
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Enterprise JavaBeans 3.1

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

SIXTH EDITION

Enterprise JavaBeans 3.1

Andrew Lee Rubinger and Bill Burke

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Enterprise JavaBeans 3.1, Sixth Edition
by Andrew Lee Rubinger and Bill Burke

Copyright © 2010 Andrew Lee Rubinger and William J. Burke, Jr. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Teresa Elsey
Copyeditor: Genevieve d’Entremont
Proofreader: Teresa Elsey

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
June 1999: First Edition.
March 2000: Second Edition.
September 2001: Third Edition.
June 2004: Fourth Edition.
May 2006: Fifth Edition.
September 2010: Sixth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Enterprise JavaBeans 3.1, Sixth Edition, the image of a wallaby and joey, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-15802-6

[M]

1283539129

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

Preface . xv

Part I. Why Enterprise JavaBeans?

1. Introduction . 3
The Problem Domain 3

Breaking Up Responsibilities 3
Code Smart, Not Hard 6
The Enterprise JavaBeans™ 3.1 Specification 8
Review 10

2. Component Types . 11
Server-Side Component Types 12

Session Beans 12
Message-Driven Beans (MDBs) 15

Entity Beans 16
The Java Persistence Model 17

The Model Isn’t Everything 17

3. Container Services . 19
Dependency Injection (DI) 20
Concurrency 21
Instance Pooling/Caching 21
Transactions 23
Security 23
Timers 24
Naming and Object Stores 24
Interoperability 25
Lifecycle Callbacks 25
Interceptors 26

v

www.allitebooks.com

http://www.allitebooks.org

Platform Integration 27
Bringing It Together 27

4. Developing Your First EJBs . 29
Step 1: Preparation 29

Definitions 29
Naming Conventions 32
Conventions for the Examples 32

Step 2: Coding the EJB 33
The Contract 33
The Bean Implementation Class 34
Out-of-Container Testing 35
Integration Testing 36

Summary 39

Part II. Server-Side Component Models

5. The Stateless Session Bean . 43
The XML Deployment Descriptor 45
SessionContext 46

EJBContext 47
The Lifecycle of a Stateless Session Bean 49

The Does Not Exist State 50
The Method-Ready Pool 50

Example: The EncryptionEJB 52
The Contract: Business Interfaces 53
Application Exceptions 54
Bean Implementation Class 55
Accessing Environment Properties (Injection and Lookup) 57

Asynchronous Methods 60

6. The Stateful Session Bean . 63
The Lifecycle of a Stateful Session Bean 64

The Does Not Exist State 65
The Method-Ready State 65
The Passivated State 66

Example: The FileTransferEJB 68
The Contract: Business Interfaces 69
Exceptions 70
Bean Implementation Class 70
POJO Testing Outside the Container 74
Integration Testing 77

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

7. The Singleton Session Bean . 81
Concurrency 82

Shared Mutable Access 84
Container-Managed Concurrency 86
Bean-Managed Concurrency 87

Lifecycle 87
Explicit Startup 87

Example: The RSSCacheEJB 88
Value Objects 89
The Contract: Business Interfaces 92
Bean Implementation Class 92

8. Message-Driven Beans . 97
JMS and Message-Driven Beans 98

JMS as a Resource 98
JMS Is Asynchronous 99
JMS Messaging Models 100
Learning More About JMS 103

JMS-Based Message-Driven Beans 103
@MessageDriven 103

The Lifecycle of a Message-Driven Bean 108
The Does Not Exist State 109
The Method-Ready Pool 109

Connector-Based Message-Driven Beans 111
Message Linking 114

Session Beans Should Not Receive Messages 114
The JMS APIs 115
Example: The StatusUpdateEJBs 118

Part III. EJB and Persistence

9. Persistence: EntityManager . 127
Entities Are POJOs 128
Managed Versus Unmanaged Entities 130

Persistence Context 130
Packaging a Persistence Unit 133

The Persistence Unit Class Set 135
Obtaining an EntityManager 136

EntityManagerFactory 137
Obtaining a Persistence Context 138

Interacting with an EntityManager 140
Example: A Persistent Employee Registry 141

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

A Transactional Abstraction 141
Persisting Entities 142
Finding and Updating Entities 144
Removing Entities 147
refresh() 148
contains() and clear() 148
flush() and FlushModeType 148
Locking 149
unwrap() and getDelegate() 149

10. Mapping Persistent Objects . 151
The Programming Model 152

The Employee Entity 152
The Bean Class 152
XML Mapping File 154

Basic Relational Mapping 155
Elementary Schema Mappings 155

Primary Keys 157
@Id 157
Table Generators 158
Sequence Generators 159
Primary-Key Classes and Composite Keys 160

Property Mappings 164
@Transient 164
@Basic and FetchType 164
@Lob 166
@Temporal 166
@Enumerated 167

@Embedded Objects 167

11. Entity Relationships . 171
The Seven Relationship Types 171

One-to-One Unidirectional Relationship 173
One-to-One Bidirectional Relationship 176
One-to-Many Unidirectional Relationship 178
Many-to-One Unidirectional Relationship 181
One-to-Many Bidirectional Relationship 182
Many-to-Many Bidirectional Relationship 184
Many-to-Many Unidirectional Relationship 187

Mapping Collection-Based Relationships 188
Ordered List-Based Relationship 188
Map-Based Relationship 189

Detached Entities and FetchType 190

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Cascading 191
PERSIST 192
MERGE 192
REMOVE 193
REFRESH 193
ALL 193
When to Use Cascading 194

12. Entity Inheritance . 195
Single Table per Class Hierarchy 196

Advantages 198
Disadvantages 198

Table per Concrete Class 199
Advantages 200
Disadvantages 200

Table per Subclass 200
Advantages 203
Disadvantages 203

Mixing Strategies 203
Nonentity Base Classes 203

13. Queries, the Criteria API, and JPA QL . 205
Query API 206

Parameters 208
Date Parameters 209
Paging Results 209
Hints 210
FlushMode 210

JPA QL 211
Abstract Schema Names 211
Simple Queries 212
Selecting Entity and Relationship Properties 213
Constructor Expressions 215
The IN Operator and INNER JOIN 215
LEFT JOIN 216
Fetch Joins 217
Using DISTINCT 217
The WHERE Clause and Literals 218
The WHERE Clause and Operator Precedence 218
The WHERE Clause and Arithmetic Operators 219
The WHERE Clause and Logical Operators 219
The WHERE Clause and Comparison Symbols 219
The WHERE Clause and Equality Semantics 220

Table of Contents | ix

The WHERE Clause and BETWEEN 221
The WHERE Clause and IN 221
The WHERE Clause and IS NULL 222
The WHERE Clause and IS EMPTY 223
The WHERE Clause and MEMBER OF 223
The WHERE Clause and LIKE 224
Functional Expressions 224
The ORDER BY Clause 228
Bulk UPDATE and DELETE 229

Native Queries 230
Scalar Native Queries 230
Simple Entity Native Queries 230
Complex Native Queries 231

Named Queries 232
Named Native Queries 233

14. Entity Callbacks and Listeners . 235
Callback Events 235
Callbacks on Entity Classes 236
Entity Listeners 237

Default Entity Listeners 238
Inheritance and Listeners 238

Part IV. Container Services

15. Security . 243
Authentication and Identity 244
Authorization 245
Example: A Secured School 246

The Business Interface 246
Assigning Method Permissions 247
Programmatic Security 249
The RunAs Security Identity 251

16. JNDI, the ENC, and Injection . 255
Global JNDI 255
The JNDI ENC 256

What Can Be Registered in the JNDI ENC? 257
How Is the JNDI ENC Populated? 257
How Are Things Referenced from the ENC? 258

Reference and Injection Types 264
EJB References 264

x | Table of Contents

EntityManagerFactory References 266
EntityManager References 269
Resource References 271
Resource Environment and Administered Objects 275
Environment Entries 275
Message Destination References 277

17. Transactions . 279
ACID Transactions 279

Example: The BlackjackEJB 281
Helper EJBs for Testing Transactions 283
Is the BlackjackEJB Atomic? 284
Is the BlackjackEJB Consistent? 285
Is the BlackjackEJB Isolated? 285
Is the BlackjackEJB Durable? 285

Declarative Transaction Management 286
Transaction Scope 286
Transaction Attributes 287
Transaction Propagation 293

Isolation and Database Locking 298
Dirty, Repeatable, and Phantom Reads 298
Database Locks 299
Transaction Isolation Levels 300
Balancing Performance Against Consistency 301
Optimistic Locking 302
Programmatic Locking 303

Nontransactional EJBs 303
Explicit Transaction Management 304

Transaction Propagation in Bean-Managed Transactions 307
Heuristic Decisions 308
UserTransaction 309
Status 310
EJBContext Rollback Methods 312

Exceptions and Transactions 313
Application Exceptions Versus System Exceptions 313

Transactional Stateful Session Beans 318
The Transactional Method-Ready State 320

Conversational Persistence Contexts 321

18. Interceptors . 323
Intercepting Methods 323

Interceptor Class 325
Applying Interceptors 327

Table of Contents | xi

Interceptors and Injection 331
Intercepting Lifecycle Events 333

Custom Injection Annotations 333
Exception Handling 335

Aborting a Method Invocation 336
Catch and Rethrow Exceptions 336

Interceptor Lifecycle 338
Bean Class @AroundInvoke Methods 338

19. Timer Service . 341
Example: A Batch Credit Card Processing System 342

The Business Interface 343
javax.ejb.ScheduleExpression and @javax.ejb.Schedule 344
The Bean Implementation Class 345
The TimerService 347
The Timer 348

Transactions 350
Stateless Session Bean Timers 351
Message-Driven Bean Timers 352

20. EJB 3.1: Web Services Standards . 355
Web Services Overview 355
XML Schema and XML Namespaces 356

XML Schema 356
XML Namespaces 361

SOAP 1.1 368
Web Services Styles 369
Exchanging SOAP Messages with HTTP 370
Now You See It, Now You Don’t 370

WSDL 1.1 371
The <definitions> Element 372
The <portType> and <message> Elements 374
The <types> Element 375
The <binding> and <service> Elements 377

UDDI 2.0 379
From Standards to Implementation 380

21. EJB 3.1 and Web Services . 381
Accessing Web Services with JAX-RPC 381

Generating JAX-RPC Artifacts from WSDL 382
Calling a Service from an EJB 387
The <service-ref> Deployment Element 388
The JAX-RPC Mapping File 389

xii | Table of Contents

Defining a Web Service with JAX-RPC 391
The WSDL Document 392
The Service Endpoint Interface 393
The Stateless Bean Class 393
The Deployment Files 394

Using JAX-WS 396
The @WebService Annotation 396
The @WebMethod Annotation 397
The @SOAPBinding Annotation 398
The @WebParam Annotation 399
The @WebResult Annotation 400
The @OneWay Annotation 401
Separating the Web Services Contract 401
The Service Class 402
The Service Endpoint Interface 403
The @WebServiceRef Annotation 403

Other Annotations and APIs 405
JAXB 405

Taking JAXB Further 407
Conclusion 407

Part V. Examples

A. FirstEJB Example . 415

B. Stateless Session EJB: Encryption Example . 429

C. Stateful Session EJB: FTP Client Example . 453

D. Singleton Session EJB: RSS Cache Example . 505

E. Message-Driven EJB: Status Update Listeners Example . 527

F. Java Persistence APIs: Employee Registry Example . 557

G. Security: Secured School Example . 643

H. Transactions: Blackjack Game Example . 663

I. Interceptors: TV Channel Service Example . 691

Table of Contents | xiii

J. Timer Service: Credit Card Processor Example . 719

Index . 727

xiv | Table of Contents

Preface

Author’s Note
Reluctantly succumbing to my father’s urging in the spring of 2000, I enrolled in my
first software development course at the University of Massachusetts. Following years
of frustration getting my computer to “just do what I want,” I quickly found our roles
inverted; I was in charge of the machine.

Academia proved a bit abstract to my sophomoric eyes, and after those first few months
of study, I yearned to make programs that delivered real user value. Endless trial-and-
error led me to the conclusion that it’s best not to write every little thing on your own—
it was more efficient to build upon the work of others.

By then the JBoss open source community was picking up steam with this thing called
an “Application Server,” a neat program that ran other programs. To a junior developer
it meant no more networking code. No more manual database connections. No more
object pools or caches. It meant no more speaking like a computer. It meant writing
the programs I wanted to build, not the mechanics underneath.

My experience with this enterprise software miraculously made me marketable enough
to snag a post-college job in the middle of the dot-com fallout, and during my tenure
there we enrolled in a weeklong training session from the source—JBoss, Inc.

The reputation of our instructor preceded his arrival, his name sprinkled about the
JBoss codebase, popular forums, and the upcoming EJB 3.0 specification. Bill Burke
came to deliver course material, but in my eyes he planted the seed that it’s possible to
become part of a greater community where people talk about software problems, cri-
tique one another’s ideas in public, and generally get paid to contribute to the global
computing effort.

Over the next few years I stayed active on the user forums and submitted patches,
looking to improve upon the new JBoss EJB3 container. One day my mail client blinked
with an incoming message from the team lead, Carlo de Wolf:

There is an opening for an EJB 3 developer in my team. Are you interested?

Why, yes.

xv

The ethos of my development from inside JBoss and Red Hat have been the same as
they were from the start: keep application programmers writing application code.

One fall night at a team dinner, Bill extended to me the reins of his hugely successful
EJB book from O’Reilly, the same text that initially showed me the ropes. This edition
is the product of that discussion.

Who Should Read This Book
This book explains and demonstrates the fundamentals of the EJB 3.1 and Java Per-
sistence programming models. Although EJB makes application development much
simpler, it is still a complex technology that requires a great deal of time and study to
master. This book provides a straightforward, no-nonsense explanation of the under-
lying technology, Java™ classes and interfaces, the component model, and the runtime
behavior of EJB. It does not include material on previous versions of the specification,
however.

Although this book focuses on the fundamentals, it’s not a “dummies” book. EJB is an
extremely complex and ambitious enterprise technology. While using EJB may be fairly
simple, the amount of work required to understand and master EJB is significant. Before
reading this book, you should be fluent in the Java language and have some practical
experience developing business solutions. Experience with distributed object systems
is not a must, but you will need some experience with JDBC (or at least an under-
standing of the basics) to follow the examples in this book. If you are unfamiliar with
the Java language, I recommend Learning Java; this book was formerly Exploring
Java (both from O’Reilly). If you are unfamiliar with JDBC, I recommend Database
Programming with JDBC and Java (O’Reilly). If you need a stronger background in
distributed computing, I recommend Java Distributed Computing (O’Reilly).

How This Book Is Organized
This book is organized in five parts: Parts I through IV make up the technical manu-
script, while Part V comprises the examples. The technical manuscript explains what
EJB is, how it works, and when to use it. Part V provides step-by-step instructions for
installing, configuring, and running the examples.

The technical manuscript was adapted from Bill Burke and Richard Monson-Haefel’s
fifth edition of this book by yours truly, Andrew Lee Rubinger. The code contained
herein is not vendor-specific in any way, and it will often value concision over verbose
code samples. The intent of this section is to focus on conceptual understanding.

xvi | Preface

http://oreilly.com/catalog/9780596008734/
http://oreilly.com/catalog/9781565922716/
http://oreilly.com/catalog/9781565922716/
http://oreilly.com/catalog/9781565926165/
http://oreilly.com/catalog/9781565926165/
http://oreilly.com/catalog/9781565922068/

Part I, Why Enterprise JavaBeans?
Multiuser distributed system are inherently complex. To ignore the issues they present
is to ask for trouble down the line. Luckily, you don’t have to do all the work yourself;
Chapters 1 through 4 outline the benefits of taking advantage of EJB—a component
model for simplified development of enterprise applications.

Part II, Server-Side Component Models
In Chapters 5 through 8 we dive into the mechanics of EJB with relation to business
logic. We’ll explore the various models available and discuss when each may be
appropriate.

Part III, EJB and Persistence
While the server-side component models typically speak to actions, the EJB Entity
model addresses the need to interact with persistent state. Java Persistence exposes
relational data as objects, and EJB comes with integration built-in. Chapters 9 through
14 cover these topics.

Part IV, Container Services
EJB is armed with a powerful feature set ensuring secure and consistent execution of
your application. Chapters 15 through 21 will uncover the utility and configuration of
these helpful services. Jason T. Greene adapted Chapters 20 and 21.

Part V, Examples
The examples workbook shows how to execute examples from those chapters in the
book that include at least one significant example. You’ll want to read the introduction
to the workbook to set up your build environment and configure it to run the examples.
After that, just go to the workbook chapter that matches the chapter you’re reading.
The examples themselves will have a release cycle that outlives this book, so you may
want to check back to get bug fixes, enhancements, and other updates as time goes on.

Software and Versions
This book covers EJB 3.1 and Java Persistence 2.0. It uses Java language features from
the Java SE 6 platform. Because the focus of this book is on developing vendor-
independent EJB components and solutions, we have stayed away from proprietary
extensions and vendor-dependent idioms wherever possible. You can use any EJB-
compliant server with this book, but you should be familiar with your server’s specific

Preface | xvii

installation, deployment, and runtime-management procedures to work with the
examples.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission; in fact, all example code has open source licensing. Selling or distributing
a CD-ROM of text from O’Reilly books does require permission, however. Answering
a question by citing this book and quoting example code does not require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, copyright holder, and ISBN. For example: “Enterprise JavaBeans
3.1, Sixth Edition, by Andrew Lee Rubinger and Bill Burke (O’Reilly). Copyright 2010
Andrew Lee Rubinger and William J. Burke, Jr., 9780596158026.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

xviii | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://www.allitebooks.org

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596158026

To comment on or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the
O’Reilly Network, see the O’Reilly website at:

http://www.oreilly.com

Preface | xix

http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9780596158026
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Acknowledgments
Many individuals share the credit for this book’s development and delivery. Michael
Loukides, the editor, and his team were pivotal to the success of every edition of this
book. Without their experience, craft, and guidance, this book would not have been
possible. I want to thank Jason T. Greene for taking over the web services chapters. I
had no desire to learn JAX-WS beyond the @WebService annotation. Without the earlier
work of Richard Monson-Haefel and Bill Burke, this book would not have been pos-
sible. It amazes me how the structure of this book could last six editions, and it is a
testament to Bill and Richard’s ability to succinctly structure complex topics into a
cohesive text.

I particularly want to thank Bill for passing the baton to me on this series. A champion
of my career from early on, you’ve encouraged me to get involved in coding, blogging,
and accepting new challenges. You’ve been a force in our industry since I was learning
a “for” loop, and your continued relevance now in the REST world is incredibly
inspiring.

My coworkers, both within JBoss and around the community, have played no small
part in the success of my software and this book.

Carlo de Wolf, whether he likes it or not, has been the technical mentor every developer
should have. He’s invested continually in my growth for years, and it’s difficult to
understate my appreciation for both his guidance and friendship.

Jaikiran Pai rounds out our EJB3 team at JBoss. Like me, he came from the community,
and his dedication to our users and others in our group is noticeable every day, without
fail, on our forums and mailing lists. You are certainly a jack of all trades.

The Application Server team and members of the #jboss-dev Freenode IRC Channel
comprise a support system without which my code would surely be deficient. David
Lloyd, Jason Greene, Brian Stansberry, Ales Justin, and Bob McWhirter: you boys are
brilliant and selfless.

Our newly minted JBoss Testing team brings dedication to usability to a new level.
Aslak Knutsen, Dan Allen, and Pete Muir: your work has made the examples portion
of this book possible, and I’ve no doubt that we’re on the cusp of a revolution that will
bring simplicity back to functional testing of Enterprise Java. Let’s keep plugging.

The JBoss Boston User’s Group gave me a stage and place to geek out with friends.
Until the next meeting, Jesper Pedersen, Shelly McGowan, Scott Marlow, and John
Doyle.

Tim Roberts: You employed me as a college kid and let me learn open source on your
dime. It was trial by fire, and I thank you for not breaking out the extinguisher before
I developed my chops.

Marc Elliott and Matt Warren: You gave me my first job out of school, and your pa-
tience in cultivating a useful employee out of me will always be remembered.

xx | Preface

Brian Weisenthal and Morgan Lang of 9mmedia in New York City: Together we built
some of the slickest-looking applications I’ve seen to this day. You’re deeply successful
in rich media, and it was a pleasure building the backend for such impressive software.
Thank you for graciously allowing me to pursue a career at JBoss.

Many expert technical reviewers helped ensure that the material was technically accu-
rate and true to the spirit of EJB and Java Persistence. Of special note are Trenton D.
Adams and Juraci Paixao Krohling, who’ve sent great comments throughout the
process.

I’d also like to thank my personal entourage, though their influence was mostly detri-
mental to the completion of this book. Prelack, Fleischer, Halbert, Rudman, Clark:
You locked me in a moving car and kidnapped me to a casino the weekend before my
first draft was due. Jonathan Adam: You’re smart and fair, and long ago eclipsed me
in any number of ways. No brother could ever be more proud than I am of you.

Grandma Natalie and Grandpa Jerry Glass, you’ve invested in my education and have
encouraged my intellectual curiosity. And you make the best bagels-n-lox breakfast
known to man.

Mom and Dad, you supported me when you disagreed with me. You whipped me into
shape when I was lazy. You’re excellent at your jobs, and you’re even finer human
beings. Thank you for being such an excellent example.

Preface | xxi

PART I

Why Enterprise JavaBeans?

If your path to Enterprise Java is anything like mine, you’ve arrived here hoping to be
more productive in application development. Perhaps you’ve heard some good or bad
things about this thing called “EJB,” and you’d like to explore some more. Perhaps
some EJB technology is already in place at work, and you’re looking to understand it
a bit deeper.

The fact is that Enterprise JavaBeans is much more than a set of APIs. It is a simplified
programming model that, when understood at a conceptual level, has the power to
easily adapt lightweight Java classes into powerful business components. In short, EJB
lets you focus on the work you do best—writing your application logic.

In this section we’ll start with a bird’s-eye view of the issues facing every software
developer, examining how EJB removes common problems from your concern.

CHAPTER 1

Introduction

The Problem Domain
Application development can be a deceivingly complex undertaking.

Not only must our programs do their jobs, they must do them well. There’s a laundry
list of characteristics that Good Software implies:

• Secure

• Sound/maintains integrity

• Scalable

• Interoperable

• Robust/resilient

• Correct/functions as specified

And while these are all prerequisites to a finished product, not a single one is specific
to any business. Across the world, programmers slave over their terminals, spinning
up custom solutions to the same fundamental issues facing everyone else.

Bluntly put, this is a waste.

Breaking Up Responsibilities
For the sake of simplicity, we may categorize all code in a system into one of three
flavors:

• Core concerns

• Cross-cutting concerns

• Plumbing

3

Core concerns

The primary purpose of an application is to satisfy business logic, the set of rules that
dictate its expected behavior. More simply, this is what a program does. For instance,
an email client must be able to let its users read, compose, send, and organize email.
All functions related to the fulfillment of business logic fall into the category of core
concerns.

Object-oriented principles lend themselves well toward modeling business logic. Typ-
ically done via separation of concerns,* a related set of functionality may be compart-
mentalized in a module, with well-defined interfaces for how each component will
interact outside of its internals (see Figure 1-1). In the case of our email client example,
this might lead to separate modules for interacting with remote servers, rendering
HTML, composing new mail, etc.

Figure 1-1. Modules, each addressing one business use-case, interacting with one another

The core is typically going to contain rules unique to your application, and no one can
build it aside from you and your team. Our job as software engineers is to realize ideas,
so the more time we can dedicate to business logic, the more efficient we become. And
the best way to limit our scope to core concerns is to reduce or eliminate the energy we
spend everywhere else.

Cross-cutting concerns

While the core of an application defines its primary function, there is a host of secondary
operations necessary to keep things running correctly and efficiently. Security asser-
tions, transactional boundaries, concurrency policies—all are helpful in ensuring the
integrity of the system is in check. We define these as aspects.

The problem with aspects is that they’re intrinsically tangential to core concerns. In
other words, cross-cutting concerns are intended to stretch across modules (Figure 1-2).

* Edsger Dijkstra, “On the role of scientific thought” (1982). http://www.cs.utexas.edu/users/EWD/
transcriptions/EWD04xx/EWD447.html

4 | Chapter 1: Introduction

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

This layout paints a picture of perpendicular, or orthogonal, aims. For this reason, it
takes great care to integrate aspects with the core in complementary fashion, as opposed
to weighing it down.

While it may seem that aspects violate good practice to separate concerns, in fact they’re
quite complementary in design. This is because they allow us to reuse shared code
across modules, often transparently.

Banking software must allow users to withdraw money from their accounts, but it
would make for an interesting solution if we could withdraw from any account we
wanted; we need a security assertion at some point to ensure the requesting user has
permission. If we hardcode this logic into the “withdraw” function, we’ve intermixed
security with a core concern, and we’ll likely end up copying/pasting similar checks all
over the place. A much better approach is to apply security as an common aspect to be
shared by many modules and configure where it’s enforced separately.

This configuration ultimately regulates the direction of the invocation chain, but we
don’t want to give it too much of our attention.

Plumbing

Once modules have been built to address the core, there’s still the matter of getting
data and invocations from point A to point B. Plumbing provides this routing, and may
take several forms:

• Forwarding control from an HTTP request to some action handler

• Obtaining a JDBC connection or JavaMail session

• Mapping a nonnative request (JSON, ActionScript, RDBMS SQL) into a Java object

Figure 1-2. Aspects working uniformly across modules

The Problem Domain | 5

A sufficiently decoupled system defines interfaces for each module. This ensures that
components may be developed in isolation, limits the need for explicit dependencies,
and encourages parallel development. All good things.

And like all good things, there’s a cost: integration. Plumbing code is nothing more
than an adapter between endpoints and provides few merits of its own (Figure 1-3).

Figure 1-3. Plumbing as a connector between core concerns

Perhaps the worst characteristic of the integration layer is that it is notoriously difficult
to test. Although Unit Tests, pieces of code that perform assertions on isolated func-
tions, are quite easy to write given a properly designed module, Integration Tests are
much more expansive; they typically require a more involved setup of the test envi-
ronment, and they may take orders of magnitude longer to invoke. This makes for both
a process prone to developer laziness (tests may not be written!) and increased time in
the build/test cycle.

Plumbing is a means to an end, and therefore of little value in and of itself. It will benefit
us to take an approach that minimizes the time we spend getting data from one endpoint
to another. As we’ll soon see, we may rely upon standards that remove this responsi-
bility from our shoulders.

Code Smart, Not Hard
That’s a lot to consider before even a single line of code is written. Ironically, the sol-
utions we concoct to address these issues are prone to becoming problems in
themselves, and we’re at risk for introducing a tangled mess.

To state the obvious, the more that can be done for us, the less we have to do ourselves.

6 | Chapter 1: Introduction

www.allitebooks.com

http://www.allitebooks.org

Do less

While it’s a likely requirement that business logic be unique to your application, the
machinery that moves things along is not held to the same supposition. On the contrary,
if aspects and plumbing are provided in a generic fashion, the developer is freed to limit
both scope and focus to more tangible requirements.

Let’s say we want to register a new user with the system. Building everything in-house
using traditional object-oriented methodology, we’d:

1. Check that we have permission to register someone new (Security)

2. Start a boundary so everything is ensured to complete together, without affecting
anything else (Transactions)

3. Get a business worker delegate from some pool or cache, so we have control over
concurrency (Performance and Transactional Isolation)

4. Make a hook into the database (Resource Management)

5. Store the user (Business Logic)

6. Get a hook to an SMTP (mail) server (Resource Management)

7. Email a confirmation (Business Logic)

8. Return our worker so another call may use it (Performance and Transactional
Isolation)

9. Close our boundary (Transactions)

Even a simplified example shows that we’re “speaking like a computer.” All this talk
about pools and boundaries and databases is undermining the utility of a programming
language to help us express our ideas like humans. I’d much rather write:

pseudofunction registerUser(user)
{
 database.storeUser(user);
 mailService.emailUser(user);
}

If we could make the computational elements transparent, we’d be in position to pay
greater attention to the business logic.

The Container

Now that we’ve identified candidates to be culled from our source tree, we may intro-
duce an abstraction that provides the necessary features in a decoupled fashion. A
commonly employed technique is to take advantage of a construct called a Container.
Loosely defined:

A Container is a host that provides services to guest applications.

The Problem Domain | 7

The intent here is to provide generic services upon which applications may rely. The
service support desired is usually defined by some combination of user code and
metadata that together follow a contract for interaction between the application and
container. In the case of Enterprise JavaBeans (EJB) 3.1, this contract is provided by a
document jointly developed by experts under the authority of the Java Community
Process (http://jcp.org). Its job is to do all the work you shouldn’t be doing.

The Enterprise JavaBeans™ 3.1 Specification
Just as interfaces in code abstract the “what” from the “how,” the EJB Specification
dictates the capabilities required of a compliant EJB Container. This 626-page docu-
ment is the result of lessons learned in the field, requests by the community, and sub-
sequent debate by the JSR-318 Expert Group (http://jcp.org/en/jsr/detail?id=318).

It is the purpose of this book to introduce concepts provided by the spec in a concise
manner, alongside examples where appropriate.

EJB defined

Let’s dig in. The Specification defines itself (EJB 3.1 Specification, page 29):

The Enterprise JavaBeans architecture is a [sic] architecture for the development and
deployment of component-based business applications. Applications written using the
Enterprise JavaBeans architecture are scalable, transactional, and multi-user secure.
These applications may be written once, and then deployed on any server platform that
supports the Enterprise JavaBeans specification.

More simply rewritten:

Enterprise JavaBeans is a standard server-side component model for distributed business
applications.

This means that EJB defines a model for piecing together a full system by integrating
modules. Each component may represent a collection of business processes, and these
will run centralized on the server (Figure 1-4).

Additionally, the “distributed” nature will provide a mechanism to spread modules
across different processes, physical machines, or even entire networks (Figure 1-5).

As we’ll soon discover, EJB is also an aggregate technology; it wires up other facets of
the Java Enterprise Edition (http://java.sun.com/javaee/), such as messaging, transac-
tions, resource management, persistence, and web services. It’s this integration that
will reduce the evil plumbing we’d identified earlier.

8 | Chapter 1: Introduction

http://jcp.org
http://jcp.org/en/jsr/detail?id=318
http://java.sun.com/javaee/

Figure 1-5. Using runtime containers to abstract the physical location of code

Embracing the standard of EJB has other, nontechnical benefits. Applications that take
advantage of EJB architecture are portable across any compliant Container implemen-
tation. In practice, there may be some retrofitting required in order to resolve vendor-
specific features, but applications written to spec alone should stay true to the Sun
Microsystems “write once, run anywhere” philosophy of the Java language.

Finally, the familiarity of EJB means that developers already oriented to the technology
may spend less time learning the control flow of a particular application, making hiring
and training a much more simplified exercise.

Figure 1-4. Modules operating inside a runtime container

The Problem Domain | 9

Review
We’ve seen requirements common to many applications and how these can be met
without recoding the same stuff the company across the street did last week. We’ve
discussed the importance of keeping business logic uncluttered with cross-cutting con-
cerns. And we’ve cringed at the unnecessary plumbing employed by the roll-your-own
approach.

Most importantly, we’ve revealed the EJB Specification as a viable solution to:

• Address common/generic issues within application development

• Code less

• Standardize

• Integrate with other technologies under the umbrella of the Java Enterprise Edition

The specification offers a few different bean types, and the most sensible choice will
depend upon the intended purpose.

10 | Chapter 1: Introduction

CHAPTER 2

Component Types

Modeling real-life objects and concepts is one of the first skills a programmer must
develop. As such, we’ve become fairly adept at implementing object-oriented axioms
such as reusability and extensibility on a daily basis. When we focus these principles
on business logic, we end up with a set of business objects that encapsulate the rules of
the road.

Starting with the 3.0 version of the Specification, EJB imposes no API coupling or
restrictions upon the classes that will define our business objects. Commonly known
as POJO (Plain Old Java Object)* development, this means that an application devel-
oper is under no obligation to extend, implement, or have any references tying the
application to EJB. Now we can create class hierarchies however we see fit, and reuse
our objects in some non-EJB environment (perhaps for quick testing outside of the
Container).

Because a POJO class is just like any other class, it does not become an EJB until it’s:

1. Assembled/packaged

2. Deployed

3. Accessed via the Container

This is an important distinction. EJBs become such only in the context of the EJB
Container.

The Container, in turn, is responsible for equipping POJOs with EJB Services (covered
in Chapter 3) as well as exposing their behavior via one of three personalities. We call
these personalities component types, and while implementing their semantics is beyond
scope for an application developer, it’s important to know how, by contract, they’ll
behave.

We’ll use the example of a fictitious casino to showcase where each component type
might be applied.

* Fowler et al. http://www.martinfowler.com/bliki/POJO.html

11

http://www.martinfowler.com/bliki/POJO.html

Server-Side Component Types
Server-side component types reside exclusively on the server, and the client must in-
teract with them via some indirection. There are two major server-side component
types: session beans, which expose a view for the client to invoke upon, and message-
driven beans, which act as event listeners.

Session Beans
If EJB is a grammar, session beans are the verbs. They take action, and they frequently
contain business methods. Because of EJB’s distributed nature, underlying bean in-
stances that carry out the invocation live on the server and are accessed by way of a
simple view the client may request of the EJB Container. This means that the client
does not access the EJB directly, which allows the Container to perform all sorts of
magic before a request finally hits the target method. It’s this separation that allows for
the client to be completely unaware of the location of the server, concurrency policies,
or queuing of requests to manage resources. As far as the client is concerned, it’s op-
erating directly upon an EJB. In truth, the client is invoking upon a proxy reference that
will delegate the request along to the Container and return the appropriate response
(see Figure 2-1).

Figure 2-1. Client invoking upon a proxy object, responsible for delegating the call along to the EJB
Container

Ultimately, it’s the bean instances created and managed by the Container that the service
client requests.

Stateless session beans (SLSBs)

Stateless session beans are useful for functions in which state does not need to be carried
from invocation to invocation. A client cannot assume that subsequent requests will

12 | Chapter 2: Component Types

target any particular bean instance. In fact, the Container will often create and destroy
instances however it feels will be most efficient (see Figure 2-2). How a Container
chooses the target instance is left to the vendor’s discretion.

Figure 2-2. An SLSB Instance Selector picking an instance at random

Because there’s no rule linking an invocation to a particular target bean instance, these
instances may be used interchangeably and shared by many clients. This allows the
Container to hold a much smaller number of objects in service, hence keeping memory
footprint down.

One caveat to beware: though a SLSB has stateless semantics, it’s backed by an instance
of a class created by the application developer. Particular care must be employed to
assure that any shared members (instance variables, for instance) are not leaked be-
tween invocations; this may lead to unpredictable behavior. We’ll explain this gotcha
when we cover SLSBs in greater detail in Chapter 5.

If we were to give our casino a game of roulette, SLSB would be a natural implemen-
tation choice. Roulette is a game with no memory—each spin operates independently
from the last—so a function getSpinResult should return a random spot on the wheel.

Stateful session beans (SFSBs)

Stateful session beans differ from SLSBs in that every request upon a given proxy ref-
erence is guaranteed to ultimately invoke upon the same bean instance. This is to say,
SFSB invocations share conversational state. Each SFSB proxy object has an isolated
session context, so calls to one session will not affect another.

Stateful sessions, and their corresponding bean instances, are created sometime before
the first invocation upon a proxy is made to its target instance (Figure 2-3). They live
until the client invokes a method that the bean provider has marked as a remove event,
or until the Container decides to evict the session (usually due to some timeout, though
the spec leaves this out-of-scope and up to the vendor).

Server-Side Component Types | 13

In order to minimize the number of stateful sessions carried around in memory, the
Container may passivate a SFSB bean instance. During passivation, the session’s state
is flushed to some persistent storage such that it may be removed from RAM. If the
session is needed again before it’s removed for good, the Container will activate it and
bring the bean instance back into memory.

No casino is complete without a good game of poker, and we could build ours using
SFSBs. Each game is played using a single deck, and we need to keep track of which
cards have already been dealt—otherwise we risk giving the player next to us the im-
possible hand of five aces! If each table is scoped to its own stateful session, we could
ensure that the integrity of the deck is intact.

We’ll dive into SFSBs in Chapter 6.

Singleton beans

Sometimes we don’t need any more than one backing instance for our business objects.
EJB 3.1 therefore introduces a new session component type, the singleton bean. Because
all requests upon a singleton are destined for the same bean instance, the Container
doesn’t have much work to do in choosing the target (Figure 2-4).

The singleton session bean may be marked to eagerly load when an application is de-
ployed; therefore, it may be leveraged to fire application lifecycle events. This draws a
relationship where deploying a singleton bean implicitly leads to the invocation of its
lifecycle callbacks. We’ll put this to good use when we discuss singleton beans in
Chapter 7.

Dealers in a casino aren’t granted complete autonomy; they’ve got to clear a set of
privileged tasks such as changing money, cashout, and large betting with the pit boss.
The pit boss, in turn, is the sole authority over what’s permitted on his floor. If we
model the boss as a singleton, all requests are passed along to the same source—one

Figure 2-3. Stateful session bean creating and using the correct client instance, which lives inside the
EJB Container, to carry out the invocation

14 | Chapter 2: Component Types

able to make informed, consistent decisions. In addition, at the start of the pit boss’s
shift, he can make the rounds and do whatever startup tasks he deems necessary.

Message-Driven Beans (MDBs)
Asynchronous messaging is a paradigm in which two or more applications communi-
cate via a message describing a business event. EJB 3.1 interacts with messaging systems
via the Java Connector Architecture (JCA) 1.6 (http://jcp.org/en/jsr/detail?id=322),
which acts as an abstraction layer that enables any system to be adapted as a valid
sender. The message-driven bean, in turn, is a listener that consumes messages and may
either handle them directly or delegate further processing to other EJB components.
The asynchronous characteristic of this exchange means that a message sender is not
waiting for a response, so no return to the caller is provided (Figure 2-5).

Figure 2-5. Asynchronous invocation of a message-driven bean, which acts as a listener for incoming
events

One common provider of asynchronous messaging is the Java Message Service (JMS),
and the EJB specification dictates that JMS is supported implicitly.† If a message is sent

Figure 2-4. Conceptual diagram of a singleton session bean with only one backing bean instance

† EJB 3.1 Specification 5.4.17.1

Server-Side Component Types | 15

http://jcp.org/en/jsr/detail?id=322

to a JMS Topic or Queue, an MDB may be created to take action upon that event. By
extension, any service with a valid JCA Resource Adapter may use MDB as an endpoint.
We’ll untangle the various technologies that piece together asynchronous messaging
in Chapter 8.

Like SLSBs, MDBs have no conversational state. Any instance may be used in servicing
a message. In fact, the client has no view or knowledge of the MDB at all! Once the
client sends a message, it’s out of scope to worry about what may be listening to the
event fired.

After a full night of gambling, visitors to our casino are likely to need their cars back
from the valet. We may provide our valet service via MDBs; once a ticket (message) is
received, the valet should fetch the car while its owner continues on to grab a cup of
coffee or visit the gift shop. The casino visitor will have to frequently check back to see
whether his car has arrived.

Message-driven beans are explored in Chapter 8.

Entity Beans
While session beans are our verbs, entity beans are the nouns. Their aim is to express
an object view of resources stored within a Relational Database Management System
(RDBMS)—a process commonly known as object-relational mapping.

Like session beans, the entity type is modeled as a POJO, and becomes a managed
object only when associated with a construct called the
javax.persistence.EntityManager, a container-supplied service that tracks state
changes and synchronizes with the database as necessary. A client who alters the state
of an entity bean may expect any altered fields to be propagated to persistent storage.
Frequently the EntityManager will cache both reads and writes to transparently stream-
line performance, and may enlist with the current transaction to flush state to persistent
storage automatically upon invocation completion (Figure 2-6).

Figure 2-6. Using an EntityManager to map between POJO object state and a persistent relational
database

Unlike session beans and MDBs, entity beans are not themselves a server-side compo-
nent type. Instead, they are a view that may be detached from management and used

16 | Chapter 2: Component Types

www.allitebooks.com

http://www.allitebooks.org

just like any stateful object. When detached (disassociated from the EntityManager),
there is no database association, but the object may later be re-enlisted with the
EntityManager such that its state may again be synchronized. Just as session beans are
EJBs only within the context of the Container, entity beans are managed only when
registered with the EntityManager. In all other cases entity beans act as POJOs, making
them extremely versatile.

Users familiar with EJB 2.x forms may be used to the former notion of Container Man-
aged Persistence (CMP), which required dependence upon a verbose API. Although
entity bean classes were once required to implement specific interfaces and their call-
back methods explicitly, these restrictions have been removed as of the 3.0 revision of
the EJB Specification.

Our casino exists primarily to move money. Taking bets, paying winners, making
change—all are transactions that need to be recorded for bookkeeping purposes. By
modeling currency as an entity bean, all functions that interact with cash and chips
may share the same object view that ultimately will be preserved in the database for
future auditing.

Entity beans are introduced in Part III.

The Java Persistence Model
The sister to the EJB 3.1 Specification is the Java Persistence API (JPA) 2.0, developed
in JSR-317 (http://jcp.org/en/jsr/detail?id=317). EJBs may become equipped with the
facilities defined by JPA, such that modifying the properties of a managed object will
be reflected automatically in the backing database. In addition to support within EJB,
JPA may be used in standalone Java Standard Edition (SE) environments.

Persistence is simply a higher-level abstraction above Java Database Connectivity
(JDBC). By exposing the database as objects to the developer, backing rows may be
queried, loaded, updated, or removed without explicitly having to go through a con-
tracted API or language such as SQL. In older versions of EJB, persistence was part of
the specification, but starting with EJB 3.0, it has been spun off on its own. The entity
bean is EJB’s integration with JPA, and it is defined by enhancing a plain class definition
with some additional persistence metadata.

The Model Isn’t Everything
The various EJB Component types allow stateful, stateless, asynchronous, and persis-
tent logic to be easily modeled. Now it’s time to see how they’ll shine under the bright
lights of Container services.

The Model Isn’t Everything | 17

http://jcp.org/en/jsr/detail?id=317

CHAPTER 3

Container Services

We see examples of efficient processes every day, even in our most mundane daily
routines. A trip to the supermarket may involve ordering sliced meats from the deli
counter, selecting grocery items from pre-stacked shelves, listening to advice from the
butcher, and paying the cashier. If we were to model this errand as a business system,
we’d notice that the whole is composed of many smaller pieces, and each task is serviced
by a specialized worker. It is this same “do one thing and do it well”* approach that
was introduced in French firearms production, powered the assembly lines pioneered
by Henry Ford, and became omnipresent during the American industrial revolution as
the preferred mechanism to maximize throughput.

The benefits of allowing each concern to be fulfilled by a specialist through division of
labor are fairly obvious: a secretary should answer phones while a mail room attendant
handles shipping. Similarly, application developers should write the rules of their busi-
ness and leave the mechanics of reliable, distributed systems to middleware providers.

In the case of EJB, the Component Model defines our interchangeable parts, and the
Container Services are specialists that perform work upon them. The Specification
provides:

• Dependency injection

• Concurrency

• Instance pooling/caching

• Transactions

• Security

• Timers

• Naming and object stores

• Interoperability

• Lifecycle callbacks

* Doug McIlroy, Basics of the Unix Philosophy, http://www.faqs.org/docs/artu/ch01s06.html

19

http://www.faqs.org/docs/artu/ch01s06.html

• Interceptors

• Java Enterprise Platform integration

We’ll introduce each at a high level here, and get into further detail later (Part III).

Dependency Injection (DI)
A component-based approach to software design brings with it the complication of
inter-module communication. Tightly coupling discrete units together violates module
independence and separation of concerns, while using common lookup code leads to
the maintenance of more plumbing. Martin Fowler details this problem in his paper
“Inversion of Control Containers and the Dependency Injection Pattern,” which has
spurred the development and success of many popular standalone DI containers.†

As EJB is a component-centric architecture, it provides a means to reference dependent
modules in decoupled fashion. The end result is that you’ll adhere to a contract and let
the container provide the implementation at deployment time.

In pseudocode, this looks like:

prototype UserModule
{
 // Instance Member
 @DependentModule
 MailModule mail;

 // A function
 function mailUser()
 {
 mail.sendMail("me@ejb.somedomain");
 }
}

The fictitious @DependentModule annotation serves two purposes:

• Defines a dependency upon some service of type MailModule. UserModule may not
deploy until this dependency is satisfied.

• Marks the instance member mail as a candidate for injection. The container will
populate this field during deployment.

Dependency injection encourages coding to interfaces, and not to any particular im-
plementation; we’ll see it in action in Chapter 16.

† http://martinfowler.com/articles/injection.html

20 | Chapter 3: Container Services

http://martinfowler.com/articles/injection.html

Concurrency
Assuming each Service is represented by one instance, dependency injection alone is a
fine solution for a single-threaded application; only one client may be accessing a re-
source at a given time. However, this quickly becomes a problem in situations where
a centralized server is fit to serve many simultaneous requests. Deadlocks, livelocks,
and race conditions are some of the possible nightmares arising out of an environment
in which threads may compete for shared resources. These are hard to anticipate, harder
to debug, and are prone to first exposing themselves in production! Proper solutions
lie outside the scope of this book,‡ and for good reason: EJB allows the application
developer to sidestep the problem entirely thanks to a series of concurrency policies.

That said, there are a series of effects upon performance to consider, so the specification
allows for configuration in some cases. Otherwise, it’s important to be aware how each
component type views concurrency concerns; this is covered alongside the session bean
in Chapters 5, 6, and 7.

Instance Pooling/Caching
Because of the strict concurrency rules enforced by the Container, an intentional
bottleneck is often introduced where a service instance may not be available for pro-
cessing until some other request has completed. If the service was restricted to a singular
instance, all subsequent requests would have to queue up until their turn was reached
(see Figure 3-1).

Figure 3-1. Client requests queuing for service

‡ Recommended reading is Java Concurrency in Practice, Goetz et al., http://www.javaconcurrencyinpractice
.com/

Instance Pooling/Caching | 21

http://www.javaconcurrencyinpractice.com/
http://www.javaconcurrencyinpractice.com/

Conversely, if the service was permitted to use any number of underlying instances,
there would be no guard to say how many requests could be processed in tandem, and
access across the physical machine could crawl to a halt as its resources were spread
too thin (Figure 3-2).

Figure 3-2. Many invocations executing concurrently with no queuing policy

EJB addresses this problem through a technique called instance pooling, in which each
module is allocated some number of instances with which to serve incoming requests
(Figure 3-3). Many vendors provide configuration options that allow the deployer to
allocate pool sizes appropriate to the work being performed, providing the compromise
needed to achieve optimal throughput.

Figure 3-3. A hybrid approach using a pool

Instance pooling addresses performance, and it is explained alongside session beans in
Chapters 5, 6, and 7.

22 | Chapter 3: Container Services

Transactions
As a routine chugs along, it may perform half of its duties before encountering some
exceptional circumstance that prevents successful completion. At this point, the system
may be left in an unreliable or incorrect state. Take the popular “account transfer
example”:

1. User requests that $100 be transferred between her checking and savings accounts.

2. System deducts $100 from checking.

3. An unexpected error is thrown up the call chain.

The money has disappeared from record, and the customer is out $100. Although this
may be a desirable scenario if you’re a particularly scheming bank manager, in most
cases we’d like our programs to reliably leave things in consistent state. EJB ensures
this via its integration with the Java Transaction Service (JTS; http://java.sun.com/jav
aee/technologies/jts/) and exposes an API that gives the bean provider (application de-
veloper) control over the properties specifying how a transaction-aware application
behaves. Again, the nuts and bolts of how this is achieved is not a problem for the EJB
developer; all that’s required is some understanding of the ACID§ fundamentals:

Atomicity
Every instruction in a call completes or none do. If there’s a failure halfway through,
state is restored to the point before the request was made.

Consistency
The system will be consistent with its governing rules both before and after the
request.

Isolation
Transactions in progress are not seen outside the scope of their request until suc-
cessful completion. Shared resources may not be mutated by two transactions at
once.

Durability
Once a transaction successfully returns, it must commit to its changes. The system
must process the result once a client has received word of normal completion.

There are a variety of options available to configure transactional behavior, and these
are explored in Chapter 17.

Security
Multiuser applications are likely to expose a wide variety of operations, and not all
callers are created equal. An unsecured banking system won’t discriminate between a

§ An acronym coined by Andreas Reuter and Theo Haerder in 1983, “Principles of Transaction-Oriented
Database Recovery”

Security | 23

http://java.sun.com/javaee/technologies/jts/
http://java.sun.com/javaee/technologies/jts/

teller and a branch manager when confronted with a request to approve a loan, and
manually baking this logic into the business method mixes two concerns. EJB therefore
provides a role-based security mechanism that bolsters existing application code with
a set of security policies governed by the Container (Figure 3-4).

Figure 3-4. EJB Security permitting access based upon the caller’s role

This allows the application developer to explicitly allow or deny access at a fine-grained
level based upon the caller’s identity.

We’ll delve into the security model in Chapter 15.

Timers
So far, we’ve dealt exclusively with client-initiated requests. While this may handle the
bulk of an application’s requirements, it doesn’t account for scheduled jobs:

• A ticket purchasing system must release unclaimed tickets after some timeout of
inactivity.

• An auction house must end auctions on time.

• A cellular provider should close and mail statements each month.

The EJB Timer Service may be leveraged to trigger these events and has been enhanced
in the 3.1 specification with a natural-language expression syntax.

We play with timers in Chapter 19.

Naming and Object Stores
All naming services essentially do the same thing: they provide clients with a mechanism
for locating distributed objects or resources. To accomplish this, a naming service must

24 | Chapter 3: Container Services

fulfill two requirements: object binding and a lookup API. Object binding is the asso-
ciation of a distributed object with a natural language name or identifier. A lookup API
provides the client with an interface to the naming system; it simply allows us to connect
with a distributed service and request a remote reference to a specific object.

Enterprise JavaBeans mandates the use of Java Naming and Directory Interface (JNDI;
http://java.sun.com/products/jndi/) as a lookup API on Java clients. JNDI supports just
about any kind of naming and directory service. Although it can become extraordinarily
complex, the way JNDI is used in Java Enterprise Edition (EE) applications is usually
fairly simple. Java client applications can use JNDI to initiate a connection to an EJB
server and locate a specific EJB.

There are many different kinds of directory and naming services, and EJB vendors can
choose the one that best meets their needs, but all vendors must support the CORBA
naming service in addition to any other directory services they choose to support.

Naming is a subset of the resource management features offered by EJB, and it is dis-
cussed in Chapter 16.

Interoperability
Although it’s nice that the dependency injection facilities allow components within EJB
to play nicely, we don’t live in a bubble. Our application may want to consume data
from or provide services to other programs, perhaps written in different implementa-
tion languages. There are a variety of open standards that address this inter-process
communication, and EJB leverages these.

Interoperability is a vital part of EJB. The specification includes the required support
for Java RMI-IIOP for remote method invocation and provides for transaction, naming,
and security interoperability. EJB also requires support for JAX-WS, JAX-RPC, Web
Services for Java EE, and Web Services Metadata for the Java Platform specifications
(EJB 3.1 Specification, 2.6).

Lifecycle Callbacks
Some services require some initialization or cleanup to be used properly. For example,
a file transfer module may want to open a connection to a remote server before pro-
cessing requests to transfer files and should safely release all resources before being
brought out of service.

For component types that have a lifecycle, EJB allows for callback notifications, which
act as a hook for the bean provider to receive these events. In the case of our file transfer
bean, this may look like:

prototype FileTransferService
{

Lifecycle Callbacks | 25

http://java.sun.com/products/jndi/

 @StartLifecycleCallback
 function openConnection(){ ... }

 @StopLifecycleCallback
 function closeConnection() { ... }
}

Here we’ve annotated functions to open and close connections as callbacks; they’ll be
invoked by the container as their corresponding lifecycle states are reached.

Interceptors
While it’s really nice that EJB provides aspectized handling of many of the container
services, the specification cannot possibly identify all cross-cutting concerns facing your
project. For this reason, EJB makes it possible to define custom interceptors upon busi-
ness methods and lifecycle callbacks. This makes it easy to contain some common code
in a centralized location and have it applied to the invocation chain without impacting
your core logic.

Say we want to measure the execution time of all invocations to a particular method.
We’d write an interceptor:

prototype MetricsInterceptor
{

 function intercept(Invocation invocation)
 {
 // Get the start time
 Time startTime = getTime();

 // Carry out the invocation
 invocation.continue();

 // Get the end time
 Time endTime = getTime();

 // Log out the elapsed time
 log("Took " + (endTime − startTime));
 }
}

Then we could apply this to methods as we’d like:

@ApplyInterceptor(MetricsInterceptor.class)
function myLoginMethod{ ... }

@ApplyInterceptor(MetricsInterceptor.class)
function myLogoutMethod{ ... }

Interceptors are explained in Chapter 18.

26 | Chapter 3: Container Services

www.allitebooks.com

http://www.allitebooks.org

Platform Integration
As a key technology within the Java Enterprise Edition (JEE) 6 (http://jcp.org/en/jsr/
detail?id=313), EJB aggregates many of the other platform frameworks and APIs:

• Java Transaction Service

• Java Persistence API

• Java Naming and Directory Interface (JNDI)

• Security Services

• Web Services

In most cases, the EJB metadata used to define this integration is a simplified view of
the underlying services. This gives bean providers a set of powerful constructs right out
of the box, without need for additional configuration.

EJB is also one of the target models recognized by the new Java Contexts and Depend-
ency Injection specification (http://jcp.org/en/jsr/detail?id=299). This new kid on the
block adds a unified binding to both Java Enterprise and Standard editions across many
different component types.

Bringing It Together
Enough theory; up to this point, we’ve introduced topics only conceptually. In the next
chapter we’ll take off the gloves and ditch pseudocode for the real deal.

Bringing It Together | 27

http://jcp.org/en/jsr/detail?id=313
http://jcp.org/en/jsr/detail?id=313
http://jcp.org/en/jsr/detail?id=299

CHAPTER 4

Developing Your First EJBs

Now that we’ve covered the concepts behind the various component models and con-
tainer services provided by the specification, it’s time to start putting these lessons into
practice. In this chapter we’ll introduce the terminology and syntax necessary to code,
package, deploy, and test some functional EJBs.

Step 1: Preparation
Let’s briefly lay out some definitions and conventions, and then we’ll get to hacking
away.

Definitions
EJBs are composed from the following.

Bean implementation class (session and message-driven beans)

This class, written by the bean provider, contains the business logic for a session or
message-driven bean. It is annotated with the appropriate bean type: @javax.ejb.State
less, @javax.ejb.Stateful, or @javax.ejb.MessageDriven. For instance:

@javax.ejb.Stateless
public class MyFirstBean{...}

is all that’s needed to declare an SLSB.

Bean instance (session and message-driven beans)

The EJB Container internally contains one or more instances of the bean implementa-
tion class to service session or message-driven invocations. These are not exposed to
the client, but are instead abstracted out by way of the client view. Entity bean instances
are POJOs that may be created directly by the client using the new operator.

29

Client view (session and message-driven beans)

Because clients do not invoke upon bean instances directly, this is the contract with
which a client will interact with the EJB. In the case of a session bean, the client view
will take the form of a business, component, or endpoint interface—all to be imple-
mented by the EJB Proxy. Message-driven beans have no client view, as they’re received
as messaging events, and entity beans also have no explicit view because clients will
interact with a managed object directly. At least one view must be defined (either ex-
plicitly or implicitly) for an EJB.

EJB Proxy (session beans)

Session bean clients invoke upon the EJB Proxy, which adheres to the contract defined
by the client view. Upon EJB deployment, the Container binds all appropriate Proxy
objects into a predefined destination in Global JNDI (EJB 3.1 Specification Section 4.4),
where a client may look up the reference. From the client’s perspective, the proxy is
the EJB, though in actuality the invocation mechanism is a bit more involved
(Figure 4-1).

Figure 4-1. The role of the client, container, and bean instance in an EJB invocation

It’s because of the Proxy indirection that the container is able to perform its extensive
services outside of the client’s concern.

Local versus remote (session beans)

The terms local and remote, when referring to business, home, or component in-
terfaces, designate the relationship between the process running the client and the JVM
running the EJB Container. This is often confused with distribution across physical
boundaries. When the client is in-VM, invocations to the local interface are much more
efficient than their remote counterpart; they may avoid the networking stack and pass
object references instead of serializing values. For instance, EJBs within an application
will often communicate with each other by means of a local business interface. The

30 | Chapter 4: Developing Your First EJBs

EJB 3.1 Specification details key differences between local, remote, and endpoint views
in Section 3.2.

Business interface (session beans)

This is the simplified view, introduced in EJB 3.0, defining business methods that are
to be supported by session beans. The business interface is marked as such via an
@javax.ejb.Local or @javax.ejb.Remote annotation, depending upon how it’s to be
used. However, any one interface may not be both local and remote. The EJB 3.1 Spec-
ification defines business interfaces in Section 4.9.7.

Component interface (session beans)

This is the legacy view defined by the EJB 2.x Specification. It has been left in place for
backward compatibility with older clients, and it is detailed in EJB 3.1 Section 3.6. The
Component interface (also known as the “local” or “remote” interface, contrasted with
business interfaces, which are called “business local” or “business remote”) must im-
plement javax.ejb.EJBObject or javax.ejb.EJBLocalObject and will additionally define
business methods available to the client. It is obtained via the create<METHOD> methods
of the home interface.

Home interface (session beans)

The home interface is used to create, find, and remove session bean references accord-
ing to the EJB 2.x client contract. Home interfaces extend javax.ejb.EJBHome or
javax.ejb.EJBLocalHome and may define methods named with a prefix of “create” to
return component interface references. Just like component interfaces, these are legacy
and in place to support backward compatibility.

Endpoint interface (session beans)

The endpoint interface defines business methods that can be accessed from applications
outside the EJB container via SOAP. The endpoint interface is based on Java API for
XML-RPC (JAX-RPC) and is designed to adhere to the SOAP and WSDL standards.
The endpoint interface is a plain Java interface that is annotated with the
@javax.jws.WebService annotation.

Message interface (MDBs)

Message-driven beans implement the message interface, which defines the methods by
which messaging systems, such as the JMS, can deliver messages to the bean. An MDB
that listens to JMS events would therefore be defined like this:

@javax.ejb.MessageDriven(activationConfig={...})
public class MyMessageDrivenBean implements javax.jms.MessageListener{...}

Step 1: Preparation | 31

Naming Conventions
Before going on, let’s establish some conventions to be used throughout this book.
These will be used for clarity; they are not prescriptive or even recommended for use
in production. You may use any naming strategy you wish, but it’s suggested that you
stick to some predefined standard. There is no law dictating that each of the constructs
listed next must be used for your EJBs; in fact, in most cases you’ll use just one or two.
The impositions of the EJB 2.x specifications are long gone.

Common business name

To describe an EJB’s function, we’ll assign it a common base from which we may derive
other names. This should be descriptive of the business function; therefore, an EJB that
handles ticket processing may contain the term TicketProcessor. All other classes that
comprise an EJB may then be named according to the following table:

Construct Suffix Example

EJB (the sum of its parts) EJB TicketProcessorEJB

Bean Implementation Class Bean TicketProcessorBean

Remote Business Interface RemoteBusiness TicketProcessorRemoteBusiness

Local Business Interface LocalBusiness TicketProcessorLocalBusiness

Remote Home Interface RemoteHome TicketProcessorRemoteHome

Local Home Interface LocalHome TicketProcessorLocalHome

Remote Component Interface Remote TicketProcessorRemote

Local Component Interface Local TicketProcessorLocal

Endpoint Interface WS (for WebService) TicketProcessorWS

Conventions for the Examples
To maintain consistency, this text will adhere to the following conventions unless ex-
plicitly specified.

Vendor-agnostic
All examples covered in Parts I through IV of this book will address syntax and
concepts dictated by the EJB Specification only. As the EJB deployment mechanism
is not covered by spec, these examples will not run unless bolstered by some ad-
ditional instructions or metadata. To this end, each example will have a deployable
counterpart in Part V, which is written to work specifically with the open source
JBoss Application Server. The focus of the code fragments in this text may be
intentionally incomplete to promote brevity, and they are in place primarily to
illustrate concepts. Part V will serve as the real practice grounds for getting your
hands dirty. You may want to flip back and forth between the lessons and their
corresponding examples as you progress.

32 | Chapter 4: Developing Your First EJBs

No XML
Generally speaking, EJB metadata may be supplied either by a standard XML
descriptor (ejb-jar.xml), Java annotations, or some combination of the two. In cases
where there’s overlap, XML wins as an override. In order to cut down on the ver-
bosity of our examples, we’ll opt for annotations wherever possible. The corre-
sponding XML syntax is available for reference by consulting the appropriate
Document Type Definition (DTD) or schema.

Annotations on the bean implementation class
Many class-level annotations may be applied in a variety of locations. For instance,
a remote business interface may be marked on the interface itself:

@javax.ejb.Remote
public interface SomeBusinessRemote{...}

Instead, we’ll be declaring annotations upon the bean implementation class:

@javax.ejb.Stateless
@javax.ejb.Remote(SomeBusinessRemote.class)
public class SomeBean implements SomeBusinessRemote{...}

This means that a quick glance will reveal all metadata for the bean in question,
and we’ll minimize poking through various files to get the full picture.

Step 2: Coding the EJB
For this exercise we’ll make a simple SLSB, a Calculator Service, to illustrate how the
various pieces all fit together. In fact, we’ll spin up two EJBs—one to show the path of
least resistance, and another to expose all business, home, and component views. The
full source and deployment instructions for this example are available in Appendix A.

The Contract
This is a great starting point, regardless of whether you’re building EJBs. The contract,
implemented as interfaces in Java, defines what our service will do, and leaves it up to
the implementation classes to decide how it’s done. Remember that the same interface
cannot be used for both @Local and @Remote, so we’ll make some common base that
may be extended.

public interface CalculatorCommonBusiness
{
 /**
 * Adds all arguments
 *
 * @return The sum of all arguments
 */
 int add(int... arguments);
}

public interface CalculatorRemoteBusiness extends CalculatorCommonBusiness{}

Step 2: Coding the EJB | 33

As you can see, we’ve created CalculatorRemoteBusiness by extending the contract of
CalculatorCommonBusiness. This will come in handy later when we want to add more
views exposing the same method (so we don’t have to rewrite its definition). Our remote
business interface meets the requirement that our session bean will have at least one
view, so we may now write the bean implementation class.

The Bean Implementation Class
Again we’ll make a common base to contain the logic, and extend it to add our metadata
that will define the SLSB.

public class CalculatorBeanBase implements CalculatorCommonBusiness
{
 /**
 * {@link CalculatorCommonBusiness#add(int...)}
 */
 @Override
 public int add(final int... arguments)
 {
 // Initialize
 int result = 0;

 // Add all arguments
 for (final int arg : arguments)
 {
 result += arg;
 }

 // Return
 return result;
 }
}

This contains the required implementation of CalculatorCommonBusiness.

add(int...). The bean implementation class therefore has very little work to do.

import javax.ejb.LocalBean;
import javax.ejb.Stateless;

@Stateless
@LocalBean
public class SimpleCalculatorBean extends CalculatorBeanBase

{
 /*
 * Implementation supplied by common base class
 */
}

The function of our bean implementation class here is to bring everything together and
define the EJB metadata. Compilation will embed two important bits into the resul-
tant .class file. First, we have an SLSB, as noted by the @Stateless annotation. And
second, we’re exposing a no-interface view, new to EJB 3.1, courtesy of the @Local

34 | Chapter 4: Developing Your First EJBs

Bean annotation. Alternatively, we could have used an XML descriptor to hold this
information, making an EJB out of CalculatorBeanBase. The EJB Container, upon de-
ployment, will pick up on this information and take the necessary actions.

Before we use our new classes as an EJB, let’s leverage the pure POJO programming
model to make some quick tests.

Out-of-Container Testing
Unit testing, as contrasted with integration testing, aims to isolate small bits of func-
tionality and assert that they’re working as expected. The addition implementation of
our CalculatorEJB is an excellent candidate for this kind of approach. By treating our
EJB Implementation class as a POJO, we can keep test setup and execution time light
and quick.

Testing in this book will be implemented using the popular open source framework
JUnit (http://www.junit.org/):

import junit.framework.TestCase;

import org.junit.Test;

public class CalculatorUnitTestCase
{
 /**
 * Ensures that the CalculatorEJB adds as expected
 */
 @Test
 public void testAddition()
 {
 // Initialize
 final CalculatorCommonBusiness calc = new SimpleCalculatorBean();
 final int expectedSum = 2+3+5;

 // Add
 final int actualSum = calc.add(2, 3, 5);

 // Test
 TestCase.assertEquals("Addition did not return the expected result",
 expectedSum, actualSum);
 }
}

Here we make a new instance of SimpleCalculatorBean and use it to add a few integers.
Again, this is not an EJB. The example showcases how the EJB Programming Model
does not tie you to EJB at all; the test has no knowledge of the specification APIs.

Integration testing is where we’ll ensure that the individual pieces play nicely together.

Step 2: Coding the EJB | 35

http://www.junit.org/

Integration Testing
There are three steps involved in performing integration testing upon an EJB. First, we
must package the sources and any descriptors into a standard Java Archive (JAR; http:
//java.sun.com/javase/6/docs/technotes/guides/jar/jar.html) or Enterprise Archive (EAR;
http://java.sun.com/javaee/5/docs/tutorial/doc/bnaby.html#indexterm-47). Next, the
resultant deployable must be placed into the container according to a vendor-specific
mechanism. Finally, we need a standalone client to obtain the proxy references from
the Container and invoke upon them.

Packaging

The Sun Microsystems JDK, for example, ships with a standard jar tool that can be
used to assemble classes, resources, and other metadata into a unified JAR file, which
will both compress and encapsulate its contents. Typically your project’s build will
handle this step, often by way of an Apache Ant (http://ant.apache.org/) task or Maven
(http://maven.apache.org/) goal. Whichever route you choose in packaging, the result
might look a little bit like this if we were to print out the contents:

shell$> $JAVA_HOME/bin/jar -tvf firstejb.jar
 0 Wed Mar 25 01:59:22 GMT-08:00 2009 META-INF/
 129 Wed Mar 25 01:59:20 GMT-08:00 2009 META-INF/ejb-jar.xml // < OPTIONAL
 0 Wed Mar 25 01:59:20 GMT-08:00 2009 com/
 0 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/
 0 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/
 0 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/
 0 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/
 0 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/
 318 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/CalculatorLocal
Home.class
 248 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/CalculatorRemote
.class
 348 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/CalculatorRemote
Home.class
 1473 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/CalculatorBean
Base.class
 237 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/CalculatorRemote
Business.class
 939 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/ManyView
CalculatorBean.class
 251 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/CalculatorLocal
.class
 235 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/CalculatorLocal
Business.class
 189 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/CalculatorCommon
Business.class
 643 Wed Mar 25 01:59:20 GMT-08:00 2009 com/mycompany/firstejb/SimpleCalculator
Bean.class

The ejb-jar.xml line represents our optional XML descriptor, which is excluded from
this example.

36 | Chapter 4: Developing Your First EJBs

www.allitebooks.com

http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
http://java.sun.com/javaee/5/docs/tutorial/doc/bnaby.html#indexterm-47
http://ant.apache.org/
http://maven.apache.org/
http://www.allitebooks.org

Deployment into the Container

The EJB Specification intentionally leaves the issue of deployment up to the vendor’s
discretion. Therefore, our examples will keep this out of scope until Part V, which will
fully detail instructions for running examples.

The client

Again we’ll implement our client as a JUnit test. This time, instead of creating POJOs
via the new operator, we’ll look up true EJB references via JNDI. For our purposes, JNDI
is a simple store from which we may request objects keyed to some known address.
The form of the address is supplied by the EJB 3.1 Portable Global JNDI Name Syntax,
discussed in Chapter 16.

Let’s walk through this step-by-step. The process looks a bit like the following:

1. Perform initialization of the test, and set up the JNDI Environment.

2. Look up the proxy reference to the EJB via JNDI.

3. Invoke upon the reference.

4. Test the result.

First, we declare some imports to show where some nonobvious types are coming from.
Assume that the client is in the same package namespace as the CalculatorEJB classes:

import javax.naming.Context;
import javax.naming.InitialContext;
import org.junit.BeforeClass;
import org.junit.Test;

The javax.naming classes are used in obtaining the proxy references from JNDI, and
the others are part of the test framework. Now to define the class and make for some
static members used in testing:

public class CalculatorIntegrationTestCase
{
 /**
 * The JNDI Naming Context
 */
 private static Context namingContext;

 /**
 * The EJB 3.1 no-interface view view of the CalculatorEJB
 */
 private static SimpleCalculatorBean calc;

 /**
 * JNDI Name of the no-interface view
 */
 private static final String JNDI_NAME_CALC =
 "java:global/myJarName/SimpleCalculatorBean";

Step 2: Coding the EJB | 37

Here we’ve declared a JNDI naming Context for the lookups, and the names of the
target JNDI Addresses under which we’ll find the appropriate proxy reference. Our
tests will check that the EJB 3.1 Business View works as expected, but before the test
runs, a lifecycle method will obtain the reference and set the proxy reference
accordingly:

@BeforeClass // Invoked by the test framework before any tests run
 public static void obtainProxyReferences() throws Throwable
 {
 // Create the naming context, using jndi.properties on the CP
 namingContext = new InitialContext();

 // Obtain EJB 3.1 Business Reference
 calc = (SimpleCalculatorBean)
 namingContext.lookup(JNDI_NAME_CALC);
 }

First we create the naming Context, using a standard jndi.properties file that we assume
to be present on the classpath. The JNDI properties to be used are vendor-specific, so
by pulling these out into a separate file, our test remains portable across EJB
implementations.

From there, we obtain the business proxy by performing a simple JNDI lookup upon
the portable Global JNDI name.

Let’s define a central point to perform assertions within our tests:

 private void assertAdditionSucceeds(CalculatorCommonBusiness calc)
 {
 // Initialize
 final int[] arguments = new int[]
 {2, 3, 5};
 final int expectedSum = 10;

 // Add
 final int actualSum = calc.add(arguments); // Real EJB Invocation!

 // Test
 TestCase.assertEquals("Addition did not return the expected result",
 expectedSum, actualSum);
 }

This time, the calc reference passed in will not be a POJO, but instead a true EJB Proxy.

 @Test
 public void testAdditionUsingBusinessReference() throws Throwable
 {
 this.assertAdditionSucceeds(calc);
 }
}

Our two tests will merely pass the appropriate EJB Proxy to the assertion function.
Assuming everything goes well, we’ll get the all clear and may rest assured that the
system is working as we expect.

38 | Chapter 4: Developing Your First EJBs

The interesting thing to note about this setup is that nowhere have we declared the
notion of remoting, transactions, or the like. Regardless, this test is a fully functional
remote client to a distributed architecture. Client code has no idea that it’s crossing
process and network boundaries. This is a powerful argument in favor of the EJB
Architecture.

Summary
This chapter has covered a lot of ground in terms of introducing some of the EJB APIs
and grammars. In some cases, we’ve glossed over the more intimate details underpin-
ning the creation, packaging, deployment, and testing of a stateless session bean to
instead clearly focus upon the conceptual aspects involved. The next chapter contains
an in-depth discussion of session beans and associated services.

Summary | 39

PART II

Server-Side Component Models

We’ve now seen how EJB’s component types allow us to write less, allowing the con-
tainer to equip us with services and other runtime support. In this section we’ll more
fully address the available server-side models: session beans and message-driven beans.

EJB’s basic building block for implementing business logic—taskflow—is the session
bean. Taskflow refers to all the steps required to service a request such as making a
doctor’s appointment or renting a video. Session beans frequently manage the inter-
actions within persistent data—entity beans—describing how they work together to
accomplish a specific goal.

Session beans are divided into three basic types: stateless, stateful, and singleton.

A stateless session bean (Chapter 5) is a collection of related services, each represented
by a business method; the bean maintains no conversational state from one method
invocation to the next. When you make a request upon a stateless session bean, the
container executes the target method and returns the result without knowing or caring
what other requests have gone before or might follow. Think of a stateless session bean
as a set of procedures or batch programs that execute based on some parameters and
return a result.

A stateful session bean (Chapter 6) is an extension of the client application. It performs
tasks on behalf of the client and maintains state related to that client. This is called
conversational state because it represents a continuing set of exchanges between the
stateful session bean (SFSB) and the client. Methods invoked on a stateful session bean
can write and read data to and from this conversational state, which is shared among
all methods in the bean.

A singleton session bean (Chapter 7) is backed by only one target: an instance of the
bean implementation class. All business requests are serviced by the same backing
object, so state is shared throughout the application. This is especially useful for per-
forming system-wide initialization or governing a process from a sole authority.

Message-driven beans (Chapter 8) act as listeners for incoming events. They are not
invoked directly by the client, and they do not provide any return value. As we’ll see,
these may make a powerful utility for wiring together various pieces of an application.

CHAPTER 5

The Stateless Session Bean

The stateless session bean is designed for efficiency and simplicity. Central to its design
is the absence of conversational state, which is a topic worth exploring a bit further
before delving into SLSB mechanics.

When we say conversational state, we refer to information exchanged and remembered
within the context of a series of requests between the Client (caller) and EJB (service).
We can illustrate this simply:

Mike: Hi, my name is Mike.
Service: Hello, Mike.
Mike: Do you know my name?
Service: Yes, your name is Mike.

Here, the state variable holding the name of the client is stored for the duration of the
conversation. Stateless session beans are incapable of handling this exchange correctly;
each invocation upon a SLSB proxy operates independently from those both before and
after (see Figure 5-1). In fact, its underlying bean instances may be swapped inter-
changeably between requests.

Stateless session beans are EJB’s answer to traditional transaction-processing applica-
tions, which are executed using a procedure call. The procedure runs from beginning
to end, finally returning the result. Once the invocation completes, nothing about the
data that was manipulated or the details of the request is available. When finished
servicing a method invocation, an SLSB instance may be reused as the target for a new
request. In short, stateless session beans are engineered to be lightweight and fast at
the expense of conversational state. A much better usage of a SLSB looks like:

Mike: How much money is in savings account B?
SLSB: $100.
Mike: Please transfer $200 from checking account A to savings account B.
SLSB: OK, done.
Mike: How much money is in savings account B?
SLSB: $300.

Here Mike has supplied the SLSB with all the information it needs to process a request
within the request itself.

43

Bypassing conversational state doesn’t mean that a stateless session bean can’t have
instance variables or maintain any kind of internal state. Nothing prevents you from
keeping a variable that tracks the number of times a bean instance has been called or
a variable that saves data for debugging. However, it is important to remember that
this state may never be visible to a client. The caller of an SLSB can’t assume that the
same bean instance will service all of its requests. Instance variables may have different
values in different bean instances, so their state is likely to appear to change randomly
as stateless session beans are swapped from one client to another. Therefore, anything
you reference in instance variables should be generic and not leaked out through
the API.

For example, an SLSB might reasonably record debugging messages—that might be
the only way to figure out what is happening on a large server with many bean instances.
The client doesn’t know or care where debugging output is going. However, it would
clearly be inappropriate for a stateless bean to remember that it was in the process of
making a reservation for Madame X; the next time it is called, it may be servicing
another client entirely. An SLSB used improperly might act a little like this:

Mike: Hi, my name is Mike.
SLSB: Hello, Mike.
Mike: Do you know my name?
SLSB: Yes, your name is Jason.

Figure 5-1. Two invocations upon the same proxy, where each invocation uses a different underlying
bean instance as picked from the pool

44 | Chapter 5: The Stateless Session Bean

Mike: What? That's wrong! I'm going!
SLSB: OK, later, Dave.

This kind of behavior stems from an incorrect application of the SLSB type. Either the
bean provider has leaked out internal state variables or a stateful session bean (Chap-
ter 6) should have been used instead. As a result, bean instances that have previously
serviced Jason and Dave are now being used for Mike’s requests, and the system is in
some inconsistent state.

Stateless session beans may be used for report generation, batch processing, or some
stateless services such as validating credit cards. Another good application might be a
StockQuoteEJB that returns a stock’s current price. Any activity that can be accom-
plished in one method call is a good candidate for the high-performance stateless
session bean.

Let’s examine the semantics and grammars used to define session beans, and in par-
ticular, the SLSB.

The XML Deployment Descriptor
EJB has an optional XML deployment descriptor defined in the META-INF/ejb-
jar.xml file of the EJB’s JAR file. You can use this descriptor as an alternative to anno-
tations, to augment metadata that is not declared as an annotation, or to override an
annotation. The choice is up to you. While annotations are a quick, simple way to
prototype or define default metadata, they do make for tight coupling as information
becomes embedded into the bytecode.

What’s interesting about an XML-only deployment is that your Java code may contain
no references to any EJB-specific APIs. If you looked at the Java code, you wouldn’t
even know that it was an EJB.

The <enterprise-beans> element contained in <ejb-jar> defines the set of EJBs you are
deploying. The <session> element denotes that you are deploying a session bean. <ejb-
name> gives the session bean an identity that you can reference. The <remote> and
<local> elements identify the business interfaces of the bean, and <ejb-class> declares
the bean class. The <session-type> element identifies the session bean as a stateless
session bean. <env-entry> initializes the values externalized from the bean class (details
are provided in Chapter 16).

The XML deployment descriptor schema also supports partial XML definitions. This
may be used to augment or override metadata provided via annotations, as we’ll
soon see.

The XML Deployment Descriptor | 45

SessionContext
The javax.ejb.SessionContext interface provides a view into the EJB container’s envi-
ronment. The SessionContext object can be used as the bean instance’s interface to the
EJB container to obtain information about the context of the method invocation call
and to provide quick access to various EJB services. A session bean can obtain a refer-
ence to its SessionContext by using the @Resource annotation:

 /**
 * SessionContext of this EJB; this will be injected by the EJB
 * Container because it's marked w/ @Resource
 */
 @Resource
 private SessionContext context;

SessionContext allows you to obtain information such as the current user that is in-
voking on the EJB, or to look up entries within the EJB’s Enterprise Naming Context
(ENC). Let’s look at the javax.ejb.SessionContext interface:

public interface javax.ejb.SessionContext extends javax.ejb.EJBContext {
 EJBLocalObject getEJBLocalObject() throws IllegalStateException
 EJBObject getEJBObject() throws IllegalStateException;
 MessageContext getMessageContext() throws IllegalStateException;

 <T> getBusinessObject(Class<T> businessInterface)

throws IllegalStateException;
 Class getInvokedBusinessInterface();
}

The getEJBObject() and getEJBLocalObject() methods are obsolete and will throw an
exception if invoked upon. They are objects that are specific to the EJB 2.1 style of
defining EJBs.

The SessionContext.getBusinessObject() method returns a reference to the current
EJB that can be invoked by other clients. This reference is the EJB equivalent to Java’s
this pointer, but it returns a proper EJB proxy. The businessInterface parameter must
be one of the EJB’s BusinessRemote or BusinessLocal interfaces so that the container
knows whether to create a remote or local reference to the current EJB. The
getBusinessObject() method allows the bean instance to get its own EJB object refer-
ence, which it can then pass to other beans. Here is an example:

@Stateless
public class A_Bean implements A_BusinessRemote {
 @Resource private SessionContext context;
 public void someMethod() {
 B_BeanBusinessRemote b = ... // Get a remote reference to B_Bean.
 A_BeanBusinessRemote mySelf = getBusinessObject(A_BeanRemote.class);
 b.aMethod(mySelf);
 }
 ...
}

46 | Chapter 5: The Stateless Session Bean

www.allitebooks.com

http://www.allitebooks.org

It is illegal for a bean instance to pass a this reference to another bean; instead, it passes
its remote or local EJB object reference, which the bean instance gets from its Session
Context.

The SessionContext.getInvokedBusinessInterface() method allows you to determine
whether your EJB was invoked on through its remote, local, or web service interface.
It returns the invoked business interface as a class.

EJBContext
SessionContext extends the javax.ejb.EJBContext class. EJBContext defines several
methods that provide useful information to a bean at runtime.

Here is the definition of the EJBContext interface:

package javax.ejb;
public interface EJBContext {

 public Object lookup(String name);

 // EJB 2.1 only: TimerService
 public TimerService getTimerService()
 throws java.lang.IllegalStateException;

 // security methods
 public java.security.Principal getCallerPrincipal();
 public boolean isCallerInRole(java.lang.String roleName);

 // transaction methods
 public javax.transaction.UserTransaction getUserTransaction()
 throws java.lang.IllegalStateException;
 public boolean getRollbackOnly()
 throws java.lang.IllegalStateException;
 public void setRollbackOnly()
 throws java.lang.IllegalStateException;

 // deprecated and obsolete methods
 public java.security.Identity getCallerIdentity();
 public boolean isCallerInRole(java.security.Identity role);
 public java.util.Properties getEnvironment();

 public EJBHome getEJBHome()
 java.lang.IllegalStateException;
 public EJBLocalHome getEJBLocalHome()
 java.lang.IllegalStateException;

}

EJBContext.lookup() is a convenience method that allows you to look up entries in the
EJB’s ENC. We’ve used it in the example just shown to obtain the cipher’s passphrase.

The EJBContext.getTimerService() method returns a reference to the container’s Timer
Service, which allows the stateless bean to set up notifications of timed events for itself.

SessionContext | 47

In other words, a session bean can set alarms so that the container will call it when a
specific date arrives or some interval of time has passed. The Timer Service can also be
injected using the @Resource annotation. The Timer Service is covered in detail in
Chapter 19.

The EJBContext.getCallerPrincipal() method is used to obtain the java.security.
Principal object representing the client that is currently accessing the bean. The Prin
cipal object can, for example, be used by an EJB to track the identities of clients making
updates:

@Stateless
public class BankBean implements Bank {
 @Resource SessionContext context;
 ...
 public void withdraw(int acctid, double amount) throws AccessDeniedException {
 String modifiedBy = principal.getName();
 ...
 }
 ...
}

The EJBContext.isCallerInRole() method tells you whether the client accessing the
bean is a member of a specific role, identified by a role name. This method is useful
when more access control is needed than simple method-based access control can pro-
vide. In a banking system, for example, you might allow the Teller role to make most
withdrawals but only the Manager role to make withdrawals of more than $10,000. This
kind of fine-grained access control cannot be addressed through EJB’s security attrib-
utes, because it involves a business logic problem. Therefore, we can use the isCaller
InRole() method to augment the automatic access control provided by EJB. First, let’s
assume that all managers are also tellers. The business logic in the withdraw() method
uses isCallerInRole() to make sure that only the Manager role can withdraw sums of
more than $10,000:

@Stateless
public class BankBean implements Bank {
 @Resource SessionContext context;

 public void withdraw(int acctid, double amount) throws AccessDeniedException {

 if (amount > 10000) {
 boolean isManager = context.isCallerInRole("Manager");
 if (!isManager) {
 // Only Managers can withdraw more than 10k.
 throw new AccessDeniedException();
 }
 }

 }
 ...
}

48 | Chapter 5: The Stateless Session Bean

The transactional methods—getUserTransaction(), setRollbackOnly(), and getRoll
backOnly()—are described in detail in Chapter 17.

EJBContext contains some methods that were used in older EJB specifications but
have been abandoned in EJB 3.0. The security methods that interact with Identity
classes, as well as the getEnvironment(), EJBContext.getEJBHome(), and
EJBContext.getEJBLocalHome() methods, are now obsolete. A RuntimeException is
thrown if these methods are executed.

The material on EJBContext covered in this section applies equally well to message-
driven beans. There are some exceptions, however, and these differences are covered
in Chapter 12.

The Lifecycle of a Stateless Session Bean
The lifecycle of a stateless session bean is very simple. It has only two states: Does Not
Exist and Method-Ready Pool. The Method-Ready Pool is an instance pool of stateless
session bean objects that are not in use. Because of all the injection and such that can
happen, it can be more efficient to save stateless bean instances when they are not in
use. This is an important difference between stateless and stateful session beans; state-
less beans define instance pooling in their lifecycles and stateful beans do not.*

Figure 5-2 illustrates the states and transitions an SLSB instance goes through.

Figure 5-2. Stateless session bean lifecycle

* Some vendors may not pool stateless instances but may instead create and destroy instances with each method
invocation. This is an implementation-specific decision that shouldn’t affect the specified lifecycle of the
stateless bean instance.

The Lifecycle of a Stateless Session Bean | 49

The Does Not Exist State
When a bean is in the Does Not Exist state, it is not an instance in the memory of the
system. In other words, it has not been instantiated yet.

The Method-Ready Pool
Stateless bean instances enter the Method-Ready Pool as the container needs them.
When the EJB server is first started, it may create a number of stateless bean instances
and enter them into the Method-Ready Pool. (The actual behavior of the server depends
on the implementation.) When the number of stateless instances servicing client re-
quests is insufficient, more can be created and added to the pool.

Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool,
three operations are performed on it. First, the bean instance is instantiated by invoking
the Class.newInstance() method on the stateless bean class. Second, the container in-
jects any resources that the bean’s metadata has requested via an injection annotation
or XML deployment descriptor.

You must always provide a no-argument constructor. This is a con-
structor that accepts no parameters. The container instantiates
instances of the bean class using Class.newInstance(), which requires a
no-arg constructor. If no constructors are defined, the no-arg construc-
tor is implicit.

Finally, the EJB container will fire a post-construction event. The bean class can register
for this event by annotating a method with @javax.annotation.PostConstruct. This
annotated method is called by the container after the bean is instantiated. The callback
method can be of any name, but it must return void, have no parameters, and throw
no checked exceptions. The bean class may define only one @PostConstruct method
(but it is not required to do so).

Alternatively, you can declare your @PostConstruct method in the EJB’s XML deploy-
ment descriptor:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>MyEJBName</ejb-name>
 <post-construct>
 <lifecycle-callback-method>initialize</lifecycle-callback-method>
 </post-construct>
 </session>
 </enterprise-beans>
</ejb-jar>

50 | Chapter 5: The Stateless Session Bean

Stateless session beans are not subject to activation, so they can maintain open con-
nections to resources for their entire lifecycles.† The @PreDestroy method should close
any open resources before the stateless session bean is evicted from memory at the end
of its lifecycle. You’ll read more about @PreDestroy later in this section.

Life in the Method-Ready Pool

Once an instance is in the Method-Ready Pool, it is ready to service client requests.
When a client invokes a business method on an EJB object, the method call is delegated
to any available instance in the Method-Ready Pool. While the instance is executing
the request, it is unavailable for use by other EJB objects. Once the instance has finished,
it is immediately available to any EJB object that needs it. Stateless session instances
are dedicated to an EJB object only for the duration of a single method call.

When an instance is swapped in, its SessionContext changes to reflect the context of
the EJB object and the client invoking the method. The bean instance may be included
in the transactional scope of the client’s request and it may access SessionContext in-
formation specific to the client request: for example, the security and transactional
methods. Once the instance has finished servicing the client, it is disassociated from
the EJB object and returned to the Method-Ready Pool.

Clients that need a remote or local reference to a stateless session bean begin by having
the reference injected (servlets support injection, for example) or by looking up the
stateless bean in JNDI. The reference returned does not cause a session bean instance
to be created or pulled from the pool until a method is invoked on it.

PostConstruct is invoked only once in the lifecycle of an instance: when it is transi-
tioning from the Does Not Exist state to the Method-Ready Pool. It is not reinvoked
every time a client requests a remote reference to the bean.

Transitioning out of the Method-Ready Pool: The death of a stateless bean instance

Bean instances leave the Method-Ready Pool for the Does Not Exist state when the
server no longer needs them—that is, when the server decides to reduce the total size
of the Method-Ready Pool by evicting one or more instances from memory. The process
begins when a PreDestroy event on the bean is triggered. The bean class can register
for this event by annotating a method with @javax.annotation.PreDestroy. The con-
tainer calls this annotated method when the PreDestroy event is fired. This callback
method can be of any name, but it must return void, have no parameters, and throw
no checked exceptions. The bean class may define only one @PreDestroy method (but
it is not required to do so). An @PreDestroy callback method can perform any cleanup
operations, such as closing open resources.

† The duration of a stateless bean instance’s life is assumed to be very long. However, some EJB servers may
actually destroy and create instances with every method invocation, making this strategy less attractive.
Consult your vendor’s documentation for details on how your EJB server handles stateless instances.

The Lifecycle of a Stateless Session Bean | 51

@Stateless
public class MyBean implements MyLocalBusiness {

 @PreDestroy
 public void cleanup() {
 ...
 }

Alternatively, you can declare your @PreDestroy method in the EJB’s XML deployment
descriptor:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>MyEJBName</ejb-name>
 <pre-destroy>
 <lifecycle-callback-method>cleanup</lifecycle-callback-method>
 </pre-destroy>
 </session>
 </enterprise-beans>
</ejb-jar>

As with @PostConstruct, @PreDestroy is invoked only once: when the bean is about to
transition to the Does Not Exist state. During this callback method, the
SessionContext and access to the JNDI ENC are still available to the bean instance.
Following the execution of the @PreDestroy method, the bean is dereferenced and
eventually garbage-collected.

Example: The EncryptionEJB
Often we write applications that require users to choose a password or enter a credit
card number. Storing this sensitive data in its raw form (called cleartext) represents a
security risk: if someone were to gain unauthorized access to our database, he or she
could query for this information and we’d be liable for any damage done. A nice alter-
native to persisting these fields in human-legible format is to encrypt them using our
application. Because this is a simple request-response model requiring no conversa-
tional state, the stateless session bean is ideally suited to handle these requirements
efficiently. Other EJBs or standalone clients may later leverage the generic encryption
service we provide in this component.

The EncryptionEJB example is discussed in full detail in Appendix B.

There are two techniques we’ll consider:

• Cryptographic hashing

• Cipher-based symmetrical encryption

Cryptographic hashing is the process in which some input is transformed into a repro-
ducible, fixed-size result. The algorithm is unidirectional, meaning that it’s not
mathematically possible to un-hash the output back to its original form. By storing the

52 | Chapter 5: The Stateless Session Bean

hash of passwords only, we may compare hashes of login attempts against the stored
value (see Figure 5-3).

Figure 5-3. Comparing input with a hash of the expected result

Sometimes we need to be able to get the cleartext back out of an encrypted result. For
example, perhaps our application offers storage of a previously used credit card number
for future purchases. For this, we may employ symmetrical encryption, which dictates
that some key (backed by a passphrase) may both encrypt and decrypt the data. With-
out the correct passphrase, attempts to decode become very tricky for potential
attackers.

The Contract: Business Interfaces
Using the requirements described in the previous section, we can flesh out the contract
for our EncryptionEJB:

public interface EncryptionCommonBusiness
{
 /**
 * Encrypts the specified String, returning the result
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)
 */
 String encrypt(String input) throws IllegalArgumentException;

 /**
 * Decrypts the specified String, returning the result. The general
 * contract is that the result of decrypting a String encrypted with
 * {@link EncryptionCommonBusiness#encrypt(String)} will be equal
 * by value to the original input (round trip).
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)
 */
 String decrypt(String input) throws IllegalArgumentException;

Example: The EncryptionEJB | 53

Here we account for our symmetrical encryption functions:

 /**
 * Returns a one-way hash of the specified argument. Useful
 * for safely storing passwords.
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)
 */
 String hash(String input) throws IllegalArgumentException;

 /**
 * Returns whether or not the specified input matches the specified
 * hash. Useful for validating passwords against a
 * securely stored hash.
 *
 * @param hash
 * @param input
 * @return
 * @throws IllegalArgumentException If either the hash or input is not provided
(null)
 */
 boolean compare(String hash, String input) throws IllegalArgumentException;
}

And these methods will handle our one-way cryptographic hashing. The Encryption
CommonBusiness interface again becomes the base for both our local business and remote
business views:

public interface EncryptionLocalBusiness extends EncryptionCommonBusiness {}
public interface EncryptionRemoteBusiness extends EncryptionCommonBusiness {}

A business interface can be a remote or local interface but not both. Remote business
interfaces are able to receive method invocations from networked clients. When a client
invokes a method on a session bean’s remote interface, the parameter values and return
value are copied. This is true regardless of whether the client is running in the same VM
or on another machine in the network. This is known as call-by-value semantics.

Local interfaces are available only within the same JVM as the session bean. Invoking
on a local interface does not copy the parameters or return value. Because of this, local
interfaces are said to follow what is termed call-by-reference semantics.

Application Exceptions
Any business interface can throw application exceptions. These should describe a busi-
ness logic problem—in this case, a problem in encryption/decryption. Application
exceptions should be meaningful to the client, providing a brief and relevant identifi-
cation of the error.

Our new EncryptionException will describe a specific business problem that is possibly
recoverable; this makes it an application exception. The EJB container treats any

54 | Chapter 5: The Stateless Session Bean

exception that does not extend RuntimeException as an application exception. Here is
the definition of EncryptionException:

@ApplicationException
// Explicit annotation, though this is inferred as default because we extend Exception
public class EncryptionException extends Exception{...}

An application exception is propagated to the calling client as is. Any instance variables
you include in these exceptions should be serializable. Nonapplication exceptions are
always wrapped, by the Container, in an EJBException. This means that any exception
you throw that is or extends RuntimeException will be caught by the EJB container and
wrapped in an EJBException. This is especially important for session beans that interact
with entity beans. All exceptions thrown by Java Persistence interfaces are
RuntimeExceptions. Your client code must be aware of this if it needs to take action on
specific persistence exceptions. Exception behavior, preventing the wrapping in EJBEx
ception, can be declared explicitly using the @javax.ejb.ApplicationException and the
<application-exception> XML deployment descriptor metadata. These constructs are
discussed in detail in Chapter 17, as they have a huge impact on transactional
behavior.

Bean Implementation Class
The EncryptionEJB models a specific business process, so it is an excellent candidate
for a stateless session bean. This bean really represents a set of independent
operations—another indication that it is a good candidate for a stateless session bean.

First we’ll reveal any nonobvious types to be imported (all will be discussed in turn):

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.ejb.Local;
import javax.ejb.Remote;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

Annotations upon the bean implementation class provide the metadata declaring our
SLSB and business interfaces:

@Stateless(name = "EncryptionEJB")
@Local(EncryptionLocalBusiness.class)
@Remote(EncryptionRemoteBusiness.class)
public class EncryptionBean implements EncryptionLocalBusiness,
 EncryptionRemoteBusiness
{ ...

The bean class is annotated with the @javax.ejb.Stateless annotation to identify that
it is a stateless session bean. The name() attribute identifies the EJB name of the session
bean. The EJB name defaults to the unqualified (simple) name of the bean class if you
initialize this attribute; in this case, the EJB name would default to EncryptionBean. In
most cases, you don’t have to be aware of the concept of an EJB name, but it’s useful

Example: The EncryptionEJB | 55

when you want to override or augment metadata with an XML deployment descriptor.
This will allow us to externalize properties and provide configuration for the service
without requiring recompilation of the Java sources.

When used on the bean class, the @Local and @Remote annotations take an array of
interface classes. It is not recommended that you use this approach unless you have to,
as implementing your business interfaces directly enforces the contract between the
bean class and these interfaces. These examples opt for the bean implementation class
approach simply to centralize annotation metadata for readability, and the contract is
honored by ensuring the bean implementation class explicitly implements all business
interfaces.

The EncryptionEJB identifies its remote and local interfaces via the class-level annota-
tions upon the bean implementation class. As we’ve mentioned before, @Remote and
@Local could also go directly upon the EncryptionBusinessRemote and
EncryptionBusinessLocal interfaces:

@Local
public interface EncryptionLocalBusiness extends EncryptionCommonBusiness {}
@Remote
public interface EncryptionRemoteBusiness extends EncryptionCommonBusiness {}

When an EJB is deployed, the container looks at the interfaces of the bean class to see
whether they are annotated as business interfaces. This introspection may determine
the business remote and business local interfaces of the bean class.

The art of creating a truly secure encryption service is beyond scope of this exercise, so
we’ll leave the implementation of the business methods for you to explore in runnable
examples detailed in the appendix. Worthy of note, however, is that our bean imple-
mentation class must perform some initialization before it’s able to do any real work.
For this purpose, we introduce:

 /**
 * Initializes this service before it may handle requests
 *
 * @throws Exception If some unexpected error occurred
 */
 @PostConstruct
 public void initialize() throws Exception
 {
 // Log that we're here
 log.info("Initializing, part of " + PostConstruct.class.getName() + " life
cycle");

 // Get the passphrase for symmetric encryption
 final String passphrase = this.getCiphersPassphrase();

 // Do initialization tasks here
 ...
 }

56 | Chapter 5: The Stateless Session Bean

The @PostConstruct annotation defines a callback method to be executed at the proper
point within the SLSB lifecycle. In this case, initialize() will be invoked by the Con-
tainer after it has created the bean instance and performed any injection operations.

We’ve also defined the internal method getCiphersPassphrase(), which we’ll use to
obtain an externalized parameter as the passphrase (secret key) for use in symmetric
encryption.

Accessing Environment Properties (Injection and Lookup)
Our bean implementation class declares a few instance members as part of its internal
state:

 /**
 * Passphrase to use for the key in cipher operations; lazily initialized
 * and loaded via SessionContext.lookup
 */
 private String ciphersPassphrase;

 /**
 * Algorithm to use in message digest (hash) operations, injected
 * via @Resource annotation
 */
 @Resource
 private String messageDigestAlgorithm;

Remember that the internal state for each instance is permissible, so long as these don’t
leak out to the client. Stateless session beans may contain no conversational state!

Two of these properties, ciphersPassphrase and messageDigestAlgorithm, represent
configurable attributes that we’ll provide via externalized variables called environment
entries. An environment entry is a value placed into JNDI under a private namespace
called the Enterprise Naming Context (ENC), which is visible only to our EJB. There
are a variety of ways to get at the values within the ENC, and this example will illustrate
both manual lookup and injection.

The messageDigestAlgorithm is annotated with @Resource; this tells the EJB container
that when an instance of the bean class is created, this field must be initialized with
values in the container’s ENC.

When the EJB container is deployed, the ENC is populated both with metadata em-
bedded in annotations such as @Resource and with information stored in the optional
EJB XML deployment descriptor. For example, the annotation alone suggests a named
value within the ENC should be used to initialize the field externally. This named value
can be configured by defining environment entries within the EJB’s XML deployment
descriptor:

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"

Example: The EncryptionEJB | 57

 version="3.1">

 <enterprise-beans>

 <!--
 In this section we'll bolster our EncryptionEJB with some
 additional metadata to complement the info defined via
 annotations.
 -->
 <session>

 <!--
 This will match the value of @Stateless.name upon our bean
 implementation class
 -->
 <ejb-name>EncryptionEJB</ejb-name>

 <!-- Override the ciphers default passphrase -->
 <env-entry>
 <env-entry-name>ciphersPassphrase</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>OverriddenPassword</env-entry-value>
 </env-entry>

 <!-- Override the default unidirectional hash MessageDigest algorithm -->
 <env-entry>
 <env-entry-name>messageDigestAlgorithm</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>SHA</env-entry-value>
 </env-entry>

 </session>

 </enterprise-beans>

</ejb-jar>

When this file, META-INF/ejb-jar.xml, is included in the packaging of the EJB, the
Container will place the designated values within the ENC of our EncryptionEJB upon
deployment. The messageDigestAlgorithm field may then be injected by the Container.
But we’ve defined no annotation upon the field ciphersPassphrase, so we’ll look it up
manually.

The @Resource annotation is very versatile, and when placed upon a known type such
as SessionContext, the Container knows how to handle this injection request. Through
the lookup() method upon a SessionContext, we can poke into the ENC to obtain the
value we’re looking for:

 private String getEnvironmentEntryAsString(final String envEntryName) throws
IllegalStateException
 {
 // Get the SessionContext from the injected instance member
 final SessionContext context = this.context;

58 | Chapter 5: The Stateless Session Bean

 // Lookup in the Private JNDI ENC via the injected SessionContext
 Object lookupValue = null;
 try
 {
 lookupValue = context.lookup(envEntryName);
 log.debug("Obtained environment entry \"" + envEntryName + "\": " + look
upValue);
 }
 catch (final IllegalArgumentException iae)
 {
 // Not found defined within this EJB's Component Environment,
 // so return null and let the caller handle it
 log.warn("Could not find environment entry with name: " + envEntryName);
 return null;
 }

 // Cast
 String returnValue = null;
 try
 {
 returnValue = String.class.cast(lookupValue);
 }
 catch (final ClassCastException cce)
 {
 throw new IllegalStateException("The specified environment entry, " +
 lookupValue + ", was not able to be represented as a "
 + String.class.getName(), cce);
 }

 // Return
 return returnValue;
 }

We may use something similar to the previous code to extract out the cipher passphrase
from the ENC in a manual fashion. Because of this extra burden upon the developer,
it’s easy to see why injection is the preferred mechanism to obtain information from
the Container.

Externalization of values is incredibly important. In this case, the application assembler
or deployer of the EJB may choose a secret passphrase for the encryption scheme in
production environments, and developers of the application never have to be exposed
to this privileged information. We’ve also used environment entries to make our service
configurable.

It’s worth noting: never, ever design to store passwords in a file to be
placed on the filesystem. By definition, this is insecure. This example is
in place to illustrate the absence of conversational state while maintain-
ing internal state and should not be used as a real-world encryption
system.

The exact semantics of the <env-entry> and @Resource annotation are discussed in detail
in Chapter 16.

Example: The EncryptionEJB | 59

Asynchronous Methods
New in the EJB 3.1 Specification is the feature of fire-and-forget invocations upon ses-
sion beans. Often we’ll have requirements where a request may take some time to be
fully processed, and the client may not need to wait for the result or confirmation of
completion. In these cases, we can take advantage of the new @javax.ejb.Asynchro
nous annotation to return control to the client before EJB is invoked. When the client
does need access to the return value, it can do so via the facilities provided by
java.util.concurrent.Future.

In the case of our EncryptionEJB, perhaps we have a very intensive hashing function
that takes some time to complete:

 /**
 * Returns a one-way hash of the specified argument, calculated
asynchronously.
 * Useful for safely storing passwords.
 *
 * @param input
 * @return
 * @throws IllegalArgumentException
 * @throws EncryptionException
 */
 Future<String> hashAsync(String input) throws
IllegalArgumentException, EncryptionException;

During implementation, the bean provider may mark this method (either on the busi-
ness interface or the bean class) as @Asynchronous, wrapping the real return value
in a convenience implementation of java.util.concurrent.Future called
javax.ejb.AsyncResult:

 @Asynchronous
 @Override
 public Future<String> hashAsync(final String input) throws
IllegalArgumentException, EncryptionException
 {
 // Get the real hash
 final String hash = this.hash(input);

 // Wrap and return
 return new AsyncResult<String>(hash);
 }

Client usage therefore may look something like this:

 // Declare the input
 final String input = "Async Hashing Input";

 // Hash
 final Future<String> hashFuture =
myEjbProxyReference.hashAsync(input);

 // Now we're free to do whatever work we want here while the
 // EJB invocation runs concurrently

60 | Chapter 5: The Stateless Session Bean

 // ...[work]

 // At this point we need the hash, so get the result,
 // and block for up to 10 seconds to get it
 final String hash = hashFuture.get(10,TimeUnit.SECONDS);
 log.info("Hash of \"" + input + "\": " + hash);

Here control is returned to the client immediately after invoking upon hashAsync, and
other work may be performed while the potentially expensive hashing function chugs
along elsewhere concurrently. When we need the asynchronous result, we can use
Future.get() or its derivatives to block until the result is available.

Methods with no return value (i.e., void) may also be marked as @Asynchronous. Any
session bean business method (in Stateless, Stateful, or Singleton) is eligible to be made
asynchronous, and @Asynchronous may be applied upon a business interface or bean
class to denote that all methods should be handled async.

Asynchronous Methods | 61

CHAPTER 6

The Stateful Session Bean

While the strengths of the stateless session bean lie in its speed and efficiency, stateful
session beans are built as a server-side extension of the client. Each SFSB is dedicated
to one client for the life of the bean instance; it acts on behalf of that client as its agent
(see Figure 6-1). Stateful session beans are not swapped among EJB objects, nor are
they kept in an instance pool like their stateless session counterparts. Once a stateful
session bean is instantiated and assigned to an EJB object, it is dedicated to that EJB
object for its entire lifecycle.*

Figure 6-1. Client relationship with the EJB Container and backing bean instances

Stateful session beans maintain conversational state, which means that the instance
variables of the bean class can maintain data specific to the client between method

* This is a conceptual model. Some EJB containers may actually use instance swapping with stateful session
beans but make it appear as if the same instance is servicing all requests. Conceptually, however, the same
stateful session bean instance services all requests.

63

invocations. This makes it possible for methods to be interdependent such that changes
made to the bean’s state in one method call can affect the results of subsequent method
invocations. Therefore, every method call from a client must be serviced by the same
instance (at least conceptually), so the bean instance’s state can be predicted from one
method invocation to the next. In contrast, stateless session beans don’t maintain
client-specific data from one method call to the next, so any instance can be used to
service any method call from any client.

Although stateful session beans maintain conversational state, they are not themselves
persistent; the state of a SFSB is lost when the session is removed, the session times out,
or the server restarts. Persistent state in EJB is modeled by the entity bean, which we
cover starting in Chapter 9.

Because SFSBs are often considered extensions of the client, we may think of a client
as being composed from a combination of operations and state. Each task may rely on
some information gathered or changed by a previous operation. A GUI client is a perfect
example: when you fill in the fields on a GUI client, you are creating conversational
state. Pressing a button executes an operation that might fill in more fields, based on
the information you entered previously. The information in the fields is conversational
state.

Stateful session beans allow you to encapsulate some of the business logic and conver-
sational state of a client and move it to the server. Moving this logic to the server thins
the client application and makes the system as a whole easier to manage. The stateful
session bean acts as an agent for the client, managing processes or taskflow to accom-
plish a set of tasks; it manages the interactions of other beans in addition to direct data
access over several operations to accomplish a complex set of tasks. By encapsulating
and managing taskflow on behalf of the client, stateful beans present a simplified in-
terface that hides the details of many interdependent operations on the database and
other beans from the client.

The Lifecycle of a Stateful Session Bean
The biggest difference between the stateful session bean and the other bean types is
that stateful session beans do not use instance pooling. Stateful session beans are dedi-
cated to one client for their entire lives, so swapping or pooling of instances isn’t pos-
sible.† When they are idle, stateful session bean instances are simply evicted from
memory. The EJB object remains connected to the client, but the bean instance is
dereferenced and garbage-collected during inactive periods. This means that each
stateful bean must be passivated before it is evicted in order to preserve the conversa-
tional state of the instance, and it must be activated to restore its state when the EJB
object becomes active again.

† Some vendors use pooling with stateful session beans, but that is a proprietary implementation and should
not affect the specified lifecycle of the stateful session bean.

64 | Chapter 6: The Stateful Session Bean

The bean’s perception of its lifecycle depends on whether it implements a special in-
terface called javax.ejb.SessionSynchronization. This interface defines an additional
set of callback methods that notify the bean of its participation in transactions. A bean
that implements SessionSynchronization can cache database data across several
method calls before making an update. We have not discussed transactions in detail
yet; we will consider this part of the bean’s lifecycle in Chapter 17. This section de-
scribes the lifecycle of stateful session beans that do not implement the
SessionSynchronization interface.

The lifecycle of a stateful session bean has three states: Does Not Exist, Method-Ready,
and Passivated. This sounds a lot like a stateless session bean, but the Method-Ready
state is significantly different from the Method-Ready Pool of stateless beans.
Figure 6-2 shows the state diagram for stateful session beans.

Figure 6-2. Stateful session bean lifecycle

The Does Not Exist State
A stateful bean instance in the Does Not Exist state has not been instantiated yet. It
doesn’t exist in the system’s memory.

The Method-Ready State
The Method-Ready state is the state in which the bean instance can service requests
from its clients. This section explores the instance’s transition into and out of the
Method-Ready state.

The Lifecycle of a Stateful Session Bean | 65

Transitioning into the Method-Ready state

When a client invokes the first method on the stateful session bean reference, the bean’s
lifecycle begins. The container invokes newInstance() on the bean class, creating a new
instance of the bean. Next, the container injects any dependencies into the bean in-
stance. At this point, the bean instance is assigned to the client referencing it. Finally,
just like stateless session beans, the container invokes any @PostConstruct callbacks
if there is a method in the bean class that has this annotation
applied. Once @PostConstruct has completed, the container continues with the actual
method call.

Life in the Method-Ready state

While in the Method-Ready state, the bean instance is free to receive method invoca-
tions from the client, which may involve controlling the taskflow of other beans or
accessing the database directly. During this time, the bean can maintain conversational
state and open resources in its instance variables.

Transitioning out of the Method-Ready state

Bean instances leave the Method-Ready state to enter either the Passivated state or the
Does Not Exist state. Depending on how the client uses the stateful bean, the EJB
container’s load, and the passivation algorithm used by the vendor, a bean instance
may be passivated (and activated) several times in its life, or not at all. If the bean is
removed, it enters the Does Not Exist state. A client application can remove a bean by
invoking a business interface method annotated as @Remove.

The container can also move the bean instance from the Method-Ready state to the
Does Not Exist state if the bean times out. Timeouts are declared at deployment time
in a vendor-specific manner. When a timeout occurs in the Method-Ready state, the
container may, but is not required to, call any @PreDestroy callback methods. A stateful
bean cannot time out while a transaction is in progress.

The Passivated State
During the lifetime of a stateful session bean, there may be periods of inactivity when
the bean instance is not servicing methods from the client. To conserve resources, the
container can passivate the bean instance by preserving its conversational state and
evicting the bean instance from memory. A bean’s conversational state may consist of
primitive values, objects that are serializable, and the following special types:

• javax.ejb.SessionContext

• javax.jta.UserTransaction (bean transaction interface)

• javax.naming.Context (only when it references the JNDI ENC)

• javax.persistence.EntityManager

66 | Chapter 6: The Stateful Session Bean

• javax.persistence.EntityManagerFactory

• References to managed resource factories (e.g., javax.sql.DataSource)

• References to other EJBs

The types in this list (and their subtypes) are handled specially by the passivation
mechanism. They do not need to be serializable; they will be maintained through pas-
sivation and restored automatically when the bean instance is activated.

When a bean is about to be passivated, a method on the bean class may be annotated
with @PrePassivate to receive a callback for this event. This can be used to alert the
bean instance that it is about to enter the Passivated state. At this time, the bean instance
should close any open resources and set all nontransient, nonserializable fields to
null. This prevents problems from occurring when the bean is serialized. Transient
fields are simply ignored.

How does the container store the bean’s conversational state? It’s largely up to the
container. Containers can use standard Java serialization to preserve the bean instance,
or some other mechanism that achieves the same result. Some vendors, for example,
simply read the values of the fields and store them in a cache. The container is required
to preserve remote references to other beans with the conversational state. When the
bean is activated, the container must restore any bean references automatically. The
container must also restore any references to the special types listed earlier.

When the client makes a request on an EJB object whose bean is passivated, the con-
tainer activates the instance. This involves deserializing the bean instance and recon-
structing the SessionContext reference, bean references, and managed resource facto-
ries held by the instance before it was passivated. When a bean’s conversational state
has been successfully restored, an @PostActivate callback method is invoked on the
bean instance if one is declared on the bean class. The bean instance should open any
resources that cannot be passivated and initialize the values of any transient fields
within the @PostActivate method. Once @PostActivate is complete, the bean is back in
the Method-Ready state and is available to service client requests delegated by the EJB
object.

The activation of a bean instance follows the rules of Java serialization, regardless of
how the bean’s state was actually stored. The exception to this is transient fields. In
Java serialization, transient fields are set to their default values when an object is de-
serialized; primitive numbers become zero, Boolean fields false, and object references
null. In EJB, transient fields can contain arbitrary values when the bean is activated.
The values held by transient fields following activation are unpredictable across vendor
implementations, so do not depend on them to be initialized. Instead, use an
@PostActivate callback method to reset their values.

The container can also move the bean instance from the Passivated state to the Does
Not Exist state if the bean times out. When a timeout occurs in the Passivated state,
any @PreDestroy callback methods are not invoked.

The Lifecycle of a Stateful Session Bean | 67

System exceptions

Whenever a system exception is thrown by a bean method, the container invalidates
the EJB object and destroys the bean instance. The bean instance moves directly to the
Does Not Exist state, and any @PreDestroy call methods are not invoked.‡

A system exception is any unchecked exception not annotated as an @Application
Exception, including EJBException. Application and system exceptions are explained
in more detail in Chapter 17.

Example: The FileTransferEJB
The File Transfer Protocol (FTP) defines a common language for exchanging data over
network boundaries. Defined in RFC-959 (http://www.ietf.org/rfc/rfc959.txt), the spec-
ification mandates conversational state as part of the communication scheme; not all
information required to service a request is present in the request itself. Because a ses-
sion’s invocation history plays a role in how an FTP client will operate, the SLSB is not
a valid implementation choice. These requirements lie right in the wheelhouse of the
stateful session bean.

This example’s FTP client is covered in Appendix C. Most of the business logic con-
tained in the bean implementation class has been stripped from the text in order to
keep the focus upon SFSB semantics. All code is available in the appendix and from
the companion website.

The simple operations we’ll implement are:

• Print current directory (pwd)

• Make directory (mkdir)

• Change to directory (cd)

This will be enough to connect to an FTP server and interact with it a bit to show how
conversational state is central to the design of the SFSB. Readers interested in extending
the example to send files over the wire are encouraged to do so.

It’s important to consider the additional lifecycle phases of the stateful session bean,
as compared with the simpler SLSB. Not all of a bean’s internal state is Serializable,
and in the case of our FTP client, we need to explicitly handle the connection to the
server. We won’t attempt to serialize this out during passivation; we need to safely close
all related resources and then reinitialize the value upon activation. The passivation
and activation process must be completely transparent to the client such that from the
caller’s perspective, the SFSB must act as if these had never occurred.

‡ Yes, this is a hole in the specification.

68 | Chapter 6: The Stateful Session Bean

http://www.ietf.org/rfc/rfc959.txt

When it’s completed all tasks, the client must signal when it’s done with the session.
This allows the container to perform cleanup operations and reduce the overhead in-
herent with hanging onto bean instances that are no longer needed.

The Contract: Business Interfaces
The operations explained in the previous section imply a contract:

public interface FileTransferCommonBusiness
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Makes a directory of the specified name
 *
 * @throws IllegalStateException If the client connection has not been
initialized
 */
 void mkdir(String directory) throws IllegalStateException;

 /**
 * Changes into the named directory
 *
 * @param directory
 * @throws IllegalStateException If the client connection has not been
initialized
 */
 void cd(String directory) throws IllegalStateException;

 /**
 * Obtains the name of the current working directory
 *
 * @return
 * @throws IllegalStateException If the client connection has not been
initialized
 */
 String pwd() throws IllegalStateException;

 /**
 * Denotes that the client is done using this service; flushes
 * any pending operations and does all appropriate cleanup. If
 * already disconnected, this is a no-op.
 */
 void disconnect();

 /**
 * Opens the underlying connections to the target FTP Server,
 * performs any other tasks required before commands may be sent
 * (ie. login, etc)
 *
 * @throws IllegalStateException If already initialized/connected
 */

Example: The FileTransferEJB | 69

 void connect() throws IllegalStateException;

}

There are five functions total to connect to, disconnect from, and play with directory
structure of the FTP server. We build upon this base to create a remote business view:

public interface FileTransferRemoteBusiness extends FileTransferCommonBusiness
{
 /**
 * Ends the current session; will result in a SFSB @Remove call
 * as the bean implementation class will annotate this with
 * {@link javax.ejb.Remove}
 */
 void endSession();
}

The endSession() method here is specific to an EJB client, so we’ve excluded it from
the POJO-friendly FileTransferCommonBusiness and instead placed it directly into the
remote business interface. As noted in the JavaDoc, invocation of this method will tell
the container that the client is done with the session and may discard its associated
target instance after firing any @PreDestroy callbacks.

Exceptions
We’ll include one general-purpose unchecked exception to denote a problem in exe-
cuting the requested FTP command. Because this is a system-level problem from which
a client typically cannot recover, it’s not marked as @ApplicationException:

public class FileTransferException extends RuntimeException{...}

Bean Implementation Class
The bean implementation class will contain all of the business logic for our FTP client.
The following imports are used:

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.annotation.Resource;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;
import javax.ejb.Remote;
import javax.ejb.Remove;
import javax.ejb.Stateful;

import org.apache.commons.net.ftp.FTPClient;
import org.apache.commons.net.ftp.FTPFile;
import org.apache.commons.net.ftp.FTPReply;

The @PostConstruct and @PreDestroy annotations apply lifecycle callbacks when bean
instances are created and destroyed, respectively. @PrePassivate and @PostActivate
denote methods to be invoked during the stateful session passivation/activation phases.

70 | Chapter 6: The Stateful Session Bean

@Remove is not a callback, but rather marks that when the client invokes its method, the
session should be retired. Finally, we’ll use the Apache Commons FTP Client (http://
commons.apache.org/net/) to handle the finer points of the FTP protocol for us. First
comes the bean declaration:

@Stateful(name = FileTransferBean.EJB_NAME)
@Remote(FileTransferRemoteBusiness.class)
public class FileTransferBean implements FileTransferRemoteBusiness, Serializable
{
 /**
 * Name of the EJB, used in Global JNDI addresses
 */
 public static final String EJB_NAME = "FileTransferEJB";

Here we simply mark this class as a stateful session bean via the @Stateful annotation
and assign it an explicit name such that we can construct the portable Global JNDI
name in testing later. Also, we’ll hardcode the host and port to be used in connecting
to the FTP server. Typically this would be externalized, but for brevity’s sake we’ll keep
things simple in this example:

 /**
 * The name of the host to which we'll connect.
 * In production systems would typically be externalized
 * via configurable environment entry
 */
 private static String CONNECT_HOST = "localhost";

 /**
 * The port to which we'll connect.
 * In production systems would typically be externalized
 * via configurable environment entry. IANA standard
 * for FTP ports is 21, though this requires root access
 * on *nix for testing, so we'll use the nonstandard 12345.
 */
 private static int CONNECT_PORT = 12345;

Next, we’ll account for the instance members that will comprise our SFSB’s internal
state:

 /**
 * The underlying FTP Client. We don't want its state
 * getting Serialized during passivation. We'll
 * reinitialize this client and its connections
 * upon activation.
 */
 private FTPClient client;

 /**
 * Name of the present working directory. In cases where
 * we're passivated, if this is specified
 * we'll change into this directory upon activation.
 */
 private String presentWorkingDirectory;

Example: The FileTransferEJB | 71

http://commons.apache.org/net/
http://commons.apache.org/net/

The client will be our delegate for all FTP operations. Because we cannot serialize it
during passivation, we’ll have to null this out during passivation and automatically
reconnect upon activation. Although it may be possible to achieve the same goal im-
plicitly using the Java transient keyword, the EJB specification advises against this
because not all containers will rely upon Java Serialization for the passivation process.

We’ll also manually track the present working directory, our location within the FTP
server, because once we go through the passivation/activation cycle we’ll need to re-
connect and move back to the same location.

Our lifecycle callbacks will account for the operations that must take place during
instance construction, passivation, activation, and session removal:

 /**
 * Called by the container when the instance has been created or re-activated
 * (brought out of passivated state). Will construct the underlying FTP Client
 * and open all appropriate connections.
 *
 * @see FileTransferCommonBusiness#connect()
 */
 @PostConstruct
 @PostActivate
 @Override
 public void connect() throws IllegalStateException, FileTransferException
 {
 /*
 * Precondition checks
 */
 final FTPClient clientBefore = this.getClient();
 if (clientBefore != null && clientBefore.isConnected())
 {
 throw new IllegalStateException("FTP Client is already initialized");
 }

 // Get the connection properties
 final String connectHost = this.getConnectHost();
 final int connectPort = this.getConnectPort();

 // Create the client
 final FTPClient client = new FTPClient();

 // Connect Logic Here

 // Login Logic Here

 // Change into the Present Working Directory Logic Here

 }

The @PostConstruct and @PostActivate annotations denote to the server that it should
call connect() after instance creation and activation (wakeup from passivation). Here
we create a new client delegate, connect and log into the remote server, and finally
switch into the present working directory (if we had one before passivation). After this

72 | Chapter 6: The Stateful Session Bean

callback has been made, our SFSB instance and session has been initialized and is ready
for service:

 /**
 * Called by the container when the instance is about to be passivated or
brought
 * out of service entirely.
 *
 * @see FileTransferCommonBusiness#disconnect()
 */
 @PrePassivate
 @PreDestroy
 @Override
 public void disconnect()
 {
 // Obtain FTP Client
 final FTPClient client = this.getClient();

 // If exists
 if (client != null)
 {
 // If connected
 if (client.isConnected())
 {
 // Logout Logic Here

 // Disconnect Logic Here
 }

 // Null out so we don't serialize this field
 this.client = null;
 }
 }

Due to the @PrePassivate and @PreDestroy annotations, the callback disconnect() is
invoked by the container before passivation or the instance is removed from service.
This is where we clean up any underlying resources by logging out and disconnecting
from the FTP server.

We have the expected accessor and mutator methods:

 public String getConnectHost() {// Logic here}
 public void setConnectHost(final String connectHost) {// Logic here}
 public int getConnectPort() {// Logic here}
 public void setConnectPort(final int connectPort) {// Logic here}

Now all that’s left is to do is implement the business interface methods that power the
logic of the client. For brevity’s sake, we’ll omit the true code here; again, all of this is
covered in the appendix:

 /* (non-Javadoc)
 * @see FileTransferCommonBusiness#cd(java.lang.String)
 */
 @Override
 public void cd(final String directory)

Example: The FileTransferEJB | 73

 {
 // Implementation Logic Here
 }

 /* (non-Javadoc)
 * @see FileTransferCommonBusiness#mkdir(java.lang.String)
 */
 @Override
 public void mkdir(final String directory)
 {
 // Implementation Logic Here
 }

 /* (non-Javadoc)
 * @see FileTransferCommonBusiness#pwd()
 */
 @Override
 public String pwd()
 {
 // Implementation Logic Here
 }
}

POJO Testing Outside the Container
By directly creating an instance of our bean implementation class, we can use the
FileTransferEJB as a POJO. Of course, we won’t be relying upon services such as in-
jection and lifecycle callbacks, but we can mock the container’s responsibilities by in-
voking these manually. Consider the following setup in a JUnit test class:

 /**
 * Creates and initializes the FTP Client used in testing.
 * Fired before each test is run.
 */
 @Before
 public void createFtpClient() throws Exception
 {

 // Create client
 final FileTransferBean ftpClient = new FileTransferBean();

 // Connect
 ftpClient.connect();

 // Set
 this.ftpClient = ftpClient;
 log.info("Set FTP Client: " + ftpClient);
 }

74 | Chapter 6: The Stateful Session Bean

Before each test case is run, we’ll create a new POJO instance and manually connect.
This essentially takes the place of the instance creation and @PostConstruct lifecycle
callback performed by the EJB Container:

 /**
 * Disconnects and resets the FTP Client. Fired after each
 * test has completed.
 *
 * @throws Exception
 */
 @After
 public void cleanup() throws Exception
 {
 // Get client
 final FileTransferBean ftpClient = this.ftpClient;

 // If set
 if (ftpClient != null)
 {
 // Disconnect and reset
 ftpClient.disconnect();
 this.ftpClient = null;
 }
 }

After each test completes, we can mock the @PreDestroy callback to disconnect from
the FTP server.

That covers our test setup; now let’s ensure that our passivation logic is intact. Again,
we can do this by explicitly invoking lifecycle callback methods as if our test client were
the EJB Container:

 /**
 * Mocks the passivation/activation process by manually invoking
 * upon the {@link PrePassivate} and {@link PostActivate} lifecycle
 * callbacks. The client should function properly after these calls are made,
 * reconnecting as expected, and resuming into the correct present working
 * directory
 *
 * @throws Exception
 */
 @Test
 public void testPassivationAndActivation() throws Exception
 {
 // Log
 log.info("testPassivationAndActivation");

 // Get the client
 final FileTransferCommonBusiness client = this.getClient();

 // Switch to home
 final String home = getFtpHome().getAbsolutePath();
 client.cd(home);

Example: The FileTransferEJB | 75

 // Test the pwd
 final String pwdBefore = client.pwd();
 TestCase.assertEquals("Present working directory should be set to home",
home, pwdBefore);

 // Mock @PrePassivate
 log.info("Mock @" + PrePassivate.class.getName());
 client.disconnect();

 // Mock passivation
 log.info("Mock passivation");
 final ByteArrayOutputStream outStream = new ByteArrayOutputStream();
 final ObjectOutput objectOut = new ObjectOutputStream(outStream);
 objectOut.writeObject(client);
 objectOut.close();

 // Mock activation
 log.info("Mock activation");
 final InputStream inStream = new ByteArrayInputStream(outStream.toByteArray
());
 final ObjectInput objectIn = new ObjectInputStream(inStream);

 // Get a new client from passivation/activation roundtrip
 final FileTransferCommonBusiness serializedClient = (FileTransferCommon
Business) objectIn.readObject();
 objectIn.close();

 // Mock @PostActivate
 log.info("Mock @" + PostActivate.class.getName());
 serializedClient.connect();

 // Test the pwd
 final String pwdAfter = serializedClient.pwd();
 TestCase.assertEquals("Present working directory should be the same as before
passivation/activation", home,
 pwdAfter);
 }

This test is actually very simple. It:

1. Obtains the initialized FTP client from the test setup

2. Changes the working directory

3. Manually invokes the pre-passivation callback

4. Copies the instance via serialization (as the container may do during passivation
and activation)

5. Manually invokes the post-activation callback

6. Ensures that the FTP client is connected and in the same working directory as
before the passivation process

Testing passivation and activation manually is a wise habit, as it’s difficult to get this
fine-grained control in integration tests to true EJBs run within the context of the

76 | Chapter 6: The Stateful Session Bean

container. The specification does not define a mechanism to request that the container
start passivation or activation upon a session.

Integration Testing
It’s also important to consider context during testing, so we wouldn’t be doing our job
if we omitted integration tests to assert that our SFSB is working as a true EJB. This
will also give us the opportunity to prove that the session isolation and removal con-
tracts are holding true. Let’s assume we have a method available in our test case:

 /**
 * Obtains the SFSB Proxy from Global JNDI, creating a new user session
 */
 private FileTransferRemoteBusiness createNewSession() throws Exception
 {
 // Logic
 }

This will use the test’s JNDI Context to obtain a new Proxy, hence creating a new user
session. We’ll use createNewSession() in our tests.

It’s important for a client to release its session once complete with work, allowing the
server to reclaim the resources used in maintaining its state. We can write a test to
validate that signaling we’re done triggers the session removal:

 /**
 * Tests that a call to {@link FileTransferRemoteBusiness#endSession()}
 * results in the SFSB's backing instance removal, and that subsequent
 * operations result in a {@link NoSuchEJBException}
 *
 * @throws Exception
 */
 @Test
 public void testSfsbRemoval() throws Exception
 {
 // Get a new session
 final FileTransferRemoteBusiness sfsb = this.createNewSession();

 // cd into the home directory
 final String ftpHome = "myHome";
 sfsb.cd(ftpHome);

 // Get and test the pwd
 final String pwdBefore = sfsb.pwd();
 TestCase.assertEquals("Session should be in the FTP Home directory",
 ftpHome, pwdBefore);

 // End the session, resulting in an underlying instance
 // removal due to the annotation with @Remove upon
 // the bean implementation class
 sfsb.endSession();

Example: The FileTransferEJB | 77

 // Now try some other operation, and ensure that we get a NoSuchEJBException
 boolean gotExpectedException = false;
 try
 {
 // This should not succeed, because we've called a method marked as
@Remove
 sfsb.pwd();
 }
 catch (final NoSuchEJBException nsee)
 {
 gotExpectedException = true;
 }
 TestCase.assertTrue("Call to end the session did not result in underlying
removal
 of the SFSB bean instance",
 gotExpectedException);
 }

As this test illustrates, invoking upon an SFSB’s business method after session removal
will result in a javax.ejb.NoSuchEJBException. This confirms that a call to
endSession() correctly starts the removal of the current session and backing bean
instance.

We may also show how the Container maintains conversational state for each session
in an isolated context. Operations in discrete sessions may not leak out:

 /**
 * Tests that two separate sessions will act in isolation from each other
 *
 * @throws Exception
 */
 @Test
 public void testSessionIsolation() throws Exception
 {
 // Make two new sessions
 final FileTransferRemoteBusiness session1 = this.createNewSession();
 final FileTransferRemoteBusiness session2 = this.createNewSession();

 // cd into a home directory for each
 final String ftpHome = "myHome";
 session1.cd(ftpHome);
 session2.cd(ftpHome);

 // Now make a new directory for each session, and go into it
 final String newDirSession1 = "newDirSession1";
 final String newDirSession2 = "newDirSession2";
 session1.mkdir(newDirSession1);
 session1.cd(newDirSession1);
 session2.mkdir(newDirSession2);
 session2.cd(newDirSession2);

 // Get the current working directory for each session
 final String pwdSession1 = session1.pwd();
 final String pwdSession2 = session2.pwd();

78 | Chapter 6: The Stateful Session Bean

 // Ensure each session is in the proper working directory
 TestCase.assertEquals("Session 1 is in unexpected pwd", ftpHome + File.
separator + newDirSession1, pwdSession1);
 TestCase.assertEquals("Session 2 is in unexpected pwd", ftpHome + File.
separator + newDirSession2, pwdSession2);

 // End the session manually for each session
 session1.endSession();
 session2.endSession();
 }

The stateless session bean is not capable of handling this test reliably. It’s expected that
subsequent calls to pwd() will remember the current location, changed previously via
calls to cd(). Our SFSB is built primarily to handle conversational cases like the one
testSessionIsolation() illustrates.

Example: The FileTransferEJB | 79

CHAPTER 7

The Singleton Session Bean

So far, we’ve enjoyed the isolated invocation context provided by stateless and stateful
session beans. These bean types service requests independently of one another in sep-
arate bean instances, relieving the EJB developer of the burden introduced by explicit
concurrent programming. Sometimes, however, it’s useful to employ a scheme in which
a single shared instance is used for all clients, and new to the EJB 3.1 Specification is
the singleton session bean to fit this requirement.

Contrary to most late-generation feature additions, the singleton is actually a much
simpler conceptual model than we’ve seen in SLSB and SFSB, as shown in Figure 7-1.

Figure 7-1. All invocations upon a singleton session bean using the same backing instance

81

Here all client requests are directed through the container to a sole target instance. This
paradigm closely resembles that of a pure POJO service approach, and there are quite
a few repercussions to consider:

• The instance’s state is shared by all requests.

• There may be any number of requests pouring through the instance’s methods at
any one time.

• Due to concurrent invocations, the EJB must be designed as thread-safe.

• Locking or synchronization done to ensure thread safety may result in blocking
(waiting) for new requests. This may not show itself in single-user testing, but will
decimate performance in a production environment if we don’t design very
carefully.

• Memory footprint is the leanest of all session bean types. With only one backing
instance in play, we don’t take up much RAM.

In short, the singleton bean is poised to be an incredibly efficient choice if applied
correctly. Used in the wrong circumstance, or with improper locking strategies, we have
a recipe for disaster. Sitting at the very center of the difference between the two is the
issue of concurrency.

Concurrency
Until now, EJB developers have been able to sidestep the issue of handling many clients
at once by hiding behind the container. In both the stateless and stateful models, the
specification mandates that only one request may access a backing bean instance at any
one time. Because each request is represented by an invocation within a single thread,
this means that SLSB and SFSB implementation classes need not be thread-safe. From
the instance’s perspective, one thread at most will enter at any given time.

In the case of many concurrent requests to the same SLSB, the container will route each
to a unique instance (Figure 7-2).

SFSB concurrent requests must be serialized by the container but blocked until the
underlying instance is available (Figure 7-3).

A bean provider may also optionally prohibit parallel invocations upon a particular
stateful session via the use of @javax.ejb.ConcurrencyManagement (Figure 7-4).

