 10, 13, @on;

EXEC sp_trace_setevent @TraceID, 10, 14, @on;

EXEC sp_trace_setevent @TraceID, 10, 15, @on;

EXEC sp_trace_setevent @TraceID, 10, 16, @on;

EXEC sp_trace_setevent @TraceID, 10, 17, @on;

EXEC sp_trace_setevent @TraceID, 10, 18, @on;

EXEC sp_trace_setevent @TraceID, 10, 3, @on;

EXEC sp_trace_setevent @TraceID, 10, 35, @on;

EXEC sp_trace_setevent @TraceID, 10, 6, @on;

ChApTer 13 MoniToring indexes

507

EXEC sp_trace_setevent @TraceID, 10, 8, @on;

EXEC sp_trace_setevent @TraceID, 10, 9, @on;

--SQL:BatchCompleted

EXEC sp_trace_setevent @TraceID, 12, 1, @on;

EXEC sp_trace_setevent @TraceID, 12, 10, @on;

EXEC sp_trace_setevent @TraceID, 12, 11, @on;

EXEC sp_trace_setevent @TraceID, 12, 12, @on;

EXEC sp_trace_setevent @TraceID, 12, 13, @on;

EXEC sp_trace_setevent @TraceID, 12, 14, @on;

EXEC sp_trace_setevent @TraceID, 12, 15, @on;

EXEC sp_trace_setevent @TraceID, 12, 16, @on;

EXEC sp_trace_setevent @TraceID, 12, 17, @on;

EXEC sp_trace_setevent @TraceID, 12, 18, @on;

EXEC sp_trace_setevent @TraceID, 12, 3, @on;

EXEC sp_trace_setevent @TraceID, 12, 35, @on;

EXEC sp_trace_setevent @TraceID, 12, 6, @on;

EXEC sp_trace_setevent @TraceID, 12, 8, @on;

EXEC sp_trace_setevent @TraceID, 12, 9, @on;

The next step is to filter out unneeded events from the SQL Trace session. There is no

need to collect all statements all the time for all databases and all applications with every

SQL Trace session. In fact, in Listing 13-19, events from the system databases, those

with a database ID less than 5, are removed from the session. The stored procedure for

filtering SQL Trace sessions is sp_trace_setfilter. The stored procedure accepts the

ID for columns from sys.trace_columns. Columns not included in the events can be

filtered, and filters apply to all events.

Listing 13-19. Add Filters to SQL Trace Session

USE master;

GO

DECLARE @intfilter INT = 5,

 @FileName NVARCHAR(256) = N'c:\temp\IndexingMethod',

 @TraceID INT;

ChApTer 13 MoniToring indexes

508

SET @TraceID = (

 SELECT id FROM sys.traces WHERE path LIKE @FileName + '%'

);

--Remove system databases from output

EXEC sp_trace_setfilter @TraceID, 3, 0, 4, @intfilter;

The last step in setting up the monitoring for SQL Trace is to start the trace. This

task is accomplished using the sp_trace_setstatus stored procedure, shown in

Listing 13-20. Through this procedure, SQL Trace sessions can be started, paused, and

stopped. Once the trace is started, it will start to create .trc files in the file location

provided, and the configuration for SQL Trace monitoring will be complete. When the

collection period for the SQL Trace session completes, this script will be used with the

status code 2 instead of 1 to terminate the session. Listing 13-21 provides this script.

Listing 13-20. Start SQL Trace Session

USE master;

GO

DECLARE @FileName NVARCHAR(256) = N'c:\temp\IndexingMethod',

 @TraceID INT;

SET @TraceID = (

 SELECT id FROM sys.traces WHERE path LIKE @FileName + '%'

);

-- Set the trace status to start

EXEC sp_trace_setstatus @TraceID, 1;

Note sQL server experts often find it unfashionable to use the database engine
Tuning Advisor, preferring instead to manually analyze the database and determine
the indexes needed. This bias misses the opportunity to uncover low-hanging
fruit or situations where changing the location of the clustered index can improve
performance.

ChApTer 13 MoniToring indexes

509

Listing 13-21. Stop SQL Trace Session

USE master;

GO

DECLARE @FileName NVARCHAR(256) = N'c:\temp\IndexingMethod',

 @TraceID INT;

SET @TraceID = (

 SELECT id FROM sys.traces WHERE path LIKE @FileName + '%'

);

-- Set the trace status to stop

EXEC sp_trace_setstatus @TraceID, 0;

The SQL Trace session example in this section is fairly basic. In your environment,

we may need to have a more intelligent process that collects information in each trace

file for a specified amount of time instead of using a file size to control the file rollover

rate. These types of changes to collecting information from SQL Trace for monitoring

indexes should have no impact on your ability to use the SQL Trace information for the

purposes intended later in this chapter. There is one last item to consider with the SQL

Trace information. Trace information does not need to constantly be gathered, like

performance counter and DMO information. Instead, the SQL Trace information is often

better suited to being collected for a 4–8-hour period that represents a regular day of

activity on your database platform. With SQL Trace, we can collect too much information,

which can overwhelm the analyze phase and delay indexing recommendations.

 Extended Events
Extended Events, introduced in SQL Server 2008, is the preferred tracing tool in

SQL Server; it’s more functional but oddly less popular than SQL Trace. Given the

opportunity to choose, create traces with Extended Events over SQL Trace. There are

two ways to create Extended Events sessions. The first is through T-SQL, which will be

demonstrated in this chapter. The second uses a GUI in SQL Server Management Studio

that includes wizards for building a new session; the GUI was introduced in SQL Server

2012, so it’s been around quite some time. The best practices in session creation are

the same as SQL Trace for the most part. For instance, be sure to collect session logs on

drives other than those in which data and log files are stored.

ChApTer 13 MoniToring indexes

510

The trace we’ll create in Extended Events will collect the same general information

as SQL Trace. The main differences will be how the session is created and some of the

names of events and columns. Instead of RPC:Completed and SQL:BatchCompleted,

the events to capture in Extended Events are rpc_completed and sql_batch_completed,

respectively. Each of these events captures their own set of columns, or data elements,

which are listed in Table 13-3.

Table 13-3. Extended Events Columns

Event Columns

rpc_completed • connection_reset_option

• cpu_time

• data_stream

• duration

• logical_reads

• object_name

• output_parameters

• physical_reads

• result

• row_count

• statement

• writes

sql_batch_completed • batch_text

• cpu_time

• duration

• logical_reads

• physical_reads

• result

• row_count

• writes

Additionally, we’ll include some additional data in the Extended Events session

that is available as global fields, or actions, which can be used to extend the default

ChApTer 13 MoniToring indexes

511

information included in each event. These are similar to the elements included in the

SQL Trace session from the previous session. The global fields to be included are

• client_app_name

• client_hostname

• database_id

• database_name

• nt_username

• process_id

• session_id

• sql_text

• username

With the session defined, the next step is to create the sessions. Extended Events

leverages the T-SQL data definition language (DDL) instead of stored procedures to

create sessions. The code in Listing 13-22 provides the DDL for the session and starts

the session. For each event added, the ADD EVENT syntax is used, and the ACTION clause

is used to include the global fields. For convenience, the session is designed to store the

output in the default log folder for SQL Server in the file EventTracingforIndexTuning.

Listing 13-22. Create and Start Extended Events Session

USE master;

GO

IF EXISTS (

 SELECT *
 FROM sys.server_event_sessions

 WHERE name = 'EventTracingforIndexTuning'

)

 DROP EVENT SESSION [EventTracingforIndexTuning] ON SERVER;

CREATE EVENT SESSION [EventTracingforIndexTuning]

ON SERVER

ChApTer 13 MoniToring indexes

512

 ADD EVENT sqlserver.rpc_completed

 (ACTION (

 package0.process_id,

 sqlserver.client_app_name,

 sqlserver.client_hostname,

 sqlserver.database_id,

 sqlserver.database_name,

 sqlserver.nt_username,

 sqlserver.session_id,

 sqlserver.sql_text,

 sqlserver.username

)

),

 ADD EVENT sqlserver.sql_batch_completed

 (ACTION (

 package0.process_id,

 sqlserver.client_app_name,

 sqlserver.client_hostname,

 sqlserver.database_id,

 sqlserver.database_name,

 sqlserver.nt_username,

 sqlserver.session_id,

 sqlserver.sql_text,

 sqlserver.username

)

)

 ADD TARGET package0.event_file

 (SET filename = N'EventTracingforIndexTuning')

WITH (

 STARTUP_STATE = ON

);

GO

ALTER EVENT SESSION [EventTracingforIndexTuning] ON SERVER STATE = START;

GO

ChApTer 13 MoniToring indexes

513

Similar to SQL Trace sessions, Extended Events sessions can be started and stopped.

There is no need to pause them since the metadata for a session exists independent from

whether the session is running. Listing 13-22 includes the syntax for starting the trace.

Listing 13-23 shows the code to stop the trace. Additionally, if SQL Server restarts, the

Extended Events tracing session will be retained and can be configured to restart, unlike

SQL Trace which disappears on restart.

Listing 13-23. Create and Start Extended Events Session

USE master;

GO

ALTER EVENT SESSION [EventTracingforIndexTuning] ON SERVER STATE = STOP;

GO

This Extended Events session is pretty simple. The nice thing about it is its ability

to easily capture workloads from your SQL Server instances. Using the workloads from

tracing, we can begin to understand how the SQL Server is being queried and the types

of indexes that will help improve the performance of our environment.

 Query Store
Introduced in SQL Server 2016, Query Store is a per-database data store that contains

execution plan information and related execution statistics. While it doesn’t necessarily

provide direct index tuning information, advances in this feature may provide automated

indexing capabilities in the future. This is based on the existing changes available to

SQL Server in Azure SQL Database, which is detailed at https://docs.microsoft.com/

en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-

server- ver15#automatic-index-management. As previously noted, this feature is not

available in SQL Server 2019 at the time of this writing.

Despite the lack of direct index monitoring benefits, there are a few things that

can be useful for indexing within the Query Store. The first is that since it is similar to

the plan cache, queries used against the plan cache can be modified to use with the

Query Store. In most cases, this will return the same information as the plan cache. An

additional benefit to using Query Store is that in situations where execution plans are

being replaced by other execution plans for improved performance, this can sometimes

be index-related. This could be due to poor statistics available for the indexes or a lack

ChApTer 13 MoniToring indexes

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15#automatic-index-management
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15#automatic-index-management
https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15#automatic-index-management

514

of the best indexes to provide desired performance without replace plans. For either

scenario, identifying these performance issues by monitoring Query Store activity can

provide insight into indexes needed in an environment.

For the purposes of monitoring indexes, those reasons provide an additional

worthwhile reason to leverage Query Store. To enable Query Store on a database,

leverage the code in Listing 13-24. While a deep dive into Query Store is itself outside

the context of this book, there is a lot of flexibility that can be leveraged around how

frequently data is collected, how much data is stored, what the rate of dropping data

is, and whether the Query Store is currently writable. It is definitely worthwhile to read

further in Query Store for SQL Server 2019 by Apress.

Listing 13-24. Enable Query Store on AdventureWorks2017

USE [master]

GO

ALTER DATABASE [AdventureWorks2017] SET QUERY_STORE = ON

GO

ALTER DATABASE [AdventureWorks2017] SET QUERY_STORE

(OPERATION_MODE = READ_WRITE)

GO

 Summary
In this chapter, we walked through the steps to monitor your indexes. Monitoring

indexes is an extension of general platform monitoring but an important part of

providing the foundation for determining whether we have the right indexes and for

analyzing your indexes. Through the monitoring, I reviewed how to gather dynamic

management data and performance counters. In the next chapter, we’ll look at how we

can apply this information to analyze whether we have the right indexes.

ChApTer 13 MoniToring indexes

515
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_14

CHAPTER 14

Index Analysis
In the previous chapter, we discussed what information should be collected when

monitoring indexes. All of that information is necessary for the next piece of indexing

your databases, which is determining which indexes to apply. In this chapter, we will

take all the information gathered while monitoring and use it to analyze the state of

performance and the value of the existing indexes. The end goal of the index analysis

is to build a list of indexes to create, modify, and, potentially, drop from the databases.

In many cases, the analysis of the indexes will appear to border on art. There are many

decisions in which you will use previous performance to anticipate future indexing

needs. In the end, though, with every change proposed, there will be supporting

evidence before and after the indexing solutions to statistically support or disprove the

value of the index which makes index analysis more science than art.

The general process of index analysis is broken out into a number of components.

Each component contains a process in which the analysis will start from high levels

to identify the needed focus and hone the analysis into existing issues. The analysis

components are as follows:

• Review of server state

• Schema discovery

• Database Engine Tuning Advisor

• Unused indexes

• Index plan usage

Before any exercise in analyzing the indexes of a database can take place, we first

need to know the current deployment state. The tactics that can be used for a database

in deployment vs. a database already deployed to the production environment will be

roughly the same. There is a significant difference between the two, though, when it

comes to where and how the statistics are gathered.

516

For a database that has not been developed, the focus will be on how users are

expected to use the database and application after it is deployed. Tests and workloads

against the database will focus on validating that the indexing in the database supports

those activities. The activity that is chosen for the testing will likely be the result of

estimations and projections of what users will do with the application. Determining the

activity will be the responsibility of the business analysts who develop the requirements

for the application.

Once the database has been deployed, the monitoring shifts from what the activity

could be to what the activity is. The rate in which users adopt features and what the

distribution of the data is with that activity will be known. At this point, the indexes

developed during testing and planning may not be correct for the workload. The first

round of using the Indexing Method on the database after deployment may lead to

significant indexing changes. The key with indexing databases that have been deployed

is that the analysis needs to be against the statistics of the workload in production. Doing

so will provide the necessary guidance for implementing indexes that provide the best

benefit to the database and pair them with the features that users are using and the

frequency in which they use them.

Going through the index analysis with databases in either deployment state will

provide a set of indexes that are optimal for what is currently known and understood

about the database. When the indexes are applied, your mileage with them can, and

will, vary. An index may provide the perfect access path for data for the activity in the

database last month. But with the new release, new clients, or changes in user behavior,

they may not continue to be optimal. As is often heard with stock purchases, past

performance does not dictate future results.

Fortunately, with a well-practiced use of the Indexing Method, we will be able to

provide the indexing your environment needs. In this chapter, the focus is on databases

that are already deployed to production. As mentioned, these tactics will work with

databases and servers in both states, development and production, but for simplicity, a

production environment will be the default perspective and approach.

As we move through each of the areas in the index analysis, we will get a list of

indexes to either create, modify, delete, or investigate further. For the indexes that

require further investigation, we will use subsequent portions of the index analysis

process to determine how to progress and handle the index.

Chapter 14 Index analysIs

517

Note In this chapter, it will be important to run the monitoring scripts from
Chapter 13 between the scripts that create the workload and the queries to review
the statistics. depending on the schedule used for collecting the statistics, it could
be hours before the statistics are collected which will prevent the queries for
statistics from providing the anticipated results.

 Review of Server State
The first step in index analysis is to review the state of the server. Review both the host

server environment and the SQL Server instance environment to identify whether there

are conditions indicating that there may be indexing issues. By starting at a high level

and not looking directly at tables and individual indexes, we can avoid getting blinded by

the trees in the forest. Often, when there are hundreds of indexes in dozens of databases,

it is easy to get overly focused on an index or table that looks poorly indexed, only to later

discover that the table has fewer than a hundred rows in a database with billions of rows

in other tables.

When analyzing the server state, we will look at the following three areas:

• Performance counters

• Wait statistics

• Buffer allocation

Each of these areas provides an idea of where to start focusing the index analysis

process. They let the database platform determine where the performance issues related

to indexing may reside.

 Performance Counters
The first set of information collected for index monitoring included the performance

counters. Naturally, we want to look at these performance counters first when

performing index analysis. Tracking performance counters over a monitoring period and

over time will not provide prescriptive guidance on what to do about indexing issues, but

it will provide a point for discovering performance issues and thus where to begin.

Chapter 14 Index analysIs

518

For each of the counters, we’ll discuss some general guidelines. These guidelines are

generalities that should be taken with a grain of salt. Use them to initially guide whether

the counter is outside what might be normal on other database platforms. If there is a

reason that counters on your platform trend higher than typical, that is the purpose of

maintaining the baseline tables. Work with the counter values that are valid for your

environment as opposed to those that work best for others.

There are two ways in which performance counters should be analyzed. The first is

to use Excel and/or Power BI to view graphs and trend lines based on the performance

counters. The second is to review the performance counters with a query that takes a

snapshot of the information in the performance counter table. The second approach is

the approach used in this chapter. The guidelines for the snapshot queries apply to both

approaches.

Note For simplicity, the snapshot analysis queries in this section will be scoped
to the database level. In most cases, we will need to execute them against every
database on the sQl server instance. Options for accomplishing this are using
sp_MSForEachDB and extending the cursors.

 Forwarded Records per Second

As discussed in Chapter 2, forwarded records occur when heap records are updated

and no longer fit on the page in which they were originally stored. In these situations,

a pointer is placed in the original record to the new record location. The performance

counter Forwarded Records/sec measures the rate in which forwarded rows are

accessed on the server. Generally, the ratio of Forwarded Records/sec should not

exceed 10 percent of Batch Requests/sec. This ratio can be a misnomer since Forwarded

Records represents the access of data at the row level and Batch Requests represents a

higher-scoped operation. The ratio, though, provides an indicator of when the balance of

Forwarded Records/sec may be exceeding an advisable level.

The snapshot query for forwarded records, shown in Listing 14-1, provides columns

for the Forwarded Records/sec counter and the ratio calculation. In this query, the

values are aggregated into minimum, average, and maximum values. The ratio is

calculated on each set of collected counters and aggregated after that calculation. The

final column, PctViolation, shows the percentage of time in which the Forward Records

to Batch Requests ratio exceeds the 10 percent guideline.

Chapter 14 Index analysIs

519

Listing 14-1. Forwarded Records Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 MAX(IIF(counter_name = 'Forwarded Records/sec', Calculated_

Counter_value, NULL)) AS ForwardedRecords,

 MAX(IIF(counter_name = 'Forwarded Records/sec', Calculated_

Counter_value, NULL))

 / (NULLIF(MAX(IIF(counter_name = 'Batch Requests/sec',

Calculated_Counter_value, NULL)), 0) * 10) AS ForwardedRecordRatio

 FROM dbo.IndexingCounters

 WHERE counter_name IN ('Forwarded Records/sec', 'Batch Requests/sec')

 GROUP BY create_date,

 server_name)

SELECT server_name,

 MIN(ForwardedRecords) AS MinForwardedRecords,

 AVG(ForwardedRecords) AS AvgForwardedRecords,

 MAX(ForwardedRecords) AS MaxForwardedRecords,

 MIN(ForwardedRecordRatio) AS MinForwardedRecordRatio,

 AVG(ForwardedRecordRatio) AS AvgForwardedRecordRatio,

 MAX(ForwardedRecordRatio) AS MaxForwardedRecordRatio,

 FORMAT(1. * SUM(IIF(ForwardedRecordRatio > 1, 1, NULL)) / COUNT(*),

'0.00%') AS PctViolation

FROM CounterSummary

GROUP BY server_name;

When reviewing the output from the snapshot query, there are a few things to ask

about the information returned. First, review the minimum and maximum values

for the counter and ratio. Is the minimum value close to or at zero? How high is the

maximum? How does it compare to previous values collected during monitoring? Is the

average value for the counter and ratio closer to the minimum or maximum value? If the

volume and peaks of forwarded records is increasing, then further analysis is warranted.

Chapter 14 Index analysIs

520

Next, consider the PctViolation column. Is the percentage greater than 1 percent? If

so, further analysis of forwarded records is warranted. If there is a need to dig deeper

into Forward Records, the next step is to move the analysis from the server level to the

databases.

To provide an example of some forwarded record activity, execute the script in

Listing 14-2. This script will create a table with a heap. Then it will insert records into the

table and update those records, causing records to be expanded and leading to record

forwarding. Finally, a query will access the forwarded records, causing forwarded record

access operations.

Listing 14-2. Forwarded Records Example

USE AdventureWorks2017

GO

DROP TABLE IF EXISTS dbo.HeapExample;

GO

CREATE TABLE dbo.HeapExample (

 ID INT IDENTITY,

 FillerData VARCHAR(2000)

);

INSERT INTO dbo.HeapExample (FillerData)

SELECT REPLICATE('X',100)

FROM sys.all_objects

UPDATE dbo.HeapExample

SET FillerData = REPLICATE('X',2000)

WHERE ID % 5 = 1

GO

SELECT *

FROM dbo.HeapExample

WHERE ID % 3 = 1

GO 2

Chapter 14 Index analysIs

521

Once determining that Forwarded Records/sec analysis needs to go into the

database, the process will leverage information available in the DMO. There are two

DMOs that will help to determine the scope and extent of forwarded record issues. These

are sys.dm_db_index_physical_stats and sys.dm_db_index_operational_stats. For

the analysis, the sys.dm_db_index_operational_stats information will come from

the monitoring table dbo.index_operational_stats_history. The analysis process,

shown in Listing 14-3, involves identifying all the heaps in a database and then checking

the physical structure of the heap. This information is then joined to the information

collected in dbo.index_operational_stats_history. The physical stature of the index

is retrieved from sys.dm_db_index_operational_stats because the DETAILED option for

the DMO is required to get the forwarded record information.

