
M A N N I N G

Ken Finnigan

www.allitebooks.com

http://www.allitebooks.org

Enterprise Java Microservices

KEN FINNIGAN

M A N N I N G
SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editors: Karen MillerManning Publications Co.
20 Baldwin Road and Susanna Kline
PO Box 761 Technical development editor: Nick Watts
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljević

Project manager: Deirdre Hiam
Copy editor: Sharon Wilkey
Proofreader: Elizabeth Martin

Technical proofreader: John Clingan
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617294242
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org

brief contents
PART 1 MICROSERVICES BASICS..1

1 ■ Enterprise Java microservices 3

2 ■ Developing a simple RESTful microservice 23

3 ■ Just enough Application Server for microservices 36

4 ■ Microservices testing 60

5 ■ Cloud native development 83

PART 2 IMPLEMENTING ENTERPRISE JAVA MICROSERVICES.................99

6 ■ Consuming microservices 101

7 ■ Discovering microservices for consumption 117

8 ■ Strategies for fault tolerance and monitoring 138

9 ■ Securing a microservice 164

10 ■ Architecting a microservice hybrid 188

11 ■ Data streaming with Apache Kafka 211

iii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents
preface ix
acknowledgments x
about this book xi
about the author xiv
about the cover illustration xv

PART 1 MICROSERVICES BASICS ..1

1 Enterprise Java microservices 3
1.1 Enterprise Java—a short history 4

What is Enterprise Java? 4 ■ Typical Enterprise Java
architecture 4 ■ What is a monolith? 6 ■ What are the
problems associated with monoliths? 9

1.2 Microservices and distributed architecture 10
Do one thing well 11 ■ What is a distributed architecture? 11
Why should you care about being distributed? 12 ■ What can be
done to assist in developing microservices? 14 ■ Product over
project 14 ■ Continuous integration and delivery 14

1.3 Patterns for migration to microservices 15
Domain-Driven Design 15 ■ Big Bang pattern 17 ■ Strangler
pattern 18 ■ Hybrid pattern 18

v

CONTENTSvi

1.4 What are Enterprise Java microservices? 19
Why Enterprise Java is a good fit for microservices 21

2 Developing a simple RESTful microservice 23
2.1 Cayambe monolith 23

2.2 New administration site 25
Use cases 27 ■ Architecture of the application 28 ■ Creating
RESTful endpoints with JAX-RS 30 ■ Running it 33

3 Just enough Application 36Server for microservices
3.1 Just enough Application Server 37

What does JeAS mean? 37 ■ What are the benefits? 41
Eclipse MicroProfile 43

3.2 Choosing Just enough Application Server 44
Beach Vacation example application 44 ■ Dropwizard—the original
opinionated Microservice runtime 46 ■ Payara Micro—slimmed Java
EE app server in a JAR 49 ■ Spring Boot—opinionated Spring
microservices 53 ■ Thorntail—the most flexible JeAS runtime 56
How do they compare? 58

4 Microservices testing 60
4.1 What type of testing do you need? 61
4.2 Unit testing 62
4.3 What is immutability? 64
4.4 Integration testing 66
4.5 Consumer-driven contract testing 74
4.6 Additional reading 82
4.7 Additional exercises 82

5 Cloud native development 83
5.1 What is the cloud anyway? 84
5.2 Service models 84
5.3 Cloud native development 86
5.4 Deploying to the cloud 88
5.5 Starting Minishift 88
5.6 Microservice cloud deployment 89
5.7 Testing in the cloud 94
5.8 Additional exercises 97

CONTENTS vii

PART 2 IMPLEMENTING ENTERPRISE JAVA MICROSERVICES99

6 Consuming microservices 101
6.1 Consuming a microservice with a Java client library 105

java.net 106 ■ Apache HttpClient 108

6.2 Consuming a microservice with a JAX-RS client library 110
JAX-RS client 110 ■ RESTEasy client 113

7 Discovering microservices for consumption 117
7.1 Why does a microservice need to be discovered? 118

What is service discovery? 119 ■ What are the benefits of service
discovery and a registry? 120 ■ Stateless vs. stateful
microservices 123 ■ What is Netflix Ribbon? 123

7.2 Registering a microservice with Thorntail 125
Thorntail’s topologies 125 ■ Registering a microservice with a
topology 127

7.3 Consuming a registered microservice with Thorntail 131
Service lookup with Netflix Ribbon 131 ■ Service lookup with the
RESTEasy client 135

8 Strategies for fault tolerance and monitoring 138
8.1 Microservice failures in a distributed architecture 138

8.2 Network failures 141

8.3 Mitigating against failures 142
What is Hystrix? 142 ■ Circuit breakers 145
Bulkheads 149 ■ Fallbacks 151 ■ Request caching 152
Putting it all together 153 ■ Hystrix Dashboard 155

8.4 Adding Hystrix to your Payment microservice 158
Hystrix with the RESTEasy client 158 ■ Hystrix with the Ribbon
client 161

9 Securing a microservice 164
9.1 The importance of securing your microservice 164

Why is security important? 165 ■ What problems does security need
to solve? 167

9.2 Working with Keycloak 168
Understanding Keycloak’s features 168 ■ Setting up
Keycloak 169

CONTENTSviii

9.3 Securing the Stripe microservice 172
Configuring Keycloak 173 ■ Securing the Stripe resource 175
Authenticating in the Payment resource 176 ■ Testing your
secured microservice 178

9.4 Capturing user authentication 180
Configuring Keycloak 180 ■ Securing category deletion 182
Authenticating the user in a UI 183 ■ Testing that the new UI and
service all work 186

10 Architecting a microservice hybrid 188
10.1 The Cayambe monolith 189

10.2 Running the Cayambe monolith 191
Database setup 191 ■ WildFly setup 191 ■ Running
Cayambe 193

10.3 Cayambe hybrid—monolith with microservices 194
Integrating the Payment microservice 196 ■ Integrating the Admin
microservice 202 ■ New administration UI 202 ■ Cayambe
hybrid summary 202

10.4 Deploying everything to a hybrid cloud 203
Database 204 ■ Security 206 ■ Microservices 207
Cayambe hybrid 207 ■ Cayambe EAR 209 ■ Admin UI 209

11 Data streaming with Apache Kafka 211
11.1 What can Apache Kafka do for you? 211

Data streaming 212 ■ Apache Kafka 213

11.2 Simplifying your monolith architecture with streaming 216

11.3 Deploying and using Kafka for data streaming 219
Kafka on OpenShift 219 ■ Admin microservice 221
Kafka consumer 223

11.4 Additional exercises 226

appendix Spring Boot microservices 229

index 247

preface
Since the beginnings of developing a framework for Enterprise Java microservices at
Red Hat, I’ve known it’s a critically important topic to disseminate to the wider devel-
oper community. Lots of useful information can be lost behind buzzwords, and a book
was needed to present the information that developers need to get the job done.

 My sincerest hope is that Enterprise Java Microservices succeeds at taking existing Enter-
prise Java developers on a path from traditional application development to developing
microservices. It’s not always an easy road to travel, because moving from traditional
development requires a different mindset, but my desire is for this book to provide that
bridge of knowledge to help you take those initial steps into microservices.

ix

acknowledgments
As this book took longer than expected to complete, I’ll be forever indebted to Erin,
my wife, for her continued understanding and support throughout the entire process.
Without her strength, guidance, and perseverance, I’d probably still be writing and
reworking chapters today. I’d also like to thank my sons, Lorcán and Daire, for under-
standing the continued absence of their dad for play on the weekends, while I was
buried in a computer working on this book.

 To Karen Miller and Susanna Kline, my development editors, thank you for being
so understanding about my often slow pace of writing and for pointing out places
where I could do better with the content. In addition, I’d like to thank all the review-
ers: Alexandros Koufoudakis, Andrea Cosentino, Andrew Block, Benjamín Molina,
Christian Posta, Conor Redmond, Damián Mazzini, Daniel MacDonald, David Pardo,
Eric Honorez, Gary Samuelson, John Clingan, Justin McAteer, Kelum Senanayake,
Miguel Paraz, Peter Perlepes, Rinor Maloku, Rohit Nair, Sergiy Pylypets, Siva
Kalagarla, and Tony Sweets. Also, a thank you to the entire Manning team for all their
effort on the project.

x

about this book
Over the last seven or eight years, the term microservices has exploded in its use, not
always to the betterment of developers trying to understand what it means. During the
latter part of that time, developers have sought to bring their existing Enterprise Java
knowledge to microservices, not always with the best of success. Enterprise Java Microser-
vices is written with the goal of helping existing Enterprise Java developers bridge the
gap between traditional application development and microservices.

 As part of my job at Red Hat, I’ve seen the explosion of microservices first hand.
That explosion was a contributing factor in a colleague and me forming the WildFly
Swarm project in 2015. We saw the need for developers with existing Enterprise Java
knowledge to create microservices, and with nothing focused on the Java EE space at
the time, we created WildFly Swarm. Much has changed since then, and the current
landscape for microservices makes it seem like a lifetime has passed.

 Since I began writing this book, changes have continued to occur rapidly with
Enterprise Java—in particular, the Thorntail project that I lead, and with microser-
vices more generally. As best as I can, I’ve endeavored to update the book as those
changes occurred.

 It should be noted that this book isn’t intended to delve deeply into all aspects of
microservice development; it would be many times longer than it is now if that were
the case. Where appropriate, links to additional reading are provided if you choose to
delve into a particular topic in greater detail.

xi

ABOUT THIS BOOKxii

Who should read this book
This book is for any Enterprise Java developer with at least four years of experience.
These developers may have basic knowledge of microservices and may even have tried
microservices with Node.js or other non-Enterprise Java technologies, but haven’t
learned to develop Enterprise Java microservices.

How this book is organized: a roadmap
The book is split into two parts. Part 1, chapters 1 through 5, discusses the overall
architecture of microservice and distributed systems, along with the concept of
slimming application servers, testing, and cloud native development. Part 2 delves
into the nitty gritty of microservice development such as service registries, fault
tolerance, and security.

 Chapter 1 introduces the reader to Enterprise Java—in particular, what a monolith
is and how it came about. Then the chapter introduces distributed architectures and
microservices by covering what they are, what the term means, and other processes
that go hand in hand with the switch to microservices. Lastly, it introduces patterns
that can be applied to migrating from monoliths to microservices, and when each
might apply.

 Chapter 2 introduces a microservice by developing RESTful endpoints for manag-
ing a list of categories for a shopping site. The chapter also introduces the Cayambe
monolith, which will be converted to a hybrid and have additional microservices
developed for it throughout the book.

 Chapter 3 introduces the concept of a Just enough Application Server (JeAS) run-
time and showcases the differences between the frameworks available to support such
a runtime.

 Chapter 4 covers how unit and integration testing differ now that we’re developing
microservices, and the tools available to make testing easier. The chapter also intro-
duces a new concept of consumer-driven contract testing, which is critical to success in
architectures with many microservices collaborating and communicating.

 Chapter 5 talks about the cloud and the different service models used in different
cloud environments. We also discuss cloud native development and how that fits into
the microservices world. Next, we use tools at our disposal for local cloud develop-
ment, and you’ll see how these tools can be used for testing.

 Chapter 6 discusses the libraries available for consuming external microservices,
and the levels of abstraction they provide. We cover fairly low-level libraries like
java.net and Apache HttpClient before investigating libraries with a higher level of
abstraction such as JAX-RS and RESTEasy clients.

 Chapter 7 extends chapter 6 by adding the necessary pieces for our microservices
to be able to discover what they wish to consume. Without being able to register a
microservice, or discover it, there’s no way to reliably consume one.

 Chapter 8 dives into a critical topic for distributed architectures and microser-
vices—failure and how to mitigate against it. We briefly cover the typical types of failure

http://java.net

ABOUT THIS BOOK xiii

we can encounter with microservices, before covering how the various parts of the Hys-
trix framework enable us to provide a means for our microservice to account for fail-
ures that might arise.

 Chapter 9 discusses security for our microservices and how to achieve it with Key-
cloak. From what is required to secure microservices, to retrieving tokens within a
microservice for calling secured microservices, and, lastly, authenticating a user within
a UI for consuming secured microservices, this chapter covers it all.

 Chapter 10 revisits the Cayambe monolith by showing how it can be run in its
unmodified form. You’ll then be taken through the steps to switch Cayambe to be a
hybrid that has monolithic parts, but that also consumes microservices to expand and
distribute its functionality.

 Chapter 11 introduces the topic of data streaming with Apache Kafka by reducing
the duplication of data between hybrids and microservices. You’ll use data streaming
to enable real-time updates to disparate data to simplify distributed architectures.

About the code
All the code from the book can be found in the source code files that accompany the
book. The source code can be downloaded free of charge from the Manning website
(www.manning.com/books/enterprise-java-microservices), as well as via the following
GitHub repository: https://github.com/kenfinnigan/ejm-samples. All the sample
code is structured as a series of Maven modules for each chapter or part of a chapter.

 All source code in listings or in the text is in a fixed width font like this to
separate it from ordinary text. In many listings, the code is annotated to point out key
concepts.

Book forum
Purchase of Enterprise Java Microservices includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/java-microservices-in-action. You
can also learn more about Manning’s forums and the rules of conduct at https://
forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It isn’t a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

https://www.manning.com/books/enterprise-java-microservices
https://github.com/kenfinnigan/ejm-samples
https://forums.manning.com/forums/java-microservices-in-action
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

about the author
KEN FINNIGAN has been a consultant and software engineer over more
than 20 years for enterprises throughout the world. He leads the
Thorntail project, which seeks to make developing microservices for
the cloud with Java and Java EE as easy as possible. He previously
served as the project lead for LiveOak, along with other JBoss projects.

xiv

about the cover illustration
The figure on the cover of Enterprise Java Microservices is captioned “Girl from Lumbarda,
island Korčula, Croatia.” The illustration is taken from the reproduction, published
in 2006, of a 19th-century collection of costumes and ethnographic descriptions enti-
tled Dalmatia by Professor Frane Carrara (1812–1854), an archaeologist and historian,
and the first director of the Museum of Antiquity in Split, Croatia. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum (formerly the Museum
of Antiquity), itself situated in the Roman core of the medieval center of Split: the ruins
of Emperor Diocletian’s retirement palace from around AD 304. The book includes
finely colored illustrations of figures from different regions of Dalmatia, accompanied
by descriptions of the costumes and of everyday life.

 Dress codes have changed since the nineteenth century, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone different towns or regions. Perhaps we have traded
cultural diversity for a more varied personal life—certainly for a more varied and fast-
paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
illustrations from collections such as this one.

xv

Part 1

Microservices basics

What are Microservices? A microservice consists of a single deployment exe-
cuting within a single process. How do microservices differ from traditional Enter-
prise Java applications? In what situations is it appropriate to use microservices?
These are just some of the questions that we’ll address in these first five chapters.

 Part 1 also explores the runtime options available for Enterprise Java micro-
services, before finishing with how to test microservices and deploy them to the
cloud.

Enterprise
 Java microservices

Before you dive in, let’s step back and discuss what I hope you achieve during the
course of this book. We all know that there’s no such thing as a free lunch, so I won’t
pretend that microservices are easy. This chapter introduces microservices—their
concepts, benefits, and drawbacks—to provide a basis on which you can build your
technical knowledge. Chapters 2 and 3 provide an example of a RESTful endpoint
microservice and cover some of your runtime and deployment options for Enter-
prise Java microservices.

 So what is an Enterprise Java microservice? In a nutshell, it’s the result of applying
Enterprise Java to the development of microservices. The latter part of this chapter
and the remainder of the book explore in detail what that means.

This chapter covers
 Enterprise Java history

 Microservices and distributed architecture

 Patterns for migration to microservices

 Enterprise Java microservices

3

4 CHAPTER 1 Enterprise Java microservices

 After you’ve learned the basics of microservices, you’ll delve into tools and tech-
niques for use in Enterprise Java to mitigate the drawbacks and complexity of micro-
services. Being more familiar with microservices, you’ll then look at an existing
Enterprise Java application and how it could be migrated to take advantage of micro-
services. The last few chapters touch on more advanced microservice topics related to
security and event streaming.

Enterprise Java—a short history1.1
If you’re reading this book, you’re most likely already an experienced Enterprise Java
developer. If you aren’t, I appreciate and applaud your desire to broaden your hori-
zons into Enterprise Java!

What is Enterprise Java?1.1.1

For those who are new to, or need a refresher in, Enterprise Java, what is it? Enterprise
Java is a set of APIs, and their implementations, that can provide the entire stack of an
application from the UI down to the database, communicate with external applica-
tions via web services, and integrate with internal legacy systems, to name a few, with
the goal of supporting the business requirements of an enterprise. Though it’s possi-
ble to achieve such a result with Java on its own, rewriting all the low-level architecture
required for an application would be tedious and error prone, and would significantly
impact the ability of a business to deliver value in a timely manner.

 It wasn’t long after Java was first released more than 20 years ago that various
frameworks began to crop up to solve the low-level architecture concerns of develop-
ers. These frameworks allowed developers to focus on delivering business value with
application-specific code.

Typical Enterprise Java architecture1.1.2

In the early days of Enterprise Java, our applications were all greenfield development,
because no preexisting code was being extended.

DEFINITION Greenfield refers to the development of an entirely new applica-
tion without any preexisting code that needs to be taken into consideration,
excluding any common libraries that might be required.

Enterprise Java
Many frameworks have come and gone, but two have remained the most popular
through the years: Java Platform, Enterprise Edition (Java EE), and Spring. These two
frameworks account for most development by an enterprise with Enterprise Java.

Java EE incorporates many specifications, each with one or more implementations.
Spring is a collection of libraries, some of which wrap Java EE specifications.

5Enterprise Java—a short history

Greenfield development presents the greatest opportunity to develop a clean layered
architecture for an application. Typically, architects would devise an architecture simi-
lar to that shown in figure 1.1.

 Here you’ll likely recognize familiar pieces of architectures you’ve worked on in
the past: a view layer, a controller, possibly using a reusable business service, and finally,
the model that interacts with the database. You can also see the application packaged as
a WAR, but many combinations of packaging for each layer could be applied, includ-
ing JAR and EAR. Typically, the view and controller are packaged in a WAR. The business
service and model are packaged in JARs, either inside a WAR or EAR.

 As the years passed, we continued developing greenfield applications with Enter-
prise Java using such a pattern, but there reached a point where most enterprises

1 A user makes a request from a browser specifying
which view of an application they wish to see.

User

View

WAR

Controller

Business
service

Model

Data

6

5

3a

3b

2

1

JAR

2 The view calls out to a controller to retrieve
whatever information might by required to construct
itself.

4 A business service can also make many calls to
other business services. It all depends on how the
business features have been architected.

6 Model classes provide the mapping onto physical
data storage, and are often passed back up through
the layers of the application.

5 The business service calls a model to retrieve the
data it needs. This step is equivalent to 3a.

3 The controller can retrieve the information in one of
two ways:
3a Directly interact with the model of the application
to retrieve an object model populated with data.
3b Call one or more business services, possibly to
aggregate data from different sources.

Figure 1.1 Typical Enterprise Java application architecture

6 CHAPTER 1 Enterprise Java microservices

were, for the most part, enhancing existing applications. From that day, many Enter-
prise Java applications became a legacy burden on enterprises by virtue of the mainte-
nance work required—not because of a flaw or deficiency in Java, though there have
been several, but because developers aren’t the best at architecting changes to exist-
ing applications and systems. This is complicated further for enterprises that have
hundreds of architects and developers pass through their doors, each bringing their
own preferences and patterns to extending existing applications.

NOTE I’m not sitting in an ivory tower disparaging developers. Many times I’ve
made decisions about how a feature should be implemented without fully
grasping existing functionality—not through any intent or malice, but because
those who wrote the code are no longer employed at the enterprise and there-
fore can’t be asked about the code, and because documentation may be lack-
ing or nonintuitive. Such a situation means developers are left to make a
judgment call as to whether or not they’ve understood the existing system suf-
ficiently to make modifications. Throw in some deadline pressure from man-
agement, and such a situation becomes even more fraught with problems.

Over time, many Enterprise Java applications diverged from the clean architecture
shown in figure 1.1 and became a mess of spaghetti more closely resembling figure 1.2.
In figure 1.2 you can see how clear boundaries between functionality within a layer have
become blurred, resulting in components in each layer no longer having a well-defined
purpose.

 This situation is where many enterprises find themselves today. Only a few applica-
tions of an enterprise may fit this mold, but this mess of spaghetti is a problem that
must be solved in order for an application to foster future development without signif-
icant costs being incurred each time.

What is a monolith?1.1.3

What defines an Enterprise Java application as a monolith? A monolith is an applica-
tion that has all its components contained within a single deployable, and that typi-
cally has a release cadence of 3–18 months. Some applications may even have a release
cadence of two years, which doesn’t make for an agile enterprise. Monoliths typically
evolve over time from attempts to make quick iterative enhancements to an applica-
tion, without any concern for appropriate boundaries between different parts, or
components, within it. Indicators of an application being a monolith can include the
following:

 Multiple WARs that are part of a single deployment, due to their intertwined
behavior

 EARs that contain potentially dozens of other WARs and JARs to provide all the
necessary functionality

Is figure 1.2 a monolith? It most certainly is, and an extremely bad one, because of the
blurring of functional separation between components.

7Enterprise Java—a short history

Why do the preceding factors make an application a monolith? A single deployable
for an application is perfectly fine when you have a small footprint, but when you have
potentially thousands of classes and dozens of third-party libraries, an application
becomes infinitely more complex. Testing even a minor change to the application
would require large amounts of regression testing to ensure that no other part of the
application was impacted. Even if the regression testing were automated, it’d still be a
mammoth task.

User

ViewiewVewViViewViewiewVewViView

WARWAR

EAR

ControllerControllerControllerControllerControllerControllerControllerController

Business
service

Business
service

Business
service

Business
service

Business
service

Business
service

Business
service

Business
service

ModelModelModelModelModelModelModelModel

Data

Enterprise Java spaghettiFigure 1.2

8 CHAPTER 1 Enterprise Java microservices

 Whether an application is a monolith is also determined in part by its architecture.
Classifying as a monolith isn’t based on the size of the application on disk, or the size
of the runtime being used to execute the monolith. It’s all about how that application
has been architected with respect to the components within it.

 Release cadence is a forcing function for enterprises. If an application is released
only every 3–18 months, the business (unknowingly or not) will focus on larger fea-
ture changes that take significant time to develop. No incentive exists to request a
minor tweak that could be made and released in a few hours, or days, when even the
most simple change won’t reach production for months.

 Release cadence dictated by the time it takes to develop and test changes has a
direct impact on the ability of an enterprise to be agile and respond to a changing
environment. For instance, if a competitor were to begin selling the same widget as
your enterprise for 15% less than you do, can you react? Taking several months to
make a simple change to reduce the selling price of a product could have disastrous
consequences for the bottom line. If that widget was the biggest seller, and the enter-
prise was unable to compete on price for three months, it may even be on the verge of
going out of business by the time a price change was released.

 Along with release cadence, it’s critical to note that discussions around micro versus
monolith don’t have any relation to constraints on size. You could have a microservice
that’s 100 MB in size, or a monolith that’s only 20 MB. The definition is more about
the coupling of dependencies between components, leading to the benefit of updat-
ing a single component without needing to cascade updates across many components.
This decoupling is what allows for a faster release cadence.

 Though it appears that monolithic Enterprise Java applications are all gloom and
doom, is that really the case? In many situations, it makes sense for an enterprise to
continue with, or develop, a monolith. How do you know if you should stick with a
monolith?

 Your enterprise may have only a few applications that it actively develops and maintains.
It may not make sense to significantly increase the development, testing, and
release burden when you have so few applications.

 If the current development team has a dozen people, splitting them into one- or two-person
teams for microservices may not provide any benefit. In some cases, that split will be
detrimental. Basecamp (https://basecamp.com/) is a perfect example of a
monolith that’s fine the way it is, developed by a team of 12.

 Does your enterprise need multiple releases a week, or even a day? If not, and the exist-
ing monolith has a clear separation of components, reducing the release
cadence may be all that’s required to derive increased business agility and
value.

Whether staying with a monolith is the right thing for an enterprise varies, depending
on the current circumstances and the long-term goals.

https://basecamp.com/

9Enterprise Java—a short history

What are the problems associated with monoliths?1.1.4

In general, an architectural design akin to the one in figure 1.1 is a good idea, but
drawbacks exist as well:

 Inability to scale individual components—This may not seem to be a major prob-
lem, but certain factors can alter the impact of poor scaling. If a single instance
of the application requires a large amount of memory or space, scaling that out
to a not-insignificant number of nodes requires a large investment in hardware.

 Performance of individual components—With a single deployment containing
many components, it’s easy for one component to perform worse than the rest.
You then have a single component slowing down the entire system, which isn’t a
good situation, and the operations team won’t be pleased.

 Deployability of individual components—When the entire application is a single
deployment, any changes require a deployment of the entire application, even
if you have a single-line change in one component. That’s not good for business
agility and often results in release cadences of many months to include many
changes in one updated deployment.

 Greater code complexity—When an application has many components, it’s easy for
the functional boundaries between them to become blurred. Blurring the sepa-
ration of components further increases the complexity of code, both in terms
of code execution and for a developer understanding the intent of the code.

 Difficulty in accurately testing an application—When the complexity of an applica-
tion grows, the amount of testing and time required to ensure that any change
didn’t cause a regression grows. What seems like the smallest and most insignif-
icant change can easily lead to unforeseen errors and problems in completely
unrelated components.

All these issues cause great cost to enterprises, as well as slowing the speed with which
they can take advantage of new opportunities. But these potential drawbacks are still
small in comparison to starting from a clean slate.

 If an enterprise has an application that has evolved with new features over a
decade or more, attempting to replace it with a greenfield project would cost hun-
dreds of man years in effort. This is a huge factor in why enterprises continue main-
taining existing monoliths.

 When it’s too costly to replace a monolith with a more modern alternative, that
application becomes entrenched in an enterprise. It becomes a critical application,
and any downtime causes business impacts. This situation becomes ever more com-
pounded with continual enhancements and fixes.

 On the flipside, some monoliths have been running well for years and can be easily
managed by a handful of developers without much effort. Maybe they’re in a mainte-
nance mode and not under heavy feature development. These monoliths are per-
fectly OK as they are. If it ain’t broke, don’t fix it.

10 CHAPTER 1 Enterprise Java microservices

 What do you do with monoliths that are too cumbersome to replace with a green-
field project, even though the enterprise knows it’s costing them a great deal in busi-
ness agility and expense? How do you update them to use newer frameworks and
technologies so they don’t become legacy? We’ll answer these questions next.

Microservices and distributed architecture1.2
Before delving into the definitions for microservices and distributed architecture, let’s
revisit how figure 1.2 might look when using them; see figure 1.3. This depiction has
certainly cleared up the separation between components by splitting them into sepa-
rate microservices with clear boundaries between them.

User

View

Microservice

Microservice

erviceMicros

erviceMicros
Microservice

MicroserviceMicroservice

Web server

Controller

ControllerController

Controller

Business
service

Business
service

Business
service

Business
service

Business
service

ModelModelModelModelModel

DataDataDataDataData

Enterprise Java microservicesFigure 1.3

11Microservices and distributed architecture

So what do I mean by a microservice? A microservice consists of a single deployment
executing within a single process, isolated from other deployments and processes,
that supports the fulfillment of a specific piece of business functionality. Each micro-
service focuses on the required tasks within a Bounded Context, which is a logical way to
separate the various domain models of an enterprise. We’ll cover this in greater detail
later in this chapter.

 From the definition, you can see that a microservice, in and of itself, isn’t useful.
It becomes useful when you have many loosely coupled microservices working
together to fulfill the needs of an application. A microservices architecture contain-
ing many microservices communicating with each other can also be referred to as a
distributed architecture.

 To make a microservice useful, it needs to be easily used from other microservices
and components of the entire system. It’s impossible to achieve that when a microservice
attempts to accomplish too much. You want a microservice to focus on a single task.

1.2.1 Do one thing well

In 1978, Douglas McIlroy, best known for developing UNIX pipelines and various
UNIX tools, documented the UNIX philosophy, one part of which is, Make each pro-
gram do one thing well. This same philosophy has been adopted by microservice devel-
opers. Microservices aren’t the kitchen sink of application development; you can’t
throw everything in them and expect them to function at an optimal level. In that
case, you’d have a monolithic microservice, also referred to as a distributed monolith!

 A well-designed microservice should have a single task to perform that’s suffi-
ciently fine-grained, delivering a business capability or adding business value. Going
beyond a single task brings us back to the problems of Enterprise Java monoliths,
which we don’t want to repeat.

 It’s not always easy to figure out a sufficiently granular task for a microservice.
Later in the chapter we’ll discuss Domain-Driven Design as a method to assist in defin-
ing that granularity.

1.2.2 What is a distributed architecture?

A distributed architecture consists of multiple pieces that work with each other to make
up the full functionality of an application distributed across processes, and often
across network boundaries as well. What’s distributed can be any part of an applica-
tion, such as RESTful endpoints, message queues, and web services, but it’s most defi-
nitely not limited to only these components.

 Figure 1.4 shows what a distributed architecture for microservices might look like.
In this depiction, the microservice instances are described as being in a runtime, but that
doesn’t dictate how the instance is packaged. It could be packaged as uber jars or
Linux containers, but many other options are available. The runtime is purely for
delineating the operating environment of a microservice, showing that the microser-
vices are running independently.

12 CHAPTER 1 Enterprise Java microservices

NOTE An uber jar, also known as a fat jar, indicates that the JAR file contains
more than a single application or library, and that it can be run from the
command line with java -jar.

1.2.3 Why should you care about being distributed?

Now that you’ve seen a distributed architecture, let’s look at some of the benefits:

 Services are location-independent. Services can locate and communicate with other
services no matter where they’re physically located. Such location indepen-
dence allows services to be located on the same virtual hardware, same physical
hardware, same data center, different data centers, or even a public cloud, and
all act is if they’re in the same JVM. The main downside to location indepen-
dence is the extra time required to make the network calls between them, and
by the nature of adding new network calls, you’ve reduced the likelihood of suc-
cessful completion.

User

DataData

1

Gateway

Microservice

MicroserviceMicroservice

RuntimeRuntime

Runtime

Microservices environment

2
2

3

44

4 The last microservice in the chain interacts
with the data storage layer for retrieving/writing
records.

3 A microservice receives the request and
performs some of its own processing on it
before calling another service.

2 When the request enters the microservices
environment, it enters the gateway, which
routes the request to the appropriate
microservice.

1 A user makes a request from a browser to
interact with a particular service. This could be
from a mobile device or from a UI that was
previously retrieved.

Typical microservices architectureFigure 1.4

13Microservices and distributed architecture

 Services are language-independent. Though this book focuses on Enterprise Java, we’re
not so naive as to believe that there won’t be times that services need, or are desired,
to be developed in different languages. When services aren’t required to run in the
same environment, you can use different languages for different services.

 Service deployments are small and single-purpose. When a deployment is smaller, less
effort is required for testing, and this makes it possible to shrink the release
cadence of that deployment down to a week or less. Having small, single-purpose
deployments enables an enterprise to more easily react to business needs in a
near-real-time fashion.

 New services are defined by the recomposition of existing service functionality. Having
discrete distributed services throughout your architecture greatly enhances
your ability to recombine those services in new ways to create additional value.
This recombination can be as straightforward as deploying a single new service,
combined with a handful of services already deployed. This enables you to cre-
ate something new for the business in a shorter time frame.

Sounds awesome—how can you develop distributed applications right now? You need
to pull back on the reins a bit here. Yes, being distributed does improve a lot of the
issues that we’ve had with Enterprise Java over the years, but it also introduces its own
challenges. Developing distributed applications is in no way a silver bullet, and you
can easily shoot yourself in the foot.

 You’ve seen some benefits of being distributed, but there’s never a free lunch with
most things—and definitely not with distributed architecture. If you have a bunch of
services that interoperate through communication and no coupling, what problems
can that introduce?

 Location independence for services is great, but how do they find each other? You
need a means of defining services logically, regardless of what their physical loca-
tion or IP address might be. With a means of discovery, you can locate a service
by its logical name and ignore wherever it might be physically located. Service dis-
covery serves this purpose. Part 2 of this book covers how to use service discovery.

 How do you handle failure without impacting customers? You need a means of
gracefully degrading functionality when services fail, instead of crashing the
application. You need service resilience and fault tolerance to provide alterna-
tives when services fail. Part 2 covers how to provide fault tolerance and resil-
ience for your services.

 Having hundreds or thousands of services, versus a handful of applications,
places additional burdens on operations. Most operations teams aren’t experi-
enced in dealing with such a large number of services. How do you mitigate
some of this complexity? Monitoring needs to play a major part here—in partic-
ular, automated monitoring. You need to automate the monitoring of hundreds
of services to reduce the burden on operations, while also providing informa-
tion that’s as near to real-time as possible about the entire system.

14 CHAPTER 1 Enterprise Java microservices

What can be done to assist in developing microservices?1.2.4

Microservice development is hard, so what can you do to make it easier? There’s no
panacea for making it easy, but this section covers a couple of options for making
microservice development more manageable.

Product over project1.2.5

Netflix has been a major proponent of the product-over-project idea for its microser-
vices since rewriting its entire architecture under the leadership of Adrian Cockroft.

 All these years, we’ve been developing projects and not products. Why? Because
we develop an application that meets a set of requirements and then hand it over to
operations. The application might require two weeks or two years to develop, but it’s
still a project if, at the end, the application is handed over and the team disbanded.
Some team members may be retained for a period to handle maintenance requests
and enhancements, but the effort is still considered a project followed by lots of
mini projects.

 So how do you develop a product? Developing a product means that a single team
owns it for the entirety of its lifespan, whether that be 2 months or 20 years. The team
will develop it, release it, manage the operational aspects of the application, resolve
production issues—pretty much everything.

 Why does the differentiation between a project and a product matter? Owning a
product engenders a greater sense of responsibility about the way an application is
developed. How? Do you want to be paged in the middle of the night because an
application is failing? I know I don’t!

 How does a shift of focus from project to product help with developing microser-
vices? When you’re seeking a release cadence of a week or less, as is typical for true
microservices, it’s hard to reach that release frequency with developers who aren’t
familiar with the codebase, as would be the case with a project approach.

Continuous inte1.2.6 gration and delivery

Without continuous integration and delivery, developing microservices becomes a
great deal more difficult.

 Continuous integration refers to the processes that ensure any change, or commit, to
a source repository results in a new build of the application, including all associated
tests of that application. This provides quick feedback on whether or not changes
broke the application, provided the tests are sufficient enough to discover it.

 Continuous delivery is a reasonably new phenomenon that has come from the DevOps
movement, whereby application changes are continuously delivered between environ-
ments, including production, to ensure expeditious delivery of application changes. A
manual step may occur to approve a build going into production, but not always. Hav-
ing a manual step is likely for critical user applications and less so for others. Continu-
ous delivery is usually offered by means of a build pipeline, which can consist of
automatic or manual steps, such as a manual step to approve a release for production.

15Patterns for migration to microservices

 Continuous integration and delivery, referred to as CI/CD, are key tools in facilitat-
ing a short release cadence. Why? They enable developers to find possible bugs earlier
in the process in an automated manner. But more important, CI/CD significantly
reduces the amount of time between determining that a piece of code is ready for pro-
duction and having it live for users. If a release process takes a day or two to complete,
that isn’t conducive to releasing multiple times a day or even once a day.

 Another important benefit of CI/CD is the ability to be more incremental in deliv-
ering functionality. The goal isn’t just to be able to physically release code faster;
being able to deploy smaller pieces of functionality is crucial for minimizing risk as
well. If a small change reaches production that causes a failure, backing out that
change is a relatively easy task.

1.3 Patterns for migration to microservices
You’ve looked at Enterprise Java with its existing monoliths and you’ve learned about
microservices in a distributed architecture. But how do you get from one to the other?
This section delves into patterns that can be applied to the problem of splitting an
existing monolith into multiple microservices.

1.3.1 Domain-Driven Design

Domain-Driven Design (DDD) is a set of patterns and methodologies for modeling our
understanding of the domains in our software. A key part of this is the Bounded Con-
text pattern (https://martinfowler.com/bliki/BoundedContext.html), which enables
you to segregate parts of the system to be modeled at a single time.

 This topic is far too broad to be covered in a few small paragraphs in this book,
especially because many books are already dedicated to DDD. But we’ll cover it briefly
here as another piece in the puzzle of developing with microservices. DDD can be
used both in greenfield microservice development and in migrating to microservices.

 A sufficiently large application or system can be divided into multiple Bounded
Contexts, enabling design and development to focus on the core domain of a given
Bounded Context at any one point. This pattern acknowledges that it’s difficult to
come up with a domain model for an entire enterprise at any one time, because too
many complexities exist. Dividing such a model into manageable Bounded Contexts
provides a way to focus on a portion of that model without concerning yourself with
the remainder of the, likely unknown, domain model. Figure 1.5 is an example to
help you understand the concepts behind DDD.

 Say you have a store that wants to develop microservices, and its domain model con-
sists of an order, items within an order, a product, and a supplier of that product. The
current domain model combines the different ways a Product can be defined. From the
perspective of an Order, it doesn’t care who supplies the product, how many are cur-
rently in stock, what the manufacturer price is, or any other information that’s relevant
to only the administration of the business. Conversely, the administration side isn’t nec-
essarily concerned with how many orders a product may be associated with.

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html

16 CHAPTER 1 Enterprise Java microservices

Figure 1.6 shows you now have Product in each Bounded Context; each represents a
different view of a product. The Order Bounded Context has only information such as
a product code and description. All the product information required by the business
is within the Product Bounded Context.

1
1

11..*

0..*

0..*

ProductOrder

Supplier
Order
item

Store domain modelFigure 1.5

1

1

11..*

0..*

0..*

Product

Product

Product Bounded ContextOrder Bounded Context

Order

Supplier
Order
item

Separate Bounded ContextsFigure 1.6

17Patterns for migration to microservices

In some cases, a clean split will exist in the domain model of a Bounded Context, but
in others there will be commonality between the separate models, as in the preceding
example. In this situation, it’s important to consider that although a part of the domain
model is shared between Bounded Contexts, one domain can be classed as the owner.

 Having defined the owner of a piece of the domain, it becomes necessary to make
that domain available to external Bounded Contexts—but in a way that doesn’t
implicitly tie the two Bounded Contexts together. This does make it trickier to handle
the boundary, but patterns such as Event Sourcing can help with this problem.

NOTE Event sourcing is the practice of firing events for every state change in
an application, which is usually recorded as a log in a certain format. Such a
log can then be used to rebuild entire database structures, or as in this case, as
a way to populate a piece of a domain model that’s owned externally.

How do all these Bounded Contexts fit together? Each Bounded Context forms part
of a greater whole, a context map. A context map is a global view of an application,
identifying all the required Bounded Contexts and the way they should communicate
and integrate with each other.

 In this example, because you’ve split Product into two, you’d need such a data feed
from the Product to Order Bounded Contexts to be able to populate the Product with
appropriate data.

 As you saw in our example, one side benefit of shared domain models in Bounded
Contexts is that each can have its own view of the same data. An application is no lon-
ger forced into viewing a piece of data in the same way as its owner does. This can pro-
vide huge benefits when a domain needs only a small subset of the data in each record
that the owner might hold. For additional information on Domain-Driven Design and
Bounded Contexts, I recommend Functional and Reactive Domain Modeling by Debasish
Ghosh (Manning, 2016).

1.3.2 Big Bang pattern

The Big Bang pattern for migrating to microservices in an enterprise is by far the most
complicated and challenging. It entails breaking apart every single piece of an existing
monolith into microservices, such that there’s a single cutover from one to the other.

 Because deployment is a single cutover—a Big Bang—to production, developing
for such a change can take just as long as developing on a monolith. Certainly, by the
end of the process, you’ve moved to microservices, but this pattern would be a bump-
ier road for most enterprises than other patterns for migrating to microservices—
especially when considering the internal process and procedure changes required to
move between the two deployment models. Such an abrupt change would be trau-
matic and potentially damaging to an enterprise.

 The Big Bang pattern isn’t recommended for most enterprises as a means of
migrating, and most definitely not for those who aren’t experienced with microser-
vices already.

18 CHAPTER 1 Enterprise Java microservices

Strangler pattern1.3.3

The Strangler pattern is based on the Strangler Application defined by Martin Fowler
(www.martinfowler.com/bliki/StranglerApplication.html). Martin describes this pat-
tern as a way to rewrite an existing system by gradually creating a new system at the
edges of the existing one. The new system slowly grows over several years, until the old
system is strangled into nonexistence.

 You may find a similar end result as the Big Bang pattern—not necessarily a bad
thing—but it’s achieved over a much longer time span while still delivering business
value in the interim. This approach significantly reduces the risk involved, compared
to the Big Bang pattern. Through monitoring progress of the application over time,
you can adjust the way you implement microservices as you learn with each new one
implemented. This is another huge advantage over the Big Bang pattern: being able
to adjust and react to issues that might arise in processes or procedures. With a Big
Bang approach, an enterprise is tied into its processes until everything has cutover.

Hybrid pattern1.3.4

Now that you’ve seen both the Big Bang and Strangler patterns, let’s look at the Hybrid
pattern. I feel this pattern will become the predominant pattern for enterprises migrat-
ing to and developing microservices.

 This pattern begins life in a similar fashion to the Strangler. The difference is that you
never fully strangle the original monolith. You retain some functionality within a mono-
lith and integrate that with new microservices. Figure 1.7 shows the path of a request
through an existing Enterprise Java monolith and a new microservices architecture:

1 A user makes a request from a browser specifying which view of an application
they wish to see.

2 The view calls out to a controller to retrieve whatever information might be
required to construct itself.

3 The controller calls a business service, possibly to aggregate data from different
sources.

4 The business service then passes the request into the microservices environ-
ment, where it enters the gateway.

5 The gateway routes the request to the appropriate microservice based on rout-
ing rules that have been defined.

6 A microservice receives the request and performs some of its own processing on
it before calling another microservice.

7 The last microservice in the chain interacts with the data storage layer to
read/write records.

An architecture such as that in figure 1.7 provides a great deal of flexibility for growth
and delivering business value in a timely fashion. Components that require high per-
formance and/or high availability can be deployed to the microservices environment.

http://www.martinfowler.com/bliki/StranglerApplication.html

19What are Enterprise Java microservices?

Components that are too costly to be migrated to the new architecture can remain
deployed on an Enterprise Java platform.

 You’ll focus on the Hybrid pattern later in the book, when you migrate an existing
Enterprise Java application to use microservices.

1.4 What are Enterprise Java microservices?
As I mentioned at the beginning of the chapter, Enterprise Java microservices are
purely microservices developed with Enterprise Java. So let’s take a look at a simple
example to see it in practice.

 Let’s create a simple RESTful Java EE microservice that uses CDI and JAX-RS. This
microservice exposes a RESTful endpoint to greet the user by name; the message
returned is being provided via a CDI service you inject (listing 1.1).

User

View

Runtime

Microservices environmentEnterprise Java monolith

RuntimeRuntime

Controller

Business
service

Model

DataDataData

3

4

5

6

7

2

1

JAR

Gateway

MicroserviceMicroservice

Microservice

Enterprise Java and microservices hybrid architectureFigure 1.7

20 CHAPTER 1 Enterprise Java microservices

@RequestScoped
public class HelloService {

 public String sayHello(String name) {
 return "Hello " + name;
 }
}

The preceding service defines a single sayHello() method that returns Hello com-
bined with the value of the name parameter.

 You can then @Inject that service into your controller.

@ApplicationScoped
@Path("/hello")
public class HelloRestController {

 @Inject
 private HelloService helloService;

 @GET
 @Path("/{name}")
 @Produces("text/plain")
 public String sayHello(@PathParam("name") String name) {
 return helloService.sayHello(name);
 }
}

If you’ve developed JAX-RS resources before, you’ll recognize everything in the pre-
ceding code. What does that mean? It means that you can develop microservices with
Enterprise Java just as if you were developing an Enterprise Java application. The abil-
ity to develop a microservice with existing Enterprise Java knowledge is a significant
advantage in using Enterprise Java for microservices.

 This microservice example is simplified because you’re dealing with only the pro-
ducer side of the equation. If the service also consumed other microservices, it would
be more complex. But you’ll come to that in part 2 of this book.

 Though the preceding example was implemented with Java EE APIs, it could just
as easily have been implemented using Spring instead.

CDI serviceListing 1.1

JAX-RS endpointListing 1.2

CDI annotation that says you want a new
HelloService instance for each servlet
Request made. In this instance, because
you’re not storing state, it could easily
have been @ApplicationScoped instead.

Service method that takes a single
parameter and returns it prefixed “Hello”

CDI annotation that states you
need only a single instance for

the entire application Defines the RESTful URL
path of this controller. In
this case, it’s set to “/hello”.You inject an

instance of
HelloService that

you can use.

Defines the type
of HTTP requests

the method
handles

Specifies the URL path for the
method. You also specify a
parameter called name that
can be passed on the URL of
the request.

The method
produces a text
response only.

Assigns the path
parameter called

name as the
method parameter

Calls sayHello on the injected service
passing the name parameter value

21What are Enterprise Java microservices?

Why Enterprise Java is1.4.1 a good fit for microservices

You’ve seen how easy it is to develop a RESTful endpoint as an Enterprise Java micro-
service, but why should you? Wouldn’t you be better off using a newfangled frame-
work or technology specifically built for microservices? You have plenty to choose
from right now: Go, Rust, and Node.js are just some examples.

 In some situations, using a newer technology may make more sense. But if an
enterprise has significant investment in Enterprise Java through existing applications,
developers, and so forth, it makes a lot more sense to continue using that technology,
because developers have one less thing to learn in developing a microservice. And by
technology I don’t mean Java EE or Spring per se; it’s more about the APIs that a tech-
nology offers and developers’ familiarity with those APIs. If the same APIs can be used
with monoliths, microservices, or whatever the next buzzword is to hit developer
mindshare, that’s far more valuable than relearning APIs for each type of develop-
ment situation.

 If a developer is building microservices for an enterprise for the first time, using a
technology that the developer already knows and understands allows that developer to
focus on the requirements of a microservice—without being concerned about learn-
ing the nuances of a language or framework at the same time.

 Using a technology that’s been around for nearly 20 years also has significant
advantages. Why? A technology that’s been around that long is almost guaranteed not
to disappear in the near future. Can anyone say Cobol?

 It’s a great comfort to enterprises to know that whatever technology they’re devel-
oping and investing in isn’t going to be defunct in a few short years. Such a risk is typ-
ically why enterprises are reluctant to invest in extremely new technology. Though it
can be frustrating not being able to use the latest and greatest, it does have advan-
tages, at least for an enterprise.

 Enterprises aren’t the only factor that need to be considered when choosing a
technology for developing microservices. You also need to consider the following:

 Experience and skills of developers in the marketplace—There’s no point in choosing
a particular technology for microservice development if you don’t have a suffi-
ciently large pool of resources to choose from. A huge pool of developers have
Enterprise Java experience, so using that is advantageous.

 Vendor support—It’s all well and good to choose a technology for developing
microservices, but if no vendors are offering support of that technology, it’s dif-
ficult. It’s difficult because enterprises like to have a vendor available 24/7 for
support problems with a technology, usually in a production situation. Without
vendor support, an enterprise needs to employ those who work directly on that
technology to guarantee they can resolve any issues of their microservices in
production.

 Cost of change—If an enterprise has been developing with Enterprise Java for a
decade or more and has a stable group of developers who have worked on

22 CHAPTER 1 Enterprise Java microservices

projects over that time, does it make sense for an enterprise to abandon that
history and carve out a new path with different technology? Though in some
cases, that does make sense, the majority of enterprises should stick with
experience and skills even if moving to microservices.

 Existing operational experience and infrastructure—In addition to developers, the
convenience of having years of operational experience with Enterprise Java is
just as critical. Applications don’t monitor and fix themselves, though that
would be nice. Having to hire or retrain operations staff on new languages and
frameworks can be just as time-consuming as doing it for developers.

Summary
 A microservice consists of a single deployment executing within a single process.
 An Enterprise Java monolith is an application in which all its components are

contained within a single deployment.
 An Enterprise Java microservice is a microservice developed using Enterprise

Java frameworks.
 An Enterprise Java monolith isn’t suitable for a fast release cadence.
 Implementing microservices isn’t a silver bullet and requires additional consid-

eration to implement successfully.
 Migrating to microservices from a monolith can be best achieved with the

Hybrid pattern.
 An enterprise’s history of Enterprise Java development shouldn’t be disre-

garded in the decision to implement microservices.

Developing a simple
 RESTful microservice

This chapter will introduce you to the Cayambe monolith. The Cayambe monolith
will assist as we develop Enterprise Java microservices throughout the book, with
each microservice becoming a part of a new Hybrid monolith in chapter 10.

2.1 Cayambe monolith
Cayambe is an e-commerce application that hasn’t been maintained for the last 15
years and needs serious modernization. It’s easy to see from the homepage in fig-
ure 2.1 that it doesn’t quite have the same look as modern websites do today.

This chapter covers
 Introducing the Cayambe monolith

 Developing a simple RESTful application

 Packaging your simple RESTful application as a
microservice

 Understanding development with Enterprise Java
for microservices

23

24 CHAPTER 2 Developing a simple RESTful microservice

As you can see in figure 2.2, Cayambe is an EAR deployment that consists of three
WARs, a common JAR for the UIs, and a JAR containing the EJBs (Enterprise Java-
Beans) and DAOs (data access objects) for interacting with the database.

Cayambe homepageFigure 2.1

Admin WAR

Cayambe EAR

Cart WAR Checkout
WAR

Web
common

JAR

Cayambe
JAR

Data

Cayambe monolith architectureFigure 2.2

25New administration site

Throughout the book, you’ll work toward moving Cayambe to a series of deployments,
as represented in figure 2.3. Chapter 10 outlines additional details of Cayambe; in that
chapter, you’ll integrate the monolith with the microservices you develop over the com-
ing chapters.

2.2 New administration site
As part of modernizing Cayambe, you’ll split out the administration of the site,
enabling the customer aspects of the site to be scaled without also scaling the adminis-
tration aspects.

 The first tasks are to develop a JAX-RS RESTful microservice to provide the neces-
sary administration endpoints, and to develop a new UI for it by using ReactJS. For
those already familiar with JAX-RS, you’ll see some repetition of prior knowledge.

 Figure 2.4 is the current administration interface for Cayambe. Viewing or updat-
ing categories in the UI isn’t possible except for the main category Transportation.

Data

Cayambe EAR

Admin UI

Admin
service

Admin data

Payment
service

Payment data
Stripe

service Kafka topic

Apache KafkaicroserviceM

Microservice

Microservice

Checkout
WAR Cart WAR

Web
common

JAR

Cayambe
JAR

Cayambe future architectureFigure 2.3

26 CHAPTER 2 Developing a simple RESTful microservice

This is far from an ideal situation, so you’ll begin by developing a new administration
site and microservice to handle managing the product categories.