A full discussion on concurrent programming is outside the scope of this book, but
we’ll introduce the main points of concern as they relate to EJB. Intentionally left out
of this text are formal explanations of thread visibility, deadlock, livelock, and race
conditions. If these are foreign concepts, a very good primer (and much more) is Java
Concurrency in Practice by Brian Goetz, et al. (Addison-Wesley; http://jcip.net/).

82 | Chapter 7: The Singleton Session Bean

http://jcip.net/

Figure 7-4. Concurrent requests upon the same session blocking until the session is available for use

Figure 7-2. Stateless session bean invocations pulling from a pool of backing instances for service

Figure 7-3. Stateful session bean invocations pulling from a cache of backing instances for service

Concurrency | 83

Shared Mutable Access
When two or more threads share access to a mutable instance, a number of interesting
scenarios present themselves. State may change unexpectedly during the course of an
operation. The example of a simple increment function illustrates this well:

int shared = 1;
int increment()
{
 int new = shared + 1;
 shared = new;
 return shared;
}

Here we simply bump the value of a shared variable by 1. Unfortunately, in the case of
many threads, this operation is not safe, as illustrated in Figure 7-5.

Figure 7-5. Poor synchronization policies can lead to incorrect results

There are two solutions to this problem. First, we can encapsulate the actual increment
of the shared variable into a single, contained atomic operation. The purpose of this is
to eliminate the chances of other threads sneaking in because there are no two indi-
vidual read/writes to nestle in between. In Java this is provided by classes in the
java.util.concurrent.atomic package—for instance, AtomicInteger (http://java.sun
.com/javase/6/docs/api/java/util/concurrent/atomic/AtomicBoolean.html):

AtomicInteger shared = new AtomicInteger(1);
int increment()
{
 return shared.incrementAndGet();
}

In a multithreaded environment, the execution flow of this example is efficient and may
look something like Figure 7-6.

84 | Chapter 7: The Singleton Session Bean

http://java.sun.com/javase/6/docs/api/java/util/concurrent/atomic/AtomicBoolean.html
http://java.sun.com/javase/6/docs/api/java/util/concurrent/atomic/AtomicBoolean.html

Behind the scenes, the backing increment is done all at once. Thus there can be no
danger of inconsistent behavior introduced by multithreaded access.

Often, however, our requirements are more involved than simple increments upon a
variable, and we cannot perform all of the work in one atomic unit. In this case, we
need to make other threads wait until our mutable operations have completed. This is
called “blocking” and is accomplished via the synchronized keyword in Java:

int shared = 1;
synchronized int increment()
{
 int new = shared + 1;
 shared = new;
 return shared;
}

The synchronized keyword here denotes that any executing thread must first gain rights
to the method. This is done by acquiring what’s called a mutually exclusive lock, a guard
that may be held by only one thread at a time. The thread that owns the lock is permitted
entry into the synchronized block, while others must block until the lock becomes
available. In Java, every object has a corresponding lock, and when applied to a method,
the synchronized keyword implicitly is using the this reference. So the previous exam-
ple is analogous to:

int shared = 1;
int increment()
{
 synchronized(this)
 {
 int new = shared + 1;
 shared = new;
 return shared;
 }
}

Figure 7-6. Proper synchronization policies allow many concurrent requests to execute in parallel and
maintain reliable state

Concurrency | 85

The execution flow when using a locking strategy looks like Figure 7-7.

Figure 7-7. Blocking synchronization policy making new requests wait until it’s safe to proceed

Although this code is safe, it does introduce a performance bottleneck, as only one
thread may gain access to the mutable operation at any one time. Therefore we must
be very selective about what and for how long we synchronize.

Container-Managed Concurrency
EJB 3.1 provides a simplistic locking abstraction to the bean provider in the form of
container-managed concurrency (CMC). By introducing a few annotations (and corre-
sponding XML metadata) into the API, the developer is freed from the responsibility
of correctly implementing thread-safe code. The container will, in turn, transparently
apply the appropriate locking strategy. Note that when using your bean implementa-
tion class as a POJO, however, the code is not safe for use in concurrent environments
when using CMC.

By default, singleton beans employ a concurrency management type of CONTAINER,
which takes the explicit form upon the bean implementation class:

@javax.ejb.ConcurrencyManagement(javax.ejb.ConcurrencyManagementType.CONTAINER)
public class MyBean{...}

Other types include BEAN and CONCURRENCY_NOT_SUPPORTED. Because only one instance
of a singleton bean will exist (per VM) in an application, it makes sense to support
concurrency in some fashion.

Each method in CMC will be assigned a lock type, which designates how the container
should enforce access. By default, we use a write lock, which may be held by only one
thread at a time. All other methods requesting the lock must wait their turn until the
lock becomes available. The read lock may be explicitly specified, which will allow full
concurrent access to all requests, provided that no write lock is currently being held.
Locks are defined easily:

@javax.ejb.Lock(javax.ejb.LockType.READ)
public String concurrentReadOnlyMethod(){...}

86 | Chapter 7: The Singleton Session Bean

@javax.ejb.Lock(javax.ejb.LockType.WRITE)
public void allowOnlyOneWriteAtATimeMethod(String stringToSet){...}

We may define the lock upon the method in the bean implementation class, on the
class itself, or some combination of the two (with method-level overriding the class
definition).

Requests upon a singleton bean employing CMC are not designed to block indefinitely
until a lock becomes available. We may also specify sensible timeouts:

@javax.ejb.Lock(javax.ejb.LockType.READ)
@javax.ejb.AccessTimeout(timeout=15,unit=java.util.concurrent.TimeUnit.SECONDS)
public String concurrentReadOnlyMethod(){...}

In this example we denote that the read operation should wait on an available
write lock a maximum of 15 seconds before giving up and returning a javax.ejb.
ConcurrentAccessTimeoutException.

Bean-Managed Concurrency
Although convenient and resistant to developer error, container-managed concurrency
does not cover the full breadth of concerns that multithreaded code must address. In
these cases the specification makes available the full power of the Java language’s con-
current tools by offering a bean-managed concurrency mode. This scenario opens the
gates to full multithreaded access to the singleton bean, and it is the onus of the bean
provider to manually apply the synchronized and volatile keywords to safeguard the
bean instance in support of parallel invocations.

Lifecycle
The life of a singleton bean is very similar to that of the stateless session bean; it is either
not yet instantiated or ready to service requests. In general, it is up to the Container to
determine when to create the underlying bean instance, though this must be available
before the first invocation is executed. Once made, the singleton bean instance lives in
memory for the life of the application and is shared among all requests.

Explicit Startup
New in the EJB 3.1 Specification is the option to explicitly create the singleton bean
instance when the application is deployed. This eager initialization is triggered simply:

@javax.ejb.Singleton
@javax.ejb.Startup
public class MySingletonBean implements MySingletonLocalBusiness{..}

The @javax.ejb.Startup annotation marks that the container must allocate and assign
the bean instance alongside application startup. This becomes especially useful as an

Lifecycle | 87

application-wide lifecycle listener. By additionally denoting a @javax.ejb.Post

Construct method, this callback will be made at application start:

@javax.ejb.PostConstruct
public void applicationStartLifecycleMethod() throws Exception{...}

The method here will be invoked when the EJB is deployed. This application-wide
callback was unavailable in previous versions of the specification.

Example: The RSSCacheEJB
Because the singleton bean represents one instance to be used by all incoming requests,
we may take advantage of the extremely small impact this session type will have upon
our overall memory consumption. The factors to beware are state consistency (thread-
safety) and the potential blocking that this might impose. Therefore, it’s best to apply
this construct in high-read environments.

One such usage may be in implementing a simple high-performance cache. By letting
parallel reads tear through the instance unblocked, we don’t have the overhead of a full
pool that might be supplied by an SLSB. The internal state of a cache is intended to be
shared by many distinct sessions, so we don’t need the semantics of an SFSB. Addi-
tionally, we may eagerly populate the cache when the application deploys, before any
requests hit the system.

For this example, we’ll define an RSS Caching service to read in a Really Simple Syn-
dication (RSS; http://en.wikipedia.org/wiki/RSS) feed and store its contents for quick
access. Relatively infrequent updates to the cache will temporarily block incoming read
requests, and then concurrent operation will resume as normal, as illustrated in
Figure 7-8.

Figure 7-8. A concurrent singleton session bean servicing many requests in parallel

This example is covered in greater detail in Appendix D.

88 | Chapter 7: The Singleton Session Bean

http://en.wikipedia.org/wiki/RSS

Value Objects
As we’ll be representing the RSS entries in some generic form, first we should define
what information we’ll expose to the client:

public interface RssEntry
{
 /**
 * Obtains the author of the entry
 *
 * @return
 */
 String getAuthor();

 /**
 * Obtains the title of the entry
 *
 * @return
 */
 String getTitle();

 /**
 * Obtains the URL linking to the entry
 *
 * @return
 */
 URL getUrl();

 /**
 * Obtains the short description of the entry
 *
 * @return
 */
 String getDescription();
}

This is a very simple definition of properties. One thing that’s important to note is that
the type java.net.URL is itself mutable. We must take care to protect the internal state
from being exported in a read request. Otherwise, a local client, which uses pass-by-
reference, may change the contents of the URL returned from getURL(). To this end,
we’ll introduce a simple utility to copy the reference such that if a client writes back to
it, only his view will be affected:

class ProtectExportUtil
{
 /**
 * Internal constructor; protects against instantiation
 */
 private ProtectExportUtil()
 {
 }

 /**
 * Returns a copy of the specified URL; used to ensure that mutable

Example: The RSSCacheEJB | 89

 * internal state is not leaked out to clients
 * @param url
 * @return
 */
 static URL copyUrl(final URL url)
 {
 // If null, return
 if (url == null)
 {
 return url;
 }

 try
 {
 // Copy
 return new URL(url.toExternalForm());
 }
 catch (final MalformedURLException e)
 {
 throw new RuntimeException("Error in copying URL", e);
 }
 }
}

Project ROME (https://rome.dev.java.net/) is an open source framework for dealing with
RSS feeds, and we’ll use it to back our implementation of RssEntry. In returning URLs,
it will leverage the ProtectExportUtil:

public class RomeRssEntry implements RssEntry
{

 private String author;
 private String description;
 private String title;
 private URL url;

 /**
 * Constructor
 *
 * @param entry The Rome API's RSS Entry representation
 * @throws IllegalArgumentException If the entry is not specified
 */
 RomeRssEntry(final SyndEntry entry) throws IllegalArgumentException
 {
 // Set properties
 this.author = entry.getAuthor();
 final SyndContent content = entry.getDescription();
 this.description = content.getValue();
 this.title = entry.getTitle();
 final String urlString = entry.getLink();
 URL url = null;
 try
 {
 url = new URL(urlString);
 }

90 | Chapter 7: The Singleton Session Bean

https://rome.dev.java.net/

 catch (final MalformedURLException murle)
 {
 throw new RuntimeException("Obtained invalid URL from Rome RSS entry: "
+ entry, murle);
 }
 this.url = url;
 }

 @Override
 public String getAuthor()
 {
 return this.author;
 }

 @Override
 public String getDescription()
 {
 return this.description;
 }

 @Override
 public String getTitle()
 {
 return this.title;
 }

 @Override
 public URL getUrl()
 {
 return ProtectExportUtil.copyUrl(this.url);
 }

 /* (non-Javadoc)
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 final StringBuilder sb = new StringBuilder();
 sb.append(this.getTitle());
 sb.append(" - ");
 sb.append(this.url.toExternalForm());
 return sb.toString();
 }
}

That should cover the case of the value object our EJB will need in order to return some
results to the client. Note that the ROME implementation is completely separated from
the contracted interface. Should we choose to use another library in the future, our
clients won’t require any recompilation.

Example: The RSSCacheEJB | 91

The Contract: Business Interfaces
Now we need to define methods to read the cache’s contents, obtain the URL that hosts
the RSS feed, and refresh the cache from the URL:

public interface RssCacheCommonBusiness
{
 /**
 * Returns all entries in the RSS Feed represented by
 * {@link RssCacheCommonBusiness#getUrl()}.
 * This list will not support mutation and is read-only.
 */
 List<RssEntry> getEntries();

 /**
 * Returns the URL of the RSS Feed
 *
 * @return
 */
 URL getUrl();

 /**
 * Flushes the cache and refreshes the entries from the feed
 */
 void refresh();
}

Again, we must take care to protect the internal cache state from being exported in a
read request. The point in question here is the List returned from getEntries(). There-
fore we note in the documentation that the reference return will be read-only.

The refresh() operation will obtain the contents from the URL returned by getURL(),
and parse these into the cache.

The cache itself is a List of the RssEntry type.

Bean Implementation Class
Once again, the bean implementation class contains the meat and potatoes of the busi-
ness logic, as well as the annotations that round out the EJB’s metadata:

@Singleton
@Startup
@Remote(RssCacheCommonBusiness.class)
// Explicitly declare Container Managed Concurrency, which is unnecessary; it's
the default
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
public class RssCacheBean implements RssCacheCommonBusiness {

The declaration marks our class as a Singleton Session type that should be initialized
eagerly upon application deployment. We’ll use container-managed concurrency
(which is defined explicitly here for illustration, even though this is the default strategy).

92 | Chapter 7: The Singleton Session Bean

Some internal members are next:

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(RssCacheBean.class);

 /**
 * URL pointing to the RSS Feed
 */
 private URL url;

 /**
 * Cached RSS Entries for the feed
 */
 private List<RssEntry> entries;

The URL here will be used to point to the RSS feed we’re caching. The List is our cache.
Now to implement our business methods:

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssCacheCommonBusiness
#getUrl()
 */
 @Lock(LockType.READ)
 @Override
 public URL getUrl()
 {
 // Return a copy so we don't export mutable state to the client
 return ProtectExportUtil.copyUrl(this.url);
 }

Again, we protect the internal URL from being changed from the outside. The lock type
is READ and so concurrent access is permitted, given no WRITE locks are currently held:

 /**
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssCacheCommonBusiness
#refresh()
 * @throws IllegalStateException If the URL has not been set
 */
 @PostConstruct
 @Override
 // Block all readers and writers until we're done here;
 // Optional metadata, WRITE is the default
 @Lock(LockType.WRITE)
 public void refresh() throws IllegalStateException
 {

 // Obtain the URL
 final URL url = this.url;
 if (url == null)
 {
 throw new IllegalStateException("The Feed URL has not been set");
 }
 log.info("Requested: " + url);

Example: The RSSCacheEJB | 93

 // Obtain the feed
 final FeedFetcher feedFetcher = new HttpClientFeedFetcher();
 SyndFeed feed = null;
 try
 {
 feed = feedFetcher.retrieveFeed(url);
 }
 catch (final FeedException fe)
 {
 throw new RuntimeException(fe);
 }
 catch (final FetcherException fe)
 {
 throw new RuntimeException(fe);
 }
 catch (final IOException ioe)
 {
 throw new RuntimeException(ioe);
 }

 // Make a new list for the entries
 final List<RssEntry> rssEntries = new ArrayList<RssEntry>();

 // For each entry
 @SuppressWarnings("unchecked")
 // The Rome API doesn't provide for generics, so suppress the warning
 final List<SyndEntry> list = (List<SyndEntry>) feed.getEntries();
 for (final SyndEntry entry : list)
 {
 // Make a new entry
 final RssEntry rssEntry = new RomeRssEntry(entry);

 // Place in the list
 rssEntries.add(rssEntry);
 log.debug("Found new RSS Entry: " + rssEntry);
 }

 // Protect the entries from mutation from exporting the client view
 final List<RssEntry> protectedEntries = Collections.unmodifiableList
(rssEntries);

 // Set the entries in the cache
 this.entries = protectedEntries;
 }

There’s a lot going on here. @PostConstruct upon the refresh() method means that this
will be invoked automatically by the container when the instance is created. The in-
stance is created at application deployment due to the @Startup annotation. So, tran-
sitively, this method will be invoked before the container is ready to service any
requests.

The WRITE lock upon this method means that during its invocation, all incoming re-
quests must wait until the pending request completes. The cache may not be read via
getEntries() during refresh().

94 | Chapter 7: The Singleton Session Bean

Also very important is that our cache is made immutable before being set. Accom-
plished via Collections.unmodifiableList(), this enforces the read-only contract of
getEntries().

The remainder of the method body simply involves reading in the RSS feed from the
URL and parsing it into our value objects.

Example: The RSSCacheEJB | 95

CHAPTER 8

Message-Driven Beans

The message-driven bean (MDB) is an asynchronous listener. Its callers are systems
that say, “Check out this message; do whatever you want with it” and don’t have the
decency to wait around for a response. In fact, clients of an MDB have no idea that the
messages they send may be processed by an EJB at all. Messages are sent directly to
some messaging system (it doesn’t matter which), where they are routed via a standard
inflow mechanism to the EJB subsystem and, eventually, a backing MDB instance
(Figure 8-1).

Figure 8-1. Message-driven bean listening on events via a messaging subsystem

97

The key to the generic plumbing shown in the figure is the Java Connector Architecture
(JCA; http://jcp.org/en/jsr/detail?id=322), which provides an abstraction for the delivery
of any message type. This means that EJB message-driven beans may act as a listener
for events sent from any system for which there is a valid JCA inflow adaptor.

The message-driven bean was introduced in EJB 2.0 to support the processing of asyn-
chronous messages from a Java Message Service (JMS; http://java.sun.com/products/
jms/) provider. EJB 2.1 expanded the definition of the message-driven bean so that it
can support any messaging system, not just JMS, via the facilities provided by JCA. EJB
3.x does not really expand on the feature set of earlier specification versions, but it does
simplify configuration with the use of annotations. This chapter examines both JMS-
based message-driven beans as well as the expanded message-driven bean model avail-
able to EJB 3.0 developers.

JMS and Message-Driven Beans
All EJB 3.x vendors must support a JMS provider. Most vendors supply a built-in pro-
vider, though it’s possible to integrate a third-party implementation instead. Regard-
less, a JMS provider is an absolute necessity for supporting message-driven beans. By
forcing the adoption of JMS, the EJB expert group has guaranteed that EJB developers
can expect to have a working JMS provider to which messages can be both sent and
received.

JMS as a Resource
JMS is a vendor-neutral API that can be used to access enterprise messaging systems.
Enterprise messaging systems (aka message-oriented middleware) facilitate the ex-
change of messages between software applications, usually over a network. The role of
JMS isn’t unlike the role of JDBC; just as JDBC provides a common API for accessing
many different relational databases, JMS provides vendor-independent access to en-
terprise messaging systems. Although messaging products aren’t as familiar as database
products, there’s no shortage of messaging systems that support JMS, including
OpenJMS, HornetQ, ActiveMQ, Qpid, and SonicMQ. Software applications that use
the JMS API for sending or receiving messages are portable from one JMS vendor to
another.

Applications that use JMS are called JMS clients, and the messaging system that handles
routing and delivery of messages is called the JMS provider. A JMS application is a
business system composed of many JMS clients and, generally, one JMS provider. A
JMS client that sends a message is called a producer, and a client that receives a message
is called a consumer. A single JMS client can be both a producer and a consumer.

In EJB, enterprise beans of all types can use JMS to send messages. These are later
consumed by other applications or by message-driven beans. JMS facilitates sending
messages from enterprise beans using a messaging service, sometimes called a message

98 | Chapter 8: Message-Driven Beans

http://jcp.org/en/jsr/detail?id=322
http://java.sun.com/products/jms/
http://java.sun.com/products/jms/

broker or router. Message brokers have been around for a couple of decades—the oldest
and most established is IBM’s MQSeries—but JMS is relatively new, and it is specifi-
cally designed to deliver a variety of message types from one Java application to another.

JMS Is Asynchronous
One of the principal advantages of JMS messaging is that it’s asynchronous. In other
words, a JMS client can send a message without having to wait for a reply. Contrast
this flexibility with the synchronous messaging of Java RMI or JAX-RPC, in which each
client invocation blocks the current thread until the method completes execution. This
lockstep processing makes the client dependent on the availability of the EJB server,
resulting in a tight coupling between the client and the enterprise bean.

JMS clients send messages asynchronously to a destination (Topic or Queue) from
which other JMS clients can also receive messages. When a JMS client sends a message,
it doesn’t wait for a reply; it sends the message to a router, which is responsible for
forwarding the message to other clients. There’s no effect on the client if one or more
recipients are unavailable; once delivered, the sender will continue with its work. It’s
the router’s responsibility to make sure that the message eventually reaches its desti-
nation. Clients sending messages are decoupled from the clients receiving them; senders
are not dependent on the availability of receivers.

The limitations of RMI make JMS an attractive alternative for communicating with
other applications. Using the standard JNDI naming context, an enterprise bean can
obtain a JMS connection to a JMS provider and use it to deliver asynchronous messages
to other Java applications.

For example, a fictional UserRegistrationEJB may want to notify arbitrary systems of
a new user, but it doesn’t want to be coupled. By sending a JMS message to a system
that is listening for incoming registration events, the UserRegistrationEJB can dispatch
the request and continue along its way (Figure 8-2).

In this example, the applications receiving JMS messages initiated from the
UserRegistrationEJB may be message-driven beans, other Java applications in the en-
terprise, or applications in other organizations that benefit from being notified that a
new registration has been processed. Examples might include sending an email con-
firmation or an internal marketing application that adds customers to a catalog mailing
list, and these may be plugged in or turned off at runtime without affecting the regis-
tration process itself.

Because messaging is inherently decoupled and asynchronous, the transactions and
security contexts of the sender are not propagated to the receiver. For example, when
the UserRegistrationEJB sends the message, the JMS provider may authenticate it, but
the message’s security context won’t be propagated to the JMS client that received the
message. When a JMS client receives the message, it has no idea about the security

JMS and Message-Driven Beans | 99

context under which the message was sent. This is how it should be, because the sender
and receiver often operate in environments with different security domains.

Similarly, transactions are never propagated from the sender to the receiver. For one
thing, the sender has no idea who the receivers of the message will be. There could be
one receiver or thousands; managing a distributed transaction under such ambiguous
circumstances is not tenable. In addition, the clients receiving the message may not get
it for a long time after it is sent. There may be a network problem, the client may be
down, or there may be some other delay. Transactions are designed to be executed
quickly because they lock up resources, and applications can’t tolerate the possibility
of a long transaction with an unpredictable end.

A JMS client can, however, have a distributed transaction with the JMS provider so
that it manages the send or receive operation in the context of a transaction. For ex-
ample, if the UserRegistrationEJB’s transaction fails for any reason, the JMS provider
discards the message. Transactions and JMS are covered in more detail in Chapter 17.

JMS Messaging Models
JMS provides two types of messaging models: publish-and-subscribe and point-to-
point. The JMS specification refers to these as messaging domains. In JMS terminology,
publish-and-subscribe and point-to-point are frequently shortened to pub/sub and
p2p (or PTP), respectively. This chapter uses both the long and short forms throughout.

In the simplest sense, publish-and-subscribe is intended for a one-to-many broadcast
of messages, as illustrated in Figure 8-3.

Point-to-point, on the other hand, is intended for a message that is to be processed once
(Figure 8-4).

Figure 8-2. UserRegistrationEJB firing an event denoting that a new user has been created

100 | Chapter 8: Message-Driven Beans

Each messaging domain (i.e., pub/sub and p2p) has its own set of interfaces and classes
for sending and receiving messages. This results in two different APIs, which share some
common types. JMS 1.1 introduced a Unified API that allows developers to use a single
set of interfaces and classes for both messaging domains. Only the Unified API is used
in this chapter.

Publish-and-subscribe

In publish-and-subscribe messaging, one producer can send a message to many con-
sumers through a virtual channel called a topic. Consumers can choose to subscribe to
a topic. Any messages addressed to a topic are delivered to all the topic’s consumers.
The pub/sub messaging model is largely a push-based model, in which messages are
automatically broadcast to consumers without the consumers having to request or poll
the topic for new messages.

Figure 8-3. Publish-and-subscribe model of messaging

Figure 8-4. Point-to-point model of messaging

JMS and Message-Driven Beans | 101

In this pub/sub messaging model, the producer sending the message is not dependent
on the consumers receiving the message. JMS clients that use pub/sub can establish
durable subscriptions that allow consumers to disconnect and later reconnect and col-
lect messages that were published while they were disconnected.

Point-to-point

The point-to-point messaging model allows JMS clients to send and receive messages
both synchronously and asynchronously via virtual channels known as queues. The
p2p messaging model has traditionally been a pull- or polling-based model, in which
messages are requested from the queue instead of being pushed to the client automat-
ically.* A queue may have multiple receivers, but only one receiver may receive each
message. As shown earlier, the JMS provider takes care of doling out the messages
among JMS clients, ensuring that each message is processed by only one consumer.
The JMS specification does not dictate the rules for distributing messages among mul-
tiple receivers.

Which messaging model should you use?

In most cases, the decision about which model to use depends on how it’ll be used by
your application. With pub/sub, any number of subscribers can be listening on a topic,
and all of them will receive copies of the same message. The publisher may not care if
everybody is listening, or even if nobody is listening. For example, consider a publisher
that broadcasts stock quotes. If any particular subscriber is not currently connected
and misses out on a great quote, the publisher is not concerned.

Using pub/sub, messages are dispatched to the consumers based on filtering that is
provided through the use of specific topics. Even when messaging is being leveraged to
establish a one-on-one conversation with another known application, it can be advan-
tageous to use pub/sub with multiple topics to segregate different kinds of messages.
Each kind of message can be dealt with separately through its own unique consumer
and onMessage() listener.

In contrast, a point-to-point session is likely to be intended for a one-on-one conver-
sation with a specific application at the other end. In this scenario, every message really
matters. The range and variety of the data the messages represent can be a factor as well.

Point-to-point is more convenient when you want to process a given message exactly
once. This is perhaps the most critical difference between the two models: p2p guar-
antees that only one consumer processes each message. This ability is extremely im-
portant when messages need to be processed separately but in tandem.

* The JMS specification does not specifically state how the p2p and pub/sub models must be implemented.
Either model can use push or pull—but conceptually, pub/sub is push and p2p is pull.

102 | Chapter 8: Message-Driven Beans

Learning More About JMS
JMS (and enterprise messaging in general) represents a powerful paradigm in distrib-
uted computing. While this chapter has provided a brief overview of JMS, it has pre-
sented only enough material to prepare you for the discussion of message-driven beans
in the next section. To understand JMS and how it is used, you will need to study it
independently.† Taking the time to learn JMS is well worth the effort.

JMS-Based Message-Driven Beans
Message-driven beans (MDBs) are stateless, server-side, transaction-aware compo-
nents for processing asynchronous messages delivered via JMS. While a message-driven
bean is responsible for consuming messages, its container manages the component’s
environment: transactions, security, resources, concurrency, and message acknowl-
edgment. It’s particularly important to note that the container manages concurrency.
The thread safety provided by the container gives MDBs a significant advantage over
traditional JMS clients, which must be custom built to manage resources, transactions,
and security in a multithreaded environment. An MDB can process hundreds of JMS
messages concurrently because many underlying bean instances of the MDB can exe-
cute concurrently in the container.

A message-driven bean is a complete enterprise bean, just like a session or entity bean,
but there are some important differences. While a message-driven bean has a bean class,
it does not have a business or component interface. These are absent because the
message-driven bean responds only to asynchronous messages and not to direct client
invocations.

@MessageDriven
MDBs are identified using the @javax.ejb.MessageDriven annotation or, alternatively,
are described in an EJB deployment descriptor. An MDB can be deployed alone, but
it’s more frequently deployed with the other enterprise beans that it references.

@ActivationConfigProperty

We’ll see later that because MDBs can receive messages from arbitrary messaging for-
mats, the configuration must be very flexible to be able to describe the proprietary
properties that different providers will have. JCA-based MDBs don’t necessarily use
JMS as the message service, so this requirement is very important. To facilitate
this, the @MessageDriven.activationConfig() attribute takes an array of
@ActivationConfigProperty annotations. These annotations are simply a set of generic
name/value pairs that describe the configuration of your MDB.

† For a detailed treatment of JMS, see Java Message Service (O’Reilly).

JMS-Based Message-Driven Beans | 103

http://oreilly.com/catalog/9780596522056/

@MessageDriven(activationConfig={
 @ActivationConfigProperty(
 propertyName="destinationType",

 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName="messageSelector",

 propertyValue="MessageFormat = 'Version 3.4'"),
 @ActivationConfigProperty(
 propertyName="acknowledgeMode",

 propertyValue="Auto-acknowledge")})
public class ReservationProcessorBean implements javax.jms.MessageListener {
 ...
}

The property names and values used in the activationConfig() attribute to describe
the messaging service vary depending on the type of message service used, but EJB 3.x
defines a set of fixed properties for JMS-based message-driven beans. These properties
are acknowledgeMode, messageSelector, destinationType, and subscriptionDurability.

Message selector

An MDB can declare a message selector, which allows an MDB to be more discerning
about the messages it receives from a particular topic or queue. Message selectors use
Message properties as criteria in conditional expressions.‡ These conditional expres-
sions use Boolean logic to declare which messages should be delivered. A message
selector is declared using the standard property name, messageSelector, in an activation
configuration element:

@ActivationConfigProperty(
 propertyName="messageSelector",
 propertyValue="MessageFormat = 'Version 3.4'"),

Message selectors are based on message properties, which are additional headers that
can be assigned to a message; they allow vendors and developers to attach information
to a message that isn’t part of the message’s body. The Message interface provides several
methods for reading and writing properties. Properties can have a String value or one
of several primitive values (boolean, byte, short, int, long, float, double). The naming
of properties, together with their values and conversion rules, is strictly defined by JMS.

Here’s how a JMS producer would go about setting a MessageFormat property on a
Message:

Message message = session.createMapMessage();
message.setStringProperty("MessageFormat","Version 3.4");

// set the reservation named values

‡ Message selectors are also based on message headers, which are outside the scope of this chapter.

104 | Chapter 8: Message-Driven Beans

sender.send(message);

The message selectors are based on a subset of the SQL-92 conditional expression
syntax that is used in the WHERE clauses of SQL statements. They can become fairly
complex, including the use of literal values, Boolean expressions, unary operators, and
so on.

Acknowledge mode

A JMS acknowledgment means that the JMS client notifies the JMS provider (message
router) when a message is received. In EJB, it’s the MDB container’s responsibility to
send an acknowledgment when it receives a message. Acknowledging a message tells
the JMS provider that an MDB container has received and processed the message.
Without an acknowledgment, the JMS provider does not know whether the MDB
container has received the message, and unwanted redeliveries can cause problems.

The acknowledgment mode is set using the standard acknowledgeMode activation
configuration property, as shown in the following code snippet:

@ActivationConfigProperty(
 propertyName="acknowledgeMode",
 propertyValue="Auto-acknowledge ")

Two values can be specified for acknowledgment mode: Auto-acknowledge and Dups-
ok-acknowledge. Auto-acknowledge tells the container that it should send an acknowl-
edgment to the JMS provider immediately after the message is given to an MDB instance
to process. Dups-ok-acknowledge tells the container that it doesn’t have to send the
acknowledgment immediately; anytime after the message is given to the MDB instance
will be fine. With Dups-ok-acknowledge, it’s possible for the MDB container to delay
acknowledgment for so long that the JMS provider assumes the message was not re-
ceived and sends a “duplicate” message. Obviously, with Dups-ok-acknowledge, your
MDBs must be able to handle duplicate messages correctly.

Auto-acknowledge avoids duplicate messages because the acknowledgment is sent im-
mediately. Therefore, the JMS provider won’t send a duplicate. Most MDBs use Auto-
acknowledge to avoid processing the same message twice. Dups-ok-acknowledge exists
because it can allow a JMS provider to optimize its use of the network. In practice,
though, the overhead of an acknowledgment is so small, and the frequency of com-
munication between the MDB container and the JMS provider is so high, that Dups-ok-
acknowledge doesn’t have a big impact on performance.

Having said all of this, the acknowledgment mode is ignored most of the time—in fact,
it is ignored unless the MDB executes with bean-managed transactions or with the
container-managed transaction attribute NotSupported (see Chapter 17). In all other
cases, transactions are managed by the container, and acknowledgment takes place
within the context of the transaction. If the transaction succeeds, the message is ac-
knowledged. If the transaction fails, the message is not acknowledged. When using

JMS-Based Message-Driven Beans | 105

container-managed transactions with a Required transaction attribute, the acknowl-
edgment mode is usually not specified; however, it is included in the deployment
descriptor for the sake of discussion.

Subscription durability

When a JMS-based MDB uses a javax.jms.Topic, the deployment descriptor must de-
clare whether the subscription is Durable or NonDurable. A Durable subscription outlasts
an MDB container’s connection to the JMS provider, so if the EJB server suffers a partial
failure, shuts down, or otherwise disconnects from the JMS provider, the messages that
it would have received are not lost. The provider stores any messages that are delivered
while the container is disconnected; the messages are delivered to the container (and
from there to the MDB) when the container reconnects. This behavior is commonly
referred to as store-and-forward messaging. Durable MDBs are tolerant of disconnec-
tions, whether intentional or the result of a partial failure.

If the subscription is NonDurable, any messages the bean would have received while it
was disconnected are lost. Developers use NonDurable subscriptions when it is not crit-
ical for all messages to be processed. Using a NonDurable subscription improves the
performance of the JMS provider but significantly reduces the reliability of the MDBs.

@ActivateConfigProperty(
 propertyName="subscriptionDurability",
 propertyValue="Durable")

When the destination type is javax.jms.Queue, durability is not a factor, because of the
nature of queue-based messaging systems. With a queue, messages may be consumed
only once, and they remain in the queue until they are distributed to one of the queue’s
listeners.

MessageDrivenContext

Message-driven beans also have a context object that is similar in functionality to that
of the javax.ejb.SessionContext described in Chapter 5. This object may be injected
using the @javax.annotation.Resource annotation:

@Resource MessageDrivenContext context;

The MessageDrivenContext simply extends the EJBContext; it does not add any new
methods. Only the transactional methods that MessageDrivenContext inherits from
EJBContext are available to message-driven beans. The home methods—getEJBHome()

and getEJBLocalHome()—throw a RuntimeException if invoked, because MDBs do
not have home interfaces or EJB home objects. The security methods—
getCallerPrincipal() and isCallerInRole()—also throw a RuntimeException if in-
voked on a MessageDrivenContext. When an MDB services a JMS message, there is no
“caller,” so there is no security context to be obtained from the caller. Remember that
JMS is asynchronous and doesn’t propagate the sender’s security context to the

106 | Chapter 8: Message-Driven Beans

receiver—that wouldn’t make sense, since senders and receivers tend to operate in
different environments.

MDBs usually execute in a container-initiated or bean-initiated transaction, so the
transaction methods allow the MDB to manage its context. The transaction context is
not propagated from the JMS sender; it is either initiated by the container or initiated
by the bean explicitly using javax.jta.UserTransaction. The transaction methods in
EJBContext are explained in more detail in Chapter 17.

Message-driven beans also have access to their own JNDI ENCs, which provide the
MDB instances access to environment entries, other enterprise beans, and resources.
For example, we may take advantage of the ENC to obtain references to an
EntityManager, another EJB, or a JMS ConnectionFactory and Queue.

MessageListener interface

MDBs usually implement the javax.jms.MessageListener interface, which defines the
onMessage() method. This method processes the JMS messages received by a bean.

package javax.jms;
public interface MessageListener {
 public void onMessage(Message message);
}

Although MDBs usually implement this interface, we will see later in this chapter that
MDBs can integrate with other messaging systems besides JMS, which define a different
interface contract.

Taskflow and integration for B2B: onMessage()

The onMessage() method is where all the business logic goes. As messages arrive, the
container passes them to the MDB via the onMessage() method. When the method
returns, the MDB instance is ready to process a new message.

public void onMessage(Message message) {
 try {
 // Extract out information from the message
 MapMessage mapMessage = (MapMessage)message;
 int userId = mapMessage.getInt("userId");
 String email = mapMessage.getInt("email");

 // Now perform business logic
}

JMS is frequently used as an integration point for business-to-business (B2B) applica-
tions, so it’s easy to imagine a message coming from an external business partner (per-
haps a third-party processor or auditing system).

Like a session bean, the MDB can access any other session bean and use that bean to
complete a task. An MDB can manage a process and interact with other beans as well

JMS-Based Message-Driven Beans | 107

as resources. For example, it is commonplace for an MDB to use the Java Persistence
API (JPA) to access a database based on the contents of the message it is processing.

Sending messages from a message-driven bean

An MDB can also send messages using JMS. This hypothetical deliverTicket() method
sends the ticket information to a destination defined by the sending JMS client:

public void deliverTicket(MapMessage reservationMsg, TicketDO ticket)
 throws JMSException{

 Queue queue = (Queue)reservationMsg.getJMSReplyTo();
 Connection connect = connectionFactory.createConnection();
 Session session = connect.createSession(true,0);
 MessageProducer sender = session.createProducer(queue);
 ObjectMessage message = session.createObjectMessage();
 message.setObject(ticket);
 sender.send(message);
 connect.close();
}

Every message type has two parts: a message header and a message body (aka the
payload). The message header contains routing information and may also have prop-
erties for message filtering and other attributes. One of these attributes may be
JMSReplyTo. The message’s sender may set the JMSReplyTo attribute to any destination
accessible to its JMS provider. In the case of the reservation message, the sender set the
JMSReplyTo attribute to the queue to which the resulting ticket should be sent. Another
application can access this queue to read tickets and distribute them to customers or
store the information in the sender’s database.

You can also use the JMSReplyTo address to report business errors. For example, if the
cabin is already reserved, the preceding EJB might send an error message to the
JMSReplyTo queue explaining that the reservation could not be processed. Including this
type of error handling is left as an exercise for the reader.

The Lifecycle of a Message-Driven Bean
Just as session beans have well-defined lifecycles, so does the message-driven bean. The
MDB instance’s lifecycle has two states: Does Not Exist and Method-Ready Pool. The
Method-Ready Pool is similar to the instance pool used for stateless session beans.§

Figure 8-5 illustrates the states and transitions that an MDB instance goes through in
its lifetime.

§ Some vendors may not pool MDB instances but may instead create and destroy instances with each new
message. This is an implementation-specific decision that should not affect the specified lifecycle of the
stateless bean instance.

108 | Chapter 8: Message-Driven Beans

The Does Not Exist State
When an MDB instance is in the Does Not Exist state, it is not an instance in the memory
of the system. In other words, it has not been instantiated yet.

The Method-Ready Pool
MDB instances enter the Method-Ready Pool as the container needs them. When the
EJB server is first started, it may create a number of MDB instances and enter them into
the Method-Ready Pool (the actual behavior of the server depends on the implemen-
tation). When the number of MDB instances handling incoming messages is insuffi-
cient, more can be created and added to the pool.

Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool,
three operations are performed on it. First, the bean instance is instantiated by invoking
the Class.newInstance() method on the bean implementation class. Second, the con-
tainer injects any resources that the bean’s metadata has requested via an injection
annotation or XML deployment descriptor.

You must always provide a default constructor. A default constructor
is a constructor with no parameters. The container instantiates instances
of the bean class using Class.newInstance(), which requires a no-arg
constructor. If no constructors are defined, the no-arg constructor is
implicit.

Figure 8-5. MDB lifecycle

The Lifecycle of a Message-Driven Bean | 109

Finally, the EJB container will invoke the PostConstruct callback if there is one.
The bean class may or may not have a method that is annotated
with @javax.ejb.PostConstruct. If it is present, the container will call this annotated
method after the bean is instantiated. This @PostConstruct annotated method can be
of any name and visibility, but it must return void, have no parameters, and throw no
checked exceptions. The bean class may define only one @PostConstruct method (but
it is not required to do so).

@MessageDriven
public class MyBean implements MessageListener {

 @PostConstruct
 public void myInit() {}

MDBs are not subject to activation, so they can maintain open connections to resources
for their entire lifecycles.‖ The @PreDestroy method should close any open resources
before the stateless session bean is evicted from memory at the end of its lifecycle.

Life in the Method-Ready Pool

When a message is delivered to an MDB, it is delegated to any available instance in the
Method-Ready Pool. While the instance is executing the request, it is unavailable to
process other messages. The MDB can handle many messages simultaneously, dele-
gating the responsibility of handling each message to a different MDB instance. When
a message is delegated to an instance by the container, the MDB instance’s
MessageDrivenContext changes to reflect the new transaction context. Once the instance
has finished, it is immediately available to handle a new message.

Transitioning out of the Method-Ready Pool: The death of an MDB instance

Bean instances leave the Method-Ready Pool for the Does Not Exist state when the
server no longer needs them—that is, when the server decides to reduce the total size
of the Method-Ready Pool by evicting one or more instances from memory. The process
begins by invoking an @PreDestroy callback method on the bean instance. Again, as
with @PostConstruct, this callback method is optional to implement and its signature
must return a void type, have zero parameters, and throw no checked exceptions. A
@PreDestroy callback method can perform any cleanup operation, such as closing open
resources.

@MessageDriven
public class MyBean implements MessageListener {

 @PreDestroy
 public void cleanup() {

‖ The duration of a stateless bean instance’s life is assumed to be very long. However, some EJB servers may
actually destroy and create instances with every method invocation, making this strategy less attractive.
Consult your vendor’s documentation for details on how your EJB server handles stateless instances.

110 | Chapter 8: Message-Driven Beans

 ...
 }

As with @PostConstruct, @PreDestroy is invoked only once: when the bean is about to
transition to the Does Not Exist state. During this callback method, the MessageDriven
Context and access to the JNDI ENC are still available to the bean instance. Following
the execution of the @PreDestroy method, the bean is dereferenced and eventually
garbage-collected.

Connector-Based Message-Driven Beans
Although the JMS-based MDB has proven very useful, it has limitations. Perhaps the
most glaring limitation is that EJB vendors are able to support only a small number of
JMS providers (usually only one). In pre-EJB 2.1 days, most vendors supported only
their own JMS provider and no others. Obviously, this limits your choices: if your
company or a partner company uses a JMS provider that is not supported by your EJB
vendor, you will not be able to process messages from that JMS provider.#

The root of the problem is complex and requires a fairly deep understanding of trans-
action management. In a nutshell, the delivery of the message by the JMS provider to
the MDB, and all the work performed by the MDB (e.g., using JDBC, invoking methods
on other beans, etc.), must be part of the same transaction, which is initiated by the
EJB container. This requires that the EJB container have prior knowledge that message
delivery is imminent so that it can initiate a transaction before the message is actually
delivered. Unfortunately, the JMS API doesn’t support this kind of functionality. So in
the early days of EJB, JMS providers had to perform custom integration with each and
every EJB vendor. Custom integration was expensive (business-wise), so old EJB 2.0
vendors generally choose to integrate with very few JMS providers.

Another limitation with JMS-based MDBs is that you are tied to the JMS programming
model; no other messaging systems are supported. Although JMS is very useful, it’s not
the only messaging system available. SOAP, email, CORBA messaging, proprietary
messaging systems used in ERP systems (SAP, PeopleSoft, etc.), and legacy messaging
systems are examples of other non-JMS messaging systems.

EJB 3.x (and 2.1) supports an expanded, more open definition of message-driven beans
that allows them to service any kind of messaging system from any vendor. The only
requirement is that new types of message-driven beans adhere to the message-driven
bean lifecycle. EJB vendors can build custom code to support a new messaging system
(something other than JMS), but they must also support any message-driven bean type
that’s based on JCA 1.6.

#A workaround is to use a JMS gateway, which routes messages from one JMS provider to another, but this
is a custom solution outside the EJB specification.

Connector-Based Message-Driven Beans | 111

The JCA provides a standard Service Provider Interface (SPI) that allows any EIS to
plug into any Java EE container system. Version 1.0 of the connector architecture ap-
plies only to request/reply resources in which the Java EE component (EJB or servlet/
JSP) initiates the request. The current version of the connector architecture (1.6), which
is required by JEE6 and higher, is much more general and can work with any asyn-
chronous messaging systems. In such systems, the Java EE component waits for mes-
sages to arrive instead of initiating an interaction with an EIS; the EIS initiates the
interaction by delivering a message.

JCA defines a messaging contract specifically tailored to message-driven beans. It de-
fines the contracts between an EJB container and an asynchronous Connector so that
message-driven beans automatically process incoming messages from the EIS. MDBs
based on an asynchronous Connector can implement a specific messaging in-
terface defined by the Connector itself. Instead of implementing the
javax.jms.MessageListener interface, the MDB implements some other type of inter-
face that is specific to the EIS.

For example, consider a hypothetical Email Connector that allows MDBs to process
email—similar to how JMS-based MDBs process JMS messages. The Email Connector
is purchased from Vendor X and is delivered in a JAR file called a Resource ARchive
(RAR). The RAR contains all the Connector code and deployment descriptors necessary
to plug into the EJB container system. It also defines a messaging interface that the
developer uses to create an email MDB. Here is a possible email messaging interface
that must be implemented by an email MDB:

package com.vendorx.email;

public interface EmailListener
 {
 public void onMessage(javax.mail.Message message);
}

The bean class that implements this interface is responsible for processing email mes-
sages delivered by the Email Connector. The following code shows an MDB that
implements the EmailListener interface and processes email:

package com.mycompany;

@MessageDriven(activationConfig={
 @ActivationConfigProperty(
 propertyName="mailServer",
 propertyValue="mail.ispx.com"),
 @ActivationConfigProperty(
 propertyName="serverType",
 propertyValue="POP3 "),
 @ActivationConfigProperty(
 propertyName="messageFilter",
 propertyValue="to='name@address.com'")})
public class EmailBean implements com.vendorx.email.EmailListener {

 public void onMessage(javax.mail.Message message){

112 | Chapter 8: Message-Driven Beans

 // continue processing Email message
 }
}

In this example, the container calls onMessage() to deliver a JavaMail Message object,
which represents an incoming email message. However, the messaging interfaces used
by a Connector-based MDB don’t have to use onMessage(). The method name and
method signature can be whatever is appropriate to the EIS; it can even have a return
type. For example, a Connector might be developed to handle request/reply-style mes-
saging for SOAP. This connector might use the ReqRespListener defined by the Java
API for XML Messaging (JAXM), which is a SOAP messaging API defined by Sun
Microsystems that is not part of the Java EE platform:

package javax.xml.messaging;
import javax.xml.soap.SOAPMessage;

public interface ReqRespListener {
 public SOAPMessage onMessage(SOAPMessage message);
}

In this interface, onMessage() has a return type of SOAPMessage. This means the EJB
container and Connector are responsible for coordinating the reply message back to
the sender (or to some destination defined in the deployment descriptor). In addition
to supporting different method signatures, the messaging interface may have several
methods for processing different kinds of messages using the same MDB.

There’s no limit to the new kinds of message-driven beans that EJB container systems
can support. The real beauty of all of this is that Connector-based MDBs are completely
portable across EJB vendors—because all vendors must support them. If you use a
Connector-based MDB with EJB Vendor A and later change to EJB Vendor B, you can
continue to use the same Connector-based MDB with no portability problems.

The activation configuration properties used with non-JMS-based MDBs depend on
the type of Connector and its requirements. Let’s see an example of this:

@MessageDriven(activationConfig={
 @ActivationConfigProperty(
 propertyName="mailServer",
 propertyValue="mail.ispx.com"),
 @ActivationConfigProperty(
 propertyName="serverType",
 propertyValue="POP3"),
 @ActivationConfigProperty(
 propertyName="messageFilter",
 propertyValue="to='name@address.com'")})

We talked about @ActivationConfigProperty annotations before. As you can see from
the preceding example, any name/value pair is supported within this annotation, so it
can easily support the email-specific configuration for this Connector type.

Connector-Based Message-Driven Beans | 113

Message Linking
Message linking is a feature that allows the messages being sent by any enterprise bean
to be routed to a specific message-driven bean in the same deployment. By using mes-
sage linking, you can orchestrate a flow of messages between components in the same
application. This is achieved by assigning logical names to destinations instead of using
a real JCA endpoint; we may think of message destination references as virtual end-
points (see Figure 8-6).

Figure 8-6. Sending events to the message-link abstraction, which delegates to a real destination

When we discussed this method earlier in the chapter, we never really mentioned where
a user registration message was being sent; it could go to an emailing system or some
other vendor listening in. However, message linking makes sure that the message goes
directly to an explicit message-driven bean that we deploy.

For example, consider the following stateless session bean:

@Stateless(name = "MessageSendingEJB")
@Local(MessageSendingBusiness.class)
public class MessageSendingBean implements MessageSendingBusiness
{
 /**
 * Queue we'll send messages to; logical name as wired from
 * the message-destination-link
 */
 @Resource(name = "jms/MessageDestinationLinkQueue")
 // Name to match message-destination-ref-name
 private Queue queue;

 ...
}

Session Beans Should Not Receive Messages
Session beans respond to calls from EJB clients, and they cannot be programmed to
respond to JMS messages; this is instead the motivation behind the message-driven
bean component type. It’s impossible to write a session or entity bean that is driven by

114 | Chapter 8: Message-Driven Beans

incoming messages, though it is possible to develop a session bean that can consume
a JMS message from a business method; in this case, an EJB client must call the method
first. For example, when the business method on a HypotheticalEJB is called, it sets up
a JMS session and then attempts to read a message from a queue:

@Stateless
public class HypotheticalBean implements HypotheticalRemoteBusiness {
 @Resource(mappedName="ConnectionFactory");
 private ConnectionFactory factory;

 @Resource(mappedName="MyQueue")
 private Queue queue;

 public String businessMethod() {
 try{
 Connection connect = factory.createConnection();
 Session session = connect.createSession(true,0);
 MessageConsumer receiver = session.createConsumer(queue);
 TextMessage textMsg = (TextMessage)receiver.receive();
 connect.close();
 return textMsg.getText();
 } catch(Exception e) {
 throws new EJBException(e);
 }
 }
}

The message consumer is used to proactively fetch a message from the queue. Although
this operation has been programmed correctly, it is dangerous because a call to the
MessageConsumer.receive() method blocks the thread until a message becomes avail-
able. If a message is never delivered, the thread is blocked indefinitely! If no one ever
sends a message to the queue, the MessageConsumer just sits there waiting, forever.

To be fair, there are other receive() methods that are less dangerous. For example,
receive(long timeout) allows you to specify a time after which the MessageConsumer
should stop blocking the thread and give up waiting for a message. There is also
receiveNoWait(), which checks for a message and returns null if none is waiting, thus
avoiding a prolonged thread block. However, this operation is still dangerous. There
is no guarantee that the less risky receive() methods will perform as expected, and the
risk of programmer error (e.g., using the wrong receive() method) is too great.

The moral of the story is simple: don’t write convoluted code trying to force session
beans to receive messages. If you need to receive messages, use a message-driven bean.
MDBs are specially designed to consume JMS messages.

The JMS APIs
We’ve alluded to some examples of JMS code earlier. Now let’s get a better under-
standing of the underlying mechanics.

Message Linking | 115

TopicConnectionFactory and Topic

In order to send a JMS message, we need a connection to the JMS provider and a
destination address for the message. A JMS connection factory makes the connection
to the provider possible, and the destination address is identified by a Topic object.
Both the connection factory and the Topic object may be obtained either by using
@javax.annotation.Resource to inject these objects directly (into a JEE managed object
such as an EJB or Servlet) or by using a manual JNDI lookup.

@Resource(name="ResourceReferencename")
private TopicConnectionFactory connectionFactory;

@Resource(mappedName="jndiName") // Non-portable, though some vendors may support
private TopicConnectionFactory connectionFactory;

public TopicConnectionFactory getConnectionFactory()
{
 return javax.naming.Context.lookup("jndiName");
}

The ConnectionFactory is similar to a DataSource in JDBC. Just as the DataSource pro-
vides a JDBC connection to a database, the ConnectionFactory provides a JMS
connection to a message router.*

The Topic object itself represents a network-independent destination to which the
message will be addressed. In JMS, messages aren’t sent directly to applications; they’re
sent to topics or queues. A topic is analogous to an email list or newsgroup. Any ap-
plication with the proper credentials can receive messages from and send messages to
a topic. When a JMS client receives messages from a topic, the client is said to sub-
scribe to that topic. JMS decouples applications by allowing them to send messages to
each other through a destination, which serves as a virtual channel. A queue is another
type of destination that we’ll discuss in detail later.

Connection and Session

The ConnectionFactory is used to create a Connection, which is an actual connection to
the JMS provider:

Connection connect = connectionFactory.createConnection();
Session session = connect.createSession(true,0);

Once you have a Connection, you can use it to create a Session. A Session allows you
to group the actions of sending and receiving messages. In this case, you need only a
single Session. Using multiple Sessions is helpful if you wish to produce and consume
messages in different threads. Session objects use a single-threaded model, which pro-
hibits concurrent access to a single Session from multiple threads. The thread that
creates a Session is usually the thread that uses that Session’s producers and consumers

* This analogy is not perfect. One might also say that the Session is analogous to the DataSource, since both
represent transaction-resource connections.

116 | Chapter 8: Message-Driven Beans

(i.e., MessageProducer and MessageConsumer objects). If you wish to produce and con-
sume messages using multithreading, you must create a different Session object for
each thread.

The createSession() method has two parameters:

createSession(boolean transacted, int acknowledgeMode)

The EJB 3.1 specification’s Section 13.3.5 stipulates that these arguments are ignored
at runtime because the EJB container manages the transaction and acknowledgment
mode of any JMS resource obtained from the JNDI ENC. The specification recom-
mends that developers use the arguments true for transacted and 0 for acknowledge
Mode, but since they are supposed to be ignored, it should not matter what you use.

It’s good programming practice to close a Connection after it has been used:

Connection connect = factory.createConnection();
... // Do work
connect.close();

MessageProducer

The Session is used to create a MessageProducer, which sends messages from the caller
to the destination specified by the Topic object. Any JMS clients that subscribe to that
topic will receive a copy of the message:

MessageProducer producer = session.createProducer(topic);

TextMessage
 textMsg = session.createTextMessage();
textMsg.setText(ticketDescription);
producer.send(textMsg);

Message types

In JMS, a message is a Java object with two parts: a header and a message body. The
header is composed of delivery information and metadata, and the message body carries
the application data, which can take several forms: text, Serializable objects, byte
streams, etc. The JMS API defines several message types (TextMessage, MapMessage,
ObjectMessage, and others) and provides methods for delivering messages to and re-
ceiving from other applications.

For example, we can send a new user registration using a MapMessage:

User user = getUser(); // Assume we have this from somewhere
...
MessageProducer producer = session.createProducer(topic);
MapMessage mapMsg = session.createMapMessage();
mapMsg.setInt("userId", user.getUserId());
mapMsg.setString("firstname", user.getFirstname());
mapMsg.setString("email", user.getEmail());
producer.send(mapMsg);

Message Linking | 117

The attributes of MapMessage (userId, firstname, and email) can be accessed by name
from those JMS clients that receive it. As an alternative, we could use the
ObjectMessage type, which would allow us to send the entire User object as the message
using Java serialization:

User user = getUser(); // Assume we have this from somewhere

...
MessageProducer producer = session.createProducer(topic);
ObjectMessage objectMsg = session.createObjectMessage();
ObjectMsg.setObject(user);
producer.send(mapMsg);

In addition to TextMessage, MapMessage, and ObjectMessage, JMS provides two other
message types: StreamMessage and BytesMessage. StreamMessage can take the contents
of an I/O stream as its payload. BytesMessage can take any array of bytes, which it treats
as opaque data.

Example: The StatusUpdateEJBs
To get a better idea of how JMS is used, we can create a Java application whose sole
purpose is to broadcast out a generic status; listeners on the target topic can then take
whatever action they’d like. Perhaps one consumer would like to log the status update,
while another might act as an adapter to a third-party service such as Facebook or
Twitter. The post-conditions are not the concern of the message producer, whose re-
sponsibility is fulfilled once the status is published to the target JMS endpoint.

To act as listeners for these updates, we may easily plug in some MDBs as subscribers
to the topic.

This example is fully runnable, and it is covered in Appendix E.

JMS application client: Message producer

The application client for unit testing can take the form of any Java class. We use a
JUnit test environment.

First, we have a simple value object to encapsulate the status update:

public class StatusUpdate
{

 /**
 * Internal status
 */
 private final String status;

 /**
 * Creates a new status update with the specified new status
 *
 * @throws IllegalArgumentException If either the status or username is not
specified

118 | Chapter 8: Message-Driven Beans

 */
 public StatusUpdate(final String status) throws IllegalArgumentException
 {
 // Precondition checks
 if (status == null || status.length() == 0)
 {
 throw new IllegalArgumentException("Status must be specified");
 }

 // Set
 this.status = status;
 }

 /**
 * Returns the new status
 * @return the status
 */
 public String getText()
 {
 return status;
 }
}

Our client will make use of the JMS and Naming APIs:

import javax.jms.Message;
import javax.jms.ObjectMessage;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSession;
import javax.naming.Context;
import javax.naming.InitialContext;

And using one method, we can publish to our topic:

void publishStatusUpdateToTopic(final StatusUpdate status) throws Exception,
IllegalArgumentException
{
 // Precondition check
 if (status == null)
 {
 throw new IllegalArgumentException("status must be provided");
 }

 // Make a JNDI Naming Context
 final Context namingContext = new InitialContext(); // Vendor-specific
properties required

 // Get the queue from JNDI
 final Topic topic = (Topic) namingContext.lookup("jndiNameOfTargetTopic");

 // Get the ConnectionFactory from JNDI
 final TopicConnectionFactory factory = (TopicConnectionFactory) namingContext
 .lookup("jndiNameOfConnectionFactory");

Message Linking | 119

 // Make a Connection
 final TopicConnection connection = factory.createTopicConnection();
 final TopicSession sendSession = connection.createTopicSession(false,
TopicSession.AUTO_ACKNOWLEDGE);
 final TopicPublisher publisher = sendSession.createPublisher(topic);

 // Make the message
 final Message message = sendSession.createObjectMessage(status);

 // Publish the message
 publisher.publish(message);
 log.info("Published message " + message + " with contents: " + status);

 // Clean up
 sendSession.close();
 connection.close();
}

Here we obtain the TopicConnectionFactory and Topic from the JNDI Context, which
is created with vendor-specific properties.

Once the client has the TopicConnectionFactory and Topic, it creates a
TopicConnection and a TopicSession; from there we may further create a publisher
through which we’ll push messages.

It’s worth noting that putting all of this logic in one location is guaranteed not to scale.
In a real-world scenario, we should set up the session or publisher once and reuse it
within the same thread.

Now that we’ve broadcasted our current status, we should make some listeners to take
action.

Create a base listener

Because we’ll make a couple of MDBs to listen for status updates, we should centralize
some of the logic to extract the contents from the incoming JMS message. For this we
declare a class that implements MessageListener:

public abstract class StatusUpdateBeanBase implements MessageListener

This will contain a contract to be fulfilled by subclasses:

/**
 * Updates status to the specified value.
 *
 * @throws IllegalArgumentException If the new status is not specified
 * @throws Exception If an error occured in processing
 */
public abstract void updateStatus(StatusUpdate newStatus) throws IllegalArgument
Exception, Exception;

The real meat of this class is done in onMessage, where we unwrap the status and delegate
along to updateStatus:

120 | Chapter 8: Message-Driven Beans

/**
 * {@inheritDoc}
 * @see javax.jms.MessageListener#onMessage(javax.jms.Message)
 */
@Override
public void onMessage(final Message message)
{
 /*
 * Precondition checks
 *
 */
 // Ensure the message is specified
 if (message == null)
 {
 throw new IllegalArgumentException("Message must be specified");
 }

 // Ensure the message is in expected form
 final ObjectMessage objMessage;
 if (message instanceof ObjectMessage)
 {
 objMessage = (ObjectMessage) message;
 }
 else
 {
 throw new IllegalArgumentException("Specified message must be of type " +
ObjectMessage.class.getName());
 }

 // Extract out the embedded status update
 final Serializable obj;
 try
 {
 obj = objMessage.getObject();
 }
 catch (final JMSException jmse)
 {
 throw new IllegalArgumentException(
 "Could not obtain contents of message " + objMessage);
 }

 // Ensure expected type
 final StatusUpdate status;
 if (obj instanceof StatusUpdate)
 {
 status = (StatusUpdate) obj;
 }
 else
 {
 throw new IllegalArgumentException("Contents of message should be of type " +
StatusUpdate.class.getName()
 + "; was instead " + obj);
 }

 // Process the update

Message Linking | 121

 try
 {
 this.updateStatus(status);
 }
 catch (final Exception e)
 {
 throw new RuntimeException("Encountered problem with processing status upda
te " +
 status, e);
 }
}

Now we can make some MDBs to take advantage of the preceding logic, taking more
specialized action:

@MessageDriven(activationConfig =
{
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue = "java
x.jms.Topic"),
 @ActivationConfigProperty(propertyName = "destination", propertyValue = "nameOfThe
TopicInJndi")})
public class LoggingStatusUpdateMdb extends StatusUpdateBeanBase implements
 MessageListener
{

 /**
 * Logger
 */
 private static final Logger log =
 Logger.getLogger(LoggingStatusUpdateMdb.class.getName());

 /**
 * Logs status out at INFO-level
 */
 @Override
 public void updateStatus(final StatusUpdate newStatus) throws
 IllegalArgumentException, Exception
 {
 // Precondition checks
 if (newStatus == null)
 {
 throw new IllegalArgumentException("status must be specified");
 }

 // Get info
 final String status = newStatus.getText();

 // Log
 log.info("New status received: \"" + status + "\"");
 }
}

This simple MDB does nothing more than log out the new status update it has received.
The activation configuration properties denote that this listener is for a JMS Topic and
that the topic can be found in JNDI at the “destination” property value.

122 | Chapter 8: Message-Driven Beans

Surely we can do something more interesting. Remember that producers don’t know
or care who is listening to messages sent to a Topic, so we can create another listener
and attach it. This one will propagate our status update to another service entirely.
Twitter provides an external HTTP-based API, and we’ll leverage the Twitter4J library
(http://yusuke.homeip.net/twitter4j/en/index.html) to access it:

@MessageDriven(activationConfig =
{
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =
"javax.jms.Topic"),
 @ActivationConfigProperty(propertyName = "destination", propertyValue =
"nameOfTheTopicInJndi")})

Note that the activation configuration properties are the same as in the logging MDB.
We’re listening to the same Topic and receiving the same messages:

public class TwitterUpdateMdb extends StatusUpdateBeanBase implements Message
Listener
{
 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(TwitterUpdateMdb.class.get
Name());

 //---||
 // Instance Members ---||
 //---||

 /**
 * Underlying client used in updating Twitter by calling upon its API
 */
 private Twitter client;

 //---||
 // Lifecycle --||
 //---||

 /**
 * Lifecycle start to create the Twitter client from supplied environment
 * properties, if the environment has been configured to do so
 */
 @PostConstruct
 void createTwitterClient()
 {
 // Create the client
 client = new Twitter("username", "password");
 log.info("Created Twitter client " + client);
 }

MDBs, like any EJB component type, receive lifecycle events. In this one, we’ll initialize
the Twitter client:

 @Override
 public void updateStatus(final StatusUpdate newStatus)

Message Linking | 123

http://yusuke.homeip.net/twitter4j/en/index.html

 throws IllegalArgumentException, Exception
 {
 if (client == null)
 {
 throw new IllegalStateException("Twitter client has not been initialized
");
 }

 // Extract status
 final String status = newStatus.getText();

 // Update status
 client.updateStatus(status);

 }
}

This leaves us with the simple task of using the Twitter client to update the status as
detailed in the incoming message.

Further testing

The appendix will explain further some techniques for reliably testing MDBs in both
unit and integration environments. The asynchronicity inherent in the message-driven
model makes for some interesting challenges in ensuring that our tests work as
expected.

124 | Chapter 8: Message-Driven Beans

PART III

EJB and Persistence

By now we’ve explored the various actions we can take within server-side component
models. Of course, actions are nothing unless performed by some thing, and in EJB we
address the nouns of our application via entity beans.

An entity is EJB’s integration point with Java Persistence, a simple POJO that maps to
an underlying relational database. By this mechanism, we’re free to deal with objects
as we’re most comfortable—in Java—and we leave it to the container to translate sim-
ple method invocations to the appropriate SQL queries.

Additionally, we can form complex relationships between entity types, allowing us to
form an object graph view of a database schema. The focus of entities is again on the
ease-of-use provided to us as application developers, and under the hood the container
may perform optimizations to keep things running efficiently.

These next chapters detail Java Persistence as it pertains to Enterprise Java Beans.

CHAPTER 9

Persistence: EntityManager

Persistence is a key piece of the Java EE platform. In older versions of J2EE, the EJB
2.x specification was responsible for defining this layer. In Java EE 5, persistence was
spun off into its own specification. Now, in EE6, we have a new revision called the Java
Persistence API, Version 2.0, or more simply, JPA.

Persistence provides an ease-of-use abstraction on top of JDBC so that your code may
be isolated from the database and vendor-specific peculiarities and optimizations. It
can also be described as an object-to-relational mapping engine (ORM), which means
that the Java Persistence API can automatically map your Java objects to and from a
relational database. In addition to object mappings, this service also provides a query
language that is very SQL-like but is tailored to work with Java objects rather than a
relational schema.

In short, JPA handles the plumbing between Java and SQL. EJB provides convenient
integration with JPA via the entity bean.

Entity beans, unlike session and message-driven types, are not server-side components.
Instead, they are simple objects whose state can be synchronized with an underlying
persistent storage provider. They are created just like any normal instance, typically
using the new operator, and have no special APIs that must be implemented by the Entity
class.

Much like EJB’s server-side types, however, entity beans gain powerful services when
used within the context of the container. In the case of persistence, Entity instances
may become managed objects under the control of a service called the
javax.persistence.EntityManager.

In the Java Persistence specification, the EntityManager is the central authority for all
persistence actions. Because entities are plain Java objects, they do not become persis-
tent until your code explicitly interacts with the EntityManager to make them persistent.
The EntityManager manages the object-relational (O/R) mapping between a fixed set
of entity classes and an underlying data source. It provides APIs for creating queries,
finding objects, synchronizing, and inserting objects into the database. It also can

127

provide caching and manage the interaction between an entity and transactional serv-
ices in a Java EE environment such as the Java Transaction API (JTA). The
EntityManager is well integrated with Java EE and EJB but is not limited to this envi-
ronment; it also can be used in plain Java programs.

You can use Java Persistence outside of an application server and in plain
Java SE programs.

This chapter focuses on the details of the persistence service and how it can be accessed
within Java EE.

Entities Are POJOs
Entities, in the Java Persistence specification, are plain old Java objects (POJOs). You
allocate them with the new() operator just as you would any other plain Java
object. Their state is not synchronized with persistent storage unless
associated with an EntityManager. For instance, let’s look at a simple example of an
Employee entity:

import javax.persistence.Entity;
import javax.persistence.Id;

/**
 * Represents an Employee in the system. Modeled as a simple
 * value object with some additional EJB and JPA annotations.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
public class Employee
{

 /**
 * Primary key of this entity
 */
 @Id
 // Mark that this field is the primary key
 private Long id;

 /**
 * Name of the employee
 */
 private String name;

128 | Chapter 9: Persistence: EntityManager

 /**
 * Default constructor, required by JPA
 */
 public Employee()
 {

 }

 /**
 * Convenience constructor
 */
 public Employee(final long id, final String name)
 {
 // Set
 this.id = id;
 this.name = name;
 }

 /**
 * @return the id
 */
 public Long getId()
 {
 return id;
 }

 /**
 * @param id the id to set
 */
 public void setId(final Long id)
 {
 this.id = id;
 }

 /**
 * @return the name
 */
 public String getName()
 {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(final String name)
 {
 this.name = name;
 }

Entities Are POJOs | 129

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return "Employee [id=" + id + ", name=" + name + "]";
 }
}

If we allocate instances of this Employee class, no magic happens when new() is invoked.
Calling the new operator does not magically interact with some underlying service to
create the Employee in the database:

// This is just an object
Employee hero = new Employee(1L,"Trey Anastasio");

Allocated instances of the Customer class remain POJOs until you ask
the EntityManager to create the entity in the database.

Managed Versus Unmanaged Entities
Before we can go any deeper into the entity manager service, we need to delve more
deeply into the lifecycle of entity object instances. An entity bean instance is either
managed (aka attached) by an entity manager or unmanaged (aka detached). When an
entity is attached to an EntityManager, the manager tracks state changes to the entity
and synchronizes those changes to the database whenever the entity manager decides
to flush its state. When an entity is detached, it is unmanaged. Any state changes to an
entity that is detached are not tracked by the entity manager.

Persistence Context
A persistence context is a set of managed entity object instances. Persistence contexts
are managed by an entity manager. The entity manager tracks all entity objects within
a persistence context for changes and updates made, and flushes these changes to the
database using the flush mode rules discussed later in this chapter. Once a persistence
context is closed, all managed entity object instances become detached and are no
longer managed. Once an object is detached from a persistence context, it can no longer
be managed by an entity manager, and any state changes to this object instance will
not be synchronized with the database.

When a persistence context is closed, all managed entity objects become
detached and are unmanaged.

130 | Chapter 9: Persistence: EntityManager

There are two types of persistence contexts: transaction-scoped and extended persis-
tence contexts.

Transaction-scoped persistence context

Though we’ll discuss transactions in much greater detail in Chapter 17, it’s important
to be aware of a transaction in simple terms to discuss Entities. For the purposes of this
discussion, we may think of a transaction as a set of beginning and end boundaries.
Everything executed in between must either fully succeed or fully fail, and state changes
made within a transaction are visible elsewhere in the system only when the end boun-
dary completes successfully.

Persistence contexts may live as long as a transaction and be closed when a transaction
completes. This is called a transaction-scoped persistence context. When the transaction
completes, the transaction-scoped persistence context will be destroyed and all man-
aged entity object instances will become detached. Only persistence contexts managed
by an application server may be transaction-scoped. In other words, only
EntityManager instances injected with the @PersistenceContext annotation or its XML
equivalent may be transaction-scoped.

@PersistenceContext(unitName="nameOfThePc")
EntityManager entityManager;

// Assume this method invocation takes place within
// the context of a running Transaction
public Employee getTheWorldsBestGuitarist()
{
 // Trey has key 1 in the DB
 Employee trey = entityManager.find(Employee.class, 1);
 trey.setName("Ernest Joseph Anastasio, III");
 return cust;
}

When getTheWorldsBestGuitarist() is executed, the EJB container invokes it within
the context of a JTA transaction. An Employee reference is pulled from the
EntityManager, and the setName() method is used to change the name of the employee.
The Employee instance that the EntityManager returns will remain managed for the du-
ration of the JTA transaction. This means that the change made by calling the set
Name() method will be synchronized with the database when the JTA transaction com-
pletes and commits.

The Employee instance is also returned by getTheWorldsBestGuitarist(). After the JTA
transaction completes, the transaction-scoped persistence context is destroyed, and
this Employee instance is no longer managed. This means that if setName() is called after
it becomes detached, no changes will be made to any database.

Managed Versus Unmanaged Entities | 131

Extended persistence context

Persistence contexts may also be configured to live longer than a transaction. This is
called an extended persistence context. Entity object instances that are attached to an
extended context remain managed even after a transaction is complete. This feature is
extremely useful in situations where you want to have a conversation with your
database but not keep a long-running transaction, as transactions hold valuable re-
sources such as JDBC connections and database locks. Here’s some small pseudocode
to illustrate this concept:

Employee pageMcConnell = null;

transaction.begin(); // Start Tx 1
// Page has key 2 in the DB
pageMcConnell = extendedEntityManager.find(Employee.class, 2L);
transaction.commit(); // Tx 1 Ends

transaction.begin(); // Start Tx 2
pageMcConnell.setName("Leo!"); // Change Page's name to his nickname
extendedEntityManager.flush(); // Flush changes to the DB manually
// pageMcConnell instance is to remain managed, and changes are flushed
transaction.commit(); // End Tx 2

In this example, a local variable, pageMcConnell, is initialized by calling the
EntityManager.find() method in transaction 1. Unlike a transaction-scoped persistence
context, the Employee instance pointed to by this local variable remains managed. This
is because extended persistence context stays alive past the completion of transaction
1. In transaction 2, the employee is updated and the changes are flushed to the database.

Extended persistence contexts may be created and managed by application code, and
we’ll see examples of this later in this chapter. They can also be created and managed
by stateful session beans.

Detached entities

Entity instances become unmanaged and detached when a transaction scope or exten-
ded persistence context ends. An interesting side effect is that detached entities can be
serialized and sent across the network to a remote client. The client can make changes
remotely to these serialized object instances and send them back to the server to be
merged back and synchronized with the database.

This behavior is very different from the EJB 2.1 entity model, where entities are always
managed by the container. In EJB 2.1, applications using entity beans always had a
proxy to the entity bean; in EJB 3.x, we work with concrete instances of plain Java
classes. For EJB 2.1 developers, this behavior will seem strange at first, since you are
used to the container managing every aspect of the entity. You’ll find that after you get
used to the new EJB 3.x model, your application code actually shrinks and is easier to
manage.

132 | Chapter 9: Persistence: EntityManager

The reason we can eliminate code is very simple to illustrate. EJB 2.1 code often used
the Value Object Pattern (often called Data Transfer Objects). The idea of this pattern
was that the entity bean exposed a method that copied its entire state into an object
that could be serialized to remote clients (like a Swing application) that needed access
to the entity’s state:

// EJB 2.1 Entity bean class
public class CustomerBean implements javax.ejb.EntityBean {

 CustomerValueObject getCustomerVO() {
 return new CustomerValueObject(getFirstName(), getLastName(),
 getStreet(), getCity(), getState, getZip());
 }
}

This is exactly the kind of plumbing we earlier deemed evil when discussing the benefits
of using a Container and Application Server. Application code, armed with the right
tools, should be free of this kind of error-prone and excessive noise.

Also, it is very expensive to make a remote method call to an entity bean from a client.
If the client had to call getFirstName(), getLastName(), etc., to get information about a
customer it was displaying, performance would suffer. This is where the Value Object
Pattern came in. EJB 3.x eliminates the need for this pattern because persistent objects
become value objects automatically when they are detached from a persistent context.
One side effect we encounter in dealing with detached entities revolves around entity
relationships, which we’ll discuss later.

Packaging a Persistence Unit
An EntityManager maps a fixed set of classes to a particular database. This set of classes
is called a persistence unit. Before you can even think about creating or querying entities
with an entity manager, you must learn how to package a persistence unit for use within
a Java SE (regular Java application) or Java EE (application server) environment. A
persistence unit is defined in a persistence.xml file, which is described by the JPA2
specification in section 8.2.1. This file is a required deployment descriptor for the Java
Persistence specification. A persistence.xml file can define one or more persistence units.
The JAR file or directory that contains a META-INF/persistence.xml file is called the
“root” of the persistence unit, and this may be:

• An EJB JAR file

• The WEB-INF/classes directory of a WAR file

• A JAR file in the WEB-INF/lib directory of a WAR file

• A JAR file in an EAR library directory

• An application client JAR file

Packaging a Persistence Unit | 133

The structure of one of these JAR files may look like the following:

/META-INF/
/META-INF/persistence.xml
/org/
/org/example/
/org/example/entity/
/org/example/entity/Employee.class

The persistence.xml deployment descriptor defines the identities and configuration
properties of each persistence unit described within it. Each persistence unit must have
an identity, although the empty string is a valid name.

The set of classes that belong to the persistence unit can be specified, or you can opt
for the persistence provider to scan the JAR file automatically for the set of classes to
deploy as entities. When scanning is used, the persistence provider will look at every
class file within the JAR to determine whether it is annotated with the
@javax.persistence.Entity annotation, and if it is, it will add it to the set of entities
that must be mapped.

Each persistence unit is tied to one and only one data source. In Java SE environments,
vendor-specific configuration must be used to define and configure these data sources.
In Java EE environments, specific XML elements define this association.

The root of the persistence.xml XML schema is the <persistence> element, which con-
tains one or more <persistence-unit> elements. Each <persistence-unit> has two
attributes: name (required) and transaction-type (optional). The subelements
of <persistence-unit> are <description> (optional), <provider> (optional), <jta-data-
source> (optional), <non-jta-data-source> (optional), <mapping-file> (optional), <jar-
file> (optional), <class> (optional), <properties> (optional), and <exclude-unlisted-
classes> (optional).

Here’s an example of a persistence.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="nameOfMyPu">
 <jta-data-source>java:/DataSourceNameInJndi</jta-data-source>
 <properties>
 <!-- Standard and Provider-specific config may go here -->
 <property name="myprovider.property.name" value="someValue"/>
 </properties>
 </persistence-unit>
</persistence>

The name attribute defines the name by which the unit will be referenced. This name is
used by injection annotations and XML deployment descriptor elements to reference
this unit. This attribute is required.

134 | Chapter 9: Persistence: EntityManager

The transaction-type attribute defines whether you want your persistence unit to be
managed by and integrated with Java EE transactions (JTA) or you want to use the
resource local (RESOURCE_LOCAL) javax.persistence.EntityTransaction API to manage
the integrity of your EntityManager instances. This attribute defaults to JTA in Java EE
environments and to RESOURCE_LOCAL in SE environments.

The <description> element is really just a comment describing the given persistence
unit and is not required.

The <provider> element is the fully qualified name of a class that implements the
javax.persistence.PersistenceProvider interface. In Java EE and SE environments,
the persistence implementation is pluggable: your vendor provides an appropriate im-
plementation. Usually, you do not have to define this element and can rely on the
default value.

If you are using JTA or RESOURCE_LOCAL persistence units, you will probably define a
<jta-data-source> or <non-jta-data-source> element, respectively. These elements
specify a vendor-specific identity of a particular data source. Usually, this string is the
global JNDI name for referencing the data source. If neither is defined, then a vendor-
provided default will be used.

The <properties> element defines the set of vendor-specific attributes passed to the
persistence provider. They specify configuration that is specific to a vendor implemen-
tation. Since there is no registry or JNDI service within Java SE, this is usually how
vendors configure data sources, instead of using the <jta-data-source> and <non-jta-
data-source> elements.

The Persistence Unit Class Set
A persistence unit maps a fixed set of classes to a relational database. By default, if you
specify no other metadata within your persistence.xml file, the JAR file that contains
persistence.xml will be scanned from its root for any classes annotated with the
@javax.persistence.Entity annotation. These classes are added to the set of classes the
persistence unit will manage. You can specify additional JARs that you want to be
scanned using the <jar-file> element. The value of this element is a path relative to
the JAR file that contains persistence.xml:

<persistence>
 <persistence-unit name="nameOfMyPu">
 ...
 <jar-file>../lib/employee.jar</jar-file>
 ...
 </persistence-unit>
</persistence>

Scanning JAR files is guaranteed to work in Java EE environments but is not portable
in Java SE applications. In theory, it may not be possible to determine the set of JAR

Packaging a Persistence Unit | 135

files that must be scanned. In practice, however, this is not the case. Whether you do
or do not rely on a JAR scan, classes can be listed explicitly with the <class> element:

<persistence>
 <persistence-unit name="nameOfMyPu">
 ...
 <class>org.example.entity.Employee</class>
 <class>org.example.entity.AnotherEntity</class>
 ...
 </persistence-unit>
</persistence>

The Employee and AnotherEntity classes listed within the <class> elements are added
to the persistence unit set along with any other classes scanned in the persistence unit’s
archive. If you do not want the persistence.xml’s JAR file to be scanned, then you can
use the <exclude-unlisted-classes> element.

<persistence>
 <persistence-unit name="nameOfMyPu">
 ...
 <exclude-unlisted-classes/>
 ...
 </persistence-unit>
</persistence>

The final set of classes is determined by a union of all of the following metadata:

• Classes annotated with @Entity in the persistence.xml file’s JAR file (unless
<exclude-unlisted-classes> is specified)

• Classes annotated with @Entity that are contained within any JARs listed with any
<jar-file> elements

• Classes mapped in the META-INF/orm.xml file if it exists

• Classes mapped in any XML files referenced with the <mapping-file> element

• Classes listed with any <class> elements

Usually, you will find that you do not need to use the <class>, <jar-file>, or <mapping-
file> element. One case where you might need one of these elements is when the same
class is being used and mapped within two or more persistence units.

Obtaining an EntityManager
Now that you have packaged and deployed your persistence units, you need to obtain
access to an EntityManager so that you can persist, update, remove, and query your
entity beans within your databases. In Java SE, entity managers are created using a
javax.persistence.EntityManagerFactory. Although you can use the factory interface
in Java EE, the platform provides some additional features that make it easier and less
verbose to manage entity manager instances.

136 | Chapter 9: Persistence: EntityManager

EntityManagerFactory
EntityManagers may be created or obtained from an EntityManagerFactory. In a Java SE
application, you must use an EntityManagerFactory to create instances of an
EntityManager. Using the factory isn’t a requirement in Java EE, and we recommend
that you don’t use it directly from application code.

package javax.persistence;

import java.util.Map;
import javax.persistence.metamodel.Metamodel;
import javax.persistence.criteria.CriteriaBuilder;

public interface EntityManagerFactory
{
 public EntityManager createEntityManager();
 public EntityManager createEntityManager(Map map);
 public CriteriaBuilder getCriteriaBuilder();
 public Metamodel getMetamodel();
 public boolean isOpen();
 public void close();
 public Map<String, Object> getProperties();
 public Cache getCache();
 public PersistenceUnitUtil getPersistenceUnitUtil();
}

The createEntityManager() methods return EntityManager instances that manage a
distinct extended persistence context. You can pass in a java.util.Map parameter to
override or extend any provider-specific properties you did not declare in your persis-
tence.xml file. When you are finished using the EntityManagerFactory, you should
close() it (unless it is injected; we’ll discuss this later). The isOpen() method allows
you to check whether the EntityManagerFactory reference is still valid.

Getting an EntityManagerFactory in Java EE

In Java EE, it is easy to get an EntityManagerFactory. It can be injected directly into a
field or setter method of your EJBs using the @javax.persistence.PersistenceUnit
annotation:

package javax.persistence;

@Target({ TYPE, METHOD, FIELD })
@Retention(RUNTIME)
public @interface PersistenceUnit
{
 String name() default "";

 String unitName() default "";
}

Obtaining an EntityManager | 137

The unitName() is the identity of the PersistenceUnit. When the PersistenceUnit is
used, it not only injects the EntityManagerFactory, it also registers a reference to it within
the JNDI ENC of the EJB. (The JNDI ENC is discussed more in Chapter 16.) The EJB
container is responsible for noticing the @PersistenceUnit annotation and injecting the
correct factory:

import javax.persistence.*;
import javax.ejb.*;

@Stateless
public MyBean implements MyBusinessInterface
{
 @PersistenceUnit(unitName="nameOfMyPu")
 private EntityManagerFactory factory1;
 private EntityManagerFactory factory2;

 @PersistenceUnit(unitName="nameOfAnotherPu")
 public void setFactory2(EntityManagerFactory f)
 {
 this.factory2 = f;
 }
}

When an instance of the stateless session bean is created, the EJB container sets the
factory field to the persistence unit identified by "nameOfMyPu". It also calls the
setFactory2() method with the "nameOfAnotherPu" persistence unit.

In EJB, an injected EntityManagerFactory is automatically closed by the EJB container
when the instance is discarded. In fact, if you call close() on an injected
EntityManagerFactory, an IllegalStateException is thrown.

Obtaining a Persistence Context
A persistence context can be created by calling the EntityManagerFactory.create
EntityManager() method. The returned EntityManager instance represents an extended
persistence context. If the EntityManagerFactory is JTA-enabled, then you have to ex-
plicitly enlist the EntityManager instance within a transaction by calling the EntityMan
ager.joinTransaction() method. If you do not enlist the EntityManager within the JTA
transaction, the changes you make to your entities are not synchronized with the
database.

EntityManager.joinTransaction() is required to be invoked only when
an EntityManager is created explicitly using an EntityManagerFactory. If
you are using EJB container-managed persistence contexts, you do not
need to perform this extra step.

Using the EntityManagerFactory API is a bit verbose and can be awkward when you are
making nested EJB calls, for instance. Fortunately, EJB and the Java Persistence

138 | Chapter 9: Persistence: EntityManager

specification are nicely integrated. An EntityManager can be injected directly into an
EJB using the @javax.persistence.PersistenceContext annotation.

package javax.persistence;

public enum PersistenceContextType
{
 TRANSACTION,
 EXTENDED
}

public @interface PersistenceProperty
{
 String name();
 String value();
}

@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface PersistenceContext
{
 String name() default "";
 String unitName() default "";
 PersistenceContextType type() default PersistenceContextType.TRANSACTION;
 PersistenceProperty[] properties() default {};
}

The @PersistenceContext annotation works in much the same way as
@PersistenceUnit, except that an entity manager instance is injected instead of an
EntityManagerFactory:

@Stateless
public class MyBean implements MyBusinessInterface
{
 @PersistenceContext(unitName="nameOfMyPu")
 private EntityManager entityManager;
}

The unitName() attribute identifies the persistence. By default, a transaction-scoped
persistence context is injected when using this annotation. You can override this default
with the type() attribute. When you access this transaction-scoped EntityManager, a
persistence context becomes associated with the transaction until it finishes. This
means that if you interact with any entity managers within the context of a transaction,
even if they are different instances that are injected into different beans, the same per-
sistence context will be used.

You must never call close() on an injected entity manager. Cleanup is handled by the
application server. If you close an entity manager, an IllegalStateException is thrown.

An EXTENDED entity manager can only be injected into a stateful session bean; stateless
session and message-driven beans are pooled, and there would be no way to close the
persistence context and release any managed entity instances. In order to obtain an

Obtaining an EntityManager | 139

extended context, a stateful session bean uses the @javax.persistence.Persistence
Context annotation with a type of EXTENDED:

@Stateful
public class MyBean implements MyBusinessInterface
{
 @PersistenceContext (unitName="nameOfMyPu", type=PersistenceContextType.EXTENDED)
 private EntityManager manager;
}

When this MyBean backing instance is created, a persistence context is also created for
the injected manager field. The persistence context has the same lifespan as the bean.
When the stateful session bean is removed, the persistence context is closed. This
means that any entity object instances remain attached and managed as long as the
stateful session bean is active.

It is strongly suggested that you use the @PersistenceContext annotation
or the XML equivalent when using Java Persistence with EJBs. These
features were defined to make it easier for developers to interact with
entity beans. Entity managers created using EntityManagerFactory are
more error-prone because the application developer has to worry about
more things. For instance, the developer could forget to close() an en-
tity manager and subsequently leak resources. Take advantage of the
ease-of-use facilities of your EJB container!

Interacting with an EntityManager
Now that you have learned how to deploy and obtain a reference to an entity manager,
you are ready to learn the semantics of interacting with it. The EntityManager API has
methods to insert and remove entities from a database as well as merge updates from
detached entity instances. There is also a rich query API that you can access by creating
query objects from certain EntityManager methods:

package javax.persistence;

import java.util.Map;
import javax.persistence.metamodel.Metamodel;
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;

public interface EntityManager
{
 public void persist(Object entity);
 public <T> T merge(T entity);
 public void remove(Object entity);
 public <T> T find(Class<T> entityClass, Object primaryKey);
 public <T> T find(Class<T> entityClass, Object primaryKey,
 Map<String, Object> properties);
 public <T> T find(Class<T> entityClass, Object primaryKey,
 LockModeType lockMode);
 public <T> T find(Class<T> entityClass, Object primaryKey,

140 | Chapter 9: Persistence: EntityManager

 LockModeType lockMode,
 Map<String, Object> properties);
 public <T> T getReference(Class<T> entityClass,
 Object primaryKey);
 public void flush();
 public void setFlushMode(FlushModeType flushMode);
 public FlushModeType getFlushMode();
 public void lock(Object entity, LockModeType lockMode);
 public void lock(Object entity, LockModeType lockMode,
 Map<String, Object> properties);
 public void refresh(Object entity);
 public void refresh(Object entity,
 Map<String, Object> properties);
 public void refresh(Object entity, LockModeType lockMode);
 public void refresh(Object entity, LockModeType lockMode,
 Map<String, Object> properties);
 public void clear();
 public void detach(Object entity);
 public boolean contains(Object entity);
 public LockModeType getLockMode(Object entity);
 public void setProperty(String propertyName, Object value);
 public Map<String, Object> getProperties();
 public Query createQuery(String qlString);
 public <T> TypedQuery<T> createQuery(CriteriaQuery<T> criteriaQuery);
 public <T> TypedQuery<T> createQuery(String qlString, Class<T> resultClass);
 public Query createNamedQuery(String name);
 public <T> TypedQuery<T> createNamedQuery(String name, Class<T> resultClass);
 public Query createNativeQuery(String sqlString);
 public Query createNativeQuery(String sqlString, Class resultClass);
 public Query createNativeQuery(String sqlString, String resultSetMapping);
 public void joinTransaction();
 public <T> T unwrap(Class<T> cls);
 public Object getDelegate();
 public void close();
 public boolean isOpen();
 public EntityTransaction getTransaction();
 public EntityManagerFactory getEntityManagerFactory();
 public CriteriaBuilder getCriteriaBuilder();
 public Metamodel getMetamodel();
}

Example: A Persistent Employee Registry
From our simple Employee entity defined earlier, we can use the EntityManager facilities
to perform CRUD (Create, Read, Update, Delete) operations and build a simple
persistent registry of employees. The full example is available in greater detail in
Appendix F.

A Transactional Abstraction
Before we can take advantage of the EntityManager to flush and synchronize our changes
with the database, we must set up a transactional context within which our code can

Example: A Persistent Employee Registry | 141

run. Because we’re not going to delve into the full features of transactions until later,
let’s define a simple abstraction that marks the beginning and end of the transactional
context.

public interface TxWrappingLocalBusiness
{
 **
 * Wraps the specified tasks in a new Transaction
 *
 * @param task
 * @throws IllegalArgumentException If no tasks are specified
 * @throws TaskExecutionException If an error occurred in invoking
 * {@link Callable#call()}
 */
 void wrapInTx(Callable<?>... tasks) throws IllegalArgumentException,
 TaskExecutionException;
}

From here we can construct simple java.util.concurrent.Callable implementations
that encapsulate our JPA operations, and these will all run within a transaction that
starts and ends with the invocation to wrapInTx. Let’s assume we have an instance called
txWrapper that implements TxWrappingLocalBusiness for us.

Persisting Entities
Persisting an entity is the act of inserting it within a database. We persist entities that
have not yet been created in the database. To create an entity, we first allocate an
instance of it, set its properties, and wire up any relationships it might have with other
objects. In other words, we initialize an entity bean just as we would any other Java
object. Once we’ve done this, we can then interact with the entity manager service by
calling the EntityManager.persist() method:

// Execute the addition of the employees, and conditional checks,
// in the context of a Transaction
txWrapper.wrapInTx(new Callable<Void>()
{
 @Override
 public Void call() throws Exception
 {
 // Create a few plain instances
 final Employee dave = new Employee(ID_DAVE, NAME_DAVE);
 final Employee josh = new Employee(ID_JOSH, NAME_JOSH);
 final Employee rick = new Employee(ID_RICK, NAME_RICK);

 // Get the EntityManager from our test hook
 final EntityManager em = emHook.getEntityManager();

 // Now first check if any employees are found in the underlying persistent
 // storage (shouldn't be)
 Assert
 .assertNull("Employees should not have been added to the EM yet",
 em.find(Employee.class, ID_DAVE));

142 | Chapter 9: Persistence: EntityManager

 // Check if the object is managed (shouldn't be)
 Assert.assertFalse("Employee should not be managed yet", em.contains(josh));

 // Now persist the employees
 em.persist(dave);
 em.persist(josh);
 em.persist(rick);
 log.info("Added: " + rick + dave + josh);

 // The employees should be managed now
 Assert.assertTrue(
 "Employee should be managed now, after call to persist",
 em.contains(josh));

 // Return
 return null;
 }
});

When this method is called, the entity manager queues the Employee instances for in-
sertion into the database, and the objects become managed. When the actual insertion
happens depends on a few variables. If persist() is called within a transaction, the
insert may happen immediately, or it may be queued until the end of the transaction,
depending on the flush mode (described later in this chapter). You can always force
the insertion manually within a transaction by calling the EntityManager.flush()
method. You may call persist() outside of a transaction only if the entity manager is
an EXTENDED persistence context. When you call persist() outside of a transaction with
an EXTENDED persistence context, the insert is queued until the persistence context
is associated with a transaction. An injected extended persistence context is automat-
ically associated with a JTA transaction by the EJB container. For other extended con-
texts created manually with the EntityManagerFactory API, you must call
EntityManager.joinTransaction() to perform the transaction association.

If the entity has any relationships with other entities, these entities may also be created
within the database if you have the appropriate cascade policies set up. Cascading and
relationships are discussed in detail in Chapter 11. Java Persistence can also be con-
figured to automatically generate a primary key when the persist() method is invoked
through the use of the @GeneratedValue annotation atop the primary key field or setter.
So, in the previous example, if we had auto key generation enabled, we could view the
generated key after the persist() method completed.

The persist() method throws an IllegalArgumentException if its parameter is not an
entity type. TransactionRequiredException is thrown if this method is invoked on a
transaction-scoped persistence context. However, if the entity manager is an extended
persistence context, it is legal to call persist() outside of a transaction scope; the insert
is queued until the persistence context interacts with a transaction.

Example: A Persistent Employee Registry | 143

Finding and Updating Entities
The entity manager provides two mechanisms for locating objects in your database.
One way is with simple entity manager methods that locate an entity by its primary
key. The other is by creating and executing queries.

find() and getReference()

The EntityManager has two different methods that allow you to find an entity by its
primary key:

public interface EntityManager
{
 <T> T find(Class<T> entityClass, Object primaryKey);
 <T> T getReference(Class<T> entityClass, Object primaryKey);
}

Both methods take the entity’s class as a parameter, as well as an instance of the entity’s
primary key. They use Java generics so that you don’t have to do any casting. How do
these methods differ? The find() method returns null if the entity is not found in the
database. It also initializes the state based on the lazy-loading policies of each property
(lazy loading is discussed in Chapter 10).

Once you have located an entity bean by calling find(), calling getReference(), or
creating and executing a query, the entity bean instance remains managed by the per-
sistence context until the context is closed. During this period, you can change the state
of the entity bean instance as you would any other object, and the updates will be
synchronized automatically (depending on the flush mode) or when you call the
flush() method directly.

merge()

The Java Persistence specification allows you to merge state changes made to a detached
entity back into persistence storage using the entity manager’s merge() method.

If the entity manager isn’t already managing an Employee instance with the same ID, a
full copy of the parameter is made and returned from the merge() method. This copy
is managed by the entity manager, and any additional setter methods called on this
copy will be synchronized with the database when the EntityManager decides to flush.
The original parameter remains detached and unmanaged.

The merge() method will throw an IllegalArgumentException if its parameter is not an
entity type. The TransactionRequiredException is thrown if this method is invoked on
a transaction-scoped persistence context. However, if the entity manager is an extended
persistence context, it is legal to invoke this method outside of a transaction scope, and
the update will be queued until the persistence context interacts with a transaction.

144 | Chapter 9: Persistence: EntityManager

Now we can create a new Employee instance with new properties and synchronize this
state with persistent storage:

// Now change Employee Dave's name in a Tx; we'll verify the changes were flushed
// to the DB later
txWrapper.wrapInTx(new Callable<Void>()
{
 @Override
 public Void call() throws Exception
 {
 // Get an EM
 final EntityManager em = emHook.getEntityManager();

 // Make a new "Dave" as a detached object with same primary key,
 // but a different name
 final Employee dave = new Employee(ID_DAVE, NAME_DAVE_NEW);

 // Merge these changes on the detached instance with the DB
 Employee managedDave = em.merge(dave);

 // Change Dave's name
 dave.setName(NAME_DAVE_NEW);
 log.info("Changing Dave's name: " + dave);

 // That's it - the new name should be flushed to the DB when the Tx completes
 return null;
 }
});

In this example, we are creating an Employee instance with a primary key ID of
ID_DAVE. After we’ve performed this merge with the EntityManager, the dave instance’s
state is synced to the DB, and the object returned from the merge call is a managed
object. Changing his name via a traditional call to the setter method for his name will
change the state of this object, and the EntityManager will propagate these changes to
the database when the transaction completes.

Alternatively, we could have used EntityManager.find() to look up dave from the DB,
and then directly changed the name upon that reference.

getReference() differs from find() in that if the entity is not found in the database, this
method throws a javax.persistence.EntityNotFoundException and there is no guaran-
tee that the entity’s state will be initialized.

Both find() and getReference() throw an IllegalArgumentException if their parameters
are not an entity type. You are allowed to invoke them outside the scope of a transaction.
In this case, any object returned is detached if the EntityManager is transaction-scoped
but remains managed if it is an extended persistence context.

To prove that dave’s new name has been persisted, let’s look him up again from a new
transaction.

// Since we've changed Dave's name in the last transaction, ensure that we see the
// changes have been flushed and we can see them from a new Tx.

Example: A Persistent Employee Registry | 145

txWrapper.wrapInTx(new Callable<Void>()
{
 @Override
 public Void call() throws Exception
 {
 // Get an EM
 final EntityManager em = emHook.getEntityManager();

 // Look up "Dave" again
 final Employee dave = em.find(Employee.class, ID_DAVE);

 // Ensure we see the name change
 Assert.assertEquals("Employee Dave's name should have been changed",
 NAME_DAVE_NEW, dave.getName());

 // Now we'll detach Dave from the EM, this makes the object no longer managed
 em.detach(dave);

 // Change Dave's name again to some dummy value. Because the object is
 // detached and no longer managed, we should not see this new value
 // synchronized with the DB
 dave.setName("A name we shouldn't see flushed to persistence");
 log.info("Changing Dave's name after detached: " + dave);

 // Return
 return null;
 }
});

To illustrate the difference between managed and unmanaged objects, here we man-
ually detach dave from the EntityManager. We can still change his name just as we did
before, but now these changes will not be synchronized with the database.

Queries

Persistent objects can also be located by using the JPA Query Language. Unlike EJB
2.1, there are no finder methods, and you must create a Query object by calling the
EntityManager’s createQuery(), createNamedQuery(), or createNativeQuery() methods:

public interface EntityManager
{
 public Query createQuery(String qlString);
 public <T> TypedQuery<T> createQuery(CriteriaQuery<T> criteriaQuery);
 public <T> TypedQuery<T> createQuery(String qlString, Class<T> resultClass);
 public Query createNamedQuery(String name);
 public <T> TypedQuery<T> createNamedQuery(String name, Class<T> resultClass);
 public Query createNativeQuery(String sqlString);
 public Query createNativeQuery(String sqlString, Class resultClass);
 public Query createNativeQuery(String sqlString, String resultSetMapping);
}

146 | Chapter 9: Persistence: EntityManager

Creating and executing a JPA QL query is analogous to creating and executing a JDBC
PreparedStatement:

Query query = entityManager.createQuery("from Employee c where id=2");
Employee employee = (Employee)query.getSingleResult();

New to JPA2 is the addition of the Criteria API, a fluent expression to programmatically
build queries. In many ways this can be more flexible than the string-based JPA QL.

Queries and JPA QL are discussed in Chapter 13.

All object instances returned by find(), getResource(), or a query remain managed as
long as the persistence context in which you accessed them remains active. This means
that further calls to find() (or whatever) will return the same entity object instance.

Removing Entities
An entity can be removed from the database by calling the EntityManager.remove()
method. The remove() operation does not immediately delete the employee from the
database. When the entity manager decides to flush, based on the flush rules described
later in this chapter, an SQL DELETE is executed:

// Uh oh, Rick has decided to leave the company. Let's delete his record.
txWrapper.wrapInTx(new Callable<Void>()
{
 @Override
 public Void call() throws Exception
 {
 // Get an EM
 final EntityManager em = emHook.getEntityManager();

 // Look up Rick
 final Employee rick = em.find(Employee.class, ID_RICK);

 // Remove
 em.remove(rick);
 log.info("Deleted: " + rick);

 // Return
 return null;
 }
});

After remove() is invoked, the rick instance will no longer be managed and will become
detached. Also, if the entity has any relationships to other entity objects, those can be
removed as well, depending on the cascading rules discussed in Chapter 11. The
remove() operation can be undone only by recreating the entity instance using the
persist() method.

The remove() method throws an IllegalArgumentException if its parameter is not an
entity type. The TransactionRequiredException is thrown if this method is invoked on
a transaction-scoped persistence context. However, if the EntityManager is an extended

Example: A Persistent Employee Registry | 147

persistence context, it is legal to invoke this method outside of a transaction scope, and
the remove will be queued until the persistence context interacts with a transaction.

refresh()
If you are concerned that a current managed entity is not up-to-date with the database,
then you can use the EntityManager.refresh() method. The refresh() method re-
freshes the state of the entity from the database, overwriting any changes made to that
entity. This effectively reverts any local changes.

If the entity bean has any related entities, those entities may also be refreshed, depend-
ing on the cascade policy set up in the metadata of the entity mapping.

The refresh() method throws an IllegalArgumentException if its parameter is not
managed by the current entity manager instance. The TransactionRequiredException
is thrown if this method is invoked on a transaction-scoped persistence context.
However, if the entity manager is an extended persistence context, it is legal to invoke
this method outside of a transaction scope. If the object is no longer in the database
because another thread or process removed it, then this method will throw an
EntityNotFoundException.

contains() and clear()
The contains() method takes an entity instance as a parameter. If this particular object
instance is currently being managed by the persistence context, it returns true. It throws
an IllegalArgumentException if the parameter is not an entity.

If you need to detach all managed entity instances from a persistence context, you can
invoke the clear() method of the EntityManager. Be aware that when you call
clear(), any changes you have made to managed entities are lost. It is wise to call
flush() before clear() is invoked so you don’t lose your changes.

flush() and FlushModeType
When you call persist(), merge(), or remove(), these changes are not synchronized
with the database until the entity manager decides to flush. You can force synchroni-
zation at any time by calling flush(). By default, flushing automatically happens before
a correlated query is executed (inefficient implementations may even flush before any
query) and at transaction commit time. The exception to this default rule is find(). A
flush does not need to happen when find() or getReference() is called, because finding
by a primary key is not something that would be affected by any updates.

148 | Chapter 9: Persistence: EntityManager

You can control and change this default behavior by using the javax.persistence.Flush
ModeType enumeration:

public enum FlushModeType
{
 AUTO,
 COMMIT
}

AUTO is the default behavior described in the preceding code snippet. COMMIT means that
changes are flushed only when the transaction commits, not before any query. You can
set the FlushModeType by calling the setFlushMode() method on the EntityManager.

Why would you ever want to change the FlushModeType? The default flush behavior
makes a lot of sense. If you are doing a query on your database, you want to make sure
that any updates you’ve made within your transaction are flushed so that your query
will pick up these changes. If the entity manager didn’t flush, then these changes might
not be reflected in the query. Obviously, you want to flush changes when a transaction
commits.

FlushModeType.COMMIT makes sense for performance reasons. The best way to tune a
database application is to remove unnecessary calls to the database. Some vendor im-
plementations will do all required updates with a batch JDBC call. Using COMMIT allows
the entity manager to execute all updates in one huge batch. Also, an UPDATE usually
ends up in the row being write-locked. Using COMMIT limits the amount of time the
transaction holds on to this database lock by holding it only for the duration of the JTA
commit.

Locking
The EntityManager API supports both read and write locks. Because locking behavior
is closely related to the concept of transactions, using the lock() method is discussed
in detail in Chapter 17.

unwrap() and getDelegate()
The unwrap() method allows you to obtain a reference to the underlying persistence
provider object that implements the EntityManager interface. Most vendors will have
API extensions to the EntityManager interface that can be executed by obtaining and
typecasting this delegate object to a provider’s proprietary interface. In theory, you
should be able to write vendor-independent code, but in practice, most vendors provide
a lot of extensions to Java Persistence that you may want to take advantage of in your
applications. The getDelegate() method was provided in JPA1; for now, it’s recom-
mended that users call unwrap().

Example: A Persistent Employee Registry | 149

CHAPTER 10

Mapping Persistent Objects

In this chapter, we take a thorough look at the process of developing entity beans—
specifically, mapping them to a relational database. A good rule of thumb is that entity
beans model business concepts that can be expressed as nouns. Although this is a
guideline rather than a requirement, it helps determine when a business concept is a
candidate for implementation as an entity bean. In grammar school, you learned that
nouns are words that describe a person, place, or thing. The concepts of “person” and
“place” are fairly obvious: a person entity might represent a customer or passenger,
and a place entity might represent a city or port of call. Similarly, entity beans often
represent “things”: real-world objects, such as ships and credit cards, and abstractions,
such as reservations. Entity beans describe both the state and behavior of real-world
objects and allow developers to encapsulate the data and business rules associated with
specific concepts; an Employee entity encapsulates the data and business rules associated
with an employee, for example. This makes it possible for data associated with a con-
cept to be manipulated consistently and safely.

Entities represent data in the database, so changes to an entity bean result in changes
to the database. That’s ultimately the purpose of an entity bean: to provide program-
mers with a simpler mechanism for accessing and changing data. It is much easier to
change a customer’s name by calling Employee.setName() than by executing an SQL
command against the database. In addition, using entity beans provides opportunities
for software reuse. Once an entity bean has been defined, its definition can be used
throughout your application in a consistent manner. The concept of an employee, for
example, is used in many areas of business, including booking, task assignment, and
accounts payable. An Employee entity is also a unified model to information and thus
ensures that access to its data is consistent and simple. Representing data as entity beans
can make development easier and more cost-effective.

When a new entity is created and persisted into the entity manager service, a new record
must be inserted into the database and a bean instance must be associated with that
data. As the entity is used and its state changes, these changes must be synchronized
with the data in the database: entries must be inserted, updated, and removed. The

151

process of coordinating the data represented by a bean instance with the database is
called persistence.

The Java Persistence specification gave a complete overhaul to entity beans. CMP 2.1
had a huge weakness in that applications written to that specification were completely
nonportable between vendors because there was no object-to-relational (O/R) map-
ping. O/R mapping was completely left to the vendor’s discretion. These next chapters
focus solely on Java Persistence’s object mappings to a relational database. This chapter
focuses on basic entity bean mappings to a relational database. Chapter 11 will discuss
how entities can have complex relationships to one another and how Java Persistence
can map these to your database. Chapter 13 will cover how we interact with entity
beans through the Java Persistence Query Language (JPA QL) and Criteria APIs.

The Programming Model
Entities are plain Java classes in Java Persistence. You declare and allocate these bean
classes just as you would any other plain Java object. You interact with the entity man-
ager service to persist, update, remove, locate, and query for entity beans. The entity
manager service is responsible for automatically managing the entity beans’ state. This
service takes care of enrolling the entity bean in transactions and persisting its state to
the database. We’ve seen this power in the previous chapter.

The Employee Entity
The Employee class is a simple entity bean that models the concept of an employee within
a company. Java Persistence is all about relational databases. This section introduces
the Employee entity’s design and implementation. This entity will be refactored in many
different ways throughout this chapter so that we can show you the multiple ways in
which you can map the entity to a relational database.

The Bean Class
The Employee bean class is a plain Java object that you map to your relational database.
It has fields that hold state and, optionally, it has getter and setter methods to access
this state. It must have, at minimum, a no-argument constructor (which may be the
default, implicit constructor):

import javax.persistence.Entity;
import javax.persistence.Id;
/**
 * Represents an Employee in the system. Modeled as a simple
 * value object with some additional EJB and JPA annotations.
 *

152 | Chapter 10: Mapping Persistent Objects

 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
public class Employee
{

 /**
 * Primary key of this entity
 */
 @Id
 // Mark that this field is the primary key
 private Long id;

 /**
 * Name of the employee
 */
 private String name;

 /**
 * Default constructor, required by JPA
 */
 public Employee() { }

 /**
 * Convenience constructor
 */
 public Employee(final long id, final String name)
 {
 // Set
 this.id = id;
 this.name = name;
 }

 public Long getId() { return id; }
 public void setId(final Long id) { this.id = id; }
 public String getName() { return name; }
 public void setName(final String name) { this.name = name; }

 @Override
 public String toString()
 {
 return Employee.class.getSimpleName() + " [id=" + id + ", name=" + name + "
]";
 }
}

Java Persistence requires only two pieces of metadata when you are creating a persistent
class: the @javax.persistence.Entity annotation denotes that the class should be map-
ped to your database, and the @javax.persistence.Id annotation marks which property
in your class will be used as the primary key. The persistence provider will assume that
all other properties in your class will map to a column of the same name and of the

The Programming Model | 153

same type. The table name will default to the unqualified name of the bean class. Here
is the table definition the persistence provider is assuming you are mapping to:

create table Employee(
 id long primary key not null,
 name VARCHAR(255)
);

The @javax.persistence.Entity annotation tells the persistence provider that your
class can be persisted:

package javax.persistence;

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity
{
 String name() default "";
}

The @Entity annotation has one name() attribute. This name is used to reference the
entity within a JPA QL expression. If you do not provide a value for this attribute, the
name defaults to the unqualified name of the bean class.

How you apply the @javax.persistence.Id annotation determines whether you will use
the Java bean style for declaring your persistent properties or whether you will use Java
fields. If you place the @Id annotation on a getter method, then you must apply any
other mapping annotations on getter and setter methods in the class. The provider will
also assume that any other getter and setter methods in your class represent persistent
properties and will automatically map them based on their base name and type.

Earlier we placed the @Id annotation on a member field of the class. The persistence
provider will also assume that any other member fields of the class are also persistent
properties and will automatically map them based on their base name and type. Any
mapping annotations must be placed on member fields in this example, not on getter
or setter methods. Here, we are really defining the access type—that is, whether our
relational mappings are defined on the fields or the methods of a class.

XML Mapping File
If you do not want to use annotations to identify and map your entity beans, you can
alternatively use an XML mapping file to declare this metadata. By default, the persis-
tence provider will look in the META-INF directory for a file named orm.xml, or you
can declare the mapping file in the <mapping-file> element in the persistence.xml de-
ployment descriptor.

The mapping file has a top element of <entity-mappings>. The <entity> element defines
the entity class and access type: PROPERTY or FIELD. The <id> element is a subelement
of the <attributes> element and defines what attribute your primary key is. Like an-
notated classes, the persistence provider will assume that any other property in your
class is a persistent property, and you do not have to explicitly define them.

154 | Chapter 10: Mapping Persistent Objects

For brevity, we’ll continue to use the annotation-based approach in our examples.

Basic Relational Mapping
A developer can take two directions when implementing entity beans. Some applica-
tions start from a Java object model and derive a database schema from this model.
Other applications have an existing database schema from which they have to derive a
Java object model.

The Java Persistence specification provides enough flexibility to start from either di-
rection. If you are creating a database schema from a Java object model, most persis-
tence vendors have tools that can autogenerate database schemas based on the anno-
tations or XML metadata you provide in your code. In this scenario, prototyping your
application is fast and easy, as you do not have to define much metadata in order for
the persistence engine to generate a schema for you. When you want to fine-tune your
mappings, the Java Persistence specification has the necessary annotations and XML
mappings to do this.

If you have an existing database schema, many vendors have tools that can generate
Java entity code directly from it. Sometimes, though, this generated code is not very
object-oriented and doesn’t map to your database very well. Luckily, the Java Persis-
tence specification provides the necessary mapping capabilities to facilitate a solution
to this problem.

You will find that your use of annotations and mapping XML will depend on the di-
rection you are coming from. If you are autogenerating your schema from your entity
classes, you probably will not need annotations such as @Table and @Column (covered
in this chapter), as you will rely on well-defined specification defaults. If you have an
existing schema or need to fine-tune the mapping, you may find that more metadata
will need to be specified.

Elementary Schema Mappings
Let’s assume we don’t like the default table and column mappings of our original
Employee entity class. Either we have an existing table we want to map to, or our DBA
is forcing some naming conventions on us. Let’s actually define the relational table we
want to map our Employee entity to and use the @javax.persistence.Table and
@javax.persistence.Column annotations to apply the mapping.

We want to change the table name and the column names of the id and name properties.
We also want name to have a not-null constraint and want to set the VARCHAR length to
20. Let’s modify our original Employee entity class and add the mapping annotations:

@Entity
@Table(name = "table_employees")
// Explicitly denote the name of the table in the DB
public class EmployeeWithCustomTableAndColumnMetadata

Basic Relational Mapping | 155

{
 @Id
 @Column(name="pk_employee_id")
 private Long id;

 @Column(name="employee_name",nullable=false, columnDefinition="integer")
 private String name;
 ...
}

@Table

The @javax.persistence.Table annotation tells the EntityManager service which rela-
tional table your bean class maps to. You do not have to specify this annotation if you
do not want to, because, again, the table name defaults to the unqualified class name
of the bean. Let’s look at the full definition of this annotation:

package javax.persistence;

@Target({TYPE}) @Retention(RUNTIME)
public @interface Table
{
 String name() default "";
 String catalog() default "";
 String schema() default "";
 UniqueConstraint[] uniqueConstraints() default {};
}

The catalog() and schema() attributes are self-explanatory, as they identify the rela-
tional catalog and schema to which the table belongs.

public @interface UniqueConstraint
{
 /** Optional; chosen by provider if not specified **/
 String name default "";
 String[] columnNames();
}

The @Table.uniqueConstraints() attribute allows you to specify unique column con-
straints that should be included in a generated Data Definition Language (DDL). Some
vendors have tools that can create DDLs from a set of entity classes or even provide
automatic table generation when a bean is deployed. The UniqueConstraint annotation
is useful for defining additional constraints when using these specific vendor features.
If you are not using the schema generation tools provided by your vendor, then you
will not need to define this piece of metadata.

@Column

Using the @Column annotation, we set the name property’s column name to be
employee_name and not nullable, and we set its database type to be an integer. We also
set the VARCHAR length to 20. This is often important to save RAM in the database and

156 | Chapter 10: Mapping Persistent Objects

keep things moving efficiently; if you don’t need the extra space, it’s a good idea to
restrict your field types to take up the least amount of data as possible.

The @javax.persistence.Column annotation describes how a particular field or property
is mapped to a specific column in a table:

public @interface Column
{
 String name() default "";
 boolean unique() default false;
 boolean nullable() default true;
 boolean insertable() default true;
 boolean updatable() default true;
 String columnDefinition() default "";
 String table() default "";
 int length() default 255;
 int precision() default 0;
 int scale() default 0;
}

The name() attribute obviously specifies the column name. If it is unspecified, the col-
umn name defaults to the property or field name. The table() attribute is used for
multitable mappings, which we cover later in this chapter. The rest of the attributes are
used when you are autogenerating the schema from vendor-provided tools. If you are
mapping to an existing schema, you do not need to define any of these attributes. The
unique() and nullable() attributes define constraints you want placed on the column.
You can specify whether you want this column to be included in SQL INSERT or
UPDATE by using insertable() and updatable(), respectively. The columnDefinition()
attribute allows you to define the exact DDL used to define the column type. The
length() attribute determines the length of a VARCHAR when you have a String property.
For numeric properties, you can define the scale() and precision() attributes.

Primary Keys
A primary key is the identity of a given entity bean. Every entity bean must have a
primary key, and it must be unique. Primary keys can map to one or more properties
and must map to one of the following types: any Java primitive type (including wrap-
pers), java.lang.String, or a primary-key class composed of primitives and/or strings.
Let’s first focus on simple one-property primary keys.

@Id
The @javax.persistence.Id annotation identifies one or more properties that make up
the primary key for your table:

package javax.persistence;

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id

Primary Keys | 157

{
}

You can generate the primary key for your entity beans manually or have the persistence
provider do it for you. When you want provider-generated keys, you have to use the
@javax.persistence.GeneratedValue annotation:

package javax.persistence;

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface GeneratedValue
{
 GenerationType strategy() default AUTO;
 String generator() default "";
}

public enum GenerationType
{
 TABLE, SEQUENCE, IDENTITY, AUTO
}

Persistence providers are required to provide key generation for primitive primary keys.
You can define the type of primary generator you would like to have using the
strategy() attribute. The GeneratorType.AUTO strategy is the most commonly used
configuration, and it is the default:

/**
 * Primary key
 */
@Id
@GeneratedValue
private Long id;

Table Generators
The TABLE strategy designates a user-defined relational table from which the numeric
keys will be generated. A relational table with the following logical structure is used:

create table GENERATOR_TABLE
(
 PRIMARY_KEY_COLUMN
 VARCHAR not null,
 VALUE_COLUMN long not null
);

The PRIMARY_KEY_COLUMN holds a value that is used to match the primary key you are
generating for. The VALUE_COLUMN holds the value of the counter.

To use this strategy, you must have already defined a table generator using the
@javax.persistence.TableGenerator annotation. This annotation can be applied to a
class or to the method or field of the primary key:

@Target({ TYPE, METHOD, FIELD })
@Retention(RUNTIME)

158 | Chapter 10: Mapping Persistent Objects

public @interface TableGenerator {
 String name();
 String table() default "";
 String catalog() default "";
 String schema() default "";
 String pkColumnName() default "";
 String valueColumnName() default "";
 String pkColumnValue() default "";
 int initialValue() default 0;
 int allocationSize() default 50;
 UniqueConstraint[] uniqueConstraints() default { };
}

The name() attribute defines the name of the @TableGenerator and is the name refer-
enced in the @Id.generator() attribute. The table(), catalog(), and schema() attributes
describe the table definition of the generator table. The pkColumnName() attribute is the
name of the column that identifies the specific entity primary key you are generating
for. The valueColumnName() attribute specifies the name of the column that will hold
the counter for the generated primary key. pkColumnValue() is the value used to match
up with the primary key you are generating for. The allocationSize() attribute is how
much the counter will be incremented when the persistence provider queries the table
for a new value. This allows the provider to cache blocks so that it doesn’t have to go
to the database every time it needs a new ID. If you are autogenerating this table, then
you can also define some constraints using the uniqueConstraints() attribute.

Let’s look at how you would actually use this generator on the Employee entity:

@Entity
public class Employee implements java.io.Serializable {
 @TableGenerator(name="MY_GENERATOR"
 table="GENERATOR_TABLE"
 pkColumnName="PRIMARY_KEY_COLUMN"
 valueColumnName="VALUE_COLUMN"
 pkColumnValue="EMPLOYEE_ID"
 allocationSize=10)
 @Id
 @GeneratedValue (strategy=GenerationType.TABLE, generator="MY_GENERATOR")
 private long id;
 ...
}

Now if you allocate and persist() an Employee entity, the id property will be autogen-
erated when the persist() operation is called.

Sequence Generators
Some RDBMs, specifically Oracle, have an efficient built-in structure to generate IDs
sequentially. This is the SEQUENCE generator strategy. This generator type is declared via
the @javax.persistence.SequenceGenerator:

package javax.persistence;

Primary Keys | 159

@Target({METHOD, TYPE, FIELD}) @Retention(RUNTIME)
public @interface SequenceGenerator {

 String name();
 String sequenceName() default "";
 String catalog() default "";
 String schema() default "";
 int initialValue() default 1;
 int allocationSize() default 50;
}

The name() attribute specifies how this @SequenceGenerator is referenced in @Id anno-
tations. Use the sequenceName() attribute to define what sequence table will be used
from the database. initialValue() is the first value that will be used for a primary key,
and allocationSize() is how much it will be incremented when it is accessed.
schema() and catalog(), like their counterparts in @Table, refer to the schema and cat-
alog of the sequence generator, respectively. Let’s again look at applying the SEQUENCE
strategy on our Employee entity bean:

@Entity
@SequenceGenerator(name="EMPLOYEE_SEQUENCE",
 sequenceName="EMPLOYEE_SEQ")
public class Employee implements java.io.Serializable {
 @Id
 @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="EMPLOYEE_SEQUENCE")
 private Long id;
}

This example is a little different from our TABLE strategy example in that the generator
is declared on the bean’s class instead of directly on the property. TABLE and SEQUENCE
generators can be defined in either place. As with the TABLE generation type, the primary
key is autogenerated when the EntityManager.persist() operation is performed.

Primary-Key Classes and Composite Keys
Sometimes relational mappings require a primary key to be composed of multiple per-
sistent properties. For instance, let’s say that our relational model specified that our
Employee entity should be identified by both its last name and its Social Security number
instead of an autogenerated numeric key. These are called composite keys. The Java
Persistence specification provides multiple ways to map this type of model. One is
through the @javax.persistence.IdClass annotation; the other is through the
@javax.persistence.EmbeddedId annotation.

@IdClass

The first way to define a primary-key class (and, for that matter, composite keys) is to
use the @IdClass annotation. Your bean class does not use this primary-key class in-
ternally, but it does use it to interact with the entity manager when finding a persisted

160 | Chapter 10: Mapping Persistent Objects

object through its primary key. @IdClass is a class-level annotation and specifies what
primary-key class you should use when interacting with the entity manager.

@Target(TYPE)
@Retention(RUNTIME)
public @interface IdClass
{
 Class value();
}

In your bean class, you designate one or more properties that make up your primary
key, using the @Id annotation. These properties must map exactly to properties in the
@IdClass. Let’s look at changing our Employee bean class to have a composite key made
up of last name and Social Security number. First, let’s define our primary-key class:

import java.io.Serializable;

public class ExternalEmployeePK implements Serializable
{
 private static final long serialVersionUID = 1L;
 private String lastName;
 private Long ssn;

 public String getLastName() { return lastName; }
 public void setLastName(String lastName) { this.lastName = lastName; }
 public Long getSsn() { return ssn; }
 public void setSsn(Long ssn) { this.ssn = ssn; }

 @Override public int hashCode(){ // Assume implemented }
 @Override public boolean equals(Object obj) { // Assume implemented }

}

The primary-key class must meet these requirements:

• It must be Serializable.

• It must have a public no-arg constructor.

• It must implement the equals() and hashCode() methods.

Our Employee bean must have the same exact properties as the ExternalEmployeePK
class, and these properties are annotated with multiple @Id annotations:

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;

@Entity
@IdClass(ExternalEmployeePK.class)
// Use a composite primary key using a custom PK class
public class Employee
{
 @Id
 private String lastName;

Primary Keys | 161

 @Id
 private Long ssn;

 ...
}

Primary-key autogeneration is not supported for composite keys and
primary-key classes. You will have to manually create the key values in
code.

The primary-key class is used whenever you are querying for the Employee:

ExternalEmployeePK pk = new ExternalEmployeePK();
pk.setLastName("Rubinger");
pk.setSsn(100L);
Employee employee = em.find(Employee.class, pk);

Whenever you call an EntityManager method such as find() or getReference(), you
must use the primary-key class to identify the entity.

@EmbeddedId

A different way to define primary-key classes and composite keys is to embed the
primary-key class directly in your bean class. The @javax.persistence.EmbeddedId
annotation is used for this purpose in conjunction with the
@javax.persistence.Embeddable annotation:

package javax.persistence;

public @interface EmbeddedId
{
}

public @interface Embeddable
{
}

When we use an @Embeddable class as the type for our primary key, we mark the property
as @EmbeddedId. Let’s first see an example of our embeddable primary key type:

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Embeddable;
import javax.persistence.EmbeddedId;

@Embeddable
// Flag to JPA that we're intended to be embedded into an Entity
// class as a PK
public class EmbeddedEmployeePK implements Serializable
{
 private static final long serialVersionUID = 1L;

162 | Chapter 10: Mapping Persistent Objects

 @Column
 private String lastName;

 @Column
 private Long ssn;

 public String getLastName() { return lastName; }
 public void setLastName(String lastName) { this.lastName = lastName; }
 public Long getSsn() { return ssn; }
 public void setSsn(Long ssn) { this.ssn = ssn; }

 @Override
 public int hashCode() { // Assume this is implemented }
 @Override
 public boolean equals(Object obj) { // Assume this is implemented }

}

We then change our Employee bean class to use the EmbeddedEmployeePK directly, using
the @EmbeddedId annotation:

@Entity
public class Employee
{
 @EmbeddedId
 private EmbeddedEmployeePK id;
 ...
}

The EmbeddedEmployeePK primary-key class is used whenever you are fetching the
Employee using EntityManager APIs:

// Create the Embedded Primary Key, and use this for lookup
EmbeddedEmployeePK pk = new EmbeddedEmployeePK();
pk.setLastName("Rubinger");
pk.setSsn(100L);

// Now look up using our custom composite PK value class
Employee employee = em.find(Employee.class, pk);

Whenever you call an EntityManager method such as find() or getReference(), you
must use the primary-key class to identify the entity.

If you do not want to have the @Column mappings with the primary-key class, or you
just want to override them, you can use @AttributeOverrides to declare them directly
in your bean class:

@Entity
public class Employee implements java.io.Serializable
{
 @EmbeddedId
 @AttributeOverrides({
 @AttributeOverride(name="lastName", column=@Column(name="LAST_NAME"),
 @AttributeOverride(name="ssn", column=@Column(name="SSN"))
 })
 private EmbeddedEmployeePK pk;

Primary Keys | 163

 ...
}

The @AttributeOverrides annotation is an array list of @AttributeOverride annotations.
The name() attribute specifies the property name in the embedded class you are mapping
to. The column() attribute allows you to describe the column the property maps to.

Property Mappings
So far, we have only shown how to specify column mappings for simple primitive types.
There are still a few bits of metadata that you can use to fine-tune your mappings. In
this section, you’ll learn more annotations for more complex property mappings. Java
Persistence has mappings for JDBC Blobs and Clobs, serializable objects, and embed-
dable objects, as well as optimistic concurrency with version properties. We discuss all
of these.

@Transient
In our first example of our Employee bean class, we showed that the persistence manager
would assume that every nontransient property (getter/setter or field, depending on
your access type) in your bean class is persistent, even if the property does not have any
mapping metadata associated with it. This is great for fast prototyping of your persistent
objects, especially when your persistence vendor supports autotable generation. How-
ever, you may have properties that you don’t want to be persistent, and therefore this
default behavior is inappropriate. For instance, let’s assume we want to express what
an employee is currently doing without tying this information to persistent storage. We
may very simply declare:

/**
 * Description of what the Employee's currently
 * working on. We don't need to store this in the DB.
 */
@Transient
// Don't persist this
private String currentAssignment;

When you annotate a property with @javax.persistence.Transient, the persistence
manager ignores it and doesn’t treat it as persistent.

@Basic and FetchType
The @Basic annotation is the simplest form of mapping for a persistent property. This
is the default mapping type for properties that are primitives, primitive wrapper types,
java.lang.String, byte[], Byte[], char[], Character[], java.math.BigInteger,
java.math.BigDecimal, java.util.Date, java.util.Calendar, java.sql.Date, java.

sql.Time, and java.sql.Timestamp. You do not need to tell your persistence manager

164 | Chapter 10: Mapping Persistent Objects

explicitly that you’re mapping a basic property, because it can usually figure out how
to map it to JDBC using the property’s type:

public @interface Basic
{
 FetchType fetch() default EAGER;
 boolean optional() default true;
}

public enum FetchType
{
 LAZY, EAGER
}

Usually, you would never annotate your properties with this annotation. However, at
times you may need to specify the fetch() attribute, which allows you to specify
whether a particular property is loaded lazily or eagerly when the persistent object is
first fetched from the database. This attribute allows your persistence provider to op-
timize your access to the database by minimizing the amount of data you load with a
query. So, if the fetch() attribute is LAZY, that particular property will not be initialized
until you actually access this field. All other mapping annotations have this same at-
tribute. The weird thing about the specification, though, is that the fetch() attribute
is just a hint. Even if you mark the property as LAZY for a @Basic type, the persistence
provider is still allowed to load the property eagerly. This is due to the fact that this
feature requires class-level instrumentation. It should also be noted that lazy loading
is neither really useful nor a significant performance optimization for standard, small
objects, as loading these later requires the overhead of more SQL queries. It is best
practice to eagerly load basic properties, and lazily load ones that may be large and
infrequently accessed.

The optional() attribute is useful for when the persistence provider is generating the
database schema for you. When this attribute is set to true, the property is treated as
nullable.

Assuming employees may have a picture associated with their record, we probably
don’t need this picture all the time. We may lazily load it and allow the property to be
nullable:

/**
 * Picture of the employee used in ID cards.
 */
@Lob
// Note that this is a binary large object
@Basic(fetch = FetchType.LAZY, optional = true)
// Don't load this by default; it's an expensive operation.
// Only load when requested.
private byte[] image;

Because we have a direct byte value here, we must also provide a mapping via the
@Lob annotation.

Property Mappings | 165

@Lob
Sometimes your persistent properties require a lot of memory. One of your fields may
represent an image or the text of a very large document. JDBC has special types for
these very large objects. The java.sql.Blob type represents binary data, and
java.sql.Clob represents character data. The @javax.persistence.Lob annotation is
used to map these large object types. Java Persistence allows you to map some basic
types to an @Lob and have the persistence manager handle them internally as either a
Blob or a Clob, depending on the type of the property:

package javax.persistence;

public @interface Lob
{
}

Properties annotated with @Lob are persisted in a:

• Blob if the Java type is byte[], Byte[], or java.io.Serializable

• Clob if the Java type is char[], Character[], or java.lang.String

@Temporal
The @Temporal annotation provides additional information to the persistence provider
about the mapping of a java.util.Date or java.util.Calendar property. This annota-
tion allows you to map these object types to a date, a time, or a timestamp field in the
database. By default, the persistence provider assumes that the temporal type is a
timestamp:

package javax.persistence;

public enum TemporalType
{
 DATE,
 TIME,
 TIMESTAMP
}

public @interface Temporal
{
 TemporalType value() default TIMESTAMP;
}

For example, say we want to add the date of hire for an employee. We could add this
support like so:

/**
 * Date the employee joined the company
 */
@Temporal(TemporalType.DATE)
// Note that we should map this as an SQL Date field;

166 | Chapter 10: Mapping Persistent Objects

// could also be SQL Time or Timestamp
private Date since;

The since property is stored in the database as a DATE SQL type.

@Enumerated
The @Enumerated annotation maps Java enum types to the database.

package javax.persistence;

public enum EnumType
{
 ORDINAL,
 STRING
}

public @interface Enumerated
{
 EnumTypes value() default ORDINAL;
}

A Java enum property can be mapped either to the string representation or to the numeric
ordinal number of the enum value. For example, let’s say we want an Employee entity
property that designates the kind of employee: manager or peon. This could be repre-
sented in a Java enum like so:

public enum EmployeeType {
 MANAGER, PEON;
}

@Entity
public class Employee
{
 /**
 * Type of employee
 */
 @Enumerated(EnumType.STRING)
 // Show that this is an enumerated value, and the value to
 // be put in the DB is the value of the enumeration toString().
 private EmployeeType type;
}

You are not required to use the @Enumerated annotation to map a property. If you omit
this annotation, the ORDINAL EnumType value is assumed.

@Embedded Objects
The Java Persistence specification allows you to embed nonentity Java objects within
your entity beans and map the properties of this embedded value object to columns
within the entity’s table. These objects do not have any identity, and they are owned
exclusively by their containing entity bean class. The rules are very similar to the

@Embedded Objects | 167

@EmbeddedId primary-key example given earlier in this chapter. We first start out by
defining our embedded object:

@Embeddable
public class Address implements java.io.Serializable
{
 private String street;
 private String city;
 private String state;

 public String getStreet() { return street; }
 public void setStreet(String street) { this.street = street; }
 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }
 public String getState() { return state; }
 public void setState(String state) { this.state = state; }
}

The embedded Address class has the @Column mappings defined directly within it. Next,
let’s use the @javax.persistence.Embedded annotation within our Employee bean class
to embed an instance of this Address class:

package javax.persistence;

public @interface Embedded {}

As with @EmbeddedId, the @Embedded annotation can be used in conjunction with the
@AttributeOverrides annotation if you want to override the column mappings specified
in the embedded class. The following example shows how this overriding is done. If
you don’t want to override, leave out the @AttributeOverrides:

@Entity
@Table(name="table_employees"
public class Customer implements java.io.Serializable
{
 ...
 private Address address;
 ...
 @Embedded
 @AttributeOverrides({
 @AttributeOverride (name="street", column=@Column(name="employee_street")),
 @AttributeOverride(name="city", column=@Column(name="employee_city")),
 @AttributeOverride(name="state", column=@Column(name="employee_state"))
 })
 public Address getAddress() {
 return address;
 }
...
}

168 | Chapter 10: Mapping Persistent Objects

In this example, we map the Address class properties to columns in table_employees.
If you do not specify the @Embedded annotation and the Address class is serializable, then
the persistence provider would assume that this was a @Lob type and serialize it as a
byte stream to the column.

That’s about it for basic property mappings. In the next chapter, we discuss how to
map complex relationships between entity beans.