Listing 14-3. Forwarded Records Snapshot Query

USE AdventureWorks2017

GO

IF OBJECT_ID('tempdb..#HeapList') IS NOT NULL

 DROP TABLE #HeapList

CREATE TABLE #HeapList

 (

 database_id int

 ,object_id int

 ,page_count INT

 ,avg_page_space_used_in_percent DECIMAL(6,3)

 ,record_count INT

 ,forwarded_record_count INT

)

DECLARE HEAP_CURS CURSOR FORWARD_ONLY FOR

 SELECT object_id

 FROM sys.indexes i

 WHERE index_id = 0

DECLARE @IndexID INT

OPEN HEAP_CURS

FETCH NEXT FROM HEAP_CURS INTO @IndexID

Chapter 14 Index analysIs

522

WHILE @@FETCH_STATUS = 0

BEGIN

 INSERT INTO #HeapList

 SELECT

 DB_ID()

 ,object_id

 ,page_count

 ,CAST(avg_page_space_used_in_percent AS DECIMAL(6,3))

 ,record_count

 ,forwarded_record_count

 FROM

 sys.dm_db_index_physical_stats(DB_ID(), @IndexID, 0,

NULL,'DETAILED') ;

 FETCH NEXT FROM HEAP_CURS INTO @IndexID

END

CLOSE HEAP_CURS

DEALLOCATE HEAP_CURS

SELECT

 QUOTENAME(DB_NAME(database_id))

 ,QUOTENAME(OBJECT_SCHEMA_NAME(object_id)) + '.'

 + QUOTENAME(OBJECT_NAME(object_id)) AS ObjectName

 ,page_count

 ,avg_page_space_used_in_percent

 ,record_count

 ,forwarded_record_count

 ,x.forwarded_fetch_count

 ,CAST(100.*forwarded_record_count/record_count AS DECIMAL(6,3)) AS

forwarded_record_pct

 ,CAST(1.*x.forwarded_fetch_count/forwarded_record_count AS

DECIMAL(12,3)) AS forwarded_row_ratio

FROM #HeapList h

 CROSS APPLY(

 SELECT SUM(forwarded_fetch_count) AS forwarded_fetch_count

 FROM IndexingMethod.dbo.index_operational_stats_history i

Chapter 14 Index analysIs

523

 WHERE h.database_id = i.database_id

 AND h.object_id = i.OBJECT_ID

 AND i.index_id = 0) x

WHERE forwarded_record_count > 0

ORDER BY page_count DESC

The results of the snapshot query, shown in Figure 14-1, provide information on

all the heaps in a database that have any forwarded records. Through these results, the

heaps that have issues with forwarding and forwarded records can be identified. The

first columns to pay attention to are page_count and record_count. Heaps with many

records with forwarded record issues will be more important than those with few rows.

It is worthwhile to focus on those tables that will provide the greatest relief to forwarded

records when investigating this counter. The columns forwarded_record_count and

forwarded_fetch_count provide a count of the number of records in a table that have

been forwarded and the number of times those forwarded records have been accessed,

respectively. These columns provide a scope to the size of the problem. The last columns

to look at are forwarded_record_pct and forwarded_row_ratio. These columns

detail the percentage of columns that are forwarded and how many times each of the

forwarded rows has been accessed.

In the example table, the statistics indicate that there is an issue with forwarded

records. The table has more than 16 percent of its rows forwarded. Each of these rows

has been accessed three times, based on the forwarded_fetch_count. From the code

sample, there have been only three queries executed on the table, meaning that every

time there has been data access, all of the forwarded rows are being accessed. When

analyzing the indexes in this database, mitigating the forwarded records for this table

would be worthwhile. Do pay special attention to whether forwarded records are being

accessed. Mitigating forwarded records on a table that has very high forwarded records

but no forwarded record access would not be worth the effort and would have no impact

on the Forwarded Records/sec counter.

Figure 14-1. Forwarded record snapshot query results

Chapter 14 Index analysIs

524

When heaps that have forwarded record issues have been identified, there are

generally two ways in which the forwarded record can be mitigated. The first approach

is to change the data types for the columns that are variable to fixed-length data types.

For instance, the varchar data type would be changed to char. This approach is not

always ideal since it can result in more space being required by the table, and some

queries may not accommodate the extra space at the end of character fields and could

return incorrect results. The second option is to add a clustered index to the table,

which would remove the heap as the organizational method for storing the data in

the table. The downside to this approach is in identifying the appropriate key column

to cluster the table on. If there is a primary key on the table, it can usually suffice as

the clustering index key. There is a third option. The heap can be rebuilt, which will

rewrite the heap back to the database file and remove all the forwarded records (using

the script in Listing 14-4). This is generally considered a poor approach to resolving

forwarded records in heaps since it doesn’t provide a meaningful permanent fix to the

issue. Remember, forwarded records aren’t necessarily bad. They do, though, provide a

potential performance problem when the ratio of operations for forwarded records starts

to increase as compared to batch requests.

Listing 14-4. Rebuild Heap Script

USE AdventureWorks2017

GO

ALTER TABLE dbo.HeapExample REBUILD

 FreeSpace Scans and Page Fetches per Second

The performance counter FreeSpace Scans/sec is another performance counter that

is related to heaps. This counter represents the activity that happens when records are

being inserted into a table with a heap. During inserts into heaps, there can be activity

on the GAM, SGAM, and PFS pages. If the rate of inserts is high enough, contention can

happen on these pages. Analyzing the values of the FreeSpace Scans/sec and FreeSpace

Page Fetches/sec counters provides an opportunity to keep track of this activity,

determine when the volume of activity is increasing, and determine when heaps may

need to be analyzed further. Used in conjunction, FreeSpace Scans/sec and FreeSpace

Page Fetches/sec counters indicate the frequency and volume of scan activity on heaps,

respectively.

Chapter 14 Index analysIs

525

Listing 14-5 provides the query to analyze the FreeSpace Scans/sec counter. It

provides a snapshot of FreeSpace Scans activity on the SQL Server instance. The query

provides aggregations of the counter with minimum, average, and maximum values.

Similar to the previous counter, this counter also follows recommended guidelines

of one FreeSpace Scans/sec for every ten Batch Requests. The PctViolation column

measures the percentage of time that the counter exceeds the guideline.

Listing 14-5. FreeSpace Scans Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 MAX(IIF(counter_name = 'FreeSpace Scans/sec', Calculated_Counter_

value, NULL)) FreeSpaceScans,

 MAX(IIF(counter_name = 'FreeSpace Page Fetches/sec', Calculated_

Counter_value, NULL)) FreeSpacePageFetches,

 MAX(IIF(counter_name = 'FreeSpace Scans/sec', Calculated_Counter_

value, NULL))

 / (NULLIF(MAX(IIF(counter_name = 'Batch Requests/sec',

Calculated_Counter_value, NULL)), 0) * 10) AS ForwardedRecordRatio

 FROM dbo.IndexingCounters

 WHERE counter_name IN ('FreeSpace Scans/sec', 'FreeSpace Page

Fetches/sec', 'Batch Requests/sec')

 GROUP BY create_date,

 server_name)

SELECT server_name,

 MIN(FreeSpaceScans) AS MinFreeSpaceScans,

 AVG(FreeSpaceScans) AS AvgFreeSpaceScans,

 MAX(FreeSpaceScans) AS MaxFreeSpaceScans,

 MIN(FreeSpacePageFetches) AS MinFreeSpacePageFetches,

 AVG(FreeSpacePageFetches) AS AvgFreeSpacePageFetches,

 MAX(FreeSpacePageFetches) AS MaxFreeSpacePageFetches,

 MIN(ForwardedRecordRatio) AS MinForwardedRecordRatio,

Chapter 14 Index analysIs

526

 AVG(ForwardedRecordRatio) AS AvgForwardedRecordRatio,

 MAX(ForwardedRecordRatio) AS MaxForwardedRecordRatio,

 FORMAT(1. * SUM(IIF(ForwardedRecordRatio > 1, 1, NULL)) / COUNT(*),

'0.00%') AS PctViolation

FROM CounterSummary

GROUP BY server_name;

When the FreeSpace Scans/sec number is high, the analysis will focus on

determining which heaps in the databases have the highest rate of inserts. To identify

the tables with the highest inserts on heaps, use the information in the monitoring

tables from sys.dm_db_index_operational_stats. The column with the information on

inserts is leaf_insert_count. The query in Listing 14-6 provides a list of the heaps in the

monitoring table dbo.index_operational_stats_history with the most indexes.

Listing 14-6. FreeSpace Scans Snapshot Query

USE IndexingMethod

GO

SELECT

 QUOTENAME(DB_NAME(database_id)) AS database_name

 ,QUOTENAME(OBJECT_SCHEMA_NAME(object_id, database_id)) + '.'

 + QUOTENAME(OBJECT_NAME(object_id, database_id)) AS ObjectName

 , SUM(leaf_insert_count) AS leaf_insert_count

 , SUM(leaf_allocation_count) AS leaf_allocation_count

FROM dbo.index_operational_stats_history

WHERE index_id = 0

AND database_id > 4

and QUOTENAME(OBJECT_NAME(object_id, database_id)) IS NOT NULL

GROUP BY object_id, database_id

ORDER BY leaf_insert_count DESC

Reviewing the table in the demonstration script in Listing 14-3 with the FreeSpace

Scans snapshot query yields the results in Figure 14-2. As this example shows, there

were thousands of inserts into the heap. While only a single table is shown in the results,

the tables that appear at the height of this list are going to be the ones most often

contributing to FreeSpace Scans/sec.

Chapter 14 Index analysIs

527

Once the contributing heaps are identified, the best method for mitigating the heaps

is to create a clustered index on the tables with the most inserts. Since the counter is

based on scans of free space on the GAM, SGAM, and PFS pages, building clustered

indexes on the heap tables will move the allocation of pages to IAM pages, which are

dedicated to each clustered index, as compared to heaps where they will compete for

page allocations with other heaps.

 Full Scans per Second

Through the performance counter Full Scans/sec, the number of full scans on clustered

and nonclustered indexes and heaps is measured. Within execution plans, this counter is

triggered during index scans and table scans. The higher the rate in which full scans are

performed, the more likely that there can be performance issues related to full scans. From a

performance perspective, this can impact the Page Life Expectancy value as data is churned

in memory, and there may be I/O contention as data needs to be brought into memory.

Using the query in Listing 14-7, the current state of Full Scans/sec can be analyzed

for the current monitoring window. As with the previous counters, it is important to

consider the relationship between this counter and the Batch Requests/sec counter.

When the ratio of Full Scans/sec to Batch Requests/sec exceeds one for every thousand,

there may be an issue with Full Scans/sec, which merits further review.

Listing 14-7. Full Scans Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 MAX(IIF(counter_name = 'Full Scans/sec', Calculated_Counter_

value, NULL)) FullScans,

Figure 14-2. FreeSpace Scans per second snapshot query results

Chapter 14 Index analysIs

528

 MAX(IIF(counter_name = 'Full Scans/sec', Calculated_Counter_

value, NULL))

 / (NULLIF(MAX(IIF(counter_name = 'Batch Requests/sec',

Calculated_Counter_value, NULL)), 0) * 1000) AS FullRatio

 FROM dbo.IndexingCounters

 WHERE counter_name IN ('Full Scans/sec', 'Batch Requests/sec')

 GROUP BY create_date,

 server_name)

SELECT server_name,

 MIN(FullScans) AS MinFullScans,

 AVG(FullScans) AS AvgFullScans,

 MAX(FullScans) AS MaxFullScans,

 MIN(FullRatio) AS MinFullRatio,

 AVG(FullRatio) AS AvgFullRatio,

 MAX(FullRatio) AS MaxFullRatio,

 FORMAT(1. * SUM(IIF(FullRatio > 1, 1, 0)) / COUNT(*), '0.00%') AS

PctViolation

FROM CounterSummary

GROUP BY server_name;

Before demonstrating how to examine the underlying causes for high Full Scans/sec

counter values, let’s set up some example statistics. Listing 14-8 will provide a number of

full scans that can be collected through the monitoring process detailed in the previous

section. Be certain to execute the scripts that collect the monitoring information after

executing the example script.

Listing 14-8. Full Scans Example Query

USE AdventureWorks2017

GO

SET NOCOUNT ON

EXEC ('SELECT * INTO #temp FROM Sales.SalesOrderHeader')

GO 1000

Chapter 14 Index analysIs

529

The primary goal is to identify which indexes the Full Scans/sec counter is being

affected by. Once the indexes are identified, they need to be analyzed to determine

whether they are the proper indexes for that operation or whether there are other

performance tuning tactics required to reduce the use of the index in a full-scan

operation. The DMO to use for investigating full scans is sys.dm_db_index_usage_stats

from the monitoring tables; from the monitoring, this is stored in the dbo.index_usage_

stats_history table.

The indexes can be identified using the query shown in Listing 14-9. The snapshot

results exclude any indexes with no rows in them. Those indexes are still being utilized

for full scans, but mitigating the scans on those indexes would not greatly impact

performance. To sort the results, the number of scans on the indexes is multiplied by the

number of rows in the table. Sorting in this manner weighs the output to put focus on

those indexes that might not have a high impact on reducing the Full Scans/sec value

but will provide the greatest lift to index performance.

Listing 14-9. Full Scans Snapshot Query

USE IndexingMethod;

GO

SELECT QUOTENAME(DB_NAME(uh.database_id)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(uh.object_id, uh.database_id)) + '.'

 + QUOTENAME(OBJECT_NAME(uh.object_id, uh.database_id)) AS ObjectName,

 uh.index_id,

 SUM(uh.user_scans) AS user_scans,

 SUM(uh.user_seeks) AS user_seeks,

 x.record_count

FROM dbo.index_usage_stats_history uh

CROSS APPLY (

 SELECT DENSE_RANK() OVER (ORDER BY ph.create_date DESC) AS RankID,

 ph.record_count

 FROM dbo.index_physical_stats_history ph

 WHERE ph.database_id = uh.database_id

 AND ph.object_id = uh.object_id

 AND ph.index_id = uh.index_id

) x

Chapter 14 Index analysIs

530

WHERE uh.database_id > 4

AND uh.database_id <> DB_ID()

AND OBJECT_NAME(uh.object_id, uh.database_id) IS NOT NULL

AND x.RankID = 1

GROUP BY uh.database_id,

 uh.object_id,

 uh.index_id,

 x.record_count

ORDER BY SUM(uh.user_scans) * x.record_count DESC;

GO

The results of the Full Scans snapshot query will look similar to the output in

Figure 14-3. With this output, the next step is to identify which indexes require further

analysis. The purpose of the current analysis is to identify problem indexes for later

analysis. Once identified, the next step is to determine where they are being utilized and

how to mitigate the full scans in those places, which is demonstrated later in this chapter

in the Index Plan Usage section.

 Index Searches per Second

The alternative to scanning indexes is to perform a seek against the index. The

performance counter Index Searches/sec provides reporting on the rate of index seek

on the SQL Server instance. This can include operations such as range scans and key

lookups. In most environments, it is preferable to see high Index Searches/sec counter

values. Along those lines, the higher this performance counter is in relationship to Full

Scans/sec, the better.

Figure 14-3. Full Scans snapshot query results

Chapter 14 Index analysIs

531

The analysis of Index Searches/sec will begin with reviewing the performance

counter information collected over time (shown in Listing 14-10). As mentioned, the

ratio of Index Searches/sec to Full Scans/sec is one of the metrics that can be used

to evaluate whether Index Searches/sec is indicating a potential indexing issue. The

guideline for evaluating the ratio between the two counters is to look for 1,000 Index

Searches/sec for every one Full Scans/sec. The analysis query provides this calculation,

along with determining the amount of time in which the counter values exceeded this

ratio, through the column PctViolation.

Listing 14-10. Index Searches Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 MAX(IIF(counter_name = 'Index Searches/sec', Calculated_Counter_

value, NULL)) IndexSearches,

 MAX(IIF(counter_name = 'Index Searches/sec', Calculated_Counter_

value, NULL))

 / (NULLIF(MAX(IIF(counter_name = 'Full Scans/sec', Calculated_

Counter_value, NULL)), 0) * 1000) AS SearchToScanRatio

 FROM dbo.IndexingCounters

 WHERE counter_name IN ('Index Searches/sec', 'Full Scans/sec')

 GROUP BY create_date,

 server_name)

SELECT server_name,

 MIN(IndexSearches) AS MinIndexSearches,

 AVG(IndexSearches) AS AvgIndexSearches,

 MAX(IndexSearches) AS MaxIndexSearches,

 MIN(SearchToScanRatio) AS MinSearchToScanRatio,

 AVG(SearchToScanRatio) AS AvgSearchToScanRatio,

 MAX(SearchToScanRatio) AS MaxSearchToScanRatio,

 FORMAT(1. * SUM(IIF(SearchToScanRatio > 1, 1, NULL)) / COUNT(*),

'0.00%') AS PctViolation

FROM CounterSummary

GROUP BY server_name;

Chapter 14 Index analysIs

532

If the analysis indicates an issue with index searches, the first step is to verify that

the analysis for Full Scans/sec in the previous section was completed. That analysis

will provide the most insight into which indexes have many full scans, which would

contribute to high ratios for Index Searches/sec.

To help demonstrate how to examine the Index Searches/sec counter values, we’ll

run the query in Listing 14-11. This query will provide a number of full scans that can be

collected through the monitoring process detailed in the previous section. Be certain to

execute the scripts that collect the monitoring information after executing the example

script.

Listing 14-11. Full Scans Example Query

USE AdventureWorks2017

GO

SET NOCOUNT ON

EXEC('SELECT SOH.SalesOrderID, SOD.SalesOrderDetailID

INTO #temp

FROM Sales.SalesOrderHeader SOH

INNER JOIN Sales.SalesOrderDetail SOD ON SOH.SalesOrderID =

SOD.SalesOrderID

WHERE SOH.SalesOrderID = 43659')

GO 1000

Once that analysis is complete, we can begin to identify where there are issues with

the ratios of scans to seeks at the index level. Using the query in Listing 14-12, indexes

with a high ratio of scans to seeks can be identified. Similar to the performance counter

guideline of 1,000 seeks to every one scan, the query returns results for those indexes

with fewer than 1,000 seeks for every scan. Since full-scan issues should have been

identified in the previous section, the analysis also removes any indexes that do not have

seeks against them.

Chapter 14 Index analysIs

533

Listing 14-12. Index Searches Snapshot Query

USE IndexingMethod;

GO

SELECT QUOTENAME(DB_NAME(uh.database_id)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(uh.object_id, uh.database_id)) + '.'

 + QUOTENAME(OBJECT_NAME(uh.object_id, uh.database_id)) AS ObjectName,

 uh.index_id,

 SUM(uh.user_scans) AS user_scans,

 SUM(uh.user_seeks) AS user_seeks,

 1. * SUM(uh.user_seeks) / NULLIF(SUM(uh.user_scans), 0) AS

SeekScanRatio,

 x.record_count

FROM dbo.index_usage_stats_history uh

CROSS APPLY (

 SELECT DENSE_RANK() OVER (ORDER BY ph.create_date DESC) AS RankID,

 ph.record_count

 FROM dbo.index_physical_stats_history ph

 WHERE ph.database_id = uh.database_id

 AND ph.object_id = uh.object_id

 AND ph.index_id = uh.index_id

) x

WHERE uh.database_id > 4

AND uh.database_id <> DB_ID()

AND x.RankID = 1

AND x.record_count > 0

GROUP BY uh.database_id,

 uh.object_id,

 uh.index_id,

 x.record_count

HAVING 1. * SUM(uh.user_seeks) / NULLIF(SUM(uh.user_scans), 0) < 1000

AND SUM(uh.user_seeks) > 0

ORDER BY 1. * SUM(uh.user_seeks) / NULLIF(SUM(uh.user_scans), 0) DESC,

 SUM(uh.user_scans) DESC;

GO

Chapter 14 Index analysIs

534

Viewing the results of the snapshot query, shown in Figure 14-4, there is just a

single index identified where the seek-to-scan ratio is close to 1. This is the case since

in the previous section we executed about 1,000 scans against Sales.SalesOrderHeader,

but none against Sales.SalesOrderDetail, even though both of these tables and their

indexes were accessed in Listing 14-11. The advantage of considering Index Searches in

conjunction with Full Scans is they help to offset the severity by identifying the frequency

in which more desirable activity is occurring.

When delving into further analysis, there are a few things we’ll want to pay attention

to that might indicate an issue with the indexes identified. First is the current seek vs.

scan behavior new to the index; in other words, has the variance been on a common

trend that has slowly been getting worse? If the change is sudden, there could be a plan

that is no longer using the index as it once did, maybe because of a coding change or bad

parameter sniffing. Second is when the change has been gradual; look at increased data

volumes and whether a query or feature within the database is being used more than it

was previously. This can also hint at changes in how people are using the database and

its applications, which is sometimes gradual until it reaches the point where indexing,

and the performance the indexes support, suffers.

 Page Splits per Second

Similar to how clustered indexes are the other side of heaps, page splits are the other side

of forwarded records. An in-depth discussion of page splits is included in Chapter 2. For

the purposes of this chapter, though, page splits occur when a clustered or nonclustered

index needs to make room in the ordering of the pages of the index to place data into

its proper position. Page splits can be resource-intensive because the single page is

divided into two or more pages and involves locking and, potentially, blocking. The

more frequent the page splits, the more likely that indexes will incur blocking and

performance will suffer. Also, the fragmentation caused by page splits reduces the size of

reads that can be performed in single operations.

To begin analyzing the performance counters for a page split, the counter Page Splits/

sec is utilized. The query in Listing 14-13 provides a method for summarizing page

Figure 14-4. Index search snapshot query sample results

Chapter 14 Index analysIs

535

split activity. The query includes the minimum, maximum, and average levels of the

performance counter. Along with that, a ratio of Page Splits/sec to Batch Requests/sec

is included. When identifying whether there are issues with page splits on a SQL Server

instance, the general rule of thumb is to look for times in which there is more than one page

split/sec for every 20 batch requests/sec. Of course, as with the other counter, pay attention

to the amount of time, through PctViolation, that the counter exceeded the threshold.