 Figure 2.5 shows the new administration interface with ReactJS, along with the cat-
egory data displayed as a tree.

Figure 2.6 shows where the RESTful microservice you’re developing in this chapter
will fit into the new Cayambe architecture when you’re finished with the book.

 Let’s dive into creating the RESTful microservice you need in order to enable the
new interface to work.

Old Cayambe administration interfaceFigure 2.4

New Cayambe administration interfaceFigure 2.5

27New administration site

Use cases2.2.1

For this chapter, you’ll focus on developing the category management parts of the
administration, but you’ll want to migrate the other aspects from the previous admin-
istration site at some point as well. Doing so simplifies what you’re learning to a single
problem domain instead of many, focusing on the code required to make category
management possible.

 As part of category management, you need to support Create, Read, Update, and
Delete (CRUD) operations on the categories. This process certainly isn’t the most
interesting part of developing RESTful endpoints, but most services will need some
type of CRUD at their core.

 The UI will call the CRUD operations on the microservice for maintaining catego-
ries. The microservice RESTful endpoints could be called from any client, but you’ll
show them operating with your UI. Figure 2.7 details the states and transitions
between them for managing the categories within the UI.

Data

Cayambe EAR

Admin UI

Admin
service

Admin data

Payment
service

Payment data
Stripe

service Kafka topic

Apache KafkaMicroservice

Microservice

Microservice

Checkout
WAR Cart WAR

Web
common

JAR

Cayambe
JAR

Cayambe administration microservice and UIFigure 2.6

28 CHAPTER 2 Developing a simple RESTful microservice

Architecture of the application2.2.2

Ignoring microservices for now, the architecture for your application will look some-
thing like figure 2.8. At the presentation layer, you use ReactJS for the UI, though we
won’t be covering the development of the UI as part of this chapter. The API layer con-
tains the RESTful endpoints using JAX-RS for the category. Finally, you have JPA enti-
ties of the category in your data layer that interacts with the physical database. The API
layer is responsible for interacting with the data layer to persist record updates.

 You could’ve separated the API layer and used services within a business layer on
top of the data layer, but I chose to simplify it by removing an unnecessary layer. Typi-
cally, all these layers would be packaged within a single WAR for deployment to an
application server.

All categories

Delete category

Add category

Update categoryView category

Category management state flowFigure 2.7

ReactJS

Data layerAPI layerPresentation layer

Category Database
Category
resource

Category management architectureFigure 2.8

29New administration site

How does the architecture change when you shift to constructing a microservice? See
figure 2.9.

 Here you can see that your server-side layers are encompassed in a single microser-
vice. Your UI then sits in its own WAR to package and deploy the UI to a separate run-
time. The application architecture is now split into separate deployable pieces: the UI,
a microservice, and a database.

NOTE On this occasion, you choose to package the UI as a WAR, but because
it’s solely HTML/CSS/JS, you could’ve used any means for packaging and
deploying static sites.

Because you’ve split your UI and services into separate runtimes, you need to add sup-
port for cross-origin resource sharing (CORS). If you don’t, the browser will prevent the
UI from making an HTTP request to the microservice. To do that, your microservice
needs a filter.

Listing 2.1 CORSFilter

Presentation layer

MicroserviceWAR

Data layerAPI layer

CategoryReactJS Database
Category
resource

Category management microservice architectureFigure 2.9

@Provider
public class CORSFilter implements ContainerResponseFilter {

@Override
public void filter(ContainerRequestContext requestContext,

 ContainerResponseContext responseContext) throws IOException {
responseContext.getHeaders().add("Access-Control-Allow-Origin", "*");
responseContext.getHeaders()

.add("Access-Control-Allow-Headers", "origin, content-type, accept,

➥ authorization");
responseContext.getHeaders().add("Access-Control-Allow-Credentials",

➥ "true");
responseContext.getHeaders()

.add("Access-Control-Allow-Methods", "GET, POST, PUT, DELETE, OPTIONS,

➥ HEAD");
responseContext.getHeaders().add("Access-Control-Max-Age", "1209600");

}
}

30 CHAPTER 2 Developing a simple RESTful microservice

TIP Keep in mind where a UI retrieves data from, and whether CORS needs
to be taken into account. Not doing so can easily lead to frustrating UI bugs
when RESTful calls fail for seemingly no reason. On the flip side, if your UI is
using an API gateway to interact with microservices, the API gateway could
offer configuration to handle CORS directly as opposed to in a microservice.

Creating RESTful endpoints with JAX-RS2.2.3

To keep the microservice simple, you’ll focus on the RESTful endpoint, the API layer,
and ignore the development of the JPA entities you need for the database. You’ll
assume that another kind developer has already written them for you! Rest assured
that this kind developer has made them available in the project code.

 In addition to the JPA entities, the developer has provided a convenient load.sql
file containing initial categories that will be used on startup to populate the database.

 Figure 2.10 shows what you’ll be developing in this section. The code for this sec-
tion can be found in the /chapter2/admin directory of the book’s example code.

Presentation layer

WAR Microservice

API layer Data layer

CategoryReactJS Database
Category
resource

Category management—API layerFigure 2.10

In this section, you’ll develop CategoryResource. Your CategoryResource will focus
on making the CRUD-style operations for category data available from RESTful end-
points. It specifies that the RESTful @Path for the controller is /category. You define
EntityManager to be injected with CDI, which then provides a way to perform opera-
tions on the database.

NOTE Though many would argue CRUD isn’t appropriate for RESTful ser-
vices, it’s often used that way by developers as a means of bolting RESTful
onto existing CRUD. Many levels of REST also are defined by Leonard Rich-
ardson in the Richardson Maturity Model. Hypermedia as the Engine of
Application State (HATEOAS) is the most complex and difficult level within
the model. The examples in this book don’t conform to the HATEOAS level
of REST, mostly because it’s not what many enterprise developers are familiar
with in their regular work. Take a look at http://mng.bz/vMPk and
https://restfulapi.net/richardson-maturity-model/ for further information
on the maturity model.

http://mng.bz/vMPk
https://restfulapi.net/richardson-maturity-model/

31New administration site

By default, all JAX-RS resource instances are active only on a per-request basis. If you
don’t change that, every request will spend time creating the necessary EntityMan-
ager instance to be injected. That doesn’t have a huge performance impact, but if you
can avoid it, you should. To avoid the re-creation of EntityManager, you need to mark
it as @ApplicationScoped. This tells the runtime that you want CategoryResource to
have its lifecycle managed by CDI, and not by JAX-RS. You need to define a JAX-RS
application class to define the root path for your microservice.

@ApplicationPath("/admin")
public class AdminApplication extends Application {
}

That’s all you need to do for this class. Because you’re asking CDI to manage the life-
cycle of CategoryResource, you don’t need to configure any singletons within JAX-RS.
Now it’s time to develop the RESTful endpoints you need for CRUD operations of
your categories.

VIEWING ALL CATEGORIES

The main screen for your application is a tree of categories. Populating the list on the
screen requires a RESTful endpoint to retrieve all the categories from the database.

@Path("/")
public class CategoryResource {

 @PersistenceContext(unitName = "AdminPU")
 private EntityManager em;

 @GET
 @Path("/categorytree")
 @Produces(MediaType.APPLICATION_JSON)
 public CategoryTree tree() throws Exception {
 return em.find(CategoryTree.class, 1);
 }

 ...
}

DELETING A CATEGORY

After you have a category, you need the ability to delete an old one that isn’t used. For
that, you need to add a RESTful endpoint for deleting a category from the database as
shown in listing 2.4.

Listing 2.2 AdminApplication

@Listing 2.3 GET on CategoryResource

Defines the RESTful URL for
the root of the application

Specifies the particular
persistence unit, AdminPU, that
you want an EntityManager for

@GET
indicates that

the method
will accept
only HTTP

GET requests.
RESTful URL to the

endpoint is set as /categorytree.
Indicates that the
method returns
data that has been
marshaled to JSON

Returns a CategoryTree as the root category. All other
categories will be retrieved as children of the root.

Finds the
CategoryTree
instance with

primary key of 1
using the injected

EntityManager

32 CHAPTER 2 Developing a simple RESTful microservice

@Path("/")
public class CategoryResource {
 ...

 @DELETE
 @Produces(MediaType.APPLICATION_JSON)
 @Path("/category/{categoryId}")
 @Transactional
 public Response remove(@PathParam("categoryId") Integer categoryId)

➥ throws Exception {
 try {
 Category entity = em.find(Category.class, categoryId);
 em.remove(entity);
 } catch (Exception e) {
 return Response
 .serverError()
 .entity(e.getMessage())
 .build();
 }

 return Response
 .noContent()
 .build();
 }

 ...
}

ADDING A CATEGORY

Sometimes new categories need to be added. For that, you have a RESTful endpoint
to add a new category into your database.

@Path("/")
public class CategoryResource {
 ...

 @POST
 @Path("/category")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 @Transactional
 public Response create(Category category) throws Exception {

@Listing 2.4 DELETE on CategoryResource

@Listing 2.5 POST on CategoryResource

@DELETE indicates the
method will accept only
HTTP DELETE requests.

Defines that the method accepts a
parameter and gives it a name of
categoryId

Requires a transaction to be present
when executing this endpoint

Finds the
Category
instance

 based on the
categoryId

 you received
as a parameter

Removes the
Category instance
from being persisted

If you encountered an
exception, returns a server
error containing the exception
message using JAX-RS Response

Returns an empty response if the
Category was successfully deleted

@POST indicates the
method will accept only
HTTP POST requests.

Indicates that the method will
accept only JSON that can be
marshaled to a Category instance

The method also returns a Category
that’s marshaled to JSON.

33New administration site

 if (category.getId() != null) {
 return Response
 .status(Response.Status.CONFLICT)
 .entity("Unable to create Category, id was already set.")
 .build();
 }

 try {
 em.persist(category);
 } catch (Exception e) {
 return Response
 .serverError()
 .entity(e.getMessage())
 .build();
 }
 return Response
 .created(new URI(category.getId().toString()))
 .build();
 }

 ...
}

In addition, the CategoryResource has RESTful endpoints defined to retrieve and
update a category. The code for the additional methods is available in the chapter 2
source.

2.2.4 Running it

Although you’ve indicated that your RESTful endpoint is an administration microser-
vice, nothing in the code you’ve developed prevents it from being built as a WAR and
deployed to an application server.

 Because you’re dealing with a UI communicating with only a single microservice,
there isn’t any difference between that and existing Enterprise Java development with
WARs. The upside to the similarity is that migrating existing Enterprise Java code into
a microservice is easier if no code changes are required for a microservice producer.

 To give more of a microservice feel for our example, you’ll package it as an uber
jar with Thorntail. Thorntail offers an alternative approach to packaging your
applications as a WAR or EAR and then deploying to a full Java EE application server.
It allows you to choose the parts you need from WildFly and package them into an
uber jar that can be run from the command line. Chapter 3 covers the features of
Thorntail in detail. To run the microservice, you need to add the plugin in listing 2.6
to your pom.xml.

If the Category has an ID set,
returns a 409 response status to
indicate a conflict with the record
attempting to be created

Persists the new Category
into the database

As part of the Response, sets the
location path to the new Category
with its identifier

34 CHAPTER 2 Developing a simple RESTful microservice

<plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>${version.thorntail}</version>
 <executions>
 <execution>
 <id>package</id>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <properties>
 <thorntail.port.offset>1</thorntail.port.offset>
 </properties>
 </configuration>
</plugin>

That’s all you need to do to provide a way to run the microservice from the directory,
as well as package it as an uber jar. So how and what do you run? Two pieces need to
be run: one for the UI and one for the microservice. If you wanted to execute tests
against the RESTful endpoints directly, without using the UI, you need to start only
the microservice.

STARTING THE MICROSERVICE

Open a terminal, or command window, and navigate to the /chapter2/admin direc-
tory of the book example code. From that directory, run this:

mvn thorntail:run

This starts the administration microservice containing your RESTful endpoints. After
the log shows that the microservice is deployed, you can go to a browser and open it to
http://localhost:8081/admin/category. Your browser will load the category data and
display it in JSON format. Now that you know the microservice is running, let’s run
the UI.

STARTING THE UI
Open a terminal and navigate to the /chapter2/ui directory of the book’s example
code. From that directory, run the following:

mvn package
java -jar target/chapter2-ui-thorntail.jar

This packages the UI in an uber jar, and then starts the uber jar that contains a web
server with the UI code only. After the log shows that it’s deployed, you can go to a
browser and open it to the following:

http://localhost:8080

Maven plugin configurationListing 2.6

Latest version of Thorntail

Run the package goal of
the plugin when executed.

Specify a port offset of 1
so your microservice will
start on port 8081.

35Summary

Your browser will load the UI containing the Cayambe category data, as shown previ-
ously in figure 2.5. Both the microservice and UI can be stopped by pressing Ctrl-C in
each terminal window.

Summary
 You can develop a category management microservice with JAX-RS.
 RESTful microservices can easily be created with Enterprise Java.
 Developing RESTful endpoints doesn’t change between Enterprise Java and a

microservice.
 Enterprise Java experience is easily transferable to developing Enterprise Java

microservices.

Just enough Application
 Server for microservices

This chapter explores the ideas behind Just enough Application Server (JeAS)
and the runtime options that we as developers have for developing Enterprise
Java microservices using JeAS. We’ll begin by defining JeAS and how it compares
to Java EE. To aid in the discussion, a hypothetical microservice, requiring several
specifications, will be described so its needs may be evaluated against what the
various JeAS runtimes offer. As part of the comparison, we’ll detail each of
the JeAS runtimes and how they differ as we develop a Beach Vacation shop-
ping application.

This chapter covers
 What is Just enough Application Server?

 What is MicroProfile?

 What runtimes support JeAS?

 How do JeAS runtimes compare?

36

37Just enough Application Server

Just enough Application Server3.1
The term Just enough Application Server has been used occasionally over the years, but usu-
ally in relation to customizing a full application server by removing functionality man-
ually. Only since the popularity of microservices has JeAS become crucial for Enterprise
Java. This section covers what JeAS means, its benefits, and what an example developed
in each of the JeAS runtimes looks like.

What does JeAS mean?3.1.1

Say you need to develop a microservice that interacts with an enterprise information
system (EIS), such as SAP, to retrieve Human Resources (HR) information on employ-
ees. For this microservice, you’ve chosen to use JAX-RS, CDI, and JMS. If you were to
develop such a microservice for deployment onto a typical Java EE application server,
it’d most likely be done against the full Java EE platform, as illustrated in figure 3.1.

As you can see, there are lots of specifications within the full platform that you’re not
using, but they’re still there even though you don’t require them. The full platform
has 33 JSRs included within it. That’s a lot of specifications that you may not always
need.

JSF JCA

JAX-WS
JavaMail

JAXB

EJB (local)

JDBC

Microservice

Full platform

JAX-RPC

JAXR

JTS

JPA

CDI

JAX-RS

JMS

EJB (remote)
Bean
validation

Microservice specification usage of full Java EE platformFigure 3.1

38 CHAPTER 3 Just enough Application Server for microservices

 Maybe there’s a Java EE profile you can use
to slim it down? You have only one option right
now. Let’s try the Web Profile and see how that
works; see figure 3.2.

 That results in fewer unused specifications,
but now you have the problem that JMS isn’t
part of the Web Profile. You can still add an
implementation of JMS to your microservice as
part of the deployment, but it’s no longer auto-
matically part of the stack and may require addi-
tional configuration that you didn’t need with
the full platform.

 What’s the answer? Can JeAS help? And what
exactly is Just enough Application Server? In a
nutshell, JeAS inverts the relationship between
an application server and an application, ensuring that you package only the parts of
an application server that your application requires. In the case of our preceding
microservice example, you know that you need JMS, so you choose the full platform of
an application server. But you know your application will never use large parts of that
application server.

Java EE profiles
Since Java EE 6, we’ve had one profile and the full platform available for developers
to choose as their application server. Although you may not be familiar with these
options, the following provides an overview of which specifications the full platform
and Web Profile contain.

Feature Web Profile Full platform

EJB (Local) ✔✔

JTS/JTA ✔✔

Clustering ✔✔

Servlet ✔✔

JSF ✔✔

JPA ✔✔

JBDC ✔✔

CDI ✔✔

Bean validation ✔✔

JAX-RS ✔✔

JDBC

EJB (Local)

Microservice

Web Profile

CDI

JSF

JPA

JTS

JAX-RS

JMS

Bean
validation

Figure 3.2 Microservice specification
usage of Java EE Web Profile

39Just enough Application Server

Many application servers provide the flexibility to slim down their distribution by
removing components and their associated configuration. I’ve worked with many cus-
tomers in the past who have taken this approach. But finding the correct combination
that still ensures that the application server functions properly requires somewhat of a
trial-and-error approach. In some cases, there may even be a component that you’d
like to remove but can’t, usually because that component is a key part of the applica-
tion server.

 Customizing an application server for many different applications quickly devolves
into a complex set of differing configurations that need to be managed and main-
tained. In these situations, developers typically prefer to simplify their lives and
choose the full platform as opposed to spending time trying to slim the application
server. They opt to accept the extra overhead that comes with not using all compo-
nents of the application server.

 Over the years, several application servers, such as WildFly, have worked to reduce
the footprint of components that aren’t being used. Though the dependencies
required for various components are still on the classpath, the application server is
clever enough to not load those classes into memory if the deployed applications
don’t require them. This can go only so far, unfortunately, because many components
are too central to the functioning of the application server, no matter what an applica-
tion might require.

 So where does JeAS fit in with your microservices architecture from figure 1.4?
Take a look at figure 3.3.

(table continued)

Feature Web Profile Full platform

JSON-P ✔✔

EJB (remote) ✔

JCA ✔

JAX-WS ✔

JAXB ✔

JMS ✔

JavaMail ✔

JAX-RPC ✔

JAXR ✔

40 CHAPTER 3 Just enough Application Server for microservices

User

JeAS runtime

JeAS runtimeJeAS runtime

Microservices environment

DataData

Gateway

Microservice

Microservice Microservice

JeAS as runtime for microservices architectureFigure 3.3

41Just enough Application Server

As you can see, the focus of JeAS is on the runtime needed for a microservice. A JeAS
runtime aims to provide a whittled-down application server for microservices, but the
way it’s packaged can differ among implementations.

 JeAS runtimes provide a simple and manageable way to include only the parts of
an application server that your application requires. Some runtimes are more flexible
than others in terms of what’s included, and we’ll cover those details shortly.

 Which JeAS runtime is chosen can impact the packaging available to a microser-
vice. The driving factor, however, should always be about what’s supported by a JeAS
runtime and not how it needs to be packaged.

3.1.2 What are the benefits?

In your SAP microservice from the previous section, you saw how painful it can be
when your application relies on the smaller-footprint Web Profile. It requires you to
bring in additional libraries and configure them to work with the rest of the applica-
tion server.

 As developers, we want to spend our time effectively, developing new features or
fixing bugs. We don’t want to spend it endlessly configuring application servers based
on differing requirements between applications. More often than not, we’d choose
the full platform for the sake of simplicity.

 What’s the big deal with using the full platform? Sure, there are lots of parts you
may not use today, but you plan to one day, right? Certainly, in some cases an applica-
tion will grow to include the use of one, or maybe two, additional specifications that
weren’t part of the original design. It’s highly doubtful that an application would sud-
denly grow to include all specifications of the full platform. If it does, there’s likely a
need to redesign the application, because it contains too many features for a single
application. So that leaves a large part of a full platform application server unused.

 Wouldn’t it be nice if application servers weren’t one size fits all? This is one of the
use cases that JeAS aims to solve, by allowing the developer to choose which features,
or specifications, of an application server are required for a given application.

 Why does that matter? If an application needs only servlets, it can be deployed to a
JeAS runtime that has only servlets available for an application. With a JeAS runtime,
if an application needs to add a feature, such as JAX-RS, a developer can choose to
add that feature into the JeAS runtime as a standalone piece. It’s no longer necessary
to choose between only two Java EE options, or attempt to customize the application
server yourself.

 This flexibility means that JeAS runtimes have great benefits:

 Reduced package size—When compared against an application bundled with the
application server it’s deployed to.

 Reduction in allocated memory—How reduced will depend on many factors, such
as the number of classes that are no longer being loaded.

42 CHAPTER 3 Just enough Application Server for microservices

 Reduced security footprint—Fewer ports are being opened for various features,
and fewer services are running. In addition, you have a significantly reduced
surface area for potential critical vulnerabilities (CVEs).

 Greater separation between applications—Many applications were usually deployed
to a single application server.

 Simplified upgrades—The upgrade impacts a single application only.

Greater separation between applications can mean a great many things, so it warrants
additional explanation. Over the years that Enterprise Java applications have been
deployed into production, an application server rarely would contain a single applica-
tion. Typically, an application server would be running anywhere from a handful to
dozens of applications in a single instance.

 As you can see in figure 3.4, JeAS runtimes provide a greater isolation between dif-
ferent microservices than applications in a traditional Java EE application server.

Physical/virtual machine

Traditional Java EE

JeAS runtimes

Physical/virtual machine Physical/virtual machine

JVM

APP server

JVM

JeAS runtime

JVM

JeAS runtime

WARWAR

WAR

MicroserviceMicroservice

Figure 3.4 Traditional Java EE vs. JeAS runtimes

43Just enough Application Server

Why was this the case? Historically, the biggest reason is cost—and not just the cost of
the application server, which usually wasn’t cheap, but all the physical hardware that
was required to run a single application server. Certainly, over the last decade, with
improved virtual machines and the rise of containers in recent years, the amount of
required physical hardware for production environments has dropped significantly—
and along with it, the cost of production environments for enterprises.

 With JeAS runtimes, it’s possible, ignoring containers for now, to run many
instances of them on a single piece of physical hardware. Each JeAS runtime running
in its own process is isolated from the others, preventing a common problem of collo-
cated applications in an application server: namely, that one application failure causes
the whole application server, and all applications running on it, to fail in an unrecov-
erable manner.

3.1.3 Eclipse MicroProfile

For anyone following developments in the landscape of Enterprise Java and microser-
vices over the last couple of years, you’ve likely heard about Eclipse MicroProfile. It’s a
community initiative to “optimize Enterprise Java for microservices” that was formed
with collaboration from Red Hat, IBM, Tomitribe, Payara, and the London Java Com-
munity. Since its initial formation, the community has moved to the Eclipse Foundation.

 From the first release with JAX-RS, CDI, and JSON-P forming the base Java EE
technologies, we’ve now surpassed version 1.3, including eight new MicroProfile spec-
ifications over those versions so far. Table 3.1 details the specifications included in
each MicroProfile release.

Table 3.1 MicroProfile specifications in each release

Specification 1.0 (Sep 2016) 1.1 (July 2017) 1.2 (Sep 2017) 1.3 (Jan 2018)

JAX-RS ✔✔✔✔

CDI ✔✔✔✔

JSON-P ✔✔✔✔

Config ✔✔✔

Fault tolerance ✔✔

JWT propagation ✔✔

Metrics ✔✔

Health check ✔✔

Open tracing ✔

Open API ✔

Type-safe REST client ✔

44 CHAPTER 3 Just enough Application Server for microservices

The community has an aim of providing a new release roughly every quarter. The
project has done well to hold closely to that schedule, though a delay occurred after
the 1.0 release for the project submission to the Eclipse Foundation. Time was needed
for all existing project code and documentation to be reviewed by the Eclipse Founda-
tion, as is required by the foundation.

 Eclipse MicroProfile creates specifications for Enterprise Java microservices, with the
benefit that microservices become portable between JeAS runtimes that support Eclipse
MicroProfile. There will certainly be JeAS runtimes that don’t implement the specifica-
tions, and those that provide more flexibility than is defined. The goal isn’t to cover
every possible use case for Enterprise Java microservice development, but to collaborate
on what an opinionated stack should contain that covers the majority of use cases.

 Over the last 18 months, the MicroProfile community has delivered functionality
for solving the problems of Enterprise Java, microservices, and the cloud. It has done
so in a collaborative and inclusive manner, with more individual contributors and ven-
dors joining the effort as it moves forward.

Choosing Just enough Application Server3.2
Now it’s time to evaluate a handful of the most popular runtimes for Enterprise Java
microservices. You’ll follow the development of a simple microservice example appli-
cation to show the differences among the frameworks, both in the way the code differs
and in the sets of features that each framework brings to the table.

 The full code of the example application for each runtime is available in the
source code for this book (https://github.com/kenfinnigan/ejm-samples).

Beach Vacation example application3.2.1

Our Beach Vacation example application will be a simple shopping cart that has a REST-
ful interface and a single class representing an item in the cart. You’ll pre-populate the
contents of the shopping cart with items that everyone needs on a beach vacation! To
keep it simple, you’ll store only a name and quantity in your CartItem.

public class CartItem {
 private String itemName;

 private Integer itemQuantity;

 public CartItem(String name, Integer qty) {
 this.itemName = name;
 this.itemQuantity = qty;
 }

 public String getItemName() {
 return itemName;
 }

Listing 3.1 CartItem

Name of the item.

Quantity to be bought.

Construct an instance
of CartItem with the
provided name and
quantity.

http://localhost:8080/add?item=kite&qty=2
https://github.com/kenfinnigan/ejm-samples

45Choosing Just enough Application Server

 public CartItem itemName(String itemName) {
 this.itemName = itemName;
 return this;
 }

 public Integer getItemQuantity() {
 return itemQuantity;
 }

 public CartItem itemQuantity(Integer itemQuantity) {
 this.itemQuantity = itemQuantity;
 return this;
 }

 public CartItem increaseQuantity(Integer itemQuantity) {
 this.itemQuantity = this.itemQuantity + itemQuantity;
 return this;
 }
}

The other piece you need is your RESTful interface. In keeping it simple, you won’t
be using a database to store items; the data will be held in memory only. Your Cart-
Controller will initialize a list of items for you to use as a base for the shopping cart.
Listing 3.2 is your controller code at its simplest so you can see exactly what each
framework requires within the class and methods later. It provides three methods that
you’ll make available over REST: all(), addOrUpdateItem(), and getItem(). The
addOrUpdateItem() method is the most complicated, because it handles adding quan-
tity to an existing item in the cart or adding an entirely new item.

public class CartController {
 private static List<CartItem> items = new ArrayList<>();

 static {
 items.add(new CartItem("sunscreen", 3));
 items.add(new CartItem("towel", 1));
 items.add(new CartItem("hat", 5));
 items.add(new CartItem("umbrella", 1));
 }

 public List<CartItem> all() throws Exception {
 return items;
 }

 public String addOrUpdateItem(String itemName, Integer qty) throws
Exception {

 Optional<CartItem> item = items.stream()
 .filter(i -> i.getItemName().equalsIgnoreCase(itemName))
 .findFirst();

Listing 3.2 CartController

Convenience
method for
increasing
the quantity
by a specified
amount

Populates the cart with
commonly required items
for a beach vacation

Returns all the current
items in the cart

Streams all the cart items to
find one whose name matches

46 CHAPTER 3 Just enough Application Server for microservices

 if (item.isPresent()) {
 Integer total =

item.get().increaseQuantity(qty).getItemQuantity();
 return "Updated quantity of '" + itemName + "' to " + total;
 }

 items.add(new CartItem(itemName, qty));
 return "Added '" + itemName + "' to shopping cart";
 }

 public CartItem getItem(String itemName) throws Exception {
 return items.stream()
 .filter(i -> i.getItemName().equalsIgnoreCase(itemName))
 .findFirst()
 .get();
 }
}

Now you’ve covered the two main classes you’ll need for your Beach Vacation shop-
ping application. In the following sections, you’ll update these two classes for each
JeAS runtime based on their particular requirements.

NOTE The following examples don’t always follow the proper use of REST
HTTP verbs and semantics. The examples illustrate a comparison of the run-
times, rather than proper REST patterns.

3.2.2 Dropwizard—the original opinionated Microservice runtime

Dropwizard provides a small JeAS runtime by being opinionated about what develop-
ers need in order to build a microservice. For Dropwizard, that means the following:

 Eclipse Jetty as an HTTP server
 Jersey for RESTful endpoints
 Jackson for transforming data to/from JSON
 Hibernate Validator
 Dropwizard Metrics to provide insight into code behavior in production

Dropwizard provides additional libraries to make it easier to develop a microservice,
in addition to the preceding ones. Check out www.dropwizard.io for the full list.

 If your application requires libraries that Dropwizard doesn’t include for you, you
need to add the necessary Maven dependencies to your project, adding whatever con-
figuration those libraries might require as well.

NOTE Dropwizard began in early 2011 and was the first project to put
together an opinionated JeAS runtime for microservices. Dropwizard has now
surpassed version 1.3.0.

Checks whether you found an item by
name. If yes, then update the quantity.

Item wasn’t found
in cart, so add it.

Filters all cart items to find the
one whose name matches

http://www.dropwizard.io

47Choosing Just enough Application Server

JAX-RS

JMS
CDI

Dropwizard

Microservice

Figure 3.5 Microservice
usage in Dropwizard

Let’s go back to the sample microservice we talked about ear-
lier that uses JAX-RS, CDI, and JMS. Figure 3.5 shows what the
microservice looks like with Dropwizard.

 When developing microservices that use more than just
JAX-RS from Java EE, it’s obvious that everything else you need
must be added and integrated. Though this is possible, it may
not be the most practical option because it requires a lot more
initial project setup before being able to develop any code.

 It’s for this reason that Thorntail, not Dropwizard, is my
preferred runtime for Enterprise Java microservices. Dropwiz-
ard covers only a small portion of what would be required.
This is especially true when converting existing Enterprise
Java applications into microservices, because you don’t want to have to rewrite all the
code to use different technologies. Ideally, you want to take an existing application
and package it in a different manner for use with a JeAS runtime.

 Back to our Beach Vacation shopping cart, let’s create your Dropwizard project by
generating a project with the Maven archetype:

mvn archetype:generate -DarchetypeGroupId=io.dropwizard.archetypes

➥ -DarchetypeArtifactId=java-simple -DarchetypeVersion=1.0.9

Now that you have your project, let’s modify the basic code so it can be used with
Dropwizard. The first change is easy: adding a default constructor to your CartItem
bean.

 Your CartController needs modification to make it RESTful. First you need to
define the RESTful path that your controller will be accessible from.

@Path("/")
public class CartController {
}

Now you need to add the JAX-RS annotations to your methods.

@GET
@Produces(MediaType.APPLICATION_JSON)
public List<CartItem> all() throws Exception {}

@GET
@Path("/add")
public String addOrUpdateItem(
 @QueryParam("item") String itemName,
 @QueryParam("qty") Integer qty) throws Exception {
}

Listing 3.3 CartController RESTful path

Listing 3.4 CartController methods with annotations

Indicates that the
method supports only
HTTP GET requests

Endpoint is accessible as /add. Method parameters
that will be passed
on the URL, such as
/add?item=hat&qty=2

48 CHAPTER 3 Just enough Application Server for microservices

@GET
@Produces(MediaType.APPLICATION_JSON)
@Path("/get/{itemName}")
public CartItem getItem(
 @PathParam("itemName") String itemName) throws Exception {
}

The JAX-RS annotations you’ve added have no surprises, because they’re regularly used
for RESTful endpoints. Your three methods are all annotated with @GET. The all() and
getItem() methods both produce JSON output, so you’ve added @Produces to indicate
the correct media type for JSON. The addOrUpdateItem() method is accessible with a
URL path of /add, and you add the necessary @QueryParam definitions to your method
parameters. It maps URL query string parameters into your method parameters on invo-
cation based on the name you pass to @QueryParam. Finally, getItem() specifies a URL
path that defines the path parameter @Path("/get/{itemName}"), which is then passed
to your method by setting @PathParam("itemName") on the parameter.

NOTE CartController.addOrUpdateItem() is defined with @GET, which does
break normal RESTful semantics; it isn’t an idempotent operation, because
you’re modifying data. But I’ve taken this route purely for simplicity, because
your object model has only two fields and it enables you to call the endpoint
directly from a browser URL, removing the need to use curl or browser
extensions to POST data for testing.

Now you need to add custom classes so that Dropwizard knows what to run and how
it’s configured. First, you need to create a configuration class that specifies any
environment-specific parameters that your application requires. In this example, you’re
not worried about environment parameters, so the class can be empty.

public class Chapter3Configuration extends Configuration {
}

Finally, you need to extend Application from Dropwizard so you can specify what
needs to be run.

public class Chapter3Application extends Application<Chapter3Configuration> {

 public static void main(final String[] args) throws Exception {
 new Chapter3Application().run(args);
 }

 @Override
 public String getName() {

Listing 3.5 Chapter3Configuration

Listing 3.6 Chapter3Application

Parameter
defined as
part of the URL
path, /get/hat.

Used by Dropwizard to
start your application.

http://start.spring.io

49Choosing Just enough Application Server

 return "chapter3";
 }

 @Override
 public void initialize(final Bootstrap<Chapter3Configuration> bootstrap) {
 }

 @Override
 public void run(final Chapter3Configuration configuration,
 final Environment environment) {
 final CartController resource = new CartController();
 environment.jersey().register(resource);
 }
}

Now that you’ve built the application, how can you run it? By creating the project with
the Maven archetype, it has added the necessary plugins to build an uber jar. The only
thing you need to do is ensure that the plugins in pom.xml reference the application
class you created on any configuration that needs mainClass. Now build the application:

mvn clean package

and run the application:

java -jar target/chapter3-dropwizard-1.0-SNAPSHOT.jar server

It’s now possible to access the application by going to http://localhost:8080/ in a
browser. This returns the list of current items in the cart. You can look at the details of
hat in your cart by navigating to http://localhost:8080/get/hat. Update the quantity
of an existing item with http://localhost:8080/add?item=towel&qty=1 or add a new
item to your cart with http://localhost:8080/add?item=kite&qty=2.

 Dropwizard has many other features that we didn’t cover here, such as Metrics and
Health Checks, so check out www.dropwizard.io/1.0.0/docs/index.html for further
information.

3.2.3 Payara Micro—slimmed Java EE app server in a JAR

Payara Micro is similar to Dropwizard in that it provides an opinionated JeAS runtime
where the stack is defined. Any additional libraries that you want to be used need to
be added to the application directly.

 Payara Micro also has a different deployment model than the other runtimes you’ll
look at, as Payara provides a distribution that can be executed directly. Payara’s distri-
bution is like a prebuilt application server, except that it can be started with java -jar
payara-micro.jar and given a WAR to deploy with --deploy myApp.war as part of
the same command. Without --deploy, the distribution starts up just as a normal
application server, but with nothing deployed.

Configure any parts of the
application that need to

be set up before it’s run.

Register an
instance of
your RESTful
endpoint
with Jersey.

http://www.dropwizard.io/1.0.0/docs/index.html

50 CHAPTER 3 Just enough Application Server for microservices

NOTE Payara Micro came out of the work that Payara was doing in providing
fixes and enhancements to GlassFish v4.x via its Payara Server. Payara Micro
was first released in May 2015 as a subset of Payara Server. Payara Micro has
now surpassed version 5.181.

There are certainly advantages to having a distribution that you deploy your applica-
tion to, as in a traditional application server. The biggest advantage is that the Payara
Micro distribution can be used as a Docker layer. This makes it possible to create a
Docker image containing that layer, which can then be used many times to package
different applications with Docker.

 The major downside to this type of JeAS runtime is that it isn’t possible to remove
additional pieces. For instance, if your application requires only servlets, there’s no
way to remove parts such as JAX-RS. The advantages of this approach might outweigh
such a downside, but that’s a decision for an enterprise to make based on its situation.
We’ll cover a more flexible approach to JeAS a bit later.

 What does Payara Micro provide? Figure 3.6 compares the Payara Micro distribu-
tion with the Web Profile.

 Let’s take a look at how your JAX-RS, CDI, JMS microservice uses Payara Micro; see
figure 3.7.

Because Payara Micro doesn’t include the JMS specification, you need to add an
implementation to your microservice yourself. This isn’t a major issue, but needing to
include additional implementations is easier if they’re already provided in a distribu-
tion. But then you’re back to the problem of application server pieces being present
but not used.

Web Profile

Payara Micro

CDI

JBatchJCache

JSFEJB (Local)

JPA

JTAJAX-RS

Bean
validation

Figure 3.6 Payara Micro compared to
Web Profile

Microservice

Payara Micro

CDI

JCache

JBatch

JSF

JMS

EJB (Local)

JPA

JTA

JAX-RS

Bean
validation

Microservice usage in PayaraFigure 3.7
Micro

51Choosing Just enough Application Server

 To create your Payara Micro project, you create a regular Maven WAR project as if
you were developing a Java EE application that was being deployed to an application
server. You can add a Maven dependency

<dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
</dependency>

and gain access to all the APIs that your application may require.
 Because you also want to use JAXB, with Jackson, you need to add the following

dependency:

<dependency>
 <groupId>org.glassfish.jersey.media</groupId>
 <artifactId>jersey-media-json-jackson</artifactId>
 <version>2.23.1</version>
</dependency>

Now that you have your project, let’s modify the basic code so it can be used with
Payara Micro. For the CartItem bean, you need to identify it as being mappable to
JAXB, create a default constructor, and use properly named setter methods.

@XmlRootElement
public class CartItem {
 public CartItem() {
 }
 ...
 public CartItem setItemName(String itemName) {
 this.itemName = itemName;
 return this;
 }
 ...
 public CartItem setItemQuantity(Integer itemQuantity) {
 this.itemQuantity = itemQuantity;
 return this;
 }
}

NOTE Payara Micro requires that a bean use proper setter methods, as you
have in listing 3.7. A bean that contains Builder pattern–type named setter
methods won’t correctly marshal to JSON.

Your CartController, as shown in listing 3.8, needs the same modifications to make it
RESTful as you made for Dropwizard. Both use the JAX-RS APIs for RESTful endpoints.

Listing 3.7 CartItem with JAXB mappings

Enables Java class as
JAXB mapping element

Method changed
from itemQuantity()
to setItemQuantity()

52 CHAPTER 3 Just enough Application Server for microservices

@Path("/")
public class CartController {
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<CartItem> all() throws Exception {}

 @GET
 @Path("/add")
 public String addOrUpdateItem(
 @QueryParam("item") String itemName,
 @QueryParam("qty") Integer qty) throws Exception {
 }

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 @Path("/get/{itemName}")
 public CartItem getItem(
 @PathParam("itemName") String itemName) throws Exception {
 }
}

Now that your RESTful endpoint is defined, you need to tell the runtime that you
want to make it available. With Payara Micro, you do that with a custom JAX-RS
Application class that registers your resource.

@ApplicationPath("/")
public class JaxrsApplication extends Application {
 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> resources = new HashSet<>();
 resources.add(CartController.class);
 return resources;
 }
}

You specify a URL path for the whole application and then add your CartController
class to a set of classes that the application makes available to the JAX-RS runtime for
instantiation.

 Now that you’ve developed the application, let’s run it. Before you can run it, you
need to download the Payara Micro runtime from www.payara.fish/downloads.

NOTE After downloading the runtime, it’s worth renaming the file to payara-
micro.jar and removing the version information. You don’t need this infor-
mation for running the file locally, and the omission makes the command
line easier to read.

Listing 3.8 CartController with Payara

Listing 3.9 JaxrsApplication with Payara

Endpoint is
accessible

as /add. Method parameters that will
be passed on the URL, such

as /add?item=hat&qty=2

Parameter defined as part
of the URL path, /get/hat.

http://www.payara.fish/downloads

53Choosing Just enough Application Server

Because it’s a regular Maven WAR project, you build it as usual:

mvn clean package

and run the application:

java -jar payara-micro.jar --deploy target/chapter3.war

It’s now possible to access the application at http://localhost:8080/chapter3/ in a
browser. This returns the list of current items in the cart. You can look at the details of hat
in your cart by navigating to http://localhost:8080/chapter3/get/hat. Update the quan-
tity of an existing item with http://localhost:8080/chapter3/add?item=towel&qty=1 or
add a new item to your cart with http://localhost:8080/chapter3/add?item =kite&qty=2.

3.2.4 Spring Boot—opinionated Spring microservices

Spring Boot came about from a desire to remove the need for boilerplate configuration
by following conventions instead. Annotations were also introduced to provide a means
of enabling various parts of Spring Boot without needing configuration to do so.

 Spring Boot provides many starters as dependencies for your project that combine
related libraries and frameworks and configuration for many features that you may
require when developing a microservice. For example, the spring-boot-starter-
data-jpa dependency brings in all that’s required to use Spring and JPA for accessing
a database. A full list of all the available starters can be found in the GitHub reposi-
tory: http://mng.bz/cuQ3. Or take a look at http://start.spring.io, where you can
create a Maven project based on the starters that you need for your application.

 Figure 3.8 shows how your JAX-RS, CDI, JMS microser-
vice uses Spring Boot. The biggest challenge with this micro-
service would be rewriting existing code that uses CDI to use
Spring dependency injection instead. Options are available
to make CDI work inside Spring, but if you’re looking for
the project to remain as a Spring-based project, rewriting it
to use Spring injection makes better sense.

 With starters, Spring Boot is able to provide a flexible
JeAS runtime that can be expanded or contracted as
required based on the evolving requirements of the applica-
tion. Modifying the application’s functionality is only a mat-
ter of adding or removing Spring Starter dependencies and
rebuilding the application.

 If you’re not sure what specific starters you might need, head over to
http://start.spring.io to look at the options. The website contains a project generator
that’s a great place to see the entire landscape of available starters and the types of
functionality they provide, or the use cases they might solve. Starters are available for

Microservice

Spring Boot

CDI

JMS

Spring

REST

Figure 3.8 Microservice
usage in Spring Boot

http://mng.bz/cuQ3
http://start.spring.io
http://start.spring.io

54 CHAPTER 3 Just enough Application Server for microservices

regular development tasks such as database access, but also for microservice program-
ming patterns such as circuit breaking and service discovery.

NOTE Spring Boot started in October 2012, and it has surpassed version 1.5.10.

You can use http://start.spring.io to create a project that includes the Web starter. This
should give you a pom.xml that contains the following dependency:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

Now that you have your project, let’s modify the basic code so it can be used with
Spring Boot. For the CartItem bean, you need to add only the @XmlRootElement to it.
With your CartController, you need to add the necessary annotations to make it a
RESTful endpoint. This is similar to your JAX-RS-based annotations, but the names
are slightly different.

@RestController
public class CartController {
 @RequestMapping(
 method = RequestMethod.GET,
 path = "/",
 produces = "application/json")
 public List<CartItem> all() throws Exception {}

 @RequestMapping(
 method = RequestMethod.GET,
 path = "/add",
 produces = "application/json")
 public String addOrUpdateItem(
 @RequestParam("item") String itemName,
 @RequestParam("qty") Integer qty) throws Exception {
 }

 @RequestMapping(
 method = RequestMethod.GET,
 path = "/get/{itemName}",
 produces = "application/json")
 public CartItem getItem(
 @PathVariable("itemName") String itemName)
 throws Exception {
 }
}

Each of the methods on your controller provide the same details as your other JAX-RS
examples but in a single annotation. @RequestMapping holds all the information of

Listing 3.10 CartController with Spring Boot

Indicates to Spring that the
class will provide RESTful
endpoint methodsMethod will be

available on a URL
path of / for HTTP

GET requests.

A URL query
parameter
called item will
be mapped into
this method
parameter.

URL path variable is
expected after /get/
for this endpoint.

URL path variable
will be mapped to
this method
parameter.

http://start.spring.io

55Choosing Just enough Application Server

your JAX-RS examples that used @GET, @Produces, and @Path. The other difference is
that @QueryParam from JAX-RS is @RequestParam with Spring, and @PathParam from
JAX-RS is @PathVariable with Spring.

NOTE Spring offers shortcuts for @RequestMapping as well. Instead of @Request-
Mapping(method = RequestMethod.GET, path = "/", produces = "application/
json"), you could use @GetMapping(path = "/", produces = "application/
json").

Your RESTful endpoint has now been defined, so last of all you create your Spring
Boot application class.

@SpringBootApplication
public class Chapter3SpringBootApplication {

 public static void main(String[] args) {
 SpringApplication.run(Chapter3SpringBootApplication.class, args);
 }
}

All you’re doing here is saying that main() should activate @SpringBootApplication.
It’s in this class that you’d add additional annotations for various parts of Spring Boot
that you want to activate.

 Now that you’ve developed the application, let’s run it. With Spring Boot, you have
a couple of options for running your application:

 Running from the command line
 Building the project and running an uber jar

Providing multiple execution options allows developers to choose what’s best for their
situation. For instance, when doing lots of iterative development, running from the
command line may be faster because it doesn’t require the project to be built on every
change. But when a developer wants to verify production-like behavior, running the
uber jar will provide a more accurate reflection of production. Not that there’s any-
thing broken with one method as opposed to another, but it’s always preferable to ver-
ify applications prior to production deployment in an environment and manner that
reflects the way it’ll be executed in production.

 To run from the command line without having built your application with Maven,
you can start the Spring Boot server with the following:

mvn spring-boot:run

This uses the Maven plugin from Spring Boot to execute the application as if it had
been packaged into an uber jar.

Listing 3.11 Chapter3SpringBootApplication

56 CHAPTER 3 Just enough Application Server for microservices

 The alternative approach is to construct an uber jar. You build the Maven project
as usual:

mvn clean package

and run the application:

java -jar target/chapter3-spring-boot-1.0-SNAPSHOT.jar

It’s now possible to access the application at http://localhost:8080/ in a browser. This
will return the list of current items in the cart. You can look at the details of hat in
your cart by navigating to http://localhost:8080/get/hat. Update the quantity of an
existing item with http://localhost:8080/add?item=towel&qty=1 or add a new item to
your cart with http://localhost:8080/add?item=kite&qty=2.

3.2.5 Thorntail—the most flexible JeAS runtime

Thorntail was born out of the desire to take advantage of the modularization within
the WildFly application server. That effort enables different groups of modules to be
gathered and installed into the server for use. This also enables Thorntail to be the
most flexible JeAS runtime available for Java EE. Choosing a single piece of Java EE
functionality to use with your application is now super simple.

 Thorntail defines each dependency that can be included by your application, such
as JPA, JAX-RS, and most parts of Java EE. In addition to Java EE dependencies, Thorn-
tail provides dependencies for libraries that can assist with developing Enterprise Java
microservices such as Swagger, Keycloak, and other frameworks and libraries.

 If you’re unsure of what Thorntail dependencies might be needed by your applica-
tion, you have a couple of options. You can generate a skeleton project by visiting
http://wildfly-swarm.io/generator and selecting the types of functionality that you
need for your microservice. There are options for Java EE features and non-Java EE
features such as Eclipse MicroProfile, Hibernate Search, fault tolerance, and security,
to name a few.

 The other option for developing your Thorntail application, if you’re unsure of
what dependencies you need, is to add the Maven plugin to your pom.xml and allow
the plugin to autodetect dependencies. Auto Detect inspects your application code to
determine which APIs are being used, and therefore which dependencies are
required. This is usually the simplest means of using Thorntail, especially when con-
verting from an existing Java EE application; it allows the rest of the application to
remain the same because you added only a new plugin into pom.xml.

NOTE Though Auto Detect is easy for getting started, it does mean the plugin
is a bit slower to package an application than specifying dependencies
directly.

http://wildfly-swarm.io/generator
http://wildfly-swarm.io/generator

57Choosing Just enough Application Server

After a developer is more familiar with the available dependencies or requires depen-
dencies that can’t be detected by the plugin, switching to using direct Maven depen-
dencies is easy. An easy way to see what dependencies are detected by the plugin is to
look at the log output from building the project. It’s then possible to use that list as a
set of Maven dependencies that need to be added.

NOTE Thorntail was founded in February 2015, and has now surpassed ver-
sion 2.2.0.Final. The project was renamed from WildFly Swarm to Thorntail
in May 2018.

Figure 3.9 illustrates how your JAX-RS, CDI, JMS microser-
vice uses specifications within Thorntail. Here you can see
that Thorntail provides exactly what your microservice
needs—no more and no less. Thorntail provides the ideal
JeAS runtime because it always gives you just enough for
your microservice. No other JeAS runtime can match your
application’s requirements so closely. The other runtimes
have unused portions or require you to include additional
libraries in your application.

 To create your project, you’ll use a basic Maven WAR
project and add the following plugin definition.

<plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>2.2.0.Final</version>
 <executions>
 <execution>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
</plugin>

And then you add the Java EE Web APIs in the provided scope:

<dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>7.0</version>
 <scope>provided</scope>
</dependency>

Now that you have your project, let’s modify the basic code so it can be run with the
Thorntail JeAS runtime.

Plugin configurationListing 3.12

Artifact ID for the
Thorntail plugin

Version of Thorntail

Execute plugin during
package phase.

Microservice

Thorntail

CDIJMS

JAX-RS

Figure 3.9 Microservice
usage in Thorntail

58 CHAPTER 3 Just enough Application Server for microservices

 For the CartItem bean, you need to add only the @XmlRootElement to it. The
CartController needs the same JAX-RS annotations as you added for Payara Micro
and Dropwizard. Finally, you need an Application class to activate JAX-RS.

@ApplicationPath("/")
public class JaxrsApplication extends Application {
}

Now that you’ve developed the application, let’s run it. With Thorntail, you have a
couple of options for running your application:

 Running from the command line
 Building the project and running an uber jar

As with Spring Boot, Thorntail provides flexibility as to how a developer might prefer
to run an application based on their requirements. Without having built your applica-
tion with Maven, you can start the Thorntail JeAS runtime with this:

mvn thorntail:run

This uses the Maven plugin from Thorntail to execute the application as if it had been
packaged into an uber jar.

 The other approach is to construct an uber jar. You build the Maven project as
usual:

mvn clean package

and run the application:

java -jar target/chapter3-thorntail.jar

It’s now possible to access the application at http://localhost:8080/ in a browser. This
returns the list of current items in the cart. You can look at the details of hat in your
cart by navigating to http://localhost:8080/get/hat. Update the quantity of an exist-
ing item with http://localhost:8080/add?item=towel&qty=1 or add a new item to your
cart with http://localhost:8080/add?item=kite&qty=2.

3.2.6 How do they compare?

You’ve taken a look at some JeAS runtimes and the way the code for each differs for a
simple application that exposes a few RESTful endpoints. Let’s compare some of the
features of the JeAS runtimes in table 3.2.

Listing 3.13 JaxrsApplication with Thorntail

59Summary

When it comes to choosing the best JeAS runtime for your application or enterprise,
many factors play a role. Some of the more critical factors are as follows:

 Is there experience and knowledge of either Java EE or Spring?
 What’s the preferred packaging method for production?
 Is there prior experience of either of the non-JeAS runtimes of the frameworks?

These are just some of the factors that will influence which is the preferred JeAS
framework for an application. It may be that Thorntail is the preferred choice for
developers with previous Java EE experience, but developers looking for a simple
stack that doesn’t require many Java EE APIs may choose Dropwizard instead.