@Embedded Objects | 169

CHAPTER 11

Entity Relationships

Chapter 10 covered basic persistence mappings, including various ways to define pri-
mary keys as well as simple and complex property-type mappings. This chapter retools
our employee registry a bit further by discussing the relationships between entities.

In order to model real-world business concepts, entity beans must be capable of forming
relationships. For instance, an employee may have an address; we’d like to form an
association between the two in our database model. The address could be queried and
cached like any other entity, yet a close relationship would be forged with the
Employee entity. Entity beans can also have one-to-many, many-to-one, and many-to-
many relationships. For example, the Employee entity may have many phone numbers,
but each phone number belongs to only one employee (a one-to-many relationship).
Similarly, an employee may belong to many teams within his or her organization, and
teams may have any number of employees (a many-to-many relationship).

The Seven Relationship Types
Seven types of relationships can exist between entity beans. There are four types of
cardinality: one-to-one, one-to-many, many-to-one, and many-to-many. In addition,
each relationship can be either unidirectional or bidirectional. These options seem to
yield eight possibilities, but if you think about it, you’ll realize that one-to-many and
many-to-one bidirectional relationships are actually the same thing. Thus, there are
only seven distinct relationship types. To understand relationships, it helps to think
about some simple examples:

One-to-one unidirectional
The relationship between an employee and an address. You clearly want to be able
to look up an employee’s address, but you probably don’t care about looking up
an address’s employee.

One-to-one bidirectional
The relationship between an employee and a computer. Given an employee, we’ll
need to be able to look up the computer ID for tracing purposes. Assuming the

171

computer is in the tech department for servicing, it’s also helpful to locate the
employee when all work is completed.

One-to-many unidirectional
The relationship between an employee and a phone number. An employee can
have many phone numbers (business, home, cell, etc.). You might need to look up
an employee’s phone number, but you probably wouldn’t use one of those num-
bers to look up the employee.

One-to-many bidirectional
The relationship between an employee (manager) and direct reports. Given a man-
ager, we’d like to know who’s working under him or her. Similarly, we’d like to be
able to find the manager for a given employee. (Note that a many-to-one bidirec-
tional relationship is just another perspective on the same concept.)

Many-to-one unidirectional
The relationship between a customer and his or her primary employee contact.
Given a customer, we’d like to know who’s in charge of handling the account. It
might be less useful to look up all the accounts a specific employee is fronting,
although if you want this capability you can implement a many-to-one bidirectional
relationship.

Many-to-many unidirectional
The relationship between employees and tasks to be completed. Each task may be
assigned to a number of employees, and employees may be responsible for many
tasks. For now we’ll assume that given a task we need to find its related employees,
but not the other way around. (If you think you need to do so, implement it as a
bidirectional relationship.)

Many-to-many bidirectional
The relationship between an employee and the teams to which he or she belongs.
Teams may also have many employees, and we’d like to do lookups in both
directions.

Note that these relations represent the navigability of your domain model. Using JPA
QL or the Criteria API (covered in Chapter 13), you’ll be able to return even an un-
mapped association (for example, return the tasks for a given employee even if the
association has been mapped as many-to-one unidirectional). Once again, the associ-
ations defined in the metadata represent the domain object navigation only.

In this chapter, we discuss how to specify relationships by applying annotations to your
related entity beans. We also discuss several different common database schemas, and
you will learn how to map them to your annotated relationships.

172 | Chapter 11: Entity Relationships

One-to-One Unidirectional Relationship
An example of a one-to-one unidirectional relationship is one between our Employee
entity and an Address. In this instance, each employee has exactly one address, and
each address has exactly one employee. Which bean references which determines the
direction of navigation. While the Employee has a reference to the Address, the
Address doesn’t reference the Employee. The relationship is therefore unidirectional;
you can only go from the employee to the address, not the other way around through
object navigation. In other words, an Address entity has no idea who owns it.
Figure 11-1 shows this relationship.

Figure 11-1. One-to-one unidirectional relationship

Relational database schema

One-to-one unidirectional relationships normally use a fairly typical relational database
schema in which one table contains a foreign key (pointer) to another table. In this
case, the Employee table contains a foreign key to the Address table, but the Address
table doesn’t contain a foreign key to the Employee table. This allows records in the
Address table to be shared by other tables, a scenario explored in “Many-to-Many Uni-
directional Relationship” on page 187.

Programming model

In unidirectional relationships (navigated only one way), one of the entity beans defines
a property that lets it get or set the other bean in the relationship. Thus, inside the
Employee class, you can call the getAddress()/setAddress() methods to access the Ad-
dress entity, but there are no methods inside the Address class to access the Employee.
Let’s look at how we would mark up the Employee bean class to implement this one-to-
one relationship to Address:

/**
 * The employee's address
 */
@OneToOne
@JoinColumn(name="ADDRESS_ID")
// Unidirectional relationship
private Address address;

The Seven Relationship Types | 173

A one-to-one relationship is specified using the @javax.persistence.OneToOne annota-
tion and is mapped with the @javax.persistence.JoinColumn annotation. Let’s first
look at the @JoinColumn annotation:

package javax.persistence;

@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface JoinColumn
{
 String name() default "";
 String referencedColumnName() default "";
 boolean unique() default false;
 boolean nullable() default true;
 boolean insertable() default true;
 boolean updatable() default true;
 String columnDefinition() default "";
 String table() default "";
}

The @JoinColumn annotation is analogous to the @Column annotation. It defines the
column in the Employee’s table that references the primary key of the Address table in
the schema. If you are joining on something other than the primary-key column of the
Address table, then you must use the referencedColumnName() attribute. This
referencedColumnName() must be unique, since this is a one-to-one relationship.

If you need to map a one-to-one relationship in which the related entity has a composite
primary key, use the @JoinColumns annotation to define multiple foreign-key columns:

public @interface @JoinColumns
{
 JoinColumn[] value();
}

Now let’s learn about the @OneToOne annotation:

package javax.persistence;

@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface OneToOne
{
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;
 boolean optional() default true;
 String mappedBy() default "";
 boolean orphanRemoval() default false;
}

The targetEntity() attribute represents the entity class you have a relationship to.
Usually, you do not have to initialize this attribute, as the persistence provider can
figure out the relationship you are setting up from the property’s type.

174 | Chapter 11: Entity Relationships

The fetch() attribute works the same as we described in Chapter 10. It allows you to
specify whether you want the association to be lazily or eagerly loaded. In Chap-
ter 13, we’ll show you how you can eagerly fetch a relationship with JPA QL or the
Criteria API, even when you have marked the FetchType as LAZY.

The optional() attribute specifies whether this relationship can be null. If this is set to
false, then a non-null relationship must exist between the two entities.

The cascade() attribute is a bit complicated. We’ll discuss it later in this chapter, as all
relationship types have this attribute.

The mappedBy() attribute is for bidirectional relationships and is discussed in the next
section.

The orphanRemoval() attribute is new to JPA 2.0, and defines whether removing the
relationship should also result in a removal of the referred entity.

Primary-key join columns

Sometimes the primary keys of the two related entities are used instead of a specific
join column. In this case, the primary keys of the related entities are identical, and there
is no need for a specific join column.

In this mapping scenario, you are required to use an alternative annotation to describe
the mapping—@javax.persistence.PrimaryKeyJoinColumn:

public @interface PrimaryKeyJoinColumn
{
 String name() default "";
 String referencedColumnName() default "";
 String columnDefinition() default "";
}

The name() attribute refers to the primary-key column name of the entity the annotation
is applied to. Unless your entity has a composite primary key, you can leave this blank
and the persistence provider will figure it out.

The referencedColumnName() is the column to join to on the related entity. If this is left
blank, it is assumed that the related entity’s primary key will be used.

The columnDefinition() is used when the persistence provider is generating schema,
and its value will specify the SQL type of the referencedColumnName().

If the primary-key join in question is of a composite nature, then the
@javax.persistence.PrimaryKeyJoinColumns annotation is available to you:

public @interface PrimaryKeyJoinColumns
{
 PrimaryKeyJoinColumn[] value();
}

The Seven Relationship Types | 175

So, we could use this annotation to map the Employee/Address entities’ one-to-one
relationship:

@OneToOne(cascade={CascadeType.ALL})
@PrimaryKeyJoinColumn
private Address address;

Since we’re joining on the primary keys of the Employee and Address entities and they
are not composite keys, we can simply annotate the address property of Employee with
the defaulted @PrimaryKeyJoinColumn annotation.

Default relationship mapping

If your persistence provider supports auto schema generation, you do not need to
specify metadata such as @JoinColumn or @PrimaryKeyJoinColumn. Auto schema gener-
ation is great when you are doing fast prototypes:

@OneToOne
private Address address;

When you do not specify any database mapping for a unidirectional one-to-one
relationship, the persistence provider will generate the necessary foreign-key mappings
for you. In our employee/address relationship example, the following tables would be
generated:

CREATE TABLE "PUBLIC"."EMPLOYEE"
(
 ID bigint PRIMARY KEY NOT NULL,
 ADDRESS_ID bigint
)
;

ALTER TABLE "PUBLIC"."EMPLOYEE"
ADD CONSTRAINT FK4AFD4ACEE5310533
FOREIGN KEY (ADDRESS_ID)
REFERENCES "PUBLIC"."ADDRESS"(ADDRESS_ID)
;

For unidirectional one-to-one relationships, the default mapping creates a foreign-key
column named from a combination of the property you are mapping followed by
an _ (underscore) character concatenated with the primary-key column name of the
referenced table.

One-to-One Bidirectional Relationship
We can expand our Employee entity to include a reference to a Computer entity, which
models the associate’s company-provided computer. The employee will maintain a
reference to his or her computer, and the computer will maintain a reference back to
the employee. This makes good sense, since we may need to know the owner of a
computer.

176 | Chapter 11: Entity Relationships

Relational database schema

The Computer has a corresponding COMPUTER table, which will contain a pointer to its
Employee owner:

CREATE TABLE "PUBLIC"."COMPUTER"
(
 ID bigint PRIMARY KEY NOT NULL,
 MAKE varchar,
 MODEL varchar,
 OWNER_ID bigint
)
;
ALTER TABLE "PUBLIC"."COMPUTER"
ADD CONSTRAINT FKE023E33B5EAFBFC
FOREIGN KEY (OWNER_ID)
REFERENCES "PUBLIC"."EMPLOYEE"(OWNER_ID)
;

One-to-one bidirectional relationships may model relational database schemas in the
same way as our one-to-one unidirectional relationship, in which one of the tables holds
a foreign key that references the other. Remember that in a relational database model,
there is no such notion of directionality, so the same database schema will be used for
both unidirectional and bidirectional object relationships.

To model the relationship between the Employee and Computer entities, we need to de-
clare a relationship property named owner in the Computer bean class:

@Entity
public class Computer
{
 ...
 @OneToOne
 // Bidirectional relationship, mappedBy
 // is declared on the non-owning side
 private Employee owner;
 ...
}

Similarly, the Employee class will have a reference to the Computer:

/**
 * The employee's computer
 */
@OneToOne(mappedBy = "owner")
// Bidirectional relationship
private Computer computer;

The mappedBy() attribute is new here. This attribute sets up the bidirectional relation-
ship and tells the persistence manager that the information for mapping this relation-
ship to our tables is specified in the Computer bean class, specifically to the owner
property of Computer.

The Seven Relationship Types | 177

Here is an example for setting up a bidirectional relationship:

// Create a new Computer
final Computer computer = new Computer();
computer.setMake("Computicorp");
computer.setModel("ZoomFast 100");

// Create a new Employee
final Employee carloDeWolf = new Employee("Carlo de Wolf");

// Persist; now we have managed objects
EntityManager em = null; // Assume we have this
em.persist(carloDeWolf);
em.persist(computer);

// Associate *both* sides of a bidirectional relationship
carloDeWolf.setComputer(computer);
computer.setOwner(carloDeWolf);

We have the cascade() attribute set to empty, so we must perform the association after
each object is persisted and therefore managed. When we discuss cascading operations,
you will see that there are ways to persist unmanaged objects as part of an association
automatically.

There are some peculiarities with bidirectional relationships. With all bidirectional
relationship types, including one-to-one, there is always the concept of an owning side
of the relationship. Although a setOwner() method is available in the Computer bean
class, it will not cause a change in the persistent relationship if we set it. When we
marked the @OneToOne relationship in the Employee bean class with the mappedBy() at-
tribute, this designated the Employee entity as the inverse side of the relationship. This
means that the Computer entity is the owning side of the relationship.

Always wire both sides of a bidirectional relationship when modifying
relationships. Entities are like any other Java object that has an associ-
ation to another object. You have to set the values of both sides of the
relationship in memory for the relationship to be updated.

If the employee broke his computer, you would have to set the relationship to null on
both sides and then remove the Computer entity from the database.

One-to-Many Unidirectional Relationship
Entity beans can also maintain relationships with multiplicity. This means one entity
bean can aggregate or contain many other entity beans. For example, an employee may
have relationships with many phones, each of which represents a phone number. This
is very different from simple one-to-one relationships—or, for that matter, from mul-
tiple one-to-one relationships with the same type of bean. One-to-many and many-to-
many relationships require the developer to work with a collection of references instead
of a single reference when accessing the relationship field.

178 | Chapter 11: Entity Relationships

Relational database schema

To illustrate a one-to-many unidirectional relationship, we will use a new entity bean,
the Phone, for which we must define a table, the PHONE table:

CREATE TABLE "PUBLIC"."PHONE"
(
 ID bigint PRIMARY KEY NOT NULL,
 NUMBER varchar,
 TYPE varchar
)
;

This is modeled as a simple Phone class:

@Entity
public class Phone
{
 ...
 /**
 * Phone number
 */
 private String number;
 ...
}

One-to-many unidirectional relationships between the EMPLOYEE and PHONE tables could
be implemented in a variety of ways. For this example, we have chosen to introduce a
new table, a join table, to map phones to employees:

CREATE TABLE "PUBLIC"."EMPLOYEE_PHONE"
(
 EMPLOYEE_ID bigint NOT NULL,
 PHONES_ID bigint NOT NULL
)
;
ALTER TABLE "PUBLIC"."EMPLOYEE_PHONE"
ADD CONSTRAINT FK1E56289D581FE7C
FOREIGN KEY (PHONES_ID)
REFERENCES "PUBLIC"."PHONE"(PHONES_ID)
;
ALTER TABLE "PUBLIC"."EMPLOYEE_PHONE"
ADD CONSTRAINT FK1E56289DD9454221
FOREIGN KEY (EMPLOYEE_ID)
REFERENCES "PUBLIC"."EMPLOYEE"(EMPLOYEE_ID)
;

Likewise, we can introduce a link from Employee to obtain a collection of Phones:

/**
 * All {@link Phone}s for this {@link Employee}
 */
@OneToMany
// Unidirectional relationship
private Collection<Phone> phones;

The Seven Relationship Types | 179

Our database schema illustrates that the structure and relationships of the actual
database can differ from the relationships as defined in the programming model. In this
case, the relationship in the object model is inferred from the reference Employee has to
a Collection of Phones, but the database contains a join table. When you are dealing
with legacy databases (i.e., databases that were established before the EJB application),
it’s important to have the mapping options JPA affords so that the object model is not
dictated by the schema.

Programming model

You declare one-to-many relationships using the @javax.persistence.OneToMany

annotation:

package javax.persistence;

@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface OneToMany
{
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
 boolean orphanRemoval() default false;
}

The attribute definitions are pretty much the same as those for the @OneToOne
annotation.

In the programming model, we represent multiplicity by defining a relationship prop-
erty that can point to many entity beans and annotating it with @OneToMany. To hold
this type of data, we’ll employ some data structures from the java.util package:
Collection, List, Map, and Set. The Collection maintains a homogeneous group of
entity object references, which means that it contains many references to one kind of
entity bean. The Collection type may contain duplicate references to the same entity
bean, and the Set type may not.

To illustrate how an entity bean uses a collection-based relationship, let’s look at some
code that interacts with the EntityManager:

// Create an Employee
final Employee jaikiranPai = new Employee("Jaikiran Pai");

// Create a couple Phones
final Phone phone1 = new Phone("800-USE-EJB3");
final Phone phone2 = new Phone("8675309");

// Persist
final EntityManager em = null; // Assume we have this
em.persist(jaikiranPai);
em.persist(phone1);
em.persist(phone2);

180 | Chapter 11: Entity Relationships

// Associate
jaikiranPai.getPhones().add(phone1);
jaikiranPai.getPhones().add(phone2);

If you need to remove a Phone from the relationship, you need to remove the Phone from
both the collection and the database:

jaikiranPai.getPhones().remove(phone1);
em.remove(phone1);

Removing the Phone from the Employee’s collection does not remove the Phone from the
database. You have to delete the Phone explicitly; otherwise, it will be orphaned. The
orphanRemoval attribute of @OneToMany may remove the orphaned phone automatically
if set to true.

Many-to-One Unidirectional Relationship
Many-to-one unidirectional relationships result when many entity beans reference a
single entity bean, but the referenced entity bean is unaware of the relationship. In our
example company, we have a series of Customers who are each assigned to an
Employee who is the primary contact for the customer account. An Employee may be the
point person for many Customers, but the relationship will be one-way; customers will
know who their primary contact is, but Employees will not refer to all of their Customers.

Relational database schema

Here we introduce a CUSTOMER table to model our customers:

CREATE TABLE "PUBLIC"."CUSTOMER"
(
 ID bigint PRIMARY KEY NOT NULL,
 NAME varchar,
 PRIMARYCONTACT_ID bigint
)
;
ALTER TABLE "PUBLIC"."CUSTOMER"
ADD CONSTRAINT FK27FBE3FE9BACAAF1
FOREIGN KEY (PRIMARYCONTACT_ID)
REFERENCES "PUBLIC"."EMPLOYEE"(PRIMARYCONTACT_ID)
;

Programming model

Many-to-one relationships are described with the @javax.persistence.ManyToOne
annotation:

public @interface ManyToOne
{
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;

The Seven Relationship Types | 181

 boolean optional() default true;
}

The attribute definitions are pretty much the same as those for the @OneToOne
annotation.

The programming model is quite simple for our relationship. We add a
primaryContact property to our Customer entity bean class and annotate it with the
@ManyToOne annotation:

@Entity
public class Customer
{
 ...
 /**
 * The primary {@link Employee} contact for this {@link Customer}
 */
 @ManyToOne
 // Unidirectional
 private Employee primaryContact;
 ...
}

The relationship between the Employee and Customer entities is unidirectional, so the
Employee bean class doesn’t define any relationship back to the Customer.

All of this should be mundane to you now. The impact of exchanging Employee refer-
ences between Customer entities works just as we’ve seen with the previous relationship
types.

One-to-Many Bidirectional Relationship
One-to-many and many-to-one bidirectional relationships sound like they’re different,
but they’re not. A one-to-many bidirectional relationship occurs when one entity bean
maintains a collection-based relationship property with another entity bean, and each
entity bean referenced in the collection maintains a single reference back to its aggre-
gating bean. For example, in our company an employee has a manager, and likewise a
manager has many direct reports. The relationship is a one-to-many bidirectional re-
lationship from the perspective of the manager (an Employee) and a many-to-one
bidirectional relationship from the perspective of the report (also an Employee). For
fun’s sake, let’s label “reports” in this sense as “peons.” This becomes an interesting
exercise as well, because it shows that relationships may exist within a single entity type.

Relational database schema

First, we need to equip our EMPLOYEE table with the support necessary to model the
manager/peon relationship:

CREATE TABLE "PUBLIC"."EMPLOYEE"
(
 ID bigint PRIMARY KEY NOT NULL,

182 | Chapter 11: Entity Relationships

 NAME varchar,
 MANAGER_ID bigint
)
;
ALTER TABLE "PUBLIC"."EMPLOYEE"
ADD CONSTRAINT FK4AFD4ACE378204C2
FOREIGN KEY (MANAGER_ID)
REFERENCES "PUBLIC"."EMPLOYEE"(MANAGER_ID)
;

Now each Employee has a reference to his or her manager.

Programming model

Because this is a bidirectional relationship, the manager knows his or her reports, and
also his or her own manager. The Employee class may therefore contain:

/**
 * Manager of the {@link Employee}
 */
@ManyToOne
private Employee manager;

/**
 * {@link Employee}s reporting to this {@link Employee}
 */
@OneToMany(mappedBy = "manager")
private Collection<Employee> peons;

The entire relationship here is contained within the Employee class. As with all
bidirectional relationships, the inverse side specifies mappedBy to indicate the property
to act as the owning side.

Java Persistence currently requires that the many-to-one side always be the owner. This
may seem very confusing, but if you obey the cardinal rule of always wiring both sides
of a relationship, then you will have no problems.

Always wire both sides of a bidirectional relationship in your Java code.

Usage

Client usage is as we’ve seen before:

// Create a few Employees
final Employee alrubinger = new Employee("Andrew Lee Rubinger");
final Employee carloDeWolf = new Employee("Carlo de Wolf - SuperLead!");
final Employee jaikiranPai = new Employee("Jaikiran Pai");
final Employee bigD = new Employee("Big D");

// Persist
em.persist(jaikiranPai);

The Seven Relationship Types | 183

em.persist(alrubinger);
em.persist(carloDeWolf);
em.persist(bigD);

// Associate *both* sides of the bidirectional relationship
final Collection<Employee> peonsOfD = bigD.getPeons();
peonsOfD.add(alrubinger);
peonsOfD.add(carloDeWolf);
peonsOfD.add(jaikiranPai);
alrubinger.setManager(bigD);
carloDeWolf.setManager(bigD);
jaikiranPai.setManager(bigD);

Many-to-Many Bidirectional Relationship
Many-to-many bidirectional relationships occur when many beans maintain a
collection-based relationship property with another bean, and each bean referenced in
the collection maintains a collection-based relationship property back to the aggregat-
ing beans. For example, in our example company every Employee may belong to many
Teams, and each Team may be composed of many Employees.

Relational database schema

The EMPLOYEE and TEAM tables may be fairly simple, and neither will have a direct refer-
ence to the other:

CREATE TABLE "PUBLIC"."TEAM"
(
 ID bigint PRIMARY KEY NOT NULL,
 NAME varchar
)
;
CREATE TABLE "PUBLIC"."EMPLOYEE"
(
 ID bigint PRIMARY KEY NOT NULL,
 NAME varchar
)
;

Again, we use a join table to establish a many-to-many bidirectional relationship, and
we’ll call this the TEAM_EMPLOYEE table. Here we maintain two foreign key columns—
one for the EMPLOYEE table and another for the TEAM table:

CREATE TABLE "PUBLIC"."TEAM_EMPLOYEE"
(
 TEAMS_ID bigint NOT NULL,
 MEMBERS_ID bigint NOT NULL
)
;
ALTER TABLE "PUBLIC"."TEAM_EMPLOYEE"
ADD CONSTRAINT FKA63C2502B25E948
FOREIGN KEY (TEAMS_ID)
REFERENCES "PUBLIC"."TEAM"(TEAMS_ID)

184 | Chapter 11: Entity Relationships

;
ALTER TABLE "PUBLIC"."TEAM_EMPLOYEE"
ADD CONSTRAINT FKA63C25052E6C3D6
FOREIGN KEY (MEMBERS_ID)
REFERENCES "PUBLIC"."EMPLOYEE"(MEMBERS_ID)

Programming model

Many-to-many relationships are logically defined using the @javax.persistence.Many
ToMany annotation:

public @interface ManyToMany
{
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
}

To model the many-to-many bidirectional relationship between the Employee and
Team entities, we need to include collection-based relationship properties in both bean
classes:

@Entity
public class Employee
{
 ...
 /**
 * The {@link Team}s to which this {@link Employee} belongs
 */
 @ManyToMany(mappedBy = "members")
 private Collection<Team> teams;
 ...
}

@Entity
public class Team
{
 ...
 /**
 * {@link Employee}s on this {@link Task}.
 */
 @ManyToMany
 private Collection<Employee> members;
 ...
}

The relationship is declared as a java.util.Collection. We could also use a Set type,
which would contain only unique Teams and no duplicates. The effectiveness of the
Set collection type depends largely on referential-integrity constraints established in
the underlying database.

As with all bidirectional relationships, there has to be an owning side. In this case, it is
the Team entity. Since the Team owns the relationship, its bean class may have the

The Seven Relationship Types | 185

@JoinTable mapping, though in our example we can accept the defaults. The
joinColumns() attribute could identify the foreign-key column in the TEAM_EMPLOYEE
table that references the TEAM table, whereas the inverseJoinColumns() attribute could
identify the foreign key that references the EMPLOYEE table.

Like with @OneToMany relationships, if you are using your persistence provider’s auto
schema generation facilities, you do not need to specify a @JoinTable mapping. The
Java Persistence specification has a default mapping for @ManyToMany relationships and
will create the join table for you.

As with one-to-many bidirectional relationships, the mappedBy() attribute identifies the
property on the Team bean class that defines the relationship. This also identifies the
Employee entity as the inverse side of the relationship.

As far as modifying and interacting with the relationship properties, the same owner-
ship rules apply as we saw in the one-to-many bidirectional example:

// Create a few employees
final Employee pmuir = new Employee("Pete Muir");
final Employee dallen = new Employee("Dan Allen");
final Employee aslak = new Employee("Aslak Knutsen");

// Create some teams
final Team seam = new Team("Seam");
final Team arquillian = new Team("Arquillian");

// Get EM
final EntityManager em = null; // Assume we have this

// Persist
em.persist(pmuir);
em.persist(dallen);
em.persist(aslak);
em.persist(seam);
em.persist(arquillian);

// Associate *both* directions
seam.getMembers().add(dallen);
seam.getMembers().add(pmuir);
seam.getMembers().add(aslak);
arquillian.getMembers().add(dallen);
arquillian.getMembers().add(pmuir);
arquillian.getMembers().add(aslak);
aslak.getTeams().add(seam);
aslak.getTeams().add(arquillian);
dallen.getTeams().add(seam);
dallen.getTeams().add(arquillian);
pmuir.getTeams().add(seam);
pmuir.getTeams().add(arquillian);

186 | Chapter 11: Entity Relationships

Many-to-Many Unidirectional Relationship
Many-to-many unidirectional relationships occur when many beans maintain a
collection-based relationship with another bean, but the bean referenced in the
Collection does not maintain a collection-based relationship back to the aggregating
beans. In our example, we may assign any number of Tasks to any number of
Employees, and Employees may be assigned to any number of Tasks. We’ll maintain a
reference from Task to Employee, but not the other way around.

Relational database schema

Our first order of business is to declare a TASK table:

CREATE TABLE "PUBLIC"."TASK"
(
 ID bigint PRIMARY KEY NOT NULL,
 DESCRIPTION varchar
)
;

Again, we’ll make a join table to map Tasks to Employees:

CREATE TABLE "PUBLIC"."TASK_EMPLOYEE"
(
 TASK_ID bigint NOT NULL,
 OWNERS_ID bigint NOT NULL
)
;
ALTER TABLE "PUBLIC"."TASK_EMPLOYEE"
ADD CONSTRAINT FK7B1EDC2832EBEA41
FOREIGN KEY (TASK_ID)
REFERENCES "PUBLIC"."TASK"(TASK_ID)
;
ALTER TABLE "PUBLIC"."TASK_EMPLOYEE"
ADD CONSTRAINT FK7B1EDC28A3E4776F
FOREIGN KEY (OWNERS_ID)
REFERENCES "PUBLIC"."EMPLOYEE"(OWNERS_ID)
;

This many-to-many unidirectional relationship looks a lot like the join table mapping
for the many-to-many bidirectional relationship discussed earlier. The big difference is
that the object model will maintain a reference only in one direction.

Programming model

To model this relationship, we need to add a collection-based relationship field for
Employee beans to the Task:

@Entity
public class Task
{
 ...
 /**
 * {@link Employee} in charge of this {@link Task}

The Seven Relationship Types | 187

 */
 @ManyToMany
 private Collection<Employee> owners;
 ...
}

Because the relationship is unidirectional, there are no owning or inverse sides, and we
may omit the mappedBy attribute of @ManyToMany.

Usage is similar to what we’ve already seen:

// Create a couple of employees
final Employee smarlow = new Employee("Scott Marlow");
final Employee jpederse = new Employee("Jesper Pedersen");

// Create a couple of tasks
final Task task1 = new Task("Go to the Java User's Group in Boston");
final Task task2 = new Task("Help Shelly McGowan with testsuite setup");

// Persist
final EntityManager em = null; // Assume we have this
em.persist(smarlow);
em.persist(jpederse);
em.persist(task1);
em.persist(task2);

// Associate
task1.getOwners().add(smarlow);
task1.getOwners().add(jpederse);
task2.getOwners().add(smarlow);
task2.getOwners().add(jpederse);

Mapping Collection-Based Relationships
The one-to-many and many-to-many examples we’ve seen so far have used the
java.util.Collection and java.util.Set types. The Java Persistence specification also
allows you to represent a relationship with a java.util.List or a java.util.Map.

Ordered List-Based Relationship
The java.util.List interface can express collection-based relationships. You do not
need any special metadata if you want to use a List rather than a Set or Collection
type. (In this case, the List actually gives you a bag semantic, an unordered collection
that allows duplicates). A List type can give you the additional ability to order the
returned relationship based on a specific set of criteria. This requires the additional
metadata provided by the @javax.persistence.OrderBy annotation:

package javax.persistence;

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy
{

188 | Chapter 11: Entity Relationships

 String value() default "";
}

The value() attribute allows you to declare partial JPA QL that specifies how you want
the relationship to be ordered when it is fetched from the database. If the value()
attribute is left empty, the List is sorted in ascending order based on the value of the
primary key.

Let’s take the Employee/Team relationship, which is a many-to-many bidirectional rela-
tionship, and have the teams attribute of Employee return a List that is sorted
alphabetically by the Team entity’s name:

@Entity
public class Employee
{
 ...
 @ManyToMany
 @OrderBy("name ASC")
 private List<Team> teams;
 ...
}

"name ASC" tells the persistence provider to sort the Team’s name in ascending order. You
can use ASC for ascending order and DESC for descending order. You can also specify
additional restrictions, such as @OrderBy('name asc, otherattribute asc"). In this
case, the list will be ordered by lastname, and for duplicate names, it will be ordered
by the otherattribute.

Map-Based Relationship
The java.util.Map interface can be used to express collection-based relationships. In
this case, the persistence provider creates a map, with the key being a specific property
of the related entity and the value being the entity itself. If you use a java.util.Map, you
must use the @javax.persistence.MapKey annotation:

package javax.persistence;

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey
{
 String name() default "";
}

The name() attribute is the name of the persistent property that you want to represent
the key field of the map object. If you leave this blank, it is assumed you are using the
primary key of the related entity as the key of the map.

For an example, let’s use a map to represent the one-to-many unidirectional Employee/
Phone relationship discussed earlier in this chapter:

@Entity
public class Employee

Mapping Collection-Based Relationships | 189

{
 ...
 @OneToMany
 @MapKey(name="number")
 private Map<String,Phone> phones;
 ...
}

In this example, the phones property of Employee will return a java.util.Map where the
key is the number property of the Phone entity and the value is, of course, the Phone entity
itself. There is no extra column to keep the map key, since the map key is borrowed
from the Phone entity.

Detached Entities and FetchType
In Chapter 9, we discussed how managed entity instances become detached from a
persistence context when the persistence context ends. Since these entity instances are
no longer managed by any persistence context, they may have uninitialized properties
or relationships. If you are returning these detached entities to your clients and basically
using them as data transfer objects between the client and server, you need to fully
understand the effects of accessing any uninitialized relationships.

When an entity instance becomes detached, its state might not be fully initialized,
because some of its persistent properties or relationships may be marked as lazily loaded
in the mapping metadata. Each relationship annotation has a fetch() attribute that
specifies whether the relationship property is loaded when the entity is queried. If the
fetch() attribute is set to FetchType.LAZY, then the relationship is not initialized until
it is traversed in your code:

Employee employee = entityManager.find(Employee.class, id);
employee.getPhones().size();

Invoking the size() method of the phones collection causes the relationship to be loaded
from the database. It is important to note that this lazy initialization does not happen
unless the entity bean is being managed by a persistence context. If the entity bean is
detached, the specification is not clear on what actions the persistence provider should
perform when accessing an unloaded relationship of a detached entity. Most persis-
tence providers throw some kind of lazy instantiation exception when you call the
accessor of the relationship or when you try to invoke an operation on the relationship
of a detached entity:

Employee employee = entityManager.find(Employee.class, id);
entityManager.detach(employee);
try
{
 int numPhones = employee.getPhones().size();
}
catch (SomeVendorLazyInitializationException ex)
{
}

190 | Chapter 11: Entity Relationships

In this code, the application has received an instance of a detached Employee entity and
attempts to access the phones relationship. If the fetch() attribute of this relationship
is LAZY, most vendor implementations will throw a vendor-specific exception. This lazy
initialization problem can be overcome in two ways. The obvious way is just to navigate
the needed relationships while the entity instance is still managed by a persistence
context. The second way is to perform the fetch eagerly when you query the entity. In
Chapter 13, you will see that the JPA QL query language has a FETCH JOIN operation
that allows you to preinitialize selected relationships when you invoke a query.

How is the persistence provider able to throw an exception when accessing the rela-
tionship when the Employee class is a plain Java class? Although not defined in the
specification, the vendor has a few ways to implement this. One is through bytecode
manipulation of the Employee class. In Java EE, the application server is required to
provide hooks for bytecode manipulation for persistence providers. In Java SE, the
persistence provider may require an additional post-compilation step on your code
base. Another way for vendors to implement this is to create a proxy class that inherits
from Employee and that reimplements all the accessor methods to add lazy initialization
checking. For collection-based relationships, the persistence provider can just provide
its own implementation of the collection and do the lazy check there. Whatever the
implementation, make a note to discover what your persistence provider will do in the
detached lazy initialization scenario so that your code can take appropriate measures
to handle this exception.

Cascading
There is one annotation attribute that we have ignored so far: the cascade() attribute
of the @OneToOne, @OneToMany, @ManyToOne, and @ManyToMany relationship annotations.
This section discusses in detail the behavior that is applied when using the cascade()
attribute.

When you perform an entity manager operation on an entity bean instance, you can
automatically have the same operation performed on any relationship properties the
entity may have. This is called cascading. For example, if you are persisting a new
Employee entity with a new address and phone number, all you have to do is wire the
object, and the entity manager can automatically create the employee and its related
entities, all in one persist() method call:

Employee employee = new Employee();
customer.setAddress(new Address());
customer.getPhoneNumbers().add(new Phone());

// create them all in one entity manager invocation
entityManager.persist(employee);

With the Java Persistence specification, cascading can be applied to a variety of entity
manager operations, including persist(), merge(), remove(), and refresh(). This

Cascading | 191

feature is enabled by setting the javax.persistence.CascadeType of the relationship
annotation’s cascade() attribute. The CascadeType is defined as a Java enumeration:

public enum CascadeType
{
 ALL, PERSIST,
 MERGE, REMOVE,
 REFRESH
}

The ALL value represents all of the cascade operations. The remaining values represent
individual cascade operations. The cascade() attribute is an array of the cascade oper-
ations you want applied to your related entities.

PERSIST
PERSIST has to deal with the creation of entities within the database. If we had a
CascadeType of PERSIST on the Employee side of our one-to-one relationship, you would
not have to persist your created Address as well. It would be created for you. The per-
sistence provider also will execute the appropriate SQL INSERT statements in the ap-
propriate order for you.

If you did not have a cascade policy of PERSIST, then you would have to call
EntityManager.persist() on the address object as well (as we do in the example).

MERGE
MERGE deals with entity synchronization, meaning inserts and, more importantly, up-
dates. These aren’t updates in the traditional sense. If you remember from previous
chapters, we mentioned that objects could be detached from persistent management
and serialized to a remote client, updates could be performed locally on that remote
client, the object instance would be sent back to the server, and the changes would be
merged back into the database. Merging is about synchronizing the state of a detached
object instance back to persistent storage.

So, back to what MERGE means! MERGE is similar to PERSIST. If you have a cascade policy
of MERGE, then you do not have to call EntityManager.merge() for the contained related
entity:

employee.setName("William");
employee.getAddress().setCity("Boston");
entityManager.merge(employee);

In this example, when the employee variable is merged by the entity manager, the entity
manager will cascade the merge to the contained address property and the city also
will be updated in the database.

192 | Chapter 11: Entity Relationships

Another interesting thing about MERGE is that if you have added any new entities to a
relationship that have not been created in the database, they will be persisted and cre-
ated when the merge() happens:

Phone phone = new Phone();
phone.setNumber("617-666-6666");

employee.getPhoneNumbers().add(phone);
entityManager.merge(employee);

In this example, we allocate a Phone and add it to an Employee’s list of phone numbers.
We then call merge() with the employee, and since we have the MERGE CascadeType set
on this relationship, the persistence provider will see that it is a new Phone entity and
will create it within the database.

Remember that only the graph returned by the merge operation is in managed state,
not the one passed as a parameter.

REMOVE
REMOVE is straightforward. In our Employee example, if you delete an Employee entity, its
address will be deleted as well:

Employee employee = entityManager.find(Employee.class, id);
entityManager.remove(employee); // Also removes the address

REFRESH
REFRESH is similar to MERGE. Unlike merge, though, this CascadeType only pertains to
when EntityManager.refresh() is called. Refreshing doesn’t update the database with
changes in the object instance. Instead, it refreshes the object instance’s state from the
database. Again, the contained related entities would also be refreshed:

Employee employee = entityManager.find(Employee.class, id);
entityManager.refresh(employee); // address would be refreshed too

So, if changes to the Employee’s address were committed by a different transaction, the
address property of the employee variable would be updated with these changes. This
is useful in practice when an entity bean has some properties that are generated by the
database (by triggers, for example). You can refresh the entity to read those generated
properties. In this case, be sure to make those generated properties read-only from a
persistence provider perspective, i.e., using the @Column (insertable=false,

updatable=false).

ALL
ALL is a combination of all of the previous policies and is used for the purposes of
simplicity.

Cascading | 193

When to Use Cascading
You don’t always want to use cascading for every relationship you have. For instance,
you would not want to remove the related Computer or Tasks when removing an
Employee entity from the database, because these entities have a life span that is usually
longer than the employee. You might not want to cascade merges because you may
have fetched stale data from the database or simply not filled the relationship in one
particular business operation. For performance reasons, you may also not want to re-
fresh all the relationships an entity has because this would cause more round trips to
the database. Be aware how your entities will be used before deciding on the cascade
type. If you are unsure of their use, then you should turn off cascading entirely and
enable it on a per-case basis. Remember, cascading is simply a convenient tool for
reducing the EntityManager API calls. It’s very easy to trigger expensive database calls,
which may result in unnecessary multitable joins.

194 | Chapter 11: Entity Relationships

CHAPTER 12

Entity Inheritance

In order to be complete, an object-to-relational mapping engine must support inheri-
tance hierarchies. The Java Persistence specification supports entity inheritance, poly-
morphic relationships/associations, and polymorphic queries. These features were
completely missing in the older EJB CMP 2.1 specification.

In this chapter, we’ll modify the Employee entity that we defined in earlier chapters to
make it fit into an inheritance hierarchy. We’ll have it extend a base class called
Person and redefine the Employee class to extend a Customer class. Figure 12-1 shows
this class hierarchy.

Figure 12-1. Customer class hierarchy

The Java Persistence specification provides three different ways to map an inheritance
hierarchy to a relational database:

A single table per class hierarchy
One table will have all properties of every class in the hierarchy.

A table per concrete class
Each class will have a table dedicated to it, with all of its properties and the prop-
erties of its superclass mapped to this table.

195

A table per subclass
Each class will have its own table. Each table will have only the properties that are
defined in that particular class. These tables will not have properties of any super-
class or subclass.

In this chapter, we use these three strategies to map the Employee class hierarchy defined
in Figure 12-1.

Single Table per Class Hierarchy
In the single table per class hierarchy mapping strategy, one database table represents
every class of a given hierarchy. In our example, the Person, Customer, and Employee
entities are represented in the same table, as shown in the following code:

CREATE TABLE "PUBLIC"."SINGLECLASS_PERSON"
(
 DISCRIMINATOR varchar NOT NULL,
 ID bigint PRIMARY KEY NOT NULL,
 FIRSTNAME varchar,
 LASTNAME varchar,
 CITY varchar,
 STATE varchar,
 STREET varchar,
 ZIP varchar,
 EMPLOYEEID integer
)
;

As you can see, all the properties for the Customer class hierarchy are held in one table,
SINGLECLASS_PERSON. The single table per class hierarchy mapping also requires an ad-
ditional discriminator column. This column identifies the type of entity being stored in
a particular row of SINGLECLASS_PERSON. Let’s look at how the classes will use annota-
tions to map this inheritance strategy:

@Entity(name = "SINGLECLASS_PERSON")
@DiscriminatorColumn(name = "DISCRIMINATOR", discriminatorType =
 DiscriminatorType.STRING)
@DiscriminatorValue("PERSON")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
public class Person
{
 @Id
 @GeneratedValue
 private Long id;

 private String firstName;
 private String lastName;

 ...
}

196 | Chapter 12: Entity Inheritance

This is our base class for both Customers and Employees. It defines the discriminator
column we’ve just seen as "DISCRIMINATOR", where Person rows will have a value of
"PERSON".

Since one table is representing the entire class hierarchy, the persistence provider needs
some way to identify which class the row in the database maps to. It determines
this by reading the value from the discriminator column. The
@javax.persistence.DiscriminatorColumn annotation identifies which column in our
table will store the discriminator’s value. The name() attribute identifies the name of
the column, and the discriminatorType() attribute specifies what type the discrimina-
tor column will be. It can be a STRING, CHAR, or INTEGER. For our Employee class hierarchy
mapping, you do not have to specify the discriminatorType(), as it defaults to being a
STRING. If you’re OK with the default column name, you can remove the @Discrimina
torColumn entirely:

package javax.persistence;

@Target(TYPE) @Retention(RUNTIME)
public @interface DiscriminatorColumn
{
 String name() default "DTYPE";
 DiscriminatorType discriminatorType() default STRING;
 String columnDefinition() default "";
 int length() default 10;
}

The @javax.persistence.DiscriminatorValue annotation defines what value the dis-
criminator column will take for rows that store an instance of a Person class. You can
leave this attribute undefined if you want to. In that case, the persistence manager
would generate a value for you automatically. This value will be vendor-specific if the
DiscriminatorType is CHAR or INTEGER. The entity name is used by default when a type
of STRING is specified. It is good practice to specify the value for CHAR and
INTEGER values:

package javax.persistence;

@Target(TYPE) @Retention(RUNTIME)
public @interface DiscriminatorValue
{
 String value()
}

The @javax.persistence.Inheritance annotation is used to define the persistence strat-
egy for the inheritance relationship:

package javax.persistence;

@Target(TYPE) @Retention(RUNTIME)
public @interface Inheritance
{
 InheritanceType strategy() default SINGLE_TABLE;
}

Single Table per Class Hierarchy | 197

public enum InheritanceType
{
 SINGLE_TABLE, JOINED, TABLE_PER_CLASS
}

The strategy() attribute defines the inheritance mapping that we’re using. Since we’re
using the single table per class hierarchy, the SINGLE_TABLE enum is applied.

We can now extend this base into a more specialized Customer:

@Entity(name = "SINGLECLASS_CUSTOMER")
@DiscriminatorValue("CUSTOMER")
public class Customer extends Person
{
 private String street;
 private String city;
 private String state;
 private String zip;
 ...
}

Customer rows in the table will use a value of "CUSTOMER" in the discriminator column.

Finally, we have Employee:

@Entity (name="SINGLECLASS_EMPLOYEE")
@DiscriminatorValue("EMPLOYEE")
public class Employee extends Customer
{
 private Integer employeeId;
 ...
}

Advantages
The SINGLE_TABLE mapping strategy is the simplest to implement and performs better
than all the inheritance strategies. There is only one table to administer and deal with.
The persistence engine does not have to do any complex joins, unions, or subselects
when loading the entity or when traversing a polymorphic relationship, because all data
is stored in one table.

Disadvantages
One huge disadvantage of this approach is that all columns of subclass properties must
be nullable. So, if you need or want to have any NOT NULL constraints defined on these
columns, you cannot do so. Also, because subclass property columns may be unused,
the SINGLE_TABLE strategy is not normalized.

198 | Chapter 12: Entity Inheritance

Table per Concrete Class
In the table per concrete class strategy, a database table is defined for each concrete
class in the hierarchy. Each table has columns representing its properties and all prop-
erties of any superclasses:

CREATE TABLE "PUBLIC"."TABLEPERCLASS_PERSON"
(
 ID bigint PRIMARY KEY NOT NULL,
 FIRSTNAME varchar,
 LASTNAME varchar
)
;

CREATE TABLE "PUBLIC"."TABLEPERCLASS_CUSTOMER"
(
 ID bigint PRIMARY KEY NOT NULL,
 FIRSTNAME varchar,
 LASTNAME varchar,
 CITY varchar,
 STATE varchar,
 STREET varchar,
 ZIP varchar
)
;

CREATE TABLE "PUBLIC"."TABLEPERCLASS_EMPLOYEE"
(
 ID bigint PRIMARY KEY NOT NULL,
 FIRSTNAME varchar,
 LASTNAME varchar,
 CITY varchar,
 STATE varchar,
 STREET varchar,
 ZIP varchar,
 EMPLOYEEID integer
)
;

One major difference between this strategy and the SINGLE_TABLE strategy is that no
discriminator column is needed in the database schema. Also notice that each table
contains every persistent property in the hierarchy. Let’s now look at how we map this
strategy with annotations:

@Entity(name = "TABLEPERCLASS_PERSON")
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Person
{
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE)
 // Cannot accept default generation strategy for table-per-class
 private Long id;

 private String firstName;

Table per Concrete Class | 199

 private String lastName;
 ...
}

@Entity(name = "TABLEPERCLASS_CUSTOMER")
public class Customer extends Person
{
 private String street;
 private String city;
 private String state;
 private String zip;
 ...
}

@Entity(name = "TABLEPERCLASS_EMPLOYEE")
public class Employee extends Customer
{
 private Integer employeeId;
 ...
}

Notice that the only inheritance metadata required is the InheritanceType, and this is
needed on only the base Person class.

Advantages
The advantage to this approach over the SINGLE_TABLE strategy is that you can define
constraints on subclass properties. Another plus is that it might be easier to map a
preexisting legacy schema using this strategy.

Disadvantages
This strategy is not normalized, as it has redundant columns in each of its tables for
each of the base class’s properties. Also, to support this type of mapping, the persistence
manager has to do some funky things. One way it could be implemented is for the
container to use multiple queries when loading an entity or polymorphic relationship.
This is a huge performance hit because the container has to do multiple round-trips to
the database. Another way a container could implement this strategy is to use SQL
UNIONs. This still would not be as fast as the SINGLE_TABLE strategy, but it would perform
much better than a multiselect implementation. The downside to an SQL UNION is that
not all relational databases support this SQL feature. It is probably not wise to pick this
strategy when developing your entity beans, unless you have good reason (e.g., an
existing legacy schema).

Table per Subclass
In the table per subclass mapping, each subclass has its own table, but this table con-
tains only the properties that are defined on that particular class. In other words, it is

200 | Chapter 12: Entity Inheritance

similar to the TABLE_PER_CLASS strategy, except the schema is normalized. This is also
called the JOINED strategy:

CREATE TABLE "PUBLIC"."JOINED_PERSON"
(
 ID bigint PRIMARY KEY NOT NULL,
 FIRSTNAME varchar,
 LASTNAME varchar
)
;

CREATE TABLE "PUBLIC"."JOINED_CUSTOMER"
(
 CITY varchar,
 STATE varchar,
 STREET varchar,
 ZIP varchar,
 ID bigint PRIMARY KEY NOT NULL
)
;
ALTER TABLE "PUBLIC"."JOINED_CUSTOMER"
ADD CONSTRAINT FK65AE08146E93989D
FOREIGN KEY (ID)
REFERENCES "PUBLIC"."JOINED_PERSON"(ID)
;

CREATE TABLE "PUBLIC"."JOINED_EMPLOYEE"
(
 EMPLOYEEID integer,
 EMP_PK bigint PRIMARY KEY NOT NULL
)
;
ALTER TABLE "PUBLIC"."JOINED_EMPLOYEE"
ADD CONSTRAINT FK88AF6EE4D423ED9D
FOREIGN KEY (EMP_PK)
REFERENCES "PUBLIC"."JOINED_CUSTOMER"(EMP_PK)
;

When the persistence manager loads an entity that is a subclass or traverses a poly-
morphic relationship, it does an SQL join on all the tables in the hierarchy. In this
mapping, there must be a column in each table that can be used to join each table. In
our example, the JOINED_EMPLOYEE, JOINED_CUSTOMER, and JOINED_PERSON tables share
the same primary-key values. The annotation mapping is quite simple:

@Entity(name="JOINED_PERSON")
@Inheritance(strategy=InheritanceType.JOINED)
public class Person
{
 ...
}

@Entity(name="JOINED_CUSTOMER")
public class Customer extends Person
{
 ...

Table per Subclass | 201

}

@Entity(name = "JOINED_EMPLOYEE")
@PrimaryKeyJoinColumn (name="EMP_PK")
public class Employee extends Customer
{
 ...
}

The persistence manager needs to know which columns in each table will be used to
perform a join when loading an entity with a JOINED inheritance strategy. The
@javax.persistence.PrimaryKeyJoinColumn annotation can be used to describe this
metadata:

package javax.persistence;

@Target({TYPE, METHOD, FIELD})
public @interface PrimaryKeyJoinColumn
{
 String name() default "";
 String referencedColumnName() default "";
 String columnDefinition() default "";
}

The name() attribute refers to the column contained in the current table on which you
will perform a join. It defaults to the primary-key column of the superclass’s table. The
referencedColumnName() is the column that will be used to perform the join from the
superclass’s table. It can be any column in the superclass’s table, but it defaults to its
primary key. If the primary-key column names are identical between the base and sub-
classes, then this annotation is not needed. For instance, the Customer entity does not
need the @PrimaryKeyJoinColumn annotation. The Employee class has a different primary-
key column name than the tables of its superclasses, so the @PrimaryKeyJoinColumn
annotation is required. If class hierarchy uses a composite key, there is a
@javax.persistence.PrimaryKeyJoinColumns annotation that can describe multiple join
columns:

package javax.persistence;

@Target({TYPE, METHOD, FIELD})
public @interface PrimaryKeyJoinColumns
{
 @PrimaryKeyJoinColumns[] value();
}

Some persistence providers require a discriminator column for this
mapping type. Most do not. Make sure to check your persistence pro-
vider implementation to see whether it is required.

202 | Chapter 12: Entity Inheritance

Advantages
It is better to compare this mapping to other strategies to describe its advantages. Al-
though it is not as fast as the SINGLE_TABLE strategy, you are able to define NOT NULL
constraints on any column of any table, and your model is normalized.

This mapping is better than the TABLE_PER_CLASS strategy for two reasons. One, the
relational database model is completely normalized. Two, it performs better than
the TABLE_PER_CLASS strategy if SQL UNIONs are not supported.

Disadvantages
It does not perform as well as the SINGLE_TABLE strategy.

Mixing Strategies
The persistence specification currently makes mixing inheritance strategies optional.
The rules for mixing strategies in an inheritance hierarchy may be defined in future
versions of the spec.

Nonentity Base Classes
The inheritance mappings we described so far in this chapter concerned a class hier-
archy of entity beans. Sometimes, however, you need to inherit from a nonentity
superclass. This superclass may be an existing class in your domain model that you do
not want to make an entity. The @javax.persistence.MappedSuperclass annotation
allows you to define this kind of mapping. Let’s modify our example class hierarchy
and change Person into a mapped superclass:

@MappedSuperclass
public class Person
{
 @Id @GeneratedValue
 public int getId() { return id; }
 public void setId(int id) { this.id = is; }
 ...
}

@Entity
@Table(name="CUSTOMER")
@Inheritance(strategy=InheritanceType.JOINED)
@AttributeOverride(name="lastname", column=@Column(name="SURNAME"))
public class Customer extends Person {
...
}

@Entity
@Table(name="EMPLOYEE")

Nonentity Base Classes | 203

@PrimaryKeyJoinColumn(name="EMP_PK")
public class Employee extends Customer {
...
}

Since it is not an entity, the mapped superclass does not have an associated table.
Any subclass inherits the persistence properties of the base class. You can
override any mapped property of the mapped class by using the
@javax.persistence.AttributeOverride annotation.

You can have @MappedSuperclass annotated classes in between two @Entity annotated
classes in a given hierarchy. Also, nonannotated classes (i.e., not annotated with
@Entity or @MappedSuperclass) are completely ignored by the persistence provider.

204 | Chapter 12: Entity Inheritance

CHAPTER 13

Queries, the Criteria API, and JPA QL

Querying is a fundamental feature of all relational databases. It allows you to pull
complex reports, calculations, and information about intricately related objects from
persistence storage. Queries in Java Persistence are done using the JPA QL query lan-
guage, native Structured Query Language (SQL), and the new Criteria API.

JPA QL is a declarative query language similar to the SQL used in relational databases,
but it is tailored to work with Java objects rather than a relational schema. To execute
queries, you reference the properties and relationships of your entity beans rather than
the underlying tables and columns these objects are mapped to. When a JPA QL query
is executed, the entity manager uses the information you provided through the mapping
metadata, discussed in the previous two chapters, and automatically translates it to an
appropriate native SQL query. This generated native SQL is then executed through a
JDBC driver directly on your database. Since JPA QL is a query language that represents
Java objects, it is portable across vendor database implementations because the entity
manager handles the conversion to raw SQL for you.

The JPA QL language is easy for developers to learn, yet precise enough to be interpreted
into native database code. This rich and flexible query language empowers developers
while executing in fast native code at runtime. Plus, because JPA QL is object-oriented,
queries are usually much more compact and readable than their SQL equivalent. EJB
QL existed in the EJB 2.1 specification, and it is really the only feature that survived in
the new release. Since Persistence is completely spun off in its own specification, it’s
now known as JPA QL. Although it was well-formed, EJB QL in EJB 2.1 was incom-
plete, forcing developers to escape to JDBC or write really inefficient code. JPA QL has
been greatly improved and expanded to be more parallel to SQL and should now meet
most of your needs. Things such as projection, GROUP BY, and HAVING have been added,
as well as bulk updates and deletes.

Like all query languages, JPA QL is modeled as a string, and therefore cannot be
checked for structural correctness by the Java compiler. New to Java Persistence 2.0 is
the Criteria API, a fluid interface for building queries using an object model.

205

Sometimes, though, JPA QL and the Criteria API are not enough. Because these are
portable query language extensions, they cannot always take advantage of specific pro-
prietary features of your database vendor. JPA QL does not allow you to execute stored
procedures, for instance. The EJB 3.x Expert Group foresaw the need for this and has
provided an API to map native SQL calls to your entity beans.

JPA QL and native SQL queries are executed through the javax.persistence.Query
interface. The Query interface is analogous to the java.sql.PreparedStatement interface.
This Query API gives you methods for paging your result set, as well as passing Java
parameters to your query. Queries can be predeclared through annotations or XML or
created dynamically at runtime through EntityManager APIs.

Similarly, the Criteria API has the javax.persistence.criteria.CriteriaQuery inter-
face, through which we can construct queries via the object model and submit these
via the EntityManager.

Query API
A query in Java Persistence is a full-blown Java interface that you obtain at runtime
from the entity manager:

package javax.persistence;

public interface Query
{
 List getResultList();
 Object getSingleResult();
 int executeUpdate();
 Query setMaxResults(int maxResult);
 int getMaxResults();
 Query setFirstResult(int startPosition);
 int getFirstResult();
 Query setHint(String hintName, Object value);
 Map<String, Object> getHints();
 <T> Query setParameter(Parameter<T> param, T value);
 Query setParameter(Parameter<Calendar> param, Calendar value,
 TemporalType temporalType);
 Query setParameter(Parameter<Date> param, Date value,
 TemporalType temporalType);
 Query setParameter(String name, Object value);
 Query setParameter(String name, Calendar value,
 TemporalType temporalType);
 Query setParameter(String name, Date value,
 TemporalType temporalType);
 Query setParameter(int position, Object value);
 Query setParameter(int position, Calendar value,
 TemporalType temporalType);
 Query setParameter(int position, Date value,
 TemporalType temporalType);
 Set<Parameter<?>> getParameters();
 Parameter<?> getParameter(String name);

206 | Chapter 13: Queries, the Criteria API, and JPA QL

 <T> Parameter<T> getParameter(String name, Class<T> type);
 Parameter<?> getParameter(int position);
 <T> Parameter<T> getParameter(int position, Class<T> type);
 boolean isBound(Parameter<?> param);
 <T> T getParameterValue(Parameter<T> param);
 Object getParameterValue(String name);
 Object getParameterValue(int position);
 Query setFlushMode(FlushModeType flushMode);
 FlushModeType getFlushMode();
 Query setLockMode(LockModeType lockMode);
 LockModeType getLockMode();
 <T> T unwrap(Class<T> cls);
}

Queries are created using these EntityManager methods:

package javax.persistence;

public interface EntityManager
{
 public Query createQuery(String qlString);
 public <T> TypedQuery<T> createQuery(CriteriaQuery<T> criteriaQuery);
 public <T> TypedQuery<T> createQuery(String qlString, Class<T> resultClass);
 public Query createNamedQuery(String name);
 public <T> TypedQuery<T> createNamedQuery(String name, Class<T> resultClass);
 public Query createNativeQuery(String sqlString);
 public Query createNativeQuery(String sqlString, Class resultClass);
 public Query createNativeQuery(String sqlString, String resultSetMapping);
}

Let’s first look at using EntityManager.createQuery() to create a query dynamically at
runtime:

try
{
 // Define query String
 final String jpaQlQuery = "FROM " + Employee.class.getSimpleName() +
 " e WHERE e.name='Dave'";
 // Query and get result
 final Employee roundtrip = (Employee)em.createQuery(jpaQlQuery)
 .getSingleResult();
}
catch (EntityNotFoundException notFound) {}
catch (NonUniqueResultException nonUnique) {}

The previous query looks for a single, unique Employee entity named Dave. The query
is executed when the getSingleResult() method is called. This method expects that
the call will return only one result. If no result is returned, the method throws a
javax.persistence.EntityNotFoundException runtime exception. If more than one re-
sult is found, a javax.persistence.NonUniqueResultException runtime exception is
thrown. Since both of these exceptions are RuntimeExceptions, the example code is not
required to have a full try/catch block.

Query API | 207

There is a good chance that the NonUniqueResultException would be thrown by this
example. Believe it or not, there are a lot of Daves in the world. You can change the
query to use the getResultList() method to obtain a collection of results:

Query query = entityManager.creatQuery(
 "from Employee e where e.name='Dave'");
java.util.List<?> bills = query.getResultList();

The getResultList() method does not throw an exception if there are no Daves; the
returned list would just be empty.

Parameters
Much like a java.sql.PreparedStatement in JDBC, JPA QL allows you to specify pa-
rameters in query declarations so that you can reuse and execute the query multiple
times on different sets of parameters. Two syntaxes are provided: named parameters
and positional parameters. Let’s modify our earlier Employee query to take both last
name and first name as named parameters:

// Define query String
final String jpaQlQuery = "FROM " + Employee.class.getSimpleName() +
 " e WHERE e.name=:name";
// Set parameter
jpaQlQuery.setParameter("name", "Dave");
// Query and get result
final Employee roundtrip = (Employee)em.createQuery(jpaQlQuery).getSingleResult();

The : character followed by the parameter name is used in JPA QL statements to iden-
tify a named parameter. The setParameter() method in this example takes the name of
the parameter first, and then the actual value. EJB QL also supports positional param-
eters. Let’s modify the previous example to see this mode in action:

// Define query String
final String jpaQlQuery = "FROM " + Employee.class.getSimpleName() +
 " e WHERE e.name=?1";
// Set parameter
jpaQlQuery.setParameter(1, "Dave");
// Query and get result
final Employee roundtrip = (Employee)em.createQuery(jpaQlQuery).getSingleResult();

Instead of a string named parameter, setParameter() also takes a numeric parameter
position. The ? character is used instead of the : character used with named parameters.
Numeric parameters are indexed (start at) 1, not 0.

Using named parameters over positional parameters is recommended,
as the JPA QL code becomes self-documenting. This is especially useful
when working with predeclared queries.

208 | Chapter 13: Queries, the Criteria API, and JPA QL

Date Parameters
If you need to pass java.util.Date or java.util.Calendar parameters into a query, you
need to use special setParameter methods:

package javax.persistence;

public enum TemporalType
{
 DATE, //java.sql.Date
 TIME, //java.sql.Time
 TIMESTAMP //java.sql.Timestamp
}

public interface Query
{
 Query setParameter(String name, java.util.Date value, TemporalType temporalTyp
e);
 Query setParameter(String name, Calendar value, TemporalType temporalType);
 Query setParameter(int position, Date value, TemporalType temporalType);
 Query setParameter(int position, Calendar value, TemporalType temporalType);
}

A Date or Calendar object can represent a real date, a time of day, or a numeric
timestamp. Because these object types can represent different things at the same time,
you need to tell your Query object how it should use these parameters. The
javax.persistence.TemporalType passed in as a parameter to the setParameter()
method tells the Query interface what database type to use when converting the
java.util.Date or java.util.Calendar parameter to a native SQL type.

Paging Results
Sometimes an executed query returns too many results. For instance, maybe we’re
displaying a list of customers on a web page. The web page can display only so many
customers, and maybe there are thousands or even millions of customers in the data-
base. The Query API has two built-in functions to solve this type of scenario—setMax

Results() and setFirstResult():

public List getEmployees(int max, int index) {
 Query query = entityManager.createQuery("from Employee e");
 return query.setMaxResults(max).
 setFirstResult(index).
 getResultList();
}

The getEmployees() method executes a query that obtains all employees from the da-
tabase. We limit the number of employees it returns by using the setMaxResults()
method, passing in the max method parameter. The method is also designed so that you
can define an arbitrary set of results that you want returned by the execution of the
query. The setFirstResult() method tells the query what position in the executed
query’s result set you want returned. So, if you had a max result of 3 and a first result

Query API | 209

of 5, employees 5, 6, and 7 would be returned. We set this value in the
getEmployees() method with the index parameter. Let’s take this method and write a
code fragment that lists all customers in the database:

List results;
int first = 0;
int max = 10;

do
{
 results = getEmployees(max, first);
 Iterator it = results.iterator();
 while (it.hasNext())
 {
 Employee employee = (Employee)it.next();
 System.out.println("Employee name: " + employee.getName());
 }
 entityManager.clear();
 first = first + results.getSize();
}
while(results.size() > 0);

In this example, we loop through all employees in the database and output their names
to the system output stream. If we had thousands or even millions of employees in
the database, we could quickly run out of memory, as each execution of the
getEmployees() method would return customers that were still managed by the entity
manager. So, after we are finished outputting a block of customers, we call
EntityManager.clear() to detach these customers and let them be garbage-collected by
the Java VM. Use this pattern when you need to deal with a lot of entity objects within
the same transaction.

Hints
Some Java Persistence vendors will provide additional add-on features that you can
take advantage of when executing a query. For instance, the JBoss EJB 3.x implemen-
tation allows you to define a timeout for the query. These types of add-on features can
be specified as hints using the setHint() method on the query. Here’s an example of
defining a JBoss query timeout using hints:

Query query = entityManager.createQuery("from Employee e");
query.setHint("org.hibernate.timeout", 1000);

The setHint() method takes a string name and an arbitrary object parameter.

FlushMode
In Chapter 9, we talked about flushing and flush modes. Sometimes you would like a
different flush mode to be enforced for the duration of a query. For instance, maybe a
query wants to make sure that the entity manager does not flush before the query is

210 | Chapter 13: Queries, the Criteria API, and JPA QL

executed (since the default value implies that the entity manager can). The Query in-
terface provides a setFlushMode() method for this particular purpose:

Query query = manager.createQuery("from Employee e");
query.setFlushMode(FlushModeType.COMMIT);

In this example, we’re telling the persistence provider that we do not want the query
to do any automatic flushing before this particular query is executed. Using this commit
mode can be dangerous if some correlated dirty entities are in the persistence context.
You might return wrong entities from your query. Therefore, it is recommended that
you use the FlushModeType.AUTO.

JPA QL
Now that you have a basic understanding of how to work with Query objects, you can
learn what features are available to you for creating your own JPA QL queries. JPA QL
is expressed in terms of the abstract persistence schema of an entity: its abstract schema
name, basic properties, and relationship properties. JPA QL uses the abstract schema
names to identify beans, the basic properties to specify values, and the relationship
properties to navigate across relationships.

To discuss JPA QL, we will use the relationships defined in Chapter 11.

Abstract Schema Names
The abstract schema name can be defined by metadata, or it can default to a specific
value. It defaults to the unqualified name of the entity bean class if the name() attribute
is not specified when declaring the @Entity annotation.

In the following example, the @Entity.name() attribute is not specified on the
Employee bean class, so Employee is used to reference the entity within JPA QL calls:

@Entity
public class Employee {...}

entityManager.createQuery("SELECT e FROM Employee AS e");

In the following example, since the @Entity.name() attribute is defined, you would
reference Employee entities in JPA QL as Emp:

@Entity(name="Emp")
public class Employee {...}

entityManager.createQuery("SELECT e FROM Emp AS e");

JPA QL | 211

Simple Queries
The simplest JPA QL statement has no WHERE clause and only one abstract schema type.
For example, you could define a query method to select all Employee beans:

SELECT OBJECT(e) FROM Employee AS e

The FROM clause determines which entity bean types will be included in the SELECT
statement (i.e., it provides the scope of the select). In this case, the FROM clause declares
the type to be Employee, which is the abstract schema name of the Employee entity. The
AS e part of the clause assigns e as the identifier of the Employee entity. This is similar
to SQL, which allows an identifier to be associated with a table. Identifiers can be any
length and follow the same rules that are applied to field names in the Java programming
language. However, identifiers cannot be the same as existing abstract schema name
values. In addition, identification variable names are not case-sensitive, so an identifier
of employee would be in conflict with an abstract schema name of Employee. For exam-
ple, the following statement is illegal because Employee is the abstract schema name of
the Employee EJB:

SELECT OBJECT (employee) FROM Employee AS employee

The AS operator is optional, but it is used in this book to help make the JPA QL state-
ments clearer. The following two statements are equivalent:

SELECT OBJECT(e) FROM Employee AS e

SELECT e FROM Employee e

The SELECT clause determines the type of any values that are returned. In this case, the
statement returns the Employee entity bean, as indicated by the e identifier.

The OBJECT() operator is optional and is a relic requirement of the EJB 2.1 specification.
It is there for backward compatibility.

Identifiers cannot be EJB QL reserved words. In Java Persistence, the following words
are reserved:

SELECT FROM WHERE UPDATE DELETE

JOIN OUTER INNER GROUP BY

HAVING FETCH DISTINCT OBJECT NULL

TRUE FALSE NOT AND OR

BETWEEN LIKE IN AS UNKNOWN

EMPTY MEMBER OF IS AVG

MAX MIN SUM COUNT ORDER

ASC DESC MOD UPPER LOWER

TRIM POSITION CHARACTER_LENGTH CHAR_LENGTH BIT_LENGTH

CURRENT_TIME CURRENT_DATE CURRENT_TIMESTAMP NEW

212 | Chapter 13: Queries, the Criteria API, and JPA QL

It’s a good practice to avoid all SQL reserved words, because you never know which
ones will be used by future versions of EJB QL. You can find more information in the
appendix of SQL in a Nutshell (O’Reilly).

Selecting Entity and Relationship Properties
JPA QL allows SELECT clauses to return any number of basic or relationship properties.
For example, we can define a simple SELECT statement to return the name of all of
employees in the registry:

final String jpaQlQuery = "SELECT e.name FROM Employee AS e"
@SuppressWarnings("unchecked")
final List<String> names = em.createQuery(jpaQlQuery).getResultList();

The SELECT clause uses a simple path to select the Employee entity’s name property as the
return type. The persistence property names are identified by the access type of your
entity bean class, regardless of whether you’ve applied your mapping annotations on
a get or set method or on the member fields of the class.

If you use get or set methods to specify your persistent properties, then the property
name is extracted from the method name. The get part of the method name is removed,
and the first character of the remaining string is lowercase.

When a query returns more than one item, you must use the Query.getResultList()
method. The return value of the earlier query is dependent upon the type of the field
being accessed. In our case, we obtain a List of Strings because the name property is a
String. If the SELECT clause queries more than one column or entity, the results are
aggregated in an object array (Object[]) in the java.util.List returned by getResult
List(). The following code shows how to access the returned results from a multi-
property select:

// Create and persist
final Employee josh = new Employee(ID_JOSH, NAME_JOSH);
em.persist(josh);

// Lookup
final String jpaQlQuery = "SELECT e.name, e.id FROM " +
 Employee.class.getSimpleName() + " AS e";
@SuppressWarnings("unchecked")
final List<Object[]> properties = em.createQuery(jpaQlQuery).getResultList();

// Test
Assert.assertEquals(1, properties.size());
Assert.assertEquals(NAME_JOSH, properties.get(0)[0]);
Assert.assertEquals(ID_JOSH, properties.get(0)[1]);

JPA QL | 213

http://oreilly.com/catalog/9780596518851/

Paths can be as long as required. It’s common to use paths that navigate over one or
more relationship fields to end at either a basic or a relationship property. For example,
the following JPA QL statement selects the name of the manager of the employees:

@Entity
public class Employee
{
 /**
 * Manager of the {@link Employee}
 */
 @ManyToOne
 private Employee manager;
 ...
}

SELECT e.manager.name FROM Employee AS e

Using these relationships, we can specify more complex paths. Paths cannot navigate
beyond persistent properties. For example, imagine that Address uses a ZipCode class
as its zip property and this property is stored as a byte stream in the database:

public class ZipCode implements java.io.Serializable
{
 public int mainCode;
 public int codeSuffix;
 ...
}

@Entity
public class Address
{
 private ZipCode zip;
}

You can’t navigate to one of the ZipCode class’s instance fields:

// This is illegal
SELECT a.zip.mainCode FROM Address AS a

Of course, you could make the ZipCode class @Embeddable. If you did this, then you could
obtain properties of the ZipCode class:

@Entity
public class Address {
 @Embedded private ZipCode zip;
}

This JPA QL would now be legal:

// @Embedded makes this legal now
SELECT a.zip.mainCode FROM Address AS a

It’s illegal to navigate across a collection-based relationship field. The following JPA
QL statement is illegal, even though the path ends in a single-type relationship field:

// This is illegal
SELECT e.phones.number FROM Employee AS e

214 | Chapter 13: Queries, the Criteria API, and JPA QL

If you think about it, this limitation makes sense. You can’t use a navigation operator
(.) in Java to access elements of a java.util.Collection object. For example, if get
Phones() returns a java.util.Collection type, this statement is illegal:

// this is illegal in the Java programming language
employee.getPhones().getNumber();

Referencing the elements of a collection-based relationship field is possible, but it re-
quires the use of an IN or JOIN operator and an identification assignment in the FROM
clause.

Constructor Expressions
One of the most powerful features of JPA QL is the ability to specify a constructor
within the SELECT clause that can allocate plain Java objects (nonentities) and pass
columns you select into that constructor. For example, let’s say we want to aggregate
IDs and names from our Employee entity into a plain Java object called Name:

package org.mypackage;
public class Name
{
 private Long id;
 private String name;

 public Name(final Long id, final String name)
 {
 this.setId(id);
 this.setName(name);
 }

 public Long getId() { return id; }
 public void setId(Long id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
}

We can actually have our query return a list of Name classes instead of a plain list of
strings. We do this by calling the constructor of Name directly within our query:

SELECT new org.mypackage.Name(e.id,e.name) FROM Employee e

The Query object will automatically allocate an instance of Name for each row returned,
passing in the id and name columns as arguments to the Name’s constructor. This feature
is incredibly useful for generating typed reports and can save you a lot of typing.

The IN Operator and INNER JOIN
Many relationships between entity beans are collection-based, and being able to access
and select beans from these relationships is important. We’ve seen that it is illegal to
select elements directly from a collection-based relationship. To overcome this

JPA QL | 215

limitation, JPA QL introduces the IN operator, which allows an identifier to represent
individual elements in a collection-based relationship field.

The following query uses the IN operator to select the elements from a collection-based
relationship. It returns all the Phones for an Employee:

SELECT p FROM Employee AS e, IN(e.phones) p

The IN operator assigns the individual elements in the phones property to the p identifier.
Once we have an identifier to represent the individual elements of the collection, we
can reference them directly and even select them in the JPA QL statement. We can also
use the element identifier in path expressions. For example, the following statement
selects all phone numbers (a property of Phone) for an Employee:

SELECT p.number FROM Employee AS e, IN(e.phones) p

The identifiers assigned in the FROM clause are evaluated from left to right. Once you
declare an identifier, you can use it in subsequent declarations in the FROM clause. The
e identifier, which was declared first, was subsequently used in the IN operator to define
the p identifier.

This query can also be expressed as an INNER JOIN:

SELECT p.number FROM Employee e INNER JOIN e.phones p

The INNER JOIN syntax parallels the SQL language much better and is more intuitive
for developers coming from the relational world.

LEFT JOIN
The LEFT JOIN syntax enables retrieval of a set of entities where matching values in the
join statement may not exist. For values that do not exist, a null value is placed in the
result set.

For example, let’s say we want to generate a report with an employee’s name and all
the employee’s phone numbers. Some employees may not have specified a phone num-
ber, but we still want to list their names. We would use a LEFT JOIN to acquire all of
this information, including employees with no phone numbers:

SELECT e.name, p.number From Employee e LEFT JOIN e.phones p

If there were three employees in our system, and Bill Burke did not provide any phone
numbers, the return values might look like this:

David Ortiz 617-555-0900
David Ortiz 617-555-9999
Trot Nixon 781-555-2323
Bill Burke null

The previous query can also be expressed as a LEFT OUTER JOIN. This is just syntax sugar
to parallel SQL-92:

SELECT e.name, p.number From Employee e LEFT OUTER JOIN e.phones p

216 | Chapter 13: Queries, the Criteria API, and JPA QL

Fetch Joins
The JOIN FETCH syntax allows you to preload a returned entity’s relationships, even if
the relationship property has a FetchType of LAZY. For example, let’s say we have defined
our employee’s one-to-many relationship to Phone as follows:

/**
 * All {@link Phone}s for this {@link Employee}
 */
@OneToMany (fetch=FetchType.LAZY)
private Collection<Phone> phones;

If we want to print out all employee information, including their phone numbers, usu-
ally we would just query for all employees and then traverse the getPhones() method
inside a for loop:

Query query = manager.createQuery("SELECT e FROM Employee e");
List results = query.getResultList();
Iterator it = results.iterator();
while (it.hasNext()) {
 Employee e = (Employee)it.next();
 System.out.print(e.getName());
 for (Phone p : e.getPhones()) {
 System.out.print(p.getNumber());
 }
 System.out.println("");
 }

There are performance problems with the preceding code. Because the Phone rela-
tionship is annotated as being lazily loaded in the Employee bean class, the Phone
collection will not be initialized when we do the initial query.

When getPhones() is executed, the persistence engine has to do an additional query
to get the Phone entities associated with the Employee. This is called the N + 1 prob-
lem, as we have to do N extra queries beyond our initial query. When tuning database
applications, it is always important to reduce the number of round-trips made to the
database as much as possible. This is where the JOIN FETCH syntax comes into play.
Let’s modify our query to preload the Phone association:

SELECT e FROM Employee e LEFT JOIN FETCH e.phones

Using LEFT JOIN FETCH will additionally preload the Phone association. This can have
a dramatic effect on performance because instead of N + 1 queries, only one query
is made to the database.

Using DISTINCT
The DISTINCT keyword ensures that the query does not return duplicates. For example,
the following query finds all employees on a team. This query will return duplicates:

SELECT emp FROM Team t INNER JOIN t.members emp

JPA QL | 217

If an Employee belongs to more than one Team, there will be duplicate references to that
employee in the result. Using the DISTINCT keyword ensures that each Employee is rep-
resented only once in the result:

SELECT DISTINCT emp FROM Team t INNER JOIN t.members emp

The WHERE Clause and Literals
You can use literal values to narrow the scope of the elements selected. This is accom-
plished through the WHERE clause, which behaves in much the same way as the WHERE
clause in SQL.

For example, you can define a JPA QL statement that selects all the Employee entities
that have a specific name. The literal in this case is a String literal. Literal strings are
enclosed by single quotes. Literal values that include a single quote, such as the res-
taurant name Wendy’s, use two single quotes to escape the quote: Wendy''s. The fol-
lowing statement returns employees who have the name “Natalie Glass”:

SELECT e FROM Employee AS e WHERE e.name = 'Natalie Glass'

Path expressions in the WHERE clause may be used in the same way as in the SELECT clause.
When making comparisons with a literal, the path expression must evaluate to a basic
property; you can’t compare a relationship field with a literal.

In addition to literal strings, literals can be exact numeric values (long types) and ap-
proximate numeric values (double types). Exact numeric literal values are expressed
using the Java integer literal syntax (321, −8932, +22). Approximate numeric literal values
are expressed using Java floating-point literal syntax in scientific (5E3, −8.932E5) or
decimal (5.234, 38282.2) notation. Boolean literal values use TRUE and FALSE.

The WHERE Clause and Operator Precedence
The WHERE clause is composed of conditional expressions that reduce the scope of the
query and limit the number of items selected. Several conditional and logical operators
can be used in expressions; they are listed here in order of precedence:

• Navigation operator (.)

• Arithmetic operators: +, − (unary); *, / (multiplication and division); +, − (addition
and subtraction)

• Comparison operators: =, >, >=, <, <=, <> (not equal), LIKE, BETWEEN, IN, IS NULL, IS
EMPTY, MEMBER OF

• Logical operators: NOT, AND, OR

218 | Chapter 13: Queries, the Criteria API, and JPA QL

The WHERE Clause and Arithmetic Operators
The arithmetic operators allow a query to perform arithmetic in the process of doing a
comparison. Arithmetic operators can be used only in the WHERE clause, not in the
SELECT clause.

The following JPA QL statement returns references to all the Employees who have an
ID less than 100:

SELECT e FROM Employee AS e WHERE e.id < (1 * 10)

The rules applied to arithmetic operations are the same as those used in the Java pro-
gramming language, where numbers are widened, or promoted, in the process of per-
forming a calculation. For example, multiplying a double and an int value requires that
the int first be promoted to a double value. (The result will always be that of the widest
type used in the calculation, so multiplying an int and a double results in a double value.)

String, boolean, and entity object types cannot be used in arithmetic operations. For
example, using the addition operator with two String values is considered an illegal
operation. There is a special function for concatenating String values, covered in
“Functional expressions in the WHERE clause” on page 225.

The WHERE Clause and Logical Operators
Logical operators such as AND, OR, and NOT operate the same way in JPA QL as their
corresponding logical operators in SQL.

Logical operators evaluate only Boolean expressions, so each operand (i.e., each side
of the expression) must evaluate to true, false, or NULL. Logical operators have the
lowest precedence so that all the expressions can be evaluated before they are applied.

The AND and OR operators don’t behave like their Java language counterparts, && and
||. JPA QL does not specify whether the righthand operands are evaluated condition-
ally. For example, the && operator in Java evaluates its righthand operand only if the
lefthand operand is true. Similarly, the || logical operator evaluates the righthand op-
erand only if the lefthand operand is false. We can’t make the same assumption for
the AND and OR operators in JPA QL. Whether these operators evaluate righthand
operands depends on the native query language into which the statements are transla-
ted. It’s best to assume that both operands are evaluated on all logical operators.

NOT simply reverses the Boolean result of its operand; expressions that evaluate to the
Boolean value of true become false, and vice versa

The WHERE Clause and Comparison Symbols
Comparison operators, which use the symbols =, >, >=, <, <=, and <> should be familiar
to you. Only the = and <> (equals and not equals) operators may be used on boolean
and entity object identifiers. The greater-than and less-than symbols (>, >=, <, <=) can

JPA QL | 219

be used on numeric values as well as strings. However, the semantics of these operations
are not defined by the Java Persistence specification. Is character case (upper or lower)
important? Does leading and trailing whitespace matter? Issues like these affect the
ordering of string values. In order for JPA QL to maintain its status as an abstraction
of native query languages, it cannot dictate String ordering, because native query lan-
guages may have very different ordering rules. In fact, even different relational database
vendors vary on the question of String ordering, which makes it all but impossible to
standardize ordering, even for SQL “compliant” databases.

Of course, this is all academic if you plan on using the same database well into the
future. In such a case, the best thing to do is to examine the documentation for the
database you are using to find out how it orders strings in comparisons. This tells you
exactly how your JPA QL comparisons will work.

The WHERE Clause and Equality Semantics
Although it is legal to compare an exact numeric value (short, int, long) to an approx-
imate numeric value (double, float), all other equality comparisons must compare the
same types. You cannot, for example, compare a String value of 123 to the Integer
literal 123. However, you can compare two String types for equality.

You can compare numeric values for which the rules of numeric promotion apply. For
example, a short may be compared to an int, an int to a long, etc. Java Persistence also
states that primitives may be compared to primitive wrapper types—the rules of nu-
meric promotion apply.

In older versions of the spec, String type comparisons had to match exactly, character
for character. EJB 2.1 dropped this requirement, making the evaluation of equality
between String types more ambiguous. This continued in Java Persistence. Again, this
ambiguity arises from the differences between kinds of databases (relational versus
object-oriented versus file), as well as differences between vendors of relational data-
bases. Consult your vendor’s documentation to determine exactly how String equality
comparisons are evaluated.

You can also compare entity objects for equality, but these too must be of the same
type. To be more specific, they must both be entity object references to beans from the
same deployment. Once it’s determined that the bean is the correct type, the actual
comparison is performed on the beans’ primary keys. If they have the same primary
key, they are considered equal.

You may use java.util.Date objects in equality comparisons. See “Date Parame-
ters” on page 209.

220 | Chapter 13: Queries, the Criteria API, and JPA QL

The WHERE Clause and BETWEEN
The BETWEEN clause is an inclusive operator specifying a range of values. In this example,
we use it to select all Employees with an ID between 100 and 200:

SELECT e FROM Employee AS e WHERE e.id BETWEEN 100 AND 200

The BETWEEN clause may be used only on numeric primitives (byte, short, int, long,
double, float) and their corresponding java.lang.Number types (Byte, Short, Integer,
etc.). It cannot be used on String, boolean, or entity object references.

Using the NOT logical operator in conjunction with BETWEEN excludes the range specified.
For example, the following JPA QL statement selects all the Employees that have an ID
less than 100 or greater than 200:

SELECT e FROM Employee AS e WHERE e.id NOT BETWEEN 100 AND 200

The net effect of this query is the same as if it had been executed with comparison
symbols:

SELECT e FROM Employee AS e
WHERE e.id < 100 OR e.id > 200

The WHERE Clause and IN
The IN conditional operator used in the WHERE clause is not the same as the IN operator
used in the FROM clause (that’s why the JOIN keyword in the FROM clause should be
preferred over the IN keyword for collection navigation). In the WHERE clause, IN tests
for membership in a list of literal values. For example, the following JPA QL statement
uses the IN operator to select all the customers who reside in a specific set of states:

SELECT e FROM Employee AS e WHERE e.address.state IN ('FL', 'TX', 'MI', 'WI', 'MN')

Applying the NOT operator to this expression reverses the selection, excluding all cus-
tomers who reside in the list of states:

SELECT e FROM Employee AS e WHERE e.address.state NOT IN ('FL', 'TX', 'MI', 'WI',
'MN')

If the field tested is null, the value of the expression is “unknown,” which means it
cannot be predicted.

The IN operator can be used with operands that evaluate to either string or numeric
values. For example, the following JPA QL fragment uses the IN operator to select values
1, 3, 5, and 7:

WHERE e.property IN (1,3,5,7)

The IN operator can also be used with input parameters. For example, the following
query selects all the parameters:

WHERE e.property IN (?1,?2,?3)

JPA QL | 221

In this case, the input parameters (?1, ?2, and ?3) are combined with parameters sent
to the query during runtime execution.

The WHERE Clause and IS NULL
The IS NULL comparison operator allows you to test whether a path expression is
null. For example, the following EJB QL statement selects all the Employees who do
not have a manager (those who are self-managing):

SELECT e FROM Employee AS e WHERE e.manager IS NULL

Using the NOT logical operator, we can reverse the results of this query, selecting all
Employees who report to a manager:

SELECT e FROM Employee AS e WHERE e.manager IS NOT NULL

Path expressions are composed using “inner join” semantics. If an entity has a null
relationship field, any query that uses that field as part of a path expression eliminates
that entity from consideration. For example, if the Employee entity representing “John
Smith” has a null value for its address relationship field, then the “John Smith”
Employee entity won’t be included in the result set for the following query:

SELECT e FROM Employee AS e
WHERE e.address.state = 'TX'
AND c.name = 'John Smith'

This seems obvious at first, but stating it explicitly helps eliminate much of the ambi-
guity associated with null relationship fields.

The NULL comparison operator can also be used to test input parameters. In this case,
NULL is usually combined with the NOT operator to ensure that an input parameter is not
a null value. For example, this query can be used to test for null input parameters. The
JPA QL statement first checks that the city and state input parameters are not null
and then uses them in comparison operations:

SELECT e FROM Employee AS e
WHERE :city IS NOT NULL AND :state IS NOT NULL
AND e.address.state = :state
AND e.address.city = :city

In this case, if either of the input parameters is a null value, the query returns an empty
List, avoiding the possibility of UNKNOWN results from null input parameters. Your Java
code should do these null checks (input assertions) up front to avoid an unnecessary
database round-trip.

If the results of a query include a null relationship or a basic field, the results must
include null values. For example, the following query selects the addresses of customers
whose name is “John Smith”:

SELECT e.address FROM Employee AS e WHERE e.name = 'John Smith'

222 | Chapter 13: Queries, the Criteria API, and JPA QL

If the Employee entity representing “John Smith” has a null value for its address rela-
tionship field, the previous query returns a List that includes a null value—the null
represents the address relationship field of “John Smith”—in addition to a bunch of
Address entity references. You can eliminate null values by including the NOT NULL
operator in the query, as shown here:

SELECT e.address.city FROM Employee AS e
WHERE e.address.city NOT NULL AND e.address.state = 'FL'

The WHERE Clause and IS EMPTY
The IS EMPTY operator allows the query to test whether a collection-based relationship
is empty. Remember from Chapter 11 that a collection-based relationship will never
be null. If a collection-based relationship field has no elements, it returns an empty
Collection or Set.

Testing whether a collection-based relationship is empty has the same purpose as test-
ing whether a single relationship field or basic field is null: it can be used to limit the
scope of the query and items selected. For example, the following query selects all the
Employees who have no Phones:

SELECT e FROM Employee AS e
WHERE e.phones IS EMPTY

The NOT operator reverses the result of IS EMPTY. The following query selects all the
Employees who have at least one Phone:

SELECT e FROM Employee AS e
WHERE e.phones IS NOT EMPTY

The WHERE Clause and MEMBER OF
The MEMBER OF operator is a powerful tool for determining whether an entity is a member
of a specific collection-based relationship. The following query determines whether a
particular Employee entity (specified by the input parameter) is a member of any of the
Team/Employee relationships:

SELECT t
FROM Team AS t, IN (t.members) AS m, Employee AS e
WHERE
e = :myCustomer
 AND
e MEMBER OF m.members

Applying the NOT operator to MEMBER OF has the reverse effect, selecting all the customers
on which the specified customer does not have a team:

SELECT t
FROM Team AS t, IN (t.members) AS m, Employee AS e
WHERE
e = :myCustomer

JPA QL | 223

 AND
e NOT MEMBER OF m.members

Checking whether an entity is a member of an empty collection always returns false.

The WHERE Clause and LIKE
The LIKE comparison operator allows the query to select String type fields that match
a specified pattern. For example, the following JPA QL statement selects all the cus-
tomers with hyphenated names, like “Monson-Haefel” and “Berners-Lee”:

SELECT OBJECT(e) FROM Employee AS e WHERE e.name LIKE '%-%'

You can use two special characters when establishing a comparison pattern: % (per-
cent) stands for any sequence of characters, and _ (underscore) stands for any single
character. You can use these characters at any location within a string pattern. If a %
or _ actually occurs in the string, you can escape it with the \ (backslash) character.
The NOT logical operator reverses the evaluation so that matching patterns are excluded.
The following examples show how the LIKE clause evaluates String type fields:

phone.number LIKE '617%'

True for “617-322-4151”

False for “415-222-3523”

cabin.name LIKE 'Suite _100'

True for “Suite A100”

False for “Suite A233”

phone.number NOT LIKE '608%'

True for “415-222-3523”

False for “608-233-8484”

someField.underscored LIKE '_%'

True for “_xyz”

False for “abc”

someField.percentage LIKE '\%%'

True for “% XYZ”

False for “ABC”

The LIKE operator can also be used with input parameters:

SELECT e FROM Employee AS e WHERE e.name LIKE :param

Functional Expressions
JPA QL has numerous functions that you can use to process strings and numeric values.

224 | Chapter 13: Queries, the Criteria API, and JPA QL

Functional expressions in the WHERE clause

JPA QL has seven functional expressions that allow for simple String manipulation
and three functional expressions for basic numeric operations. The String functions
are:

LOWER(String)

Converts a string to lowercase.

UPPER(String)

Converts a string to uppercase.

TRIM([[LEADING | TRAILING | BOTH] [trim_char] FROM] String)

Allows you to trim a specified character from the beginning (LEADING), end
(TRAILING), or both (BOTH). If you do not specify a trim character, the space character
will be assumed.

CONCAT(String1, String2)

Returns the String that results from concatenating String1 and String2.

LENGTH(String)

Returns an int indicating the length of the string.

LOCATE(String1, String2 [, start])

Returns an int indicating the position at which String1 is found within String2. If
it’s present, start indicates the character position in String2 at which the search
should start. Support for the start parameter is optional; some containers will
support it and others will not. Don’t use it if you want to ensure that the query is
portable.

SUBSTRING(String1, start, length)

Returns the String consisting of length characters taken from String1, starting at
the position given by start.

The start and length parameters indicate positions in a String as integer values. You
can use these expressions in the WHERE clause to refine the scope of the items selected.
Here’s how the LOCATE and LENGTH functions might be used:

SELECT e
FROM Employee AS e
WHERE
LENGTH(e.name) > 6
 AND
LOCATE(e.name, 'Monson') > −1

This statement selects all the employees with Monson somewhere in their last names but
specifies that the names must be longer than six characters. Therefore, “Monson-
Haefel” and “Monson-Ares” would evaluate to true, but “Monson” would return
false because it has only six characters.

The arithmetic functions in JPA QL may be applied to primitive as well as correspond-
ing primitive wrapper types:

JPA QL | 225

ABS(number)

Returns the absolute value of a number (int, float, or double)

SQRT(double)

Returns the square root of a double

MOD(int, int)

Returns the remainder for the first parameter divided by the second (e.g.,
MOD(7, 5) is equal to 2)

Functions returning dates and times

JPA QL has three functions that can return you the current date, time, and timestamp:
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP. Here’s an example of searching
for employees who joined the company on the current date:

SELECT e FROM Employee e WHERE e.startDate = CURRENT_DATE

Aggregate functions in the SELECT clause

Aggregate functions are used with queries that return a collection of values. They are
fairly simple to understand and can be handy, especially the COUNT() function.

This function returns the number of items in the
query’s final result set. The return type is a java.lang.Long, depending on whether it
is the return type of the query method. For example, the following query provides a
count of all the customers who live in Wisconsin:

SELECT COUNT(c)
FROM Customers AS c
WHERE c.address.state = 'WI'

The COUNT() function can be used with an identifier, in which case it always counts
entities, or with path expressions, in which case it counts fields. For example, the fol-
lowing statement provides a count of all the zip codes that start with the numbers 554:

SELECT COUNT(c.address.zip)
FROM Customers AS c
WHERE c.address.zip LIKE '554%'

In some cases, queries that count a path expression have a corresponding query that
can be used to count an identifier. For example, the result of the following query, which
counts Customers instead of the zip field, is equivalent to the previous query:

SELECT COUNT(c)
FROM Customers AS c
WHERE c.address.zip LIKE '554%'

These functions can be used to find the largest
or smallest value from a collection of any type of field. They cannot be used with iden-
tifiers or paths that terminate in a relationship field. The result type will be the type of
field that is being evaluated. For example, the following query returns the highest price
paid for an order:

COUNT (identifier or path expression).

MAX(path expression), MIN(path expression).

226 | Chapter 13: Queries, the Criteria API, and JPA QL

SELECT MAX(o.totalAmount)
FROM ProductOrder AS o

The MAX() and MIN() functions can be applied to any valid value, including primitive
types, strings, and even serializable objects. The result of applying the MAX() and
MIN() functions to serializable objects is not specified, because there is no standard way
to determine which serializable object is greater than or less than another one.

The result of applying the MAX() and MIN() functions to a String field depends on the
underlying data store. This has to do with the inherent problems associated with
String type comparisons.

The AVG() and SUM() functions can be applied only to path
expressions that terminate in a numeric primitive field (byte, long, float, etc.) or in one
of their corresponding numeric wrappers (Byte, Long, Float, etc.). The result of a query
that uses the SUM() function has the same type as the numeric type it’s evaluating. The
result type of the AVG() function is a java.lang.Double, depending on whether it is used
in the return type of the SELECT method.

For example, the following query uses the SUM() function to get the total amount for
all orders:

SELECT SUM(o.totalAmount)
FROM ProductOrder o

The DISTINCT operator can be used with any of the
aggregate functions to eliminate duplicate values. The following query uses the
DISTINCT operator to count the number of different zip codes that match the pattern
specified:

SELECT DISTINCT COUNT(c.address.zip)
FROM Customers AS c
WHERE c.address.zip LIKE '554%'

The DISTINCT operator first eliminates duplicate zip codes. If 100 customers live in the
same area with the same zip code, their zip code is counted only once. After the du-
plicates have been eliminated, the COUNT() function counts the number of items left.

Any field with a null value is automatically eliminated from the result set operated on
by the aggregate functions. The COUNT() function also ignores values with null values.
The aggregate functions AVG(), SUM(), MAX(), and MIN() return null when evaluating an
empty collection.

The COUNT() function returns 0 (zero) when the argument it evaluates is an empty col-
lection. If the following query is evaluated on an order with no line items, the result is
0 (zero) because the argument is an empty collection:

SELECT COUNT(li)
FROM ProductOrder AS o, IN(o.lineItems) AS li
WHERE o = ?1

AVG(numeric), SUM(numeric).

DISTINCT, nulls, and empty arguments.

JPA QL | 227

The ORDER BY Clause
The ORDER BY clause allows you to specify the order of the entities in the collection
returned by a query. The semantics of the ORDER BY clause are basically the same as in
SQL. For example, we can construct a simple query that uses the ORDER BY clause to
return an alphabetical list of all employees:

SELECT e
FROM Employee AS e
ORDER BY e.name

This will return a Collection of Employee entities in alphabetical order by name.

You can use the ORDER BY clause with or without the WHERE clause. For example, we can
refine the previous query by listing only those U.S. employees who reside in Boston:

SELECT e
FROM Employee AS e
WHERE e.address.city = 'Boston' AND e.address.state = 'MA'
ORDER BY e.name

The default order of an item listed in the ORDER BY clause is always ascending, which
means that the lesser values are listed first and the greater values last. You can explicitly
specify the order as ascending or descending by using the keywords ASC and DESC. The
default is ASC. Null elements will be placed either on top or at the bottom of the query
result, depending on the underlying database. Here’s a statement that lists customers
in reverse (descending) order:

SELECT e
FROM Employee AS e
ORDER BY e.name DESC

You can specify multiple order-by items. For example, you can sort customers by
lastName in ascending order and firstName in descending order:

SELECT c
FROM Customers AS c
ORDER BY c.lastName ASC, c.firstName DESC

If you have five Customer entities with the lastName equal to Brooks, this query sorts the
results as follows:

Brooks, William
Brooks, Henry
Brooks, Hank
Brooks, Ben
Brooks, Andy

Although the fields used in the ORDER BY clause must be basic fields, the value selected
can be an entity identifier, a relationship field, or a basic field. For example, the fol-
lowing query returns an ordered list of all zip codes:

SELECT addr.zip
FROM Address AS addr
ORDER BY addr.zip

228 | Chapter 13: Queries, the Criteria API, and JPA QL

The following query returns all the Address entities for customers named Smith, ordered
by their zip code:

SELECT c.address
FOR Customer AS c
WHERE c.lastName = 'Smith'
ORDER BY c.address.zip

You must be careful which basic fields you use in the ORDER BY clause. If the query
selects a collection of entities, then the ORDER BY clause can be used with only basic
fields of the entity type that is selected. The following query is illegal, because the basic
field used in the ORDER BY clause is not a field of the entity type selected:

// Illegal JPA QL
SELECT e
FROM Employee AS e
ORDER BY e.address.city

Because the city field is not a direct field of the Employee entity, you cannot use it in
the ORDER BY clause.

A similar restriction applies to results. The field used in the ORDER BY clause must also
be in the SELECT clause. The following query is illegal because the field identified in the
SELECT clause is not the same as the one used in the ORDER BY clause:

// Illegal JPA QL
SELECT e.address.city
FROM Employee AS e
ORDER BY e.address.state

In the previous query, we wanted a list of all the cities ordered by their state. Unfortu-
nately, this is illegal. You can’t order by the state field if you are not selecting the
state field.

Bulk UPDATE and DELETE
Java Persistence has the ability to perform bulk UPDATE and DELETE operations. This can
save you a lot of typing. For example, let’s say we want to give a $10 credit across the
board to any customer named Bill Burke. We can do the following bulk UPDATE:

UPDATE ProductOrder o SET o.amountPaid = (o.amountPaid + 10)
WHERE EXISTS (
 SELECT c FROM o.customer c
 WHERE c.name = 'Bill Burke'
)

As an example of DELETE, say that we want to remove all orders placed by Bill Burke:

DELETE FROM ProductOrder o
WHERE EXISTS (
 SELECT c FROM o.customer c
 WHERE c.name = 'Bill Burke'
)

JPA QL | 229

Be very careful how you use bulk UPDATE and DELETE. It is possible, depending on the
vendor implementation, to create inconsistencies between the database and entities
that are already being managed by the current persistence context. Vendor
implementations are required only to execute the update or delete directly on the da-
tabase. They do not have to modify the state of any currently managed entity. For this
reason, it is recommended that you do these operations within their own transaction
or at the beginning of a transaction (before any entities are accessed that might be
affected by these bulk operations). Alternatively, executing EntityManager.flush() and
EntityManager.clear() before executing a bulk operation will keep you safe.

Native Queries
JPA QL is a very rich syntax and should meet most of your querying needs. Sometimes,
though, you want to take advantage of certain proprietary capabilities that are available
only on a specific vendor’s database.

The entity manager service provides a way to create native SQL queries and map them
to your objects. Native queries can return entities, column values, or a combination of
the two. The EntityManager interface has three methods for creating native queries: one
for returning scalar values, one for returning one entity type, and one for defining a
complex result set that can map to a mix of multiple entities and scalar values.

You can always get the underlying JDBC connection through a
javax.sql.DataSource injected by the @Resource and execute any SQL
statement you need. Be aware that your changes will not be reflected in
the current persistence context.

Scalar Native Queries
Query createNativeQuery(String sql)

This creates a native query that returns scalar results. It takes one parameter: your native
SQL. It executes as is and returns the result set in the same form as JPA QL returns
scalar values.

Simple Entity Native Queries
Query createNativeQuery(String sql, Class entityClass)

A simple entity native query takes an SQL statement and implicitly maps it to one entity
based on the mapping metadata you declared for that entity. It expects that the columns
returned in the result set of the native query will match perfectly with the entity’s O/R
mapping. The entity that the native SQL query maps to is determined by the entity
Class parameter:

Query query = manager.createNativeQuery(
 "SELECT p.phone_PK, p.phone_number, p.type

230 | Chapter 13: Queries, the Criteria API, and JPA QL

 FROM PHONE AS p", Phone.class
);

All the properties of the entities must be pulled.

Complex Native Queries
Query createNativeQuery(String sql, String mappingName)

This entity manager method allows you to have complex mappings for your native SQL.
You can return multiple entities and scalar column values at the same time. The map
pingName parameter references a declared @javax.persistence.SqlResultSetMapping.
This annotation is used to define how the native SQL results hook back into your
O/R model. If your returned column names don’t match the parallel annotated property
mapping, you can provide a field-to-column mapping for them using
@javax.persistence.FieldResult:

package javax.persistence;

public @interface SqlResultSetMapping {
 String name();
 EntityResult[] entities() default {};
 ColumnResult[] columns() default {};
}

public @interface EntityResult {
 Class entityClass();
 FieldResult[] fields() default {};
 String discriminatorColumn() default "";
}

public @interface FieldResult {
 String name();
 String column();
}

public @interface ColumnResult {
 String name();
}

Let’s create an example to show how this would work.

Native queries with multiple entities

First, let’s create a native query that returns multiple entity types—a Customer and its
CreditCard:

@Entity
@SqlResultSetMapping(name="customerAndCreditCardMapping",
 entities={@EntityResult(entityClass=Customer.class),
 @EntityResult(entityClass=CreditCard.class,
 fields={@FieldResult(name="id",
 column="CC_ID"),
 @FieldResult(name="number",

Native Queries | 231

 column="number")}
)})
public class Customer {...}

// execution code
{
 Query query = manager.createNativeQuery(
 "SELECT c.id, c.firstName, cc.id As CC_ID,
 cc.number" +
 "FROM CUST_TABLE c, CREDIT_CARD_TABLE cc" +
 "WHERE c.credit_card_id = cc.id",
 "customerAndCreditCardMapping");
}

Because the result set returns multiple entity types, we must define an @SqlResultSet
Mapping. This annotation can be placed on an entity class or method. The entities()
attribute is set to an array of @EntityResult annotations. Each @EntityResult annotation
specifies the entities that will be returned by the native SQL query.

The @javax.persistence.FieldResult annotation is used to explicitly map columns in
the query with properties of an entity. The name() attribute of @FieldResult identifies
the entity bean’s property, and the column() attribute identifies the result set column
returned by the native query.

In this example, we do not need to specify any @FieldResults for Customer, as the native
query pulls in each column for this entity. However, since we are querying only the ID
and number columns of the CreditCard entity, an @FieldResult annotation should be
specified. In the @EntityResult annotation for CreditCard, the fields() attribute de-
fines what CreditCard properties each queried column maps to. Because the Customer
and CreditCard primary-key columns have the same name, the SQL query needs to
distinguish that they are different. The cc.id As CC_ID SQL fragment performs this
identification.

Named Queries
Java Persistence provides a mechanism so that you can predefine JPA QL or native SQL
queries and reference them by name when creating a query. You would want to pre-
declare queries for the same reason you create String constant variables in Java: to
reuse them in multiple situations. If you predefine your queries in one place, you have
an easy way to fine-tune or modify them as time goes on. The @javax.persistence.Named
Query annotation is used for predefining JPA QL queries:

package javax.persistence;

public @interface NamedQuery {
 String name();
 String query();
 QueryHint[] hints() default {};
}

232 | Chapter 13: Queries, the Criteria API, and JPA QL

public @interface QueryHint {
 String name();
 String value();
}

public @interface NamedQueries {
 NamedQuery[] value();
}

You use the @javax.persistence.NamedQueries annotation when you are declaring more
than one query on a class or package. The @javax.persistence.QueryHint annotation
declares vendor-specific hints. These hints work in the same way as the Query.setHint
() method described earlier in this chapter. Here’s an example:

@NamedQueries({
 @NamedQuery
(name="getAverageProductOrderAmount",
 query=
 "SELECT AVG(o.amountPaid)
 FROM ProductOrder as o")
})
@Entity
public class ProductOrder {...}

This example declares a JPA QL query on the ProductOrder entity bean class. You can
then reference these declarations in the EntityManager.createNamedQuery() method:

Query query = em.createNamedQuery("getAverageProductOrderAmount");

Named Native Queries
The @javax.persistence.NamedNativeQuery annotation is used for predefining native
SQL queries:

package javax.persistence;

public @interface NamedNativeQuery {
 String name();
 String query();
 Class resultClass() default void.class;
 String resultSetMapping() default "";
}

public @interface NamedNativeQueries {
 NamedNativeQuery[] value();
}

The resultClass() attribute is for when you have a native query that returns only one
entity type (see “Native Queries” on page 230). The resultSetMapping() attribute must
resolve to a predeclared @SqlResultSetMapping. Both attributes are optional, but you
must declare at least one of them. Here is an example of predeclaring an @NamedNative
Query:

Named Queries | 233

@NamedNativeQuery(
 name="findCustAndCCNum",
 query="SELECT c.id, c.firstName, c.lastName, cc.number AS CC_NUM
 FROM CUST_TABLE c, CREDIT_CARD_TABLE cc
 WHERE c.credit_card_id = cc.id",
 resultSetMapping="customerAndCCNumMapping")
@SqlResultSetMapping(name="customerAndCCNumMapping",
 entities={@EntityResult(entityClass=Customer.class)},
 columns={@ColumnResult(name="CC_NUM")}
)
@Entity
public class Customer {...}

You can then reference this declaration in the EntityManager.createNamedQuery()
method:

Query query = em.createNamedQuery("findCustAndCCNum");

234 | Chapter 13: Queries, the Criteria API, and JPA QL

CHAPTER 14

Entity Callbacks and Listeners

When you execute EntityManager methods such as persist(), merge(), remove(), and
find(), or when you execute JPA QL queries or use the Criteria API, a predefined set
of lifecycle events are triggered. For instance, the persist() method triggers database
inserts. Merging triggers updates to the database. The remove() method triggers data-
base deletes. Querying entities triggers a load from the database. Sometimes it is very
useful to have your entity bean class be notified as these events happen. For instance,
maybe you want to create an audit log of every interaction done on each row in your
database. The Java Persistence specification allows you to set up callback methods on
your entity classes so that your entity instances are notified when these events occur.
You can also register separate listener classes that can intercept these same events.
These are called entity listeners. This chapter discusses how you register your entity
bean classes for lifecycle callbacks as well as how to write entity listeners that can
intercept lifecycle events on your entities.

Callback Events
An annotation may represent each phase of an entity’s lifecycle:

@javax.persistence.PrePersist
@javax.persistence.PostPersist
@javax.persistence.PostLoad
@javax.persistence.PreUpdate
@javax.persistence.PostUpdate
@javax.persistence.PreRemove
@javax.persistence.PostRemove

The @PrePersist and @PostPersist events have to do with the insertion of an entity
instance into the database. The @PrePersist event occurs immediately when the
EntityManager.persist() call is invoked or whenever an entity instance is scheduled to
be inserted into the database (as with a cascaded merge). The @PostPersist event is not
triggered until the actual database insert.

235

The @PreUpdate event is triggered just before the state of the entity is synchronized with
the database, and the @PostUpdate event happens after. This synchronization could
occur at transaction commit time, when EntityManager.flush() is executed, or when-
ever the persistence context deems it necessary to update the database.

The @PreRemove and @PostRemove events have to do with the removal of an entity bean
from the database. @PreRemove is triggered whenever EntityManager.remove() is invoked
on the entity bean, directly or because of a cascade. The @PostRemove event happens
immediately after the actual database delete occurs.

The @PostLoad event is triggered after an entity instance has been loaded by a find() or
getReference() method call on the EntityManager interface, or when a JPA QL or
Criteria query is executed. It is also called after the refresh() method is invoked.

Callbacks on Entity Classes
You can have an entity bean instance register for a callback on any of these lifecycle
events by annotating a public, private, protected, or package-protected method on the
bean class. This method must return void, throw no checked exceptions, and have no
arguments:

import javax.persistence.Entity;
import javax.persistence.PostPersist;
import javax.persistence.PrePersist;

/**
 * Represents an Employee which is able to receive JPA
 * events.
 */
@Entity
public class EntityListenerEmployee
{

 private String name;

 public String getName() { return name; }
 public void setName(final String name) { this.name = name; }

 /*
 * Event Listeners; fired by JPA and track state in the EventTracker
 */

 @PrePersist
 @SuppressWarnings("unused")
 private void prePersist(){ ... }

 @PostPersist
 @SuppressWarnings("unused")
 private void postPersist(){ ... }

236 | Chapter 14: Entity Callbacks and Listeners

 ...
}

When an event is triggered on a particular managed entity instance, the entity manager
will invoke the appropriate annotated method on the entity bean class.

Entity Listeners
Entity listeners are classes that can generically intercept entity callback events. They
are not entity classes themselves, but they can be attached to an entity class through a
binding annotation or XML. You can assign methods on an entity listener class to
intercept a particular lifecycle event. These methods return void and take one Object
parameter that is the entity instance on which the event is being triggered. The method
is annotated with the callback in which it is interested:

public class Auditor {

 @PostPersist void postInsert(final Object entity)
 {
 System.out.println("Inserted entity: " + entity.getClass().getName());
 }

 @PostLoad void postLoad(final Object entity)
 {
 System.out.println("Loaded entity: " + entity.getClass().getName());
 }

}

The entity listener class must have a public no-arg constructor. It can be applied to an
entity class by using the @javax.persistence.EntityListeners annotation:

package javax.persistence;

@Target(TYPE) @Retention(RUNTIME)
public @interface EntityListeners
{
 Class[] value();
}

You may specify one or more entity listeners that intercept the callback events of an
entity class:

@Entity
@EntityListeners ({Auditor.class})
public class EntityListenerEmployee
{
 ...
}

By using the @EntityListeners annotation on the EntityListenerEmployee entity class,
any callback methods within those entity listener classes will be invoked whenever
EntityListenerEmployee entity instances interact with a persistence context.

Entity Listeners | 237

Default Entity Listeners
You can specify a set of default entity listeners that are applied to every entity class in
the persistence unit by using the <entity-listeners> element under the top-level
<entity-mappings> element in the ORM mapping file. For instance, if you wanted to
apply the Auditor listener to every entity class in a particular persistence unit, you would
do the following:

<entity-mappings>
 <entity-listeners>
 <entity-listener class="org.package.Auditor">
 <post-persist name="postInsert"/>
 <post-load name="postLoad"/>
 </entity-listener>
 </entity-listeners>
</entity-mappings

If you want to turn off default entity listeners to a particular entity class, you can use
the @javax.persistence.ExcludeDefaultListeners annotation:

@Entity
@ExcludeDefaultListeners
public class NoEntityListenersEmployee {
...
}

If either the @ExcludeDefaultListeners annotation or its XML equivalent is applied to
the EntityListenerEmployee entity, the Auditor is turned off for that entity.

Inheritance and Listeners
If you have an inheritance entity hierarchy in which the base class has entity listeners
applied to it, any subclass will inherit these entity listeners. If the subclass also has entity
listeners applied to it, then both the base and the subclass’s listeners will be attached:

@Entity
@EntityListeners(Auditor.class)
public class SingleEntityListenerEmployee
{
 ...
}

@Entity
@EntityListeners(AnotherListener.class)
public class DoubleEntityListenerEmployee extends SingleEntityListenerEmployee
{
 ...
}

238 | Chapter 14: Entity Callbacks and Listeners

In this example, the Auditor entity listener and AnotherListener will be attached to the
DoubleEntityListenerEmployee entity. If all of these listeners have an @PostPersist call-
back, the order of callback execution will be as follows:

1. Auditor’s @PostPersist method

2. AnotherListener’s @PostPersist method

Entity listeners applied to a base class happen before any listeners attached to a subclass.
Callback methods defined directly in an entity class happen last.

You can turn off inherited entity listeners by using @javax.persistence.ExcludeSuper
classListeners:

@Entity
@EntityListeners(Auditor.class)
public class EntityListenerEmployee {

}

@Entity
@ExcludeSuperclassListeners

public class NoEntityListenersEmployee extends EntityListenerEmployee {
...
}

In this example, no listeners would be executed for NoEntityListenerEmployee entity
instances. @ExcludeSuperclassListeners has an XML equivalent in the <exclude-super
class-listeners/> element.

Entity Listeners | 239

PART IV

Container Services

While server-side component types handle business logic and entities address state, the
EJB Container can continue to make our jobs easier by providing a wide range of generic
and configurable services. Enterprise applications generally handle a large number of
concurrent users, and each request might need to be handled carefully so it does not
violate the security or integrity of the application. Additionally, we shouldn’t waste our
time wiring our modules together; the container can do this for us. Perhaps we have
some other cross-cutting concern we’d like to model and apply on our own. For these
requirements, EJB offers a range of container services.

Security (Chapter 15) addresses the need to authorize and authenticate users uniformly
across the application. Not all requests should be given carte blanche access to the whole
application, and this is EJB’s mechanism to declaratively or programmatically restrict
access.

Injection (Chapter 16) allows our modules to communicate with one another without
the explicit need to perform service lookups. We can also use injection to define de-
pendency relationships between resources.

Transactions (Chapter 17) ensure that our application’s state maintains its integrity
while under load from concurrent use. Although traditionally this is a very difficult
paradigm to achieve manually, EJB provides us with a declarative syntax to guard our
business logic methods and, by extension, associated resources such as the
EntityManager.

Interceptors (Chapter 18) are a generic utility for defining your own application logic
to be applied in a cross-cutting manner. This is a powerful way to promote code reuse,
and it’s built into the platform.

The Timer Service (Chapter 19) allows the EJB container to fire time-based events into
business logic methods. Instead of servicing a client request, we may instead set triggers
to, for instance, process a batch job every hour.

Web Services (Chapters 20 and 21) address the need for interoperability with other
platforms outside Enterprise Java.

CHAPTER 15

Security

Most enterprise applications are designed to serve a large number of clients, and users
are not necessarily equal in terms of their access rights. An administrator might require
hooks into the configuration of the system, whereas unknown guests may be allowed
a read-only view of data.

It’s bad practice, however, to hardcode users’ access directly into your application’s
logic. We shouldn’t have to rebuild an EJB each time a new employee comes into the
company or an existing one is promoted to a new position with greater privileges.

If we group users into categories with defined roles, we can then allow or restrict access
to the role itself, as illustrated in Figure 15-1.

This technique is called role-based security. As we’ve seen before, embedding such rules
within business logic tangles up concerns, so we’re best off enforcing these constraints
at another level.

The Java EE and EJB specifications provide a core set of security services that applica-
tion developers can integrate declaratively and programmatically. These include:

Authentication
This is the process of validating the identity of a user who is trying to access a
secured system. When authenticating, the application server verifies that the user
actually exists in the system and has provided the correct credentials, such as a
password.

Authorization
Once a user is authenticated in a system, he will want to interact with the appli-
cation. Authorization involves determining whether a user is allowed to execute a
certain action. Authorization can police a user’s access to subsystems, data, and
business objects, or it can monitor more general behavior. Certain users, for ex-
ample, may be allowed to update information, whereas others are allowed only to
view the data. For web applications, maybe only certain users are permitted to
access certain URLs. For EJB applications, the user can be authorized on a per-
method basis.

243

Although a small programmatic API is available for interacting with Java EE security
services, users rarely have to write any code to secure their applications, because setting
up security is usually a static, declarative process. Only session beans can be secured
in EJB. This chapter focuses on how to set up authentication and authorization for your
session beans.

Authentication and Identity
In a secure EJB application, authentication involves verifying that a user is who she says
she is. When a remote client logs on to the EJB system, it is associated with a security
identity for the duration of that session. Once a remote client application has been
associated with a security identity, it is ready to use beans to accomplish some task.
When a client invokes a method on a bean, the EJB server implicitly passes the client’s
identity with the method invocation. When the EJB container receives the method
invocation, it checks the identity to ensure that the client is valid and is allowed to
invoke the target method.

Unfortunately (or fortunately, depending on your perspective), the EJB specification
does not specify how authentication happens. Although it defines how security infor-
mation is propagated from a client to the server, it does not specify how the client is
supposed to obtain and associate identity and credentials with an EJB invocation. It
also does not define how the application server stores and retrieves authentication

Figure 15-1. EJB security permitting access based upon the caller’s role

244 | Chapter 15: Security

information. The vendor must decide how to package and provide these services on
the client and server.

When invoking on a remote EJB, many application servers accomplish authentication
by using the JNDI API. For example, a client using JNDI can provide authenticating
information using the JNDI API to access a server or resource in the server. This infor-
mation is frequently passed when the client attempts to initiate a JNDI connection on
the EJB server. The following code shows how a client’s password and username can
be added to the connection properties for obtaining a JNDI connection to the EJB
server:

properties.put(Context.SECURITY_PRINCIPAL, "username");
properties.put(Context.SECURITY_CREDENTIALS, "password");

Context ctx = new InitialContext(properties);
Object ref = jndiContext.lookup("SecureBean/remote");
SecureRemoteBusiness remote = (SecureRemoteBusiness)ref;

In this example, the user is authenticated with the connection to the JNDI
InitialContext. The username and password are associated with the client thread and
propagated to the server internally when calls are made to remote EJBs.

Although JNDI is a common way for most application servers to perform authentica-
tion, sometimes users need a better abstraction for obtaining security information. For
instance, what if the credentials were a thumbprint instead of a password? Many ap-
plication servers provide a mechanism other than JNDI with which to authenticate.
For instance, the JBoss application server uses the JAAS specification, which provides
a rich API for performing authentication.

Authorization
Once a user is authenticated by a vendor-specific mechanism, he must be checked to
see if he is allowed to invoke a particular EJB method. Authorization is performed in
Java EE and EJB by associating one or more roles with a given user and then assigning
method permissions based on that role. While an example of a user might be “Carlo”
or “Jaikiran,” roles are used to identify a group of users—for instance, “administrator,”
“manager,” or “employee.” In EJB, you assign access control at method granularity.
You do not assign these permissions on a per-user basis, but rather on a per-role basis.
This allows the authentication process to remain a separate configuration from
authorization.

The roles used to describe authorization are considered logical roles because they do
not directly reflect users, groups, or any other security identities in a specific operational
environment. EJB security roles are mapped to real-world user groups and users when
the bean is deployed. This mapping allows a bean to be portable; every time the bean
is deployed in a new system, the roles can be mapped to the users and groups specific
to that operational environment.

Authorization | 245

Unlike authentication, authorization is something that the EJB specification clearly
defines. You begin by declaring the roles that are accessed programmatically in your
code base. Then, you assign permissions for each method in your class. This is done
declaratively through Java annotations or through the ejb-jar.xml deployment
descriptor.

Example: A Secured School
To illustrate, let’s secure access to a SecureSchoolEJB; anyone can see whether a school
is open, but only enrolled students may enter the front door during operating hours.
Additionally, only janitors may use the service door, and administrators have total
access, including the ability to open and close the school each day. The full example is
covered in Appendix G.

The Business Interface
As always, we’ll start by fleshing out the API for our little school. It’ll support both a
front and service entrance, and access to each will be defined by the user looking to
enter as well as whether the school is open or closed:

/**
 * Represents a school holding doors which may be
 * opened by various users. Using the EJB Security model,
 * access to open a particular door may be blocked
 * to certain users.
 *
 * @author ALR
 * @version $Revision: $
 */
public interface SecureSchoolLocalBusiness
{

 /**
 * Closes the school for business. At this point the
 * front door will be unlocked for all.
 * This method may only be called by users in role
 * {@link Roles#ADMIN}.
 */
 void open();

 /**
 * Closes the school for business. At this point the
 * front door will be locked for all but users
 * in role {@link Roles#ADMIN}
 * This method may only be called by admins.
 */
 void close();

 /**
 * Opens the front door. While school is open,

246 | Chapter 15: Security

 * any authenticated user may open the door, else
 * only the {@link Roles#ADMIN} may open.
 *
 * @throws SchoolClosedException If the current user
 * is not in {@link Roles#ADMIN} and is attempting to open
 * the door while {@link SecureSchoolLocalBusiness#isOpen()}
 * is false.
 */
 void openFrontDoor() throws SchoolClosedException;

 /**
 * Opens the service door. Users in {@link Roles#STUDENT}
 * role may not open this door, but {@link Roles#ADMIN}
 * and {@link Roles#JANITOR} may.
 */
 void openServiceDoor();

 /**
 * Returns whether or not the school is open. When closed, only
 * the {@link Roles#ADMIN} is allowed access to all doors. Anyone,
 * even unauthenticated users, may check if school is open.
 * @return
 */
 boolean isOpen();

}

Assigning Method Permissions
We must be very careful when determining to whom we grant access within the Secure
SchoolEJB.

As a first step, let’s define the roles that are permitted:

/**
 * Holds the list of roles with which users of the school
 * may be affiliated. EJB Security is role-based, so this
 * is how we'll determine access.
 *
 * @author ALR
 * @version $Revision: $
 */
public interface Roles
{
 /*
 * Roles of callers to the system
 */

 /**
 * Role denoting the user is a school administrator
 */
 String ADMIN = "Administrator";

 /**
 * Role denoting the user is a student

Example: A Secured School | 247

 */
 String STUDENT = "Student";

 /**
 * Role denoting the user is a janitor
 */
 String JANITOR = "Janitor";

}

We need to make the EJB aware now of the roles it’ll respect; this is done using the
@javax.annotation.security.DeclareRoles annotation and placing the declaration
atop the bean implementation class:

@DeclareRoles(
{Roles.ADMIN, Roles.STUDENT, Roles.JANITOR})

Alternatively, we can use the security-role-ref element within the bean deployment
descriptor.

By default, it’s good practice to restrict access to everyone at the highest level, and then
enable access as necessary at a finer granularity. The @javax.annotation.security.
RolesAllowed annotation is used to assign access rights at either the class or method
level. This annotation defines one or more logical roles that are allowed to access the
method. When placed on the bean class, the @RolesAllowed annotation specifies the
default set of roles that are permitted to access bean methods. Each individual EJB
method can override this behavior by using the same annotation. Let’s block everyone
at the class level first, which gives us a full bean implementation class definition that
looks a little like the following:

/**
 * A secure school which may block requests to
 * open doors depending upon the EJB Security
 * model's configuration
 *
 * @author ALR
 * @version $Revision: $
 */
@Singleton
@Local(SecureSchoolLocalBusiness.class)
// Declare the roles in the system
@DeclareRoles(
{Roles.ADMIN, Roles.STUDENT, Roles.JANITOR})
// By default allow no one access, we'll enable access at a finer-grained level
@RolesAllowed(
{})
@Startup
public class SecureSchoolBean implements SecureSchoolLocalBusiness { ... }

Now that the whole EJB is secured to block outside callers, we can drill down to the
method level and enable access to fit our requirements.

248 | Chapter 15: Security

The @javax.annotation.security.PermitAll annotation specifies that any authentica-
ted user is permitted to invoke the method. As with @RolesAllowed, you can use this
annotation on the bean class to define the default for the entire bean class, or you can
use it on a per-method basis. @PermitAll is also the default value if no default or explicit
security metadata is provided for a method. This means that if you do not use any
security annotations on your bean class, every user is implicitly granted unlimited
access.

Because anyone can check to see whether the school is open, we apply @PermitAll to
the isOpen() method:

@PermitAll
// Anyone can check if school is open
public boolean isOpen() { ... }

With @PermitAll, all callers—including unauthenticated anonymous users—may
invoke isOpen().

Now we need to allow the Administrator role to open and close the school for business.
We can assign permissions to the relevant methods easily, again using @RolesAllowed:

@RolesAllowed(Roles.ADMIN)
// Only let admins open and close the school
public void close(){ ... }

@PostConstruct
// School is open when created
@RolesAllowed(Roles.ADMIN)
// Only let admins open and close the school
public void open(){ ... }

Upon invocation, the EJB container will check that the caller is in the configured role
before allowing the target method to be invoked upon the bean instance. If the client
does not have the appropriate permissions, a javax.ejb.EJBAccessException will be
raised.

Janitors need to be able to access the service door, so we’ll grant this role the right to
do so:

@RolesAllowed(
{Roles.ADMIN, Roles.JANITOR})
// Students cannot open this door
public void openServiceDoor(){ ... }

Programmatic Security
At this point, we’ve locked down each method in a declarative fashion, and the EJB
container is responsible for blocking and allowing invocations at the method level.
However, it’s likely that your application will have some contextual security require-
ments. In our case, students and janitors may open the front doors to the school only
during its operating hours, so we’ll need to code this logic programmatically.

Example: A Secured School | 249

Most of the security features in this chapter have focused solely on declarative security
metadata, or metadata that is statically defined before an application even runs. To fit
this need, EJB also has a small programmatic API for gathering information about a
secured session. Specifically, the javax.ejb.EJBContext interface has a method for de-
termining the concrete user who is invoking on the EJB. It also has a method that allows
you to check whether the current user belongs to a certain role.

First, we’ll let the authenticated roles access the method:

// Give everyone access to this method, we may restrict them later
@RolesAllowed(
{Roles.ADMIN, Roles.STUDENT, Roles.JANITOR})
public void openFrontDoor()
{

Now it’s our responsibility as bean provider to do some manual checking on our own,
and we do this via the javax.ejb.EJBContext interface (or its child, SessionContext). As
we’ve seen before, this is the hook for bean instances to interact with the container, so
we’ll inject the following as an instance member:

/**
 * Hook to the container to get security information
 */
@Resource
private SessionContext context;

We use the getCallerPrincipal() method to return a standard Java SE
javax.security.Principal security interface. A Principal object represents the indi-
vidual user who is currently invoking on the EJB.

The EJBContext.isCallerInRole() method allows you to determine whether the current
calling user belongs to a certain role. According to our business interface contract, we
only let users in the Administrator role open the front doors after closing hours.

From EJBContext we can access the caller principal’s name (i.e., the username) and also
check that he is in the desired role. If so, we’ll let the client open the door:

// If we've reached this point, EJB security has let us through. However,
// we may want to apply some contextual rules. Because EJB security is
// declarative at the method level, we use the API to enforce specific logic.

// Get the caller
final String callerName = context.getCallerPrincipal().getName();

// Ensure the school is open
if (!this.isOpen())
{
 // School's closed, so only let admins open the door
 if (!context.isCallerInRole(Roles.ADMIN))
 {
 // Kick 'em out
 throw SchoolClosedException
 .newInstance("Attempt to open the front door after hours " +
 "is prohibited to all but admins, denied to: "

250 | Chapter 15: Security

 + callerName);
 }
 }

// Log
log.info("Opening front door for: " + callerName);

The RunAs Security Identity
In addition to specifying the roles that have access to an enterprise bean’s methods, the
deployer can also specify the run as role for the entire enterprise bean. Whereas the
@RolesAllowed annotation specifies which roles have access to the bean’s methods,
@javax.annotation.security.RunAs specifies the role under which the method will run.
In other words, the “run as” role is used as the enterprise bean’s identity when it tries
to invoke methods on other beans—and this identity isn’t necessarily the same as the
identity that’s currently accessing the bean.

Although they are not allowed to use method permissions, message-driven beans can
use the @RunAs feature. Message-driven beans have only a @RunAs identity; they never
execute under the caller identity, because there is no “caller.” The messages that a
message-driven bean processes are not considered calls, and the clients that send them
are not associated with the messages. With no caller identity to propagate, message-
driven beans must always specify a @RunAs security identity if they interact with other
secured session beans.

In the case of our secured school example, we can imagine that a firehouse nearby is
able to service requests for emergency response. As an extreme precautionary measure
when this occurs, we’ll close the school and send all kids home.

It would be irresponsible to let only administrators raise a fire alert; anyone passing by
might notice danger. But because admin privileges are required to close the school, we
can let the current user masquerade with the correct rights in this emergency situation.

First, to flesh out the fire department’s limited capabilities:

/**
 * Represents a fire department capable of declaring
 * a state of emergency. Anyone may invoke this support,
 * and when an alert is raised we'll close the local school.
 *
 * @author ALR
 * @version $Revision: $
 */
public interface FireDepartmentLocalBusiness
{

 /**
 * Declares a state of emergency, so we must close the local school
 */

Example: A Secured School | 251

 void declareEmergency();

}

Our bean implementation class is very simple. It invokes upon the school’s close()
method but runs as an administrator, thanks to the @RunAs annotation atop the class:

@Singleton
@RunAs(Roles.ADMIN)
@PermitAll
// Implicit, but included here to show access policy
public class FireDepartmentBean implements FireDepartmentLocalBusiness
{

 /**
 * School to close in case of emergency
 */
 @EJB
 private SecureSchoolLocalBusiness school;

 /**
 * Ordinarily we can't close the school with no permissions,
 * but because of @RunAs, we have ADMIN rights.
 */
 @Override
 public void declareEmergency()
 {
 // We run as admin here, so go ahead and close the school
 school.close();
 }

}

As is usually the case, the client view ends up being the most illustrative to show the
effect of @RunAs.

We can easily construct a test that takes the following steps:

• Obtains EJB proxies using an authenticated security context (anonymous user)

• Tries to close the school directly

• Ensures we can’t close directly, as we’re not admins

• Declares an emergency with the fire department

• Ensures that the school is closed as a postcondition

This might look a little like the following:

/**
 * Ensures that any unauthenticated user can declare an emergency,
 * hence closing the school
 */
@Test
public void anyoneCanDeclareEmergencyAndCloseSchool() throws NamingException
{

252 | Chapter 15: Security

 // Assume we have a couple EJB proxies with unauthenticated caller
 final SecureSchoolLocalBusiness school = null; // From somewhere
 final FireDepartmentLocalBusiness fireDepartment = null; // From somewhere

 // First check that school's open
 Assert.assertTrue("School should be open to start the test", school.isOpen());

 // Ensure we can't close the school directly (we don't have access)
 boolean gotAccessException = false;
 try
 {
 school.close();
 }
 catch (final EJBAccessException e)
 {
 // Expected
 log.info("We can't close the school on our own, make an emergency");
 gotAccessException = true;
 }
 Assert.assertTrue("We shouldn't be able to close school directly",
 gotAccessException);

 // Now declare an emergency via the fire department
 fireDepartment.declareEmergency();

 // The school should now be closed, even though we
 // don't have rights to do that directly on our own.
 Assert.assertFalse("School should be closed after emergency was declared",
 school.isOpen());

}

Example: A Secured School | 253

CHAPTER 16

JNDI, the ENC, and Injection

Every EJB container that is deployed in an application server has its own personal
internal registry called the Enterprise Naming Context (ENC). This is implemented by
JNDI and is an object store where the EJB container can hold specific references to its
environment. Think of it as the EJB container’s personal address book, where it writes
down addresses to various Java EE services that it wants to look up and use within its
business logic.

In previous chapters, we started to talk a little bit about the ENC, showing how you
can use annotations such as @javax.annotation.EJB and @javax.annotation.Resource
to inject references to Java EE services directly into the fields of your bean. This injection
process is driven by the EJB container’s ENC. In this chapter, we show you how you
can populate the ENC and use it as your own JNDI registry, and we show you how
you can use it to inject environment references into your bean fields.

Global JNDI
While previous versions of the EJB Specification left it up to the vendor to decide exactly
how clients were to look up session bean proxies, the 3.1 revision in Chapter 4.4 in-
troduces a portable syntax required of all container providers. No matter which ven-
dor’s implementation you choose, SLSBs and SFSBs views must be available in Global
JNDI under this syntax:

java:global[/app-name]/module-name/bean-name [!FQN]

In this arrangement, app-name refers to the name of the application (or EAR; this is
optional), module-name is the name of the module (the JAR or WAR), and FQN is the
fully qualified interface name. Elements in brackets are optional. So, for instance, an
EJB outside of an enterprise archive and exposing a no-interface view would leave out
app-name and FQN.

255

Let’s see an example:

@Stateless(name="MyEJB")
public class MyEJBBean implements MyEJBRemoteBusiness, MyEJBLocalBusiness
{
 ...
}

We’ll assume that this EJB is packaged in a module, myejb.jar, which is located at the
root of an encompassing application myapp.ear. Clients could then reliably expect to
obtain a reference to the remote business interface by using the following code:

javax.naming.Context jndiContext = new InitialContext(); // Assume we have this

// Define the contracted value
final String jndiName = "java:global/myapp/myejb/MyEJB!" +
 MyEJBRemoteBusiness.class.getName();

MyEJBRemoteBusiness bean = (MyEJBRemoteBusiness)jndiContext.lookup(jndiName);

This gives us a portable contract where we may expect to find our EJBs in the same
place, no matter our vendor.