Listing 14-13. Page Splits Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 MAX(IIF(counter_name = 'Page Splits/sec', Calculated_Counter_

value, NULL)) PageSplits,

 MAX(IIF(counter_name = 'Page Splits/sec', Calculated_Counter_

value, NULL))

 / (NULLIF(MAX(IIF(counter_name = 'Batch Requests/sec',

Calculated_Counter_value, NULL)), 0) * 20) AS FullRatio

 FROM dbo.IndexingCounters

 WHERE counter_name IN ('Page Splits/sec', 'Batch Requests/sec')

 GROUP BY create_date,

 server_name)

SELECT server_name,

 MIN(PageSplits) AS MinPageSplits,

 AVG(PageSplits) AS AvgPageSplits,

 MAX(PageSplits) AS MaxPageSplits,

 MIN(FullRatio) AS MinFullRatio,

 AVG(FullRatio) AS AvgFullRatio,

 MAX(FullRatio) AS MaxFullRatio,

 FORMAT(1. * SUM(IIF(FullRatio > 1, 1, 0)) / COUNT(*), '0.00%') AS

PctViolation

FROM CounterSummary

GROUP BY server_name;

Chapter 14 Index analysIs

536

To determine the indexes that are being affected by page splits, we can consider a

few values. A couple of the values come from sys.dm_db_index_operational_stats

or dbo.index_operational_stats_history from the index monitoring process. These

columns report each page allocation that occurs on an index, whether from inserts

at the end of the B-tree or page splits in the middle of it. Since we care only about

operations that are part of page splits, the next two columns provide information on

whether fragmentation from page splits is occurring. To determine fragmentation, the

column avg_fragmentation_in_percent from sys.dm_db_index_physical_stats

is included in the monitoring table dbo.index_physical_stats_history. For the

average fragmentation, there are two values returned. The first is the last fragmentation

value reported for the index; the second is the average of all the fragmentation values

collected. See Listing 14-14.

Listing 14-14. Page Splits Snapshot Query

USE IndexingMethod;

GO

SELECT QUOTENAME(DB_NAME(database_id)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(object_id, database_id)) + '.' +

QUOTENAME(OBJECT_NAME(object_id, database_id)) AS ObjectName,

 SUM(leaf_allocation_count) AS leaf_insert_count,

 SUM(nonleaf_allocation_count) AS nonleaf_allocation_count,

 MAX(IIF(RankID = 1, x.avg_fragmentation_in_percent, NULL)) AS last_

fragmenation,

 AVG(x.avg_fragmentation_in_percent) AS average_fragmenation

FROM dbo.index_operational_stats_history oh

CROSS APPLY (

 SELECT DENSE_RANK() OVER (ORDER BY ph.create_date DESC) AS RankID,

 CAST(ph.avg_fragmentation_in_percent AS DECIMAL(6, 3)) AS avg_

fragmentation_in_percent

 FROM dbo.index_physical_stats_history ph

 WHERE ph.database_id = oh.database_id

 AND ph.object_id = oh.object_id

 AND ph.index_id = oh.index_id

) x

Chapter 14 Index analysIs

537

WHERE database_id > 4

AND database_id <> DB_ID()

AND oh.index_id <> 0

AND (

 leaf_allocation_count > 0

 OR nonleaf_allocation_count > 0

)

GROUP BY object_id,

 database_id

ORDER BY leaf_insert_count DESC;

Investigating page splits in this manner provides a way to see the number

of allocations and pairs that information with fragmentation. A table with low

fragmentation and a high leaf_insert_count, such as the table dbo.IndexingCounters

shown in Figure 14-5, is not a concern from a page split perspective. On the other hand,

dbo.index_operational_stats_history does show a high amount of fragmentation

and leaf_insert_count. It would be worthwhile to investigate that index further. While

the scripting in Listing 14-14 doesn’t typically show index results for the IndexingMethod

database, the script was modified from what is in the listing to provide some results to

examine.

With the indexes requiring more analysis identified, the next step is mitigation.

There are a number of ways to mitigate page splits on indexes. The first is to review the

fragmentation history for the index. If the index needs to be rebuilt on a regular basis,

one of the first things that can be done is to decrease the fill factor on the index. Reducing

the fill factor will increase the space remaining on pages after rebuilding indexes, which

will reduce the likelihood for page splits. The second strategy for reducing fragmentation

is to consider the columns in the index. Are the columns highly volatile and do the values

Figure 14-5. Page Split snapshot query sample results

Chapter 14 Index analysIs

538

change dramatically? For instance, an index on create_date would likely not have page

split issues. But one on update_date would be prone to fragmentation. If the usage rates

for the index don’t justify the index, it might be worthwhile to remove that index. Or, in

multicolumn indexes, move the volatile columns to the right side of the index or add

them as included columns. A third approach to mitigating page splits can be to identify

where the index is being used. One final approach to mitigating page splits on indexes

is to review the data types being used by the index. In some cases, a variable data type

might be better suited to being a fixed- length data type.

 Page Lookups per Second

The performance counter Page Lookups/sec measures the number of requests made

in the SQL Server instance to retrieve individual pages from the buffer pool. When this

counter is high, it often means that there is inefficiency in query plans, which can often

be addressed through execution plan analysis. Often, high levels of Page Lookups/

sec are attributed to plans with large numbers of page lookups and row lookups per

execution. Generally speaking, in terms of performance issues, the value of Page

Lookups/sec should not exceed a ratio of 100 operations for each Batch Request/sec.

The initial analysis of Page Lookups/sec involves looking at both Page Lookups/sec

and Batch Request/sec. To start, use the query shown in Listing 14-15; the analysis will

include the minimum, maximum, and average Page Lookups/sec values over the data

from the monitoring period. Next, the minimum, maximum, and average values of the

ratio are included, with the PctViolation column, for the ratio of Page Lookups/sec to

Batch Request/sec in each time period. The violation calculation verified whether the

ratio of operations exceeds 100 to 1.

Listing 14-15. Page Lookups Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 MAX(IIF(counter_name = 'Page Lookups/sec', Calculated_Counter_

value, NULL)) PageLookups,

 MAX(IIF(counter_name = 'Page Lookups/sec', Calculated_Counter_

value, NULL))

Chapter 14 Index analysIs

539

 / (NULLIF(MAX(IIF(counter_name = 'Batch Requests/sec',

Calculated_Counter_value, NULL)), 0) * 100) AS PageLookupRatio

 FROM dbo.IndexingCounters

 WHERE counter_name IN ('Page Lookups/sec', 'Batch Requests/sec')

 GROUP BY create_date,

 server_name)

SELECT server_name,

 MIN(PageLookups) AS MinPageLookups,

 AVG(PageLookups) AS AvgPageLookups,

 MAX(PageLookups) AS MaxPageLookups,

 MIN(PageLookupRatio) AS MinPageLookupRatio,

 AVG(PageLookupRatio) AS AvgPageLookupRatio,

 MAX(PageLookupRatio) AS MaxPageLookupRatio,

 FORMAT(1. * SUM(IIF(PageLookupRatio > 1, 1, 0)) / COUNT(*), '0.00%') AS

PctViolation

FROM CounterSummary

GROUP BY server_name;

As with the other counters, when the analysis dictates that there are potential

problems with the counter, the next step is to dig deeper. There are three approaches

that can be taken to address high Page Lookups/sec values. The first is to query sys.

dm_exec_query_stats to identify queries that are executed often with high I/O; we can

find more information on this DMV at http://msdn.microsoft.com/en-us/library/

ms189741.aspx. Those queries need to reviewed, and a determination needs to be made

whether the queries are utilizing an excessive amount of I/O. Another approach is to

review the database in the SQL Server instance for missing indexes. The third approach,

which will be detailed in this section, is to review the occurrences of lookups on

clustered indexes and heaps.

To investigate lookups on clustered indexes and heaps, the primary source for this

information is the DMO sys.dm_db_index_usage_stats. Thanks to the monitoring

implemented in the previous chapter, this information is available in the table dbo.

index_usage_stats_history. To perform the analysis, use the query in Listing 14-16;

we’ll review lookups, seeks, and scans that have occurred from a user perspective. With

these values, the query calculates the ratio of user lookups to user seeks and returns all

that have a ratio higher than 100 to 1.

Chapter 14 Index analysIs

http://msdn.microsoft.com/en-us/library/ms189741.aspx
http://msdn.microsoft.com/en-us/library/ms189741.aspx

540

Listing 14-16. Page Lookups Snapshot Query

USE IndexingMethod;

GO

SELECT QUOTENAME(DB_NAME(uh.database_id)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(uh.object_id, uh.database_id)) + '.'

 + QUOTENAME(OBJECT_NAME(uh.object_id, uh.database_id)) AS ObjectName,

 uh.index_id,

 SUM(uh.user_lookups) AS user_lookups,

 SUM(uh.user_seeks) AS user_seeks,

 SUM(uh.user_scans) AS user_scans,

 x.record_count,

 CAST(1. * SUM(uh.user_lookups) / IIF(SUM(uh.user_seeks) = 0, 1,

SUM(uh.user_seeks)) AS DECIMAL(18, 2)) AS LookupSeekRatio

FROM dbo.index_usage_stats_history uh

CROSS APPLY (

 SELECT DENSE_RANK() OVER (ORDER BY ph.create_date DESC) AS RankID,

 ph.record_count

 FROM dbo.index_physical_stats_history ph

 WHERE ph.database_id = uh.database_id

 AND ph.object_id = uh.object_id

 AND ph.index_id = uh.index_id) x

WHERE uh.database_id > 4

AND x.RankID = 1

AND x.record_count > 0

GROUP BY uh.database_id,

 uh.object_id,

 uh.index_id,

 x.record_count

HAVING CAST(1. * SUM(uh.user_lookups) / IIF(SUM(uh.user_seeks) = 0, 1,

SUM(uh.user_seeks)) AS DECIMAL(18, 2)) > 100

ORDER BY 1. * SUM(uh.user_lookups) / IIF(SUM(uh.user_seeks) = 0, 1,

SUM(uh.user_seeks)) DESC;

GO

Chapter 14 Index analysIs

541

Once indexes with issues are identified, the next step is to determine how and where

the indexes are being used, the process for which is described later in this chapter.

 Page Compression

The performance counters Page compression attempts/sec and Pages compressed/

sec measure the number of pages compressed and attempted to be compressed. When

the rate of Pages Compressed/sec decreases in comparison to the Page Compressions/

sec, it indicates failures in SQL Server compression algorithm to save data pages in a

compressed state. While there is data that is better off uncompressed, in cases where the

CPU cost to decompress exceeds the point where there is value in compressing the data,

which often happens on data that appears random like the raw output of an image file.

The trouble with compression failures is that SQL Server already spent time, specifically

CPU resources, attempting compress the page. Generally, when more than 5 percent

of page compression attempts start to fail, it’s worthwhile identifying what indexes the

failures are occurring on.

To analyze if there is an issue with page compression, we’ll first want to look at the

counters for page compression. Using the query shown in Listing 14-17, we can review

the minimum, maximum, and average Page compression attempts/sec and Pages

compressed/sec values from the monitoring period. Additionally, the ratio of Pages

compressed/sec to Page compression attempts/sec is included with the minimum,

maximum, and average values. The PctViolation column lets us know the percentage

of time the 5 percent threshold is violated.

Listing 14-17. Page Compression Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 MAX(IIF(counter_name = 'Page compression attempts/sec',

Calculated_Counter_value, NULL)) PageCompressionAttempts,

 MAX(IIF(counter_name = 'Pages compressed/sec', Calculated_

Counter_value, NULL)) PagesCompressed,

Chapter 14 Index analysIs

542

 MAX(IIF(counter_name = 'Page compression attempts/sec',

Calculated_Counter_value, NULL))

 / (NULLIF(MAX(IIF(counter_name = 'Pages compressed/sec',

Calculated_Counter_value, NULL)), 0) * 100.) AS CompressionRate

 FROM dbo.IndexingCounters

 WHERE counter_name IN ('Page compression attempts/sec', 'Pages

compressed/sec')

 GROUP BY create_date,

 server_name)

SELECT server_name,

 MIN(PageCompressionAttempts) AS MinPageCompressionAttempts,

 AVG(PageCompressionAttempts) AS AvgPageCompressionAttempts,

 MAX(PageCompressionAttempts) AS MaxPageCompressionAttempts,

 MIN(PagesCompressed) AS MinPagesCompressed,

 AVG(PagesCompressed) AS AvgPagesCompressed,

 MAX(PagesCompressed) AS MaxPagesCompressed,

 MIN(CompressionRate) AS MinCompressionRate,

 AVG(CompressionRate) AS AvgCompressionRate,

 MAX(CompressionRate) AS MaxCompressionRate,

 FORMAT(1. * SUM(IIF(CompressionRate < 95, 1, 0)) / COUNT(*), '0.00%')

AS PctViolation

FROM CounterSummary

GROUP BY server_name;

If there is an indication that page compression failures are high or gaining in

frequency, it’s worth digging deeper within the databases to determine which tables

and indexes are failing to page compress. Using the data that we’ve been storing for

the indexes, we can determine which specific index has page compression failure, or

the lowest page compression success rate, using the query in Listing 14-18. The results

would look similar to those in Figure 14-6. That index was created with all of the columns

from Person.Person, which included some XML and varchar(max) columns. The success

rate for page compressions for this index is just over 50 percent which is a rather terrible

result.

Chapter 14 Index analysIs

543

Listing 14-18. Page Compression Snapshot Query

USE IndexingMethod;

GO

SELECT QUOTENAME(DB_NAME(database_id)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(object_id, database_id)) + '.' +

QUOTENAME(OBJECT_NAME(object_id, database_id)) AS ObjectName,

 oh.index_id,

 SUM(oh.page_compression_attempt_count) AS page_compression_attempt_

count,

 SUM(oh.page_compression_success_count) AS page_compression_success_

count,

 SUM(1. * oh.page_compression_success_count / NULLIF(oh.page_

compression_attempt_count, 0)) AS page_compression_success_rate

FROM dbo.index_operational_stats_history oh

WHERE database_id > 4

AND database_id <> DB_ID()

AND oh.page_compression_attempt_count > 0

GROUP BY object_id,

 database_id,

 index_id;

Once indexes with issues are identified, the next step is to determine whether page

compression is appropriate for the index. Indexes that contain data types such as XML or

varchar(max) are poor candidates for page compression, as we saw in Figure 14-6.

 Lock Wait Time

Some performance counters can be used to determine whether there is pressure on the

indexes based on their usage. One such counter is Lock Wait Time (ms). This counter

measures the amount of time, in milliseconds, that SQL Server spends waiting to

implement a lock on a table, index, or page. There aren’t any good guidance values for

Figure 14-6. Page Split snapshot query sample results

Chapter 14 Index analysIs

544

this counter. Generally, the lower this value, the better, but what “low” means is entirely

dependent on the database platform and the applications that are accessing it.

Since there are no guidelines for the level at which the values from Lock Wait

Time(ms) are good or bad, the best method for evaluating the counter is to compare it to

the baseline values. In this case, collecting a baseline becomes incredibly important in

terms of being able to monitor when index performance related to Lock Wait Time has

occurred. Using the query in Listing 14-19, the Lock Wait Time (ms) value is compared to

the available baseline values. For both the baseline and the values from the monitoring

period, an aggregate of the counter values is provided for the minimum, maximum,

average, and standard deviation. These aggregations assist in providing a profile of the

state of the counter and whether it has increased or decreased compared to the baseline.

Listing 14-19. Lock Wait Time Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 instance_name,

 MAX(IIF(counter_name = 'Lock Wait Time (ms)', Calculated_Counter_

value, NULL)) / 1000 LockWaitTime

 FROM dbo.IndexingCounters

 WHERE counter_name = 'Lock Wait Time (ms)'

 GROUP BY create_date,

 server_name,

 instance_name)

SELECT CONVERT(VARCHAR(50), MAX(create_date), 101) AS CounterDate,

 server_name,

 instance_name,

 MIN(LockWaitTime) AS MinLockWaitTime,

 AVG(LockWaitTime) AS AvgLockWaitTime,

 MAX(LockWaitTime) AS MaxLockWaitTime,

 STDEV(LockWaitTime) AS StdDevLockWaitTime

Chapter 14 Index analysIs

545

FROM CounterSummary

GROUP BY server_name,

 instance_name

UNION ALL

SELECT 'Baseline: ' + CONVERT(VARCHAR(50), start_date, 101) + ' --> ' +

CONVERT(VARCHAR(50), end_date, 101),

 server_name,

 instance_name,

 minimum_counter_value / 1000,

 maximum_counter_value / 1000,

 average_counter_value / 1000,

 standard_deviation_counter_value / 1000

FROM dbo.IndexingCountersBaseline

WHERE counter_name = 'Lock Wait Time (ms)'

ORDER BY instance_name,

 CounterDate DESC;

As an example, in Figure 14-7, the average and maximum Lock Wait Times have

decreased from the baseline values which is what would be desired. In the case where

there was an increase in the average lock wait over the baseline, there could be a cause

for concern, especially if that increase is in tens of milliseconds. Also, if there were an

increase in the range to the maximum value, it would be something else to investigate.

The more the duration of time spent waiting to acquire locks increases, the more it is

likely going to impact users.

Figure 14-7. Lock Wait Time counter analysis sample results

Chapter 14 Index analysIs

546

When investigating Lock Wait Time, it is important to identify which indexes

are generating the most Lock Wait Time by using the query in Listing 14-20. This

information is found in the DMO sys.dm_db_index_operational_stats or the

monitoring table dbo.index_operational_stats_history. The columns reviewed for

Lock Wait Time are row_lock_wait_count, row_lock_wait_count, row_lock_wait_

count, and page_lock_wait_in_ms. These columns report the number of waits per index

and the time for those waits. As the columns indicate, there are locks at both the row and

page levels; most often the variations between the lock types correlate with seek and

scan operations on the index.

Listing 14-20. Lock Wait Time Snapshot Query

USE IndexingMethod;

GO

SELECT QUOTENAME(DB_NAME(database_id)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(object_id, database_id)) + '.' +

QUOTENAME(OBJECT_NAME(object_id, database_id)) AS ObjectName,

 index_id,

 SUM(row_lock_wait_count) AS row_lock_wait_count,

 SUM(row_lock_wait_in_ms) / 1000. AS row_lock_wait_in_sec,

 ISNULL(SUM(row_lock_wait_in_ms) / NULLIF(SUM(row_lock_wait_count), 0) /

1000., 0) AS avg_row_lock_wait_in_sec,

 SUM(page_lock_wait_count) AS page_lock_wait_count,

 SUM(page_lock_wait_in_ms) / 1000. AS page_lock_wait_in_sec,

 ISNULL(SUM(page_lock_wait_in_ms) / NULLIF(SUM(page_lock_wait_count), 0)

/ 1000., 0) AS avg_page_lock_wait_in_sec

FROM dbo.index_operational_stats_history oh

WHERE database_id > 4

AND database_id <> DB_ID()

AND (

 row_lock_wait_in_ms > 0

 OR page_lock_wait_in_ms > 0

)

GROUP BY database_id,

 object_id,

 index_id;

Chapter 14 Index analysIs

547

Looking at the results of the snapshot query, shown in Figure 14-8, there are a couple

things to point out. First, in this example, all the locks are occurring across the pages of

the table, not at the row level. This can result in larger-scale blocking since more than

the rows being accessed will be locked. Also, the average page lock is about 7 seconds.

For most environments, this is an excessive amount of time for locking. Based on this

information, we should definitely further investigate the clustered index (index_id=1)

on the table Sales.SalesOrderDetail.

When we need to dig deeper into an index and its usage, the next step is to determine

which execution plans are utilizing the index. Then optimize either the queries or the

index to reduce locking. In some cases, if the index is not critical to the table, it might be

better to remove the index and allow other indexes to satisfy the queries.

 Lock Waits per Second

The next counter, Lock Waits/sec, has a similar approach for analysis to that of Lock Wait

Time (ms). With Lock Waits/sec, the counter measures the number of lock requests that

could not be satisfied immediately. For these requests, SQL Server waited until the row

or page was available for the lock before granting the lock. As with the other counter, this

counter does not have any specific guidelines on what “good” values are. For these, we

should turn to the baseline and compare and contrast against it to determine when the

counter is outside normal operations.

The analysis of Lock Waits/sec includes the same minimum, maximum, average,

and standard deviation aggregations as used for Lock Wait Time(ms). These values are

aggregated for both the per-counter table dbo.IndexingCounters and the baseline table

dbo.IndexingCountersBaseline, shown in Listing 14-21. Figure 14-9 displays the results

from the query.

Figure 14-8. Lock Wait Time index analysis sample results

Chapter 14 Index analysIs

548

Listing 14-21. Lock Waits Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 instance_name,

 MAX(IIF(counter_name = 'Lock Waits/sec', Calculated_Counter_

value, NULL)) LockWaits

 FROM dbo.IndexingCounters

 WHERE counter_name = 'Lock Waits/sec'

 GROUP BY create_date,

 server_name,

 instance_name)

SELECT CONVERT(VARCHAR(50), MAX(create_date), 101) AS CounterDate,

 server_name,

 instance_name,

 MIN(LockWaits) AS MinLockWait,

 AVG(LockWaits) AS AvgLockWait,

 MAX(LockWaits) AS MaxLockWait,

 STDEV(LockWaits) AS StdDevLockWait

FROM CounterSummary

GROUP BY server_name,

 instance_name

UNION ALL

SELECT 'Baseline: ' + CONVERT(VARCHAR(50), start_date, 101) + ' --> ' +

CONVERT(VARCHAR(50), end_date, 101),

 server_name,

 instance_name,

 minimum_counter_value / 1000,

 maximum_counter_value / 1000,

 average_counter_value / 1000,

 standard_deviation_counter_value / 1000

Chapter 14 Index analysIs

549

FROM dbo.IndexingCountersBaseline

WHERE counter_name = 'Lock Waits/sec'

ORDER BY instance_name,

 CounterDate DESC;

There will be times, such as those included in Figure 14-9, when Lock Wait/sec is

not an issue, but there were issues with Lock Wait Time(ms). Those cases point to long

duration blocking situations. On the other hand, Lock Wait/sec is important to monitor

since it will indicate when there is widespread blocking. The blocking may not be long

in duration, but it is widespread; a single long block can cause significant performance

issues.