Summary
 JeAS enables the packaging of just enough runtime along with a microservice.

Of the runtimes covered in this chapter, Thorntail is the most customizable
JeAS runtime.

 You choose pieces of an Enterprise Java application server by using a JeAS run-
time, selecting only what you need.

 JeAS runtimes are the perfect deployment method for RESTful microservices.
 MicroProfile offers critical features for cloud native microservice development.

JeAS runtime comparisonTable 3.2

Feature Dropwizard Payara Micro Spring Boot Thorntail

Dependency injection (DI) ✔✔✔

Uber jar packaging ✔✔✔

WAR deployment ✔✔✔

Maven plugin run ✔✔

Project generator ✔✔✔

Auto Detect dependencies ✔

Java EE APIs ✔✔

Microservices testing

Where to start! So many types and levels of testing can be implemented for any-
thing. Complicating things further is that different people will likely have different
points of view, specifically in regard to what the various types of testing should
accomplish.

 Let’s get on the same page with respect to the types of testing and create a com-
mon understanding of their meaning for us all! In this chapter, you’ll focus only on
the types of testing that are relevant for our purposes. There are too many types of
testing to cover them all; it’d become overwhelming.

 Then you’ll use the admin service you created in chapter 2 to show the types of
testing that can be performed with a microservice.

This chapter covers
 What types of testing do you need to consider?

 Which tools are appropriate for microservices?

 Implementing unit testing for microservices

 Implementing integration testing for
microservices

 Using consumer-driven contract testing

60

61What type of testing do you need?

What type of testing do you need?4.1
Three types of testing are covered in this chapter:

 Unit testing is focused on testing the internals of your microservice.
 Integration testing covers the entirety of your service, in addition to the way it

interacts with external services, such as a database.
 Consumer-driven contract testing deals with the boundary between a consumer of

your microservice and the microservice itself, via a Pact document that defines
the contract.

It’s important to note that unit and integration testing are far from new concepts.
They’ve been part of software development for decades. The application of integra-
tion testing to microservices may increase its complexity, through more external inte-
gration points, but the way we develop them hasn’t greatly changed.

 Why did I choose these three types of testing to focus on, given that dozens of types
are available? I’m not saying that these three are the only types you need to worry
about, but these are certainly crucial to your goal of ensuring that a microservice is as
robust as possible. Unit and integration testing are focused on ensuring that what you,
as a developer of a microservice, have written meets the requirements that have been
outlined for a microservice. Consumer-driven contract testing changes perspectives to
look from outside a microservice, to ensure that a microservice can correctly process
whatever clients are passing to you. Though it may not be part of the requirements
of a microservice, it’s possible that a client expects slightly different behavior than
has been developed. Figure 4.1 shows how the three types of testing fit in terms of
your code.

 The key point with respect to testing of any type is that you’re not writing tests for
fun or for one-off execution. The purpose, and benefit, of writing any test is the ability
to continually execute it against code as it changes and is modified, typically as part of
a continuous integration process that regularly builds your code. And why do you
want these tests running all the time on old and updated code? For the simple reason
that it reduces the number of errors, or bugs, that make it into production code. As I
mentioned in chapter 1, anything you can do to reduce the number of times you’re
called about production bugs, the better you are for it.

Client

Consumer-driven
contract testing

Pact

Integration testing

Unit
testing

Data

Microservice

Figure 4.1 Types of testing

62 CHAPTER 4 Microservices testing

Unit testing4.2
Typically created by developers as part of writing code, unit testing tests the internal
behavior of classes and their methods. Doing so often requires mocks or stubs to mimic
the behavior of external systems.

NOTE Stubs and mocks are tools you can employ to make it possible to unit
test code that interacts with external services, such as a database, without
needing a database. Though serving the same purpose, they operate in differ-
ent ways. Stubs are handcrafted implementations of a service that a developer
has written to return precanned responses to each method. Mocks offer
greater flexibility, as each test can set up whatever you expect the method to
return for that particular test, and then verify that the mock acted in the way
you anticipated. Testing with mocks requires each test to set the expectations
for the service being called and then verify it afterward, but it saves you from
writing every test situation possible into a stub.

Why do you need unit testing at all? You need to ensure that a method on a class per-
forms the function as it’s intended. If a method has parameters passed to it, these
should be validated to ensure they’re appropriate. This can be as simple as ensuring
that the value is non-null, or as complex as validating an email address format. Like-
wise, you need to verify that passing particular inputs as parameters returns the result
you expect from those inputs. Unit testing is the lowest level of testing, but is often the
most crucial to get right. If your smallest unit of code, a method, doesn’t perform as
you expect, then your entire service could function incorrectly.

 The two most popular and widely used frameworks for this level of testing are JUnit
(http://junit.org/) and TestNG (http://testng.org/doc/). JUnit has been around the
longest and was the inspiration for TestNG being created. There aren’t many differ-
ences between their features, or even the names of annotations in some cases!

 The biggest difference is in their goals. JUnit’s focus is purely on unit testing, and
was a huge driver for the adoption of test-driven development. TestNG aims to sup-
port wider testing use cases than just unit testing.

 Whichever a developer chooses is purely a personal choice. At any time, JUnit or
TestNG may have more features than the other, but it’s highly likely that the other will
soon catch up. Such back and forth has happened over the years many times.

 The code as it stood from chapter 2 has been copied to /chapter4/admin, to
enable you to see the differences in the code after you’ve added tests. This is particu-
larly important to show relevant code changes that were required to fix any dreaded
bugs found. For writing our unit tests, I use JUnit, simply because I’ve used that frame-
work the most in my career and I’m the most familiar with it.

 The admin microservice is focused on CRUD operations for the Category model
at the moment, and has a JAX-RS resource for providing the RESTful endpoints to
interact with it.

http://junit.org/
http://testng.org/doc/

63Unit testing

 As you’re dealing with unit testing, Category is the only viable code you can test
with unit tests without mocking databases. It’s certainly possible to mock out Entity-
Manager to test the JAX-RS resource as well, but it’s preferable to test it fully with a
database as part of integration testing.

 The first thing you need to do is add dependencies to your pom.xml for testing:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.easytesting</groupId>
 <artifactId>fest-assert</artifactId>
 <scope>test</scope>
</dependency>

Now let’s take a look at some unit tests for Category, as it’s the lowest level in any
method execution stack at runtime.

public class CategoryTest {
 @Test
 public void categoriesAreEqual() throws Exception {
 LocalDateTime now = LocalDateTime.now();
 Category cat1 = createCategory(1, "Top", Boolean.TRUE, now);
 Category cat2 = createCategory(1, "Top", Boolean.TRUE, now);

 assertThat(cat1).isEqualTo(cat2);
 assertThat(cat1.equals(cat2)).isTrue();
 assertThat(cat1.hashCode()).isEqualTo(cat2.hashCode());
 }

 @Test
 public void categoryModification() throws Exception {
 LocalDateTime now = LocalDateTime.now();
 Category cat1 = createCategory(1, "Top", Boolean.TRUE, now);
 Category cat2 = createCategory(1, "Top", Boolean.TRUE, now);

 assertThat(cat1).isEqualTo(cat2);
 assertThat(cat1.equals(cat2)).isTrue();
 assertThat(cat1.hashCode()).isEqualTo(cat2.hashCode());

 cat1.setVisible(Boolean.FALSE);

 assertThat(cat1).isNotEqualTo(cat2);
 assertThat(cat1.equals(cat2)).isFalse();
 assertThat(cat1.hashCode()).isNotEqualTo(cat2.hashCode());
 }

Listing 4.1 CategoryTest

Test for verifying that two
Category instances are

identified as equal in all ways.

Uses a helper
method on the test

to create any
Category instances

you need for testing

Uses fluent methods
from Fest Assertions
to simplify test code

Test for ensuring that a
Category is different after

calling a setter on it.

64 CHAPTER 4 Microservices testing

 @Test
 public void categoriesWithIdenticalParentIdAreEqual() throws Exception {
 LocalDateTime now = LocalDateTime.now();
 Category parent1 = createParentCategory(1, "Top", now);
 Category parent2 = createParentCategory(1, "Tops", now);
 Category cat1 = createCategory(5, "Top", Boolean.TRUE, now, parent1);
 Category cat2 = createCategory(5, "Top", Boolean.TRUE, now, parent2);

 assertThat(cat1).isEqualTo(cat2);
 assertThat(cat1.equals(cat2)).isTrue();
 assertThat(cat1.hashCode()).isEqualTo(cat2.hashCode());
 }

 private Category createCategory(Integer id, String name, Boolean visible,
 LocalDateTime created, Category parent) {

 return new TestCategoryObject(id, name, null,
 visible, null, parent, created, null, 1);
 }
}

You may have noticed that in the createCategory() method of the test class, you
instantiated a TestCategoryObject class. Where did that come from? TestCategory-
Object has an important purpose for our testing. Because it extends Category, you can
directly set fields such as id and version that have only getter methods on Category.
This allows you to retain the important immutability parts of Category, while still being
able to set and change the properties of Category that you need for testing. TestCat-
egoryObject provides two constructors that allow you to set the ID of a Category, which
is extremely useful for testing. Take a look at the chapter code (on GitHub or down-
loaded from www.manning.com/books/enterprise-java-microservices) for the full
code listing.

4.3 What is immutability?
Immutability is a concept from object-oriented programming for identifying whether
an object’s state can be altered. An object’s state is considered immutable if it can’t be
altered after its creation.

 In our case, Category isn’t entirely immutable, but id, created, and version are
fields that you want to be immutable. For that reason, Category has only getter meth-
ods defined for them, no setter methods.

 To run the tests with Maven from inside /chapter4/admin, you run this:

mvn test -Dtest=CategoryTest

When running CategoryTest with the existing code from chapter 2, you see a failure!
The categoriesWithIdenticalParentIdAreEqual() test fails, because it doesn’t con-
sider the two categories to be equal.

Test of whether a parent with
the same ID on a Category is

considered equal.

Helper method to
create a Category
instance for testing.

http://www.manning.com/books/enterprise-java-microservices

65What is immutability?

 With any test failure, two possibilities exist for what happened. Did you make
incorrect assertions in your test, or is there a bug in your code?

 In this case, do you expect a Category with the same ID but different names to be
equal? A first instinct might be to say no, they shouldn’t be equal. But for this situa-
tion, you need to remember that the ID is a unique identifier for Category, so you’d
expect there to be only a single Category with any particular ID present. So here it’s
apparent that your test assertions are correct, as the name of a Category could’ve
been modified in subsequent requests, but there’s a bug in your code in how it deter-
mines whether a Category is equal.

 Let’s take a look at the equals() implementation you currently have on Category,
which was autogenerated by an IDE:

public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Category category = (Category) o;
 return Objects.equals(id, category.id) &&
 Objects.equals(name, category.name) &&
 Objects.equals(header, category.header) &&
 Objects.equals(visible, category.visible) &&
 Objects.equals(imagePath, category.imagePath) &&
 Objects.equals(parent, category.parent) &&
 Objects.equals(created, category.created) &&
 Objects.equals(updated, category.updated) &&
 Objects.equals(version, category.version);
}

You can see that you’re comparing the entirety of the parent of each Category
instance. As you saw in your test, a parent Category with the same ID but different
names will fail an equality test.

 From what we discussed earlier, it doesn’t make sense to compare the entire state
of one parent category with another. There’s always a chance that one category
instance might be retrieved after another, and in between those retrievals the parent
category could be updated with a different name. Although the ID is the same, other
state differs between the two instances.

 You can resolve this conflict by concerning yourself with only the ID of the parent
category, and not the entire object state:

public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Category category = (Category) o;
 return Objects.equals(id, category.id) &&
 Objects.equals(name, category.name) &&
 Objects.equals(header, category.header) &&
 Objects.equals(visible, category.visible) &&
 Objects.equals(imagePath, category.imagePath) &&
 (parent == null ? category.parent == null

66 CHAPTER 4 Microservices testing

 : Objects.equals(parent.getId(), category.parent.getId())) &&
 Objects.equals(created, category.created) &&
 Objects.equals(updated, category.updated) &&
 Objects.equals(version, category.version);
}

Here you’ve modified the parent equality check to verify whether either parent is
null, before comparing whether the ID value is equal. This change makes your code
more robust and less error prone.

 A similar change is required to Category.hashCode() to ensure that you include
the parent category ID only when generating a hash for a Category instance.

 You’ve just seen how some short unit tests can assist in improving your internal
code by reducing the potential for bugs. Let’s take the next step and write some inte-
gration tests!

4.4 Integration testing
Integration testing is similar to unit testing, and uses the same frameworks, but it’s
also used to test a microservice interaction with external systems. This could include
databases, messaging systems, other microservices, or pretty much anything it needs to
talk to that isn’t internal code to the microservice. If you had unit tests that used
mocks or stubs to integrate with external systems, as part of integration testing the
mocks and stubs are replaced with calls to the actual systems instead. Removing mocks
or stubs opens your code to execution paths that haven’t been tested before, as well as
introducing more test scenarios as you need to test handling of errors in those exter-
nal systems.

 Depending on the type of systems a microservice integrates with, it may not be pos-
sible to execute these tests on a local developer’s machine. Integration testing is per-
fectly suited to continuous improvement environments, where resources are more
plentiful and any systems that are required can be installed.

 With integration testing, you can expand the scope of what you’re intending to test
and verify that it works as you expect. It also allows you to use external systems as part
of your testing as opposed to mocking anything external. Testing with the actual ser-
vices and systems that a microservice will rely on in production greatly improves your
confidence that going to production won’t result in errors from your code changes.
You aren’t going to be running your integration tests against production systems, but
you can run them against systems that closely mirror production setup and data.

 To assist in developing integration tests, you’ll be using Arquillian. Arquillian is a
highly extensible testing platform for the JVM that allows the easy creation of integra-
tion, functional, and acceptance tests. Many extensions to the core of Arquillian exist
to handle specific frameworks, such as JSF, or for browser testing integration with Sele-
nium. Full details of all the extensions available for Arquillian can be found at
http://arquillian.org/.

http://arquillian.org/

67Integration testing

 I’ve chosen Arquillian to help with integration testing because it assists in replicat-
ing a production environment as closely as possible without being in production. Your
services are started in the same runtime container as would be the case in production,
so your service has access to CDI injection, persistence, or whatever runtime pieces
your service needs.

 To be able to use Arquillian for integration testing, you need to add the necessary
dependencies into your pom.xml:

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>arquillian</artifactId>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>org.jboss.arquillian.junit</groupId>
 <artifactId>arquillian-junit-container</artifactId>
 <scope>test</scope>
</dependency>

The first dependency adds the runtime container for Thorntail to be used within
Arquillian tests, and the second adds the integration you require between Arquillian
and JUnit. For Arquillian to be able to deploy anything, it needs access to a runtime
container. The arquillian dependency of Thorntail registers itself with Arquillian as
being a runtime container, enabling Arquillian to deploy to it. Without either of
these, you couldn’t execute your integration tests within a runtime container.

 To simplify the code required in your tests to execute HTTP requests, you’ll use
REST Assured, which also needs to be added to your pom.xml:

<dependency>
 <groupId>io.rest-assured</groupId>
 <artifactId>rest-assured</artifactId>
 <scope>test</scope>
</dependency>

The focus of your integration testing will be on the JAX-RS Resource class, as it
defines the RESTful endpoints a consumer will interact with, as well as persisting
changes to the database. With integration testing we focus on the provider side of
microservice interactions—you’re only validating that your service API works as you’ve
designed. This doesn’t take into account what a consumer expects of your API; that’s
dealt with in consumer-driven contract testing.

 To begin, as shown in listing 4.2, you’ll create a test to verify that all categories
from the database are correctly retrieved. This single integration test will verify that
your external-facing API returns information that’s expected, as well as validate that
your persistence code is properly reading database entries to return. Either of those
aspects not working as you expect will result in the test failing.

68 CHAPTER 4 Microservices testing

@RunWith(Arquillian.class)
@DefaultDeployment
@RunAsClient
@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class CategoryResourceTest {

 @Test
 public void aRetrieveAllCategories() throws Exception {
 Response response =
 when()
 .get("/admin/category")
 .then()
 .extract().response();

 String jsonAsString = response.asString();
 List<Map<String, ?>> jsonAsList =

➥ JsonPath.from(jsonAsString).getList("");

 assertThat(jsonAsList.size()).isEqualTo(21);

 Map<String, ?> record1 = jsonAsList.get(0);

 assertThat(record1.get("id")).isEqualTo(0);
 assertThat(record1.get("parent")).isNull();
 assertThat(record1.get("name")).isEqualTo("Top");
 assertThat(record1.get("visible")).isEqualTo(Boolean.TRUE);
 }
}

The first line in your test is to tell JUnit, via @RunWith, that you want to use an Arquil-
lian test runner. @DefaultDeployment informs the Thorntail integration with Arquil-
lian to create an Arquillian deployment to execute the tests against, which will use the
type of Maven project to create a WAR or JAR for deployment.

 The other key annotation on the test class is @RunAsClient. This annotation tells
Arquillian that you want to treat the deployment as a black box and execute the tests
from outside the container. Not including the annotation would indicate to Arquillian
that the tests are intended to be executed within the container. It’s also possible to
mix the use of @RunAsClient on individual test methods, but in this case you’re test-
ing entirely from outside the container.

 The test itself executes an HTTP GET request on "/admin/category" and con-
verts the response JSON into a list of maps with key/value pairs. You verify that the
size of the list you get back matches the number of Category records you know are
present in the database, and then you retrieve the first map from the list and assert
that the details on the Category match the root-level category in the database.

Listing 4.2 Retrieve all categories in listing 4.1’s CategoryResourceTest

Use Arquillian
runner for JUnit test.

Create the deployment
for Arquillian based on
the type of Thorntail
project (WAR or JAR).

You’re testing RESTful
endpoints of your
microservice, so you execute
the tests as a client.

Run test
methods in

order based
on the name.

REST Assured’s
fluent methods

for executing
HTTP requests

Verify that you
received all
categories
from the
database that
you expected.

Retrieve a single
category record

from the list and
then verify its

values.

69Integration testing

 As with the unit test, you execute your integration test with this:

mvn test

As the test executes, you’ll see the Thorntail container starting and the SQL being
executed to insert the initial category records into the database, as was discussed in
chapter 2. With this first test run, you have one successful test with Category-
ResourceTest, in addition to the existing CategoryTest unit tests.

 Let’s add a test for retrieving a single category directly, but also map the JSON you
receive onto a Category object to verify that deserialization is working. This test differs
from the previous one in that it uses a different method on the EntityManager from
JPA to retrieve a single Category instead of all of them. There’s the double bonus that
you’re testing additional methods on your JAX-RS resource, but also validating that
your persistence and database entities are properly defined.

 @Test
 public void bRetrieveCategory() throws Exception {
 Response response =
 given()
 .pathParam("categoryId", 1014)
 .when()
 .get("/admin/category/{categoryId}")
 .then()
 .extract().response();

 String jsonAsString = response.asString();

Retrieve category inListing 4.3 CategoryResourceTest

Set a parameter
into the request
for categoryId.

Specify where in the URL
path the categoryId

should be added.

Convert the JSON,
via deserialization,
you received into
the Category
instance.

Category category = JsonPath.from(jsonAsString).getObject("",

➥ Category.class);

assertThat(category.getId()).isEqualTo(1014);
assertThat(category.getParent().getId()).isEqualTo(1011);
assertThat(category.getName()).isEqualTo("Ford SUVs");
assertThat(category.isVisible()).isEqualTo(Boolean.TRUE);

}

If you now execute the test again, your new test fails with this error:

com.fasterxml.jackson.databind.JsonMappingException: Unexpected token

➥ (START_OBJECT), expected VALUE_STRING: Expected array or string.

Following that error in the log is the JSON message you received, but at the end it ref-
erences the piece of data that caused the issue, ejm.chapter4.admin.model.Category

["created"]. From this, you know that the test had an issue deserializing the created

field on Category into a LocalDateTime instance.
To resolve the problem, you need to give the JSON serialization library, in this case

Jackson, help to convert your LocalDateTime instance into JSON that the library

70 CHAPTER 4 Microservices testing

knows how to deserialize. To give Jackson help, you need to register a JAX-RS provider
to add configuration to Jackson with the JavaTimeModule. First, though, you need to
add a dependency to the pom.xml, making that available:

<dependency>
 <groupId>com.fasterxml.jackson.datatype</groupId>
 <artifactId>jackson-datatype-jsr310</artifactId>
</dependency>

Now let’s look at the provider:

@Provider
public class ConfigureJacksonProvider implements

➥ ContextResolver<ObjectMapper> {

 private final ObjectMapper mapper = new ObjectMapper()
 .registerModule(new JavaTimeModule());

 @Override
 public ObjectMapper getContext(Class<?> type) {
 return mapper;
 }
}

Rerunning mvn test, you see the test pass. Another bug resolved by a test!
 You’ve now covered two cases of retrieving categories from your RESTful end-

points. Let’s see whether your JAX-RS resource can store data as well.

 @Test
 public void cCreateCategory() throws Exception {
 Category bmwCategory = new Category();
 bmwCategory.setName("BMW");
 bmwCategory.setVisible(Boolean.TRUE);
 bmwCategory.setHeader("header");
 bmwCategory.setImagePath("n/a");
 bmwCategory.setParent(new TestCategoryObject(1009));

 Response response =
 given()
 .contentType(ContentType.JSON)
 .body(bmwCategory)
 .when()
 .post("/admin/category");

 assertThat(response).isNotNull();
 assertThat(response.getStatusCode()).isEqualTo(201);
 String locationUrl = response.getHeader("Location");

Listing 4.4 ConfigureJacksonProvider

Create category inListing 4.5 CategoryResourceTest

Identify the class as
a JAX-RS provider.

Specify that this
provider is used

for resolving
ObjectMapper

instances.

Register JavaTimeModule with the Jackson
mapper to correctly serialize LocalDateTime.

Indicate you’re
sending JSON in

the HTTP request.

Set the Category
instance you
created as the
body of the
request.Verify you received a

response of 201,
and the category
was created. Location will be

the URL of the
Category that
was created for
you.

71Integration testing

 Integer categoryId = Integer.valueOf(
 locationUrl.substring(locationUrl.lastIndexOf('/') + 1)
);

 response =
 when()
 .get("/admin/category")
 .then()
 .extract().response();

 String jsonAsString = response.asString();
 List<Map<String, ?>> jsonAsList =

JsonPath.from(jsonAsString).getList("");

 assertThat(jsonAsList.size()).isEqualTo(22);

 response =
 given()
 .pathParam("categoryId", categoryId)
 .when()
 .get("/admin/category/{categoryId}")
 .then()
 .extract().response();

 jsonAsString = response.asString();

 Category category =
 JsonPath.from(jsonAsString).getObject("", Category.class);

 assertThat(category.getId()).isEqualTo(categoryId);
 ...
 }

The preceding test starts by creating a new Category instance and setting appropriate
values on it, including setting a parent with id of 1009. Next you submit a POST
request to the RESTful endpoint for Category to create a new record. You validate
that the response you received was correct and extract the new id for the category.
Then you retrieve all the categories and validate that you now have 22 records instead
of 21, and finally retrieve the new record and validate that its information is the same
as what you submitted when you created it.

 Let’s run mvn test again to see whether your code has any bugs! This time, your
test fails because it expected to receive an HTTP status code of 201, but you received
500 instead. What went wrong? If you trace back through the terminal output, you can
see the microservice experienced an error:

Caused by: org.hibernate.TransientPropertyValueException:
 object references an unsaved transient instance
 - save the transient instance before flushing:
 ejm.chapter4.admin.model.Category.parent ->

ejm.chapter4.admin.model.Category

Extract the ID of the Category
you created from the Location.

Assert that the
total number
of categories
retrieved is
now 22 and
not 21.

Set a path parameter
to be the category ID

you retrieved from
Location for a new

GET request.

Set the path for the
request, defining where the
parameter for the category

ID needs to be replaced.

Deserialize
the JSON you
received into
a Category
instance.

Validate that the ID on the category matches
what you extracted from Location.

72 CHAPTER 4 Microservices testing

You can see it’s not able to save the link to the parent category that you specified.
That’s because the instance you provided to POST doesn’t have any data on it that
helps the persistence layer understand that this instance is already saved.

 To resolve this, you need to have your RESTful method for creation retrieve the
persistence object for the parent category before you attempt to save your new one.

 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 @Transactional
 public Response create(Category category) throws Exception {
 if (category.getId() != null) {
 return Response
 .status(Response.Status.CONFLICT)
 .entity("Unable to create Category, id was already set.")
 .build();
 }

 Category parent;
 if ((parent = category.getParent()) != null && parent.getId() != null) {
 category.setParent(get(parent.getId()));
 }

 try {
 em.persist(category);
 } catch (Exception e) {
 return Response
 .serverError()
 .entity(e.getMessage())
 .build();
 }
 return Response
 .created(new URI("category/" + category.getId().toString()))
 .build();
 }

All you’ve done is add into create() the ability to retrieve a valid parent category
from the persistence layer, and then set it onto your new category instance. Everything
else in the method is as it was from chapter 2.

 Rerunning mvn test, you now see all tests pass! Let’s add one more test, to see
whether your error handling can properly reject a bad request.

 @Test
 public void dFailToCreateCategoryFromNullName() throws Exception {
 Category badCategory = new Category();
 badCategory.setVisible(Boolean.TRUE);

Listing 4.6 CategoryResource

Fail to create category inListing 4.7 CategoryResourceTest

Check that you
have a parent

category and ID
before trying to

retrieve it.

Get the parent category
and set it on the new
category instance.

Create a
Category

instance with
no name set.

73Integration testing

 badCategory.setHeader("header");
 badCategory.setImagePath("n/a");
 badCategory.setParent(new TestCategoryObject(1009));

 Response response =
 given()
 .contentType(ContentType.JSON)
 .body(badCategory)
 .when()
 .post("/admin/category");

 assertThat(response).isNotNull();
 assertThat(response.getStatusCode()).isEqualTo(400);

 ...

 response =
 when()
 .get("/admin/category")
 .then()
 .extract().response();

 String jsonAsString = response.asString();
 List<Map<String, ?>> jsonAsList =

JsonPath.from(jsonAsString).getList("");

 assertThat(jsonAsList.size()).isEqualTo(22);
 }

Running mvn test with this new test method results in a failure. Your test is expecting
a response code of 400, but you receive 500 instead.

 Scrolling through the terminal output, you see this:

Caused by: javax.validation.ConstraintViolationException:
 Validation failed for classes [ejm.chapter4.admin.model.Category]
 during persist time for groups [javax.validation.groups.Default,]
List of constraint violations:[
 ConstraintViolationImpl{
 interpolatedMessage='may not be null', propertyPath=name,
 rootBeanClass=class ejm.chapter4.admin.model.Category,
 messageTemplate='{javax.validation.constraints.NotNull.message}'
 }
]

Though that’s the correct error you’d expect to see in the logs, your microservice isn’t
handling the error properly. On completion of the RESTful method, the transaction
was trying to commit the database changes, but that failed because you didn’t have a
valid Category instance.

 You need to bring forward the point at which the validation occurs, so that your
method can properly handle it and return the response code you desire (listing 4.8).

Should receive
HTTP status
code 400.

Validate you still have
only 22 categories in
the database.

74 CHAPTER 4 Microservices testing

 try {
 em.persist(category);
 em.flush();
 } catch (ConstraintViolationException cve) {
 return Response
 .status(Response.Status.BAD_REQUEST)
 .entity(cve.getMessage())
 .build();
 } catch (Exception e) {
 return Response
 .serverError()
 .entity(e.getMessage())
 .build();
 }

All you’ve done here is modify create() to flush the changes in the entity manager,
which causes the validation to be triggered, and then catch any constraint violations to
return a response. Running mvn test with this change now allows the test to pass,
because it’s now returning the correct response code.

 Integration testing is a crucial piece that all microservices need. As you’ve just
seen, it’ll quickly identify potential failure points in integrating with external systems,
such as a database, caused by situations that the existing code wasn’t written to handle.
Integrating with databases and transferring data via HTTP requests are two common
uses for which problems with your existing code can be exposed.

 Developers are human; we make mistakes. Proper integration testing is a key way
to ensure that you’ve developed code that matches what’s expected. It’s often a good
idea to have a different developer create these types of tests, because another devel-
oper won’t have any preconceived notions about how the code works and will be con-
cerned only with testing the required functionality of the microservice.

4.5 Consumer-driven contract testing
When developing a microservice, you don’t necessarily have real consumers of your
service available to test against. But if a service can be provided with details of what a
consumer will pass on a request, and what the expected response is, then you can exe-
cute those expectations against your real service to ensure that you meet them. What
better way to validate that your service’s API works than a consumer specifying what
it’s expecting for you to test with!

 Consumer-driven contract testing uses this approach, as you’re testing both a con-
sumer and a provider to ensure that proper information is passed between them. How
do you do that? Figure 4.2 shows how to use a mock server to capture requests from a
consumer, and return the response that was defined for that request.

 Bear in mind, the response being returned is what the developer of the consumer
thinks should be returned. This expectation can easily differ from the service’s

Listing 4.8 CategoryResource.create()

Flush the changes present
in the entity manager.

Catch any
constraint-

specific
exceptions.

Return the
response with

400 status
code and error

messages.

75Consumer-driven contract testing

response, but then again, finding those types of problems is the benefit of this type of
testing.

 By executing what’s shown in figure 4.2, a contract of what the consumer is expect-
ing to send and receive when communicating with the provider microservice can be
created. Figure 4.3 shows how it’s then possible to replay those requests on your ser-
vice, with the service returning a response based on its actual code. Then each
response received from the service can be compared against what’s expected, to
ensure that both consumer and provider are in agreement about what should occur.

A popular tool for testing these concepts is Pact (https://docs.pact.io/), which you’ll
use in listing 4.10. The process sounds tricky, but it’s not too bad when using Pact.
Pact is a family of frameworks that makes it easy to create and use tests for consumer-
driven contracts.

 The first thing you need to do is create a consumer that’s trying to integrate with
the admin microservice, shown next. In chapter4/admin-client, you have the follow-
ing consumer.

public class AdminClient {
 private String url;

 public AdminClient(String url) {
 this.url = url;
 }

 public Category getCategory(final Integer categoryId) throws IOException {
 URIBuilder uriBuilder;
 try {

Listing 4.9 AdminClient

Mock serverClient

Define interactions

Requests

Expected responses

Mock responses to a client requestFigure 4.2

Mock client Microservice

Example requests

Responses

Requests sent to the microserviceFigure 4.3

Constructor for AdminClient that
takes the URL representing the
admin microservice

Method to retrieve a single Category by its ID

uriBuilder = new URIBuilder(url).setPath("/admin/category/" +

https://docs.pact.io/

76 CHAPTER 4 Microservices testing

➥ categoryId);
 } catch (URISyntaxException e) {
 throw new RuntimeException(e);
 }

 String jsonResponse =
 Request
 .Get(uriBuilder.toString())
 .execute()
 .returnContent().asString();

 if (jsonResponse.isEmpty()) {
 return null;
 }

 return new ObjectMapper()
 .registerModule(new JavaTimeModule())
 .readValue(jsonResponse, Category.class);
 }
}

You now have a basic client for interacting with the admin microservice. To have Pact
create the necessary contract for it, you need to add it as a dependency in pom.xml:

<dependency>
 <groupId>au.com.dius</groupId>
 <artifactId>pact-jvm-consumer-junit_2.12</artifactId>
 <scope>test</scope>
</dependency>

This dependency specifies that you’ll be using JUnit to generate the contract. Let’s
create a JUnit test to generate the contract.

public class ConsumerPactTest extends ConsumerPactTestMk2 {
 private Category createCategory(Integer id, String name) {
 Category cat = new TestCategoryObject(id,

➥ LocalDateTime.parse("2002-01-01T00:00:00"), 1);
 cat.setName(name);
 cat.setVisible(Boolean.TRUE);
 cat.setHeader("header");
 cat.setImagePath("n/a");

 return cat;
 }

 @Override
 protected RequestResponsePact createPact(PactDslWithProvider builder) {
 Category top = createCategory(0, "Top");

Listing 4.10 ConsumerPactTest

Use Jackson to map
the response JSON into
Category, registering
the JavaTimeModule
as well.

Extend ConsumerPactTestMk2 to have the
required integration hooks for Pact and JUnit.

Helper method for
creating categories with

the required creation dateReturn the
Pact that the
consumer
expects.

77Consumer-driven contract testing

 Category transport = createCategory(1000, "Transportation");
 transport.setParent(top);

 Category autos = createCategory(1002, "Automobiles");
 autos.setParent(transport);

 Category cars = createCategory(1009, "Cars");
 cars.setParent(autos);

 Category toyotas = createCategory(1015, "Toyota Cars");
 toyotas.setParent(cars);

 ObjectMapper mapper = new ObjectMapper()
 .registerModule(new JavaTimeModule());

 try {
 return builder
 .uponReceiving("Retrieve a category")
 .path("/admin/category/1015")
 .method("GET")
 .willRespondWith()
 .status(200)
 .body(mapper.writeValueAsString(toyotas))
 .toPact();
 } catch (JsonProcessingException e) {
 e.printStackTrace();
 }

 return null;
 }

 @Override
 protected String providerName() {
 return "admin_service_provider";
 }

 @Override
 protected String consumerName() {
 return "admin_client_consumer";
 }

 @Override
 protected PactSpecVersion getSpecificationVersion() {
 return PactSpecVersion.V3;
 }

 @Override
 protected void runTest(MockServer mockServer) throws IOException {
 Category cat = new

AdminClient(mockServer.getUrl()).getCategory(1015);

 assertThat(cat).isNotNull();
 assertThat(cat.getId()).isEqualTo(1015);
 assertThat(cat.getName()).isEqualTo("Toyota Cars");
 assertThat(cat.getHeader()).isEqualTo("header");

Define what should be
received as a response
based on the request
that’s received.

Set a unique name for the provider.

Set a unique name for the consumer.

Which version of the Pact specification
you should use for the contract

Run the AdminClient
against the Pact mock

server and verify the
expected results.

78 CHAPTER 4 Microservices testing

 assertThat(cat.getImagePath()).isEqualTo("n/a");
 assertThat(cat.isVisible()).isTrue();
 assertThat(cat.getParent()).isNotNull();
 assertThat(cat.getParent().getId()).isEqualTo(1009);
 }
}

Though there’s a lot here, the listing boils down to the following:

 A method that identifies what should be returned from a request to the admin
microservice, given a particular response it receives. This is what Pact uses to
mock the provider side of the contract creation process.

 A method to use your client code that interacts with the mock server from Pact,
and verifies that the response object you receive has the appropriate values.

Running mvn test will then execute the JUnit Pact test and produce a JSON file in
/chapter4/admin-client/target/pacts.

Pact JSON outputListing 4.11

{
"provider": {

"name": "admin_service_provider"
},
"consumer": {

"name": "admin_client_consumer"
},
"interactions": [

{
"description": "Retrieve a category",
"request": {

"method": "GET",
"path": "/admin/category/1015"

},
"response": {

"status": 200,
"body": {

"id": 1015,
"name": "Toyota Cars",
"header": "header",
"visible": true,
"imagePath": "n/a",
"parent": {

"id": 1009,
"name": "Cars",
"header": "header",
"visible": true,
"imagePath": "n/a",

...

],
"metadata": {

"pact-specification": {

79Consumer-driven contract testing

 "version": "3.0.0"
 },
 "pact-jvm": {
 "version": "3.5.8"
 }
 }
}

NOTE For brevity, I’ve included only the start of the JSON that’s generated,
because all the response data is lengthy.

With this JSON file generated, you can now set up the other side of consumer-driven
contract testing: verifying that the provider works as the consumer expects it to.

 For simplicity, I’ve manually copied the generated JSON across to /chapter4/
admin/src/test/resources/pacts. For serious testing with continuous integration, Pact
has other ways to store the JSON so that it can be automatically retrieved when run-
ning the provider test.

 For verifying the provider, because you require an instance of the admin microser-
vice to be running, you’ll use Maven to execute the Pact verification. The verification
will take place in the integration test phase of Maven. First you modify your pom.xml
to start and stop the Thorntail container around the integration test phase.

 <plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>start</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>start</goal>
 </goals>
 <configuration>
 <stdoutFile>target/stdout.log</stdoutFile>
 <stderrFile>target/stderr.log</stderrFile>
 </configuration>
 </execution>
 <execution>
 <id>stop</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

Thorntail Maven plugin execution for integration testsListing 4.12

Start the microservice during
the pre-integration-test phase
of Maven.

Define
locations for

the logs of the
microservice.

Stop the microservice in the
post-integration-test phase.

80 CHAPTER 4 Microservices testing

Next you add the Pact plugin to execute the contract against your provider.

 <plugin>
 <groupId>au.com.dius</groupId>
 <artifactId>pact-jvm-provider-maven_2.12</artifactId>
 <configuration>
 <serviceProviders>
 <serviceProvider>
 <name>admin_service_provider</name>
 <protocol>http</protocol>
 <host>localhost</host>
 <port>8081</port>
 <path>/</path>
 <pactFileDirectory>src/test/resources/pacts</pactFileDirectory>
 </serviceProvider>
 </serviceProviders>
 </configuration>
 <executions>
 <execution>
 <id>verify-pacts</id>
 <phase>integration-test</phase>
 <goals>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

Pact Maven plugin executionListing 4.13

Define the location of the
admin microservice provider.

Set the directory where the Pact
contract files can be found.

Pact verification runs during the
integration-test phase of Maven.

Use the verify goal of the Pact plugin.

Running mvn verify will execute all the tests you’d defined previously, but also run
the Pact verification as the last step. You should see output in the terminal to indicate
it succeeded:

returns a response which
has status code 200 (OK)
has a matching body (OK)

Well, that was smooth, but what does it look like if it doesn’t work? To try that out, you
can add the following code into the CategoryResource.get() method, before the
current return statement, so that you return a different category for your Pact test:

if (categoryId.equals(1015)) {
return em.find(Category.class, 1010);

}

If you now run the test with mvn verify again, you’ll see a test failure with output con-
taining the following:

returns a response which
has status code 200 (OK)
has a matching body (FAILED)

81Consumer-driven contract testing

Failures:

0) Verifying a pact between admin_client_consumer and admin_service_provider
- Retrieve a category returns a response which has a matching body

 $.parent.parent.parent.parent -> Type mismatch: Expected Map Map(parent
-> null, name -> Top, visible -> true, imagePath -> n/a, version -> 1,
id -> 0, updated -> null, header -> header, created -> List(2002, 1, 1,
0, 0)) but received Null null

 Diff:

 -{
 - "parent": null,
 - "name": "Top",
 - "visible": true,
 - "imagePath": "n/a",
 - "version": 1,
 - "id": 0,
 - "updated": null,
 - "header": "header",
 - "created": [
 - 2002,
 - 1,
 - 1,
 - 0,
 - 0
 -]
 -}
 +

 $.parent.parent.parent.name -> Expected 'Transportation' but received
'Top'

 $.parent.parent.parent.id -> Expected 1000 but received 0

 $.parent.parent.name -> Expected 'Automobiles' but received
'Transportation'

 $.parent.parent.id -> Expected 1002 but received 1000

 $.parent.name -> Expected 'Cars' but received 'Automobiles'

 $.parent.id -> Expected 1009 but received 1002

 $.name -> Expected 'Toyota Cars' but received 'Trucks'

 $.id -> Expected 1015 but received 1010

This log message provides detailed information about what crucial data, such as ID
and name, it found for each category in the hierarchy, and how that differs from what
the Pact contract had defined.

82 CHAPTER 4 Microservices testing

 As mentioned previously, such a discrepancy could be a result of an invalid
assumption on the part of the consumer, or a bug in the provider. What such a failure
really indicates is that developers from the consumer and provider sides need to dis-
cuss how the API needs to operate.

Additional reading4.6
As I mentioned earlier, there are many other types of testing I won’t be covering. A
couple of the critical ones are user acceptance testing and end-to-end testing. Though
they are both crucial to ensuring that adequate testing is performed, they’re beyond
the scope of this book because they deal with a higher level of testing. For additional
information on testing with microservices, I recommend Testing Java Microservices by
Alex Soto Bueno, Jason Porter, and Andy Gumbrecht (Manning, 2018).

Additional exercises4.7
Here are some additional tests that you could write to experiment with the different
testing methods, and also help improve the code for the example!

 Add a method to CategoryResourceTest that verifies the ability to update
Category.

 Add a method to CategoryResourceTest to verify that Category can be
removed from the database successfully.

 Add methods to AdminClient for retrieving all categories, adding a category,
updating a category, and removing a category. Then add the request/response
pairs in ConsumerPactTest.createPact() for the new methods, and update
ConsumerPactTest.runTest() to execute and verify each of them.

If you take on any of these exercises and would like to see them included in the code
for the book, please submit a pull request to the project on GitHub.

Summary
 Unit testing is important, but the need to test doesn’t end there. You need to

test all aspects of a service as realistically as possible.
 Arquillian is a great framework for simplifying more-complex testing that

requires a runtime container to interact with and provide near-production exe-
cution.

 The key to microservice testing is ensuring that the contract that a microservice
defines, the API it exposes, is tested against not only what the microservice
intends to expose, but also what a client is expecting to pass and receive.

Cloud native development

In this chapter, you’ll extend the admin service from chapter 4, giving it the ability
to be deployed to a local cloud environment, and then run tests against the service
deployed to that environment.

 First, you’ll learn what cloud means and about the cloud providers you have to
choose from. You’ll also explore your options for running the cloud on your local
machine. After you’ve chosen a type of cloud, you’ll modify the admin service from
chapter 4 to deploy into the cloud. After completing deployment, you’ll scale the
application to show how it can handle the additional load, and finish up by run-
ning tests with your application deployed in the cloud.

This chapter covers
 Why is the cloud important?

 What is cloud native development?

 What do you need to deploy your microservice to
the cloud?

 How does your application scale in the cloud?

 Can you test your application in the cloud before
production?

83

84 CHAPTER 5 Cloud native development

What is the cloud anyway?5.1
The cloud, and cloud computing, have been present in software engineering for
decades. These terms are usually used in reference to a platform for distributed com-
puting. It wasn’t until the early to mid-1990s that their use became more prevalent.

 Some of the key benefits of the cloud are as follows:

 Cost efficiencies—Most cloud providers charge enterprises to use their services as
a measure of CPU time that’s spent. This significantly reduces the overall cost of
running the environments compared to physical machines.

 Ability to scale—Cloud providers provide ways to scale up and down individual
services as required, ensuring that you never have too much or too little capac-
ity. The spread of information can occur quickly, thanks to social media, so
being able to immediately scale up identical instances to handle immediate
short-term load is crucial. How quickly can an enterprise scale up when it takes
months to purchase and provision just one machine? In such a situation, the
cloud provider will provide scale by replicating instances with identical configu-
ration of memory, CPU, and so forth.

 Freedom of choice—If you work for an enterprise that develops only in Java,
because that’s what its operations team knows how to manage, how do you
experiment with new programming languages such as Node.js or Go? Cloud
brings additional languages to your fingertips like never before. You don’t need
to have internal experience maintaining environments for new languages;
that’s what a cloud provider is for!

Service models5.2
Figure 5.1 shows the multiple types of service models for the cloud, along with where
an application fits within that. In this illustration, an application has code on the
server. If you have an application that’s purely mobile or is browser based that inter-
acts with one or more services via Software as a Service (SaaS), it’s still an application,
but not an application as depicted here. In this context, an application could be an
executable JAR, or a WAR or EAR deployed to an application server.

Clients

(browsers, mobile apps, etc.)

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Application
(JAR/WAR/EAR)

Figure 5.1 Service
models in the cloud

85Service models

Let’s briefly describe each of these layers:

 Infrastructure as a Service (IaaS)—Provides an abstraction over network infra-
structure that includes computing resources, data partitioning, scaling, security,
and backup. IaaS usually involves a hypervisor that runs virtual machines as
guests. To use an IaaS requires constructing a virtual machine that could be
deployed to the environment. Some well-known IaaS providers are Amazon
Web Services, OpenStack, Google Compute Engine, and Microsoft Azure.

 Platform as a Service (PaaS)—Forms the layer above IaaS to provide a develop-
ment environment that includes an operating system, an execution environ-
ment for various programming languages, databases, and web servers. A PaaS
saves a developer from needing to purchase, install, and configure hardware
and software to have an environment for deploying an application. Popular
PaaS providers include Red Hat OpenShift, Amazon Web Services, Google App
Engine, IBM Bluemix, Cloud Foundry, Microsoft Azure, and Heroku.

 Software as a Service (SaaS)—Provides common pieces of applications, or some-
times entire applications, on an as-needed or on-demand basis. SaaS is usually
charged on a pay per use basis. What’s offered as a SaaS can vary from a niche
service, such as everything related to marketing, to an entire suite of SaaS to
manage a business from beginning to end. Many SaaS providers exist, and more
are cropping up every day. Some of the well-known ones are Salesforce.com,
Eloqua, NetSuite, and Cloud9.

Over the last couple of years—with the rise of containers, and in particular the growth
and popularity of Docker as a container solution—a new layer has been created in
cloud service models.

 Figure 5.2 introduces Containers as a Service (CaaS) as a new foundation for PaaS
providers. CaaS takes advantage of container technology, such as Docker, to simplify
the deployment, scaling, and management of multiple applications or services.

Clients
(browsers, mobile apps, etc.)

Software as a Service (SaaS)

Platform as a Service (PaaS)

Containers as a Service
(CaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Application
(JAR/WAR/EAR)

Application
(JAR/WAR/EAR)

Figure 5.2 Service models in the cloud with containers

86 CHAPTER 5 Cloud native development

Containers allow you to package any application or service into its own operating
system environment, with whatever custom software or configuration might be
required, while also being able to reduce the size of the image that’s generated when
compared to traditional virtual machines.

 The other major advantage to CaaS, and containers in general, is their immutable
nature. Because a container image is derived from a specific version of that container,
updating that container in any way requires a new container image and version to be
built. Mutable deployments have long been an issue with deploying to internally man-
aged servers, because operations could update something on the system and poten-
tially break an application. Immutable container images can then be sent through
CI/CD processes to verify that the container performs as expected before being
released in production.

 Currently, the most popular CaaS provider is Kubernetes. Kubernetes was created
by Google and was heavily influenced by the way it managed containerized applica-
tions internally. Previous PaaS providers already have shifted to be built on top of a
CaaS, and in particular Kubernetes. Red Hat OpenShift is one such PaaS that now
takes advantage of Kubernetes as its CaaS.

 CaaS is the best way to manage deployments, but you don’t always want something
that low level. Generally, our ideal environment is a PaaS that’s built on top of a CaaS,
such as with Red Hat OpenShift.

Cloud native development5.3
You may have heard the term cloud native development before, but new terms are always
cropping up, so it doesn’t hurt to clarify the definition. Cloud native development is the
process of developing an application or service for deployment to cloud environ-
ments, where it can take advantage of loosely coupled cloud services.

 Shifting to this type of development requires an alteration in mindset when devel-
oping, as you’re no longer concerned with the details of external services that an
application requires. All you need to know is that there will be a service, such as a data-
base, available to your application in the cloud, and which environment variables you
might require to connect with it.

 You can also look at cloud native development from another angle, in that it
abstracts away much of what your application or service requires to function correctly.
Cloud native development allows the developer to expend effort on things that add
business value, by focusing on developing business logic and not plumbing code.

 Though not present with most cloud providers, the idea of a service catalog is
being introduced into Kubernetes for just this purpose. A service catalog provides a
definition of services that can be connected to within the cloud, along with the envi-
ronment variables that are required to connect with them. It’s then possible for a ser-
vice to specify criteria about an external service it needs to connect to. Criteria could
include database and postgresql, which would translate into a PostgreSQL database
instance from the service catalog.

87Cloud native development

 This concept isn’t that much different from providing environment-specific con-
figuration for databases, as we’ve done for many years. But as work on the service cata-
log continues, we may reach a point where an application connecting to an external
service through specific environment variables is no longer needed. A database client
may be injected into a service, with configuration already set by the service catalog.

 Cloud native development sounds great, but how can you quickly test and debug
your service if you have to deploy it to the cloud every time? Won’t that slow your
development speed? Yes, deploying to the cloud for every code change to see the
impact would likely slow development speed, if only marginally, and possibly more.

 But what if you can bring the cloud, or something as near as identical to the cloud
used for production, onto your local development machines? That would certainly
speed up the round-trip time from code change to seeing it in action. Do cloud pro-
viders offer such a thing? Some of them do!

 Minikube was the first to offer a single-node Kubernetes cluster that could be run
on your local machine. All that’s required is a virtual environment, such as VirtualBox,
Hyper-V, or xhyve driver, installed on your machine that can be used by Minikube to
create a virtual cluster on your machine.

 Since Minikube formed, Minishift was founded to extend Minikube with a built-in
PaaS of a single-node OpenShift cluster. Minishift uses the upstream of OpenShift,
OpenShift Origin, as the PaaS. Revisiting where a CaaS fits into service models, fig-
ure 5.3 shows what Minishift provides.

Clients

(browsers, mobile apps, etc.)

Software as a Service (SaaS)

Platform as a Service (PaaS)

Containers as a Service (CaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Application
(JAR/WAR/EAR)

Application
(JAR/WAR/EAR)

What Minishift providesFigure 5.3

88 CHAPTER 5 Cloud native development

There’s nothing wrong with using a CaaS directly, such as Kubernetes, but there are
benefits of using a PaaS on top. One main benefit is a nice UI to visualize what’s
deployed. Because of its simplicity in setting up, and wanting to use a PaaS over a
CaaS, we’ll use Minishift to create our local cloud environment.

5.4 Deploying to the cloud
Quite separate from the service model that the cloud might offer, there are also three
main deployment models that the cloud could use:

 Private cloud—A cloud that’s solely for the use of a single enterprise, which is
usually hosted internally.

 Public cloud—Services within the cloud are available over a public network. The
main difference between this and a private cloud relates to security. Whether a
microservice or database, they need to have more stringent security because
these services are accessible on a public network.

 Hybrid cloud—A combination of public and private clouds. It’s also possible that
each of these clouds could use different providers. The hybrid cloud deploy-
ment model is quickly becoming the most common, as it provides the best of
both worlds, especially when wanting to quickly ramp up capacity and scale.

Minishift, in essence, gives you your own private cloud instance running on your local
machine. But the PaaS within Minishift, OpenShift, is the same PaaS that would be
used in a public cloud or hybrid cloud deployment. The only difference is it’s running
locally.

 Whether you’re using a cloud for microservices, a monolith, or anything else, the
way a deployment is pushed to the cloud is no different. The only difference might be
that a microservice is more likely to have a CI/CD process that automatically pushes
releases into production. It’s more likely that a deployment of a monolith will require
greater coordination than an automatic deployment.