Although this works wonderfully for clients operating in nonmanaged environments,
there are a few places we can improve this setup. For starters, the lookup code depends
upon obtaining a vendor-specific JNDI Context. More importantly, we require a cast,
and the lookup is not typesafe. Finally, because we must construct the JNDI name on
our own, there’s a point for potential errors.

Luckily the EJB container provides a series of typesafe injection mechanisms, paving
the way for a cleaner separation of logic from plumbing:

@EJB
MyEJBLocalBusiness bean;

In many cases, this is all we need to obtain a usable reference. These injection facilities
will be the focus of this chapter.

The JNDI ENC
The ENC has been around in the EJB specification since the early 1.0 days. It began as
a local JNDI namespace that was specific to an EJB container. Developers could define
aliases to resources, EJBs, and environment entries in the JNDI ENC through EJB XML
deployment descriptors. These aliases could then be looked up directly in JNDI within
business logic. In EJB 3.x, this mechanism was enhanced so that JNDI ENC references
can be injected directly into the fields of a bean class. Annotations are the primary
mechanism for doing this, but XML deployment descriptor support is available for
those who wish to use that abstraction.

256 | Chapter 16: JNDI, the ENC, and Injection

What Can Be Registered in the JNDI ENC?
Many different items can be bound to the ENC: references to any EJB interface,
a JMS queue or topic destination, JMS connection factories, data sources, any
JCA resource, and even primitive values. Java EE services such as
javax.transaction.UserTransaction, javax.ejb.TimerService, and org.omg.CORBA.ORB
are also available in the ENC.

How Is the JNDI ENC Populated?
The ENC’s JNDI namespace is populated in two separate ways: via XML or via anno-
tations. Any reference that you declare in XML to a service or resource automatically
populates the JNDI ENC with the reference’s name. Any environment annotation that
you use in your bean class also causes the ENC to be populated. Once an item is bound
to the JNDI ENC of the EJB container, it can be referenced by a JNDI lookup.

XML population

To illustrate how XML population works, let’s define a reference to the stateless session
bean we wrote in Chapter 4. Here we define a local interface reference from one EJB
to another:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>MyEJB</ejb-name>
 <ejb-local-ref>
 <ejb-ref-name>ejbs/referenceToMyEJB2</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local>org.ejb3book.example.MyEJB2LocalBusiness</local>
 <ejb-link>MyEJB2</ejb-link>
 </ejb-local-ref>
 </enterprise-beans>
</ejb-jar>

The <ejb-local-ref> element tells the EJB container that the MyEJB wants a reference
to the local business interface of MyEJB2. A reference to this bean is registered in the
MyEJB’s JNDI ENC under the name ejbs/referenceToMyEJB2, as noted by the <ejb-ref-
name> element. Other referenceable types such as resources and JMS destinations have
elements similar to <ejb-local-ref> that specify how and where the reference will be
bound into their JNDI ENCs. Each service type in Java EE has its own reference syntax.
We’ll see examples of all of them in this chapter.

Annotation population

Each referenceable type also has a corresponding annotation that can be used as an
alternative to XML. If you specify these annotations on the bean class, they will cause
the JNDI ENC to be populated with the information defined in the annotation:

The JNDI ENC | 257

@Stateful(name="MyEJB")
@EJB(name="ejbs/referenceToMyEJB2",
 beanInterface=MyEJB2LocalBusiness.class,
 beanName="MyEJB2")
public class MyEJBBean implements MyEJBLocalBusiness
{
 ...
}

In this example, we are registering a reference to the MyEJB2 under the ejb/reference
ToMyEJB2 name. Business logic running inside the MyEJBBean is able to do JNDI lookups
to find this reference. Each environment annotation, such as @javax.annotation.EJB,
has a name() attribute that specifies the JNDI ENC name to which you want the service
reference to be bound.

The second half of this chapter describes all the details of each of these different envi-
ronment annotations.

How Are Things Referenced from the ENC?
Anything registered in the JNDI ENC can be looked up by name under the java:comp/
env context. The comp part of this name corresponds to component. The JNDI name
resolves to a different context depending on where you invoke the lookup. For example,
if you invoke jndi.lookup("java:comp/env") within the MyEJB, you will get that EJB
container’s ENC. If you do the same within another EJB, you will get a different ENC
registry specific to that bean. The application server knows which ENC is active when
you perform the lookup:

@Stateful(name="MyEJB")
@EJB(name="ejbs/referenceToMyEJB2",
 beanInterface=MyEJB2LocalBusiness.class,
 beanName="MyEJB2")
public class MyEJBBean implements MyEJBLocalBusiness
{
 public void lookEjbFromEnc()
 {
 MyEJB2LocalBusiness otherBean = null;
 try
 {
 javax.naming.InitialContext ctx = new InitialContext();
 otherBean = (MyEJB2LocalBusiness)
 ctx.lookup("java:comp/env/ejbs/referenceToMyEJB2");
 }
 catch (javax.naming.NamingException ne)
 {
 throw new EJBException(ne);
 }
 // ...
 }
}

258 | Chapter 16: JNDI, the ENC, and Injection

In this example, the lookupEjbFromEnc method needs a reference to MyEJB2. This refer-
ence was created in MyEJB’s ENC by annotating the bean class with the @EJB annotation,
and the preceding code does a JNDI lookup to find this reference.

Using EJBContext

In Chapters 5 and 8, we talked a little bit about the javax.ejb.SessionContext and
javax.ejb.MessageDrivenContext interfaces. Both extend the javax.ejb.EJBContext,
and they can be used to look up ENC entries. The EJBContext interface has a conven-
ience ENC lookup method, and it’s a bit simpler than a direct JNDI lookup because
it does not throw a checked exception and it takes a relative name into the ENC instead
of the full java:comp/env string we saw before. SessionContext or
MessageDrivenContext can be injected into your session or message-driven beans by
using the @javax.annotation.Resource annotation:

@Stateful(name="MyEJB")
@EJB(name="ejbs/referenceToMyEJB2",
 beanInterface=MyEJB2LocalBusiness.class,
 beanName="MyEJB2")
public class MyEJBBean implements MyEJBLocalBusiness
{
 @Resource private javax.ejb.SessionContext ejbContext;

 public void lookEjbFromContext()
 {
 MyEJB2LocalBusiness otherBean = ejbContext.lookup("ejbs/referenceToMyEJB2");
 // ...
 }
}

This example uses the EJBContext.lookup() method to look up the reference. This
context object is injected into the ejbContext field using the @Resource annotation. Here
we do not append the java:comp/env string to the name when performing the lookup
but instead use the relative name defined in the annotation or XML reference.

Annotation injection

Instead of an ENC lookup, EJB references can be injected directly into a member var-
iable. This injection can be done through environment annotations or an XML
deployment descriptor fragment:

@Stateful(name="MyEJB")
public class MyEJBBean implements MyEJBLocalBusiness
{
 @EJB // Field-level injection
 private MyEJB2LocalBusiness otherBean;

}

By using the @javax.ejb.EJB annotation on the otherBean field of the MyEJBBean class,
the EJB container will automatically inject a reference when the bean instance is created.

The JNDI ENC | 259

Alternatively, if you do not like this form of injection, the specification also supports
injecting via a bean setter method:

@Stateful(name="MyEJB")
public class MyEJBBean implements MyEJBLocalBusiness
{
 private MyEJB2LocalBusiness otherBean;

 @EJB // Setter method injection
 public void setOtherBean(final MyEJB3LocalBusiness otherBean)
 {
 this.otherBean = otherBean;
 }

}

Unlike the previous example, when the bean instance is allocated, the EJB container
will instead invoke the setOtherBean method, passing in the EJB reference as a param-
eter. This pattern works for all other injection annotations discussed in this chapter.
Setter method injection is more verbose than direct field injection, but its advantage is
that it can be mocked more easily in unit tests.

A number of different environment annotations like @EJB are described in detail in the
second half of this chapter. All of them function similarly and follow the same usage
patterns as @EJB.

Default ENC name

Annotating a field or a setter method of a bean class also creates an entry in the JNDI
ENC for the injected element. This is true for all environment annotations, not just
@EJB. If the name() attribute of the injection annotation is specified, then the reference
is stored in the ENC under that name. If no name is specified, then the ENC name is
extracted from the name of the annotated field or setter method. In this case, a default
ENC name is derived from the fully qualified class name of the field or method, as well
as the base name of the field or method. So, for the otherBean field or setOtherBean
method of the previous example, the ENC name would be org.ejb3book.example.MyEJB
Bean/otherBean. These injected EJB references can then be looked up in JNDI under
java:comp/env/org.ejb3book.example.MyEJBBean/otherBean. The ENC name becomes
very important when you want to override an injection annotation within XML.

XML injection

If you prefer not to use annotations to initialize the fields of your bean class, then the
<injection-target> element is available to you in your ejb-jar.xml deployment
descriptor:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>MyEJB</ejb-name>

260 | Chapter 16: JNDI, the ENC, and Injection

 <ejb-local-ref>
 <ejb-ref-name>MyEJB2</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local>org.ejb3book.examples.MyEJB2LocalBusiness</local>
 <ejb-link>MyEJB2Bean</ejb-link>
 <injection-target>
 <injection-target-class>
 org.ejb3book.examples.MyEJBBean
 </injection-target-class>
 <injection-target-name>otherBean</injection-target-name>
 </injection-target>
 </ejb-ref>
 </enterprise-beans>
</ejb-jar>

Each XML environment element such as <ejb-local-ref> can use <injection-
target> to populate a field or call a setter method with the referenced item. The <injec
tion-target-class> element is the class where your field or method is declared. This
may seem unnecessarily verbose, but this becomes important when there are inheri-
tance hierarchies. The <injection-target-name> specifies the target field or method
name into which you want the reference injected. In this case, we’re injecting into the
otherBean field or setOtherBean method.

You cannot inject into a field and method with the same base name. In
our example, you cannot simultaneously define injections upon an
otherBean field and setOtherBean method, as they will represent the
same ENC name and will not be distinguishable by the EJB container.
If your logic requires injection into both a field and a method, simply
assign different base names.

XML overrides

Using injection annotations is sometimes considered hardcoding configuration into the
code of your bean class, though one could also make the argument that this is a static
wiring of the application, not a configurable element. Either way, the EJB specification
allows you to override injection annotations via the XML deployment descriptor. Let’s
reexamine our use of the @EJB annotation:

@Stateful(name="MyEJB")
public class MyEJBBean implements MyEJBLocalBusiness
{
 @EJB // Field-level injection
 private MyEJB2LocalBusiness otherBean;

}

In the original deployment of the MyEJB, the EJB container could figure out what
EJB reference to inject based on the type of the annotated otherBean field.
MyEJB2LocalBusiness was unique across the application. What if in a new deployment,
multiple implementations of this type were deployed into the same application? You

The JNDI ENC | 261

might want to configure, per deployment of your application, which reference is in-
jected. You can override this annotation within XML:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>MyEJB</ejb-name>
 <ejb-local-ref>
 <ejb-ref-name>
 org.ejb3book.examples.MyEJBBean/otherBean
 </ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local>org.ejb3book.examples.MyEJB2LocalBusiness</local>
 <ejb-link>MyEJB2</ejb-link>
 </ejb-local-ref>
 </enterprise-beans>
</ejb-jar>

In this example, we are providing a more exact mapping for the @EJB annotation within
XML. The <ejb-ref-name> must match the default ENC name of the injected field; this
is how the EJB container knows you are overriding an annotated field. The <ejb-
link> element provides a more explicit reference to the EJB with the name MyEJB2.

If the name() attribute were used with the @EJB annotation, then <ejb-ref-name> would
have to match that value. For example, consider this declaration in Java:

@Stateful(name="MyEJB")
public class MyEJBBean implements MyEJBLocalBusiness
{
 @EJB(name="nonDefaultReference") // Defines the name in the ENC
 private MyEJB2LocalBusiness otherBean;

}

The @EJB annotation tells the EJB container that it wants to inject an EJB with the
MyEJB2LocalBusiness interface into the otherBean field, and that it should be registered
in the ENC under the nonDefaultReference entry. The XML must use this ENC name
to override what is injected:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>MyEJB</ejb-name>
 <ejb-local-ref>
 <ejb-ref-name>nonDefaultReference</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local>org.ejb3book.examples.MyEJB2LocalBusiness</local>
 <ejb-link>MyEJB2</ejb-link>
 </ejb-local-ref>
 </enterprise-beans>
</ejb-jar>

The same nonDefaultReference name is referenced using the <ejb-ref-name> element.

262 | Chapter 16: JNDI, the ENC, and Injection

XML always takes precedence over annotation metadata. XML provides
the means to reconfigure hardcoded annotation configuration.

Injection and inheritance

It is possible for a bean class to be part of a class hierarchy. If any fields or methods
have injection annotations on them, they will still be populated, but certain injection
rules are followed:

public class BaseClass
{
 private SomeBusinessInterface bean;

 @EJB(beanName="SomeEJB")
 public void someMethod(SomeBusinessInterface bean)
 {
 this.bean = bean;
 // ...
 }
}

@Stateless
public class MySessionBean extends BaseClass implements MySessionLocalBusiness
{
 // ...
}

In this example, we have a stateless session bean class that inherits from a base class.
All instances of MySessionBean would have the appropriate resource injected into the
base class’s someMethod method. It is possible to change what is injected by reimple-
menting and overriding it in the subclass:

@Stateless
public class MySessionBean extends BaseClass implements MySessionLocalBusiness
{
 private SomeBusinessInterface bean;

 @EJB(beanName="AnotherEJB")
 public void someMethod(SomeBusinessInterface bean)
 {
 // ...
 }
}

The SomeEJB would no longer be injected into the someMethod method; instead, the new
overridden reference, AnotherEJB, would be injected. There is one exception to this rule:
if someMethod in the BaseClass was a private method rather than a protected or public
method, then the base class would still be injected with the old reference.

The JNDI ENC | 263

Reference and Injection Types
The first half of this chapter focused on the semantics of the JNDI ENC and how to
reference things within it. You learned the base semantics of both annotation and XML
injection. This section dives into the various services and configurations you can ref-
erence from your ENC. Other chapters within this book have touched briefly on most
of these injectable and referenceable types, but this chapter groups all of it into one
place and discusses the intricacies and dirty details.

EJB References
As you saw earlier in this chapter, your EJB bean classes can reference and aggregate
other EJBs either through JNDI ENC lookups or by directly injecting these references
into member fields.

@javax.ejb.EJB

The @javax.ejb.EJB annotation can be used on your bean class’s setter methods, on
member fields, or directly on the class itself:

package javax.ejb;

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface EJB {
 String name() default "";
 String description() default "";
 Class beanInterface() default Object.class;
 String beanName() default "";
 String mappedName() default "";
 String lookup() default "";
}

The name() attribute refers to what the JNDI ENC name will be for the referenced EJB.
This name is relative to the java:comp/env context.

The beanInterface() attribute is the interface you are interested in and usually is used
by the container to distinguish whether you want a remote or local reference to the EJB.
If your EJB needs to be integrated with EJB 2.1 beans, beanInterface() can also be a
reference to a home interface.

The beanName() is the EJB name of the EJB referenced. It is equal to either the value you
specify in the @Stateless.name() or @Stateful.name() annotation or the value you put
in the <ejb-name> field in the XML deployment descriptor.

The mappedName() attribute is a placeholder for a vendor-specific identifier. This iden-
tifier may be a key into the vendor’s global registry. Many vendors store references to
EJBs within the global JNDI tree so that clients can reference them, and mappedName()
may reference that global JNDI name.

264 | Chapter 16: JNDI, the ENC, and Injection

The lookup() attribute, new to EJB 3.1, defines the JNDI name that should be used to
find the target EJB reference. Although mappedName() for many vendors defines the same
feature, this addition is spec-compliant.

As we’ve seen, when placed on the bean class, the @EJB annotation will register a
reference into the JNDI ENC of the bean. In this scenario, the name() and
beanInterface() attributes are required. Most of the time, only the bean’s interface is
needed to distinguish which EJB you are referring to. Sometimes, though, you may be
reusing the same business interface for multiple deployed EJBs. In that case, the bean
Name() or lookup() (or, if your vendor supports it, mappedName()) attribute must be used
to provide a unique identifier for the EJB you want to reference.

The @EJB annotation can be used only once on your bean class. When you need to
reference multiple EJBs, the @javax.ejb.EJBs annotation is available:

package javax.ejb;

@Target({TYPE}) @Retention(RUNTIME)
public @interface EJBs {
 EJB[] value();
}

This kind of annotation is required because only one annotation of a given type can be
applied to any given artifact in the Java language. This plural name pattern is duplicated
for the other reference annotations described in this chapter:

@Stateless
@EJBs({
 @EJB(name="SomeEJB1",
 beanInterface=SomeEJBLocalBusiness1.class),
 @EJB(name="SomeEJB2",
 beanInterface=SomeEJBLocalBusiness2.class)
})
public class MyEJBBean implements MyEJBLocalBusiness
{
 // ...
}

In this example, we create an ENC reference to both the SomeEJB1 and SomeEJB2 beans
through their local business views.

Ambiguous and overloaded EJB names

The <ejb-name> element and any @Stateless.name() or @Stateful.name() attributes
must be unique within a given EJB-JAR deployment. Unfortunately, this is not the case
for all EJB JARs deployed in an Enterprise ARchive (.ear) file. In an .ear file, EJB names
can be duplicated in different EJB-JAR deployments. To differentiate references with
duplicate EJB names, the EJB specification has an extended syntax for <ejb-link> and
the beanName() attribute of the @EJB annotation. This extended syntax has a relative
path to the JAR file in which the EJB is located, followed by the # character, followed
by the EJB name of the referenced bean:

Reference and Injection Types | 265

@EJB(beanName="myejbs.jar#SomeEJB")
private SomeEJBLocalBusiness bean;

In this example, the myejbs.jar file is in the root directory of the EAR file along with
the JAR the referencing EJB is deployed in. The @EJB annotation references SomeEJB
specifically.

Resolving EJB references

The simplest example of the @javax.ejb.EJB annotation is using it with no other
annotation attributes:

@EJB
private SomeEJBLocalBusiness bean;

The specification isn’t very detailed in terms of exactly how the EJB container should
resolve this reference. To give you a feel for how this process works, let’s see how the
JBoss application server resolves this reference:

1. The only possible identifier for this EJB reference is the business interface type.
The application server first looks for a unique EJB in the referencing EJB’s EJB-JAR
deployment that uses SomeEJBLocalBusiness as one of its business interfaces. If
more than one EJB uses the same business interface, it throws a deployment
exception.

2. If the EJB-JAR is deployed as part of an Enterprise ARchive (.ear), it looks in other
EJB-JARs for a unique EJB that uses the SomeEJBLocalBusiness interface. Again, if
more than one EJB uses the same business interface, it throws a deployment
exception.

3. If the EJB reference is not found in the .ear file, it looks for it in other global EJB-
JAR deployments.

If the beanName() attribute is specified, then JBoss uses the same search process, but it
uses the beanName()’s value as an additional identifier.

If the mappedName() or lookup() attribute is specified, then no search process is per-
formed. The application server expects that a specific EJB is bound into the global JNDI
under the attribute’s value.

EntityManagerFactory References
A javax.persistence.EntityManagerFactory can be registered in the JNDI ENC of an
EJB and then injected. It is sometimes useful to obtain a reference to an EntityManager
Factory directly so that you can have full control over the EntityManager instance
and persistence context you want to work with. Although you can obtain an
EntityManagerFactory through the javax.persistence.Persistence API, it is always
better to use the facilities of Java EE so that the lifecycle of the EntityManagerFactory
can be controlled by the application server. When you let the application server

266 | Chapter 16: JNDI, the ENC, and Injection

populate your ENC or inject your EntityManagerFactory, the Java EE runtime will
handle the cleanup of this instance and you do not have to call
EntityManagerFactory.close(). Like all other services and resources, an EntityManager
Factory can be bound to the JNDI ENC or injected into your bean class by using either
annotations or XML.

@javax.persistence.PersistenceUnit

The @javax.persistence.PersistenceUnit annotation can be used on your bean class’s
setter methods or member fields, or directly on the class itself:

package javax.persistence;

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceUnit {
 String name() default "";
 String unitName() default "";
}

The name() attribute refers to what the JNDI ENC name will be for the referenced
EntityManagerFactory. This name is relative to the java:comp/env context.

The unitName() attribute identifies which EntityManagerFactory you are interested in
referencing and refers to the name given your persistence unit that you declared in a
persistence.xml file. If left unspecified, a deployment error is raised, unless the EJB-JAR
has only one persistence unit deployed within it. In that case, it defaults to this sole
persistence unit.

When placed on the bean class, the @PersistenceUnit annotation will register a refer-
ence to the EntityManagerFactory in the JNDI ENC of the EJB bean class:

@Stateless(name="MyEJB")
@PersistenceUnit(name="persistence/MyDB",
 unitName="MyDB")
public class MyEJBBean implements MyEJBLocalBusiness
{
 ...
}

In this example, code within the MyEJBBean can look up an EntityManagerFactory that
manages a MyDB persistence unit under the java:comp/env/persistence/MyDB JNDI ENC
name. Here’s how a client bean would use this context to look up the reference to this
EntityManagerFactory:

InitialContext jndiContext = new InitialContext();
EntityManagerFactory emf = (EntityManagerFactory)
 jndiContext.lookup("java:comp/env/persistence/MyDB");

When the @PersistenceUnit annotation is used on the bean class, the name() attribute
is always required so that the EJB container knows where in the JNDI ENC to bind the
EntityManagerFactory.

Reference and Injection Types | 267

The @PersistenceUnit annotation can be used only once on your bean class.
So when you need to reference multiple persistence units, the
@javax.persistence.PersistenceUnits annotation is available:

package javax.persistence;

@Target({TYPE}) @Retention(RUNTIME)
public @interface PersistenceUnits {
 PersistenceUnit[] value();
}

This is used just as we’ve seen with @EJBs; it allows us to aggregate a series of
@PersistenceUnit annotations together.

The @PersistenceUnit annotation can also be placed on a setter method or member
field so that the EntityManagerFactory that is referenced is injected directly into the
bean class instance. When used on a setter method or member field, no annotation
attribute is required, because both the name() and the unitName() attributes have valid
defaults, as described earlier in this chapter.

XML-based EntityManagerFactory references

The <persistence-unit-ref> element defines a reference to a given
EntityManagerFactory. It contains the subelements <description> (optional), <persis
tence-unit-ref-name> (required), and <persistence-unit-name> (required), as well as
the element <injection-target> (optional) described in the first section of this chapter.
Here is an example of a reference that provides the same metadata as our annotation-
based one shown earlier:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>MyEJB</ejb-name>
 <persistence-unit-ref>
 <persistence-unit-ref-name>persistence/MyDB</persistence-unit-ref-name>
 <persistence-unit-name>MyDB</persistence-unit-name>
 </persistence-unit-ref>
 </enterprise-beans>
</ejb-jar>

The <persistence-unit-ref-name> element is equivalent to the name() attribute of the
@PersistenceUnit annotation, in that it represents the ENC name to which the reference
will be bound. The <persistence-unit-name> element is equivalent to the unitName()
attribute of the @PersistenceUnit annotation. It represents the same name you have
declared in your persistence.xml deployment descriptor.

The <injection-target> element is used if you want to inject your
EntityManagerFactory into your EJB’s bean class. Here is an example of using
<injection-target>:

<ejb-jar>
 <enterprise-beans>

268 | Chapter 16: JNDI, the ENC, and Injection

 <session>
 <ejb-name>TravelAgentBean</ejb-name>
 <persistence-unit-ref>
 <persistence-unit-ref-name>persistence/MyDB</persistence-unit-ref-name>
 <persistence-unit-name>MyDB</persistence-unit-name>
 <injection-target>
 <injection-target-class>org.ejb3book.examples.MyEJBBean
 </injection-target-class>
 <injection-target-name>pu</injection-target-name>
 </injection-target>
 </persistence-unit-ref>
 </enterprise-beans>
</ejb-jar>

In this example, the EntityManagerFactory would be injected into field named pu or
passed as a parameter to a setter method named setPu() in the MyEJBBean class.

Scoped and overloaded unit names

A persistence unit can be declared in many different places. It can be defined in an EJB-
JAR, an EAR/lib JAR, or even a WAR file. Persistence units are scoped when defined
in a WAR or EJB-JAR file, and they cannot be referenced by components deployed
outside of that archive. Persistence units deployed in a JAR in the .ear’s lib/ directory
are available to all other components in that enterprise archive. Sometimes you may
have the same persistence unit name defined in your EJB or WAR file as the name you
declared in a persistence JAR in the EAR/lib directory. To differentiate references with
duplicate persistence unit names, the specification has an extended syntax for
<persistence-unit-name> and the unitName() attribute of the @PersistenceUnit anno-
tation. This extended syntax has a relative path to a JAR file that contains the persis-
tence unit, followed by the # character, followed by the persistence unit name:

@PersistenceUnit(unitName="myejbs.jar#MyDB")
EntityManagerFactory emf;

In this example, the myejbs.jar is in the same directory of the EAR file as the persistence
unit’s JAR file. The @PersistenceUnit annotation references the MyDB persistence unit
within that deployment.

EntityManager References
An EntityManager can be registered in the JNDI ENC of an EJB. When you are regis-
tering an EntityManager into the JNDI ENC or injecting it into your EJB, the EJB con-
tainer has full control over the lifecycle of the underlying persistence context of the
EntityManager. The EntityManager object reference itself is really just a proxy around
an actual persistence context that may not even exist yet, depending on the type of
persistence context you are injecting. When you let the application server populate
your ENC or inject your EntityManager, the EJB container handles the cleanup of this
instance and you do not have to call EntityManager.close(). In fact, it is illegal to call
close() on an injected EntityManager instance, and an exception will be thrown if you

Reference and Injection Types | 269

do. Like all other services and resources, an EntityManager can be bound to the JNDI
ENC or injected into your bean class by using either annotations or XML.

@javax.persistence.PersistenceContext

The @javax.persistence.PersistenceContext annotation can be used on your bean
class’s setter methods or member fields or directly on the class itself:

package javax.persistence;

public enum PersistenceContextType
{
 TRANSACTION,
 EXTENDED
}

@Target({}) @Retention(RUNTIME)
public @interface PersistenceProperty {
 String name();
 String value();
}

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PersistenceContext {
 String name() default "";
 String unitName() default "";
 PersistenceContextType type() default TRANSACTION;
 PersistenceProperty[] properties() default {};
}

The name() attribute refers to the JNDI ENC name under which the EntityManager is
referenced. This name is relative to the java:comp/env context.

The unitName() attribute identifies which persistence unit you are interested in refer-
encing. This identifier is the same as what you have declared in your persistence.xml
file. If left unspecified, a deployment error is raised unless the EJB-JAR has only one
persistence unit deployed within it. In that case, it defaults to this sole persistence unit.

The type() attribute specifies the type of persistence context you want. Persistence
ContextType.TRANSACTION specifies that you want a transaction-scoped persistence
context. This is the default. PersistenceContextType.EXTENDED gives you an extended
persistence context. The EXTENDED type can be used only on stateful session beans. You
will receive a deployment error if you use it with any other bean type. Review Chap-
ter 17 for more information on the differences between EXTENDED- and TRANSACTION-
based persistence contexts.

The properties() attribute allows you to pass in additional vendor-specific properties
for the created EntityManager instance. You set this attribute with an array of
@javax.persistence.PersistenceProperty annotation declarations.

When placed on the bean class, the @PersistenceContext annotation will register a
reference to the EntityManager into the JNDI ENC of the EJB bean class:

270 | Chapter 16: JNDI, the ENC, and Injection

@Stateful
@PersistenceContext(name="persistence/MyDB",
 unitName="MyDB"
 type=PersistenceContextType.EXTENDED)
public class MyEJBBean implements MyEJBLocalBusiness
{
 // ...
}

In this example, code within the MyEJB can look up an EntityManager that manages a
MyDB persistence unit under the java:comp/env/persistence/MyDB JNDI ENC name.
Here’s how a client bean would use this context to look up the reference to this
EntityManager:

InitialContext jndiContext = new InitialContext();
EntityManager em = (EntityManager)
 jndiContext.lookup("java:comp/env/persistence/MyDB");

When the @PersistenceContext annotation is used on the bean class, the name() attrib-
ute is required so that the EJB container knows where in the JNDI ENC to bind the
EntityManager. The type() and unitName() attributes have valid defaults.

The @PersistenceContext annotation can be used only once on your bean class.
So when you need to reference multiple persistence contexts, the
@javax.persistence.PersistenceContexts annotation is available.

The @PersistenceContext annotation can also be placed on a setter method or member
field so that the EntityManager referenced is injected directly into the bean class
instance:

@Stateful
public class MyEJBBean implements MyEJBLocalBusiness
{
 @PersistenceContext(unitName="MyDB")
 private EntityManager em;
}

When used on a setter method or member field, no annotation attribute is required, as
the name(), unitName(), and type() attributes have valid defaults.

XML-based injection for EntityManager types works similarly to the previous examples
for <persistence-unit-ref>.

Resource References
EJBs need access to more than just other EJBs and persistence contexts, and they use
the JNDI ENC to look up external resources that they need to access. The mechanism
for doing this is similar to the mechanism used for referencing other EJB and environ-
ment entries: the external resources are mapped into a name within the JNDI ENC
namespace and are optionally injected into member fields or setter methods of bean
instances. This is accomplished using annotations or an XML deployment descriptor
fragment.

Reference and Injection Types | 271

Resource injection is detailed in the Java Enterprise Edition 6 Specification, Chapter
EE.5.

External resources can be of the following types:

• javax.sql.DataSource

• javax.jms.Queue

• javax.jms.Topic

• javax.jms.QueueConnectionFactory

• javax.jms.ConnectionFactory

• javax.jms.TopicConnectionFactory

• javax.mail.Session

• java.net.URL

• java.lang: String, Character, Byte, Short, Integer, Long, Boolean, Double, Float,
Class, and all Enum types.

• javax.transaction.UserTransaction

• javax.transaction.TransactionSynchronizationRegistry

• CORBA ORB references

• JPA PersistenceUnit and PersistenceContext

In this section, we focus on javax.sql.DataSource as an example.

@javax.annotation.Resource

The @javax.annotation.Resource annotation is used to reference an external resource.
It can be applied to your bean class’s setter methods or member fields, or directly on
the class itself. This annotation is highly overloaded and overused in the Java EE
specification; in addition to external resources, it is also used to reference JMS message
destinations, environment entries, EJBContexts, and Java EE core services. For now,
we’ll focus solely on using this annotation to access external resources:

package javax.annotation;

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface Resource
{

 public enum AuthenticationType {
 CONTAINER,
 APPLICATION
 }

 String name() default "";
 Class type() default Object.class;
 AuthenticationType authenticationType() default AuthenticationType.CONTAINER;
 boolean shareable() default true;
 String description() default "";

272 | Chapter 16: JNDI, the ENC, and Injection

 String mappedName() default "";
 String lookup() default "";
}

The name() attribute refers to what the JNDI ENC name is for the referenced external
resource. This name is relative to the java:comp/env context.

The type() attribute declares the fully qualified class name of the resource’s Java type.
When the @Resource annotation is applied to the bean class, this attribute may be im-
portant to the EJB container to truly identify the resource in which you are interested.
Usually, this attribute is unneeded and the default value is good enough.

The mappedName() attribute is a vendor-specific identifier for the external resource. Since
Java EE has no specified mechanism or global registry for finding global resources,
many vendors require this attribute so that they can locate and bind the resource. Many
times, this mappedName() attribute will be equivalent to a global JNDI name.

The lookup() attribute, new in JEE6, is the spec-defined mechanism pointing to a
resource in global JNDI.

When placed on the bean class, the @Resource annotation registers a reference to the
external resource into the JNDI ENC of the EJB bean class:

@Stateless
@Resource(name="jdbc/PostgresDB",
 type=javax.sql.DataSource,
 lookup="java:/DefaultDS")
public class MyEJBBean implements MyEJBLocalBusiness
{
 // ...
}

In this example, the @Resource annotation is binding a javax.sql.DataSource into the
jdbc/PostgresDB ENC name. The lookup() attribute provides the global JNDI name so
that the application server can locate the desired resource. Code within the MyEJB can
now locate this data source under the java:comp/env/jdbc/PostgresDB JNDI ENC
name.

When the @Resource annotation is used on the bean class, the name() and type() at-
tributes are required. Here lookup() is used to truly identify the resource.

The authenticationType() attribute tells the server who is responsible for authentica-
tion when the resource is accessed. It can have one of two values: CONTAINER or
APPLICATION. If CONTAINER is specified, the container will automatically perform au-
thentication (sign on or log in) to use the resource, as specified at deployment time. If
APPLICATION is specified, the bean itself must perform the authentication before using
the resource. Here’s how a bean might sign on to a connection factory when
APPLICATION is specified:

@Stateful
@Resource(name="jdbc/PostgresDB",
 type=javax.sql.DataSource,

Reference and Injection Types | 273

 authenicationType=AuthenticationType.APPLICATION,
 lookup="java:/DefaultDS")
public class MyEJBBean implements MyEJBLocalBusiness
{
 @Resource SessionContext ejbContext;

 private java.sql.Connection getConnection()
 {
 DataSource source = (DataSource)
 ejbContext.lookup("jdbc/PostgresDB");
 String loginName = ejbContext.getCallerPrincipal().getName();
 String password = ...; // get password from somewhere

 // use login name and password to obtain a database connection
 java.sql.Connection con = source.getConnection(loginName, password);
}

In this case, the connection will be authenticated programmatically. In the CONTAINER
option, the caller principal could be extracted internally by the resource itself or con-
figured statically by the application deployment.

The @Resource annotation can be used only once on your bean class. When you need
to reference multiple persistence units, the @javax.annotation.Resources annotation is
available.

The @Resource annotation can also be placed on a setter method or member field so
that the resources referenced will be injected directly into the bean class instance. When
used on a setter method or member field, only the lookup() attribute may be required
to identify the resource, as the type and ENC name can be determined from the type
and name of the method or field.

Shareable resources

When several enterprise beans in a transaction use the same resource, you will want to
configure your EJB server to share that resource. Sharing a resource means that each
EJB will use the same connection to access the resource (e.g., database or JMS provider),
a strategy that is more efficient than using separate resource connections.

In terms of a database, EJBs that are referencing the same database will probably want
to use the same database connection during a transaction so that all create, read, up-
date, and delete (CRUD) operations return consistent results. EJB containers share
resources by default, but resource sharing can be turned on or off explicitly with the
shareable() attribute of the @Resource annotation.

Occasionally, advanced developers may run into situations where resource sharing is
not desirable, and having the option to turn off resource sharing is beneficial. But unless
you have a good reason for turning off resource sharing, we recommend that you accept
the default shareable() setting of true.

274 | Chapter 16: JNDI, the ENC, and Injection

Resource Environment and Administered Objects
Resource environment entries are objects that do not fall into the resource reference
category. Some resources may have other, additional administered objects that need to
be obtained from the JNDI ENC or injected into your bean class. An administered
object is a resource that is configured at deployment time and is managed by the EJB
container at runtime. They are usually defined and deployed by a JCA resource adapter.

Besides administered objects, resource environment entries are also used
to reference services such as javax.transaction.UserTransaction and
javax.transaction.TransactionSynchronizationRegistry.

To obtain a reference to one of these services, the @Resource annotation can be used.
When using this annotation, the authenticationType() and shareable() attributes are
meaningless and are illegal even to specify.

Environment Entries
In Chapter 5, the EncryptionEJB had a configurable property for the cipher’s passphrase.
These types of configurable properties are called environment entries. The bean can use
environment entries to customize its behavior.

Although they can be defined using annotations, environment entries are almost always
configured via XML, as they really are configuration values and not metadata. The
<env-entry> element is used to define them. This element contains the subelements
<description> (optional), <env-entry-name> (required), <env-entry-type> (required),
and <env-entry-value> (optional), as well as the element <injection-target>

(optional). Here is a typical <env-entry> declaration:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>EncryptionEJB</ejb-name>

 <!-- Override the ciphers' default passphrase -->
 <env-entry>
 <env-entry-name>ciphersPassphrase</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>OverriddenPassword</env-entry-value>
 </env-entry>

 </session>
 </enterprise-beans>
</ejb-jar>

The <env-entry-name> element is relative to the java:comp/env context. For example,
the ciphersPassphrase entry can be accessed using the path java:comp/env/ciphers
Passphrase in a JNDI ENC lookup:

InitialContext jndiContext = new InitialContext();
String passphrase = (String) jndiContext.lookup("java:comp/env/ciphersPassphrase");

Reference and Injection Types | 275

Alternatively, it can be looked up with the EJBContext.lookup() method using the
ciphersPassphrase name.

<env-entry-type> can be of type String or one of the several primitive wrapper types,
including Integer, Long, Double, Float, Byte, Boolean, Short, or any Enum type.

<env-entry-value> is optional. The value can be specified by the bean developer or
deferred to the application assembler or deployer.

The <injection-target> element can be used to initialize a field or setter method with
the environment entry’s value:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>EncryptionEJB</ejb-name>

 <!-- Override the ciphers' default passphrase -->
 <env-entry>
 <env-entry-name>ciphersPassphrase</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>OverriddenPassword</env-entry-value>
 <injection-target>
 <injection-target-class>
 org.ejb3book.examples.MyEJBBean
 </injection-target-class>
 <injection-target-name>ciphersPassphrase</injection-target>
 </injection-target>
 </env-entry>

 </session>
 </enterprise-beans>
</ejb-jar>

The preceding XML will inject the value OverriddenPassword into the field named
ciphersPassphrase or invoke a setter method named setCiphersPassphrase in the bean
class.

The @javax.annotation.Resource annotation can be used to pull in the environment
entry instead of the <injection-target> element:

@Resource(name="ciphersPassphrase") private String passphrase = "defaultPassphrase";

In this example, the value will be pulled from the environment entry described in XML
and injected into the passphrase field. If no XML is used to configure this value, the
default will be "defaultPassphrase", but no entry is created in the ENC. A common
pattern is to annotate your field with @Resource and provide a default value for the field
that can optionally be overridden in XML. Using the @Resource annotation with a
String or primitive value type identifies it as an environment entry to the EJB container.
When @Resource designates an environment entry, only the name() attribute is allowed
to be specified. Also, it doesn’t make much sense to use @Resource for environment
entries at the class level, as there is no way to initialize the value in the annotation.

276 | Chapter 16: JNDI, the ENC, and Injection

Message Destination References
Message destination references populate the JNDI ENC with a pointer to a JMS topic
or queue. You need these references if you are sending messages within your EJB.
Chapter 8 gave a more complete description of this type of reference, so only an over-
view will be provided here, with additional instructions on how to inject using an
annotation instead.

XML-based resource references

The <message-destination-ref> element defines a reference to a JMS message destina-
tion. It contains the subelements <description> (optional), <message-destination-ref-
name> (required), <message-destination-type> (required), <message-destination-

usage> (required), <message-destination-link> (optional), and <mapped-name>

(optional), as well as the element <injection-target> (optional) described in the first
section of this chapter. Here is an example of a reference to a topic:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>MyEJB</ejb-name>
 <message-destination-ref>
 <message-destination-ref-name>
 jms/MyTopic
 </message-destination-ref-name>
 <message-destination-type>javax.jms.Topic</message-destination-type>
 <message-destination-usage>Produces</message-destination-usage>
 <message-destination-link>Distributor</message-destination-link>
 <mapped-name>topic/MyTopic</mapped-name>
 <injection-target>
 <injection-target-class>org.ejb3book.examples.MyEJBBean
 </ injection-target-class>
 <injection-target-name>myTopic</injection-target-name>
 </injection-target>
 </message-destination-ref>
 </enterprise-beans>
</ejb-jar>

The <message-destination-ref-name> element is the JNDI ENC name the topic will be
bound to and is relative to the path java:comp/env.

The <message-destination-type> element is either a javax.jms.Topic or a
javax.jms.Queue and is required.

The <message-destination-usage> element specifies whether the EJB produces or con-
sumes messages to or from this destination.

The <message-destination-link> element creates a message flow, as described in
Chapter 8.

Sometimes a vendor-specific identify is required, and <mapped-name> optionally fulfills
this role.

Reference and Injection Types | 277

As with all other resource reference types, the <injection-target> element can be used
to inject the destination into a field or setter method.

Using @Resource

The @javax.annotation.Resource annotation is overloaded to support referencing JMS
destinations. Unfortunately, the specification does not provide annotation metadata
to set up a message destination link, so you’ll have to rely on XML to do this sort of
thing.

When placed on the bean class, the @Resource annotation registers a reference to the
JMS queue or topic destination into the JNDI ENC of the EJB bean class:

@Stateless
@Resource(name="jms/MyTopic",
 type=javax.jms.Topic,
 lookup="topic/MyTopic")
public class MyEJBBean implements MyEJBLocalBusiness
{
 // ...
}

In this example, the @Resource annotation is binding a javax.jms.Topic into the jms/
MyTopic ENC name. The mappedName() attribute provides a global, vendor-specific
identifier so that the application server can locate the desired destination.

When the @Resource annotation is used on the bean class, the name() and type()
attributes are required. As stated earlier, lookup() may be required by the vendor to
truly identify the resource from global JNDI. Only these three attributes can be set by
application code. All others are illegal, and they will create a deployment error.

The @Resource annotation can also be placed on a setter method or member field so
that the destination referenced will be injected directly into the bean class instance:

@Stateless
public class MyEJBBean implements MyEJBLocalBusiness
{
 @Resource(mappedName="topic/MyTopic")
 private javax.jms.Topic myTopic;
}

When used on a setter method or member field, only the lookup() attribute may be
required to identify the resource, as the type and ENC name can be determined from
the field type and name.

278 | Chapter 16: JNDI, the ENC, and Injection

CHAPTER 17

Transactions

ACID Transactions
Unfortunately, good business-object design is not enough to make EJBs useful in an
industrial-strength application. The problem is not with the definition of the EJBs or
the taskflow; the problem is that a good design does not, in and of itself, guarantee that
a business method represents a good transaction. To understand why, we will take a
closer look at what a transaction is and what criteria a transaction must meet to be
considered reliable.

In business, a transaction usually involves an exchange between two parties. When you
purchase an ice cream cone, you exchange money for food; when you work for a com-
pany, you exchange skill and time for money (which you use to buy more ice cream).
When you are involved in these exchanges, you monitor the outcome to ensure that
you aren’t “ripped off.” If you give the ice cream vendor a $20 bill, you don’t want him
to drive off without giving you your change; likewise, you want to make sure that your
paycheck reflects all the hours that you worked. By monitoring these commercial ex-
changes, you are attempting to ensure the reliability of the transactions; you are making
sure that each transaction meets everyone’s expectations.

In business software, a transaction embodies the concept of a commercial exchange. A
business system transaction (transaction for short) is the execution of a unit-of-work
that accesses one or more shared resources, usually databases. A unit-of-work is a set
of activities that relate to each other and must be completed together. The reservation
process is a unit-of-work made up of several activities: recording a reservation, debiting
a credit card, and generating a ticket.

The object of a transaction is to execute a unit-of-work that results in a reliable ex-
change. Here are some types of business systems that employ transactions:

ATM
The ATM (automatic teller machine) you use to deposit, withdraw, and transfer
funds executes these units-of-work as transactions. In an ATM withdrawal, for

279

example, the ATM checks to make sure you don’t overdraw, and then it debits
your account and spits out some money.

Online book order
You’ve probably purchased many of your Java books—maybe even this book—
from an online bookseller. This type of purchase is also a unit-of-work that takes
place as a transaction. In an online book purchase, you submit your credit card
number, it is validated, and a charge is made for the price of the book. Finally, an
order to ship the book is sent to the bookseller’s warehouse.

Medical system
In a medical system, important data—some of it critical—is recorded about pa-
tients every day, including information about clinical visits, medical procedures,
prescriptions, and drug allergies. The doctor prescribes the drug, and then the
system checks for allergies, contraindications, and appropriate dosages. If all tests
pass, the drug can be administered. These tasks make up a unit-of-work. A unit-
of-work in a medical system may not be financial, but it’s just as important. Failure
to identify a drug allergy in a patient could be fatal.

As you can see, transactions are often complex and usually involve the manipulation
of a lot of data. Mistakes in data can cost money, or even lives. Transactions must
therefore preserve data integrity, which means that the transaction must work perfectly
every time or not be executed at all. This is a pretty tall order. As difficult as this re-
quirement is, however, when it comes to commerce, there is no room for error. Units-
of-work involving money or anything of value always require the utmost reliability
because errors affect the revenues and the well-being of the parties involved.

To give you an idea of the accuracy required by transactions, think about what would
happen if a transactional system suffered from even infrequent errors. ATMs provide
customers with convenient access to their bank accounts and represent a significant
percentage of the total transactions in personal banking. The transactions handled by
ATMs are simple but numerous, providing us with a great example of why transactions
must be error-proof. Let’s say that a bank has 100 ATMs in a metropolitan area, and
each ATM processes 300 transactions (deposits, withdrawals, and transfers) a day, for
a total of 30,000 transactions per day. If each transaction involves the deposit, with-
drawal, or transfer of an average of $100, then about $3 million will move through the
ATM system per day. In the course of a year, that’s a little more than $1 billion:

365 days × 100 ATMs × 300 transactions × $100 = $1,095,000,000

How well do the ATMs have to perform to be considered reliable? For the sake of
argument, let’s say that ATMs execute transactions correctly 99.99% of the time. This
seems to be more than adequate; after all, only one out of every 10,000 transactions
executes incorrectly. But if you do the math, that could result in more than $100,000
in errors over the course of a year!

$1,095,000,000 × .01% = $109,500

280 | Chapter 17: Transactions

Obviously, this example is an oversimplification of the problem, but it illustrates that
even a small percentage of errors is unacceptable in high-volume or mission-critical
systems. For this reason, experts have identified four characteristics of a transaction
that must be met for a system to be considered safe. Transactions must be atomic,
consistent, isolated, and durable (ACID)—the four horsemen of transaction services:

Atomic
An atomic transaction must execute completely or not at all. This means that every
task within a unit-of-work must execute without error. If any of the tasks fail, the
entire unit-of-work or transaction is aborted, meaning that any changes to the data
are undone. If all the tasks execute successfully, the transaction is committed,
which means that the changes to the data are made permanent or durable.

Consistent
Consistency refers to the integrity of the underlying data store. It must be enforced
by both the transactional system and the application developer. The transactional
system fulfills this obligation by ensuring that a transaction is atomic, isolated, and
durable. The application developer must ensure that the database has appropriate
constraints (primary keys, referential integrity, and so forth) and that the unit-of-
work—the business logic—doesn’t result in inconsistent data (i.e., data that is not
in harmony with the real world it represents). In an account transfer, for example,
the debit to one account must equal the credit to another account.

Isolated
Isolation means that a transaction must be allowed to execute without interference
from other processes or transactions. In other words, the data that a transaction
accesses cannot be affected by any other part of the system until the transaction or
unit-of-work is completed.

Durable
Durability means that all the data changes made during the course of a transaction
must be written to some type of physical storage before the transaction is success-
fully completed. This ensures that the changes are not lost if the system crashes.

To get a better idea of what these principles mean, we will introduce a BlackjackEJB to
model an online blackjack game in terms of the four ACID properties.

Example: The BlackjackEJB
In this example, we’re not so much interested with handling the business rules of a real
game of blackjack. However, the outputs of gameplay (whether money exchanges par-
ties as expected) are centrally important to the function of the service. As such, we’ll
expose a single business method that allows users to play single trials, which compose
a single unit of work.

The full example is covered in Appendix H.

ACID Transactions | 281

/**
 * Contract of a service capable of simulating
 * a single game of blackjack. The actual gameplay is not modeled,
 * only the inputs and outputs of a single trial.
 */
public interface BlackjackGameLocalBusiness
{
 /**
 * Places a single bet, returning if the bet won or lost. If the result
 * is a win, the amount specified will be transferred from the Blackjack Service
 * account to {@link User#getAccount()}, else it will be deducted from the
 * user account and placed into the Blackjack Service account.
 *
 * @return Whether the bet won or lost
 * @param userId The ID of the user placing the bet
 * @param amount The amount of the bet
 * @throws IllegalArgumentException If either the user of the amount is not
 * specified or the amount is a negative number.
 * @throws InsufficientBalanceException If the user does not have enough in
 * his/her account to cover the bet
 */
 boolean bet(long userId, BigDecimal amount) throws IllegalArgumentException,
 InsufficientBalanceException;
}

Depending upon the result of the bet, the designated amount should either be added
to the user’s account or transferred into the game service’s account.

To facilitate the transfers of money, we’ll also expose a simple bank:

/**
 * Defines the contract for a bank, supporting common
 * account activities
 */
public interface BankLocalBusiness
{
 /**
 * Withdraws the specified amount from the account with
 * the specified ID, returning the new balance.
 * @param amount
 * @throws IllegalArgumentException If the amount is not specified, the account
 * ID is not valid, or the amount to be withdrawn is less than 0
 * @throws InsufficientBalanceException If the amount to be withdrawn is greater
 * than the value of {@link Account#getBalance()}.
 */
 BigDecimal withdraw(long accountId, BigDecimal amount) throws
 IllegalArgumentException, InsufficientBalanceException;

 /**
 * Deposits the specified amount to the account with the
 * specified ID, returning the new balance.
 * @param amount
 * @throws IllegalArgumentException If the amount is not specified, the account
 * ID is not valid, or the amount to be deposited is less than 0
 */
 BigDecimal deposit(long accountId, BigDecimal amount) throws

282 | Chapter 17: Transactions

 IllegalArgumentException;

 /**
 * Obtains the current balance from the account with the specified ID
 * @param accountId
 * @return
 * @throws IllegalArgumentException If the account ID is not valid
 */
 BigDecimal getBalance(long accountId) throws IllegalArgumentException;

 /**
 * Transfers the specified amount from one account to another
 * @param accountIdFrom The ID of the account from which we'll withdraw
 * @param accountIdTo The ID of the account to which we'll deposit
 * @param amount The amount to be transferred
 * @throws IllegalArgumentException If the amount is not specified, the amount
is
 * less than 0, or either account ID is invalid
 * @throws InsufficientBalanceException If the amount is greater than the
current
 * balance of the "from" account
 */
 void transfer(long accountIdFrom, long accountIdTo, BigDecimal amount)
 throws IllegalArgumentException, InsufficientBalanceException;

 /**
 * Transfers the specified amount from one account to another
 * @param accountFrom The account from which we'll withdraw
 * @param accountTo The account to which we'll deposit
 * @param amount The amount to be transferred
 * @throws IllegalArgumentException If the amount is not specified, the amount
is
 * less than 0, or either account ID is invalid
 * @throws InsufficientBalanceException If the amount is greater than the
current
 * balance of the "from" account
 */
 void transfer(Account accountFrom, Account accountTo, BigDecimal amount)
 throws IllegalArgumentException, InsufficientBalanceException;
}

Through the BankEJB, we’ll expect to safely exchange funds.

Helper EJBs for Testing Transactions
During testing and development, it’s often helpful to get a hook into the underlying
system to manually specify the boundaries that mark the beginning and end of a unit
of work. For this we’ll provide another simple view:

public interface TxWrappingLocalBusiness
{
 /**
 * Wraps the specified task in a new Transaction, returning the value
 *

ACID Transactions | 283

 * @param task
 * @throws IllegalArgumentException If no task is specified
 * @throws TaskExecutionException If an error occurred in
 * invoking {@link Callable#call()}
 */
 <T> T wrapInTx(Callable<T> task) throws IllegalArgumentException,
 TaskExecutionException;

 /**
 * Wraps the specified tasks in a new Transaction
 *
 * @param task
 * @throws IllegalArgumentException If no tasks are specified
 * @throws TaskExecutionException If an error occurred in invoking
 * {@link Callable#call()}
 */
 void wrapInTx(Callable<?>... tasks) throws IllegalArgumentException,
 TaskExecutionException;
}

Although we would not ever let a real client arbitrarily submit
java.util.concurrent.Callable types for execution, this is a nice way to allow tests to
run business logic inside the scope of a transaction. As we saw in Chapter 9, this has
the added benefit of providing access to managed JPA entities before they’re detached
from the EntityManager at transaction completion. We can also force rollbacks via this
mechanism to test that our application’s state is left consistent in the case of an excep-
tional condition.

Is the BlackjackEJB Atomic?
Our first measure of the BlackjackEJB’s reliability is its atomicity: does it ensure that
the transaction executes completely or not at all? What we are really concerned with
are the critical tasks that change or create information. When placing a bet, the game-
play must succeed without error, and funds must leave the user’s account and be added
to the winner’s. All of these tasks must be successful for the entire transaction to be
successful.

To understand the importance of the atomic characteristic, imagine what would hap-
pen if even one of the subtasks failed to execute. For example, if the withdrawal from
the loser’s account succeeded but the money failed to be placed in the winner’s account,
the money would be lost from the system and no longer accounted for (loss of
consistency).

So the only way bet() can be completed is if all the critical tasks execute successfully.
If something goes wrong, the entire process must be aborted. Aborting a transaction
requires more than simply not finishing the tasks; in addition, all the tasks that did
execute within the transaction must be undone. In our example failure case, this means
that the money must be restored to the loser’s account, and an exception must be
thrown to signal that the game didn’t complete successfully.

284 | Chapter 17: Transactions

Is the BlackjackEJB Consistent?
In order for a transaction to be consistent, the business system must make sense after
the transaction has completed. In other words, the state of the business system must
be consistent with the reality of the business. This requires the transaction to enforce
the atomic, isolated, and durable characteristics, and it also requires diligent enforce-
ment of integrity constraints by the application developer. In our failure example, fail-
ing to deposit funds after withdrawing from another as part of a transfer constitutes a
loss of consistency; the money has evaporated from the system.

In addition, the database must be set up to enforce integrity constraints. For example,
it should not be possible for a bank account to be associated with a null user or have a
foreign key reference to a user ID that does not exist.

Is the BlackjackEJB Isolated?
If you are familiar with the concept of thread synchronization in Java or row-locking
schemes in relational databases, isolation will be a familiar concept. To be isolated, a
transaction must protect the data it is accessing from other transactions. This is nec-
essary to prevent other transactions from interacting with data that is in transition.
During a transfer between accounts in our blackjack game’s bank, the transaction is
isolated to prevent other transactions from modifying the entities and tables that are
being updated. Imagine the problems that would arise if separate transactions were
allowed to change any entity bean at any time—transactions would walk all over one
another. Several account transfers could take place at the same time and withdraw from
the same account, possibly overdrawing it.

The isolation of data accessed by EJBs does not mean that the entire application shuts
down during a transaction. Only those entity beans and data directly affected by the
transaction are isolated. That is to say, during an account transfer, only the removal
and destination accounts need isolation.

Is the BlackjackEJB Durable?
To be durable, a business method must write all changes and new data to a permanent
data store before it can be considered successful. This may seem like a no-brainer, but
often it does not happen in real life. In the name of efficiency, changes are often main-
tained in memory for long periods of time before being saved on a disk drive. The idea
is to reduce disk accesses—which slow systems down—and only periodically write the
cumulative effect of data changes. Although this approach is great for performance, it
is also dangerous because data can be lost when the system goes down and memory is
wiped out. Durability requires the system to save all updates made within a transaction
as the transaction successfully completes, thus protecting the integrity of the data.

ACID Transactions | 285

Only when data is made durable are those specific records accessible through their
respective entities from other transactions. Hence, durability also plays a role in isola-
tion. A transaction is not finished until the data is successfully recorded.

Ensuring that transactions adhere to the ACID principles requires careful design. The
system has to monitor the progress of a transaction to ensure that it does all of its work,
that the data is changed correctly, that transactions do not interfere with each other,
and that the changes can survive a system crash. Engineering all of this functionality
into a system is a lot of work, and not something you would want to reinvent for every
business system on which you work. Fortunately, EJB is designed to support transac-
tions automatically, making the development of transactional systems easier. The rest
of this chapter examines how EJB supports transactions implicitly (through declarative
transaction attributes) and explicitly (through the Java Transaction API, or JTA).

Declarative Transaction Management
One of the primary advantages of Enterprise JavaBeans is that it allows for declarative
transaction management. Without this feature, transactions must be controlled using
explicit transaction demarcation, which involves the use of explicit APIs such as the
Java Transaction Service (JTS). At best, explicit demarcation is difficult if you use the
aforementioned APIs, particularly if you are new to transactional systems. In addition,
it requires that the transactional code be written within the business logic, which re-
duces the clarity of the code. We talk more about explicit transaction management and
EJB later in this chapter.

With declarative transaction management, the transactional behavior of EJBs can be
controlled using the @javax.ejb.TransactionAttribute annotation or the EJB deploy-
ment descriptor, both of which can set transaction attributes for individual enterprise
bean methods. This means that the transactional behavior of an EJB can be changed
without changing the EJB’s business logic by simply annotating the method in a dif-
ferent way or modifying XML. Declarative transaction management reduces the com-
plexity of transactions for EJB developers and application developers and makes it
easier to create robust transactional applications. Where no explicit declarative trans-
action properties have been defined, EJB will provide a default (which we’ll soon see).

Transaction Scope
Transaction scope is a crucial concept for understanding transactions. In this context,
transaction scope refers to managed resources (such as EJBs and entities) that are par-
ticipating in a particular transaction. In the wrapInTx() method of the test-only
TxWrappingEJB, all of the business logic designated in the supplied Callable is executed
within a single transaction. When the method invocation completes, the transaction is
over and its scope is no longer in context.

286 | Chapter 17: Transactions

As you know, a transaction is a unit-of-work made up of one or more tasks. In a trans-
action, all the tasks that make up the unit-of-work must succeed for the entire
transaction to succeed; in other words, the transaction must be atomic. If any task fails,
the updates made by all the other tasks in the transaction will be rolled back or undone.
In EJB, tasks are generally expressed as enterprise bean methods, and a unit-of-work
consists of every enterprise bean method invoked in a transaction. The scope of a
transaction includes every EJB that participates in the unit-of-work.

It is easy to trace the scope of a transaction by following the thread of execution. If the
invocation of the wrapInTx() method begins a transaction, then logically, the transac-
tion ends when the method completes. The scope of the wrapInTx() transaction would
include any transaction-aware service it contains—every EJB, entity, or other managed
resources. A transaction is propagated to an EJB when that EJB’s method is invoked
and included in the scope of that transaction. The transaction is also propagated to the
persistence context of an EntityManager. The persistence context keeps track of changes
made to persistent managed objects and commits them if the transaction succeeds.

A transaction can end if an exception is thrown while the wrapInTx() method is exe-
cuting. The exception can be thrown from any referenced code or the wrapInTx()
method itself. An exception may or may not cause a rollback, depending on its type.
We discuss exceptions and transactions in more detail later.

The thread of execution is not the only factor that determines whether an EJB is inclu-
ded in the scope of a transaction; the EJB’s transaction attributes also play a role.
Determining whether an EJB participates in the transaction scope of any unit-of-work
is accomplished implicitly, using the EJB’s transaction attributes, or explicitly, using
the JTA.

Transaction Attributes
As an application developer, you normally don’t need to control transactions explicitly
when using an EJB server. EJB servers can manage transactions implicitly, based on the
transaction attributes established at deployment time. When an EJB is deployed, you
can set its runtime transaction attribute in the @javax.ejb.TransactionAttribute an-
notation or deployment descriptor to one of several values:

NotSupported
Supports
Required
RequiresNew
Mandatory
Never

You may set a transaction attribute for the entire EJB (in which case it applies to all
methods) or at different transaction attributes for individual methods. The former
method is much simpler and less error-prone, but setting attributes at the method level
offers more flexibility. The code in the following sections shows how to set the default
transaction attribute of an EJB via annotations.

Declarative Transaction Management | 287

Using the @TransactionAttribute annotation

The @javax.ejb.TransactionAttribute annotation can be used to apply transaction at-
tributes to your EJB’s bean class or business methods. The attribute is defined using
the javax.ejb.TransactionAttributeType Java enum:

public enum TransactionAttributeType
{
 MANDATORY,
 REQUIRED,
 REQUIRES_NEW,
 SUPPORTS,
 NOT_SUPPORTED,
 NEVER
}

@Target({METHOD, TYPE})
public @interface TransactionAttribute
{
 TransactionAttributeType value() default TransactionAttributeType.REQUIRED;
}

The @TransactionAttribute can be applied per method, or you can use it on the bean
class to define the default transaction attribute for the entire bean class. In the case of
our test TxWrappingEJB, the bean implementation class achieves the proper transaction
isolation by always starting a new transaction and by running the business method
inside of its context. This is implemented by using TransactionAttribute

Type.REQUIRES_NEW:

import javax.ejb.Local;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;

/**
 * EJB which wraps a specified series of {@link Callable}
 * tasks within the context of a new Transaction
 */
@Stateless
@Local(TxWrappingLocalBusiness.class)
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
// We always require a new Tx here, so we ensure to wrap
public class TxWrappingBean implements TxWrappingLocalBusiness
{
 ...
}

In this example, the default transaction attribute will be REQUIRES_NEW for every method
of the class because we have applied the @TransactionAttribute annotation to the bean
class. This default can be overridden by applying @TransactionAttribute individually
to the business methods.

288 | Chapter 17: Transactions

If you do not specify any @TransactionAttribute and there is no XML
deployment descriptor, the default transaction attribute will be
REQUIRED. One of the ideas behind EJB 3.0 is to provide common defaults
so that you do not have to be explicit about transaction demarcation.
In the majority of cases, EJB methods will be transactional, especially if
they are interacting with an entity manager.

Transaction attributes defined

Here are the definitions of the transaction attributes listed earlier. In a few of the defi-
nitions, the client transaction is described as suspended. This means the transaction is
not propagated to the enterprise bean method being invoked; propagation of the trans-
action is temporarily halted until the enterprise bean method returns. To make things
easier, we will talk about attribute types as if they were bean types. For example, we’ll
say “a Required EJB” as shorthand for “an enterprise bean with the Required transaction
attribute.” The attributes are:

NotSupported

Invoking a method on an EJB with this transaction attribute suspends the trans-
action until the method is completed. This means that the transaction scope is not
propagated to the NotSupported EJB or to any of the EJBs it calls. Once the method
on the NotSupported EJB is done, the original transaction resumes its execution.

Figure 17-1 shows that a NotSupported EJB does not propagate the client transac-
tion when one of its methods is invoked.

Figure 17-1. The NotSupported attribute

Supports

This attribute means that the enterprise bean method will be included in the trans-
action scope if it is invoked within a transaction. In other words, if the EJB or client
that invokes the Supports EJB is part of a transaction scope, the Supports EJB and
all EJBs accessed by it become part of the original transaction. However, the
Supports EJB doesn’t have to be part of a transaction and can interact with clients
and other EJBs that are not included in a transaction scope.

Figure 17-2a shows the Supports EJB being invoked by a transactional client and
propagating the transaction. Figure 17-2b shows the Supports EJB being invoked
by a nontransactional client.

Declarative Transaction Management | 289

Required

This attribute means that the enterprise bean method must be invoked within
the scope of a transaction. If the calling client or EJB is part of a transaction, the
Required EJB is automatically included in its transaction scope. If, however, the
calling client or EJB is not involved in a transaction, the Required EJB starts its own
new transaction. The new transaction’s scope covers only the Required EJB and all
other EJBs accessed by it. Once the method invoked on the Required EJB is done,
the new transaction’s scope ends.

Figure 17-3a shows the Required EJB being invoked by a transactional client and
propagating the transaction. Figure 17-3b shows the Required EJB being invoked
by a nontransactional client, which causes it to start its own transaction.

Figure 17-3. The Required attribute

Figure 17-2. The Supports attribute

290 | Chapter 17: Transactions

RequiresNew

This attribute means that a new transaction is always started. Regardless of whether
the calling client or EJB is part of a transaction, a method with the RequiresNew
attribute begins a new transaction when invoked. If the calling client is already
involved in a transaction, that transaction is suspended until the RequiresNew EJB’s
method call returns. The new transaction’s scope covers only the RequiresNew EJB
and all the EJBs accessed by it. Once the method invoked on the RequiresNew
EJB is done, the new transaction’s scope ends and the original transaction resumes.

Figure 17-4a shows the RequiresNew EJB being invoked by a transactional client.
The client’s transaction is suspended while the EJB executes under its own trans-
action. Figure 17-4b shows the RequiresNew EJB being invoked by a nontransac-
tional client; the RequiresNew EJB executes under its own transaction.

Figure 17-4. The RequiresNew attribute

Mandatory

This attribute means that the enterprise bean method must always be made part
of the transaction scope of the calling client. The EJB may not start its own trans-
action; the transaction must be propagated from the client. If the calling client
is not part of a transaction, the invocation will fail, throwing a
javax.ejb.EJBTransactionRequiredException.

Figure 17-5a shows the Mandatory EJB invoked by a transactional client and prop-
agating the transaction. Figure 17-5b shows the Mandatory EJB invoked by a non-
transactional client; the method throws an EJBTransactionRequiredException
because there is no transaction scope.

Never

This attribute means that the enterprise bean method must not be invoked within
the scope of a transaction. If the calling client or EJB is part of a transaction, the
Never EJB will throw an EJBException. However, if the calling client or EJB is not

Declarative Transaction Management | 291

involved in a transaction, the Never EJB will execute normally without a
transaction.

Figure 17-6a shows the Never EJB being invoked by a nontransactional client.
Figure 17-6b shows the Never EJB being invoked by a transactional client; the
method throws an EJBException to EJB clients because a client or EJB that is in-
cluded in a transaction can never invoke the method.

Figure 17-5. The Mandatory attribute

Figure 17-6. The Never attribute

EJB 3.0 persistence and transaction attributes

The EJB specification strongly advises that EntityManagers be accessed within the scope
of a JTA transaction. So, if you are wrapping access to your persistent entities with
EJBs, use only the Required, RequiresNew, and Mandatory transaction attributes. This

292 | Chapter 17: Transactions

restriction ensures that all database access occurs in the context of a transaction, which
is important when the container is automatically managing persistence. There are valid
exceptions to this rule when using extended persistence contexts with stateful session
beans, but we’ll talk about these exceptions later in the chapter.

Message-driven beans and transaction attributes

Message-driven beans may declare only the NotSupported or Required transaction at-
tribute. The other transaction attributes don’t make sense in message-driven beans,
because they apply to client-initiated transactions. The Supports, RequiresNew,
Mandatory, and Never attributes are all relative to the transaction context of the client.
For example, the Mandatory attribute requires the client to have a transaction in progress
before calling the enterprise bean. This is meaningless for a message-driven bean, which
is decoupled from the client.

The NotSupported transaction attribute indicates that the message will be processed
without a transaction. The Required transaction attribute indicates that the message
will be processed with a container-initiated transaction.

EJB endpoints and transaction attributes

The Mandatory transaction attribute cannot be used with EJB endpoints, because an
EJB endpoint does not propagate a client transaction. This may change when web
service transactions become standardized, but for now, using Mandatory with an EJB
endpoint method is prohibited.

Transaction Propagation
To illustrate the impact of transaction attributes, we’ll test a bank account transfer as
we saw earlier. Using the test TxWrappingEJB will ensure all operations must be initiated
from the same client transaction. If any operation fails, the entire transaction fails. We’ll
take the following steps in the context of one transaction:

1. Transfer $100 from Account A to Account B.

2. Check that Account A has $100 less than before, and Account B has $100 more.

3. Force a rollback.

Because we’ll encounter a mock error to make a rollback, checking the account balance
of Account A after the transaction completes should yield the same balance as before
we started, as if the transfer was never made.

First, let’s see some of the transaction attributes for the BankEJB:

@Stateless
public class BankBean implements BankLocalBusiness
{
 ...
 @Override

Declarative Transaction Management | 293

 @TransactionAttribute(TransactionAttributeType.SUPPORTS)
 // Don't require a Tx is in play, but respect a currently operating
 // one so we get the correct visibility from inside the Tx
 public BigDecimal getBalance(long accountId) throws IllegalArgumentException
 {
 ...
 }

 @Override
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 // Default Tx Attribute; create a new Tx if not present, else use the existing
 public void transfer(long accountIdFrom, long accountIdTo, BigDecimal amount)
throws IllegalArgumentException,
 InsufficientBalanceException
 {
 ...
 }

 ...
}

The getBalance() method does not require a currently running transaction from the
caller. Because this is a read-only operation, it does not honor atomicity, consistency,
or durability. However, because of the “I” in ACID, for transaction isolation, when we
have a currently running transaction, it needs to have the correct visibility to see any
potential changes made within that transaction. Marking this method as SUPPORTS
means we don’t impose any transactional overhead for obtaining a current balance, but
we’ll respect the current balance inside of a running transaction.

The transfer() method, however, does involve write operations, and as such requires
a transaction to be in play. This may be supplied as either a currently running trans-
action from the caller or a new one started by the EJB container if a transactional context
is not present. This will guarantee that the transfer operation is treated as a single unit
of work. Remember that REQUIRED does not need to be defined explicitly; this is the
default value for EJBs if left out.

Now we can write our test:

/**
 * Ensures that Transfers between accounts obey the ACID properties of Transactions
 */
@Test
public void transferRetainsIntegrity() throws Throwable
{

 // Init
 final long alrubingerAccountId = ExampleUserData.ACCOUNT_ALRUBINGER_ID;
 final long blackjackAccountId = BlackjackServiceConstants.ACCOUNT_BLACKJACK
GAME_ID;

 // Ensure there's the expected amounts in both the ALR and Blackjack accounts
 final BigDecimal expectedinitialALR = ExampleUserData.INITIAL_ACCOUNT_BALANCE_
ALR;

294 | Chapter 17: Transactions

 final BigDecimal expectedinitialBlackjack =
 BlackjackServiceConstants.INITIAL_ACCOUNT_BALANCE_BLACKJACKGAME;
 this.executeInTx(new CheckBalanceOfAccountTask(alrubingerAccountId, expected
initialALR),
 new CheckBalanceOfAccountTask(blackjackAccountId, expectedinitialBlackjack));

As a precondition check, we ensure that the balances of the two accounts in question
are as expected. The executeInTx() method uses our TxWrappingEJB as we’ve described:

 // Transfer $100 from ALR to Blackjack
 final BigDecimal oneHundred = new BigDecimal(100);
 bank.transfer(alrubingerAccountId, blackjackAccountId, oneHundred);

Here we make a transfer. Because we have no currently running transaction and the
BankEJB’s transfer() method has TransactionAttributeType.REQUIRED, a new transac-
tion is created for us to handle the exchange:

 // Ensure there's $100 less in the ALR account, and $100 more in the blackjack
 account
 this.executeInTx(new CheckBalanceOfAccountTask(alrubingerAccountId, expected
initialALR.subtract(oneHundred)),
 new CheckBalanceOfAccountTask(blackjackAccountId, expectedinitialBlack
jack.add(oneHundred)));

After checking the balances of the accounts to ensure the money was moved as expec-
ted, we throw a wrench into the system. In the next step, we’ll force a transaction
rollback by making another transfer but raising an exception before the transaction
finishes:

 // Now make a transfer, check it succeeded within the context of a Transaction,
 // then intentionally throw an exception. The Tx should complete as rolled back,
 // and the state should be consistent (as if the xfer request never took place).
 boolean gotExpectedException = false;
 final Callable<Void> transferTask = new Callable<Void>()
 {
 @Override
 public Void call() throws Exception
 {
 bank.transfer(alrubingerAccountId, blackjackAccountId, oneHundred);
 return null;
 }
 };
 try
 {
 this.executeInTx(transferTask, new CheckBalanceOfAccountTask(alrubinger
AccountId, expectedinitialALR.subtract(
 oneHundred).subtract(oneHundred)), new CheckBalanceOfAccountTask
(blackjackAccountId, expectedinitialBlackjack
 .add(oneHundred).add(oneHundred)), ForcedTestExceptionTask.INSTANCE);
 }
 // Expected
 catch (final ForcedTestException fte)
 {
 gotExpectedException = true;
 }

Declarative Transaction Management | 295

 Assert.assertTrue("Did not receive expected exception as signaled from the
test; was not rolled back",
 gotExpectedException);

 // Now that we've checked the transfer succeeded from within the Tx, then
 // we threw an exception before committed, ensure the Tx rolled back and the
 // transfer was reverted from the
 // perspective of everyone outside the Tx.
 this.executeInTx(new CheckBalanceOfAccountTask(alrubingerAccountId, expected
initialALR.subtract(oneHundred)),
 new CheckBalanceOfAccountTask(blackjackAccountId, expectedinitialBlack
jack.add(oneHundred)));
}

Finally, we check that we’ve gotten the expected exception, and that the account trans-
fer did not take place outside the context of the transaction. In other words, the state
kept by the transaction before the error was encountered is ditched, and the system is
left in consistent state.

As a transaction monitor, an EJB server watches each method call in the transaction.
If any of the updates fail, all the updates to all the EJBs and entities will be reversed, or
rolled back. A rollback is like an undo command. If you have worked with relational
databases, the concept of a rollback should be familiar to you. Once an update is exe-
cuted, you can either commit the update or roll it back. A commit makes the changes
requested by the update permanent; a rollback aborts the update and leaves the data-
base in its original state. Making EJBs transactional provides the same kind of rollback/
commit control.

In cases in which the container implicitly manages the transaction, the commit and
rollback decisions are handled automatically. When transactions are managed explic-
itly within an enterprise bean or by the client, the responsibility falls on the enterprise
bean or application developer to commit or roll back a transaction. Programmatic de-
marcation of transactions is covered in detail later in this chapter.

The transaction manager coordinates transactions, propagating the transaction scope
from one EJB to the next to ensure that all EJBs touched by a transaction are included
in the transaction’s unit-of-work. That way, the transaction manager can monitor the
updates made by each enterprise bean and decide, based on the success of those up-
dates, whether to commit all changes made by all enterprise beans to the database or
roll them all back. If a system exception or a rollback application exception is thrown by
a business method, the transaction is automatically rolled back. We talk more about
exceptions later in this chapter.

When all the EJBs and persistence contexts are registered and their updates are made,
the transaction manager checks to ensure that their updates will work. If all the updates
will work, the transaction manager allows the changes to become permanent. If one of
the EJBs or entity managers reports an error or fails, any changes made are rolled back
by the transaction manager.

296 | Chapter 17: Transactions

In addition to managing transactions in its own environment, an EJB server can coor-
dinate with other transactional systems. If, for example, an EJB actually came from a
different application server than the BankEJB, the two application servers would
cooperate to manage the transaction as one unit-of-work. This is called a distributed
transaction.* A distributed transaction requires what is called a two-phase commit
(2-PC or TPC). A 2-PC allows transactions to be managed across different servers and
resources (e.g., databases and JMS providers). The details of a 2-PC are beyond the
scope of this book, but a system that supports it will not require any extra operations
by an EJB or application developer. If distributed transactions are supported, the pro-
tocol for propagating transactions, as discussed earlier, will be supported. In other
words, as an application or EJB developer, you should not notice a difference between
local and distributed transactions.

A number of books on transaction processing and 2-PC are available.
Perhaps the best books on the subject are Principles of Transaction Pro-
cessing (Morgan Kaufmann) and Transaction Processing: Concepts and
Techniques (Morgan Kaufmann). A much lighter resource is the series
of “XA Exposed” articles (I, II, and III) by Mike Spille, which you can
find at http://jroller.com/page/pyrasun/?anchor=xa_exposed.

Transactions and persistence context propagation

There are some transaction propagation rules to consider when invoking on multiple
different EJBs within the same transaction that use entity managers. Here is a detailed
list of persistence context-propagation rules:

• When a transaction-scoped entity manager is invoked outside the scope of a trans-
action, it creates a persistence context for the duration of that method call. After
the method call completes, any managed objects produced by the call are imme-
diately detached.

• If a transaction-scoped entity manager is invoked from within a transaction, a new
persistence context is created (if there isn’t one already) and associated with that
transaction.

• If an entity manager is invoked upon and a persistence context is already associated
with the transaction, use that persistence context. The persistence context is
propagated between EJB invocations in the same transaction. This means that if
an EJB interacts with an injected entity manager within a transaction and then
invokes on another EJB within that same transaction, that EJB call will use the
same enlisted persistence context.

• If an EJB with a transaction-scoped persistence context invokes on a stateful session
bean that uses an extended persistence context, an error is thrown.

* Not all EJB servers support distributed transactions.

Declarative Transaction Management | 297

http://jroller.com/page/pyrasun/?anchor=xa_exposed

• If a stateful session bean with an extended persistence context calls another EJB
that has injected a transaction-scoped persistence context, the extended persis-
tence context is propagated.

• If an EJB calls another EJB with a different transaction scope, the persistence
context, regardless of whether it is extended, is not propagated.

• If a stateful session bean with an extended persistence context calls another non-
injected stateful session bean with an extended persistence context, an error is
thrown. If you inject a stateful session bean into another stateful session bean, those
beans share the same extended persistence context. However, if you manually cre-
ate a stateful session, there is no sharing of persistence contexts.

Isolation and Database Locking
Transaction isolation (the “I” in ACID) is a critical part of any transactional system.
This section explains isolation conditions, database locking, and transaction isolation
levels. These concepts are important when deploying any transactional system.

Dirty, Repeatable, and Phantom Reads
Transaction isolation is defined in terms of isolation conditions called dirty reads,
repeatable reads, and phantom reads. These conditions describe what can happen when
two or more transactions operate on the same data.† When two users execute data
access methods concurrently, different problems can surface or be avoided entirely,
depending on the isolation level used by the database. Transaction isolation seeks to
avoid these situations.

Dirty reads

A dirty read occurs when a transaction reads uncommitted changes made by a previous
transaction. If the first transaction is rolled back, the data read by the second transaction
becomes invalid because the rollback undoes the changes. The second transaction will
not be aware that the data it has read has become invalid.

Repeatable reads

A repeatable read occurs when the data read is guaranteed to look the same if read again
during the same transaction. Repeatable reads are guaranteed in one of two ways: either
the data read is locked against changes, or it is a snapshot that doesn’t reflect changes.
If the data is locked, it cannot be changed by any other transaction until the current
transaction ends. If the data is a snapshot, other transactions can change the data, but
these changes will not be seen by this transaction if the read is repeated.

† Isolation conditions are covered in detail by the ANSI SQL-92 Specification, Document Number: ANSI X3.
135-1992 (R1998).

298 | Chapter 17: Transactions

A nonrepeatable read occurs when the data retrieved in a subsequent read within the
same transaction can return different results. In other words, the subsequent read can
see the changes made by other transactions.

Phantom reads

A phantom read occurs when new records added to the database are detectable by
transactions that started prior to the insert. Queries will include records added by other
transactions after their transaction has started.

Database Locks
Databases, especially relational databases, normally use several different locking tech-
niques. The most common are read locks, write locks, and exclusive write locks. (We’ve
taken the liberty of adding snapshots to this list of techniques, although this isn’t a
formal term.) These locking mechanisms control how transactions access data con-
currently. Locking mechanisms impact the read conditions described in the previous
section. These types of locks are simple concepts that are addressed to a degree by the
Java Persistence specification, but we’ll discuss this later. Database vendors implement
these locks differently, so you should understand how your database addresses these
locking mechanisms to best predict how the isolation levels described in this section
will work.

The four types of locks are:

Read locks
Read locks prevent other transactions from changing data read during a transaction
until the transaction ends, thus preventing nonrepeatable reads. Other transactions
can read the data but not write to it. The current transaction is also prohibited from
making changes. Whether a read lock locks only the records read, a block of re-
cords, or a whole table depends on the database being used.

Write locks
Write locks are used for updates. A write lock prevents other transactions from
changing the data until the current transaction is complete but allows dirty reads
by other transactions and by the current transaction itself. In other words, the
transaction can read its own uncommitted changes.

Exclusive write locks
Exclusive write locks are used for updates. An exclusive write lock prevents other
transactions from reading or changing the data until the current transaction is
complete. It also prevents dirty reads by other transactions. Some databases do not
allow transactions to read their own data while it is exclusively locked.

Snapshots
A snapshot is a frozen view of the data that is taken when a transaction begins.
Some databases get around locking by providing every transaction with its own

Isolation and Database Locking | 299

snapshot. Snapshots can prevent dirty reads, nonrepeatable reads, and phantom
reads. They can be problematic because the data is not real-time data; it is old the
instant the snapshot is taken.

Transaction Isolation Levels
Transaction isolation is defined in terms of the isolation conditions (dirty reads, re-
peatable reads, and phantom reads). Isolation levels are commonly used in database
systems to describe how locking is applied to data within a transaction. The following
terms are used to discuss isolation levels:

Read Uncommitted
The transaction can read uncommitted data (i.e., data changed by a different
transaction that is still in progress). Dirty reads, nonrepeatable reads, and phantom
reads can occur. Bean methods with this isolation level can read uncommitted
changes.

Read Committed
The transaction cannot read uncommitted data; data that is being changed by a
different transaction cannot be read. Dirty reads are prevented; nonrepeatable
reads and phantom reads can occur. Bean methods with this isolation level cannot
read uncommitted data.

Repeatable Read
The transaction cannot change data that is being read by a different transaction.
Dirty reads and nonrepeatable reads are prevented; phantom reads can occur. Bean
methods with this isolation level have the same restrictions as those in the Read
Committed level and can execute only repeatable reads.

Serializable
The transaction has exclusive read and update privileges; different transactions can
neither read nor write to the same data. Dirty reads, nonrepeatable reads, and
phantom reads are prevented. This isolation level is the most restrictive.

These isolation levels are the same as those defined for JDBC. Specifically, they map to
the static final variables in the java.sql.Connection class. The behavior modeled by the
isolation levels in the connection class is the same as the behavior described here.

The exact behavior of these isolation levels depends largely on the locking mechanism
used by the underlying database or resource. How the isolation levels work depends in
large part on how your database supports them.

In EJB, the deployer sets transaction isolation levels in a vendor-specific way if the
container manages the transaction. The EJB developer sets the transaction isolation
level if the enterprise bean manages its own transactions. Up to this point, we have
discussed only container-managed transactions; we discuss bean-managed transac-
tions later in this chapter.

300 | Chapter 17: Transactions

Balancing Performance Against Consistency
Generally speaking, as the isolation levels become more restrictive, the performance of
the system decreases because transactions are prevented from accessing the same data.
If isolation levels are very restrictive—in other words, if they are at the Serializable
level—then all transactions, even simple reads, must wait in line to execute. This can
result in a system that is very slow. EJB systems that process a large number of con-
current transactions and need to be very fast will therefore avoid the Serializable iso-
lation level where it is not necessary.

Isolation levels, however, also enforce consistency of data. More restrictive isolation
levels help to ensure that invalid data is not used for performing updates. The old adage,
“garbage in, garbage out,” applies. The Serializable isolation level ensures that data is
never accessed concurrently by transactions, thus ensuring that the data is always
consistent.

Choosing the correct isolation level requires some research about the database you are
using and how it handles locking. You must also carefully analyze how each piece of
data in your application is being used. For instance, most systems have some entities
which will rarely, if ever, change. Even if these types of data do change, they would
rarely affect the integrity of the system. Therefore, a low isolation level can be specified
when a piece of business logic is viewing only this type of data. Other data, such as the
current balance in an Account, on the other hand, can greatly affect the integrity of our
BankEJB; this may require isolation to be more restrictive.

Controlling isolation levels

Different EJB servers allow different levels of granularity for isolation levels, and some
servers defer this responsibility to the database. Most EJB servers and EntityManager
implementations control the isolation level through the resource access API (e.g., JDBC
and JMS) and may allow different resources to have different isolation levels. However,
they will generally require a consistent isolation level for access to the same resource
within a single transaction. Consult your vendor’s documentation to find out the level
of control your server offers.

Bean-managed transactions in session beans and message-driven beans, however, allow
you to specify the transaction isolation level using the database’s API. The JDBC API,
for instance, provides a mechanism for specifying the isolation level of the database
connection. For example:

DataSource source = (javax.sql.DataSource)
 jndiCntxt.lookup("java:comp/env/jdbc/titanDB");
Connection con = source.getConnection();
con.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

You can have different isolation levels for different resources within the same transac-
tion, but all enterprise beans using the same resource in a transaction should use the
same isolation level.

Isolation and Database Locking | 301

Optimistic Locking
Using an isolation level that’s too restrictive results in the locking of resources. When
many clients contend for the same resource, they must block until it’s their turn. This
leads to a natural bottleneck and scalability problem that results in both high latency
and reduced overall throughput.

So, how can we solve this concurrency problem? One solution is to use the optimistic
locking design pattern. Optimistic locking isn’t locking in the traditional sense. Instead,
we assume that no other client is trying to access the same data at the same time. Then,
at transaction commit time, we let the database resolve whether the data has been
altered by another transaction. If it has, we throw an exception and roll back our trans-
action. In other words, we are being optimistic that the data hasn’t been touched until
we need to commit. How does this work? How does this avoid table-level locks? Well,
to use optimistic locking, we have to use a special feature of Java Persistence.

The first thing we need to do is model our Account for use in the BankEJB:

@Entity
public class Account
{
 ...

 /**
 * Current balance of the account
 */
 private BigDecimal balance = new BigDecimal(0, new MathContext(2));

 /**
 * Version used for optimistic locking
 */
 @Version
 private Long version;
 ...
}

The new and interesting property is the version property, which is annotated with
@javax.persistence.Version. An @Version property is a column in the Account table
that will hold a version ID of a particular row. Whenever the Account entity class is
updated, the version column is incremented automatically by JPA. When a transaction
beginning the commit process and business logic has updated the Account, the entity
manager first checks to see whether the version property of the in-memory Account
instance matches the version column currently stored in the database. If the versions
match, then the version property is incremented. If they don’t match, then the entity
manager throws an exception and the whole transaction rolls back. When the entity
manager detects that the Account has been updated by another transaction and a con-
currency error has occurred, it throws the javax.persistence.OptimisticLock-

Exception and rolls back the transaction. Otherwise, the transaction completes
successfully, and the queried Account is updated as requested and its version property
is incremented. This optimistic locking solution creates a quick write-lock on one row

302 | Chapter 17: Transactions

in our database instead of the vastly unscalable table lock in the Serializable solution
that was presented earlier in this chapter.

It should be noted that the optimistic locking design pattern does not work all the time.
If you have a row in your database that has a high concurrent write contention, then it
is probably less efficient to use the optimistic locking pattern because it will create a
lot of rollbacks, which create a lot of overhead in your system. In that scenario, the
Serializable solution is possibly more scalable. A redesign of your data model is prob-
ably more appropriate in this situation, however. If you have high concurrent access to
one particular row in your database, then your system probably won’t scale much
anyway.

Programmatic Locking
The EntityManager interface has a specific lock() method for performing entity locks.
To use it, you pass in the entity object you want to lock and indicate whether you want
a read or write lock:

package javax.persistence;

public enum LockModeType
{
 READ,
 WRITE
}

public interface EntityManager {
 void lock(Object entity, LockModeType type);
}

LockModeType.READ ensures that no dirty and nonrepeatable reads can occur on the
locked entity. LockModeType.WRITE has the same semantics as READ, but it also forces an
increment of the entity’s @Version property. To implement these semantics, a database
row lock is usually performed (i.e., SELECT ... FOR UPDATE).

Vendor implementations are not required to support locking on entities
that do not have an @Version property.

Programmatic locking becomes important when you want to ensure nonrepeatable
reads on entity beans that may be read within the transaction but not updated.

Nontransactional EJBs
Beans outside of a transaction’s scope normally provide some kind of stateless service
that does not manipulate data in a data store. While these types of enterprise beans
may be necessary as utilities during a transaction, they do not need to meet the ACID

Nontransactional EJBs | 303

requirements. Consider a nontransactional stateless session bean, the QuoteEJB, which
provides live stock quotes. This EJB may respond to a request from an EJB involved in
a stock purchase transaction. The success or failure of the stock purchase as a trans-
action will not impact the state or operations of the QuoteEJB, so it does not need to be
part of the transaction. Beans that are involved in transactions are subjected to the
isolated ACID property, which means that their services cannot be shared during the
life of the transaction. Making an enterprise bean transactional can be expensive at
runtime. Declaring an EJB to be nontransactional (i.e., NotSupported) leaves it out of
the transaction scope, which may improve the performance and availability of that
service.

Explicit Transaction Management

Although this section covers JTA, it is strongly recommended that you
not attempt to manage transactions explicitly. Through transaction at-
tributes, Enterprise JavaBeans provides a comprehensive and simple
mechanism for delimiting transactions at the method level and propa-
gating transactions automatically. Only developers with a thorough
understanding of transactional systems should attempt to use JTA
with EJB.

EJB provides implicit transaction management on the method level: we can define
transactions that are delimited by the scope of the method being executed. This is one
of the primary advantages of EJB over cruder distributed object implementations be-
cause it reduces complexity, and therefore, programmer error. In addition, declarative
transaction demarcation, as used in EJB, separates the transactional behavior from the
business logic, meaning that a change to transactional behavior does not require
changes to the business logic. In rare situations, however, it may be necessary to take
control of transactions explicitly.

Explicit management of transactions is normally accomplished using the Object Man-
agement Group’s (OMG) Object Transaction Service (OTS) or the Java implementa-
tion of OTS, the Java Transaction Service (JTS). OTS and JTS provide APIs that allow
developers to work with transaction managers and resources (e.g., databases and JMS
providers) directly. While the JTS implementation of OTS is robust and complete, it is
not the easiest API to work with; it requires clean and intentional control over the
bounds of enrollment in transactions.

Enterprise JavaBeans supports a much simpler API, the Java Transaction API (JTA),
for working with transactions. This API is implemented by the javax.transaction
package. JTA actually consists of two components: a high-level transactional client
interface and a low-level X/Open XA interface. We are concerned with the high-level
client interface, since it is accessible to enterprise beans and is recommended for client

304 | Chapter 17: Transactions

applications. The low-level XA interface is used by the EJB server and container to
coordinate transactions with resources such as databases.

Your use of explicit transaction management will probably focus on one simple inter-
face: javax.transaction.UserTransaction. UserTransaction allows you to manage the
scope of a transaction explicitly. Here’s how explicit demarcation might be used in
an EJB:

@Singleton
@Startup
@TransactionManagement(TransactionManagementType.BEAN)
public class InitializerBean
{

 /**
 * Because @PostConstruct runs in an unspecified
 * Tx context (as invoked by the container), we'll
 * make one via this manager. For EJBs that use
 * TransactionManagementType.BEAN, this is the hook
 * we use to programmatically demarcate transactional
 * boundaries.
 */
 @Resource(mappedName = "java:/TransactionManager")
 // mappedName is vendor-specific, and in this case points to an
 // address in JNDI
 private TransactionManager txManager;

 /**
 * Called by the container on startup.
 * Because EJB lifecycle operations are invoked outside of a
 * transactional context, we manually demarcate the Tx boundaries
 * via the injected {@link TransactionManager}.
 */
 @PostConstruct
 public void initialize() throws Exception
 {
 // Get the current Tx (if we have one, we may have been invoked via
 // a business method which has provided a Tx
 final Transaction tx = txManager.getTransaction();
 final boolean startOurOwnTx = tx == null;
 // If we need to start our own Tx (ie. this was called by the container as @Post
Construct)
 if (startOurOwnTx)
 {
 // Start a Tx via the injected TransactionManager
 txManager.begin();
 }

 try
 {
 // Do some work inside of a transaction, for instance
 // via en EntityManager or calls to another EJB
 }
 // Any errors should result in a rollback
 catch(final Throwable t)

Explicit Transaction Management | 305

 {
 if(startOurOwnTx)
 {
 txManager.setRollbackOnly();
 }
 }
 finally
 {
 // Mark the end of the Tx if we started it; will trigger an
 // EntityManager to flush outgoing changes
 if (startOurOwnTx)
 {
 txManager.commit();
 }
 }
 }
}

Here’s an interesting case. In the previous example, initialize() is both a business
method and a lifecycle callback through @PostConstruct. Because @PostConstruct meth-
ods are executed by the container inside of an unspecified transactional context, if we
need to interact with managed resources such as an EntityManager, we must initiate
our own transaction. For this we use the injected TransactionManager APIs to demarcate
the beginning and end of the transaction. Note that it’s very important to attempt the
commit() in a finally block, such that any exceptional conditions are accounted for.
We catch any exceptions and mark the transaction to roll back later if encountered.

Obviously, this example is contrived, but the point it makes is clear. Transactions can
be controlled directly instead of depending on method scope to delimit them. The
advantage of using explicit transaction demarcation is that it gives the client control
over the bounds of a transaction. The client, in this example, could be a client appli-
cation or another enterprise bean.‡ In either case, the same javax.transaction.User
Transaction is used, but it is obtained from different sources, depending on whether it
is needed on the client or in an enterprise bean.

Java Enterprise Edition (Java EE) specifies how a client application can obtain a User
Transaction object using JNDI. Here’s how a client obtains a UserTransaction object
if the EJB container is part of a Java EE system:

Context jndiCntx = new InitialContext();
UserTransaction tran = (UserTransaction)
 jndiCntx.lookup("java:comp/UserTransaction");
utx.begin();
...
utx.commit();

Enterprise beans can also manage transactions explicitly. Only session beans and
message-driven beans that define a javax.ejb.TransactionManagementType of Bean using

‡ Only beans declared as managing their own transactions (bean-managed transaction beans) can use the
UserTransaction interface.

306 | Chapter 17: Transactions

the @javax.ejb.TransactionManager annotation can manage their own transactions.
Enterprise beans that manage their own transactions are frequently referred to as bean-
managed transaction (BMT) beans. Entity beans can never be BMT beans.

Transaction Propagation in Bean-Managed Transactions
With stateless session beans, transactions that are managed using UserTransaction
must be started and completed within the same method. In other words,
UserTransaction transactions cannot be started in one method and ended in another.
This makes sense because stateless session bean instances are shared across many
clients; while one stateless instance may service a client’s first request, a completely
different instance may service a subsequent request by the same client. With stateful
session beans, however, a transaction can begin in one method and be committed in
another because a stateful session bean is used by only one client. Therefore, a stateful
session bean can associate itself with a transaction across several different client-
invoked methods.

When a client that is already involved in a transaction invokes a bean-managed trans-
action method, the client’s transaction is suspended until the method returns. This
suspension occurs regardless of whether the BMT bean explicitly started its own
transaction within the method or the transaction was started in a previous method
invocation. The client transaction is always suspended until the BMT method returns.

Transaction control across methods is strongly discouraged because it
can result in improperly managed transactions and long-lived transac-
tions that lock up or even leak resources. It’s best practice to let the
method defining the transaction start also dictate where the transaction
ends.

Message-driven beans and bean-managed transactions

Message-driven beans also have the option of managing their own transactions. In the
case of MDBs, the scope of the transaction must begin and end within the
onMessage() method. It is not possible for a bean-managed transaction to
span onMessage() calls.

It is important to understand that in a BMT, the message consumed by the MDB is not
part of the transaction. When an MDB uses container-managed transactions, the
message it handles is a part of the transaction, so if the transaction is rolled back, the
consumption of the message is also rolled back, forcing the JMS provider to redeliver
the message. But with bean-managed transactions, the message is not part of the trans-
action, so if the BMT is rolled back, the JMS provider will not be aware of the trans-
action’s failure. However, all is not lost, because the JMS provider can still rely on
message acknowledgment to determine whether the message was delivered
successfully.

Explicit Transaction Management | 307

The EJB container will acknowledge the message if the onMessage() method returns
successfully. If, however, a RuntimeException is thrown by the onMessage() method, the
container will not acknowledge the message, and the JMS provider will suspect a prob-
lem and probably attempt to redeliver the message. If redelivery of a message is im-
portant when a transaction fails, your best course of action is to ensure that the
onMessage() method throws an EJBException so that the container will not acknowledge
the message received from the JMS provider.

Vendors use proprietary (declarative) mechanisms to specify the num-
ber of attempts to redeliver messages to BMT/NotSupported MDBs that
“fail” to acknowledge receipt. The JMS-MDB provider may provide a
“dead message” area into which such messages will be placed if they
cannot be processed successfully according to the retry count. Admin-
istrators can monitor the dead message area so that delivered messages
can be detected and handled manually.

Other than the message, everything between the UserTransaction.begin() and User
Transaction.commit() methods is part of the same transaction. If a transaction failure
occurs, these operations will be rolled back and the message will not be sent.

Heuristic Decisions
Transactions are normally controlled by a transaction manager (often the EJB server),
which manages the ACID characteristics across several enterprise beans, databases,
and servers. The transaction manager uses a two-phase commit (2-PC) to manage
transactions. 2-PC is a protocol for managing transactions that commits updates in two
stages. 2-PC is complex, but basically it requires that servers and databases cooperate
through an intermediary—the transaction manager—in order to ensure that all of the
data is made durable together. Some EJB servers support 2-PC and others do not, and
the value of this transaction mechanism is a source of some debate. The important
point to remember is that a transaction manager controls the transaction; based on the
results of a poll against the resources (databases, JMS providers, and other resources),
it decides whether all the updates should be committed or rolled back. A heuristic
decision takes place when one of the resources makes a unilateral decision to commit
or roll back without permission from the transaction manager. When a heuristic
decision has been made, the atomicity of the transaction is lost and data-integrity errors
can occur.

UserTransaction throws a few different exceptions related to heuristic decisions, dis-
cussed in the following section.

308 | Chapter 17: Transactions

UserTransaction
EJB servers are required to support UserTransaction but are not required to support
the rest of JTA, nor are they required to use JTS for their transaction service.
UserTransaction is defined as follows:

public interface javax.transaction.UserTransaction
{

 public abstract void begin() throws IllegalStateException, SystemException;
 public abstract void commit() throws IllegalStateException, SystemException,
 TransactionRolledbackException, HeuristicRollbackException,
 HeuristicMixedException;
 public abstract int getStatus();
 public abstract void rollback() throws IllegalStateException, SecurityException,
 SystemException;
 public abstract void setRollbackOnly() throws IllegalStateException,
 SystemException;
 public abstract void setTransactionTimeout(int seconds)
 throws SystemException;

}

Here’s what the methods defined in this interface do:

begin()

Invoking the begin() method creates a new transaction. The thread that executes
the begin() method is immediately associated with the new transaction, which
is then propagated to any EJB that supports existing transactions. The
begin() method can throw one of two checked exceptions. An
IllegalStateException is thrown when begin() is called by a thread that is already
associated with a transaction. You must complete any transactions associated with
that thread before beginning a new transaction. A SystemException is thrown if the
transaction manager (i.e., the EJB server) encounters an unexpected error
condition.

commit()

The commit() method completes the transaction that is associated with the
current thread. When commit() is executed, the current thread is no longer asso-
ciated with a transaction. This method can throw several checked exceptions. An
IllegalStateException is thrown if the current thread is not associated with a
transaction. A SystemException is thrown if the transaction manager (the EJB
server) encounters an unexpected error condition. A TransactionRolled-backEx
ception is thrown when the entire transaction is rolled back rather than committed;
this can happen if one of the resources was unable to perform an update
or if the UserTransaction.rollBackOnly() method was called. A HeuristicRollback
Exception indicates that one or more resources made a heuristic decision to roll
back the transaction. A HeuristicMixedException indicates resources made

Explicit Transaction Management | 309

heuristic decisions to both roll back and commit the transaction; that is, some
resources decided to roll back and others decided to commit.

rollback()

The rollback() method is invoked to roll back the transaction and undo updates.
The rollback() method can throw one of three different checked exceptions. A
SecurityException is thrown if the thread using the UserTransaction object is not
allowed to roll back the transaction. An IllegalStateException is thrown if the
current thread is not associated with a transaction. A SystemException is thrown if
the transaction manager (the EJB server) encounters an unexpected error
condition.

setRollbackOnly()

The setRollbackOnly() method is invoked to mark the transaction for rollback.
This means that, regardless of whether the updates executed within the transaction
succeed, the transaction must be rolled back when completed. This method can
be invoked by any BMT EJB participating in the transaction or by the client ap-
plication. The setRollBackOnly() method can throw one of two checked excep-
tions: an IllegalStateException is thrown if the current thread is not associated
with a transaction, and a SystemException is thrown if the transaction manager (the
EJB server) encounters an unexpected error condition.

setTransactionTimeout(int seconds)

The setTransactionTimeout(int seconds) method sets the lifespan of a transaction
(i.e., how long it will live before timing out). The transaction must complete before
the transaction timeout is reached. If this method is not called, the transaction
manager (EJB server) automatically sets the timeout. If this method is invoked with
a value of 0 seconds, the default timeout of the transaction manager will be used.
This method must be invoked after the begin() method. A SystemException is
thrown if the transaction manager (EJB server) encounters an unexpected error
condition.

getStatus()

The getStatus() method returns an integer that can be compared to constants
defined in the javax.transaction.Status interface. A sophisticated programmer
can use this method to determine the status of a transaction associated with a
UserTransaction object. A SystemException is thrown if the transaction manager
(EJB server) encounters an unexpected error condition.

Status
Status is a simple interface that contains constants but no methods. Its sole purpose is
to provide a set of constants that describe the status of a transactional object—in this
case, UserTransaction:

interface javax.transaction.Status
{
 public final static int STATUS_ACTIVE;

310 | Chapter 17: Transactions

 public final static int STATUS_COMMITTED;
 public final static int STATUS_COMMITTING;
 public final static int STATUS_MARKED_ROLLBACK;
 public final static int STATUS_NO_TRANSACTION;
 public final static int STATUS_PREPARED;
 public final static int STATUS_PREPARING;
 public final static int STATUS_ROLLEDBACK;
 public final static int STATUS_ROLLING_BACK;
 public final static int STATUS_UNKNOWN;
}

The value returned by getStatus() tells the client using the UserTransaction the status
of a transaction. Here’s what the constants mean:

STATUS_ACTIVE

An active transaction is associated with the UserTransaction object. This status is
returned after a transaction has been started and prior to a transaction manager
beginning a two-phase commit. (Transactions that have been suspended are still
considered active.)

STATUS_COMMITTED

A transaction is associated with the UserTransaction object, and the transaction
has been committed. It is likely that heuristic decisions have been made; otherwise,
the transaction would have been destroyed and the STATUS_NO_TRANSACTION con-
stant would have been returned instead.

STATUS_COMMITTING

A transaction is associated with the UserTransaction object, and the transaction is
in the process of committing. The UserTransaction object returns this status if the
transaction manager has decided to commit but has not yet completed the process.

STATUS_MARKED_ROLLBACK

A transaction is associated with the UserTransaction object, and the transaction
has been marked for rollback, perhaps as a result of a UserTransaction.setRoll
backOnly() operation invoked somewhere else in the application.

STATUS_NO_TRANSACTION

No transaction is currently associated with the UserTransaction object. This occurs
after a transaction has completed or if no transaction has been created. This value
is returned instead of throwing an IllegalStateException.

STATUS_PREPARED

A transaction is associated with the UserTransaction object. The transaction has
been prepared, which means that the first phase of the two-phase commit process
has completed.

STATUS_PREPARING

A transaction is associated with the UserTransaction object, and the transaction is
in the process of preparing, which means that the transaction manager is in the
middle of executing the first phase of the two-phase commit.

Explicit Transaction Management | 311

STATUS_ROLLEDBACK

A transaction is associated with the UserTransaction object, and the outcome of
the transaction has been identified as a rollback. It is likely that heuristic decisions
have been made; otherwise, the transaction would have been destroyed and the
STATUS_NO_TRANSACTION constant would have been returned.

STATUS_ROLLING_BACK

A transaction is associated with the UserTransaction object, and the transaction is
in the process of rolling back.

STATUS_UNKNOWN

A transaction is associated with the UserTransaction object, and its current status
cannot be determined. This is a transient condition and subsequent invocations
will ultimately return a different status.

EJBContext Rollback Methods
Only BMT beans can access UserTransaction from EJBContext and the JNDI ENC.
Container-managed transaction (CMT) beans cannot use UserTransaction. Instead,
CMT beans use the setRollbackOnly() and getRollbackOnly() methods of
EJBContext to interact with the current transaction. Later in this chapter, we’ll see that
exceptions can be used to roll back the transaction.

The setRollbackOnly() method gives an enterprise bean the power to veto a transaction,
which can be used if the enterprise bean detects a condition that would cause incon-
sistent data to be committed when the transaction completes. Once an enterprise bean
invokes the setRollbackOnly() method, the current transaction is marked for rollback
and cannot be committed by any other participant in the transaction, including the
container.

The getRollbackOnly() method returns true if the current transaction has been marked
for rollback. This information can be used to avoid executing work that would not be
committed anyway. For example, if an exception is thrown and captured within an
enterprise bean method, getRollbackOnly() can be used to determine whether the ex-
ception caused the current transaction to be rolled back. If it did, there is no sense in
continuing the processing. If it did not, the EJB has an opportunity to correct the prob-
lem and retry the task that failed. Only expert EJB developers should attempt to retry
tasks within a transaction. Alternatively, if the exception did not cause a rollback (i.e.,
getRollbackOnly() returns false), a rollback can be forced using the setRollback
Only() method.

BMT beans must not use the setRollbackOnly() and getRollbackOnly() methods of the
EJBContext. BMT beans should use the getStatus() and rollback() methods on the
UserTransaction object to check for rollback and force a rollback, respectively.

312 | Chapter 17: Transactions

Exceptions and Transactions
Exceptions have a large impact on the outcome of transactions.

Application Exceptions Versus System Exceptions
System exceptions represent unknown internal errors. The EJB container throws sys-
tem exceptions when it encounters an internal application server failure. Business logic
can throw system exceptions when it wants to abort the business process. Application
exceptions are exceptions that are part of your business logic. They denote a strongly
typed definition of a specific business problem or failure but do not necessarily abort
or roll back the business process.

System exceptions

System exceptions include java.lang.RuntimeException and its subclasses.
EJBException is a subclass of RuntimeException, so it is considered a system exception.
System exceptions also include java.rmi.RemoteException and its subclasses. The Run
timeException and RemoteException subclasses differ in that they can be turned into
application exceptions using the @javax.ejb.ApplicationException annotation. This
annotation is discussed later in this chapter.

System exceptions always cause a transaction to roll back when they are thrown from
an enterprise bean method. Any RuntimeException not annotated with @Applica
tionException that is thrown within a business method (for instance, EJBException,
NullPointerException, IndexOutOfBoundsException, and so on) is handled by the con-
tainer automatically and results in a transaction rollback. In Java, RuntimeException
types do not need to be declared in the throws clause of the method signature or handled
using try/catch blocks; they are automatically thrown from the method.

The container handles system exceptions automatically and it will always do the
following:

1. Roll back the transaction.

2. Log the exception to alert the system administrator.

3. Discard the EJB instance.

When a system exception is thrown from any callback method (@PostConstruct, @Post
Activate, and so on), it is treated the same way as exceptions thrown from any business
method.

Although EJB requires system exceptions to be logged, it does not specify how they
should be logged or the format of the logfile. The exact mechanism for recording ex-
ceptions and reporting them to the system administrator is left to the vendor.

Exceptions and Transactions | 313

When a system exception occurs, the EJB instance is discarded, which means that it is
dereferenced and garbage-collected. The container assumes that the EJB instance may
have corrupt variables or otherwise be unstable and is therefore unsafe to use.

The impact of discarding an EJB instance depends on the enterprise bean’s type. In the
case of stateless session beans, the client does not notice that the instance has been
discarded. These instance types are not dedicated to a particular client; they are swap-
ped in and out of an instance pool, and so any instance can service a new request. With
stateful session beans, however, the impact on the client is severe. Stateful session beans
are dedicated to a single client and maintain conversational state. Discarding a stateful
bean instance destroys the instance’s conversational state and invalidates the client’s
reference to the EJB. When stateful session instances are discarded, subsequent invo-
cations of the EJB’s methods by the client result in a NoSuchEJBException, which is a
subclass of RuntimeException.§

With message-driven beans, a system exception thrown by the onMessage() method or
one of the callback methods (@PostConstruct or @PreDestroy) will cause the bean in-
stance to be discarded. If the MDB was a BMT bean, the message it was handling may
or may not be redelivered, depending on when the EJB container acknowledges deliv-
ery. In the case of container-managed transactions, the container will roll back the
transaction, so the message will not be acknowledged and may be redelivered.

In session beans, when a system exception occurs and the instance is discarded, a
RuntimeException is always thrown, regardless of whether the client is a remote or a
local invocation. If the client started the transaction, which was then propagated to the
EJB, a system exception (thrown by the enterprise bean method) will be caught by the
container and rethrown as a javax.ejb.EJBTransactionRolledbackException.
EJBTransactionRolledbackException is a subtype of RuntimeException and gives a more
explicit indication to the client that a rollback occurred. If the client did not propagate
a transaction to the EJB, the system exception will be caught and rethrown as an
EJBException.

An EJBException generally should be thrown when a nonbusiness subsystem throws
an exception, such as JDBC throwing an SQLException or JMS throwing a
JMSException. In some cases, however, the bean developer may attempt to handle the
exception and retry an operation instead of throwing an EJBException. This should be
done only when the exceptions thrown by the subsystem and their repercussions on
the transaction are well understood. As a rule of thumb, rethrow nonbusiness subsys-
tem exceptions as EJBExceptions (or @ApplicationExceptions that cause a rollback) and
allow the EJB container to roll back the transaction and discard the bean instance
automatically.

§ Although the instance is always discarded with a RuntimeException, the impact on the remote reference may
vary depending on the vendor.

314 | Chapter 17: Transactions

Application exceptions

An application exception is normally thrown in response to a business-logic error, as
opposed to a system error. Application exceptions are always delivered directly to the
client without being repackaged as an EJBException type. By default, they do not cause
a transaction to roll back. In this case, the client has an opportunity to recover after an
application exception is thrown. Application errors are frequently used to report vali-
dation errors in this manner. In this case, the exception is thrown before tasks are
started and is clearly not the result of a subsystem failure (e.g., JDBC, JMS, Java RMI,
and JNDI).

The @javax.ejb.ApplicationException annotation may be used to force an application
exception to roll back the transaction automatically:

package javax.ejb;

@Target(TYPE) @Retention(RUNTIME)
public @interface ApplicationException
{
 boolean rollback() default false;
}

For instance, our BankEJB makes use of an application exception to denote that a with-
drawal or transfer operation cannot complete due to an insufficient balance:

/**
 * Exception thrown when attempting to invoke an operation that requires
 * more funds than are currently available
 */
@ApplicationException(rollback = true)
public class InsufficientBalanceException extends Exception
{
 ...
}

We want the transaction to be rolled back automatically, but business logic may be
able to catch InsufficientBalanceException and retry the transaction automatically (by
depositing more funds first, for example).

The @ApplicationException annotation can also be used on subclasses of java.lang.
RuntimeException and java.rmi.RemoteException. This is useful because you may not
want a thrown RuntimeException to be wrapped in an EJBException, or you may not
want a particular subclass of RemoteException to roll back the exception.

Table 17-1 summarizes the interactions among different types of exceptions and trans-
actions in session and entity beans.

Exceptions and Transactions | 315

Table 17-1. Exception summary for session and entity beans

Transaction scope
Transaction type
attributes

Exception
thrown Container’s action Client’s view

Client-initiated
transaction. The
transaction is started
by the client (applica-
tion or EJB) and
propagated to the en-
terprise bean method.

transaction-type =
Container

transaction-attribute
= Required |
Mandatory |Supports

Application
exception

If the EJB invoked setRoll
backOnly() or the application
exception is annotated with
@ApplicationException

(rollback=true), mark the
client’s transaction for rollback.
Rethrow the application
exception.

Receives the applica-
tion exception. The cli-
ent’s transaction may
or may not have been
marked for rollback.

 System
exception

Mark the client’s transaction for
rollback. Log the error. Discard
the instance. Rethrow the
javax.ejb.EJBTransac

tionRolledback

Exception.

Clients receive the JTA
javax.ejb.EJB

TransactionRol

ledbackExcep

tion. The client’s
transaction has been
rolled back.

Container-managed
transaction. The
transaction started
when the EJB’s
method was invoked
and will end when the
method completes.

transaction-type =
Container

transaction-attribute
= Required |
RequiresNew

Application
exception

If the EJB invoked setRoll
backOnly() or the application
exception is annotated with
@ApplicationException

(rollback=true), roll back
the transaction and rethrow the
application exception. If the EJB
did not explicitly roll back the
transaction, attempt to commit
the transaction and rethrow the
application exception.

Receives the applica-
tion exception. The
EJB’s transaction may
or may not have been
rolled back. The cli-
ent’s transaction is not
affected.

 System
exception

Roll back the transaction. Log the
error. Discard the instance. Re-
throw the RemoteExcep
tion or EJBException.

Remote clients receive
the RemoteExcep
tion or EJBExcep
tion. The EJB’s trans-
action was rolled
back. The client’s
transaction may be
marked for rollback,
depending on the
vendor.

The bean is not part of
a transaction. The EJB
was invoked but
doesn’t propagate the
client’s transaction
and doesn’t start its
own transaction.

transaction-type =
Container

transaction-attribute
= Never |
NotSupported |
Supports |

Application
exception

Rethrow the application
exception.

Receives the applica-
tion exception. The cli-
ent’s transaction is not
affected.

316 | Chapter 17: Transactions

Transaction scope
Transaction type
attributes

Exception
thrown Container’s action Client’s view

 System
exception

Log the error. Discard the in-
stance. Rethrow the RemoteEx
ception or EJBException.

Remote clients receive
the RemoteExcep
tion or EJBExcep
tion. The client’s
transaction may or
may not be marked for
rollback, depending
on the vendor.

Bean-managed
transaction. The
stateful or stateless
session EJB uses the
EJBContext to ex-
plicitly manage its
own transaction.

transaction-type =
Bean

transaction-attribute
= Bean-managed
transaction

EJBs do not use
transaction
attributes.

Application
exception

Rethrow the application
exception.

Receives the applica-
tion exception. The cli-
ent’s transaction is not
affected.

 System
exception

Roll back the transaction. Log the
error. Discard the instance. Re-
throw the RemoteExcep
tion or EJBException.

Remote clients receive
the RemoteExcep
tion or EJBExcep
tion. The client’s
transaction is not
affected.

Table 17-2 summarizes the interactions among different types of exceptions and trans-
actions in message-driven beans.

Table 17-2. Exception summary for message-driven beans

Transaction scope
Transaction type
attributes

Exception
thrown Container’s action

Container-initiated transac-
tion. The transaction started
before the onMessage()
method was invoked and will
end when the method
completes.

transaction-type
=Container

transaction-attribute =
Required

System
exception

Roll back the transaction. Log the error.
Discard the instance.

 Application
exception

If the instance called setRollback
Only() or the exception is annotated
with @ApplicationException
(rollback=true), roll back the trans-
action and rethrow to the resource
adapter.

Exceptions and Transactions | 317

Transaction scope
Transaction type
attributes

Exception
thrown Container’s action

Container-initiated transac-
tion. No transaction was
started.

transaction-type
=Container

transaction-attribute = Not-
Supported

System
exception

Log the error. Discard the instance.

 Application
exception

Rethrow the exception to the resource
adapter.

Bean-managed transaction.
The message-driven bean
uses EJBContext to man-
age its own transaction
explicitly.

transaction-type = Bean

transaction-attribute =

Bean-managed transaction
attributes.

System
exception

Roll back the transaction. Log the error.
Discard the instance.

All Tx Scopes Application
exception

Rethrow the exception to the resource
adapter.

Transactional Stateful Session Beans
Session beans can interact directly with the database as easily as they can manage the
taskflow of other enterprise beans. Stateless session beans have no conversational state,
so each method invocation must make changes to the database immediately. With
stateful session beans, however, we may not want to make changes to the database
until the transaction is complete. Remember, a stateful session bean can be one of many
participants in a transaction, so it might be advisable to postpone database updates
until the entire transaction is committed or to avoid updates if it is rolled back.

There are several different scenarios in which a stateful session bean might cache
changes before applying them to the database. For example, think of a shopping cart
implemented by a stateful session bean that accumulates several items for purchase. If
the stateful bean implements SessionSynchronization, it can cache the items and write
them to the database only when the transaction is complete.

The javax.ejb.SessionSynchronization interface allows a session bean to receive ad-
ditional notification of the session’s involvement in transactions. The addition of these
transaction callback methods by the SessionSynchronization interface expands the
EJB’s awareness of its lifecycle to include a new state, the Transactional Method-Ready
state. This is always a part of the lifecycle of a transactional stateful session bean. Im-
plementing the SessionSynchronization interface simply makes it visible to the appli-
cation provider. Figure 17-7 shows the stateful session bean with the additional state.

318 | Chapter 17: Transactions

Figure 17-7. Lifecycle of a stateful session bean

The SessionSynchronization interface is defined as follows:

package javax.ejb;

public interface javax.ejb.SessionSynchronization
{
 public abstract void afterBegin() throws RemoteException;
 public abstract void beforeCompletion() throws RemoteException;
 public abstract void afterCompletion(boolean committed)
 throws RemoteException;
}

When a method of the SessionSynchronization bean is invoked outside of a transaction
scope, the method executes in the Method-Ready state. However, when a method is
invoked within a transaction scope (or creates a new transaction), the EJB moves into
the Transactional Method-Ready state.

Transactional Stateful Session Beans | 319

The Transactional Method-Ready State
The SessionSynchronization methods are called in the Transactional Method-Ready
state.

Transitioning into the Transactional Method-Ready state

When a transactional method is invoked on a SessionSynchronization bean, the stateful
bean becomes part of the transaction, causing the afterBegin() callback method de-
fined in the SessionSynchronization interface to be invoked. This method should take
care of reading any data from the database and storing the data in the bean’s instance
fields. The afterBegin() method is called before the EJB object delegates the business-
method invocation to the EJB instance.

Life in the Transactional Method-Ready state

When the afterBegin() callback method completes, the business method originally
invoked by the client is executed on the EJB instance. Any subsequent business methods
invoked within the same transaction will be delegated directly to the EJB instance.

Once a stateful session bean is a part of a transaction—whether it implements Session
Synchronization or not—it cannot be accessed by any other transactional context. This
is true regardless of whether the client tries to access the EJB with a different context
or the EJB’s own method creates a new context. If, for example, a method with a trans-
action attribute of RequiresNew is invoked, the new transactional context causes an error
to be thrown. Since the NotSupported and Never attributes specify a different transac-
tional context (no context), invoking a method with these attributes also causes an
error. A stateful session bean cannot be removed while it is involved in a transaction.
This means that invoking an @Remove annotated method while the
SessionSynchronization bean is in the middle of a transaction will cause an error to be
thrown.

At some point, the transaction in which the SessionSynchronization bean has been
enrolled will come to an end. If the transaction is committed, the
SessionSynchronization bean will be notified through its beforeCompletion() method.
At this time, the EJB should write its cached data to the database. If the transaction is
rolled back, the beforeCompletion() method will not be invoked, avoiding the pointless
effort of writing changes that won’t be committed to the database.

The afterCompletion() method is always invoked, whether the transaction ended suc-
cessfully with a commit or unsuccessfully with a rollback. If the transaction was a
success—which means that beforeCompletion() was invoked—the committed

parameter of the afterCompletion() method will be true. If the transaction was unsuc-
cessful, then the committed parameter will be false.

It may be desirable to reset the stateful session bean’s instance variables to some initial
state if the afterCompletion() method indicates that the transaction was rolled back.

320 | Chapter 17: Transactions

Conversational Persistence Contexts
Entity managers participate in transactions just like any other resource. We’ve seen
examples of this throughout this book. Extended persistence contexts have some in-
teresting transactional behavior that you can exploit. You are allowed to invoke
EntityManager operations such as persist(), merge(), and remove() outside of a trans-
action when you interact with an extended persistence context. These inserts, updates,
and deletes are queued until the extended persistence context is enlisted in an active
transaction and is committed. In other words, the database is not touched until the
persistence context becomes involved with a transaction. Also, any executed queries
do not hold their database connection after they complete. Let’s look at an example of
this:

1 EntityManager manager = entityManagerFactory.createEntityManager(EXTENDED);
2 manager.persist(entityA);
3 manager.merge(entityB);
4 manager.remove(entityC);
5 userTransaction.begin();
6 manager.flush();
7 userTransaction.commit();

Line 1 creates an extended persistence context. Lines 2–4 create, update, and delete
some entity beans. These actions are queued until the persistence context becomes
enlisted in a transaction in Line 5. The act of calling an EntityManager method enlists
the persistence context in the transaction. The batched actions are then committed in
Line 7.

You can really exploit this behavior by using it with stateful session beans.

The combination of stateful session beans, extended persistence contexts, and specific
transaction demarcation gives you a lot of power to optimize and control your con-
versational state. Without these integrated features, you would have the painstaking
task of managing all of these state changes within the stateful session bean itself. Now
you can let the entity manager do most of the work for you.

Conversational Persistence Contexts | 321

CHAPTER 18

Interceptors

From the very start, we’ve been focusing on finding a proper home for all code in an
application. Business logic is accessible from session or message-driven beans, domain
nouns are in entities, and services such as security and transactions are handled as
configurable aspects by the container. However, there might be cross-cutting concerns
demanded by your unique requirements that are too specific to be handled by an open
specification. For these cases, EJB 3.1 provides a generic interception framework in the
form of the Interceptors 1.1 Specification.

Interceptors are objects that can interpose themselves on method calls or the lifecycle
events of session and message-driven beans. They allow you to encapsulate common
behavior that cuts across large parts of your application. This behavior is usually com-
mon code that you don’t want polluting your business logic. Where most of the changes
to the EJB 3.x specifications were designed to make EJB easier to use for application
developers, interceptors are an advanced feature that provide you another way to mod-
ularize your application or even extend your EJB container. This chapter teaches you
how to write an interceptor and shows you various real-world examples of where in-
terceptors can be used.

Intercepting Methods
To understand when to use interceptors, we’ll first take a look at an example of poor
code reuse.

We’ll be building an online television station, and part of the backing application is a
TunerEJB. Incoming requests to get a channel will return an InputStream pointer to read
in the content:

public interface TunerLocalBusiness
{
 /**
 * Obtains the stream containing viewable content
 * for the specified television channel. Supported channels are 1 and 2.
 *

323

 * @param channel
 * @return
 * @throws IllegalArgumentException If the channel is not valid
 */
 InputStream getChannel(int channel) throws IllegalArgumentException;

}

Management may have the requirement that we keep track of all incoming requests to
the system so that we can analyze its real-world use during the product launch. So, as
obedient developers, we might code something into the implementation as follows:

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.chxx.echo.TunerLocalBusiness#getChannel(int)
 */
 @Override
 public InputStream getChannel(final int channel) throws IllegalArgumentException
 {
 // Obtain a cache to store invocation context information
 final InvocationCache cache = InvocationCache.get(); // Assume this type
exists

 // Get some context about this invocation
 final Method method;
 try{
 method = TunerLocalBusiness.class.getMethod("getChannel", int.class);
 }
 catch(final NoSuchMethodException nmse)
 {
 throw new RuntimeException(
 "Developer error, could not get target method invoked");
 }
 final Object[] params = new Object[]{channel};

 // Put this context into the cache
 cache.put(new MyInvocationDO(method,params));

 ... // Rest of method business logic follows

 }

Already we have a few lines of code embedded into our business method that have
nothing to do with obtaining channel content. We might encourage code reuse by
extracting out into some common utilities, but even then every function that needs this
behavior will have to explicitly call the shared logic.

Additionally, company management may decide to restrict access to some methods,
from some callers, at some times. As you can see, we very quickly get to a situation in
which we’re layering unrelated business logic across the system.

324 | Chapter 18: Interceptors

In fact, there are a lot of design flaws:

• The getChannel() method is polluted with code that has nothing to do with the
business logic of the method. Not only has the developer added seven lines of code
to the method, but he has also made the code a bit harder to read.

• It is difficult to turn auditing off and on since you have to comment out the code
and recompile the bean class.

• This auditing logic is obviously a template that could be reused across many meth-
ods of your application. If this code is littered throughout your EJB methods, you
would need to potentially modify a lot of different classes to expand the
functionality.

Interceptors define a much cleaner separation for business logic that may run across
many modules in your system. They provide a mechanism to encapsulate this business
logic and an easy way to apply it to your methods without making the code harder to
read. Interceptors provide a structure for this type of behavior so that it can easily be
extended and expanded in one class. Finally, they provide a simple, configurable mech-
anism for applying their behavior wherever you like.

Interceptor Class
Encapsulating this auditing logic into an interceptor is as simple as creating a plain Java
class that has a method with the @javax.interceptor.AroundInvoke annotation and the
following signature:

@AroundInvoke

Object <any-method-name>(javax.interceptor.InvocationContext
 invocation)
 throws Exception;

The @AroundInvoke method in an interceptor class does just what it implies. It wraps
around the call to your business method and is actually invoked in the same Java call
stack and in the same transaction and security context as the bean method it is inter-
cepting. The javax.interceptor.InvocationContext parameter is a generic representa-
tion of the business method the client is invoking. You can obtain information such as
the target bean instance on which you are invoking, access to its parameters expressed
as an array of objects, and a reference to a java.lang.reflect.Method object that is the
generic representation of the actual invoked method. InvocationContext is also used to
drive the invocation. Let’s convert our auditing logic into an @AroundInvoke method:

/**
 * Aspect which records all incoming invocations
 * such that we may perform auditing later
 *
 * @author ALR
 * @version $Revision: $
 */

Intercepting Methods | 325

public class RecordingAuditor
{
 /**
 * Logger
 */
 private static final Logger log =
 Logger.getLogger(RecordingAuditor.class.getName());

 /**
 * Writable store for incoming invocations; imagine this is available to us
 * and that it'll either log or otherwise store persistently in a DB
 */
 private final Recorder<InvocationContext> invocations ; // We made up "Recorder"

 /**
 * Persistently records the intercepted {@link InvocationContext} such that
 * we may examine it later
 */
 @AroundInvoke
 public Object audit(final InvocationContext context) throws Exception
 {
 // Precondition checks
 assert context != null : "Context was not specified";

 // Record the invocation
 invocations.add(context);

 // Carry out the invocation, noting where we've intercepted
 // before and after the call (around it)
 try
 {
 // Log
 log.info("Intercepted: " + context);

 // Return
 return context.proceed();
 }
 finally
 {
 // Log
 log.info("Done with: " + context);
 }
 }
}

The @AroundInvoke method of our interceptor class is the audit() method. It looks pretty
much the same as the code in our getChannel() method, except that the business logic
is gone and all that is left is our generic auditing logic. Additionally, we can take ad-
vantage of the descriptor given to us (InvocationContext) for the current request rather
than construct our own representation. After we’ve recorded the invocation, the
InvocationContext.proceed() method is called. If another interceptor must be invoked
as part of the method call, then proceed() calls the @AroundInvoke method of that other
interceptor. If no other interceptors need executing, then the EJB container calls the

326 | Chapter 18: Interceptors

bean method on which the client is invoking. Because the getChannel() method is in-
voked in the same Java call stack as the business method on which you are invoking,
proceed() must be called by the interceptor code, or the actual EJB method is not called
at all.

The only responsibility of our auditor is to record the incoming request for future
analysis. The InvocationContext.getMethod() operation gives us access to the
java.lang.reflect.Method object that represents the actual bean method being in-
voked. Besides getMethod(), the InvocationContext interface has some other interesting
methods:

package javax.interceptor;

public interface InvocationContext {
 public Object getTarget();
 public Method getMethod();
 public Object[] getParameters();
 public void setParameters(Object[] newArgs);
 public java.util.Map<String, Object> getContextData();
 public Object proceed() throws Exception;
 public Object getTimer();
}

The getTarget() method returns a reference to the target bean instance. We could
change our audit() method to also print out the parameters of the invoked bean method
by using the getParameters() method. The setParameters() method allows you to ac-
tually modify the parameters of the method that is being invoked. Use this with care.
The getContextData() method returns a Map object that is active for the entire method
invocation. Interceptors can use this map to pass contextual data between themselves
within the same method invocation.

Applying Interceptors
Now that the interceptor class has been written, it is time to apply it to an EJB. One or
more interceptors can be applied to all EJBs within a deployment (default interceptors),
to all methods of one EJB, or to a single method of an EJB. Interceptors can be applied
via an annotation or by using an XML deployment descriptor. We discuss all options
in this section.

Annotated methods and classes

The @javax.interceptor.Interceptors annotation can be used to apply interceptors to
individual methods or to every method in the EJB’s bean class:

package javax.interceptor;

import java.lang.annotation.*;

@Retention(RetentionType.RUNTIME)
@Target({ElementType.CLASS, ElementType.METHOD})

Intercepting Methods | 327

public @interface Interceptors {
 Class[] value();
}

When the @Interceptors annotation is applied to an individual method, that intercep-
tor is executed only when that particular method is invoked. If you use the
@Interceptors annotation on the bean class, all interceptor classes listed will interpose
on every method invocation of every business method of the EJB.

Therefore, auditing all the methods of our TunerEJB is as easy as applying the
@Interceptors annotation at the class level:

@Stateless
// Class-level interceptors will be run upon requests to every method of this EJB
@Interceptors(RecordingAuditor.class)
@Local(TunerLocalBusiness.class)
public class TunerBean implements TunerLocalBusiness{
 ...
}

We may also have another aspect in charge of blocking access to a particular channel
when management would like to restrict access. This can be declared to run only on
specific methods, like so:

/**
 * {@inheritDoc}
 * @see org.ejb3book.examples.chxx.echo.TunerLocalBusiness#getChannel(int)
 */
// Here we declare method-level interceptors, which will only take place on this
method
@Interceptors(Channel2Restrictor.class)
@Override
public InputStream getChannel(final int channel) throws IllegalArgumentException
{
 ...
}

Whether you want to apply the @Interceptors annotation on the class or the method
is really determined by your requirements.

Applying interceptors through XML

Although the @Interceptors annotation allows you to apply the auditing interceptor
easily, it does force you to modify and recompile your class every time you want to
remove profiling from or add it to a particular method or EJB. Unless an interceptor is
a required part of your business logic, it may not be the best idea to annotate your code;
using XML bindings instead might be a better approach. Because the EJB 3.x specifi-
cation supports partial XML deployment descriptors, it is quite painless and easy to
apply an interceptor through XML:

<ejb-jar
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

328 | Chapter 18: Interceptors

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
 version="3.1">
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>TunerBean</ejb-name>
 <interceptor-class>org.ejb3book.RecordingAuditor</interceptor-class>
 <method-name>getChannel</method-name>
 <method-params>
 <method-param>int</method-param>
 </method-params>
 </interceptor-binding>
 </assembly-descriptor>
</ejb-jar>

The preceding XML is a complete deployment descriptor. The <interceptor-

binding> element specifies that we want the RecordingAuditor interceptor to be execu-
ted whenever the getChannel() method of the TunerEJB is invoked. Because the
getChannel() method is not overloaded in the bean class, the <method-params> element
isn’t explicitly required.

If you want to apply an interceptor to every business method of a particular EJB, then
leave out the <method-name> and <method-params> elements:

<ejb-jar
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
 version="3.1">
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>TunerBean</ejb-name>
 <interceptor-class>org.ejb3book.RecordingAuditor</interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>
</ejb-jar>

As you can see, you can use an XML deployment descriptor only when you need it and
leave the rest of the EJB metadata expressed as annotations. In this particular inter-
ceptor use case, it makes more sense to use XML than an annotation because auditing
is probably something you’d want to do for a limited time.

Default interceptors

XML has some other advantages as well. For instance, the <ejb-name> element in an
<interceptor-binding> can take a wildcard. In this case, you are applying one or more
interceptors that you declare in the interceptor-binding to every EJB in that particular
JAR file deployment:

<ejb-jar
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Intercepting Methods | 329

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
 version="3.1">
 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>org.ejb3book.RecordingAuditor</interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>
</ejb-jar>

Disabling interceptors

If you are using default interceptors or class-level interceptors, there may be times when
you want to disable them for a particular EJB or for a particular method of an EJB. You
can do this via an annotation or through XML. Let’s look at disabling default inter-
ceptors first.