In a situation with widespread blocking, as indicated by high values for Lock Wait/

sec, the analysis will require investigating the statistics of indexes using the DMO

sys.dm_db_index_operational stats. With the monitoring process, this information

will be available in the table dbo.index_operational_stats_history. Using the query

in Listing 14-22, the count and percentage of locks that wait can be determined. As with

Lock Wait Time(ms), this counter analysis also looks at statistics at the row and page

levels.

Figure 14-9. Lock Waits counter analysis sample results

Chapter 14 Index analysIs

550

Listing 14-22. Lock Waits Snapshot Query

USE IndexingMethod;

GO

SELECT QUOTENAME(DB_NAME(database_id)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(object_id, database_id)) + '.' +

QUOTENAME(OBJECT_NAME(object_id, database_id)) AS ObjectName,

 index_id,

 SUM(row_lock_count) AS row_lock_count,

 SUM(row_lock_wait_count) AS row_lock_wait_count,

 ISNULL(SUM(row_lock_wait_count) / NULLIF(SUM(row_lock_count), 0), 0) AS

pct_row_lock_wait,

 SUM(page_lock_count) AS page_lock_count,

 SUM(page_lock_wait_count) AS page_lock_wait_count,

 ISNULL(SUM(page_lock_wait_count) / NULLIF(SUM(page_lock_count), 0), 0)

AS pct_page_lock_wait

FROM dbo.index_operational_stats_history oh

WHERE database_id > 4

AND (

 row_lock_wait_in_ms > 0

 OR page_lock_wait_in_ms > 0

)

GROUP BY database_id,

 object_id,

 index_id;

Indexes that have a high percentage of lock waits to locks are prime for index tuning.

Often, when there are excessive lock waits on a database, the end users will see slowness

in the applications and, in some of the worse cases, time-outs in the applications. The

aim of analyzing this counter is to identify indexes that can be optimized and then to

investigate where the indexes are being used. Once this is done, address the causes for

the locks and tune the indexes and queries to reduce the locking on the index.

Chapter 14 Index analysIs

551

 Number of Deadlocks per Second

In extreme cases, poor indexing and excessive lock blocking can lead to deadlocks.

Deadlocks occur in situations where locks have been placed by two or more transactions

in which the locking order of one of the transactions is prevented from acquiring and/or

releasing its locks because of the locks of the other transactions. There are a number of

ways to address deadlocking, one of which is to improve indexing.

To determine whether deadlocks are occurring on the SQL Server instance, review

the performance counters collected during the monitoring process. The query in

Listing 14-23 provides an overview of the deadlock rate during the monitoring window.

The query returns aggregate values for the minimum, average, maximum, and standard

deviation for the deadlocks on the server.

Listing 14-23. Number of Deadlocks Counter Analysis

USE IndexingMethod;

GO

WITH CounterSummary

 AS (SELECT create_date,

 server_name,

 Calculated_Counter_value AS NumberDeadlocks

 FROM dbo.IndexingCounters

 WHERE counter_name = 'Number of Deadlocks/sec')

SELECT server_name,

 MIN(NumberDeadlocks) AS MinNumberDeadlocks,

 AVG(NumberDeadlocks) AS AvgNumberDeadlocks,

 MAX(NumberDeadlocks) AS MaxNumberDeadlocks,

 STDEV(NumberDeadlocks) AS StdDevNumberDeadlocks

FROM CounterSummary

GROUP BY server_name;

In general, a well-tuned database platform should not have any deadlocks occurring.

When they occur, each should be investigated to determine the root cause for the

deadlock. Before a deadlock can be examined, though, the deadlock first needs to be

retrieved. There are a number of ways in which deadlock information can be collected

from SQL Server. These include trace flags, SQL Profiler, and event notifications.

Chapter 14 Index analysIs

552

Another method is through Extended Events, using the built-in system_health session.

The query in Listing 14-24 returns a list of all the deadlocks that are currently in the

ring_buffer for that session.

Listing 14-24. System-Health Deadlock Query

USE IndexingMethod;

GO

WITH deadlock

 AS (SELECT CAST(target_data AS XML) AS target_data

 FROM sys.dm_xe_session_targets st

 INNER JOIN sys.dm_xe_sessions s ON s.address = st.event_session_

address

 WHERE name = 'system_health'

 AND target_name = 'ring_buffer')

SELECT c.value('(@timestamp)[1]', 'datetime') AS event_timestamp,

 c.query('data/value/deadlock')

FROM deadlock d

CROSS APPLY target_data.nodes('//RingBufferTarget/event') AS t(c)

WHERE c.exist('.[@name = "xml_deadlock_report"]') = 1;

When deadlocks have been identified, they are returned in an XML document. For

most, reading the XML documents is not a natural way to examine a deadlock. Instead,

it is often preferable to review the deadlock graph that is associated with the deadlock,

such as the one shown in Figure 14-10. To obtain a deadlock graph for any of the

deadlocks returned by Listing 14-22, open the deadlock XML document in SQL Server

Management Studio and then save the file with an .xdl extension. When the file is

reopened, it will open with the deadlock graph instead of as an XML document.

Figure 14-10. Deadlock graph in SQL Server Management Studio

Chapter 14 Index analysIs

553

Once deadlocks are identified, it is important to determine why they occur to

prevent them from reoccurring. A common issue that causes deadlocks is the order of

operations between numerous transactions. This cause is often difficult to resolve since

it may require rewriting parts of applications. To address deadlocks, one of the easiest

approaches is to decrease the amount of time in which the transaction occurs. Indexing

the tables that are accessed is a typical approach that can resolve deadlocks in many

cases by shrinking the window in which deadlocks can be created.

 Wait Statistics
The analysis process for wait statistics is similar to that of performance counters. For

both sets of data, the information points to areas where resources are potentially being

taxed, identifying the resources and indicating next steps. A lot of the same processes

for performance counters apply to wait statistics. One main difference between the

two sets of information is that wait statistics are looked at as a whole, and their value

is determined as a relationship of themselves to other wait statistics on the SQL Server

instance.

Because of this difference, when reviewing wait statistics, there is only a single

query required for analysis of the wait stats. Before using the wait statistics analysis

query, provided in Listing 14-25, there are a few aspects to wait statistics analysis that

should be explained. First, as the list of ignore wait stats shows, there are some wait

states that accumulate regardless of the activity on the server. For these, there isn’t

any value in investigating behavior related to them, either because they are just the

ticking of CPU time on the server or they are related to internal operations that can’t be

affected. Second, the value in wait statistics is in looking at them in relationship to the

time that has transpired on the server. While one wait state being higher than another is

important, without knowing the amount of time that has transpired, there is no scale by

which to measure the pressure the wait state is having on the server. To accommodate

for this, the waits from the first set of results in the monitoring table are ignored, and

the date between them and the last collection point is used to calculate the time that

has transpired. The length of time that a wait state occurred compared to the total time

provides the values needed to determine the pressure of the wait state on the SQL Server

instance.

Chapter 14 Index analysIs

554

Note the pct columns in the results for listing 14-25 will be null if there is only
a single sample in the table dbo.wait_stats_history.

Listing 14-25. Wait Statistics Analysis Query

USE IndexingMethod;

GO

WITH WaitStats

 AS (SELECT DENSE_RANK() OVER (ORDER BY w.create_date ASC) AS RankID,

 create_date,

 wait_type,

 waiting_tasks_count,

 wait_time_ms,

 max_wait_time_ms,

 signal_wait_time_ms,

 MIN(create_date) OVER () AS min_create_date,

 MAX(create_date) OVER () AS max_create_date

 FROM dbo.wait_stats_history w

 WHERE wait_type NOT IN ('BROKER_EVENTHANDLER', 'BROKER_RECEIVE_

WAITFOR', 'BROKER_TASK_STOP', 'BROKER_TO_FLUSH', 'BROKER_TRANSMITTER',

'CHECKPOINT_QUEUE', 'CHKPT', 'CLR_AUTO_EVENT', 'CLR_MANUAL_EVENT',

'CLR_SEMAPHORE', 'CXCONSUMER', 'DBMIRROR_DBM_EVENT', 'DBMIRROR_

EVENTS_QUEUE', 'DBMIRROR_WORKER_QUEUE', 'DBMIRRORING_CMD', 'DIRTY_

PAGE_POLL', 'DISPATCHER_QUEUE_SEMAPHORE', 'EXECSYNC', 'FSAGENT',

'FT_IFTS_SCHEDULER_IDLE_WAIT', 'FT_IFTSHC_MUTEX', 'HADR_CLUSAPI_

CALL', 'HADR_FILESTREAM_IOMGR_IOCOMPLETIO,', 'HADR_LOGCAPTURE_WAIT',

'HADR_NOTIFICATION_DEQUEUE', 'HADR_TIMER_TASK', 'HADR_WORK_QUEUE',

'KSOURCE_WAKEUP', 'LAZYWRITER_SLEEP', 'LOGMGR_QUEUE', 'MEMORY_

ALLOCATION_EXT', 'ONDEMAND_TASK_QUEUE', 'PARALLEL_REDO_DRAIN_

WORKER', 'PARALLEL_REDO_LOG_CACHE', 'PARALLEL_REDO_TRAN_LIST',

'PARALLEL_REDO_WORKER_SYNC', 'PARALLEL_REDO_WORKER_WAIT_WORK',

'PREEMPTIVE_HADR_LEASE_MECHANISM', 'PREEMPTIVE_SP_SERVER_DIAGNOSTICS',

'PREEMPTIVE_OS_LIBRARYOPS', 'PREEMPTIVE_OS_COMOPS', 'PREEMPTIVE_OS_

CRYPTOPS', 'PREEMPTIVE_OS_PIPEOPS', 'PREEMPTIVE_OS_AUTHENTICATIONOPS',

Chapter 14 Index analysIs

555

'PREEMPTIVE_OS_GENERICOPS', 'PREEMPTIVE_OS_VERIFYTRUST', 'PREEMPTIVE_

OS_FILEOPS', 'PREEMPTIVE_OS_DEVICEOPS', 'PREEMPTIVE_OS_QUERYREGISTRY',

'PREEMPTIVE_OS_WRITEFILE', 'PREEMPTIVE_XE_CALLBACKEXECUTE',

'PREEMPTIVE_XE_DISPATCHER', 'PREEMPTIVE_XE_GETTARGETSTATE',

'PREEMPTIVE_XE_SESSIONCOMMIT', 'PREEMPTIVE_XE_TARGETINIT',

'PREEMPTIVE_XE_TARGETFINALIZE', 'PWAIT_ALL_COMPONENTS_INITIALIZED',

'PWAIT_DIRECTLOGCONSUMER_GETNEXT', 'PWAIT_EXTENSIBILITY_CLEANUP_TASK',

'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP', 'QDS_ASYNC_QUEUE', 'QDS_CLEANUP_

STALE_QUERIES_TASK_MAIN_LOOP_SLEEP', 'REQUEST_FOR_DEADLOCK_SEARCH',

'RESOURCE_QUEUE', 'SERVER_IDLE_CHECK', 'SLEEP_BPOOL_FLUSH', 'SLEEP_

DBSTARTUP', 'SLEEP_DCOMSTARTUP', 'SLEEP_MASTERDBREADY', 'SLEEP_

MASTERMDREADY', 'SLEEP_MASTERUPGRADED', 'SLEEP_MSDBSTARTUP', 'SLEEP_

SYSTEMTASK', 'SLEEP_TASK', 'SLEEP_TEMPDBSTARTUP', 'SNI_HTTP_ACCEPT',

'SOS_WORK_DISPATCHER', 'SP_SERVER_DIAGNOSTICS_SLEEP', 'SQLTRACE_

BUFFER_FLUSH', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP', 'SQLTRACE_WAIT_

ENTRIES', 'STARTUP_DEPENDENCY_MANAGER', 'WAIT_FOR_RESULTS', 'WAITFOR',

'WAITFOR_TASKSHUTDOW', 'WAIT_XTP_HOST_WAIT', 'WAIT_XTP_OFFLINE_CKPT_

NEW_LOG', 'WAIT_XTP_CKPT_CLOSE', 'WAIT_XTP_RECOVERY', 'XE_BUFFERMGR_

ALLPROCESSED_EVENT', 'XE_DISPATCHER_JOI,', 'XE_DISPATCHER_WAIT', 'XE_

LIVE_TARGET_TVF', 'XE_TIMER_EVENT'))

SELECT wait_type,

 DATEDIFF(ms, min_create_date, max_create_date) AS total_time_ms,

 SUM(waiting_tasks_count) AS waiting_tasks_count,

 SUM(wait_time_ms) AS wait_time_ms,

 CAST(1. * SUM(wait_time_ms) / NULLIF(SUM(waiting_tasks_count),0) AS

DECIMAL(18, 3)) AS avg_wait_time_ms,

 CAST(100. * SUM(wait_time_ms) / NULLIF(DATEDIFF(ms, min_create_date,

max_create_date),0) AS DECIMAL(18, 3)) AS pct_time_in_wait,

 SUM(signal_wait_time_ms) AS signal_wait_time_ms,

 CAST(100. * SUM(signal_wait_time_ms) / NULLIF(SUM(wait_time_ms), 0) AS

DECIMAL(18, 3)) AS pct_time_runnable

FROM WaitStats

GROUP BY wait_type,

 min_create_date,

 max_create_date

ORDER BY SUM(wait_time_ms) DESC;

Chapter 14 Index analysIs

556

The query includes a number of calculations to help identify when there are issues

with specific wait types. To best understand the information provided, see the definitions

provided in Table 14-1. These calculations and their definitions will help focus the

performance issues related to wait statistics.

When reviewing the results of the wait statistics query, shown in Figure 14-11, there

are two thresholds to watch. First, if any of the waits exceed 5 percent of the total wait

time, there is likely a bottleneck related to that wait type, and further investigation into

the wait should happen. Similarly, if any of the waits exceed 1 percent of the time, they

should be considered for further analysis but not before reviewing the items with higher

waits. One thing to pay close attention to when reviewing wait statistics is that if the time

spent on the wait is mostly because of signal wait time, then the resource contention can

be better resolved by first focusing on CPU pressure on the server.

Table 14-1. Wait Statistics Query Column Definitions

Option Name Description

wait_type Wait statistics that incurred the wait.

total_time_ms total amount of time measured by the query in milliseconds.

waiting_tasks_count Count of the number of waits for this wait type.

wait_time_ms time in milliseconds accumulated for this wait type. this includes the

time spent on signal_wait_time_ms.

avg_wait_time_ms average time per wait type in milliseconds.

pct_time_in_wait percent of total time spent for this wait type.

signal_wait_time_ms time in milliseconds accumulated after the wait type was available and

no longer waiting before it was running. this is the time spent in the

rUnnaBle state.

pct_time_runnable percentage of time spent for this wait type in the rUnnaBle state.

Chapter 14 Index analysIs

557

Once wait states with issues have been identified, the next step is to review the wait

and the recommended courses of actions for the wait. Since this chapter focuses on more

index-centric wait types, we’ll focus on those definitions. To learn more about the other

wait types, review the Books Online topic for sys.dm_os_wait_stats (Transact- SQL).

 CXPACKET

The CXPACKET wait type occurs when there are waits due to parallel query execution,

otherwise known as parallelism. There are two main scenarios when parallel queries can

experience CXPACKET waits. The first is when an operator in a parallel query is waiting

due from being able to execute due to other threads already running on the scheduler.

The second is when a thread from an operator in a parallel thread takes longer to execute

than the rest of the threads and the rest of the threads have to wait for the slower thread

to complete. The first cause is the more common cause for parallel waits, but it is outside

the scope of this book and generally tied to configuration settings and query tuning. The

second cause, though, can be addressed through indexing. And often, by addressing the

second reason for CXPACKET waits, the first cause of parallel waits can be mitigated.

Note there is a second parallelism wait named CxCOnsUMer that identifies waits
associated with parallel operators waiting for threads to send rows to the operator.
this is generally not an actionable wait and is outside the context of this book.

Two approaches that are common for addressing CXPACKET waits are to adjust

the max degree of parallelism and cost threshold for parallelism server properties.

As with the first cause of parallelism waits, addressing parallelism with these server

properties is outside the context of the book. There are valid approaches for utilizing

these two properties, but the focus here is on indexing rather than constraining the

Figure 14-11. Wait statistics analysis output

Chapter 14 Index analysIs

558

degree and cost of parallelism. For a simple explanation, the max degree of parallelism

limits the total number of cores that any single query can use during parallel processing.

Alternatively, the cost threshold for parallelism increases the threshold in which SQL

Server determines that a query can use parallelism, without limiting the scope of the

parallelism.

What is within the context here is mitigating CXPACKET waits through indexing,

which can be paired with query tuning. To address the indexing for queries running

in parallel, we need to first identify the queries that are using parallelism. There are

a number of ways that we can identify queries and indexes participating in parallel

operations.

The first method is to examine execution plans that have used parallelism in

previous executions. For this approach, the plan cache is able to be queried to identify

the execution plans that were created that contain parallel operators. This provides

an ideal list of queries that tune to reduce the I/O consumed or remove the need for a

parallel query. The need for the parallel query can sometimes be attributed to improper

indexing on the underlying tables. For instance, a parallel operation on a table that

leverages a scan may be alleviated with an index that supports the predicates or sorts

within the query. The query in Listing 14-26 provides a list of execution plans in the plan

cache that utilize parallelism.

Listing 14-26. Execution Plans in the Plan Cache That Utilize Parallelism

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

WITH XMLNAMESPACES (

 DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/showplan'

)

SELECT COALESCE(

 DB_NAME([p].[dbid]),

 [p].[query_plan].[value]('(//RelOp/OutputList/ColumnReference/

@Database)[1]', 'nvarchar(128)')

) AS [database_name],

 IIF([p].[objectid] <> 0,

 CONCAT(

 QUOTENAME(DB_NAME([p].[dbid])),

 '.',

Chapter 14 Index analysIs

559

 QUOTENAME(OBJECT_SCHEMA_NAME([p].[objectid], [p].[dbid])),

 '.',

 QUOTENAME(OBJECT_NAME([p].[objectid], [p].[dbid]))

),

 NULL) AS [object_name],

 [cp].[objtype],

 [p].[query_plan],

 [cp].[usecounts] AS [use_counts],

 [cp].[plan_handle],

 CAST('<?query --' + CHAR(13) + [q].[text] + CHAR(13) + '--?>' AS XML)

AS [sql_text]

FROM [sys].[dm_exec_cached_plans] AS [cp]

CROSS APPLY [sys].[dm_exec_query_plan]([cp].[plan_handle]) AS [p]

CROSS APPLY [sys].[dm_exec_sql_text]([cp].[plan_handle]) AS [q]

WHERE [cp].[cacheobjtype] = 'Compiled Plan'

AND [p].[query_plan].[exist]('//RelOp[@Parallel = "1"]') = 1

ORDER BY COALESCE(

 DB_NAME([p].[dbid]),

 [p].[query_plan].[value]('(//RelOp/OutputList/

ColumnReference/@Database)[1]', 'nvarchar(128)')

),

 [cp].[usecounts] DESC;

Warning this chapter features a number of queries that are executed against
the plan cache and Query store. these are accessed through dMOs that provide
access to the execution plans in sQl server, which allows for investigations
into current and recent execution activity on the server. While this information is
extremely useful, take care when executing this code on production systems. an
overly expensive query against these can impact the performance of your sQl
server. Be sure to monitor these types of queries and test them in nonproduction
environments before using in a production environment.

Chapter 14 Index analysIs

560

The next method is similar to using the plan cache, but instead to query the Query

Store. Provided this is running on the database, there is a column in sys.query_store_

plan that identifies parallel plans. Using this with a few other DMOs gets you a list of

T-SQL statements that have parallel operators. A query that returns parallel queries from

the Query Store is provided in Listing 14-27, which includes a count of the number of

executions for the T-SQL statement. One advantage to using the Query Store is that it

limits the results down to a single database.

Listing 14-27. Execution Plans in the Query Store That Utilize Parallelism

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

SELECT IIF([qsq].[object_id] <> 0,

 CONCAT(

 QUOTENAME(DB_NAME()),

 '.',

 QUOTENAME(OBJECT_SCHEMA_NAME([qsq].[object_id])),

 '.',

 QUOTENAME(OBJECT_NAME([qsq].[object_id]))

),

 NULL) AS [object_name],

 CAST([qsp].[query_plan] AS XML) AS [query_plan],

 [deqs].[execution_count],

 CAST('<?query --' + CHAR(13) + [qsqt].[query_sql_text] + CHAR(13) +

'--?>' AS XML) AS [sql_text],

 [qsp].[engine_version],

 [qsp].[compatibility_level],

 [qsq].[query_parameterization_type_desc],

 [qsp].[is_forced_plan],

 [deqs].[total_worker_time]

FROM [sys].[query_store_plan] AS [qsp]

INNER JOIN [sys].[query_store_query] AS [qsq] ON [qsp].[query_id] = [qsq].

[query_id]

INNER JOIN [sys].[query_store_query_text] AS [qsqt] ON [qsq].[query_text_

id] = [qsqt].[query_text_id]

INNER JOIN sys.[dm_exec_query_stats] AS deqs ON [last_compile_batch_sql_

handle] = [deqs].[sql_handle]

Chapter 14 Index analysIs

561

WHERE [qsp].[is_parallel_plan] = 1

ORDER BY [deqs].[execution_count] DESC,

 [deqs].[total_worker_time] DESC;

Another method for parallelism waits is to investigate plans that are currently

executing. This information is available in the DMO sys.dm_os_tasks which returns waits

which are currently using multiple workers; a sample query to retrieve this information

is provided in Listing 14-28. This query provides a list of currently executing parallel

plans.