5.5 Starting Minishift
The first thing you need to do is install Minishift on your local machine. Head over to
http://mng.bz/w6g8 and follow the instructions to install the necessary prerequisites,
if they aren’t already installed, and then install Minishift.

NOTE The examples have been tested with Minishift 1.12.0 and OpenShift 3.6.1.

After Minishift is installed, open a terminal window and start it with the default settings:

minishift start

By default, this gives you a virtual machine with two virtual CPUs, 2 GB of RAM, and 20
GB of hard drive space for it. The terminal provides details of what Minishift is doing
as it starts, including which version of OpenShift Origin is being installed. After the

http://mng.bz/w6g8

89Microservice cloud deployment

installation is finished, the last output will provide details for the web console URL, and
login credentials for developer and administrator accounts:

OpenShift server started.

The server is accessible via web console at:
 https://192.168.64.11:8443

You are logged in as:
 User: developer
 Password: <any value>

To login as administrator:
 oc login -u system:admin

For most things you need to do, either through the web console or via the OpenShift
command-line interface (CLI), you need only the developer credentials. There’s also
a handy way to launch the OpenShift web console without having to remember the
URL and port:

minishift console

This command opens a browser window directly at the login page of the web console.
After logging in, the console looks like figure 5.4.

By default, a fresh instance of OpenShift sets up an empty project called My Project
for you. You can then choose to delete it and create your own, or use it; the choice
doesn’t really matter.

 You now have a cloud that you can deploy your services into, but you first need to
make your service deployable to it.

5.6 Microservice cloud deployment
You’ll take the admin service that you updated in chapter 4, and add the necessary
configuration to support deploying to the cloud.

 By far, the easiest way to deploy your application is the fabric8 Maven plugin
(https://maven.fabric8.io/). A huge benefit to the plugin is it can bring Java applica-
tions to OpenShift or Kubernetes! You can go from no configuration deployments to
adding as much configuration as you might require.

OpenShift web consoleFigure 5.4

https://maven.fabric8.io/

90 CHAPTER 5 Cloud native development

 Let’s start by modifying your pom.xml to include the plugin in a profile called
openshift.

<profile>
 <id>openshift</id>
 <build>
 <plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>3.5.33</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</profile>

The goals that are defined in the plugin inform it of what you want it to do. With this
configuration, the plugin will create the necessary resource descriptors for OpenShift
and then use Docker to build a container image with your deployment inside it. What
the code does is no different than if you created an image with Docker directly, but with-
out the hassle of having to remember the correct command each time you need it!

 I mentioned that the plugin generates resource descriptors for you, but what are
they? Take a look at this listing.

Maven profile for OpenShift deploymentListing 5.1

service-chapter5-admin.jsonListing 5.2

Name of the fabric8
Maven plugin

Creates Kubernetes or
OpenShift resource descriptors

Generates a
Docker image of
the application
in a container

{
"apiVersion":"v1",
"kind":"Service",
"metadata": {

"annotations": {
"fabric8.io/git-branch":"master",
"fabric8.io/git-commit":"377ac684babee220885246de1700d76e3d11a8ab",
"fabric8.io/iconUrl":"img/icons/wildfly.svg",
"fabric8.io/scm-con-url":"scm:git:git@github.com:kenfinnigan/ejm-

➥ samples.git/chapter5/chapter5-admin",
"fabric8.io/scm-devcon-url":"scm:git:git@github.com:kenfinnigan/ejm-

➥ samples.git/chapter5/chapter5-admin",
"fabric8.io/scm-tag":"HEAD",
"fabric8.io/scm-url":"https://github.com/kenfinnigan/ejm-

➥ samples/chapter5/chapter5-admin",

91Microservice cloud deployment

 "prometheus.io/port":"9779",
 "prometheus.io/scrape":"true"
 },
 "creationTimestamp":"2017-11-21T01:47:02Z",
 "finalizers":[],
 "labels": {
 "app":"chapter5-admin",
 "expose":"true",
 "group":"ejm",
 "provider":"fabric8",
 "version":"1.0-SNAPSHOT"
 },
 "name":"chapter5-admin",
 "namespace":"myproject",
 "ownerReferences":[],
 "resourceVersion":"3074",
 "selfLink":"/api/v1/namespaces/myproject/services/chapter5-admin",
 "uid":"decf5db7-ce5d-11e7-994e-0afca351eb6b"
 },
 "spec": {
 "clusterIP":"172.30.221.166",
 "deprecatedPublicIPs":[],
 "externalIPs":[],
 "loadBalancerSourceRanges":[],
 "ports": [
 {
 "name":"http",
 "port":8080,
 "protocol":"TCP",
 "targetPort":8080
 }
],
 "selector": {
 "app":"chapter5-admin",
 "group":"ejm",
 "provider":"fabric8"
 },
 "sessionAffinity":"None",
 "type":"ClusterIP"
 },
 "status": {
 "loadBalancer": {
 "ingress":[]
 }
 }
}

This is just one of the many resource descriptors that could be created by the plugin,
depending on which options are specified. You don’t want to be handcrafting files this
long for every microservice you deploy! The beauty of the fabric8 Maven plugin is that
it hides all that boilerplate configuration you don’t need to know about unless you
want to.

92 CHAPTER 5 Cloud native development

 If finer control over service configuration is needed, it can be achieved with cus-
tom YAML files that are used by the plugin to generate the necessary JSON. That’s
beyond the scope of this book, but further information is available at the fabric8 web-
site, https://maven.fabric8.io/.

 Though Minishift is already started, you need to do one more thing before you can
deploy your service with the fabric8 Maven plugin. You need to log in to OpenShift in
the terminal, because the fabric8 Maven plugin uses the credentials to create
resources within OpenShift. This is necessary only once, or until your authenticated
session expires and you need to log in again.

 To log in, you need the OpenShift CLI installed. There are two ways to do that:

 Add the .minishift/cache/oc/v3.6.0 directory onto your path, because the oc
binary is retrieved by Minishift for you.

 Download the CLI directly from www.openshift.org/download.html.

After the CLI is installed, you can authenticate in the terminal:

oc login

You’ll be prompted to enter the user ID, developer, and any value for a password.
 You’re going to use the default My Project for now, so you can deploy the admin

service into OpenShift with the following:

mvn clean fabric8:deploy -Popenshift

You invoke the fabric8 deploy goal, which will be executed after the resource and
build goals you defined in pom.xml. You also specified the openshift profile so that
the fabric8 Maven plugin is available.

 In the terminal, you’ll see the usual Maven build logging, mixed in with messages
from the fabric8 plugin telling you what it’s generating for deployment to OpenShift.
After it’s finished deploying the service, you can open My Project in the console and
see all the details of your deployed service, as shown in figure 5.5.

 Here you can easily see at a glance the various pieces of information in your
service:

 Name of the deployment
 Which Docker image is used for the deployment
 Which build created the Docker image
 The ports that are exposed from the container
 How many pods are running and whether they’re healthy
 The external route pointing at your deployment

NOTE A pod is a grouping of container(s), such as Docker containers, that
use shared storage and network infrastructure. A pod is equivalent to a physi-
cal or virtual machine with collocated applications.

https://maven.fabric8.io/
https://www.openshift.org/download.html

93Microservice cloud deployment

Clicking the route URL for external traffic opens a new browser window at the root
URL of the service. Because the admin service doesn’t serve anything at /, you need to
modify the URL in the browser to include /admin/category before you can see the
JSON data that was retrieved from the database.

 With the admin service functioning, can you scale the number of instances you
have of that service running? Within the OpenShift console, scaling is super easy. All
you do is expand the section for the chapter5-admin deployment, if it’s not already
expanded, as shown in figure 5.6. Then click the arrowheads next to the blue circle,
which denotes the number of current pods. As noted previously, pod is the Kubernetes

OpenShift web console, showing the admin serviceFigure 5.5

Figure 5.6 Admin service pod instances

94 CHAPTER 5 Cloud native development

term for the containerized deployment, but essentially it’s the number of instances of
a given service.

 Here you can see that the number of pods has increased from the default of 1, up
to 3. Open several private browser windows and click the endpoint for /admin/cate-
gory a few times in each. Then head back to the OpenShift console and take a look at
the logs for each of the pods that are running. You should see the SQL calls that were
made against the different pods.

 If you want to remove the admin service, you can just as easily remove it from
OpenShift with the following:

mvn fabric8:undeploy -Popenshift

WARNING To undeploy your service, you didn’t use the Maven clean goal. As
part of deploy, fabric8 stores files in /target that contain details of all the
resources that were deployed to OpenShift. If you clean them out before
undeploy can run, fabric8 has absolutely no idea what it’s trying to undeploy
and is unable to do anything.

You can now deploy and undeploy the admin service to OpenShift locally running
inside Minishift, but can you execute tests in the same way? That’s what the next sec-
tion is all about!

5.7 Testing in the cloud
Because you’re able to deploy the admin service to a local cloud with Minishift, can
you also use that local cloud to test it as well? You most certainly can!

 To help develop tests that integrate with OpenShift you’re going to use an exten-
sion from the Arquillian ecosystem called Arquillian Cube (http://arquillian.org/
arquillian-cube/). Arquillian Cube gives you the ability to run tests against code inside
Docker containers, by providing hooks for controlling the execution of Docker con-
tainers. Though OpenShift is much more than just Docker, because it uses Docker for
its container images, you can still use Arquillian Cube to control the deployment and
run tests against it.

 What’s the benefit of executing your tests in a cloud as opposed to what can be
achieved with integration testing? It all comes down to wanting to test your microservice
in an environment that, as closely as possible, resembles production. If you’re deploy-
ing your microservice into production in a cloud, your best chance of finding out prob-
lems with such a deployment is being able to deploy your tests to a cloud as well. To be
able to do that, you need to add the following to pom.xml.

Arquillian Cube dependenciesListing 5.3

<dependencyManagement>
<dependencies>

<dependency>
<groupId>org.arquillian.cube</groupId>

http://arquillian.org/arquillian-cube/
http://arquillian.org/arquillian-cube/
http://arquillian.org/arquillian-cube/

95Testing in the cloud

 <artifactId>arquillian-cube-bom</artifactId>
 <version>1.12.0</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.arquillian.cube</groupId>
 <artifactId>arquillian-cube-openshift</artifactId>
 <scope>test</scope>
 <exclusions>
 <exclusion>
 <groupId>io.undertow</groupId>
 <artifactId>undertow-core</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.awaitility</groupId>
 <artifactId>awaitility</artifactId>
 <version>3.0.0</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Import all Arquillian
Cube dependencies so
they’re available.

Add the main Arquillian
Cube artifact as a test
dependency to the project.

Exclude Undertow as a transitive
dependency from Arquillian Cube.
It interferes with Thorntail.

Add a test dependency for
Awaitility to help with waiting
for endpoints to be available.

Because you want to be able to run tests outside the cloud as well, though the code for
chapter 5 has them currently removed, you need a separate profile to activate the tests
you have for your cloud, OpenShift:

<profile>
<id>openshift-it</id>
<build>

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<executions>

<execution>
<goals>

<goal>integration-test</goal>
<goal>verify</goal>

</goals>
</execution>

</executions>
</plugin>

</plugins>
</build>

</profile>

Here you tell Maven that you want the maven-failsafe-plugin to execute your test,
integration-test goal, and then verify the results.

96 CHAPTER 5 Cloud native development

 Now it’s time to create your test! You’re going to create a test similar to one of your
integration tests from chapter 4, but it’ll be executed against your cloud, OpenShift,
instead of a local instance. As the fail-safe plugin requires IT in the test class name to
activate it, you’ll name it CategoryResourceIT.

@RunWith(Arquillian.class)
public class CategoryResourceIT {

 @RouteURL("chapter5-admin")
 private URL url;

 @Before
 public void verifyRunning() {
 await()
 .atMost(2, TimeUnit.MINUTES)
 .until(() -> {
 try {
 return get(url + "admin/category").statusCode() ==

➥ 200;
 } catch (Exception e) {
 return false;
 }
 });

 RestAssured.baseURI = url + "/admin/category";
 }

 @Test
 public void testGetCategory() throws Exception {
 Response response =
 given()
 .pathParam("categoryId", 1014)
 .when()
 .get("{categoryId}")
 .then()
 .statusCode(200)
 .extract().response();

 String jsonAsString = response.asString();

 Category category = JsonPath.from(jsonAsString).getObject("",

➥ Category.class);

 assertThat(category.getId()).isEqualTo(1014);
 assertThat(category.getParent().getId()).isEqualTo(1011);
 assertThat(category.getName()).isEqualTo("Ford SUVs");
 assertThat(category.isVisible()).isEqualTo(Boolean.TRUE);
 }
}

It’s time to test it out!

Listing 5.4 CategoryResourceIT

Inject a URL pointing at
the OpenShift Route for
chapter5-admin.

Execute the method before a test to
ensure you’re ready for testing.

Wait no more than 2 minutes
for /admin/category to respond
with a 200 response.

Set the root URL for
use with RestAssured.

Retrieve the category
with ID 1014, ensuring you
received a 200 response.

Verify that the details of the Category you
received match what you expected.

97Summary

 First you need to ensure that you have Minishift running, and that you’ve recently
logged in with oc login. Authentications do expire! If all that’s done, you run the fol-
lowing:

mvn clean install -Popenshift,openshift-it

Here you activate the profiles for openshift and openshift-it. The openshift-it
profile will execute your test, but without the openshift profile being present, the
admin service won’t be deployed to OpenShift! If the service successfully deploys and
the tests pass, the terminal should show a Maven build that completed without error.

 You’ve only just scratched the surface of what’s possible with the fabric8 Maven
plugin and Minishift, but you have a solid footing to begin exploring further on your
own. Because it’ll be a while before you use Minishift again, let’s stop it for now:

minishift stop

5.8 Additional exercises
Here are additional exercises for you to grow your understanding of OpenShift and to
help improve the code for the example:

 Modify the deployment of the admin service to use PostgreSQL or MySQL
when running on OpenShift.

 Add test methods for CategoryResourceIT for creating a Category, and
another that fails the name validation.

If you take on these exercises and would like to see them included into the code for
the book, please submit a pull request to the project on GitHub.

Summary
 You can take advantage of immutable container images by choosing a PaaS that

uses a CaaS internally.
 Minishift provides a cloud environment with OpenShift on your local machine,

to simplify both the execution and testing of microservices without needing to
provision lots of machines.

 The fabric8 Maven plugin removes all the boilerplate needed to define
resources and services within OpenShift or Kubernetes to reduce the configura-
tion hurdles before seeing a microservice running in the cloud.

Part 2

Implementing
 Enterprise Java microservices

In part 2, we delve deeper into microservice development by covering topics
such as consuming other microservices, service registration and discovery, fault
tolerance, and security.

 These six chapters also cover the development of a microservice hybrid from
the Cayambe monolith, using the microservices that you’ve developed through-
out the book. Finally, you’ll add data streaming with Kafka as you learn about
sharing data among microservices and with hybrids.

Consuming microservices

Consuming a microservice can mean many things to many people. Clients of a
microservice could be scripts, web pages, other microservices, or pretty much any-
thing that can make HTTP requests. If we covered them all, this chapter would be a
whole book by itself!

 Developing a microservice is interesting, but it doesn’t get you far until you
introduce many microservices interacting with each other. To enable two services
to interact with each other, you need a method by which one service can call
another.

 This chapter provides examples focused on one microservice consuming
another with Java-based libraries, but the methods shown can be equally applied to
any generic Java client consuming a microservice.

 With Enterprise Java, two services would interact with a direct service call, as
shown in figure 6.1.

This chapter covers
 How to consume a microservice

 Your choices when consuming a microservice

101

102 CHAPTER 6 Consuming microservices

The service call could be accomplished by the following:

 @EJB injection when using EJBs
 @Inject with CDI
 Retrieving an instance of a service via a static method or variable
 Spring dependency injection, either XML or annotation based

All these options require that your two services reside in the same JVM and runtime,
as shown in figure 6.1.

Runtime

Business
service

Business
service

Enterprise Java business service callsFigure 6.1

User

Runtime

Runtime Runtime

Microservices environment

DataData

Gateway

MicroserviceMicroservice

Microservice

Consuming microservicesFigure 6.2

103

In the figure one microservice is calling another microservice. In the diagram, they’re
within the same microservices environment, but they don’t have to be. Revisiting fig-
ure 1.4, figure 6.2 highlights the focus of this chapter, solving the means by which two
microservices in separate runtimes are able to communicate.

 In our particular case, you’ll be taking the new Cayambe administration microser-
vice from chapter 2 and developing clients for it with different libraries. Figure 6.3
illustrates where the microservice client fits; you use a short-term way of retrieving cat-
egory data until such time as the final solution is in place.

 You’ll start with a look at consuming a microservice by using low-level libraries that
deal directly with HTTP requests. Because they deal with HTTP requests, they can be
used with microservices that don’t expose RESTful endpoints. Then you’ll learn about
client libraries that are specifically designed to simplify the code required to call
RESTful endpoints. They offer a higher level of abstraction over HTTP requests,
which simplifies the client code significantly, as you’ll see in our examples. The code
for this section can be found in the /chapter6 directory of the book’s example code.

Data

Cayambe EAR

Admin UI

Admin
service

Admin data

Payment
service

Payment data
Stripe

service Kafka topic

aApache KafkicroserviceM

Microservice

Microservice

Checkout
WAR Cart WAR

Web
common

JAR

Cayambe
JAR

Cayambe administration microservice clientFigure 6.3

104 CHAPTER 6 Consuming microservices

For each client library, a service will be implemented that calls the CategoryResource
RESTful endpoint, which you created in chapter 2, and then returns the received data
as the response to the caller.

TIP You can set the port that the CategoryResource starts on to prevent port
clashes with the other microservices. You set the swarm.port.offset property
in the Maven plugin to 1.

Each of these services needs an object to represent the category JSON that you’ll
receive from the administration service. To facilitate that, each client library Maven
module will have its own Category object, which will be used when deserializing the
response from the administration service.

@JsonIdentityInfo(generator = ObjectIdGenerators.PropertyGenerator.class,

➥ property = "id")
public class Category {

 protected Integer id;

 protected String name;

 protected String header;

 protected Boolean visible;

 protected String imagePath;

 protected Category parent;

 private Collection<Category> children = new HashSet<>();

 protected LocalDateTime created = LocalDateTime.now();

 protected LocalDateTime updated;

 protected Integer version;

 ...
}

The getter and setter methods are omitted for brevity, but the full source of Category
is available in the book’s source code.

 In addition, each of these services needs access to ExecutorService to submit
work for processing on a new thread. You want to use one provided by Java EE so the
services all retrieve one the same way:

private ManagedExecutorService executorService() throws Exception {
 InitialContext ctx = new InitialContext();
 return (ManagedExecutorService)
 ctx.lookup("java:jboss/ee/concurrency/executor/default");
}

Listing 6.1 Category model class

Defines the key as the ID for Category,
which is used for deserializing the
collection of children received as JSON

Initializes the collection of children to
ensure that you always have a valid

collection, even if it’s empty

105Consuming a microservice with a Java client library

This does a simple JNDI lookup of the service by name and returns the instance you
can use for submitting work.

NOTE The ExecutorService is defined for you by WildFly. You don’t need to
do anything to make it available in order to retrieve it from JNDI.

Your services could just as easily have created a new Thread directly to perform any
required work, but then your new thread would be outside the Java EE thread pool
management. Is this a problem? Not always, but you could have problems if the thread
pool size of the runtime is almost as large as the available JVM threads. In that case,
you could exhaust all available JVM threads when creating threads outside the Java EE
thread pool. As a general rule, it’s best not to create threads directly, but instead use
the ExecutorService.

 Because you want to show how synchronous and asynchronous usage scenarios
result in different client code for consuming a microservice, each resource that uses a
client library will contain two endpoints:

 /sync—Synchronously processes a request from the caller
 /async—Asynchronously processes a request from the caller

Traditionally, services were developed to communicate synchronously with any other
resources required to complete a response. With increasing demands from the enter-
prise to deliver greater performance and scalability, we’ve moved toward greater asyn-
chronous behavior in our services. In this chapter and the remainder of the book,
you’ll learn about both synchronous and asynchronous usage patterns. Enhancing the
benefits of microservices also requires some level of asynchronous behavior; other-
wise, you minimize the benefits of their distributed nature. If you take that route, you
may as well stick with a monolith!

NOTE Each of your microservices defines a field called categoryUrl, which is
hardcoded to http://localhost:8081/admin/categorytree. This isn’t what
you’d go into production doing, but it serves our purpose to simplify the
examples. In a later chapter, you’ll see how service discovery can be used for
connecting to other services.

6.1 Consuming a microservice with a Java client library
In this section, you’ll see examples of consuming a microservice that uses lower-level
libraries to deal with HTTP requests directly. Though that results in more verbose and
extra handling of data, it does provide the greatest flexibility as to how a call can be
made. For instance, using these libraries may be a better choice if a microservice
needs to communicate with many types of HTTP resources, because it doesn’t make
sense to add another library just for RESTful endpoint interaction.

106 CHAPTER 6 Consuming microservices

java.net6.1.1

The classes in the java.net package have been part of the JDK from the beginning.
Though they’ve been enhanced and updated over the years, they focus on low-level
HTTP interactions. They’re in no way designed for RESTful endpoint consumption,
so some level of cumbersome code is required.

 Let’s take a look at our first method for the DisplayResource.

@GET
@Path("/sync")
@Produces(MediaType.APPLICATION_JSON)
public Category getCategoryTreeSync() throws Exception {
 HttpURLConnection connection = null;

 try {
 URL url = new URL(this.categoryUrl);
 connection = (HttpURLConnection) url.openConnection();

 connection.setRequestMethod("GET");
 connection.setRequestProperty("Accept", MediaType.APPLICATION_JSON);

 if (connection.getResponseCode() != HttpURLConnection.HTTP_OK) {
 throw new RuntimeException("Request Failed: HTTP Error code: " +

➥ connection.getResponseCode());
 }

 return new ObjectMapper()
 .registerModule(new JavaTimeModule())
 .readValue(connection.getInputStream(), Category.class);

 } finally {
 assert connection != null;
 connection.disconnect()
 }
}

Though you’re dealing with a simple RESTful endpoint, the client code to communi-
cate with it certainly isn’t, and this is only synchronous!

 The next listing shows how the preceding code changes if you want to handle the
client request to your microservice asynchronously.

@GET
@Path("/async")
@Produces(MediaType.APPLICATION_JSON)
public void getCategoryTreeAsync(
 @Suspended final AsyncResponse asyncResponse)
 throws Exception {

Listing 6.2 DisplayResource with java.net

Listing 6.3 DisplayResource with java.net asynchronously

Create a URL pointing to
your CategoryResource.

Set HTTP
GET as the

request
method for

your
connection.

Set
“application/json”
as the media type
that you’ll accept

in a response.

Check for
 a non-OK
response
code.

Create a new ObjectMapper
to perform the JSON
deserialization.

Register the
JavaTimeModule to handle
conversion of JSON to
LocalDateTime instances.

Pass the InputStream you
received in the response to the

ObjectMapper for deserialization,
into an instance of Category.

Close the connection to
CategoryResource.

Request processing
will be handled
asynchronously.

107Consuming a microservice with a Java client library

 executorService().execute(() -> {
 HttpURLConnection connection = null;

 try {
 // The code to open the connection, check the status code,
 // and process the response is identical to the synchronous
 // example and has been removed.

 asyncResponse.resume(category);
 } catch (IOException e) {
 asyncResponse.resume(e);
 } finally {
 assert connection != null;
 connection.disconnect();
 }
 });
}

The listing introduced concepts you haven’t seen before—namely, @Suspended and
AsyncResponse. These two pieces are the core of how JAX-RS handles client requests
asynchronously. @Suspended informs the JAX-RS runtime that the HTTP request from
the client should be suspended until a response is ready. AsyncResponse indicates how
the developer informs the runtime that a response is ready or has failed to complete.

 What does that look like? Take a look at figure 6.4.

Here’s what is happening at each step within figure 6.4:

1 An HTTP request arrives from a browser or another client.
2 getCategoryTreeAsync() triggers code to be executed in a separate thread. On

completion of getCategoryTreeAsync(), the client request is suspended and
the HTTP request thread that was handling it is made available to handle addi-
tional requests.

Pass the lambda expression to
an executor for processing.

Resume the AsyncResponse with the
deserialized Category instance.

Resume the AsyncResponse
with an exception.

getCategoryTreeAsync()

asyncResponse.resume()Create response

Client calling code

Executor thread

Category
resource

3

4

5

6

2

1

7

tree()

HTTP request thread

JAX-RSFigure 6.4 AsyncResponse handling

108 CHAPTER 6 Consuming microservices

3 An HTTP request is made to an external microservice.
4 An HTTP response is received from the external microservice.
5 The response data is passed to asyncResponse.resume().
6 The client request is reactivated in the HTTP request thread and a response is

constructed.
7 The response is returned to the browser, or to whatever client made the request.

WARNING Using @Suspended in a RESTful endpoint doesn’t prevent the
client that’s calling the endpoint from blocking. It benefits only the server
side of the request by allowing greater request throughput. Without the use
of @Suspended, a JAX-RS resource can handle only as many requests as there
are available threads, because each request blocks the thread until the
method completes.

Now that you have your services built, you can start them.
 Change into the /chapter6/admin directory of the book’s example code and run

this:

mvn thorntail:run

CategoryResource will be started and available at http://localhost:8081/admin/cate-
gorytree in a browser.

 Now you start your DisplayResource. Change into the /chapter6/java-net direc-
tory and run this:

mvn thorntail:run

It’s now possible to access the microservices by accessing them in a browser:
http://localhost:8080/sync and http://localhost:8080/async. Either of the preceding
URLs opened in the browser will show the tree of categories that are currently present
within the administration microservice.

Apache HttpClient6.1.2

With Apache HttpClient, you get an abstraction over classes you used with java.net,
minimizing the code required for interacting with the underlying HTTP connection.
The code in DisplayResource isn’t vastly different from your previous code, but it
does improve the code’s readability.

 For instance, let’s look at your first method for DisplayResource.

@GET
@Path("/sync")
@Produces(MediaType.APPLICATION_JSON)

Listing 6.4 DisplayResource with HttpClient

Create an HTTP client inside the
try-with-resources statement.

public Category getCategoryTreeSync() throws Exception {
try (CloseableHttpClient httpclient = HttpClients.createDefault()) {

109Consuming a microservice with a Java client library

 HttpGet get = new HttpGet(this.categoryUrl);
 get.addHeader("Accept", MediaType.APPLICATION_JSON);

 return httpclient.execute(get, response -> {
 int status = response.getStatusLine().getStatusCode();
 if (status >= 200 && status < 300) {
 return new ObjectMapper()
 .registerModule(new JavaTimeModule())
 .readValue(response.getEntity().getContent(),

➥ Category.class);
 } else {
 throw new ClientProtocolException("Unexpected response

➥ status: " + status);
 }
 });
 }
}

Even with this short example, you can see how much simpler your client code is when
making an HTTP request. Now let’s see how much simpler your code becomes when
you use @Suspended.

@GET
@Path("/async")
@Produces(MediaType.APPLICATION_JSON)
public void getCategoryTreeAsync(@Suspended final AsyncResponse

➥ asyncResponse) throws Exception {
 executorService().execute(() -> {
 try (CloseableHttpClient httpclient = HttpClients.createDefault()) {
 HttpGet get = new HttpGet(this.categoryUrl);

 // The code to initiate the HTTP GET request and convert the

➥ HttpEntity
 // is identical to the synchronous example and has been removed.

 asyncResponse.resume(category);
 } catch (IOException e) {
 asyncResponse.resume(e);
 }
 });

Listing 6.5 DisplayResource with HttpClient and @Suspended

Create an HttpGet instance with the
CategoryResource URL endpoint. Specify that

you’ll accept
JSON responses.

Execute
HttpGet,

passing a
handler
for the

Response.

Verify that
the response

code is OK.

Extract HttpEntity from Response.
Convert the entity to a Category
instance using an ObjectMapper.

Execute your calling code
in a separate thread.

Resume the AsyncResponse
with the received category.

}

Once again, this approach is similar to our synchronous example, but you use @Sus-
pended and AsyncResponse to indicate to JAX-RS that you want the HTTP request to
be suspended while you make your call to an external microservice.

If you already have your CategoryResource microservice running at http://local-
host:8081, you can now start your new microservice by using Apache HttpClient.

110 CHAPTER 6 Consuming microservices

WARNING You need to stop any previously running microservices before you
can run this one, because they use the same port.

Change into the /chapter6/apache-httpclient directory and run this:

mvn thorntail:run

It’s now possible to access the microservices by accessing them in a browser:
http://localhost:8080/sync and http://localhost:8080/async. As with your previous
microservice, you’ll see a tree of categories that are currently present within the
administration microservice.

 In this section, you looked at client libraries that focus on using URLs and HTTP
request methods directly. They’re great for interacting with HTTP resources, but
they’re verbose when dealing with RESTful endpoints. Can you find client libraries
that simplify your client code even further?

Consuming a microservice with a JAX-RS client library6.2
This section introduces client libraries that bring your abstraction level even higher
than HTTP. Both libraries provide APIs that are designed specifically for use in com-
municating with JAX-RS endpoints.

JAX-RS client6.2.1

JAX-RS has been defined over the years as part of the JSR 311 and JSR 339 specifica-
tions of Java EE. As part of these specifications, JAX-RS has a client API that provides a
developer with a cleaner means of calling RESTful endpoints from a JAX-RS resource.

 So what are the benefits of using the JAX-RS client library? It allows you to forget
about the low-level HTTP connection you need for connecting to a RESTful microser-
vice, and focus on the required metadata such as the following:

 HTTP method
 Parameters to be passed
 MediaType format of parameters and return type
 Required cookies
 Any other piece of metadata required to consume a RESTful microservice

When using the JAX-RS client library, you need to register a provider to handle the
deserialization of JSON into LocalDateTime instances when processing a response.
For that, you need the following listing, which you’ll use in our subsequent examples.

Listing 6.6 ClientJacksonProvider

Provide ContextResolver for
ObjectMapper instances.Create a new ObjectMapper instance.

public class ClientJacksonProvider implements ContextResolver<ObjectMapper> {

private final ObjectMapper mapper = new ObjectMapper()

111Consuming a microservice with a JAX-RS client library

 .registerModule(new JavaTimeModule());

 @Override
 public ObjectMapper getContext(Class<?> type) {
 return mapper;
 }
}

Once again, you start with your synchronous example endpoint.

@GET
@Path("/sync")
@Produces(MediaType.APPLICATION_JSON)
public Category getCategoryTreeSync() {
 Client client = ClientBuilder.newClient();

 return client
 .register(ClientJacksonProvider.class)
 .target(this.categoryUrl)
 .request(MediaType.APPLICATION_JSON)
 .get(Category.class);
}

When comparing the preceding listing to either of the pure Java client libraries, you
have a significantly simplified and more coherent piece of code for calling an external
microservice.

 Is that important? In terms of the functionality required to execute a request and
process the response, not at all. But that isn’t anywhere near as critical as how easily a
developer can understand existing or develop new code. I’ll leave it up to you to
judge, but I know I’d prefer to see the preceding example than anything else we’ve
seen so far.

 Can the JAX-RS client library likewise improve the readability of your code for
asynchronous use? See the next listing.

@GET
@Path("/async")
@Produces(MediaType.APPLICATION_JSON)
public void getCategoryTreeAsync(@Suspended final AsyncResponse

➥ asyncResponse) throws Exception {
 executorService().execute(() -> {
 Client client = ClientBuilder.newClient();

 try {
 Category category = client.target(this.categoryUrl)

Listing 6.7 DisplayResource with JAX-RS client

Listing 6.8 DisplayResource with JAX-RS client and @Suspended

Register the JavaTimeModule
for handling LocalDateTime
conversion.

Return the instance of ObjectMapper
that you created when it’s requested.

Create a JAX-
RS client. Register the

provider you
defined in
listing 6.6.

Set the target of
the client to be the
CategoryResource URL.

Specify that your response
should return JSON.

Make an HTTP GET request and
convert the response body to Category.

112 CHAPTER 6 Consuming microservices

 .register(ClientJacksonProvider.class)
 .request(MediaType.APPLICATION_JSON)
 .get(Category.class);

 asyncResponse.resume(category);
 } catch (Exception e) {
 asyncResponse.resume(Response
 .serverError()
 .entity(e.getMessage())
 .build());
 }
 });
}

As with all asynchronous usage, you specify @Suspended and AsyncResponse. You also
use ManagedExecutorService to provide a new thread for processing your call, and
you set the response with asyncResponse.resume().

 You also could’ve used the asynchronous functionality of the JAX-RS client library
itself.

@GET
@Path("/asyncAlt")
@Produces(MediaType.APPLICATION_JSON)
public void getCategoryTreeAsyncAlt(@Suspended final AsyncResponse

➥ asyncResponse) {
 Client client = ClientBuilder.newClient();
 WebTarget target = client.target(this.categoryUrl)
 .register(ClientJacksonProvider.class);
 target.request(MediaType.APPLICATION_JSON)
 .async()
 .get(new InvocationCallback<Category>() {
 @Override
 public void completed(Category result) {
 asyncResponse.resume(result);
 }

Listing 6.9 DisplayResource with JAX-RS client and InvocationCallback

Return a response you
construct, including
the exception message,
instead of just passing
the exception along.

Indicate you want
the call to be
asynchronous.

Pass
InvocationCallback

with methods for
completed and
failed handling.

@Override
public void failed(Throwable throwable) {

throwable.printStackTrace();
asyncResponse.resume(Response

.serverError()

.entity(throwable.getMessage())

.build());
}

});
}

This second asynchronous version alters which pieces of your code execute in a new
thread, but it doesn’t alter the end result. In getCategoryTreeAsync(), you pass all
your RESTful endpoint code into a new thread so that the HTTP request thread can

113Consuming a microservice with a JAX-RS client library

be unblocked almost as quickly as it was processed. getCategoryTreeAsyncAlt() dif-
fers by executing only the HTTP request to your external microservice in a new
thread. All the setup code required to make your HTTP request occurs in the same
thread as the client request.

 As getCategoryTreeAsyncAlt() uses the HTTP request thread opened for the cli-
ent the longest, it reduces the throughput of the RESTful endpoints by causing each
client to block on a thread for longer than necessary. Though the impact may be min-
imal, given a large enough number of requests, the impact exists.

 So why show an inferior method that negatively affects throughput? First, as a way to
show that there can be many means to achieve a similar goal. Second, many microser-
vices may not have a large enough number of concurrent client requests for such a
performance impact to be noticeable and cause problems. In such a case, a developer
may prefer callbacks over any alternative—because when an option doesn’t impact
performance, that’s a reasonable choice to make.

 In switching to using the JAX-RS client library, you’ve simplified your calling code
and made it clearer to understand. That certainly makes it more pleasurable to
develop with than the lower-level libraries, but it does come at a cost in terms of how
flexibly it can be used.

 What kind of flexibility is lost? For most use cases, the JAX-RS client library
wouldn’t cause any impact, but calling a microservice that uses a binary protocol
would be more difficult. Depending on the protocol, it may require developing cus-
tom handlers and providers or incorporating additional third-party libraries that pro-
vide such features.

 Change into the /chapter6/jaxrs-client directory and run this:

mvn thorntail:run

It’s now possible to access the microservices by accessing them in a browser:
http://localhost:8080/sync and http://localhost:8080/async. As with our previous
examples, you’ll see a tree of categories that are currently present within the adminis-
tration microservice.

6.2.2 RESTEasy client

RESTEasy is an implementation of the JAX-RS specification that’s made available
within WildFly as well as separately. Though many parts of its client library are identi-
cal to those provided by the JAX-RS client API, RESTEasy provides a particularly inter-
esting feature that’s worthwhile.

 With the JAX-RS client library, you specify what RESTful endpoint you want to call
by chaining methods together to build up a picture of the endpoints, URL path,
parameters, return type, media types, and so forth. There’s nothing wrong with that,
but it’s not overly natural for developers who are more familiar with creating RESTful
endpoints with JAX-RS.

114 CHAPTER 6 Consuming microservices

 With RESTEasy, you can re-create the RESTful endpoint that you want to commu-
nicate with as an interface and have a proxy of that interface generated for you. This
process allows you to use an interface of the external microservice as if it were present
within your own codebase.

 For your external CategoryResource microservice, you’d create an interface like
the following.

@Path("/admin/categorytree")
public interface CategoryService {
 @GET
 @Produces(MediaType.APPLICATION_JSON)
 Category getCategoryTree();
}

There’s nothing special about the code here. It looks like any other JAX-RS endpoint
class, except that it’s an interface and there’s no method implementation. Another ben-
efit is needing to define only the methods on the interface that your microservice
requires. For instance, if an external microservice has five endpoints and your micro-
service needs to use only one, your interface defining that external microservice requires
only a single method. You don’t need to define the entire external microservice.

 Is there an advantage to this? Definitely! It allows you to have a focused definition
of an external microservice that you need to consume. If methods are updated on that
microservice that you don’t consume, there’s no need to update your interface
because you don’t use those endpoints.

NOTE Taking this approach, it’d be possible to share the same interface
between service and client. The service would provide an implementation of
the interface for the actual endpoint code.

WARNING Such an approach, though possible, isn’t recommended practice
for microservices because it becomes a separate library that both microservices
depend on, introducing release timing and sequencing issues. This is a dan-
gerous road to head down and will result in only continual pain for an enter-
prise. It’s therefore preferable to replicate the methods that you need to call.

Now that you’ve defined an interface that maps onto your external microservice, how
can it be used?

@GET
@Path("/sync")
@Produces(MediaType.APPLICATION_JSON)
public Category getCategoryTreeSync() {
 ResteasyClient client = new ResteasyClientBuilder().build();

Listing 6.10 CategoryService

Listing 6.11 DisplayResource with RESTEasy

Create the client with RESTEasy.

115Consuming a microservice with a JAX-RS client library

 ResteasyWebTarget target = client.target(this.categoryUrl)
 .register(ClientJacksonProvider.class);

 CategoryService categoryService = target.proxy(CategoryService.class);
 return categoryService.getCategoryTree();
}

With this approach, you shift setting all the request parameters such as URL path,
media types, and return types into your CategoryService interface. Now your client
code interacting with the proxy behaves just like a local method call. You’ve gained a
further simplification in your code by separating common request parameter values
into a single place. This is particularly important when a microservice may require
calling the same external microservice in different RESTful endpoints, because you
don’t want to repeat information that isn’t going to change wherever it might be
called from.

 Let’s see some asynchronous examples with your proxy interface.

@GET
@Path("/async")
@Produces(MediaType.APPLICATION_JSON)
public void getCategoryTreeAsync(@Suspended final AsyncResponse

➥ asyncResponse) throws Exception {
 executorService().execute(() -> {
 ResteasyClient client = new ResteasyClientBuilder().build();

 try {
 ResteasyWebTarget target = client.target(this.categoryUrl)
 .register(ClientJacksonProvider.class);

 CategoryService categoryService =
target.proxy(CategoryService.class);

 Category category = categoryService.getCategoryTree();
 asyncResponse.resume(category);
 } catch (Exception e) {
 asyncResponse.resume(Response
 .serverError()
 .entity(e.getMessage())
 .build());
 }
 });
}

The only changes you need between synchronous and asynchronous RESTful endpoints
are the JAX-RS asynchronous requirements of @Suspended and @AsyncResponse, sub-
mitting the client code for processing in a separate thread, and setting either success or
failure on asyncResponse.resume().

Listing 6.12 DisplayResource with RESTEasy and @Suspended

Set the
target URL
base path

for your
request. Generate a proxy implementation

of your CategoryService.Call CategoryResource via your proxy.

116 CHAPTER 6 Consuming microservices

 The one drawback with the proxy approach you’ve been using with the RESTEasy
client library is that it doesn’t support invoking a callback when executing the call to
your external microservice. As such, your getCategoryTreeAsyncAlt() with
RESTEasy would be identical to when you used the JAX-RS client library.

 Change into the /chapter6/resteasy-client directory and run this:

mvn thorntail:run

It’s now possible to access the microservices at http://localhost:8080/sync and
http://localhost:8080/async. Each URL will return a tree of categories that are cur-
rently present within the administration microservice, as the result.

 Now we’ve covered a couple of client libraries that provide a higher level of
abstraction for interacting with RESTful endpoints. The examples show the benefits
to the client code in reducing complexity and improving readability.

Summary
 Java-based client libraries, such as java.net and Apache HttpClient, provide low-

level access to networking in Java but create more verbose code than necessary.
 JAX-RS-based client libraries provide an abstraction that makes consuming

microservices easier.

Discovering microservices
 for consumption

As part of decomposing pieces of the Cayambe monolith into separate microser-
vices, you’ve decided that you need a service for processing order payments. This
new microservice will then be used within the Cayambe monolith in chapter 10.

 Dozens, if not hundreds, of providers offer payment processing services. Initially,
you’ll develop basic integration with Stripe (https://stripe.com/docs/quickstart).
To facilitate future expansion of payment providers, you’ll integrate with Stripe in its
own microservice. The new payment microservice will then use the Stripe microser-
vice to process and record the payment with the Stripe online service.

This chapter covers
 Why service discovery is important

 How to register a microservice so it can be
discovered by clients

 Which service registries are supported by
Thorntail

 How to look up a microservice within a client

117

https://stripe.com/docs/quickstart

118 CHAPTER 7 Discovering microservices for consumption

 In previous chapters, you’ve seen how to access separate microservices directly by
referring to the URL where a microservice is running. In this chapter, you’ll take call-
ing microservices a step further by decoupling your client from the microservice it’s
consuming, making it easier to scale.

 Unless you’re developing a microservice for your own use, it’s virtually guaranteed
that you’ll need the ability to scale the number of instances of your microservice in
production. Without the ability to scale, your application will always have problems
coping with the load placed upon it by users.

Why does a microservice7.1 need to be discovered?
Taking the approach to microservices from chapter 6, the new Payment microservice
would locate Stripe via a hardcoded URL, as shown in figure 7.1.

This approach is perfectly fine for local testing of microservices, to make sure they do
what you want, but you don’t want to be relying on locating microservices with hard-
coded strings in production! The operational nightmare of moving a single instance
of a microservice from one environment to another would require any of its clients
being rebuilt to use the new URL location of the microservice! That’s not conducive
to delivering business value in a timely manner. That’s not even taking into account
the desire to have more than one instance of a microservice available for handling
requests to better scale an application.

 If you kept relying on hardcoded URLs, your Payment microservice would contain
an ever-growing list of possible instances for Stripe to distribute its requests across, as
shown in figure 7.2.

StripePayment
localhost:8081

Microservice direct lookupFigure 7.1

Payment

Stripe

Stripe

Stripe

localhost:8082

localhost:8083

localhost:8081

Figure 7.2 Microservice
direct lookup with multiple
instances

119Why does a microservice need to be discovered?

This architecture also requires the client, Payment, to have code designed to spread
the load across the instances of Stripe. When the client is responsible for determining
which instance of a microservice to consume, this process is known as client-side load
balancing. The client is making a determination about which instance to consume.

 Developing load-balancing techniques for the microservices you need to consume
isn’t where you want to be spending your precious development time. Ideally, you
want a framework or library to handle that complexity for you, allowing your code to
request a single instance to operate on.

 What can be done to reduce some of the pain of your situation? Enter service
discovery!

7.1.1 What is service discovery?

Service discovery is the means by which one microservice retrieves the physical location
of another microservice, at runtime, for the purpose of consuming it. Service discov-
ery requires the use of a service registry. Otherwise, there’s no place from which the dis-
covery process can retrieve the URL.

 How does adding service discovery into the flow of consuming a microservice
affect the way your consuming microservice operates? See figure 7.3.

 Here’s how your Payment microservice makes a call to the Stripe microservice by
discovering it through a service registry:

1 The Payment microservice requests the locations for the Stripe microservice
from a known service registry.

2 The service registry returns all the available Stripe instances.
3 The Payment microservice sends a request to the Stripe microservice instance

retrieved from the service registry.
4 The Payment microservice receives a response from the Stripe microservice.

1

2

3

4
Payment

Service
registry

Stripe
localhost:8081

Stripe
localhost:8082

Stripe
localhost:8083

Figure 7.3 Service discovery

120 CHAPTER 7 Discovering microservices for consumption

The process seems simple enough, but how does service discovery work? First, you
need to have a place to look to find the microservices you need. That’s the role of the
service registry.

 You now have a place to look for the microservices you need, but that doesn’t
mean a lot if it’s empty! Anytime an instance of a microservice is started, it needs to
contact the service registry to provide it with a name and a URL location where it can
be accessed. The name doesn’t need to be unique, but all microservice instances regis-
tered under an identical name do need to expose the same API. If they don’t, any cli-
ent of those microservices is going to see very different and unexpected results!

 After a service registry is populated with data, your client microservice can ask it to
provide the URL locations of all instances for a specified service name. At this point,
it’s up to your client as to how it determines which location to use when consuming
the microservice.

 Depending on whether you’re using a framework or consuming microservices
without one, several algorithms can be used to choose a specific location. The algo-
rithm could be as simple as cycling through each location in order, known as a round-
robin. Or the algorithm can increase in complexity by taking into account factors such
as current load and response times.

 As we discussed earlier, your microservice shouldn’t be developing custom load-
balancing algorithms. If a microservice needs anything more complicated than a basic
round-robin, or a random choice from a list, you should consider including a library
to provide those algorithms for you.

 Whether your microservice uses a simple load-balancing algorithm internally, or
you use a library for it, there is the question of how long to retain the instance URL
you’ve been given. In an ideal world, you wouldn’t retain the instance URL for any
length of time, allowing instances of microservices to come and go without affecting
clients. If at all possible, you’re in a better place if you can start with this approach.

 If an environment isn’t suited to real-time service discovery every time, your micro-
service shouldn’t hold onto any physical URLs for more than 10 to 15 seconds. That
may not seem like much, but a microservice instance can quickly go from functioning
to failing. An extra burden with caching URLs is that your code needs to be more vig-
ilant about catching network failure and microservice errors, either with retries or by
using service discovery to retrieve a fresh instance.

What are the benefits of se7.1.2 rvice discovery and a registry?

Why do you want the extra infrastructure and management of a service registry for
your microservices environment? Can’t you use a properties file to externalize the
URL of anything your microservice needs to consume?

 Sure, this was how most external services were integrated into applications in the
past. This technique provided an easy way to change the URL of external services
when moving between testing and production environments.

121Why does a microservice need to be discovered?

 But this approach doesn’t allow for easy scaling of an application or microservice,
either up or down. With a shift toward cloud deployments, one of the biggest changes
is the way such an environment is charged to an enterprise.

 In the past, enterprises would have internal infrastructure to host all their applica-
tions, whether for internal or public use. The main cost with internal infrastructure is in
the initial setup. When that’s complete, the ongoing hardware cost is minimal, though
it does result in a larger operations cost from managing an internal infrastructure.

 A migration to the cloud for most enterprises means not hosting applications on
their own infrastructure but instead deploying to external hosting providers. Examples
of these are Red Hat OpenShift, Google Cloud, and Amazon Web Services. These pro-
viders shift the cost away from large up-front hardware installations to regular infra-
structure usage charges, usually on a monthly basis. This shift in the cost mechanism
opens the door to reducing cost by scaling down an application when it’s less used.

 Another upside to a scalable environment is being able to scale up when load
increases without the often long hardware provision process of an enterprise. This is
particularly beneficial to an enterprise that experiences extremely high load during
holidays. November and December are big for most retail stores, and a scalable envi-
ronment provides enterprises the ability to scale their available servers without those
servers sitting idle for the remainder of the year.

 The ability to quickly and easily scale up or down a particular microservice, or even
a group of them, when operating in a cloud environment is a tremendous advantage
to enterprise developers. It allows them to shift from the past, where they needed to
anticipate increased demand to allow the time required for provisioning new hard-
ware (which often takes months). Enterprise developers deploying to the cloud can
move to a future where a new instance, or series of them, can be running and process-
ing user load within minutes.

 Being able to scale an application is tightly linked to how loosely coupled it is. As I
mentioned earlier, separating URLs that an application must use into an external reg-
istry greatly decreases the amount of coupling between components, when compared
to the coupling through properties files that I also mentioned earlier.

 Failover of external services is a concern for all distributed architectures. Maintain-
ing loose coupling, through a service registry, allows failover of a microservice to hap-
pen without bringing down the entire application, provided the microservice is scaled
to more than a single instance!

 Using a service registry in conjunction with service discovery opens the door to
enabling you to handle failovers gracefully, but in their own right they aren’t the com-
plete solution. You also need frameworks and libraries that can assist with providing
fault tolerance, as you don’t want to be writing it yourself! Chapter 8 shows how fault
tolerance can be incorporated into your microservices.

 As in figure 7.3, here are the steps for your Payment microservice to make a call to
the Stripe microservice by discovering it through a service registry; see figure 7.4:

122 CHAPTER 7 Discovering microservices for consumption

1 The Payment microservice requests the locations for the Stripe microservice
from a known service registry.

2 The service registry returns all the available Stripe instances.
3 The Payment microservice sends a request to the Stripe microservice instance

retrieved from the service registry.
4 The Payment microservice receives a response from the Stripe microservice.

In figure 7.3, Payment consumed the Stripe instance running on port 8082. But in fig-
ure 7.4, you can see that the Stripe instance on port 8082 is no longer functioning
when another request is processed. How it failed, we don’t know, but it’s no longer
available in the service registry. That’s okay; Payment will contact the service registry
for instances of Stripe and will choose the one running on port 8083 from the two that
are available.

 This sounds fantastic! You can scale microservices up or down as you please, within
the limits of how the environment performs scaling, without worrying about how cli-
ents can find them.

 Without a service registry providing metadata about Stripe to Payment, your micro-
service wouldn’t have any way to insulate itself from failovers or migrations, or a way to
recover from them. A service registry is good for more than just getting a new live
instance if one has failed. It also handles migrating a microservice to a different envi-
ronment by hiding from Payment where Stripe is actually running until Payment
needs that information.

 You can easily create new instances for Stripe in a completely different environment
from the existing ones, but still have them available within the same service registry.

1

2

3

4

Payment

Service
registry

Stripe
localhost:8081

Stripe
localhost:8082

Stripe
localhost:8083

Figure 7.4 Service discovery with failed microservice

123Why does a microservice need to be discovered?

After the new instances are active, if you were migrating, you could scale down the old
instances to shut them down—all without any impact to Payment needing to con-
sume Stripe.

7.1.3 Stateless vs. stateful microservices

Being able to scale microservices at will is most certainly fantastic, but there’s a catch.
So far, you’ve been implicitly dealing with stateless microservices, in that the microser-
vice doesn’t retain any data within itself between requests.

 What about your state? Microservice development is heavily focused on stateless-
ness. This is a key ability for microservices to be scaled up and down without any con-
cern for user state from previous requests.