In the preceding XML, we have enabled the RecordingAuditor interceptor for every EJB
deployed in the particular JAR file in which the XML is placed. Let’s say we do not
want the auditor to be executed for our TunerEJB. We can turn off all default interceptors
by using the @javax.interceptor.ExcludeDefaultInterceptors annotation:

@Stateless
@ExcludeDefaultInterceptors
@Interceptors
(org.ejb3book.SomeOtherInterceptor.class)
@Local(TunerLocalBusiness.class)
public class TunerBean implements TunerLocalBusiness {
...
}

In the preceding example, the RecordingAuditor will not be executed. Just because the
@ExcludeDefaultInterceptors annotation has been used, it does not mean we cannot
specify an @Interceptors annotation that triggers other interceptor classes. This exclu-
sion can be done within XML as well:

<ejb-jar
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
 version="3.1">
 >
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>org.ejb3book.RecordingAuditor</interceptor-class>
 </interceptor-binding>
 <interceptor-binding>
 <ejb-name>TunerBean</ejb-name>
 <exclude-default-interceptors/>
 <interceptor-class>org.ejb3book.SomeOtherInterceptor</interceptor-class>
 </interceptor-binding>

330 | Chapter 18: Interceptors

 </assembly-descriptor>
</ejb-jar>

What we’re really doing in the preceding examples is giving the TunerEJB a brand-new
interceptor stack that overrides and supersedes any default interceptors.

The same overriding and disabling of interceptors can be done at the method level as
well. You can turn off interceptors entirely for a particular method by using the
@javax.interceptor.ExcludeDefaultInterceptors and @javax.interceptor.Exclude

ClassInterceptors annotations:

@Stateless
@Interceptors
(org.ejb3book.SomeOtherInterceptor.class)
@Local(TunerLocalBusiness.class)
public class TunerBean implements TunerLocalBusiness
{
...
 @ExcludeClassInterceptors
 @ExcludeDefaultInterceptors
 public InputStream getChannel(final int channel) throws IllegalArgumentException
 {
 ...
 }
...
}

The @ExcludeClassInterceptors annotation turns off any applied class-level
interceptors, and the @ExcludeDefaultInterceptors annotation turns off any default
interceptors defined in XML. You could also specify an @Interceptors annotation on
the getChannel() method to define a different interceptor stack compared to the rest
of the methods in the bean class. This is also available in XML format.

Usually, you will not be concerned with disabling interceptors, but it is good to know
you have the tools to do so if you need to.

Interceptors and Injection
Interceptors belong to the same ENC as the EJBs they intercept. Like the EJBs they
intercept, interceptor classes have full support for all the injection annotations, as well
as injection through XML. So, you can use annotations such as @Resource, @EJB, and
@PersistenceContext within your interceptor class if you so desire. Let’s illustrate this
in a revised view of our auditing interceptor:

public class RecordingAuditor
{

 ...

 /**
 * The current EJB Context; to be injected by the Container
 */

Interceptors and Injection | 331

 @Resource
 EJBContext beanContext;

 /**
 * Persistently records the intercepted {@link InvocationContext} such that
 * we may examine it later
 */
 @AroundInvoke
 public Object audit(final InvocationContext invocationContext) throws Exception
 {
 // Precondition checks
 assert invocationContext != null : "Context was not specified";

 // Obtain the caller
 final Principal caller = beanContext.getCallerPrincipal();

 // Create a new view
 final AuditedInvocation audit =
 new AuditedInvocation(invocationContext, caller);

 // Record the invocation
 invocations.add(audit);

 ... // The rest omitted for brevity

 }

}

The purpose of this interceptor is to log in a persistent view every method invocation
done on a particular bean so that an audit trail is created. From this audit trail, system
administrators can research security breaches or replay the actions of a particular user.
The interceptor obtains the calling user by invoking getCallerPrincipal() on the
javax.ejb.EJBContext injected into the beanContext member variable. It allocates an
AuditedInvocation object and sets properties such as the method being invoked and
the calling principal. We could even fashion AuditedInvocation as an entity bean, and
persist to the database by an injected EntityManager. Any members the container may
inject into a session or message-driven bean is also available to interceptors.

As with bean classes, interceptor injection annotations create additional entries in the
ENC of the EJB to which the interceptor class is bound. This means that the persistence
context referenced by the beanContext field is also available in JNDI with the string
java:comp/env/org.ejb3book.AuditInterceptor/beanContext.

As always, if you do not want to use annotations to inject dependencies into your
interceptor classes, the XML alternative is to define an <interceptor> element within
your ejb-jar.xml deployment descriptor.

332 | Chapter 18: Interceptors

Intercepting Lifecycle Events
Not only can you intercept EJB method invocations, but you can also intercept EJB
lifecycle events. These callbacks can be used to initialize the state of your EJB bean
classes, as well as the interceptor class itself. Lifecycle interception looks very similar
to the @AroundInvoke style:

@callback-annotation> voidmethod-name(InvocationContext
 ctx);

To intercept an EJB callback, define a method within your interceptor class that is
annotated with the callback in which you are interested. The return value of the method
must be void because EJB callbacks have no return value. The method name can be
anything and must not throw any checked exceptions (no throws clause). Invocation
Context is the only parameter to this method. As with @AroundInvoke methods, callback
interception is invoked in one big Java call stack. This means you must call Invocation
Context.proceed() to complete the lifecycle event. When calling proceed(), the next
interceptor class that has the same callback is invoked. If there are no other interceptors,
then the callback method of the EJB’s bean class is invoked, if one exists. If the EJB has
no callback method, then proceed() is a no-op. Because there may be no callback
method, InvocationContext.getMethod() always returns null.

Custom Injection Annotations
Why would you want to intercept an EJB callback? One concrete example is when you
want to create and define your own injection annotations. The EJB specification has a
bunch of annotations for injecting Java EE resources, services, and EJB references into
your bean classes. Some application servers or applications like to use JNDI as a global
registry for configuration or for non-Java EE services. Unfortunately, the specification
defines no way to inject something directly from global JNDI into your beans. What
we can do is define our own annotation for providing this functionality and implement
it as an interceptor.

The first thing we must do is to define the annotation we will use to inject from JNDI:

package org.ejb3book.annotations;

import java.lang.annotation.*;

@Target({ElementType.METHOD, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
public @interface JndiInjected {
 String value();
}

Intercepting Lifecycle Events | 333

The value() attribute of the @org.ejb3book.annotations.JndiInjected annotation is the
global JNDI name of the object we want injected into our field or setter method. Here
is an example of how we might use this custom annotation:

@Stateless
public class MySessionBean implements MySession {
 @JndiInject("java:/TransactionManager")
 private javax.transaction.TransactionManager tm;

...
}

Some applications might be interested in obtaining a reference to the Java EE JTA
Transaction Manager service. Many application servers store a reference to this service
in global JNDI. In this instance, we use the @JndiInjected annotation to pull a reference
to the Transaction Manager directly into the field of our session bean. Now that we
have defined our custom injection annotation and we’ve defined how it might be used,
we need to code the interceptor class that implements this behavior:

package org.ejb3.interceptors;

import java.lang.reflect.*;
import com.titan.annotations.JndiInjected;
import javax.ejb.*;
import javax.naming.*;
import javax.interceptor.*;
import javax.annotation.*;

public class JndiInjector
{

 @PostConstruct
 public void jndiInject(InvocationContext invocation) {
 Object target = invocation.getTarget();
 Field[] fields = target.getClass().getDeclaredFields();
 Method[] methods = target.getClass().getDeclaredMethods();

 // find all @JndiInjected
 fields/methods and set them
 try {
 InitialContext ctx = new InitialContext();
 for (Method method : methods) {
 JndiInjected inject = method.getAnnotation(JndiInjected.class);
 if (inject != null) {
 Object obj = ctx.lookup(inject.value());
 method.setAccessible(true);
 method.invoke(target, obj);
 }
 }
 for (Field field : fields) {
 JndiInjected inject = field.getAnnotation(JndiInjected.class);
 if (inject != null) {
 Object obj = ctx.lookup(inject.value());
 field.setAccessible(true);

334 | Chapter 18: Interceptors

 field.set(target, obj);
 }
 }
 invocation.proceed();
 } catch (Exception ex) {
 throw new EJBException

("Failed to execute @JndiInjected", ex);
 }
 }
}

The jndiInject() method is annotated with @javax.annotation.PostConstruct to tell
the EJB container that the JndiInjector interceptor is interested in intercepting that
particular EJB callback. The method begins by obtaining a reference to the bean in-
stance it is intercepting. It then reflects on the object to find all methods and fields that
are annotated with @JndiInjected, looks up the referenced JNDI name, and initializes
the field or method of the target bean instance. Notice that this is done in a try/catch
block. When intercepting a callback method, you can never throw a checked exception;
therefore, all checked exceptions must be caught and wrapped in an EJBException.

Now that the interceptor class has been implemented, we can apply this interceptor to
our EJBs just as we’ve done before.

One particularly interesting thing about this example is that it shows that you can use
EJB interceptors as a framework for writing custom annotations that add your own
customer behavior to your EJBs. Default interceptors, through XML, give you a clean,
simple way of applying the interceptors that implement the behavior of your annota-
tions. Finally, this custom behavior is portable and can be used in any vendor imple-
mentation. Not only is EJB 3.x easy to use, but it is easy to extend as well.

Exception Handling
Exception handling with interceptors is simple yet powerful. Since interceptors sit di-
rectly in the Java call stack of the bean method or callback that is being invoked, you
can put a try/catch/finally block around the InvocationContext.proceed() method. You
can abort an invocation before it reaches the actual bean method by throwing an ex-
ception within the @AroundInvoke or callback method. You are also allowed to catch a
bean-method-thrown exception and throw a different exception or suppress the ex-
ception. With @AroundInvoke interception, you are even allowed to retry the bean
method call after catching an exception from the bean method. Let’s look at some
examples.

Exception Handling | 335

Aborting a Method Invocation
It’s conceivable that the management of our online television station would like to
restrict access to a premium channel at their discretion. In this case, we might short-
circuit an incoming request to instead return a descriptive Exception:

public class Channel2Restrictor
{
...
 /**
 * Examines the specified request to determine if the caller is attempting
 * to obtain content for Channel 2. If so, and Channel 2 is currently closed,
 * will block the request, instead throwing {@link Channel2ClosedException}
 */
 @AroundInvoke
 public Object checkAccessibility(final InvocationContext context) throws Exception
 {
 // Precondition checks
 assert context != null : "Context was not specified";

 // See if we're requesting Channel 2
 if (isRequestForChannel2(context))
 {
 // See if Channel 2 is open
 if (!Channel2AccessPolicy.isChannel2Permitted())
 {
 // Block access
 throw Channel2ClosedException.INSTANCE;
 }
 }

 // Otherwise carry on
 return context.proceed();
 }
}

Here we’ve encapsulated the logic determining whether we should allow the request
to continue along for processing, ultimately to return content for Channel 2. In this
example we’re, in effect, implementing our own custom security framework. EJB se-
curity is pretty basic and sometimes you have more specific contextual requirements.
For instance, you may want to integrate your EJB with a rules engine that analyzes the
user as well as the method and parameters to determine whether the user is allowed to
invoke the method. This can also be done from within an interceptor.

Catch and Rethrow Exceptions
Besides aborting a given method invocation, you can also catch exceptions thrown by
the bean method within the interceptor’s @AroundInvoke method. For example, you can
use interceptor classes as an abstraction mechanism to create exception-handling
frameworks. Consider JDBC and the java.sql.SQLException. When an SQLException
is thrown, your code, programmatically, does not know the cause of the exception

336 | Chapter 18: Interceptors

without looking at the error number or the message of the exception. Unfortunately,
error codes and messages differ per database vendor and thus, if you wanted to handle
certain exceptions in certain ways, your code would be nonportable between database
vendors.

Let’s take two common SQLExceptions: deadlocking and cursor not available. First, we
will create concrete exceptions that extend SQLException:

@ApplicationException(rollback=true)
public class DatabaseDeadlockException extends java.sql.SQLException {
 public DatabaseDeadlockException(Exception cause) {
 Super(cause);
 }
}
@ApplicationException(rollback=true)
public class DatabaseCursorNotAvailable extends java.sql.SQLException {
 public DatabaseCursorNotAvailable(Exception cause) {
 super(cause);
 }
}

With these exceptions, we have abstracted away the dependency on the error number
to determine the actual database error that occurred. Our client code can use these
exceptions in a portable way and not be concerned with the underlying database ven-
dor. But before we can use these exceptions, we need to write the interceptor class that
does the exception handling:

public class MySQLExceptionHandler {
 @AroundInvoke
 public Object handleException(InvocationContext ctx) Exception {
 try {
 return ctx.proceed();
 } catch (SQLException sql) {
 int ernum = sql.getErrorCode();
 switch(ernum) {
 case 32343:
 throw new DatabaseDeadlockException(sql);
 case 22211:
 throw new DatabaseCursorNotAvailable(sql);
 ...
 default:
 throw new RollbackAlwaysOnException(sql);
 }
 }
}

The @AroundInvoke method simply catches any SQLException thrown by the bean
method and converts it to an appropriate exception type that you can catch in your
client code. Of course, there would be one exception-handler interceptor class per
database vendor. Here’s how your application code could then take advantage of this
interceptor behavior:

// application client code
{

Exception Handling | 337

 try {
 ejbref.invokeSomeDatabaseOperation();
 } catch (DatabaseDeadlockException deadlock) {
 // handle this specific error case in a special way
 }
}

So, combining the exception handler interceptor with EJB invocations allows you to
have specific code that handles specific database errors such as deadlock, without hav-
ing to worry that your code is not portable between vendors.

Interceptor Lifecycle
Interceptor classes have the same lifecycles as the EJBs they intercept. Consider an
interceptor class as an extension of the EJB’s bean instance. They are created along with
bean instances. They are destroyed, passivated, and activated along with their bean
instances as well. Also, it is important to note that interceptor classes have the same
restrictions as the beans to which they are attached. For instance, you cannot inject an
extended persistence context into an interceptor class if that interceptor does not in-
tercept a stateful session bean.

Because interceptors have lifecycles and hook into lifecycle events, they can also hold
internal state. This might be extremely useful when you want the interceptor class to
obtain an open connection to a remote system and then close that connection at destroy
time. You may also be interested in maintaining state that is particular to the bean
instance on which the interceptor class is intercepted. Maybe you have a custom
injection annotation that you have built and it needs special cleanup after the bean
instance is destroyed. You can hold internal state within the interceptor class and do
the cleanup when the interceptor and bean instance are destroyed.

Bean Class @AroundInvoke Methods
This chapter has mostly discussed interceptor classes. @AroundInvoke methods can also
exist inside EJB bean classes. When used inside a bean class, the @AroundInvoke method
will be the last “interceptor” to be invoked before the actual bean method:

@Stateless
public class MySessionBean implements MySessionRemote {

 public void businessMethod() {
 ...
 }

 @AroundInvoke
 public Object beanClassInterceptor(InvocationContext ctx) {
 try {
 System.out.println("entering: " + ctx.getMethod());
 return ctx.proceed();

338 | Chapter 18: Interceptors

 } finally {
 System.out.println("leaving: " + ctx.getMethod());
 }
 }
}

This is a simple example of a bean class @AroundInvoke method. For what sorts of things
would you want to use it? You may want to have a dynamic implementation of your
bean class, or you may have an interceptor whose logic is specific to the bean.

Bean Class @AroundInvoke Methods | 339

CHAPTER 19

Timer Service

Business systems frequently use scheduling systems to run programs at specified times.
Scheduling systems typically run applications that generate reports, reformat data, or
do audit work at night. In other cases, scheduling systems provide callback APIs that
can alert subsystems of events such as due dates, deadlines, etc. Scheduling systems
often run batch jobs (aka scheduled jobs), which perform routine work automatically at
a prescribed time. Users in the Unix world frequently run scheduled jobs using cron, a
simple but useful scheduling system that runs programs listed in a configuration file.

Regardless of the software, scheduling systems are used in many different scenarios:

• In a credit card processing system, credit card charges are processed in batches so
that all the charges made for a block of time are settled together rather than sepa-
rately. This work may be scheduled to be done in the evening to reduce the impact
of processing on the system.

• In a hospital or clinical system, Electronic Data Interface (EDI) software is used to
send medical claims to various HMOs. Each HMO has its own processing re-
quirements, but all of them are routine, so jobs are scheduled to gather claim data,
put it in the proper format, and transfer it to the HMO.

• In just about any company, managers need specific reports run on a regular basis.
A scheduling system can be configured to run those reports automatically and
deliver them via email to managers.

Scheduling systems are also common in workflow applications, which are systems that
manage document processing that typically spans days or months and involves many
systems and lots of human intervention. In workflow applications, scheduling is em-
ployed for auditing tasks that periodically take inventory of the state of an application,
invoice, sales order, etc., in order to ensure everything is proceeding as scheduled. The
scheduling system maintains timers and delivers events to alert applications and com-
ponents when a specified date and time are reached, or when some period has expired.

341

Here are some examples of workflow scheduling:

• In a mortgage system, a lot of tasks have to be completed (e.g., appraisal, rate lock-
in, closing appointment, etc.) before the mortgage can be closed. Timers can be
set on mortgage applications to perform periodic audits that ensure everything is
proceeding on schedule.

• In a healthcare claims-processing system, claims must be processed within 90 days
according to terms negotiated by in-network physicians and clinics. Each claim
could have a timer set to go off seven days before the deadline.

• In a stockbroker system, buy-at-limit orders can be created for a specific number
of shares, but only at a specified price or lower. These buy-at-limit orders typically
have a time limit. If the stock price falls below the specified price before the time
limit, the buy-at-limit order is carried out. If the stock price does not fall below the
specified price before the time limit, the timer expires and the buy-at-limit order is
canceled.

The EJB 2.1 specification introduced a standard Java EE scheduling system called the
EJB Timer Service. The 3.1 revision of the spec has overhauled the mechanism in which
users define scheduling events, bringing forth a new natural-language syntax that is
much friendlier than previous versions and the cron format.

The Java Standard Edition includes the java.util.Timer class, which
allows threads to schedule tasks for future execution in a background
thread. This facility is useful for a variety of applications, but it’s too
limited to be used in enterprise computing. Note, however, that the
scheduling semantics of java.util.Timer are similar to those of the EJB
Timer Service.

The Timer Service is a facility of the EJB container system that provides a timed-event
API, which can be used to schedule timers for specified dates, periods, and intervals.
A timer is associated with the enterprise bean that set it, and it calls that bean’s
ejbTimeout() method or a method annotated with @javax.ejb.Timeout when it goes off.
The rest of this chapter describes the EJB Timer Service API and its use with stateless
session and message-driven beans.

Example: A Batch Credit Card Processing System
Imagine we have a popular retail store with a series of 20 registers. Every minute, sales
transactions take place that eventually must be processed with a third-party credit pro-
vider. Considering that we’re only one store out of potentially millions using the
provider, this adds up to a lot of traffic. If our business rules allow, we might be better
served caching transactions in a pending state, and then processing a batch altogether

342 | Chapter 19: Timer Service

in a single request. With the EJB Timer Service, we can schedule this job to fire within
our EJBs. This full example is covered in detail in Appendix J.

The Business Interface
For the credit-card-processing subsystem, we only need to support a few features. First,
we must be able to accept new transactions, which will be added to the pending queue.
Next, we’ll supply callers with a mechanism to schedule a batch-processing job. As a
convenience, we’ll also expose support to obtain the current pending transactions and
a way to immediately process them. When a scheduled processing event is fired, it’ll
be able to simply call upon the business method to process.

/**
 * Contract of a service capable of storing a series
 * of {@link CreditCardTransaction}s to be processed,
 * scheduling processing, and processing payment of
 * all pending transactions.
 *
 * @author ALR
 * @version $Revision: $
 */
public interface CreditCardTransactionProcessingLocalBusiness
{
 //--
-||
 // Contracts ---
-||
 //--
-||

 /**
 * Returns an immutable view of all transactions
 * pending processing
 * @return
 */
 List<CreditCardTransaction> getPendingTransactions();

 /**
 * Proceses all pending {@link CreditCardTransaction}s,
 * clearing them from the pending list when complete
 */
 void process();

 /**
 * Adds the specified {@link CreditCardTransaction} to be processed
 * @param transaction
 * @throws IllegalArgumentException If the transaction is null
 */
 void add(CreditCardTransaction transaction) throws IllegalArgumentException;

 /**
 * Schedules a new {@link Timer} to process pending payments
 * according to the supplied {@link ScheduleExpression}. Returns

Example: A Batch Credit Card Processing System | 343

 * the {@link Date} representing when the next job is to fire.
 * @param expression
 * @return
 * @throws IllegalArgumentException If the expression is null
 */
 Date scheduleProcessing(ScheduleExpression expression)
 throws IllegalArgumentException;
}

javax.ejb.ScheduleExpression and @javax.ejb.Schedule
The scheduleProcessing method just shown accepts a type we haven’t yet seen. New
to EJB 3.1, javax.ejb.ScheduleExpression encapsulates an intuitive, flexible syntax for
defining when timer events should fire. It’s here that we can programmatically indicate
scheduling by year, month, day of the month, day of the week, hour, minute, and
second. Additionally, we can specify a wildcard character (*) to denote “every”, a list
such as 0,2,6, or ranges such as 0-10. Section 18.2.1 of the EJB 3.1 Specification defines
the format in full, but some examples are shown in Table 19-1.

Table 19-1. Attributes of @javax.ejb.Schedule

Attribute Allowed values

second [0,59]

minute [0,59]

hour [0,23]

dayOfMonth [1,31], or [-x], where x is the number of days from the end of the month, or "Last"

month [1,12] or {"Jan", "Feb", "Mar"..."Dec"}

dayOfWeek [0,7] or {"Sun","Mon","Tue"..."Sat"} (0 and 7 are both equal to "Sun")

year Four-digit calendar year

The ScheduleExpression is used to programatically create a new javax.ejb.Timer via
the javax.ejb.TimerService (we’ll see both in a bit). Alternatively, it’s possible to create
new Timers in a declarative fashion via the @javax.ejb.Schedule annotation:

package javax.ejb;
@Target(value=METHOD)
@Retention(value=RUNTIME)
public @interface Schedule {
 String dayOfMonth() default "*";

 String dayOfWeek() default "*";

 String hour() default "0";

 String info() default "";

 String minute() default "0";

344 | Chapter 19: Timer Service

 String month() default "*";

 boolean persistent() default true;

 String second() default "0";

 String timezone() default "";

 String year() default "*";
}

The Timer Service enables an enterprise bean to be notified when a specific date has
arrived, when some period of time has elapsed, or at recurring intervals. To use the
Timer Service, an enterprise bean must implement the javax.ejb.TimedObject interface,
which defines a single callback method, ejbTimeout():

package javax.ejb;

public interface TimedObject
{
 public void ejbTimeout(Timer timer) ;
}

In EJB 3.x, the @javax.ejb.Timeout annotation can be applied to a method whose sig-
nature returns void and has either no parameters or one javax.ejb.Timer parameter.
It’s a matter of developer preference which technique is chosen to mark a method as a
timeout; here we’ll use the annotation.

When the scheduled time is reached or the specified interval has elapsed, the container
system invokes the enterprise bean’s timeout callback method. The enterprise bean can
then perform any processing it needs to respond to the timeout, such as run reports,
audit records, modify the states of other beans, etc. In our case, we’d like to delegate
along to the logic that processes pending transactions.

The Bean Implementation Class
First, we’ll make a simple singleton bean, though we could also use a stateless session
bean or message-driven bean. Stateful session beans are not valid targets for the Timer
Service:

@Singleton
@Local(CreditCardTransactionProcessingLocalBusiness.class)
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
public class CreditCardTransactionProcessingBean implements
 CreditCardTransactionProcessingLocalBusiness
{

An enterprise bean schedules itself for a timed notification using a reference to the
TimerService, which can be obtained from the EJBContext or injected directly into your
bean using the @javax.annotation.Resource annotation. The TimerService allows a

Example: A Batch Credit Card Processing System | 345

bean to register itself for notification on a specific date, after some period of time, or
at recurring intervals:

 /**
 * {@link SessionContext} hook to the EJB Container;
 * from here we may obtain a {@link TimerService} via
 * {@link SessionContext#getTimerService()}.
 */
 @Resource
 private SessionContext context;

 /**
 * We can directly inject the {@link TimerService} as well.
 */
 @Resource
 private TimerService timerService;

Now that we have a hook into the TimerService, we can implement the
scheduleProcessing business method easily:

 @Override
 public Date scheduleProcessing(final ScheduleExpression expression) throws
IllegalArgumentException
 {
 // Precondition checks
 if (expression == null)
 {
 throw new IllegalArgumentException("Timer expression must be specified");
 }

 // Programmatically create a new Timer from the given expression
 // via the TimerService from the SessionContext
 final TimerService timerService = context.getTimerService();
 final Timer timer = timerService.createCalendarTimer(expression);
 final Date next = timer.getNextTimeout();
 log.info("Created " + timer + " to process transactions; next fire is at: " +
 timer.getNextTimeout());
 return next;
 }

Here we accept the ScheduleExpression from the client and use it to create a new
Timer from the TimerService. As the API implies, this will result in a new scheduled
event to fire upon our timeout method.

The specification also makes room for automatic timer creation via @Schedule, as we
saw earlier. To use this facility, simply create a timeout method and annotate it as
desired:

 @Timeout
 // Mark this method as the EJB timeout method for timers created
programmatically.
 // If we're just creating a timer via @Schedule, @Timer is not required.
 @Schedule(dayOfMonth = EVERY, month = EVERY, year = EVERY, second = ZERO,
 minute = ZERO, hour = EVERY)
 // This timeout will be created on deployment and fire every hour on the hour;

346 | Chapter 19: Timer Service

 // declarative creation
 public void processViaTimeout(final Timer timer)
 {
 // Just delegate to the business method
 this.process();
 }

Here we’ve defined a timer that will be created by the container to fire every hour on
the hour.

The TimerService
The TimerService interface provides an enterprise bean with access to the EJB con-
tainer’s Timer Service so that new timers can be created and existing timers can be
listed. The TimerService interface is part of the javax.ejb package in EJB 3.x and has
the following definition:

package javax.ejb;
public interface javax.ejb.TimerService
{
 public Timer createTimer(long duration,
 java.io.Serializable info);

 public Timer createTimer(java.util.Date expiration,
 java.io.Serializable info);

 public Timer createSingleActionTimer(long duration,
 TimerConfig timerConfig);

 public Timer createSingleActionTimer(java.util.Date expiration,
 TimerConfig timerConfig);

 public Timer createTimer(long initialDuration,
 long intervalDuration, java.io.Serializable info);

 public Timer createTimer(java.util.Date initialExpiration,
 long intervalDuration, java.io.Serializable info);

 public Timer createIntervalTimer(long initialDuration,
 long intervalDuration, TimerConfig timerConfig);

 public Timer createIntervalTimer(java.util.Date initialExpiration,
 long intervalDuration, TimerConfig timerConfig);

 public Timer createCalendarTimer(ScheduleExpression schedule);

 public Timer createCalendarTimer(ScheduleExpression schedule,
 TimerConfig timerConfig);

 public Collection<Timer> getTimers();
}

Each of the TimerService.create*Timer() methods establishes a timer with a different
type of configuration. There are essentially two types of timers: single-action and

Example: A Batch Credit Card Processing System | 347

interval. A single-action timer expires once, and an interval timer expires many times,
at specified intervals. When a timer expires, the Timer Service calls the bean’s ejbTime
out() method or a callback method with @javax.ejb.Timeout.

At this point, we are discussing only the expiration and duration parameters and their
uses. The Serializable info parameter is discussed later in this chapter.

When a timer is created, the Timer Service makes it persistent in some type of secondary
storage, so it will survive system failures. If the server goes down, the timers are still
active when the server comes back up. Although the specification isn’t clear, it’s as-
sumed that any timers that expire while the system is down will go off when it comes
back up again. If an interval timer expires many times while the server is down, it may
go off multiple times when the system comes up again. Consult your vendor’s docu-
mentation to learn how they handle expired timers following a system failure.

The TimerService.getTimers() method returns all the timers that have been set for a
particular enterprise bean. The getTimers() method returns a java.util.Collection,
an unordered collection of zero or more javax.ejb.Timer objects. Each Timer object
represents a different timed event that has been scheduled for the bean using the Timer
Service.

The getTimers() method is often used to manage existing timers. A bean can look
through the Collection of Timer objects and cancel any timers that are no longer valid
or need to be rescheduled.

The Timer
A Timer is an object that implements the javax.ejb.Timer interface. It represents a
timed event that has been scheduled for an enterprise bean using the Timer Service.
Timer objects are returned by the TimerService.createTimer() and
TimerService.getTimers() methods, and a Timer is the (optional) only parameter of the
TimedObject.ejbTimeout() method or annotated @javax.ejb.Timeout callback. The
Timer interface is:

package javax.ejb;

public interface javax.ejb.Timer
{
 public void cancel();

 public long getTimeRemaining();

 public java.util.Date getNextTimeout();

 public javax.ejb.ScheduleExpression getSchedule();

 public javax.ejb.TimerHandle getHandle();

 public java.io.Serializable getInfo();

348 | Chapter 19: Timer Service

 public boolean isPersistent();

 public boolean isCalendarTimer();
}

A Timer instance represents exactly one timed event and can be used to cancel the timer,
obtain a Serializable handle, obtain the application data associated with the timer,
and find out when the timer’s next scheduled expiration will occur.

Canceling timers

Timer.cancel() is used to cancel a specific timer from the Timer Service so that it never
expires/fires. It is useful when a particular timer needs to be removed completely or
simply rescheduled. To reschedule a timed event, cancel the timer and create a new one.

Identifying timers

Of course, comparing descriptions is a fairly unreliable way of identifying timers, since
descriptions tend to vary over time. What is really needed is a far more robust infor-
mation object that can contain both a description and a precise identifier.

All of the TimeService.createTimer() methods declare an info object as their last pa-
rameter. The info object is application data that is stored by the Timer Service and
delivered to the enterprise bean when its timeout callback is invoked. The serializable
object used as the info parameter can be anything, as long as it implements the
java.io.Serializable interface and follows the rules of serialization.* The info object
can be put to many uses, but one obvious use is to associate the timer with some sort
of identifier.

To get the info object from a timer, you call the timer’s getInfo() method. This method
returns a serializable object, which you’ll have to cast to an appropriate type. So far,
we’ve been using strings as info objects, but there are much more elaborate (and reli-
able) possibilities.

Retrieving other information from timers

The Timer.getNextTimeout() method simply returns the date—represented by a
java.util.Date instance—on which the timer will expire next. If the timer is a single-
action timer, the Date returned is the time at which the timer will expire. If, however,
the timer is an interval timer, the Date returned is the time remaining until the next
expiration. Oddly, there is no way to determine subsequent expirations or the interval
at which an interval timer is configured. The best way to handle this is to put that
information into your info object.

* In the most basic cases, all an object needs to do to be serializable is implement the java.io.Serializable
interface and make sure any nonserializable fields (e.g., JDBC connection handles) are marked as transient.

Example: A Batch Credit Card Processing System | 349

The Timer.getTimeRemaining() method returns the number of milliseconds before the
timer will next expire. Like the getNextTimeout() method, this method only provides
information about the next expiration.

The TimerHandle object

The Timer.getHandle() method returns a TimerHandle object. The TimerHandle object
is similar to the javax.ejb.Handle and javax.ejb.HomeHandle. It’s a reference that can
be saved to a file or some other resource and then used later to regain access to the
Timer. The TimerHandle interface is simple:

package javax.ejb;
public interface TimerHandle extends java.io.Serializable {
 public Timer getTimer() throws NoSuchObjectLocalException, EJBException;
}

The TimerHandle is valid only as long as the timer has not expired (if it’s a single-action
timer) or been canceled. If the timer no longer exists, calling the TimerHandle.get
Timer() method throws a javax.ejb.NoSuchObjectException.

TimerHandle objects are local, which means they cannot be used outside the container
system that generated them. Passing the TimerHandle as an argument to a remote or
endpoint interface method is illegal. However, a TimerHandle can be passed between
local enterprise beans using their local interface, because local enterprise beans must
be co-located in the same container system.

Exceptions

All the methods defined in the Timer interface declare two exceptions:

javax.ejb.NoSuchObjectLocalException

This exception is thrown if you invoke any method on an expired single-action
timer or a canceled timer.

javax.ejb.EJBException

This exception is thrown when some type of system-level exception occurs in the
Timer Service.

Transactions
When a bean calls createTimer(), the operation is performed in the scope of the current
transaction. If the transaction rolls back, the timer is undone and it’s not created (or,
more precisely, it’s uncreated).

In most cases, the timeout callback method on beans should have a transaction attribute
of RequiresNew. This ensures that the work performed by the callback method is in the
scope of container-initiated transactions. Transactions are covered in more detail in
Chapter 17.

350 | Chapter 19: Timer Service

Stateless Session Bean Timers
Stateless session bean timers can be used for auditing or batch processing. As an auditing
agent, a stateless session timer can monitor the state of the system to ensure that tasks
are being completed and that data is consistent. This type of work spans entities and
possibly data sources. Such EJBs can also perform batch-processing work such as
database cleanup, transfer of records, etc. Stateless session bean timers can also be
deployed as agents that perform some type of intelligent work on behalf of the organ-
ization they serve. An agent can be thought of as an extension of an audit: it monitors
the system, but it also fixes problems automatically.

Stateless session bean timers are associated with only a specific type of session bean.
When a timer for a stateless session bean goes off, the container selects an instance of
that stateless bean type from the instance pool and calls its timeout callback method.
This makes sense because all stateless session beans in the instance pool are logically
equivalent. Any instance can serve any client, including the container itself.

Stateless session timers are often used to manage taskflow; they’re also used when the
timed event applies to a collection of entities instead of just one. For example, stateless
session timers might be used to audit all maintenance records to ensure that a cruise
line’s ships meet state and federal guidelines. At specific intervals, a timer notifies the
bean to look up the maintenance records from all the ships and generate a report. A
stateless session timer can also be used to do something like send notifications to all
the passengers for a particular cruise.

The stateless session bean can access an injected TimerService from the Session
Context in the @PostConstruct, @PreDestroy, or any business method, but it cannot
access the Timer Service from any setter injection method. This means a client must
call some method on a stateless session bean (either create or a business method) in
order for a timer to be set. This is the only way to guarantee that the timer is set.

Setting a timer on the @PostConstruct method within a stateless session bean is prob-
lematic. First, there is no guarantee that an @PostConstruct callback will ever be called.
We might instead use a singleton configured to eagerly load on application startup to
ensure the timer is registered. An SLSB @PostConstruct callback method’s stateless ses-
sion bean is called sometime after the bean is instantiated, before it enters the Method-
Ready Pool. However, a container might not create a pool of instances until the first
client accesses that bean, so if a client (remote or otherwise) never attempts to access
the bean, the @PostConstruct callback may never be called and the timer will never be
set. Another problem with using SLSB @PostConstruct is that it’s called on every in-
stance before it enters the pool; you have to prevent subsequent instances (instances
created after the first instance) from setting the timer, because the first instance created
would have already done this. It’s tempting to use a static variable to avoid recreating
timers, as in the following code, but this can cause problems:

public class StatelessTimerBean javax.ejb.TimedObject {

Stateless Session Bean Timers | 351

 static boolean isTimerSet = false;

 @Resource TimerService timerService;
 @Resource SessionContext ctx;

 @PostConstruct
 public void init(){
 if(isTimerSet == false) {
 long expirationDate = (Long)ctx.lookup("expirationDate");
 timerService.createTimer(expirationDate, null);
 isTimerSet = true;
 }
 }

Although this may seem like a good solution, it works only when your application is
deployed within a single server with one VM and one classloader. If you are using a
clustered system, a single server with multiple VMs, or multiple classloaders (which is
very common), it won’t work, because bean instances that are not instantiated in the
same VM with the same classloader will not have access to the same static variable. In
this scenario, it’s easy to end up with multiple timers doing the same thing. An alter-
native is to have @PostCreate access and remove all preexisting timers to see whether
the timer is already established, but this can affect performance because it’s likely that
new instances will be created and added to the pool many times, resulting in many calls
to @PostCreate and, therefore, many calls to TimerService.getTimers(). Also, there is
no requirement that the Timer Service work across a cluster, so timers set on one node
in a cluster may not be visible to timers set on some other node in the cluster.

With stateless session beans, you should never use the @PreDestroy callback method to
cancel or create timers. The @PreDestroy callback is called on individual instances before
they are evicted from memory. It is not called in response to client calls to the remote
or local remove method. Also, the @PreDestroy callback doesn’t correspond to an un-
deployment of a bean; it’s specific to only a single instance. As a result, you cannot
determine anything meaningful about the EJB as a whole from a call to the
ejbRemove() method, and you should not use it to create or cancel timers.

When a stateless session bean implements the javax.ejb.TimedObject interface, or
contains an @javax.ejb.Timeout callback method, its lifecycle changes to include the
servicing of timed events. The Timer Service pulls an instance of the bean from the
instance pool when a timer expires; if there are no instances in the pool, the container
creates one. Figure 19-1 shows the lifecycle of a stateless session bean that implements
the TimedOut interface.

Message-Driven Bean Timers
Message-driven bean timers are similar to stateless session bean timers in several ways.
Timers are associated only with the type of bean. When a timer expires, a message-
driven bean instance is selected from a pool to execute the timeout callback method.

352 | Chapter 19: Timer Service

In addition, message-driven beans can be used for performing audits or other types of
batch jobs. The primary difference between a message-driven bean timer and a stateless
session bean timer is the way in which they’re initiated: timers are created in response
to an incoming message or, if the container supports it, from a configuration file.

In order to initialize a message-driven bean timer from an incoming message, you simply
put the call to the TimerService.createTimer() method in the message-handling
method. For a JMS-based message-driven bean, the method call goes in the
onMessage() method:

@MessageDriven
public class JmsTimerBean implements MessageListener {
 @Resource TimerService timerService

 public void onMessage(Message message){
 MapMessage mapMessage = (MapMessage)message;
 long expirationDate = mapMessage.getLong("expirationDate");

 timerService.createTimer(expirationDate, null);
 }

 @Timeout

 public void timeout(){
 // put timeout logic here
 }

The incoming JMS message should contain information about the timer: the beginning
(start) date, duration, or even the Serializable info object. Combining JMS with the
Timer Service can offer some powerful design options for implementing audits, batch
processing, and agent-like solutions.

Although it’s not standardized, it is possible that vendors will allow message-driven
bean timers to be configured at deployment time. This would require a proprietary

Figure 19-1. Stateless session bean lifecycle with TimedObject

Message-Driven Bean Timers | 353

solution, since standard configuration options for message-driven bean timers do not
exist. The advantage of configured timers is that they do not require a client to initiate
some action to start the timer. When the bean is deployed, its timer is set automatically.
This capability makes message-driven bean timers more like Unix cron jobs, which are
preconfigured and then run. Consult your vendor to see whether it offers a proprietary
configuration for message-driven bean timers.

As was the case for stateless session beans, the TimedObject interface or the presence of
an @Timeout method changes the lifecycle of the message-driven bean slightly. When a
timed event occurs, the container must pull a message-driven bean instance from the
pool. If there are no instances in the pool, then an instance must be moved from the
Does Not Exist state to the Method-Ready Pool before it can receive the timed event.

354 | Chapter 19: Timer Service

CHAPTER 20

EJB 3.1: Web Services Standards

Web services have taken the enterprise computing industry by storm in the past couple
of years, and for good reason. They present the opportunity for real interoperability
across hardware, operating systems, programming languages, and applications. Based
on the XML, SOAP, and WSDL standards, web services have enjoyed widespread
adoption by nearly all of the major enterprise players, including Microsoft, IBM, BEA,
JBoss, Oracle, Hewlett-Packard, and others. Sun Microsystems has integrated web
services into the Java EE platform; specifically, Sun and the Java Community Process
have introduced several web services APIs, including the Java API for XML Web Serv-
ices (JAX-WS), the Java API for XML-based RPC (JAX-RPC), the SOAP with Attach-
ments API for Java (SAAJ), and the Java API for XML Registries (JAXR). These web
services APIs were integrated into J2EE 1.4 and have been expanded upon in
subsequent releases, including Java EE 6 and EJB 3.1.

This chapter provides an overview of the technologies that are the foundation of web
services: XML Schema and XML Namespaces, SOAP, and WSDL. Chapter 21 provides
an overview of JAX-WS and JAX-RPC, the most important web services APIs.

Web Services Overview
The term web services means different things to different people, but thankfully, the
definition is straightforward for EJB developers because the Java EE platform has
adopted a rather narrow view of them. Specifically, a web service is a remote application
described using the Web Service Description Language (WSDL) and accessed using the
Simple Object Access Protocol (SOAP) according to the rules defined by the WS-I Basic
Profile 1.1. The WS-I (Web Services Integration Organization) is a group of vendors
(Microsoft, IBM, BEA, Sun Microsystems, Oracle, HP, and others) that have banded
together to ensure web services are interoperable across all platforms. To do this, they
have created a recommendation called the Basic Profile 1.1, which defines a set of rules
for using XML, SOAP, and WSDL together to create interoperable web services.

355

In order to understand SOAP and WSDL, you must understand XML Schema and XML
Namespaces. The rest of this chapter conducts a whirlwind tour of XML, SOAP, and
WSDL. Although it’s not the purpose of this book to cover these subjects in depth, you
should be able to understand the basics.

XML Schema and XML Namespaces
We’ll start with the basics of XML Schema and XML Namespaces. It’s assumed that
you already understand how to use basic XML elements and attributes. If you don’t,
you should probably read a primer on XML before proceeding. We recommend the
book Learning XML (O’Reilly). If you already understand how XML Schema and XML
Namespaces work, skip ahead to the section on SOAP.

XML Schema
An XML Schema is similar in purpose to a Document Type Definition (DTD), which
validates the structure of an XML document. To illustrate some of the basic concepts
of XML Schema, let’s start with an XML document with address information:

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<address>
 <street>800 Langdon Street</street>
 <city>Madison</city>
 <state>WI</state>
 <zip>53706</zip>
</address>

In order to ensure that the XML document contains the proper type of elements and
data, the address information must be evaluated for correctness. You measure the cor-
rectness of an XML document by determining two criteria: whether the document is
well formed and whether it is valid. To be well formed, an XML document must obey
the syntactic rules of the XML markup language: it must use proper attribute declara-
tions, the correct characters to denote the start and end of elements, and so on. Most
XML parsers based on standards such as SAX and DOM automatically detect docu-
ments that aren’t well formed.

In addition to being well formed, the document must use the right types of elements
and attributes in the correct order and structure. A document that meets these criteria
is called valid. However, the criteria for validity have nothing to do with XML itself;
they have more to do with the application in which the document is used. For example,
the Address document would not be valid if it didn’t include the zip code or state
elements. In order to validate an XML document, you need a way to represent these
application-specific constraints.

The XML Schema for the Address XML document looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

356 | Chapter 20: EJB 3.1: Web Services Standards

http://oreilly.com/catalog/9780596004200/

 xmlns:titan="http://www.titan.com/Reservation"
 targetNamespace="http://www.titan.com/Reservation">

 <element name="address" type="titan:AddressType"/>

 <complexType name="AddressType">
 <sequence>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="string"/>
 </sequence>
 </complexType>

</schema>

The first thing to focus on in this XML Schema is the <complexType> element, which
declares a type of element in much the same way that a Java class declares a type of
object. The <complexType> element explicitly declares the names, types, and order of
elements that an AddressType element may contain. In this case, it may contain four
elements of type string, in the following order: street, city, state, and zip. Validation
is pretty strict, so any XML document that claims conformity to this XML Schema must
contain exactly the right elements with the right data types, in the correct order.

XML Schema automatically supports about two dozen simple data types, called built-
in types. Built-in types are a part of the XML Schema language and are automatically
supported by any XML Schema–compliant parser. Table 20-1 provides a short list of
some of the built-in types. It also includes Java types that correspond to each built-in
type. (Table 20-1 presents only a subset of all the XML Schema [XSD] built-in types,
but it’s more than enough for this book.)

Table 20-1. XML Schema built-in types and their corresponding Java types

XML Schema built-in type Java type

byte Byte, byte

boolean Boolean, boolean

short Short, short

int Integer, int

long Long, long

float Float, float

double Double, double

string java.lang.String

dateTime java.util.Calendar

integer java.math.BigInteger

decimal java.math.BigDecimal

XML Schema and XML Namespaces | 357

By default, each element declared by a <complexType> must occur once in an XML
document, but you can specify that an element is optional or that it must occur more
than once by using the occurrence attributes. For example, we can say that the
street element must occur once but may occur twice:

 <complexType name="AddressType">
 <sequence>
 <element name="street" type="string" maxOccurs="2"
 minOccurs="1"
 />
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="string"/>
 </sequence>
 </complexType>

By default, the maxOccurs and minOccurs attributes are always 1, indicating that the
element must occur exactly once. Setting maxOccurs to 2 allows an XML document to
have either two street elements or just one. You can also set maxOccurs to unbounded,
which means the element may occur as many times as needed. Setting minOccurs to 0
means the element is optional and can be omitted.

The <element> declarations are nested under a <sequence> element, which indicates that
the elements must occur in the order they are declared. You can also nest the elements
under an <all> declaration, which allows the elements to appear in any order. The
following shows the AddressType declared with an <all> element rather than a
<sequence> element:

<complexType name="AddressType">
 <all>
 <element name="street" type="string" maxOccurs="2" minOccurs="1" />
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="string"/>
 </all>
 </complexType>

In addition to declaring elements of XSD built-in types, you can declare elements based
on complex types. This is similar to how Java class types declare fields that are other
Java class types. For example, we can define a CustomerType that uses the AddressType:

<?xml version='1.0' encoding='UTF-8' ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:titan="http://www.titan.com/Reservation"
 targetNamespace="http://www.titan.com/Reservation">
 <element name="customer" type="titan:CustomerType"/>

<complexType name="CustomerType">
 <sequence>
 <element name="last-name" type="string"/>
 <element name="first-name" type="string"/>
 <element name="address" type="titan:AddressType"/>

358 | Chapter 20: EJB 3.1: Web Services Standards

 </sequence>
 </complexType>
<complexType name="AddressType">
 <sequence>
 <element name="street" type="string" />
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="string"/>
 </sequence>
 </complexType>

</schema>

This XSD tells us that an element of CustomerType must contain a <last-name> and
<first-name> element of the built-in type string, and an element of type AddressType.
This is straightforward, except for the titan: prefix on AddressType. That prefix iden-
tifies the XML Namespace of the AddressType; we’ll discuss namespaces later in the
chapter. For now, just think of it as declaring that the AddressType is a custom type
defined by Titan Cruises. It’s not a standard XSD built-in type. An XML document that
conforms to the Customer XSD would look like this:

<?xml version='1.0' encoding='UTF-8' ?>
<customer>
 <last-name>Jones</last-name>
 <first-name>Sara</first-name>
 <address>
 <street>3243 West 1st Ave.</street>
 <city>Madison</city>
 <state>WI</state>
 <zip>53591</zip>
 </address>
</customer>

Building on what you’ve learned so far, we can create a Reservation schema using the
CustomerType, the AddressType, and a new CreditCardType:

<?xml version='1.0' encoding='UTF-8' ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:titan="http://www.titan.com/Reservation"
 targetNamespace="http://www.titan.com/Reservation">

<element name="reservation" type="titan:ReservationType"/>

<complexType name="ReservationType">
 <sequence>
 <element name="customer" type="titan:CustomerType"/>
 <element name="cruise-id" type="int"/>
 <element name="cabin-id" type="int"/>
 <element name="price-paid" type="double"/>
 </sequence>
 </complexType>
 <complexType name="CustomerType">
 <sequence>
 <element name="last-name" type="string"/>
 <element name="first-name" type="string"/>

XML Schema and XML Namespaces | 359

 <element name="address" type="titan:AddressType"/>
 <element name="credit-card" type="titan:CreditCardType"/>
 </sequence>
 </complexType>
 <complexType name="CreditCardType">
 <sequence>
 <element name="exp-date" type="dateTime"/>
 <element name="number" type="string"/>
 <element name="name" type="string"/>
 <element name="organization" type="string"/>
 </sequence>
 </complexType>
 <complexType name="AddressType">
 <sequence>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="string"/>
 </sequence>
 </complexType>
</schema>

An XML document that conforms to the Reservation XSD would include information
describing the customer (name and address), credit card information, and the identity
of the cruise and cabin that are being reserved. This document might be sent to Titan
Cruises from a travel agency that cannot access the TravelAgent EJB to make reserva-
tions. Here’s an XML document that conforms to the Reservation XSD:

<?xml version='1.0' encoding='UTF-8' ?>
<reservation>
 <customer>
 <last-name>Jones</last-name>
 <first-name>Sara</first-name>
 <address>
 <street>3243 West 1st Ave.</street>
 <city>Madison</city>
 <state>WI</state>
 <zip>53591</zip>
 </address>
 <credit-card>
 <exp-date>09-2007/exp-date>
 <number>0394029302894028930</number>
 <name>Sara Jones</name>
 <organization>VISA</organization>
 </credit-card>
 </customer>
 <cruise-id>123</cruise-id>
 <cabin-id>333</cabin-id>
 <price-paid>6234.55</price-paid>
</reservation>

At runtime, the XML parser compares the document to its schema, ensuring that the
document conforms to the schema’s rules. If the document doesn’t adhere to the
schema, it is considered invalid, and the parser produces error messages. An XML

360 | Chapter 20: EJB 3.1: Web Services Standards

Schema checks that XML documents received by your system are properly structured,
so you won’t encounter errors while parsing the documents and extracting the data.
For example, if someone sent your application a Reservation document that omitted
the credit card element, the XML parser could reject the document as invalid before
your code even sees it; you don’t have to worry about errors in your code caused by
missing information in the document.

This brief overview represents only the tip of the iceberg. XML Schema is a very rich
XML typing system and can be given sufficient attention only in a text dedicated to the
subject. For in-depth and insightful coverage of XML Schema, read XML Schema: The
W3C’s Object-Oriented Descriptions for XML (O’Reilly), or read the XML Schema
specification, starting with the primer at the World Wide Web Consortium (W3C)
website (http://www.w3.org/TR/xmlschema-0).

XML Namespaces
The Reservation schema defines an XML markup language that describes the structure
of a specific kind of XML document. Just as a class is a type of Java object, an XML
markup language is a type of XML document defined by an XML Schema. In some
cases, it’s convenient to combine two or more XML markup languages into a single
document so that the elements from each markup language can be validated separately
using different XML Schema. This is especially useful when you want to reuse a markup
language in many different contexts. For example, the AddressType defined in the pre-
vious section is useful in a variety of contexts, not just the Reservation XSD, so it could
be defined as a separate markup language in its own XML Schema:

<?xml version='1.0' encoding='UTF-8' ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.titan.com/Address">

 <complexType name="AddressType">
 <sequence>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="string"/>
 </sequence>
 </complexType>
</schema>

To use different markup languages in the same XML document, you must clearly iden-
tify the markup language to which each element belongs. The following example is an
XML document for a reservation, but this time we are using XML Namespaces to sep-
arate the address information from the reservation information:

<?xml version='1.0' encoding='UTF-8' ?>
<res:reservation xmlns:res="http://www.titan.com/Reservation">
 <res:customer>
 <res:last-name>Jones</res:last-name>
 <res:first-name>Sara</res:first-name>

XML Schema and XML Namespaces | 361

http://oreilly.com/catalog/9780596002527/
http://oreilly.com/catalog/9780596002527/
http://www.w3.org/TR/xmlschema-0

 <addr:address xmlns:addr="http://www.titan.com/Address">
 <addr:street>3243 West 1st Ave.</addr:street>
 <addr:city>Madison</addr:city>
 <addr:state>WI</addr:state>
 <addr:zip>53591</addr:zip>
 </addr:address>

 <res:credit-card>
 <res:exp-date>09-2007</res:exp-date>
 <res:number>0394029302894028930</res:number>
 <res:name>Sara Jones</res:name>
 <res:organization>VISA</res:organization>
 </res:credit-card>
 </res:customer>
 <res:cruise-id>123</res:cruise-id>
 <res:cabin-id>333</res:cabin-id>
 <res:price-paid>6234.55</res:price-paid>
</res:reservation>

All of the elements for the address information are prefixed with the characters addr:,
and all the reservation elements are prefixed with res:. These prefixes allow parsers to
identify and separate the elements that belong to the Address markup from those that
belong to the Reservation markup. As a result, the address elements can be validated
against the Address XSD, and the reservation elements can be validated against the
Reservation XSD. The prefixes are assigned using XML Namespace declarations, which
are shown in bold in the previous listing. An XML Namespace declaration follows this
format:

xmlns:prefix="URI"

The prefix can be anything you like, as long as it does not include blank spaces or any
special characters. We use prefixes that are abbreviations for the name of the markup
language: res stands for Reservation XSD, and addr stands for Address XSD. Most XML
documents follow this convention, but it’s not a requirement; you could use a prefix
like foo or bar or anything else you fancy.

While the prefix can be any arbitrary token, the Universal Resource Identifier (URI)
must be very specific. A URI is an identifier that is a superset of the Universal Resource
Locator (URL), which you use every day to look up web pages. In most cases, people
use the stricter URL format for XML Namespaces because URLs are familiar and easy
to understand. The URI used in the XML Namespace declaration identifies the exact
markup language that is employed. It doesn’t have to point at a web page or an XML
document; it only needs to be unique to that markup language. For example, the XML
Namespace used by the Address markup is different from the URL used for the Reser-
vation markup:

xmlns:addr="http://www.titan.com/Address"
xmlns:res="http://www.titan.com/Reservation"

362 | Chapter 20: EJB 3.1: Web Services Standards

The URI in the XML Namespace declaration should match the target namespace de-
clared by the XML Schema. The following example shows the Address XSD with the
target namespace declaration in bold. The URL value of the targetNamespace attribute
is identical to the URL assigned to the add: prefix in the Reservation document:

<?xml version='1.0' encoding='UTF-8' ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.titan.com/Address">

 <complexType name="AddressType">
 <sequence>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="string"/>
 </sequence>
 </complexType>
</schema>

The targetNamespace attribute identifies the unique URI of the markup language; it is
the permanent identifier for that XML Schema. Whenever elements from the Address
XSD are used in some other document, the document must use an XML Namespace
declaration to identify those elements as belonging to the Address markup language.

Prefixing every element in an XML document with its namespace identifier is a bit
tedious, so the XML Namespace allows you to declare a default namespace that applies
to all nonprefixed elements. The default namespace is simply an XML Namespace
declaration that has no prefix (xmlns="URL"). For example, we can use a default name
in the Reservation document for all reservation elements:

<?xml version='1.0' encoding='UTF-8' ?>
<reservation xmlns="http://www.titan.com/Reservation">
 <customer>
 <last-name>Jones</last-name>
 <first-name>Sara</first-name>

 <addr:address xmlns:addr="http://www.titan.com/Address">
 <addr:street>3243 West 1st Ave.</addr:street>
 <addr:city>Madison</addr:city>
 <addr:state>WI</addr:state>
 <addr:zip>53591</addr:zip>
 </addr:address>
 <credit-card>
 <exp-date>09-2007</exp-date>
 <number>0394029302894028930</number>
 <name>Sara Jones</name>
 <organization>VISA</organization>
 </credit-card>
 </customer>
 <cruise-id>123</cruise-id>
 <cabin-id>333</cabin-id>
 <price-paid>6234.55</price-paid>
</reservation>

XML Schema and XML Namespaces | 363

None of the reservation element names are prefixed. Any nonprefixed element belongs
to the default namespace. The address elements do not belong to the http://www.titan
.com/Reservation namespace, so they are prefixed to indicate to which namespace they
belong. The default namespace declaration has scope; in other words, it applies to the
element in which it is declared (if that element has no namespace prefix), and to all
nonprefixed elements nested under that element. We can apply the scoping rules of
namespace to simplify the Reservation document further by allowing the address ele-
ments to override the default namespace with their own default namespace:

<?xml version='1.0' encoding='UTF-8' ?>
<reservation xmlns="http://www.titan.com/Reservation">
 <customer>
 <last-name>Jones</last-name>
 <first-name>Sara</first-name>

 <address xmlns="http://www.titan.com/Address">
 <street>3243 West 1st Ave.</street>
 <city>Madison</city>
 <state>WI</state>
 <zip>53591</zip>
 </address>

 <credit-card>
 <exp-date>09-2007</exp-date>
 <number>0394029302894028930</number>
 <name>Sara Jones</name>
 <organization>VISA</organization>
 </credit-card>
 </customer>
 <cruise-id>123</cruise-id>
 <cabin-id>333</cabin-id>
 <price-paid>6234.55</price-paid>
</reservation>

The Reservation default namespace applies to the <reservation> element and all of its
children, except for the address elements. The <address> element and its children have
defined their own default namespace, which overrides the default namespace of the
<reservation> element.

Default namespaces do not apply to attributes. As a result, any attributes used in an
XML document should be prefixed with a namespace identifier. The only exceptions
to this rule are attributes defined by the XML language itself, such as the xmlns attribute,
which establishes an XML Namespace declaration. This attribute doesn’t need to be
prefixed, because it is part of the XML language.

XML Namespaces are URIs that uniquely identify a namespace but do not actually
point at a resource. In other words, you don’t normally use the URI of an XML Name-
space to look something up. It’s usually only an identifier. However, you might want
to indicate the location of the XML Schema associated with an XML Namespace so
that a parser can upload it and use it in validation. This is accomplished using the
schemaLocation attribute:

364 | Chapter 20: EJB 3.1: Web Services Standards

http://www.titan.com/Reservation
http://www.titan.com/Reservation

<?xml version='1.0' encoding='UTF-8' ?>
<reservation xmlns="http://www.titan.com/Reservation"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 xsi:schemaLocation="http://www.titan.com/Reservation
 http://www.titan.com/schemas/reservation.xsd">
 <customer>
 <last-name>Jones</last-name>
 <first-name>Sara</first-name>

 <address xmlns="http://www.titan.com/Address"
 xsi:schemaLocation="http://www.titan.com/Address
 http://www.titan.com/schemas/address.xsd">
 <street>3243 West 1st Ave.</street>
 <city>Madison</city>
 <state>WI</state>
 <zip>53591</zip>
 </address>

 <credit-card>
 <exp-date>09-2007</exp-date>
 <number>0394029302894028930</number>
 <name>Sara Jones</name>
 <organization>VISA</organization>
 </credit-card>
 </customer>
 <cruise-id>123</cruise-id>
 <cabin-id>333</cabin-id>
 <price-paid>6234.55</price-paid>
</reservation>

The schemaLocation attribute provides a list of values as Namespace-Location value
pairs. The first value is the URI of the XML Namespace; the second is the physical
location (URL) of the XML Schema. The following schemaLocation attribute states that
all elements belonging to the Reservation namespace (http://www.titan.com/
Reservation) can be validated against an XML Schema located at the URL http://
www.titan.com/schemas/reservation.xsd:

xsi:schemaLocation="http://www.titan.com/Reservation
 http://www.titan.com/schemas/reservation.xsd">

The schemaLocation attribute is not a part of the XML language, so we’ll actually need
to prefix it with the appropriate namespace in order to use it. The XML Schema spec-
ification defines a special namespace that can be used for schemaLocation (as well as
other attributes). That namespace is http://www.w3.org/2001/XMLSchema-Instance.
To declare the schemaLocation attribute properly, you must declare its XML Namespace
and prefix it with the identifier for that namespace, as shown in the following snippet:

<?xml version='1.0' encoding='UTF-8' ?>
<reservation xmlns=http://www.titan.com/Reservation
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 xsi:schemaLocation="http://www.titan.com/Reservation
 http://www.titan.com/schemas/reservation.xsd">

XML Schema and XML Namespaces | 365

http://www.w3.org/2001/XMLSchema-Instance

A namespace declaration needs to be defined only once; it applies to all elements nested
under the element in which it’s declared. The convention is to use the prefix xsi for the
XML Schema Instance namespace (http://www.w3.org/2001/XMLSchema-Instance).

XML Schema also use XML Namespaces. Let’s look at the XML Schema for the Address
markup language with a new focus on the use of XML Namespaces:

<?xml version='1.0' encoding='UTF-8' ?>
<schema
 xmlns=http://www.w3.org/2001/XMLSchema
 targetNamespace="http://www.titan.com/Address"
 xmlns:addr="http://www.titan.com/Address">

 <element name="address" type="addr:AddressType"/>

 <complexType name="AddressType">
 <sequence>
 <element name="street" type="string"/>
 <element name="city" type="string"/>
 <element name="state" type="string"/>
 <element name="zip" type="string"/>
 </sequence>
 </complexType>

In this file, namespaces are used in three separate declarations. The first declaration
states that the default namespace is http://www.w3.org/2001/XMLSchema, which is the
namespace of the XML Schema specification. This declaration makes it easier to read
the XSD because most of the elements do not need to be prefixed. The second decla-
ration states that the target namespace of the XML Schema is the namespace of the
Address markup. This tells us that all the types and elements defined in this XSD belong
to that namespace. Finally, the third namespace declaration assigns the prefix addr to
the target namespace so that types can be referenced exactly. For example, the top-level
<element> definition uses the name addr:AddressType to state that the element is of type
AddressType, belonging to the namespace http://www.titan.com/Address.

Why do you have to declare a prefix for the target namespace? The reason is clearer
when you examine the Reservation XSD:

<?xml version='1.0' encoding='UTF-8' ?>
<schema
 xmlns=http://www.w3.org/2001/XMLSchema
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-Instance
 xmlns:addr=http://www.titan.com/Address
 xmlns:res=http://www.titan.com/Reservation
 targetNamespace="http://www.titan.com/Reservation">

 <import namespace="http://www.titan.com/Address"
 xsi:schemaLocation="http://www.titan.com/Address.xsd" />

 <element name="reservation" type="res:ReservationType"/>

 <complexType name="ReservationType">
 <sequence>

366 | Chapter 20: EJB 3.1: Web Services Standards

http://www.w3.org/2001/XMLSchema-Instance
http://www.w3.org/2001/XMLSchema
http://www.titan.com/Address

 <element name="customer" type="res:CustomerType "/>
 <element name="cruise-id" type="int"/>
 <element name="cabin-id" type="int"/>
 <element name="price-paid" type="double"/>
 </sequence>
 </complexType>
 <complexType name="CustomerType">
 <sequence>
 <element name="last-name" type="string"/>
 <element name="first-name" type="string"/>
 <element name="address" type="addr:AddressType"/>
 <element name="credit-card" type="res:CreditCardType"/>
 </sequence>
 </complexType>
 <complexType name="CreditCardType">
 <sequence>
 <element name="exp-date" type="dateTime"/>
 <element name="number" type="string"/>
 <element name="name" type="string"/>
 <element name="organization" type="string"/>
 </sequence>
 </complexType>
</schema>

The Reservation XSD imports the Address XSD so that the AddressType can be used to
define the CustomerType. You can see the use of namespaces in the definition of
CustomerType, which references types from both the Address and Reservation name-
spaces (prefixed by addr and res, respectively):

<?xml version='1.0' encoding='UTF-8' ?>
<schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-Instance
 xmlns:addr=http://www.titan.com/Address
 xmlns:res=http://www.titan.com/Reservation
 targetNamespace="http://www.titan.com/Reservation">
...
 <complexType name="CustomerType">
 <sequence>
 <element name="last-name" type="string"/>
 <element name="first-name" type="string"/>
 <element name="address" type="addr:AddressType"/>
 <element name="credit-card" type="res:CreditCardType"/>
 </sequence>
 </complexType>

Assigning a prefix to the Reservation namespace allows us to distinguish between
elements that are defined as Reservation types (e.g., credit-card) and elements that are
defined as Address types (e.g., address). All the type attributes that reference the built-
in string and int types also belong to the XML Schema namespace, so we don’t need
to prefix them. We could, though, for clarity. That is, we’d replace string and int with
xsd:string and xsd:int. The prefix xsd references the XML Schema namespace; it allows
us to identify built-in types defined as XML Schema more clearly. It’s not a problem

XML Schema and XML Namespaces | 367

that the default namespace is the same as the namespace prefixed by xsd. By convention,
the xsd prefix is the one used in most XML Schema.

SOAP 1.1
SOAP 1.1 is simply a distributed object protocol, similar to DCOM, CORBA’s IIOP,
and JRMP (the primary transport used by RMI). The most significant difference be-
tween SOAP 1.1 and other distributed object protocols is that SOAP 1.1 is based on
XML.

SOAP is defined by its own XML Schema and relies heavily on the use of XML Name-
spaces. Every SOAP message that is sent across the wire is an XML document consisting
of standard SOAP elements and application data. The use of namespaces differentiates
the standard SOAP elements from the application data. Here’s a SOAP request message
that might be sent from a client to a server:

<?xml version='1.0' encoding='UTF-8' ?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header />
 <env:Body>
 <reservation xmlns="http://www.titan.com/Reservation">
 <customer>
 <!-- customer info goes here -->
 </customer>
 <cruise-id>123</cruise-id>
 <cabin-id>333</cabin-id>
 <price-paid>6234.55</price-paid>
 </reservation>
 </env:Body>
</env:Envelope>

The standard SOAP elements are shown in bold, and the application data, or the Res-
ervation XML document fragment, is shown in regular text. SOAP’s primary purpose
is to establish a standard XML framework for packaging application data that is ex-
changed between different software platforms, such as Java and Perl, or Java and .NET.
To do this, SOAP defines a set of elements, each designed to carry different data. The
<Envelope> element is the root of the SOAP message; all other elements are contained
by it. Within the <Envelope> element are two direct children: the <Header> element and
the <Body> element.

The <Header> element is generally used for carrying infrastructure data such as security
tokens, transaction IDs, routing information, and so on. In the previous example, the
<Header> element is empty, which is not unusual for basic web services. In many cases,
we are only interested in exchanging information and not in more advanced issues,
such as those relating to security and transactions. Although the <Body> element is
required, the <Header> element is not. From this point forward, the <Header> element
will be omitted from examples.

368 | Chapter 20: EJB 3.1: Web Services Standards

The <Body> element carries the application information that is being exchanged. In the
previous example, the <Body> element contains a <reservation> element, which is the
application data. It’s an XML document fragment based on the Reservation XSD de-
veloped earlier in this chapter. It’s called a “fragment” because it’s embedded inside a
SOAP message instead of standing alone.

Web Services Styles
The SOAP message in the previous example is a Document/Literal message, which
means that the message body is a single XML Schema instance document, and thus the
full message can be validated. For this reason, Document/Literal is becoming the pre-
ferred message style of the web services community.

The schemaLocation attribute could have been included, but it’s omitted because we
assume that the receiver is already familiar with the schema used for that type of SOAP
message.

The other style allowed by the WS-I Basic Profile 1.1 and supported by EJB 3.1 is RPC/
Literal. RPC/Literal represents SOAP messages as RPC calls with parameters and return
values, each with its own schema type. The following Java interface defines a single
method called makeReservation():

public interface TravelAgent {
 public void makeReservation(int cruiseID, int cabinID,
 int customerId, double price);
}

The makeReservation() method can be modeled as a SOAP message using the RPC/
Literal messaging style:

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:titan="http://www.titan.com/TravelAgent"/>
 <env:Body>
 <titan:makeReservation>
 <cruiseId>23</cruiseId>
 <cabinId>144</cabinId>
 <customerId>9393</customerId>
 <price>5677.88</price>
 </titan:makeReservation>
 </env:Body>
</env:Envelope

The first element within the <Body> identifies the web services operation being invoked.
In this case, it is the makeReservation operation. Directly beneath the
<titan:makeReservation> element are the parameters of the RPC call, each represented
by an element with a value.

EJB 3.1, but not the WS-I Basic Profile 1.1, supports the RPC/Encoded mode of SOAP
messaging. Most SOAP applications used RPC/Encoded when web services were first
created. However, the web services industry has moved toward Document/Literal and

SOAP 1.1 | 369

RPC/Literal, primarily because interoperability between platforms using RPC/Encoded
proved to be less than perfect and sometimes downright difficult. Whereas RPC/
Encoded SOAP messages rely on SOAP-defined types for arrays, enumeration, unions,
lists, and the like, RPC/Literal and Document/Literal depend only on XML Schema for
their data types, which seems to provide a better system for interoperability across
programming languages. Although EJB 3.1 supports RPC/Encoded messaging, it’s not
a very good option to use in web services. RPC/Encoded messaging is not addressed in
this book.

Exchanging SOAP Messages with HTTP
SOAP messages are network-protocol agnostic, which means that a SOAP message is
not aware of or dependent on the type of network or protocol used to carry it. With
that said, SOAP is primarily exchanged using HTTP. The reason for using HTTP is
simple. Most Internet products, including web servers, application servers, and wireless
devices, are designed to handle the HTTP protocol. This widespread support provides
an instant infrastructure for SOAP messaging. The fact that SOAP can leverage the
ubiquity of HTTP is one of the reasons it has become so popular so quickly.

Another advantage of using HTTP is that SOAP messages can slip through firewalls
without any hassles. If you have ever tried to support internal or external customers
who are separated from you by a firewall (yours or theirs), you know the headaches it
can create. Unless you have direct control over the firewall, your chances of commu-
nicating with arbitrary clients using anything but HTTP or SMTP (email) are slim to
none. However, because SOAP can be transmitted with HTTP, it slips through the
firewall unnoticed. This ability makes life a lot simpler for the application developer,
but it’s a point of contention with the security folks. Understandably, they’re a bit irked
by the idea of application developers circumventing their defenses. Using HTTP to
carry an application protocol such as SOAP is commonly called HTTP tunneling. In the
past, support for tunneling by vendors of other distributed object protocols (CORBA
IIOP, DCOM, and so on) was sporadic and proprietary, making interoperability
extremely difficult. However, tunneling over HTTP is built into the SOAP 1.1 specifi-
cation, which means interoperability is no longer a problem. Because almost every
application server vendor rapidly adopts SOAP, SOAP-HTTP tunneling is becoming
ubiquitous.

You can use SOAP 1.2 with other protocols, such as SMTP, FTP, and even raw TCP/
IP, but HTTP is the only protocol for which a binding is currently specified. As a result,
EJB 3.1 and Java EE 6 require support for SOAP 1.1 over HTTP 1.1, but not other
protocols.

Now You See It, Now You Don’t
All this talk about SOAP is intended to give you a better idea of what is going on under
the hood, but in practice, you are unlikely to interact with the protocol directly. As with

370 | Chapter 20: EJB 3.1: Web Services Standards

most protocols, SOAP is designed to be produced and consumed by software and is
usually encapsulated by a developer API. In EJB 3.1, the API you use to exchange SOAP
messages is the Java API for XML-based Web Services (JAX-WS), which hides the
details of SOAP messaging so that you can focus on developing and invoking web
services. While using JAX-WS, you will rarely have to deal with the SOAP protocol,
which is nice because it makes you a lot more productive. JAX-WS is covered in
Chapter 21.

WSDL 1.1
The Web Service Description Language (WSDL) is an XML document used to describe
a web service. WSDL is programming-language, platform, and protocol agnostic. The
fact that WSDL is protocol agnostic means that it can describe web services that use
protocols other than SOAP and HTTP. This ability makes WSDL very flexible, but it
has the unfortunate side effect of also making WSDL abstract and difficult to under-
stand. Fortunately, the WS-I Basic Profile 1.1 endorses only SOAP 1.1 or 1.2 over
HTTP, so we’ll discuss WSDL as if that’s the only combination of protocols supported.

Imagine that you want to develop a web services component that implements the fol-
lowing interface:

public interface TravelAgent {
 public String makeReservation(int cruiseID, int cabinID,
 int customerId, double price);
}

Any application should be able to invoke this method using SOAP, regardless of the
language in which it was written or the platform on which it is running. Because other
programming languages don’t understand Java, we have to describe the web service in
a language they do understand: XML. Using XML, and specifically the WSDL markup
language, we can describe the type of SOAP messages that must be sent to invoke the
makeReservation() method. A WSDL document that describes the makeReservation()
method might look like this:

<?xml version="1.0"?>
<definitions name="TravelAgent"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:titan="http://www.titan.com/TravelAgent"
 targetNamespace="http://www.titan.com/TravelAgent">

<!-- message elements describe the parameters and return values -->
<message name="RequestMessage">
 <part name="cruiseId" type="xsd:int" />
 <part name="cabinId" type="xsd:int" />
 <part name="customerId" type="xsd:int" />
 <part name="price" type="xsd:double" />
</message>
<message name="ResponseMessage">

WSDL 1.1 | 371

 <part name="reservationId" type="xsd:string" />
</message>

<!-- portType element describes the abstract interface of a web service -->
<portType name="TravelAgent">
 <operation name="makeReservation">
 <input message="titan:RequestMessage"/>
 <output message="titan:ResponseMessage"/>
 </operation>
</portType>

<!-- binding element tells us which protocols and encoding styles are used -->
<binding name="TravelAgentBinding" type="titan:TravelAgent">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="makeReservation">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal"
 namespace="http://www.titan.com/TravelAgent"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.titan.com/TravelAgent"/>
 </output>
 </operation>
</binding>

<!-- service element tells us the Internet address of a web service -->
<service name="TravelAgentService">
 <port name="TravelAgentPort" binding="titan:TravelAgentBinding">
 <soap:address location="http://www.titan.com/webservices/TravelAgent" />
 </port>
</service>

</definitions>

If you find the previous WSDL listing indecipherable, don’t despair. Most people can’t
understand a WSDL document the first time they see one. Like many things that are
complicated, the best approach to understanding WSDL is to study it in pieces. And
fortunately, modern web services platforms, such as JBoss, provide tools to generate
the WSDL for you. WSDL should be something you need to look at only when things
break. At this point, things still break often, so it’s helpful to be familiar with WSDL;
it will show you what the server expects when a method is called. But don’t think that
you’ll be called on to write a WSDL document by yourself.

The <definitions> Element
The root element of a WSDL document is the <definitions> element. Usually, a WSDL
document declares all the XML Namespaces used in the root element. In the previous
example, the <definitions> element makes four XML Namespace declarations:

372 | Chapter 20: EJB 3.1: Web Services Standards

<?xml version="1.0"?>
<definitions name="TravelAgent"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:titan="http://www.titan.com/TravelAgent"
 targetNamespace="http://www.titan.com/TravelAgent">

The default namespace (xmlns="http://schemas.xmlsoap.org/wsdl/") is the WSDL name-
space. The xsd prefix is assigned to the XMLSchema namespace. It is used primarily
to identify simple data types such as xsd:string, xsd:int, and xsd:dateTime in
<message> elements:

<message name="RequestMessage">
 <part name="cruiseId" type="xsd:int" />
 <part name="cabinId" type="xsd:int" />
 <part name="customerId" type="xsd:int" />
 <part name="price" type="xsd:double" />
</message>
<message name="ResponseMessage">
 <part name="reservationId" type="xsd:string" />
</message>

The titan prefix is assigned to a Titan Cruises URL, which indicates that it’s an XML
Namespace belonging to Titan Cruises. This namespace is also the value of the target
Namespace attribute. This attribute is similar to the one used in XML Schema. For ex-
ample, the <portType> element references <message> elements and the <binding> ele-
ment references a <portType> element using the target namespace:

<!-- message elements describe the parameters and return values -->
<message name="RequestMessage">
 <part name="cruiseId" type="xsd:int" />
 <part name="cabinId" type="xsd:int" />
 <part name="customerId" type="xsd:int" />
 <part name="price" type="xsd:double" />
</message>
<message name="ResponseMessage">
 <part name="reservationId" type="xsd:string" />
</message>

<!-- portType element describes the abstract interface of a web service -->
<portType name="TravelAgent">
 <operation name="makeReservation">
 <input message="titan:RequestMessage"/>
 <output message="titan:ResponseMessage"/>
 </operation>
</portType>

<!-- binding element tells us which protocols and encoding styles are used -->
<binding name="TravelAgentBinding" type="titan:TravelAgent">
 ...
</binding>

WSDL 1.1 | 373

http://schemas.xmlsoap.org/wsdl/

As you can see, the different WSDL types reference each other by name, and a named
WSDL type automatically takes on the namespace declared by the targetNamespace
attribute.

The <portType> and <message> Elements
The <portType> and <message> elements are the immediate children of the
<definitions> element. Here’s what they look like:

<!-- message elements describe the parameters and return values -->
<message name="RequestMessage">
 <part name="cruiseId" type="xsd:int" />
 <part name="cabinId" type="xsd:int" />
 <part name="customerId" type="xsd:int" />
 <part name="price" type="xsd:double" />
</message>
<message name="ResponseMessage">
 <part name="reservationId" type="xsd:string" />
</message>

<!-- portType element describes the abstract interface of a web service -->
<portType name="TravelAgent">
 <operation name="makeReservation">
 <input message="titan:RequestMessage"/>
 <output message="titan:ResponseMessage"/>
 </operation>
</portType>

The <portType> element describes the web services operations (Java methods) that are
available. An operation can have input, output, and fault messages. An input message
describes the type of SOAP message a client should send to the web service. An output
message describes the type of SOAP message a client should expect to get back. A fault
message (not shown in the example) describes any SOAP error messages that the web
service might send back to the client. A fault message is similar to a Java exception.

JAX-WS, and therefore EJB 3.1, supports two styles of web services messaging: request-
response and one-way. You know you are dealing with request-response if the
<operation> element contains a single <input> element, followed by a single <output>
element and, optionally, zero or more <fault> elements. The TravelAgent <portType>
is an example of the request-response messaging style:

<!-- portType element describes the abstract interface of a web service -->
<portType name="TravelAgent">
 <operation name="makeReservation">
 <input message="titan:RequestMessage"/>
 <output message="titan:ResponseMessage"/>
 </operation>
</portType>

The one-way message style, on the other hand, is implied by the presence of a single
<input> element but no <output> or <fault> element. Here is a web service that supports
one-way messaging:

374 | Chapter 20: EJB 3.1: Web Services Standards

<!-- portType element describes the abstract interface of a web service -->
<portType name="ReservationProcessor">
 <operation name="submitReservation">
 <input message="titan:ReservationMessage"/>
 </operation>
</portType>

The request-response style of messaging is the kind you expect in RPC programming;
you send a message and get a response. The one-way style tends to be used for
asynchronous messaging; you send a message but do not expect a response. In addition,
one-way messaging is frequently used to deliver XML documents, such as the
Reservation document, rather than parameters and return values. However, both
request-response and one-way messaging styles can be used with either RPC or
document-style messaging.

WSDL also supports two other messaging styles: notification (a single <output> and no
<input>) and solicitation (a single <output> followed by a single <input>). Although
WSDL makes these messaging styles available, they are not supported by WS-I Basic
Profile 1.1 or JAX-RPC.

The <types> Element
If your service needs any custom types, they are defined in the <types> element, which
is the first child of the <definitions> element. The complete WSDL document shown
earlier did not include a <types> element because it didn’t define any new types (it used
XML Schema built-in types). The <types> element allows us to declare more complex
XML types. For example, instead of declaring each parameter of the makeReservation
operation as an individual part, you can combine them into a single structure that serves
as the parameter of the operation:

<?xml version="1.0"?>
<definitions name="TravelAgent"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:titan="http://www.titan.com/TravelAgent"
 targetNamespace="http://www.titan.com/TravelAgent">

<!-- types element describes complex XML data types -->
<types>
 <xsd:schema
 targetNamespace="http://www.titan.com/TravelAgent">

 <xsd:complexType name="ReservationType">
 <xsd:sequence>
 <xsd:element name="cruiseId" type="xsd:int"/>
 <xsd:element name="cabinId" type="xsd:int"/>
 <xsd:element name="customerId" type="xsd:int"/>
 <xsd:element name="price-paid" type="xsd:double"/>
 </xsd:sequence>
 </xsd:complexType>

WSDL 1.1 | 375

 </xsd:schema>
</types>

<!-- message elements describe the parameters and return values -->
<message name="RequestMessage">
 <part name="reservation" type="titan:ReservationType" />
</message>
<message name="ResponseMessage">
 <part name="reservationId" type="xsd:string" />
</message>

The <types> element is frequently used with document-oriented messaging. For ex-
ample, the following WSDL binding defines an XML Schema for the Reservation
markup so that Reservation documents can be submitted to Titan as one-way messages.
The schema is embedded within the WSDL document as the content of the <types>
element:

<?xml version="1.0"?>
<definitions name="Reservation"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:titan="http://www.titan.com/Reservation"
 targetNamespace="http://www.titan.com/Reservation">

<!-- types element describes complex XML data types -->
<types>
 <xsd:schema
 targetNamespace="http://www.titan.com/Reservation">

 <xsd:element name="reservation" type="titan:ReservationType"/>

 <xsd:complexType name="ReservationType">
 <xsd:sequence>
 <xsd:element name="customer" type="titan:CustomerType"/>
 <xsd:element name="cruise-id" type="xsd:int"/>
 <xsd:element name="cabin-id" type="xsd:int"/>
 <xsd:element name="price-paid" type="xsd:double"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="CustomerType">
 <xsd:sequence>
 <xsd:element name="last-name" type="xsd:string"/>
 <xsd:element name="first-name" type="xsd:string"/>
 <xsd:element name="address" type="titan:AddressType"/>
 <xsd:element name="credit-card" type="titan:CreditCardType"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="CreditCardType">
 <xsd:sequence>
 <xsd:element name="exp-date" type="xsd:dateTime"/>
 <xsd:element name="number" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="organization" type="xsd:string"/>
 </xsd:sequence>

376 | Chapter 20: EJB 3.1: Web Services Standards

 </xsd:complexType>
 <xsd:complexType name="AddressType">
 <xsd:sequence>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</types>

<!-- message elements describe the parameters and return values -->
<message name="ReservationMessage">
 <part name="inmessage" element="titan:reservation"/>
</message>
<!-- portType element describes the abstract interface of a web service -->
<portType name="ReservationProcessor">
 <operation name="submitReservation">
 <input message="titan:ReservationMessage"/>
 </operation>
</portType>
<!-- binding tells us which protocols and encoding styles are used -->
<binding name="ReservationProcessorBinding" type="titan:ReservationProcessor">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="submitReservation">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal"/>
 </input>
 </operation>
</binding>
<!-- service tells us the Internet address of a web service -->
<service name="ReservationProcessorService">
 <port name="ReservationProcessorPort" binding="titan:ReservationProcessorBinding">
 <soap:address location="http://www.titan.com/webservices/Reservation" />
 </port>
</service>

</definitions>

The <binding> and <service> Elements
In addition to the <portType> and <message> elements, a WSDL document also defines
<binding> and <service> elements. JAX-WS specifies these elements to generate mar-
shaling and network communication code that is used to send and receive messages.

WSDL 1.1 | 377

The <binding> element describes the type of encoding used to send and receive messages
as well as the protocol on which the SOAP messages are carried. The <binding> defi-
nition for the TravelAgent port type looks like this:

<!-- binding element tells us which protocols and encoding styles are used -->
<binding name="TravelAgentBinding" type="titan:TravelAgent">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="makeReservation">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal"
 namespace="http://www.titan.com/TravelAgent"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.titan.com/TravelAgent"/>
 </output>
 </operation>
</binding>

A binding element is always interlaced with protocol-specific elements—usually, the
elements describe the SOAP protocol binding. (In fact, this is the only binding that is
allowed by the WS-I Basic Profile 1.1.) Because Java EE web services must support
SOAP with attachments, the MIME binding is also supported when attachments (im-
ages, documents, and so on) are sent with SOAP messages. However, that subject is a
bit involved and is outside the scope of this book.

Similar to the <portType> element, the <binding> element contains <operation>,
<input>, <output>, and <fault> elements. In fact, a binding is specific to a particular
<portType>: its <operation>, <input>, and <output> elements describe the implementa-
tion details of the corresponding <portType>. The previous example used the HTTP
protocol with RPC/Literal-style messaging. The WSDL binding for Document/Literal-
style messaging is different:

<!-- binding element tells us which protocols and encoding styles are used -->
<binding name="TravelAgentBinding" type="titan:TravelAgent">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="submitReservation">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 </operation>
</binding>

378 | Chapter 20: EJB 3.1: Web Services Standards

The <binding> element describes a one-way web service that accepts an XML document
fragment. The <portType> associated with this <binding> also defines a single input
message (consistent with one-way messaging) within an operation called
submitReservation:

<!-- portType element describes the abstract interface of a web service -->
<portType name="ReservationProcessor">
 <operation name="submitReservation">
 <input message="titan:ReservationMessage"/>
 </operation>
</portType>

UDDI 2.0
Universal Description, Discovery, and Integration (UDDI) is a specification that de-
scribes a standard for publishing and discovering web services on the Internet. It’s
essentially a repository with a rigid data structure describing companies and the web
services they provide. UDDI is not as fundamental to web services as XML, SOAP, and
WSDL, but it is considered a basic constituent of web services in Java EE.

The analogy normally used to describe UDDI is that it provides electronic White, Yel-
low, and Green pages for companies and their web services. You can look up companies
by name or identifier (White pages) or by business or product category (Yellow pages).
You can also discover information about web services hosted by a company by exam-
ining the technical entities of a UDDI registry (Green pages). In other words, UDDI is
an electronic directory that allows organizations to advertise their business and web
services and to locate other organizations and web services.

Not only does a UDDI registry provide information about web services and their hosts,
a UDDI repository is itself a web service. You can search, access, add, update, and
delete information in a UDDI registry using a set of standard SOAP messages. All UDDI
registry products must support the standard UDDI data structures and SOAP messages,
which means that you can access any UDDI-compliant registry using the same standard
set of SOAP messages.

Although organizations can set up private UDDI registries, there is a free UDDI registry
that anyone can use, called the Universal Business Registry (UBR). This registry is ac-
cessed at one of four sites hosted by Microsoft, IBM, SAP, and NTT. If you publish
information about your company in any one of these sites, the data will be replicated
to each of the other three. You can find out more about the UBR and the sites that host
it at http://uddi.xml.org/.

UDDI 2.0 | 379

http://uddi.xml.org/

From Standards to Implementation
Understanding the fundamental web services standards (XML, SOAP, and WSDL) is
essential to becoming a competent web services developer. However, you’ll also need
to understand how to implement web services in software. Numerous web services
platforms allow you to build production systems based on the web services standards,
including .NET, Perl, and Java EE. The focus of this book is obviously the Java EE
platform, and specifically, support for web services in EJB. The next chapter explains
how JAX-WS and its precursor (JAX-RPC) are used to support web services in Enter-
prise JavaBeans.

380 | Chapter 20: EJB 3.1: Web Services Standards

CHAPTER 21

EJB 3.1 and Web Services

Support for web services in EJB 3.1 is based on the Java API for XML-based Web
Services (JAX-WS) 2.1 specification, as well its predecessor, the Java API for XML-
based RPC (JAX-RPC) 1.1. The name was changed primarily to avoid the common
misconception that web services are only about RPC. Other specifications included in
EJB 3.1 are the SOAP with Attachments API for Java (SAAJ) and the Java API for XML
Registries (JAXR). JAX-WS and JAX-RPC are similar to RMI and CORBA, except they
use the SOAP protocol; SAAJ is an API for manipulating the structure of a SOAP mes-
sage; and JAXR allows you to access web services registries, usually UDDI.

Although this chapter and Chapter 20 provide you with a launching pad for learning
about web services in Java EE (specifically EJB), the subject is too huge to cover in a
book about EJB. In order to cover Java EE web services comprehensively, we would
need another 500 pages. Since you’ll need to lift this book to read it, we wrote a lighter
approach to the subject. This chapter provides you with an introduction to both JAX-
WS and JAX-RPC, but you should not consider it a comprehensive guide to the APIs.

The main purpose of a web services API is to bridge Java components with the standard
web services protocols. Unlike other distributed technologies, web services were de-
signed to be very flexible and very extendable. Although this makes the technology
more open and more adaptable, it also makes transparency harder to achieve. A good
web services API will go to great lengths to achieve transparency. The process of in-
voking and defining a web service in Java should be as close as possible to invoking
and defining a normal object in Java. Both JAX-RPC and JAX-WS attempt to achieve
this goal, although we think you will see that JAX-WS does a much better job. We will
start with the aging JAX-RPC specification and then move into the newer JAX-WS API.

Accessing Web Services with JAX-RPC
JAX-RPC provides a client-side programming model that allows you to access web
services on other platforms from your EJBs. In other words, by using JAX-RPC, EJBs
can access web services across the network hosted on both Java and non-Java platforms

381

(Perl, .NET, C++, and so on). There are three APIs for accessing web services: generated
stubs, dynamic proxies, and the Dynamic Invocation Interface (DII). When JAX-RPC
is accessed from a Java EE/EJB 3.1 environment, the decision to use a dynamic proxy
or a stub is up to the specific container on which you are running. In this case, however,
a dynamic proxy will most likely be used, because a stub is not portable between Java
EE platforms.

A dynamic proxy is very much like the classic Java RMI or CORBA programming model,
where the client accesses a remote service via a remote interface implemented by a
network stub. The stub translates calls made on the remote interface into network
messages that are sent to the remote service. It’s similar to using an EJB remote refer-
ence; however, the protocol is SOAP over HTTP rather than CORBA IIOP. Fig-
ure 21-1 illustrates the remote execution loop executed with a JAX-RPC dynamic proxy.

Figure 21-1. The JAX-RPC RMI loop

The execution loop in JAX-RPC is the same as any other RMI loop. In Step 1, the client
invokes a method on the JAX-RPC proxy that implements the service endpoint inter-
face. The method invocation is transformed into a SOAP message that is sent to the
server in Step 2. In Step 3, the web service processes the request and sends the results
back as a SOAP response message in Step 4. In Step 5, the SOAP response message is
transformed into either a return value or an exception (if it was a SOAP fault) and is
then returned to the client.

Generating JAX-RPC Artifacts from WSDL
The primary interface that describes a JAX-RPC web service is called a service endpoint
interface. A JAX-RPC-compliant compiler generates the endpoint interface from a
WSDL <portType> definition. This interface, when combined with WSDL <binding>
and <port> definitions, is used to create the dynamic proxy at deploy time. The organ-
ization that hosts the web service provides the WSDL document.

Imagine that Titan Cruises subcontracts a company, Charge-It Inc., to process pay-
ments made by customers using credit cards. Charge-It runs a system based on .NET
and exposes its credit card processing application to clients via a web service. A WSDL
document describes the web service. The WSDL document for Charge-It’s web service
looks like this:

382 | Chapter 21: EJB 3.1 and Web Services

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://charge-it.com/Processor"
 targetNamespace="http://charge-it.com/Processor">

<message name="chargeRequest">
 <part name="name" type="xsd:string"/>
 <part name="number" type="xsd:string"/>
 <part name="exp-date" type="xsd:dateTime"/>
 <part name="card-type" type="xsd:string"/>
 <part name="amount" type="xsd:float"/>
</message>
<message name="chargeResponse">
 <part name="return" type="xsd:int"/>
</message>
<portType name="Processor">
 <operation name="charge">
 <input message="tns:chargeRequest"/>
 <output message="tns:chargeResponse"/>
 </operation>
</portType>
<binding name="ProcessorSoapBinding" type="tns:Processor">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="charge">
 <soap:operation soapAction="" style="rpc"/>
 <input>
 <soap:body use="literal"
 namespace="http://charge-it.com/Processor"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://charge-it.com/Processor"/>
 </output>
 </operation>
</binding>
<service name="ProcessorService">
 <port name="ProcessorPort" binding="tns:ProcessorSoapBinding">
 <soap:address
 location="http://www.charge-it.com/ProcessorService"/>
 </port>
</service>
</definitions>

The endpoint interface is based on the WSDL <portType> and its corresponding
<message> definitions. Based on these definitions, a JAX-RPC compiler would generate
the following interface:

package com.charge_it;

public interface Processor
 extends java.rmi.Remote

Accessing Web Services with JAX-RPC | 383

 {
 public int charge(String name, String number, java.util.Calendar expDate,
 String cardType, float amount)
 throws java.rmi.RemoteException;
}

An endpoint interface is a plain Java interface that extends the java.rmi.Remote inter-
face. All methods on the service endpoint interface must throw RemoteException, al-
though the bean implementation class is not required to. Application exceptions can
be thrown from any business method. The interface name, method names, parameters,
and exceptions are derived from the WSDL document. Figure 21-2 shows the mapping
between the <portType> and <message> definitions and the endpoint interface.

Figure 21-2. Mapping a WSDL <portType> to a JAX-RPC endpoint interface

The name of the endpoint interface comes from the name of the <portType>, which is
Processor. The methods defined by the endpoint interface are derived from the
<operation> elements declared by the WSDL <portType>. In this case, there is one
<operation> element, which maps a single method: charge(). The parameters of the
charge() method are derived from the <operation> element’s input message. For each
<part> element of the input message, there will be a corresponding parameter in the
charge() method. The output message, in this case, declares a single <part> element,
which maps to the return type of the charge() method.

The JAX-RPC specification defines an exact mapping between many of the XML
Schema built-in types and Java. This is how the XML Schema types declared by the
WSDL <part> elements are mapped to the parameters and the return type of an end-
point method. Table 21-1 shows the mapping between XML Schema built-in types and
Java primitives and classes.

384 | Chapter 21: EJB 3.1 and Web Services

Table 21-1. XML Schema built-in types and their corresponding Java types

XML Schema built-in type Java type

xsd:byte Byte

xsd:Boolean Boolean

xsd:short Short

xsd:int Int

xsd:long Long

xsd:float float

xsd:double Double

xsd:string java.lang.String

xsd:dateTime java.util.Calendar

xsd:integer java.math.BigInteger

xsd:decimal java.math.BigDecimal

xsd:QName java.xml.namespace.QName

xsd:base64Binary byte []

xsd:hexBinary byte []

JAX-RPC also maps nillable types (types that can be null), based on XML Schema built-
in types, to Java primitive wrappers. For example, a nillable xsd:int type would map
to a java.lang.Integer type, and a nillable xsd:double would map to a
java.lang.Double type.

In addition, JAX-RPC defines a mapping between complex types defined in the WSDL
<types> element and Java bean classes.

When a service is deployed, the proxy, which implements the endpoint interface, is
generated from the <binding> and <port> definitions. The JAX-RPC proxy translates
the messaging style specified by the <binding> definition into a marshaling algorithm
for converting method calls made on the endpoint stub into SOAP request and reply
messages. Charge-It’s WSDL document defines the following <binding> element:

<binding name="ProcessorSoapBinding" type="tns:Processor">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="charge">
 <soap:operation soapAction="" style="rpc"/>
 <input>
 <soap:body use="literal"
 namespace="http://charge-it.com/Processor"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://charge-it.com/Processor"/>
 </output>

Accessing Web Services with JAX-RPC | 385

 </operation>
</binding>

According to the <binding> element, the web service employs RPC/Literal SOAP 1.1
messages with a request-response-style operation. The proxy is responsible for con-
verting method calls made on the endpoint interface into SOAP messages that are sent
to the web service. It’s also responsible for converting SOAP response messages sent
back to the stub into a return value—or, if it’s a SOAP fault message, into an exception
thrown by the endpoint method.

The proxy also takes into consideration the <port> definition, which declares the In-
ternet address where the web service is located. The Charge-It WSDL document defines
the following <port> element:

<service name="ProcessorService">

 <port name="ProcessorPort" binding="tns:ProcessorSoapBinding">
 <soap:address
 location="http://www.charge-it.com/ProcessorService"/>
 </port>
</service>

The address attribute (http://www.charge-it.com/ProcessorService) specifies the URL
with which the proxy will exchange SOAP messages. Figure 21-1, shown earlier, illus-
trates how the processor endpoint interface and stub are used to access the Charge-It
credit card processing web service.

In addition to the service endpoint interface, the JAX-RPC compiler also creates a serv-
ice interface, which is used to get an instance of the proxy at runtime. The service
interface is based on the <service> element of the WSDL document. Here’s the defi-
nition of the ProcessorService interface generated from Charge-It’s WSDL document:

package com.charge_it;

public interface ProcessorService extends javax.xml.rpc.Service {
 public com.charge_it.Processor getProcessorPort()
 throws javax.xml.rpc.ServiceException;
 public java.lang.String getProcessorPortAddress();
 public com.charge_it.Processor getProcessorPort(java.net.URL portAddress)
 throws javax.xml.rpc.ServiceException;
}

The getProcessorPort() method returns a proxy that is ready to invoke methods on
the web service. The getProcessPortAddress() method returns the URL that the proxy
accesses by default. The getProcessorPort(URL) method allows you to create an end-
point stub that accesses a different URL than the default defined in the WSDL
document.

386 | Chapter 21: EJB 3.1 and Web Services

http://www.charge-it.com/ProcessorService

Calling a Service from an EJB
As with other resources (JDBC, JMS, and so on), the generated JAX-RPC service can
be injected directly into a field or setter method of the bean class. It can also be bound
to a specific namespace in the JNDI ENC at deployment time. The service can then
obtain the proxy, as described in the previous section.

To illustrate how EJBs use a service, we will modify the bookPassage() method of a
fictitious TravelAgentBean. The TravelAgent EJB will use Charge-It’s Processor web
service. We could look up the service directly using JNDI, but injection will save us the
extra step. The following code shows the changes to the TravelAgentBean class:

package com.titan.travelagent;
import com.charge_it.Processor;
import com.charge_it.ProcessorService;
...

@Stateful
public class TravelAgentBean implements TravelAgentRemote {
 @PersistenceContext(unitName="titanDB")
 private EntityManager em;

 @PersistenceContext EntityManager em;

 Customer customer;
 Cruise cruise;
 private Cabin cabin;

 private ProcessorService processorService;
 ...
 public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null)
 {
 throw new IncompleteConversationalState();
 }
 try {
 Reservation reservation = new Reservation(
 customer, cruise, cabin, price, new Date());

 em.persist(reservation);

 String customerName = customer.getFirstName()+" "+
 customer.getLastName();
 java.util.Calendar expDate = new Calendar(card.date);
 Processor processor = processorService.getProcessorPort();
 processor.charge(customerName, card.number,
 expDate, card.type, price);
 TicketDO ticket = new TicketDO(customer, cruise, cabin, price);
 return ticket;
 } catch(Exception e) {
 throw new EJBException(e);

Accessing Web Services with JAX-RPC | 387

 }
 }
 ...
}

ProcessorService is injected directly into the processorService field on the bean class.
From this field, we can obtain the proxy object that implements the service endpoint
interface. You will see in the next section how to configure an XML deployment de-
scriptor to populate the field.

Invoking this proxy within a transactional business process such as bookPassage()
presents a few problems of which you should be aware. If the proxy encounters a net-
working problem or SOAP processing error, it throws a RemoteException, which is
caught and rethrown as an EJBException, causing the entire transaction to roll back.
However, if an error occurs after the web service has executed but before the EJB
method successfully returns, a partial rollback occurs; the reservation is rolled back,
but the charge made using the Charge-It web service is not. Invocations on web services
do not participate in the caller’s transaction context!

The <service-ref> Deployment Element
We still need to specify where and how this web service reference is defined. To do this
we need a <service-ref> element in our EJB deployment descriptor. This XML element
binds a JAX-RPC service to the JNDI ENC and injects it into the processorService field
of our bean class. EJB XML is allowed to be a partial deployment descriptor. This means
that we do not have to define every single piece of metadata in XML just because we
want to inject a web service into our bean class. The partial XML deployment descriptor
of the TravelAgent EJB declares a <service-ref> element that looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<ejb-jar
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:chargeIt="http://charge-it.com/Processor"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/ejb-jar_3_1.xsd"
 version="3.1">
 <enterprise-beans>
 <session>
 <ejb-name>TravelAgentEJB</ejb-name>
 <service-ref>
 <service-ref-name>service/ChargeItProcessorService</service-ref-name>
 <service-interface>com.charge_it.ProcessorService</service-interface>
 <wsdl-file>META-INF/wsdl/ChargeItProcessor.wsdl</wsdl-file>
 <jaxrpc-mapping-file>META-INF/mapping.xml</jaxrpc-mapping-file>
 <service-qname>chargeIt:ProcessorService</service-qname>
 <mapped-name>webservices/ProcessorService</mapped-name>
 <injection-target>
 <injection-target-class>
 com.titan.travelagent.TravelAgentBean</injection-target-class>
 <injection-target-name>processorService </ injection-target-name>

388 | Chapter 21: EJB 3.1 and Web Services

 </injection-target>
 </service-ref>
 </session>
 </enterprise-beans>
</ejb-jar>

The <service-ref-name> element declares the name of the JAX-RPC service in the JNDI
ENC—it’s always relative to the java:comp/env context. The <service-interface> ele-
ment identifies the JAX-RPC service interface, which is implemented by a JAX-RPC
service object. The <wsdl-file> identifies the location of the WSDL document that
describes the Charge-It web service. The WSDL document must be packaged in the
same EJB-JAR file as the EJB that is making the web service call, whether you are using
a <service-ref> element or an annotation to inject your web service. The path is always
relative to the root of the EJB-JAR file. In this case, a copy of the Charge-It WSDL
document, ChargeItProcessor.wsdl, is stored in the META-INF directory of the EJB-
JAR file. The <jaxrpc-mapping-file> element identifies the location of the JAX-RPC
mapping file relative to the root of the EJB-JAR file. In this case, it’s also located in the
META-INF directory. (The JAX-RPC mapping file is an additional deployment file that
helps the EJB container to understand the mapping between the WSDL document and
the service endpoint interfaces.) The <service-qname> element identifies the fully quali-
fied XML name of the WSDL <service> definition to which this reference pertains. The
qualified service name is relative to the WSDL document identified by the <wsdl-
file> element. The <mapped-named> element is a vendor-specific identifier that can map
to a global registry of the application server (usually the global JNDI). The <injection-
target> element is used to tell the EJB container to inject an instance of
ProcessorService into the processorService field of the TravelAgentBean class. You can
find more information about using <injection-target> in Chapter 16.

The JAX-RPC Mapping File
A JAX-RPC service or client in a Java EE environment must have a JAX-RPC mapping
file. The mapping file format is defined in the “Implementing Enterprise Web Services”
(JSR-109) specification. There are many possible ways to map or bind Java to WSDL,
and WSDL to Java. This can cause portability problems between different JAX-RPC
implementations, since they may bind Java and WSDL in different ways. The JAX-RPC
mapping file addresses this problem by configuring the specific details for how binding
is supposed to occur. This allows for a service and a client to be portable across different
Java EE implementations. The mapping file for the ChargeItProcessor.wsdl document
follows:

<?xml version='1.0' encoding='UTF-8' ?>
<java-wsdl-mapping
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:chargeIt="http://charge-it.com/Processor"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Accessing Web Services with JAX-RPC | 389

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"
 version="1.1">

 <package-mapping>
 <package-type>com.charge_it</package-type>
 <namespaceURI>http://charge-it.com/Processor</namespaceURI>
 </package-mapping>
 <service-interface-mapping>
 <service-interface>com.charge_it.ProcessorService</service-interface>
 <wsdl-service-name>chargeIt:ProcessorService</wsdl-service-name>
 <port-mapping>
 <port-name>chargeIt:ProcessorPort</port-name>
 <java-port-name>ProcessorPort</java-port-name>
 </port-mapping>
 </service-interface-mapping>
 <service-endpoint-interface-mapping>
 <service-endpoint-interface>com.charge_it.Processor
 </service-endpoint-interface>
 <wsdl-port-type>chargeIt:Processor</wsdl-port-type>
 <wsdl-binding>chargeIt:ProcessorSoapBinding</wsdl-binding>
 <service-endpoint-method-mapping>
 <java-method-name>charge</java-method-name>
 <wsdl-operation>chargeIt:charge</wsdl-operation>
 <method-param-parts-mapping>
 <param-position>0</param-position>
 <param-type>java.lang.String</param-type>
 <wsdl-message-mapping>
 <wsdl-message>chargeIt:chargeRequest</wsdl-message>
 <wsdl-message-part-name>name</wsdl-message-part-name>
 <parameter-mode>IN</parameter-mode>
 </wsdl-message-mapping>
 </method-param-parts-mapping>
 <method-param-parts-mapping>
 <param-position>1</param-position>
 <param-type>java.lang.String</param-type>
 <wsdl-message-mapping>
 <wsdl-message>chargeIt:chargeRequest</wsdl-message>
 <wsdl-message-part-name>number</wsdl-message-part-name>
 <parameter-mode>IN</parameter-mode>
 </wsdl-message-mapping>
 </method-param-parts-mapping>
 <method-param-parts-mapping>
 <param-position>2</param-position>
 <param-type>java.util.Calendar</param-type>
 <wsdl-message-mapping>
 <wsdl-message>chargeIt:chargeRequest</wsdl-message>
 <wsdl-message-part-name>exp-date</wsdl-message-part-name>
 <parameter-mode>IN</parameter-mode>
 </wsdl-message-mapping>
 </method-param-parts-mapping>
 <method-param-parts-mapping>
 <param-position>3</param-position>
 <param-type>java.lang.String</param-type>
 <wsdl-message-mapping>

390 | Chapter 21: EJB 3.1 and Web Services

 <wsdl-message>chargeIt:chargeRequest</wsdl-message>
 <wsdl-message-part-name>card-type</wsdl-message-part-name>
 <parameter-mode>IN</parameter-mode>
 </wsdl-message-mapping>
 </method-param-parts-mapping>
 <method-param-parts-mapping>
 <param-position>4</param-position>
 <param-type>float</param-type>
 <wsdl-message-mapping>
 <wsdl-message>chargeIt:chargeRequest</wsdl-message>
 <wsdl-message-part-name>amount</wsdl-message-part-name>
 <parameter-mode>IN</parameter-mode>
 </wsdl-message-mapping>
 </method-param-parts-mapping>
 <wsdl-return-value-mapping>
 <method-return-value>int</method-return-value>
 <wsdl-message>chargeIt:chargeResponse</wsdl-message>
 <wsdl-message-part-name>return</wsdl-message-part-name>
 </wsdl-return-value-mapping>
 </service-endpoint-method-mapping>
 </service-endpoint-interface-mapping>
</java-wsdl-mapping>

As you can see, the service interface is mapped to a WSDL <service> element, the
endpoint interface is mapped to a WSDL <portType>, each method is mapped to a
WSDL <operation>, and every parameter and return value is mapped to a specific
WSDL <part> of a specific WSDL <message> definition.

The complete JAX-RPC mapping file is too complicated to discuss in detail. Don’t
worry, though; you normally don’t write these by hand. A Java EE implementation will
provide tools to generate these files for you. Also, the JAX-RPC mapping file is no longer
used in JAX-WS. We will discuss how it handles binding in the section
“Using JAX-WS” on page 396.

Defining a Web Service with JAX-RPC
Java EE provides two different programming models for defining a JAX-RPC web serv-
ice: the web container model (or servlet model) and the EJB container model. Given
that this book is about EJB 3.1, we assume you are more interested in the EJB model.

The core component in the EJB model is called an EJB endpoint. An EJB endpoint is a
stateless session bean that is exposed as a web service. In addition to the remote and
local component interfaces, there is another component interface, called the service
endpoint interface. The service endpoint interface defines the abstract web services
contract that the EJB endpoint provides to a web services client.

Because an EJB endpoint is simply a SOAP-accessible stateless session bean, it has the
same advantages as other EJBs. An EJB endpoint runs in the same EJB container that
automatically manages transactions and security, and provides access to other EJBs
and resources via injection or the JNDI ENC.

Defining a Web Service with JAX-RPC | 391

The WSDL Document
Every EJB endpoint must have a WSDL document that describes the web service. You
can create this document by hand, or you can use the tools provided by your Java EE
vendor to generate it. The <portType> declared by the WSDL document must be aligned
with the endpoint interface of the web service. In other words, the mapping between
the WSDL <portType> and the endpoint interface must be correct according to the JAX-
RPC specification. One way to ensure this is to create the WSDL document first, and
then use it to generate the service endpoint interface:

<?xml version="1.0"?>
<definitions name="TravelAgent"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:titan="http://www.titan.com/TravelAgent"
 targetNamespace="http://www.titan.com/TravelAgent">

<!-- message elements describe the parameters and return values -->
<message name="RequestMessage">
 <part name="cruiseId" type="xsd:int" />
 <part name="cabinId" type="xsd:int" />
 <part name="customerId" type="xsd:int" />
 <part name="price" type="xsd:double" />
</message>
<message name="ResponseMessage">
 <part name="reservationId" type="xsd:string" />
</message>

<!-- portType element describes the abstract interface of a web service -->
<portType name="TravelAgentEndpoint">
 <operation name="makeReservation">
 <input message="titan:RequestMessage"/>
 <output message="titan:ResponseMessage"/>
 </operation>
</portType>

<!-- binding element tells us which protocols and encoding styles are used -->
<binding name="TravelAgentBinding" type="titan:TravelAgentEndpoint">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="makeReservation">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal"
 namespace="http://www.titan.com/TravelAgent"/>
 </input>
 <output>
 <soap:body use="literal"
 namespace="http://www.titan.com/TravelAgent"/>
 </output>
 </operation>
</binding>

392 | Chapter 21: EJB 3.1 and Web Services

<!-- service element tells us the Internet address of a web service -->
<service name="TravelAgentService">
 <port name="TravelAgentPort" binding="titan:TravelAgentBinding">
 <soap:address location="http://www.titan.com/webservices/TravelAgent" />
 </port>
</service>

</definitions>

The Service Endpoint Interface
The process for generating a service endpoint interface for an EJB endpoint is identical
to the process we used to generate a JAX-RPC client. The JAX-RPC compiler generates
it from the <portType> and <message> definitions (and <types>, if present). The resulting
interface looks like the following:

package com.titan.webservice;

public interface TravelAgentEndpoint extends java.rmi.Remote {
 public java.lang.String makeReservation(int cruiseId, int cabinId,
 int customerId, double price)
 throws java.rmi.RemoteException;
}

Alternatively, you can start from Java by writing the service endpoint interface by hand.
You can then generate the WSDL and the JAX-RPC mapping file from this interface.
Refer to Table 21-1, earlier in this chapter, to determine the schema types that will be
mapped from the Java parameters in each method.

The Stateless Bean Class
The bean class defined for the TravelAgent endpoint must implement the methods
defined by the endpoint interface. As with remote and local interfaces, a stateless bean
class can implement the service endpoint interface directly. Here’s the new definition
for the TravelAgentBean class:

package com.titan.webservice;
import com.titan.domain.*;
import com.titan.cabin.*;
import com.titan.processpayment.*;
import javax.ejb.EJBException;
import java.util.Date;
import java.util.Calendar;
import javax.persistence.*;

@Stateless
public class TravelAgentBean implements TravelAgentEndpoint {
 @PersistenceContext EntityManager em;

 @EJB ProcessPaymentLocal process;

 public String makeReservation(int cruiseId, int cabinId,

Defining a Web Service with JAX-RPC | 393

 int customerId, double price){
 try {
 Cruise cruise = em.find(Cruise.class, cruiseId);
 Cabin cabin = em.find(Cabin.class, cabinId);
 Customer customer = em.find(Customer.class, customerId);
 CreditCardDO card = this.getCreditCard(customer);

 Reservation reservation = new Reservation(
 customer, cruise, cabin, price, new Date());
 process.byCredit(customer, card, price);

 return reservation.getId();

 } catch(Exception e) {
 throw new EJBException(e);
 }
 }

 public CreditCardDO getCreditCard(Customer cust) throws Exception{
 CreditCard card = customer.getCreditCard();
 return new CreditCardDO(card.getNumber(),card.getExpirationDate(),
 card.getCreditOrganization());
 }
}

The TravelAgentBean class is not that different from the TravelAgent EJB developed
earlier in this chapter (the version that uses the Charge-It credit card processing web
service). The primary differences are that it responds to web service calls rather than
remote or local calls, and it is a stateless session bean rather than a stateful session bean.

The Deployment Files
The TravelAgent endpoint requires three deployment files: a WSDL file, a JAX-RPC
mapping file, and a webservices.xml file. In this section, we will create these files man-
ually, although you would typically use the tools provided by your Java EE implemen-
tation to assist in this process.

The WSDL file

The WSDL file used to represent the endpoint interface must be packaged with the EJB
endpoint. Normally, the WSDL document is placed in the META-INF directory of the
JAR file, but it can go anywhere as long as it’s in the same JAR file as the EJB endpoint.

The JAX-RPC mapping file

EJB endpoints, like JAX-RPC service references, require you to define a JAX-RPC map-
ping file. The mapping file can have any name, but it should be descriptive, and the file
type should be XML. It’s common to name this file jaxrpc-mapping.xml or travel-
agent_mapping.xml, or something along those lines. We covered the JAX-RPC mapping
file in “The JAX-RPC Mapping File” on page 389.

394 | Chapter 21: EJB 3.1 and Web Services

The webservices.xml file

The webservices.xml file is the baling wire that ties the separate deployment files to-
gether. It defines the relationships between the stateless session bean, the WSDL file,
and the JAX-RPC mapping file:

<?xml version='1.0' encoding='UTF-8' ?>
<webservices
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:titan="http://www.titan.com/TravelAgent"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"
 version="1.1">

 <webservice-description>
 <webservice-description-name>TravelAgentService
 </webservice-description-name>
 <wsdl-file>META-INF/travelagent.wsdl</wsdl-file>
 <jaxrpc-mapping-file>/META-INF/travelagent_mapping.xml
 </jaxrpc-mapping-file>
 <port-component>
 <port-component-name>TravelAgentEndpoint</port-component-name>
 <wsdl-port>titan:TravelAgentPort</wsdl-port>
 <service-endpoint-interface>
 com.titan.webservice.TravelAgentEndpoint
 </service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>TravelAgentBean</ejb-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

The <webservice-description> element describes an EJB endpoint; there may be one
or more of these elements in a single webservices.xml file.* <webservice-description-
name> is a unique name assigned to the web services description. It can be anything you
like. The <wsdl-file> element points to the WSDL document of the EJB endpoint. Each
EJB endpoint has exactly one WSDL document, which is usually located in the META-
INF directory of the EJB-JAR file. When the EJB endpoint is deployed, your deployment
tool will probably provide you with the option of copying the WSDL document to some
type of public URL or registry so that others can discover the web service. The <jaxrpc-
mapping-file> element indicates the location of the JAX-RPC mapping file that is as-
sociated with the EJB endpoint and the WSDL document. It, too, is usually located in
the META-INF directory of the EJB-JAR file.

The <port-component> element maps a stateless session bean declared in the ejb-
jar.xml file to a specific <port> in the WSDL document. <port-component-name> is the

* The <webservice-description> element can also describe a JAX-RPC service endpoint, which is a servlet-
based web service that is outside the scope of this book.

Defining a Web Service with JAX-RPC | 395

logical name you assign the EJB endpoint. It can be anything. The <wsdl-port> element
maps the EJB endpoint deployment information to a specific WSDL <port> element in
the WSDL document. <service-endpoint-interface> is the fully qualified name of the
endpoint interface; it must be the same interface declared by the <service-endpoint>
element for the EJB in the ejb-jar.xml file. <service-impl-bean> and its <ejb-link>
element link the <port-component> to a specific EJB. The value of <ejb-link> must
match the value of the EJB name, which is TravelAgentBean in this example.

Using JAX-WS
The WSDL, JAX-RPC mapping, and webservices.xml files sure are a lot of things to
define just to expose your stateless EJB as a web service. It should be easier to publish
an EJB as a web service—and it is. One of the goals of the JAX-WS specification was
to make the JAX-RPC API and deployment model easier to use. To this end, the spec-
ification provides an extensive set of annotations, most of which are based on JSR-181
(“Web Services Metadata for the Java Platform”). These annotations make it much
simpler to define a web service. Keeping with the spirit of EJB 3.1, all JAX-WS anno-
tations have reasonable defaults. In the following example, it takes nothing more than
adding two annotations to transform a stateless EJB into a web service:

package com.titan.webservice;

import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;

@Stateless
@WebService
public class TravelAgentBean
{
 @WebMethod
 public String makeReservation(int cruiseId, int cabinId,
 int customerId, double price) {
 ...
 }
}

The @WebService Annotation
The main annotation for defining a web service is @javax.jws.WebService. This anno-
tation must be placed on the stateless session bean implementation class in order to
expose it as a web service:

package javax.jws;

@Target({TYPE}) @Retention(value=RetentionPolicy.RUNTIME)
public @interface WebService {

396 | Chapter 21: EJB 3.1 and Web Services

 String name() default "";
 String targetNamespace() default "";
 String serviceName() default "";
 String wsdlLocation() default "";
 String portName() default "";
 String endpointInterface() default "";
}

The name() attribute is the name of the web service, and it is used as the name of the
portType when mapped to WSDL. This defaults to the short name of the Java class or
Java interface to which you are applying it. The targetNamespace() attribute specifies
the XML namespace used for the WSDL and XML elements that are generated from
this annotation. The default value is generated from the package name of the annotated
type. The wsdlLocation() attribute defines the URL of the WSDL document that rep-
resents this web service. You need this attribute only if you are mapping your service
to a preexisting WSDL document. The endpointInterface() attribute is used to exter-
nalize the contract of the web service by specifying that contract in the form of a Java
interface. We’ll talk more about this option later. The portName() attribute specifies
which WSDL port you will use. In most cases, you can use the default values for each
of these attributes.

The @WebMethod Annotation
If a stateless session bean is annotated with @java.jws.WebService, and it contains no
methods that are annotated with @javax.jws.WebMethod, then all methods are made
available to the web service. Otherwise, only those methods that are annotated with
@javax.jws.WebMethod will be made available. This is an important feature because web
services tend to be coarser-grained than a standard EJB. Also, it is generally considered
good design practice to reduce dependencies between modules. The @javax.jws.Web
Method annotation also offers attributes for customizing the generated WSDL:

package javax.jws;

@Target({ElementType.METHOD}) @Retention(value = RetentionPolicy.RUNTIME)
public @interface WebMethod
{
 String operationName() default "";
 String action() default "";
}

The operationName() attribute is used to define the WSDL operation that the annotated
method implements. If it is not specified, the literal Java method name is used. The
action() attribute is used to set the SOAPAction hint that corresponds with this opera-
tion. This hint allows a service endpoint to determine the destination by simply looking
at the SOAPAction HTTP header instead of analyzing the contents of the SOAP message
body. This has the potential for a slight performance increase, although it depends on
the Java EE implementation you are using.

Using JAX-WS | 397

The following example demonstrates setting the operation name for a Java method:

package com.titan.webservice;

import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;

@Stateless
@WebService(name = "TravelAgent")
public class TravelAgentBean
{
 @WebMethod(operationName = "Reserve")
 public String makeReservation(int cruiseId, int cabinId,
 int customerId, double price) {
 ...
 }
}

This will result in the following WSDL portType definition:

<portType name="TravelAgent">
 <operation name="Reserve">
 ...
 </operation>
</portType>

The @SOAPBinding Annotation
In Chapter 20, we discussed the web services styles supported in EJB 3.1. You
can customize the web services style that the EJB endpoint uses with the
@javax.jws.soap.SOAPBinding annotation:

@Target(value = {ElementType.TYPE}) @Retention(value = RetentionPolicy.RUNTIME)
public @interface SOAPBinding {
 public enum Style {DOCUMENT, RPC};
 public enum Use {LITERAL,
 ENCODED};

 public enum ParameterStyle {BARE, WRAPPED}

 Style style() default Style.DOCUMENT;
 Use use() default Use.LITERAL;
 ParameterStyle parameterStyle() default ParameterStyle.WRAPPED;
}

Table 21-2 describes the supported attribute value combinations. It is important to
note that the use() attribute must always be set to LITERAL. ENCODED refers to SOAP
encoding, which has been disallowed by the WS-I Basic Profile 1.1. Furthermore, an
EJB implementation is not required to support it. If this annotation is not specified, the
default style is Document/Literal Wrapped.

398 | Chapter 21: EJB 3.1 and Web Services

Table 21-2. @SOAPBinding behavior

Style Use
Parameter
style Description

RPC LITERAL N/A Each parameter is mapped to a wsdl:part, which is mapped to a schema type
definition.

DOCUMENT LITERAL BARE Only one parameter is allowed, and that parameter is mapped to a root schema
element that fully defines the content of the message.

DOCUMENT LITERAL WRAPPED All parameters are wrapped in a root schema element with the same name as the
operation to which they belong.

The @WebParam Annotation
The @javax.jws.WebParam annotation allows you to control the WSDL that is generated
for a Java method annotated with @javax.jws.WebMethod:

package javax.jws;

@Target({PARAMETER})@Retention(value=RetentionPolicy.RUNTIME)
public @interface WebParam {
 public enum Mode {IN, OUT, INOUT};
 String name() default "";
 String targetNamespace() default "";
 Mode mode() default Mode.IN;
 boolean header() default false;
}

If the style is RPC/Literal, the name() attribute sets the wsdl:part name. Otherwise, it
sets the XML local name of the element within the schema document that corresponds
to the annotated parameter. If it is not specified, the default value is computed in the
form of argN, where N is the 0-based position of the parameter in the method signature.
The targetNamespace() attribute is used only if the style is Document/Literal or the
parameter is a header. It sets the targetNamespace of the schema definition that contains
the element. The header() attribute is used to indicate that the parameter should be
put in a SOAP header rather than in the SOAP body. The mode() attribute is used to
indicate whether the parameter is to be used for input, output, or both. Due to Java
semantics, if a parameter is used for output, it must be wrapped using a special holder
type. The following example shows the use of a JAX-WS holder on an RPC-style service:

@WebMethod(operationName = "CheckStatus")
public int checkStatus(
 @WebParam(name = "ReservationID")
 String reservationId,
 @WebParam(name = "CustomerID", mode = WebParam.Mode.OUT)
 javax.xml.ws.Holder<Integer> customerId
){
 ...
 // return customer id and status
 customerId.value = getCustomerId(reservationId);

Using JAX-WS | 399

 return status;
}

This produces the following WSDL:

<message name="CheckStatus">
 <part name="ReservationID" type="xsd:string"/>
</message>
<message name="CheckStatusResponse">
 <part name="return" type="xsd:int"/>
 <part name="CustomerID" type="xsd:int"/>
</message>
<portType name="TravelAgent">
 <operation name="CheckStatus" parameterOrder="ReservationID CustomerID">
 <input message="tns:CheckStatus"/>
 <output message="tns:CheckStatusResponse"/>
 </operation>
</portType>

The @WebResult Annotation
This @javax.jws.WebResult annotation provides the same, although somewhat re-
duced, functionality for return values that @javax.jws.WebParam provides for method
parameters:

@Target(value = {ElementType.METHOD}) @Retention(value = RetentionPolicy.RUNTIME)
public @interface WebResult
{
 String name() default "";
 String targetNamespace() default "";
}

The attributes behave the same as they do in @javax.jws.WebParam, with the exception
of the default value for name(). If the name() attribute is not specified, and the style is
Document/Literal bare, then its value will be the WSDL operation name concatenated
with "Response". For all other styles, the default is "return". The following example
demonstrates the use of this annotation:

package com.titan.webservice;

import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebResult;

@Stateless
@WebService(name = "TravelAgent")
public class TravelAgentBean
{
 @WebMethod(operationName = "Reserve")
 @WebResult(name = "ReservationID")
 public String makeReservation(int cruiseId, int cabinId,
 int customerId, double price) {

400 | Chapter 21: EJB 3.1 and Web Services

 ...
 }
}

This produces the following relevant WSDL sections:

<xs:element name="ReserveResponse" type="ReserveResponse"/>
<xs:complexType name="ReserveResponse">
 <xs:sequence>
 <xs:element name="ReservationID" type="xs:string" nillable="true"/>
 </xs:sequence>
</xs:complexType>
...
<message name="ReserveResponse">
 <part name="parameters" element="tns:ReserveResponse"/>
</message>
...
<portType name="TravelAgent">
 <operation name="Reserve">
 <input message="tns:Reserve"/>
 <output message="tns:ReserveResponse"/>
 </operation>
</portType>

The @OneWay Annotation
The @javax.jws.OneWay annotation is used to declare that the corresponding web serv-
ices operation will return an empty message. This allows the server and the client to
optimize the operation by performing the method invocation asynchronously. Whether
the method is actually executed asynchronously is determined by the Java EE imple-
mentation. The resulting WSDL for a one-way operation will not have an <output> tag.

Separating the Web Services Contract
Up to this point, we have been defining everything within the EJB implementation class.
An alternative approach is to use the endpointInterface() attribute of the
@javax.jws.WebService annotation. The web services contract can then be maintained
in an external Java interface. With this methodology, the only required annotation on
the endpoint interface is @javax.jws.WebService. All other annotations are optional.
Unlike the previous approach of keeping everything within the EJB implementation,
all methods in the interface are exposed in the web service. Technically, the EJB imple-
mentation does not have to implement this interface, although there is no reason not
to. We can modify the TravelAgentBean example to utilize this approach by first ex-
tracting the desired web methods:

package com.titan.webservice;

import javax.jws.WebService;

@WebService
public interface TravelAgentEndpoint{

Using JAX-WS | 401

 public java.lang.String makeReservation(int cruiseId, int cabinId,
 int customerId, double price);
}

The implementation bean then references the endpoint interface from the
@javax.jws.WebService annotation:

package com.titan.webservice;

import javax.jws.WebService;

@WebService(endpointInterface = "com.titan.webservice.TravelAgentEndpoint")
public class TravelAgentBean implements TravelAgentEndpoint {
...
}

The Service Class
Similar to the JAX-RPC client methodology we discussed earlier, JAX-WS contains a
service class that the JAX-WS client uses to communicate with a web service. The
service class must extend javax.xml.ws.Service and provide a method to retrieve the
service endpoint interface. It should also use the @javax.xml.ws.WebServiceClient
annotation to define the name, namespace, and WSDL location of the service. The
@javax.xml.ws.WebEndpoint annotation is necessary to resolve for which WSDL
<port> to return a proxy. The following is an example Service class that communicates
with the Charge-It web service:

package com.charge_it;

import javax.xml.ws.WebServiceClient;
import javax.xml.ws.WebEndpoint;

@WebServiceClient(name="ProcessorService",
 targetNamespace="http://charge-it.com/Processor"
 wsdlLocation="http://charge-it.com/Processor?wsdl")
public class ProcessorService extends javax.xml.ws.Service {
 public ProcessorService() {
 super(new URL("http://charge-it.com/Processor?wsdl"),
 new QName("http://charge-it.com/Processor", "ProcessorService"));
 }

 public ProcessorService(String wsdlLocation, QName serviceName) {
 super(wsdlLocation, serviceName);
 }

 @WebEndpoint(name = "ProcessorPort")
 public Processor getProcessorPort() {
 return (Processor)
 super.getPort(
 new QName("http://charge-it.com/Processor", "ProcessorPort"),
 Processor.class);
 }
}

402 | Chapter 21: EJB 3.1 and Web Services

The Service Endpoint Interface
We discussed a JAX-WS service endpoint interface in “Separating the Web Services
Contract” on page 401. Our client can use the same interface. This means that the client
uses all of the annotations we defined for the server side. However, remember that you
are not limited to just talking to JAX-WS web services. A web service can be running
on any platform in any language. So, in those scenarios, you will not reuse the service
endpoint interface but will instead use a tool to generate one for you. However, we will
go ahead and do this by hand:

package com.charge_it;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

@WebService
@SOAPBinding(style = SOAPBinding.Style.RPC)
public interface Processor{
 public int charge(String name, String number, java.util.Calendar expDate,
 String cardType, float amount);
}

The @WebServiceRef Annotation
In addition to the <service-ref> XML tag in ejb-jar.xml, a JAX-WS client can use the
@javax.xml.ws.WebServiceRef annotation to reference either a service interface or a
service endpoint interface directly:

package javax.xml.ws;

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface WebServiceRef {
 String name() default "";
 String wsdlLocation() default "";
 Class type default Object.class;
 Class value default Object.class;
 String mappedName() default "";
};

The name() attribute defines how the web service will be bound into the JNDI ENC.
The wsdlLocation() attribute specifies the URL where the WSDL file lives in the EJB-
JAR. HTTP URLs are allowed. If not specified, the value for this attribute will be pulled
from the service class, provided it is annotated with the @javax.xml.ws.WebService
Client annotation.

The mappedName() attribute is a vendor-specific global identifier for the web service.
Consult your vendor documentation to determine whether you need this attribute.

The type() and value() attributes are used to determine whether to inject a service class
or service endpoint interface into a field or property. In order to inject a service endpoint
interface, value() must be set to the service interface. The type() attribute can then

Using JAX-WS | 403

refer to the service endpoint interface that will be injected. This does not have to be
specified if the container can infer that information from the field type:

// Injected SEI, inferred from type
@WebServiceRef(ProcessorService.class)
private Processor endpoint;

In order to inject a service interface, both the value() and type() attributes can be set
to the service interface class; otherwise, it can be inferred from the type:

// Inject Service, inferred from type
@WebServiceRef
private ProcessorService service;

Let’s modify our TravelAgent EJB bean class to use this annotation:

package com.titan.travelagent;
import com.charge_it.ProcessorService;
import com.charge_it.Processor;
...

@Stateful
public class TravelAgentBean implements TravelAgentRemote {
 @PersistenceContext(unitName="titanDB")
 private EntityManager em;

 @PersistenceContext EntityManager em;

 Customer customer;
 Cruise cruise;
 private Cabin cabin;

 @WebServiceRef(ProcessorService.class)
 Processor processor;
 ...
 public TicketDO bookPassage(CreditCardDO card, double price)
 throws IncompleteConversationalState {

 if (customer == null || cruise == null || cabin == null)
 {
 throw new IncompleteConversationalState();
 }
 try {
 Reservation reservation = new Reservation(
 customer, cruise, cabin, price, new Date());

 em.persist(reservation);

 String customerName = customer.getFirstName()+" "+
 customer.getLastName();
 java.util.Calendar expDate = new Calendar(card.date);
 processor.charge(customerName, card.number,
 expDate, card.type, price);
 TicketDO ticket = new TicketDO(customer, cruise, cabin, price);
 return ticket;
 } catch(Exception e) {

404 | Chapter 21: EJB 3.1 and Web Services

 throw new EJBException(e);
 }
 }
 ...
}

In this example, the annotation will cause a dynamic proxy that implements the Pro-
cessor interface to be injected into the processor field. Because we are injecting a service
endpoint interface directly into the field, the value() attribute must be employed to
specify which JAX-WS service class will be used to create the endpoint.

You can also override attributes of this annotation with the <service-ref> tag we cov-
ered earlier.

Other Annotations and APIs
JAX-WS also provides a few more annotations for advanced customization, as well as
some additional client APIs for invoking services dynamically and supporting some of
the latest WS-* specifications. However, this book does not expand on those topics
because they would detract from our focus—building Enterprise Java Beans. For more
information on them, please see the relevant specifications.

JAXB
The Java Architecture for XML Binding, or JAXB for short, is a framework for mapping
XML content to and from Java objects. Mapping is performed in accordance to anno-
tations specified on the relevant Java class. These annotations are either written by hand
or alternatively generated from a schema file. Since a custom marshaling engine is cre-
ated from the annotations, schema parsing is not necessary. Also, the generated engine
is reused across multiple requests, which makes it ideal for web services. For these
reasons, JAX-WS uses JAXB for all complex type processing.

Following the schema first methodology, we can construct a simple address type:

<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName
space="http://titan.com/custom">
 <xs:complexType name="address">
 <xs:sequence>
 <xs:element name="street" type="xs:string" minOccurs="0"/>
 <xs:element name="city" type="xs:string" minOccurs="0"/>
 <xs:element name="zip" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

This can then be passed to the JAXB xjc tool to generate a Java object that represents
this custom type:

$xjc address.xsd
parsing a schema...

JAXB | 405

compiling a schema...
com/titan/custom/Address.java
com/titan/custom/ObjectFactory.java
com/titan/custom/package-info.java

The resulting Address type looks like a standard JavaBean:

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "address", propOrder = {"street","city","zip"})
public class Address {
 protected String street;
 protected String city;
 protected String zip;

 public String getStreet() {
 return street;
 }
 public void setStreet(String value) {
 this.street = value;
 }
 public String getCity() {
 return city;
 }
 public void setCity(String value) {
 this.city = value;
 }
 public String getZip() {
 return zip;
 }
 public void setZip(String value) {
 this.zip = value;
 }
}

The resulting Address class can now be modified, or added to any JAX-WS service
endpoint as described earlier. The resulting service will use a complex type according
to the schema, and the WSDL generated from the service endpoint will include an
equivalent schema to the one passed to xjc.