Listing 14-28. Parallel Queries Currently Executing

WITH executing

 AS (SELECT er.session_id,

 er.request_id,

 MAX(ISNULL(exec_context_id, 0)) AS number_of_workers,

 er.sql_handle,

 er.statement_start_offset,

 er.statement_end_offset,

 er.plan_handle

 FROM sys.dm_exec_requests er

 INNER JOIN sys.dm_os_tasks t ON er.session_id = t.session_id

 INNER JOIN sys.dm_exec_sessions es ON er.session_id = es.session_id

 WHERE es.is_user_process = 0x1

 GROUP BY er.session_id,

 er.request_id,

 er.sql_handle,

 er.statement_start_offset,

 er.statement_end_offset,

 er.plan_handle)

SELECT QUOTENAME(DB_NAME(st.dbid)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(st.objectid, st.dbid)) + '.' +

QUOTENAME(OBJECT_NAME(st.objectid, st.dbid)) AS object_name,

 e.session_id,

 e.request_id,

 e.number_of_workers,

Chapter 14 Index analysIs

562

 SUBSTRING(

 st.text,

 e.statement_start_offset / 2,

 (CASE

 WHEN e.statement_end_offset = -1 THEN

LEN(CONVERT(NVARCHAR(MAX), st.text)) * 2

 ELSE e.statement_end_offset END - e.statement_start_offset

) / 2

) AS query_text,

 qp.query_plan

FROM executing e

CROSS APPLY sys.dm_exec_sql_text(e.plan_handle) st

CROSS APPLY sys.dm_exec_query_plan(e.plan_handle) qp

WHERE number_of_workers > 0;

The second way is to start an Extended Events session, capture transaction

information, and then group that information on the available call stack. The session,

defined in Listing 14-29, retrieves all the parallel waits as they occur and groups them

by their T-SQL stack. Before running the script, ensure that the value for the CXPACKET

wait type matches the value in the query; for SQL Server 2019, the value is 265. The

T-SQL stack contains all the SQL statements that contribute to a final execution point.

For example, drilling through an execution stack can provide information on a stored

procedure that is executing a function that executes a single T-SQL statement. This

provides information that can be used to track where the parallel wait is occurring. These

statements are grouped using the histogram target, which allows us to minimize the

size of the collection and focus on the items causing the most CXPACKET waits on the

system.

Listing 14-29. Extended Events Session for CXPACKET

USE master;

GO

SELECT name,

 map_key,

 map_value

Chapter 14 Index analysIs

563

FROM sys.dm_xe_map_values

WHERE name = 'wait_types'

AND map_value = 'CXPACKET';

GO

IF EXISTS (

 SELECT *

 FROM sys.server_event_sessions

 WHERE name = 'ex_cxpacket'

)

 DROP EVENT SESSION ex_cxpacket ON SERVER;

GO

CREATE EVENT SESSION [ex_cxpacket]

ON SERVER

 ADD EVENT sqlos.wait_info

 (ACTION (

 sqlserver.plan_handle,

 sqlserver.tsql_stack)

 WHERE ([wait_type] = (265)

 AND [sqlserver].[is_system] = (0)))

 ADD TARGET package0.histogram

 (SET filtering_event_name = N'sqlos.wait_info', slots = (2048), source =

N'sqlserver.tsql_stack', source_type = (1))

WITH (STARTUP_STATE = ON);

GO

ALTER EVENT SESSION ex_cxpacket ON SERVER STATE = START;

GO

Once the Extended Events session has collected data for a while, the sessions

with the most waits can be looked at more closely. Listing 14-30 provides a list of all

the CXPACKET waits that have been collected and the statements and query plans

associated with them. Once we know these, investigate the indexes being used to

determine which are resulting in low selectivity or unexpected scans.

Chapter 14 Index analysIs

564

Listing 14-30. Query to View CXPACKET Extended Events Session

WITH XData

 AS (SELECT CAST(target_data AS XML) AS TargetData

 FROM sys.dm_xe_session_targets st

 INNER JOIN sys.dm_xe_sessions s ON s.address = st.event_session_

address

 WHERE name = 'ex_cxpacket'

 AND target_name = 'histogram'),

ParsedEvent

 AS (SELECT c.value('(@count)[1]', 'bigint') AS event_count,

 c.value('xs:hexBinary(substring((value/frames/frame/@handle)

[1],3))', 'varbinary(255)') AS sql_handle,

 c.value('(value/frames/frame/@offsetStart)[1]', 'int') AS

statement_start_offset,

 c.value('(value/frames/frame/@offsetEnd)[1]', 'int') AS

statement_end_offset

 FROM XData d

 CROSS APPLY TargetData.nodes('//Slot') t(c))

SELECT QUOTENAME(DB_NAME(st.dbid)) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(st.objectid, st.dbid)) + '.' +

QUOTENAME(OBJECT_NAME(st.objectid, st.dbid)) AS object_name,

 e.event_count,

 SUBSTRING(

 st.text,

 e.statement_start_offset / 2,

 (IIF(e.statement_end_offset = -1, LEN(CONVERT(NVARCHAR(MAX),

st.text)) * 2, e.statement_end_offset)

 - e.statement_start_offset

) / 2

) AS query_text,

 qp.query_plan

FROM ParsedEvent e

CROSS APPLY sys.dm_exec_sql_text(e.sql_handle) st

Chapter 14 Index analysIs

565

CROSS APPLY (

 SELECT plan_handle

 FROM sys.dm_exec_query_stats qs

 WHERE e.sql_handle = qs.sql_handle

 GROUP BY plan_handle

) x

CROSS APPLY sys.dm_exec_query_plan(x.plan_handle) qp

ORDER BY e.event_count DESC;

 IO_COMPLETION

The IO_COMPLETION wait type happens when SQL Server is waiting for I/O operations

to complete for non–data page I/Os, such as index pages. Even though this wait is related

to nondata operations, there are still some indexing-related actions that can be taken

when this wait is high for the SQL Server instance.

First, review the state of Full Scans/sec on the server. If there is an issue with that

performance counter, the operations under that counter could bleed through to nondata

pages that are being used to manage the indexes. In cases where the two of these are

high, place additional emphasis on analyzing Full Scans/sec issues.

The second action that we can take is to review the missing index information within

the SQL Server instance. That information is discussed in Chapter 7. Adding missing

indexes can shift the pressure of the data being consumed to new structures where the

query may no longer need to wait for the nondata I/Os to complete since the query now

leverages a different index.

Next, consider the volume of page splits occurring on the index; page splits affect

nondata pages when they reallocate the pages to new pages. Heavy page split activity will

result in high non–data page I/Os which can be the source of or related to these waits.

Finally, if the cause of the IO_COMPLETION issues is not apparent, investigate them

with an Extended Events session. This type of analysis is outside the scope of this book

since these causes would likely be non-index-related. The method used for investigating

CXPACKET could apply and would be a place to start the investigation.

Chapter 14 Index analysIs

566

 LCK_M_∗
The LCK_M_∗ collection of wait types refers to waits that are occurring on the SQL

Server instance. These are not just the use of locks but also the times when locks have

waits associated with them. Each wait type in LCK_M_∗ references a distinct type of

lock, such as exclusive or shared locks. To decipher the different wait types, use

Table 14- 2. When the LCK_M_∗ wait types increase, they will always be in conjunction

with increases in Lock Wait Time(ms) and Lock Waits/sec, allowing these counters to

help investigate this wait type.

When investigating increases in either the performance counters or the different

lock types, see Table 14-2. Use the combination of the wait types and the performance

counters to hone in on specific issues. For instance, when the performance counters are

pointing to Lock Wait Time(ms) issues, look for long-running waits on LCK_M_∗. Use

the wizard in SQL Server Management Studio to create the Count Query Lock session

and determine which lock and which queries, through the query_hash, are causing

the issue. Similarly, if the issue is with Lock Waits/sec, look for those with the most

numerous locks.

Table 14-2. LCK_M_∗ Wait Types

Wait Type Lock Type

lCK_M_BU Bulk Update.

lCK_M_Is Intent shared.

lCK_M_IU Intent Update.

lCK_M_Ix Intent exclusive.

lCK_M_rIn_nl Insert range lock between the current and previous key with NULL lock on

the current key value.

lCK_M_rIn_s Insert range lock between the current and previous key with shared lock on

the current key value.

lCK_M_rIn_U Insert range lock between the current and previous key with Update lock on

the current key value.

lCK_M_rIn_x Insert range lock between the current and previous key with exclusive lock

on the current key value.

(continued)

Chapter 14 Index analysIs

567

All of the locks in Table 14-2 can appear with the suffixes _ABORT_BLOCKERS and

_LOW_PRIORITY which are related to the low priority options added to online index

and partition switching operations. This capability has been available since SQL Server

2014. If you see locks with these suffixes, review the index maintenance operations that

are occurring. When the waits are excessive, the schedule of the maintenance will likely

need to be adjusted.

Wait Type Lock Type

lCK_M_rs_s shared range lock between the current and previous key with shared lock on

the current key value.

lCK_M_rs_U shared range lock between the current and previous key with Update lock on

the current key value.

lCK_M_rx_s exclusive range lock between the current and previous key with shared lock

on the current key value.

lCK_M_rx_U exclusive range lock between the current and previous key with Update lock

on the current key value.

lCK_M_rx_x exclusive range lock between the current and previous key with exclusive

lock on the current key value.

lCK_M_s shared.

lCK_M_sCh_M schema Modify.

lCK_M_sCh_s schema share.

lCK_M_sIU shared with Intent Update.

lCK_M_sIx shared with Intent exclusive.

lCK_M_U Update.

lCK_M_UIx Update with Intent exclusive.

lCK_M_x exclusive.

Table 14-2. (continued)

Chapter 14 Index analysIs

568

 PAGEIOLATCH_∗
The final index-related wait is PAGEIOLATCH_∗ wait types. This wait refers to the waits

that occur when SQL Server is retrieving data pages from indexes and placing them into

memory. The time in which the query is ready to retrieve the data pages and when they

are available in memory is tracked by SQL Server with these counters. As with LCK_M_∗

waits, there are a number of different PAGEIOLATCH_∗, which are defined in Table 14-3.

First, monitor the indexes that are currently in the buffer cache to identify which

indexes are available. Also, review the Page Life Expectancy/sec (PLE) counter, which is

not currently collected in the monitoring section. Reviewing the allocation of pages to

indexes in the buffer before and after changes in the PLE can help identify which indexes

are pushing information out of memory. Then investigate query plans and tune the

queries or indexes to reduce the amount of data needed to satisfy the queries.

The second tactic to addressing PAGEIOLATCH_∗ is to put more emphasis on the

Full Scans/sec analysis. Often, indexes that lead to increases in this wait type are related

to full scans that are in use by the database. By placing more emphasis on reducing the

need for full scans in execution plans, less data will need to be pulled into memory,

leading to a decrease in this wait type.

In some cases, the issues related to PAGEIOLATCH_∗ are unrelated to indexing. The

issue can simply be a matter of slow disk performance. To verify whether this is the case,

monitor the performance of the server counters for Physical disk: disk seconds/read

and Physical disk: disk seconds/write and the virtual file stats for SQL Server. If these

statistics are continually high, expand the investigation outside of indexing to hardware

Table 14-3. PAGEIOLATCH_∗ Wait Types

Wait Type Lock Type

paGeIOlatCh_dt IO latch in destroy mode.

paGeIOlatCh_ex IO latch in exclusive mode.

paGeIOlatCh_Kp IO latch in Keep mode.

paGeIOlatCh_sh IO latch in shared mode.

paGeIOlatCh_Up IO latch in Update mode.

Chapter 14 Index analysIs

569

and the I/O storage level. Besides improving disk performance, this wait statistic can be

reduced by increasing the available memory, which can decrease the likelihood that the

data page will be pushed out of memory.

 Buffer Allocation
The final area to look at when determining the server state with indexing is to look at the

data pages that are in the buffer cache. This isn’t a typical area that people usually look

at when considering indexing, but it provides a wealth of information regarding what

SQL Server is putting into memory. The basic question that this can answer for the SQL

Server instance is, does the data in the buffer represent the data most important to the

applications using the SQL Server?

The first part of answering this question is to review which databases have how many

pages in memory. This might not seem that important, but the amount of memory being

used by the different databases can sometimes be surprising. Before indexes were added

to the backup tables in the MSDB database, it wouldn’t be uncommon for those tables

to push all the data in the backup tables into memory. If the data in the tables wasn’t

trimmed often, this could be a lot of information not critical to the business applications

consuming an unnecessary amount of data.

For the second part of the question, we will need to engage the owners and subject-

matter experts for the applications using the SQL Server instance. If the answers from

these folks don’t match the information that is in the buffer, this provides a list of

databases for which we can focus the index tuning effort.

Along those same lines, many applications have logging databases where error

and processing events are stored for troubleshooting at a later date. When issues arise,

instead of going to log files, the developers can simply query the database and extract

the events they need to perform their troubleshooting. But what if these tables aren’t

properly indexed or the queries aren’t SARGable? Log tables with millions or billions

of rows may be pushed into memory, pushing the data from the line-of-business

applications out of memory and potentially causing worse issues. If the data in the buffer

isn’t being checked, there is no way to know what is in memory and if it is the right stuff.

Checking the data in memory is a relatively simple task that utilizes the DMO

sys.dm_os_buffer_descriptors. This DMO lists each data page that is in memory

and describes the information on the page. By counting each page for each database,

the total number of pages and the size of memory allocated to the database can

Chapter 14 Index analysIs

570

be determined. Using the query in Listing 14-31, we can see in Figure 14-12 that

the ContsoRetailDW database occupies the most memory on the server with the

IndexingMethod database currently using 8.84 MB of space.

Listing 14-31. Buffer Allocation for Each Database

SELECT LEFT(CASE database_id

 WHEN 32767 THEN 'ResourceDb'

 ELSE DB_NAME(database_id) END, 20) AS Database_Name,

 COUNT(*) AS Buffered_Page_Count,

 CAST(COUNT(*) * 8 / 1024.0 AS NUMERIC(10, 2)) AS Buffer_Pool_MB

FROM sys.dm_os_buffer_descriptors

GROUP BY DB_NAME(database_id),

 database_id

ORDER BY Buffered_Page_Count DESC;

Figure 14-12. Results for buffer allocation for each database query

Once the databases in memory have been identified, it is also useful to determine

what objects in the database are in memory. For the similar reason as looking to see what

databases are in memory, identifying the objects in memory helps with identifying the tables

and indexes to focus on when indexing. Retrieving the memory use per table and index also

utilizes sys.dm_os_buffer_descriptors but includes mapping the rows to allocation_

unit_id values in the catalog views sys.allocation_units and sys.partitions.

Through the query in Listing 14-32, the memory used by each of the user tables

and indexes is returned. In the results in Figure 14-13, the tables FactSales and

FactOnlineSales are taking up a substantial amount of memory. If this was unexpected

and it wasn’t obvious these were fact tables, we would definitely want to understand

more about why they were taking up so much memory. This can lead us to other

questions, such as: What is this data? Why is it so large? Is the space used by the table

Chapter 14 Index analysIs

571

impacting the ability of other databases to use memory optimally with their indexes? In

these cases, we need to investigate the indexes on these tables because the tables that

are most in memory ought to have the best-honed indexing profiles.

Listing 14-32. Buffer Allocation by Table/Index

WITH BufferAllocation

 AS (SELECT object_id,

 index_id,

 allocation_unit_id

 FROM sys.allocation_units AS au

 INNER JOIN sys.partitions AS p ON au.container_id = p.hobt_id

 AND (au.type = 1 OR au.type = 3)

 UNION ALL

 SELECT object_id,

 index_id,

 allocation_unit_id

 FROM sys.allocation_units AS au

 INNER JOIN sys.partitions AS p ON au.container_id = p.hobt_id

 AND au.type = 2)

SELECT t.name,

 we.name,

 we.type_desc,

 COUNT(*) AS Buffered_Page_Count,

 CAST(COUNT(*) * 8 / 1024.0 AS NUMERIC(10, 2)) AS Buffer_MB

FROM sys.tables t

INNER JOIN BufferAllocation ba ON t.object_id = ba.object_id

LEFT JOIN sys.indexes we ON ba.object_id = we.object_id

 AND ba.index_id = we.index_id

INNER JOIN sys.dm_os_buffer_descriptors bd ON ba.allocation_unit_id =

bd.allocation_unit_id

WHERE bd.database_id = DB_ID()

GROUP BY t.name,

 we.index_id,

 we.name,

 we.type_desc

ORDER BY Buffered_Page_Count DESC;

Chapter 14 Index analysIs

572

 Schema Discovery
After investigating the state of the server and its indexing needs, the next step in the

index analysis process is to investigate the schema of the databases to determine

whether there are schema-related indexing issues that can be addressed. For these

issues, we are primarily going to focus on a few key details that can be discovered

through catalog views.

 Identify Heaps
As discussed previously, it is often more ideal to utilize clustered indexes on tables as

opposed to storing tables as heaps. When heaps are preferred, it should be when the

use of a clustered index has been shown to negatively impact performance as opposed

to a heap. When investigating heaps, it is best to consider the number of rows and the

utilization of the heap. When a heap has a low number of rows or is not being used,

taking the effort to cluster its table may be rather pointless.

To identify heaps, use the catalog views sys.indexes and sys.partitions. The

performance information is available in the table dbo.index_usage_stats_history. It

can be used in conjunction to form the query in Listing 14-33, which provides the output

in Figure 14-14.

The results show that dbo.DatabaseLog has a number of rows. The next step is to review

the schema of the table. If there is a primary key already on the table, it’s a good candidate

for the clustering index key. If not, check for another key column, such as a business key. If

there is no key column, it may be worthwhile to add a surrogate key to the table.

Figure 14-13. Results for buffer allocation for each table/index query

Chapter 14 Index analysIs

573

Listing 14-33. Query to Identify Heaps

SELECT QUOTENAME(DB_NAME()) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(we.object_id)) + '.' + QUOTENAME(OBJECT_

NAME(we.object_id)) AS object_name,

 we.index_id,

 p.rows,

 SUM(h.user_seeks) AS user_seeks,

 SUM(h.user_scans) AS user_scans,

 SUM(h.user_lookups) AS user_lookups,

 SUM(h.user_updates) AS user_updates

FROM sys.indexes we

INNER JOIN sys.partitions p ON we.index_id = p.index_id

 AND we.object_id = p.object_id

LEFT OUTER JOIN IndexingMethod.dbo.index_usage_stats_history h ON p.object_

id = h.object_id

 AND p.index_id = h.index_id

WHERE type_desc = 'HEAP'

GROUP BY we.index_id,

 p.rows,

 we.object_id

ORDER BY p.rows DESC;

Figure 14-14. Output for query identifying heaps

Chapter 14 Index analysIs

574

 Duplicate Indexes
The next schema issue to review is duplicate indexes. Except for rare occasions, there

is no need to have duplicate indexes in your databases. They waste space and cost

resources to maintain without providing any benefit. To determine that an index is a

duplicate of another, review the key columns and included columns of the index. If these

values match, the index is considered a duplicate.

To uncover duplicate indexes, the sys.indexes view is used in conjunction with the

sys.index_columns catalog view. Comparing these views to each other using the code

in Listing 14-34 will provide a list of the indexes that are duplicates. The results from

the query, displayed in Figure 14-15, show that in the AdventureWorks2017 database

the indexes AK_Document_rowguid and UQ__Document__F73921F7C5112C2E are

duplicates.

When duplicates are found, one of the two indexes should be removed from the

database. While one of the indexes will have index activity, removing either will shift

the activity from one to the other. Before removing either index, review the noncolumn

properties of the index to make sure important aspects of the index are not lost. For

instance, if one of the indexes is designated as unique, be sure that the index retained

still has that property.

Listing 14-34. Query to Identify Duplicate Indexes

USE AdventureWorks2017;

GO

WITH IndexSchema

 AS (SELECT we.object_id,

 we.index_id,

 we.name,

 ISNULL(we.filter_definition, “) AS filter_definition,

 we.is_unique,

 (

 SELECT QUOTENAME(CAST(ic.column_id AS VARCHAR(10)) + CASE

 WHEN ic.is_descending_key = 1 THEN '-'

 ELSE '+' END,

 '('

)

Chapter 14 Index analysIs

575

 FROM sys.index_columns ic

 INNER JOIN sys.columns c ON ic.object_id = c.object_id

 AND ic.column_id = c.column_id

 WHERE we.object_id = ic.object_id

 AND we.index_id = ic.index_id

 AND is_included_column = 0

 ORDER BY key_ordinal ASC

 FOR XML PATH(")

) + COALESCE((

 SELECT QUOTENAME(CAST(ic.column_id AS VARCHAR(10)) + CASE

 WHEN ic.is_descending_key = 1 THEN '-'

 ELSE '+' END,

 '('

)

 FROM sys.index_columns ic

 INNER JOIN sys.columns c ON ic.object_id = c.object_id

 AND ic.column_id = c.column_id

 LEFT OUTER JOIN sys.index_columns ic_key ON c.object_id =

ic_key.object_id

 AND c.column_id =

ic_key.column_id

 AND we.index_id =

ic_key.index_id

 AND ic_key.is_

included_column = 0

 WHERE we.object_id = ic.object_id

 AND ic.index_id = 1

 AND ic.is_included_column = 0

 AND ic_key.index_id IS NULL

 ORDER BY ic.key_ordinal ASC

 FOR XML PATH(")

),

 "

) + CASE

 WHEN we.is_unique = 1 THEN 'U'

 ELSE " END AS index_columns_keys_ids,

Chapter 14 Index analysIs

576

 CASE

 WHEN we.index_id IN (0, 1) THEN 'ALL-COLUMNS'

 ELSE COALESCE((

 SELECT QUOTENAME(ic.column_id, '(')

 FROM sys.index_columns ic

 INNER JOIN sys.columns c ON ic.object_id =

c.object_id

 AND ic.column_id =

c.column_id

 LEFT OUTER JOIN sys.index_columns ic_key ON

c.object_id = ic_key.object_id

 AND c.column_id = ic_key.

column_id

 AND ic_key.index_id = 1

 WHERE we.object_id = ic.object_id

 AND we.index_id = ic.index_id

 AND ic.is_included_column = 1

 AND ic_key.index_id IS NULL

 ORDER BY ic.key_ordinal ASC

 FOR XML PATH(")

),

 SPACE(0)

) END AS included_columns_ids

 FROM sys.tables t

 INNER JOIN sys.indexes we ON t.object_id = we.object_id

 INNER JOIN sys.data_spaces ds ON we.data_space_id = ds.data_space_id

 INNER JOIN sys.dm_db_partition_stats ps ON we.object_id = ps.object_id

 AND we.index_id = ps.index_id)

SELECT QUOTENAME(DB_NAME()) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(is1.object_id)) + '.' + QUOTENAME(OBJECT_

NAME(is1.object_id)) AS object_name,

 is1.name AS index_name,

 is2.name AS duplicate_index_name

FROM IndexSchema is1

Chapter 14 Index analysIs

577

INNER JOIN IndexSchema is2 ON is1.object_id = is2.object_id

 AND is1.index_id <> is2.index_id

 AND is1.index_columns_keys_ids = is2.index_

columns_keys_ids

 AND is1.included_columns_ids = is2.included_

columns_ids

 AND is1.filter_definition = is2.filter_

definition

 AND is1.is_unique = is2.is_unique;

Note the original inspiration for the overlapping index query is from the blog post
at http://sqlblog.com/blogs/paul_nielsen/archive/2008/06/25/
find-duplicate-indexes.aspx by paul nielsen.