 To support scaling of microservices, it’s not possible for them to be stateful—at
least not in the same way that stateful session beans were in Java EE. As the often used
saying goes, we want our microservices to be more like cattle and less like pets. Better
to have many that can come or go without impact (cattle), instead of a few from which
one disappearing can cause major issues (pets). You can still use user data from a pre-
vious request in your microservice, but it has to have been stored somewhere for you
to retrieve it.

 The shift to more stateless services has already begun in Enterprise Java over the
last five years, but the push toward microservices has made it even more prominent
than before. For developers and architects, it’s no simple feat to switch from thinking
in terms of state to stateless. The change requires additional thought up front, and
during development, to prevent state from creeping into a microservice.

 If there’s a service you already have that’s stateful, and there’s simply no way to
break it down into stateless microservices, or the challenge in doing so poses a risk
that’s too great, then microservices might not be the best approach. Stick with a more
traditional Java EE application server to handle the stateful service and scaling of that
service across a small cluster.

7.1.4 What is Netflix Ribbon?

Earlier we talked about load balancing across multiple instances of a single service, and
how it wasn’t a good idea to create complicated load balancers in your own code. What
do you do if you want load balancing in your client that’s not random or round-robin?

 Thorntail provides integration with Netflix Ribbon just for that purpose, saving
you from having to develop the algorithms yourself. Ribbon is a client-side software
load-balancing framework developed by Netflix for its internal services. It was open
sourced in January 2013 as part of a suite of projects that Netflix heavily relies on for
its interprocess communication of services. The primary usage for Ribbon is calling
RESTful endpoints, which is why it’s a good fit for what you need when consuming
Enterprise Java microservices.

 Later in the chapter, I’ll show how Ribbon can use a service registry to retrieve
instances. Right now, let’s focus on the load-balancing options it provides:

124 CHAPTER 7 Discovering microservices for consumption

 Round Robin—Chooses an available server from all those present in sequential
order, regardless of whatever load each server may be experiencing.

 Availability Filtering—Skips any servers that are deemed to have had their “cir-
cuit tripped,” connection failures the last three times, or a high number of con-
current connections.

 Weighted Response Time—Each server is given a weighting based on average
response times, which is used to generate a range of random values represent-
ing the server. For instance, if servers A and B have a weighting of 5 and 25,
respectively, the range would be 1–5 (A) and 6–30 (B). A random number is
generated between 1 and the sum of all the server weights, which determines
the server based on the ranges. A server with a higher weighting, or shorter
response time, has a greater chance of being selected.

 Zone Aware Round Robin—Particularly useful for deployments to Amazon Web
Services, where servers are distributed across availability zones. This rule
chooses servers based on whether they’re in the same zone as the client, and
that are available.

 Random—Purely random distribution across available servers.

The default choice is Round Robin. If performance is critical to your microservice,
Weighted Response Time would be the best choice for load balancing. It’s similar to
Round Robin in its behavior, while also favoring those servers that are performing better.

 This option is particularly beneficial if a server instance is performing badly to the
point that the microservice environment deems it needs to be restarted. You don’t want
to continue sending lots of traffic to a microservice that could be restarted at any time.

 It might be unclear from what we’ve discussed so far where Ribbon fits with respect
to figure 7.3. You can see in figure 7.5 that Ribbon is part of your microservice, in this
case Payment, that wants to consume another microservice, Stripe. Ribbon is then
responsible for interacting with a service registry, choosing which server instance from
those available to use, and finally executing a request against that instance.

 For Ribbon to know where the service registry is located, you need to specify a class
that’s responsible for retrieving the list of available instances for a service. Which class
is required depends on the service registry being used. For instance, com.netflix
.niws.loadbalancer.DiscoveryEnabledNIWSServerList is the class to be used when
accessing a service registry provided by Eureka through its custom client code. Eureka
is a service registry developed by Netflix, but integration with Eureka isn’t available
in Thorntail.

WARNING Last year, Netflix announced that it was no longer actively main-
taining Ribbon. Its GitHub site (https://github.com/Netflix/ribbon) details
which parts Netflix still uses and which it doesn’t. Although Ribbon isn’t
actively maintained, it’s stable and production ready for most use cases. As
Thorntail makes Ribbon available for consuming microservices, the Thorntail
team is actively investigating alternatives to Ribbon for the long term.

https://github.com/Netflix/ribbon

125Registering a microservice with Thorntail

Registering a microservice with Thorntail7.2
You’ve seen how a service registry can benefit your microservices by decoupling you
from the URL locations of anything you need to consume. That’s the theory. Now it’s
time to see service registration and discovery in action! You’ll take a look at your
options for a service registry with Thorntail, which are known as topologies, before
seeing how to register a microservice so it can be discovered by others.

Thorntail’s topologies7.2.1

Thorntail provides an abstraction over a service registry that’s referred to as a topology.
What benefit does the abstraction provide? It means your client code doesn’t need to
change if your microservice is moved into an environment with a different service reg-
istry implementation. The most likely use case for this is developing and testing locally
against one type of service registry and then using a different one in test and produc-
tion environments.

 In an ideal world, you could run a like-for-like production environment on your
local machine for testing, but that’s not always possible with enterprises today. Moving
toward a more cloud-based infrastructure, like Kubernetes and OpenShift, combined
with Linux containers, does make it easier to replicate those environments with fewer
resources. But not all enterprises may ever reach such a point.

 What service registry implementations, or topology types, does Thorntail offer? It
offers these:

Payment
R

ib
bo

n

Service
registry

Stripe
localhost:8081

Stripe
localhost:8082

Stripe
localhost:8083

Service discovery with Netflix RibbonFigure 7.5

126 CHAPTER 7 Discovering microservices for consumption

 JGroups—JGroups is a toolkit for reliable messaging in which clusters of nodes
can be created for the purpose of sending messages to each other. Thorntail is
able to create a pseudo service registry by creating a cluster from every micro-
service and notifying each one of new services that are available as they register
themselves.

 OpenShift—Red Hat OpenShift is a container platform using Kubernetes to
manage containers. You can use an online version, install it locally into your
own environment, or use it within Minishift, as you saw earlier.

 Consul—Consul, developed by HashiCorp, is a popular service discovery frame-
work.

How do you choose which one to use? In some cases, the choice is determined by
where your microservice is being deployed. If it’s being deployed to Red Hat Open-
Shift, using the OpenShift topology is logical.

 The JGroups topology is best used for local development on a laptop, or in CI envi-
ronments for which a full-fledged service discovery implementation may not be
installed. As you saw in chapter 5, you also can use Minishift to ensure that your local
development environment is as close as possible to production if you’re deploying to
Red Hat OpenShift.

 Beyond those natural alignments, your choice depends on the requirements
around service discovery and which particular implementation best fits the needs of
the environment. Such a decision is usually not in the hands of developers, unless
they’re part of a DevOps culture that allows each team to build its own preferred stack
of technologies.

 Where does a topology implementation, using Consul as an example, fit in rela-
tion to figure 7.3? Take a look at figure 7.6.

Payment

Topology

Consul
registry

Stripe
localhost:8081

Stripe
localhost:8082

Stripe
localhost:8083

Thorntail topology integrationFigure 7.6

127Registering a microservice with Thorntail

7.2.2

The topology sits between the microservice and the service registry implementation.
This enables your microservice code to remain unchanged, whether you’re deployed
in an environment that uses JGroups, OpenShift, or Consul!

 To select one of these topology implementations for use in your microservice, you
need to add a dependency of one of the following:

 topology-jgroups
 topology-openshift
 topology-consul

Thorntail also provides a topology servlet, through the topology-webapp dependency,
that sends server-sent events (SSEs) whenever services are registered or removed from
the topology. The topology servlet works alongside any of the topology implementa-
tions from the preceding list. To see these events, add the following dependency to
pom.xml:

<dependency>
<groupId>io.thorntail</groupId>
<artifactId>topology-webapp</artifactId>

</dependency>

After the microservice is running, either locally or in the cloud, open a browser to
http://host:port/topology/system/stream to see the events showing the available
instances. This allows a UI to visually represent the instances of each service that are
present in the topology, as well as maintain a current list of which service instances are
available for use.

Registering a microservice with a topology

In our example, you have the Payment and Stripe microservices. Because Payment
needs to “discover” Stripe, it first must be registered.

 With Thorntail, you have options for registering a microservice. Any of the
approaches require only that the topology dependency you’ve chosen from the previ-
ous section be added to your application’s pom.xml.

 Before you delve into the options for registering your microservices, let’s see the
code for the Stripe microservice. This will aid in your understanding of what’s going
on later in the chapter. For the pom.xml, you’ll focus on what dependencies you
need. There are plenty more there, but it’s not necessary for understanding what’s
going on:

<dependency>
<groupId>io.thorntail</groupId>
<artifactId>jaxrs</artifactId>

</dependency>
<dependency>

<groupId>io.thorntail</groupId>
<artifactId>cdi</artifactId>

</dependency>

128 CHAPTER 7 Discovering microservices for consumption

<dependency>
 <groupId>com.stripe</groupId>
 <artifactId>stripe-java</artifactId>
 <version>5.27.0</version>
</dependency>

The first two dependencies add jaxrs and cdi capabilities and are familiar from pre-
vious examples. The last dependency provides access to the payment APIs from Stripe.

NOTE Stripe (https://stripe.com) is a service offering card transaction pro-
cessing for merchants and websites. A nice aspect of Stripe is the ability to use
test API keys, as you’ll use in your examples, and test credit card tokens to
generate particular responses from its APIs. If you’d like to set up your own
Stripe account to see the data appearing in its test dashboard, replace the
stripe.key value in project-defaults.yml, and the transactions will reach your
own test account.

To define the Stripe microservice, first you create the Application class to provide
the JAX-RS root endpoint.

@ApplicationPath("/stripe")
public class StripeApplication extends Application {
}

StripeApplication is similar to the previous examples. The only point to note is that
you’re setting the JAX-RS root path to be /stripe.

 For deploying to OpenShift and using Thorntail topologies for service discovery,
you need to create a service account that gives the topology access to OpenShift ser-
vices. A service account is like a user account for services: a service can be granted or
denied permissions to perform certain actions. With the fabric8 Maven plugin, this is
easy enough to do with YAML files.

metadata:
 name: service

For the topology to see the services within OpenShift, you need the view role for your
microservice. Now you need to define a role binding to match the service account
with that role.

metadata:
 name: view-service

StripeApplicationListing 7.1

service-sa.ymlListing 7.2

service-rb.ymlListing 7.3

Name of service account

Name of the role binding

https://stripe.com

129Registering a microservice with Thorntail

subjects:
- kind: ServiceAccount
 name: service
roleRef:
 name: view

Now you need to associate the service account with your microservice.

apiVersion: v1
kind: Deployment
metadata:
 name: ${project.artifactId}
spec:
 template:
 spec:
 serviceAccountName: service

Without settings to the contrary, the deployment name would usually be set to
${project.artifactId}. The custom deployment.yml is solely required to associate
the service account with it.

@ADVERTISE

Now let’s take a look at the JAX-RS resource that will interact with the Stripe APIs.

@Path("/")
@ApplicationScoped
@Advertise("chapter7-stripe")
public class StripeResource {

 @Inject
 @ConfigurationValue("stripe.key")
 private String stripeKey;

 @POST
 @Path("/charge")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public ChargeResponse submitCharge(ChargeRequest chargeRequest) {
 Stripe.apiKey = this.stripeKey;

 Map<String, Object> chargeParams = new HashMap<>();
 chargeParams.put("amount", chargeRequest.getAmount());
 chargeParams.put("currency", "usd");
 chargeParams.put("description", chargeRequest.getDescription());
 chargeParams.put("source", chargeRequest.getCardToken());

 Charge charge = Charge.create(chargeParams);

deployment.ymlListing 7.4

Listing 7.5 StripeResource

Service account to use
for the role binding

Role name from OpenShift to
give access to service names

OpenShift deployment name

Service account to associate
with the deployment

Defines the name under
which you want to advertise a
microservice via the topology

Inject the configuration value
defined by stripe.key in
project-defaults.yml.

Set the
Stripe API
key onto

the Stripe
API main

class.
Create a Map of all the
request parameters,
taking them from
ChargeRequest.

Call the Stripe API
to initiate a charge.

130 CHAPTER 7 Discovering microservices for consumption

 return new ChargeResponse()
 .chargeId(charge.getId())
 .amount(charge.getAmount());
 }
}

So you’ve added @Advertise to your Stripe microservice, but how does that relate to
the topology?

 The Thorntail topology will find all the @Advertise annotations you’ve added to
RESTful endpoints in your microservice code, and store each name into a file within
your deployment that’s created at runtime. The topology has runtime code that’s
added to your microservice deployment that will advertise those names, with appropri-
ate host and port information indicating where the microservice is located, to which-
ever implementation you’ve chosen (JGroups, OpenShift, Consul) when the
deployment is started. @Advertise abstracts away the need for your microservice code
to know the details of how to register a microservice. You simply provide a name for it.

NOTE When using Topology and deploying to OpenShift, the advertising
function is essentially a NoOp because OpenShift registers all microservices
with its internal DNS. The main advantage to using @Advertise on the pro-
ducing microservice is that you can easily switch your topology environment
without altering your code.

TOPOLOGY.LOOKUP()
You also can register services in a way that provides greater control over the timing of
when a service is available, by using Topology.lookup(). Topology provides the main
abstraction over each service registry implementation by offering methods for static
lookup(), adding and removing listeners to be notified as services are added or
removed, registering a microservice through advertise(), and retrieving all the cur-
rent registry entries with asMap().

 Whichever topology implementation you’ve chosen for your microservice—
JGroups, OpenShift, or Consul—Topology is always available for a microservice to use
directly.

 Let’s say you want to use Topology to manually advertise and unadvertise a micro-
service. One advantage to this approach is restricting the microservice from being
added into the service registry until the RESTful endpoint is active and available to
handle requests.

AdvertisementHandle handle = Topology.lookup().advertise("allevents");
...
handle.unadvertise();

Listing 7.6 Topology

Return a ChargeResponse
containing the amount and charge
ID that was received from Stripe.

Look up the Topology instance and
advertise your service, retaining a handle.

When your service is finishing, use
the handle to unadvertise yourself.

131Consuming a registered microservice with Thorntail

Consuming a registered mi7.3 croservice with Thorntail
Now that you’ve registered your Stripe microservice, it’s time to develop Payment to
be able to discover it so you can consume it. This section covers two approaches for
service discovery. Each uses a different client library, Netflix Ribbon and RESTEasy,
for different implementations of Payment.

Service lookup7.3.1 with Netflix Ribbon

To use Netflix Ribbon as your client framework, the first thing you need to do is add it
as a dependency to your Maven module:

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>ribbon</artifactId>
</dependency>

This dependency gives your microservice access to the Netflix Ribbon libraries. In
addition, it integrates with whichever topology implementation you’ve chosen for
your registry. This enables Netflix Ribbon to use your topology implementation for
retrieving service instances for load balancing. Next you need to create an interface to
represent the external microservice, Stripe, that you want to call.

@ResourceGroup(name = "chapter7-stripe")
public interface StripeService {
 StripeService INSTANCE = Ribbon.from(StripeService.class);

 @TemplateName("charge")
 @Http(
 method = Http.HttpMethod.POST,
 uri = "/stripe/charge",
 headers = {
 @Http.Header(
 name = "Content-Type",
 value = "application/json"
)
 }
)
 @ContentTransformerClass(ChargeTransformer.class)
 RibbonRequest<ByteBuf> charge(@Content ChargeRequest chargeRequest);
}

If Stripe had more than a single RESTful endpoint that you wanted to make requests
against, each method definition in the interface would require its own @TemplateName
and @Http annotations to define them.

Listing 7.7 StripeService

Name of the service in the
Service Registry you want to call

Creates a proxy of
your interface you
can use

Identifies the
method name for
which Ribbon
creates a template

Defines the HTTP parameters to execute
the external request for charge() including
HTTP Method, URI path, and HTTP header
for content type

Defines a transformer to
convert ChargeRequest
into ByteBuf

Method must return a RibbonRequest

132 CHAPTER 7 Discovering microservices for consumption

 Listing 7.7 uses the annotation-based approach of Netflix Ribbon, but if you prefer
a fluent API, you can use HttpResourceGroup and HttpRequestTemplate to build up
an equivalent HTTP request.

 Now let’s take a look at ChargeTransformer, which is responsible for converting
ChargeRequest into ByteBuf.

public class ChargeTransformer implements ContentTransformer<ChargeRequest> {
 @Override
 public ByteBuf call(ChargeRequest chargeRequest, ByteBufAllocator

byteBufAllocator) {
 try {
 byte[] bytes = new ObjectMapper().writeValueAsBytes(chargeRequest);
 ByteBuf byteBuf = byteBufAllocator.buffer(bytes.length);
 byteBuf.writeBytes(bytes);
 return byteBuf;
 } catch (JsonProcessingException e) {
 e.printStackTrace();
 }
 return null;
 }
}

ChargeTransformer handles the conversion only when making the request. You need
to handle converting ByteBuf into a meaningful response within your calling code.

 Let’s see what your Payment resource looks like when using Netflix Ribbon.

@Path("/")
public class PaymentServiceResource {

 @POST
 @Path("/sync")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public ChargeResponse chargeSync(ChargeRequest chargeRequest) {
 ByteBuf buf = StripeService.INSTANCE.charge(chargeRequest).execute();
 return extractResult(buf);
 }

 @POST
 @Path("/async")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public void chargeAsync(@Suspended final AsyncResponse asyncResponse,

ChargeRequest chargeRequest)
 throws Exception {

Listing 7.8 ChargeTransformer

Listing 7.9 PaymentResource

Use an ObjectMapper to convert
ChargeRequest into JSON format.

Allocate a new
 ByteBuf instance with

the appropriate length.

Write
the JSON
as bytes
into the
ByteBuf.

Call Stripe synchronously.

Extract the result and return it.

133Consuming a registered microservice with Thorntail

 executorService().submit(() -> {
 Observable<ByteBuf> obs =
 StripeService.INSTANCE.charge(chargeRequest).toObservable();
 obs.subscribe(
 (result) -> {
 asyncResponse.resume(extractResult(result));
 },
 asyncResponse::resume
);
 });
 }

 private ChargeResponse extractResult(ByteBuf result) {
 byte[] bytes = new byte[result.readableBytes()];
 result.readBytes(bytes);
 try {
 return new ObjectMapper()
 .readValue(bytes, ChargeResponse.class);
 } catch (IOException e) {
 e.printStackTrace();
 }

Create an Observable to call Stripe asynchronously.

Subscribe to the
Observable, passing
success and failure
methods. Extract the ChargeResponse

from the result and set it on
the AsyncResponse.

Convert a ByteBuf into
a ChargeResponse.

Use an ObjectMapper to
convert bytes of JSON
into a ChargeResponse
instance.

return null;
}

}

Let’s see how this all works!
 First you need to have Minishift running (see chapter 5 for details) and be logged

into the OpenShift client. Next you need to run the Stripe microservice; to do that,
change into the /chapter7/stripe directory and run this:

mvn clean fabric8:deploy -Popenshift -DskipTests

With the Stripe microservice now running, change into the /chapter7/ribbon-client
directory and run this:

mvn clean fabric8:deploy -Popenshift -DskipTests

The URL of the service is the URL in the OpenShift console for the chapter7-ribbon-
client service, with /sync or /async added to the end.

 Because you need to issue an HTTP POST request on either of these URLs, the
process is a bit more complicated than just opening a browser and entering the URL.
Many tools can be used for issuing the request you need, including curl on the com-
mand line, but you’ll use Postman, shown in figure 7.7.

NOTE Postman has a lot of functionality, across a few versions, but at its core
it provides the ability to test API endpoints. Most important, for me, it offers
the ability to save requests, including headers and body content, so that the
same request can be repeated whenever you need it. For further details, take
a look at www.getpostman.com.

https://www.getpostman.com/

134 CHAPTER 7 Discovering microservices for consumption

Postman calling the Ribbon client serviceFigure 7.7

Here you can see the request details—including the body of the HTTP POST in the
top half, and the response you received from the service at the bottom.

 The most important header to set is Content-Type with a value of application/
json. If you don’t set that header, JAX-RS doesn’t believe it’s receiving JSON and will
reject the request. You would receive an HTTP response code of 415, indicating an
unsupported media type.

To see the topology, you can install the topology-webapp dependency into
ribbon-client to see all the registration events. Modify the pom.xml to include the
following:

<dependency>
<groupId>io.thorntail</groupId>
<artifactId>topology-webapp</artifactId>

</dependency>

Then from the /chapter7/ribbon-client directory, run this:

mvn clean fabric8:deploy -Popenshift -DskipTests

In the OpenShift console, click the URL for the ribbon-client microservice. Then add
/topology/system/stream to the end of the URL in the browser window. The browser
will immediately show the event that registered both your microservices, chapter7-
stripe and chapter7-ribbon-client, with the topology:

event: topologyChange
data: {

"chapter7-stripe": [

135Consuming a registered microservice with Thorntail

 {
 "endpoint": "http://chapter7-stripe:8080",
 "tags":["http"]
 }
],
 "chapter7-ribbon-client": [
 {
 "endpoint": "http://chapter7-ribbon-client:8080",
 "tags":["http"]
 }
]
}

One thing you’ll notice about the URLs for each of the microservices is that they
don’t include the usual IP address and nip.io suffix of OpenShift URLs. These URLs
are internal OpenShift URLs; they won’t work when used outside the OpenShift
environment.

7.3.2 Service lookup with the RESTEasy client

Apart from using different client frameworks for calling the Stripe microservice, with
RESTEasy you’re going to use the Topology.lookup method for retrieving informa-
tion from Topology. You need to do that because RESTEasy doesn’t have a way to per-
form the lookup for you as Ribbon does.

 To use RESTEasy as your client framework, the first thing you need to do is add it
as a dependency to your Maven module:

<dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>resteasy-client</artifactId>
 <version>3.0.24.Final</version>
 <scope>provided</scope>
</dependency>

You mark it as provided because it’s on the classpath from Thorntail but you need it
defined for local compilation. Next you need to create an interface to represent the
external microservice, Stripe, that you want to call.

@Path("/stripe")
public interface StripeService {

 @POST
 @Path("/charge")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 ChargeResponse charge(ChargeRequest chargeRequest);

}

Listing 7.10 StripeService

136 CHAPTER 7 Discovering microservices for consumption

As you can see, this code is a lot simpler and easier to comprehend than the Ribbon
equivalent. Let’s see what your Payment resource looks like when using RESTEasy.

@Path("/")
public class PaymentServiceResource {
 private Topology topology;

 public PaymentServiceResource() {
 try {
 topology = Topology.lookup();
 } catch (NamingException e) {
 e.printStackTrace();
 }
 }

 @POST
 @Path("/sync")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public ChargeResponse chargeSync(ChargeRequest chargeRequest) throws

➥ Exception {
 ResteasyClient client = new ResteasyClientBuilder().build();
 URI url = getService("chapter7-stripe");
 ResteasyWebTarget target = client.target(url);
 StripeService stripe = target.proxy(StripeService.class);
 return stripe.charge(chargeRequest);
 }

 ...

 private URI getService(String name) throws Exception {
 Map<String, List<Topology.Entry>> map = this.topology.asMap();

 if (map.isEmpty()) {
 throw new Exception("Service not found for '" + name + "'");
 }

 Optional<Topology.Entry> seOptional = map
 .get(name)
 .stream()
 .findFirst();

 Topology.Entry serviceEntry =
 seOptional.orElseThrow(
 () -> new Exception("Service not found for '" + name + "'")
);

 return new URI("http", null, serviceEntry.getAddress(),

➥ serviceEntry.getPort(), null, null, null);
 }
}

Listing 7.11 MessageResource

On creation of
PaymentServiceResource,
retrieve the Topology instance.

Retrieve a URI for the
chapter7-stripe service.

Get the Service Registry to
find the service you need.

For a list of registrations
for the chapter7-stripe
service, find the first one.

If the Optional is empty, throw an
exception that a service couldn’t be found.

137Summary

You likely noticed the extra work you had to do with looking up Topology by calling
Topology.lookup(), which wasn’t required when using Netflix Ribbon as a client.
Netflix Ribbon performs the service lookup based on the @ResourceGroup name,
directly interacting with Topology to retrieve the information it needs.

 As you can see when retrieving a topology entry from the map, you’re finding only
the first URI for a given service, because you’re not load balancing across possibly
multiple instances. With OpenShift, it’s not necessary to load balance on the client
side, because DNS in OpenShift will perform this task for you on the server.

 If you’re deploying to a different environment, it’s likely that for a production situ-
ation you’d want to use an algorithm, or a variety of algorithm options, to choose
which service instance to consume. With the Stripe microservice running from earlier,
change into the /chapter7/resteasy-client directory and run this:

mvn clean fabric8:deploy -Popenshift -DskipTests

As with the Ribbon example, the URL of the service is the URL in the OpenShift con-
sole for the chapter7-resteasy-clientservice, with /sync or /async added to the end.
Once again, to test the endpoints, you need a tool (either Postman or whatever you
prefer) to execute the POST request. If all has gone well, you should receive a similar
response to the Ribbon example when executing the requests.

Summary
 Code that includes locations of microservices to consume is prone to failures as

instances come up and down. Failures can also occur when requiring updates to
code or configuration when microservices move locations, and redeploying
those changes across any impacted environment. Service discovery provides the
separation you need for your microservices to scale without relying on IP
addresses directly.

 To be able to discover services to consume, you need them to be registered in a
central place so your microservice can retrieve them. A service registry fulfills
that role in a microservice environment.

 Thorntail allows you to use JGroups, OpenShift, or Consul as a service registry
implementation in your microservice environments.

 Using a Netflix Ribbon client in your microservice removes lookups from your
client code while allowing you to take advantage of Thorntail topology imple-
mentations for service discovery.

Strategies for fault
 tolerance and monitoring

You’ll use the example from the previous chapters to expand the functionality of
Stripe and Payment to include fault mitigation as you explore the concepts of fault
tolerance and monitoring. Fault tolerance is especially important when your Pay-
ment microservice is communicating over a network to external systems. You need
to expect failures and time-outs when communicating across networks.

8.1 Microservice failures in a distributed architecture
Figure 8.1 revisits what your distributed architecture for microservices looks like.

This chapter covers
 What is latency?

 Why do microservices need to be fault tolerant?

 How do circuit breakers work?

 What tools can mitigate against distributed
failure?

138

139Microservice failures in a distributed architecture

How is this distributed architecture relevant to failures? By virtue of your
microservices containing smaller chunks of business logic, as opposed to a monolith
that contains everything, you end up with a significantly larger number of services to
maintain. You’re no longer dealing with a UI that might communicate with a
single backend service that handles all its needs. More likely, that same UI is now

User

DataData

Gateway

Microservices environment

Runtime

Runtime

Runtime

MicroserviceMicroservice

Microservice

Microservices in a distributed architectureFigure 8.1

140 CHAPTER 8 Strategies for fault tolerance and monitoring

integrating with dozens of microservices, or more, that need to be just as reliable as
your previous monolith.

 But your microservices won’t fail in production, right? Nothing fails in production!
We’ve all likely made statements similar to that at some point, usually before we’ve
been bitten by a major failure in production! Once bitten, twice fault tolerant!

 Why is it that, without previous experiences of production failures, we tend toward
grandiose statements about the reliability of our production systems? Some of it’s
because we can be optimistic in nature, but mostly it’s a lack of experience. If you’ve
never had to deal with fixing production issues for your application, especially in
the middle of the night, it’s hard to appreciate the valid concerns around the reliabil-
ity of systems.

Here are some of the statements you might falsely believe regarding production sys-
tems, and distributed architectures in particular:

 The network of computing devices is reliable. Without taking into account the possi-
bility of network failures, it’s possible for an application to stall while waiting for
a response that won’t arrive. Worse, the application would be unable to retry
any failed operations when the network is available again.

 There’s no delay in making a request and having it acted upon (known as zero latency).
Ignoring network latency, and associated network packet loss, can result in
wasted bandwidth and an increase in dropped network packets as the amount
of traffic on the network grows without limitation.

 There’s no limitation to the available bandwidth on the network. If clients are sending
too much data, or too many requests, the available network bandwidth could
shrink to the point that bottlenecks appear and application throughput is
reduced. The impact of latency on network throughput can last for a few sec-
onds or be constantly present.

Pager nightmares
I remember in the late ’90s—yes, I was in IT back then—that the most dreaded expe-
rience of the novice was to be handed the pager for on-call duty. There’s no worse
feeling than getting a page around 2 a.m. about failed jobs that need to be fixed, and
then trying to complete them before the staff arrives in the office at 8 a.m.! These
were only nightly batch jobs, but the anxiety over being paged was terrible.

I can only imagine what it’s like to receive a page (if pagers are still around today) for
a production failure on a live application that needs to be resolved because it’s affect-
ing the 24/7 running of the business!

141Network failures

 The entire network is secure from possible attack, external or internal. It’s naive to
ignore the possibility that a malicious user, such as a disgruntled employee,
could attempt to cause damage to an application. Likewise, a once-internal
application can be easily exposed to external threats by making it available pub-
licly without proper security vetting. Even an innocuous change in firewall rules
for a port could make it unintentionally accessible externally.

 Location and arrangement of computing devices on a network never changes. When net-
works are altered, and devices moved to different locations, the available band-
width and latency can be diminished.

 There’s a single administrator for everything. With multiple administrators for differ-
ent networks within an enterprise, conflicting security policies could be imple-
mented. In this case, a client who needs to communicate across differently
secured networks needs to be aware of the requirements of both to successfully
communicate.

 Zero transport cost. Though the transport of physical data through a network may
cost zero, it’s a nonzero cost to maintain a network after it’s built.

 The entire network is homogeneous. In a homogeneous network, every device on the
network uses similar configurations and protocols. A nonhomogeneous net-
work can lead to the problems described in the first three points of this list.

All these statements are known as the Fallacies of Distributed Computing (www.rgoar-
chitects.com/Files/fallacies.pdf).

8.2 Network failures
Though there are many ways a network can fail, in this section you’ll focus on network
latency and time-outs. Previously, I mentioned zero latency as being part of the Falla-
cies of Distributed Computing, which equates to no delay in making a request and
having it acted upon.

 Why is latency important for your microservice? It affects almost anything your
microservice might want to do:

 Calling another microservice
 Waiting for an asynchronous message
 Reading from a database
 Writing to a database

Without being mindful of the existence of latency in your network, you’d presume
that all communication of messages and data is near instantaneous, assuming the net-
work devices involved in the communication are sufficiently close.

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf

142 CHAPTER 8 Strategies for fault tolerance and monitoring

 Time-outs are another crucial source of network failure you need to be mindful of
when developing microservices. Time-outs can be linked to high latency; requests
aren’t responded to in a timely manner not only because of network delays, but also
because of issues with the consuming microservice. If the microservice you’re calling
has gone down, is experiencing high load, or failing for any other number of reasons,
you’ll notice problems when you try to consume it, most often in the form of a time-
out. There’s no way to predict when a time-out will occur, so your code needs to be
aware that time-outs happen, and of how you want to handle the situation when you
receive one.

 Do you try again, either immediately or after a short delay? Do you presume a stan-
dard response and proceed anyway?

 It’s these network failures that you want to especially mitigate against. Otherwise,
you leave your microservices, and entire application, open to unexpected network fail-
ure with no means of recovering other than restarting services. Because you can’t
afford to be restarting services every time a network problem occurs, you need to
develop your code to prevent restarting from being your only option.

Mitigating against failures8.3
In looking at how to mitigate against failure, you could certainly implement the fea-
tures you need yourself. But you might not be an expert in all the best ways to imple-
ment the features you need. Even if you were, accomplishing that implementation
requires more than a short development lifecycle. You’d rather be developing more
applications! Though you might be able to use many different libraries, in this case
you’re going to be using Hystrix from Netflix Open Source Software.

What is Hystrix?8.3.1

Hystrix is a latency and fault-tolerance library intended to isolate access points with
remote systems, services, and libraries; halt cascading failure; and enable resilience in
distributed systems. Wherever failure is inevitable, as with distributed systems, the Hys-
trix library improves the resiliency of microservices in these environments.

 A lot of things are going on with Hystrix, so how does this library do it? We can’t
cover the entirety of Hystrix within this single chapter; that would require an entire
book in its own right. But this section provides a high-level view of how Hystrix per-
forms its segregation.

 Figure 8.2 shows a view of a microservice handling the load of many user requests.
This microservice needs to communicate with an external service. In this situation, it’s
easy for the microservice you’ve developed to become blocked as it’s waiting for exter-
nal service 2 to respond. Worse, you could overload the external service to the point it
stops functioning completely.

143Mitigating against failures

This is where Hystrix comes in, to be the middleman and mediate your external com-
munication in order to mitigate against various failures. Figure 8.3 adds Hystrix into
the picture, by wrapping your external service calls inside HystrixCommand instances
that use configuration to define its behavior, such as the number of available threads.

 In figure 8.3, each external service has a different number of threads available to
the respective HystrixCommand. This is an indication that some services might be eas-
ier to overload than others, and you need to restrict the number of concurrent
requests that you send.

External
service 1

External
service 2

Microservice

.

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

External
service 3

Microservice processing user requests without HystrixFigure 8.2

144 CHAPTER 8 Strategies for fault tolerance and monitoring

External
service 1

External
service 2

External
service 1
10 threads

External
service 3
6 threads

External
service 2
5 threads

Microservice

HystrixCommands

.

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

U
se

r
re

qu
es

t

External
service 3

Microservice processing user requests with HystrixFigure 8.3

145Mitigating against failures

By wrapping external service 2 into a HystrixCommand, you’re limiting the number of
requests that call it from your microservice concurrently. Though you’ve added mitiga-
tion for interacting with that particular external service, you’ve just increased the like-
lihood of requests failing in your microservice because you’re rejecting additional
requests out to the external service! Such a situation may be fine, or it may not; the out-
come depends on the speed with which the external request can process your requests.

 This does raise an important point. Adding failure mitigation to a single micro-
service within an entire ecosystem isn’t that beneficial. Making your microservice a
better citizen within the distributed network is great, but if everyone else in the net-
work doesn’t have the same mitigation for interacting with your microservice, you’ve
simply moved where the bottleneck and failure point reside. For this reason, it’s criti-
cal that failure mitigation is an enterprise-wide concern, or at least within a grouping
of microservices that all communicate with each other.

 Another advantage to Hystrix that you can see in figure 8.3 is the isolation it provides
between external services. If calls to external service 2 weren’t limited, there’s a good
chance it could consume all available threads within the JVM, preventing your micro-
service from handling requests that don’t need to interact with external service 2!

 For the remainder of the chapter, our approach will be to outline the theory
behind a mitigation strategy for failures, and then show how that strategy is imple-
mented within Hystrix. You know you need to mitigate against network failures in
your code, so what strategies do you have at your disposal?

8.3.2 Circuit breakers

If you’re in any way familiar with the way fuses work in your home’s electrical panel, you’ll
understand the principles of a circuit breaker. Figure 8.4 shows that electricity flows
through a fuse unhindered unless it’s tripped open, causing the flow to be interrupted.

Open circuit

Closed circuit

Electrical circuit-breaker statesFigure 8.4

146 CHAPTER 8 Strategies for fault tolerance and monitoring

The one difference between an electrical
panel and software is that a software circuit
breaker will automatically close itself with-
out manual intervention, based on thresh-
olds that have been defined to indicate the
level at which it becomes unhealthy.

 Figure 8.5 shows the initial part of a
larger flow to mitigate against failures
when calling external services. As you
progress through this chapter, additional
parts will be added to the flow, providing
additional functionality to assist with miti-
gation. This first part focuses on providing
a circuit breaker.

 When the circuit breaker is Closed, all
requests continue through the flow. When
the circuit breaker is Open, the requests
exit the flow early. You can see in figure 8.5 that your circuit breaker requires Circuit
Health Data, which is used in determining whether the circuit should be open or
closed. In addition to the states in figure 8.5, a circuit breaker can be in a Half Open
state. See figure 8.6.

Here are the transitions between states of a circuit breaker:

1 All requests pass through unhindered, as the circuit is Closed.
2 When a failure threshold is reached, the circuit becomes Open.
3 While the circuit is Open, all requests are rejected, failing fast.

1–OK

2–Failure threshold
OpenClosed

Half open

5b–
Retry OK

5a–Retry
fail

4–Retry

3–Fail fast

Circuit-breaker statesFigure 8.6

Circuit
breaker

Closed

Open

Circuit
health
data

Failure mitigation flow with basicFigure 8.5
circuit

147Mitigating against failures

4 The circuit’s Open time-out expires. The circuit moves to Half Open to allow a
single request to pass.

5 The request fails or succeeds:
a The single request fails, returning the circuit to Open.
b The single request succeeds, returning the circuit to Closed.

In the Half Open state, the circuit breaker is officially still Closed. But after a sleep
time-out is reached, a single request will be allowed to pass through. The success or
failure of this single request then determines whether the state shifts back to Closed (a
single request was successful), or whether it remains Open until making another
attempt when the next time-out interval is reached.

 A circuit breaker is only a way to allow or prevent requests from passing through.
The key piece to it behaving the way you want is the Circuit Health Data. Without cap-
turing any Circuit Health Data, the circuit breaker would always remain Closed,
regardless of how many requests might fail or for what reasons.

 Hystrix provides sensible defaults for a circuit breaker to handle time-outs, net-
work congestion, and latency with any request you make. Let’s take a look at a simple
Hystrix circuit breaker.

public class StockCommand extends HystrixCommand<String> {
 private final String stockCode;

 public StockCommand(String stockCode) {
 super(HystrixCommandGroupKey.Factory.asKey("StockGroup"));
 this.stockCode = stockCode;
 }

 @Override
 protected String run() throws Exception {
 // Execute HTTP request to retrieve current stock price
 }
}

You can then call this command synchronously with code such as the following:

String result = new StockCommand("AAPL").execute();

If you prefer asynchronous execution, you use this:

Future<String> fr = new StockCommand("AAPL").queue();
String result = fr.get();

In each of the examples, you’re expecting only a single result from executing the
request, whether you’re calling it synchronously or asynchronously. For that reason,
you choose to extend HystrixCommand, which caters to single-response executions.

Listing 8.1 StockCommand

Specify String as the
HystrixCommand Type.

Unique key for grouping data
in the Hystrix dashboard

Execution of
call to external
service

148 CHAPTER 8 Strategies for fault tolerance and monitoring

 What happens if you expect multiple responses instead of one? Stock prices change
extremely frequently, so wouldn’t it be nice to not continually execute another call every
time you want it updated?

 You need to modify your circuit breaker to support a command that returns an
Observable that can emit multiple responses. You’ll subscribe to this Observable to
handle each response as it’s received. Handling each response as it’s returned identi-
fies the execution as being reactive.

DEFINITION Reactive is an adjective meaning acting in response to a situation
rather than creating or controlling it. When you’re using an Observable and lis-
tening to results that are emitted from it, you’re acting in response to each emit-
ted result. An advantage with this approach is that you don’t block while
waiting for each result to be emitted.

Let’s modify your command to provide an Observable.

public class StockObservableCommand extends HystrixObservableCommand<String> {
 private final String stockCode;

 public StockObservableCommand(String stockCode) {
 super(HystrixCommandGroupKey.Factory.asKey("StockGroup"));
 this.stockCode = stockCode;
 }

 @Override
 protected Observable<String> construct() {
 // Return an Observable that executes an HTTP Request
 }
}

If you want the command to be executed as soon as an Observable is created, you
request a hot Observable:

Observable<String> stockObservable =

➥ new StockObservableCommand(stockCode).observe();

Normally, a hot Observable will emit responses whether or not there are subscribers,
which makes it possible for responses to be lost completely if no one is subscribed. But
Hystrix uses ReplaySubject to capture those responses for you, allowing them to be
replayed to your own listener when you subscribe to the Observable.

 You could also use a cold Observable instead:

Observable<String> stockObservable =

➥ new StockObservableCommand(stockCode).toObservable();

Listing 8.2 StockObservableCommand

Specify String as the
HystrixObservableCommand type.

Unique key for grouping data
in the Hystrix dashboard

Return an
Observable that
executes a call to
an external service.

149Mitigating against failures

With a cold Observable, the execution isn’t triggered until a listener has subscribed to
it. This guarantees that any subscriber will receive all notifications that the Observ-
able has produced.

 Which type of Observable to use depends on your situation. If a listener can afford
to miss some initial data, especially if they’re not the first subscriber to an Observable,
then hot is appropriate. If, however, you want a listener to receive all data, then cold is
the better choice.

NOTE Though HystrixCommand supports returning an Observable from its
nonreactive methods, execute() and queue(), they’ll always emit only a single
value.

8.3.3 Bulkheads

Bulkheads in software offer a similar strategy to those in ships, by isolating different
parts to prevent a failure in one from impacting others. For ships, a failure in a single
watertight compartment doesn’t spread to others because they’re separated by
bulkheads.

 How does a software bulkhead achieve the same result? By shedding the load that a
microservice is experiencing or is about to experience. A bulkhead allows you to limit the
number of concurrent calls to a component or service, to prevent the network from
becoming saturated with requests, which would then increase latency across all requests
in the system. Figure 8.7 adds the bulkhead strategy as the next step in your flow.

Circuit
breaker Bulkhead

OKClosed

RejectOpen

Circuit
health
data

Failure mitigation flow with bulkheadFigure 8.7

150 CHAPTER 8 Strategies for fault tolerance and monitoring

You add a bulkhead after any circuit breaker. There’s no need to check the bulkhead
if the circuit breaker is Open, because you’re in an error state. When you’re in a
Closed state, the bulkhead prevents too many requests from being executed that
could create a network bottleneck.

 You may need to call a database service to perform a computation that’s extremely
intensive and time-consuming, for instance. If you know that the external service can
take 10 seconds to respond, you don’t want to be sending more than six requests a
minute to that service. If you send more than six, your requests are queued for later
processing, which causes your microservice to hold up client requests to itself from
being released. It’s a vicious cycle that can be hard to break, potentially resulting in
cascading failures through your microservices. The bulkhead in figure 8.7 performs
its checks and indicates whether you’re OK to continue processing the request or
whether it needs to be rejected.

 How would you implement a software bulkhead? Two of the most common
approaches are counters and thread pools. Counters allow you to set a maximum num-
ber of parallel requests that can be active at any one time. Thread pools also limit the
number of parallel requests that are simultaneously active, but by limiting the number
of threads available in a pool for executing requests. For a thread-pool bulkhead, a
specific pool is created to handle requests to a particular external service, allowing dif-
ferent external services to be isolated from each other, but also isolated from the
thread being used to execute your microservice.

 Details of rejected requests are provided to Circuit Health Data so that counters
can be updated for use the next time that the circuit breaker status needs to be calcu-
lated.

 As a software bulkhead, Hystrix provides execution strategies for thread pools
(THREAD) and counters (SEMAPHORE). By default, HystrixCommand uses THREAD, and
HystrixObservableCommand uses SEMAPHORE.

 HystrixObservableCommand doesn’t need to be bulkheaded by threads, because
it’s already executing in a separate thread via the Observable. You can use THREAD
with HystrixObservableCommand, but doing so doesn’t add safety. If you wanted to
run StockCommand in SEMAPHORE, it would look like the following listing.

public class StockCommand extends HystrixCommand<String> {
 private final String stockCode;

 public StockCommand(String stockCode) {
 super(Setter

.withGroupKey(HystrixCommandGroupKey.Factory.asKey("StockGroup"))
 .andCommandPropertiesDefaults(
 HystrixCommandProperties.Setter()
 .withExecutionIsolationStrategy(

Listing 8.3 StockCommand using SEMAPHORE

Using Setter as a fluent
interface to define additional
configuration for Hystrix

151Mitigating against failures

HystrixCommandProperties.ExecutionIsolationStrategy.SEMAPHORE

)
)
);

 this.stockCode = stockCode;
 }

 ...
}

The listing illustrates how to set additional configuration for Hystrix to customize the
way a particular command behaves. In practice, you wouldn’t use SEMAPHORE with
HystrixCommand because it doesn’t provide any ability to set time-outs on how long an
execution should take. Without time-outs, you can easily find yourself with a
deadlocked system if the service you consume fails to provide a timely response.

8.3.4 Fallbacks

Currently, when your circuit breaker or bulkhead doesn’t proceed with the request,
an error response is returned. Though that’s not great, it’s better than your micro-
service being in a state of waiting until time-out.

 Wouldn’t it be nice if you could provide a simple response in place of the failure?
In some cases, it certainly may not be possible to provide a common response for
these situations, but often it’s possible and beneficial.

 In figure 8.8, you can see fallback handling after Circuit Breaker and Bulkhead on
the failure paths. If the microservice your method wants to consume has a fallback han-
dler registered, its response is returned to you. If not, the original error is returned.

Set the execution isolation
strategy to SEMAPHORE.

Circuit
breaker

Fallback

Bulkhead
OKClosed

RejectOpen

Circuit
health
data

Failure mitigation flow with fallback handlingFigure 8.8

152 CHAPTER 8 Strategies for fault tolerance and monitoring

Let’s see how to implement a fallback handler for StockCommand.

public class StockCommand extends HystrixCommand<String> {
 ...

 @Override
 protected String getFallback() {
 // Return previous days cached stock price, no network call.
 }
}

Implementing a fallback handler is a little different when you’re dealing with Hystrix-
ObservableCommand, but not much.

public class StockObservableCommand extends HystrixObservableCommand<String> {
 ...

 @Override
 protected Observable<String> resumeWithFallback() {
 // Return previous days cached stock price as an Observable,

➥ no network call.
 }
}

8.3.5 Request caching

Though not directly mitigating against a failure, request caching can prevent bulkhead
and other failures from occurring by reducing the number of requests you make on
another microservice.

 How does it do that? With a request cache, previous requests and their responses
can be cached, allowing you to match future requests and return the response from
the cache instead. Figure 8.9 shows the request cache sitting in front of other mitiga-
tion strategies as it reduces the number of requests that need to pass through any sub-
sequent stages of the flow.

 The request cache provides the joint benefits of reducing the number of requests
passing through your mitigation flow and increasing the speed with which a response
is returned. Enabling the request cache isn’t appropriate for all situations but is bene-
ficial when the data being returned doesn’t change at all or is unlikely to have
changed during the time your microservice completes its task.

 This solution is particularly beneficial for reference data or for retrieving a user
account, as some examples. It allows your microservice to call out to an external
microservice as many times as needed without fear of increasing network traffic. This
approach also simplifies the interfaces of your microservices’ internal methods and

Listing 8.4 StockCommand with fallback

Listing 8.5 StockObservableCommand with fallback

Override the default
fallback that throws
the failure exception.

Returns an Observable<String> instead of
String to match the command response type

153Mitigating against failures

services, as you no longer need to pass around data in your calls to prevent an addi-
tional call. With a request cache, you have no risk of additional calls.

 To enable the request cache in Hystrix, you need to do two things. First, you need
to activate HystrixRequestContext so you have a means of caching responses:

HystrixRequestContext context = HystrixRequestContext.initializeContext();

This call needs to occur before executing any Hystrix commands. For our situations,
you make the first call inside your JAX-RS endpoint method, as you’ll see later. Sec-
ond, you need to define the key to use for caching requests and their responses.

public class StockCommand extends HystrixCommand<String> {
 private final String stockCode;

 ...

 @Override
 protected String getCacheKey() {
 return this.stockCode;
 }
}

Putting it all together8.3.6

In your flow so far, you have a request cache, circuit breaker, bulkhead, and fallback.
Figure 8.10 shows how they fit into an actual call.

Listing 8.6 StockCommand with request cache

Circuit
breaker

Request
cache

Fallback

Bulkhead
Closed OKNo

Open RejectYes

Circuit
health
data

Failure mitigation flow with request cacheFigure 8.9

Override key for request cache
with the stock symbol you used
in your request

154 CHAPTER 8 Strategies for fault tolerance and monitoring

Here you add Execute to indicate that you’re making the call to an external service.
Any failures or time-outs that Execute experiences feed back into the fallback han-
dling, but also provide the failure data to Circuit Health Data. The information is then
used by the circuit breaker to determine whether error thresholds have been reached,
and the circuit should switch to Open.

 Figure 8.11 takes the flow a step further to show how Hystrix provides these fea-
tures when integrated between your microservice, Service A, and one that you con-
sume, Service B.

 As the request enters your Service A method, or endpoint, you create a request
and pass it to Hystrix. The request passes through whichever checks have been
enabled before being executed on Service B. A response from Service B passes back to

Circuit
breaker

Request
cache

Fallback

Bulkhead

Failure/
time-out

Execute
ClosedNoRequest OK

Yes

No

Response

Run

Open RejectYes

Circuit
health
data

Entire failure mitigation flowFigure 8.10

Circuit
breaker

Request
cache

Fallback

Bulkhead

Failure/
time-out

Execute
ClosedNo

Hystrix

OK

Yes

No

Response

Run

Service B
Service A
method

Service A

Client
request

Client
response

Open RejectYes

Circuit
health
data

uesteqR

Response

Figure 8.11 Microservice calls with failure mitigation

155Mitigating against failures

your Service A method for any required processing before you construct a response
for the client.

 As you can see, at many points Hystrix can provide a different, or cached, response
without needing to call Service B directly. Such a flow provides many benefits in
directly reducing failures, but also in reducing the factors that lead to failure. An
example is the reduction of microservice load by using a request cache.

 Though you’ve been seeing how Hystrix implements these failure mitigation fea-
tures, other libraries or frameworks that provide the same features should operate in a
similar manner. But the way that other libraries or frameworks implement the
required mitigation can differ greatly.

8.3.7 Hystrix Dashboard

Awesome—you can now improve the reliability of your microservices in a distributed
architecture. But how can you determine whether a particular microservice is continu-
ally causing failures? Or whether you need to tune settings to reduce errors and han-
dle additional load?

 Sounds like you need a way to monitor how your fault-tolerance library is perform-
ing. It just so happens that Hystrix provides SSEs (server-sent events), providing many
details about a particular microservice. You can see and analyze everything—the num-
ber of hosts running the microservice, requests processed, failures, time-outs, and more.

 Hystrix also provides a way to visualize all these
events: the Hystrix Dashboard, shown in figure 8.12.
The Hystrix Dashboard provides a visual representa-
tion of the SSEs that it receives from each registered
stream. You’ll get to see what a stream is shortly.

 Figure 8.12 shows the information for the Stock-
Command. There are many data points in such a small
UI, but some of the most crucial are as follows:

 Error percentage in last 10 seconds—100%
 Number of hosts running the microservice—1
 Successful requests in last 10 seconds—0
 Short-circuited requests that were rejected in the last 10 seconds—40
 Failures in last 10 seconds—0
 Circuit is open or closed—Open

TIP Full details of each metric for a circuit can be found at https://github
.com/Netflix/Hystrix/wiki/Dashboard.