@WebService
public class TravelAgentEndpoint{
 public java.lang.String makeReservation(int cruiseId, int cabinId,
 int customerId, double price,
 Address shipTo) {...}
}

When passed to a JAX-WS tool, such as the JDK6-provided wsgen, the following cus-
tom type appears (as expected):

 <xs:complexType name="address">
 <xs:sequence>
 <xs:element name="city" type="xs:string" minOccurs="0"/>
 <xs:element name="street" type="xs:string" minOccurs="0"/>
 <xs:element name="zip" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

406 | Chapter 21: EJB 3.1 and Web Services

Taking JAXB Further
The previous examples just demonstrate the basic capabilities of JAXB. The framework
has facilities for much more advanced cases, and supports almost all of XML Schema
fairly well without customization. There are, however, some limitations. These are
mostly caused by the fact that XML Schema supports concepts with no clear mapping
to the Java language (e.g., unions, restrictions). In such cases, specialized annotations
may need to be added. See the official JAXB specification and/or javadoc for more
information on how it addresses these issues.

Conclusion
EJB 3.1 provides a rich number of APIs and tools to map your business logic to modern
invocation and remoting technologies, and this includes web services. Web services
have evolved during the history of Java EE, and EJB 3.1 has adapted accordingly.
Notably, this includes the recent support for JAX-WS and JAXB that support the latest
web service technologies, with a major usability improvement over JAX-RPC.

Conclusion | 407

PART V

Examples

This section is dedicated to the examples of concepts covered in the explanatory
chapters of this edition. While EJB Specification addresses concerns in a vendor-
independent way, to get code running in a real EJB container requires the use of some
vendor-specific hooks for operations like startup and deployment. From this point for-
ward, code may be geared to a particular implementation.

The online companion to this text lives at:

http://community.jboss.org/groups/oreillyejb6th

From this site hosted by the JBoss Community, readers are encouraged to participate
in forum discussion, the issue tracker, and article comments in order to further under-
stand EJB concepts in practice.

All examples in this book are LGPL Open-Source software, and these examples serve
as a guide to users looking to run the code on their own. The examples will have a
lifecycle extending beyond the book’s publishing date to account for explanations re-
quested by users, new features, documentation updates and bug fixes.

Building from Source

Prerequisites

Product Version Required

JDK (Java Development Kit) 1.6.0+ (but less than 1.7.0) Yes

Apache Maven >= 2.0.9 Yes

Git Client

Eclipse IDE

m2eclipse 0.10.0 Recommended if using Eclipse

IntelliJ IDEA

http://community.jboss.org/groups/oreillyejb6th

Obtain the Source Using Subversion SCM

Anonymous access

$> git clone
git://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples.git

Committers

$> git clone
git@github.com:jbossejb3/oreilly-ejb-6thedition-book-examples.git

Switch into the checked-out location

$> cd oreilly-ejb-6thedition-book-examples

The above links will pull in the latest (unreleased) updates to the project. If you’d prefer
to obtain the latest stable release, grab the most recent version under the tags location:

http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples

The version released for this book is "1.0.0", though subsequent releases may have
more features, bug fixes, or be updated to use more recently released versions of backing
EJB containers.

Build and Test
Build and run tests, installing into the local Maven repository:

myLocation $> mvn clean install

Notes
• The first build may take some time, as all required dependencies are downloaded

from the JBoss Nexus Repository.

• Some projects may require environment-specific setup to fully run all examples;
see each project’s description page for more info if this is the case.

http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples

The Test Harness
To illustrate the pure POJO programming model of EJB, many of the chapters have
examples using test which operate outside the scope of an EJB Container. In this setup,
we test not real EJBs, but only the business logic contained in instances of regular
objects. These are intended to execute quickly without any vendor reliance, and the
test setup may manually mock services like injection.

All tests are written using the excellent JUnit Testing Framework (http://www.junit
.org/), which allows us to code simple classes bolstered with additional annotations to
specify things like lifecycle callbacks and test methods. JUnit has become a well-known
standard for testing, and it is likely to improve your efficiency as contrasted with manual
test setups.

It should be noted that none of the tests rely on JUnit-specific features (just the API),
so if you desire to swap in an alternate framework (such as TestNG; http://testng.org),
this should be possible with a little bit of refactoring. Either way, we recommend the
use of some test framework to continue along the theme of writing less plumbing and
taking advantage of declarative behaviour whenever possible.

In addition to the underlying test framework, these examples take advantage of two
exciting, young projects within the JBoss.org Community, both focused on keeping the
task of writing testable integration tests as simple and painfree as possible.

ShrinkWrap
http://jboss.org/shrinkwrap

Skip the Build!
Shrinkwrap provides a simple API to assemble archives like JARs, WARs, and EARs
in Java.

Description
Packaging specifications such as Java Archives (JAR) and Enterprise Archives (EAR)
are standard mechanisms for declaring a collection of Classes and resources into one
unit. Often these are intended to be run directly or deployed into a web or application
server. Archives carry with them implicit metadata regarding their structure, from
which concerns like ClassLoading scope and manifest parameters may be inferred.

However useful, archives typically require the addition of a build step within the de-
velopment lifecycle, either via a script or extra tool. The ShrinkWrap project provides
a simple API to programmatically assemble archives in code, optionally allowing for

http://www.junit.org/
http://www.junit.org/
http://testng.org
http://jboss.org
http://jboss.org/shrinkwrap

export into ZIP or Exploded File formats. This makes it very fast to prototype “virtual”
archives from resources scattered about the classpath, the filesystem, or remote URLs.

We primarily use ShrinkWrap in these examples to define the contents of our deploy-
ments. There’s no need to run a full build to assemble the file-based JARs or EARs in
testing; with a backing EJB Container that supports deployment of ShrinkWrap ar-
chives, we can take advantage of IDE incremental compilation and test immediately
after making changes, with no step in between.

The adaptor that provides a hook in between ShrinkWrap and backing containers is a
library that integrates with our test classes. Just as EJB brings a powerful backend to
server-side business objects, the Arquillian framework arms POJO tests with services
and an EJB Container abstraction.

Arquillian
http://jboss.org/arquillian

Test In-Container!
Arquillian provides a easy mechanism to test your application code inside a remote or
embedded container or by interacting as a client of the container.

Mission Statement
Arquillian provides developers a simple test harness for a broad range of integration
tests for their Java applications (most likely enterprise applications). A test case may
be executed within the container, deployed alongside the code under test, or by coor-
dinating with the container, acting as a client to the deployed code.

Arquillian defines two styles of container, remote and embedded. A remote container
resides in a separate JVM from the test runner. Its lifecycle may be managed by Ar-
quillian, or Arquillian may bind to a container that is already started. An embedded
container resides in the same JVM and is mostly likely managed by Arquillian. Con-
tainers can be further classified by their capabilities. Examples include a fully compliant
Java EE application server (e.g., GlassFish, JBoss AS, Embedded GlassFish), a Servlet
container (e.g., Tomcat, Jetty) and a bean container (e.g., Weld SE). Arquillian ensures
that the container used for testing is pluggable, so the developer is not locked into a
proprietary testing environment.

Arquillian seeks to minimize the burden on the developer to carry out integration test-
ing by handling all aspects of test execution, including:

1. Managing the lifecycle of the container (start/stop)

2. Bundling the test class with dependent classes and resources into a deployable
archive

http://jboss.org/arquillian

3. Enhancing the test class (e.g., resolving @Inject, @EJB, and @Resource injections)

4. Deploying the archive to test (deploy/undeploy)

5. Capturing results and failures

To avoid introducing unnecessary complexity into the developer’s build environment,
Arquillian integrates transparently with familiar testing frameworks (e.g., JUnit 4,
TestNG 5), allowing tests to be launched using existing IDE, Ant, and Maven test
plugins without any add-ons.

Arquillian makes integration testing a breeze.

APPENDIX A

FirstEJB Example

Description
In this exercise, we’ll model an extremely simple business process: addition. The core
logic is the same as one would write in a CS100-level undergraduate class, and we’ll
create real EJBs from these small classes using a few annotations. In addition, this
example shows how we may expose our EJBs through a variety of “views”: as business
interfaces, as EJB 2.x legacy components, and as the new EJB 3.1 no-interface view.

The tests for this section come in both unit and integration flavors. The unit tests simply
instantiate our classes as POJO objects and invoke their business methods directly,
while the integration tests use a real backing container to make EJBs and invoke upon
their proxy references. This shows the versatility of the EJB POJO programming model.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15566

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch04-firstejb/

Source Listing
Following is a full listing of all source code used in this runnable example.

415

http://community.jboss.org/docs/DOC-15566
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch04-firstejb/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch04-firstejb/

Implementation Resources

CalculatorBeanBase.java

package org.jboss.ejb3.examples.ch04.firstejb;

import org.jboss.logging.Logger;

/**
 * Base for bean implementation classes of the CalculatorEJB,
 * provides business logic for required contracts
 *
 * @author ALR
 */
public class CalculatorBeanBase implements CalculatorCommonBusiness
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(CalculatorBeanBase.class);

 // ---||
 // Required Implementations --||
 // ---||

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch04.firstejb.CalculatorCommonBusiness#add(int
[])
 */
 @Override
 public int add(final int... arguments)
 {
 // Initialize
 final StringBuffer sb = new StringBuffer();
 sb.append("Adding arguments: ");
 int result = 0;

 // Add all arguments
 for (final int arg : arguments)
 {
 result += arg;
 sb.append(arg);
 sb.append(" ");
 }

 // Return
 log.info(sb.toString());
 log.info("Result: " + result);

416 | Appendix A: FirstEJB Example

 return result;
 }

}

CalculatorCommonBusiness.java

package org.jboss.ejb3.examples.ch04.firstejb;

/**
 * Contains the contract for operations common to
 * all business interfaces of the CalculatorEJB
 *
 * @author ALR
 */
public interface CalculatorCommonBusiness
{

 // ---||
 // Contracts ---||
 // ---||

 /**
 * Adds all arguments
 *
 * @return The sum of all arguments
 */
 int add(int... arguments);

}

CalculatorLocal.java

package org.jboss.ejb3.examples.ch04.firstejb;

import javax.ejb.EJBLocalObject;

/**
 * EJB 2.x Local Component interface of the CalculatorEJB
 *
 * @author ALR
 */
public interface CalculatorLocal extends CalculatorCommonBusiness, EJBLocalObject
{

}

CalculatorLocalBusiness.java

package org.jboss.ejb3.examples.ch04.firstejb;

/**
 * Local business interface for the CalculatorEJB
 *
 * @author ALR

Source Listing | 417

 */
public interface CalculatorLocalBusiness extends CalculatorCommonBusiness
{

}

CalculatorLocalHome.java

package org.jboss.ejb3.examples.ch04.firstejb;

import javax.ejb.CreateException;
import javax.ejb.EJBLocalHome;

/**
 * EJB 2.x Local Home of the CalculatorEJB
 *
 * @author ALR
 */
public interface CalculatorLocalHome extends EJBLocalHome
{
 // ---||
 // create<METHOD> Methods --||
 // ---||

 /**
 * Returns a reference to a local component view of the CalculatorEJB
 */
 CalculatorLocal create() throws CreateException;

}

CalculatorRemote.java

package org.jboss.ejb3.examples.ch04.firstejb;

import javax.ejb.EJBObject;

/**
 * EJB 2.x Remote Component interface of the CalculatorEJB
 *
 * @author ALR
 */
public interface CalculatorRemote extends CalculatorCommonBusiness, EJBObject
{

}

CalculatorRemoteBusiness.java

package org.jboss.ejb3.examples.ch04.firstejb;

/**
 * Remote business interface for the CalculatorEJB
 *
 * @author ALR

418 | Appendix A: FirstEJB Example

 */
public interface CalculatorRemoteBusiness extends CalculatorCommonBusiness
{

}

CalculatorRemoteHome.java

package org.jboss.ejb3.examples.ch04.firstejb;

import java.rmi.RemoteException;

import javax.ejb.CreateException;
import javax.ejb.EJBHome;

/**
 * EJB 2.x Remote Home of the CalculatorEJB
 *
 * @author ALR
 */
public interface CalculatorRemoteHome extends EJBHome
{
 // ---||
 // create<METHOD> Methods --||
 // ---||

 /**
 * Returns a reference to a remote component view of the CalculatorEJB
 */
 CalculatorRemote create() throws CreateException, RemoteException;

}

ManyViewCalculatorBean.java

package org.jboss.ejb3.examples.ch04.firstejb;

import javax.ejb.Local;
import javax.ejb.LocalBean;
import javax.ejb.LocalHome;
import javax.ejb.Remote;
import javax.ejb.RemoteHome;
import javax.ejb.Stateless;

/**
 * Bean implementation class of the CalculatorEJB which
 * exposes local and remote business and component views,
 * as well as an EJB 3.1 no-interface view
 *
 * @author ALR
 */
@Stateless
@Local(CalculatorLocalBusiness.class)
@Remote(CalculatorRemoteBusiness.class)
@LocalHome(CalculatorLocalHome.class)

Source Listing | 419

@RemoteHome(CalculatorRemoteHome.class)
@LocalBean // No-interface view
public class ManyViewCalculatorBean extends CalculatorBeanBase implements
CalculatorCommonBusiness
{
 /*
 * Implementation supplied by common base class
 */
}

NoInterfaceViewCalculatorBean.java

package org.jboss.ejb3.examples.ch04.firstejb;

import javax.ejb.LocalBean;
import javax.ejb.Stateless;

/**
 * Bean implementation class of the CalculatorEJB which
 * has a no-interface view
 *
 * @author ALR
 */
@Stateless
@LocalBean
public class NoInterfaceViewCalculatorBean extends CalculatorBeanBase
{
 // Implementation in base class
}

SimpleCalculatorBean.java

package org.jboss.ejb3.examples.ch04.firstejb;

import javax.ejb.Local;
import javax.ejb.Stateless;

/**
 * Bean implementation class of the CalculatorEJB which
 * exposes one local business view
 *
 * @author ALR
 */
@Stateless
@Local(CalculatorLocalBusiness.class)
public class SimpleCalculatorBean extends CalculatorBeanBase implements
CalculatorCommonBusiness
{
 /*
 * Implementation supplied by common base class
 */
}

420 | Appendix A: FirstEJB Example

Test Resources

CalculatorAssertionDelegate.java

package org.jboss.ejb3.examples.ch04.firstejb;

import junit.framework.TestCase;

import org.jboss.logging.Logger;

/**
 * Contains functions to assert that implementations
 * of {@link CalculatorCommonBusiness} are working
 * as expected
 *
 * @author ALR
 */
class CalculatorAssertionDelegate
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(CalculatorAssertionDelegate
.class);

 // ---||
 // Functional Methods --||
 // ---||

 /**
 * Uses the supplied Calculator instance to test the addition
 * algorithm
 */
 void assertAdditionSucceeds(final CalculatorCommonBusiness calc)
 {
 // Initialize
 final int[] arguments = new int[]
 {2, 3, 5};
 final int expectedSum = 10;

 // Add
 final int actualSum = calc.add(arguments);

 // Test
 TestCase.assertEquals("Addition did not return the expected result",
expectedSum, actualSum);

 // Log
 final StringBuffer sb = new StringBuffer();
 sb.append("Obtained expected result, ");
 sb.append(actualSum);

Source Listing | 421

 sb.append(", from arguments: ");
 for (final int arg : arguments)
 {
 sb.append(arg);
 sb.append(" ");
 }
 log.info(sb.toString());
 }
}

CalculatorIntegrationTestCase.java

package org.jboss.ejb3.examples.ch04.firstejb;

import java.net.MalformedURLException;

import javax.ejb.EJB;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.logging.Logger;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;

/**
 * Integration tests for the CalculatorEJB exposing one
 * business view
 *
 * @author ALR
 */
@RunWith(Arquillian.class)
public class CalculatorIntegrationTestCase
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(CalculatorIntegrationTest
Case.class);

 /**
 * The EJB 3.x local business view of the CalculatorEJB
 */
 @EJB
 private static CalculatorLocalBusiness calcLocalBusiness;

 /**
 * Delegate for ensuring that the obtained Calculators are working as expected
 */

422 | Appendix A: FirstEJB Example

 private static CalculatorAssertionDelegate assertionDelegate;

 /**
 * Define the deployment
 */
 @Deployment
 public static JavaArchive createDeployment() throws MalformedURLException
 {
 final JavaArchive archive = ShrinkWrap.create("firstejb.jar", JavaArchive.
class).addPackage(
 CalculatorBeanBase.class.getPackage());
 log.info(archive.toString(true));
 return archive;
 }

 // ---||
 // Lifecycle Methods ---||
 // ---||

 /**
 * Run once before any tests
 */
 @BeforeClass
 public static void beforeClass() throws Throwable
 {
 // Create Assertion Delegate
 assertionDelegate = new CalculatorAssertionDelegate();
 }

 // ---||
 // Tests ---||
 // ---||

 /**
 * Ensures that the CalculatorEJB adds as expected,
 * using the EJB 3.x business view
 */
 @Test
 public void testAdditionUsingBusinessReference() throws Throwable
 {
 // Test
 log.info("Testing EJB via business reference...");
 assertionDelegate.assertAdditionSucceeds(calcLocalBusiness);
 }

}

CalculatorUnitTestCase.java

package org.jboss.ejb3.examples.ch04.firstejb;

import junit.framework.TestCase;

import org.jboss.logging.Logger;
import org.junit.BeforeClass;

Source Listing | 423

import org.junit.Test;

/**
 * Tests to ensure that the business methods of the CalculatorEJB
 * are working as expected
 *
 * @author ALR
 */
public class CalculatorUnitTestCase
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(CalculatorUnitTestCase.
class);

 /**
 * The POJO instance to test
 */
 private static CalculatorCommonBusiness calc;

 // ---||
 // Lifecycle Methods ---||
 // ---||

 @BeforeClass
 public static void beforeClass()
 {
 // Make a POJO instance adhering to the
 // CalculatorCommonBusiness contract
 calc = new SimpleCalculatorBean();
 }

 // ---||
 // Tests ---||
 // ---||

 /**
 * Ensures that the business logic behind the
 * CalculatorEJB adds as expected when used
 * as a pure POJO
 */
 @Test
 public void testAddition()
 {
 // Initialize
 final int[] arguments = new int[]
 {3, 7, 2};
 final int expectedSum = 12;

 // Add

424 | Appendix A: FirstEJB Example

 final int actualSum = calc.add(arguments);

 // Test
 TestCase.assertEquals("Addition did not return the expected result",
expectedSum, actualSum);

 // Log
 final StringBuffer sb = new StringBuffer();
 sb.append("Obtained expected result, ");
 sb.append(actualSum);
 sb.append(", from arguments: ");
 for (final int arg : arguments)
 {
 sb.append(arg);
 sb.append(" ");
 }
 log.info(sb.toString());
 }
}

MultiViewCalculatorIntegrationTestCase.java

package org.jboss.ejb3.examples.ch04.firstejb;

import java.net.MalformedURLException;

import javax.naming.Context;
import javax.naming.InitialContext;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.logging.Logger;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;

/**
 * Integration tests for the CalculatorEJB, testing many views
 *
 * @author ALR
 */
@RunWith(Arquillian.class)
public class MultiViewCalculatorIntegrationTestCase
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(MultiViewCalculator
IntegrationTestCase.class);

Source Listing | 425

 /**
 * The JNDI Naming Context
 */
 private static Context namingContext;

 /**
 * The EJB 3.x local business view of the CalculatorEJB
 */
 private static CalculatorLocalBusiness calcLocalBusiness;

 /**
 * The EJB 2.x local component view of the CalculatorEJB
 */
 private static CalculatorLocal calcLocal;

 /**
 * Delegate for ensuring that the obtained Calculators are working as expected
 */
 private static CalculatorAssertionDelegate assertionDelegate;

 /**
 * JNDI Name of the Local Business Reference
 */
 //TODO Use Global JNDI Syntax
 private static final String JNDI_NAME_CALC_LOCAL_BUSINESS = ManyViewCalculator
Bean.class.getSimpleName() + "Local";

 /**
 * JNDI Name of the Local Home Reference
 */
 //TODO Use Global JNDI Syntax
 private static final String JNDI_NAME_CALC_REMOTE_HOME = ManyViewCalculator
Bean.class.getSimpleName() + "LocalHome";

 /**
 * Define the deployment
 */
 @Deployment
 public static JavaArchive createDeployment() throws MalformedURLException
 {
 final JavaArchive archive = ShrinkWrap.create("firstejb.jar", JavaArchive.
class).addPackage(
 CalculatorBeanBase.class.getPackage());
 log.info(archive.toString(true));
 return archive;
 }

 // ---||
 // Lifecycle Methods ---||
 // ---||

 /**
 * Run once before any tests
 */

426 | Appendix A: FirstEJB Example

 @BeforeClass
 public static void beforeClass() throws Throwable
 {
 // Create the naming context, using jndi.properties on the CP
 namingContext = new InitialContext();

 // Obtain EJB 3.x Business Reference
 calcLocalBusiness = (CalculatorLocalBusiness) namingContext.lookup(JNDI_
NAME_CALC_LOCAL_BUSINESS);

 // Create Assertion Delegate
 assertionDelegate = new CalculatorAssertionDelegate();

 // Obtain EJB 2.x Component Reference via Home
 final Object calcLocalHomeReference = namingContext.lookup(JNDI_NAME_CALC_
REMOTE_HOME);
 final CalculatorLocalHome calcRemoteHome = (CalculatorLocalHome) calcLocal
HomeReference;
 calcLocal = calcRemoteHome.create();
 }

 // ---||
 // Tests ---||
 // ---||

 /**
 * Ensures that the CalculatorEJB adds as expected,
 * using the EJB 3.x business view
 */
 @Test
 public void testAdditionUsingBusinessReference() throws Throwable
 {
 // Test
 log.info("Testing remote business reference...");
 assertionDelegate.assertAdditionSucceeds(calcLocalBusiness);
 }

 /**
 * Ensures that the CalculatorEJB adds as expected,
 * using the EJB 2.x component view
 */
 @Test
 public void testAdditionUsingComponentReference() throws Throwable
 {
 // Test
 log.info("Testing remote component reference...");
 assertionDelegate.assertAdditionSucceeds(calcLocal);
 }

}

jndi.properties

JNDI Properties for Local interaction with OpenEJB Naming Provider
java.naming.factory.initial=org.apache.openejb.client.LocalInitialContextFactory

Source Listing | 427

APPENDIX B

Stateless Session EJB:
Encryption Example

Description
The stateless session bean is a fantastic implementation choice for business processes
which require no server-side state to be retained in between client invocations. If all
information needed to process a request can be found in the request itself, the SLSB
may be used as a highly efficient endpoint. In this example we build an encryption
service capable of performing both one-way hashing and encryption/decryption
operations.

Additionally, we show here that SLSBs may indeed have their own internal state, so
long as that it’s not leaked out to the client during requests. Finally, we introduce the
use of XML via environment entries to externalize configurable elements of the service.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15567

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch05-encryption/

Source Listing
Following is a full listing of all source code used in this runnable example.

429

http://community.jboss.org/docs/DOC-15567
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch05-encryption/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch05-encryption/

Implementation Resources

EncryptionBean.java

package org.jboss.ejb3.examples.ch05.encryption;

import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.KeySpec;

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.PBEParameterSpec;
import javax.ejb.Local;
import javax.ejb.Remote;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

import org.apache.commons.codec.binary.Base64;
import org.jboss.logging.Logger;

/**
 * Bean implementation class of the EncryptionEJB. Shows
 * how lifecycle callbacks are implemented (@PostConstruct),
 * and two ways of obtaining externalized environment
 * entries.
 *
 * @author ALR
 */
@Stateless(name = EncryptionBean.EJB_NAME)
@Local(EncryptionLocalBusiness.class)
@Remote(EncryptionRemoteBusiness.class)
public class EncryptionBean implements EncryptionLocalBusiness, EncryptionRemote
Business
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EncryptionBean.class);

 /**
 * Name we'll assign to this EJB, will be referenced in the corresponding
 * META-INF/ejb-jar.xml file
 */
 static final String EJB_NAME = "EncryptionEJB";

430 | Appendix B: Stateless Session EJB: Encryption Example

 /**
 * Name of the environment entry representing the ciphers' passphrase supplied
 * in ejb-jar.xml
 */
 private static final String ENV_ENTRY_NAME_CIPHERS_PASSPHRASE = "ciphersPass
phrase";

 /**
 * Name of the environment entry representing the message digest algorithm
supplied
 * in ejb-jar.xml
 */
 private static final String ENV_ENTRY_NAME_MESSAGE_DIGEST_ALGORITHM = "message
DigestAlgorithm";

 /**
 * Default Algorithm used by the Digest for one-way hashing
 */
 private static final String DEFAULT_ALGORITHM_MESSAGE_DIGEST = "MD5";

 /**
 * Charset used for encoding/decoding Strings to/from byte representation
 */
 private static final String CHARSET = "UTF-8";

 /**
 * Default Algorithm used by the Cipher Key for symmetric encryption
 */
 private static final String DEFAULT_ALGORITHM_CIPHER = "PBEWithMD5AndDES";

 /**
 * The default passphrase for symmetric encryption/decryption
 */
 private static final String DEFAULT_PASSPHRASE = "LocalTestingPassphrase";

 /**
 * The salt used in symmetric encryption/decryption
 */
 private static final byte[] DEFAULT_SALT_CIPHERS =
 {(byte) 0xB4, (byte) 0xA2, (byte) 0x43, (byte) 0x89, 0x3E, (byte) 0xC5, (byte)
 0x78, (byte) 0x53};

 /**
 * Iteration count used for symmetric encryption/decryption
 */
 private static final int DEFAULT_ITERATION_COUNT_CIPHERS = 20;

 // ---||
 // Instance Members --||
 // ---||

 /*
 * The following members represent the internal
 * state of the Service. Note how these are *not* leaked out

Source Listing | 431

 * via the end-user API, and are hence part of "internal state"
 * and not "conversational state".
 */

 /**
 * SessionContext of this EJB; this will be injected by the EJB
 * Container because it's marked w/ @Resource
 */
 @Resource
 private SessionContext context;

 /**
 * Passphrase to use for the key in cipher operations; lazily initialized
 * and loaded via SessionContext.lookup
 */
 private String ciphersPassphrase;

 /**
 * Algorithm to use in message digest (hash) operations, injected
 * via @Resource annotation with name property equal to env-entry name
 */
 @Resource(name = ENV_ENTRY_NAME_MESSAGE_DIGEST_ALGORITHM)
 private String messageDigestAlgorithm;

 /**
 * Digest used for one-way hashing
 */
 private MessageDigest messageDigest;

 /**
 * Cipher used for symmetric encryption
 */
 private Cipher encryptionCipher;

 /**
 * Cipher used for symmetric decryption
 */
 private Cipher decryptionCipher;

 // ---||
 // Lifecycle ---||
 // ---||

 /**
 * Initializes this service before it may handle requests
 *
 * @throws Exception If some unexpected error occurred
 */
 @PostConstruct
 public void initialize() throws Exception
 {
 // Log that we're here
 log.info("Initializing, part of " + PostConstruct.class.getName() +
" lifecycle");

432 | Appendix B: Stateless Session EJB: Encryption Example

 /*
 * Symmetric Encryption
 */

 // Obtain parameters used in initializing the ciphers
 final String cipherAlgorithm = DEFAULT_ALGORITHM_CIPHER;
 final byte[] ciphersSalt = DEFAULT_SALT_CIPHERS;
 final int ciphersIterationCount = DEFAULT_ITERATION_COUNT_CIPHERS;
 final String ciphersPassphrase = this.getCiphersPassphrase();

 // Obtain key and param spec for the ciphers
 final KeySpec ciphersKeySpec = new PBEKeySpec(ciphersPassphrase.toCharArray
(), ciphersSalt, ciphersIterationCount);
 final SecretKey ciphersKey = SecretKeyFactory.getInstance(cipherAlgorithm).
generateSecret(ciphersKeySpec);
 final AlgorithmParameterSpec paramSpec = new PBEParameterSpec(ciphersSalt,
ciphersIterationCount);

 // Create and init the ciphers
 this.encryptionCipher = Cipher.getInstance(ciphersKey.getAlgorithm());
 this.decryptionCipher = Cipher.getInstance(ciphersKey.getAlgorithm());
 encryptionCipher.init(Cipher.ENCRYPT_MODE, ciphersKey, paramSpec);
 decryptionCipher.init(Cipher.DECRYPT_MODE, ciphersKey, paramSpec);

 // Log
 log.info("Initialized encryption cipher: " + this.encryptionCipher);
 log.info("Initialized decryption cipher: " + this.decryptionCipher);

 /*
 * One-way Hashing
 */

 // Get the algorithm for the MessageDigest
 final String messageDigestAlgorithm = this.getMessageDigestAlgorithm();

 // Create the MessageDigest
 try
 {
 this.messageDigest = MessageDigest.getInstance(messageDigestAlgorithm);
 }
 catch (NoSuchAlgorithmException e)
 {
 throw new RuntimeException("Could not obtain the " + MessageDigest.class
.getSimpleName() + " for algorithm: "
 + messageDigestAlgorithm, e);
 }
 log.info("Initialized MessageDigest for one-way hashing: " + this.message
Digest);
 }

 // ---||
 // Required Implementations --||
 // ---||

 /**

Source Listing | 433

 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionCommonBusiness#
compare(java.lang.String, java.lang.String)
 */
 @Override
 public boolean compare(final String hash, final String input) throws Illegal
ArgumentException, EncryptionException
 {
 // Precondition checks
 if (hash == null)
 {
 throw new IllegalArgumentException("hash is required.");
 }
 if (input == null)
 {
 throw new IllegalArgumentException("Input is required.");
 }

 // Get the hash of the supplied input
 final String hashOfInput = this.hash(input);

 // Determine whether equal
 final boolean equal = hash.equals(hashOfInput);

 // Return
 return equal;
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionCommonBusiness
#decrypt(java.lang.String)
 */
 @Override
 public String decrypt(final String input) throws IllegalArgumentException,
IllegalStateException,
 EncryptionException
 {
 // Get the cipher
 final Cipher cipher = this.decryptionCipher;
 if (cipher == null)
 {
 throw new IllegalStateException("Decryption cipher not available, has
this service been initialized?");
 }

 // Run the cipher
 byte[] resultBytes = null;;
 try
 {
 final byte[] inputBytes = this.stringToByteArray(input);
 resultBytes = cipher.doFinal(Base64.decodeBase64(inputBytes));
 }
 catch (final Throwable t)
 {

434 | Appendix B: Stateless Session EJB: Encryption Example

 throw new EncryptionException("Error in decryption", t);
 }
 final String result = this.byteArrayToString(resultBytes);

 // Log
 log.info("Decryption on \"" + input + "\": " + result);

 // Return
 return result;
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionCommonBusiness
#encrypt(java.lang.String)
 */
 @Override
 public String encrypt(final String input) throws IllegalArgumentException,
EncryptionException
 {
 // Get the cipher
 final Cipher cipher = this.encryptionCipher;
 if (cipher == null)
 {
 throw new IllegalStateException("Encryption cipher not available, has
this service been initialized?");
 }

 // Get bytes from the String
 byte[] inputBytes = this.stringToByteArray(input);

 // Run the cipher
 byte[] resultBytes = null;
 try
 {
 resultBytes = Base64.encodeBase64(cipher.doFinal(inputBytes));
 }
 catch (final Throwable t)
 {
 throw new EncryptionException("Error in encryption of: " + input, t);
 }

 // Log
 log.info("Encryption on \"" + input + "\": " + this.byteArrayToString
(resultBytes));

 // Return
 final String result = this.byteArrayToString(resultBytes);
 return result;
 }

 /**
 * Note:
 *
 * This is a weak implementation, but is enough to satisfy the example.

Source Listing | 435

 * If considering real-world stresses, we would be, at a minimum:
 *
 * 1) Incorporating a random salt and storing it alongside the hashed result
 * 2) Additionally implementing an iteration count to re-hash N times
 */
 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionCommonBusiness#hash
(java.lang.String)
 */
 @Override
 public String hash(final String input) throws IllegalArgumentException,
EncryptionException
 {
 // Precondition check
 if (input == null)
 {
 throw new IllegalArgumentException("Input is required.");
 }

 // Get bytes from the input
 byte[] inputBytes = this.stringToByteArray(input);

 // Obtain the MessageDigest
 final MessageDigest digest = this.messageDigest;

 // Update with our input, and obtain the hash, resetting the messageDigest
 digest.update(inputBytes, 0, inputBytes.length);
 final byte[] hashBytes = digest.digest();
 final byte[] encodedBytes = Base64.encodeBase64(hashBytes);

 // Get the input back in some readable format
 final String hash = this.byteArrayToString(encodedBytes);
 log.info("One-way hash of \"" + input + "\": " + hash);

 // Return
 return hash;
 }

 /**
 * Override the way we get the ciphers' passphrase so that we may
 * define it in a secure location on the server. Now our production
 * systems will use a different key for encoding than our development
 * servers, and we may limit the likelihood of a security breach
 * while still allowing our programmer to use the default passphrase
 * transparently during development.
 *
 * If not provided as an env-entry, fall back upon the default.
 *
 * Note that a real system won't expose this method in the public API, ever. We
 * do here for testing and to illustrate the example.
 *
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionBeanBase#getCiphers
Passphrase()
 */
 @Override

436 | Appendix B: Stateless Session EJB: Encryption Example

 public String getCiphersPassphrase()
 {
 // Obtain current
 String passphrase = this.ciphersPassphrase;

 // If not set
 if (passphrase == null)
 {

 // Do a lookup via SessionContext
 passphrase = this.getEnvironmentEntryAsString(ENV_ENTRY_NAME_CIPHERS_
PASSPHRASE);

 // See if provided
 if (passphrase == null)
 {

 // Log a warning
 log.warn("No encryption passphrase has been supplied explicitly via "
 + "an env-entry, falling back on the default...");

 // Set
 passphrase = DEFAULT_PASSPHRASE;
 }

 // Set the passphrase to be used so we don't have to do this lazy init
again
 this.ciphersPassphrase = passphrase;
 }

 // In a secure system, we don't log this. ;)
 log.info("Using encryption passphrase for ciphers keys: " + passphrase);

 // Return
 return passphrase;
 }

 /**
 * Obtains the message digest algorithm as injected from the env-entry element
 * defined in ejb-jar.xml. If not specified, fall back onto the default,
logging a warn
 * message
 *
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionRemoteBusiness#get
MessageDigestAlgorithm()
 */
 @Override
 public String getMessageDigestAlgorithm()
 {
 // First see if this has been injected/set
 if (this.messageDigestAlgorithm == null)
 {
 // Log a warning
 log.warn("No message digest algorithm has been supplied explicitly via "
 + "an env-entry, falling back on the default...");

Source Listing | 437

 // Set
 this.messageDigestAlgorithm = DEFAULT_ALGORITHM_MESSAGE_DIGEST;
 }

 // Log
 log.info("Configured MessageDigest one-way hash algorithm is: " + this.
messageDigestAlgorithm);

 // Return
 return this.messageDigestAlgorithm;
 }

 // ---||
 // Internal Helper Methods ---||
 // ---||

 /**
 * Obtains the environment entry with the specified name, casting to a String,
 * and returning the result. If the entry is not assignable
 * to a String, an {@link IllegalStateException} will be raised. In the event
 that the
 * specified environment entry cannot be found, a warning message will be logged
 * and we'll return null.
 *
 * @param envEntryName
 * @return
 * @throws IllegalStateException
 */
 private String getEnvironmentEntryAsString(final String envEntryName) throws
IllegalStateException
 {
 // See if we have a SessionContext
 final SessionContext context = this.context;
 if (context == null)
 {
 log.warn("No SessionContext, bypassing request to obtain environment
entry: " + envEntryName);
 return null;
 }

 // Lookup in the Private JNDI ENC via the injected SessionContext
 Object lookupValue = null;
 try
 {
 lookupValue = context.lookup(envEntryName);
 log.debug("Obtained environment entry \"" + envEntryName + "\": " + look
upValue);
 }
 catch (final IllegalArgumentException iae)
 {
 // Not found defined within this EJB's Component Environment,
 // so return null and let the caller handle it
 log.warn("Could not find environment entry with name: " + envEntryName);
 return null;

438 | Appendix B: Stateless Session EJB: Encryption Example

 }

 // Cast
 String returnValue = null;
 try
 {
 returnValue = String.class.cast(lookupValue);
 }
 catch (final ClassCastException cce)
 {
 throw new IllegalStateException("The specified environment entry, " +
lookupValue
 + ", was not able to be represented as a " + String.class.getName(),
cce);
 }

 // Return
 return returnValue;
 }

 /**
 * Returns a String representation of the specified byte array
 * using the charset from {@link EncryptionBeanBase#getCharset()}. Wraps
 * any {@link UnsupportedEncodingException} as a result of using an invalid
 * charset in a {@link RuntimeException}.
 *
 * @param bytes
 * @return
 * @throws RuntimeException If the charset was invalid, or some other unknown
error occurred
 * @throws IllegalArgumentException If the byte array was not specified
 */
 private String byteArrayToString(final byte[] bytes) throws RuntimeException,
IllegalArgumentException
 {
 // Precondition check
 if (bytes == null)
 {
 throw new IllegalArgumentException("Byte array is required.");
 }

 // Represent as a String
 String result = null;
 final String charset = this.getCharset();
 try
 {
 result = new String(bytes, charset);
 }
 catch (final UnsupportedEncodingException e)
 {
 throw new RuntimeException("Specified charset is invalid: " + charset, e);
 }

 // Return
 return result;

Source Listing | 439

 }

 /**
 * Returns a byte array representation of the specified String
 * using the charset from {@link EncryptionBeanBase#getCharset()}. Wraps
 * any {@link UnsupportedEncodingException} as a result of using an invalid
 * charset in a {@link RuntimeException}.
 *
 * @param input
 * @return
 * @throws RuntimeException If the charset was invalid, or some other unknown
error occurred
 * @throws IllegalArgumentException If the input was not specified (null)
 */
 private byte[] stringToByteArray(final String input) throws RuntimeException,
IllegalArgumentException
 {
 // Precondition check
 if (input == null)
 {
 throw new IllegalArgumentException("Input is required.");
 }

 // Represent as a String
 byte[] result = null;
 final String charset = this.getCharset();
 try
 {
 result = input.getBytes(charset);
 }
 catch (final UnsupportedEncodingException e)
 {
 throw new RuntimeException("Specified charset is invalid: " + charset, e);
 }

 // Return
 return result;
 }

 /**
 * Obtains the charset used in encoding/decoding Strings
 * to/from byte representation
 *
 * @return The charset
 */
 private String getCharset()
 {
 return CHARSET;
 }

}

440 | Appendix B: Stateless Session EJB: Encryption Example

EncryptionCommonBusiness.java

package org.jboss.ejb3.examples.ch05.encryption;

/**
 * Contains the contract for operations common to
 * all business interfaces of the EncryptionEJB
 *
 * @author ALR
 */
public interface EncryptionCommonBusiness
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Encrypts the specified String, returning the result
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)
 * @throws EncryptionException If some problem occurred with encryption
 */
 String encrypt(String input) throws IllegalArgumentException, Encryption
Exception;

 /**
 * Decrypts the specified String, returning the result. The general
 * contract is that the result of decrypting a String encrypted with
 * {@link EncryptionCommonBusiness#encrypt(String)} will be equal
 * by value to the original input (round trip).
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)
 * @throws EncryptionException If some problem occurred with decryption
 */
 String decrypt(String input) throws IllegalArgumentException, Encryption
Exception;

 /**
 * Returns a one-way hash of the specified argument. Useful
 * for safely storing passwords.
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)
 * @throws EncryptionException If some problem occurred making the hash
 */
 String hash(String input) throws IllegalArgumentException, EncryptionException;

 /**
 * Returns whether or not the specified input matches the specified
 * hash. Useful for validating passwords against a
 * securely stored hash.

Source Listing | 441

 *
 * @param hash
 * @param input
 * @return
 * @throws IllegalArgumentException If either the hash or input is not
provided (null)
 * @throws EncryptionException If some problem occurred making the hash
 */
 boolean compare(String hash, String input) throws IllegalArgumentException,
EncryptionException;

 /*
 * This comment applies to all below this marker.
 *
 * In real life it's a security risk to expose these internals,
 * but they're in place here for testing and to show
 * functionality described by the examples.
 */

 /**
 * Obtains the passphrase to be used in the key for
 * the symmetric encryption/decryption ciphers
 *
 * @return
 */
 String getCiphersPassphrase();

 /**
 * Obtains the algorithm to be used in performing
 * one-way hashing
 *
 * @return
 */
 String getMessageDigestAlgorithm();

}

EncryptionException.java

package org.jboss.ejb3.examples.ch05.encryption;

import javax.ejb.ApplicationException;

/**
 * A checked Application Exception denoting
 * some unexpected problem with Encryption operations
 *
 * @author ALR
 */
@ApplicationException
// Explicit annotation, though this is inferred as default because we extend
Exception
public class EncryptionException extends Exception
{

442 | Appendix B: Stateless Session EJB: Encryption Example

 // ---||
 // Class Members ---||
 // ---||

 /**
 * To satisfy explicit serialization hints to the JVM
 */
 private static final long serialVersionUID = 1L;

 // ---||
 // Constructors --||
 // ---||

 /*
 * All constructors will delegate to the superclass implementation
 */

 public EncryptionException()
 {
 super();
 }

 public EncryptionException(String message, Throwable cause)
 {
 super(message, cause);
 }

 public EncryptionException(String message)
 {
 super(message);
 }

 public EncryptionException(Throwable cause)
 {
 super(cause);
 }

}

EncryptionLocalBusiness.java

package org.jboss.ejb3.examples.ch05.encryption;

/**
 * EJB 3.x Local Business View of the EncryptionEJB
 *
 * @author ALR
 */
public interface EncryptionLocalBusiness extends EncryptionCommonBusiness
{
 // Contracts in hierarchy
}

Source Listing | 443

EncryptionRemoteBusiness.java

package org.jboss.ejb3.examples.ch05.encryption;

/**
 * EJB 3.x Remote Business View of the EncryptionEJB
 *
 * @author ALR
 */
public interface EncryptionRemoteBusiness extends EncryptionCommonBusiness
{
 // Contracts in hierarchy
}

META-INF/ejb-jar.xml

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
 version="3.1">

 <enterprise-beans>

 <!--
 In this section we'll bolster our EncryptionEJB with some
 additional metadata to complement the info defined via
 annotations.
 -->
 <session>

 <!--
 This will match the value of @Stateless.name upon our bean
 implementation class
 -->
 <ejb-name>EncryptionEJB</ejb-name>

 <!-- Override the ciphers' default passphrase -->
 <env-entry>
 <env-entry-name>ciphersPassphrase</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>OverriddenPassword</env-entry-value>
 </env-entry>

 <!-- Override the default unidirectional hash MessageDigest algorithm -->
 <env-entry>
 <env-entry-name>messageDigestAlgorithm</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>SHA</env-entry-value>

 </env-entry>

 </session>

 </enterprise-beans>

444 | Appendix B: Stateless Session EJB: Encryption Example

</ejb-jar>

Test Resources

EncryptionIntegrationTestCase.java

package org.jboss.ejb3.examples.ch05.encryption;

import java.net.MalformedURLException;
import java.net.URL;

import javax.ejb.EJB;

import junit.framework.TestCase;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.logging.Logger;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.Test;
import org.junit.runner.RunWith;

/**
 * Integration tests for the EncryptionEJB
 *
 * @author ALR
 */
@RunWith(Arquillian.class)
public class EncryptionIntegrationTestCase extends EncryptionTestCaseSupport
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EncryptionIntegrationTest
Case.class);

 /**
 * The EJB 3.x local business view of the EncryptionEJB
 */
 @EJB
 private static EncryptionLocalBusiness encryptionLocalBusiness;

 /**
 * Correlates to the env-entry within ejb-jar.xml, to be used as an override
from the default
 */
 private static final String EXPECTED_CIPHERS_PASSPHRASE = "OverriddenPassword";

Source Listing | 445

 /**
 * Correlates to the env-entry within ejb-jar.xml, to be used as an override
from the default
 */
 private static final String EXPECTED_ALGORITHM_MESSAGE_DIGEST = "SHA";

 /**
 * Define the deployment
 */
 @Deployment
 public static JavaArchive createDeployment() throws MalformedURLException
 {
 final JavaArchive archive = ShrinkWrap.create("slsb.jar", JavaArchive.class)
.addClasses(EncryptionBean.class,
 EncryptionCommonBusiness.class, EncryptionLocalBusiness.class,
EncryptionRemoteBusiness.class,
 EncryptionException.class).addManifestResource(
 new URL(EncryptionIntegrationTestCase.class.getProtectionDomain().get
CodeSource().getLocation(),
 "../classes/META-INF/ejb-jar.xml"), "ejb-jar.xml");
 //TODO SHRINKWRAP-141 Make addition of the ejb-jar less verbose
 log.info(archive.toString(true));
 return archive;
 }

 // ---||
 // Tests ---||
 // ---||

 /*
 * These tests will use the EJB set up in test initialization
 */

 /**
 * @see {@link EncryptionTestCaseSupport#assertHashing(EncryptionCommon
Business)}
 */
 @Test
 public void testHashing() throws Throwable
 {
 // Log
 log.info("testHashing");

 // Test via superclass
 this.assertHashing(encryptionLocalBusiness);
 }

 /**
 * @see {@link EncryptionTestCaseSupport#assertEncryption(EncryptionCommon
Business)}
 */
 @Test
 public void testEncryption() throws Throwable
 {
 // Log

446 | Appendix B: Stateless Session EJB: Encryption Example

 log.info("testEncryption");

 // Test via superclass
 this.assertEncryption(encryptionLocalBusiness);
 }

 /**
 * Ensures that the hashing algorithm was overridden
 * from the environment entry declared in ejb-jar.xml
 *
 * @throws Throwable
 */
 @Test
 public void testMessageDigestAlgorithmOverride() throws Throwable
 {
 // Log
 log.info("testMessageDigestAlgorithmOverride");

 // Get the algorithm used
 final String algorithm = encryptionLocalBusiness.getMessageDigestAlgorithm();
 log.info("Using MessageDigest algorithm: " + algorithm);

 // Ensure expected
 TestCase.assertEquals("MessageDigest algorithm should have been overridden
from the environment entry",
 EXPECTED_ALGORITHM_MESSAGE_DIGEST, algorithm);
 }

 /**
 * Ensures that the cipher passphrase was overridden
 * from the environment entry declared in ejb-jar.xml
 *
 * @throws Throwable
 */
 @Test
 public void testCiphersPassphraseOverride() throws Throwable
 {
 // Log
 log.info("testCiphersPassphraseOverride");

 // Get the algorithm used
 final String passphrase = encryptionLocalBusiness.getCiphersPassphrase();
 log.info("Using Encryption passphrase: " + passphrase);

 // Ensure expected
 TestCase.assertEquals("Encryption passphrase should have been overridden
from the environment entry",
 EXPECTED_CIPHERS_PASSPHRASE, passphrase);
 }

}

Source Listing | 447

EncryptionTestCaseSupport.java

package org.jboss.ejb3.examples.ch05.encryption;

import junit.framework.TestCase;

import org.jboss.logging.Logger;

/**
 * Common base for centralizing test logic used
 * for the Encryption POJO and EncryptionEJB
 *
 * @author ALR
 */
public class EncryptionTestCaseSupport
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EncryptionTestCaseSupport.
class);

 /**
 * A simple String used in testing
 */
 private static final String TEST_STRING = "EJB 3.1 Examples Test String";

 // ---||
 // Test Support --||
 // ---||

 /**
 * Ensures that the hashing functions are working as expected:
 *
 * 1) Passing through the hash returns a result inequal to the input
 * 2) Comparison upon the hash result and the original input matches
 *
 * @param service The service to use (either POJO or EJB)
 * @throws Throwable
 */
 protected void assertHashing(final EncryptionCommonBusiness service) throws
Throwable
 {
 // Log
 log.info("assertHashing");

 // Declare the input
 final String input = TEST_STRING;

 // Hash
 final String hash = service.hash(input);
 log.info("Hash of \"" + input + "\": " + hash);

448 | Appendix B: Stateless Session EJB: Encryption Example

 // Test that the hash function had some effect
 TestCase.assertNotSame("The hash function had no effect upon the supplied
input", input, hash);

 // Get the comparison result
 final boolean equal = service.compare(hash, input);

 // Test that the input matches the hash we'd gotten
 TestCase.assertTrue("The comparison of the input to its hashed result
failed", equal);
 }

 /**
 * Ensures that the encryption functions are working as expected:
 *
 * 1) Passing through the encryption returns a result inequal to the input
 * 2) Round-trip through decryption again returns a result equal to the
original input
 *
 * @param service The service to use (either POJO or EJB)
 * @throws Throwable
 */
 protected void assertEncryption(final EncryptionCommonBusiness service) throws
 Throwable
 {
 // Log
 log.info("assertEncryption");

 // Declare the input
 final String input = TEST_STRING;

 // Hash
 final String encrypted = service.encrypt(input);
 log.info("Encrypted result of \"" + input + "\": " + encrypted);

 // Test that the hash function had some effect
 TestCase.assertNotSame("The encryption function had no effect upon the
supplied input", input, encrypted);

 // Get the round-trip result
 final String roundTrip = service.decrypt(encrypted);

 // Test that the result matches the original input
 TestCase.assertEquals("The comparison of the input to its encrypted result
failed", input, roundTrip);
 }
}

EncryptionUnitTestCase.java

package org.jboss.ejb3.examples.ch05.encryption;

import org.jboss.logging.Logger;
import org.junit.BeforeClass;

Source Listing | 449

import org.junit.Test;

/**
 * Tests to ensure that the business methods of the EncryptionEJB
 * are working as expected
 *
 * @author ALR
 */
public class EncryptionUnitTestCase extends EncryptionTestCaseSupport
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EncryptionUnitTestCase.
class);

 /**
 * POJO Encryption Service
 */
 private static EncryptionBean encryptionService;

 // ---||
 // Lifecycle ---||
 // ---||

 /**
 * Initializes the suite, invoked once before any tests are run
 */
 @BeforeClass
 public static void initialize() throws Throwable
 {
 // Create the encryption service as a POJO
 encryptionService = new EncryptionBean();
 encryptionService.initialize(); // We call init manually here
 }

 // ---||
 // Tests ---||
 // ---||

 /*
 * These tests will use the POJO set up in test initialization
 */

 /**
 * @see {@link EncryptionTestCaseSupport#assertHashing(EncryptionCommon
Business)}
 */
 @Test
 public void testHashing() throws Throwable
 {

450 | Appendix B: Stateless Session EJB: Encryption Example

 // Log
 log.info("testHashing");

 // Test via superclass
 this.assertHashing(encryptionService);
 }

 /**
 * @see {@link EncryptionTestCaseSupport#assertEncryption(EncryptionCommon
Business)}
 */
 @Test
 public void testEncryption() throws Throwable
 {
 // Log
 log.info("testEncryption");

 // Test via superclass
 this.assertEncryption(encryptionService);
 }
}

Source Listing | 451

APPENDIX C

Stateful Session EJB:
FTP Client Example

Description
Often it’s necessary for the server to remember information about a specific client in
between requests; this is modeled by components that have “conversational state.” For
instance, the File Transfer Protocol is “stateful”—the server knows the current working
directory used by each client, for example. In this example we’ll model an FTP client
using the stateful session bean.

In order to save resources (i.e., RAM), SFSBs may go through a processes called “pas-
sivation” whereby an instance/client session is removed from memory and persisted to
disk after some timeout. If the client session is needed again, the state may be activated
back into use. Here we must explicitly ensure that our state is properly accounted for
in this serialization/deserialization process such that passivation is completely trans-
parent to the client.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15568

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch06-filetransfer/

Source Listing
Following is a full listing of all source code used in this runnable example.

453

http://community.jboss.org/docs/DOC-15568
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch06-filetransfer/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch06-filetransfer/

Implementation Resources

FileTransferBean.java

package org.jboss.ejb3.examples.ch06.filetransfer;

import java.io.IOException;
import java.io.Serializable;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;
import javax.ejb.Remote;
import javax.ejb.Remove;
import javax.ejb.Stateful;

import org.apache.commons.net.ftp.FTPClient;
import org.apache.commons.net.ftp.FTPFile;
import org.apache.commons.net.ftp.FTPReply;
import org.jboss.logging.Logger;

/**
 * Bean Implementation class of the FileTransferEJB, modeled
 * as a Stateful Session Bean
 *
 * @author ALR
 */
@Stateful(name = FileTransferBean.EJB_NAME)
@Remote(FileTransferRemoteBusiness.class)
public class FileTransferBean implements FileTransferRemoteBusiness, Serializable
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Serial Version UID
 */
 private static final long serialVersionUID = 1L;

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(FileTransferBean.class);

 /**
 * Name of the EJB, used in Global JNDI addresses
 */
 public static final String EJB_NAME = "FileTransferEJB";

 /**
 * The name of the host to which we'll connect.
 * In production systems would typically be externalized

454 | Appendix C: Stateful Session EJB: FTP Client Example

 * via configurable environment entry
 */
 private static String CONNECT_HOST = "localhost";

 /**
 * The port to which we'll connect.
 * In production systems would typically be externalized
 * via configurable environment entry. IANA standard
 * for FTP ports is 21, though this requires root access
 * on *nix for testing, so we'll use the nonstandard 12345.
 */
 private static int CONNECT_PORT = 12345;

 //--||
 // Instance Members --||
 //--||

 /**
 * The underlying FTP Client. We don't want its state
 * getting Serialized during passivation. We'll
 * reinitialize this client and its connections
 * upon activation.
 */
 private FTPClient client;

 /**
 * Name of the present working directory. In cases where
 * we're passivated, if this is specified
 * we'll change into this directory upon activation.
 */
 private String presentWorkingDirectory;

 //---||
 // Lifecycle Callbacks --||
 //---||

 /**
 * Called by the container when the instance is about to be passivated or
brought
 * out of service entirely.
 *
 * @see org.jboss.ejb3.examples.ch06.filetransfer.FileTransferCommonBusiness#
disconnect()
 */
 @PrePassivate
 @PreDestroy
 @Override
 public void disconnect()
 {
 // Obtain FTP Client
 final FTPClient client = this.getClient();

 // If exists
 if (client != null)
 {

Source Listing | 455

 // If connected
 if (client.isConnected())
 {
 // Logout
 try
 {
 client.logout();
 log.info("Logged out of: " + client);
 }
 catch (final IOException ioe)
 {
 log.warn("Exception encountered in logging out of the FTP
client", ioe);
 }

 // Disconnect
 try
 {
 log.debug("Disconnecting: " + client);
 client.disconnect();
 log.info("Disconnected: " + client);
 }
 catch (final IOException ioe)
 {
 log.warn("Exception encountered in disconnecting the FTP
client", ioe);
 }

 // Null out the client so it's not serialized
 this.client = null;
 }
 }
 }

 /**
 * Called by the container when the instance has been created or re-activated
 * (brought out of passivated state). Will construct the underlying FTP Client
 * and open all appropriate connections.
 *
 * @see org.jboss.ejb3.examples.ch06.filetransfer.FileTransferCommonBusiness
#connect()
 */
 @PostConstruct
 @PostActivate
 @Override
 public void connect() throws IllegalStateException, FileTransferException
 {
 /*
 * Precondition checks
 */
 final FTPClient clientBefore = this.getClient();
 if (clientBefore != null && clientBefore.isConnected())
 {
 throw new IllegalStateException("FTP Client is already initialized");
 }

456 | Appendix C: Stateful Session EJB: FTP Client Example

 // Get the connection properties
 final String connectHost = this.getConnectHost();
 final int connectPort = this.getConnectPort();

 // Create the client
 final FTPClient client = new FTPClient();
 final String canonicalServerName = connectHost + ":" + connectPort;
 log.debug("Connecting to FTP Server at " + canonicalServerName);
 try
 {
 client.connect(connectHost, connectPort);
 }
 catch (final IOException ioe)
 {
 throw new FileTransferException("Error in connecting to " + canonical
ServerName, ioe);
 }

 // Set
 log.info("Connected to FTP Server at: " + canonicalServerName);
 this.setClient(client);

 // Check that the last operation succeeded
 this.checkLastOperation();

 try
 {
 // Login
 client.login("user", "password");

 // Check that the last operation succeeded
 this.checkLastOperation();
 }
 catch (final Exception e)
 {
 throw new FileTransferException("Could not log in", e);
 }

 // If there's a pwd defined, cd into it.
 final String pwd = this.getPresentWorkingDirectory();
 if (pwd != null)
 {
 this.cd(pwd);
 }

 }

 //---||
 // Required Implementations ---||
 //---||

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch06.filetransfer.FileTransferCommonBusiness
#cd(java.lang.String)

Source Listing | 457

 */
 @Override
 public void cd(final String directory)
 {
 // Get the client
 final FTPClient client = this.getClient();

 // Exec cd
 try
 {
 // Exec cd
 client.changeWorkingDirectory(directory);

 // Check reply for success
 this.checkLastOperation();
 }
 catch (final Exception e)
 {
 throw new FileTransferException("Could not change working directory to \
"" + directory + "\"", e);
 }

 // Set the pwd (used upon activation)
 log.info("cd > " + directory);
 this.setPresentWorkingDirectory(directory);
 }

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch06.filetransfer.FileTransferCommonBusiness
#mkdir(java.lang.String)
 */
 @Override
 public void mkdir(final String directory)
 {
 // Get the client
 final FTPClient client = this.getClient();

 // Exec cd
 try
 {
 // Exec mkdir
 client.makeDirectory(directory);

 // Check reply for success
 this.checkLastOperation();
 }
 catch (final Exception e)
 {
 throw new FileTransferException("Could not make directory \"" +
directory + "\"", e);
 }

 }

458 | Appendix C: Stateful Session EJB: FTP Client Example

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch06.filetransfer.FileTransferCommonBusiness
#pwd()
 */
 @Override
 public String pwd()
 {
 // Get the client
 final FTPClient client = this.getClient();

 // Exec pwd
 try
 {
 final FTPFile[] files = client.listFiles();
 for (final FTPFile file : files)
 {
 log.info(file);
 }

 // Exec pwd
 return client.printWorkingDirectory();

 }
 catch (final IOException ioe)
 {
 throw new FileTransferException("Could not print working directory", ioe);
 }
 }

 //---||
 // Internal Helper Methods --||
 //---||

 /**
 * Ensures that the last operation succeeded with a positive
 * reply code. Otherwise a {@link FileTransferException}
 * is raised, noting the reply code denoting the error.
 *
 * @throws FileTransferException
 */
 protected void checkLastOperation() throws FileTransferException
 {
 // Get the client
 final FTPClient client = this.getClient();

 // Obtain and check the reply from the connection
 final int connectReply = client.getReplyCode();
 if (!FTPReply.isPositiveCompletion(connectReply))
 {
 // Indicate the problem
 throw new FileTransferException("Did not receive positive completion
code from server, instead code was: "
 + connectReply);
 }

Source Listing | 459

 }

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch06.filetransfer.FileTransferRemoteBusiness
#endSession()
 */
 @Remove
 @Override
 public void endSession()
 {
 log.info("Session Ending...");
 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the connectHost
 */
 public String getConnectHost()
 {
 return CONNECT_HOST;
 }

 /**
 * @return the connectPort
 */
 public int getConnectPort()
 {
 return CONNECT_PORT;
 }

 /**
 * @return the client
 */
 protected final FTPClient getClient()
 {
 return client;
 }

 /**
 * @param client the client to set
 */
 private void setClient(final FTPClient client)
 {
 this.client = client;
 }

 /**
 * @return the presentWorkingDirectory
 */
 private String getPresentWorkingDirectory()
 {
 return presentWorkingDirectory;

460 | Appendix C: Stateful Session EJB: FTP Client Example

 }

 /**
 * @param presentWorkingDirectory the presentWorkingDirectory to set
 */
 private void setPresentWorkingDirectory(String presentWorkingDirectory)
 {
 this.presentWorkingDirectory = presentWorkingDirectory;
 }

}

EncryptionBean.java

package org.jboss.ejb3.examples.ch05.encryption;

import java.io.UnsupportedEncodingException;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.KeySpec;

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;
import javax.crypto.spec.PBEParameterSpec;
import javax.ejb.Local;
import javax.ejb.Remote;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

import org.apache.commons.codec.binary.Base64;
import org.jboss.logging.Logger;

/**
 * Bean implementation class of the EncryptionEJB. Shows
 * how lifecycle callbacks are implemented (@PostConstruct),
 * and two ways of obtaining externalized environment
 * entries.
 *
 * @author ALR
 */
@Stateless(name = EncryptionBean.EJB_NAME)
@Local(EncryptionLocalBusiness.class)
@Remote(EncryptionRemoteBusiness.class)
public class EncryptionBean implements EncryptionLocalBusiness, EncryptionRemote
Business
{
 // ---||
 // Class Members ---||
 // ---||

Source Listing | 461

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EncryptionBean.class);

 /**
 * Name we'll assign to this EJB, will be referenced in the corresponding
 * META-INF/ejb-jar.xml file
 */
 static final String EJB_NAME = "EncryptionEJB";

 /**
 * Name of the environment entry representing the ciphers' passphrase supplied
 * in ejb-jar.xml
 */
 private static final String ENV_ENTRY_NAME_CIPHERS_PASSPHRASE = "ciphersPass
phrase";

 /**
 * Name of the environment entry representing the message digest algorithm
supplied
 * in ejb-jar.xml
 */
 private static final String ENV_ENTRY_NAME_MESSAGE_DIGEST_ALGORITHM = "message
DigestAlgorithm";

 /**
 * Default Algorithm used by the Digest for one-way hashing
 */
 private static final String DEFAULT_ALGORITHM_MESSAGE_DIGEST = "MD5";

 /**
 * Charset used for encoding/decoding Strings to/from byte representation
 */
 private static final String CHARSET = "UTF-8";

 /**
 * Default Algorithm used by the Cipher Key for symmetric encryption
 */
 private static final String DEFAULT_ALGORITHM_CIPHER = "PBEWithMD5AndDES";

 /**
 * The default passphrase for symmetric encryption/decryption
 */
 private static final String DEFAULT_PASSPHRASE = "LocalTestingPassphrase";

 /**
 * The salt used in symmetric encryption/decryption
 */
 private static final byte[] DEFAULT_SALT_CIPHERS =
 {(byte) 0xB4, (byte) 0xA2, (byte) 0x43, (byte) 0x89, 0x3E, (byte) 0xC5, (byte)
 0x78, (byte) 0x53};

 /**
 * Iteration count used for symmetric encryption/decryption

462 | Appendix C: Stateful Session EJB: FTP Client Example

 */
 private static final int DEFAULT_ITERATION_COUNT_CIPHERS = 20;

 // ---||
 // Instance Members --||
 // ---||

 /*
 * The following members represent the internal
 * state of the Service. Note how these are *not* leaked out
 * via the end-user API, and are hence part of "internal state"
 * and not "conversational state".
 */

 /**
 * SessionContext of this EJB; this will be injected by the EJB
 * Container because it's marked w/ @Resource
 */
 @Resource
 private SessionContext context;

 /**
 * Passphrase to use for the key in cipher operations; lazily initialized
 * and loaded via SessionContext.lookup
 */
 private String ciphersPassphrase;

 /**
 * Algorithm to use in message digest (hash) operations, injected
 * via @Resource annotation with name property equal to env-entry name
 */
 @Resource(name = ENV_ENTRY_NAME_MESSAGE_DIGEST_ALGORITHM)
 private String messageDigestAlgorithm;

 /**
 * Digest used for one-way hashing
 */
 private MessageDigest messageDigest;

 /**
 * Cipher used for symmetric encryption
 */
 private Cipher encryptionCipher;

 /**
 * Cipher used for symmetric decryption
 */
 private Cipher decryptionCipher;

 // ---||
 // Lifecycle ---||
 // ---||

 /**
 * Initializes this service before it may handle requests

Source Listing | 463

 *
 * @throws Exception If some unexpected error occurred
 */
 @PostConstruct
 public void initialize() throws Exception
 {
 // Log that we're here
 log.info("Initializing, part of " + PostConstruct.class.getName() + " life
cycle");

 /*
 * Symmetric Encryption
 */

 // Obtain parameters used in initializing the ciphers
 final String cipherAlgorithm = DEFAULT_ALGORITHM_CIPHER;
 final byte[] ciphersSalt = DEFAULT_SALT_CIPHERS;
 final int ciphersIterationCount = DEFAULT_ITERATION_COUNT_CIPHERS;
 final String ciphersPassphrase = this.getCiphersPassphrase();

 // Obtain key and param spec for the ciphers
 final KeySpec ciphersKeySpec = new PBEKeySpec(ciphersPassphrase.toCharArray
(), ciphersSalt, ciphersIterationCount);
 final SecretKey ciphersKey = SecretKeyFactory.getInstance(cipherAlgorithm).
generateSecret(ciphersKeySpec);
 final AlgorithmParameterSpec paramSpec = new PBEParameterSpec(ciphersSalt,
ciphersIterationCount);

 // Create and init the ciphers
 this.encryptionCipher = Cipher.getInstance(ciphersKey.getAlgorithm());
 this.decryptionCipher = Cipher.getInstance(ciphersKey.getAlgorithm());
 encryptionCipher.init(Cipher.ENCRYPT_MODE, ciphersKey, paramSpec);
 decryptionCipher.init(Cipher.DECRYPT_MODE, ciphersKey, paramSpec);

 // Log
 log.info("Initialized encryption cipher: " + this.encryptionCipher);
 log.info("Initialized decryption cipher: " + this.decryptionCipher);

 /*
 * One-way Hashing
 */

 // Get the algorithm for the MessageDigest
 final String messageDigestAlgorithm = this.getMessageDigestAlgorithm();

 // Create the MessageDigest
 try
 {
 this.messageDigest = MessageDigest.getInstance(messageDigestAlgorithm);
 }
 catch (NoSuchAlgorithmException e)
 {
 throw new RuntimeException("Could not obtain the " + MessageDigest.class
.getSimpleName() + " for algorithm: "
 + messageDigestAlgorithm, e);

464 | Appendix C: Stateful Session EJB: FTP Client Example

 }
 log.info("Initialized MessageDigest for one-way hashing: " + this.message
Digest);
 }

 // ---||
 // Required Implementations --||
 // ---||

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionCommonBusiness
#compare(java.lang.String, java.lang.String)
 */
 @Override
 public boolean compare(final String hash, final String input) throws Illegal
ArgumentException, EncryptionException
 {
 // Precondition checks
 if (hash == null)
 {
 throw new IllegalArgumentException("hash is required.");
 }
 if (input == null)
 {
 throw new IllegalArgumentException("Input is required.");
 }

 // Get the hash of the supplied input
 final String hashOfInput = this.hash(input);

 // Determine whether equal
 final boolean equal = hash.equals(hashOfInput);

 // Return
 return equal;
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionCommonBusiness
#decrypt(java.lang.String)
 */
 @Override
 public String decrypt(final String input) throws IllegalArgumentException,
IllegalStateException,
 EncryptionException
 {
 // Get the cipher
 final Cipher cipher = this.decryptionCipher;
 if (cipher == null)
 {
 throw new IllegalStateException("Decryption cipher not available, has
this service been initialized?");
 }

Source Listing | 465

 // Run the cipher
 byte[] resultBytes = null;;
 try
 {
 final byte[] inputBytes = this.stringToByteArray(input);
 resultBytes = cipher.doFinal(Base64.decodeBase64(inputBytes));
 }
 catch (final Throwable t)
 {
 throw new EncryptionException("Error in decryption", t);
 }
 final String result = this.byteArrayToString(resultBytes);

 // Log
 log.info("Decryption on \"" + input + "\": " + result);

 // Return
 return result;
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionCommonBusiness
#encrypt(java.lang.String)
 */
 @Override
 public String encrypt(final String input) throws IllegalArgumentException,
EncryptionException
 {
 // Get the cipher
 final Cipher cipher = this.encryptionCipher;
 if (cipher == null)
 {
 throw new IllegalStateException("Encryption cipher not available, has
this service been initialized?");
 }

 // Get bytes from the String
 byte[] inputBytes = this.stringToByteArray(input);

 // Run the cipher
 byte[] resultBytes = null;
 try
 {
 resultBytes = Base64.encodeBase64(cipher.doFinal(inputBytes));
 }
 catch (final Throwable t)
 {
 throw new EncryptionException("Error in encryption of: " + input, t);
 }

 // Log
 log.info("Encryption on \"" + input + "\": " + this.byteArrayToString
(resultBytes));

466 | Appendix C: Stateful Session EJB: FTP Client Example

 // Return
 final String result = this.byteArrayToString(resultBytes);
 return result;
 }

 /**
 * Note:
 *
 * This is a weak implementation, but is enough to satisfy the example.
 * If considering real-world stresses, we would be, at a minimum:
 *
 * 1) Incorporating a random salt and storing it alongside the hashed result
 * 2) Additionally implementing an iteration count to re-hash N times
 */
 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionCommonBusiness#hash
(java.lang.String)
 */
 @Override
 public String hash(final String input) throws IllegalArgumentException,
EncryptionException
 {
 // Precondition check
 if (input == null)
 {
 throw new IllegalArgumentException("Input is required.");
 }

 // Get bytes from the input
 byte[] inputBytes = this.stringToByteArray(input);

 // Obtain the MessageDigest
 final MessageDigest digest = this.messageDigest;

 // Update with our input, and obtain the hash, resetting the messageDigest
 digest.update(inputBytes, 0, inputBytes.length);
 final byte[] hashBytes = digest.digest();
 final byte[] encodedBytes = Base64.encodeBase64(hashBytes);

 // Get the input back in some readable format
 final String hash = this.byteArrayToString(encodedBytes);
 log.info("One-way hash of \"" + input + "\": " + hash);

 // Return
 return hash;
 }

 /**
 * Override the way we get the ciphers' passphrase so that we may
 * define it in a secure location on the server. Now our production
 * systems will use a different key for encoding than our development
 * servers, and we may limit the likelihood of a security breach
 * while still allowing our programmer to use the default passphrase
 * transparently during development.

Source Listing | 467

 *
 * If not provided as an env-entry, fall back upon the default.
 *
 * Note that a real system won't expose this method in the public API, ever. We
 * do here for testing and to illustrate the example.
 *
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionBeanBase#getCiphers
Passphrase()
 */
 @Override
 public String getCiphersPassphrase()
 {
 // Obtain current
 String passphrase = this.ciphersPassphrase;

 // If not set
 if (passphrase == null)
 {

 // Do a lookup via SessionContext
 passphrase = this.getEnvironmentEntryAsString(ENV_ENTRY_NAME_CIPHERS_
PASSPHRASE);

 // See if provided
 if (passphrase == null)
 {

 // Log a warning
 log.warn("No encryption passphrase has been supplied explicitly via "
 + "an env-entry, falling back on the default...");

 // Set
 passphrase = DEFAULT_PASSPHRASE;
 }

 // Set the passphrase to be used so we don't have to do this lazy init
again
 this.ciphersPassphrase = passphrase;
 }

 // In a secure system, we don't log this. ;)
 log.info("Using encryption passphrase for ciphers keys: " + passphrase);

 // Return
 return passphrase;
 }

 /**
 * Obtains the message digest algorithm as injected from the env-entry element
 * defined in ejb-jar.xml. If not specified, fall back onto the default,
logging a warn
 * message
 *
 * @see org.jboss.ejb3.examples.ch05.encryption.EncryptionRemoteBusiness#get
MessageDigestAlgorithm()

468 | Appendix C: Stateful Session EJB: FTP Client Example

 */
 @Override
 public String getMessageDigestAlgorithm()
 {
 // First see if this has been injected/set
 if (this.messageDigestAlgorithm == null)
 {
 // Log a warning
 log.warn("No message digest algorithm has been supplied explicitly via "
 + "an env-entry, falling back on the default...");

 // Set
 this.messageDigestAlgorithm = DEFAULT_ALGORITHM_MESSAGE_DIGEST;
 }

 // Log
 log.info("Configured MessageDigest one-way hash algorithm is: " + this.
messageDigestAlgorithm);

 // Return
 return this.messageDigestAlgorithm;
 }

 // ---||
 // Internal Helper Methods ---||
 // ---||

 /**
 * Obtains the environment entry with the specified name, casting to a String,
 * and returning the result. If the entry is not assignable
 * to a String, an {@link IllegalStateException} will be raised. In the event
 that the
 * specified environment entry cannot be found, a warning message will be logged
 * and we'll return null.
 *
 * @param envEntryName
 * @return
 * @throws IllegalStateException
 */
 private String getEnvironmentEntryAsString(final String envEntryName) throws
IllegalStateException
 {
 // See if we have a SessionContext
 final SessionContext context = this.context;
 if (context == null)
 {
 log.warn("No SessionContext, bypassing request to obtain environment
entry: " + envEntryName);
 return null;
 }

 // Lookup in the Private JNDI ENC via the injected SessionContext
 Object lookupValue = null;
 try
 {

Source Listing | 469

 lookupValue = context.lookup(envEntryName);
 log.debug("Obtained environment entry \"" + envEntryName + "\": " +
lookupValue);
 }
 catch (final IllegalArgumentException iae)
 {
 // Not found defined within this EJB's Component Environment,
 // so return null and let the caller handle it
 log.warn("Could not find environment entry with name: " + envEntryName);
 return null;
 }

 // Cast
 String returnValue = null;
 try
 {
 returnValue = String.class.cast(lookupValue);
 }
 catch (final ClassCastException cce)
 {
 throw new IllegalStateException("The specified environment entry, " +
lookupValue
 + ", was not able to be represented as a " + String.class.getName(),
cce);
 }

 // Return
 return returnValue;
 }

 /**
 * Returns a String representation of the specified byte array
 * using the charset from {@link EncryptionBeanBase#getCharset()}. Wraps
 * any {@link UnsupportedEncodingException} as a result of using an invalid
 * charset in a {@link RuntimeException}.
 *
 * @param bytes
 * @return
 * @throws RuntimeException If the charset was invalid, or some other unknown
error occurred
 * @throws IllegalArgumentException If the byte array was not specified
 */
 private String byteArrayToString(final byte[] bytes) throws RuntimeException,
IllegalArgumentException
 {
 // Precondition check
 if (bytes == null)
 {
 throw new IllegalArgumentException("Byte array is required.");
 }

 // Represent as a String
 String result = null;
 final String charset = this.getCharset();
 try

470 | Appendix C: Stateful Session EJB: FTP Client Example

 {
 result = new String(bytes, charset);
 }
 catch (final UnsupportedEncodingException e)
 {
 throw new RuntimeException("Specified charset is invalid: " + charset, e);
 }

 // Return
 return result;
 }

 /**
 * Returns a byte array representation of the specified String
 * using the charset from {@link EncryptionBeanBase#getCharset()}. Wraps
 * any {@link UnsupportedEncodingException} as a result of using an invalid
 * charset in a {@link RuntimeException}.
 *
 * @param input
 * @return
 * @throws RuntimeException If the charset was invalid, or some other unknown
error occurred
 * @throws IllegalArgumentException If the input was not specified (null)
 */
 private byte[] stringToByteArray(final String input) throws RuntimeException,
IllegalArgumentException
 {
 // Precondition check
 if (input == null)
 {
 throw new IllegalArgumentException("Input is required.");
 }

 // Represent as a String
 byte[] result = null;
 final String charset = this.getCharset();
 try
 {
 result = input.getBytes(charset);
 }
 catch (final UnsupportedEncodingException e)
 {
 throw new RuntimeException("Specified charset is invalid: " + charset, e);
 }

 // Return
 return result;
 }

 /**
 * Obtains the charset used in encoding/decoding Strings
 * to/from byte representation
 *
 * @return The charset
 */

Source Listing | 471

 private String getCharset()
 {
 return CHARSET;
 }

}

EncryptionCommonBusiness.java

package org.jboss.ejb3.examples.ch05.encryption;

/**
 * Contains the contract for operations common to
 * all business interfaces of the EncryptionEJB
 *
 * @author ALR
 */
public interface EncryptionCommonBusiness
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Encrypts the specified String, returning the result
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)
 * @throws EncryptionException If some problem occurred with encryption
 */
 String encrypt(String input) throws IllegalArgumentException, Encryption
Exception;

 /**
 * Decrypts the specified String, returning the result. The general
 * contract is that the result of decrypting a String encrypted with
 * {@link EncryptionCommonBusiness#encrypt(String)} will be equal
 * by value to the original input (round trip).
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)
 * @throws EncryptionException If some problem occurred with decryption
 */
 String decrypt(String input) throws IllegalArgumentException, Encryption
Exception;

 /**
 * Returns a one-way hash of the specified argument. Useful
 * for safely storing passwords.
 *
 * @param input
 * @return
 * @throws IllegalArgumentException If no input was provided (null)

472 | Appendix C: Stateful Session EJB: FTP Client Example

 * @throws EncryptionException If some problem occurred making the hash
 */
 String hash(String input) throws IllegalArgumentException, EncryptionException;

 /**
 * Returns whether or not the specified input matches the specified
 * hash. Useful for validating passwords against a
 * securely stored hash.
 *
 * @param hash
 * @param input
 * @return
 * @throws IllegalArgumentException If either the hash or input is not
provided (null)
 * @throws EncryptionException If some problem occurred making the hash
 */
 boolean compare(String hash, String input) throws IllegalArgumentException,
EncryptionException;

 /*
 * This comment applies to all below this marker.
 *
 * In real life it's a security risk to expose these internals,
 * but they're in place here for testing and to show
 * functionality described by the examples.
 */

 /**
 * Obtains the passphrase to be used in the key for
 * the symmetric encryption/decryption ciphers
 *
 * @return
 */
 String getCiphersPassphrase();

 /**
 * Obtains the algorithm to be used in performing
 * one-way hashing
 *
 * @return
 */
 String getMessageDigestAlgorithm();

}

EncryptionException.java

package org.jboss.ejb3.examples.ch05.encryption;

import javax.ejb.ApplicationException;

/**
 * A checked Application Exception denoting
 * some unexpected problem with Encryption operations
 *

Source Listing | 473

 * @author ALR
 */
@ApplicationException
// Explicit annotation, though this is inferred as default because we extend
Exception
public class EncryptionException extends Exception
{

 // ---||
 // Class Members ---||
 // ---||

 /**
 * To satisfy explicit serialization hints to the JVM
 */
 private static final long serialVersionUID = 1L;

 // ---||
 // Constructors --||
 // ---||

 /*
 * All constructors will delegate to the superclass implementation
 */

 public EncryptionException()
 {
 super();
 }

 public EncryptionException(String message, Throwable cause)
 {
 super(message, cause);
 }

 public EncryptionException(String message)
 {
 super(message);
 }

 public EncryptionException(Throwable cause)
 {
 super(cause);
 }

}

EncryptionLocalBusiness.java

package org.jboss.ejb3.examples.ch05.encryption;

/**
 * EJB 3.x Local Business View of the EncryptionEJB
 *
 * @author ALR

474 | Appendix C: Stateful Session EJB: FTP Client Example

 */
public interface EncryptionLocalBusiness extends EncryptionCommonBusiness
{
 // Contracts in hierarchy
}

EncryptionRemoteBusiness.java

package org.jboss.ejb3.examples.ch05.encryption;

/**
 * EJB 3.x Remote Business View of the EncryptionEJB
 *
 * @author ALR
 */
public interface EncryptionRemoteBusiness extends EncryptionCommonBusiness
{
 // Contracts in hierarchy
}

META-INF/ejb-jar.xml

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_1.xsd"
 version="3.1">

 <enterprise-beans>

 <!--
 In this section we'll bolster our EncryptionEJB with some
 additional metadata to complement the info defined via
 annotations.
 -->
 <session>

 <!--
 This will match the value of @Stateless.name upon our bean
 implementation class
 -->
 <ejb-name>EncryptionEJB</ejb-name>

 <!-- Override the ciphers' default passphrase -->
 <env-entry>
 <env-entry-name>ciphersPassphrase</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>OverriddenPassword</env-entry-value>
 </env-entry>

 <!-- Override the default unidirectional hash MessageDigest algorithm -->
 <env-entry>
 <env-entry-name>messageDigestAlgorithm</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>SHA</env-entry-value>

Source Listing | 475

 </env-entry>

 </session>

 </enterprise-beans>

</ejb-jar>

Test Resources

EncryptionIntegrationTestCase.java

package org.jboss.ejb3.examples.ch05.encryption;

import java.net.MalformedURLException;
import java.net.URL;

import javax.ejb.EJB;

import junit.framework.TestCase;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.logging.Logger;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.Test;
import org.junit.runner.RunWith;

/**
 * Integration tests for the EncryptionEJB
 *
 * @author ALR
 */
@RunWith(Arquillian.class)
public class EncryptionIntegrationTestCase extends EncryptionTestCaseSupport
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EncryptionIntegrationTest
Case.class);

 /**
 * The EJB 3.x local business view of the EncryptionEJB
 */
 @EJB
 private static EncryptionLocalBusiness encryptionLocalBusiness;

476 | Appendix C: Stateful Session EJB: FTP Client Example

 /**
 * Correlates to the env-entry within ejb-jar.xml, to be used as an override
from the default
 */
 private static final String EXPECTED_CIPHERS_PASSPHRASE = "OverriddenPassword";

 /**
 * Correlates to the env-entry within ejb-jar.xml, to be used as an override
from the default
 */
 private static final String EXPECTED_ALGORITHM_MESSAGE_DIGEST = "SHA";

 /**
 * Define the deployment
 */
 @Deployment
 public static JavaArchive createDeployment() throws MalformedURLException
 {
 final JavaArchive archive = ShrinkWrap.create("slsb.jar", JavaArchive.class
).addClasses(EncryptionBean.class,
 EncryptionCommonBusiness.class, EncryptionLocalBusiness.class,
EncryptionRemoteBusiness.class,
 EncryptionException.class).addManifestResource(
 new URL(EncryptionIntegrationTestCase.class.getProtectionDomain().get
CodeSource().getLocation(),
 "../classes/META-INF/ejb-jar.xml"), "ejb-jar.xml");
 //TODO SHRINKWRAP-141 Make addition of the ejb-jar less verbose
 log.info(archive.toString(true));
 return archive;
 }

 // ---||
 // Tests ---||
 // ---||

 /*
 * These tests will use the EJB set up in test initialization
 */

 /**
 * @see {@link EncryptionTestCaseSupport#assertHashing(EncryptionCommon
Business)}
 */
 @Test
 public void testHashing() throws Throwable
 {
 // Log
 log.info("testHashing");

 // Test via superclass
 this.assertHashing(encryptionLocalBusiness);
 }

Source Listing | 477

 /**
 * @see {@link EncryptionTestCaseSupport#assertEncryption(EncryptionCommon
Business)}
 */
 @Test
 public void testEncryption() throws Throwable
 {
 // Log
 log.info("testEncryption");

 // Test via superclass
 this.assertEncryption(encryptionLocalBusiness);
 }

 /**
 * Ensures that the hashing algorithm was overridden
 * from the environment entry declared in ejb-jar.xml
 *
 * @throws Throwable
 */
 @Test
 public void testMessageDigestAlgorithmOverride() throws Throwable
 {
 // Log
 log.info("testMessageDigestAlgorithmOverride");

 // Get the algorithm used
 final String algorithm = encryptionLocalBusiness.getMessageDigestAlgorithm();
 log.info("Using MessageDigest algorithm: " + algorithm);

 // Ensure expected
 TestCase.assertEquals("MessageDigest algorithm should have been overridden
from the environment entry",
 EXPECTED_ALGORITHM_MESSAGE_DIGEST, algorithm);
 }

 /**
 * Ensures that the cipher passphrase was overridden
 * from the environment entry declared in ejb-jar.xml
 *
 * @throws Throwable
 */
 @Test
 public void testCiphersPassphraseOverride() throws Throwable
 {
 // Log
 log.info("testCiphersPassphraseOverride");

 // Get the algorithm used
 final String passphrase = encryptionLocalBusiness.getCiphersPassphrase();
 log.info("Using Encryption passphrase: " + passphrase);

478 | Appendix C: Stateful Session EJB: FTP Client Example

 // Ensure expected
 TestCase.assertEquals("Encryption passphrase should have been overridden
from the environment entry",
 EXPECTED_CIPHERS_PASSPHRASE, passphrase);
 }

}

EncryptionTestCaseSupport.java

package org.jboss.ejb3.examples.ch05.encryption;

import junit.framework.TestCase;

import org.jboss.logging.Logger;

/**
 * Common base for centralizing test logic used
 * for the Encryption POJO and EncryptionEJB
 *
 * @author ALR
 */
public class EncryptionTestCaseSupport
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EncryptionTestCaseSupport.
class);

 /**
 * A simple String used in testing
 */
 private static final String TEST_STRING = "EJB 3.1 Examples Test String";

 // ---||
 // Test Support --||
 // ---||

 /**
 * Ensures that the hashing functions are working as expected:
 *
 * 1) Passing through the hash returns a result inequal to the input
 * 2) Comparison upon the hash result and the original input matches
 *
 * @param service The service to use (either POJO or EJB)
 * @throws Throwable
 */
 protected void assertHashing(final EncryptionCommonBusiness service) throws
Throwable
 {

Source Listing | 479

 // Log
 log.info("assertHashing");

 // Declare the input
 final String input = TEST_STRING;

 // Hash
 final String hash = service.hash(input);
 log.info("Hash of \"" + input + "\": " + hash);

 // Test that the hash function had some effect
 TestCase.assertNotSame("The hash function had no effect upon the supplied
input", input, hash);

 // Get the comparison result
 final boolean equal = service.compare(hash, input);

 // Test that the input matches the hash we'd gotten
 TestCase.assertTrue("The comparison of the input to its hashed result failed",
equal);
 }

 /**
 * Ensures that the encryption functions are working as expected:
 *
 * 1) Passing through the encryption returns a result inequal to the input
 * 2) Round-trip through decryption again returns a result equal to the
original input
 *
 * @param service The service to use (either POJO or EJB)
 * @throws Throwable
 */
 protected void assertEncryption(final EncryptionCommonBusiness service) throws
 Throwable
 {
 // Log
 log.info("assertEncryption");

 // Declare the input
 final String input = TEST_STRING;

 // Hash
 final String encrypted = service.encrypt(input);
 log.info("Encrypted result of \"" + input + "\": " + encrypted);

 // Test that the hash function had some effect
 TestCase.assertNotSame("The encryption function had no effect upon the
supplied input", input, encrypted);

 // Get the round-trip result
 final String roundTrip = service.decrypt(encrypted);

 // Test that the result matches the original input
 TestCase.assertEquals("The comparison of the input to its encrypted result
failed", input, roundTrip);

480 | Appendix C: Stateful Session EJB: FTP Client Example

 }
}

EncryptionUnitTestCase.java

package org.jboss.ejb3.examples.ch05.encryption;

import org.jboss.logging.Logger;
import org.junit.BeforeClass;
import org.junit.Test;

/**
 * Tests to ensure that the business methods of the EncryptionEJB
 * are working as expected
 *
 * @author ALR
 */
public class EncryptionUnitTestCase extends EncryptionTestCaseSupport
{
 // ---||
 // Class Members ---||
 // ---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EncryptionUnitTestCase.
class);

 /**
 * POJO Encryption Service
 */
 private static EncryptionBean encryptionService;

 // ---||
 // Lifecycle ---||
 // ---||

 /**
 * Initializes the suite, invoked once before any tests are run
 */
 @BeforeClass
 public static void initialize() throws Throwable
 {
 // Create the encryption service as a POJO
 encryptionService = new EncryptionBean();
 encryptionService.initialize(); // We call init manually here
 }

 // ---||
 // Tests ---||
 // ---||

 /*
 * These tests will use the POJO set up in test initialization

Source Listing | 481

 */

 /**
 * @see {@link EncryptionTestCaseSupport#assertHashing(EncryptionCommon
Business)}
 */
 @Test
 public void testHashing() throws Throwable
 {
 // Log
 log.info("testHashing");

 // Test via superclass
 this.assertHashing(encryptionService);
 }

 /**
 * @see {@link EncryptionTestCaseSupport#assertEncryption(EncryptionCommon
Business)}
 */
 @Test
 public void testEncryption() throws Throwable
 {
 // Log
 log.info("testEncryption");

 // Test via superclass
 this.assertEncryption(encryptionService);
 }
}

FileTransferCommonBusiness.java

package org.jboss.ejb3.examples.ch06.filetransfer;

/**
 * Contains the contract for operations common to all
 * business interfaces of the FileTransferEJB.
 *
 * Includes support for switching present working directories,
 * printing the current working directory, and making directories.
 *
 * @author ALR
 */
public interface FileTransferCommonBusiness
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Makes a directory of the specified name
 *
 * @throws IllegalStateException If the client connection has not been
initialized

482 | Appendix C: Stateful Session EJB: FTP Client Example

 */
 void mkdir(String directory) throws IllegalStateException;

 /**
 * Changes into the named directory
 *
 * @param directory
 * @throws IllegalStateException If the client connection has not been
initialized
 */
 void cd(String directory) throws IllegalStateException;

 /**
 * Obtains the name of the current working directory
 *
 * @return
 * @throws IllegalStateException If the client connection has not been
initialized
 */
 String pwd() throws IllegalStateException;

 /**
 * Denotes that the client is done using this service; flushes
 * any pending operations and does all appropriate cleanup. If
 * already disconnected, this is a no-op.
 */
 void disconnect();

 /**
 * Opens the underlying connections to the target FTP Server,
 * performs any other tasks required before commands may be sent
 * (ie. login, etc)
 *
 * @throws IllegalStateException If already initialized/connected
 */
 void connect() throws IllegalStateException;

}

FileTransferException.java

package org.jboss.ejb3.examples.ch06.filetransfer;

/**
 * Exception to indicate that a problem has occurred during
 * a file transfer operation.
 *
 * @author ALR
 */
public class FileTransferException extends RuntimeException
{

 //--||
 // Class Members ---||
 //--||

Source Listing | 483

 private static final long serialVersionUID = 1L;

 //--||
 // Constructor ---||
 //--||

 public FileTransferException()
 {
 super();
 }

 public FileTransferException(final String message, final Throwable cause)
 {
 super(message, cause);
 }

 public FileTransferException(final String message)
 {
 super(message);
 }

 public FileTransferException(final Throwable cause)
 {
 super(cause);
 }

}

FileTransferRemoteBusiness.java

package org.jboss.ejb3.examples.ch06.filetransfer;

import javax.ejb.Remove;

/**
 * Remote Business interface for the FileTransferEJB.
 * Because this will only be used in EJB environments, we define
 * a method to end the current session.
 *
 * @author ALR
 */
public interface FileTransferRemoteBusiness extends FileTransferCommonBusiness
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Ends the current session; will result in a SFSB @Remove call
 * as the bean implementation class will annotate this with
 * {@link Remove}
 */
 void endSession();
}

484 | Appendix C: Stateful Session EJB: FTP Client Example

Test Resources

FileTransferIntegrationTestCase.java

package org.jboss.ejb3.examples.ch06.filetransfer;

import java.io.File;

import javax.ejb.EJB;
import javax.ejb.NoSuchEJBException;

import junit.framework.TestCase;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.logging.Logger;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;

/**
 * Test cases to ensure that the FileTransferEJB is working as
 * a Stateful Session Bean from the EJB Container.
 *
 * Inherits some test support from {@link FileTransferTestCaseBase},
 * and additionally tests EJB-specific tasks upon the
 * proxy. Shows that sessions operate in isolation, and that removal
 * of a session means you cannot use it anymore.
 *
 * @author ALR
 */
@RunWith(Arquillian.class)
public class FileTransferIntegrationTestCase extends FileTransferTestCaseBase
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(FileTransferIntegrationTest
Case.class);

 /**
 * Name of the configuration file for the FTP server users
 */
 private static final String FTP_SERVER_USERS_CONFIG_FILENAME = "ftpusers.
properties";

Source Listing | 485

 /**
 * Port to which the FTP server should bind
 */
 private static final int FTP_SERVER_BIND_PORT = 12345;

 /**
 * The FTP Server
 */
 private static FtpServerPojo ftpServer;

 /**
 * The Deployment
 * @return
 */
 @Deployment
 public static JavaArchive createDeployment()
 {
 final JavaArchive archive = ShrinkWrap.create("ftpclient.jar", JavaArchive.
class).addPackage(
 FileTransferBean.class.getPackage());
 log.info(archive.toString(true));
 return archive;
 }

 //--||
 // Instance Members --||
 //--||

 /**
 * Our view of the EJB, remote business interface type of the Proxy
 */
 @EJB
 private FileTransferRemoteBusiness client1;

 /**
 * Another FTP Client Session
 */
 @EJB
 private FileTransferRemoteBusiness client2;

 //---||
 // Lifecycle --||
 //---||

 /**
 * Creates and starts the FTP Server
 */
 @BeforeClass
 public static void startFtpServer() throws Exception
 {
 // Create
 final FtpServerPojo server = new FtpServerPojo();

 // Configure
 server.setUsersConfigFileName(FTP_SERVER_USERS_CONFIG_FILENAME);

486 | Appendix C: Stateful Session EJB: FTP Client Example

 server.setBindPort(FTP_SERVER_BIND_PORT);

 // Start and set
 server.initializeServer();
 server.startServer();
 ftpServer = server;
 }

 /**
 * Stops the FTP Server
 * @throws Exception
 */
 @AfterClass
 public static void stopFtpServer() throws Exception
 {
 ftpServer.stopServer();
 }

 /**
 * Ends the session upon the FTP Client SFSB Proxy
 * and resets
 */
 @After
 public void endClientSessions() throws Exception
 {
 // End the session for client 1
 try
 {
 client1.endSession();
 }
 // If we've already been ended
 catch (final NoSuchEJBException nsee)
 {
 // Ignore
 }

 // End the session for client 2
 try
 {
 client2.endSession();
 }
 // If we've already been ended
 catch (final NoSuchEJBException nsee)
 {
 // Ignore
 }
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Tests that two separate sessions will act in isolation from each other
 *

Source Listing | 487

 * @throws Exception
 */
 @Test
 public void testSessionIsolation() throws Exception
 {
 // Log
 log.info("testSessionIsolation");

 // Get the existing client as made from the test lifecycle
 final FileTransferRemoteBusiness session1 = this.getClient();

 // Use another client
 final FileTransferRemoteBusiness session2 = this.client2;

 // cd into a home directory for each
 final String ftpHome = getFtpHome().getAbsolutePath();
 session1.cd(ftpHome);
 session2.cd(ftpHome);

 // Now make a new directory for each session, and go into it
 final String newDirSession1 = "newDirSession1";
 final String newDirSession2 = "newDirSession2";
 session1.mkdir(newDirSession1);
 session1.cd(newDirSession1);
 session2.mkdir(newDirSession2);
 session2.cd(newDirSession2);

 // Get the current working directory for each session
 final String pwdSession1 = session1.pwd();
 final String pwdSession2 = session2.pwd();

 // Ensure each session is in the proper working directory
 TestCase.assertEquals("Session 1 is in unexpected pwd", ftpHome + File.
separator + newDirSession1, pwdSession1);
 TestCase.assertEquals("Session 2 is in unexpected pwd", ftpHome + File.
separator + newDirSession2, pwdSession2);

 // End the session manually for session2 (session1 will be ended by test
lifecycle)
 session2.endSession();
 }

 /**
 * Tests that a call to {@link FileTransferRemoteBusiness#endSession()}
 * results in the SFSB's backing instance removal, and that subsequent
 * operations result in a {@link NoSuchEJBException}
 *
 * @throws Exception
 */
 @Test
 public void testSfsbRemoval() throws Exception
 {
 // Log
 log.info("testSfsbRemoval");

488 | Appendix C: Stateful Session EJB: FTP Client Example

 // Get the existing client as made from the test lifecycle
 final FileTransferRemoteBusiness sfsb = this.getClient();

 // cd into the home directory
 final String ftpHome = getFtpHome().getAbsolutePath();
 sfsb.cd(ftpHome);

 // Get and test the pwd
 final String pwdBefore = sfsb.pwd();
 TestCase.assertEquals("Session should be in the FTP Home directory",
ftpHome, pwdBefore);

 // End the session, resulting in an underlying instance
 // removal due to the annotation with @Remove upon
 // the bean implementation class
 sfsb.endSession();

 // Now try some other operation, and ensure that we get a NoSuchEJBException
 boolean gotExpectedException = false;
 try
 {
 // This should not succeed, because we've called a method marked as
@Remove
 sfsb.pwd();
 }
 catch (final NoSuchEJBException nsee)
 {
 gotExpectedException = true;
 }
 TestCase.assertTrue("Call to end the session did not result in underlying
removal of the SFSB bean instance",
 gotExpectedException);
 }

 //--||
 // Required Implementations --||
 //--||

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch06.filetransfer.FileTransferTestCaseBase#get
Client()
 */
 @Override
 protected FileTransferRemoteBusiness getClient()
 {
 return this.client1;
 }

}

FileTransferTestCaseBase.java

package org.jboss.ejb3.examples.ch06.filetransfer;

import java.io.File;

Source Listing | 489

import junit.framework.TestCase;

import org.jboss.logging.Logger;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

/**
 * Base tests for the file transfer test classes, may
 * be extended either from unit or integration tests.
 *
 * @author ALR
 */
public abstract class FileTransferTestCaseBase
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(FileTransferTestCaseBase.
class);

 /**
 * The name of the directory under the writable temp filesystem which
 * will act as the home for these tests
 */
 private static final String RELATIVE_LOCATION_HOME = "ejb31_ch06-example-ftp
Home";

 /**
 * The name of the system property denoting the I/O temp directory
 */
 private static final String SYS_PROP_NAME_IO_TMP_DIR = "java.io.tmpdir";

 /**
 * The File we'll use as the writeable home for FTP operations. Created and
 * destroyed alongside test lifecycle.
 */
 private static File ftpHome;

 //---||
 // Lifecycle --||
 //---||

 /**
 * Creates the directory which we'll use as the writeable home
 * for FTP operations; called before each test is run.
 *
 * @throws Exception
 */

490 | Appendix C: Stateful Session EJB: FTP Client Example

 @Before
 public void createFtpHome() throws Exception
 {
 final File ftpHome = getFtpHome();
 if (ftpHome.exists())
 {
 throw new RuntimeException("Error in test setup; FTP Home should not yet
 exist: " + ftpHome.getAbsolutePath());
 }
 final boolean created = ftpHome.mkdir();
 if (!created)
 {
 throw new RuntimeException("Request to create the FTP Home failed: " +
ftpHome.getAbsolutePath());
 }
 log.info("Created FTP Home: " + ftpHome.getAbsolutePath());
 }

 /**
 * Removes the directory used as the writeable home
 * for FTP operations; called after each test is run.
 *
 * @throws Exception
 */
 @After
 public void deleteFtpHome() throws Exception
 {
 final File ftpHome = getFtpHome();
 if (!ftpHome.exists())
 {
 throw new RuntimeException("Error in test setup; FTP Home should exist:
" + ftpHome.getAbsolutePath());
 }
 final boolean removed = this.deleteRecursive(ftpHome);
 if (!removed)
 {
 throw new RuntimeException("Request to remove the FTP Home failed: " +
ftpHome.getAbsolutePath());
 }
 log.info("Removed FTP Home: " + ftpHome.getAbsolutePath());
 }

 //---||
 // Tests --||
 //---||

 /**
 * Tests that a new directory can be made, we can switch
 * into it, and we can obtain the present working directory of our newly created
 * directory
 */
 @Test
 public void testMkdirCdAndPwd() throws Exception
 {
 // Log

Source Listing | 491

 log.info("testMkdirAndPwd");

 // Get the client
 final FileTransferCommonBusiness client = this.getClient();

 // Switch to home
 final String home = getFtpHome().getAbsolutePath();
 client.cd(home);

 // Ensure we're home
 final String pwdBefore = client.pwd();
 TestCase.assertEquals("Present working directory should be our home", home,
 pwdBefore);

 // Make the directory
 final String newDir = "newDirectory";
 client.mkdir(newDir);

 // cd into the new dir
 client.cd(newDir);

 // Ensure we're in the new directory
 final String pwdAfter = client.pwd();
 TestCase.assertEquals("Present working directory should be our new
directory", home + File.separator + newDir,
 pwdAfter);
 }

 //---||
 // Contracts --||
 //---||

 /**
 * Obtains the client to be used for the tests
 */
 protected abstract FileTransferCommonBusiness getClient();

 //--||
 // Internal Helper Methods ---||
 //--||

 /**
 * Recursively deletes all contents of the specified root,
 * including the root itself. If the specified root does not exist,
 * no action is taken.
 *
 * @param root
 * @return true if deleted, false otherwise
 */
 protected boolean deleteRecursive(final File root)
 {
 // Ensure exists
 if (!root.exists())
 {
 return false;

492 | Appendix C: Stateful Session EJB: FTP Client Example

 }

 // Get all children
 final File[] children = root.listFiles();
 // If it's a directory
 if (children != null)
 {
 // Remove all children
 for (final File child : children)
 {
 this.deleteRecursive(child);
 }
 }

 // Delete me
 final boolean success = root.delete();
 log.info("Deleted: " + root);
 return success;
 }

 /**
 * Obtains the writeable home for these tests, set under the namespace of the
 * IO Temp directory
 */
 protected static File getFtpHome() throws Exception
 {
 // If the home is not defined
 if (ftpHome == null)
 {

 // Get the property
 final String sysPropIoTempDir = SYS_PROP_NAME_IO_TMP_DIR;
 final String ioTempDir = System.getProperty(sysPropIoTempDir);
 if (ioTempDir == null)
 {
 throw new RuntimeException("I/O temp directory was not specified by
system property: " + sysPropIoTempDir);
 }

 // Make the File
 final File ioTempDirFile = new File(ioTempDir);
 if (!ioTempDirFile.exists())
 {
 throw new RuntimeException("I/O Temp directory does not exist: " + io
TempDirFile.getAbsolutePath());
 }

 // Append the suffix for our home
 final File home = new File(ioTempDirFile, RELATIVE_LOCATION_HOME);
 ftpHome = home;
 }

Source Listing | 493

 // Return
 return ftpHome;
 }
}

FileTransferUnitTestCase.java

package org.jboss.ejb3.examples.ch06.filetransfer;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.InputStream;
import java.io.ObjectInput;
import java.io.ObjectInputStream;
import java.io.ObjectOutput;
import java.io.ObjectOutputStream;

import javax.ejb.PostActivate;
import javax.ejb.PrePassivate;

import junit.framework.TestCase;

import org.jboss.logging.Logger;
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

/**
 * Test cases to ensure that the FileTransfer business
 * logic is intact, outside of the container.
 *
 * This is not technically part of the SFSB examples, but is
 * in place to ensure that everything with the example itself
 * is working as expected.
 *
 * @author ALR
 */
public class FileTransferUnitTestCase extends FileTransferTestCaseBase
{

 //---||
 // Class Members --||
 //---||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(FileTransferUnitTestCase.
class);

 /**
 * The FTP Service to which we'll connect
 */

494 | Appendix C: Stateful Session EJB: FTP Client Example

 private static FtpServerPojo ftpService;

 /**
 * Port to which the FTP Service will bind
 */
 private static final int FTP_SERVICE_BIND_PORT = 12345;

 /**
 * Name of the users configuration file for the server
 */
 private static final String FILE_NAME_USERS_CONFIG = "ftpusers.properties";

 //--||
 // Instance Members --||
 //--||

 /**
 * The FTP Client
 */
 private FileTransferBean ftpClient;

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Creates, initializes, and starts the FTP Service
 * to which our test clients will connect.
 * Called once before any tests run.
 */
 @BeforeClass
 public static void createFtpService() throws Exception
 {
 // Create the FTP Service
 final FtpServerPojo service = new FtpServerPojo();

 // Configure
 service.setBindPort(FTP_SERVICE_BIND_PORT);
 service.setUsersConfigFileName(FILE_NAME_USERS_CONFIG);

 // Initialize
 service.initializeServer();

 // Start
 service.startServer();

 // Set (on success)
 log.info("Started up test FTP Service: " + service);
 ftpService = service;
 }

 /**
 * Stops and resets the FTP Service. Called once after
 * all tests are done.
 *

Source Listing | 495

 * @throws Exception
 */
 @AfterClass
 public static void destroyFtpService() throws Exception
 {
 // Only run if initialization finished
 if (ftpService == null)
 {
 return;
 }

 // Stop the server
 ftpService.stopServer();

 // Reset
 ftpService = null;
 log.info("Brought down test FTP Service");
 }

 /**
 * Creates and initializes the FTP Client used in testing.
 * Fired before each test is run.
 */
 @Before
 public void createFtpClient() throws Exception
 {
 // Create client
 final FileTransferBean ftpClient = new FileTransferBean();

 // Connect
 ftpClient.connect();

 // Set
 this.ftpClient = ftpClient;
 log.info("Set FTP Client: " + ftpClient);
 }

 /**
 * Disconnects and resets the FTP Client. Fired after each
 * test has completed.
 *
 * @throws Exception
 */
 @After
 public void cleanup() throws Exception
 {
 // Get client
 final FileTransferBean ftpClient = this.ftpClient;

 // If set
 if (ftpClient != null)
 {
 // Disconnect and reset
 ftpClient.disconnect();
 this.ftpClient = null;

496 | Appendix C: Stateful Session EJB: FTP Client Example

 }
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Mocks the passivation/activation process by manually invoking
 * upon the {@link PrePassivate} and {@link PostActivate} lifecycle
 * callbacks. The client should function properly after these calls are made,
 * reconnecting as expected, and resuming into the correct present working
 * directory
 *
 * @throws Exception
 */
 @Test
 public void testPassivationAndActivation() throws Exception
 {
 // Log
 log.info("testPassivationAndActivation");

 // Get the client
 final FileTransferCommonBusiness client = this.getClient();

 // Switch to home
 final String home = getFtpHome().getAbsolutePath();
 client.cd(home);

 // Test the pwd
 final String pwdBefore = client.pwd();
 TestCase.assertEquals("Present working directory should be set to home",
home, pwdBefore);

 // Mock @PrePassivate
 log.info("Mock @" + PrePassivate.class.getName());
 client.disconnect();

 // Mock passivation
 log.info("Mock passivation");
 final ByteArrayOutputStream outStream = new ByteArrayOutputStream();
 final ObjectOutput objectOut = new ObjectOutputStream(outStream);
 objectOut.writeObject(client);
 objectOut.close();

 // Mock activation
 log.info("Mock activation");
 final InputStream inStream = new ByteArrayInputStream(outStream.toByteArray
());
 final ObjectInput objectIn = new ObjectInputStream(inStream);

 // Get a new client from passivation/activation roundtrip
 final FileTransferCommonBusiness serializedClient = (FileTransferCommon
Business) objectIn.readObject();

Source Listing | 497

 objectIn.close();

 // Mock @PostActivate
 log.info("Mock @" + PostActivate.class.getName());
 serializedClient.connect();

 // Test the pwd
 final String pwdAfter = serializedClient.pwd();
 TestCase.assertEquals("Present working directory should be the same as
before passivation/activation", home,
 pwdAfter);
 }

 //---||
 // Required Implementations ---||
 //---||

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch06.filetransfer.FileTransferTestCaseBase
#getClient()
 */
 @Override
 protected FileTransferCommonBusiness getClient()
 {
 return this.ftpClient;
 }

}

FtpServerPojo.java

package org.jboss.ejb3.examples.ch06.filetransfer;

import java.net.URL;
import java.security.AccessController;
import java.security.PrivilegedAction;

import org.apache.ftpserver.FtpServer;
import org.apache.ftpserver.FtpServerFactory;
import org.apache.ftpserver.ftplet.FtpException;
import org.apache.ftpserver.ftplet.UserManager;
import org.apache.ftpserver.listener.ListenerFactory;
import org.apache.ftpserver.usermanager.ClearTextPasswordEncryptor;
import org.apache.ftpserver.usermanager.PropertiesUserManagerFactory;
import org.jboss.logging.Logger;

/**
 * POJO Responsible for starting/stopping
 * the Embedded FTP Server.
 *
 * This should be considered part of the test execution environment
 * and is not really part of the SFSB examples themselves.
 * The SFSBs for the examples are a client of the FTP server
 * started by this simple bean.
 *

498 | Appendix C: Stateful Session EJB: FTP Client Example

 * Not thread-safe. Intended to be used in single-Threaded environments
 * (or perform your own external synchronization).
 *
 * @author ALR
 */
public final class FtpServerPojo
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(FtpServerPojo.class);

 /**
 * Name of the Server's default listener
 */
 private static final String LISTENER_NAME_DEFAULT = "default";

 //--||
 // Instance Members --||
 //--||

 /**
 * Port to which the FTP Server will bind.
 */
 private int bindPort;

 /**
 * The underlying server. Must not be exported.
 */
 private FtpServer server;

 /**
 * The name of the users/password configuration filename.
 */
 private String usersConfigFileName;

 //--||
 // Lifecycle Methods ---||
 //--||

 /**
 * Creates and initializes the underlying server. Should be
 * called along lifecycle when this POJO is created.
 *
 * @throws IllegalStateException If the properties for the server have not
 * been properly initialized
 */
 public void initializeServer() throws IllegalStateException
 {
 // Extract properties

Source Listing | 499

 final int bindPort = this.getBindPort();

 /*
 * Precondition checks
 */

 if (bindPort <= 0)
 {
 throw new IllegalStateException("Property for bind port has not been set
 to a valid value above 0.");
 }

 // Initialize
 final FtpServerFactory serverFactory = new FtpServerFactory();
 final ListenerFactory factory = new ListenerFactory();

 // Set properties
 log.debug("Using FTP bind port: " + bindPort);
 factory.setPort(bindPort);

 // Add default listener to the server factory
 serverFactory.addListener(LISTENER_NAME_DEFAULT, factory.createListener());

 // Get the current CL
 final ClassLoader tccl = AccessController.doPrivileged(new PrivilegedAction
<ClassLoader>()
 {
 @Override
 public ClassLoader run()
 {
 return Thread.currentThread().getContextClassLoader();
 }
 });

 // Load the properties file to get its URI
 final String usersConfigFileName = this.getUsersConfigFileName();
 log.info("Using users configuration file: " + usersConfigFileName);
 final URL usersConfigUrl = tccl.getResource(usersConfigFileName);
 if (usersConfigUrl == null)
 {
 throw new RuntimeException("Could not find specified users configuration
 file upon the classpath: "
 + usersConfigFileName);
 }

 // Configure the user auth mechanism
 final PropertiesUserManagerFactory userManagerFactory = new PropertiesUser
ManagerFactory();
 userManagerFactory.setUrl(usersConfigUrl);
 userManagerFactory.setPasswordEncryptor(new ClearTextPasswordEncryptor());
 final UserManager userManager = userManagerFactory.createUserManager();
 serverFactory.setUserManager(userManager);

 // Create the server
 final FtpServer server = serverFactory.createServer();

500 | Appendix C: Stateful Session EJB: FTP Client Example

 this.setServer(server);
 log.info("Created FTP Server: " + server);
 }

 /**
 * Starts the server.
 *
 * @throws IllegalStateException If the server has not been initialized or
 * if the server has already been started
 * @throws FtpException If there was an error in starting the server
 */
 public void startServer() throws IllegalStateException, FtpException
 {
 // Get the server
 final FtpServer server = this.getServer();

 /*
 * Precondition checks
 */

 // Ensure initialized
 if (server == null)
 {
 throw new IllegalStateException("The server has not yet been initialized
");
 }

 // Ensure not already running or in some other state
 if (!server.isStopped())
 {
 throw new IllegalStateException("Server cannot be started if it is not
currently stopped");
 }

 // Start
 log.debug("Starting the FTP Server: " + server);
 server.start();
 log.info("FTP Server Started: " + server);
 }

 /**
 * Stops the server.
 *
 * @throws IllegalStateException If the server is already stopped or the
server is
 * not initialized
 * @throws FtpException
 */
 public void stopServer() throws IllegalStateException
 {
 // Get the server
 final FtpServer server = this.getServer();

 /*
 * Precondition checks

Source Listing | 501

 */

 // Ensure initialized
 if (server == null)
 {
 throw new IllegalStateException("The server has not yet been
initialized");
 }

 // Ensure not already running or in some other state
 if (server.isStopped())
 {
 throw new IllegalStateException("Server cannot be stopped if it's
already stopped");
 }

 // Stop
 log.debug("Stopping the FTP Server: " + server);
 server.stop();
 log.info("FTP Server stopped: " + server);
 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * Obtains the port to which we'll bind
 */
 public int getBindPort()
 {
 return bindPort;
 }

 /**
 * Sets the port to which we'll bind.
 *
 * @param bindPort
 */
 public void setBindPort(final int bindPort)
 {
 this.bindPort = bindPort;
 }

 /**
 * Obtains the underlying FTP Server
 *
 * @return
 */
 protected FtpServer getServer()
 {
 return server;
 }

 /**

502 | Appendix C: Stateful Session EJB: FTP Client Example

 * Sets the underlying FTP Server.
 *
 * @param server
 */
 private void setServer(final FtpServer server)
 {
 this.server = server;
 }

 /**
 * Obtains the name of the users configuration file
 *
 * @return the usersConfigFileName
 */
 public String getUsersConfigFileName()
 {
 return usersConfigFileName;
 }

 /**
 * Sets the name of the users configuration file.
 *
 * @param usersConfigFileName the usersConfigFileName to set
 */
 public void setUsersConfigFileName(final String usersConfigFileName)
 {
 this.usersConfigFileName = usersConfigFileName;
 }
}

ftpusers.properties

Users / Passwords file
ftpserver.user.user.idletime=0
ftpserver.user.user.userpassword=password
ftpserver.user.user.homedirectory=/
ftpserver.user.user.writepermission=true
ftpserver.user.user.enableflag=true

Source Listing | 503

APPENDIX D

Singleton Session EJB:
RSS Cache Example

Description
Often we have a business process best modeled by a single instance instead of a backing
pool (like SLSB) or cache (SFSB). New to EJB 3.1, the @Singleton EJB creates a sole
backing instance to service all incoming requests.

This has two important consequences. First, if this instance is eagerly brought into
service (via the @Startup) annotation, we may now have application lifecycle events
(@PreConstruct / @PostConstruct).

Second, because all requests are sharing a single instance, for the first time EJB devel-
opers must address concurrency of writable, shared state. No SLSB or SFSB bean
instance will ever be accessed by more than one thread at a time (thread safety via
confinement). This is not the case with @Singleton, so the specification introduces
container-managed concurrency annotations based on a read/write-lock model to
provide declarative thread safety for developers.

Our example models a simple cache which hangs onto an RSS feed. Read operations
will not block, but refreshing the cache will block all readers until complete. Assuming
a much higher percentage of reads to refreshes, this cache will remain efficient.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15569

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch07-rsscache/

505

http://community.jboss.org/docs/DOC-15569
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch07-rsscache/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch07-rsscache/

Source Listing
Following is a full listing of all source code used in this runnable example.

Implementation Resources

ProtectExportUtil.java

package org.jboss.ejb3.examples.ch07.rsscache.impl.rome;

import java.net.MalformedURLException;
import java.net.URL;

/**
 * Package-private utilities to protect against mutable
 * state getting exported
 *
 * @author ALR
 */
class ProtectExportUtil
{
 //--||
 // Constructor ---||
 //--||

 /**
 * Internal constructor; protects against instantiation
 */
 private ProtectExportUtil()
 {
 }

 //--||
 // Functional Methods --||
 //--||

 /**
 * Returns a copy of the specified URL; used to ensure that mutable
 * internal state is not leaked out to clients
 * @param url
 * @return
 */
 static URL copyUrl(final URL url)
 {
 // If null, return
 if (url == null)
 {
 return url;
 }

 try
 {

506 | Appendix D: Singleton Session EJB: RSS Cache Example

 // Copy
 return new URL(url.toExternalForm());
 }
 catch (final MalformedURLException e)
 {
 throw new RuntimeException("Error in copying URL", e);
 }
 }
}

RomeRssEntry.java

package org.jboss.ejb3.examples.ch07.rsscache.impl.rome;

import java.net.MalformedURLException;
import java.net.URL;

import org.jboss.ejb3.examples.ch07.rsscache.spi.RssEntry;

import com.sun.syndication.feed.synd.SyndContent;
import com.sun.syndication.feed.synd.SyndEntry;

/**
 * The java.net Rome implementation of an RSS Entry
 *
 * @author ALR
 */
public class RomeRssEntry implements RssEntry
{

 //--||
 // Instance Members --||
 //--||

 /**
 * The author of the entry
 */
 private String author;

 /**
 * The short description of the entry
 */
 private String description;

 /**
 * The title of the entry
 */
 private String title;

 /**
 * The link to the entry
 */
 private URL url;

Source Listing | 507

 //--||
 // Constructor ---||
 //--||

 /**
 * Constructor
 *
 * @param entry The Rome API's RSS Entry representation
 * @throws IllegalArgumentException If the entry is not specified
 */
 RomeRssEntry(final SyndEntry entry) throws IllegalArgumentException
 {
 // Set properties
 this.author = entry.getAuthor();
 final SyndContent content = entry.getDescription();
 this.description = content.getValue();
 this.title = entry.getTitle();
 final String urlString = entry.getLink();
 URL url = null;
 try
 {
 url = new URL(urlString);
 }
 catch (final MalformedURLException murle)
 {
 throw new RuntimeException("Obtained invalid URL from Rome RSS entry: "
+ entry, murle);
 }
 this.url = url;
 }

 //--||
 // Required Implementations --||
 //--||

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssEntry#getAuthor()
 */
 @Override
 public String getAuthor()
 {
 return this.author;
 }

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssEntry#getDescription()
 */
 @Override
 public String getDescription()
 {
 return this.description;
 }

508 | Appendix D: Singleton Session EJB: RSS Cache Example

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssEntry#getTitle()
 */
 @Override
 public String getTitle()
 {
 return this.title;
 }

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssEntry#getUrl()
 */
 @Override
 public URL getUrl()
 {
 return ProtectExportUtil.copyUrl(this.url);
 }

 //--||
 // Overridden Implementations --||
 //--||

 /* (non-Javadoc)
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 final StringBuilder sb = new StringBuilder();
 sb.append(this.getTitle());
 sb.append(" - ");
 sb.append(this.url.toExternalForm());
 return sb.toString();
 }
}

RssCacheBean.java

package org.jboss.ejb3.examples.ch07.rsscache.impl.rome;

import java.io.IOException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import javax.annotation.PostConstruct;
import javax.ejb.ConcurrencyManagement;
import javax.ejb.ConcurrencyManagementType;
import javax.ejb.Lock;
import javax.ejb.LockType;
import javax.ejb.Remote;

Source Listing | 509

import javax.ejb.Singleton;
import javax.ejb.Startup;

import org.jboss.ejb3.examples.ch07.rsscache.spi.RssCacheCommonBusiness;
import org.jboss.ejb3.examples.ch07.rsscache.spi.RssEntry;
import org.jboss.logging.Logger;

import com.sun.syndication.feed.synd.SyndEntry;
import com.sun.syndication.feed.synd.SyndFeed;
import com.sun.syndication.fetcher.FeedFetcher;
import com.sun.syndication.fetcher.FetcherException;
import com.sun.syndication.fetcher.impl.HttpClientFeedFetcher;
import com.sun.syndication.io.FeedException;

/**
 * Singleton EJB, to be eagerly instantiated upon application deployment,
 * exposing a cached view of an RSS Feed
 *
 * @author ALR
 */
@Singleton
@Startup
@Remote(RssCacheCommonBusiness.class)
// Explicitly declare Container Managed Concurrency, which is unnecessary; it's
the default
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
public class RssCacheBean implements RssCacheCommonBusiness
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(RssCacheBean.class);

 //--||
 // Instance Members --||
 //--||

 /**
 * URL pointing to the RSS Feed
 */
 private URL url;

 /**
 * Cached RSS Entries for the feed
 */
 private List<RssEntry> entries;

510 | Appendix D: Singleton Session EJB: RSS Cache Example

 //--||
 // Required Implementations --||
 //--||

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssCacheCommonBusiness#get
Entries()
 */
 @Override
 @Lock(LockType.READ)
 public List<RssEntry> getEntries()
 {
 return entries;
 }

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssCacheCommonBusiness#get
Url()
 */
 @Lock(LockType.READ)
 @Override
 public URL getUrl()
 {
 // Return a copy so we don't export mutable state to the client
 return ProtectExportUtil.copyUrl(this.url);
 }

 /**
 * @see org.jboss.ejb3.examples.ch07.rsscache.spi.RssCacheCommonBusiness
#refresh()
 * @throws IllegalStateException If the URL has not been set
 */
 @PostConstruct
 @Override
 // Block all readers and writers until we're done here; Optional metadata,
WRITE is the default
 @Lock(LockType.WRITE)
 public void refresh() throws IllegalStateException
 {

 // Obtain the URL
 final URL url = this.url;
 if (url == null)
 {
 throw new IllegalStateException("The Feed URL has not been set");
 }
 log.info("Requested: " + url);

 // Obtain the feed
 final FeedFetcher feedFetcher = new HttpClientFeedFetcher();
 SyndFeed feed = null;

Source Listing | 511

 try
 {
 feed = feedFetcher.retrieveFeed(url);
 }
 catch (final FeedException fe)
 {
 throw new RuntimeException(fe);
 }
 catch (final FetcherException fe)
 {
 throw new RuntimeException(fe);
 }
 catch (final IOException ioe)
 {
 throw new RuntimeException(ioe);
 }

 // Make a new list for the entries
 final List<RssEntry> rssEntries = new ArrayList<RssEntry>();

 // For each entry
 @SuppressWarnings("unchecked")
 // The Rome API doesn't provide for generics, so suppress the warning
 final List<SyndEntry> list = (List<SyndEntry>) feed.getEntries();
 for (final SyndEntry entry : list)
 {
 // Make a new entry
 final RssEntry rssEntry = new RomeRssEntry(entry);

 // Place in the list
 rssEntries.add(rssEntry);
 log.debug("Found new RSS Entry: " + rssEntry);
 }

 // Protect the entries from mutation from exporting the client view
 final List<RssEntry> protectedEntries = Collections.unmodifiableList
(rssEntries);

 // Set the entries in the cache
 this.entries = protectedEntries;
 }

 //--||
 // Internal Helper Methods ---||
 //--||

 /**
 * Sets the URL pointing to the feed
 *
 * @param url
 * @throws IllegalArgumentException If the URL is null
 */
 void setUrl(final URL url) throws IllegalArgumentException
 {
 // Set the URL

512 | Appendix D: Singleton Session EJB: RSS Cache Example

 this.url = url;

 // Refresh
 this.refresh();
 }
}

RssCacheCommonBusiness.java

package org.jboss.ejb3.examples.ch07.rsscache.spi;

import java.net.URL;
import java.util.List;

/**
 * Common business interface for beans exposing a cached view of an RSS
 * Feed (ie. the EJB Container)
 *
 * @author ALR
 */
public interface RssCacheCommonBusiness
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Returns all entries in the RSS Feed represented by {@link RssCacheCommon
Business#getUrl()}.
 * This list will not support mutation and is read-only.
 */
 List<RssEntry> getEntries();

 /**
 * Returns the URL of the RSS Feed
 *
 * @return
 */
 URL getUrl();

 /**
 * Flushes the cache and refreshes the entries from the feed
 */
 void refresh();

}

Source Listing | 513

RssEntry.java

package org.jboss.ejb3.examples.ch07.rsscache.spi;

import java.net.URL;

/**
 * Defines the contract for a single RSS Entry
 *
 * @author ALR
 */
public interface RssEntry
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Obtains the author of the entry
 *
 * @return
 */
 String getAuthor();

 /**
 * Obtains the title of the entry
 *
 * @return
 */
 String getTitle();

 /**
 * Obtains the URL linking to the entry
 *
 * @return
 */
 URL getUrl();

 /**
 * Obtains the short description of the entry
 *
 * @return
 */
 String getDescription();
}

514 | Appendix D: Singleton Session EJB: RSS Cache Example

Test Resources

RssCacheTestCaseBase.java

package org.jboss.ejb3.examples.ch07.rsscache;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.net.URI;
import java.net.URISyntaxException;
import java.net.URL;
import java.util.List;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import junit.framework.Assert;

import org.jboss.ejb3.examples.ch07.rsscache.spi.RssCacheCommonBusiness;
import org.jboss.ejb3.examples.ch07.rsscache.spi.RssEntry;
import org.jboss.logging.Logger;
import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.Test;
import org.mortbay.jetty.Handler;
import org.mortbay.jetty.Server;
import org.mortbay.jetty.handler.AbstractHandler;

/**
 * Base tests for the RssCache @Singleton
 * test classes, may be extended either from unit or
 * integration tests.
 *
 * @author ALR
 */
public abstract class RssCacheTestCaseBase
{

 //--||
 // Class Members ---||
 //--||

 private static final Logger log = Logger.getLogger(RssCacheTestCaseBase.class);

 /**
 * The number of expected RSS entries from the default RSS Feed
 */
 private static final int EXPECTED_15_RSS_ENTRIES = 15;

Source Listing | 515

 /**
 * The number of expected RSS entries from the RSS Feed with 5 entries
 */
 private static final int EXPECTED_5_RSS_ENTRIES = 5;

 /**
 * Filename containing a mock RSS feed for use in testing
 */
 static final String FILENAME_RSS_MOCK_FEED_15_ENTRIES = "15_entries.rss";

 /**
 * Filename containing a mock RSS feed for use in testing
 */
 static final String FILENAME_RSS_MOCK_FEED_5_ENTRIES = "5_entries.rss";

 /**
 * Filename of the target RSS feed to be requested of the HTTP server
 */
 static final String FILENAME_RSS_FEED = "feed.rss";

 /**
 * Port to which the test HTTP Server should bind
 */
 static final int HTTP_TEST_BIND_PORT = 12345;

 /**
 * Content type of an RSS feed
 */
 private static final String CONTENT_TYPE_RSS = "text/rss";

 /**
 * The HTTP Server used to serve out the mock RSS file
 */
 static Server httpServer;

 /**
 * Newline character
 */
 private static final char NEWLINE = '\n';

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Starts up an embedded HTTP Server to serve out the Mock
 * RSS file (Rome FeedFetcher doesn't support obtaining from
 * file:/ URLs)
 */
 @BeforeClass
 public static void startHttpServer()
 {
 // Start an Embedded HTTP Server
 final Handler handler = new StaticFileHandler();
 final Server httpServer = new Server(HTTP_TEST_BIND_PORT);

516 | Appendix D: Singleton Session EJB: RSS Cache Example

 httpServer.setHandler(handler);
 try
 {
 httpServer.start();
 }
 catch (final Exception e)
 {
 throw new RuntimeException("Could not start server");
 }
 log.info("HTTP Server Started: " + httpServer);
 RssCacheUnitTestCase.httpServer = httpServer;
 }

 /**
 * Creates the RSS feed file from the default mock template
 */
 @BeforeClass
 public static void createRssFeedFile() throws Exception
 {
 writeToRssFeedFile(getMock15EntriesRssFile());
 }

 /**
 * Shuts down and clears the Embedded HTTP Server
 */
 @AfterClass
 public static void shutdownHttpServer()
 {
 if (httpServer != null)
 {
 try
 {
 httpServer.stop();
 }
 catch (final Exception e)
 {
 // Swallow
 log.error("Could not stop HTTP Server cleanly", e);
 }
 log.info("HTTP Server Stopped: " + httpServer);
 httpServer = null;
 }
 }

 /**
 * Removes the RSS feed file
 */
 @AfterClass
 public static void deleteRssFeedFile() throws Exception
 {
 final File rssFile = getRssFeedFile();
 boolean deleted = rssFile.delete();
 if (!deleted)
 {
 log.warn("RSS Feed File was not cleaned up properly: " + rssFile);

Source Listing | 517

 }
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Ensures the RSS Entries have been initialized and parsed
 * out as expected. Additionally tests that {@link RssCacheCommonBusiness
#refresh()}
 * clears the cache and works as expected
 */
 @Test
 public void testRssEntries() throws Exception
 {
 // Log
 log.info("testRssEntries");

 // Get the RSS Cache Bean
 final RssCacheCommonBusiness rssCache = this.getRssCacheBean();

 // Get all entries
 final List<RssEntry> rssEntries = rssCache.getEntries();
 log.info("Got entries: " + rssEntries);

 // Ensure they've been specified/initialized, and parsed out in proper size
 this.ensureExpectedEntries(rssEntries, EXPECTED_15_RSS_ENTRIES);

 // Swap out the contents of the RSS Feed File, so a refresh will pull in
the new contents
 writeToRssFeedFile(getMock5EntriesRssFile());

 // Refresh
 rssCache.refresh();

 // Get all entries
 final List<RssEntry> rssEntriesAfterRefresh = rssCache.getEntries();
 log.info("Got entries after refresh: " + rssEntriesAfterRefresh);

 // Ensure they've been specified/initialized, and parsed out in proper size
 this.ensureExpectedEntries(rssEntriesAfterRefresh, EXPECTED_5_RSS_ENTRIES);

 // Now put back the original 15 mock entries
 writeToRssFeedFile(getMock15EntriesRssFile());
 rssCache.refresh();

 // And ensure we're back to normal
 final List<RssEntry> rssEntriesAfterRestored = rssCache.getEntries();
 log.info("Got entries: " + rssEntriesAfterRestored);
 this.ensureExpectedEntries(rssEntriesAfterRestored, EXPECTED_15_RSS_ENTRIES);

 }

518 | Appendix D: Singleton Session EJB: RSS Cache Example

 //--||
 // Contracts ---||
 //--||

 /**
 * Obtains the RssCache bean to be used for this test
 */
 protected abstract RssCacheCommonBusiness getRssCacheBean();

 //--||
 // Internal Helper Methods ---||
 //--||

 /**
 * Ensures that the RSS entries are parsed out and have the specified number
of elements
 * @param entries
 * @param expectedSize
 */
 private void ensureExpectedEntries(final List<RssEntry> entries, final int
expectedSize)
 {
 // Ensure they've been specified/initialized, and parsed out in proper size
 Assert.assertNotNull("RSS Entries was either not initialized or is
returning null", entries);
 final int actualSize = entries.size();
 Assert.assertEquals("Wrong number of RSS entries parsed out from feed",
expectedSize, actualSize);
 log.info("Got expected " + expectedSize + " RSS entries");
 }

 /**
 * Obtains the base of the code source
 */
 private static URL getCodebaseLocation()
 {
 return RssCacheUnitTestCase.class.getProtectionDomain().getCodeSource().get
Location();
 }

 /**
 * Writes the contents of the template file to the RSS Feed File
 *
 * @param templateFile
 * @throws Exception
 */
 private static void writeToRssFeedFile(final File templateFile) throws Exception
 {
 // Get a writer to the target file
 final File rssFile = getRssFeedFile();
 final PrintWriter writer = new PrintWriter(new BufferedWriter(new File
Writer(rssFile)));

Source Listing | 519

 // Get a reader to the default mock template file
 final BufferedReader reader = new BufferedReader(new FileReader(template
File));

 // Read 'n Write
 String line = null;
 while ((line = reader.readLine()) != null)
 {
 writer.write(line);
 writer.write(NEWLINE);
 }

 // Flush and close
 writer.flush();
 writer.close();
 reader.close();
 }

 /**
 * Obtains the RSS Feed file served by the server
 * @return
 * @throws Exception
 */
 private static File getRssFeedFile() throws Exception
 {
 final File baseFile = getBaseDirectory();
 final File rssFile = new File(baseFile, FILENAME_RSS_FEED);
 return rssFile;
 }

 /**
 * Obtains the Mock RSS Template file with 15 entries
 * @return
 * @throws Exception
 */
 private static File getMock15EntriesRssFile() throws Exception
 {
 return getFileFromBase(FILENAME_RSS_MOCK_FEED_15_ENTRIES);
 }

 /**
 * Obtains the Mock RSS Template file with 5 entries
 * @return
 * @throws Exception
 */
 private static File getMock5EntriesRssFile() throws Exception
 {
 return getFileFromBase(FILENAME_RSS_MOCK_FEED_5_ENTRIES);
 }

 /**
 * Obtains the file with the specified name from the base directory
 *
 * @param filename
 * @return

520 | Appendix D: Singleton Session EJB: RSS Cache Example

 * @throws Exception
 */
 private static File getFileFromBase(final String filename) throws Exception
 {
 final File baseFile = getBaseDirectory();
 final File mockTemplateFile = new File(baseFile, filename);
 return mockTemplateFile;
 }

 /**
 * Obtains the base directory in which test files are located
 * @return
 */
 private static File getBaseDirectory() throws Exception
 {
 final URL baseLocation = getCodebaseLocation();
 final URI baseUri = baseLocation.toURI();
 final File baseFile = new File(baseUri);
 return baseFile;
 }

 //--||
 // Inner Classes ---||
 //--||

 /**
 * Jetty Handler to serve a static character file from the web root
 */
 private static class StaticFileHandler extends AbstractHandler implements
Handler
 {
 /*
 * (non-Javadoc)
 * @see org.mortbay.jetty.Handler#handle(java.lang.String, javax.servlet.
http.HttpServletRequest, javax.servlet.http.HttpServletResponse, int)
 */
 public void handle(final String target, final HttpServletRequest request,
final HttpServletResponse response,
 final int dispatch) throws IOException, ServletException
 {
 // Set content type and status before we write anything to the stream
 response.setContentType(CONTENT_TYPE_RSS);
 response.setStatus(HttpServletResponse.SC_OK);

 // Obtain the requested file relative to the webroot
 final URL root = getCodebaseLocation();
 final URL fileUrl = new URL(root.toExternalForm() + target);
 URI uri = null;
 try
 {
 uri = fileUrl.toURI();
 }
 catch (final URISyntaxException urise)
 {
 throw new RuntimeException(urise);

Source Listing | 521

 }
 final File file = new File(uri);

 // File not found, so 404
 if (!file.exists())
 {
 response.setStatus(HttpServletResponse.SC_NOT_FOUND);
 log.warn("Requested file is not found: " + file);
 return;
 }

 // Write out each line
 final BufferedReader reader = new BufferedReader(new FileReader(file));
 final PrintWriter writer = response.getWriter();
 String line = null;
 while ((line = reader.readLine()) != null)
 {
 writer.println(line);
 }

 // Close 'er up
 writer.flush();
 reader.close();
 writer.close();
 }
 }

}

RssCacheUnitTestCase.java

package org.jboss.ejb3.examples.ch07.rsscache;

import java.net.MalformedURLException;
import java.net.URL;

import org.jboss.ejb3.examples.ch07.rsscache.impl.rome.TestRssCacheBean;
import org.jboss.ejb3.examples.ch07.rsscache.spi.RssCacheCommonBusiness;
import org.jboss.logging.Logger;
import org.junit.AfterClass;
import org.junit.BeforeClass;

/**
 * Unit Tests for the RssCache classes,
 * used as a POJO outside the context of the EJB container
 *
 * @author ALR
 */
public class RssCacheUnitTestCase extends RssCacheTestCaseBase
{

522 | Appendix D: Singleton Session EJB: RSS Cache Example

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(RssCacheUnitTestCase.class);

 /**
 * The bean (POJO) instance to test, mocking a @Singleton EJB
 */
 private static RssCacheCommonBusiness bean;

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Creates a POJO instance to mock the real Container EJB @Singleton
 * before any tests are run
 */
 @BeforeClass
 public static void createPojo()
 {
 // Instantiate and set
 final TestRssCacheBean bean = new TestRssCacheBean();
 RssCacheUnitTestCase.bean = bean;
 log.info("Created POJO instance: " + bean);

 // Set the URL of the Mock RSS File
 URL url = null;
 try
 {
 url = new URL(getBaseConnectUrl(), FILENAME_RSS_FEED);
 }
 catch (final MalformedURLException murle)
 {
 throw new RuntimeException("Error in test setup while constructing the
mock RSS feed URL", murle);
 }
 bean.setUrl(url);

 // Mock container initialization upon the bean
 bean.refresh();
 }

 /**
 * Resets the POJO instance to null after all tests are run
 */
 @AfterClass
 public static void clearPojo()

Source Listing | 523

 {
 // Set to null so we don't ever leak instances between test runs
 bean = null;
 }

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch07.envinfo.EnvironmentInformationTestCase
Base#getEnvInfoBean()
 */
 @Override
 protected RssCacheCommonBusiness getRssCacheBean()
 {
 return bean;
 }

 //--||
 // Internal Helper Methods ---||
 //--||

 /**
 * Obtains the base of the code source
 */
 private static URL getBaseConnectUrl()
 {
 try
 {
 return new URL("http://localhost:" + HTTP_TEST_BIND_PORT);
 }
 catch (final MalformedURLException e)
 {
 throw new RuntimeException("Error in creating the base URL during set
setup", e);
 }
 }

}

TestRssCacheBean.java

package org.jboss.ejb3.examples.ch07.rsscache.impl.rome;

import java.net.URL;

/**
 * Extension of the RSS Cache Bean which exposes support to
 * set the Feed URL for testing
 *
 * @author ALR
 */

524 | Appendix D: Singleton Session EJB: RSS Cache Example

public class TestRssCacheBean extends RssCacheBean
{

 //--||
 // Overridden Implementations --||
 //--||

 /* (non-Javadoc)
 * @see org.jboss.ejb3.examples.ch07.rsscache.impl.rome.RssCacheBean#setUrl
(java.net.URL)
 */
 @Override
 public void setUrl(final URL url) throws IllegalArgumentException
 {
 super.setUrl(url);
 }
}

jndi.properties

JNDI Properties for Remote interaction with JBoss Application Server Naming
Service
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=jnp://localhost:1099

Source Listing | 525

APPENDIX E

Message-Driven EJB:
Status Update Listeners Example

Description
Session beans, as we’ve seen up to this point, are best suited for servicing client requests.
Many enterprise systems, however, use a messaging layer to asynchronously pass re-
quests from application to application. In Java, we use the Java Message Service ab-
straction to push/pull messages via Queues and Topics, and the integration of JMS
with EJB is the message-driven bean.