 Overlapping Indexes
After identifying duplicate indexes, the next step is to look for overlapping indexes. An

index is considered to be overlapping another index when its key columns make up all or

part of another index’s key columns. Included columns are not considered when looking

at overlapping columns; the focus for this evaluation is only on the key columns.

To identify overlapping indexes, the same catalog views, sys.indexes and sys.

index_columns, are used. For each index, its key columns will be compared using

the LIKE operator and a wildcard to the key columns of the other indexes on the

table. When there is a match, it will be flagged as an overlapping index. The query

for this check is provided in Listing 14-35, with the results from executing against the

AdventureWorks2017 database shown in Figure 14-16.

Figure 14-15. Output for query identifying duplicate indexes

Chapter 14 Index analysIs

http://sqlblog.com/blogs/paul_nielsen/archive/2008/06/25/find-duplicate-indexes.aspx
http://sqlblog.com/blogs/paul_nielsen/archive/2008/06/25/find-duplicate-indexes.aspx

578

Decisions on handling overlapping indexes are not as cut and dry as the duplicate

indexes. To help illustrate overlapping indexes, the index IX_SameAsPK was creating

on the column DocumentNode. This is the same column that is used as the clustering

key for the table Production.Document. What this example shows, though, is that a

nonclustered index can be considered an overlapping index of a clustered index. In

some cases, it might be advisable to remove the overlapping nonclustered index. In

all reality, the clustered index has the same key, and the pages are sorted in the same

manner. We can find the same values in both. The gray area comes in when considering

the size of the rows in the clustered index. If the rows are wide enough, if just querying

for the clustering key, it will at times be more beneficial to use the nonclustered index.

In this manner, we will need to spend more time analyzing indexes. This same gray area

will apply to comparisons between two nonclustered indexes as well.

When reviewing overlapping indexes, there are a few other things to note. Be

sure to retain the index properties, such as whether the index is unique. Also, watch

the included columns. The included columns are not considered in the overlapping

comparison. There may be unique sets of included columns between the two indexes.

Watch for this and merge the included columns as appropriate.

Listing 14-35. Query to Identify Overlapping Indexes

WITH IndexSchema

 AS (SELECT we.object_id,

 we.index_id,

 we.name,

 (

 SELECT CASE key_ordinal

 WHEN 0 THEN NULL

 ELSE QUOTENAME(column_id, '(') END

 FROM sys.index_columns ic

 WHERE ic.object_id = we.object_id

 AND ic.index_id = we.index_id

 ORDER BY key_ordinal,

 column_id

 FOR XML PATH(")

) AS index_columns_keys

Chapter 14 Index analysIs

579

 FROM sys.tables t

 INNER JOIN sys.indexes we ON t.object_id = we.object_id

 WHERE we.type_desc IN ('CLUSTERED', 'NONCLUSTERED', 'HEAP'))

SELECT QUOTENAME(DB_NAME()) AS database_name,

 QUOTENAME(OBJECT_SCHEMA_NAME(is1.object_id)) + '.' + QUOTENAME(OBJECT_

NAME(is1.object_id)) AS object_name,

 STUFF((

 SELECT ', ' + c.name

 FROM sys.index_columns ic

 INNER JOIN sys.columns c ON ic.object_id = c.object_id

 AND ic.column_id = c.column_id

 WHERE ic.object_id = is1.object_id

 AND ic.index_id = is1.index_id

 ORDER BY ic.key_ordinal,

 ic.column_id

 FOR XML PATH(")

),

 1,

 2,

 "

) AS index_columns,

 STUFF((

 SELECT ', ' + c.name

 FROM sys.index_columns ic

 INNER JOIN sys.columns c ON ic.object_id = c.object_id

 AND ic.column_id = c.column_id

 WHERE ic.object_id = is1.object_id

 AND ic.index_id = is1.index_id

 AND ic.is_included_column = 1

 ORDER BY ic.column_id

 FOR XML PATH(")

),

 1,

 2,

 "

) AS included_columns,

Chapter 14 Index analysIs

580

 is1.name AS index_name,

 SUM(CASE

 WHEN is1.index_id = h.index_id THEN

 ISNULL(h.user_seeks, 0) + ISNULL(h.user_scans, 0) +

ISNULL(h.user_lookups, 0)

 + ISNULL(h.user_updates, 0) END

) index_activity,

 is2.name AS duplicate_index_name,

 SUM(CASE

 WHEN is2.index_id = h.index_id THEN

 ISNULL(h.user_seeks, 0) + ISNULL(h.user_scans, 0) +

ISNULL(h.user_lookups, 0)

 + ISNULL(h.user_updates, 0) END

) duplicate_index_activity

FROM IndexSchema is1

INNER JOIN IndexSchema is2 ON is1.object_id = is2.object_id

 AND is1.index_id > is2.index_id

 AND (

 is1.index_columns_keys LIKE is2.index_

columns_keys + '%'

 AND is2.index_columns_keys LIKE is2.index_

columns_keys + '%'

)

LEFT OUTER JOIN IndexingMethod.dbo.index_usage_stats_history h ON is1.

object_id = h.object_id

GROUP BY is1.object_id,

 is1.name,

 is2.name,

 is1.index_id;

Figure 14-16. Output for query identifying overlapping indexes

Chapter 14 Index analysIs

581

 Unindexed Foreign Keys
Foreign keys are useful for enforcing constraints within a database. When there are

parent and child relationships between tables, foreign keys provide the mechanism to

verify that child tables aren’t referencing parent values that don’t exist. Likewise, the

foreign key makes certain that a parent value can’t be removed while child values are

still in use. To support these validations, the columns for the parent and child values

between the tables need to be indexed. If one or the other is not indexed, SQL Server

can’t optimize the operation with a seek and is forced to use a scan to verify that the

values are not in the related table.

Verifying that foreign keys are indexed involves a process similar to the duplicate

and overlapping indexes process. Along with the sys.indexes and sys.index_columns

catalog views, the sys.foreign_key_columns view is used to provide an index template

that the foreign key would rely upon. This is pulled together in the query in Listing 14-36

with results from the AdventureWorks2017 database shown in Figure 14-17.

The common practice is that every foreign key should be indexed, always. This,

though, is not actually the case for every foreign key. There are a couple things to

consider before adding the index. First, how many rows are in the child table? If the row

count is low, adding the index may not provide a performance gain. If the uniqueness of

the column is fairly low, statistics may justify a scan of every row regardless of the index.

In these cases, it could be argued that if the size of the table is small, the cost of the index

is also small, and there is nothing to lose from adding the index. The other consideration

is whether data will be deleted from the table and when activities that require validation

of the foreign key will occur. With large tables with many columns and foreign keys,

performance may suffer from having yet another index to maintain on the table. The

index would probably be of value, but is it of enough value to justify creating it?

While those are good considerations when indexing foreign keys, the majority of

the time, we will want to index your foreign keys. Similar to the recommendation for

clustering tables, index your foreign keys unless we have performance documentation

showing that indexing the foreign keys negatively impacts performance.

Chapter 14 Index analysIs

582

Listing 14-36. Query to Identify Unindexed Foreign Keys

WITH cIndexes

 AS (SELECT we.object_id,

 we.name,

 (

 SELECT QUOTENAME(ic.column_id, '(')

 FROM sys.index_columns ic

 WHERE we.object_id = ic.object_id

 AND we.index_id = ic.index_id

 AND is_included_column = 0

 ORDER BY key_ordinal ASC

 FOR XML PATH(")

) AS indexed_compare

 FROM sys.indexes we),

cForeignKeys

 AS (SELECT fk.name AS foreign_key_name,

 'PARENT' AS foreign_key_type,

 fkc.parent_object_id AS object_id,

 STUFF((

 SELECT ', ' + QUOTENAME(c.name)

 FROM sys.foreign_key_columns ifkc

 INNER JOIN sys.columns c ON ifkc.parent_object_id =

c.object_id

 AND ifkc.parent_column_id =

c.column_id

 WHERE fk.object_id = ifkc.constraint_object_id

 ORDER BY ifkc.constraint_column_id

 FOR XML PATH(")

),

 1,

 2,

 "

) AS fk_columns,

Chapter 14 Index analysIs

583

 (

 SELECT QUOTENAME(ifkc.parent_column_id, '(')

 FROM sys.foreign_key_columns ifkc

 WHERE fk.object_id = ifkc.constraint_object_id

 ORDER BY ifkc.constraint_column_id

 FOR XML PATH(")

) AS fk_columns_compare

 FROM sys.foreign_keys fk

 INNER JOIN sys.foreign_key_columns fkc ON fk.object_id = fkc.

constraint_object_id

 WHERE fkc.constraint_column_id = 1),

cRowCount

 AS (SELECT object_id,

 SUM(row_count) AS row_count

 FROM sys.dm_db_partition_stats ps

 WHERE index_id IN (1, 0)

 GROUP BY object_id)

SELECT QUOTENAME(DB_NAME()),

 QUOTENAME(OBJECT_SCHEMA_NAME(fk.object_id)) + '.' + QUOTENAME(OBJECT_

NAME(fk.object_id)) AS ObjectName,

 fk.foreign_key_name,

 fk_columns,

 row_count

FROM cForeignKeys fk

INNER JOIN cRowCount rc ON fk.object_id = rc.object_id

LEFT OUTER JOIN cIndexes we ON fk.object_id = we.object_id

 AND we.indexed_compare LIKE fk.fk_columns_

compare + '%'

WHERE we.name IS NULL

ORDER BY row_count DESC,

 OBJECT_NAME(fk.object_id),

 fk.fk_columns;

Chapter 14 Index analysIs

584

 Uncompressed Indexes
As discussed earlier in this chapter and in other parts of the book, it is usually beneficial

to utilize some level of compression on all indexes. With row compression, the indexes

generally store fixed-length data as variable length, while page compression examines

data and reduces duplication to compress further. In many cases, databases can be

compressed to 25–75 percent of their current size through compression. That size

reduction increases the amount of data SQL Server can process through the CPU. Often

times, the additional CPU cost to compress data is more than offset by the decrease in

CPU effort to process the uncompressed data volume.

When examining databases for uncompressed indexes, the query in Listing 14-37

provides a list per database with the filegroup, partition boundary, row count, and size

for each index. This information is especially useful because it can help identify the

largest indexes where compression could provide the greatest gain. Review the list and

determine which indexes to start compressing, keeping in mind whether there are data

types, such as varchar(max), that will compress and may lead to compression failures, as

discussed earlier in this chapter.

Listing 14-37. Query to Identify Uncompressed Indexes

WITH partitioning

 AS (SELECT dds.data_space_id,

 dds.partition_scheme_id,

 ds.name,

 dds.destination_id AS partition_number,

 CASE

Figure 14-17. Output for query identifying missing foreign key indexes

Chapter 14 Index analysIs

585

 WHEN prv.value IS NOT NULL THEN

 CONCAT(

 IIF(pf.boundary_value_on_right = 1, 'Less than ',

'Greater than or equal to '),

 CAST(prv.value AS VARCHAR(MAX))

)

 WHEN pf.boundary_value_on_right = 1 THEN 'Greater than MAX

boundary'

 ELSE 'Less than MIN boundary' END AS Boundary

 FROM sys.destination_data_spaces AS dds

 INNER JOIN sys.partition_schemes AS ps ON ps.data_space_id = dds.

partition_scheme_id

 INNER JOIN sys.partition_functions AS pf ON pf.function_id =

ps.function_id

 INNER JOIN sys.data_spaces AS ds ON dds.data_space_id = ds.data_

space_id

 LEFT OUTER JOIN sys.partition_range_values AS prv ON pf.function_id =

prv.function_id

 AND prv.boundary_id =

dds.destination_id)

SELECT S.name AS schema_name,

 T.name AS table_name,

 I.name AS index_name,

 I.index_id,

 P.partition_number,

 P.data_compression_desc,

 I.type_desc,

 IIF(DS.type_desc = 'PARTITION_SCHEME', PS.name, DS.name) AS file_group,

 PS.Boundary AS partition_boundary,

 DS.type_desc AS data_space_type,

 P.rows,

 CAST(dps.reserved_page_count * CAST(8 AS FLOAT) / 1024. AS DECIMAL(20,

3)) AS mb_size

FROM sys.tables AS T

INNER JOIN sys.schemas AS S ON S.schema_id = T.schema_id

Chapter 14 Index analysIs

586

INNER JOIN sys.indexes AS I ON T.object_id = I.object_id

INNER JOIN sys.partitions AS P ON I.object_id = P.object_id

 AND I.index_id = P.index_id

INNER JOIN sys.dm_db_partition_stats AS dps ON P.object_id = dps.object_id

 AND P.index_id = dps.index_id

 AND P.partition_number = dps.

partition_number

LEFT OUTER JOIN partitioning AS PS ON I.data_space_id = PS.partition_

scheme_id

 AND P.partition_number = PS.partition_

number

INNER JOIN sys.data_spaces AS DS ON DS.data_space_id = I.data_space_id

WHERE P.data_compression_desc = 'NONE';

GO

Note It bears repeating that the dta is a good tool for determining useful indexes
to add to a database. While there may be more pride in designing indexes for
a database by hand without the need of a tool, it isn’t practical to ignore useful
recommendations. Use the dta as a starting point to discover indexing suggestions
that would have taken hours to determine without the tool in place.

 Database Engine Tuning Advisor
The Database Engine Tuning Advisor (DTA) was discussed in Chapter 7. In that chapter,

we discussed the two modes for using the DTA: the GUI interface and the command-

line utility. While tuning queries is often a process of reviewing statistics and evaluating

execution plans, the DTA provides means to accelerate this analysis by using the trace

files from the monitoring process in the previous chapter to identify potentially useful

indexing recommendations. This process is able to accomplish the tuning with minimal

impact on the production environment since all the recommendations are derived from

analysis on a nonproduction environment.

Chapter 14 Index analysIs

587

The basic process for using the DTA index analysis can be broken out into five

different steps, shown in Figure 14-18:

 1. Collect a workload.

 2. Gather the metadata.

 3. Perform the tuning.

 4. Consider recommendations and review.

 5. Deploy changes.

Through this process, we can get a jump start on indexing and begin working with

recommendations that relate to existing performance issues.

The first step in the process is to collect a workload. If we followed the process in the

index monitoring process from the previous chapter, we should have already collected

this information. There are two standard scenarios that workloads should represent.

To begin, collect a workload that represents a typical day, because even a normal day

can have underlying performance issues that tuning can help alleviate. Second, gather

a workload during times where performance problems are known to exist. This will be

useful for providing recommendations that we may be able to achieve through manual

tuning.

Figure 14-18. Steps for using the DTA index analysis

Chapter 14 Index analysIs

588

After the workload is collected, the next step is to gather the necessary metadata to

start the tuning sessions. There are two components to gathering metadata. The first is to

create an XML input file for the dta session. The XML input file contains the production

and nonproduction server names and information on where the workload is and what

type of tuning options to utilize (Listing 14-38 shows a sample). For more information on

tuning options, see Chapter 7. The second part of this step is the effect on tuning from

the first piece. When the tuning occurs, SQL Server will gather the schema and statistics

for the database from the production database(s) and move that information to the

nonproduction server. While the database won’t have the production data, it will have

the information necessary to make indexing recommendations.

Listing 14-38. Sample XML Input File for DTA

<?xml version="1.0" encoding="utf-16" ?>

<DTAXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://schemas.microsoft.com/sqlserver/2004/07/dta">

 <DTAInput>

 <Server>

 <Name>STR8-SQL-PRD</Name>

 <Database>

 <Name>AdventureWorks2017</Name>

 </Database>

 </Server>

 <Workload>

 <File>c:\temp\IndexingMethod.trc</File>

 </Workload>

 <TuningOptions>

 <TestServer>STR8-SQL-TEST </TestServer>

 <FeatureSet>IDX</FeatureSet>

 <Partitioning>NONE</Partitioning>

 <KeepExisting>NONE</KeepExisting>

 </TuningOptions>

 </DTAInput>

</DTAXML>

Chapter 14 Index analysIs

589

Note We can find more information on the xMl input file configuration in Books
Online at https://docs.microsoft.com/en-us/sql/tools/dta/xml-
input- file-reference-database-engine-tuning-advisor?view=sql-
server- ver15.

The next step is the actual execution of the DTA tuning session. To run the session,

execute the dta command using the -ix command-line option, shown in Listing 14-39.

Since all the configuration information for the session is located in the XML file, there is

no need to add any additional parameters.

Listing 14-39. DTA Command with XML Input File

dta -ix "c:\temp\SessionConfig.xml"

After the tuning session completes, we will receive a list of index recommendations.

This isn’t the last step in this portion of the process. Before any recommendations

from the DTA can be implemented, they must be reviewed. While using this tool will

accelerate the index analysis process, all the recommendations need to be reviewed and

vetted to verify that they make sense and don’t overload a table with more indexes than

SQL Server can support for the workload.

The last step is to deploy the indexing recommendations. This step is technically

outside the scope of this phase of the Indexing Method. At this time, though, we should

be familiar with the indexing changes that will be implemented. Add these changes

to the existing list of indexing changes from other analysis and prepare them for

implementation, which is discussed in the next chapter.

 Unused Indexes
One of the necessary and potentially dangerous steps during index analysis is the

determination of indexes to remove. Some indexes will be removed because of

consolidation or because they are duplicates. Often these have less risk than when other

indexes are dropped. The indexes in this other category are those that are unused.

The easiest manner for identifying indexes that are not used is to check the list of

indexes in each database against the dbo.index_usage_stats_history table in the

IndexingMethod database. If there are any unused indexes in the database, the query

Chapter 14 Index analysIs

https://docs.microsoft.com/en-us/sql/tools/dta/xml-input-file-reference-database-engine-tuning-advisor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/dta/xml-input-file-reference-database-engine-tuning-advisor?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/dta/xml-input-file-reference-database-engine-tuning-advisor?view=sql-server-ver15

590

in Listing 14-40 will identify them. One word of caution with unused indexes: In this

analysis, heaps and clustered indexes are ignored, along with any unique indexes and

primary keys. Indexes with these properties are often related to other business rules,

and their removal should be based on other factors. Figure 14-19 shows an example of

unused indexes in the AdventureWorks2017 database.

Listing 14-40. Query for Unused Indexes

SELECT OBJECT_NAME(we.object_id) AS table_name,

 COALESCE(we.name, SPACE(0)) AS index_name,

 ps.partition_number,

 ps.row_count,

 CAST((ps.reserved_page_count * 8) / 1024. AS DECIMAL(12, 2)) AS size_

in_mb,

 COALESCE(ius.user_seeks, 0) AS user_seeks,

 COALESCE(ius.user_scans, 0) AS user_scans,

 COALESCE(ius.user_lookups, 0) AS user_lookups,

 we.type_desc

FROM sys.all_objects t

INNER JOIN sys.indexes we ON t.object_id = we.object_id

INNER JOIN sys.dm_db_partition_stats ps ON we.object_id = ps.object_id

 AND we.index_id = ps.index_id

LEFT OUTER JOIN sys.dm_db_index_usage_stats ius ON ius.database_id = DB_

ID()

 AND we.object_id = ius.

object_id

 AND we.index_id = ius.

index_id

WHERE we.type_desc NOT IN ('HEAP', 'CLUSTERED')

AND we.is_unique = 0

AND we.is_primary_key = 0

AND we.is_unique_constraint = 0

AND COALESCE(ius.user_seeks, 0) <= 0

AND COALESCE(ius.user_scans, 0) <= 0

AND COALESCE(ius.user_lookups, 0) <= 0

ORDER BY OBJECT_NAME(we.object_id),

 we.name;

Chapter 14 Index analysIs

591

While this section didn’t discuss it, there are two additional scenarios for identifying

unused indexes. These are lightly used indexes or no longer used indexes. A similar

process can be used for these situations: instead of looking for indexes that have never

been used, filter for low usage rates or no use in a period of weeks or months. But don’t

just remove these indexes automatically. If the index is lightly used, verify how the index

is being used before dropping it. It may be used once a day, but it might be tied to critical

processes. Also, with no longer used indexes, verify that the index isn’t part of a seasonal

process. Removing indexes tied to seasonal activity can create more of a burden than just

maintaining them in off-peak times.