Let’s see the dashboard in action. Change into the /hystrix-dashboard directory and
build the project:

mvn clean package

StockCommand
0

40
0

0
0
0

100.0%

Host: 4.0/s
Cluster: 4.0/s

Circuit Open
Hosts

Median
Mean

1
127 ms
168 ms

90th
99th

99.5th

522 ms
563 ms
563 ms

Figure 8.12 A single circuit
from the Hystrix Dashboard

https://github.com/Netflix/Hystrix/wiki/Dashboard
https://github.com/Netflix/Hystrix/wiki/Dashboard
https://github.com/Netflix/Hystrix/wiki/Dashboard

156 CHAPTER 8 Strategies for fault tolerance and monitoring

then run the dashboard:

java -jar target/hystrix-dashboard-thorntail.jar

After the dashboard is started, open a browser and navigate to http://localhost
:8090/. For the dashboard to visualize metrics data, it needs to get that data from your
circuit breaker! For a single circuit, you can add the SSE stream directly by adding
http://localhost:8080/hystrix.stream into the main entry box, as shown in figure 8.13.
Click the Add Stream button and then click Monitor Streams. The main page will
load, but until you start your microservice, no SSEs are being received in the stream,
so the visualization won’t appear yet.

 Change to the /chapter8/stock-client directory and start the microservice:

mvn thorntail:run

In another browser window, you can access http://localhost:8080/single/AAPL to
request the current stock price details represented by the code AAPL. Any valid stock
code could have been used in the URL path.

 If you refresh the page, or make multiple requests in another manner, you can
switch back to the Hystrix Dashboard and see the data on your circuit.

 Your stock-client has built-in handling to showcase specific Hystrix functionality.
For instance, every tenth request will throw an exception back to your consuming
microservice, and every second request is put to sleep for 10 seconds to trigger a time-
out. This allows you to see how failures are represented on the dashboard.

 To see how request caching works, you can access http://localhost:8080/single/
AAPL/4. Note in the console that only a single request was made to the external ser-
vice, and each response to the browser has an identical request number.

Figure 8.13 Hystrix Dashboard homepage

157Mitigating against failures

To fully see your circuit in action, you need to hit the service many times:

curl http://localhost:8080/single/AAPL/?[1-100]

This hits your service 100 times in succession, allowing you to monitor the circuit in
the dashboard as you see the requests come in. You’ll notice a point at which too
many errors have occurred, causing the circuit breaker to open. Then you immedi-
ately see all remaining requests short-circuited by not calling the microservice and
returning the fallback instead. If you wait a few seconds before accessing the service
through a browser as before, you then see the circuit-breaker attempt the request, suc-
ceed, and revert to Closed again.

 Play around with the settings in StockCommand to see how the circuit behavior
changes. One example, which is present in the book’s example code, is to modify
StockCommand to set the number of threads that should be available to consume the
microservice.

super(Setter
 .withGroupKey(HystrixCommandGroupKey.Factory.asKey("StockGroup"))
 .andCommandPropertiesDefaults(
 HystrixCommandProperties.Setter()
 .withCircuitBreakerRequestVolumeThreshold(10)
 .withCircuitBreakerSleepWindowInMilliseconds(10000)
 .withCircuitBreakerErrorThresholdPercentage(50)
)
 .andThreadPoolPropertiesDefaults(
 HystrixThreadPoolProperties.Setter()
 .withCoreSize(1)
)
);

With the listing 8.7 constructor for StockCommand, rerunning your tests shows requests
being rejected by ThreadPool.

 After taking a look at the Hystrix Dashboard, we should all appreciate how crucial
such a tool is in our arsenal. Adding Hystrix to your external calls provides a level of
fault tolerance to those executions, but it’s not foolproof. You need continual real-
time monitoring of your microservices to track impending problems and observe fail-
ures that could be resolved with tuning of circuit-breaker settings.

 If you don’t take advantage of what the Hystrix dashboard offers, particularly in terms
of real-time monitoring, you won’t receive all the benefits of using a fault-tolerant library
in your code.

Listing 8.7 StockCommand with thread configuration

Specifies that a single
thread must be used

158 CHAPTER 8 Strategies for fault tolerance and monitoring

Adding Hystrix to your Payment microservice8.4
You’ve seen how Hystrix can be implemented and its metrics viewed from a dash-
board. Your Stripe microservice isn’t super reliable, so let’s use Hystrix in Payment to
make sure you’re not overly impacted by its failures or time-outs!

 The previous sections have covered the various pieces Hystrix offers to help with
fault mitigation. When adding Hystrix to Payment, you’ll take advantage of the full
flow that Hystrix provides.

 For each of the next sections, you need your Stripe microservice running, so let’s start
that now. First you need to make sure that a Minishift environment is running and that
you’ve logged into it with the OpenShift client. Then change to the /chapter8/stripe
directory and run this:

mvn clean fabric8:deploy -Popenshift -DskipTests

Hystrix with the RESTEasy client8.4.1

Let’s modify Payment from chapter 7 with a HystrixCommand for interacting with
Stripe.

public class StripeCommand extends HystrixCommand<ChargeResponse> {
 private URI serviceURI;

 private final ChargeRequest chargeRequest;

 public StripeCommand(URI serviceURI, ChargeRequest chargeRequest) {
 super(Setter
 .withGroupKey(HystrixCommandGroupKey.Factory.asKey("StripeGroup"))
 .andCommandPropertiesDefaults(
 HystrixCommandProperties.Setter()
 .withCircuitBreakerRequestVolumeThreshold(10)
 .withCircuitBreakerSleepWindowInMilliseconds(10000)
 .withCircuitBreakerErrorThresholdPercentage(50)
)
);

 this.serviceURI = serviceURI;
 this.chargeRequest = chargeRequest;
 }

 public StripeCommand(URI serviceURI,
 ChargeRequest chargeRequest, HystrixCommandProperties.Setter

➥ commandProperties) {
 super(Setter

.withGroupKey(HystrixCommandGroupKey.Factory.asKey("StripeGroup"))
 .andCommandPropertiesDefaults(commandProperties)
);

Listing 8.8 StripeCommand

Pass the Stripe URL and
ChargeRequest into the command

and set up properties.

Overloaded constructor
allowing Hystrix properties
to be set up by caller

159Adding Hystrix to your Payment microservice

 this.serviceURI = serviceURI;
 this.chargeRequest = chargeRequest;
 }

 @Override
 protected ChargeResponse run() throws Exception {
 ResteasyClient client = new ResteasyClientBuilder().build();
 ResteasyWebTarget target = client.target(serviceURI);

 StripeService stripeService = target.proxy(StripeService.class);
 return stripeService.charge(chargeRequest);
 }

 @Override
 protected ChargeResponse getFallback() {
 return new ChargeResponse();
 }
}

Now that you have your StripeCommand, how different does PaymentServiceResource
from chapter 7 look?

@Path("/")
@ApplicationScoped
public class PaymentServiceResource {

 @POST
 @Path("/sync")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 @Transactional
 public PaymentResponse chargeSync(PaymentRequest paymentRequest) throws

➥ Exception {
 Payment payment = setupPayment(paymentRequest);
 ChargeResponse response = new ChargeResponse();

 try {
 URI url = getService("chapter8-stripe");

 StripeCommand stripeCommand = new StripeCommand(
 url,
 paymentRequest.getStripeRequest(),
 HystrixCommandProperties.Setter()
 .withExecutionIsolationStrategy(

HystrixCommandProperties.ExecutionIsolationStrategy.SEMAPHORE
)
 .withExecutionIsolationSemaphoreMaxConcurrentRequests(1)
 .withCircuitBreakerRequestVolumeThreshold(5)
);

Listing 8.9 PaymentServiceResource

Equivalent to
PaymentServiceResource
method in chapter 7, as
call is no longer made in
JAX-RS Resource

Fallback to empty ChargeResponse
if there was a problem.

Instantiate
command and set
Hystrix properties.

160 CHAPTER 8 Strategies for fault tolerance and monitoring

 response = stripeCommand.execute();
 payment.chargeId(response.getChargeId());
 } catch (Exception e) {
 payment.chargeStatus(ChargeStatus.FAILED);
 }

 em.persist(payment);
 return PaymentResponse.newInstance(payment, response);
 }

 @POST
 @Path("/async")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 public void chargeAsync(@Suspended final AsyncResponse asyncResponse,
 PaymentRequest paymentRequest) throws Exception {
 Payment payment = setupPayment(paymentRequest);

 URI url = getService("chapter8-stripe");
 StripeCommand stripeCommand =
 new StripeCommand(url, paymentRequest.getStripeRequest());

 stripeCommand
 .toObservable()
 .subscribe(
 (result) -> {
 payment.chargeId(result.getChargeId());
 storePayment(payment);
 asyncResponse.resume(PaymentResponse.newInstance(payment,

result));
 },
 (error) -> {
 payment.chargeStatus(ChargeStatus.FAILED);
 storePayment(payment);
 asyncResponse.resume(error);
 }
);
 }

}

Your PaymentServiceResource has shown that when expecting only a single response,
you’re able to easily switch between synchronous and asynchronous execution modes
with the same HystrixCommand implementation.

 It didn’t take much of a refactor from your chapter 7 version to this one, mostly
extracting out the code that consumes the external microservice into a new method
and class, StripeCommand.

 Now that you’ve refactored your resources, let’s run it! Change to the /chapter8/
resteasy-client directory and run this:

mvn clean fabric8:deploy -Popenshift

Block on command
execute().

Instantiate command with
default Hystrix properties.

Get
Observable

for command. Subscribe to the Observable, passing
success and failure methods.

161Adding Hystrix to your Payment microservice

If the Hystrix Dashboard is still running, head back to the homepage so you can add a
new stream. If it’s not still running, start it up again as you did earlier in the chapter.

 Copy the URL for chapter8-resteasy-client from the OpenShift console, paste it
into the text box on the Hystrix Dashboard homepage, and add hystrix.stream as a
URL suffix. Click Add Stream and then Monitor Streams.

 The Hystrix Dashboard won’t show anything immediately because you haven’t
made any requests yet. To exercise the Payment service, you can execute either single
requests or multiple requests, with the latter being easier to see results in the dash-
board, especially if their execution can be automated.

 With the URL for chapter8-resteasy-client from earlier, you can access the synchro-
nous (/sync) or asynchronous (/async) versions of the service. After starting a series
of requests on either, or both, of those endpoints, the Hystrix Dashboard will show all
the details of successful and failed requests that have been made.

8.4.2 Hystrix with the Ribbon client

Your RESTEasy client required a little bit of rework to add Hystrix support. Now you’ll
take a look at what’s required for the Ribbon client.

 First, you need to update your interface definition for the Stripe microservice so
that it takes advantage of Hystrix annotations with Ribbon.

@ResourceGroup(name = "chapter8-stripe")
public interface StripeService {

 StripeService INSTANCE = Ribbon.from(StripeService.class);

 @TemplateName("charge")
 @Http(
 method = Http.HttpMethod.POST,
 uri = "/stripe/charge",
 headers = {
 @Http.Header(
 name = "Content-Type",
 value = "application/json"
)
 }
)
 @Hystrix(
 fallbackHandler = StripeServiceFallbackHandler.class
)
 @ContentTransformerClass(ChargeTransformer.class)
 RibbonRequest<ByteBuf> charge(@Content ChargeRequest chargeRequest);
}

That was easy—only a few extra lines!

NOTE Hystrix annotations are available only for use in combination with Net-
flix Ribbon.

Listing 8.10 StripeService

Adds Hystrix
functionality into your
Ribbon HTTP request,
with a fallback handler

162 CHAPTER 8 Strategies for fault tolerance and monitoring

Right now, the code won’t compile because you don’t have the class for the fallback
handler. Let’s add that.

public class StripeServiceFallbackHandler implements FallbackHandler<ByteBuf> {
 @Override
 public Observable<ByteBuf> getFallback(
 HystrixInvokableInfo<?> hystrixInfo,
 Map<String, Object> requestProperties) {

 ChargeResponse response = new ChargeResponse();
 byte[] bytes = new byte[0];
 try {
 bytes = new ObjectMapper().writeValueAsBytes(response);
 } catch (JsonProcessingException e) {
 e.printStackTrace();
 }
 ByteBuf byteBuf =

UnpooledByteBufAllocator.DEFAULT.buffer(bytes.length);
 byteBuf.writeBytes(bytes);
 return Observable.just(byteBuf);
 }
}

The last piece you need is to update PaymentServiceResource from chapter 7. But not
so! One advantage of using Hystrix with Ribbon when using annotations is that your
PaymentServiceResource from chapter 7 doesn’t need to change at all. A big advan-
tage is that you can easily add Hystrix into an existing microservice that uses Ribbon
without refactoring. Simply add an extra annotation and a fallback handler, if needed.

 Time to run it! Change to the /chapter8/ribbon-client directory and run this:

mvn clean fabric8:deploy -Popenshift

As with the RESTEasy client example, you can open a browser and access /sync or
/async URLs of the service, using the base URL from the OpenShift console for the
service. You can then update the Hystrix Dashboard to use this new stream, execute
some requests, and see how the dashboard changes.

 As with other examples you’ve deployed to Minishift, after you’re finished, you
need to undeploy them to free up the resources:

mvn fabric8:undeploy -Popenshift

Summary
 Latency and fault tolerance are important when considering deployments to a

distributed architecture, as it can adversely affect the throughput and speed of
your microservices.

Listing 8.11 StripeServiceFallbackHandler

Implement getFallback() to
return whatever you choose
in the fallback case.

Create an empty ChargeResponse to
use for fallback and convert to byte[].

Write byte[]
into ByteBuf

that you
created on

the previous
line.

Create an Observable that returns the
ByteBuf content as a single result.

163Summary

 Your code that consumes microservices can be wrapped with Hystrix to incorpo-
rate fault-tolerant features such as fallback, request caching, and bulkheads.

 Hystrix alone is not a panacea for supreme fault tolerance. Real-time monitor-
ing, through a tool such as the Hystrix Dashboard, is crucial to successfully
improving overall fault tolerance.

Securing a microservice

In this chapter, you’ll expand on previous examples by adding various types of secu-
rity to them. First you will learn about the different kinds of security that you might
need to consider when designing and developing microservices.

9.1 The importance of securing your microservice
Securing your microservice is a critical task that needs to be thought out from the
beginning of development. Not doing so early results in greater development time
for integrating security later. Why? Not designing for security results in code that
might need major refactoring to do so at a later date.

 Though not taking security into account before development on a typical Enter-
prise Java application can easily add months to the development schedule, at least
with microservices you usually have a lot less code to be refactored. Even so, isn’t it
better to design for security up front and save time?

This chapter covers
 Understanding why you need secure

microservices

 Securing a microservice

 Consuming a secured microservice

 Interacting with secured microservices from a UI

164

165The importance of securing your microservice

Why is security important?9.1.1

As enterprise developers, we’re often called on to develop myriad applications, with
the end user of the application varying between internal or external, and sometimes
both. Figure 9.1 shows a microservice used by a small group of internal users.

With these requirements, it’d be fair to determine that you can ignore security, right?
Wrong!

 Even when you’re developing a microservice for internal users only, can you guar-
antee that the security surrounding your microservice will hold? What happens if, or
when, any security barriers preventing external network intrusions are breached?

 Figure 9.2 shows how a malicious user, external to the network, would have unin-
hibited access to a microservice if network security is breached.

Microservice

Miranda

Pitr

Stef

Internal usersFigure 9.1

Microservice
Miranda

Internal network

Malicious user

Pitr

Stef

Figure 9.2 Malicious
external user

166 CHAPTER 9 Securing a microservice

Security is a feature that should never be taken for granted, no matter what precau-
tions might be implemented. A common misconception is that security is infallible,
which is certainly not the case.

 Looking again at figure 9.2, if you don’t consider an internal network secure,
you’re more inclined to add extra security within your own microservice to prevent
unpermitted access to it. If every application or microservice that’s purely for internal
purposes doesn’t include its own security precautions, you’ve made the security at the
boundary of the external network a single point of failure.

 That’s not even considering the case where you may have a malicious user within
the internal network, as shown in figure 9.3! Though having an internal malicious
user may not be common, this situation can’t be discounted. This situation can occur
for many reasons: disgruntled employee or corporate espionage the most likely.

 Few types of applications are developed that don’t need security. Those applications
are mostly limited to serving read-only data that’s available to the general public already.

 That’s a fairly narrow definition of an application for which you can ignore secu-
rity. How many of these are your enterprise’s building every day? Probably none!
Applications of this type that an enterprise has developed, or will, in its entire lifetime,
would be extremely small in number. Static data that’s also publicly available doesn’t
interest an enterprise.

 What does all that mean? It means that no application or microservice can ignore
security, at all, ever.

Microservice

Miranda

Malicious user

Internal network

Pitr

Stef

Malicious internal userFigure 9.3

167The importance of securing your microservice

What problems does9.1.2 security need to solve?

Now that you know you need security, what kind of problems do you need to solve? That
in itself could be the sole topic for a book! Because you’re not looking to re-create War
and Peace for microservices, you’ll focus on the areas that would be of most interest.

 Authentication and authorization are the two aspects of security that are the most
relevant to microservices for us. Before you delve too deeply, you need to outline what
each of these terms means.

 Authentication is illustrated in figures 9.1, 9.2, and 9.3. It deals solely with whether a
user has the right to access an application or microservice. It doesn’t matter where
that application or microservice might be hosted, or even whether a user belongs to
the enterprise or is external. Authentication is purely concerned with a user being
able to access an application.

 If a microservice doesn’t need to distinguish between users beyond whether or not
they’re allowed, authentication is all that’s needed. But if users who’ve been authenti-
cated require different levels of access to different parts of an application or microser-
vice, you also need authorization.

 Figure 9.4 provides an example of user roles that could be used for authorization
of a microservice.

You see the roles of Admin, Manager, and User, all fairly typical roles that might be
required. Whatever roles might be required for your microservice will vary, potentially
from zero to many, depending on the requirements.

 An enterprise may also have microservices, as shown in figure 9.5. In this case, you
have a microservice administered by an internal user, with the role of Admin. But the
User of the microservice is external to the enterprise.

 From the perspective of an entire application that may comprise many microservices,
you usually need a mixture of authentication and authorization to satisfy security

Microservice
Miranda

Pitr

[User]

[Manager]
[Admin]

Stef

Multiple user roles for authorizationFigure 9.4

168 CHAPTER 9 Securing a microservice

requirements. For an individual microservice within an application, you may need to
concern yourself with only authentication of a user’s request and nothing more.

 Whatever your microservice might require—whether it be authentication, authori-
zation, or both—security needs to be considered during design to ensure that it isn’t a
last-minute concern.

 So how do you go about adding security into your microservices? You can certainly
develop your own security solution, but that’s far from ideal in many situations. You’d
have to spend time developing it, maintaining it, and so forth. Developing your own
security solution not only results in a delayed start to developing what you want, your
microservice, but also creates an additional maintenance burden for future developers.

 What you want to do is take advantage of a solid project that’s developed and main-
tained by a large group of developers and that provides the security use cases you
need to handle. Though you might have many possible options for such a project
available, in this book we’ll choose Keycloak.

9.2 Working with Keycloak
Keycloak is an open source project providing identity and access management for
modern applications and services. Adding authentication to applications and securing
services can be achieved with a minimum of fuss.

9.2.1 Understanding Keycloak’s features

Keycloak provides many features. Here are four most relevant for microservice
development:

 Single-sign on—Allows users to authenticate against Keycloak rather than each
individual application or service. After users log in to Keycloak, they can access
any application or service that’s authenticated through Keycloak.

Microservice

Admin

UserExternal network

Internal network

Figure 9.5 Internal and
external user roles

169Working with Keycloak

 Social login—It’s super easy to enable social logins with Keycloak! Configure the
social network within the admin console and go. No code or application
changes are required.

 User federation—If your users are registered within LDAP or Active Directory,
they can easily be federated with Keycloak. It’s also possible to develop your
own provider to access your users, if they’re in different types of stores, such as a
relational database.

 Standard protocols—Out of the box, Keycloak provides support for OpenID Con-
nect, OAuth 2.0, and Security Assertion Markup Language (SAML).

Full details on Keycloak and all its features can be found on its website, www.key-
cloak.org.

9.2.2 Setting up Keycloak

The first thing you need to do is download the Keycloak server for your microservices
and applications to integrate with. For our purposes, you have two ways of doing that.
You could download a full WildFly distribution customized for Keycloak or download
a Keycloak server built with Thorntail. To keep with the microservices way of doing
things, choose the Thorntail version. The version you need for our examples is down-
loadable from http://mng.bz/s6r9.

 After downloading, start this version on a separate port so it doesn’t interfere with
your own microservices:

java -Dswarm.http.port=9090 -jar keycloak-2018.1.0-swarm.jar

When the server is started, in a browser navigate to http://localhost:9090/auth/.
You’ll see a screen like the one in figure 9.6.

Setting up the Keycloak Admin userFigure 9.6

http://www.keycloak.org
http://www.keycloak.org
http://mng.bz/s6r9

170 CHAPTER 9 Securing a microservice

Enter a username and password for an administrator account on the Keycloak server.
Then click Create. Next, click the Administration Console link to see the login screen
in figure 9.7.

Enter the credentials you provided when setting up the administrator account, and
then click the Log In button.

 Figure 9.8 shows the main screen of the Keycloak administration console. From
here, all parts of Keycloak can be modified and adjusted to suit your needs. By default,
you’re given a Master realm.

 Because the Master realm contains the admin user, it’s good practice to not use
this realm for users who are authenticating with applications or microservices.

Logging into the Keycloak administration consoleFigure 9.7

Keycloak administration consoleFigure 9.8

171Working with Keycloak

Depending on your needs, Keycloak is flexible enough to handle any situation that
your application or microservice requires. A common requirement for typical applica-
tion development, but still relevant for microservices, is the need to authenticate a
user and use their credentials when calling services.

 Figure 9.9 lays out the path a request would take to authenticate a user within a UI.

The authentication steps are as follows:

1 The user requests to log into the application UI.
2 The UI redirects to Keycloak to perform the login. Keycloak returns tokens that

can be used to issue authenticated requests.
3 The user chooses to load a view requiring authentication.
4 A bearer token provided by Keycloak is added to the HTTP headers of the

request.
5 The token is extracted from the request and passed to Keycloak for validation.

If the token is valid, the secured microservice is able to process the request. If
the token isn’t valid, an HTTP 401 status is returned to indicate that an unau-
thorized user made a request.

Keycloak realms
A Keycloak realm manages a set of users, along with their credentials, roles, and
groups. Realms are isolated from each other and are responsible for managing only
the users they’re associated with.

Realms provide a way to segregate groups of users for different purposes. You might
have a realm for finance microservices and another realm for people management
microservices. This separation ensures that users from each realm remain separate
but are managed from a single Keycloak instance.

UI

Keycloak

Validate

Bearer
token

Authenticate

1

3 4

52

Secured
microservice

User authentication via a UIFigure 9.9

172 CHAPTER 9 Securing a microservice

DEFINITION A bearer token is a security token with a special behavioral prop-
erty. Any party in possession of the token can use it in any way that any other
party in possession of the same token could. Using a bearer token doesn’t
require the holder to prove possession of the cryptographic key.

A slight variation on the preceding process involves one microservice authenticating
itself to issue requests against a secured microservice. Figure 9.10 illustrates this
variation.

This process differs in that whatever calls the secured microservice doesn’t contain or
receive an authentication token from a user:

1 The request is received by a microservice that isn’t secured.
2 The unsecured microservice authenticates itself against Keycloak.
3 The bearer token is passed in the HTTP headers of the request to the secured

microservice.
4 The token is extracted from the request and passed to Keycloak for validation.

If the token is valid, the secured microservice can process the request. If the
token isn’t valid, an HTTP 401 status is returned to indicate that an unautho-
rized user made a request.

The remainder of this chapter presents examples for both of these scenarios. Let’s see
how you can use Keycloak to secure some microservices.

9.3 Securing the Stripe microservice
In this section, you’ll look at how authentication works in the scenario in figure 9.10.
Stripe and Payment microservices from chapter 8 will be implemented with security
like figure 9.10. The Payment microservice will be based on the RESTEasy client ver-
sion from that chapter. Let’s take a look at the previous scenario, this time with Stripe
and Payment; see figure 9.11.

Unsecured
microservice

Keycloak

Validate

Bearer
token

Authenticate

1

3

42

Secured
microservice

Microservice authenticationFigure 9.10

173Securing the Stripe microservice

Configuring Keycloak9.3.1

With your Keycloak server running, the next
step is defining a realm for your microservices
to associate with.

 After you’ve logged in to the administration
console, hover over the Master realm name in
the top-left corner to reveal the Add realm but-
ton, shown in figure 9.12.

 Click the Add Realm button to open the screen used to create a realm. Figure 9.13
shows this screen.

Click the Select File option to locate cayambe-realm.json from the /chapter9/keycloak
directory of the book’s code repository. Then click Open.

 Figure 9.14 shows the realm you’ll create in Keycloak. To perform the import, you
need to click Create so that the content of cayambe-realm.json will be imported and a
Cayambe realm will exist.

 With the Cayambe realm, you’re taking advantage of the Keycloak service accounts
feature. This feature allows a client to authenticate itself with Keycloak, without any
interaction from a user. This feature is super useful for administrative tasks that aren’t
triggered by a user directly, such as scheduled jobs that still require authentication.

Payment

Keycloak

Validate

Bearer
token

Authenticate

1

3

42

Stripe Figure 9.11 Microservice authentication
with Stripe and Payment

Creating a realmFigure 9.13

Figure 9.12 Accessing the Add realm
button in Keycloak

174 CHAPTER 9 Securing a microservice

Now that your realm is created, let’s look at parts of the JSON you imported so you
can see what Keycloak has set up.

 "realm": "cayambe",
 "enabled": true,
 ...
 "users": [
 {
 "username": "service-account-payment-service",
 "enabled": true,
 "serviceAccountClientId": "payment-authz-service",
 "realmRoles": [
 "stripe-service-access"
]
 }
],
 "roles": {
 "realm": [
 {
 "name": "stripe-service-access",
 "description": "Stripe service access privileges"
 }
]
 },
 "clients": [
 {
 "clientId": "payment-authz-service",
 "secret": "secret",
 "enabled": true,
 "standardFlowEnabled": false,
 "serviceAccountsEnabled": true
 },
 {
 "clientId": "stripe-service",
 "enabled": true,
 "bearerOnly": true
 }
]

cayambe-realm.jsonListing 9.1

Importing the Cayambe realmFigure 9.14

Specifies the realm
name to be cayambe

Ensures that your realm is
enabled after being loaded

Unique username for
your service account
user.

Defines the
clientId that will be
authenticating with
the service account

The roles that
should be

assigned to
the service

account user.

Defines the stripe-
service-access realm role

Unique clientId for your
Payment microservice.

Secret to be used for authenticating
the service account user.

Enables
the service

account
feature of
Keycloak

for the
client

Client ID of the Stripe microservice
that will be secured.

Identifies that the client only
validates bearer tokens, but is
unable to retrieve them

175Securing the Stripe microservice

All the names and IDs you’ve defined here are unique within the realm you’ve created
but have no meaning by themselves. They’re just text.

 What’s important is that the client ID for a service in the realm matches the speci-
fication in the service configuration (which is covered in the next section). With that,
your Keycloak server is ready to handle authentication for Stripe and Payment.

9.3.2 Securing the Stripe resource

The first step is to secure the Stripe microservice to ensure that you’re accessing
Stripe APIs, without appropriate authentication. Once you know that you’re properly
connecting to the service, you’ll add the necessary authentication.

 If you take the code from chapter 8, you don’t need to modify StripeResource to
add security. Pretty cool, right? You can add security to an existing RESTful endpoint
without modifying its code! How does that work?

 Right off the bat you need to let Maven know that you want to use Keycloak with your
Thorntail microservice. For that, you need to add a dependency to your pom.xml:

 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>keycloak</artifactId>
 </dependency>

The only other task is to define where Keycloak is, how it’s configured, and what
needs protecting. Thankfully, you can do all that from within one file with Thorntail!
You add a project-defaults.yml file into the src/main/resources directory of your
Stripe microservice with the content shown in the following listing.

swarm:
 keycloak:
 secure-deployments:
 chapter9-stripe.war:
 realm: cayambe
 bearer-only: true
 auth-server-url: http://192.168.1.13:9090/auth
 ssl-required: external
 resource: stripe-service
 enable-cors: true
 deployment:
 chapter9-stripe.war:
 web:
 security-constraints:
 - url-pattern: /stripe/charge/*
 roles: [stripe-service-access]

project-defaults.ymlListing 9.2

Section defining
Keycloak configuration
for chapter9-stripe.war

deployment Which realm your
deployment uses for
authentication—in
this case, cayambe

Identify your
microservice as

bearer-only.

URL of the Keycloak server where the service
realm is located. You don’t use localhost for

when the service is deployed to Minishift.
Identify this resource

as stripe-service,
which corresponds to

the Client ID in
cayambe-realm.json. Section defining

deployment-specific
configuration for
chapter9-stripe.war.
This is equivalent to
what could be provided
as part of web.xml.

Request that /stripe/charge
URL patterns from this

microservice are protected.
Only users with the role stripe-service-access can

successfully execute a request on this microservice.

176 CHAPTER 9 Securing a microservice

Now your Stripe microservice is secured from unauthenticated access! Let’s give it a
try. Change to the /chapter9/serviceauth/stripe directory and run this:

mvn thorntail:run

Try opening a browser to http://localhost:8080/stripe/charge, and it will indicate
Unauthorized. Connecting without a bearer token on the HTTP request from the browser
results in your request being rejected, because you’re not properly authenticated.

 To see a little more detail, you can use a browser plugin that shows the HTTP net-
work call or use curl from a terminal.

$ curl -v http://localhost:8080/stripe/charge

* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 (#0)
> GET /stripe/charge HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.54.0
> Accept: */*
>
< HTTP/1.1 401 Unauthorized
< Expires: 0
< Connection: keep-alive
< WWW-Authenticate: Bearer realm="cayambe"
< Cache-Control: no-cache, no-store, must-revalidate
< Pragma: no-cache
< Content-Type: text/html;charset=UTF-8
< Content-Length: 71
< Date: Sun, 25 Feb 2018 03:22:53 GMT
<
* Connection #0 to host localhost left intact
<html><head><title>Error</title></head><body>Unauthorized</body></html>

Now it’s easier to see that you’re receiving a 401 HTTP response code, indicating you
made an unauthorized attempt to access the URL. Now that Stripe is properly
secured, how can another microservice access it without receiving user credentials?

 You could also have deployed Stripe to Minishift as follows:

mvn clean fabric8:deploy -Popenshift

9.3.3 Authenticating in the Payment resource

The Payment microservice for this chapter is derived from the RESTEasy client in
chapter 8. You need to make only a few minor modifications to have it authenticate
itself against Keycloak.

Output fromListing 9.3 curl of Stripe

HTTP request headers

HTTP response headers

Body of HTTP response

http://localhost:8080/stripe/charge

177Securing the Stripe microservice

 To be able to authenticate Payment against Keycloak, you need to add a depen-
dency to the Keycloak Authz Client:

<dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-authz-client</artifactId>
 <version>3.4.0.Final</version>
</dependency>

This dependency provides all the utility classes you need to authenticate with Key-
cloak. Now you need to define what Keycloak you’re interacting with, and which Pay-
ment microservice is within the Cayambe realm. For that, you need to create a
keycloak.json file within the src/main/resources/ directory.

{
 "realm": "cayambe",
 "auth-server-url": "http://192.168.1.13:9090/auth",
 "resource": "payment-authz-service",
 "credentials": {
 "secret": "secret"
 }
}

That’s all the configuration you need. Next add the code to authenticate with Key-
cloak. Because you’re now using Hystrix, you need to add the authentication handling
into StripeCommand.

private AuthzClient getAuthzClient() {
 if (this.authzClient == null) {
 try {
 this.authzClient = AuthzClient.create();
 } catch (Exception e) {
 throw new RuntimeException("Could not create authorization

➥ client.", e);
 }
 }

keycloak.json for Payment serviceListing 9.4

Listing 9.5 StripeCommand—getAuthzClient method

The realm your deployment
uses for authentication—in

this case, cayambe. URL of the Keycloak server
where the cayambe realm is
located.

Identify this resource as payment-
authz-service, which corresponds to
the Client ID in cayambe-realm.json.

The credential that needs to be passed
to Keycloak to authenticate this client.

Add a helper method for retrieving
the AuthzClient for Keycloak. If you haven’t already

created an AuthzClient,
proceed.

Create the AuthzClient, which uses the
information from keycloak.json to

authenticate itself.
return this.authzClient;

}

With AuthzClient at your disposal, you can now retrieve an access token that you can
add to any request you make to Stripe. To do that, you must modify your run()

178 CHAPTER 9 Securing a microservice

method from StripeCommand by adding a request filter after you have a Resteasy-
Client instance.

protected ChargeResponse run() throws Exception {
 ResteasyClient client = new ResteasyClientBuilder().build();

 client.register((ClientRequestFilter) clientRequestContext -> {
 List<Object> list = new ArrayList<>();
 list.add("Bearer " +

getAuthzClient().obtainAccessToken().getToken());
 clientRequestContext.getHeaders().put(HttpHeaders.AUTHORIZATION,

➥ list);
 });

 ResteasyWebTarget target = client.target(serviceURI);

 StripeService stripeService = target.proxy(StripeService.class);
 return stripeService.charge(chargeRequest);
}

That’s all you need to do to pass a bearer token on any request you make to Stripe.
Pretty simple, right?

9.3.4 Testing your secured microservice

Now that you have Stripe and Payment set up, it’s time to see all the services running
and interacting with each other. If you don’t have the Keycloak server and Stripe
already running, start them again, ensuring that you deploy Stripe into Minishift.

 Then, you need to start Payment by changing to the /chapter9/serviceauth/
payment-service directory and running the following:

mvn clean fabric8:deploy -Popenshift

Open the OpenShift console to retrieve the URL of Payment. Then use the same tools
you used in chapters 7 and 8 to execute an HTTP POST against the /sync and /async
endpoints. If you try to access the Stripe microservice directly, you’ll still receive the
HTTP response code 401 indicating you’re unauthorized.

 To see the HTTP headers for Stripe when you’re calling it from Payment, you need
to intercept the request or have some other way to output it. In this instance, you’ll
modify Stripe to output HTTP request and response headers directly.

 Let’s uncomment the following from project-defaults.yml in /chapter9/service-
auth/stripe:

Listing 9.6 StripeCommand—run method

Register an anonymous
ClientRequestFilter for

modifying the HTTP request.

Use the AuthzClient to retrieve an access
token from Keycloak, adding a prefix of
Bearer to the token and adding it to a List.

Add the List you created to the AUTHORIZATION
HTTP header of the request.

179Securing the Stripe microservice

 undertow:
 servers:
 default-server:
 hosts:
 default-host:
 filter-refs:
 request-dumper:
 filter-configuration:
 custom-filters:
 request-dumper:
 class-name: io.undertow.server.handlers.RequestDumpingHandler
 module: io.undertow.core

Restart Stripe and then issue another HTTP POST request on Payment. Within the
OpenShift console, locate the Stripe service entry and click the three dots to the right
of the pod status. From there, select View Logs, and you should see output logged for
Stripe, such as the following:

----------------------------REQUEST---------------------------
 URI=/stripe/charge
 characterEncoding=null
 contentLength=63
 contentType=[application/json]
 header=Accept=application/json
 header=Connection=Keep-Alive
 header=Authorization=Bearer

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJCTTRFT3FlZXU1bGowaWZw
cHR0aWtEejdnakhsNzBjd2hreGY4c05

NWU1NIn0.eyJqdGkiOiJmNDIyNmJlYS1hNWE2LTQ0NDgtOTBiZS1kNmI4NGUwY2FlOWUiLCJ
leHAiOjE1MTk1MzI0MTksIm5iZiI6MC

wiaWF0IjoxNTE5NTMyMzU5LCJpc3MiOiJodHRwOi8vMTkyLjE2OC4xLjEzOjkwOTAvYXV0aC
9yZWFsbXMvY2F5YW1iZSIsImF1ZCI6I

nBheW1lbnQtYXV0aHotc2VydmljZSIsInN1YiI6IjljZjAyOTQ5LTgxMzctNGM1Ny04MTY4L
TVhMzlhMDczMTRlMCIsInR5cCI6IkJl

YXJlciIsImF6cCI6InBheW1lbnQtYXV0aHotc2VydmljZSIsImF1dGhfdGltZSI6MCwic2Vz
c2lvbl9zdGF0ZSI6IjI5MGM3MTJiLTJ

kMzItNGZjMi05YWJjLTIxOGFlNTk2MjQwMiIsImFjciI6IjEiLCJhbGxvd2VkLW9yaWdpbnM
iOltdLCJyZWFsbV9hY2Nlc3MiOnsicm

9sZXMiOlsic3RyaXBlLXNlcnZpY2UtYWNjZXNzIl19LCJyZXNvdXJjZV9hY2Nlc3MiOnt9LC
JwcmVmZXJyZWRfdXNlcm5hbWUiOiJzZ

 XJ2aWNlLWFjY291bnQtcGF5bWVudC1zZXJ2aWNlIn0.fO-mOqigv661fSj-
HNtVGixm_63QYw6Yl5Yo-

 BpDy7vLNQ5uLnWXLTovkiCnOfB8K1mNlAgWM-h5Nwc7IUCy7MJtMg-
 5L0ts0OOQRknIi42QrEN2kSTvQuTwJCtuhmQqfaV23rpn5SG7hf-

5RVFnpgq3ElfEMW2fs7Ygnv-
 FlQ1Ls7Ns_uKZ7iH7kpwHl30xvXK_Lid9NXEyZI3e-

180 CHAPTER 9 Securing a microservice

7DcpFZPvALRt5_xBJOZk2ZfdITBVKxKc3g7r78ndmK1rnC8ar6t8Fplba2pUv_HYrMvthGp6
XUwALr31qQcAmBS4Oua-

 qRJr2oa7SwSPfkYBsdR_BvPO1rM2R9h8VSYb_5z-A
 header=Content-Type=application/json
 header=Content-Length=63
 header=User-Agent=Apache-HttpClient/4.5.2 (Java/1.8.0_141)
 header=Host=chapter9-stripe:8080
 locale=[]
 method=POST
 protocol=HTTP/1.1
 queryString=
 remoteAddr=/172.17.0.5:47052
 remoteHost=172.17.0.5
 scheme=http
 host=chapter9-stripe:8080
 serverPort=8080
--------------------------RESPONSE--------------------------
 contentLength=56
 contentType=application/json
 header=Expires=0
 header=Connection=keep-alive
 header=Cache-Control=no-cache, no-store, must-revalidate
 header=Pragma=no-cache
 header=Content-Type=application/json
 header=Content-Length=56
 header=Date=Sun, 25 Feb 2018 04:19:24 GMT
 status=200
==

9.4 Capturing user authentication
To see how you can use user credentials to call a secured microservice, let’s secure the
new Admin interface for Cayambe.

 In this scenario, it’s been decided that a few users need the ability to delete catego-
ries from the system. That seems reasonable enough. But you don’t want everyone
with access to be able to delete a category. That certainly wouldn’t be an ideal out-
come!

 To achieve this goal, you need a few code modifications:

1 Secure the HTTP DELETE method on the JAX-RS resource.
2 Integrate with Keycloak for logging a user into the UI.
3 Add a Delete button to the UI for categories in the tree but enable it only when

a user has the Admin role.

9.4.1 Configuring Keycloak

I didn’t show it when you set up the Cayambe realm earlier, but the realm is already
set up with what you need for user authentication. Now let’s cover the details of the
parts specifically about user authentication.

181Capturing user authentication

 "realm": "cayambe",
 ...
 "users": [
 {
 "username": "ken",
 ...
 "realmRoles": [
 "admin",
 "user",
 "offline_access"
],
 ...
 },
 {
 "username": "bob",
 ...
 "realmRoles": [
 "user",
 "offline_access"
],
 ...
 }
],
 "roles": {
 "realm": [
 {
 "name": "user",
 "description": "User privileges"
 },
 {
 "name": "admin",
 "description": "Administrator privileges"
 }
]
 },
 "clients": [
 {
 "clientId": "cayambe-admin-ui",
 "enabled": true,
 "publicClient": true,
 "baseUrl": "http://localhost:8080",
 "redirectUris": [
 "http://localhost:8080/*"
]
 },
 {
 "clientId": "cayambe-admin-service",
 "enabled": true,
 "bearerOnly": true
 }
]

cayambe-realm.jsonListing 9.7

Specifies the realm
name to be cayambe

Creates a user named ken that has
the realm roles of user and admin

Creates a user named bob that
has the realm role of user

Defines the user and
admin realm roles

Client ID for your UI

publicClient indicates that
the client has the ability to
log in users to Keycloak

Base
 URL of the
application.

Client ID of the JAX-RS
endpoints that the UI uses.

Now you’re ready to move on to the changes your application needs.

182 CHAPTER 9 Securing a microservice

Securing category deletion9.4.2

Taking code from the admin directory of chapter 6, you need to make only a few small
modifications to secure it as you did with Stripe. Once again, you need to add the
Maven dependency for Keycloak in Thorntail:

 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>keycloak</artifactId>
 </dependency>

Next you configure the integration with Keycloak through project-defaults.yml.

swarm:
 keycloak:
 secure-deployments:
 chapter9-admin.war:
 realm: cayambe
 auth-server-url: http://192.168.1.13:9090/auth
 ssl-required: external
 resource: cayambe-admin-service
 bearer-only: true
 deployment:
 chapter9-admin.war:
 web:
 security-constraints:
 - url-pattern: /admin/category/*
 methods: [DELETE]
 roles: [admin]

That’s as far as you need to go to secure the deletion of categories over REST, but
you’ll take this a step further to provide details about who is doing the deleting.

 By adding the Keycloak dependency from Thorntail, you can retrieve details of the
user making a request in the microservice. That’s nice for being able to audit who is
doing what, though for our purposes you’re going to print out the information to the
console.

@DELETE
@Produces(MediaType.APPLICATION_JSON)
@Path("/category/{categoryId}")
@Transactional
public Response remove(
 @PathParam("categoryId") Integer categoryId,
 @Context SecurityContext context) throws Exception {

project-defaults.ymlListing 9.8

Listing 9.9 CategoryResource

The realm your deployment uses for
authentication—in this case, cayambe.

URL of the
Keycloak

server where
the cayambe

realm is
located.

Identify this resource as
cayambe-admin-service,
which corresponds to the
Client ID in cayambe-
realm.json.

Section defining deployment-specific configuration
for chapter9-admin.war. This is equivalent to what
could be provided as part of web.xml.

Request that all URL patterns deeper than
/admin/category from this microservice are
protected, for the HTTP DELETE method.
Only users with the role admin can execute a
request with the URL and method defined.

Inject the JAX-RS SecurityContext
as a method parameter. This gives
you access to security information

from the HTTP request.

183Capturing user authentication

 String username = "";

 if (context.getUserPrincipal() instanceof KeycloakPrincipal) {
 KeycloakPrincipal<KeycloakSecurityContext> kp =
 (KeycloakPrincipal<KeycloakSecurityContext>)

context.getUserPrincipal();

 username = kp.getKeycloakSecurityContext().getToken().getName();
 }

 try {
 Category entity = em.find(Category.class, categoryId);
 em.remove(entity);
 System.out.println(username + " is deleting category with id: " +

➥ categoryId);
 } catch (Exception e) {
 return Response
 .serverError()
 .entity(e.getMessage())
 .build();
 }

 return Response
 .noContent()
 .build();
}

9.4.3 Authenticating the user in a UI

Now that your RESTful endpoint is secure for category deletion, you can make the
functionality available from the application UI. To see the changes you’ve made to the
UI, look in the /chapter9/admin_ui/ui directory of the code for the chapter.

 In this situation, you’ve chosen to include the JavaScript that Keycloak provides by
adding an NPM dependency into package.json for keycloak-js. You could also down-
load the appropriate JavaScript from the server directly, from http://localhost:9090/
auth/js/keycloak.js.

 As with your Java-based services, you need a keycloak.json file to configure our con-
nection to the Keycloak server.

keycloak.json for Admin UIListing 9.10

Check if the User Principal is of type
KeycloakPrincipal, which is what you expect.

Retrieve the User Principal into a KeycloakPrincipal.

From the token on the HTTP request, get the
username of the user who initiated the request.

Print a simple audit message stating
who is deleting which address.

{
"realm": "cayambe",
"auth-server-url": "http://192.168.1.13:9090/auth",
"ssl-required": "external",
"resource": "cayambe-admin-ui",
"public-client": true

}

This code should now be quite familiar to you, because it covers the typical require-
ments for connecting to Keycloak. It defines cayambe-admin-ui as the resource you

184 CHAPTER 9 Securing a microservice

specified earlier as your Client ID, within the cayambe-realm.json file you imported
into Keycloak.

 With the keycloak.json file in place, you can initialize your connection to Keycloak.

import Keycloak from 'keycloak-js';

const keycloakAuth = Keycloak('/keycloak.json');
keycloakAuth.init({ onLoad: 'check-sso' })
 .success((authenticated) => {
 // Handle successful initialization
 })
 .error(() => {
 // Handle failure to initialize
 });

Listing 9.11 keycloak-service.js

Import the Keycloak object from
the keycloak-js NPM module.

Create the Keycloak object and
tell it where keycloak.json is
for configuration.

Initialize Keycloak with check-
sso, which checks only whether
a user is currently logged in.

If you successfully connected to Keycloak,
you’re passed an authenticated parameter to
let you know whether a user is authenticated.

As part of the success() handling from listing 9.11, you want to set variables that
you’ll need later. One of those is to retrieve the URL for logging into Keycloak,
because you need to add the URL into the UI:

this.auth.loginUrl = this.auth.authz.createLoginUrl();

You can then pass that value into your ReactJS component for the header of the page,
so that you can provide a link to log in:

<li className="dropdown">
<a className="dropdown-toggle nav-item-iconic"

➥ href={this.props.login}>Login

this.props.login is set to the value of the Keycloak login URL, which you set on
this.auth.loginUrl. You also want to add information into the header of the page
about the current logged-in user, and provide a way for that user to log out as well. It’ll
be an exercise for you to explore the JavaScript and see how that works.

 The last piece is to provide a button in the UI to delete a category. CategoryList-
Container, a ReactJS component, will set a Boolean value for the adminRole property
to indicate whether the user has that role.

Then you just need HTML code to enable and disable a button based on this
property:

<button disabled={!this.props.adminRole} className="btn btn-danger"

➥ onClick={() => this.props.onDelete(category.id)}>Delete</button>

That’s most of the UI work done, except for passing the token you have for an authen-
ticated user into any request that needs it. Let’s do that now.

185Capturing user authentication

 You need to modify the ReactJS action you have for delete to set the token on a
request, just as you did in the Payment microservice earlier. The process is similar in
JavaScript.

import axios from 'axios';
const ROOT_URL = 'http://localhost:8081';

if (store.getState().securityState.authenticated) {
 store.getState().securityState.keycloak.getToken()
 .then(token => {
 axios.delete(`${ROOT_URL}/admin/category/${id}`, {
 headers: {
 'Authorization': 'Bearer ' + token
 }
 })
 .then(response => {
 // Handle success response
 })
 .catch(error => {
 // Handle errors
 });
 })
 .catch(error => {
 dispatch(notifyError("Error updating token", error));
 });
} else {
 dispatch(notifyError("User is not authenticated", ""));
}

Did you forget how a UI and Keycloak interact? Let’s take another look in figure 9.15.

Listing 9.12 Delete admin category

Imports an NPM module
to assist in HTTP calls Defines the root URL of the

RESTful endpoint for the
address microservice

Checks
whether
there’s an
authenticated
user

Retrieves an authenticated
token from keycloak-service.js

Defines the HTTP
DELETE request you
want to execute

Sets the token you received
from keycloak.getToken() into an
authorization header for the request

UI

Keycloak

Validate

Bearer
token

Authenticate

1

3 4

52

Secured
microservice

User authentication via UIFigure 9.15

186 CHAPTER 9 Securing a microservice

Anytime the UI calls delete on your RESTful endpoint, a token, if present, will be set
on the request. For now, no other request from the UI will pass a token, but if there
was a need to secure additional endpoints or to log information about the user mak-
ing a request, then it could be added in a similar manner.

Testing that the new UI and service all work9.4.4

It’s time to take the new UI for a spin. If Keycloak isn’t still running, start it with the
command you used earlier in the chapter. Start the RESTful endpoints for your
Admin service, change to /chapter9/admin_ui/admin, and run this:

mvn thorntail:run

Finally, you can run the UI! You want to simulate a production build, so you need a
separate command to build and then start the UI:

mvn clean install
java -jar target/chapter9-ui-thorntail.jar

Now you can navigate to http://localhost:8080 and you’ll see the main page of the
application, shown in figure 9.16.

You can see your categories, as before, but now you also have a Login link in the top-
right corner, and a disabled Delete button for each category.

 Clicking Login, you’re redirected to Keycloak to authenticate yourself. Enter bob
as the username and password for the password. You’re redirected back to your appli-
cation and you’re now authenticated, as shown in figure 9.17.

Cayambe Admin screenFigure 9.16

Cayambe Admin when logged in with the User roleFigure 9.17

187Summary

Although you’re authenticated, the Delete button is still disabled. Because Bob has
only the User role, you’re not permitted to delete categories.

 To see how to delete a category, let’s log out from Bob by clicking the user details
in the top-right corner, and then select Logout from the options.

 Now let’s log in as ken with the same password as before; see figure 9.18.

The Delete button is now bright red, indicating it’s available for you to use. Clicking it
deletes the category you choose, and you’ll see that category removed, as well as a
message letting you know the category was successfully deleted.

 I didn’t cover a lot of ReactJS code in this chapter, such as the code to check the
token validity and to refresh it when it’s expiring. Please take a look at all the Java-
Script code available for the application in the source code for the book.

Summary
 Securing your microservices is critical, regardless of whether they’re intended

for internal users only. You can’t predict all the types of malicious users who
may attempt to do harm through your microservices.

 Keycloak can accept bearer tokens, provide an authorization client, and pro-
vide easy configuration for securing your microservices.

 You can authenticate against Keycloak without a user, which is essential for
microservice-to-microservice calls when the recipient is secured.

 You can integrate Keycloak into an application UI to provide authentication,
and pass tokens to RESTful endpoints that are secured.

Cayambe Admin when logged in with the Admin roleFigure 9.18

Architecting
 a microservice hybrid

This chapter starts by showing you the old Cayambe and how to get it running
locally. Then, after covering some theory on using the hybrid approach to integrat-
ing your microservices, you’ll revisit the architecture you’re looking to achieve for
the new Cayambe. Next, you’ll dive into implementing the hybrid approach, with
the microservices you’ve developed throughout the book so far. Finally, you’ll take
your revitalized Cayambe monolith, along with the required microservices, and get
them all running in the cloud.