In this example, we implement social networking status updates via a consumer/
publisher Topic. Anyone listening on the Topic will receive incoming status updates,
and we create 2 listeners: 1 simple one to log out to the command-line or logfile, and
another to push the updates to Twitter.

Note: Set the environment variables below before running to take advantage of the
Twitter updates while running the tests.

OREILLY_EJB_BOOK_CH08_TWITTER_USERNAME
OREILLY_EJB_BOOK_CH08_TWITTER_PASSWORD

Additionally, in this example we show how the use of a single JVM for the test and the
server can be used to enable shared memory locking (i.e., java.util.concurrent) to
reliably test that asynchronous components have completed as expected.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15570

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch08-statusupdate/

527

http://community.jboss.org/docs/DOC-15570
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch08-statusupdate/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch08-statusupdate/

Source Listing
Following is a full listing of all source code used in this runnable example.

Implementation Resources

StatusUpdate.java

package org.jboss.ejb3.examples.ch08.statusupdate.api;

import java.io.Serializable;

/**
 * Encapsulates a single generic status update.
 *
 * As this implementation is only used to show an example of
 * JMS and EJB MDB processing, we don't follow
 * strict contracts for {@link Serializable} and accept
 * the default serialized form.
 *
 * @author ALR
 */
public class StatusUpdate implements Serializable
{
 //--||
 // Class Members ---||
 //--||

 /**
 * serialVersionUID
 */
 private static final long serialVersionUID = 1L;

 //--||
 // Instance Members --||
 //--||

 /**
 * Internal status
 */
 private final String status;

 //--||
 // Constructor ---||
 //--||

 /**
 * Creates a new status update with the specified new status
 *
 * @throws IllegalArgumentException If either the status or username is not
specified
 */
 public StatusUpdate(final String status) throws IllegalArgumentException

528 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 {
 // Precondition checks
 if (status == null || status.length() == 0)
 {
 throw new IllegalArgumentException("Status must be specified");
 }

 // Set
 this.status = status;
 }

 //--||
 // Functional Methods --||
 //--||

 /**
 * Returns the new status
 * @return the status
 */
 public String getText()
 {
 return status;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return this.getClass().getSimpleName() + " [status=" + status + "]";
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#hashCode()
 */
 @Override
 public int hashCode()
 {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((status == null) ? 0 : status.hashCode());
 return result;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#equals(java.lang.Object)
 */

Source Listing | 529

 @Override
 public boolean equals(Object obj)
 {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 StatusUpdate other = (StatusUpdate) obj;
 if (status == null)
 {
 if (other.status != null)
 return false;
 }
 else if (!status.equals(other.status))
 return false;
 return true;
 }
}

StatusUpdateConstants.java

package org.jboss.ejb3.examples.ch08.statusupdate.api;

import javax.management.ObjectName;

/**
 * Contains constants used in referring to resources shared
 * by clients of the StatusUpdate MDBs.
 *
 * @author ALR
 */
public interface StatusUpdateConstants
{
 //--||
 // Contracts ---||
 //--||

 /**
 * JNDI Name of the pub/sub Topic for status updates
 */
 String JNDI_NAME_TOPIC_STATUSUPDATE = "topic/StatusUpdate";

 /**
 * The type of destination used by StatusUpdate MDB implementations
 */
 String TYPE_DESTINATION_STATUSUPDATE = "javax.jms.Topic";

 /**
 * The JMX {@link ObjectName} which will be used as a dependency name for the
Topic
 */

530 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 String OBJECT_NAME_TOPIC_STATUSUPDATE = "jboss.messaging.destination:service=
Topic,name=StatusUpdate";

}

EnvironmentSpecificTwitterUtil.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import twitter4j.Twitter;

/**
 * A stateless class used in creating new instances of the {@link Twitter}
 * client. In practice we'd never take this approach, where creation is
 * dependent upon a username/password credential set obtained from the
 * environment. In these examples we must both externalize these properties
 * such that the EJBs using them may be configured, but also hide
 * default values for the sake of security.
 *
 * It is not advised to take this approach in real systems.
 *
 * @author ALR
 */
public class EnvironmentSpecificTwitterClientUtil
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Environment variable of the Twitter username
 */
 private static final String ENV_VAR_NAME_TWITTER_USERNAME = "OREILLY_EJB_BOOK_
CH08_TWITTER_USERNAME";

 /**
 * Environment variable of the Twitter password
 */
 private static final String ENV_VAR_NAME_TWITTER_PASSWORD = "OREILLY_EJB_BOOK_
CH08_TWITTER_PASSWORD";

 /**
 * Message dictating that the environment does not support Twitter integration
 */
 static final String MSG_UNSUPPORTED_ENVIRONMENT = "Both environment variables
\"" + ENV_VAR_NAME_TWITTER_USERNAME
 + "\" and \"" + ENV_VAR_NAME_TWITTER_PASSWORD + "\" must be specified
for this test to run";

 //--||
 // Instance Members --||
 //--||

Source Listing | 531

 //--||
 // Constructor ---||
 //--||

 private EnvironmentSpecificTwitterClientUtil()
 {
 throw new UnsupportedOperationException("No instantiation allowed");
 }

 //--||
 // Utility Methods ---||
 //--||

 static boolean isSupportedEnvironment()
 {
 // Obtain the username and password
 final UsernamePasswordCredentials creds = getCredentials();
 final String username = creds.username;
 final String password = creds.password;

 /*
 * Only continue if these are specified, otherwise log out a warning and
skip this
 * test. Ordinarily you should NOT test based upon the environment, but in
this
 * case we cannot put username/password combinations in SVN due to security
constraints,
 * and this test interacts with an outside service which we do not control
and cannot mock
 * locally (which would default the purpose of showing how MDBs can be used
to asynchronously
 * integrate with other systems).
 *
 * Typically we'd first enforce the executing environment, but we can't
assume that
 * all users of this example have a Twitter account.
 */
 if (username == null || password == null)
 {
 return false;
 }

 // All good
 return true;
 }

 /**
 * Obtains a Twitter client for the username and password as specified from
 * the environment. If the environment is not fully set up, an {@link Illegal
StateException}
 * will be raised noting the environment variables expected to be in place.
To avoid the ISE
 * first check for the integrity of the environment by using
 * {@link EnvironmentSpecificTwitterClientUtil#isSupportedEnvironment()}
 *

532 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 * @throws IllegalStateException If the environment does not support creation
of a Twitter client
 */
 static Twitter getTwitterClient() throws IllegalStateException
 {
 // Obtain the username and password
 final String username = SecurityActions.getEnvironmentVariable(ENV_VAR_NAME
_TWITTER_USERNAME);
 final String password = SecurityActions.getEnvironmentVariable(ENV_VAR_NAME
_TWITTER_PASSWORD);

 /*
 * We're only supported if both the username and password have been set
 */
 if (!isSupportedEnvironment())
 {
 throw new IllegalStateException(MSG_UNSUPPORTED_ENVIRONMENT);
 }

 // Get a Twitter client
 final Twitter twitterClient = new Twitter(username, password);

 // Return
 return twitterClient;
 }

 //--||
 // Internal Helper Methods ---||
 //--||

 /**
 * Obtains the username/password credentials from the environment
 * @return
 */
 private static UsernamePasswordCredentials getCredentials()
 {
 // Obtain the username and password
 final String username = SecurityActions.getEnvironmentVariable(ENV_VAR_NAME
_TWITTER_USERNAME);
 final String password = SecurityActions.getEnvironmentVariable(ENV_VAR_NAME
_TWITTER_PASSWORD);

 // Return as unified view
 final UsernamePasswordCredentials creds = new UsernamePasswordCredentials();
 creds.username = username;
 creds.password = password;
 return creds;
 }

 //--||
 // Inner Classes ---||
 //--||

 /**
 * Simple value object to encapsulate a username/password pair

Source Listing | 533

 *
 * @author ALR
 * @version $Revision: $
 */
 private static class UsernamePasswordCredentials
 {
 private String username;

 private String password;
 }
}

LoggingStatusUpdateMdb.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.util.logging.Logger;

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.MessageListener;

import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate;
import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdateConstants;

/**
 * An MDB which, {@link MessageListener#onMessage(javax.jms.Message)}, will
 * log out the status update at INFO-level.
 *
 * Not explicitly tested by the examples (because we can't test for logging),
 * but its usage should be illustrative.
 *
 * @author ALR
 */
@MessageDriven(activationConfig =
{
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =
 StatusUpdateConstants.TYPE_DESTINATION_STATUSUPDATE),
 @ActivationConfigProperty(propertyName = "destination", propertyValue =
StatusUpdateConstants.JNDI_NAME_TOPIC_STATUSUPDATE)})
public class LoggingStatusUpdateMdb extends StatusUpdateBeanBase implements
MessageListener
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(LoggingStatusUpdateMdb.
class.getName());

534 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 //--||
 // Required Implementations --||
 //--||

 /**
 * Logs status out at INFO-level
 * @see org.jboss.ejb3.examples.ch08.statusupdate.mdb.StatusUpdateBeanBase
#updateStatus(org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate)
 */
 @Override
 public void updateStatus(final StatusUpdate newStatus) throws IllegalArgument
Exception, Exception
 {
 // Precondition checks
 if (newStatus == null)
 {
 throw new IllegalArgumentException("status must be specified");
 }

 // Get info
 final String status = newStatus.getText();

 // Log
 log.info("New status received: \"" + status + "\"");
 }

}

SecurityActions.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.security.AccessController;
import java.security.PrivilegedAction;

/**
 * Protected security actions not to leak outside this package
 *
 * @author ALR
 */
class SecurityActions
{

 //--||
 // Constructor ---||
 //--||

 /**
 * No external instantiation
 */
 private SecurityActions()
 {

 }

Source Listing | 535

 //--||
 // Utility Methods ---||
 //--||

 /**
 * Obtains the Thread Context ClassLoader
 */
 static ClassLoader getThreadContextClassLoader()
 {
 return AccessController.doPrivileged(GetTcclAction.INSTANCE);
 }

 /**
 * Sets the specified CL upon the current Thread's Context
 *
 * @param cl
 * @throws IllegalArgumentException If the CL was null
 */
 static void setThreadContextClassLoader(final ClassLoader cl) throws Illegal
ArgumentException
 {
 if (cl == null)
 {
 throw new IllegalArgumentException("ClassLoader was null");
 }

 AccessController.doPrivileged(new PrivilegedAction<Void>()
 {
 public Void run()
 {
 Thread.currentThread().setContextClassLoader(cl);
 return null;
 };
 });
 }

 /**
 * Obtains the environment variable with the specified name, or null
 * if not present
 * @param envVarName
 * @return
 * @throws IllegalArgumentException If the environment variable name was not
specified
 */
 static String getEnvironmentVariable(final String envVarName) throws Illegal
ArgumentException
 {
 // Precondition checks
 if (envVarName == null || envVarName.length() == 0)
 {
 throw new IllegalArgumentException("Environment variable name was not
specified");
 }

536 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 // Return
 return AccessController.doPrivileged(new GetEnvironmentVariableAction(env
VarName));
 }

 /**
 * Obtains the system property with the specified key
 *
 * @param key
 * @return
 * @throws IllegalArgumentException If the key is null
 */
 static String getSystemProperty(final String key) throws IllegalArgument
Exception
 {
 // Precondition check
 if (key == null)
 {
 throw new IllegalArgumentException("key was null");
 }

 // Get sysprop
 return AccessController.doPrivileged(new GetSystemPropertyAction(key));
 }

 //--||
 // Inner Classes ---||
 //--||

 /**
 * {@link PrivilegedAction} action to obtain the TCCL
 */
 private enum GetTcclAction implements PrivilegedAction<ClassLoader> {
 INSTANCE;

 @Override
 public ClassLoader run()
 {
 return Thread.currentThread().getContextClassLoader();
 }
 }

 /**
 * {@link PrivilegedAction} to access an environment variable
 *
 *
 * @author ALR
 * @version $Revision: $
 */
 private static class GetEnvironmentVariableAction implements PrivilegedAction
<String>
 {

 /**
 * Name of the environment variable to get

Source Listing | 537

 */
 private String envVarName;

 /**
 * Creates a new instance capable of obtaining the specified environment
variable name
 * @param envVarName
 */
 public GetEnvironmentVariableAction(final String envVarName)
 {
 this.envVarName = envVarName;
 }

 /**
 * {@inheritDoc}
 * @see java.security.PrivilegedAction#run()
 */
 @Override
 public String run()
 {
 return System.getenv(envVarName);
 }
 }

 /**
 * {@link PrivilegedAction} to access a system property
 *
 *
 * @author ALR
 * @version $Revision: $
 */
 private static class GetSystemPropertyAction implements PrivilegedAction<String>
 {

 /**
 * Name of the sysprop to get
 */
 private String sysPropName;

 /**
 * Creates a new instance capable of obtaining the specified system
property by name
 * @param sysPropName
 */
 public GetSystemPropertyAction(final String sysPropName)
 {
 this.sysPropName = sysPropName;
 }

 /**
 * {@inheritDoc}
 * @see java.security.PrivilegedAction#run()
 */
 @Override
 public String run()

538 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 {
 return System.getProperty(sysPropName);
 }
 }

}

StatusUpdateBeanBase.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.io.Serializable;
import java.util.logging.Logger;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;

import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate;

/**
 * Base support for the StatusUpdateEJB. Responsible for
 * consuming an incoming JMS Message and dispatching to
 * {@link StatusUpdateBeanBase#updateStatus(StatusUpdate)}. Children
 * are required to supply specialization of this method.
 *
 * @author ALR
 */
public abstract class StatusUpdateBeanBase implements MessageListener
{
 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(StatusUpdateBeanBase.class.
getName());

 //--||
 // Contracts ---||
 //--||

 /**
 * Updates status to the specified value.
 *
 * @throws IllegalArgumentException If the new status is not specified
 * @throws Exception If an error occured in processing
 */
 public abstract void updateStatus(StatusUpdate newStatus) throws Illegal
ArgumentException, Exception;

Source Listing | 539

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see javax.jms.MessageListener#onMessage(javax.jms.Message)
 */
 @Override
 public void onMessage(final Message message)
 {
 /*
 * Precondition checks
 *
 */
 // Ensure the message is specified
 if (message == null)
 {
 throw new IllegalArgumentException("Message must be specified");
 }

 // Ensure the message is in expected form
 final ObjectMessage objMessage;
 if (message instanceof ObjectMessage)
 {
 objMessage = (ObjectMessage) message;
 }
 else
 {
 throw new IllegalArgumentException("Specified message must be of type "
+ ObjectMessage.class.getName());
 }

 // Extract out the embedded status update
 final Serializable obj;
 try
 {
 obj = objMessage.getObject();
 }
 catch (final JMSException jmse)
 {
 throw new IllegalArgumentException("Could not obtain contents of message
 " + objMessage);
 }

 // Ensure expected type
 final StatusUpdate status;
 if (obj instanceof StatusUpdate)
 {
 status = (StatusUpdate) obj;
 }
 else
 {
 throw new IllegalArgumentException("Contents of message should be of
type " + StatusUpdate.class.getName()

540 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 + "; was instead " + obj);
 }

 // Process the update
 try
 {
 this.updateStatus(status);
 }
 catch (final Exception e)
 {
 throw new RuntimeException("Encountered problem with processing status
update " + status, e);
 }
 }
}

TwitterUpdateMdb.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.util.logging.Logger;

import javax.annotation.PostConstruct;
import javax.jms.MessageListener;

import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate;

import twitter4j.Twitter;

/**
 * EJB 3.x MDB which will act as an adaptor to the Twitter API, updating
 * Twitter status on incoming messages.
 *
 * The environment must first support Twitter integration by way of a username/
password
 * pair available from environment properties. {@link EnvironmentSpecificTwitter
ClientUtil}
 * has more details.
 *
 * @author ALR
 * @see http://twitter.com
 * @see http://yusuke.homeip.net/twitter4j/en/index.html
 */
public class TwitterUpdateMdb extends StatusUpdateBeanBase implements Message
Listener
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(TwitterUpdateMdb.class.get

Source Listing | 541

Name());

 /**
 * EJB Name
 */
 static final String NAME = "TwitterUpdateMdb";

 //--||
 // Constructors --||
 //--||

 /**
 * Creates a new instance, required as no-arg ctor by specification
 */
 public TwitterUpdateMdb()
 {

 }

 //--||
 // Instance Members --||
 //--||

 /**
 * Underlying client used in updating Twitter by calling upon its API
 */
 private Twitter client;

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Lifecycle start to create the Twitter client from supplied environment
properties,
 * if the environment has been configured to do so
 */
 @PostConstruct
 void createTwitterClient()
 {
 if (!EnvironmentSpecificTwitterClientUtil.isSupportedEnvironment())
 {
 log.warning(EnvironmentSpecificTwitterClientUtil.MSG_UNSUPPORTED_
ENVIRONMENT);
 return;
 }

 // Create the client
 client = EnvironmentSpecificTwitterClientUtil.getTwitterClient();
 log.info("Created Twitter client " + client);
 }

 //--||
 // Required Implementations --||
 //--||

542 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 /**
 * Sends incoming status updates to the Twitter account configured in the
 * context properties.
 *
 * @see org.jboss.ejb3.examples.ch08.statusupdate.mdb.StatusUpdateBeanBase
#updateStatus(org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate)
 */
 @Override
 public void updateStatus(final StatusUpdate newStatus) throws IllegalArgument
Exception, Exception
 {
 // Ensure the client's been initialized (if the environment permits)
 if (!EnvironmentSpecificTwitterClientUtil.isSupportedEnvironment())
 {
 // Do nothing and get out
 return;
 }
 if (client == null)
 {
 throw new IllegalStateException("Twitter client has not been initialized
");
 }

 // Extract status
 final String status = newStatus.getText();

 // Update status
 client.updateStatus(status);
 }
}

hornetq-jms.xml

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq /schema/hornetq-jms.xsd">

 <topic name="StatusUpdate">
 <entry name="/topic/StatusUpdate" />
 </topic>

</configuration>

Test Resources

MockObjectMessage.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.io.Serializable;
import java.util.Enumeration;

Source Listing | 543

import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.ObjectMessage;

/**
 * A Mock {@link ObjectMessage} which supports only the
 * {@link ObjectMessage#getObject()} method; used in testing
 *
 * @author ALR
 */
public class MockObjectMessage implements ObjectMessage
{

 //--||
 // Class Members ---||
 //--||

 private static final String MESSAGE_UNSUPPORTED = "This mock implementation
does not support this operation";

 //--||
 // Instance Members --||
 //--||

 /**
 * Object contained in this message
 */
 private final Serializable object;

 //--||
 // Constructor ---||
 //--||

 /**
 * Creates a new instance with the specified backing object
 * to be returned by {@link ObjectMessage#getObject()}
 */
 MockObjectMessage(final Serializable object)
 {
 this.object = object;
 }

 //--||
 // Required Implementations --||
 //--||

 /* (non-Javadoc)
 * @see javax.jms.ObjectMessage#getObject()
 */
 @Override
 public Serializable getObject() throws JMSException
 {
 return this.object;
 }

544 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 //--||
 // Unsupported ---||
 //--||

 /*
 * Everything below this line will throw an exception when invoked
 */

 /* (non-Javadoc)
 * @see javax.jms.ObjectMessage#setObject(java.io.Serializable)
 */
 @Override
 public void setObject(Serializable object) throws JMSException
 {
 throw new UnsupportedOperationException(MESSAGE_UNSUPPORTED);
 }

 // ... Omitted for brevity
}

StatusUpdateIntegrationTest.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.util.concurrent.TimeUnit;
import java.util.logging.Logger;

import javax.jms.Message;
import javax.jms.ObjectMessage;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSession;
import javax.naming.Context;
import javax.naming.InitialContext;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.api.Run;
import org.jboss.arquillian.api.RunModeType;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate;
import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdateConstants;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;

import twitter4j.Twitter;

/**
 * Integration tests for the StatusUpdateEJBs. Ensures that
 * the MDBs are working as expected when running inside
 * an EJB Container.

Source Listing | 545

 *
 * @author ALR
 */
@RunWith(Arquillian.class)
@Run(RunModeType.AS_CLIENT)
public class StatusUpdateIntegrationTest extends StatusUpdateTestBase
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(StatusUpdateIntegrationTest
.class.getName());

 /**
 * Name of the archive we'll deploy into the server for testing
 */
 private static final String NAME_MDB_ARCHIVE = "statusUpdateEjb.jar";

 /**
 * Name of the ClassLoader resource for the deployment descriptor making a new
 StatusUpdate JMS Topic
 */
 private static final String NAME_RESOURCE_TOPIC_DEPLOYMENT = "hornetq-jms.xml";

 /**
 * The JNDI Context
 */
 private static Context NAMING_CONTEXT;

 /**
 * Name of the Queue Connection Factory in JNDI
 */
 private static final String JNDI_NAME_CONNECTION_FACTORY = "ConnectionFactory";

 /**
 * Creates the EJB JAR to be deployed into the server via Arquillian
 * @return
 */
 @Deployment
 public static JavaArchive getDeployment()
 {
 final JavaArchive archive = ShrinkWrap.create(NAME_MDB_ARCHIVE, JavaArchive
.class).addClasses(StatusUpdate.class,
 StatusUpdateConstants.class, LoggingStatusUpdateMdb.class, Status
UpdateBeanBase.class,
 TwitterUpdateBlockingTestMdb.class, SecurityActions.class, Twitter
UpdateMdb.class,
 EnvironmentSpecificTwitterClientUtil.class).addResource(NAME_RESOURCE
_TOPIC_DEPLOYMENT);
 log.info(archive.toString(true));

546 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 return archive;
 }

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Creates and starts a new JBossAS Server Embedded within this JVM
 */
 @BeforeClass
 public static void setNamingContext() throws Exception
 {
 // Set Naming Context
 NAMING_CONTEXT = new InitialContext();
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Tests that the {@link TwitterUpdateMdb} updates Twitter when
 * it receives a new status from the JMS Topic upon which it's listening
 */
 @Test
 public void testTwitterUpdateMdb() throws Exception
 {
 // Get a Twitter Client and enforce the environment
 final Twitter twitterClient;
 try
 {
 twitterClient = EnvironmentSpecificTwitterClientUtil.getTwitterClient();
 }
 catch (final IllegalStateException ise)
 {
 log.warning(ise.getMessage() + "; skipping...");
 return;
 }

 // Create a new status
 final StatusUpdate newStatus = this.getUniqueStatusUpdate();

 // Publish the update to a JMS Topic (where it should be consumed by the
MDB subscriber)
 this.publishStatusUpdateToTopic(newStatus);

 // Wait for the MDB to process, as it's doing so in another Thread.
 // This is *only* possible when we test MDBs in the same JVM as the test.
 try
 {
 log.info("Waiting on the MDB...");
 TwitterUpdateBlockingTestMdb.LATCH.await(10, TimeUnit.SECONDS);
 }
 catch (final InterruptedException e)

Source Listing | 547

 {
 // Clear the flag and rethrow; some error in setup is in play
 Thread.interrupted();
 throw new RuntimeException(
 "Thread was interrupted while waiting for MDB processing; should
not happen in this test");
 }

 log.info("MDB signaled it's done processing, so we can resume");

 // Test
 this.assertLastUpdateSentToTwitter(twitterClient, newStatus);
 }

 //--||
 // Internal Helper Methods ---||
 //--||

 /**
 * Sends a JMS {@link ObjectMessage} containing the specified status to the
 * queue of the specified name
 *
 * @param status
 * @param topicName
 * @throws Exception
 * @throws IllegalArgumentException If either argument is not provided
 */
 private void publishStatusUpdateToTopic(final StatusUpdate status) throws
Exception, IllegalArgumentException
 {
 // Precondition check
 if (status == null)
 {
 throw new IllegalArgumentException("status must be provided");
 }

 // Get the queue from JNDI
 final Topic topic = (Topic) NAMING_CONTEXT.lookup(StatusUpdateConstants.
JNDI_NAME_TOPIC_STATUSUPDATE);

 // Get the ConnectionFactory from JNDI
 final TopicConnectionFactory factory = (TopicConnectionFactory) NAMING_
CONTEXT
 .lookup(JNDI_NAME_CONNECTION_FACTORY);

 // Make a Connection
 final TopicConnection connection = factory.createTopicConnection();
 final TopicSession sendSession = connection.createTopicSession(false, Topic
Session.AUTO_ACKNOWLEDGE);
 final TopicPublisher publisher = sendSession.createPublisher(topic);

 // Make the message
 final Message message = sendSession.createObjectMessage(status);

548 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 // Publish the message
 publisher.publish(message);
 log.info("Published message " + message + " with contents: " + status);

 // Clean up
 sendSession.close();
 connection.close();
 }

}

StatusUpdateTestBase.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.util.List;
import java.util.UUID;
import java.util.logging.Logger;

import junit.framework.TestCase;

import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate;

import twitter4j.Paging;
import twitter4j.Status;
import twitter4j.Twitter;
import twitter4j.TwitterException;

/**
 * Base support for tests of the StatusUpdate EJBs in both
 * POJO and JavaEE Environments
 *
 * @author ALR
 */
public class StatusUpdateTestBase
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(StatusUpdateBeanBase.class.
getName());

 /**
 * Status update to send
 */
 private static final String STATUS_UPDATE_PREFIX_TWITTER = "I'm testing
Message-Driven EJBs using JBoss EJB 3.x by @ALRubinger/@OReillyMedia!: ";

 //--||
 // Internal Helper Methods ---||

Source Listing | 549

 //--||

 /**
 * Ensures that the last update for the Twitter account represented by the
specified
 * client matches the specified last sent status update
 *
 * @throws TwitterException If an error occurred in obtaining the last update
from the Twitter account
 */
 void assertLastUpdateSentToTwitter(final Twitter twitterClient, final Status
Update sent) throws TwitterException,
 IllegalArgumentException
 {
 // Precondition checks
 if (twitterClient == null)
 {
 throw new IllegalArgumentException("Twitter client must be specified");
 }
 if (sent == null)
 {
 throw new IllegalArgumentException("Last sent status must be specified");
 }

 // Get new status
 final List<Status> statuses = twitterClient.getUserTimeline(new Paging(1,
1));

 // Ensure we've sent one status, and it's as expected
 TestCase.assertEquals("Should have obtained one status (the most recent)
back from request", 1, statuses.size());
 final String roundtrip = statuses.get(0).getText();
 final String expected = sent.getText();
 log.info("Sent status update to Twitter: " + expected);
 log.info("Got last status update from Twitter: " + roundtrip);
 TestCase.assertEquals("Twitter API did not update with last sent status",
expected, roundtrip);
 }

 /**
 * Obtains a unique status update by using {@link StatusUpdateTestBase#STATUS_
UPDATE_PREFIX_TWITTER}
 * prefixed to a UUID.
 */
 StatusUpdate getUniqueStatusUpdate()
 {
 return new StatusUpdate(STATUS_UPDATE_PREFIX_TWITTER + UUID.randomUUID().to
String());
 }

}

550 | Appendix E: Message-Driven EJB: Status Update Listeners Example

StatusUpdateUnitTestCase.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.util.logging.Logger;

import javax.jms.MessageListener;
import javax.jms.ObjectMessage;

import junit.framework.TestCase;

import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate;
import org.junit.Test;

import twitter4j.Twitter;
import twitter4j.TwitterException;

/**
 * Unit tests for the StatusUpdate EJBs. Ensures that the business
 * logic is intact when running outside the context of an EJB Container.
 *
 * @author ALR
 */
public class StatusUpdateUnitTestCase extends StatusUpdateTestBase
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(StatusUpdateUnitTestCase.
class.getName());

 //--||
 // Tests ---||
 //--||

 /**
 * Ensures that the {@link StatusUpdateBeanBase#updateStatus(StatusUpdate)}
method is
 * invoked for incoming messages
 */
 @Test
 public void testUpdateStatusBase()
 {

 // Make a listener
 final StatusCachingMessageListener listener = new StatusCachingMessage
Listener();

 // Make a status update
 final StatusUpdate newStatus = this.getUniqueStatusUpdate();

Source Listing | 551

 // Send to it
 this.sendMessage(newStatus, listener);

 // Extract out the status sent
 final StatusUpdate roundtrip = listener.getLastStatus();

 // Ensure it's what we sent
 TestCase.assertEquals("Status sent was not dispatched and received as
expected", newStatus, roundtrip);
 }

 /**
 * Ensures that the {@link TwitterUpdateMdb} is updating Twitter
 * when {@link MessageListener#onMessage(javax.jms.Message)} is invoked
 */
 @Test
 public void testTwitterUpdateMdb() throws TwitterException
 {
 // Determine if the environment is not set up
 if (!EnvironmentSpecificTwitterClientUtil.isSupportedEnvironment())
 {
 log.warning(EnvironmentSpecificTwitterClientUtil.MSG_UNSUPPORTED_
ENVIRONMENT);
 return;
 }

 // Make a listener (the MDB bean impl class as a POJO)
 final TwitterUpdateMdb listener = new TwitterUpdateMdb();

 // Manually invoke @PostConstruct
 listener.createTwitterClient();

 // Make a status update
 final StatusUpdate newStatus = this.getUniqueStatusUpdate();

 // Send to it
 this.sendMessage(newStatus, listener);

 /*
 * NOTE: This test is flawed, as we do not update then check in one atomic
operation.
 * Someone else could sneak in here and send another status update by the
 * time we check the last one received. This is for illustrative uses only.
 */

 // Test
 final Twitter twitterClient = EnvironmentSpecificTwitterClientUtil.get
TwitterClient();
 this.assertLastUpdateSentToTwitter(twitterClient, newStatus);
 }

 //--||
 // Internal Helper Methods ---||
 //--||

552 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 /**
 * Sends the specified status update to the specified listener
 */
 private void sendMessage(final StatusUpdate newStatus, final MessageListener
listener)
 {
 // This implementation will send directly (POJO-based)
 final ObjectMessage message = new MockObjectMessage(newStatus);

 // Send manually
 listener.onMessage(message);
 }

 //--||
 // Inner Classes ---||
 //--||

 /**
 * {@link MessageListener} to be invoked in a POJO environment, where the last
 * incoming status update via {@link MessageListener#onMessage(javax.jms.
Message)}
 * is cached and available for retrieval. Not thread-safe as this is intended
to be used
 * in a single-threaded environment.
 */
 private static class StatusCachingMessageListener extends StatusUpdateBeanBase
 {
 private StatusUpdate lastStatus = null;

 /**
 * Caches the specified status
 * @see org.jboss.ejb3.examples.ch08.statusupdate.mdb.StatusUpdateBeanBase#
updateStatus(org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate)
 */
 public void updateStatus(final StatusUpdate newStatus) throws Illegal
ArgumentException
 {
 this.lastStatus = newStatus;
 }

 /**
 * Obtains the last {@link StatusUpdate} received
 * @return
 */
 StatusUpdate getLastStatus()
 {
 return lastStatus;
 }
 }
}

Source Listing | 553

TwitterUpdateBlockingTestMdb.java

package org.jboss.ejb3.examples.ch08.statusupdate.mdb;

import java.util.concurrent.CountDownLatch;
import java.util.logging.Logger;

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.MessageListener;

import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate;
import org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdateConstants;

/**
 * Extends the {@link TwitterUpdateMdb} example to add a latch to
 * be shared in testing only, such that tests can be sure we're done
 * processing before they proceed
 *
 * @author ALR
 */
@MessageDriven(name = TwitterUpdateMdb.NAME, activationConfig =
{
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =
 StatusUpdateConstants.TYPE_DESTINATION_STATUSUPDATE),
 @ActivationConfigProperty(propertyName = "destination", propertyValue =
StatusUpdateConstants.JNDI_NAME_TOPIC_STATUSUPDATE)})
public class TwitterUpdateBlockingTestMdb extends TwitterUpdateMdb implements
MessageListener
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(TwitterUpdateBlockingTest
Mdb.class.getName());

 /**
 * Shared latch, so tests can wait until the MDB is processed. In POJO
 * testing this is wholly unnecessary as we've got a single-threaded
environment, but
 * when testing in an EJB Container running in the *same* JVM as the test, the
test
 * can use this to wait until the MDB has been invoked, strengthening the
integrity
 * of the test. It's not recommended to put this piece into a production EJB;
instead
 * test an extension of your EJB which adds this (and only this) support.
 */
 public static CountDownLatch LATCH = new CountDownLatch(1);

554 | Appendix E: Message-Driven EJB: Status Update Listeners Example

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * Additionally waits upon a shared barrier so that the test can ensure we're
done before
 * it proceeds
 * @see org.jboss.ejb3.examples.ch08.statusupdate.mdb.TwitterUpdateMdb#update
Status(org.jboss.ejb3.examples.ch08.statusupdate.api.StatusUpdate)
 */
 @Override
 public void updateStatus(final StatusUpdate newStatus) throws IllegalArgument
Exception, Exception
 {
 // Call the super implementation
 try
 {
 super.updateStatus(newStatus);
 }
 finally
 {
 // Count down the latch
 log.info("Counting down the latch...");
 LATCH.countDown();
 }
 }
}

Source Listing | 555

APPENDIX F

Java Persistence APIs:
Employee Registry Example

Description
Enterprise applications frequently need to deal with state which survives application
restarts. We call this “persistent state,” and it’s typically modeled by a program called
a relational database management system (RDBMS). Handling the transformation/
mapping between the row-based RDBMS and Java objects is a rote process for appli-
cation developers, so we offload this responsibility to the Java Persistence API (JPA).
In this fashion we’re free to interact with regular getters/setters on Java objects while
the mechanics of getting data into and out of the backing database is handled for us.

EJB integrates with JPA via the entity bean, and Chapters 9 through 14 detail the APIs
needed to properly model, map, persist, and retrieve data with a real database. Our
example is an employee registry, where we apply a variety of techniques to draw rela-
tionships between mapped types and query the DB efficiently.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15572

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch09-14-employeeregistry/

Source Listing
Following is a full listing of all source code used in this runnable example.

557

http://community.jboss.org/docs/DOC-15572
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch09-14-employeeregistry/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch09-14-employeeregistry/

Implementation Resources
See Chapter 9.

SimpleEmployee.java

package org.jboss.ejb3.examples.employeeregistry.ch09.entitymanager;

import javax.persistence.Entity;
import javax.persistence.Id;

/**
 * Represents an Employee in the system. Modeled as a simple
 * value object with some additional EJB and JPA annotations.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
public class SimpleEmployee
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Primary key of this entity
 */
 @Id
 // Mark that this field is the primary key
 private Long id;

 /**
 * Name of the employee
 */
 private String name;

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */
 public SimpleEmployee()
 {

 }

 /**
 * Convenience constructor
 */

558 | Appendix F: Java Persistence APIs: Employee Registry Example

 public SimpleEmployee(final long id, final String name)
 {
 // Set
 this.id = id;
 this.name = name;
 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the id
 */
 public Long getId()
 {
 return id;
 }

 /**
 * @param id the id to set
 */
 public void setId(final Long id)
 {
 this.id = id;
 }

 /**
 * @return the name
 */
 public String getName()
 {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(final String name)
 {
 this.name = name;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return SimpleEmployee.class.getSimpleName() + " [id=" + id + ", name=" +
name + "]";
 }

 /**

Source Listing | 559

 * {@inheritDoc}
 * @see java.lang.Object#hashCode()
 */
 @Override
 public int hashCode()
 {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((id == null) ? 0 : id.hashCode());
 return result;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#equals(java.lang.Object)
 */
 @Override
 public boolean equals(Object obj)
 {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 SimpleEmployee other = (SimpleEmployee) obj;
 if (id == null)
 {
 if (other.id != null)
 return false;
 }
 else if (!id.equals(other.id))
 return false;
 return true;
 }
}

See Chapter 10.

EmbeddedEmployeePK.java

package org.jboss.ejb3.examples.employeeregistry.ch10.mapping;

import java.io.Serializable;

import javax.persistence.Column;
import javax.persistence.Embeddable;
import javax.persistence.EmbeddedId;

/**
 * Composite primary key class to be used as
 * {@link EmbeddedId} on {@link EmployeeWithExternalCompositePK}.
 * The instance members here will together compose
 * an identity in the database (primary key).
 *

560 | Appendix F: Java Persistence APIs: Employee Registry Example

 * @author ALR
 * @version $Revision: $
 */
@Embeddable
// Note to JPA that we're intended to be embedded into an Entity
// class as a PK
public class EmbeddedEmployeePK implements Serializable
{

 //--||
 // Class Members ---||
 //--||

 /**
 * serialVersionUID
 */
 private static final long serialVersionUID = 1L;

 //--||
 // Instance Members --||
 //--||

 /**
 * Last Name
 */
 @Column
 private String lastName;

 /**
 * Social Security Number (United States Federal ID)
 */
 @Column
 private Long ssn;

 //--||
 // Functional Methods --||
 //--||

 /**
 * @return the lastName
 */
 public String getLastName()
 {
 return lastName;
 }

 /**
 * @param lastName the lastName to set
 */
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

 /**

Source Listing | 561

 * @return the ssn
 */
 public Long getSsn()
 {
 return ssn;
 }

 /**
 * @param ssn the ssn to set
 */
 public void setSsn(Long ssn)
 {
 this.ssn = ssn;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#hashCode()
 */
 @Override
 public int hashCode()
 {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((lastName == null) ? 0 : lastName.hashCode());
 result = prime * result + ((ssn == null) ? 0 : ssn.hashCode());
 return result;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#equals(java.lang.Object)
 */
 @Override
 public boolean equals(Object obj)
 {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 EmbeddedEmployeePK other = (EmbeddedEmployeePK) obj;
 if (lastName == null)
 {
 if (other.lastName != null)
 return false;
 }
 else if (!lastName.equals(other.lastName))
 return false;
 if (ssn == null)

562 | Appendix F: Java Persistence APIs: Employee Registry Example

 {
 if (other.ssn != null)
 return false;
 }
 else if (!ssn.equals(other.ssn))
 return false;
 return true;
 }

}

EmployeeType.java

package org.jboss.ejb3.examples.employeeregistry.ch10.mapping;

import javax.persistence.Enumerated;

/**
 * Types of employees in the system. Used to show {@link Enumerated}
 * in the entity {@link EmployeeWithProperties}.
 *
 * @author ALR
 * @version $Revision: $
 */
public enum EmployeeType {
 MANAGER, PEON;
}

EmployeeWithEmbeddedPK.java

package org.jboss.ejb3.examples.employeeregistry.ch10.mapping;

import javax.persistence.EmbeddedId;
import javax.persistence.Entity;

/**
 * Represents an Employee in the system. The identity
 * (primary key) is determined by embedded properties
 * via the {@link EmbeddedEmployeePK}.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
public class EmployeeWithEmbeddedPK
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Primary key, composite and embedded

Source Listing | 563

 */
 @EmbeddedId
 private EmbeddedEmployeePK id;

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */
 public EmployeeWithEmbeddedPK()
 {

 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the id
 */
 public EmbeddedEmployeePK getId()
 {
 return id;
 }

 /**
 * @param id the id to set
 */
 public void setId(final EmbeddedEmployeePK id)
 {
 this.id = id;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return EmployeeWithEmbeddedPK.class.getSimpleName() + " [id=" + id + "]";
 }

}

564 | Appendix F: Java Persistence APIs: Employee Registry Example

EmployeeWithExternalCompositePK.java

package org.jboss.ejb3.examples.employeeregistry.ch10.mapping;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.IdClass;

/**
 * Represents an Employee in the system. The identity
 * (primary key) is determined by composite properties
 * defined by {@link ExternalEmployeePK}.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
@IdClass(ExternalEmployeePK.class)
// Use a composite primary key using a custom PK class
public class EmployeeWithExternalCompositePK
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Last Name
 */
 @Id
 private String lastName;

 /**
 * Social Security Number (United States Federal ID)
 */
 @Id
 private Long ssn;

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */
 public EmployeeWithExternalCompositePK()
 {

 }

 //--||
 // Accessors / Mutators --||
 //--||

Source Listing | 565

 /**
 * @return the lastName
 */
 public String getLastName()
 {
 return lastName;
 }

 /**
 * @param lastName the lastName to set
 */
 public void setLastName(final String lastName)
 {
 this.lastName = lastName;
 }

 /**
 * @return the ssn
 */
 public Long getSsn()
 {
 return ssn;
 }

 /**
 * @param ssn the ssn to set
 */
 public void setSsn(final Long ssn)
 {
 this.ssn = ssn;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return EmployeeWithExternalCompositePK.class.getSimpleName() + " [lastName=
" + lastName + ", ssn=" + ssn + "]";
 }

}

EmployeeWithMappedSuperClassId.java

package org.jboss.ejb3.examples.employeeregistry.ch10.mapping;

import javax.persistence.Column;
import javax.persistence.Entity;

566 | Appendix F: Java Persistence APIs: Employee Registry Example

import javax.persistence.Table;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;
import org.jboss.ejb3.examples.testsupport.entity.IdentityBase;

/**
 * Represents an Employee in the system. Inherits the
 * primary key support from {@link IdentityBase#getId()}.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
@Table(name = "employees_with_autogen_pk")
// Explicitly denote the name of the table in the DB
public class EmployeeWithMappedSuperClassId extends AutogenIdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Name of the employee
 */
 // We can use @Column.name to denote the name of the column in the DB
 @Column(name = "employee_name")
 private String name;

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */
 public EmployeeWithMappedSuperClassId()
 {

 }

 /**
 * Convenience constructor
 */
 public EmployeeWithMappedSuperClassId(final String name)
 {
 // Set
 this.name = name;
 }

 //--||
 // Accessors / Mutators --||
 //--||

Source Listing | 567

 /**
 * @return the name
 */
 public String getName()
 {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(final String name)
 {
 this.name = name;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return EmployeeWithMappedSuperClassId.class.getSimpleName() + " [id=" +
this.getId() + ", name=" + name + "]";
 }
}

EmployeeWithProperties.java

package org.jboss.ejb3.examples.employeeregistry.ch10.mapping;

import java.util.Arrays;
import java.util.Date;

import javax.persistence.Basic;
import javax.persistence.Entity;
import javax.persistence.EnumType;
import javax.persistence.Enumerated;
import javax.persistence.FetchType;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Lob;
import javax.persistence.Temporal;
import javax.persistence.TemporalType;
import javax.persistence.Transient;

/**
 * Represents an Employee with a series of properties to
 * show JPA Mapping metadata.
 *
 * @author ALR
 * @version $Revision: $
 */

568 | Appendix F: Java Persistence APIs: Employee Registry Example

@Entity
public class EmployeeWithProperties
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Primary key
 */
 @Id
 @GeneratedValue
 // Automatically manage PK creation for us
 private Long id;

 /**
 * Description of what the Employee's currently
 * working on. We don't need to store this in the DB.
 */
 @Transient
 // Don't persist this
 private String currentAssignment;

 /**
 * Picture of the employee used in ID cards.
 */
 @Lob
 // Note that this is a binary large object
 @Basic(fetch = FetchType.LAZY, optional = true)
 // Don't load this by default; it's an expensive operation.
 // Only load when requested.
 private byte[] image;

 /**
 * Type of employee
 */
 @Enumerated(EnumType.STRING)
 // Show that this is an enumerated value, and the value to
 // be put in the DB is the value of the enumeration toString().
 private EmployeeType type;

 /**
 * Date the employee joined the company
 */
 @Temporal(TemporalType.DATE)
 // Note that we should map this as an SQL Date field;
 // could also be SQL Time or Timestamp
 private Date since;

 //--||
 // Accessors / Mutators --||
 //--||

 /**

Source Listing | 569

 * @return the id
 */
 public Long getId()
 {
 return id;
 }

 /**
 * @param id the id to set
 */
 public void setId(final Long id)
 {
 this.id = id;
 }

 /**
 * @return the currentAssignment
 */
 public String getCurrentAssignment()
 {
 return currentAssignment;
 }

 /**
 * @param currentAssignment the currentAssignment to set
 */
 public void setCurrentAssignment(final String currentAssignment)
 {
 this.currentAssignment = currentAssignment;
 }

 /**
 * @return the image
 */
 public byte[] getImage()
 {
 return image;
 }

 /**
 * @param image the image to set
 */
 public void setImage(final byte[] image)
 {
 this.image = image;
 }

 /**
 * @return the type
 */
 public EmployeeType getType()
 {
 return type;
 }

570 | Appendix F: Java Persistence APIs: Employee Registry Example

 /**
 * @param type the type to set
 */
 public void setType(final EmployeeType type)
 {
 this.type = type;
 }

 /**
 * @return the since
 */
 public Date getSince()
 {
 return since;
 }

 /**
 * @param since the since to set
 */
 public void setSince(final Date since)
 {
 this.since = since;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return "EmployeeWithProperties [currentAssignment=" + currentAssignment + "
, id=" + id + ", image="
 + Arrays.toString(image) + ", since=" + since + ", type=" + type + "]";
 }

}

ExternalEmployeePK.java

package org.jboss.ejb3.examples.employeeregistry.ch10.mapping;

import java.io.Serializable;

import javax.persistence.IdClass;

/**
 * Composite primary key class to be used as
 * {@link IdClass} on {@link EmployeeWithExternalCompositePK}.
 * The instance members here will together compose
 * an identity in the database (primary key).

Source Listing | 571

 *
 * @author ALR
 * @version $Revision: $
 */
public class ExternalEmployeePK implements Serializable
{

 //--||
 // Class Members ---||
 //--||

 /**
 * serialVersionUID
 */
 private static final long serialVersionUID = 1L;

 //--||
 // Instance Members --||
 //--||

 /**
 * Last Name
 */
 private String lastName;

 /**
 * Social Security Number (United States Federal ID)
 */
 private Long ssn;

 //--||
 // Functional Methods --||
 //--||

 /**
 * @return the lastName
 */
 public String getLastName()
 {
 return lastName;
 }

 /**
 * @param lastName the lastName to set
 */
 public void setLastName(String lastName)
 {
 this.lastName = lastName;
 }

 /**
 * @return the ssn
 */
 public Long getSsn()
 {

572 | Appendix F: Java Persistence APIs: Employee Registry Example

 return ssn;
 }

 /**
 * @param ssn the ssn to set
 */
 public void setSsn(Long ssn)
 {
 this.ssn = ssn;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#hashCode()
 */
 @Override
 public int hashCode()
 {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((lastName == null) ? 0 : lastName.hashCode());
 result = prime * result + ((ssn == null) ? 0 : ssn.hashCode());
 return result;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#equals(java.lang.Object)
 */
 @Override
 public boolean equals(Object obj)
 {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 ExternalEmployeePK other = (ExternalEmployeePK) obj;
 if (lastName == null)
 {
 if (other.lastName != null)
 return false;
 }
 else if (!lastName.equals(other.lastName))
 return false;
 if (ssn == null)
 {
 if (other.ssn != null)
 return false;
 }

Source Listing | 573

 else if (!ssn.equals(other.ssn))
 return false;
 return true;
 }

}

See Chapter 11.

Address.java

package org.jboss.ejb3.examples.employeeregistry.ch11.relationships;

import javax.persistence.Column;
import javax.persistence.Entity;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;

/**
 * Represents a simple Address. Each {@link Employee} will
 * have one, though the relationship is not bidirectional.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
public class Address extends AutogenIdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Street Address
 */
 @Column(length = 100)
 // Length of VARCHAR
 private String street;

 /**
 * City
 */
 @Column(length = 100)
 // Length of VARCHAR
 private String city;

 /**
 * Postal code of the state
 */
 @Column(length = 2)
 // Length of VARCHAR
 private String state;

574 | Appendix F: Java Persistence APIs: Employee Registry Example

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */
 public Address()
 {

 }

 /**
 * Convenience constructor
 */
 public Address(final String street, final String city, final String state)
 {
 // Set
 this.setStreet(street);
 this.setCity(city);
 this.setState(state);
 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the street
 */
 public String getStreet()
 {
 return street;
 }

 /**
 * @param street the street to set
 */
 public void setStreet(String street)
 {
 this.street = street;
 }

 /**
 * @return the city
 */
 public String getCity()
 {
 return city;
 }

 /**
 * @param city the city to set
 */

Source Listing | 575

 public void setCity(String city)
 {
 this.city = city;
 }

 /**
 * @return the state
 */
 public String getState()
 {
 return state;
 }

 /**
 * @param state the state to set
 */
 public void setState(String state)
 {
 this.state = state;
 }

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return Address.class.getSimpleName() + " [city=" + city + ", state=" +
state + ", street=" + street
 + ", getId()=" + getId() + "]";
 }
}

Computer.java

package org.jboss.ejb3.examples.employeeregistry.ch11.relationships;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.OneToOne;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;

/**
 * Represents an {@link Employee}'s computer. The
 * relationship is bidirectional in the case the computer
 * is lost or in for servicing and needs to be returned.
 *
 * @author ALR
 * @version $Revision: $

576 | Appendix F: Java Persistence APIs: Employee Registry Example

 */
@Entity
public class Computer extends AutogenIdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Manufacturer of the computer
 */
 @Column(length = 100)
 // Length of VARCHAR
 private String make;

 /**
 * Model of the computer
 */
 @Column(length = 100)
 // Length of VARCHAR
 private String model;

 @OneToOne
 // Bidirectional relationship, mappedBy
 // is declared on the non-owning side
 private Employee owner;

 //--||
 // Constructor ---||
 //--||

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the make
 */
 public String getMake()
 {
 return make;
 }

 /**
 * @param make the make to set
 */
 public void setMake(String make)
 {
 this.make = make;
 }

 /**
 * @return the model
 */

Source Listing | 577

 public String getModel()
 {
 return model;
 }

 /**
 * @param model the model to set
 */
 public void setModel(String model)
 {
 this.model = model;
 }

 /**
 * @return the owner
 */
 public Employee getOwner()
 {
 return owner;
 }

 /**
 * @param owner the owner to set
 */
 public void setOwner(final Employee owner)
 {
 this.owner = owner;
 }

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return Computer.class.getSimpleName() + " [make=" + make + ", model=" +
model + ", owner=" + owner + ", getId()="
 + getId() + "]";
 }

}

Customer.java

package org.jboss.ejb3.examples.employeeregistry.ch11.relationships;

import javax.persistence.Entity;
import javax.persistence.ManyToOne;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;

578 | Appendix F: Java Persistence APIs: Employee Registry Example

/**
 * Represents a Customer. Each customer may have an {@link Employee}
 * which is the primary contact for the account, but the relationship
 * is unidirectional
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
public class Customer extends AutogenIdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Name
 */
 private String name;

 /**
 * The primary {@link Employee} contact for this {@link Customer}
 */
 @ManyToOne
 // Unidirectional
 private Employee primaryContact;

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */
 public Customer()
 {

 }

 /**
 * Convenience constructor
 */
 public Customer(final String name)
 {
 // Set
 this.name = name;
 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**

Source Listing | 579

 * @return the name
 */
 public String getName()
 {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(final String name)
 {
 this.name = name;
 }

 /**
 * @return the primaryContact
 */
 public Employee getPrimaryContact()
 {
 return primaryContact;
 }

 /**
 * @param primaryContact the primaryContact to set
 */
 public void setPrimaryContact(final Employee primaryContact)
 {
 this.primaryContact = primaryContact;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /* (non-Javadoc)
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return Customer.class.getSimpleName() + " [name=" + name + ", getId()=" +
getId() + "]";
 }

}

Employee.java

package org.jboss.ejb3.examples.employeeregistry.ch11.relationships;

import java.util.ArrayList;
import java.util.Collection;

import javax.persistence.Column;

580 | Appendix F: Java Persistence APIs: Employee Registry Example

import javax.persistence.Entity;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToMany;
import javax.persistence.ManyToOne;
import javax.persistence.OneToMany;
import javax.persistence.OneToOne;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;

/**
 * Represents an Employee in the system. Modeled as a simple
 * value object with some additional EJB and JPA annotations.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
public class Employee extends AutogenIdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Name
 */
 @Column(unique = true)
 // No two employees are to have the same name; not exactly
 // a real-world restriction, but shows usage. :)
 private String name;

 /**
 * The employee's address
 */
 @OneToOne
 @JoinColumn(name="ADDRESS_ID")
 // Unidirectional relationship
 private Address address;

 /**
 * The employee's computer
 */
 @OneToOne(mappedBy = "owner")
 // Bidirectional relationship
 private Computer computer;

 /**
 * Manager of the {@link Employee}
 */
 @ManyToOne
 private Employee manager;

Source Listing | 581

 /**
 * {@link Employee}s reporting to this {@link Employee}
 */
 @OneToMany(mappedBy = "manager")
 private Collection<Employee> peons;

 /**
 * All {@link Phone}s for this {@link Employee}
 */
 @OneToMany
 // Unidirectional relationship
 private Collection<Phone> phones;

 /**
 * The {@link Team}s to which this {@link Employee} belongs
 */
 @ManyToMany(mappedBy = "members")
 private Collection<Team> teams;

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */
 public Employee()
 {
 peons = new ArrayList<Employee>();
 phones = new ArrayList<Phone>();
 teams = new ArrayList<Team>();
 }

 /**
 * Convenience constructor
 */
 public Employee(final String name)
 {
 this();
 // Set
 this.name = name;
 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the name
 */
 public String getName()
 {
 return name;
 }

582 | Appendix F: Java Persistence APIs: Employee Registry Example

 /**
 * @param name the name to set
 */
 public void setName(final String name)
 {
 this.name = name;
 }

 /**
 * @return the address
 */
 public Address getAddress()
 {
 return address;
 }

 /**
 * @param address the address to set
 */
 public void setAddress(final Address address)
 {
 this.address = address;
 }

 /**
 * @return the computer
 */
 public Computer getComputer()
 {
 return computer;
 }

 /**
 * @param computer the computer to set
 */
 public void setComputer(final Computer computer)
 {
 this.computer = computer;
 }

 /**
 * @return the manager
 */
 public Employee getManager()
 {
 return manager;
 }

 /**
 * @param manager the manager to set
 */
 public void setManager(final Employee manager)
 {
 this.manager = manager;
 }

Source Listing | 583

 /**
 * @return the peons
 */
 public Collection<Employee> getPeons()
 {
 return peons;
 }

 /**
 * @param peons the peons to set
 */
 public void setPeons(final Collection<Employee> peons)
 {
 this.peons = peons;
 }

 /**
 * @return the teams
 */
 public Collection<Team> getTeams()
 {
 return teams;
 }

 /**
 * @param teams the teams to set
 */
 public void setTeams(final Collection<Team> teams)
 {
 this.teams = teams;
 }

 /**
 * @return the phones
 */
 public Collection<Phone> getPhones()
 {
 return phones;
 }

 /**
 * @param phones the phones to set
 */
 public void setPhones(final Collection<Phone> phones)
 {
 this.phones = phones;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /* (non-Javadoc)
 * @see java.lang.Object#toString()

584 | Appendix F: Java Persistence APIs: Employee Registry Example

 */
 @Override
 public String toString()
 {
 return Employee.class.getSimpleName() + " [name=" + name + ", getId()=" +
getId() + "]";
 }

}

Phone.java

package org.jboss.ejb3.examples.employeeregistry.ch11.relationships;

import javax.persistence.Entity;
import javax.persistence.EnumType;
import javax.persistence.Enumerated;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;

/**
 * Represents a Phone number. An {@link Employee}
 * may have many, but the relationship is unidirectional.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
// Mark that we're an Entity Bean, EJB's integration point
// with Java Persistence
public class Phone extends AutogenIdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Phone number
 */
 private String number;

 /**
 * Type
 */
 @Enumerated(EnumType.STRING)
 private PhoneType type;

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the number
 */

Source Listing | 585

 public String getNumber()
 {
 return number;
 }

 /**
 * @param number the number to set
 */
 public void setNumber(String number)
 {
 this.number = number;
 }

 /**
 * @return the type
 */
 public PhoneType getType()
 {
 return type;
 }

 /**
 * @param type the type to set
 */
 public void setType(PhoneType type)
 {
 this.type = type;
 }

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return Phone.class.getSimpleName() + " [number=" + number + ", type=" +
type + ", getId()=" + getId() + "]";
 }

}

PhoneType.java

package org.jboss.ejb3.examples.employeeregistry.ch11.relationships;

/**
 * Type of number associated with a {@link Phone}
 *
 * @author ALR
 * @version $Revision: $

586 | Appendix F: Java Persistence APIs: Employee Registry Example

 */
public enum PhoneType {
 MOBILE, HOME, WORK
}

Task.java

package org.jboss.ejb3.examples.employeeregistry.ch11.relationships;

import java.util.ArrayList;
import java.util.Collection;

import javax.persistence.Entity;
import javax.persistence.ManyToMany;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;

/**
 * Represents a task to be completed or tracked as an issue.
 * These may be assigned to any number of {@link Employee}s,
 * and {@link Employee}s may have any number of issues. However
 * the relationship is unidirectional from task to employee.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
public class Task extends AutogenIdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Name
 */
 private String description;

 /**
 * {@link Employee} in charge of this {@link Task}
 */
 @ManyToMany
 private Collection<Employee> owners;

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */
 public Task()
 {
 owners = new ArrayList<Employee>();

Source Listing | 587

 }

 /**
 * Convenience constructor
 */
 public Task(final String description)
 {
 this();
 // Set
 this.description = description;
 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the description
 */
 public String getDescription()
 {
 return description;
 }

 /**
 * @param description the description to set
 */
 public void setDescription(final String description)
 {
 this.description = description;
 }

 /**
 * @return the owners
 */
 public Collection<Employee> getOwners()
 {
 return owners;
 }

 /**
 * @param owners the owners to set
 */
 public void setOwners(final Collection<Employee> owners)
 {
 this.owners = owners;
 }

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()

588 | Appendix F: Java Persistence APIs: Employee Registry Example

 */
 @Override
 public String toString()
 {
 return Task.class.getSimpleName() + " [description=" + description + ",
owners=" + owners + ", getId()="
 + getId() + "]";
 }
}

Team.java

package org.jboss.ejb3.examples.employeeregistry.ch11.relationships;

import java.util.ArrayList;
import java.util.Collection;

import javax.persistence.Entity;
import javax.persistence.ManyToMany;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;

/**
 * Represents a team of {@link Employee}s who typically
 * work in the same area. Employees may be a part of many teams.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
public class Team extends AutogenIdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Name of the Team
 */
 private String name;

 /**
 * {@link Employee}s on this {@link Task}.
 */
 @ManyToMany
 private Collection<Employee> members;

 //--||
 // Constructor ---||
 //--||

 /**
 * Default constructor, required by JPA
 */

Source Listing | 589

 public Team()
 {
 members = new ArrayList<Employee>();
 }

 /**
 * Convenience constructor
 * @param name
 */
 public Team(final String name)
 {
 this();
 this.name = name;
 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the members
 */
 public Collection<Employee> getMembers()
 {
 return members;
 }

 /**
 * @param members the members to set
 */
 public void setMembers(final Collection<Employee> members)
 {
 this.members = members;
 }

 /**
 * @return the name
 */
 public String getName()
 {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(String name)
 {
 this.name = name;
 }

 //--||
 // Required Implementations --||
 //--||

590 | Appendix F: Java Persistence APIs: Employee Registry Example

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return Team.class.getSimpleName() + " [members=" + members + ", name=" +
name + ", getId()=" + getId() + "]";
 }
}

Customer.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.joined;

import javax.persistence.Entity;

/**
 * Represents a customer, a {@link Person}
 * associated with a company. Sits in the middle of an inheritance
 * hierarchy and is extended by employee types, who are a special type of
 * {@link Customer}.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity(name = "JOINED_CUSTOMER")
public class Customer extends Person
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Street-level address
 */
 private String street;

 /**
 * City
 */
 private String city;

 /**
 * State
 */
 private String state;

 /**
 * ZIP
 */
 private String zip;

Source Listing | 591

 //--||
 // Accessors / Mutators --||
 //--||
 /**
 * @return the street
 */
 public String getStreet()
 {
 return street;
 }

 /**
 * @param street the street to set
 */
 public void setStreet(final String street)
 {
 this.street = street;
 }

 /**
 * @return the city
 */
 public String getCity()
 {
 return city;
 }

 /**
 * @param city the city to set
 */
 public void setCity(final String city)
 {
 this.city = city;
 }

 /**
 * @return the state
 */
 public String getState()
 {
 return state;
 }

 /**
 * @param state the state to set
 */
 public void setState(final String state)
 {
 this.state = state;
 }

 /**
 * @return the zip
 */
 public String getZip()

592 | Appendix F: Java Persistence APIs: Employee Registry Example

 {
 return zip;
 }

 /**
 * @param zip the zip to set
 */
 public void setZip(final String zip)
 {
 this.zip = zip;
 }

}

Employee.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.joined;

import javax.persistence.Entity;
import javax.persistence.PrimaryKeyJoinColumn;

/**
 * Employee
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity(name = "JOINED_EMPLOYEE")
@PrimaryKeyJoinColumn(name = "EMP_PK")
public class Employee extends Customer
{
 //--||
 // Instance Members --||
 //--||

 /**
 * ID of the Employee
 */
 private Integer employeeId;

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the employeeId
 */
 public Integer getEmployeeId()
 {
 return employeeId;
 }

 /**
 * @param employeeId the employeeId to set
 */

Source Listing | 593

 public void setEmployeeId(final Integer employeeId)
 {
 this.employeeId = employeeId;
 }

}

Person.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.joined;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;

/**
 * Base class for entities representing a person
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity(name = "JOINED_PERSON")
@Inheritance(strategy = InheritanceType.JOINED)
public class Person
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Primary key
 */
 @Id
 @GeneratedValue
 private Long id;

 /**
 * First name of the person
 */
 private String firstName;

 /**
 * Last name of the person
 */
 private String lastName;

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the id

594 | Appendix F: Java Persistence APIs: Employee Registry Example

 */
 public Long getId()
 {
 return id;
 }

 /**
 * @param id the id to set
 */
 public void setId(final Long id)
 {
 this.id = id;
 }

 /**
 * @return the firstName
 */
 public String getFirstName()
 {
 return firstName;
 }

 /**
 * @param firstName the firstName to set
 */
 public void setFirstName(final String firstName)
 {
 this.firstName = firstName;
 }

 /**
 * @return the lastName
 */
 public String getLastName()
 {
 return lastName;
 }

 /**
 * @param lastName the lastName to set
 */
 public void setLastName(final String lastName)
 {
 this.lastName = lastName;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /*
 * Value equality is based by ID and type only
 */

 /**

Source Listing | 595

 * {@inheritDoc}
 * @see java.lang.Object#hashCode()
 */
 @Override
 public int hashCode()
 {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((id == null) ? 0 : id.hashCode());
 return result;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#equals(java.lang.Object)
 */
 @Override
 public boolean equals(final Object obj)
 {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 Person other = (Person) obj;
 if (id == null)
 {
 if (other.id != null)
 return false;
 }
 else if (!id.equals(other.id))
 return false;
 return true;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return this.getClass().getSimpleName() + " [firstName=" + firstName + ", id
=" + id + ", lastName=" + lastName
 + "]";
 }

}

Customer.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.singleclass;

import javax.persistence.DiscriminatorValue;

596 | Appendix F: Java Persistence APIs: Employee Registry Example

import javax.persistence.Entity;

/**
 * Represents a customer, a {@link Person}
 * associated with a company. Sits in the middle of an inheritance
 * hierarchy and is extended by employee types, who are a special type of
 * {@link Customer}.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity(name = "SINGLECLASS_CUSTOMER")
@DiscriminatorValue("CUSTOMER")
public class Customer extends Person
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Street-level address
 */
 private String street;

 /**
 * City
 */
 private String city;

 /**
 * State
 */
 private String state;

 /**
 * ZIP
 */
 private String zip;

 //--||
 // Accessors / Mutators --||
 //--||
 /**
 * @return the street
 */
 public String getStreet()
 {
 return street;
 }

 /**
 * @param street the street to set
 */
 public void setStreet(final String street)

Source Listing | 597

 {
 this.street = street;
 }

 /**
 * @return the city
 */
 public String getCity()
 {
 return city;
 }

 /**
 * @param city the city to set
 */
 public void setCity(final String city)
 {
 this.city = city;
 }

 /**
 * @return the state
 */
 public String getState()
 {
 return state;
 }

 /**
 * @param state the state to set
 */
 public void setState(final String state)
 {
 this.state = state;
 }

 /**
 * @return the zip
 */
 public String getZip()
 {
 return zip;
 }

 /**
 * @param zip the zip to set
 */
 public void setZip(final String zip)
 {
 this.zip = zip;
 }

}

598 | Appendix F: Java Persistence APIs: Employee Registry Example

Employee.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.singleclass;

import javax.persistence.DiscriminatorValue;
import javax.persistence.Entity;

/**
 * Employee
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity(name = "SINGLECLASS_EMPLOYEE")
@DiscriminatorValue("EMPLOYEE")
public class Employee extends Customer
{
 //--||
 // Instance Members --||
 //--||

 /**
 * ID of the Employee
 */
 private Integer employeeId;

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the employeeId
 */
 public Integer getEmployeeId()
 {
 return employeeId;
 }

 /**
 * @param employeeId the employeeId to set
 */
 public void setEmployeeId(final Integer employeeId)
 {
 this.employeeId = employeeId;
 }

}

Person.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.singleclass;

import javax.persistence.DiscriminatorColumn;
import javax.persistence.DiscriminatorType;
import javax.persistence.DiscriminatorValue;

Source Listing | 599

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;

/**
 * Base class for entities representing a person
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity(name = "SINGLECLASS_PERSON")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "DISCRIMINATOR", discriminatorType = Discriminator
Type.STRING)
@DiscriminatorValue("PERSON")
public class Person
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Primary key
 */
 @Id
 @GeneratedValue
 private Long id;

 /**
 * First name of the person
 */
 private String firstName;

 /**
 * Last name of the person
 */
 private String lastName;

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the id
 */
 public Long getId()
 {
 return id;
 }

 /**
 * @param id the id to set

600 | Appendix F: Java Persistence APIs: Employee Registry Example

 */
 public void setId(final Long id)
 {
 this.id = id;
 }

 /**
 * @return the firstName
 */
 public String getFirstName()
 {
 return firstName;
 }

 /**
 * @param firstName the firstName to set
 */
 public void setFirstName(final String firstName)
 {
 this.firstName = firstName;
 }

 /**
 * @return the lastName
 */
 public String getLastName()
 {
 return lastName;
 }

 /**
 * @param lastName the lastName to set
 */
 public void setLastName(final String lastName)
 {
 this.lastName = lastName;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /*
 * Value equality is based by ID and type only
 */

 /**
 * {@inheritDoc}
 * @see java.lang.Object#hashCode()
 */
 @Override
 public int hashCode()
 {
 final int prime = 31;
 int result = 1;

Source Listing | 601

 result = prime * result + ((id == null) ? 0 : id.hashCode());
 return result;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#equals(java.lang.Object)
 */
 @Override
 public boolean equals(final Object obj)
 {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 Person other = (Person) obj;
 if (id == null)
 {
 if (other.id != null)
 return false;
 }
 else if (!id.equals(other.id))
 return false;
 return true;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return this.getClass().getSimpleName() + " [firstName=" + firstName + ", id
=" + id + ", lastName=" + lastName
 + "]";
 }

}

Customer.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.tableperclass;

import javax.persistence.Entity;

/**
 * Represents a customer, a {@link Person}
 * associated with a company. Sits in the middle of an inheritance
 * hierarchy and is extended by employee types, who are a special type of
 * {@link Customer}.
 *
 * @author ALR

602 | Appendix F: Java Persistence APIs: Employee Registry Example

 * @version $Revision: $
 */
@Entity(name = "TABLEPERCLASS_CUSTOMER")
public class Customer extends Person
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Street-level address
 */
 private String street;

 /**
 * City
 */
 private String city;

 /**
 * State
 */
 private String state;

 /**
 * ZIP
 */
 private String zip;

 //--||
 // Accessors / Mutators --||
 //--||
 /**
 * @return the street
 */
 public String getStreet()
 {
 return street;
 }

 /**
 * @param street the street to set
 */
 public void setStreet(final String street)
 {
 this.street = street;
 }

 /**
 * @return the city
 */
 public String getCity()
 {
 return city;

Source Listing | 603

 }

 /**
 * @param city the city to set
 */
 public void setCity(final String city)
 {
 this.city = city;
 }

 /**
 * @return the state
 */
 public String getState()
 {
 return state;
 }

 /**
 * @param state the state to set
 */
 public void setState(final String state)
 {
 this.state = state;
 }

 /**
 * @return the zip
 */
 public String getZip()
 {
 return zip;
 }

 /**
 * @param zip the zip to set
 */
 public void setZip(final String zip)
 {
 this.zip = zip;
 }

}

Employee.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.tableperclass;

import javax.persistence.Entity;

/**
 * Employee
 *
 * @author ALR
 * @version $Revision: $

604 | Appendix F: Java Persistence APIs: Employee Registry Example

 */
@Entity(name = "TABLEPERCLASS_EMPLOYEE")
public class Employee extends Customer
{
 //--||
 // Instance Members --||
 //--||

 /**
 * ID of the Employee
 */
 private Integer employeeId;

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the employeeId
 */
 public Integer getEmployeeId()
 {
 return employeeId;
 }

 /**
 * @param employeeId the employeeId to set
 */
 public void setEmployeeId(final Integer employeeId)
 {
 this.employeeId = employeeId;
 }

}

Person.java

package org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.tableperclass;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Inheritance;
import javax.persistence.InheritanceType;

/**
 * Base class for entities representing a person
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity(name = "TABLEPERCLASS_PERSON")
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Person

Source Listing | 605

{

 //--||
 // Instance Members --||
 //--||

 /**
 * Primary key
 */
 @Id
 @GeneratedValue(strategy = GenerationType.TABLE)
 // Cannot accept default generation strategy for table-per-class
 private Long id;

 /**
 * First name of the person
 */
 private String firstName;

 /**
 * Last name of the person
 */
 private String lastName;

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the id
 */
 public Long getId()
 {
 return id;
 }

 /**
 * @param id the id to set
 */
 public void setId(final Long id)
 {
 this.id = id;
 }

 /**
 * @return the firstName
 */
 public String getFirstName()
 {
 return firstName;
 }

 /**
 * @param firstName the firstName to set
 */

606 | Appendix F: Java Persistence APIs: Employee Registry Example

 public void setFirstName(final String firstName)
 {
 this.firstName = firstName;
 }

 /**
 * @return the lastName
 */
 public String getLastName()
 {
 return lastName;
 }

 /**
 * @param lastName the lastName to set
 */
 public void setLastName(final String lastName)
 {
 this.lastName = lastName;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /*
 * Value equality is based by ID and type only
 */

 /**
 * {@inheritDoc}
 * @see java.lang.Object#hashCode()
 */
 @Override
 public int hashCode()
 {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((id == null) ? 0 : id.hashCode());
 return result;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#equals(java.lang.Object)
 */
 @Override
 public boolean equals(final Object obj)
 {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;

Source Listing | 607

 Person other = (Person) obj;
 if (id == null)
 {
 if (other.id != null)
 return false;
 }
 else if (!id.equals(other.id))
 return false;
 return true;
 }

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return this.getClass().getSimpleName() + " [firstName=" + firstName + ", id
=" + id + ", lastName=" + lastName
 + "]";
 }

}

See Chapter 14.

EntityListenerEmployee.java

package org.jboss.ejb3.examples.employeeregistry.ch14.listener;

import java.util.logging.Logger;

import javax.persistence.Entity;
import javax.persistence.PostLoad;
import javax.persistence.PostPersist;
import javax.persistence.PostRemove;
import javax.persistence.PostUpdate;
import javax.persistence.PrePersist;
import javax.persistence.PreRemove;
import javax.persistence.PreUpdate;

import org.jboss.ejb3.examples.testsupport.entity.AutogenIdentityBase;

/**
 * Represents an Employee which is able to receive JPA
 * events.
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
public class EntityListenerEmployee extends AutogenIdentityBase
{

608 | Appendix F: Java Persistence APIs: Employee Registry Example

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EntityListenerEmployee.
class.getName());

 //--||
 // Instance Members --||
 //--||

 /**
 * Name of the employee
 */
 private String name;

 //--||
 // Constructor ---||
 //--||

 /**
 * No-arg constructor, required by JPA
 */
 public EntityListenerEmployee()
 {

 }

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the name
 */
 public String getName()
 {
 return name;
 }

 /**
 * @param name the name to set
 */
 public void setName(final String name)
 {
 this.name = name;
 }

 //--||
 // Overridden Implementations --||
 //--||

Source Listing | 609

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return EntityListenerEmployee.class.getSimpleName() + " [name=" + name + ",
 getId()=" + getId() + "]";
 }

 //--||
 // Event Listeners ---||
 //--||

 /*
 * Event Listeners; fired by JPA and track state in the EventTracker
 */

 @PrePersist
 @SuppressWarnings("unused")
 private void prePersist()
 {
 EventTracker.prePersist = true;
 log.info("prePersist: " + this);
 }

 @PostPersist
 @SuppressWarnings("unused")
 private void postPersist()
 {
 EventTracker.postPersist = true;
 log.info("postPersist: " + this);
 }

 @PostLoad
 @SuppressWarnings("unused")
 private void postLoad()
 {
 EventTracker.postLoad = true;
 log.info("postLoad: " + this);
 }

 @PreUpdate
 @SuppressWarnings("unused")
 private void preUpdate()
 {
 EventTracker.preUpdate = true;
 log.info("preUpdate: " + this);
 }

 @PostUpdate
 @SuppressWarnings("unused")
 private void postUpdate()
 {

610 | Appendix F: Java Persistence APIs: Employee Registry Example

 EventTracker.postUpdate = true;
 log.info("postUpdate: " + this);
 }

 @PreRemove
 @SuppressWarnings("unused")
 private void preRemove()
 {
 EventTracker.preRemove = true;
 log.info("preRemove: " + this);
 }

 @PostRemove
 @SuppressWarnings("unused")
 private void postRemove()
 {
 EventTracker.postRemove = true;
 log.info("postRemove: " + this);
 }

}

EventTracker.java

package org.jboss.ejb3.examples.employeeregistry.ch14.listener;

/**
 * Tracks events fired by the {@link EntityListenerEmployee}
 *
 * @author ALR
 * @version $Revision: $
 */
public class EventTracker
{

 //--||
 // Class Members ---||
 //--||

 /*
 * Flags denoting whether an event was fired
 */

 public static boolean prePersist;

 public static boolean postPersist;

 public static boolean postLoad;

 public static boolean preUpdate;

 public static boolean postUpdate;

 public static boolean preRemove;

Source Listing | 611

 public static boolean postRemove;

 //--||
 // Functional Methods --||
 //--||

 /**
 * Resets all events to false
 */
 public static void reset()
 {
 prePersist = false;
 postPersist = false;
 postLoad = false;
 preUpdate = false;
 postUpdate = false;
 preRemove = false;
 postRemove = false;
 }
}

persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="tempdb">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create"/>
 <!--

 You can enable this for Hibernate to dump SQL output to STDOUT
 <property name="hibernate.show_sql" value="true"/>

 -->
 </properties>
 </persistence-unit>
</persistence>

Test Resources

EmployeeIntegrationTest.java

package org.jboss.ejb3.examples.employeeregistry;

import java.util.Calendar;
import java.util.Collection;
import java.util.Date;
import java.util.concurrent.Callable;
import java.util.logging.Logger;

612 | Appendix F: Java Persistence APIs: Employee Registry Example

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.persistence.EmbeddedId;
import javax.persistence.EntityManager;
import javax.persistence.GeneratedValue;
import javax.persistence.IdClass;
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Root;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.api.Run;
import org.jboss.arquillian.api.RunModeType;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.ejb3.examples.employeeregistry.ch09.entitymanager.SimpleEmployee;
import org.jboss.ejb3.examples.employeeregistry.ch10.mapping.EmbeddedEmployeePK;
import org.jboss.ejb3.examples.employeeregistry.ch10.mapping.EmployeeType;
import org.jboss.ejb3.examples.employeeregistry.ch10.mapping.EmployeeWithEmbedded
PK;
import org.jboss.ejb3.examples.employeeregistry.ch10.mapping.EmployeeWithExternal
CompositePK;
import org.jboss.ejb3.examples.employeeregistry.ch10.mapping.EmployeeWithMapped
SuperClassId;
import org.jboss.ejb3.examples.employeeregistry.ch10.mapping.EmployeeWith
Properties;
import org.jboss.ejb3.examples.employeeregistry.ch10.mapping.ExternalEmployeePK;
import org.jboss.ejb3.examples.employeeregistry.ch11.relationships.Address;
import org.jboss.ejb3.examples.employeeregistry.ch11.relationships.Computer;
import org.jboss.ejb3.examples.employeeregistry.ch11.relationships.Customer;
import org.jboss.ejb3.examples.employeeregistry.ch11.relationships.Employee;
import org.jboss.ejb3.examples.employeeregistry.ch11.relationships.Phone;
import org.jboss.ejb3.examples.employeeregistry.ch11.relationships.PhoneType;
import org.jboss.ejb3.examples.employeeregistry.ch11.relationships.Task;
import org.jboss.ejb3.examples.employeeregistry.ch11.relationships.Team;
import org.jboss.ejb3.examples.employeeregistry.ch14.listener.EntityListener
Employee;
import org.jboss.ejb3.examples.employeeregistry.ch14.listener.EventTracker;
import org.jboss.ejb3.examples.testsupport.dbquery.EntityManagerExposingBean;
import org.jboss.ejb3.examples.testsupport.dbquery.EntityManagerExposingLocal
Business;
import org.jboss.ejb3.examples.testsupport.entity.IdentityBase;
import org.jboss.ejb3.examples.testsupport.txwrap.TaskExecutionException;
import org.jboss.ejb3.examples.testsupport.txwrap.TxWrappingBean;
import org.jboss.ejb3.examples.testsupport.txwrap.TxWrappingLocalBusiness;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.After;
import org.junit.Assert;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;

/**

Source Listing | 613

 * Tests to ensure that we can do simple CRUD operations
 * upon an object view (Entity beans), and see our changes persisted
 * across transactions.
 *
 * @author ALR
 * @version $Revision: $
 */
@RunWith(Arquillian.class)
@Run(RunModeType.AS_CLIENT)
public class EmployeeIntegrationTest
{
 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(EmployeeIntegrationTest.
class.getName());

 /**
 * Naming Context
 * @deprecated Remove when Arquillian will inject the EJB proxies
 */
 @Deprecated
 private static Context jndiContext;

 /**
 * The Deployment into the EJB Container
 */
 @Deployment
 public static JavaArchive getDeployment()
 {
 final JavaArchive archive = ShrinkWrap.create("entities.jar", JavaArchive.
class).addPackages(false,
 SimpleEmployee.class.getPackage(), EmployeeWithMappedSuperClassId.
class.getPackage(),
 Employee.class.getPackage(), TxWrappingLocalBusiness.class.getPackage
(),
 EntityListenerEmployee.class.getPackage(), EntityManagerExposingBean.
class.getPackage(),
 org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.singleclass
.Employee.class.getPackage(),
 org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.tableper
class.Employee.class.getPackage(),
 org.jboss.ejb3.examples.employeeregistry.ch12.inheritance.joined.
Employee.class.getPackage())
 .addManifestResource("persistence.xml");
 log.info(archive.toString(true));
 return archive;
 }

 /*
 * Data for our tests

614 | Appendix F: Java Persistence APIs: Employee Registry Example

 */

 private static final long ID_DAVE = 1L;

 private static final long ID_JOSH = 2L;

 private static final long ID_RICK = 3L;

 private static final String NAME_DAVE = "Dave";

 private static final String NAME_DAVE_NEW = "Dave - The Good Doctor";

 private static final String NAME_JOSH = "Josh";

 private static final String NAME_RICK = "Rick, Jr.";

 //--||
 // Instance Members --||
 //--||

 /**
 * EJB which wraps supplied {@link Callable} instances inside of a new Tx
 */
 // TODO: Support Injection of @EJB here when Arquillian for Embedded JBossAS
will support it
 private TxWrappingLocalBusiness txWrapper;

 /**
 * EJB which provides direct access to an {@link EntityManager}'s method for
use in testing.
 * Must be called inside an existing Tx so that returned entities are not
detached.
 */
 // TODO: Support Injection of @EJB here when Arquillian for Embedded JBossAS
will support it
 private EntityManagerExposingLocalBusiness emHook;

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Performs suite-wide initialization
 */
 @BeforeClass
 public static void init() throws Exception
 {
 // After the server is up, we don't need to pass any explicit properties
 jndiContext = new InitialContext();
 }

 /**
 * Manually looks up EJBs in JNDI and assigns them
 */
 @Before

Source Listing | 615

 public void injectEjbsAndClearDB() throws Throwable
 {
 // Fake injection by doing manual lookups for the time being
 //TODO Deprecated portion
 txWrapper = (TxWrappingLocalBusiness) jndiContext.lookup(TxWrappingBean.
class.getSimpleName() + "/local");
 emHook = (EntityManagerExposingLocalBusiness) jndiContext.lookup(Entity
ManagerExposingBean.class.getSimpleName()
 + "/local");

 // Clear all employees before running, just in case
 this.clearAllEmployees();
 }

 /**
 * Resets all entity callbacks
 */
 @Before
 public void clearEntityCallbacks()
 {
 EventTracker.reset();
 }

 /**
 * Issues a deletion to remove all employees from persistent storage
 * @throws Throwable
 */
 @After
 public void clearAllEmployees() throws Throwable
 {
 // Clear the DB of all Employees
 try
 {
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {

 final EntityManager em = emHook.getEntityManager();
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(Simple
Employee.class, em);
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(EmployeeWith
MappedSuperClassId.class, em);
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(EmployeeWith
ExternalCompositePK.class, em);
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(EmployeeWith
Properties.class, em);
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(Computer.
class, em);
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(Phone.class,
em);
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(Customer.
class, em);

616 | Appendix F: Java Persistence APIs: Employee Registry Example

 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(Task.class,
em);
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(Team.class,
em);
 EmployeeIntegrationTest.this.deleteAllEntitiesOfType(Employee.
class, em);

 return null;
 }

 });
 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Tests that we can use the {@link EntityManager} to perform simple
 * CRUD (Create, remove, update, delete) operations on an object view,
 * and these changes will be persisted as expected.
 */
 @Test
 public void persistAndModifyEmployees() throws Throwable
 {

 try
 {

 // Execute the addition of the employees, and conditional checks, in the
 context of a Transaction
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Create a few plain instances
 final SimpleEmployee josh = new SimpleEmployee(ID_DAVE, NAME_DAVE);
 final SimpleEmployee dave = new SimpleEmployee(ID_JOSH, NAME_JOSH);
 final SimpleEmployee rick = new SimpleEmployee(ID_RICK, NAME_RICK);

 // Get the EntityManager from our test hook
 final EntityManager em = emHook.getEntityManager();

 // Now first check if any employees are found in the underlying
persistent
 // storage (shouldn't be)
 Assert.assertNull("Employees should not have been added to the EM

Source Listing | 617

yet", em.find(SimpleEmployee.class,
 ID_DAVE));

 // Check if the object is managed (shouldn't be)
 Assert.assertFalse("Employee should not be managed yet", em.
contains(josh));

 // Now persist the employees
 em.persist(dave);
 em.persist(josh);
 em.persist(rick);
 log.info("Added: " + rick + dave + josh);

 // The employees should be managed now
 Assert.assertTrue("Employee should be managed now, after call to
persist", em.contains(josh));

 // Return
 return null;
 }
 });

 // Now change Employee Dave's name in a Tx; we'll verify the changes
were flushed to the DB later
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get an EM
 final EntityManager em = emHook.getEntityManager();

 // Look up "Dave" by ID from the EM
 final SimpleEmployee dave = em.find(SimpleEmployee.class, ID_DAVE);

 // Change Dave's name
 dave.setName(NAME_DAVE_NEW);
 log.info("Changing Dave's name: " + dave);

 // That's it - the new name should be flushed to the DB when the
Tx completes
 return null;
 }
 });

 // Since we've changed Dave's name in the last transaction, ensure that
we see the changes
 // have been flushed and we can see them from a new Tx.
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {

618 | Appendix F: Java Persistence APIs: Employee Registry Example

 // Get an EM
 final EntityManager em = emHook.getEntityManager();

 // Make a new "Dave" as a detached object with same primary key,
but a different name
 final SimpleEmployee dave = new SimpleEmployee(ID_DAVE, NAME_DAVE_
NEW);

 // Merge these changes on the detached instance with the DB
 em.merge(dave);

 // Ensure we see the name change
 Assert.assertEquals("Employee Dave's name should have been changed
", NAME_DAVE_NEW, dave.getName());

 // Now we'll detach Dave from the EM, this makes the object no
longer managed
 em.detach(dave);

 // Change Dave's name again to some dummy value. Because the
object is
 // detached and no longer managed, we should not see this new value
 // synchronized with the DB
 dave.setName("A name we shouldn't see flushed to persistence");
 log.info("Changing Dave's name after detached: " + dave);

 // Return
 return null;
 }
 });

 // Another check. We changed Dave's name when the entity was no longer
 // managed and attached to an EM, so ensure that any changes we made
 // were not flushed out
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get an EM
 final EntityManager em = emHook.getEntityManager();

 // Make a new "Dave" instance
 final SimpleEmployee dave = em.find(SimpleEmployee.class, ID_DAVE);
 log.info("Lookup of Dave after we changed his name on a detached
instance: " + dave);

 // Ensure that the last name change we gave to Dave did not take
effect
 Assert
 .assertEquals("Detached object values should not have been
flushed", NAME_DAVE_NEW, dave.getName());

 // Return

Source Listing | 619

 return null;

 }
 });

 // Uh oh, Rick has decided to leave the company. Let's delete his record.
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get an EM
 final EntityManager em = emHook.getEntityManager();

 // Look up Rick
 final SimpleEmployee rick = em.find(SimpleEmployee.class, ID_RICK);

 // Remove
 em.remove(rick);
 log.info("Deleted: " + rick);

 // Return
 return null;

 }
 });

 // Ensure we can no longer find Rick in the DB
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get an EM
 final EntityManager em = emHook.getEntityManager();

 // Look up Rick
 final SimpleEmployee rick = em.find(SimpleEmployee.class, ID_RICK);

 // Assert
 Assert.assertNull("Rick should have been removed from the DB",
rick);

 // Return
 return null;

 }
 });

 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap

620 | Appendix F: Java Persistence APIs: Employee Registry Example

 throw tee.getCause();
 }

 }

 /**
 * Shows usage of JPA autogeneration of primary keys, using
 * {@link EmployeeWithMappedSuperClassId} which inherits PK support from
 * {@link IdentityBase#getId()}.
 * @throws Throwable
 */
 @Test
 public void autogenPrimaryKeyFromMappedSuperClass() throws Throwable
 {
 try
 {
 // Create a new Employee, and let JPA give us the PK value
 final Long id = txWrapper.wrapInTx(new Callable<Long>()
 {

 @Override
 public Long call() throws Exception
 {
 // Make a new Employee
 final EmployeeWithMappedSuperClassId alrubinger = new EmployeeWith
MappedSuperClassId(
 "Andrew Lee Rubinger");

 // Ensure we have no ID now
 Assert.assertNull("Primary key should not be set yet", alrubinger.
getId());

 // Persist
 emHook.getEntityManager().persist(alrubinger);

 // Now show that JPA gave us a primary key as generated
 final Long id = alrubinger.getId();
 Assert.assertNotNull("Persisting an entity with PK " + Generated
Value.class.getName()
 + " should be created", id);
 log.info("Persisted: " + alrubinger);

 // Return
 return id;
 }

 });

 // Ensure we can look up this new entity by the PK we've been given
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {

Source Listing | 621

 // Look up the Employee by the ID we just gave
 final EmployeeWithMappedSuperClassId employee = emHook.getEntity
Manager().find(
 EmployeeWithMappedSuperClassId.class, id);

 // Ensure found
 Assert.assertNotNull("Employee should be able to be looked up by
PK", employee);

 // Return
 return null;
 }

 });
 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }
 }

 /**
 * Shows usage of an entity which gets its identity via an
 * {@link IdClass} - {@link ExternalEmployeePK}.
 * @throws Throwable
 */
 @Test
 public void externalCompositePrimaryKey() throws Throwable
 {
 try
 {
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Define the values to compose a primary key identity
 final String lastName = "Rubinger";
 final Long ssn = 100L; // Not real ;)

 // Create a new Employee which uses a custom @IdClass
 final EmployeeWithExternalCompositePK employee = new EmployeeWith
ExternalCompositePK();
 employee.setLastName(lastName);
 employee.setSsn(ssn);

 // Persist
 final EntityManager em = emHook.getEntityManager();
 em.persist(employee);
 log.info("Persisted: " + employee);

 // Now look up using our custom composite PK value class
 final ExternalEmployeePK pk = new ExternalEmployeePK();

622 | Appendix F: Java Persistence APIs: Employee Registry Example

 pk.setLastName(lastName);
 pk.setSsn(ssn);
 final EmployeeWithExternalCompositePK roundtrip = em.find(Employee
WithExternalCompositePK.class, pk);

 // Ensure found
 Assert.assertNotNull("Should have been able to look up record via
a custom PK composite class",
 roundtrip);

 // Return
 return null;
 }

 });
 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }
 }

 /**
 * Shows usage of an entity which gets its identity via an
 * {@link EmbeddedId} - {@link EmployeeWithEmbeddedPK}
 * @throws Throwable
 */
 @Test
 public void embeddedCompositePrimaryKey() throws Throwable
 {
 try
 {
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Define the values to compose a primary key identity
 final String lastName = "Rubinger";
 final Long ssn = 100L; // Not real ;)

 // Create a new Employee which uses an Embedded PK Class
 final EmployeeWithEmbeddedPK employee = new EmployeeWithEmbeddedPK
();
 final EmbeddedEmployeePK pk = new EmbeddedEmployeePK();
 pk.setLastName(lastName);
 pk.setSsn(ssn);
 employee.setId(pk);

 // Persist
 final EntityManager em = emHook.getEntityManager();
 em.persist(employee);
 log.info("Persisted: " + employee);

Source Listing | 623

 // Now look up using our custom composite PK value class
 final EmployeeWithEmbeddedPK roundtrip = em.find(EmployeeWith
EmbeddedPK.class, pk);

 // Ensure found
 Assert
 .assertNotNull("Should have been able to look up record via
a custom embedded PK class", roundtrip);

 // Return
 return null;
 }

 });
 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }
 }

 /**
 * Shows usage of an entity with a series of nonstandard
 * mappings which require additional JPA metadata to show
 * the ORM layer how things should be represented in the DB.
 */
 @Test
 public void propertyMappings() throws Throwable
 {
 // Define the values for our employee
 final byte[] image = new byte[]
 {0x00};
 final Date since = new Date(0L); // Employed since the epoch
 final EmployeeType type = EmployeeType.PEON;
 final String currentAssignment = "Learn JPA and EJB!";

 try
 {
 final Long id = txWrapper.wrapInTx(new Callable<Long>()
 {

 @Override
 public Long call() throws Exception
 {

 // Create a new Employee
 final EmployeeWithProperties employee = new EmployeeWithProperties
();
 employee.setImage(image);
 employee.setSince(since);
 employee.setType(type);
 employee.setCurrentAssignment(currentAssignment);

624 | Appendix F: Java Persistence APIs: Employee Registry Example

 // Persist
 final EntityManager em = emHook.getEntityManager();
 em.persist(employee);
 log.info("Persisted: " + employee);

 // Get the ID, now that one's been assigned
 final Long id = employee.getId();

 // Return
 return id;
 }

 });

 // Now execute in another Tx, to ensure we get a real DB load from the EM,
 // and not just a direct reference back to the object we persisted.
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Roundtrip lookup
 final EmployeeWithProperties roundtrip = emHook.getEntityManager()
 .find(EmployeeWithProperties.class, id);
 log.info("Roundtrip: " + roundtrip);

 final Calendar suppliedSince = Calendar.getInstance();
 suppliedSince.setTime(since);
 final Calendar obtainedSince = Calendar.getInstance();
 obtainedSince.setTime(roundtrip.getSince());

 // Assert all values are as expected
 Assert.assertEquals("Binary object was not mapped properly", image
[0], roundtrip.getImage()[0]);
 Assert.assertEquals("Temporal value was not mapped properly",
suppliedSince.get(Calendar.YEAR),
 obtainedSince.get(Calendar.YEAR));
 Assert.assertEquals("Temporal value was not mapped properly",
suppliedSince.get(Calendar.MONTH),
 obtainedSince.get(Calendar.MONTH));
 Assert.assertEquals("Temporal value was not mapped properly",
suppliedSince.get(Calendar.DATE),
 obtainedSince.get(Calendar.DATE));
 Assert.assertEquals("Enumerated value was not as expected", type,
roundtrip.getType());
 Assert.assertNull("Transient property should not have been
persisted", roundtrip.getCurrentAssignment());

 // Return
 return null;
 }
 });
 }
 catch (final TaskExecutionException tee)

Source Listing | 625

 {
 // Unwrap
 throw tee.getCause();
 }
 }

 /**
 * Shows usage of the 1:1 Unidirectional Mapping Between
 * {@link Employee} and {@link Address}
 * @throws Throwable
 */
 @Test
 public void oneToOneUnidirectionalMapping() throws Throwable
 {
 // Create a new Employee
 final Employee alrubinger = new Employee("Andrew Lee Rubinger");

 // Create a new Address
 final Address address = new Address("1 JBoss Way", "Boston", "MA");

 try
 {
 // Persist and associate an Employee and Address
 final Long employeeId = txWrapper.wrapInTx(new Callable<Long>()
 {

 @Override
 public Long call() throws Exception
 {
 // Get the EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(alrubinger);
 em.persist(address);

 // Associate
 alrubinger.setAddress(address);

 // Return
 return alrubinger.getId();
 }

 });

 // Now ensure when we look up the Address again by Employee after Tx has
 completed,
 // all's as expected
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get the EM

626 | Appendix F: Java Persistence APIs: Employee Registry Example

 final EntityManager em = emHook.getEntityManager();

 // Look up the employee
 final Employee roundtripEmployee = em.find(Employee.class,
employeeId);

 // Get the address
 final Address persistedAddress = roundtripEmployee.getAddress();

 // Ensure equal
 Assert.assertEquals("Persisted address association was not as
expected", address, persistedAddress);

 // Clean up the association so we can remove
 roundtripEmployee.setAddress(null);

 // Return
 return null;
 }

 });
 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }

 }

 /**
 * Shows usage of the 1:1 Bidirectional Mapping Between
 * {@link Employee} and {@link Computer}
 * @throws Throwable
 */
 @Test
 public void oneToOneBidirectionalMapping() throws Throwable
 {

 // Create a new Computer
 final Computer computer = new Computer();
 computer.setMake("Computicorp");
 computer.setModel("ZoomFast 100");

 // Create a new Employee
 final Employee carloDeWolf = new Employee("Carlo de Wolf");

 try
 {

 /*
 * We don't associate yet; our cascade policy will prohibit
 * persisting entities with relationships that are not themselves
 * yet persisted
 */

Source Listing | 627

 // Persist and associate
 final Long employeeId = txWrapper.wrapInTx(new Callable<Long>()
 {

 @Override
 public Long call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(carloDeWolf);
 em.persist(computer);

 // Associate *both* sides of a bidirectional relationship
 carloDeWolf.setComputer(computer);
 computer.setOwner(carloDeWolf);

 // Return
 return carloDeWolf.getId();
 }
 });

 // Now check all was associated correctly
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get the EM
 final EntityManager em = emHook.getEntityManager();

 // Get the Employee
 final Employee carloRoundtrip = em.find(Employee.class, employeeId);

 // Get the Computer via the Employee
 final Computer computerRoundtrip = carloRoundtrip.getComputer();

 // Get the Employee via the Computer
 final Employee ownerOfComputer = computer.getOwner();
 log.info("Employee " + carloRoundtrip + " has computer " +
computerRoundtrip);
 log.info("Computer " + computerRoundtrip + " has owner " + ownerOf
Computer);

 // Assert all's as expected
 Assert.assertEquals("Computer of employee was not as expected ",
computer, computerRoundtrip);
 Assert.assertEquals("Owner of computer was not as expected ",
carloDeWolf, ownerOfComputer);

 // Clean up the associations so we can remove
 ownerOfComputer.setComputer(null);

628 | Appendix F: Java Persistence APIs: Employee Registry Example

 computerRoundtrip.setOwner(null);

 // Return
 return null;
 }

 });
 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }

 }

 /**
 * Shows usage of the 1:N Unidirectional Mapping Between
 * {@link Employee} and {@link Phone}
 * @throws Throwable
 */
 @Test
 public void oneToManyUnidirectionalMapping() throws Throwable
 {
 // Create an Employee
 final Employee jaikiranPai = new Employee("Jaikiran Pai");

 // Create a couple Phones
 final Phone phone1 = new Phone();
 phone1.setNumber("800-USE-JBOSS");
 phone1.setType(PhoneType.WORK);
 final Phone phone2 = new Phone();
 phone2.setNumber("800-EJB-TIME");
 phone2.setType(PhoneType.MOBILE);

 try
 {
 // Persist and associate
 final Long employeeId = txWrapper.wrapInTx(new Callable<Long>()
 {

 @Override
 public Long call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(jaikiranPai);
 em.persist(phone1);
 em.persist(phone2);

 // Associate
 jaikiranPai.getPhones().add(phone1);
 jaikiranPai.getPhones().add(phone2);

Source Listing | 629

 // Return
 return jaikiranPai.getId();
 }
 });

 // Now check all was associated correctly
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get the EM
 final EntityManager em = emHook.getEntityManager();

 // Get the Employee
 final Employee jaikiranRoundtrip = em.find(Employee.class,
employeeId);

 // Get Phones via the Employee
 final Collection<Phone> phones = jaikiranRoundtrip.getPhones();
 log.info("Phones for " + jaikiranRoundtrip + ": " + phones);

 // Assert all's as expected
 final String assertionError = "Phones were not associated with the
employee as expected";
 Assert.assertEquals(assertionError, 2, phones.size());
 Assert.assertTrue(assertionError, phones.contains(phone1));
 Assert.assertTrue(assertionError, phones.contains(phone2));

 // Clean up the associations so we can remove things
 jaikiranRoundtrip.getPhones().clear();

 // Return
 return null;
 }

 });
 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }

 }

 /**
 * Shows usage of the 1:N Bidirectional Mapping Between
 * {@link Employee} and his/her reports {@link Employee}. Also
 * shows the Manager of an {@link Employee}.
 * @throws Throwable
 */
 @Test

630 | Appendix F: Java Persistence APIs: Employee Registry Example

 public void oneToManyBidirectionalMapping() throws Throwable
 {
 // Create a few Employees
 final Employee alrubinger = new Employee("Andrew Lee Rubinger");
 final Employee carloDeWolf = new Employee("Carlo de Wolf");
 final Employee jaikiranPai = new Employee("Jaikiran Pai");
 final Employee bigD = new Employee("Big D");

 try
 {
 // Persist and associate
 final Long managerId = txWrapper.wrapInTx(new Callable<Long>()
 {

 @Override
 public Long call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(jaikiranPai);
 em.persist(alrubinger);
 em.persist(carloDeWolf);
 em.persist(bigD);

 // Associate *both* sides of the bidirectional relationship
 final Collection<Employee> peonsOfD = bigD.getPeons();
 peonsOfD.add(alrubinger);
 peonsOfD.add(carloDeWolf);
 peonsOfD.add(jaikiranPai);
 alrubinger.setManager(bigD);
 carloDeWolf.setManager(bigD);
 jaikiranPai.setManager(bigD);

 // Return
 return bigD.getId();
 }
 });

 // Let the last Tx flush everything out, so lookup again
 // and perform assertions
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get the EM
 final EntityManager em = emHook.getEntityManager();

 // Get the Employee/Manager
 final Employee managerRoundtrip = em.find(Employee.class, manager
Id);

Source Listing | 631

 // Get the reports to the manager
 final Collection<Employee> peonsForManager = managerRoundtrip.get
Peons();
 log.info("Reports of " + managerRoundtrip + ": " + peonsForManager);

 // Assert all's as expected
 final String assertionMessage = "The Employee Manager/Reports
relationship was not as expected";
 Assert.assertEquals(assertionMessage, 3, peonsForManager.size());
 Assert.assertTrue(assertionMessage, peonsForManager.contains
(alrubinger));
 Assert.assertTrue(assertionMessage, peonsForManager.contains
(carloDeWolf));
 Assert.assertTrue(assertionMessage, peonsForManager.contains
(jaikiranPai));
 Assert.assertEquals(assertionMessage, bigD, alrubinger.getManager
());
 Assert.assertEquals(assertionMessage, bigD, carloDeWolf.getManager
());
 Assert.assertEquals(assertionMessage, bigD, jaikiranPai.getManager
());

 // Clean up the associations so we can remove things
 for (final Employee peon : peonsForManager)
 {
 peon.setManager(null);
 }
 peonsForManager.clear();

 // Return
 return null;
 }

 });

 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }
 }

 /**
 * Shows usage of the N:1 Unidirectional Mapping Between
 * {@link Customer} and his/her primary {@link Employee} contact.
 * @throws Throwable
 */
 @Test
 public void manyToOneUnidirectionalMapping() throws Throwable
 {
 // Create an Employee
 final Employee bstansberry = new Employee("Brian Stansberry");

 // Create a couple of Customers

632 | Appendix F: Java Persistence APIs: Employee Registry Example

 final Customer jgreene = new Customer("Jason T. Greene");
 final Customer bobmcw = new Customer("Bob McWhirter");

 try
 {
 // Persist and associate
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(bstansberry);
 em.persist(jgreene);
 em.persist(bobmcw);

 // Associate
 jgreene.setPrimaryContact(bstansberry);
 bobmcw.setPrimaryContact(bstansberry);

 // Return
 return null;
 }
 });

 // Lookup and perform assertions
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Get the customers
 final Customer jgreeneRoundtrip = em.find(Customer.class, jgreene.
getId());
 final Customer bobmcwRoundtrip = em.find(Customer.class, bobmcw.
getId());

 // Ensure all's as expected
 final String assertionMessage = "Primary contact was not assigned
as expected";
 Assert.assertEquals(assertionMessage, bstansberry, jgreeneRound
trip.getPrimaryContact());
 Assert.assertEquals(assertionMessage, bstansberry, bobmcwRoundtrip
.getPrimaryContact());

 // Clean up the associations so we can remove things
 jgreeneRoundtrip.setPrimaryContact(null);

Source Listing | 633

 bobmcwRoundtrip.setPrimaryContact(null);

 // Return
 return null;
 }
 });

 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }
 }

 /**
 * Shows usage of the N:N Unidirectional Mapping Between
 * {@link Customer} and his/her assigned {@link Task}s
 * @throws Throwable
 */
 @Test
 public void manyToManyUnidirectionalMapping() throws Throwable
 {
 // Create a couple of employees
 final Employee smarlow = new Employee("Scott Marlow");
 final Employee jpederse = new Employee("Jesper Pedersen");

 // Create a couple of tasks
 final Task task1 = new Task("Go to the JBoss User's Group - Boston");
 final Task task2 = new Task("Pick up flowers for Shelly McGowan");

 try
 {
 // Persist and associate
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(smarlow);
 em.persist(jpederse);
 em.persist(task1);
 em.persist(task2);

 // Associate
 task1.getOwners().add(smarlow);
 task1.getOwners().add(jpederse);
 task2.getOwners().add(smarlow);
 task2.getOwners().add(jpederse);

634 | Appendix F: Java Persistence APIs: Employee Registry Example

 // Return
 return null;
 }
 });

 // Lookup and perform assertions
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Get the tasks
 final Task task1Roundtrip = em.find(Task.class, task1.getId());
 final Task task2Roundtrip = em.find(Task.class, task2.getId());

 // Ensure all's as expected
 final String assertionMessage = "Task owners were not assigned as
expected";
 Assert.assertTrue(assertionMessage, task1Roundtrip.getOwners().
contains(smarlow));
 Assert.assertTrue(assertionMessage, task1Roundtrip.getOwners().
contains(jpederse));
 Assert.assertTrue(assertionMessage, task2Roundtrip.getOwners().
contains(smarlow));
 Assert.assertTrue(assertionMessage, task2Roundtrip.getOwners().
contains(jpederse));

 // Clean up the associations so we can remove things
 task1Roundtrip.getOwners().clear();
 task2Roundtrip.getOwners().clear();

 // Return
 return null;
 }
 });

 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }
 }

 /**
 * Shows usage of the N:N Unidirectional Mapping Between
 * {@link Employee} and his/her team members.
 * @throws Throwable
 */
 @Test
 public void manyToManyBidirectionalMapping() throws Throwable

Source Listing | 635

 {
 // Create a few employees
 final Employee pmuir = new Employee("Pete Muir");
 final Employee dallen = new Employee("Dan Allen");
 final Employee aslak = new Employee("Aslak Knutsen");

 // Create some teams
 final Team seam = new Team("Seam");
 final Team arquillian = new Team("Arquillian");

 try
 {
 // Persist and associate
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(pmuir);
 em.persist(dallen);
 em.persist(aslak);
 em.persist(seam);
 em.persist(arquillian);

 // Associate *both* directions
 seam.getMembers().add(dallen);
 seam.getMembers().add(pmuir);
 seam.getMembers().add(aslak);
 arquillian.getMembers().add(dallen);
 arquillian.getMembers().add(pmuir);
 arquillian.getMembers().add(aslak);
 aslak.getTeams().add(seam);
 aslak.getTeams().add(arquillian);
 dallen.getTeams().add(seam);
 dallen.getTeams().add(arquillian);
 pmuir.getTeams().add(seam);
 pmuir.getTeams().add(arquillian);

 // Return
 return null;
 }
 });

 // Lookup and perform assertions
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {

636 | Appendix F: Java Persistence APIs: Employee Registry Example

 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Get the teams and employees back out as managed objects
 final Team seamRoundtrip = em.find(Team.class, seam.getId());
 final Team arquillianRoundtrip = em.find(Team.class, arquillian.
getId());
 final Employee dallenRoundtrip = em.find(Employee.class, dallen.
getId());
 final Employee pmuirRoundtrip = em.find(Employee.class, pmuir.
getId());
 final Employee aslakRoundtrip = em.find(Employee.class, aslak.
getId());

 // Ensure all's as expected
 final String assertionMessage = "Team members were not assigned as
expected";
 Assert.assertTrue(assertionMessage, seamRoundtrip.getMembers().
contains(pmuir));
 Assert.assertTrue(assertionMessage, seamRoundtrip.getMembers().
contains(aslak));
 Assert.assertTrue(assertionMessage, seamRoundtrip.getMembers().
contains(dallen));
 Assert.assertTrue(assertionMessage, arquillianRoundtrip.getMembers
().contains(pmuir));
 Assert.assertTrue(assertionMessage, arquillianRoundtrip.getMembers
().contains(aslak));
 Assert.assertTrue(assertionMessage, arquillianRoundtrip.getMembers
().contains(dallen));
 Assert.assertTrue(assertionMessage, dallenRoundtrip.getTeams().
contains(seamRoundtrip));
 Assert.assertTrue(assertionMessage, dallenRoundtrip.getTeams().
contains(arquillianRoundtrip));
 Assert.assertTrue(assertionMessage, pmuirRoundtrip.getTeams().
contains(seamRoundtrip));
 Assert.assertTrue(assertionMessage, pmuirRoundtrip.getTeams().
contains(arquillianRoundtrip));
 Assert.assertTrue(assertionMessage, aslakRoundtrip.getTeams().
contains(seamRoundtrip));
 Assert.assertTrue(assertionMessage, aslakRoundtrip.getTeams().
contains(arquillianRoundtrip));

 // Clean up the associations so we can remove things
 aslakRoundtrip.getTeams().clear();
 dallenRoundtrip.getTeams().clear();
 pmuirRoundtrip.getTeams().clear();
 seamRoundtrip.getMembers().clear();
 arquillianRoundtrip.getMembers().clear();

 // Return
 return null;
 }
 });

 }

Source Listing | 637

 catch (final TaskExecutionException tee)
 {
 // Unwrap
 throw tee.getCause();
 }
 }

 /**
 * Ensures that JPA Entity Callbacks are received
 * @throws Exception
 */
 @Test
 public void entityCallbacks() throws Exception
 {
 // Precondition checks
 final String preconditionMessage = "Test setup is in error";
 Assert.assertFalse(preconditionMessage, EventTracker.postLoad);
 Assert.assertFalse(preconditionMessage, EventTracker.postPersist);
 Assert.assertFalse(preconditionMessage, EventTracker.postRemove);
 Assert.assertFalse(preconditionMessage, EventTracker.postUpdate);
 Assert.assertFalse(preconditionMessage, EventTracker.prePersist);
 Assert.assertFalse(preconditionMessage, EventTracker.preRemove);
 Assert.assertFalse(preconditionMessage, EventTracker.preUpdate);

 // Create a new employee
 final EntityListenerEmployee employee = new EntityListenerEmployee();

 // Put through the full lifecycle
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(employee);

 // Refresh
 em.refresh(employee);

 // Update
 employee.setName("New Name");
 em.flush();

 // Lookup
 em.find(EntityListenerEmployee.class, employee.getId());

 // Remove
 em.remove(employee);

 // Return
 return null;

638 | Appendix F: Java Persistence APIs: Employee Registry Example

 }
 });

 // Assert events fired
 final String postconditionMessage = "Missing event fired";
 Assert.assertTrue(postconditionMessage, EventTracker.postLoad);
 Assert.assertTrue(postconditionMessage, EventTracker.postPersist);
 Assert.assertTrue(postconditionMessage, EventTracker.postRemove);
 Assert.assertTrue(postconditionMessage, EventTracker.postUpdate);
 Assert.assertTrue(postconditionMessage, EventTracker.prePersist);
 Assert.assertTrue(postconditionMessage, EventTracker.preRemove);
 Assert.assertTrue(postconditionMessage, EventTracker.preUpdate);
 }

 /**
 * Ensures we may look up an entity by a JPA QL Query
 * @throws Exception
 */
 @Test
 public void jpaQlFind() throws Exception
 {
 // Create an employee
 final SimpleEmployee employee = new SimpleEmployee(ID_DAVE, NAME_DAVE);

 // Persist, then lookup
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(employee);

 // Lookup
 final String jpaQlQuery = "FROM " + SimpleEmployee.class.getSimple
Name() + " e WHERE e.name=?1";
 final SimpleEmployee roundtrip = (SimpleEmployee) em.createQuery
(jpaQlQuery).setParameter(1, NAME_DAVE)
 .getSingleResult();

 // Test obtained as expected
 Assert.assertEquals("Employee from JPA QL Query should equal the
record added", employee, roundtrip);

 // Return
 return null;
 }
 });
 }

 /**

Source Listing | 639

 * Ensures we may look up an entity by a Criteria API Query
 * @throws Exception
 */
 @Test
 public void criertiaAPIFind() throws Exception
 {
 // Create an employee
 final SimpleEmployee employee = new SimpleEmployee(ID_DAVE, NAME_DAVE);

 // Persist, then lookup
 txWrapper.wrapInTx(new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Get EM
 final EntityManager em = emHook.getEntityManager();

 // Persist
 em.persist(employee);

 // Lookup
 final CriteriaBuilder builder = em.getCriteriaBuilder();
 final CriteriaQuery<SimpleEmployee> query = builder.createQuery
(SimpleEmployee.class);
 Root<SimpleEmployee> root = query.from(SimpleEmployee.class);
 query.select(root).where(builder.equal(root.get("name"), NAME_DAVE));
 final SimpleEmployee roundtrip = (SimpleEmployee) em.createQuery
(query).getSingleResult();

 // Test obtained as expected
 Assert.assertEquals("Employee from Criteria API Query should equal
the record added", employee, roundtrip);

 // Return
 return null;
 }
 });
 }

 //--||
 // Internal Helper Methods ---||
 //--||

 /**
 * Issues a JPA QL Update to remove all entities of the specified type
 * @param type
 * @param em
 */
 private void deleteAllEntitiesOfType(final Class<?> type, final EntityManager
em)
 {
 assert em != null : EntityManager.class.getSimpleName() + " must be
specified";

640 | Appendix F: Java Persistence APIs: Employee Registry Example

 assert type != null : "type to be removed must be specified";
 // JPA QL String to remove all of the specified type
 log.info("Removed: " + em.createQuery("DELETE FROM " + type.getSimpleName()
 + " o").executeUpdate()
 + " entities of type " + type);
 }
}

Source Listing | 641

APPENDIX G

Security: Secured School Example

Description
Multiuser applications, in order to be secure, must respect that there are differences in
user types. For instance, perhaps a system administrator should be given access to alter
records hidden to typical users. Coding security logic inside our applications, however,
mixes concerns and makes code less maintainable. EJB therefore provides as a service
a role-based security model which is both declarative (via metadata) and programmatic
(via an API).

In this example we model a school with strict policies about who can open the doors
when. Here we showcase the use of @RolesAllowed, @DeclareRoles, @RunAs and
@PermitAll.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15571

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch15-secureschool/

Source Listing
Following is a full listing of all source code used in this runnable example.

Implementation Resources

FireDepartmentLocalBusiness.java

package org.jboss.ejb3.examples.ch15.secureschool.api;

/**
 * Represents a fire department capable of declaring

643

http://community.jboss.org/docs/DOC-15571
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch15-secureschool/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch15-secureschool/

 * a state of emergency. Anyone may invoke this support,
 * and when an alert is raised we'll close the local school.
 *
 * @author ALR
 * @version $Revision: $
 */
public interface FireDepartmentLocalBusiness
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Declares a state of emergency, so we must close the local school
 */
 void declareEmergency();

}

SchoolClosedException.java

package org.jboss.ejb3.examples.ch15.secureschool.api;

import javax.ejb.ApplicationException;
import javax.ejb.EJBAccessException;

import org.jboss.ejb3.examples.ch15.secureschool.impl.Roles;

/**
 * Thrown when a user in role other than {@link Roles#ADMIN}
 * attempts to open the front door to school while it's closed
 *
 * @author ALR
 * @version $Revision: $
 */
@ApplicationException(rollback = true)
// So this isn't wrapped in EJBException
public class SchoolClosedException extends EJBAccessException
{
 //--||
 // Class Members ---||
 //--||

 /**
 * serialVersionUID
 */
 private static final long serialVersionUID = 1L;

 //--||
 // Constructor ---||
 //--||

 /**
 * Constructs a new exception
 */

644 | Appendix G: Security: Secured School Example

 private SchoolClosedException(final String message)
 {
 super(message);
 }

 //--||
 // Factory ---||
 //--||

 /**
 * Constructs a new exception with the specified, required message
 * @param message
 * @throws IllegalArgumentException If the message is not specified
 */
 public static SchoolClosedException newInstance(final String message) throws
IllegalArgumentException
 {
 // Precondition checks
 if (message == null)
 {
 throw new IllegalArgumentException("message must be specified");
 }

 // Return
 return new SchoolClosedException(message);
 }

}

SecureSchoolLocalBusiness.java

package org.jboss.ejb3.examples.ch15.secureschool.api;

import org.jboss.ejb3.examples.ch15.secureschool.impl.Roles;

/**
 * Represents a school holding doors which may be
 * opened by various users. Using the EJB Security model,
 * access to open a particular door may be blocked
 * to certain users.
 *
 * @author ALR
 * @version $Revision: $
 */
public interface SecureSchoolLocalBusiness
{
 // ---||
 // Contracts ---||
 // ---||

 /**
 * Closes the school for business. At this point the
 * front door will be unlocked for all.
 * This method may only be called by users in role
 * {@link Roles#ADMIN}.

Source Listing | 645

 */
 void open();

 /**
 * Closes the school for business. At this point the
 * front door will be locked for all but users
 * in role {@link Roles#ADMIN}
 * This method may only be called by admins.
 */
 void close();

 /**
 * Opens the front door. While school is open,
 * any authenticated user may open the door, else
 * only the {@link Roles#ADMIN} may open.
 *
 * @throws SchoolClosedException If the current user
 * is not in {@link Roles#ADMIN} and is attempting to open
 * the door while {@link SecureSchoolLocalBusiness#isOpen()}
 * is false.
 */
 void openFrontDoor() throws SchoolClosedException;

 /**
 * Opens the service door. Users in {@link Roles#STUDENT}
 * role may not open this door, but {@link Roles#ADMIN}
 * and {@link Roles#JANITOR} may.
 */
 void openServiceDoor();

 /**
 * Returns whether or not the school is open. When closed, only
 * the {@link Roles#ADMIN} is allowed access to all doors. Anyone,
 * even unauthenticated users, may check if school is open.
 * @return
 */
 boolean isOpen();

}

FileDepartmentBean.java

package org.jboss.ejb3.examples.ch15.secureschool.impl;

import java.util.logging.Logger;

import javax.annotation.security.PermitAll;
import javax.annotation.security.RunAs;
import javax.ejb.EJB;
import javax.ejb.Singleton;

import org.jboss.ejb3.examples.ch15.secureschool.api.FireDepartmentLocalBusiness;
import org.jboss.ejb3.examples.ch15.secureschool.api.SecureSchoolLocalBusiness;

/**

646 | Appendix G: Security: Secured School Example

 * Bean implementation class of the fire department.
 * Closes the local school in case of emergency.
 *
 * @author ALR
 * @version $Revision: $
 */
@Singleton
@RunAs(Roles.ADMIN)
@PermitAll
// Implicit, but included here to show access policy
public class FireDepartmentBean implements FireDepartmentLocalBusiness
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(FireDepartmentBean.class.
getName());

 //--||
 // Instance Members --||
 //--||

 /**
 * School to close in case of emergency
 */
 @EJB
 private SecureSchoolLocalBusiness school;

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch15.secureschool.api.FireDepartmentLocal
Business#declareEmergency()
 */
 @Override
 public void declareEmergency()
 {
 log.info("Dispatching emergency support from the Fire Department, closing
local school");
 school.close();
 }

}

Source Listing | 647

Roles.java

package org.jboss.ejb3.examples.ch15.secureschool.impl;

/**
 * Holds the list of roles with which users of the school
 * may be affiliated. EJB Security is role-based, so this
 * is how we'll determine access.
 *
 * @author ALR
 * @version $Revision: $
 */
public interface Roles
{
 // ---||
 // Constants ---||
 // ---||

 /*
 * Roles of callers to the system
 */

 /**
 * Role denoting the user is a school administrator
 */
 String ADMIN = "Administrator";

 /**
 * Role denoting the user is a student
 */
 String STUDENT = "Student";

 /**
 * Role denoting the user is a janitor
 */
 String JANITOR = "Janitor";

}

SecureSchoolBean.java

package org.jboss.ejb3.examples.ch15.secureschool.impl;

import java.util.logging.Logger;

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.annotation.security.DeclareRoles;
import javax.annotation.security.PermitAll;
import javax.annotation.security.RolesAllowed;
import javax.ejb.Local;
import javax.ejb.SessionContext;
import javax.ejb.Singleton;
import javax.ejb.Startup;

648 | Appendix G: Security: Secured School Example

import org.jboss.ejb3.examples.ch15.secureschool.api.SchoolClosedException;
import org.jboss.ejb3.examples.ch15.secureschool.api.SecureSchoolLocalBusiness;

/**
 * A secure school which may block requests to
 * open doors depending upon the EJB Security
 * model's configuration
 *
 * @author ALR
 * @version $Revision: $
 */
@Singleton
@Local(SecureSchoolLocalBusiness.class)
// Declare the roles in the system
@DeclareRoles(
{Roles.ADMIN, Roles.STUDENT, Roles.JANITOR})
// By default allow no one access, we'll enable access at a finer-grained level
@RolesAllowed(
{})
@Startup
public class SecureSchoolBean implements SecureSchoolLocalBusiness
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(SecureSchoolBean.class.get
Name());

 //--||
 // Instance Members --||
 //--||

 /**
 * Whether or not the school is open
 */
 private boolean open;

 /**
 * Hook to the container to get security information
 */
 @Resource
 private SessionContext context;

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch15.secureschool.api.SecureSchoolLocal

Source Listing | 649

Business#openFrontDoor()
 */
 // Give everyone access to this method, we may restrict them later
 @RolesAllowed(
 {Roles.ADMIN, Roles.STUDENT, Roles.JANITOR})
 @Override
 public void openFrontDoor()
 {
 // If we've reached this point, EJB security has let us through. However,
 // we may want to apply some contextual rules. Because EJB security is
 // declarative at the method level, we use the API to enforce specific logic.