 Index Plan Usage
In previous sections of this chapter, we discussed the concept of checking the plan

cache to analyze and investigate index usages. While statistics can show that there

was a seek or a scan against an index, it doesn’t provide us with enough detail to know

what columns to add or what caused the index to use a scan over a seek. To gather this

information, we need to turn to the execution plan. And the place where we can get

some of the best execution plans for your databases and SQL Server instance is the plan

cache. In this section, for index analysis, we’ll be looking at two queries that can be used

to retrieve execution plans from the plan cache.

The first query is one that will be used when we need to retrieve all the plans for a

specific index. Suppose we need to determine what processes, or T-SQL statements,

are using one of the indexes on a table that is used once or twice a day. For this, we can

turn to the plan cache with the query in Listing 14-41 and check whether the plan for

that query is still in the cache. To use the query, replace the index name in the variable

@IndexName and execute it to return a list of plans that use the index. Be cautious if we

have a database where there are many indexes with the same name, since index names

Figure 14-19. Output for query identifying missing foreign key indexes

Chapter 14 Index analysIs

592

need to be unique only on a per-table basis. If all of the indexes are named IX_1 and

IX_2, we will need to verify the table name in the search to be sure we have the correct

index.

Listing 14-41. Query Plan Cache for Index Usage

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;

GO

DECLARE @IndexName sysname = 'PK_SalesOrderHeader_SalesOrderID';

SET @IndexName = QUOTENAME(@IndexName, '[');

WITH XMLNAMESPACES (

 DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/showplan'

)

, IndexSearch

 AS (SELECT qp.query_plan,

 cp.usecounts,

 ix.query('.') AS StmtSimple

 FROM sys.dm_exec_cached_plans cp

 OUTER APPLY sys.dm_exec_query_plan(cp.plan_handle) qp

 CROSS APPLY qp.query_plan.nodes('//StmtSimple') AS p(ix)

 WHERE query_plan.exist('//Object[@Index = sql:variable

("@IndexName")]') = 1)

SELECT StmtSimple.value('StmtSimple[1]/@StatementText', 'VARCHAR(4000)') AS

sql_text,

 obj.value('@Database', 'sysname') AS database_name,

 obj.value('@Schema', 'sysname') AS schema_name,

 obj.value('@Table', 'sysname') AS table_name,

 obj.value('@Index', 'sysname') AS index_name,

 ixs.query_plan

FROM IndexSearch ixs

CROSS APPLY StmtSimple.nodes('//Object') AS o(obj)

WHERE obj.exist('//Object[@Index = sql:variable("@IndexName")]') = 1;

Chapter 14 Index analysIs

593

At other times, searching for just the name of an index will be too broad of a search

of the plan cache. In these cases, we can use the query in Listing 14-42. This query adds

in the name of a physical operator to the plan cache search. For instance, suppose we

are investigating Full Scans/sec and we know what index is causing the spike in the

performance counter. Searching for just the index may return dozens of execution plans.

Alternatively, we could add a search for a particular operator, such as an index scan,

using the @op variable in the query provided.

Listing 14-42. Query Plan Cache for Index Usage and Physical Operation

DECLARE @IndexName sysname = 'IX_SalesOrderHeader_SalesPersonID';

DECLARE @op sysname = 'Index Scan';

;WITH XMLNAMESPACES (

 DEFAULT N'http://schemas.microsoft.com/sqlserver/2004/07/showplan'

)

SELECT cp.plan_handle,

 DB_NAME(dbid) + '.' + OBJECT_SCHEMA_NAME(objectid, dbid) + '.' +

OBJECT_NAME(objectid, dbid) AS database_object,

 qp.query_plan,

 c1.value('@PhysicalOp', 'nvarchar(50)'),

 c2.value('@Index', 'nvarchar(max)')

FROM sys.dm_exec_cached_plans cp

CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) qp

CROSS APPLY query_plan.nodes('//RelOp') r(c1)

OUTER APPLY c1.nodes('IndexScan/Object') AS o(c2)

WHERE c2.value('@Index', 'nvarchar(max)') = QUOTENAME(@IndexName, '[')

AND c1.exist('@PhysicalOp[. = sql:variable("@op")]') = 1;

Both of these queries provide mechanisms for getting in and investigating indexes

in their environment and seeing exactly how SQL Server is using them. This information

can be easily leveraged to identify when problems are occurring and why and then

provide a path to resolving indexing issues without a lot of the guesswork that many use

today.

Chapter 14 Index analysIs

594

 Summary
As this chapter showed, we can use the information collected from monitoring indexes

to analyze indexes to examine and identify indexes. The results from this analysis

help to determine what types of indexes to modify and where. Indexing tools such as

the Database Engine Tuning Advisor and missing index DMOs can be leveraged to

discover “the low-hanging fruit,” giving us a head start on analysis that we may not have

discovered otherwise. By following the processes laid out in this index analysis, we can

build a stable, repeatable indexing process that can help improve the performance of

your database platform and achieve stable performance over time.

Chapter 14 Index analysIs

595
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6_15

CHAPTER 15

Indexing Methodology
Throughout this book, we’ve discussed what indexes are, what they do, patterns for

building them, and many other aspects for determining how a SQL Server database

should be indexed. All that information is necessary for the last piece in indexing your

databases, which is a methodology for managing indexes. To do this, you need a process

for applying that knowledge to determine the indexes that are best for your environment

and provide the greatest gain to performance.

In this last chapter, we’ll discuss a general practice that can be used to build an

indexing methodology. You’ll look at the steps necessary to manage indexes. This

methodology can be applied to a single database, a server, or your entire SQL Server

environment. Regardless of the type of operations or business the database supports,

you can use the same methodology for building indexes.

 The Indexing Method
Before you can begin creating and dropping indexes, you first need a process to analyze

current and potential indexes. This process needs to provide a way to observe your

databases and determine the indexes that are appropriate for your databases. As

mentioned in previous chapters, indexing should be more of a science than an art. The

information needed to properly index a database is available; through some research,

you can identify potential indexes. Similar to how scientists use the Scientific Method to

prove theories, database administrators and developers can use the Indexing Method to

prove what indexes a database requires.

The Indexing Method used in this book is comprised of three phases: Monitor,

Analyze, and Implement (see Figure 15-1). Within each component are a number of

steps that, when completed, help to provide the appropriate indexing for the database.

At the completion of the Implement phase, the Indexing Method restarts the first phase,

making indexing a continuous and iterative process.

596

When starting with the Monitor phase, the primary activity is to observe the indexes.

The observations entail reviewing both the performance and the behavior of the indexes

(i.e., the indexing concepts described in Chapter 13). SQL Server will use the indexes

that it finds most beneficial from those available. By observing this behavior, you can

identify the indexes that are most often used and how they are used.

After the observations, the Analyze phase of the Indexing Method begins. In the

Analyze phase, detailed in Chapter 14, the statistics collected in the previous phase are

used to determine what indexes are best suited for the database. The goal is to identify

what indexes need to be created, dropped, and modified. Along with this, the impacts of

any indexing changes are also identified.

The last phase of the Indexing Method is the Implementation phase. In this phase,

the indexes from the last phase are applied, or deployed, to the databases. For every

database and environment, the deployment process may be different. For instance, the

process for deploying indexes on third-party databases differs from applications owned

by your company. Within this phase, though, there are core concepts that apply to all

environments; outside of physically building the indexes, you will need to communicate

the change plan and possible effects of the change. Then, you need to track the changes

over time. There is more to implementing indexes than just executing a CREATE INDEX

statement.

Figure 15-1. Indexing Method cycle

After the last phase completes, the Indexing Method begins again with the first

phase. In this way, indexing is a continuous and iterative process. The indexes that

provide the best performance today may not be the best indexes for tomorrow. Two

events primarily contribute to the need for changing indexes over time. The first is

Chapter 15 IndexIng Methodology

597

data usage, where the functions and features of applications can change over time,

so the purpose of the application can also change. Second, the data population and

distribution can, and usually will, change over time. With these changes, indexes may

shift out of usage, and other data access paths may be required. Data changes aren’t the

only things that can cause index use to change; the optimization in a future SQL Server

version or service pack may change how the optimizer uses indexes.

Now that the basics of the Indexing Method are covered, the remainder of this

chapter will focus on the Implement portion. The concepts for the Monitor and Analyze

phases are covered in Chapters 13 and 14, respectively. It’s important too that as you

learn more about indexes, you will discover new patterns that can be used to identify

indexes. As you learn more about indexing and your databases, you will find other

ways to look at performance and usage statistics that provide more, or better informed,

guidance. Use this book and the information you learn to continue to expand your

indexing methodology.

 Implement
The final phase of the Indexing Method is the Implement phase. This phase does as the

name implies: it implements the indexing changes that were determined as necessary

through the Analyze phase. There isn’t much to this phase from a process perspective,

but there are some important steps that need to be done during the Implement phase

that will help build out a successful process. The aim of the entire process is to improve

the performance of the database environment. With this aim, there are three key points

to remember during implementation:

• Communication

• Source code control (e.g., via deployment scripts)

• Execution

While the last step is the only one where the database is modified, the other two help

ensure that the changes will be noticed and that you can continue to use the Indexing

Method in the future.

Chapter 15 IndexIng Methodology

598

 Communication
The first hurdle in modifying the indexes on any database is the need to communicate

with management and users of the database your intent to change the database.

Modifications to the database can often raise red flags, especially when they are being

prescribed by nonowners of the application the database supports. Preparing for and

implementing open lines of communication between the owners of applications and

the database administration team will help not only in the indexing process but in other

areas of mutual interest. Without this communication, teams can be blindsided by the

indexing changes, which may impact something that the analysis did not uncover or a

feature that is planned but not yet released.

When it comes to communication, there are basically two items that need to be

prepared for the owners of the databases: an impact analysis of the indexing changes

and a status report of the changes after implementation.

 Impact Analysis

When preparing for changes to indexing on a database, it is important to highlight the

intended changes to the application performance. Historically, this has often been a

guessing game. There was not a lot of easily accessed information that would indicate

where an index is being used, how it is being used, and the frequency of use.

With the processes laid out in the Monitor phase, you gain the ability to confidently

know the use of an index. You can determine when it was last used and what operations

were included. There is information that can also be used to identify the trend in which

an index will no longer be used or is being used more frequently.

Through the Analyze phase, steps were laid out that allow the identification of

execution plans that are utilizing different indexes. Use these steps to identify where

an index change will have an impact and then perform sample executions of the T-SQL

statements before and after the indexing changes are made.

In the end, the impact analysis will function in two important roles within the

Implement phase. First, it will communicate to managers and peers the intent of the

indexing changes, informing them of the changes to validate what is being done and

allowing them the chance for feedback. Second, the impact analysis provides an

insurance policy in case an index change has an unexpected negative impact. This isn’t

to say that there won’t be negative repercussions to poor indexing recommendations,

Chapter 15 IndexIng Methodology

599

but with others involved and the impact documented, it is more likely that a negative

impact can be mitigated quicker and possibly identified before actual implementation.

Note In one environment that I worked in, some lightly used indexes were
removed from the database. they were generally used once per day. that one time
was for a business-critical import process that basically couldn’t perform without
those indexes. had an impact analysis been done prior to removing those indexes,
a lot of tough questions could have been avoided.

 Status Report

On the opposite end of the Implement phase is the status report. As the name implies,

the status report is a document that provides feedback to managers and peers about the

actual impact of indexes. This document does not need to be very deep, but it does need

to cover some key points. The status report should cover the following information:

• All index changes made

• Status on deployment of changes

• Brief performance review

• Information on any regressions noted

• What was learned in the deployment process

• Summary of issues encountered

Don’t get too mired in the details while writing the status report. If all goes well, there

will be additional Monitor and Analyze phases in the near future. In the end, the status

report needs to communicate two things. First, it provides an honest assessment of the

successes and failures in the indexing deployment. Second, and most importantly, it lists

what benefits are now being realized by the indexing changes. This is most important

because it is the ROI that managers need to see to be able to justify the time and effort

spent on indexing.

Chapter 15 IndexIng Methodology

600

Note one of the most successful things I did as a consultant was constantly
updating customers about the impact of indexing changes I’d make. a graph
with before and after performance often looked like a “self-pat on the back” with
some of the teams I was assisting, but the management that brought me in
found it incredibly useful in identifying the roI of bringing in consultants but also
communicating further up the line the effort being placed in resolving business
concerns with performance.

 Deployment Scripts
The primary deliverable from the Analyze phase is a list of index changes that are

planned for the databases in your environment. During the Implement phase, those

indexes need to be reviewed and prepared for deployment. As part of preparing the

indexes for deployment, three steps need to occur:

 1. Prepare the deployment and rollback of the schema.

 2. Save index changes to source code control.

 3. Share results of peer review with impact analysis.

 Prepare Deployment and Rollback of Schema

Usually, at the completion of the Analyze phase, you have a list of the index changes that

are being proposed. This list typically is not in a state that can be used for deployment at

the end of the phase. Between that point and the execution of the changes, the indexing

changes need to be put into a state that can be used for their deployment.

When building the deployment scripts, be sure to observe the idea of “doing no

harm” to the database. In other words, you need to build scripts that are intelligent

enough that they can be executed multiple times with the identical results. Also, this

means that scripts should be available to reverse any indexing changes being made.

Never assume that the previous indexing state of a table is being stored in source code

control. Check to be certain that the existing state is known and develop scripts to revert

to that state if needed.

The deployment scripts also need to be aware of the edition of SQL Server that is

being used. For instance, if you are using Enterprise Edition, leverage online index

Chapter 15 IndexIng Methodology

601

rebuilds for indexes that are being rebuilt with new characteristics. If appropriate for the

index, Enterprise Edition also allows for compression on the index, which can save space

and improve performance in many cases.

 Save Index Changes to Source Code Repository

As mentioned, the current state of the indexes on tables should be in a source code

repository. If they are not, then with this iteration through the Implement phase, it’s

time to do so. Source code repositories offer a place to store the code, or schema, for

a database to allow your organization to determine what the index, table, or store

procedure schema was at a specific date and time. Source code is often well managed

from an application perspective. Developers are usually quick to choose a tool and

leverage it for their applications.

Source code repositories allow you to recover to a point in time for the database

schema. If there are any development teams within your organization, they likely already

have a desired repository in place. This may be an internal repository like Perforce or an

externally available solution like GitHub.

 Peer Review with Impact Analysis

The last thing to do before the Execution step is to seek a peer review of the indexing

changes. There is nothing worse than working in a vacuum and not understanding

the whole impact of the changes that are being proposed against the applications that

use the databases. It is easy to get a tunnel vision by focusing on the indexing goal and

miss the business goals of the current deployment or overlook something that wasn’t

apparent in the index analysis.

The best way to avoid these pitfalls is to find a peer to review the indexing changes.

Bring to the peer the index deployment scripts and the impact analysis and go over the

changes. Your peer doesn’t necessarily need to know everything about the environment,

just a basic understanding of indexing. The aim of the peer review is to explain each

change. In this dialogue, your peer serves as a sounding board as you explain the

indexing need. This serves a dual role. First, your peer will be able to provide feedback

on the indexing change. Second, by discussing the changes, you may hear yourself

describe an indexing change that doesn’t sound correct when it is explained.

In some environments, you may not have a peer that you can turn to review the

indexes. In these cases, consider going to your manager for the peer review. If that is

not possible, talk to your manager about leveraging peers in your technical network.

Chapter 15 IndexIng Methodology

602

Leverage the forums and social networks to find either a peer or group of peers that will

be willing to review your changes with you. Using social networks, such as Twitter, to

connect with a technical peer and review some indexing changes is much better than

not having a peer review at all.

With the peer review complete, the indexes are ready for the next step in the

Implement phase: the step where the indexes are actually applied to the databases.

Note Within the SQl Server community, twitter is one of the more active
social networking tools. Use hashtags #sql and #sqlserver to find general
information on SQl Server. When looking for answers to questions specifically
about SQl Server, you can utilize the hashtag #sqlhelp. twitter also allows you
to add people to your conversation by including their twitter handle in the tweet.
For instance, the author of this book is available through the twitter handle
@stratesql.

 Execution
The last piece of the Implement phase is the execution of the T-SQL scripts that will

apply the indexing changes to the database. These scripts should already be prepared

through the Deploy Scripts step, and the scope of the changes should be well known

from the Communication step. Thus, the Execution step should be relatively painless as

the preparation work is already completed.

From an execution standpoint, the manner of execution is completely dependent on

your organization’s change control process. In some environments, there are automated

processes where scripts can be loaded to a deployment mechanism and executed on a

schedule. In others, the DBAs simply open SQL Server Management Studio and execute

each script until all the changes are completed. Whatever the mechanism, the key is that

at this stage the indexes get deployed.

As the deployment progresses, be sure to catalog the changes made and any issues

that arise during execution. Pay attention to unintended blocking on the databases. If

indexes are being deployed in an offline state, be sure to select an execution window that

is during the database maintenance window. Remember even online index operations

can cause short-lived blocking.

Chapter 15 IndexIng Methodology

603

 Repeat
At the beginning of this chapter, the discussion started by looking at the three phases

of the Indexing Method. The diagram for the process (Figure 15-1) shows the three

phases in an endless loop, with each phase leading to the next. This choice in layout was

intentional. Indexing is not a fixed-point activity. Once the first round of the Indexing

Method is completed, it is important to start the next round of indexing.

It can be tempting, when databases are properly tuned, to let the practice of indexing

slip and to focus on other priorities. Unfortunately, new features are often added to

applications as frequently as new data is added to the database. Both of these events will

change the way in which indexes are used by the database and the effectiveness of the

current state of “good” indexes.

To maintain the desired performance of the database platform, indexes must be

continuously reviewed. This isn’t to say that a full-time resource always needs to be

assigned to monitoring, analyzing, and implementing indexes. There does, though, need

to be an acceptance that at some interval an evaluation of the state of indexing will be

completed.

 Summary
As this chapter showed, the Indexing Method is quite similar to the Scientific Method.

Within your database platform, statistics can be collected on indexes in order to

identify where indexing issues may exist. These statistics can then be further utilized to

determine the types of indexes to modify and where. Indexing tools such as the Database

Engine Tuning Advisor and missing index DMOs can be leveraged to discover “the

low-hanging fruit,” giving you a head start on analysis that you may not have discovered

otherwise. By following the phases laid out in the Indexing Method, you can build a

stable, repeatable indexing process that can help improve the performance of your

database platform and achieve stable performance over time.

Chapter 15 IndexIng Methodology

605
© Jason Strate 2019
J. Strate, Expert Performance Indexing in SQL Server 2019, https://doi.org/10.1007/978-1-4842-5464-6

Index

A
Aggregation execution plan, 247
Automatically maintaining statistics

creation, 310
prevention, 311–312
updation, 310–311

B
Balance index count, 258
Best practices, Indexing

balance index count, 258
change management, 255
fill factor

database level, 256
index level, 257

indexing foreign key
columns, 257, 258

using clustered indexes on primary
keys, 256

Binary large object (BLOB), 213
Buffer allocation, 572–575
Bulk Changed Map (BCM) page, 37

C
CarrierTrackingNumber column, 232
Clustered indexes, 4, 87, 88

ever-increasing, 360

foreign key
IDENTITY property, 367–369
multiple header row, 371–373
single header row, 369, 370

GUID pattern, 380–383
identity column, 361–363
multiple column, 373–379
narrow, 360
static, 359
surrogate key, 363–366
unique, 360
use, 254

Columnstore index, 5, 6, 89, 413–420
Columnstore operational stats

header columns, 161
statistics columns, 161–162

Columnstore physical stats
header columns, 159
statistics columns, 159–160

Computed columns
execution plans, 449
indexed computed column, 450, 451
Person.Person, 448
queries, 448
STATISTICS IO, 449

Concatenation
execution plan for, 445

concatenation removed, 447
without spaces, 446

https://doi.org/10.1007/978-1-4842-5464-6

606

query, 445, 447, 448
STATISTICS IO, 445

concatenation removed, 447
without spaces, 446

CXPACKET, 557–565

D
Database administrators (DBAs), 331
Database Engine Tuning Advisor (DTA)

command-line utility
description, 331
first scenario, 346–348
scenario setup, 345
second scenario, 348–351
utility arguments, 340–344
utility syntax, 339, 340

DDL Statement, 333
deployment, 589
GUI tool

configuration screen, 334
default selections, 335
description, 331
indexes options, 337
progress screen, 336
recommendations, 337
tuning options configuration

screen, 336
workload options, 334, 335

limitations, 331
metadata, 588
PDSs, 332
recommendations, 588
tuning, effect on, 588
workload collection, 587
XML input file, 588

Database level fill factor, 256

Data conversion
execution plans, 458, 459
queries, 457
setup, 456
STATISTICS IO for, 459

Data definition language (DDL)
alter index, 18–21
command, 315–318
create index

index options, 15, 19–21
syntax, 14, 16
types, 14
UNIQUE keyword, 15

drop index, 22–24
Data storage

extents
mixed, 31
uniform, 32

pages (see Pages)
DBCC PAGE

allocations, 71
parameters, 68
print option

hex data, 76–77
hex rows, 74–77
page header, 72–74
row data, 77–80

syntax, 68
dbo.DatabaseLog, 572
dbo.IndexingCounters, 465, 469
Defragmentation, 291

drop and re-create, 295
index rebuild, 291–294
index reorganization, 294, 295
maintenance plans

rebuild index task, 298–300
reorganize index task, 296–298

T-SQL scripts, 301–307

Concatenation (cont.)