This chapter covers
 Running the Cayambe monolith

 Integrating microservices into Cayambe with a
hybrid approach

 Modifying Cayambe to integrate your
microservices

 Running the integrated Cayambe in a hybrid cloud

188

189The Cayambe monolith

The Cayambe monolith10.1
Figure 10.1 provides a reminder of the Cayambe homepage from a user’s perspective.

Cayambe (https://sourceforge.net/projects/cayambe/) is described as a “J2EE E-
Commerce Solution using Java Servlets & JSP & EJB.” It was built on JDK 1.2 and uses
Apache Struts v1. The existing code, which was last updated 15 years ago and can be
found at http://cayambe.cvs.sourceforge.net/viewvc/cayambe/, was downloaded and
imported to the code repository for this book under /cayambe.

 I faced initial challenges in finding compatible versions of Apache Struts, as well as
making the necessary changes for it to compile on JDK 8! I resolved some minor bugs
as well, to ensure that the basic UI was as functional as possible (as much as possible,
given that I wasn’t involved in Cayambe’s creation).

NOTE The changes required to compile and run the original Cayambe code
are beyond the scope of this book. But you can see the changes by viewing the
Git commit history of the code at http://mng.bz/4MZ5.

Figure 10.2 provides a detailed view of the layers of code that Cayambe currently has
architected. You start with JavaServer Pages (JSP) for the UI; these pages interact with
Struts forms and actions. In turn, they interact with a layer of delegates that communi-
cate with the Enterprise JavaBeans (EJB) that are present in what is referred to as the
backend because it doesn’t involve user-facing code. Finally, the EJBs execute calls on
the Data Access Objects (DAOs) that provide persistence to the database.

 Figure 10.2 provides a great view into the many layers that are present within
Cayambe, as well as which pieces of each layer interact with the others. For instance,

Cayambe homepageFigure 10.1

https://sourceforge.net/projects/cayambe/
http://cayambe.cvs.sourceforge.net/viewvc/cayambe/
http://mng.bz/4MZ5

190 CHAPTER 10 Architecting a microservice hybrid

you can see that Struts forms and actions for both the Admin WAR and Cart WAR use
the same delegate classes for Category and Product. Though such a situation is typical
of older code, you should use design tools such as DDD (Domain-Driven Design),
which was discussed in chapter 1, to separate the domain model of administration
from a user placing an order. You likely would want particular pieces of data for

Checkout JSPsCart JSPsAdmin JSPs

Admin WAR

Web common

Backend

Checkout WARCart WAR

Order
delegate

Product
delegate

Manage
inventory
delegate

Category
delegate

Cart
delegate

Checkout
delegate

Order
session

EJB

Product
session

EJB

Category
session

EJB

Cart
session

EJB

Checkout
session

EJB

Product
DAO

Category
DAO

Cart
DAO

Order
DAO

Struts
forms &
actions

Struts
forms &
actions

Struts
forms &
actions

Data

Cayambe code structureFigure 10.2

191Running the Cayambe monolith

Category and Product present that are applicable to only administrators of the site,
but not to a user trying to place an order.

10.2 Running the Cayambe monolith
Running Cayambe locally requires these prerequisites:

 WildFly 11.0.0.Final which you can download from http://mng.bz/uZdC
 MySQL Connector for Java which you can download from https://dev.mysql.com/

downloads/connector/j/
 A running MySQL Server, whether locally or in a Docker container

10.2.1 Database setup

With a running MySQL server, you can now set up the database and load data.

mysql -h127.0.0.1 -P 32768 -uroot
create user 'cayambe'@'172.17.0.1' identified by 'cayambe';
grant all privileges on *.* to 'cayambe'@'172.17.0.1' with grant option;
create database cayambe;
use cayambe;
source \cayambe\sql\mysql.sql
source \cayambe\sql\test_data.sql

With these steps, you now have a database ready for use with Cayambe. The next task
is to configure WildFly to be able to access the database you just set up.

10.2.2 WildFly setup

After you’ve extracted the WildFly 11.0.0.Final download into a directory of your
choosing, you need to provide some setup so that WildFly knows where the MySQL
driver can be found. To do that, you create /modules/system/layers/base/com/
mysql/main inside the location where WildFly was extracted.

 Inside the directory you just created, copy the MySQL connector for Java JAR file
that you downloaded earlier. In the same directory, create this file.

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.3" name="com.mysql">

 <resources>

Create database and load dataListing 10.1

MySQL driver module.xml for monolithListing 10.2

Connect to the MySQL server running on port 32768
on localhost as the root user. This may be different

in your environment.
Create a user named

cayambe with a
password of cayambe.

Grant privileges
to the cayambe
user in MySQL

Server.

Create a database named cayambe.

Switch to using the
database you just created.

Execute the SQL script in mysql.sql to
create all the necessary tables for Cayambe.

Execute the SQL script in test_data.sql
to load initial data into the tables.

Sets the module name
to be com.mysql,
matching the directory
structure you created

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
http://mng.bz/uZdC

192 CHAPTER 10 Architecting a microservice hybrid

 <resource-root path="mysql-connector-java-5.1.43-bin.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

What you’ve done here is create a JBoss module definition that’s used by WildFly.
JBoss Modules is an open source project at the core of WildFly’s management of class-
loaders, and the separation of classes between classloaders to prevent clashes. For this
example, you don’t need to understand how JBoss Modules does what it does. All you
need to know is how to create a new module, as you did here, for adding JDBC drivers
into WildFly.

 Finally, you need to tell WildFly about the new database driver and define a new
data source that Cayambe can use to talk to the database. All WildFly configuration is
present in standalone.xml. You need to locate standalone.xml inside /standalone/
configuration/ of the WildFly installation and then open the file for editing. Locate
the section for the datasource’s subsystem and replace the entire section with the fol-
lowing content.

<subsystem xmlns="urn:jboss:domain:datasources:5.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS"
 pool-name="ExampleDS" enabled="true" use-java-context="true">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-

➥ 1;DB_CLOSE_ON_EXIT=FALSE</connection-url>
 <driver>h2</driver>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
 </datasource>
 <datasource jta="true" jndi-name="java:/Climb" pool-name="MySqlDS"

➥ enabled="true" use-ccm="true">
 <connection-url>jdbc:mysql://localhost:32768/cayambe</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <driver>mysql</driver>
 <security>
 <user-name>cayambe</user-name>
 <password>cayambe</password>
 </security>
 <validation>
 <valid-connection-checker
 class-name="org.jboss.jca.adapters.jdbc.extensions.mysql

➥ .MySQLValidConnectionChecker"/>
 <background-validation>true</background-validation>

standalone.xml snippetListing 10.3

Path to the MySQL connector for
Java JAR. Your JAR may require a

different version in the name.

Some dependencies that are required
for JDBC drivers in WildFly

Existing ExampleDS datasource
present in WildFly. It hasn’t

been altered.

Climb datasource for Cayambe
made accessible under JNDI

name java:/Climb

MySQL connection URL to
database. Needs to be modified

for your environment.

mysql is
the name

of the
driver

definition,
which is

added at
the end of
the listing.

Security credentials you created
in MySQL for the database

193Running the Cayambe monolith

 <exception-sorter class-
name="org.jboss.jca.adapters.jdbc.extensions.mysql

➥ .MySQLExceptionSorter"/>
 </validation>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</

➥ xa-datasource-class>
 </driver>
 <driver name="mysql" module="com.mysql">
 <xa-datasource-

class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</

➥ xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
</subsystem>

That’s all you need to do to configure WildFly to work with Cayambe.

10.2.3 Running Cayambe

You’re almost ready to start Cayambe and see it running. But first you need to build
the EAR deployment. Figure 10.3 reminds you of what Cayambe looks like from a
deployment perspective, which you first saw in chapter 2.

Existing h2 driver
for ExampleDS

mysql driver definition, which
points to the com.mysql
module you created earlier

Admin WAR

Cayambe EAR

Cart WAR Checkout
WAR

Web
common

JAR

Cayambe
JAR

Data

Cayambe monolith deploymentFigure 10.3

194 CHAPTER 10 Architecting a microservice hybrid

Cayambe uses EAR (Enterprise Application aRchive) as the means of packaging the
deployment. EAR allows Cayambe to include multiple WARs in addition to common
JAR libraries that can be shared.

NOTE Though EARs were the preferred method for packaging a Java EE
deployment, WAR deployments are more common at present. That’s not to
say that EARs aren’t still being used, either by choice or legacy code, but EAR
usage is less prevalent than it was.

To build Cayambe, you need to change to the /cayambe directory of the book’s code
and run the following:

mvn clean install

Maven will construct each of the JARs and WARs that the project code resides within,
and then package it into an EAR for you to deploy. After that construction is com-
plete, copy /cayambe-ear/target/cayambe.ear into /standalone/deployments of the
WildFly installation.

 Now start WildFly, including your deployment, by running this command from the
root of the WildFly installation:

./bin/standalone.sh

Lots of messages are output to the console as WildFly starts, and then your deploy-
ment is started. WildFly is ready to accept traffic to Cayambe after the messages stop,
and you should see a message that contains content like this:

WFLYSRV0025: WildFly Full 11.0.0.Final (WildFly Core 3.0.8.Final) started in

➥ 6028ms

You can access the user site at http://localhost:8080, and the administration site at
http://localhost:8080/admin.

Cayambe hybrid—monolith with microservices10.3
In chapter 1, you learned about the Hybrid pattern for monoliths, whereby an exist-
ing monolith can have existing functionality migrated to a microservice environment.
This pattern allows those pieces of the monolith that require higher scalability or per-
formance to be efficiently separated, while not requiring the entire monolith to be
rebuilt to make improvements. Let’s revisit what a monolith using the Hybrid pattern
might look like; see figure 10.4.

NOTE In this particular instance, you won’t be using a gateway that fronts all
your microservices.

195Cayambe hybrid—monolith with microservices

There are certainly benefits to being able to split a monolith into pieces, while also
separating out where those pieces might be deployed. Although doing so adds over-
head, at least in terms of network calls and performance, the advantages often out-
weigh any downsides. This is especially true when those advantages revolve around key
aspects, such as continuous delivery and release cadence.

 In chapter 2, you developed a new administration UI, as well as RESTful endpoints
for interacting with the data. In chapter 7, you introduced a separate microservice for
processing card payments, to make it easier to integrate with external systems. Finally,
in chapter 9, you added security to your administration UI, which was originally cre-
ated in chapter 2.

 How does it all fit together? Figure 10.5 represents the proposed architecture of the
Cayambe hybrid monolith. You’ll combine large pieces of the original monolith with
new microservices that you’ve developed throughout the book. This architecture has
certainly come a long way from where it started, but you still have some work ahead.

User

View

Runtime

Microservices environmentEnterprise Java monolith

RuntimeRuntime

Controller

Business
service

Model

Data DataData

JAR

Gateway

MicroserviceMicroservice

Microservice

Enterprise Java and microservices hybrid architectureFigure 10.4

196 CHAPTER 10 Architecting a microservice hybrid

So what exactly did you do in figure 10.5? You wanted to integrate the Payment micro-
service for processing card payments during the checkout process, and you wanted
the UI to retrieve category information from Admin instead of storing the data itself.
In addition to the new microservices, you also replaced the UI for administration with
a new one, so you can remove the old one from Cayambe.

 Let’s look at the requirements for each integration. All the code for the Cayambe
hybrid monolith and its microservices is present within the book’s code in /chapter10.

10.3.1 Integrating the Payment microservice

As a result of integrating the Payment microservice (and, in particular, because you’re
using an external payment provider—in this case, Stripe), you no longer need to store
your customers’ credit card information. This is a huge benefit because the rules and
restrictions around storing credit card information can be difficult to enforce, and off-
loading that responsibility to a company specializing in that area is easier.

 Because you don’t need to store that information, let’s remove it from the
billing_info table of Cayambe. You modify /sql/cayambe/mysql.sql so that the fol-
lowing columns are removed:

Data

Cayambe EAR

Admin UI

Admin
service

Admin data

Payment
service

Payment data

Microservice Microservice

Checkout
WAR Cart WAR

Web
common

JAR

Cayambe
JAR

Proposed Cayambe hybrid monolithFigure 10.5

197Cayambe hybrid—monolith with microservices

 name_on_card
 card_type
 card_number
 card_expiration_month
 card_expiration_year
 authorization_code

You replace all those columns with a single column for card_charge_id. In changing
what you’re storing in the database, you also need to update classes that passed those
values around.

public class OrderDAO {
 public void Save(OrderVO orderVO)
 {
 ...

 StringBuffer sqlBillingInfo = new StringBuffer(512);
 sqlBillingInfo.append("insert into billing_info ");
 sqlBillingInfo.append("(order_id,name,address1,address2,city,state,

➥ zipcode,country,name_on_card,");
 sqlBillingInfo.append("card_charge_id,phone,email) ");
 sqlBillingInfo.append("values ('");
 sqlBillingInfo.append(orderId);
 sqlBillingInfo.append("','");

 ...

 sqlBillingInfo.append(orderVO.getBillingInfoVO().getCountry());
 sqlBillingInfo.append("','");
 sqlBillingInfo.append(orderVO.getBillingInfoVO().getCardChargeId());
 sqlBillingInfo.append("','");

 ...
 }
 ...

 public OrderVO getOrderVO(OrderVO orderVO)
 {
 ...
 b.setCardChargeId(rs.getString("billing_info.card_charge_id"));
 ...
 }

}

Here you modify OrderDAO that interacts directly with the database for storing and
retrieving the data for an order. Because you’ve modified methods that were on
BillingInfoVO, you now need to make changes there as well, as shown in listing 10.5.

Listing 10.4 OrderDAO

Remove existing card columns
from the select statement and

add card_charge_id.

Remove calls to set the values for the
removed columns, and replace them with

getCardChargeId() for the new field.

Remove retrieval of old card data
columns and add one for card_charge_id.

198 CHAPTER 10 Architecting a microservice hybrid

public class BillingInfoVO implements Serializable {

 private Long billingId = null;
 private Long orderId = null;
 private String name = null;
 private String address = null;
 private String address2 = null;
 private String city = null;
 private String state = null;
 private String zipCode = null;
 private String country = null;
 private String phone = null;
 private String email = null;

 private String cardToken = null;
 private String cardChargeId = null;

 ...

 public void setCardToken (String _cardToken) { cardToken = _cardToken; }
 public String getCardToken () { return cardToken; }

 public void setCardChargeId (String _cardChargeId) { cardChargeId =

➥ _cardChargeId; }
 public String getCardChargeId () { return cardChargeId; }
}

Now that you’ve modified the data objects that you’re passing around, let’s add the
code needed to call the Payment client proxy from inside the Cayambe monolith.

 To be able to send and receive the JSON and have it converted to objects, you need
ChargeStatus, PaymentRequest, and PaymentResponse. To make it easy, you’ve cop-
ied these files from the Payment microservice, so you have them. Next you need an
interface that represents Payment.

@Path("/")
public interface PaymentService {
 @POST
 @Path("/sync")
 @Consumes(MediaType.APPLICATION_JSON)
 @Produces(MediaType.APPLICATION_JSON)
 PaymentResponse charge(PaymentRequest paymentRequest);
}

That’s all you need in order to define the external Payment microservice. Now let’s
see how you integrate it into the existing Struts code. To be able to process a card

Listing 10.5 BillingInfoVO

Listing 10.6 PaymentService

Replace nameOnCard, cardType,
cardExpirationMonth, cardExpirationYear,
and authorizationCode with cardToken and
cardChargeId. cardToken is used to pass a
token from the UI, which you’ll see shortly.

Remove getter and setter methods
for the previously mentioned fields,

and add them for cardToken and
cardChargeId.

You’re using the /sync endpoint
on the Payment microservice.

RESTful endpoint will
consume and produce JSON.

Method to be
proxied that will
call Payment.

199Cayambe hybrid—monolith with microservices

transaction before you save the order, you need to modify SubmitOrderAction from
within /cayambe-hybrid/checkout.

public class SubmitOrderAction extends Action
{
 public ActionForward perform(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 ...

 OrderActionForm oaf = (OrderActionForm)form;

 try {
 delegate = new CheckOutDelegate();
 OrderVO orderVO = new OrderVO();
 orderVO = (OrderVO)oaf.toOrderVO();
 orderVO.setCartVO((CartVO) session.getAttribute("Cart"));

 // Call Payment Service
 ResteasyClient client = new ResteasyClientBuilder().build();
 ResteasyWebTarget target =
 client.target("http://cayambe-payment-service-

➥ myproject.192.168.64.33.nip.io");
 PaymentService paymentService = target.proxy(PaymentService.class);
 PaymentResponse paymentResponse =

➥ paymentService.charge(new PaymentRequest()
 .amount((long) (orderVO.getCartVO().getTotalCost()

➥ * 100))
 .cardToken(oaf.getCardToken())
 .orderId(Math.toIntExact(orderVO.getOrderId()))
);

orderVO.getBillingInfoVO().setCardChargeId(paymentResponse.getChargeId());

 delegate.Save (orderVO);

 CartDelegate cartDelegate = new CartDelegate();
 cartDelegate.Remove(orderVO.getCartVO());

 } catch(Exception e) {
 forwardMapping = CayambeActionMappings.FAILURE;
 errors.add(ActionErrors.GLOBAL_ERROR, new

➥ ActionError("error.cart.UpdateCartError"));
 }

 return mapping.findForward(forwardMapping);
 }
}

Listing 10.7 SubmitOrderAction

Existing Struts Action class for
handling order submission

Create a ResteasyClient
that calls Payment within

OpenShift.Create a proxy
instance of
PaymentService.

Call Payment, passing it a PaymentRequest with the
amount of the order and the cardToken from Stripe.

Set the chargeId you got
back from Payment onto

the BillingInfoVO.

200 CHAPTER 10 Architecting a microservice hybrid

The preceding code will be familiar from chapters 6, 7, and 8, because you used the
RESTEasy client proxy generation in those examples as well.

 In creating a PaymentRequest instance, you called oaf.getCardToken(), which
contains the card token you need for processing a Stripe request. But you need to
update OrderActionForm to provide that information for you.

 OrderActionForm is located in /cayambe-hybrid/web-common. You remove the
following fields, and their associated getters and setters:

 nameOnCard
 cardNumber
 cardType
 cardExpirationMonth
 cardExpirationYear

Finally, you add a field for cardToken of type String, and the getter and setter for it as
well.

 Let’s modify the checkout page to capture the credit card details, before calling
Stripe to retrieve a cardToken representing the credit card. For that, you need to
update CheckOutForm.jsp inside /cayambe-hybrid/checkout.

...
<script src="https://js.stripe.com/v3/"></script>
<script type="text/javascript">
 var stripe = Stripe({STRIPE_PUBLISH_KEY});
 var elements = stripe.elements();
...
 var card = elements.create('card', {style: style});

 function stripeTokenHandler(token) {
 // Insert the token ID into the form so it gets submitted to the server
 var cardToken = document.getElementById('cardToken');
 cardToken.value = token.id;

 // Submit the form
 document.getElementById('orderForm').submit();
 };

 document.body.onload = function() {
 card.mount('#card-element');

 card.addEventListener('change', function(event) {
 var displayError = document.getElementById('card-errors');
 if (event.error) {
 displayError.textContent = event.error.message;
 } else {
 displayError.textContent = '';

Listing 10.8 CheckOutForm.jsp

Create a Stripe JavaScript instance,
passing in a publisher key.

Initialize the prebuilt UI
components from Stripe.

Set the token ID you
received from Stripe onto

the cardToken element.

Retrieve the orderForm
and submit it.

When the document is loaded, mount the Stripe
card element onto the card-element div.

Add an event listener
on the UI component

to handle Stripe errors.

201Cayambe hybrid—monolith with microservices

 }
 });

 var form = document.getElementById('orderForm');
 form.addEventListener('submit', function(event) {
 event.preventDefault();

 stripe.createToken(card).then(function(result) {
 if (result.error) {
 // Inform the user if there was an error.
 var errorElement = document.getElementById('card-errors');
 errorElement.textContent = result.error.message;
 } else {
 stripeTokenHandler(result.token);
 }
 });
 });
 };
</script>

<form:form name="OrderForm" styleId="orderForm"

➥ type="org.cayambe.web.form.OrderActionForm"
 action="SubmitOrder.do" scope="request">
...
 <tr>
 <th align="right">
 <label for="card-element">
 Enter card details
 </label>
 </th>
 <td align="left">
 <div id="card-element">
 <!-- A Stripe Element will be inserted here. -->
 </div>

 <!-- Used to display form errors. -->
 <div id="card-errors" role="alert"></div>
 <form:hidden property="cardToken" styleId="cardToken"/>
 </td>
 </tr>
...
</form:form>

NOTE The full details of how to integrate UI elements of Stripe into a website
can be found at https://stripe.com/docs/stripe-js.

In addition to adding the card capture into the table of the form, you remove all the
existing fields that captured each piece of credit card information.

 For the preceding CheckOutForm.jsp to work, you also need to modify struts-
forms.tld in /cayambe-hybrid/checkout to add styleId to both the form and hidden
tags. This allows you to set a name that will be added to the id attribute of the gener-
ated HTML element.

Add an event listener for
submit onto the orderForm.

Submit event listener
asks Stripe to create
a token from the card
element in the UI.

If Stripe returned success, call
the stripeTokenHandler function.

Div to hold the card element
Stripe will create for you.

Add a hidden form field to pass the Stripe
card token into OrderActionForm.

https://stripe.com/docs/stripe-js

202 CHAPTER 10 Architecting a microservice hybrid

 That’s all the changes you need for the Payment microservice integration. Now it’s
time to integrate Admin!

10.3.2 Integrating the Admin microservice

To integrate Admin, you want to do something similar to Payment—at least in that
you want to provide the classes required to send and receive objects to Admin, as well
as to generate a proxy from an interface that represents Admin.

 In addition to being able to call Admin, you need to integrate the category retrieval
into the Cayambe monolith wherever categories are currently used. In looking at how
categories are defined within Cayambe, you notice that categories are a separate data-
base table, and the category/parent relationship is present in a separate table.

 You also see that categories are called from various layers within the Cayambe mono-
lith, and that the Category EJB provides many ways to interact with the categories that
are split across many Java classes. Such a situation doesn’t bode well for a smooth inte-
gration of Admin, at least not in the same way that Payment was integrated.

 Because the integration would require large code changes across nearly the entire
stack, you decide that such an enhancement, though beneficial, has too many risks
associated with it. In wanting to be agile and nimble, you don’t want to be held up for
weeks or months to integrate Admin because you’re dealing with problems. These
problems could be anything from issues in integrating the actual code, to spending a
large amount of time testing the new changes in Cayambe—in addition to regression
testing to make sure the changes don’t have ripple effects into other parts of the code.
It’s unfortunate, but sometimes tough decisions like this need to be made for the sta-
bility of production code.

 So did I just waste large parts of the book for you to write a new UI and service for
Admin that you won’t use? Far from it! In chapter 11, you’ll minimize your risk con-
cerns by using event streaming, allowing you to retain the existing code within the
Cayambe monolith but still take advantage of the new Admin UI and microservice.

10.3.3 New administration UI

You’ve seen the new administration UI, along with its associated microservice, but
there’s already an administration section inside the Cayambe monolith. You remove
the content from /cayambe-hybrid/admin, because you no longer need the existing
administration UI. Next you remove all the references to the Admin.war that were
present in /cayambe-hybrid/cayambe-ear, as that WAR is no longer a dependency of
the EAR and doesn’t need to be packaged inside it.

10.3.4 Cayambe hybrid summary

Figure 10.6 provides the complete picture of where you are currently, as well as the
remaining pieces that are yet to be developed. You’ll add the remaining pieces in
chapter 11.

203Deploying everything to a hybrid cloud

Deploying everything to a hybrid cloud10.4
Because you’ve converted the Cayambe monolith to a hybrid, deploying everything
becomes more complex—but you’re also doing everything manually. In a real
environment, you’d want the deployments to be automated to make the process even
simpler.

 This section covers all the pieces of the Cayambe hybrid that need to be set up,
configured, or deployed to run it. The first thing you need to do is have Minishift run-
ning. It should also start with a clean OpenShift environment, to remove any services
that might be present. You’re going to need all the room you can get inside a local
OpenShift! So let’s delete any existing Minishift VM (virtual machine) you have and
start from scratch:

> minishift delete
> minishift start --cpus 3 --memory 4GB

Data

Cayambe EAR

Admin UI

Admin
service

Admin data

Payment
service

Payment data
Stripe

service Kafka topic

Apache KafkaicroserviceM

Microservice

Microservice

Checkout
WAR Cart WAR

Web
common

JAR

Cayambe
JAR

Cayambe hybrid monolithFigure 10.6

204 CHAPTER 10 Architecting a microservice hybrid

The main difference from previous executions of Minishift is that you’re specifying
three virtual CPUs and 4 GB of memory. This is necessary to ensure that you have the
capacity to install the services you need for this and the next chapter.

10.4.1 Database

Let’s create a MySQL database to store your data! Run minishift console and log
into the OpenShift console.

 Open the default My Project. Click the Add to Project menu item near the top and
select Browse Catalog. This provides all the types of prebuilt images that OpenShift
can install for you, as shown in figure 10.7.

Click the Data Stores box in the bottom row to see the different data stores available.
On the Data Stores page that opens, shown in figure 10.8, click the Select button in
the MySQL (Persistent) box.

 You’ll be presented with a page containing configuration for MySQL, most of
which can be left with the defaults. The only options you need to set are MySQL Con-
nection Username, MySQL Connection Password, and MySQL Root User Password.
Enter values for those fields, make a note of that information, and then click Create.

WARNING Don’t use cayambe as the MySQL Connection Username, because
that would conflict with the user you need to create later.

Choosing the Browse Catalog option in the OpenShift consoleFigure 10.7

205Deploying everything to a hybrid cloud

After a minute or two, a MySQL service will be available in OpenShift. To be able to
set up the databases, tables, and data that you need for Cayambe, you need to access
the service remotely. Open a terminal window, log in to the OpenShift CLI with oc
login, and then run oc get pods. The command returns a list similar to this:

NAME READY STATUS RESTARTS AGE
mysql-1-xq98q 1/1 Running 0 2m

You need to copy the name of the MySQL pod, mysql-1-xq98q in this case, to connect
to it:

oc rsh mysql-1-xq98q

From inside the pod, you can then run the following to open a command prompt into
the MySQL instance:

mysql -u root -p$MYSQL_ROOT_PASSWORD -h $HOSTNAME

Within the MySQL pod, $MYSQL_ROOT_PASSWORD and $HOSTNAME are defined as envi-
ronment variables, so you don’t need to remember them to connect to the MySQL
instance. Now that you’re inside MySQL, let’s set up the data you need!

OpenShift console—data storesFigure 10.8

206 CHAPTER 10 Architecting a microservice hybrid

ADMIN MICROSERVICE DATA

The following commands create a cayambe-admin user for the admin database, grant
the user all privileges to the cayambe_admin database, create the database, and finally
switch to using that database:

create user 'cayambe-admin' identified by 'cayambe-admin';
grant all privileges on cayambe_admin.* to 'cayambe-admin' with grant option;
create database cayambe_admin;
use cayambe_admin;

In the context of the cayambe_admin database, you can now execute some SQL to cre-
ate the tables and populate them with initial data.

 Open /chapter10/sql/admin/mysql.sql and paste the contents into the terminal
window where you’re logged into MySQL. You should see SQL statements flash by, and
if all went well, no errors! Now that the tables are there, do the same with /chapter10/
sql/admin/data.sql to load the data.

PAYMENT MICROSERVICE DATA

You now run a similar set of commands for a cayambe-payment user and cayambe
_payment database:

create user 'cayambe-payment' identified by 'cayambe-payment';
grant all privileges on cayambe_payment.* to 'cayambe-payment' with grant

➥ option;
create database cayambe_payment;
use cayambe_payment;

Now open /chapter10/sql/payment-service/mysql.sql and paste the contents into the
terminal window where you’re logged into MySQL. That should create the two tables
you need and set an initial value for the ID sequence generator that JPA needs.

CAYAMBE MONOLITH DATA

Finally, run a similar set of commands for the cayambe user and database:

create user 'cayambe' identified by 'cayambe';
grant all privileges on cayambe.* to 'cayambe' with grant option;
create database cayambe;
use cayambe;

Open /chapter10/sql/cayambe/mysql.sql and paste the contents into the terminal
window, which will create all the tables for the Cayambe monolith. Then copy the con-
tents of /chapter10/sql/cayambe/test_data.sql to load the initial test data.

10.4.2 Security

You already have a Keycloak server that you set up as part of chapter 9, so you’re going
to reuse that:

/chapter9/keycloak> java -Dswarm.http.port=9090 -jar keycloak-2018.1.0-

➥ swarm.jar

207Deploying everything to a hybrid cloud

Open http://localhost:9090/auth/ and log into the administration console. Select
the Clients option from the left navigation menu. From the list of available clients,
click cayambe-admin-ui to open its details. All you need to do is update the three
URLs that specify where your new administration UI is running, by changing the port
from 8080 to 8090.

10.4.3 Microservices

Now it’s time to start deploying the microservices to OpenShift.

ADMIN MICROSERVICE

Because the Admin microservice was brought across from previous chapters, you
don’t need to do anything to it other than deploy it!

/chapter10/admin> mvn clean fabric8:deploy -Popenshift

After this microservice is deployed, you should see it within the OpenShift console.

STRIPE MICROSERVICE

As with Admin, you don’t need to do anything in the Stripe code, so you just deploy it:

/chapter10/stripe> mvn clean fabric8:deploy -Popenshift

PAYMENT MICROSERVICE

Next, you need to deploy Payment, which is done in the same way as the others:

/chapter10/payment-service> mvn clean fabric8:deploy -Popenshift

10.4.4 Cayambe hybrid

Now you’re ready to set up a WildFly application for the Cayambe hybrid. You can
reuse the WildFly 11 and MySQL connector JAR downloads from earlier in the chap-
ter and unpack them into a new directory.

 After they’re all extracted, create a directory structure that matches /wildfly-11.0.0
.Final/modules/system/layers/base/com/mysql/main. Into that directory, copy the
JAR file for MySQL Connector, and create a module.xml file with the following content.

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.3" name="com.mysql">

 <resources>
 <resource-root path="mysql-connector-java-5.1.43-bin.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

MySQL driver module.xml for hybridListing 10.9

The particular version referenced
here needs to match the file you

copied into the directory.

208 CHAPTER 10 Architecting a microservice hybrid

Next you need to provide WildFly with the information it needs to configure the data-
source for Cayambe. Open /wildfly-11.0.0.Final/standalone/configuration/standalone
.xml, and replace the current datasource’s subsystem config with the following.

<subsystem xmlns="urn:jboss:domain:datasources:5.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-

➥ name="ExampleDS"
 enabled="true" use-java-context="true">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-

➥ 1;DB_CLOSE_ON_EXIT=FALSE</connection-url>
 <driver>h2</driver>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
 </datasource>
 <datasource jta="true" jndi-name="java:/Climb" pool-name="MySqlDS"

➥ enabled="true" use-ccm="true">
 <connection-url>jdbc:mysql://localhost:53652/cayambe</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <driver>mysql</driver>
 <security>
 <user-name>cayambe</user-name>
 <password>cayambe</password>
 </security>
 <validation>
 <valid-connection-checker
 class-name="org.jboss.jca.adapters.jdbc.extensions.mysql

➥ .MySQLValidConnectionChecker"/>
 <background-validation>true</background-validation>
 <exception-sorter class-

name="org.jboss.jca.adapters.jdbc.extensions.mysql

➥ .MySQLExceptionSorter"/>
 </validation>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</

➥ xa-datasource-class>
 </driver>
 <driver name="mysql" module="com.mysql">
 <xa-datasource-

class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-

➥ class>
 </driver>
 </drivers>
 </datasources>
</subsystem>

standalone.xmlListing 10.10

209Summary

Listing 10.10 is virtually identical to listing 10.3, except for one difference: the port
number for the MySQL instance for Cayambe is set to 53652. You might be wondering
what that port number is from, because it’s not a standard MySQL port. Well, you’re
going to define that port by forwarding the mysql service port within OpenShift so
you can access it:

oc port-forward {mysql-pod-name} 53652:3306

NOTE If an existing forwarded port is shut down, or your machine is
rebooted, you’ll have to rerun this command before WildFly will be able to
find the database.

10.4.5 Cayambe EAR

Now that WildFly is set up, let’s deploy the modified Cayambe hybrid EAR to it. First
you need to build it!

/chapter10/cayambe-hybrid> mvn clean install

After it’s built, copy /cayambe-hybrid/cayambe-ear/target/cayambe.ear into /wildfly-
11.0.0.Final/standalone/deployments. Now you start WildFly:

/wildfly-11.0.0.Final/bin/standalone.sh

With WildFly started, it’s now possible to try out the Cayambe UI by opening
http://localhost:8080.

10.4.6 Admin UI

The last piece to get running is the new administration UI, because you already have
the Admin microservice running from earlier.

 For the most part, the code is the same as that you used in chapter 9, with two
small modifications. You adjusted the port that the UI runs on to be 8090, so it didn’t
clash with the main UI, and you also modified ROOT_URL in /chapter10/admin-ui/
app/actions/category-actions.js to be the URL shown in the OpenShift console for
cayambe-admin-service.

NOTE Be sure to remove the trailing slash from the URL.

It’s time to start the administration UI:

/chapter10/admin-ui> mvn clean package
/chapter10/admin-ui> npm start

Summary
 You set up and ran the Cayambe monolith to show the code as it was before you

made any modifications.

210 CHAPTER 10 Architecting a microservice hybrid

 You integrated the microservices that you’d developed throughout the book
into Cayambe, making the necessary modifications to Cayambe to make the
integration possible.

 You learned that although you might want to integrate a microservice (in this
case, Admin), sometimes doing so can add too much risk, so other options
need to be considered.

 You deployed the handful of microservices and the Cayambe hybrid and had
them all functioning together.

Data streaming
 with Apache Kafka

In chapter 10, you put together the Cayambe hybrid, combining the slimmed-down
monolith with your new microservices. This chapter simplifies the access of admin-
istration data in the Cayambe hybrid by switching it to use data streaming.

 First you’ll learn about data streaming and how it can benefit developers and
architects alike. Taking those lessons, you’ll develop a data-streaming solution for
the Cayambe hybrid from the previous chapter, completing the journey from
monolith to hybrid.

11.1 What can Apache Kafka do for you?
Before delving into Apache Kafka, the solution you’re going to use for recording and
processing data streams, you need some background on data streaming. Otherwise,

This chapter covers
 Understanding data streaming with Apache Kafka

 Using data streaming to simplify an architecture

 Incorporating data streaming into the Cayambe
hybrid

211

212 CHAPTER 11 Data streaming with Apache Kafka

what Apache Kafka does and how it works will be completely foreign to you as an Enter-
prise Java developer.

11.1.1 Data streaming

Data streaming doesn’t just refer to the way Netflix gets its movies to play on all your
devices. It also refers to a continuously generated stream of data from potentially
thousands of sources; each piece of data, or record, is small in size and is stored in the
sequence that it was received. That may seem like a lot of buzzwords, but data stream-
ing is still relatively new, and new ways to use it are always being conceived.

 What kinds of data apply to data streaming? In a nutshell, pretty much any type of
data could be useful in the context of data streaming. Common examples include
measurements from vehicle sensors, real-time share prices from the stock market, and
trending topics from social networks and sites.

 A common use case for data streaming occurs when you have a lot of data, or
records, and you want to analyze it for patterns or trends. It may well be that large
amounts of the data can be completely ignored, and only key pieces of data are perti-
nent. It’s also possible for the same set of data records to have different purposes,
dependent on which system might be consuming it! For instance, an e-commerce site
that captures a stream of page-visit events can use the same data not only to record the
number of pages a user visits before purchasing, but also to analyze the number of
views each page is getting across all users. This is the beauty of data streaming: you can
solve different problems with the same set of data.

 Figure 11.1 illustrates how data is received as a stream.

The data for a particular type is received from potentially many sources, and is added
to the end of the stream, or pipe, in the order it was received by the system that’s
responsible for recording the data stream. There’s no concept of inserting a
particular record at a given point in the stream. Everything is added to the end as
it’s received.

 Though you have several options for recording and processing data streams, for
this chapter you’ll focus on Apache Kafka, so let’s take a look at it now.

Source
Data stream

Sequence of records

0 1 2 3 4 n
Source

Source

Data-streaming pipesFigure 11.1

213What can Apache Kafka do for you?

DEFINITION To clarify the terminology used throughout this chapter, the
terms data streaming, data streams, and streaming all refer to the same thing: the
process of streaming data from a source for capture.

11.1.2 Apache Kafka

Apache Kafka (https://kafka.apache.org/) was originally developed by LinkedIn
in 2010 to be the core for its central data pipeline. Currently, the pipeline processes
upward of 2 trillion messages a day! In early 2011, Apache Kafka was proposed as an
open source project at Apache, and it moved out of the incubation phase in late 2012.
In the space of a few years, many enterprises are using Apache Kafka, including Apple,
eBay, Netflix, Spotify, and Uber.

What is Apache Kafka? It’s is a distributed streaming platform. What do I mean by
distributed here? Apache Kafka can partition data from a single data stream across mul-
tiple servers within a cluster. In addition, each partition is replicated across servers for
fault tolerance of that data.

 There are many ways to configure Apache Kafka, in terms of how it’s distributed
and its level of fault tolerance, but those topics are beyond the scope of this chapter.
For full details, take a look at the Apache Kafka documentation at https://kafka
.apache.org/documentation/.

 As a streaming platform, the key capabilities that Apache Kafka provides are as
follows:

 Publish and subscribe to streams of records.
 Store streams of records in a fault-tolerant, durable manner.
 Process streams of records as they happen.

At its core, Apache Kafka is a distributed commit log: it doesn’t notify sources that a
piece of data has been recorded in the stream until it’s committed to the log. Being
distributed, as I mentioned before, refers to each commit in the log, or stream, being
spread across partitions and replicated.

 Another way of describing Apache Kafka is as a database with no clothes: the data is
at the forefront and not hidden. Databases, at their core, use a commit log, as Apache
Kafka does, to track changes and as a means of recovering from server failures to recon-
stitute the database. With Apache Kafka, the clothes of the database (tables, indexes,
and so forth) have been stripped away, leaving just the commit log. This makes Apache
Kafka infinitely more consumable and accessible than regular databases.

 Apache Kafka also uses semantics that are familiar to Enterprise Java developers
that have integrated with messaging systems. There are producers, which generate
records or events that are added to the stream, equivalent to the multiple sources
present in figure 11.1 previously. Each stream of records is referred to as a topic, and
anything that reads records from the stream is a consumer. Figure 11.2 shows how pro-
ducers and consumers integrate with Apache Kafka.

In addition, connectors enable databases, or other systems, to be sources of records
being sent to Apache Kafka. Finally, stream processors have the ability to stream records

https://kafka.apache.org/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/

214 CHAPTER 11 Data streaming with Apache Kafka

from one or more topics, perform some type of transformation on the data, and then
output it to one or more different topics.

WHAT IS A RECORD?
Now that you understand some of the pieces that make up Apache Kafka, let’s define
what a record means. Each record within a stream consists of a key, a value, and a time-
stamp. The key and value are straightforward in terms of their purpose, but why is a
timestamp needed? The timestamp is crucial to Apache Kafka knowing when a record
was received (which will become even more critical when we cover partitions).

 You also need to be aware of additional concepts about records before continuing.
Each record is immutable within the data stream: you can’t edit, modify, or remove a
record from the data stream after it’s been added. All you can do is provide update
records for the same key that sets a different value.

 Figure 11.3 expands on the stream from figure 11.1, showing possible records for a
real-time stream of share prices. In figure 11.3, you can see that there’s no single
record for the key RHT. There are currently three, all with different values. This is the
immutability of the data stream. If the stream weren’t immutable, there likely would
be a single record with key RHT that’s continually updated with a new value.

Kafka
cluster

Consumers

Producers

AppApp

App

App

AppApp

App

Stream
processorsConnectors

App

DB

DB

Figure 11.2 Apache Kafka
integrations (reproduced from
https://kafka.apache.org/intro.html)

Source
Data stream

Sequence of records

0 1 2

Value:
$123

Value:
$128

3 4

Value:
$125

Key:
RHT

Key:
RHT

Key:
RHT

n
Source

Source

Figure 11.3 Immutable data stream

https://kafka.apache.org/intro.html

215What can Apache Kafka do for you?

A big advantage with immutable data streams is that you have a history of change for
the same key. Certainly in some situations, you might be concerned with only the cur-
rent value of something. But far more often, knowing the history and being able to
determine change over time is critical.

 Records are also persisted: the log is retained on the filesystem, allowing the records
to be processed at any point in the future. Having said that, limits exist on how long a
record is retained. Each record is persisted only so long as is allowed by the retention
policy on that particular topic. A topic could be defined to retain records indefinitely,
presuming disk space isn’t an issue, or it could be purged after a few days, whether or
not it has been consumed by anything.

HOW DO TOPICS WORK?
Topics in Kafka relate to a category, or type, of record that can be published and con-
sumed. For instance, you’d use one topic for real-time share prices and a separate
topic for measurements from vehicle sensors.

 Each topic is divided into one or more partitions, across one or more servers
within the Kafka cluster. A partition is a single logical data stream, or topic, such as
those you saw in figures 11.1 and 11.3, that’s split into multiple physical data streams.

 Figure 11.4 shows a partition. Partitioning of a topic increases the parallelism that
can be achieved when writing or reading from a specific topic. The figure illustrates a
single topic that’s split into three partitions. Each partition represents an ordered and
immutable sequence of records that’s continually appended to, creating a structured
log of change events within a data stream. Each record in a given partition is assigned
a sequential ID number known as the offset. The offset uniquely identifies a record
within a specific partition.

 A critical point with Kafka records that developers need to be especially mindful of
is the definition of the key to be associated with a record. If the key isn’t truly unique
within the context of the business, there’s the danger of overlap between key and time-
stamp combinations—especially as Kafka guarantees that all records with the same key
are placed on the same partition, ensuring that all records for a key are stored in
sequence on a single partition.

 Figure 11.5 shows how producers and consumers interact with a topic partition.

Anatomy of a topic

Partition
0

Partition
1

Partition
2

Old New

Writes

9876543210 1
0

1
1

1
2

9876543210 1
0

1
1

1
2

9876543210

Figure 11.4 Topic partitions (reproduced from https://kafka.apache.org/intro.html)

https://kafka.apache.org/intro.html

216 CHAPTER 11 Data streaming with Apache Kafka

Producers

reads

Consumer A
(offset = 9)

Consumer B
(offset = 11)

writes

9876543210 1
0

1
1

1
2

Figure 11.5 Topic producers
and consumers (reproduced from
https://kafka.apache.org/intro.html)

As mentioned previously, producers always
write new records to the very end of a par-
tition. Consumers typically process records
sequentially, but are able to specify at which
offset they begin processing. For instance,
in figure 11.5, Consumer B may have
begun reading from offset 0 and is now pro-
cessing offset 11. Consumer A is at offset 9
but may have begun reading records from
that offset only and not from 0.

11.2

Figure 11.5 introduces some concepts
regarding consumers that are worth elaborating on, so you’re familiar with what they can do:

 Consumers can start reading a topic from any offset, including from the very
beginning, offset 0.

 Consumers can be load balanced by specifying a consumer group when reading
records.

 A consumer group is a logical grouping of multiple consumers, ensuring that each
record is read by only a single consumer within the same consumer group.

Simplifying your monolith architecture with streaming
Figure 11.6 is a brief reminder of what has been developed and integrated so far with
the Cayambe hybrid. The grayed-out piece is to be completed in this chapter and links
the Admin and Cayambe databases, via an Apache Kafka topic, to remove the need for
the Cayambe database to manage categories directly. This makes it possible to simply
feed the data from one database to another.

Without data streaming in figure 11.6, you have a few alternatives:

 Modify the Cayambe JAR to retrieve records from the Admin database. Quite
apart from it being bad data design to have different services interacting with
the same database, you found in chapter 10 that such a change in this case
would require a lot of code changes to accomplish.

 Develop a scheduled job to extract all the records from the Admin database,
and then clear out and insert those records into the Cayambe database. This is
simpler to implement but does result in periods where the data is out of sync,
and also where the data in Cayambe would be unavailable when the job to run
it is executing. Depending on how frequently the data changes, this may be an
acceptable solution, though having any scheduled downtime is far from ideal.

 Modify the Admin microservice to also update the records within the Cayambe
database. Though this would be easier to implement than the first option, this
solution is prone to problems around transactions and knowing whether both
updates were successful. It would require the Admin microservice to be a lot
smarter about succeeding or failing, and how to handle failures appropriately
in one of the database calls to roll back the other.

https://kafka.apache.org/intro.html

217Simplifying your monolith architecture with streaming

Data

Cayambe EAR

Admin UI

Admin
service

Admin data

Payment
service

Payment data
Stripe

service Kafka topic

Apache KafkaicroserviceM

Microservice

Microservice

Checkout
WAR Cart WAR

Web
common

JAR

Cayambe
JAR

Current Cayambe hybrid monolithFigure 11.6

To properly support the model in figure 11.6, you want to be able to convert the data-
base change events into records in Kafka for you to process. Such a solution has the
least impact on the Admin microservice while still enabling you to consume its data.
What you need is a connector for Kafka that can do this for you.

 Are any tools available that would make that possible? Why, yes, there are! Debe-
zium is an open source project for streaming changes out of databases into Kafka.

NOTE Debezium is a distributed platform for change data capture. You can
start Debezium, point it at your databases, and react to each insert, update, or
delete that’s made on those databases in completely separate applications.
Debezium allows you to consume database row-level changes, without any
impact or changes to applications that currently perform those database
updates directly. A huge benefit with Debezium is that any applications or ser-
vices consuming the database changes can be taken down for maintenance
without losing a single change. Debezium is still recording the changes into
Kafka, ready for consumption when the services are available again. Full
details on Debezium can be found at http://debezium.io/.

http://debezium.io/

218 CHAPTER 11 Data streaming with Apache Kafka

To gain a better understanding of Apache Kafka, data streaming, and how they can be
integrated into your microservices, you aren’t going to implement Debezium for the
Cayambe hybrid in this chapter. I’ll leave that as an additional exercise for you.

 For the Cayambe hybrid, you’re going to directly produce events into Apache
Kafka, and then consume them on the other side. Figure 11.7 shows the changes
you’re going to make to the architecture, in support of showing more details of the
way Apache Kafka works.

You’re adding code to the Admin microservice to produce events that will be sent to
an Apache Kafka topic. Then you have a Kafka microservice to consume those events
and update the Cayambe database with the changes.

 You’re still going to use data streaming to move the data you need from one place
to another, though not using something like Debezium will be a bit less efficient in
terms of real production use, but beneficial to understand what’s going on.

Data

Cayambe EAR

Admin UI

Admin
service

Admin data

Payment
service

Payment data
Stripe

service Kafka topic

Apache Kafka

Kafka
service

Microservice Microservice

Microservice

Microservice

Checkout
WAR Cart WAR

Web
common

JAR

Cayambe
JAR

Cayambe hybrid monolithFigure 11.7

219Deploying and using Kafka for data streaming

11.3 Deploying and using Kafka for data streaming
Before looking at implementing the microservices to integrate with Kafka, let’s get
Kafka up and running on OpenShift! If you don’t have Minishift running already, let’s
start it now just as you did in chapter 10:

> minishift start --cpus 3 --memory 4GB

11.3.1 Kafka on OpenShift

After Minishift is up and running, start the OpenShift console and log in. In your
existing project, click Add to Project and then click Import YAML/JSON.

 Paste into the text box the contents of /chapter11/resources/Kafka_OpenShift
.yml, some snippets of which are in this listing.

apiVersion: v1
kind: Template
metadata:
 name: strimzi
 annotations:
 openshift.io/display-name: "Apache Kafka (Persistent storage)"
 description: >-
 This template installs Apache Zookeeper and Apache Kafka clusters. For
 more information
 see https://github.com/strimzi/strimzi
 tags: "messaging,datastore"
 iconClass: "fa pficon-topology"
 template.openshift.io/documentation-url:

"https://github.com/strimzi/strimzi"
message: "Use 'kafka:9092' as bootstrap server in your application"
...
objects:
- apiVersion: v1
 kind: Service
 metadata:
 name: kafka
 spec:
 ports:
 - name: kafka
 port: 9092
 targetPort: 9092
 protocol: TCP
 selector:
 name: kafka
 type: ClusterIP
...
- apiVersion: v1
 kind: Service
 metadata:
 name: zookeeper
 spec:

Listing 11.1 Kafka OpenShift template

strimzi is the name of the application
that will appear within OpenShift.

Defines the kafka service

kafka service will be
available on port 9092.

Defines the zookeeper service

220 CHAPTER 11 Data streaming with Apache Kafka

 ports:
 - name: clientport
 port: 2181
 targetPort: 2181
 protocol: TCP
 selector:
 name: zookeeper
 type: ClusterIP
...

Hold on there, what’s ZooKeeper doing there? It wasn’t mentioned before! That’s
right, it wasn’t mentioned before. ZooKeeper is an implementation detail because it’s
used internally by Kafka as a distributed key/value store. It’s not something you need
to interact with. You’re seeing it here because you’re acting as operations staff to set
up Kafka for yourself.

 /chapter11/resources/Kafka_OpenShift.yml was originally copied from
http://mng.bz/RqUn, but was modified to have only a single Kafka broker instead of
three. As a result, it doesn’t support topic replication, but your OpenShift instance
needs fewer resources to run Kafka!

 After you’ve pasted the contents of the modified file into the pop up, click Create
and then Continue to see a form where you can specify different default values. For
now, leave those as they are and click Create at the bottom of the page. OpenShift will
now provision a Kafka cluster with a single broker, which you can see from the main
console page under the strimzi application.

WARNING It can take a little time to complete the downloading of the neces-
sary Docker images and then start the containers. Don’t be concerned if the
Kafka cluster fails initially if ZooKeeper isn’t running yet. Given time, it’ll
restart, and everything will be running as expected.

After all the pods are started, open a terminal window and log into the OpenShift cli-
ent, if you’re not already. You need to retrieve all the OpenShift services to find the
URL for ZooKeeper:

> oc get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

<none> 9092/TCP 5h172.30.225.60kafka
kafka-headless None <none> 9092/TCP 5h

<none> 2181/TCP 5h172.30.93.118zookeeper
zookeeper-headless None <none> 2181/TCP 5h

From the list, you can see the ZooKeeper URL is 172.30.93.118. Head back to the
OpenShift console and select Applications and then Pods from the menu options.
This provides a list of the running pods in OpenShift. With a single broker, there
should be only a single kafka-* pod. Click that Pod and then select the Terminal tab,
and you should see something similar to figure 11.8.

zookeeper service is
available on port 2181.

http://mng.bz/RqUn

221Deploying and using Kafka for data streaming

To use Kafka, you need to create a topic for your records. Let’s do that within the Ter-
minal tab:

./bin/kafka-topics.sh --create --topic category_topic --replication-factor

➥ 1 --partitions 1 --zookeeper 172.30.93.118:2181

You use a Kafka script to create a topic named category_topic that has only a single
partition and a single replication. You specify only single replication and partition
because you have a single broker in the cluster. For instance, if you had three brokers
in the cluster, you could use three partitions and a replication factor of 2.