 // Get the caller
 final String callerName = context.getCallerPrincipal().getName();

 // Ensure the school is open
 if (!open)
 {
 // School's closed, so only let admins open the door
 if (!context.isCallerInRole(Roles.ADMIN))
 {
 // Kick 'em out
 throw SchoolClosedException
 .newInstance("Attempt to open the front door after hours is
prohibited to all but admins, denied to: "
 + callerName);
 }
 }

 // Log
 log.info("Opening front door for: " + callerName);
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch15.secureschool.api.SecureSchoolLocal
Business#openServiceDoor()
 */
 @RolesAllowed(
 {Roles.ADMIN, Roles.JANITOR})
 // Students cannot open this door
 @Override
 public void openServiceDoor()
 {
 log.info("Opening service door for: " + context.getCallerPrincipal().get
Name());
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch15.secureschool.api.SecureSchoolLocal
Business#close()
 */
 @RolesAllowed(Roles.ADMIN)
 // Only let admins open and close the school

650 | Appendix G: Security: Secured School Example

 @Override
 public void close()
 {
 this.open = false;
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch15.secureschool.api.SecureSchoolLocal
Business#open()
 */
 @Override
 @PostConstruct
 // School is open when created
 @RolesAllowed(Roles.ADMIN)
 // Only let admins open and close the school
 public void open()
 {
 this.open = true;
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch15.secureschool.api.SecureSchoolLocal
Business#isOpen()
 */
 @Override
 @PermitAll
 // Anyone can check if school is open
 public boolean isOpen()
 {
 return open;
 }
}

Test Resources

SecureSchoolIntegrationTest.java

package org.jboss.ejb3.examples.ch15.secureschool;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.logging.Logger;

import javax.ejb.EJB;
import javax.ejb.EJBAccessException;
import javax.ejb.SessionContext;
import javax.inject.Inject;

Source Listing | 651

import javax.naming.Context;
import javax.naming.NamingException;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.arquillian.prototyping.context.api.ArquillianContext;
import org.jboss.ejb3.examples.ch15.secureschool.api.FireDepartmentLocalBusiness;
import org.jboss.ejb3.examples.ch15.secureschool.api.SchoolClosedException;
import org.jboss.ejb3.examples.ch15.secureschool.api.SecureSchoolLocalBusiness;
import org.jboss.ejb3.examples.ch15.secureschool.impl.SecureSchoolBean;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.Assert;
import org.junit.Test;
import org.junit.runner.RunWith;

/**
 * Test Cases to ensure the SecureSchoolEJB
 * is working as contracted with regards to
 * its security model.
 *
 * @author ALR
 * @version $Revision: $
 */
@RunWith(Arquillian.class)
public class SecureSchoolIntegrationTest
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(SecureSchoolIntegrationTest
.class.getName());

 /**
 * The EJB JAR to be deployed into the server
 * @return
 */
 @Deployment
 public static JavaArchive getDeployment()
 {
 final JavaArchive archive = ShrinkWrap.create("secureSchool.jar", Java
Archive.class).addPackages(false,
 SecureSchoolLocalBusiness.class.getPackage(), SecureSchoolBean.class.
getPackage());
 log.info(archive.toString(true));
 return archive;
 }

 /**
 * Name of a role with "Administrator" role

652 | Appendix G: Security: Secured School Example

 */
 private static String USER_NAME_ADMIN = "admin";

 /**
 * Password for the "admin" user
 */
 private static String PASSWORD_ADMIN = "adminPassword";

 /**
 * Name of a role with "Student" role
 */
 private static String USER_NAME_STUDENT = "student";

 /**
 * Password for the "student" user
 */
 private static String PASSWORD_STUDENT = "studentPassword";

 /**
 * Name of a role with "Janitor" role
 */
 private static String USER_NAME_JANITOR = "janitor";

 /**
 * Password for the "admin" user
 */
 private static String PASSWORD_JANITOR = "janitorPassword";

 /**
 * JNDI Name at which we'll look up the EJB
 */
 //TODO Would be great to wire up Arquillian to use a supplied JNDI Context
(with login properties) to inject the EJB
 private static final String JNDI_NAME_EJB = "SecureSchoolBeanLocal";

 //--||
 // Instance Members --||
 //--||

 /**
 * Hook to Arquillian so we can create new JNDI Contexts using supplied
properties
 */
 @Inject
 private ArquillianContext arquillianContext;

 /**
 * EJB proxy injected without any explicit login or authentication/authorization.
 * Behind the scenes, Arquillian is using a default JNDI Context without any
 * login properties to inject the proxy into this target.
 */
 @EJB
 private SecureSchoolLocalBusiness unauthenticatedSchool;

 /**

Source Listing | 653

 * Reference to the fire department from an unauthenticated user.
 * If we use this EJB to declare an emergency, anyone may close
 * the school.
 */
 @EJB
 private FireDepartmentLocalBusiness fireDepartment;

 //--||
 // Tests ---||
 //--||

 /**
 * Ensures that an unauthenticated user cannot open the front door
 */
 @Test(expected = EJBAccessException.class)
 public void unauthenticatedUserCannotOpenFrontDoor() throws NamingException
 {

 // Try to open the front door before we've authenticated; should fail
 unauthenticatedSchool.openFrontDoor();
 }

 /**
 * Ensures that the "student" user can open the front door
 */
 @Test
 public void studentCanOpenFrontDoor() throws NamingException
 {

 /*
 * This login and lookup code is specific to OpenEJB container
 */

 // Log in via JNDI as "student" user
 final Context context = this.login(USER_NAME_STUDENT, PASSWORD_STUDENT);

 try
 {
 // Get
 final SecureSchoolLocalBusiness school = this.getEjb(context);

 // Invoke (should succeed, not fail with unauthorized errors)
 school.openFrontDoor();
 }
 finally
 {
 // Clean up, closing the context to log out
 context.close();
 }
 }

 /**
 * Ensures that the "janitor" user can open the service door
 */
 @Test

654 | Appendix G: Security: Secured School Example

 public void janitorCanOpenServiceDoor() throws NamingException
 {

 /*
 * This login and lookup code is specific to OpenEJB container
 */

 // Log in via JNDI as "janitor" user
 final Context context = this.login(USER_NAME_JANITOR, PASSWORD_JANITOR);

 try
 {
 // Get
 final SecureSchoolLocalBusiness school = this.getEjb(context);

 // Invoke (should succeed, not fail with unauthorized errors)
 school.openServiceDoor();
 }
 finally
 {
 // Clean up, closing the context to log out
 context.close();
 }
 }

 /**
 * Ensures that the "student" user cannot open the service door
 */
 @Test(expected = EJBAccessException.class)
 public void studentCannotOpenServiceDoor() throws NamingException
 {

 /*
 * This login and lookup code is specific to OpenEJB container
 */

 // Log in via JNDI as "student" user
 final Context context = this.login(USER_NAME_STUDENT, PASSWORD_STUDENT);

 try
 {
 // Get
 final SecureSchoolLocalBusiness school = this.getEjb(context);

 // Invoke (should fail)
 school.openServiceDoor();
 }
 finally
 {
 // Clean up, closing the context to log out
 context.close();
 }
 }

 /**

Source Listing | 655

 * Ensures that the "student" user cannot close the school (and go home early
;))
 */
 @Test(expected = EJBAccessException.class)
 public void studentCannotCloseSchool() throws NamingException
 {

 /*
 * This login and lookup code is specific to OpenEJB container
 */

 // Log in via JNDI as "student" user
 final Context context = this.login(USER_NAME_STUDENT, PASSWORD_STUDENT);

 try
 {
 // Get
 final SecureSchoolLocalBusiness school = this.getEjb(context);

 // Invoke (should fail)
 school.close();
 }
 finally
 {
 // Clean up, closing the context to log out
 context.close();
 }
 }

 /**
 * Ensures that the "admin" user can close the school
 */
 @Test
 public void adminCanCloseSchool() throws NamingException
 {

 /*
 * This login and lookup code is specific to OpenEJB container
 */

 // Log in via JNDI as "admin" user
 final Context context = this.login(USER_NAME_ADMIN, PASSWORD_ADMIN);

 try
 {
 // Get
 final SecureSchoolLocalBusiness school = this.getEjb(context);

 // Invoke (should succeed)
 school.close();

 // Test
 Assert.assertFalse("School should now be closed", school.isOpen());

 // Reset the school to open for subsequent tests

656 | Appendix G: Security: Secured School Example

 school.open();

 // Test
 Assert.assertTrue("School should now be open", school.isOpen());
 }
 finally
 {
 // Clean up, closing the context to log out
 context.close();
 }
 }

 /**
 * Ensures that an unauthenticated user can check if a school is open
 */
 @Test
 public void unauthenticatedUserCanCheckIfSchoolIsOpen()
 {

 // See if school is open
 Assert.assertTrue("Unauthenticated user should see that school is open",
unauthenticatedSchool.isOpen());
 }

 /**
 * Ensures that a student cannot open the front door
 * when school is closed; tests programmatic security via
 * {@link SessionContext} in the implementation class
 */
 @Test(expected = SchoolClosedException.class)
 public void studentCannotOpenFrontDoorsWhenSchoolIsClosed() throws Throwable
 {
 /*
 * This login and lookup code is specific to OpenEJB container
 */

 try
 {
 // Log in via JNDI as "admin" user
 final Context context = this.login(USER_NAME_ADMIN, PASSWORD_ADMIN);

 // Get
 final SecureSchoolLocalBusiness school = this.getEjb(context);

 // Close the school
 school.close();

 // Log out
 context.close();

 // Test that we're closed
 Assert.assertFalse("School should now be closed", school.isOpen());

 // Now try to open the front doors as a student. We do this in another
Thread

Source Listing | 657

 // because OpenEJB will associate the security context with this
 // Thread to "admin" (from above)
 final Callable<Void> studentOpenDoorTask = new Callable<Void>()
 {

 @Override
 public Void call() throws Exception
 {
 // Log in via JNDI as "student" user
 final Context context = SecureSchoolIntegrationTest.this.login
(USER_NAME_STUDENT, PASSWORD_STUDENT);

 try
 {
 // Get
 final SecureSchoolLocalBusiness school = SecureSchool
IntegrationTest.this.getEjb(context);

 // Try to open the door (should fail)
 school.openFrontDoor();

 // Return
 return null;
 }
 finally
 {
 context.close();
 }
 }
 };
 final ExecutorService service = Executors.newSingleThreadExecutor();
 final Future<Void> future = service.submit(studentOpenDoorTask);
 try
 {
 future.get();// Should fail here
 }
 catch (final ExecutionException ee)
 {

 // Unwrap, should throw SchoolClosedException
 throw ee.getCause();
 }

 }
 finally
 {
 // Cleanup and open the school for other tests
 final Context context = this.login(USER_NAME_ADMIN, PASSWORD_ADMIN);
 final SecureSchoolLocalBusiness school = this.getEjb(context);

 // Reset the school to open for subsequent tests
 school.open();

 // Test
 Assert.assertTrue("School should now be open", school.isOpen());

658 | Appendix G: Security: Secured School Example

 // Clean up, closing the context to log out
 context.close();

 }
 }

 /**
 * Ensures that any unauthenticated user can declare an emergency, hence
closing the school
 */
 @Test
 public void anyoneCanDeclareEmergencyAndCloseSchool() throws NamingException
 {

 // First check that school's open
 Assert.assertTrue("School should be open to start the test",
unauthenticatedSchool.isOpen());

 // Ensure we can't close the school directly (we don't have access)
 boolean gotAccessException = false;
 try
 {
 unauthenticatedSchool.close();
 }
 catch (final EJBAccessException e)
 {
 // Expected
 log.info("We can't close the school on our own, make an emergency");
 gotAccessException = true;
 }
 Assert.assertTrue("We shouldn't be able to close school directly", got
AccessException);

 // Now declare an emergency via the fire department
 fireDepartment.declareEmergency();

 // The school should now be closed, even though we don't have rights to do
that directly on our own.
 Assert.assertFalse("School should be closed after emergency was declared",
unauthenticatedSchool.isOpen());

 // Reset the school to open
 // Cleanup and open the school for other tests
 final Context context = this.login(USER_NAME_ADMIN, PASSWORD_ADMIN);
 try
 {
 final SecureSchoolLocalBusiness school = this.getEjb(context);

 // Reset the school to open for subsequent tests
 school.open();

 // Test
 Assert.assertTrue("School should now be open", school.isOpen());
 }

Source Listing | 659

 finally
 {
 // Clean up, closing the context to log out
 context.close();
 }

 }

 //--||
 // Internal Helper Methods ---||
 //--||

 /**
 * Logs in to JNDI (and by extension, the EJB security system)
 * with the specified username and password. This mechanism is
 * specific to the OpenEJB container.
 */
 private Context login(final String username, final String password)
 {
 // Precondition checks
 assert username != null : "username must be supplied";
 assert password != null : "password must be supplied";

 // Log in and create a context
 final Map<String, Object> namingContextProps = new HashMap<String, Object>();
 namingContextProps.put(Context.SECURITY_PRINCIPAL, username);
 namingContextProps.put(Context.SECURITY_CREDENTIALS, password);
 final Context context = arquillianContext.get(Context.class, namingContext
Props);

 // Return
 return context;
 }

 /**
 * Obtains a proxy to the EJB via the specified JNDI Context (through
 * which the user may have authenticated)
 * @param context
 * @return
 * @throws NamingException
 */
 private SecureSchoolLocalBusiness getEjb(final Context context) throws Naming
Exception
 {
 // Look up in JNDI specific to OpenEJB
 //TODO Use Global JNDI
 return (SecureSchoolLocalBusiness) context.lookup(JNDI_NAME_EJB);
 }
}

660 | Appendix G: Security: Secured School Example

groups.properties

OpenEJB Roles Configuration
Format: Role=Username
Administrator=admin
Janitor=janitor
Student=student

users.properties

OpenEJB Users Configuration
Format: Username=Password
admin=adminPassword
student=studentPassword
janitor=janitorPassword

Source Listing | 661

APPENDIX H

Transactions:
Blackjack Game Example

Description
All but the most simple of applications will have the requirement that a composite
action, say, “Register a User,” succeeds or fails completely. In these cases, the single
request is in fact a collection of many smaller pieces of work. If any of these smaller
pieces fail halfway through the request, our application can be left in some inconsistent
or error state. The use of transactions verifies that all compound actions comply with
the ACID properties (atomicity, consistency, isolation, and durability). In other words,
compound actions will either complete or fail as a single unit.

EJB offers declarative and programmatic support for transactions via the Java EE
TransactionManager, and it comes complete with annotations/XML to manage trans-
actional boundaries.

Our example is a transactionally aware poker service, showing the use of
@TransactionAttribute and the various TransactionAttributeTypes.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15573

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch17-transactions/

Source Listing
Following is a full listing of all source code used in this runnable example.

663

http://community.jboss.org/docs/DOC-15573
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch17-transactions/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch17-transactions/

Implementation Resources

BankLocalBusiness.java

package org.jboss.ejb3.examples.ch17.transactions.api;

import java.math.BigDecimal;

import org.jboss.ejb3.examples.ch17.transactions.entity.Account;

/**
 * Defines the contract for a bank
 *
 * @author ALR
 * @version $Revision: $
 */
public interface BankLocalBusiness
{

 //--||
 // Constants ---||
 //--||

 /**
 * JNDI Name to which we'll bind
 */
 String JNDI_NAME = "BankLocalBusiness";

 //--||
 // Contracts ---||
 //--||

 /**
 * Withdraws the specified amount from the account with
 * the specified ID, returning the new balance.
 * @param amount
 * @throws IllegalArgumentException If the amount is not specified, the account
 * ID is not valid, or the amount to be withdrawn is less than 0
 * @throws InsufficientBalanceException If the amount to be withdrawn is greater
 * than the value of {@link Account#getBalance()}.
 */
 BigDecimal withdraw(long accountId, BigDecimal amount) throws IllegalArgument
Exception, InsufficientBalanceException;

 /**
 * Deposits the specified amount from the account with the
 * specified ID, returning the new balance.
 * @param amount
 * @throws IllegalArgumentException If the amount is not specified, the account
 * ID is not valid, or the amount to be deposited is less than 0
 */
 BigDecimal deposit(long accountId, BigDecimal amount) throws IllegalArgument
Exception;

 /**

664 | Appendix H: Transactions: Blackjack Game Example

 * Obtains the current balance from the account with the specified ID
 * @param accountId
 * @return
 * @throws IllegalArgumentException If the account ID is not valid
 */
 BigDecimal getBalance(long accountId) throws IllegalArgumentException;

 /**
 * Transfers the specified amount from one account to another
 * @param accountIdFrom The ID of the account from which we'll withdraw
 * @param accountIdTo The ID of the account to which we'll deposit
 * @param amount The amount to be transferred
 * @throws IllegalArgumentException If the amount is not specified, the amount
is
 * less than 0, or either account ID is invalid
 * @throws InsufficientBalanceException If the amount is greater than the
current
 * balance of the "from" account
 */
 void transfer(long accountIdFrom, long accountIdTo, BigDecimal amount) throws
IllegalArgumentException,
 InsufficientBalanceException;

 /**
 * Transfers the specified amount from one account to another
 * @param accountFrom The account from which we'll withdraw
 * @param accountTo The account to which we'll deposit
 * @param amount The amount to be transferred
 * @throws IllegalArgumentException If the amount is not specified, the amount
is
 * less than 0, or either account ID is invalid
 * @throws InsufficientBalanceException If the amount is greater than the
current
 * balance of the "from" account
 */
 void transfer(Account accountFrom, Account accountTo, BigDecimal amount) throws
IllegalArgumentException,
 InsufficientBalanceException;
}

BlackjackGameLocalBusiness.java

package org.jboss.ejb3.examples.ch17.transactions.api;

import java.math.BigDecimal;

import org.jboss.ejb3.examples.ch17.transactions.entity.User;

/**
 * Contract of a service capable of simulating
 * a single game of blackjack. The actual gameplay is not modeled,
 * only the inputs and outputs of a single trial.
 *
 * @author ALR
 * @version $Revision: $

Source Listing | 665

 */
public interface BlackjackGameLocalBusiness
{
 //--||
 // Constants ---||
 //--||

 /**
 * Name to which we'll bind in JNDI
 */
 String JNDI_NAME = "PokerGameLocal";

 //--||
 // Contracts ---||
 //--||

 /**
 * Places a single bet, returning if the bet won or lost. If the result
 * is a win, the amount specified will be transferred from the Blackjack Service
 * account to {@link User#getAccount()}, else it will be deducted from the user
account
 * and placed into the Blackjack Service account.
 *
 * @return Whether the bet won or lost
 * @param userId The ID of the user placing the bet
 * @param amount The amount of the bet
 * @throws IllegalArgumentException If either the user of the amount is not
specified or
 * the amount is a negative number.
 * @throws InsufficientBalanceException If the user does not have enough in
his/her account
 * to cover the bet
 */
 boolean bet(long userId, BigDecimal amount) throws IllegalArgumentException,
InsufficientBalanceException;

}

InsufficientBalanceException.java

package org.jboss.ejb3.examples.ch17.transactions.api;

import javax.ejb.ApplicationException;

/**
 * Exception thrown when attempting to invoke an operation that requires
 * more funds than are currently available
 *
 * @author ALR
 * @version $Revision: $
 */
@ApplicationException(rollback = true)
public class InsufficientBalanceException extends Exception
{

666 | Appendix H: Transactions: Blackjack Game Example

 //--||
 // Class Members ---||
 //--||

 /**
 * serialVersionUID
 */
 private static final long serialVersionUID = 1L;

 //--||
 // Constructor ---||
 //--||

 /**
 * Creates a new {@link InsufficientBalanceException} with the specified message
 */
 public InsufficientBalanceException(final String message)
 {
 super(message);
 }

}

Account.java

package org.jboss.ejb3.examples.ch17.transactions.entity;

import java.math.BigDecimal;
import java.math.MathContext;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.OneToOne;
import javax.persistence.Transient;

import org.jboss.ejb3.examples.ch17.transactions.api.InsufficientBalanceException;
import org.jboss.ejb3.examples.testsupport.entity.IdentityBase;

/**
 * Entity representing a bank account; maintains a current balance
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
public class Account extends IdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * The owner of the account
 */

Source Listing | 667

 @OneToOne(cascade = CascadeType.PERSIST)
 private User owner;

 /**
 * Current balance of the account
 */
 private BigDecimal balance = new BigDecimal(0, new MathContext(2));

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the balance
 */
 public BigDecimal getBalance()
 {
 return this.balance;
 }

 /**
 * @param balance the balance to set
 */
 public void setBalance(final BigDecimal balance)
 {
 this.balance = balance;
 }

 /**
 * @return the owner
 */
 public User getOwner()
 {
 return owner;
 }

 /**
 * @param owner the owner to set
 */
 public void setOwner(final User owner)
 {
 this.owner = owner;
 }

 //--||
 // Functional Methods --||
 //--||

 /**
 * Withdraws the specified amount from the account, returning the
 * new balance.
 * @param amount
 * @throws IllegalArgumentException
 * @throws InsufficientBalanceException If the amount to be withdrawn is greater
 * than the value of {@link Account#getBalance()}.

668 | Appendix H: Transactions: Blackjack Game Example

 */
 @Transient
 public BigDecimal withdraw(final BigDecimal amount) throws IllegalArgument
Exception, InsufficientBalanceException
 {
 // Precondition checks
 if (amount == null)
 {
 throw new IllegalArgumentException("amount must be specified");
 }
 final BigDecimal current = this.getBalance();
 if (amount.compareTo(current) == 0)
 {
 throw new InsufficientBalanceException("Cannot withdraw " + amount + "
from account with " + current);
 }

 // Subtract and return the new balance
 final BigDecimal newBalanceShoes = balance.subtract(amount);
 this.setBalance(newBalanceShoes);
 return newBalanceShoes;
 }

 /**
 * Deposits the specified amount from the account, returning the
 * new balance.
 * @param amount
 * @throws IllegalArgumentException
 */
 @Transient
 public BigDecimal deposit(final BigDecimal amount) throws IllegalArgument
Exception
 {
 // Precondition checks
 if (amount == null)
 {
 throw new IllegalArgumentException("amount must be specified");
 }

 // Add and return the new balance
 final BigDecimal newBalanceShoes = balance.add(amount);
 this.setBalance(newBalanceShoes);
 return newBalanceShoes;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()

Source Listing | 669

 {
 final User owner = this.getOwner();
 return "Account [id=" + this.getId() + ", balance=" + balance + ", owner="
 + (owner == null ? "No Owner" : owner.getId()) + "]";
 }

}

User.java

package org.jboss.ejb3.examples.ch17.transactions.entity;

import javax.persistence.CascadeType;
import javax.persistence.Entity;
import javax.persistence.OneToOne;

import org.jboss.ejb3.examples.testsupport.entity.IdentityBase;

/**
 * Entity representing a user of the poker service
 *
 * @author ALR
 * @version $Revision: $
 */
@Entity
public class User extends IdentityBase
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Name of the user
 */
 private String name;

 /**
 * The user's poker account
 */
 @OneToOne(cascade = CascadeType.PERSIST)
 private Account account;

 //--||
 // Accessors / Mutators --||
 //--||

 /**
 * @return the name
 */
 public String getName()
 {
 return name;
 }

670 | Appendix H: Transactions: Blackjack Game Example

 /**
 * @param name the name to set
 */
 public void setName(final String name)
 {
 this.name = name;
 }

 /**
 * @return the account
 */
 public Account getAccount()
 {
 return account;
 }

 /**
 * @param account the account to set
 */
 public void setAccount(Account account)
 {
 this.account = account;
 }

 //--||
 // Overridden Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return User.class.getSimpleName() + " [id=" + this.getId() + ", name=" +
name + ", account=" + account + "]";
 }

}

BankBean.java

package org.jboss.ejb3.examples.ch17.transactions.impl;

import java.math.BigDecimal;
import java.util.logging.Logger;

import javax.ejb.Local;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.persistence.EntityManager;
import javax.persistence.EntityNotFoundException;
import javax.persistence.PersistenceContext;

Source Listing | 671

import org.jboss.ejb3.annotation.LocalBinding;
import org.jboss.ejb3.examples.ch17.transactions.api.BankLocalBusiness;
import org.jboss.ejb3.examples.ch17.transactions.api.InsufficientBalanceException;
import org.jboss.ejb3.examples.ch17.transactions.entity.Account;

/**
 * The bank with which users and the Poker provider
 * may interact with underlying accounts. For instance
 * winning or losing a bet will result in an account
 * transfer between the user account and the poker
 * system account.
 *
 * @author ALR
 * @version $Revision: $
 */
@Stateless
@Local(BankLocalBusiness.class)
@LocalBinding(jndiBinding = BankLocalBusiness.JNDI_NAME)
public class BankBean implements BankLocalBusiness
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(BankBean.class.getName());

 //--||
 // Instance Members --||
 //--||

 /**
 * JPA hook
 */
 @PersistenceContext
 private EntityManager em;

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch17.transactions.api.BankLocalBusiness
#deposit(long, java.math.BigDecimal)
 */
 @Override
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 // Default Tx Attribute; create a new Tx if not present, else use the existing
 public BigDecimal deposit(long accountId, final BigDecimal amount) throws
IllegalArgumentException

672 | Appendix H: Transactions: Blackjack Game Example

 {
 // Get the account
 final Account account = this.getAccount(accountId);

 // Deposit
 return account.deposit(amount);

 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch17.transactions.api.BankLocalBusiness#get
Balance(long)
 */
 @Override
 @TransactionAttribute(TransactionAttributeType.SUPPORTS)
 // Don't require a Tx is in play, but respect a currently operating
 // one so we get the correct visibility from inside the Tx
 public BigDecimal getBalance(long accountId) throws IllegalArgumentException
 {
 // Get the account
 final Account account = this.getAccount(accountId);

 // We don't expose this account object to callers at all; its changes
 // elsewhere in the (optional) Tx should not be synchronized with the DB
 // in case of a write
 em.detach(account);

 // Return the current balance
 return account.getBalance();

 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch17.transactions.api.BankLocalBusiness
#transfer(long, long, java.math.BigDecimal)
 */
 @Override
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 // Default Tx Attribute; create a new Tx if not present, else use the existing
 public void transfer(long accountIdFrom, long accountIdTo, BigDecimal amount)
throws IllegalArgumentException,
 InsufficientBalanceException
 {
 // Get the accounts in question
 final Account accountFrom = this.getAccount(accountIdFrom);
 final Account accountTo = this.getAccount(accountIdTo);

 // Delegate
 this.transfer(accountFrom, accountTo, amount);

 }

 /**

Source Listing | 673

 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch17.transactions.api.BankLocalBusiness#
transfer(org.jboss.ejb3.examples.ch17.transactions.entity.Account, org.jboss.ejb3.
examples.ch17.transactions.entity.Account, java.math.BigDecimal)
 */
 @Override
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 // Default Tx Attribute; create a new Tx if not present, else use the existing
 public void transfer(final Account accountFrom, final Account accountTo, final
 BigDecimal amount)
 throws IllegalArgumentException, InsufficientBalanceException
 {
 // Precondition checks
 if (accountFrom == null)
 {
 throw new IllegalArgumentException("accountFrom must be specified");
 }
 if (accountTo == null)
 {
 throw new IllegalArgumentException("accountTo must be specified");
 }

 // Withdraw (which will throw InsufficientBalance if that's the case)
 accountFrom.withdraw(amount);

 // And put the money into the new account
 accountTo.deposit(amount);
 log.info("Deposited " + amount + " to " + accountTo + " from " + account
From);

 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch17.transactions.api.BankLocalBusiness
#withdraw(long, java.math.BigDecimal)
 */
 @Override
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 // Default Tx Attribute; create a new Tx if not present, else use the existing
 public BigDecimal withdraw(long accountId, BigDecimal amount) throws Illegal
ArgumentException,
 InsufficientBalanceException
 {
 // Get the account
 final Account account = this.getAccount(accountId);

 // Withdraw
 return account.withdraw(amount);
 }

 //--||
 // Internal Helper Methods ---||
 //--||

674 | Appendix H: Transactions: Blackjack Game Example

 /**
 * Obtains the {@link Account} with the specified ID
 *
 * @throws IllegalArgumentException If the ID does not represent a valid Account
 */
 private Account getAccount(final long accountId) throws IllegalArgumentException
 {
 // Get the account
 final Account account;
 try
 {
 account = em.find(Account.class, new Long(accountId));
 }
 // Translate the exception; we were given a bad input
 catch (final EntityNotFoundException enfe)
 {
 throw new IllegalArgumentException("Could not find account with ID " +
accountId);
 }

 // Return
 return account;
 }
}

BlackjackGameBean.java

package org.jboss.ejb3.examples.ch17.transactions.impl;

import java.math.BigDecimal;

import javax.ejb.EJB;
import javax.ejb.Local;
import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

import org.jboss.ejb3.annotation.LocalBinding;
import org.jboss.ejb3.examples.ch17.transactions.api.BankLocalBusiness;
import org.jboss.ejb3.examples.ch17.transactions.api.BlackjackGameLocalBusiness;
import org.jboss.ejb3.examples.ch17.transactions.api.InsufficientBalanceException;
import org.jboss.ejb3.examples.ch17.transactions.entity.Account;
import org.jboss.ejb3.examples.ch17.transactions.entity.User;

/**
 * Implementation of a service capable of placing single
 * bets upon a blackjack game. Though the gameplay itself is not
 * modeled, its inputs and outputs are done transactionally.
 * Each game is to take place in its own Tx, suspending
 * an existing Tx if one is in play. This is to ensure
 * that the output of each game is committed (you win or lose)
 * regardless of if an error occurs later within the caller's Tx.
 * Once your money's on the table, there's no going back! :)

Source Listing | 675

 *
 * @author ALR
 * @version $Revision: $
 */
@Stateless
@Local(BlackjackGameLocalBusiness.class)
@LocalBinding(jndiBinding = BlackjackGameLocalBusiness.JNDI_NAME)
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
// Each game must be in a new Tx, suspending the existing enclosing Tx if
necessary;
// At the class-level, this annotation now applied to all methods
public class BlackjackGameBean implements BlackjackGameLocalBusiness
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Zero value used for comparison
 */
 private static final BigDecimal ZERO = new BigDecimal(0);

 //--||
 // Instance Members --||
 //--||

 /**
 * Hook to JPA
 */
 @PersistenceContext
 private EntityManager em;

 /**
 * The bank service which will handle account transfers
 * during win/lose
 */
 @EJB
 private BankLocalBusiness bank;

 //--||
 // Required Implementations --||
 //--||
 /**
 * @see org.jboss.ejb3.examples.ch17.transactions.api.BlackjackGameLocal
Business#bet(long, java.math.BigDecimal)
 */
 @Override
 public boolean bet(final long userId, final BigDecimal amount) throws Illegal
ArgumentException,
 InsufficientBalanceException
 {
 // Precondition checks
 if (userId < 0)
 {

676 | Appendix H: Transactions: Blackjack Game Example

 throw new IllegalArgumentException("userId must be valid (>0)");
 }
 if (amount == null)
 {
 throw new IllegalArgumentException("amount must be specified");
 }
 if (amount.compareTo(ZERO) < 0)
 {
 throw new IllegalArgumentException("amount must be greater than 0");
 }

 // Check the balance of the user account
 final Account userAccount = em.find(User.class, new Long(userId)).get
Account();
 final BigDecimal currentBalanceUserAccount = userAccount.getBalance();
 if (amount.compareTo(currentBalanceUserAccount) > 0)
 {
 throw new InsufficientBalanceException("Cannot place bet of " + amount +
 " when the user account has only "
 + currentBalanceUserAccount);
 }

 // Fake the game logic and just determine if the user wins
 final boolean win = Math.random() > 0.5;

 // Get the Poker Service account (assume we always have enough to back our
bet, these are just tests :))
 final Account blackjackServiceAccount = em.find(Account.class, Blackjack
ServiceConstants.ACCOUNT_BLACKJACKGAME_ID);

 // Transfer the money based upon the outcome
 if (win)
 {
 bank.transfer(blackjackServiceAccount, userAccount, amount);
 }
 else
 {
 bank.transfer(userAccount, blackjackServiceAccount, amount);
 }

 // Return the outcome
 return win;
 }
}

BlackjackServiceConstants.java

package org.jboss.ejb3.examples.ch17.transactions.impl;

import java.math.BigDecimal;

/**
 * Constants used by the implementation of the
 * {@link BlackjackGameBean}
 *

Source Listing | 677

 * @author ALR
 * @version $Revision: $
 */
public interface BlackjackServiceConstants
{
 //--||
 // Constants ---||
 //--||

 long USER_BLACKJACKGAME_ID = 1L;

 String USER_BLACKJACKGAME_NAME = "The Blackjack Game System";

 long ACCOUNT_BLACKJACKGAME_ID = 1L;

 BigDecimal INITIAL_ACCOUNT_BALANCE_BLACKJACKGAME = new BigDecimal(10000);
}

persistence.xml

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="tempdb">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 <!--

 You can enable this for Hibernate to dump SQL output to STDOUT
 <property name="hibernate.show_sql" value="true"/>

 -->
 </properties>
 </persistence-unit>
</persistence>

Test Resources

TransactionalBlackjackGameIntegrationTest.java

package org.jboss.ejb3.examples.ch17.transactions;

import java.math.BigDecimal;
import java.util.concurrent.Callable;
import java.util.logging.Logger;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.persistence.EntityManager;

678 | Appendix H: Transactions: Blackjack Game Example

import junit.framework.Assert;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.api.Run;
import org.jboss.arquillian.api.RunModeType;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.ejb3.examples.ch17.transactions.api.BankLocalBusiness;
import org.jboss.ejb3.examples.ch17.transactions.api.BlackjackGameLocalBusiness;
import org.jboss.ejb3.examples.ch17.transactions.ejb.DbInitializerBean;
import org.jboss.ejb3.examples.ch17.transactions.ejb.ExampleUserData;
import org.jboss.ejb3.examples.ch17.transactions.entity.Account;
import org.jboss.ejb3.examples.ch17.transactions.entity.User;
import org.jboss.ejb3.examples.ch17.transactions.impl.BankBean;
import org.jboss.ejb3.examples.ch17.transactions.impl.BlackjackServiceConstants;
import org.jboss.ejb3.examples.testsupport.dbinit.DbInitializerLocalBusiness;
import org.jboss.ejb3.examples.testsupport.dbquery.EntityManagerExposingBean;
import org.jboss.ejb3.examples.testsupport.dbquery.EntityManagerExposingLocal
Business;
import org.jboss.ejb3.examples.testsupport.entity.IdentityBase;
import org.jboss.ejb3.examples.testsupport.txwrap.ForcedTestException;
import org.jboss.ejb3.examples.testsupport.txwrap.TaskExecutionException;
import org.jboss.ejb3.examples.testsupport.txwrap.TxWrappingBean;
import org.jboss.ejb3.examples.testsupport.txwrap.TxWrappingLocalBusiness;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.After;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;
import org.junit.runner.RunWith;

/**
 * Test cases to ensure that the Blackjack Game
 * is respecting transactional boundaries at the appropriate
 * granularity.
 *
 * @author ALR
 * @version $Revision: $
 */
@RunWith(Arquillian.class)
@Run(RunModeType.AS_CLIENT)
public class TransactionalBlackjackGameIntegrationTest
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(TransactionalBlackjackGame
IntegrationTest.class.getName());

 /**

Source Listing | 679

 * Naming Context
 * @deprecated Remove when Arquillian will inject the EJB proxies
 */
 @Deprecated
 private static Context jndiContext;

 /**
 * The Deployment into the EJB Container
 */
 @Deployment
 public static JavaArchive getDeployment()
 {
 final JavaArchive archive = ShrinkWrap.create("test.jar", JavaArchive.class
).addPackages(true,
 BankLocalBusiness.class.getPackage(), User.class.getPackage()).add
ManifestResource("persistence.xml")
 .addPackages(false, DbInitializerBean.class.getPackage(), TxWrapping
LocalBusiness.class.getPackage(),
 BankBean.class.getPackage(), DbInitializerLocalBusiness.class.
getPackage(),
 EntityManagerExposingBean.class.getPackage(), IdentityBase.
class.getPackage());
 log.info(archive.toString(true));
 return archive;
 }

 //--||
 // Instance Members --||
 //--||

 /**
 * Test-only DB initializer to sanitize and prepopulate the DB with each test
run
 */
 // TODO: Support Injection of @EJB here when Arquillian for Embedded JBossAS
will support it
 private DbInitializerLocalBusiness dbInitializer;

 /**
 * EJB which wraps supplied {@link Callable} instances inside of a new Tx
 */
 // TODO: Support Injection of @EJB here when Arquillian for Embedded JBossAS
will support it
 private TxWrappingLocalBusiness txWrapper;

 /**
 * EJB which provides direct access to an {@link EntityManager}'s method for
use in testing.
 * Must be called inside an existing Tx so that returned entities are not
detached.
 */
 // TODO: Support Injection of @EJB here when Arquillian for Embedded JBossAS
will support it
 private EntityManagerExposingLocalBusiness emHook;

680 | Appendix H: Transactions: Blackjack Game Example

 /**
 * Bank EJB Proxy
 */
 // TODO: Support Injection of @EJB here when Arquillian for Embedded JBossAS
will support it
 private BankLocalBusiness bank;

 /**
 * Blackjack Game EJB Proxy
 */
 // TODO: Support Injection of @EJB here when Arquillian for Embedded JBossAS
will support it
 private BlackjackGameLocalBusiness blackjackGame;

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Performs suite-wide initialization
 */
 @BeforeClass
 public static void init() throws Exception
 {
 // After the server is up, we don't need to pass any explicit properties
 jndiContext = new InitialContext();
 }

 /**
 * Manually looks up EJBs in JNDI and assigns them
 * @deprecated Remove when Arquillian will handle the injection for us
 */
 @Deprecated
 @Before
 public void injectEjbs() throws Exception
 {
 // Fake injection by doing manual lookups for the time being
 dbInitializer = (DbInitializerLocalBusiness) jndiContext.lookup(Db
InitializerBean.class.getSimpleName()
 + "/local");
 txWrapper = (TxWrappingLocalBusiness) jndiContext.lookup(TxWrappingBean.
class.getSimpleName() + "/local");
 emHook = (EntityManagerExposingLocalBusiness) jndiContext.lookup(Entity
ManagerExposingBean.class.getSimpleName()
 + "/local");
 bank = (BankLocalBusiness) jndiContext.lookup(BankLocalBusiness.JNDI_NAME);
 blackjackGame = (BlackjackGameLocalBusiness) jndiContext.lookup(Blackjack
GameLocalBusiness.JNDI_NAME);
 }

 /**
 * Clears and repopulates the database with test data
 * after each run
 * @throws Exception
 */

Source Listing | 681

 @After
 public void refreshWithDefaultData() throws Exception
 {
 dbInitializer.refreshWithDefaultData();
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Ensures that Transfers between accounts obey the ACID properties of
Transactions
 */
 @Test
 public void transferRetainsIntegrity() throws Throwable
 {

 // Init
 final long alrubingerAccountId = ExampleUserData.ACCOUNT_ALRUBINGER_ID;
 final long blackjackAccountId = BlackjackServiceConstants.ACCOUNT_BLACKJACK
GAME_ID;

 // Ensure there's the expected amounts in both the ALR and Blackjack accounts
 final BigDecimal expectedinitialALR = ExampleUserData.INITIAL_ACCOUNT_
BALANCE_ALR;
 final BigDecimal expectedinitialBlackjack = BlackjackServiceConstants.
INITIAL_ACCOUNT_BALANCE_BLACKJACKGAME;
 this.executeInTx(new CheckBalanceOfAccountTask(alrubingerAccountId,
expectedinitialALR),
 new CheckBalanceOfAccountTask(blackjackAccountId, expectedinitial
Blackjack));

 // Transfer $100 from ALR to Blackjack
 final BigDecimal oneHundred = new BigDecimal(100);
 bank.transfer(alrubingerAccountId, blackjackAccountId, oneHundred);

 // Ensure there's $100 less in the ALR account, and $100 more in the
blackjack account
 this.executeInTx(new CheckBalanceOfAccountTask(alrubingerAccountId,
expectedinitialALR.subtract(oneHundred)),
 new CheckBalanceOfAccountTask(blackjackAccountId, expectedinitialBlack
jack.add(oneHundred)));

 // Now make a transfer, check it succeeded within the context of a
Transaction, then
 // intentionally throw an exception. The Tx should complete as rolled back,
 // and the state should be consistent (as if the xfer request never took
place).
 boolean gotExpectedException = false;
 final Callable<Void> transferTask = new Callable<Void>()
 {
 @Override
 public Void call() throws Exception
 {

682 | Appendix H: Transactions: Blackjack Game Example

 bank.transfer(alrubingerAccountId, blackjackAccountId, oneHundred);
 return null;
 }
 };
 try
 {
 this.executeInTx(transferTask, new CheckBalanceOfAccountTask(alrubinger
AccountId, expectedinitialALR.subtract(
 oneHundred).subtract(oneHundred)), new CheckBalanceOfAccountTask
(blackjackAccountId, expectedinitialBlackjack
 .add(oneHundred).add(oneHundred)), ForcedTestExceptionTask.
INSTANCE);
 }
 // Expected
 catch (final ForcedTestException fte)
 {
 gotExpectedException = true;
 }
 Assert.assertTrue("Did not receive expected exception as signaled from the
test; was not rolled back",
 gotExpectedException);

 // Now that we've checked the transfer succeeded from within the Tx, then
we threw an
 // exception before committed, ensure the Tx rolled back and the transfer
was reverted from the
 // perspective of everyone outside the Tx.
 this.executeInTx(new CheckBalanceOfAccountTask(alrubingerAccountId,
expectedinitialALR.subtract(oneHundred)),
 new CheckBalanceOfAccountTask(blackjackAccountId, expectedinitial
Blackjack.add(oneHundred)));
 }

 /**
 * Ensures that when we make a sequence of bets enclosed in a single Tx,
 * some exceptional condition at the end doesn't roll back the prior
 * history. Once we've won/lost a bet, that bet's done. This tests that
 * each bet takes place in its own isolated Tx.
 */
 @Test
 public void sequenceOfBetsDoesntRollBackAll() throws Throwable
 {
 // Get the original balance for ALR; this is done outside a Tx
 final BigDecimal originalBalance = bank.getBalance(ExampleUserData.ACCOUNT_
ALRUBINGER_ID);
 log.info("Starting balance before playing blackjack: " + originalBalance);

 // Execute 11 bets enclosed in a new Tx, and ensure that the account
transfers
 // took place as expected. Then throw an exception to rollback the parent
Tx.
 final BigDecimal betAmount = new BigDecimal(20);
 final Place11BetsThenForceExceptionTask task = new Place11BetsThenForce
ExceptionTask(betAmount);
 boolean gotForcedException = false;

Source Listing | 683

 try
 {
 this.executeInTx(task);
 }
 catch (final ForcedTestException tfe)
 {
 // Expected
 gotForcedException = true;
 }
 Assert.assertTrue("Did not obtain the test exception as expected", got
ForcedException);

 // Now we've ensured that from inside the calling Tx we saw the account
balances
 // were as expected. But we rolled back that enclosing Tx, so ensure that
the outcome
 // of the games was not ignored
 final BigDecimal afterBetsBalance = bank.getBalance(ExampleUserData.ACCOUNT
_ALRUBINGER_ID);
 final int gameOutcomeCount = task.gameOutcomeCount;
 new AssertGameOutcome(originalBalance, afterBetsBalance, gameOutcomeCount,
betAmount).call();
 }

 //--||
 // Internal Helpers --||
 //--||

 /**
 * Task which asserts given an account original balance,
 * ending balance, game outcome count, and bet amount, that funds
 * remaining are as expected.
 */
 private static final class AssertGameOutcome implements Callable<Void>
 {
 private final BigDecimal originalBalance;

 private final int gameOutcomeCount;

 private final BigDecimal betAmount;

 private final BigDecimal afterBetsBalance;

 AssertGameOutcome(final BigDecimal originalBalance, final BigDecimal after
BetsBalance,
 final int gameOutcomeCount, final BigDecimal betAmount)
 {
 this.originalBalance = originalBalance;
 this.gameOutcomeCount = gameOutcomeCount;
 this.betAmount = betAmount;
 this.afterBetsBalance = afterBetsBalance;
 }

 @Override
 public Void call() throws Exception

684 | Appendix H: Transactions: Blackjack Game Example

 {
 // Calculate expected
 final BigDecimal expectedGains = betAmount.multiply(new BigDecimal(game
OutcomeCount));
 final BigDecimal expectedBalance = originalBalance.add(expectedGains);

 // Assert
 Assert.assertTrue("Balance after all bets was not as expected " + expect
edBalance + " but was "
 + afterBetsBalance, expectedBalance.compareTo(afterBetsBalance) ==
 0);

 // Return
 return null;
 }

 }

 /**
 * A task that places 11 bets, then manually throws a {@link ForcedTest
Exception}.
 * This is so we may check that the balance transfers happened as
 * expected from within the context of the Tx in which this task will run, but
 * also such that we can ensure that even if an exceptional case happens after
 bets have taken
 * place, the completed bets do not roll back. Once the money's on the table,
 you can't take
 * it back. ;)
 */
 private final class Place11BetsThenForceExceptionTask implements Callable<Void>
 {
 /**
 * Tracks how many games won/lost. A negative
 * number indicates games lost; positive: won.
 */
 private int gameOutcomeCount = 0;

 private final BigDecimal betAmount;

 Place11BetsThenForceExceptionTask(final BigDecimal betAmount)
 {
 this.betAmount = betAmount;
 }

 @Override
 public Void call() throws Exception
 {

 // Find the starting balance
 final long alrubingerAccountId = ExampleUserData.ACCOUNT_ALRUBINGER_ID;
 final BigDecimal startingBalance = bank.getBalance(alrubingerAccountId);

 // Now run 11 bets
 for (int i = 0; i < 11; i++)
 {

Source Listing | 685

 // Track whether we win or lose
 final boolean win = blackjackGame.bet(ExampleUserData.ACCOUNT_
ALRUBINGER_ID, betAmount);
 gameOutcomeCount += win ? 1 : −1;
 }
 log.info("Won " + gameOutcomeCount + " games at " + betAmount + "/game");

 // Get the user's balance after the bets
 final BigDecimal afterBetsBalance = bank.getBalance(alrubingerAccountId);

 // Ensure that money's been allocated properly
 new AssertGameOutcome(startingBalance, afterBetsBalance, gameOutcome
Count, betAmount).call();

 // Now force an exception to get a Tx rollback. This should *not*
affect the
 // money already transferred during the bets, as they should have taken
place
 // in nested Txs and already committed.
 throw new ForcedTestException();
 }

 }

 /**
 * A task that checks that the account balance of an {@link Account}
 * with specified ID equals a specified expected value. Typically to be run
 * inside of a Tx via {@link TransactionalBlackjackGameIntegrationTest
#executeInTx(Callable...)}.
 *
 * @author ALR
 * @version $Revision: $
 */
 private final class CheckBalanceOfAccountTask implements Callable<Void>
 {

 private long accountId;

 private BigDecimal expectedBalance;

 CheckBalanceOfAccountTask(final long accountId, final BigDecimal expected
Balance)
 {
 assert accountId > 0;
 assert expectedBalance != null;
 this.accountId = accountId;
 this.expectedBalance = expectedBalance;
 }

 @Override
 public Void call() throws Exception
 {
 final Account account = emHook.getEntityManager().find(Account.class,
accountId);
 Assert.assertTrue("Balance was not as expected", expectedBalance.compare

686 | Appendix H: Transactions: Blackjack Game Example

To(account.getBalance()) == 0);
 return null;
 }

 }

 /**
 * Task which throws a {@link TaskExecutionException} for use in testing
 * for instance to force a Tx Rollback
 *
 *
 * @author ALR
 * @version $Revision: $
 */
 private enum ForcedTestExceptionTask implements Callable<Void> {
 INSTANCE;

 @Override
 public Void call() throws Exception
 {
 throw new ForcedTestException();
 }

 }

 /**
 * Executes the specified tasks inside of a Tx, courtesy of the
 * {@link TxWrappingLocalBusiness} view.
 */
 private void executeInTx(final Callable<?>... tasks) throws Throwable
 {
 // Precondition checks
 assert tasks != null : "Tasks must be specified";

 // Execute in a single new Tx, courtesy of the TxWrapping EJB
 try
 {
 txWrapper.wrapInTx(tasks);
 }
 catch (final TaskExecutionException tee)
 {
 // Unwrap the real cause
 throw tee.getCause();
 }
 }
}

DbInitializerBean.java

package org.jboss.ejb3.examples.ch17.transactions.ejb;

import java.util.Collection;

import javax.ejb.Local;
import javax.ejb.Singleton;

Source Listing | 687

import javax.ejb.Startup;
import javax.ejb.TransactionManagement;
import javax.ejb.TransactionManagementType;

import org.jboss.ejb3.examples.ch17.transactions.entity.Account;
import org.jboss.ejb3.examples.ch17.transactions.entity.User;
import org.jboss.ejb3.examples.ch17.transactions.impl.BlackjackServiceConstants;
import org.jboss.ejb3.examples.testsupport.dbinit.DbInitializerBeanBase;
import org.jboss.ejb3.examples.testsupport.dbinit.DbInitializerLocalBusiness;

/**
 * Singleton EJB to initialize and prepopulate
 * the database state before running tests. Also permits
 * refreshing the DB with default state via
 * {@link DbInitializerLocalBusiness#refreshWithDefaultData()}.
 *
 * @author ALR
 * @version $Revision: $
 */
@Singleton
@Startup
@Local(DbInitializerLocalBusiness.class)
// JBoss-specific JNDI Binding annotation
@TransactionManagement(TransactionManagementType.BEAN)
// We'll use bean-managed Tx's here, because @PostConstruct is fired in a
// non-transactional context anyway, and we want to have consistent
// handling when we call via "refreshWithDefaultData".
public class DbInitializerBean extends DbInitializerBeanBase
{

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.testsupport.dbinit.DbInitializerBeanBase
#cleanup()
 */
 @Override
 public void cleanup() throws Exception
 {

 // Delete existing data
 final Collection<Account> accounts = em.createQuery("SELECT o FROM " +
Account.class.getSimpleName() + " o",
 Account.class).getResultList();
 final Collection<User> users = em.createQuery("SELECT o FROM " + User.class
.getSimpleName() + " o", User.class)
 .getResultList();
 for (final Account account : accounts)
 {
 em.remove(account);
 }
 for (final User user : users)

688 | Appendix H: Transactions: Blackjack Game Example

 {
 em.remove(user);
 }

 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.testsupport.dbinit.DbInitializerBeanBase
#populateDefaultData()
 */
 @Override
 public void populateDefaultData() throws Exception
 {

 /*
 * Create some users
 */

 // ALR
 final User alrubinger = new User();
 alrubinger.setId(ExampleUserData.USER_ALRUBINGER_ID);
 alrubinger.setName(ExampleUserData.USER_ALRUBINGER_NAME);
 final Account alrubingerAccount = new Account();
 alrubingerAccount.deposit(ExampleUserData.INITIAL_ACCOUNT_BALANCE_ALR);
 alrubingerAccount.setOwner(alrubinger);
 alrubingerAccount.setId(ExampleUserData.ACCOUNT_ALRUBINGER_ID);
 alrubinger.setAccount(alrubingerAccount);

 // Poker Game Service
 final User blackjackGameService = new User();
 blackjackGameService.setId(BlackjackServiceConstants.USER_BLACKJACKGAME_ID);
 blackjackGameService.setName(BlackjackServiceConstants.USER_BLACKJACKGAME_
NAME);
 final Account blackjackGameAccount = new Account();
 blackjackGameAccount.deposit(BlackjackServiceConstants.INITIAL_ACCOUNT_
BALANCE_BLACKJACKGAME);
 blackjackGameAccount.setOwner(blackjackGameService);
 blackjackGameAccount.setId(BlackjackServiceConstants.ACCOUNT_BLACKJACKGAME_
ID);
 blackjackGameService.setAccount(blackjackGameAccount);

 // Persist
 em.persist(alrubinger);
 log.info("Created: " + alrubinger);
 em.persist(blackjackGameService);
 log.info("Created: " + blackjackGameService);

 }
}

Source Listing | 689

ExampleUserData.java

package org.jboss.ejb3.examples.ch17.transactions.ejb;

import java.math.BigDecimal;

/**
 * Contains example user data to be seeded in testing
 *
 * @author ALR
 * @version $Revision: $
 */
public interface ExampleUserData
{
 /*
 * Test Data
 */

 long USER_ALRUBINGER_ID = 2L;

 String USER_ALRUBINGER_NAME = "Andrew Lee Rubinger";

 long ACCOUNT_ALRUBINGER_ID = 2L;

 BigDecimal INITIAL_ACCOUNT_BALANCE_ALR = new BigDecimal(500);
}

690 | Appendix H: Transactions: Blackjack Game Example

APPENDIX I

Interceptors:
TV Channel Service Example

Description
As we’ve seen with security and transactions, often we have business logic that is not
a part of our core concerns. Quite the opposite; applications are likely to have rules
that need to be universal across modules or EJBs, and baking this logic into our im-
plementation mixes concerns and makes for an unmaintainable system over time.

Much like Servlet Filters or AOP aspects, the EJB Interceptor model provides a mech-
anism for application developers to apply logic to incoming requests. The
@Interceptors annotation quickly acts as a mapping marker for the EJB container to
know to apply a particular interceptor for a given invocation.

Our example represents a television server which is capable of returning channel
streams when a channel number is requested by the client. We apply a custom security
policy whereby Channel 2 may be closed by an administrator; if a client requests
Channel 2 while access is disallowed, the invocation will return a “Chan-
nel2ClosedException”. All of this logic is separated from the core code to return the
channel requested, and therefore may be applied to other modules or unplugged from
the system without need to alter the existing application in any way.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15574

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch18-interceptors/

691

http://community.jboss.org/docs/DOC-15574
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch18-interceptors/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch18-interceptors/

Source Listing
Following is a full listing of all source code used in this runnable example.

Implementation Resources

AuditedInvocation.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.security.Principal;

import javax.interceptor.InvocationContext;

/**
 * Data object encapsulating the auditable properties behind an invocation
 *
 * @author ALR
 * @version $Revision: $
 */
public class AuditedInvocation
{

 //--||
 // Instance Members --||
 //--||

 /**
 * Invoked context
 */
 private final InvocationContext context;

 /**
 * Caller
 */
 private final Principal caller;

 //--||
 // Constructor ---||
 //--||

 /**
 * Creates a new instance
 */
 AuditedInvocation(final InvocationContext context, final Principal caller)
 {
 // Precondition checks
 assert context != null : "context must be specified";
 assert caller != null : "caller must be specified";

692 | Appendix I: Interceptors: TV Channel Service Example

 // Set
 this.context = context;
 this.caller = caller;
 }

 //--||
 // Functional Methods --||
 //--||

 /**
 * @return the context
 */
 public InvocationContext getContext()
 {
 return context;
 }

 /**
 * @return the caller
 */
 public Principal getCaller()
 {
 return caller;
 }

}

CachingAuditor.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.security.Principal;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.logging.Logger;

import javax.annotation.Resource;
import javax.ejb.SessionContext;
import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;

/**
 * Aspect which keeps a cache of all intercepted
 * invocations in a globally accessible cache.
 *
 * Though demonstrative for testing and learning purposes, this is a very
 * poor example of a real-world auditing mechanism. In a production environment,
 * the copy-on-write nature of the cache will degrade geometrically
 * over time, and additionally we export mutable views
 * (ie. {@link InvocationContext#setParameters(Object[])}) to callers
 * of {@link CachingAuditor#getInvocations()}.
 *

Source Listing | 693

 * @author ALR
 * @version $Revision: $
 */
public class CachingAuditor
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(CachingAuditor.class.get
Name());

 /**
 * Cached invocations; must be in a thread-safe implementation because this
member
 * is shared by all interceptor instances, which are linked to bean instances.
Though
 * each bean instance is guaranteed to be used by only one thread at once,
many bean instances
 * may be executed concurrently.
 */
 private static final List<AuditedInvocation> invocations = new CopyOnWrite
ArrayList<AuditedInvocation>();

 //--||
 // Instance Members --||
 //--||

 /**
 * The current EJB Context; will either be injected by the EJB Container or
 * manually populated by unit tests
 */
 @Resource
 SessionContext beanContext;

 //--||
 // Required Implementations --||
 //--||

 /**
 * Caches the intercepted invocation in an auditable view such that
 * it may later be obtained
 */
 @AroundInvoke
 public Object audit(final InvocationContext invocationContext) throws Exception
 {
 // Precondition checks
 assert invocationContext != null : "Context was not specified";

 // Obtain the caller
 Principal caller;

694 | Appendix I: Interceptors: TV Channel Service Example

 try
 {
 caller = beanContext.getCallerPrincipal();
 }
 catch (final NullPointerException npe)
 {
 caller = new Principal()
 {

 @Override
 public String getName()
 {
 return "Unauthenticated Caller";
 }
 };
 }

 // Create a new view
 final AuditedInvocation audit = new AuditedInvocation(invocationContext,
caller);

 // Add the invocation to the cache
 invocations.add(audit);

 // Carry out the invocation, noting where we've intercepted before and after
the call (around it)
 try
 {
 // Log
 log.info("Intercepted: " + invocationContext);

 // Return
 return invocationContext.proceed();
 }
 finally
 {
 // Log
 log.info("Done with: " + invocationContext);
 }

 }

 //--||
 // Functional Methods --||
 //--||

 /**
 * Returns a read-only view of the {@link InvocationContext}
 * cached by this interceptor
 */
 public static List<AuditedInvocation> getInvocations()
 {

Source Listing | 695

 // Copy on export
 return Collections.unmodifiableList(invocations);
 }

 /**
 * Test-only hook to clear the invocations
 */
 static void clearInTesting()
 {
 invocations.clear();
 }
}

Channel2AccessPolicy.java

package org.jboss.ejb3.examples.ch18.tuner;

/**
 * Defines the authoritative policy governing whether or not
 * Channel 2 should be currently accessible
 *
 * @author ALR
 * @version $Revision: $
 */
public class Channel2AccessPolicy
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Flag dictating whether or not Channel 2 should be shown
 */
 private static boolean channel2Permitted = false;

 //--||
 // Constructor ---||
 //--||

 /**
 * No instantiation
 */
 private Channel2AccessPolicy()
 {
 throw new UnsupportedOperationException("No instances permitted");
 }

696 | Appendix I: Interceptors: TV Channel Service Example

 //--||
 // Functional Methods --||
 //--||

 /**
 * Returns whether or not requests to view Channel 2 will be honored
 */
 public static boolean isChannel2Permitted()
 {
 return channel2Permitted;
 }

 /**
 * Returns whether or not requests to view Channel 2 will be honored
 */
 public static void setChannel2Permitted(final boolean channel2Permitted)
 {
 Channel2AccessPolicy.channel2Permitted = channel2Permitted;
 }
}

Channel2ClosedException.java

package org.jboss.ejb3.examples.ch18.tuner;

import javax.ejb.ApplicationException;

/**
 * Denotes that Channel 2 is not currently available for viewing
 *
 * @author ALR
 * @version $Revision: $
 */
@ApplicationException
// Denotes that this exception type should be returned to the client as-is, not
wrapped
public class Channel2ClosedException extends Exception
{

 //--||
 // Class Members ---||
 //--||

 /**
 * serialVersionUID
 */
 private static final long serialVersionUID = 1L;

 /**
 * The sole instance, this type has no state
 */

Source Listing | 697

 public static final Channel2ClosedException INSTANCE;
 static
 {
 INSTANCE = new Channel2ClosedException();
 }

 /**
 * Message for all incoming Exceptions
 */
 private static final String MSG = "Channel 2 is not currently available for
viewing";

 //--||
 // Constructor ---||
 //--||

 /**
 * Constructs a new instance
 */
 private Channel2ClosedException()
 {
 super(MSG);
 }
}

Channel2Restrictor.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.lang.reflect.Method;
import java.util.logging.Logger;

import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;

/**
 * Aspect which restricts access to Channel 2 unless
 * the network has allowed broadcasting.
 *
 * @author ALR
 * @version $Revision: $
 */
public class Channel2Restrictor
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(Channel2Restrictor.class.
getName());

698 | Appendix I: Interceptors: TV Channel Service Example

 /**
 * Name of the method to request channel content
 */
 private static final String METHOD_NAME_GET_CHANNEL;
 static
 {
 METHOD_NAME_GET_CHANNEL = TunerLocalBusiness.class.getMethods()[0].getName();
 }

 //--||
 // Required Implementations --||
 //--||

 /**
 * Examines the specified request to determine if the caller is attempting
 * to obtain content for Channel 2. If so, and Channel 2 is currently closed,
 * will block the request, instead throwing {@link Channel2ClosedException}
 */
 @AroundInvoke
 public Object checkAccessibility(final InvocationContext context) throws
Exception
 {
 // Precondition checks
 assert context != null : "Context was not specified";

 // See if we're requesting Channel 2
 if (isRequestForChannel2(context))
 {
 // See if Channel 2 is open
 if (!Channel2AccessPolicy.isChannel2Permitted())
 {
 // Block access
 throw Channel2ClosedException.INSTANCE;
 }
 }

 // Otherwise carry on
 return context.proceed();
 }

 //--||
 // Functional Methods --||
 //--||

 /**
 * Determines whether or not the specified context represents a request for
Channel 2
 */
 private static boolean isRequestForChannel2(final InvocationContext context)
 {
 // Precondition check
 assert context != null : "Context was not specified";

Source Listing | 699

 // Get the target method
 final Method targetMethod = context.getMethod();

 // If we're requesting a new channel
 final String targetMethodName = targetMethod.getName();
 if (targetMethodName.equals(METHOD_NAME_GET_CHANNEL))
 {
 log.info("This is a request for channel content: " + context);
 // Get the requested channel
 final int channel = ((Integer) context.getParameters()[0]).intValue();
 if (channel == 2)
 {
 // Yep, they want channel 2
 return true;
 }
 }

 // Return
 return false;
 }
}

TunerBean.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.io.IOException;
import java.io.InputStream;
import java.util.logging.Logger;

import javax.ejb.Local;
import javax.ejb.Stateless;
import javax.interceptor.Interceptors;
import javax.interceptor.InvocationContext;

/**
 * Simple EJB which returns references back to the client. Used to
 * show configuration of interceptors; here we've configured the
 * {@link CachingAuditor} to remember all previous
 * {@link InvocationContext}s made upon the EJB.
 *
 * @author ALR
 * @version $Revision: $
 */
@Stateless
// Class-level interceptors will be run upon requests to every method of this EJB
@Interceptors(CachingAuditor.class)
@Local(TunerLocalBusiness.class)
public class TunerBean implements TunerLocalBusiness
{

700 | Appendix I: Interceptors: TV Channel Service Example

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(TunerBean.class.getName());

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch18.tuner.TunerLocalBusiness#getChannel(int)
 */
 // Here we declare method-level interceptors, which will only take place on
this method
 @Interceptors(Channel2Restrictor.class)
 @Override
 public InputStream getChannel(final int channel) throws IllegalArgumentException
 {
 // Declare the stream we'll use
 final InputStream stream;
 switch (channel)
 {
 // We want channel 1
 case 1 :
 stream = new InputStream()
 {

 @Override
 public int read() throws IOException
 {
 return 1;
 }
 };
 break;
 // We want channel 2
 case 2 :
 stream = new InputStream()
 {

 @Override
 public int read() throws IOException
 {
 return 2;
 }
 };
 break;

Source Listing | 701

 // We've requested an improper channel
 default :
 throw new IllegalArgumentException("Not a valid channel: " + channel);
 }

 // Return
 log.info("Returning stream for Channel " + channel + ": " + stream);
 return stream;
 }
}

TunerLocalBusiness.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.io.InputStream;

/**
 * Local business interface of an EJB which
 * provides access to television streams
 *
 * @author ALR
 * @version $Revision: $
 */
public interface TunerLocalBusiness
{
 //--||
 // Contracts ---||
 //--||

 /**
 * Obtains the stream containing viewable content
 * for the specified television channel. Supported channels are 1 and 2.
 *
 * @param channel
 * @return
 * @throws IllegalArgumentException If the channel is not valid
 */
 InputStream getChannel(int channel) throws IllegalArgumentException;

}

Test Resources

CachingInterceptorUnitTestCase.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.security.Identity;
import java.security.Principal;
import java.util.Properties;
import java.util.logging.Logger;

import javax.ejb.EJBHome;

702 | Appendix I: Interceptors: TV Channel Service Example

import javax.ejb.EJBLocalHome;
import javax.ejb.EJBLocalObject;
import javax.ejb.EJBObject;
import javax.ejb.SessionContext;
import javax.ejb.TimerService;
import javax.interceptor.InvocationContext;
import javax.transaction.UserTransaction;
import javax.xml.rpc.handler.MessageContext;

import junit.framework.TestCase;

import org.jboss.ejb3.examples.ch18.tuner.AuditedInvocation;
import org.jboss.ejb3.examples.ch18.tuner.CachingAuditor;
import org.jboss.ejb3.examples.ch18.tuner.TunerLocalBusiness;
import org.junit.Before;
import org.junit.Test;

/**
 * Tests to ensure that the {@link CachingAuditor}
 * interceptor is working as expected outside the context
 * of a full container.
 *
 * @author ALR
 * @version $Revision: $
 */
public class CachingInterceptorUnitTestCase
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(CachingInterceptorUnitTest
Case.class.getName());

 /**
 * Name of the mock user
 */
 private static String NAME_PRINCIPAL = "Mock User";

 /**
 * Principal to return
 */
 private Principal PRINCIPAL = new Principal()
 {

 @Override
 public String getName()
 {
 return NAME_PRINCIPAL;
 }
 };

Source Listing | 703

 //--||
 // Instance Members --||
 //--||

 /**
 * The interceptor instance to test
 */
 private CachingAuditor interceptor;

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Creates the interceptor instance to be used in testing
 */
 @Before
 public void createInterceptor()
 {
 interceptor = new CachingAuditor();
 // Manually set the EJBContext to a mock view which only supports returning
 a principal
 interceptor.beanContext = new SessionContext()
 {

 /**
 * Exception to throw if we invoke any method aside from getCaller
Principal
 */
 private UnsupportedOperationException UNSUPPORTED = new Unsupported
OperationException(
 "Not supported in mock implementation");

 @Override
 public void setRollbackOnly() throws IllegalStateException
 {
 throw UNSUPPORTED;

 }

 @Override
 public Object lookup(String arg0) throws IllegalArgumentException
 {
 throw UNSUPPORTED;
 }

 @Override
 public boolean isCallerInRole(String arg0)
 {
 throw UNSUPPORTED;
 }

 @Override
 @SuppressWarnings("deprecation")

704 | Appendix I: Interceptors: TV Channel Service Example

 public boolean isCallerInRole(Identity arg0)
 {
 throw UNSUPPORTED;
 }

 @Override
 public UserTransaction getUserTransaction() throws IllegalStateException
 {
 throw UNSUPPORTED;
 }

 @Override
 public TimerService getTimerService() throws IllegalStateException
 {
 throw UNSUPPORTED;
 }

 @Override
 public boolean getRollbackOnly() throws IllegalStateException
 {
 throw UNSUPPORTED;
 }

 @Override
 public Properties getEnvironment()
 {
 throw UNSUPPORTED;
 }

 @Override
 public EJBLocalHome getEJBLocalHome()
 {
 throw UNSUPPORTED;
 }

 @Override
 public EJBHome getEJBHome()
 {
 throw UNSUPPORTED;
 }

 @Override
 public Principal getCallerPrincipal()
 {
 return PRINCIPAL;
 }

 @Override
 @SuppressWarnings("deprecation")
 public Identity getCallerIdentity()
 {
 throw UNSUPPORTED;
 }

 @Override

Source Listing | 705

 public <T> T getBusinessObject(Class<T> businessInterface) throws
IllegalStateException
 {
 throw UNSUPPORTED;
 }

 @Override
 public EJBLocalObject getEJBLocalObject() throws IllegalStateException
 {
 throw UNSUPPORTED;
 }

 @Override
 public EJBObject getEJBObject() throws IllegalStateException
 {
 throw UNSUPPORTED;
 }

 @Override
 public Class<?> getInvokedBusinessInterface() throws IllegalStateException
 {
 throw UNSUPPORTED;
 }

 @Override
 public MessageContext getMessageContext() throws IllegalStateException
 {
 throw UNSUPPORTED;
 }

 @Override
 public boolean isCancelled() throws IllegalStateException
 {
 throw UNSUPPORTED;
 }
 };
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Ensures that contexts passed through the interceptor are cached
 */
 @Test
 public void testCache() throws Exception
 {
 // Ensure the cache is empty to start
 TestCase.assertEquals("Cache should start empty", 0, CachingAuditor.get
Invocations().size());

 // Invoke
 final InvocationContext invocation = new MockInvocationContext(TunerLocal
Business.class.getMethods()[0],

706 | Appendix I: Interceptors: TV Channel Service Example

 new Object[]
 {1});
 interceptor.audit(invocation);

 // Test our invocation was cached properly
 TestCase.assertEquals("Cache should have the first invocation", 1, Caching
Auditor.getInvocations().size());
 final AuditedInvocation audit = CachingAuditor.getInvocations().get(0);
 TestCase.assertEquals("Invocation cached was not the one that was invoked",
 invocation, audit.getContext());
 TestCase.assertEquals("Invocation did not store the caller as expected",
PRINCIPAL, audit.getCaller());
 }

}

Channel2RestrictorUnitTestCase.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.lang.reflect.Method;
import java.util.logging.Logger;

import javax.interceptor.InvocationContext;

import junit.framework.TestCase;

import org.jboss.ejb3.examples.ch18.tuner.Channel2AccessPolicy;
import org.jboss.ejb3.examples.ch18.tuner.Channel2ClosedException;
import org.jboss.ejb3.examples.ch18.tuner.Channel2Restrictor;
import org.jboss.ejb3.examples.ch18.tuner.TunerLocalBusiness;
import org.junit.Before;
import org.junit.Test;

/**
 * Tests to ensure that the {@link Channel2Restrictor}
 * interceptor is working as expected outside the context
 * of a full container.
 *
 * @author ALR
 * @version $Revision: $
 */
public class Channel2RestrictorUnitTestCase
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(Channel2RestrictorUnitTest
Case.class.getName());

Source Listing | 707

 /**
 * Method to get channel content
 */
 private static final Method METHOD_GET_CHANNEL = TunerLocalBusiness.class.get
Methods()[0];

 //--||
 // Instance Members --||
 //--||

 /**
 * The interceptor instance to test
 */
 private Channel2Restrictor interceptor;

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Creates the interceptor instance to be used in testing
 */
 @Before
 public void createInterceptor()
 {
 interceptor = new Channel2Restrictor();
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Ensures requests for channel 2 are blocked when the channel's access is
closed
 */
 @Test(expected = Channel2ClosedException.class)
 public void requestsToChannel2Blocked() throws Exception
 {
 // Set the access policy to block
 Channel2AccessPolicy.setChannel2Permitted(false);

 // Invoke
 final InvocationContext invocation = new MockInvocationContext(METHOD_GET_
CHANNEL, new Object[]
 {2});
 interceptor.checkAccessibility(invocation);
 }

 /**
 * Ensures requests for channel 2 are not blocked when the channel's access is
 open
 */
 @Test
 public void requestsToChannel2NotBlocked() throws Exception

708 | Appendix I: Interceptors: TV Channel Service Example

 {
 // Set the access policy to block
 Channel2AccessPolicy.setChannel2Permitted(true);

 // Invoke
 final InvocationContext invocation = new MockInvocationContext(METHOD_GET_
CHANNEL, new Object[]
 {2});
 try
 {
 interceptor.checkAccessibility(invocation);
 }
 catch (final Channel2ClosedException e)
 {
 TestCase.fail("Should not have been blocked with: " + e);
 }
 }

 /**
 * Ensures requests for channel 1 are not blocked channel 2's access is closed
 */
 @Test
 public void requestsToChannel1NeverBlocked() throws Exception
 {
 // Set the access policy to block
 Channel2AccessPolicy.setChannel2Permitted(false);

 // Invoke
 final InvocationContext invocation = new MockInvocationContext(METHOD_GET_
CHANNEL, new Object[]
 {1});
 interceptor.checkAccessibility(invocation);
 }

}

InterceptorIntegrationTest.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.io.IOException;
import java.io.InputStream;
import java.lang.reflect.UndeclaredThrowableException;
import java.util.logging.Logger;

import javax.ejb.EJB;
import javax.interceptor.Interceptors;
import javax.naming.NamingException;

import junit.framework.TestCase;

import org.jboss.arquillian.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.ejb3.examples.ch18.tuner.CachingAuditor;
import org.jboss.ejb3.examples.ch18.tuner.Channel2AccessPolicy;

Source Listing | 709

import org.jboss.ejb3.examples.ch18.tuner.Channel2ClosedException;
import org.jboss.ejb3.examples.ch18.tuner.Channel2Restrictor;
import org.jboss.ejb3.examples.ch18.tuner.TunerBean;
import org.jboss.ejb3.examples.ch18.tuner.TunerLocalBusiness;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.After;
import org.junit.Test;
import org.junit.runner.RunWith;

/**
 * Integration test ensuring that an EJB with {@link Interceptors}
 * declared are intercepted when invoked
 *
 * @author ALR
 * @version $Revision: $
 */
@RunWith(Arquillian.class)
public class InterceptionIntegrationTest
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(InterceptionIntegrationTest
.class.getName());

 //--||
 // Instance Members --||
 //--||

 /**
 * Archive representing the deployment
 */
 @Deployment
 public static JavaArchive createDeployment()
 {
 final JavaArchive deployment = ShrinkWrap.create("echo.jar", JavaArchive.
class).addClasses(
 TunerLocalBusiness.class, TunerBean.class, CachingAuditor.class,
Channel2Restrictor.class);
 log.info(deployment.toString(true));
 return deployment;
 }

 /**
 * The bean to invoke upon
 */
 @EJB
 private TunerLocalBusiness bean;

710 | Appendix I: Interceptors: TV Channel Service Example

 //--||
 // Lifecycle ---||
 //--||

 /**
 * Cleanup
 */
 @After
 public void clearInvocationsAfterTest()
 {
 // Clean up
 CachingAuditor.clearInTesting();
 }

 //--||
 // Tests ---||
 //--||

 /**
 * Ensures that invocation upon an EJB with {@link CachingAuditor} declared
 * results in the interception of targeted methods
 */
 @Test
 public void testCachingInterception() throws NamingException, IOException
 {
 // Ensure no invocations intercepted yet
 TestCase.assertEquals("No invocations should have yet been intercepted", 0,
 CachingAuditor.getInvocations()
 .size());

 // Invoke
 final int channel = 1;
 final InputStream content = bean.getChannel(channel);

 // Test the response is as expected
 TestCase.assertEquals("Did not obtain expected response", channel, content.
read());

 // Test the invocation was intercepted
 TestCase.assertEquals("The invocation should have been intercepted", 1,
CachingAuditor.getInvocations().size());
 }

 /**
 * Ensures that requests to obtain Channel 2 while restricted are blocked with
 {@link Channel2ClosedException}
 */
 @Test(expected = Channel2ClosedException.class)
 public void testChannel2Restricted() throws Throwable
 {
 // Set the policy to block channel 2
 Channel2AccessPolicy.setChannel2Permitted(false);

 // Invoke
 try

Source Listing | 711

 {
 bean.getChannel(2);
 }
 // Expected
 catch (final UndeclaredThrowableException ute)
 {
 throw ute.getCause();
 }

 // Fail if we reach here
 TestCase.fail("Request should have been blocked");
 }

 /**
 * Ensures that requests to obtain Channel 2 while open succeed
 */
 @Test
 public void testChannel2Allowed() throws NamingException, IOException
 {
 // Set the policy to block channel 2
 Channel2AccessPolicy.setChannel2Permitted(true);

 // Invoke
 final int channel = 2;
 final InputStream stream = bean.getChannel(channel);

 // Test
 TestCase.assertEquals("Unexpected content obtained from channel " + channel
, channel, stream.read());
 }
}

MockInvocationContext.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.lang.reflect.Method;
import java.util.Map;

import javax.interceptor.InvocationContext;

/**
 * {@link InvocationContext} implementation which throws {@link Unsupported
OperationException}
 * for all required methods except {@link InvocationContext#proceed()}, which
will always return null,
 * {@link InvocationContext#getMethod()}, and {@link InvocationContext#get
Parameters()}.
 *
 * @author ALR
 * @version $Revision: $
 */
class MockInvocationContext implements InvocationContext
{

712 | Appendix I: Interceptors: TV Channel Service Example

 //--||
 // Class Members ---||
 //--||

 /**
 * Message used to denote that the operation is not supported
 */
 private static final String MSG_UNSUPPORTED = "Not supported in mock implement
ation";

 //--||
 // Instance Members --||
 //--||

 /**
 * Method invoked
 */
 private final Method method;

 /**
 * Parameters in the request
 */
 private final Object[] params;

 //--||
 // Constructor ---||
 //--||

 /**
 * Constructs a new instance with the specified required arguments
 * @param method
 * @param params
 */
 MockInvocationContext(final Method method, final Object[] params)
 {

 assert method != null : "method must be specified";
 assert params != null : "params must be specified";
 this.method = method;
 this.params = params;
 }

 //--||
 // Required Implementations --||
 //--||

 @Override
 public Map<String, Object> getContextData()
 {
 throw new UnsupportedOperationException(MSG_UNSUPPORTED);
 }

Source Listing | 713

 @Override
 public Method getMethod()
 {
 return method;
 }

 @Override
 public Object[] getParameters()
 {
 return params;
 }

 @Override
 public Object getTarget()
 {
 throw new UnsupportedOperationException(MSG_UNSUPPORTED);
 }

 @Override
 public Object proceed() throws Exception
 {
 return null;
 }

 @Override
 public void setParameters(final Object[] arg0)
 {
 throw new UnsupportedOperationException(MSG_UNSUPPORTED);
 }
}

SecurityActions.java

package org.jboss.ejb3.examples.ch18.tuner;

import java.security.AccessController;
import java.security.PrivilegedAction;

/**
 * Protected security actions not to leak outside this package
 *
 * @author ALR
 * @version $Revision: $
 */
class SecurityActions
{

 //--||
 // Constructor ---||
 //--||

714 | Appendix I: Interceptors: TV Channel Service Example

 /**
 * No external instantiation
 */
 private SecurityActions()
 {

 }

 //--||
 // Utility Methods ---||
 //--||

 /**
 * Obtains the Thread Context ClassLoader
 */
 static ClassLoader getThreadContextClassLoader()
 {
 return AccessController.doPrivileged(GetTcclAction.INSTANCE);
 }

 /**
 * Sets the specified CL upon the current Thread's Context
 *
 * @param cl
 * @throws IllegalArgumentException If the CL was null
 */
 static void setThreadContextClassLoader(final ClassLoader cl) throws Illegal
ArgumentException
 {
 if (cl == null)
 {
 throw new IllegalArgumentException("ClassLoader was null");
 }

 AccessController.doPrivileged(new PrivilegedAction<Void>()
 {
 public Void run()
 {
 Thread.currentThread().setContextClassLoader(cl);
 return null;
 };
 });
 }

 /**
 * Obtains the system property with the specified key
 *
 * @param key
 * @return
 * @throws IllegalArgumentException If the key is null
 */
 static String getSystemProperty(final String key) throws IllegalArgument
Exception
 {

Source Listing | 715

 // Precondition check
 if (key == null)
 {
 throw new IllegalArgumentException("key was null");
 }

 // Get sysprop
 return AccessController.doPrivileged(new GetSystemPropertyAction(key));
 }

 //--||
 // Inner Classes ---||
 //--||

 /**
 * {@link PrivilegedAction} action to obtain the TCCL
 */
 private enum GetTcclAction implements PrivilegedAction<ClassLoader> {
 INSTANCE;

 @Override
 public ClassLoader run()
 {
 return Thread.currentThread().getContextClassLoader();
 }
 }

 /**
 * {@link PrivilegedAction} to access a system property
 *
 *
 * @author ALR
 * @version $Revision: $
 */
 private static class GetSystemPropertyAction implements PrivilegedAction<String>
 {

 /**
 * Name of the sysprop to get
 */
 private String sysPropName;

 /**
 * Creates a new instance capable of obtaining the specified system
property by name
 * @param sysPropName
 */
 public GetSystemPropertyAction(final String sysPropName)
 {
 this.sysPropName = sysPropName;
 }

716 | Appendix I: Interceptors: TV Channel Service Example

 /**
 * {@inheritDoc}
 * @see java.security.PrivilegedAction#run()
 */
 @Override
 public String run()
 {
 return System.getProperty(sysPropName);
 }
 }

}

Source Listing | 717

APPENDIX J

Timer Service:
Credit Card Processor Example

Description
As we’ve seen with message-driven beans, a client request is not the only way to start
a business taskflow. In addition to listening on incoming messages like MDB, events
can be fired based on some timed criteria. EJB handles this via the Timer Service.

EJB 3.1 has seen significant advancements to the bean provider’s view of the Timer
Service with a completely revamped natural-language syntax. This example models a
credit card processing operation, which at the beginning of every hour will process all
queued transactions. Scheduling the job is done both programmatically via the
javax.ejb.TimerService API, as well as declaratively via the @Timeout and @Schedule
annotations.

Online Companion Information
Wiki article: http://community.jboss.org/docs/DOC-15575

Source location: http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/
master/ch19-timer/

Source Listing
Following is a full listing of all source code used in this runnable example.

719

http://community.jboss.org/docs/DOC-15575
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch19-timer/
http://github.com/jbossejb3/oreilly-ejb-6thedition-book-examples/tree/master/ch19-timer/

Implementation Resources

CreditCardTransaction.java

package org.jboss.ejb3.examples.ch19.timer.api;

import java.math.BigDecimal;

/**
 * Value object representing a single credit card transaction.
 * Immutable.
 *
 * @author ALR
 * @version $Revision: $
 */
public class CreditCardTransaction
{
 //--||
 // Instance Members --||
 //--||

 /**
 * The card number
 */
 private final String cardNumber;

 /**
 * The amount to be charged
 */
 private final BigDecimal amount;

 //--||
 // Constructor ---||
 //--||

 /**
 * Creates a new instance with the specified card number and amount
 * @param cardNumber
 * @param amount
 * @throws IllegalArgumentException If either argument is null
 */
 public CreditCardTransaction(final String cardNumber, final BigDecimal amount)
 throws IllegalArgumentException
 {
 // Precondition checks
 if (cardNumber == null || cardNumber.length() == 0)
 {
 throw new IllegalArgumentException("card number must be specified");
 }
 if (amount == null)
 {
 throw new IllegalArgumentException("amount must be specified");
 }

 // Set

720 | Appendix J: Timer Service: Credit Card Processor Example

 this.amount = amount;
 this.cardNumber = cardNumber;
 }

 //--||
 // Required Implementations --||
 //--||

 /**
 * {@inheritDoc}
 * @see java.lang.Object#toString()
 */
 @Override
 public String toString()
 {
 return "CreditCardTransaction [amount=" + amount + ", cardNumber=" + card
Number + "]";
 }

 //--||
 // Functional Methods --||
 //--||

 /**
 * @return the cardNumber
 */
 public String getCardNumber()
 {
 return cardNumber;
 }

 /**
 * @return the amount
 */
 public BigDecimal getAmount()
 {
 return amount;
 }
}

CreditCardTransactionProcessingLocalBusiness.java

package org.jboss.ejb3.examples.ch19.timer.api;

import java.util.Date;
import java.util.List;

import javax.ejb.ScheduleExpression;
import javax.ejb.Timer;

/**
 * Contract of a service capable of storing a series
 * of {@link CreditCardTransaction}s to be processed,
 * scheduling processing, and processing payment of
 * all pending transactions.

Source Listing | 721

 *
 * @author ALR
 * @version $Revision: $
 */
public interface CreditCardTransactionProcessingLocalBusiness
{
 //--||
 // Contracts ---||
 //--||

 /**
 * Returns an immutable view of all transactions
 * pending processing
 * @return
 */
 List<CreditCardTransaction> getPendingTransactions();

 /**
 * Proceses all pending {@link CreditCardTransaction}s,
 * clearing them from the pending list when complete
 */
 void process();

 /**
 * Adds the specified {@link CreditCardTransaction} to be processed
 * @param transaction
 * @throws IllegalArgumentException If the transaction is null
 */
 void add(CreditCardTransaction transaction) throws IllegalArgumentException;

 /**
 * Schedules a new {@link Timer} to process pending payments
 * according to the supplied {@link ScheduleExpression}. Returns
 * the {@link Date} representing when the next job is to fire.
 * @param expression
 * @return
 * @throws IllegalArgumentException If the expression is null
 */
 Date scheduleProcessing(ScheduleExpression expression) throws IllegalArgument
Exception;
}

CreditCardTransactionProcessingBean.java

package org.jboss.ejb3.examples.ch19.timer.impl;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.List;
import java.util.logging.Logger;

import javax.annotation.Resource;
import javax.ejb.ConcurrencyManagement;
import javax.ejb.ConcurrencyManagementType;

722 | Appendix J: Timer Service: Credit Card Processor Example

import javax.ejb.Local;
import javax.ejb.Lock;
import javax.ejb.LockType;
import javax.ejb.Schedule;
import javax.ejb.ScheduleExpression;
import javax.ejb.SessionContext;
import javax.ejb.Singleton;
import javax.ejb.Timeout;
import javax.ejb.Timer;
import javax.ejb.TimerService;

import org.jboss.ejb3.examples.ch19.timer.api.CreditCardTransaction;
import org.jboss.ejb3.examples.ch19.timer.api.CreditCardTransactionProcessing
LocalBusiness;

/**
 * Implementation of a Service capable of storing pending
 * {@link CreditCardTransaction}s for later processing.
 * These may either be processed via a business call to
 * {@link CreditCardTransactionProcessingLocalBusiness#process()}
 * or via any number of configured timers using the EJB Timer Service.
 * At deployment, a default timer will be set to run
 * every hour on the hour (as configured by the {@link Schedule}
 * annotation atop {@link CreditCardTransactionProcessingBean#processViaTimeout
(Timer)}.
 * The {@link CreditCardTransactionProcessingBean#scheduleProcessing(Schedule
Expression)}
 * method shows programmatic creation of timers given a supplied
 * {@link ScheduleExpression}.
 *
 * @author ALR
 * @version $Revision: $
 */
@Singleton
@Local(CreditCardTransactionProcessingLocalBusiness.class)
@ConcurrencyManagement(ConcurrencyManagementType.CONTAINER)
public class CreditCardTransactionProcessingBean implements CreditCardTransaction
ProcessingLocalBusiness
{

 //--||
 // Class Members ---||
 //--||

 /**
 * Logger
 */
 private static final Logger log = Logger.getLogger(CreditCardTransaction
ProcessingBean.class.getName());

 /**
 * Wildcard denoting "all" in timer expressions
 */
 private static final String EVERY = "*";

Source Listing | 723

 /**
 * Timer value denoting 0
 */
 private static final String ZERO = "0";

 //--||
 // Instance Members --||
 //--||

 /**
 * {@link SessionContext} hook to the EJB Container;
 * from here we may obtain a {@link TimerService} via
 * {@link SessionContext#getTimerService()}.
 */
 @Resource
 private SessionContext context;

 /**
 * We can directly inject the {@link TimerService} as well.
 */
 @Resource
 @SuppressWarnings("unused")
 // Just for example
 private TimerService timerService;

 /**
 * {@link List} of all pending transactions. Guarded
 * by the concurrency policies of this EJB.
 */
 private final List<CreditCardTransaction> pendingTransactions = new ArrayList
<CreditCardTransaction>();

 //--||
 // Functional Methods --||
 //--||

 @Timeout
 // Mark this method as the EJB timeout method for timers created
programmatically. If we're
 // just creating a timer via @Schedule, @Timer is not required.
 @Schedule(dayOfMonth = EVERY, month = EVERY, year = EVERY, second = ZERO,
minute = ZERO, hour = EVERY)
 // This timeout will be created on deployment and fire every hour on the hour;
 declarative creation
 @Lock(LockType.WRITE)
 public void processViaTimeout(final Timer timer)
 {
 // Just delegate to the business method
 this.process();
 }

 //--||
 // Required Implementations --||
 //--||

724 | Appendix J: Timer Service: Credit Card Processor Example

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch19.timer.api.CreditCardTransactionProcessing
LocalBusiness#add(org.jboss.ejb3.examples.ch19.timer.api.CreditCardTransaction)
 */
 @Override
 @Lock(LockType.WRITE)
 public void add(final CreditCardTransaction transaction) throws Illegal
ArgumentException
 {
 // Precondition check
 if (transaction == null)
 {
 throw new IllegalArgumentException("transaction must be specified");
 }

 // Add
 this.pendingTransactions.add(transaction);
 log.info("Added transaction pending to be processed: " + transaction);
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch19.timer.api.CreditCardTransactionProcessing
LocalBusiness#getPendingTransactions()
 */
 @Override
 @Lock(LockType.READ)
 public List<CreditCardTransaction> getPendingTransactions()
 {
 // Return immutable so callers can't modify our internal state
 return Collections.unmodifiableList(pendingTransactions);
 }

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch19.timer.api.CreditCardTransactionProcessing
LocalBusiness#process()
 */
 @Override
 @Lock(LockType.WRITE)
 public void process()
 {
 // Process all pending transactions
 for (final CreditCardTransaction transaction : pendingTransactions)
 {
 // Fake it, we're not really gonna
 // charge you in the EJB Book examples!
 log.info("Processed transaction: " + transaction);
 }

 // Clear the pending payments as we've "charged" all now
 pendingTransactions.clear();
 }

Source Listing | 725

 /**
 * {@inheritDoc}
 * @see org.jboss.ejb3.examples.ch19.timer.api.CreditCardTransactionProcessing
LocalBusiness#scheduleProcessing(javax.ejb.ScheduleExpression)
 */
 @Override
 public Date scheduleProcessing(final ScheduleExpression expression) throws
IllegalArgumentException
 {
 // Precondition checks
 if (expression == null)
 {
 throw new IllegalArgumentException("Timer expression must be specified");
 }

 // Programmatically create a new Timer from the given expression via the
TimerService from the SessionContext
 final TimerService timerService = context.getTimerService();
 final Timer timer = timerService.createCalendarTimer(expression);
 final Date next = timer.getNextTimeout();
 log.info("Created " + timer + " to process transactions; next fire is at: "
 + timer.getNextTimeout());
 return next;
 }
}

726 | Appendix J: Timer Service: Credit Card Processor Example

Index

Symbols
2-PC (two-phase commit), 297
<binding> element, 377
<complexType> element, 357
<definitions> element, 372
<entity> element, 154
<entity-listeners> element, 238
<env-entry> element, 275
<id> element, 154
<injection-target> element, 260, 268
<message> element, 374
<message-destination-ref> element, 277
<persistence-unit-ref> element, 268
<portType> element, 374
<service> element, 377
<service-ref> deployment element, 388
<types> element, 375
@ActivationConfigProperty annotation, 103
@ApplicationException annotation, 315
@AroundInvoke annotation, 325
@AroundInvoke method, 338
@Asynchronous, 60
@AttributeOverrides annotation, 163
@Basic annotation, 164
@Column annotation, 156
@DeclareRoles annotation, 248
@DiscriminatorColumn annotation, 197
@EJB annotation, 259, 264
@Embedded annotation, 167–169
@EmbeddedId annotation, 162
@Entity annotation, 153
@EntityListeners annotation, 237
@Enumerated annotation, 167
@ExcludeClassInterceptors annotation, 331

@ExcludeDefaultInterceptors annotation, 331
@ExcludeDefaultListeners annotation, 238
@ExcludeSuperclassListeners annotation, 239
@FieldResult annotation, 232
@GeneratedValue annotation, 158
@Id annotation, 153, 157
@IdClass annotation, 160
@Inheritance annotation, 197
@Interceptors annotation, 327
@JoinColumn annotation, 174
@Lob annotation, 166
@Local and @Remote annotations, 56
@ManyToMany annotation, 185
@ManyToOne annotation, 181
@MapKey annotation, 189
@MappedSuperclass annotation, 203
@MessageDriven annotation, 103
@NamedNativeQuery annotation, 233
@NamedQuery annotation, 232
@OneToMany annotation, 180
@OneToOne annotation, 174
@OrderBy annotation, 188
@PermitAll annotation, 249
@PersistenceContext annotation, 131
@PersistenceUnit annotation, 267, 270
@PostActivate method, 67, 70
@PostActivate annotation, 72
@PostConstruct annotation, 57, 70, 72, 110
@PostConstruct method, 50
@PreDestroy annotation, 70

stateless session beans with timers, 352
@PreDestroy method, 51
@PrePassivate annotation, 67
@PrePassivate method, 70
@PrePersist and @PostPersist events, 235

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

727

@PreRemove and @PostRemove events, 236
@PreUpdate event, 236
@PrimaryKeyJoinColumn annotation, 175
@Remove method, 71
@Resource annotation, 57, 259

shareable resources, 274
@Resource annotation, 272
@RolesAllowed annotation, 248
@RunAs annotation, 251
@Schedule annotation, 344
@SequenceGenerator annotation, 159
@SqlResultSetMapping annotation, 231
@Startup annotation, 87
@Stateful annotation, 71
@Table annotation, 156
@Table.uniqueConstraints() attribute, 156
@TableGenerator annotation, 158
@Temporal annotation, 166
@Timeout annotation, 345
@TransactionAttribute annotation, 286, 287
@Transient annotation, 164
@Version annotation, 302
@WebService annotation

endpointInterface() attribute, 401
@WebServiceClient annotation, 402
\ (backslash) character, 224
= (equals) operator, 219
> (greater-than) operator, 219
#jboss-dev Freenode IRC Channel, xx
< (less-than) operator, 219
<> (not equals) operator, 219
% (percent) character, 224
_ (underscore) character, 224

A
ABS (number) function, 226
abstract schema names, 211
ACID, 23
ACID transactions, 279–286

BlackjackEJB example, 281–286
testing with helper EJBs, 283

database locks, 299
isolation, 298

dirty, repeatable, and phantom reads,
298

optimistic locking, 302
performance versus consistency, 301

controlling isolation levels, 301
programmatic locking, 303

transaction isolation levels, 300
acknowledgments, 105
ALL CascadeType, 193
AND operator, 219
Apache Ant, 36
Apache Commons FTP Client, 71
app-name, 255
application development, 3

core concerns, 4
cross-cutting concerns, 4
planning, 6
plumbing, 5

application exceptions, 54, 315
Application Server team, xx
arithmetic operators in WHERE clauses, 219
AS operator, 212
aspects, 4
asynchronous, 99
asynchronous methods, 60
atomicity, 23
atomicity in transactions, 281

BlackjackEJB example, 284
auditing, 351
Auditor listener, 238
authentication, 243, 244
authenticationType() attribute, 273
authorization, 243, 245
AVG() function, 227

B
B2B (business-to-business) taskflow and

integration, 107
backslash (\) character, 224
batch jobs, 341
batch processing, 351
BEAN concurrency management type, 86
bean implementation class, 29, 34, 55
bean instances, 29
bean provider, 23
bean setter methods, 260
begin() method, 309
BETWEEN clause, 221
bidirectional relationships, peculiarities of,

178
built-in types, 357
Burke, Bill, xv, xx
business interfaces, 31, 54
business logic, 4
business objects, 11

728 | Index

C
call-by-value and call-by-reference semantics,

54
callback events, 235
callback() method, 310
callbacks on entity classes, 236
cascade() attribute, 191–194

ALL CascadeType, 193
MERGE CascadeType, 192
PERSIST CascadeType, 192
REFRESH CascadeType, 193
REMOVE CascadeType, 193

CascadeType, 192
catalog() attribute, 156
.class files, 34
Class.newInstance method, 50
clear() method, 148, 210
client view, 30
CMC (container-managed concurrency), 86
code reuse, negative example, 323
coding EJBs, 33–39

bean implementation class, 34
contracts, 33
integration testing, 36

client, 37
deployment, 37
packaging, 36

out-of-container testing, 35
coding standards, 6
Collection type, 180
collection-based relationships, mapping, 188

map-based relationships, 189
ordered list-based relationships, 188

commit() method, 309
common business names, 32
comparison operators in WHERE clauses, 219
complex native queries, 231

with multiple entries, 231
component interface, 31
component types, 11

server-side component types, 12–16
composite keys, 160
CONCAT (String1, String2) function, 225
concurrency, 21

singleton session beans, 82–87
CONCURRENCY_NOT_SUPPORTED

concurrency management type, 86
ConnectionFactory, 116
Connections, 116

consistency, 23
consistency in transactions, 281

BlackjackEJB example, 285
CONTAINER concurrency management type,

86
Container Services, 19–27
container-managed concurrency (see CMC)
containers, 7

container services, 11
contains() method, 148
contracts, 33
conversational state, 43, 63
COUNT() function, 226
createEntityManager() method, 137
createQuery() method, 207
createQuery(), createNamedQuery(), and

createNativeQuery() methods, 146
createSession() method, 117
Criteria API, 205
CRUD (Create, Read, Update, Delete), 141
cryptographic hashing, 52
CURRENT_DATE, CURRENT_TIME, and

CURRENT_TIMESTAMP functions,
226

D
database locks, 299
de Wolf, Carlo, xx
declarative transaction management, 286

transaction attributes, 287
attributes defined, 289–292
EJB 3.0 persistence, 292
EJB endpoints and, 293
MDBs and, 293

transaction propagation, 293
persistence context propagation, 297

transaction scope, 286
DELETE operator, 229
Dependency Injection (see DI)
detached entities, 132, 190
DI (Dependency Injection), 20
dirty reads, 298
DISTINCT keyword, 217
DISTINCT operator

using with aggregate functions, 227
distributed transactions, 297
division of labor, 19
Document/Literal message, 369
DTD (Document Type Definition), 356

Index | 729

durability, 23
durability in transactions, 281

BlackjackEJB example, 285
dynamic proxies, 382

E
EARs (Enterprise Archives), 36
EJB deployment descriptor

transaction management using, 286
EJB endpoints, 391
EJB Proxy, 30
EJB QL, 205
EJB references, JNDI ENC, 264–266
EJB Timer Service (see Timer Service)
EJBContext interface, 47, 259

obsolete methods, 49
programmatic security using, 250

EJBs (Enterprise JavaBeans)
coding, 33–39
composition, 29
EJB specification, 8
version 3.1, xvi
web services and, 381

EJBs (Enterprise JavaBeans) 3.1
SOAP messaging RPCEncoded mode

support, 369
ejbTimeout() method, 342
Employee class, 152
ENC (Enterprise Naming Context), 57 (see

JNDI ENC)
EncryptionCommonBusiness interface, 54
EncryptionEJB, 52–59

accessing environment properties, 57
application exceptions, 54
bean implementation class, 55
contract, 53

endpoint interface, 31
endSession() method, 70, 78
enterprise messaging systems, 98
Enterprise Naming Context (see JNDI ENC)
entities, 151
entities, managed versus unmanaged, 130–

133
detached entities, 132
extended persistence context, 132
persistence context, 130
transaction-scoped persistence context,

131
entity beans, 16, 127, 151

entity callbacks, 235
(see also callback events; entity listeners)

entity inheritance, 195–204
mixing strategies, 203
nonentity base classes, 203
single table per class hierarchy, 196

advantages and disadvantages, 198
table per concrete class strategy, 199

advantages and disadvantages, 200
table per subclass strategy, 200

advantages and disadvantages, 203
entity listeners, 235, 237–239

default listeners, 238
inheritance, 238

entity relationships, 171–194
cascading, 191–194

ALL, 193
MERGE, 192
PERSIST, 192
REFRESH, 193
REMOVE, 193
when to use, 194

detached entities and FetchType, 190
many-to-many bidirectional relationships,

184–186
many-to-many unidirectional relationships,

187
many-to-one unidirectional relationships,

181–182
mapping collection-based relationships,

188–190
one-to-many bidirectional relationships,

182–183
one-to-many unidirectional relationships,

178–181
one-to-one bidirectional relationships, 176–

178
one-to-one unidirectional relationships,

173–176
relationship types, 171

EntityManager, 16, 127–149
interacting with an EntityManager, 140
obtaining an EntityManager, 136–140

EntityManagerFactory, 137
EntityManagerFactory in Java EE, 137
obtaining a persistence context, 138

persistence units, packaging, 133–136
persistence unit class set, 135

730 | Index

persistent employee registry example, 141–
149

finding and updating entities, 144–147
locking, 149
persisting entities, 142
removing entities, 147
transactional abstraction, 141
unwrap() and getDelegate(), 149

EntityManager interface
lock() method, 303
native query methods, 230

EntityManagerFactory references, 266
XML-based references, 268

EntityNotFoundException, 148
environment entries, 57, 275–276
equals (=) operator, 219
examples workbook, xvii
exceptions

application exceptions, 54
system exceptions, 68

exclusive write locks, 299
explicit transaction demarcation, 286
explicit transaction management, 304–312

EJBContext rollback methods, 312
heuristic decisions, 308
Status interface, 310
transaction propagation, bean-managed

transactions, 307–308
UserTransaction interface, 309

extended persistence context, 132

F
fault message, 374
fetch() attribute, 165

set to FetchType.LAZY, 190
find() method, 144
flush() method, 148
FlushMode

using in the query API, 210
FlushModeType enumeration, 149
foreign keys, 173
FQN, 255
FROM clause, 212

G
get ResultList() method, 208
getBalance() method, 294
getBusinessObject() method, 46

getCallerPrincipal() method, 48, 250
getDelegate() method, 149
getEJBObject() and getEJBLocalObject()

methods, 46
getEntries() method, 92
getInvokedBusinessInterface() method, 47
getReference() method, 144
getResultList() method, 213
getRollbackOnly() method, 312
getSingleResult() method, 207
getStatus() method, 310
getter and setter methods, 152, 154
getTimeRemaining() method, 350
getTimers() method, 348
getTimerService() method, 47
Global JNDI, 255
greater-than (>) operator, 219

H
headers, 117
home interface, 31
HTTP tunneling, 370

I
IllegalArgumentException, 145, 148
IN operator, 216, 221
info objects, 349
injection, 57, 255
INNER JOINs, 216
input message, 374
instance pooling, 22
integration, 6
integration testing, 36
interceptors, 26, 323

applying, 327
annotated methods and classes, 327
default interceptors, 329
through XML, 328

bean class @AroundInvoke methods, 338
disabling, 330
exception handling, 335–338

aborting a method invocation, 336
catch and rethrow exceptions, 336

injection and, 331
intercepting lifecycle events, 333–335

custom injection annotations, 333
intercepting methods, 323
interceptor class, 325

Index | 731

lifecycles, 338
Interceptors 1.1 Specification, 323
interoperability, 25
interval timers, 347
IS EMPTY operator, 223
IS NULL comparison operator, 222
isCallerInRole() method, 48, 250
isolation, 23
isolation in transactions, 281

BlackjackEJB example, 285
isolation levels

performance impacts, 301

J
jar tool, 36
JARs (Java Archives), 36
Java Connector Architecture (see JCA)
Java Message Service (see JMS)
Java Naming and Directory Interface (see JNDI)
Java Persistence programming model, xvi, 152–

155
bean class, 152
Employee entity, 152
inheritance hierarchy mapping, 195
primary keys (see primary keys)
property mappings (see property mappings)
relational mapping (see relational mapping)
reserved words, 212
XML mapping files, 154

Java Transaction Service (see JTS)
javax.ejb.SessionContext interface, 46
javax.naming classes, 37
javax.persistence.EntityManager, 16
JAX-RPC (Java API for XML-based RPC), 381–

396
<service-ref> deployment element, 388–

389
defining web services, 391–396

deployment files, 394–396
service endpoint interface, 393
stateless bean class, 393
WSDL documents, 392

EJBs, calling services from, 387–388
execution loop, 382
JAX-RPC mapping files, 394
mapping files, 389
service endpoint interfaces, 382
WSDL web service generation, 382–386

XML Schema built-in types and Java types,
384

JAX-WS (Java API for XML-based Web
Services), 371, 381, 396–405

@OneWay annotation, 401
@SOAPBinding annotation, 398
@WebMethod annotation, 397
@WebParam annotation, 399
@WebResult annotation, 400
@WebService annotation, 396
@WebServiceRef annotation, 403
separating web services contracts, 401
Service class, 402
service endpoint interface, 403

JAXB (Java Architecture for XML Binding),
405

JCA (Java Connector Architecture), 98
Service Provider Interface, 112

JMS (Java Message Service), 98–103
acknowledgment mode, 105
APIs, 115
asynchronous messaging, 99
JMS clients, JMS providers, and JMS

applications, 98
message types, 117
messaging models, 100
supporting messaging systems, 98

JMS gateways, 111
JNDI (Java Naming and Directory Interface),

25, 37
authentication using, 245
ENC (see JNDI ENC)
Global JNDI, 255
InitialContext, 245

JNDI ENC
annotation population, 257
reference and injection types, 264–278

EJB references, 264–266
EntityManager references, 269–271
EntityManagerFactory references, 266–

269
environment entries, 275–276
message destination references, 277–

278
resource environment and administered

objects, 275
resource references, 271–274

referencing from the ENC, 258–263
annotation injection, 259

732 | Index

default ENC name, 260
injection and inheritance, 263
using EJBContext, 259
XML injection, 260
XML overrides, 261

what can be registered, 257
XML population, 257

jndi.properties file, 38
JOIN FETCH, 217
JPA (Java Persistence API) Version 2.0, 17,

127
QL (query language) (see JPA QL)

JPA QL query language, 205, 211–230
abstract schema names, 211
bulk UPDATE and DELETE, 229
constructor expressions, 215
DISTINCT keyword, 217
functional expressions, 224

aggregate function in SELECT, 226
AVG() and SUM() functions, 227
COUNT() function, 226
date and time functions, 226
DISTINCT, nulls, and empty arguments,

227
MAX() and MIN() functions, 226

IN operator and INNER JOIN, 215
JOIN FETCH syntax, 217
LEFT JOIN, 216
ORDER BY clause, 228
selection of entity and relationship

properties, 213
simple queries, 212
WHERE clause (see WHERE clause)

JSR-181, 396
JTA (Java Transaction API), 304
JTS (Java Transaction Service), 23, 304
JUnit testing framework, 35

L
LEFT JOIN, 216
LENGTH (String) function, 225
less-than (<) operator, 219
lifecycle callbacks, 25
LIKE comparison operator, 224
List type, 188
local and remote, 30
local business interfaces, 54
LOCATE (String1, String2 [, start]) function,

225

lock() method, 303
LockModeType.READ and

LockModeType.WRITE, 303
logical operators in WHERE clauses, 219
lookup APIs, 25
lookup() method, 47
LOWER (String) function, 225

M
managed objects, 16
Mandatory attribute, 291
manual lookup, 57
many-to-many bidirectional relationships, 172,

184–186
programming model, 185
relational database schema, 184

many-to-many unidirectional relationships,
172, 187–188

programming model, 187
relational database schema, 187

many-to-one unidirectional relationships, 172,
181–182

programming model, 181
relational database schema, 181

Map interface, 189
mappedby() attribute, 177
mappedName() attribute, 273
Maven, 36
MAX() function, 226
MDBs (message-driven beans), 15, 97–124

connector-based beans, 111–113
Java Message Service and, 98–103
JMS-based beans, 103–108

@MessageDriven, 103–108
lifecycle, 108–111
message linking, 114–124

JMS APIs, 115
prohibition of receipt of messages by

session beans, 114
StatusUpdateEJBs example, 118–124

RunAs security identifier and, 251
MEMBER OF operator, 223
MERGE CascadeType, 192
merge() method, 144, 148
message bodies, 117
message destination references, 277

@Resource annotation, using for, 278
XML-based resource references, 277

message interface, 31

Index | 733

Message interface, 104
message selectors, 104
message-driven beans (see MDBs)
message-oriented middleware, 98
MessageDrivenContext, 106
MessageListener interface, 107
MessageProducers, 117
messaging domains, 100
META-INF/persistence.xml file, 133
Method-Ready Pool, 49–52, 109
MIN() function, 226
MOD (int, int) function, 226
module-name, 255
modules, 4
Monson-Haefel, Richard, xx
myapp.ear, 256
myejb.jar, 256

N
name() attribute, 55
named parameters, 208
named queries, 232–234

named native queries, 233
naming conventions, 32

for the examples, 32
naming services, 24
native queries, 230–232
network-protocol agnostic, 370
Never attribute, 291
new operator, 127
nillable types, 385
no-arg constructors, 50
nonentity base classes, 203
nonrepeatable reads, 299
nontransactional EJBs, 303
NonUniqueResultException, 207
not equals (<>) operator, 219
NOT operator, 219
notification messaging, 375
NotSupported attribute, 289
NULL comparison operator, 222
numeric primitives, 221
numeric types, comparisons with WHERE,

220

O
object binding, 25
OBJECT() operator, 212

object-relational mapping, 16
occurrence attributes, 358
one-to-many bidirectional relationships, 172,

182–183
programming model, 183
relational database schema, 182
usage, 183

one-to-many unidirectional relationships, 172,
178–181

programming model, 180
relational database schema, 179

one-to-one bidirectional relationships, 171,
176–178

relational database schema, 177
one-to-one unidirectional relationships, 171,

173–176
default relationship mapping, 176
primary-key join columns, 175
programming model, 173
relational database schema, 173

one-way messaging, 374
onMessage() method, 107
operator precedence in WHERE clauses, 218
optimistic locking, 302
optional() attribute, 165
OR operator, 219
ORDER BY clause, 228
orm.xml file, 154
OTS (Object Transaction Service), 304
output message, 374

P
Pai, Jaikiran, xx
passivation, 14
percent (%) character, 224
PERSIST CascadeType, 192
persist() method, 148, 235
persistence, 17, 127

entities as POJOs, 128
persistence context, 130
persistence units, 133, 269
persistence.xml deployment descriptor, 134,

154
persistence.xml files, 134
phantom reads, 299
platform integration, 27
point-to-point (p2p) messaging model, 102
POJO (Plain Old Java Object) class, 11
positional parameters, 208

734 | Index

primary keys, 157–164
@EmbeddedId annotation, 162
@Id annotation, 157
@IdClass annotation, 160
primary-key classes and composite keys,

160
sequence generators, 159
TABLE generators, 158

Project Rome, 90
property mappings, 164–167

@Basic and FetchType, 164
@Enumerated annotation, 167
@Lob annotation, 166
@Temporal annotation, 166
@Transient annotation, 164

publish-and-subscribe (pub/sub) messaging
model, 100

pull- or polling-based messaging models, 102
push-based messaging model, 101

Q
queries, 205

JPA QL (see JPA QL)
named queries (see named queries)
native queries (see native queries)
query API (see query API)

query API, 206–211
date parameters, 209
EntityManager query creating methods,

207
FlushMode, 210
hints, 210
paging results, 209
parameters, 208

Query interface, 206
queues, 102

R
Read Committed isolation level, 300
read locks, 86, 299
Read Uncommitted isolation level, 300
REFRESH CascadeType, 193
refresh() method, 148
relational mapping, 151, 155–157

elementary schema mappings, 155
relational mappings

@Column annotation, 156
@Table annotation, 156

remote business interfaces, 54
REMOVE CascadeType, 193
remove() method, 148, 235
Repeatable Read isolation level, 300
repeatable reads, 298
request-response messaging, 374
Required attribute, 290
RequiresNew attribute, 291
reserved words, Java Persistence programming,

212
resource references, 271–274

resource types, 272
shareable resources, 274

role-based security, 24
authorization, 245

roles, 243
RPC/Literal style, 369
RuntimeException, 55

S
scalar native queries, 230
ScheduleExpression, 344
scheduling systems, 341
schema() attribute, 156
schemalocation attribute, 364
scope, 364
security, 23, 243–252

authentication, 243, 244
authorization, 243, 245
role-based security, 243
secured school example, 246–252

business interface, 246
method permissions, assigning, 247
programmatic security, 249
RunAs security identifier, 251

session beans and, 244
SELECT clause, 212, 213

aggregate functions in, 226
JPA QL constructor, specification within,

215
SEQUENCE generators, 159
Serializable isolation level, 300
server-side component types, 12–16

session beans, 12
service endpoint interface, 382
Service Provider interface (SPI), 112
session beans, 12

security (see security)
SessionContext interface, 46

Index | 735

Sessions, 116
SessionSynchronization interface, 65, 318
Set type, 185
setFirstResult() method, 209
setFlushMode() method, 149, 211
setHint() method, 210
setMaxResults() method, 209
setParameter() method, 208
setRollbackOnly() method, 310, 312
setter and getter methods, 152, 154
setTransactionTimeout(int seconds) method,

310
SFSBs (stateful session beans), 13, 63–79

Does Not Exist state, 65
FileTransferEJB example, 68–79

bean implementation class, 70
contract, 69
exceptions, 70
integration testing, 77
POJO testing, 74

lifecycle, 64–68
Method-Ready state, 65
Passivated state, 66
system exceptions, 68
transactional beans, 318–320

simple entity native queries, 230
Simple Object Access Protocol (see SOAP)
single-action timers, 347
singleton beans, 14
singleton session beans, 81–95

concurrency, 82–87
bean-managed concurrency, 87
container-managed concurrency, 86
shared mutable access, 84

lifecycle, 87
RSSCacheEJB example, 88–95

bean implementation class, 92
contract, 92
value objects, 89

size() method, 190
SLSBs (stateless session beans), 12, 43–59

death of a bean instance, 51
declaration, 29
Encryption EJB, 52–59
lifecycle, 49–52

Does Not Exist state, 50
Method-Ready Pool, 50

SessionContext, 46
EJBContext, 47

uses, 45
XML deployment descriptor, 45

snapshots, 299
SOAP (Simple Object Access Protocol) 1.1,

368–371
JAX-WS, 371
reliance on XML, 368
RPC/Encoded messaging mode, 369
SOAP message exchange with HTTP, 370
standard SOAP elements, 368
web services styles, 369

solicitation messaging, 375
SORT (double) function, 226
SPI (Service Provider interface), 112
standards, 6
stateful session beans (see SFSBs)
stateless session beans (see SLSBs)
Status interface, 310
subscription durability, 106
SUBSTRING (String1, start, length) function,

225
SUM() function, 227
Supports attribute, 289
suspended transactions, 289
synchronized keyword, 87
system exceptions, 68, 313

T
TABLE generators, 158
targetNamespace attribute, 363
TemporalType parameter, 209
TimedObject interface, 345
Timer class, 342
Timer object, 348

canceling timers, 349
exceptions, 350
identifying timers, 349
retrieving information from timers, 349
TimerHandle object, 350

Timer Service, 342
batch credit card processing example, 342–

350
bean implementation class, 345
business interface, 343
ScheduleExpression and @Schedule,

344
Timer object (see Timer object)
TimerService interface, 347

message-driven bean timers, 352

736 | Index

stateless session bean timers, 351–352
transactions, 350

timers, 24
topic, 101
Topic and TopicConnectionFactory, 116
transaction-scoped persistence context, 131
TransactionRequiredException, 148
transactions, 23, 279

ACID (atomic, consistent, isolated, and
durable) transactions (see ACID
transactions)

business transaction examples, 279
conversational persistence contexts, 321
declarative transaction management (see

declarative transaction
management)

exception summary for message-driven
beans, 317

exception summary for session and entity
beans, 315

exceptions, 313–317
application exceptions, 315
system exceptions, 313

explicit transaction management (see
explicit transaction management)

SFSBs and, 318–320
Transactional Method-Ready state, 318–

320
transfer() method, 294
TRIM (String) function, 225
two-phase commits, 297

U
UBR (Universal Business Registry), 379
UDDI (Universal Description, Discovery, and

Integration), 379
underscore (_) character, 224
UniqueConstraint annotation, 156
unit testing, 35
Unit Tests, 6
unit-of-work, 279
Universal Description, Discovery, and

Integration (see UDDI)
unwrap() method, 149
UPDATE operator, 229
UPPER (String) function, 225
URI (Universal Resource Identifier), 362
URL (Universal Resource Locator), 362
UserTransaction interface, 305, 309

V
valid XML, 356
volatile keyword, 87

W
Web Service Description Language 1.1 (see

WSDL)
web services, 355

JAX-RPC, accessing with (see JAX-RPC)
JAX-WS, accessing with (see JAX-WS)
services APIs, purpose, 381
SOAP (see SOAP)
supporting Java APIs in EJB 3.1, 381
UDDI, 379
WSDL (see WSDL)
XML namespaces, 361
XML Schema, 356

webservices.xml files, 395
well-formed XML, 356
WHERE clause, 218

arithmetic operators, 219
BETWEEN clause, used with, 221
comparison operators, 219
equality semantics, 220
functional expressions in, 225
IN operator, use with, 221
IS EMPTY operator, 223
IS NULL comparison operator, 222
LIKE comparison operator, 224
logical operators, 219
MEMBER OF operator, 223
operator precedence, 218

withdraw() method, 48
workflow applications, 341
wrapInTx() method, 286
write locks, 86, 299
WSDL (Web Service Description Language)

1.1, 371–379
<binding> and <service> elements, 377
<definitions> element, 372
<portType> and <message> elements, 374
<types> element, 375

WSDL files for JAX-RPC web services, 394

X
XML deployment descriptor, 45

overriding injection annotations, 261
XML mapping files, 154

Index | 737

XML markup language, 361
XML Namespaces, 361–368

default namespaces, 363
namespace declaration, 365
namespaces and attributes, 364
URIs, 362
usage by XML Schema, 366
XML Namespace declarations, 362

XML Schema, 356–361
<element> declarations, 358
built-in types

corresponding Java types, 357
mapping to Java types, 384

correctness, 356
example schema, 356
XSD built-in types, 357

xsd prefix, 373

738 | Index

About the Authors
Andrew Lee Rubinger is Senior Software Engineer at JBoss, a division of Red Hat, and
is primarily responsible for development of the company’s EJB 3.x implementation. He
was an early adopter of JEE technologies and is an active contributor in the tech
community.

Bill Burke is Chief Architect at JBoss Inc. Besides co-leading the EJB 3.0 and AOP
projects at JBoss, he represents JBoss as an expert on the EJB 3.0 and Java EE 5 speci-
fication committees. Bill was coauthor of the JBoss workbook included with Enterprise
JavaBeans, Fourth Edition, and has published numerous articles in various print and
online magazines.

Colophon
The animals on the cover of Enterprise JavaBeans 3.1, Sixth Edition, are a wallaby and
her joey. Wallabies are medium-sized marsupials belonging to the kangaroo family
(Macropodidae; the second-largest marsupial family). They are grazers and browsers,
native to Australia, and found in a variety of habitats on that continent. Female walla-
bies have a well-developed anterior pouch in which they hold their young. When they
are born, the tiny, still-blind joeys instinctively crawl up into their mothers’ pouches
and begin to nurse. They stay in the pouch until they are fairly well grown. A female
wallaby can support joeys from up to three litters at once: one in her uterus, one in her
pouch, and one that has graduated from the pouch but still returns to nurse.

Like all Macropodidae, wallabies have long, narrow hind feet and powerful hind limbs.
Their long, heavy tails are used primarily for balance and stability and are not prehen-
sile. Wallabies resemble kangaroos but are smaller: they measure from less than two
feet to over five feet long, with the tail accounting for nearly half of their total length.
Oddly enough, although they can hop along quite quickly (reaching speeds of up to 50
kilometers per hour), it is physically impossible for wallabies to walk backward!

The three main types of wallaby are brush, rock, and nail-tailed. There are eleven spe-
cies of brush wallaby (genus Macropus) and six named species of rock wallaby (Petro-
gale). Brush wallabies usually live in brushland or open woods. Rock wallabies, which
are notable for their extreme agility, are usually found among rocks and near water.
There are only three species of nail-tailed wallaby (Onychogalea), which are so named
because of the horny growth that appears on the tip of their tails. The major threats to
wallabies today are hunting, habitat destruction, and predation by and competition
with introduced species.

The cover image is from The Illustrated Natural History: Mammalia, by J. G. Wood.
The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMono-
Condensed.

	Table of Contents
	Preface
	Author’s Note
	Who Should Read This Book
	How This Book Is Organized
	Part I, Why Enterprise JavaBeans?
	Part II, Server-Side Component Models
	Part III, EJB and Persistence
	Part IV, Container Services
	Part V, Examples

	Software and Versions
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	Comments and Questions
	Acknowledgments

	Part I. Why Enterprise JavaBeans?
	Chapter 1. Introduction
	The Problem Domain
	Breaking Up Responsibilities
	Core concerns
	Cross-cutting concerns
	Plumbing

	Code Smart, Not Hard
	Do less
	The Container

	The Enterprise JavaBeans™ 3.1 Specification
	EJB defined

	Review

	Chapter 2. Component Types
	Server-Side Component Types
	Session Beans
	Stateless session beans (SLSBs)
	Stateful session beans (SFSBs)
	Singleton beans

	Message-Driven Beans (MDBs)

	Entity Beans
	The Java Persistence Model

	The Model Isn’t Everything

	Chapter 3. Container Services
	Dependency Injection (DI)
	Concurrency
	Instance Pooling/Caching
	Transactions
	Security
	Timers
	Naming and Object Stores
	Interoperability
	Lifecycle Callbacks
	Interceptors
	Platform Integration
	Bringing It Together

	Chapter 4. Developing Your First EJBs
	Step 1: Preparation
	Definitions
	Bean implementation class (session and message-driven beans)
	Bean instance (session and message-driven beans)
	Client view (session and message-driven beans)
	EJB Proxy (session beans)
	Local versus remote (session beans)
	Business interface (session beans)
	Component interface (session beans)
	Home interface (session beans)
	Endpoint interface (session beans)
	Message interface (MDBs)

	Naming Conventions
	Common business name

	Conventions for the Examples

	Step 2: Coding the EJB
	The Contract
	The Bean Implementation Class
	Out-of-Container Testing
	Integration Testing
	Packaging
	Deployment into the Container
	The client

	Summary

	Part II. Server-Side Component Models
	Chapter 5. The Stateless Session Bean
	The XML Deployment Descriptor
	SessionContext
	EJBContext

	The Lifecycle of a Stateless Session Bean
	The Does Not Exist State
	The Method-Ready Pool
	Transitioning to the Method-Ready Pool
	Life in the Method-Ready Pool
	Transitioning out of the Method-Ready Pool: The death of a stateless bean instance

	Example: The EncryptionEJB
	The Contract: Business Interfaces
	Application Exceptions
	Bean Implementation Class
	Accessing Environment Properties (Injection and Lookup)

	Asynchronous Methods

	Chapter 6. The Stateful Session Bean
	The Lifecycle of a Stateful Session Bean
	The Does Not Exist State
	The Method-Ready State
	Transitioning into the Method-Ready state
	Life in the Method-Ready state
	Transitioning out of the Method-Ready state

	The Passivated State
	System exceptions

	Example: The FileTransferEJB
	The Contract: Business Interfaces
	Exceptions
	Bean Implementation Class
	POJO Testing Outside the Container
	Integration Testing

	Chapter 7. The Singleton Session Bean
	Concurrency
	Shared Mutable Access
	Container-Managed Concurrency
	Bean-Managed Concurrency

	Lifecycle
	Explicit Startup

	Example: The RSSCacheEJB
	Value Objects
	The Contract: Business Interfaces
	Bean Implementation Class

	Chapter 8. Message-Driven Beans
	JMS and Message-Driven Beans
	JMS as a Resource
	JMS Is Asynchronous
	JMS Messaging Models
	Publish-and-subscribe
	Point-to-point
	Which messaging model should you use?

	Learning More About JMS

	JMS-Based Message-Driven Beans
	@MessageDriven
	@ActivationConfigProperty
	Message selector
	Acknowledge mode
	Subscription durability
	MessageDrivenContext
	MessageListener interface
	Taskflow and integration for B2B: onMessage()
	Sending messages from a message-driven bean

	The Lifecycle of a Message-Driven Bean
	The Does Not Exist State
	The Method-Ready Pool
	Transitioning to the Method-Ready Pool
	Life in the Method-Ready Pool
	Transitioning out of the Method-Ready Pool: The death of an MDB instance

	Connector-Based Message-Driven Beans
	Message Linking
	Session Beans Should Not Receive Messages
	The JMS APIs
	TopicConnectionFactory and Topic
	Connection and Session
	MessageProducer
	Message types

	Example: The StatusUpdateEJBs
	JMS application client: Message producer
	Create a base listener
	Further testing

	Part III. EJB and Persistence
	Chapter 9. Persistence: EntityManager
	Entities Are POJOs
	Managed Versus Unmanaged Entities
	Persistence Context
	Transaction-scoped persistence context
	Extended persistence context
	Detached entities

	Packaging a Persistence Unit
	The Persistence Unit Class Set

	Obtaining an EntityManager
	EntityManagerFactory
	Getting an EntityManagerFactory in Java EE

	Obtaining a Persistence Context

	Interacting with an EntityManager
	Example: A Persistent Employee Registry
	A Transactional Abstraction
	Persisting Entities
	Finding and Updating Entities
	find() and getReference()
	merge()
	Queries

	Removing Entities
	refresh()
	contains() and clear()
	flush() and FlushModeType
	Locking
	unwrap() and getDelegate()

	Chapter 10. Mapping Persistent Objects
	The Programming Model
	The Employee Entity
	The Bean Class
	XML Mapping File

	Basic Relational Mapping
	Elementary Schema Mappings
	@Table
	@Column

	Primary Keys
	@Id
	Table Generators
	Sequence Generators
	Primary-Key Classes and Composite Keys
	@IdClass
	@EmbeddedId

	Property Mappings
	@Transient
	@Basic and FetchType
	@Lob
	@Temporal
	@Enumerated

	@Embedded Objects

	Chapter 11. Entity Relationships
	The Seven Relationship Types
	One-to-One Unidirectional Relationship
	Relational database schema
	Programming model
	Primary-key join columns
	Default relationship mapping

	One-to-One Bidirectional Relationship
	Relational database schema

	One-to-Many Unidirectional Relationship
	Relational database schema
	Programming model

	Many-to-One Unidirectional Relationship
	Relational database schema
	Programming model

	One-to-Many Bidirectional Relationship
	Relational database schema
	Programming model
	Usage

	Many-to-Many Bidirectional Relationship
	Relational database schema
	Programming model

	Many-to-Many Unidirectional Relationship
	Relational database schema
	Programming model

	Mapping Collection-Based Relationships
	Ordered List-Based Relationship
	Map-Based Relationship

	Detached Entities and FetchType
	Cascading
	PERSIST
	MERGE
	REMOVE
	REFRESH
	ALL
	When to Use Cascading

	Chapter 12. Entity Inheritance
	Single Table per Class Hierarchy
	Advantages
	Disadvantages

	Table per Concrete Class
	Advantages
	Disadvantages

	Table per Subclass
	Advantages
	Disadvantages

	Mixing Strategies
	Nonentity Base Classes

	Chapter 13. Queries, the Criteria API, and JPA QL
	Query API
	Parameters
	Date Parameters
	Paging Results
	Hints
	FlushMode

	JPA QL
	Abstract Schema Names
	Simple Queries
	Selecting Entity and Relationship Properties
	Constructor Expressions
	The IN Operator and INNER JOIN
	LEFT JOIN
	Fetch Joins
	Using DISTINCT
	The WHERE Clause and Literals
	The WHERE Clause and Operator Precedence
	The WHERE Clause and Arithmetic Operators
	The WHERE Clause and Logical Operators
	The WHERE Clause and Comparison Symbols
	The WHERE Clause and Equality Semantics
	The WHERE Clause and BETWEEN
	The WHERE Clause and IN
	The WHERE Clause and IS NULL
	The WHERE Clause and IS EMPTY
	The WHERE Clause and MEMBER OF
	The WHERE Clause and LIKE
	Functional Expressions
	Functional expressions in the WHERE clause
	Functions returning dates and times
	Aggregate functions in the SELECT clause
	COUNT (identifier or path expression)
	MAX(path expression), MIN(path expression)
	AVG(numeric), SUM(numeric)
	DISTINCT, nulls, and empty arguments

	The ORDER BY Clause
	Bulk UPDATE and DELETE

	Native Queries
	Scalar Native Queries
	Simple Entity Native Queries
	Complex Native Queries
	Native queries with multiple entities

	Named Queries
	Named Native Queries

	Chapter 14. Entity Callbacks and Listeners
	Callback Events
	Callbacks on Entity Classes
	Entity Listeners
	Default Entity Listeners
	Inheritance and Listeners

	Part IV. Container Services
	Chapter 15. Security
	Authentication and Identity
	Authorization
	Example: A Secured School
	The Business Interface
	Assigning Method Permissions
	Programmatic Security
	The RunAs Security Identity

	Chapter 16. JNDI, the ENC, and Injection
	Global JNDI
	The JNDI ENC
	What Can Be Registered in the JNDI ENC?
	How Is the JNDI ENC Populated?
	XML population
	Annotation population

	How Are Things Referenced from the ENC?
	Using EJBContext
	Annotation injection
	Default ENC name
	XML injection
	XML overrides
	Injection and inheritance

	Reference and Injection Types
	EJB References
	@javax.ejb.EJB
	Ambiguous and overloaded EJB names
	Resolving EJB references

	EntityManagerFactory References
	@javax.persistence.PersistenceUnit
	XML-based EntityManagerFactory references
	Scoped and overloaded unit names

	EntityManager References
	@javax.persistence.PersistenceContext

	Resource References
	@javax.annotation.Resource
	Shareable resources

	Resource Environment and Administered Objects
	Environment Entries
	Message Destination References
	XML-based resource references
	Using @Resource

	Chapter 17. Transactions
	ACID Transactions
	Example: The BlackjackEJB
	Helper EJBs for Testing Transactions
	Is the BlackjackEJB Atomic?
	Is the BlackjackEJB Consistent?
	Is the BlackjackEJB Isolated?
	Is the BlackjackEJB Durable?

	Declarative Transaction Management
	Transaction Scope
	Transaction Attributes
	Using the @TransactionAttribute annotation
	Transaction attributes defined
	EJB 3.0 persistence and transaction attributes
	Message-driven beans and transaction attributes
	EJB endpoints and transaction attributes

	Transaction Propagation
	Transactions and persistence context propagation

	Isolation and Database Locking
	Dirty, Repeatable, and Phantom Reads
	Dirty reads
	Repeatable reads
	Phantom reads

	Database Locks
	Transaction Isolation Levels
	Balancing Performance Against Consistency
	Controlling isolation levels

	Optimistic Locking
	Programmatic Locking

	Nontransactional EJBs
	Explicit Transaction Management
	Transaction Propagation in Bean-Managed Transactions
	Message-driven beans and bean-managed transactions

	Heuristic Decisions
	UserTransaction
	Status
	EJBContext Rollback Methods

	Exceptions and Transactions
	Application Exceptions Versus System Exceptions
	System exceptions
	Application exceptions

	Transactional Stateful Session Beans
	The Transactional Method-Ready State
	Transitioning into the Transactional Method-Ready state
	Life in the Transactional Method-Ready state

	Conversational Persistence Contexts

	Chapter 18. Interceptors
	Intercepting Methods
	Interceptor Class
	Applying Interceptors
	Annotated methods and classes
	Applying interceptors through XML
	Default interceptors
	Disabling interceptors

	Interceptors and Injection
	Intercepting Lifecycle Events
	Custom Injection Annotations

	Exception Handling
	Aborting a Method Invocation
	Catch and Rethrow Exceptions

	Interceptor Lifecycle
	Bean Class @AroundInvoke Methods

	Chapter 19. Timer Service
	Example: A Batch Credit Card Processing System
	The Business Interface
	javax.ejb.ScheduleExpression and @javax.ejb.Schedule
	The Bean Implementation Class
	The TimerService
	The Timer
	Canceling timers
	Identifying timers
	Retrieving other information from timers
	The TimerHandle object
	Exceptions

	Transactions
	Stateless Session Bean Timers
	Message-Driven Bean Timers

	Chapter 20. EJB 3.1: Web Services Standards
	Web Services Overview
	XML Schema and XML Namespaces
	XML Schema
	XML Namespaces

	SOAP 1.1
	Web Services Styles
	Exchanging SOAP Messages with HTTP
	Now You See It, Now You Don’t

	WSDL 1.1
	The <definitions> Element
	The <portType> and <message> Elements
	The <types> Element
	The <binding> and <service> Elements

	UDDI 2.0
	From Standards to Implementation

	Chapter 21. EJB 3.1 and Web Services
	Accessing Web Services with JAX-RPC
	Generating JAX-RPC Artifacts from WSDL
	Calling a Service from an EJB
	The <service-ref> Deployment Element
	The JAX-RPC Mapping File

	Defining a Web Service with JAX-RPC
	The WSDL Document
	The Service Endpoint Interface
	The Stateless Bean Class
	The Deployment Files
	The WSDL file
	The JAX-RPC mapping file
	The webservices.xml file

	Using JAX-WS
	The @WebService Annotation
	The @WebMethod Annotation
	The @SOAPBinding Annotation
	The @WebParam Annotation
	The @WebResult Annotation
	The @OneWay Annotation
	Separating the Web Services Contract
	The Service Class
	The Service Endpoint Interface
	The @WebServiceRef Annotation

	Other Annotations and APIs
	JAXB
	Taking JAXB Further

	Conclusion

	Part V. Examples
	Appendix A. FirstEJB Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	CalculatorBeanBase.java
	CalculatorCommonBusiness.java
	CalculatorLocal.java
	CalculatorLocalBusiness.java
	CalculatorLocalHome.java
	CalculatorRemote.java
	CalculatorRemoteBusiness.java
	CalculatorRemoteHome.java
	ManyViewCalculatorBean.java
	NoInterfaceViewCalculatorBean.java
	SimpleCalculatorBean.java

	Test Resources
	CalculatorAssertionDelegate.java
	CalculatorIntegrationTestCase.java
	CalculatorUnitTestCase.java
	MultiViewCalculatorIntegrationTestCase.java
	jndi.properties

	Appendix B. Stateless Session EJB: Encryption
 Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	EncryptionBean.java
	EncryptionCommonBusiness.java
	EncryptionException.java
	EncryptionLocalBusiness.java
	EncryptionRemoteBusiness.java
	META-INF/ejb-jar.xml

	Test Resources
	EncryptionIntegrationTestCase.java
	EncryptionTestCaseSupport.java
	EncryptionUnitTestCase.java

	Appendix C. Stateful Session EJB: FTP Client
 Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	FileTransferBean.java
	EncryptionBean.java
	EncryptionCommonBusiness.java
	EncryptionException.java
	EncryptionLocalBusiness.java
	EncryptionRemoteBusiness.java
	META-INF/ejb-jar.xml

	Test Resources
	EncryptionIntegrationTestCase.java
	EncryptionTestCaseSupport.java
	EncryptionUnitTestCase.java
	FileTransferCommonBusiness.java
	FileTransferException.java
	FileTransferRemoteBusiness.java

	Test Resources
	FileTransferIntegrationTestCase.java
	FileTransferTestCaseBase.java
	FileTransferUnitTestCase.java
	FtpServerPojo.java
	ftpusers.properties

	Appendix D. Singleton Session EJB: RSS Cache
 Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	ProtectExportUtil.java
	RomeRssEntry.java
	RssCacheBean.java
	RssCacheCommonBusiness.java
	RssEntry.java

	Test Resources
	RssCacheTestCaseBase.java
	RssCacheUnitTestCase.java
	TestRssCacheBean.java
	jndi.properties

	Appendix E. Message-Driven EJB: Status Update
 Listeners Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	StatusUpdate.java
	StatusUpdateConstants.java
	EnvironmentSpecificTwitterUtil.java
	LoggingStatusUpdateMdb.java
	SecurityActions.java
	StatusUpdateBeanBase.java
	TwitterUpdateMdb.java
	hornetq-jms.xml

	Test Resources
	MockObjectMessage.java
	StatusUpdateIntegrationTest.java
	StatusUpdateTestBase.java
	StatusUpdateUnitTestCase.java
	TwitterUpdateBlockingTestMdb.java

	Appendix F. Java Persistence APIs: Employee Registry
 Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	SimpleEmployee.java
	EmbeddedEmployeePK.java
	EmployeeType.java
	EmployeeWithEmbeddedPK.java
	EmployeeWithExternalCompositePK.java
	EmployeeWithMappedSuperClassId.java
	EmployeeWithProperties.java
	ExternalEmployeePK.java
	Address.java
	Computer.java
	Customer.java
	Employee.java
	Phone.java
	PhoneType.java
	Task.java
	Team.java
	Customer.java
	Employee.java
	Person.java
	Customer.java
	Employee.java
	Person.java
	Customer.java
	Employee.java
	Person.java
	EntityListenerEmployee.java
	EventTracker.java
	persistence.xml

	Test Resources
	EmployeeIntegrationTest.java

	Appendix G. Security: Secured School Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	FireDepartmentLocalBusiness.java
	SchoolClosedException.java
	SecureSchoolLocalBusiness.java
	FileDepartmentBean.java
	Roles.java
	SecureSchoolBean.java

	Test Resources
	SecureSchoolIntegrationTest.java
	groups.properties
	users.properties

	Appendix H. Transactions: Blackjack Game
 Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	BankLocalBusiness.java
	BlackjackGameLocalBusiness.java
	InsufficientBalanceException.java
	Account.java
	User.java
	BankBean.java
	BlackjackGameBean.java
	BlackjackServiceConstants.java
	persistence.xml

	Test Resources
	TransactionalBlackjackGameIntegrationTest.java
	DbInitializerBean.java
	ExampleUserData.java

	Appendix I. Interceptors: TV Channel Service
 Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	AuditedInvocation.java
	CachingAuditor.java
	Channel2AccessPolicy.java
	Channel2ClosedException.java
	Channel2Restrictor.java
	TunerBean.java
	TunerLocalBusiness.java

	Test Resources
	CachingInterceptorUnitTestCase.java
	Channel2RestrictorUnitTestCase.java
	InterceptorIntegrationTest.java
	MockInvocationContext.java
	SecurityActions.java

	Appendix J. Timer Service: Credit Card Processor
 Example
	Description
	Online Companion Information
	Source Listing
	Implementation Resources
	CreditCardTransaction.java
	CreditCardTransactionProcessingLocalBusiness.java
	CreditCardTransactionProcessingBean.java

	Index