INDEX

607

Differential Change Map (DCM) page, 37
Duplicate indexes, 574–577
Dynamic management function (DMF), 323
Dynamic management objects (DMOs), 91

data cleanup, 501, 502
definition, 471
index operational stats

snapshot population, 482–491
snapshot tables stats, 478–481

index physical stats
history population, 497–500
history table, 494–496

index usage stats
monitoring steps, 472
snapshot population, 474, 475
snapshot tables stats, 472–474

missing index
benefits, 319
feedback, 319
included_columns, 328
limitations, 320
query performance, 326–328
SQL statements, 326
sys.dm_db_missing_index_

columns, 323
sys.dm_db_missing_index_details,

322, 323
sys.dm_db_missing_index_

groups, 323
sys.dm_db_missing_index_group_

stats, 324, 325
wait statistics

history population, 500, 501
index-related, 498
snapshot and history table, 498, 499
snapshot population, 499

Dynamic management view
(DMV), 322, 323

E
Event tracing

extended events, 509–513
SQL trace, 503–509

Extended events, 509–513
Extended Events session

columns, 510
creating and starting, 511
global fields, 511
stop, 513, 514

Extensible Markup Language (XML), 163
benefits, 164
cautions, 164
creation

Primary index, 167
Secondary index, 169
_xml_index_id, 171

selective, 171–176
types, 165

F
Fill factor

database level, 256
description, 256
index level, 257

Filtered index, 12
Foreign key, 257, 366–373
Forwarded record pointer, 81
Fragmentation

columnstore
delete operations, 286, 287
impact of inserts, 285
I/O statistics, 286
rowgroup resultset, 284
rowgroup statistics, 286
statistics I/O results, 287
table preparation, 282–284

Index

608

default values, 308
defragmentation

drop and re-create, 295
index rebuild, 291–294
index reorganization, 294, 295
strategies, 296–307

events, 262
heap bloat and forwarding

delete impact, 277–279
forward record impact, 280, 281
I/O impact, 279
I/O statistics, 281, 282

issues
contiguous reads, 291
index I/O, 288–291

NEWID() function, 263, 309
NEWSEQUENTIALID() function, 309
operations

delete, 270–272
insert, 262–266
shrink, 273
update, 266–270

prevention
data typing, 308
fill factor, 307

Full-text search (FTS), 6, 9
creation

catalog, 215, 216
CREATE TABLE and INSERT

statements, 215, 216
key indexes, 219
population, 220
StopLists, 220–223
syntax, 217–219

description, 213
index catalog views and

properties, 223–227

G
Global Allocation Map (GAM) page, 36
Globally unique identifier

(GUID), 380–383
Graphical user interface (GUI) tool

configuration screen, 334
default selections, 335
description, 331
indexes options, 337
progress screen, 336
workload options, 334, 335

H
Hash index, 8
Heaps

scenarios, 358, 359
temporary objects, 354–358

Heap tables, 3

I
Impact analysis, 598, 599
Implement phase, indexing method

communication
impact analysis, 598
status report, 599, 600

deployment scripts
impact analysis review, 601
preparation and rollback, 600
source code repository, 601

execution, 602
Index Allocation Map (IAM) pages, 38
Index analysis

components, 515
deployed, 516
DTA, 589–592
index plan usage, 591–593

Fragmentation (cont.)

INDEX

609

schema discovery
duplicate indexes, 574–577
heaps identification, 572–574
overlapping indexes, 577–581
unindexed foreign

keys, 581–586
server state review

buffer allocation, 572–575
performance counters, 518–554
wait statistics, 553–569

unused indexes, 589–591
Indexing

benefits, 231
clustered, 87, 88
columnstore, 89
compression

page-level, 13
row-level, 13

DDL (see Data definition language
(DDL))

heap, 87
metadata, 23–26
nonclustered, 88
overview, 1, 2
types

clustered index, 4
columnstore index, 5, 6
full-text search, 9
hash index, 8
heap tables, 3
nonclustered index, 5
range index, 8
spatial index, 7
XML index, 6, 7

variations
filtered index, 12
included columns, 11
partitioned index, 12, 13

primary key, 10
unique index, 10

Indexing databases
clustered indexes (see Clustered

indexes)
columnstore index

data warehouse, 414
guidelines, 415
performance improvements, 420
statistics IO results, 416–419

heaps
scenarios, 358
temporary objects, 354–358

non-clustered indexes (see Non-
clustered indexes)

page compression
benefits, 430
components, 430
implementation, 431
output, 431
query, 432
setup, 430

row compression
benefits, 429
fixed-length character

data, 426
implementation, 427
metadata changes, 425
numeric data types, 426
output, 428
query, 428, 429
setup, 426, 427

views
benefits, 438
considerations, 435
creation, 435, 436
queries, 436–438
summary information, 433

Index

610

Indexing method
cycle, 596
implement phase

communication, 598–600
deployment scripts, 600–602
execution, 602

phases, 595, 596
repeat process, 603

Indexing myths
best practices (see Best practices,

Indexing)
clustered indexes, physically ordered

records, 242–244
column filteration in multicolumn

indexes
index with columns, 239–241

deleting heaps
query results, 253
reusing data, 252

description, 229
fill factor

average space, 251
on inserts, 250
rebuilding clustered index, 250
table creation, clustered index, 249

index requirement
adding index, 233
orders of magnitude, 232
table without index, 232

online index operations
creating table, 236
index created with ONLINE

option, 238
index created without ONLINE

option, 239
monitoring events, 237
on nonclustered index creation, 238

ordering of index output
default aggregation execution

plan, 246
filtering on order, 248
parallelism, aggregation execution

plan, 247
unordered results, 245, 248

primary keys, clustered, 233–235
table, heap/clustered index, 253–257

Indexing tools
DMF, 323
DMOs (see Dynamic management

objects (DMOs))
DMV, 322, 323
DTA (see DTA)
PDSs, 332

Index level fill factor, 257
Index-level statistics

cardinality, 92
catalog views, 100, 101
DBCC SHOW_STATISTICS

density vector, 95, 96
histogram, 96–100
stats header, 93–95
syntax, 93

DDL statements, 109
query optimization, 109
STATS_DATE function, 101
sys.dm_db_stats_properties, 102–106

Index maintenance, see Fragmentation;
Statistics maintenance

Index monitoring
DMOs

data cleanup, 501, 502
definition, 471
index operational stats, 477–491
index physical stats, 491–497

INDEX

611

index usage stats, 471–477
wait statistics, 497–501

event tracing
Extended Events

session, 509–513
SQL Trace session, 503–509

performance counters
baseline table, 468
definition, 462
index-related, 463
populate counter baseline

table, 469, 470
snapshot script, 465–468
snapshot table, 464, 465

Index operational statistics
compression, 147–149
DML activity, 125–129
header columns, 124
latch contention, 139

page I/O latch, 140–142
page latch, 142–144

LOB access, 149–152
locking contention, 132

lock escalation, 137, 138
page lock, 135–137
row lock, 133–135

page allocation cycle, 144–147
parameters, 123
SELECT activity

forwarded fetch, 131, 132
range scan, 128, 129
singleton lookup, 129

syntax, 123
Index physical statistics

fragmentation statistics, 157, 158
header columns, 154
parameters, 154

row statistics, 155, 156
Index usage statistics

dynamic management
view, 110

header columns, 110–112
system columns, 119–122
user columns

user_lookups, 116–118
user_scans, 114–116
user_seeks, 112, 113
user_updates, 118, 119

Integrated Full Text Search
(iFTS), 214

International Standard Book Number
(ISBN), 5

IO_COMPLETION, 565

J, K
JavaScript Object Notation (JSON), 7

L
Large object (LOB) page, 39
LCK_M_∗, 566–568
LIKE comparison

execution plan for
710, 441
Longbrook, 442

query for
710, 440, 441
CONTAINS function, 443
Longbrook, 441

STATISTICS IO for
710, 440
CONTAINS function, 443
Longbrook, 441

Index

612

M
MakeValid() method, 186
Manually maintaining statistics

maintenance plans, 313, 314
methods, 312
T-SQL scripts

DDL command, 315–318
stored procedure, 315

Memory-optimized tables, 197
aspects, 202
creation, 199
hash index, 202

buckets, 203
execution time, 204
extended events session, 204
statistics query, 206

implementation, 198
insert data, 201
overview, 198
range index, 208

NONCLUSTERED index, 208
ORDER BY statements, 210
substantial performance, 209

metadata
sys.column_store_dictionaries, 25
sys.column_store_segments, 25
sys.fulltext_catalogs, 26
sys.fulltext_index_columns, 26
sys.fulltext_indexes, 26
sys.hash_indexes, 26
sys.index_columns, 24
sys.indexes, 23
sys.selective_xml_index_paths, 24
sys.spatial_indexes, 25
sys.xml_indexes, 24

Minimally Logged (ML), 37
MythEight Heap, 252
MythFive Table, creation, 243, 244

N
Natural key, 363–366
Noise words, 220
Non-clustered indexes, 5, 88

considerations, 384
covering index, 394–397
filtered index, 403–409
foreign keys, 408–413
included columns, 397–402
intersection pattern, 388–392
multiple column, 392–394
search columns, 385–388

O
Overlapping indexes, 577–581

P
Page Free Space (PFS), 35
PAGEIOLATCH_∗, 568–570
Page Life Expectancy/sec (PLE)

counter, 568
Pages

BCM page, 37
boot page, 34
data file page, 33, 34
data pages, 38
DBCC EXTENTINFO

allocations, 61, 62
output columns, 60
parameters, 60
syntax, 59

DBCC IND
allocations, 64–68
benefits, 64
output columns, 63
page type mappings, 64

INDEX

613

parameters, 62
syntax, 62

DBCC PAGE (see DBCC PAGE)
DCM page, 37
file header page, 34
GAM page, 36
IAM pages, 38
index pages, 39
LOB page, 40
offset array, 31
organizational structures

B-tree, 43–45
columnstore, 45–48
heap, 41–43

row placement, 31
SGAM page, 36
SQL Server

forwarded records, 81–83
page splits, 83–87

sys.dm_db_database_page_allocations
additional columns, 49, 55
DBCC IND output, 67
parameters, 48, 55
syntax, 48, 51, 54

Partitioned index, 12
Performance counters, 517
Performance counters, index analysis

deadlocks, 553–555
Forward Records/sec, 520

counter analysis, 519
rebuild heap script, 524
snapshot query, 521–523

FreeSpace Scans/sec
counter analysis, 525, 526
snapshot query, 526

Full Scans/sec
counter analysis, 527, 528
snapshot query, 529, 530

Index Searches/sec
counter analysis, 531
snapshot query, 534, 535

Lock Waits/sec
counter analysis, 548, 549
snapshot query, 550

Lock Wait Time
counter analysis, 545, 546
index analysis sample

results, 547
snapshot query, 546

Page Lookups/sec
counter analysis, 538, 539, 541, 542
snapshot query, 540, 543

Page Splits/sec
counter analysis, 535
snapshot query, 537, 538, 543, 544

Performance counters, index monitoring
baseline table, 468
definition, 462
index-related, 463
populate counter baseline

table, 469, 470
snapshot script, 465–468
snapshot table, 464, 465

Physical design structures (PDSs), 332
Primary key, creation, 234, 235

Q
Query Detail Tracking template, 204
Querying strategies

computed columns, 447–451
concatenation, 444–448
data conversions, 459–461
LIKE comparison, 439–443
scalar functions, 452–456

Query Store, 514

Index

614

R
Range index, 8
Rebuild Index Task, 298–300
Reorganize Index Task, 296–298

S
Scalar functions, queries strategies, 452
Schema modification lock, 235
Shared Global Allocation Map (SGAM)

page, 36
Spatial data indexes

adjusting bounding box, 194
cells-per-object rule, 179, 180
covering rule, 179
creation

GEOMETRY column, 182
GEOMETRY data type, 181
index options, 181
initial query & output, 184, 185
MakeValid() method, 186
STDistance(), 187
supporting methods, 188–190
table to hold GEOMETRY-related

data, 183, 184
ZIP code data, 186, 187

deepest cell rule, 180
description, 177
GEOMETRY index storage and

cells, 178
procedures, 192, 193
unique features and

restrictions, 195
views, 190–192

Spatial index, 7
SQL Trace session

adding events and columns, 506, 507
adding filters, 507

columns to be collected, 505
creation, 504
start, 508
stop, 509

Statistics maintenance
automatic, 310

creation, 310
in-memory tables, 312
prevention, 311, 312
updation, 310, 311

manual
maintenance plans, 313, 314
methods, 312
T-SQL scripts, 314–318

Status report, 599
STDistance(), 187
Stored procedure, 315
sys.dm_db_incremental_stats_

properties, 109
sys.dm_db_index_operational_stats, 481
sys.dm_db_stats_histogram, 107, 108

T
Tessellation, 179
T-SQL data definition language (DDL), 511
T-SQL scripts

fragmentation
building index defragmentation

statements, 306
collecting fragmenation data, 304
guidelines, 301
identifying fragmented indexes, 305
index defragmantion script

template, 302, 303
index defragmentation

statements, 306
properties window, 304

INDEX

615

manually maintaining statistics
DDL command, 315–318
stored procedure, 315

U, V
User-defined type (UDT), 15
Unindexed foreign keys, 581–586
Unused indexes, 589–591

W
Wait statistics analysis, index monitoring

history population, 500, 501
index related, 498

snapshot and history
table, 498, 499

snapshot population, 499
Wait statistics, index analysis

analysis output, 557
analysis query, 554, 555
CXPACKET, 557–565
definitions, 556
IO_COMPLETION, 565
LCK_M_∗, 566–568
PAGEIOLATCH_∗, 568–570

X, Y, Z
XML Index, 6, 7

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Index Fundamentals
	Why Build Indexes?
	Major Index Types
	Heap Tables
	Clustered Indexes
	Nonclustered Indexes
	Columnstore Indexes

	Other Index Types
	JSON and XML Indexes
	Spatial Indexes
	Hash and Range Indexes
	Full-Text Search

	Index Variations
	Primary Key
	Unique Index
	Included Columns
	Partitioned Indexes
	Filtered Indexes

	Compression and Indexing
	Index Data Definition Language
	Creating an Index
	Altering an Index
	Dropping an Index

	Index Metadata
	sys.indexes
	sys.index_columns
	sys.index_resumable_operations
	sys.xml_indexes
	sys.selective_xml_index_paths
	sys.selective_xml_index_namespaces
	sys.spatial_indexes
	sys.spatial_index_tessellations
	sys.column_store_dictionaries
	sys.column_store_segments
	sys.column_store_row_groups
	sys.hash_indexes
	sys.fulltext_catalogs
	sys.fulltext_indexes
	sys.fulltext_index_columns

	Summary

	Chapter 2: Index Storage Fundamentals
	Storage Basics
	Pages
	Extents

	Page Types
	File Header Page
	Boot Page
	Page Free Space Page
	Global Allocation Map Page
	Shared Global Allocation Map Page
	Differential Changed Map Page
	Minimally Logged Page
	Index Allocation Map Page
	Data Page
	Index Page
	Large Object Page

	Organizing Pages
	Heap Structure
	B-Tree Structure
	Columnstore Structure

	Examining Pages
	Dynamic Management Functions
	sys.dm_db_database_page_allocations
	sys.dm_db_page_info

	DBCC Commands
	DBCC EXTENTINFO
	DBCC IND
	DBCC PAGE
	Page Header–Only Print Option
	Hex Rows Print Option
	Hex Data Print Option
	Row Data Print Option

	Page Fragmentation
	Forwarded Records
	Page Splits

	Index Characteristics
	Heap
	Clustered Index
	Nonclustered Index
	Columnstore Index

	Summary

	Chapter 3: Index Metadata and Statistics
	Column-Level Statistics
	DBCC SHOW_STATISTICS
	Stats Header
	Density Vector
	Histogram

	Catalog Views
	sys.stats
	sys.stats_columns

	STATS_DATE
	sys.dm_db_stats_properties
	sys.dm_db_stats_histogram
	sys.dm_db_incremental_stats_properties
	Statistics DDL
	Colum-Level Statistics Summary

	Index Usage Statistics
	Header Columns
	User Columns
	System Columns
	Index Usage Stats Summary

	Index Operational Statistics
	Header Columns
	DML Activity
	SELECT Activity
	Range Scan
	Singleton Lookup
	Forwarded Fetch

	Locking Contention
	Row Lock
	Page Lock
	Lock Escalation

	Latch Contention
	Page I/O Latch
	Page Latch

	Page Allocation Cycle
	Compression
	LOB Access
	Row Version
	Index Operational Stats Summary

	Index Physical Statistics
	Header Columns
	Row Statistics
	Fragmentation Statistics
	Index Physical Stats Summary

	Columnstore Statistics
	Columnstore Physical Stats
	Header Columns
	Statistics Columns

	Columnstore Operational Stats
	Header Columns
	Statistics Columns

	Summary

	Chapter 4: XML Indexes
	XML Data
	Benefits
	Cautions

	XML Indexes
	Primary/Secondary XML Indexes
	Primary XML Index
	Secondary XML Index

	Selective XML Indexes

	Summary

	Chapter 5: Spatial Indexing
	How Spatial Data Is Indexed
	Creating Spatial Indexes
	Supporting Methods with Indexes
	Understanding Statistics, Properties, and Information
	The Views
	The Procedures

	Tuning Spatial Indexes
	Restrictions on Spatial Indexes
	Summary

	Chapter 6: Indexing Memory-Optimized Tables
	Memory-Optimized Tables Overview
	Hash Indexes
	Range Indexes
	Summary

	Chapter 7: Full-Text Indexing
	Full-Text Indexing
	Creating a Full-Text Example
	Creating a Full-Text Catalog
	Creating a Full-Text Index
	Syntax
	Key Indexes
	Population
	StopLists

	Full-Text Search Index Catalog Views and Properties

	Summary

	Chapter 8: Indexing Myths and Best Practices
	Index Myths
	Myth 1: Databases Don’t Need Indexes
	Myth 2: Primary Keys Are Always Clustered
	Myth 3: Online Index Operations Don’t Block
	Myth 4: Any Column Can Be Filtered in Multicolumn Indexes
	Myth 5: Clustered Indexes Store Records in Physical Order
	Myth 6: Indexes Always Output in the Same Order
	Myth 7: Fill Factor Is Applied to Indexes During Inserts
	Myth 8: Deleting from Heaps Results in Unrecoverable Space
	Myth 9: Every Table Should Have a Heap/Clustered Index

	Index Best Practices
	Index to Your Current Workload
	Use Clustered Indexes on Primary Keys by Default
	Specify Fill Factors
	Database-Level Fill Factor
	Index-Level Fill Factor

	Index Foreign Key Columns
	Balance Index Count

	Summary

	Chapter 9: Index Maintenance
	Index Fragmentation
	Fragmentation Operations
	Insert Operations
	Update Operations
	Delete Operations
	Shrink Operations

	Fragmentation Variants
	Heap Bloat and Forwarding
	Columnstore Fragmentation

	Fragmentation Issues
	Index I/O
	Contiguous Reads

	Defragmentation Options
	Index Rebuild
	Index Reorganization
	Drop and Create

	Defragmentation Strategies
	Maintenance Plans
	Reorganize Index Task
	Rebuild Index Task
	Maintenance Plan Summary

	T-SQL Scripts

	Preventing Fragmentation
	Fill Factor
	Data Typing
	Default Values

	Index Statistics Maintenance
	Automatically Maintaining Statistics
	Automatic Creation
	Automatic Updating
	Preventing Auto Update
	In-Memory Statistics

	Manually Maintaining Statistics
	Maintenance Plans
	T-SQL Scripts
	Stored Procedure
	DDL Command

	Summary

	Chapter 10: Indexing Tools
	Missing Indexes
	Explaining the DMOs
	sys.dm_db_missing_index_details
	sys.dm_db_missing_index_columns
	sys.dm_db_missing_index_groups
	sys.dm_db_missing_index_group_stats

	Using the DMOs

	Database Engine Tuning Advisor
	Explaining the DTA
	Using the DTA GUI
	Using the DTA Utility

	Summary

	Chapter 11: Indexing Strategies
	Heaps
	Temporary Objects
	Other Heap Scenarios

	Clustered Indexes
	Identity Sequence
	Natural Key
	Foreign Key
	Multiple Column
	Globally Unique Identifier

	Nonclustered Indexes
	Search Columns
	Index Intersection
	Multiple Column
	Covering Index
	Included Columns
	Filtered Indexes
	Foreign Keys

	Columnstore Index
	JSON Indexing
	Index Storage Strategies
	Row Compression
	Page Compression

	Indexed Views
	Summary

	Chapter 12: Query Strategies
	LIKE Comparison
	Concatenation
	Computed Columns
	Scalar Functions
	Data Conversion
	Summary

	Chapter 13: Monitoring Indexes
	Performance Counters
	Dynamic Management Objects
	Index Usage Stats
	Index Operational Stats
	Index Physical Stats
	Wait Statistics
	Data Cleanup

	Event Tracing
	SQL Trace
	Extended Events

	Query Store
	Summary

	Chapter 14: Index Analysis
	Review of Server State
	Performance Counters
	Forwarded Records per Second
	FreeSpace Scans and Page Fetches per Second
	Full Scans per Second
	Index Searches per Second
	Page Splits per Second
	Page Lookups per Second
	Page Compression
	Lock Wait Time
	Lock Waits per Second
	Number of Deadlocks per Second

	Wait Statistics
	CXPACKET
	IO_COMPLETION
	LCK_M_∗
	PAGEIOLATCH_∗

	Buffer Allocation

	Schema Discovery
	Identify Heaps
	Duplicate Indexes
	Overlapping Indexes
	Unindexed Foreign Keys
	Uncompressed Indexes

	Database Engine Tuning Advisor
	Unused Indexes
	Index Plan Usage
	Summary

	Chapter 15: Indexing Methodology
	The Indexing Method
	Implement
	Communication
	Impact Analysis
	Status Report

	Deployment Scripts
	Prepare Deployment and Rollback of Schema
	Save Index Changes to Source Code Repository
	Peer Review with Impact Analysis

	Execution

	Repeat
	Summary

	Index