11.3.2 Admin microservice

Now that Kafka is running and your topic is created, it’s time to modify the Admin
microservice to produce events onto the topic!

 To assist in integrating your Enterprise Java code with Kafka, you’ll use a library
that converts the pull approach of Kafka into a push approach. This library is still in its
infancy but is easy to use because it removes a lot of the boilerplate code that’s
required when using the Kafka APIs directly. It’s written as a CDI extension and is
available as Maven artifacts for you to consume. The code is available at
https://github.com/aerogear/kafka-cdi.

 What’s the advantage of converting Kafka’s pull approach into a push one? It’s ben-
eficial for those of us more familiar with Enterprise Java development, where with the
CDI programming model we’re able to listen for events and perform an action when
we receive one. This is what the Kafka library we’re using brings for us, the ability to
listen for events every time a new record is written to a topic, just as if it were a CDI
event listener.

 The first thing you need to do is update the pom.xml of the Admin microservice to
use the new dependency:

OpenShift pod terminalFigure 11.8

https://github.com/aerogear/kafka-cdi

222 CHAPTER 11 Data streaming with Apache Kafka

<dependency>
 <groupId>org.aerogear.kafka</groupId>
 <artifactId>kafka-cdi-extension</artifactId>
 <version>0.0.10</version>
</dependency>

Next you modify CategoryResource to connect with the Kafka topic, and produce
records to be appended onto it.

@Path("/")
@ApplicationScoped
@KafkaConfig(bootstrapServers =

➥ "#{KAFKA_SERVICE_HOST}:#{KAFKA_SERVICE_PORT}")
public class CategoryResource {
...
 @Producer
 private SimpleKafkaProducer<Integer, Category> producer;
...
 public Response create(Category category) throws Exception {
...
 producer.send("category_topic", category.getId(), category);
...
 public Response remove(@PathParam("categoryId") Integer categoryId,
 @Context SecurityContext context) throws Exception {
...
 producer.send("category_topic", categoryId, null);
...
}

With the changes made to the Admin microservice, you can now deploy it! Before
deploying the microservice, you need to have Keycloak running, because your micro-
service uses it to secure the delete endpoint. To do that, you need to run this:

/chapter9/keycloak> java -Dswarm.http.port=9090 -jar

➥ keycloak-2018.1.0-swarm.jar

If the database files haven’t been removed from the directory, Keycloak should start
up and remember all the settings you’ve installed previously. With Keycloak running
again, you can now deploy Admin:

/chapter11/admin> mvn clean fabric8:deploy -Popenshift

Listing 11.2 CategoryResource

Identifies the Kafka server you’re connecting to. You can
use environment variables for the host and port because
you’re deploying the microservice into the same
OpenShift namespace as Kafka.

Inject a CDI producer that
accepts an Integer as key

and Category as value.

create() was modified to call send() after the new
Category was created. It indicates the topic you’re
sending the record to, along with the key and value.

remove() was modified in a similar
manner. The main difference with

create() is that you’re passing a
null value because there’s no

longer a valid value.

223Deploying and using Kafka for data streaming

After the microservice is up and running, you can use the new Administration UI, or
via HTTP requests directly with Postman, to update and delete categories. How do
you know the Admin microservice is correctly putting records onto the Kafka topic?
You don’t have anything consuming those records!

 Thankfully, Kafka provides a consumer you can use in a console to see the contents
of a topic. In the OpenShift console, you go back to the kafka-* pod, as you had
before, and select the Terminal tab. On the command line, run the following:

./bin/kafka-console-consumer.sh --bootstrap-server 172.30.225.60:9092 –

➥ from-beginning --topic category_topic

Alternatively, you could connect to the kafka-* pod and run the command remotely:

oc rsh kafka-<identifier>
./bin/kafka-console-consumer.sh --bootstrap-server 172.30.225.60:9092 –

➥ from-beginning --topic category_topic

You used the IP address and port of the Kafka service from the list of OpenShift ser-
vices you retrieved earlier to specify where Kafka is located. Next you tell the script
you want to consume all records from the beginning, which is the same as saying from
offset 0. Finally, you give it the name of the topic. If all has worked OK, you should see
a record appear for each change you made through the Admin microservice.

 We’ve covered the producing side of the Kafka topic. Now let’s look at the consum-
ing side.

11.3.3 Kafka consumer

All the code for the Kafka consumer is in the /chapter11/kafka-consumer/ directory
of the book’s code. As with the producer, you add the kafka-cdi-extension depen-
dency to the pom.xml. The remainder of the pom.xml contains the usual Thorntail
plugin and dependencies, and the fabric8 Maven plugin for deploying to OpenShift.
You also specify a MySQL JDBC driver dependency so you can update the records
within the Cayambe database.

 For connecting to the Cayambe database, you need to define a DataSource.

swarm:
 datasources:
 data-sources:
 CayambeDS:
 driver-name: mysql
 connection-url: jdbc:mysql://mysql:3306/cayambe
 user-name: cayambe
 password: cayambe
 valid-connection-checker-class-name:

org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker

Listing 11.3 project-defaults.yml

Name of the
DataSource in

JNDI. Uses the module created
from the MySQL JDBC
driver dependency

URL to the MySQL
database instance
on OpenShift

Credentials
for the

Cayambe
database

224 CHAPTER 11 Data streaming with Apache Kafka

 validate-on-match: true
 background-validation: false
 exception-sorter-class-name:

org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter

Finally, you create a class to process the records from the Kafka topic, as you receive
them.

@ApplicationScoped
@KafkaConfig(bootstrapServers =

➥ "#{KAFKA_SERVICE_HOST}:#{KAFKA_SERVICE_PORT}")
public class CategoryEventListener {

 private static final String DATASOURCE =
"java:/jboss/datasources/CayambeDS";

 @Consumer(topics = "category_topic", keyType = Integer.class,
 groupId = "cayambe-listener", offset = "earliest")
 public void handleEvent(Integer key, Category category) {
 if (null == category) {
 // Remove Category
 executeUpdateSQL("delete from category where category_id = " + key);
 // Remove from Category Hierarchy
 executeUpdateSQL("delete from category_category where category_id = " +

➥ key);
 executeUpdateSQL("delete from category_category where parent_id = " +

➥ key);
 } else {
 boolean update = rowExists("select * from category where category_id = "

➥ + key);
 if (update) {
 // Update Category
 executeUpdateSQL("update category set name = '" + category.getName()
 + "' header = '" + category.getHeader()
 + "' image = '" + category.getImagePath()
 + "' where category_id = " + key);
 } else {
 // Create Category
 executeUpdateSQL("insert into category (id,name,header,visible,image)

➥ values("
 + key + ",'" + category.getName() + "', '"
 + category.getHeader() + "', " +

➥ (category.isVisible() ? 1 : 0)
 + ", '" + category.getImagePath() + "')");

Listing 11.4 CategoryEventListener

As you did on the
producer, you define
the Kafka host and port
for the configuration.

The JNDI name for the
CayambeDS that you created with
project-defaults.yml. It’s used by

getDatasource(), so you can
update the Cayambe database

with changed Categories.

@Consumer identifies the
method as accepting Kafka topic

records, and provides the
necessary configuration to wire it
up to the Kafka API. It defines the

name of the topic you want
records from, the type of the key,

a unique consumer group
identifier, and that you want the

offset to start at the beginning of
the topic.

Method to receive the Kafka record, with parameters
for the key and value types to be passed

Execute
the SQL to

remove the
category.

Execute the SQL to remove the category from the
category hierarchy, either as a child or parent.

Execute SQL to determine if a row for a category ID already exists.
Determines whether you're updating or inserving a record.

Execute SQL to update the
fields on a category in the
database.

Execute SQL to insert the new category into the
database, and insert it into the category hierarchy.

225Deploying and using Kafka for data streaming

 executeUpdateSQL("insert into category_category (category_id,

➥ parent_id)"
 + " values (" + category.getId() + "," +

➥ category.getParent().getId() + ")");
 }
 }
 }

 private void executeUpdateSQL(String sql) {
 Statement statement = null;
 Connection conn = null;

 try {
 conn = getDatasource().getConnection();
 statement = conn.createStatement();
 statement.executeUpdate(sql);
 statement.close();
 conn.close();
 } catch (Exception e) {
 ...
 }
 }
boolean rowExists(String sql) {
 Statement statement = null;
 Connection conn = null;
 ResultSet results = null;

 try {
 conn = getDatasource().getConnection();
 statement = conn.createStatement();
 results = statement.executeQuery(sql);
 return results.next();
 } catch (Exception e) {
 ...
 }
 return false;
 }

 private DataSource getDatasource() {
 if (null == dataSource) {
 try {
 dataSource = (DataSource) new InitialContext().lookup(DATASOURCE);
 } catch (NamingException ne) {
 ne.printStackTrace();
 }
 }
 return dataSource;
 }

 private DataSource dataSource = null;
}

CategoryEventListener registers a method to listen to the Kafka events, by defining
the key type, value type, which topic you’re processing, a consumer group, and that

Method to handle SQL
update execution.

Method to check if a Category
row exists in the database.

Method for retrieving the
DataSource from JNDI.

226 CHAPTER 11 Data streaming with Apache Kafka

you want to process all records in the stream from the beginning. When you receive a
Kafka record, you then determine whether you need to remove a category, the value is
null, or whether we’re processing a new or updated record.

 To distinguish between update and new categories, you execute an SQL statement
on the existing categories in Cayambe to see whether this record exists. If it does, it’s
an update record; if it doesn’t, it’s a new one.

 If you didn’t want the overhead of running an SQL statement to determine
whether you’re dealing with an update or a new category, you could change the value
type for the records in Kafka to be an enclosing object. The Category instance, the
current value, can be a field on a new type, with a flag to indicate the type of change
event that’s being dealt with.

 Now that you’ve finished developing the Kafka consumer, you’re ready to see it all
working in unison! But before you deploy the Kafka consumer you just created, to see
the visual changes as they happen, it’s worth starting up the Cayambe hybrid from
chapter 10 with the following:

/wildfly-11.0.0.Final/bin/standalone.sh

With Cayambe started, open a browser and navigate around the category tree. You
should notice that any changes you made through the Admin microservice aren’t visi-
ble, which makes sense because you haven’t activated the process to update the
Cayambe database with any changes. So let’s start your Kafka consumer now:

/chapter11/kafka-consumer> mvn clean fabric8:deploy -Popenshift

When the pod becomes operational, it should process all the records that are present
on the Kafka topic, because you specified for it to begin at the earliest offset on the
topic. You can open the logs of the service and see the console statements that were
printed for each record processed.

 With the records processed by the Kafka consumer, go back to the Cayambe UI
and refresh the page. When navigating through the category tree and finding catego-
ries that were changed through the Admin microservice, you’ll notice that they’re
now updated or removed based on what you did earlier.

 You’ve successfully decoupled the data between the two systems so that one owns
the data, the Admin microservice, and the other consumes a copy of it in a read-only
manner. As an added benefit, as long as the Kafka producers and consumers are func-
tioning, the data never becomes stale.

Additional exercises11.4
As discussed earlier in the chapter, for an additional exercise, try converting the
Cayambe hybrid to use Debezium to process database entries directly, instead of by
you producing records within the Admin microservice.

227Summary

 This will also provide another benefit over the current solution, as the category
hierarchy can be completely reconstructed from the Kafka topic records whenever
needed. The hierarchy will contain records for all the initial inserts you did to load
the database initially, as well as any insertions, updates, and removals that have
occurred since then.

Summary
 Data streaming simplifies an architecture by enabling separate components or

microservices to remain decoupled, while still using the same data.
 You can use data streaming with Apache Kafka to share data among microser-

vices and applications without the need for REST calls to retrieve it.

NOTE Additional details on developing microservices with Spring Boot can
be found in the appendix.

appendix
Spring Boot microservices

Throughout the book, we’ve focused on developing microservices for Enterprise Java
with Thorntail. This appendix provides details on developing microservices with
Spring Boot. Included are snippets from Spring Boot in Action by Craig Walls (Man-
ning, 2015). If you’re particularly focused on Spring Boot microservices, taking a
look at this book for further details would be worthwhile (see www.manning.com/
books/spring-boot-in-action).

Anatomy of a Spring Boot project
This section contains snippets from section 2.1.1 of Spring Boot in Action, outlining
the parts of a Spring Boot application and its requirements.

Examining a newly initialized Spring Boot project

Figure 1 illustrates the structure of a Spring Boot reading-list project.

Structure of reading-list projectFigure 1

229

https://www.manning.com/books/spring-boot-in-action
https://www.manning.com/books/spring-boot-in-action
https://www.manning.com/books/spring-boot-in-action

230 APPENDIX Spring Boot microservices

The first thing to notice is that the project structure follows the layout of a typical
Maven or Gradle project. The main application code is placed in the src/main/java
branch of the directory tree, resources are placed in the src/main/resources branch,
and test code is placed in the src/test/java branch. At this point, you don’t have any
test resources, but if you did, you’d put them in src/test/resources.

 Digging deeper, you’ll see a handful of files sprinkled about the project:

 build.gradle—The Gradle build specification
 ReadingListApplication.java—The application’s bootstrap class and primary

Spring configuration class
 application.properties—A place to configure application and Spring Boot proper-

ties
 ReadingListApplicationTests.java—A basic integration test class

The build specification contains a lot of Spring Boot goodness to uncover, so I’ll save
inspection of it until last. Instead, we’ll start with ReadingListApplication.java.

Bootstrapping Spring

The ReadingListApplication class serves two purposes in a Spring Boot application:
configuration and bootstrapping. First, it’s the central Spring configuration class.
Even though Spring Boot autoconfiguration eliminates the need for a lot of Spring
configuration, you’ll need at least a small amount of Spring configuration to enable
autoconfiguration. As you can see in this listing, there’s only one line of configuration
code.

package readinglist;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class ReadingListApplication {

 public static void main(String[] args) {
 SpringApplication.run(ReadingListApplication.class, args);
 }

}

@SpringBootApplication enables Spring component scanning and Spring Boot autocon-
figuration. In fact, @SpringBootApplication combines three other useful annotations:

 Spring’s @Configuration—Designates a class as a configuration class using
Spring’s Java-based configuration. Although you won’t write a lot of configura-
tion in this book, you’ll favor Java-based configuration over XML configuration
when you do.

Listing 1 ReadingListApplication

Enable component-scanning
and autoconfiguration.

Bootstrap the
application.

231Anatomy of a Spring Boot project

 Spring’s @ComponentScan—Enables component scanning so that the web con-
troller classes and other components you write will be automatically discovered
and registered as beans in the Spring application context. Later in this appen-
dix, you’ll write a simple Spring MVC controller that will be annotated with
@Controller so that component scanning can find it.

 Spring Boot’s @EnableAutoConfiguration—This humble little annotation might
as well be named @Abracadabra because it’s the one line of configuration that
enables the magic of Spring Boot autoconfiguration. This one line keeps you
from having to write the pages of configuration that would be required otherwise.

In older versions of Spring Boot, you’d annotate the ReadingListApplication class with
all three of these annotations. But since Spring Boot 1.2.0, @SpringBootApplication is
all you need.

 As I said, ReadingListApplication is also a bootstrap class. There are several ways
to run Spring Boot applications, including traditional WAR file deployment. But for
now, the main() method here enables you to run your application as an executable JAR
file from the command line. It passes a reference to the ReadingListApplication
class to SpringApplication.run(), along with the command-line arguments, to kick
off the application.

 Even though you haven’t written any application code, you can still build the appli-
cation at this point and try it out. The easiest way to build and run the application is to
use the bootRun task with Gradle:

$ gradle bootRun

The bootRun task comes from Spring Boot’s Gradle plugin. Alternatively, you can
build the project with Gradle and run it with Java at the command line:

$ gradle build
...
$ java -jar build/libs/readinglist-0.0.1-SNAPSHOT.jar

The application should start up fine and enable a Tomcat server listening on port
8080. You can point your browser at http://localhost:8080 if you want, but because
you haven’t written a controller class yet, you’ll be met with an HTTP 404 (Not
Found) error and an error page. Before this appendix is finished, though, that URL
will serve your reading-list application.

 You’ll almost never need to change ReadingListApplication.java. If your applica-
tion requires any additional Spring configuration beyond what Spring Boot autocon-
figuration provides, it’s usually best to write it into separate @Configuration-
configured classes. (They’ll be picked up and used by component scanning.)
In exceptionally simple cases, though, you could add custom configuration to
ReadingListApplication.java.

232 APPENDIX Spring Boot microservices

Testing Spring Boot applications

The Initializr also gives you a skeleton test class to help you get started with writing
tests for your application. But ReadingListApplicationTests, shown in the following
listing, is more than just a placeholder for tests. It also serves as an example of how to
write tests for Spring Boot applications. @SpringApplicationConfiguration loads a
Spring application context.

package readinglist;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.SpringApplicationConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.test.context.web.WebAppConfiguration;

import readinglist.ReadingListApplication;

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(
 classes = ReadingListApplication.class)
@WebAppConfiguration
public class ReadingListApplicationTests {

 @Test
 public void contextLoads() {
 }

}

In a typical Spring integration test, you’d annotate the test class with @ContextConfig-
uration to specify how the test should load the Spring application context. But in order
to take full advantage of Spring Boot magic, the @SpringApplicationConfiguration
annotation should be used instead. As you can see in listing 2, ReadingListApplica-
tionTests is annotated with @SpringApplicationConfiguration to load the Spring
application context from the ReadingListApplication configuration class.

 ReadingListApplicationTests also includes one simple test method, context-
Loads(). It’s so simple, in fact, that it’s an empty method. But it’s sufficient for the
purpose of verifying that the application context loads without any problems. If the
configuration defined in ReadingListApplication is good, the test will pass. If any
problems exist, the test will fail.

 You’ll add some of your own tests as we flesh out the application. But the context-
Loads() method is a fine start and verifies every bit of functionality provided by the
application at this point.

Listing 2 ReadingListApplicationTests

Load context via
Spring Boot.

Test that the
context loads.

233Spring Boot starter dependencies

Configuring application properties

The application.properties file given to you by the Initializr is initially empty. This file
is optional, so you could remove it completely without impacting the application. But
there’s also no harm in leaving it in place.

 You’ll definitely find opportunity to add entries to application.properties later. For
now, however, if you want to poke around with application.properties, try adding the
following line:

server.port=8000

With this line, you’re configuring the embedded Tomcat server to listen on port 8000
instead of the default port 8080. You can confirm this by running the application
again.

 This demonstrates that the application.properties file comes in handy for fine-
grained configuration of the stuff that Spring Boot automatically configures. But you
can also use it to specify properties used by application code.

 The main thing to notice is that at no point do you explicitly ask Spring Boot to
load application.properties for you. By virtue of the fact that application.properties
exists, it will be loaded and its properties made available for configuring both Spring
and application code.

Spring Boot starter dependencies
This section provides information about the Spring Boot starters and how they’re
used.

Using starter dependencies

To understand the benefit of Spring Boot starter dependencies, let’s pretend that they
don’t exist. What kind of dependencies would you add to your build without Spring
Boot? Which Spring dependencies do you need in order to support Spring MVC? Do
you remember the group and artifact IDs for Thymeleaf, or any external dependency?
Which version of Spring Data JPA should you use? Are all of these compatible?

 Uh-oh. Without Spring Boot starter dependencies, you have some homework to
do. All you want to do is develop a Spring web application with Thymeleaf views that
persists its data via JPA. But before you can even write your first line of code, you have
to figure out what needs to be put into the build specification to support your plan.

 After much consideration (and probably a lot of copy-and-paste from another
application’s build that has similar dependencies), you arrive at the following depen-
dencies block in your Gradle build specification:

compile("org.springframework:spring-web:4.1.6.RELEASE")
compile("org.thymeleaf:thymeleaf-spring4:2.1.4.RELEASE")
compile("org.springframework.data:spring-data-jpa:1.8.0.RELEASE")
compile("org.hibernate:hibernate-entitymanager:jar:4.3.8.Final")
compile("com.h2database:h2:1.4.187")

234 APPENDIX Spring Boot microservices

This dependency list is fine and might even work. But how do you know? What kind of
assurance do you have that the versions you chose for those dependencies are even
compatible with each other? They might be, but you won’t know until you build the
application and run it. And how do you know that the list of dependencies is com-
plete? With not a single line of code having been written, you’re still a long way from
kicking the tires on your build.

 Let’s step back and recall what it is you want to do. You’re looking to build an
application with these traits:

 It’s a web application.
 It uses Thymeleaf.
 It persists data to a relational database via Spring Data JPA.

Wouldn’t it be simpler if you could specify those facts in the build and let the build
sort out what you need? That’s exactly what Spring Boot starter dependencies do.

Specifying facet-based dependencies

Spring Boot addresses project dependency complexity by providing several dozen
starter dependencies. A starter dependency is essentially a Maven POM that defines tran-
sitive dependencies on other libraries that together provide support for a certain
functionality. Many of these starter dependencies are named to indicate the facet or
kind of functionality they provide.

 For example, the reading-list application is going to be a web application. Rather
than add several individually chosen library dependencies to the project build, it’s
much easier to simply declare that this is a web application. You can do that by adding
Spring Boot’s web starter to the build.

 You also want to use Thymeleaf for web views and persist data with JPA. Therefore,
you need the Thymeleaf and Spring Data JPA starter dependencies in the build.

 For testing purposes, you also want libraries that will enable you to run integration
tests in the context of Spring Boot. Therefore, you also want a test-time dependency
on Spring Boot’s test starter.

 Taken altogether, you have the following five dependencies that the Initializr pro-
vides in the Gradle build:

dependencies {
compile "org.springframework.boot:spring-boot-starter-web"
compile "org.springframework.boot:spring-boot-starter-thymeleaf"
compile "org.springframework.boot:spring-boot-starter-data-jpa"
compile "com.h2database:h2"
testCompile("org.springframework.boot:spring-boot-starter-test")

}

As you saw earlier, the easiest way to get these dependencies into your application’s
build is to select the Web, Thymeleaf, and JPA check boxes in the Initializr. But if you
didn’t do that when initializing the project, you can certainly go back and add them by
editing the generated build.gradle or pom.xml.

235Spring Boot starter dependencies

 Via transitive dependencies, adding these four dependencies is the equivalent of
adding several dozen individual libraries to the build. Some of those transitive depen-
dencies include such things as Spring MVC, Spring Data JPA, and Thymeleaf, as well
as any transitive dependencies that those dependencies declare.

 The most important thing to notice about the four starter dependencies is that
they’re only as specific as they need to be. You don’t say that you want Spring MVC;
you simply say that you want to build a web application. You don’t specify JUnit or any
other testing tools; you just say that you want to test your code. The Thymeleaf and
Spring Data JPA starters are a bit more specific, but only because there’s no less-
specific way to declare that you want Thymeleaf and Spring Data JPA. The four starters
in this build are only a few of the many starter dependencies that Spring Boot offers.

 In no case did you need to specify the version. The starter dependencies’ versions
are determined by which Spring Boot version you’re using. The starter dependencies
themselves determine the versions of the various transitive dependencies that they
pull in.

 Not knowing what versions of the various libraries are used may be a little unset-
tling to you. Be encouraged to know that Spring Boot has been tested to ensure that
all of the dependencies pulled in are compatible. It can be liberating to just specify a
starter dependency and not have to worry about which libraries and which versions of
those libraries you need to maintain.

 But if you must know what you’re getting, you can always discover that from the
build tool. In the case of Gradle, the dependencies task will give you a dependency
tree that includes every library that your project is using and their versions:

$ gradle dependencies

You can get a similar dependency tree from a Maven build with the tree goal of the
dependency plugin:

$ mvn dependency:tree

For the most part, you should never concern yourself with the specifics of what each
Spring Boot starter dependency provides. Generally, it’s enough to know that the web
starter enables you to build a web application, the Thymeleaf starter enables you to
use Thymeleaf templates, and the Spring Data JPA starter enables data persistence to
a database by using Spring Data JPA.

 But what if, in spite of the testing performed by the Spring Boot team, there’s a
problem with a starter dependency’s choice of libraries? How can you override the
starter?

Overriding starter transitive dependencies

Ultimately, starter dependencies are just dependencies like any other dependency in
your build. You can use the facilities of the build tool to selectively override transitive

236 APPENDIX Spring Boot microservices

dependency versions, exclude transitive dependencies, and certainly specify depen-
dencies for libraries not covered by Spring Boot starters.

 For example, consider Spring Boot’s web starter. Among other things, the web
starter transitively depends on the Jackson JSON library. This library is handy if you’re
building a REST service that consumes or produces JSON resource representations.
But if you’re using Spring Boot to build a more traditional human-facing web applica-
tion, you may not need Jackson. Even though including it shouldn’t hurt anything,
you can trim the fat off of your build by excluding Jackson as a transitive dependency.

 If you’re using Gradle, you can exclude transitive dependencies like this:

compile("org.springframework.boot:spring-boot-starter-web") {
 exclude group: 'com.fasterxml.jackson.core'
}

In Maven, you can exclude transitive dependencies with the <exclusions> element.
The following <dependency> for the Spring Boot web starter has <exclusions> to
keep Jackson out of the build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>com.fasterxml.jackson.core</groupId>
 </exclusion>
 </exclusions>
</dependency>

Conversely, maybe having Jackson in the build is fine, but you want to build against a
different version of Jackson than what the web starter references. Suppose that the
web starter references Jackson 2.3.4, but you’d rather use version 2.4.3. Using
Maven, you can express the desired dependency directly in your project’s pom.xml
file like this:

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.4.3</version>
</dependency>

Maven always favors the closest dependency, meaning that because you’ve expressed
this dependency in your project’s build, it’ll be favored over the one that’s transitively
referred to by another dependency.

 Similarly, if you’re building with Gradle, you can specify the newer version of Jack-
son in your build.gradle file like this:

compile("com.fasterxml.jackson.core:jackson-databind:2.4.3")

237Developing a Spring Boot application

This dependency works in Gradle because it’s newer than the version transitively
referred to by Spring Boot’s web starter. But suppose that instead of using a newer ver-
sion of Jackson, you’d like to use an older version. Unlike Maven, Gradle favors the
newest version of a dependency. Therefore, if you want to use an older version of Jack-
son, you have to express the older version as a dependency in your build and exclude
it from being transitively resolved by the web starter dependency:

compile("org.springframework.boot:spring-boot-starter-web") {
 exclude group: 'com.fasterxml.jackson.core'
}
compile("com.fasterxml.jackson.core:jackson-databind:2.3.1")

In any case, be cautious when overriding the dependencies that are pulled in transi-
tively by Spring Boot starter dependencies. Although different versions may work fine,
a great amount of comfort can be taken from knowing that the versions chosen by the
starters have been tested to play well together. You should override these transitive
dependencies only under special circumstances (such as a bug fix in a newer version).

 Now that you have an empty project structure and build specification ready, it’s time
to start developing the application itself. As you do, you’ll let Spring Boot handle the
configuration details while you focus on writing the code that provides the reading-list
functionality.

Developing a Spring Boot application
In listing 3, you’ll further develop a Spring Boot application, with content from sec-
tion 2.3.1 of Spring Boot in Action.

Focusing on application functionality

One way to gain an appreciation of Spring Boot autoconfiguration would be for me to
spend the next several pages showing you the configuration that’s required in the
absence of Spring Boot. But several great books on Spring could show you that, and
showing it again wouldn’t help you get the reading-list application written any quicker.

 Instead of wasting time talking about Spring configuration, know that Spring Boot
is going to take care of that for you, so let’s see how taking advantage of Spring
Boot autoconfiguration keeps you focused on writing application code. I can think of
no better way to do that than to start writing the application code for the reading-
list application.

Defining the domain

The central domain concept in your application is a book that’s on a reader’s reading
list. Therefore, you’ll need to define an entity class that represents a book. Listing 3
shows how the Book type is defined.

238 APPENDIX Spring Boot microservices

package readinglist;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Book {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;
 private String reader;
 private String isbn;
 private String title;
 private String author;
 private String description;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getReader() {
 return reader;
 }

 public void setReader(String reader) {
 this.reader = reader;
 }

 public String getIsbn() {
 return isbn;
 }

 public void setIsbn(String isbn) {
 this.isbn = isbn;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

TheListing 3 Book class

239Developing a Spring Boot application

 public String getAuthor() {
 return author;
 }

 public void setAuthor(String author) {
 this.author = author;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }
}

As you can see, the Book class is a simple Java object with a handful of properties
describing a book and the necessary accessor methods. It’s annotated with @Entity
designating it as a JPA entity. The id property is annotated with @Id and @Generated-
Value to indicate that this field is the entity’s identity and that its value will be auto-
matically provided.

Defining the repository interface

Next you need to define the repository through which the ReadingList objects will
be persisted to the database. Because you’re using Spring Data JPA, that task is a sim-
ple matter of creating an interface that extends Spring Data JPA’s JpaRepository
interface:

package readinglist;

import java.util.List;
import org.springframework.data.jpa.repository.JpaRepository;

public interface ReadingListRepository extends JpaRepository<Book, Long> {

 List<Book> findByReader(String reader);
}

By extending JpaRepository, ReadingListRepository inherits 18 methods for per-
forming common persistence operations. The JpaRepository interface is parameter-
ized with two parameters: the domain type that the repository will work with, and the
type of its ID property. In addition, I’ve added a findByReader() method through
which a reading list can be looked up, given a reader’s username.

 If you’re wondering about who will implement ReadingListRepository and the 18
methods it inherits, don’t worry too much about it. Spring Data provides a special magic
of its own, making it possible to define a repository with just an interface. The interface
will be implemented automatically at runtime when the application is started.

240 APPENDIX Spring Boot microservices

Creating the web interface

Now that you’ve defined the application’s domain and have a repository for persisting
objects from that domain to the database, all that’s left is to create the web frontend. A
Spring MVC controller like the one in the following listing will handle HTTP requests
for the application.

Listing 4 ReadingListController

package readinglist;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;

import java.util.List;

@Controller
@RequestMapping("/")
public class ReadingListController {

private ReadingListRepository readingListRepository;

@Autowired
public ReadingListController(

ReadingListRepository readingListRepository) {
this.readingListRepository = readingListRepository;

}

@RequestMapping(value="/{reader}", method=RequestMethod.GET)
public String readersBooks(

@PathVariable("reader") String reader,
Model model) {

List<Book> readingList =
readingListRepository.findByReader(reader);

if (readingList != null) {
model.addAttribute("books", readingList);

}
return "readingList";

}

@RequestMapping(value="/{reader}", method=RequestMethod.POST)
public String addToReadingList(

 @PathVariable("reader") String reader, Book book) {
book.setReader(reader);
readingListRepository.save(book);
return "redirect:/{reader}";

}

}

241Developing a Spring Boot application

ReadingListController is annotated with @Controller in order to be picked up by
component scanning and automatically registered as a bean in the Spring application
context. It’s also annotated with @RequestMapping to map all of its handler methods
to a base URL path of “/”.

 The controller has two methods:

 readersBooks()—Handles HTTP GET requests for /{reader} by retrieving a
Book list from the repository (which was injected into the controller’s construc-
tor) for the reader specified in the path. It puts the list of Book into the model
under the key books and returns readingList as the logical name of the view to
render the model.

 addToReadingList()—Handles HTTP POST requests for /{reader}, binding the
data in the body of the request to a Book object. This method sets the Book
object’s reader property to the reader’s name, and then saves the modified
Book via the repository’s save() method. Finally, it returns by specifying a redi-
rect to /{reader} (which will be handled by the other controller method).

The readersBooks() method concludes by returning readingList as the logical view
name. Therefore, you must also create that view. I decided at the outset of this project
that we’d be using Thymeleaf to define the application views, so the next step is to cre-
ate a file named readingList.html in src/main/resources/templates with the follow-
ing content.

<html>
 <head>
 <title>Reading List</title>
 <link rel="stylesheet" th:href="@{/style.css}"></link>
 </head>

 <body>
 <h2>Your Reading List</h2>
 <div th:unless="${#lists.isEmpty(books)}">
 <dl th:each="book : ${books}">
 <dt class="bookHeadline">
 Title by
 Author
 (ISBN: ISBN)
 </dt>
 <dd class="bookDescription">
 <span th:if="${book.description}"
 th:text="${book.description}">Description

 No description available
 </dd>
 </dl>
 </div>
 <div th:if="${#lists.isEmpty(books)}">

readingList.htmlListing 5

242 APPENDIX Spring Boot microservices

 <p>You have no books in your book list</p>
 </div>

 <hr/>

 <h3>Add a book</h3>
 <form method="POST">
 <label for="title">Title:</label>
 <input type="text" name="title" size="50"></input>

 <label for="author">Author:</label>
 <input type="text" name="author" size="50"></input>

 <label for="isbn">ISBN:</label>
 <input type="text" name="isbn" size="15"></input>

 <label for="description">Description:</label>

 <textarea name="description" cols="80" rows="5">
 </textarea>

 <input type="submit"></input>
 </form>

 </body>
</html>

This template defines an HTML page that is conceptually divided into two parts. At
the top of the page is a list of books that are in the reader’s reading list. At the bottom
is a form that the reader can use to add a new book to the reading list.

 For aesthetic purposes, the Thymeleaf template references a stylesheet named
style.css. That file should be created in src/main/resources/static and look like this:

body {
 background-color: #cccccc;
 font-family: arial,helvetica,sans-serif;
}

.bookHeadline {
 font-size: 12pt;
 font-weight: bold;
}

.bookDescription {
 font-size: 10pt;
}

label {
 font-weight: bold;
}

This stylesheet is simple and doesn’t go overboard to make the application look nice.
But it serves our purposes and, as you’ll soon see, serves to demonstrate a piece of
Spring Boot’s autoconfiguration.

 Believe it or not, that’s a complete application. Every single line has been presented
to you in this appendix. Flip back through the previous pages, and see if you can find

243Spring Boot testing

any configuration. Aside from the three lines of configuration in listing 1 (which turns
on autoconfiguration), you didn’t have to write any Spring configuration.

 Despite the lack of Spring configuration, this complete Spring application is ready
to run. Let’s fire it up and see how it looks.

Spring Boot testing
This section provides information about testing with Spring Boot, by mocking parts of
Spring MVC. This section contains content from section 4.2.1 of Spring Boot in Action.

Mocking Spring MVC

Since Spring 3.2, the Spring Framework has had a useful facility for testing web appli-
cations by mocking Spring MVC. This makes it possible to perform HTTP requests
against a controller without running the controller within an actual servlet container.
Instead, Spring’s Mock MVC framework mocks enough of Spring MVC to make it
almost as though the application is running within a servlet container—but it’s not.

 To set up a Mock MVC in your test, you can use MockMvcBuilders. This class offers
two static methods:

 standaloneSetup()—Builds a Mock MVC to serve one or more manually cre-
ated and configured controllers

 webAppContextSetup()—Builds a Mock MVC using a Spring application con-
text, which presumably includes one or more configured controllers

The primary difference between these two options is that standaloneSetup()
expects you to manually instantiate and inject the controllers you want to test,
whereas webAppContextSetup() works from an instance of WebApplicationContext,
which itself was probably loaded by Spring. The former is slightly more akin to a unit
test in that you’ll likely use it only for focused tests around a single controller. The lat-
ter, however, lets Spring load your controllers as well as their dependencies for a full-
blown integration test.

 For our purposes, you’re going to use webAppContextSetup() so you can test the
ReadingListController as it has been instantiated and injected from the application
context that Spring Boot has autoconfigured.

 The webAppContextSetup() takes a WebApplicationContext as an argument.
Therefore, you need to annotate the test class with @WebAppConfiguration and use
@Autowired to inject the WebApplicationContext into the test as an instance variable.
This listing shows the starting point for your Mock MVC tests.

@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(
 classes = ReadingListApplication.class)
@WebAppConfiguration
public class MockMvcWebTests {

Listing 6 MockMvcWebTests

Enables web
context testing

244 APPENDIX Spring Boot microservices

 @Autowired
 private WebApplicationContext webContext;

 private MockMvc mockMvc;

 @Before
 public void setupMockMvc() {
 mockMvc = MockMvcBuilders
 .webAppContextSetup(webContext)
 .build();
 }
}

The @WebAppConfiguration annotation declares that the application context created
by SpringJUnit4ClassRunner should be a WebApplicationContext (as opposed to a
basic non-web ApplicationContext).

 The setupMockMvc() method is annotated with JUnit’s @Before, indicating that it
should be executed before any test methods. It passes the injected WebApplication-
Context into the webAppContextSetup() method and then calls build() to produce a
MockMvc instance, which is assigned to an instance variable for test methods to use.

 Now that you have MockMvc, you’re ready to write test methods. Let’s start with a
simple test method that performs an HTTP GET request against /readingList and
asserts that the model and view meet your expectations. The following homePage()
test method does what you need:

@Test
public void homePage() throws Exception {
 mockMvc.perform(MockMvcRequestBuilders.get("/readingList"))
 .andExpect(MockMvcResultMatchers.status().isOk())
 .andExpect(MockMvcResultMatchers.view().name("readingList"))
 .andExpect(MockMvcResultMatchers.model().attributeExists("books"))
 .andExpect(MockMvcResultMatchers.model().attribute("books",
 Matchers.is(Matchers.empty())));
}

As you can see, a lot of static methods are being used in this test method, including
static methods from Spring’s MockMvcRequestBuilders and MockMvcResultMatchers,
as well as from the Hamcrest library’s Matchers. Before diving into the details of this
test method, let’s add a few static imports so that the code is easier to read:

import static org.hamcrest.Matchers.*;

import static

➥ org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;
import static

➥ org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;

Injects
WebApplicationContext

Sets up MockMvc

245Spring Boot testing

With those static imports in place, the test method can be rewritten like this:

@Test
public void homePage() throws Exception {
 mockMvc.perform(get("/readingList"))
 .andExpect(status().isOk())
 .andExpect(view().name("readingList"))
 .andExpect(model().attributeExists("books"))
 .andExpect(model().attribute("books", is(empty())));
}

Now the test method almost reads naturally. First it performs a GET request against
/readingList. Then it expects that the request is successful (isOk() asserts an HTTP
200 response code) and that the view has a logical name of readingList. It also
asserts that the model contains an attribute named books, but that attribute is an
empty collection. It’s all straightforward.

 The main thing to note is that at no time is the application deployed to a web
server. Instead it’s run within a mocked-out Spring MVC, just capable enough to han-
dle the HTTP requests you throw at it via the MockMvc instance.

 Pretty cool, huh? Let’s try one more test method. This time you’ll make it a bit
more interesting by sending an HTTP POST request to post a new book. You should
expect that after the POST request is handled, the request will be redirected back to
/readingList and that the books attribute in the model will contain the newly added
book. The following listing shows how to use Spring’s Mock MVC to do this kind
of test.

@Test
public void postBook() throws Exception {
mockMvc.perform(post("/readingList")
 .contentType(MediaType.APPLICATION_FORM_URLENCODED)
 .param("title", "BOOK TITLE")
 .param("author", "BOOK AUTHOR")
 .param("isbn", "1234567890")
 .param("description", "DESCRIPTION"))
 .andExpect(status().is3xxRedirection())
 .andExpect(header().string("Location", "/readingList"));

Book expectedBook = new Book();
expectedBook.setId(1L);
expectedBook.setReader("craig");
expectedBook.setTitle("BOOK TITLE");
expectedBook.setAuthor("BOOK AUTHOR");
expectedBook.setIsbn("1234567890");
expectedBook.setDescription("DESCRIPTION");

mockMvc.perform(get("/readingList"))
 .andExpect(status().isOk())
 .andExpect(view().name("readingList"))

Listing 7 MockMvcWebTests

Performs
POST request

Sets up
expected book

Performs
GET request

246 APPENDIX Spring Boot microservices

 .andExpect(model().attributeExists("books"))
 .andExpect(model().attribute("books", hasSize(1)))
 .andExpect(model().attribute("books",
 contains(samePropertyValuesAs(expectedBook))));
}

This test is a bit more involved; it’s two tests in one method. The first part posts the
book and asserts the results from that request. The second part performs a fresh GET
request against the homepage and asserts that the newly created book is in the model.

 When posting the book, you must make sure that you set the content type to
application/x-www-form-urlencoded (with MediaType.APPLICATION_FORM_URLEN-
CODED) because that’s the content type that a browser will send when the book is
posted in the running application. You then use the MockMvcRequestBuilders’s
param() method to set the fields that simulate the form being submitted. After the
request has been performed, you assert that the response is a redirect to /readingList.

 Assuming that much of the test method passes, you move on to part 2. First, you set
up a Book object that contains the expected values. You’ll use this to compare with the
value that’s in the model after fetching the homepage.

 Then you perform a GET request for /readingList. For the most part, this is no dif-
ferent from the way you tested the homepage before, except that instead of an empty
collection in the model, you’re checking that it has one item, and that the item is the
same as the expected Book you created. If so, then your controller seems to be doing
its job of saving a book when one is posted to it.

Summary
 Select content from Spring Boot in Action covered additional details on develop-

ing microservices with Spring Boot.
 Further details on developing Spring Boot microservices can be found in Spring

Boot in Action (www.manning.com/books/spring-boot-in-action).

https://www.manning.com/books/spring-boot-in-action
http://www.manning.com/books/spring-boot-in-action

index

A

Add realm button, Keycloak 173
addOrUpdateItem() method 45, 48
addToReadingList() method 241
Admin microservice 202, 221–223
AdminApplication class 31
AdminClient class 75
administration site 25–35

architecture of application 28–29
creating endpoints with JAX-RS 30–33

adding categories 32–33
deleting categories 31
start microservice 34
start UI 34–35
viewing all categories 31

running 33–35
use cases 27

@Advertise annotation 129–130
Apache HttpClient 108–110
Apache Kafka, data streaming with 227

admin microservice 221–223
exercises 226–227
Kafka consumers 223–226
Kafka on OpenShift 219–221
overview of 211–213
records 214–215
simplifying monolith architecture with 216–218
topics 215–216

API layer 28
Application class 58
applications, architecture of 28–29
@ApplicationScoped annotation 31

architecture
data streaming, simplifed with 216–218
of Enterprise Java 4–6

Arquillian 66–67, 94
AsyncResponse class 107
asyncResponse.resume() method 108, 112
authenticating

in Payment resource 176–178
in UI 183–186

Auto Detect 56
@Autowired annotation 243

B

bearer token 171
Big Bang pattern 17
bootstrapping 230–231
Bounded Context pattern 11, 15
Browse Catalog option, OpenShift 204
bulkheads 149–151

C

CaaS (Containers as a Service) 85
CartController class 45, 47, 51
CartItem class 51
categoriesWithIdenticalParentIdAreEqual()

method 64
Category.hashCode() method 66
CategoryEventListener 225
CategoryListContainer 184
CategoryResource class 30–31, 80
CategoryResourceIT class 96
CategoryResourceTest class 68

247

INDEX248

CategoryTest class 63, 68
categoryUrl field 105
Cayambe hybrid-monolith with

microservices 194–202
deploying everything to hybrid cloud 203–210

admin UI 209
Cayambe EAR 209
database 204–206
security 206–207

integrating Admin microservice 202
integrating Payment microservice 196–202
new administration UI 202

Cayambe monolith
overview of 23–25, 189–194
running

database setup 191
running Cayambe 193–194
WildFly setup 191–193

ChargeTransformer class 132
circuit breakers 145–149
Circuit Health Data 146, 154
client-side load balancing 119
ClientJacksonProvider class 110
closed circuit 146
cloud

benefits of 84
deploying to 88
exercises for 97
microservice cloud deployment 89–94
native development 86–88
service models for 84–86
starting Minishift 88–89
testing in 94–97

@ComponentScan annotation 231
@Configuration annotation 230
ConfigureJacksonProvider class 70
Consul 126
consumer group 216
consumer-driven contract testing 74–82
ConsumerPactTest class 76, 82
consumers, Kafka 223–226
consuming microservices 116

with Java client library 105–110
Apache HttpClient 108–110
java.net 106–108

with JAX-RS client library 110–116
JAX-RS client 110–113
RESTEasy client 113–116

Containers as a Service (CaaS) 85
context map 17
contextLoads() method 232
continuous delivery 14–15
continuous integration 14–15
CORS (cross-origin resource sharing) 29
CORSFilter class 29

create() method 72, 74
createCategory() method 64
critical vulnerabilities (CVEs) 42
cross-origin resource sharing (CORS) 29
CRUD (Create, Read, Update, and Delete) 27
CVEs (critical vulnerabilities) 42

D

DAOs (data access objects) 24, 189
data layer 28
data streaming, with Apache Kafka 227

admin microservice 221–223
exercises 226–227
Kafka consumers 223–226
Kafka on OpenShift 219–221
overview of 211–213
records 214–215
simplifying monolith architecture with 216–218
topics 215–216

DDD (Domain-Driven Design) pattern 15–17, 190
Debezium 217
@DefaultDeployment annotation 68
@DELETE annotation 32
dependencies

autodetecting 56
facet-based, specifying 234–235
starter, using 233–234

dependency injection (DI) 59
deployment

Apache Kafka for data streaming 219–226
admin microservice 221–223
Kafka consumer 223–226
Kafka on OpenShift 219–221

microservice cloud 89–94
to cloud 88

DI (dependency injection) 59
DisplayResource 106
distributed architecture 10–15

benefits of 12–13
continuous integration and delivery 14–15
microservices

developing 14
well-designed 11

overview of 11
product over project 14

distributed monolith 11
distributed streaming platforms 213
Domain-Driven Design (DDD) pattern 15–17, 190
domain, defining 237–239
Dropwizard 46–49

INDEX 249

E

EAR (Enterprise Application aRchive) 194
Eclipse MicroProfile 43–44
EIS (enterprise information system) 37
EJBs (Enterprise JavaBeans) 24
@EnableAutoConfiguration annotation 231
endpoints, RESTful, creating with JAX-RS 30–33

adding category 32–33
deleting categories 31
starting microservice 34
starting UI 34–35
viewing all categories 31

Enterprise Application aRchive (EAR) 194
enterprise information system (EIS) 37
Enterprise Java

app server in JAR 49–53
architecture of 4–6
as good fit for microservices 21–22
microservices developed with 19–22
monoliths 6–10
overview of 4

Enterprise JavaBeans (EJBs) 24
EntityManager 31
event sourcing 17
ExecutorService 104
external users 165

F

fabric8 Maven plugin 89
facet-based dependencies, specifying 234–235
fallbacks 151–152
fat jar 12
fault tolerance and monitoring 163

microservice failures in distributed
architecture 138–141

mitigating against failures 142–157
bulkheads 149–151
circuit breakers 145–149
fallbacks 151–152
Hystrix Dashboard 155–157
Hystrix library 142–145
putting it all together 153–155
request caching 152–153

network failures 141–142
Payment microservice, adding Hystrix 158–163

Hystrix with RESTEasy client 158–161
Hystrix with Ribbon client 161–163

filtering 124
findByReader() method 239

G

@GET annotation 31
getAuthzClient method 177
getCategoryTreeAsync() method 107, 112
getCategoryTreeAsyncAlt() method 113
getItem() method 45, 48
greenfield development 4

H

HATEOAS (Hypermedia as the Engine of
Application State) 30

homogeneous networks 141
HR (Human Resources) information 37
@Http annotation 131
HttpClient, Apache 108–110
Human Resources (HR) information 37
hybrid cloud model 88
hybrid monolith, Cayambe 196
Hybrid pattern 18–19
Hypermedia as the Engine of Application State

(HATEOAS) 30
Hystrix Dashboard 155–157
Hystrix library

adding to Payment microservice 158–163
Hystrix with RESTEasy client 158–161
Hystrix with Ribbon client 161–163

overview of 142–145
HystrixCommand 143, 145, 150
HystrixObservableCommand 150

I

IaaS (Infrastructure as a Service) 85
idempotent operations 48
immutability 64–66
immutable records 214
inferior methods 113
Infrastructure as a Service (IaaS) 85
@Inject annotation 20
integration testing 66–74
internal users 165

J

JAR (Java Archive)
Java EE app server in 49–53
overview of 5

Java client library, consuming microservices
with 105–110

Apache HttpClient 108–110
java.net 106–108

Java EE profiles 38–39

INDEX250

java.net 106–108
JavaServer Pages (JSP) 189
JavaTimeModule 70
JAX-RS client library

consuming microservices with 110–116
JAX-RS client 110–113
RESTEasy client 113–116

endpoints created with 30–33
adding category 32–33
deleting category 31
starting microservice 34
starting UI 34–35
viewing all categories 31

JaxrsApplication class 52
JeAS (Just enough Application Server) 37–59

benefits of 41–43
Dropwizard 46–49
Eclipse MicroProfile 43–44
example application 44–46
JeAS runtimes, comparing 58–59
overview of 37–41
Payara Micro 49–53
Spring Boot 53–56
Thorntail 56–58

JGroups 126
JpaRepository interface 239
JSP (JavaServer Pages) 189
JUnit 62
Just enough Application Server (JeAS) 36

K

kafka-cdi-extension dependency 223
Keycloak 168–172

configuring 173–175
features of 168–169
setting up 169–172

L

language-independent services 13
LocalDateTime instance 69
location-independent services 12

M

mainClass 49
malicious external users 165
malicious internal user 166
ManagedExecutorService 112
microservices 59

cloud deployment 89–94
consuming 116

registered with Thorntail 131–137

with Java client library 105–110
with JAX-RS client library 110–116

continuous integration and delivery 14–15
design of 11
developed with Enterprise Java 19–22
developing 14
patterns for migration to 15–19

Big Bang pattern 17
DDD pattern 15–17
Hybrid pattern 18–19
Strangler pattern 18

product over project 14
registering with Thorntail 125–130
securing 187

aspects of 167–168
capturing user authentication 180–187
importance of 165–166
overview of 164–168
Stripe microservice 172–179
with Keycloak 168–172

service discovery 137
benefits of 120
importance of 118
Netflix Ribbon 123–124
overview of 119–120
stateless vs. stateful 123

stateless vs. stateful 123
testing 82

consumer-driven contract testing 74–82
exercises for 82
immutability 64–66
integration testing 66–74
resources for 82
types of 61
unit testing 62–64

well-designed 11
migration to microservices, patterns for 15–19

Big Bang pattern 17
DDD pattern 15–17
Hybrid pattern 18–19
Strangler pattern 18

Minikube 87
Minishift

overview of 87
starting in cloud 88–89

mock server 74
MockMvcRequestBuilders 244
MockMvcResultMatchers 244
mocks 62
monoliths

issues with 9–10
overview of 6–8
simplifying architecture of, with data

streaming 216–218
mvn test 71

INDEX 251

N

native development, cloud 86–88
Netflix Ribbon 123–124, 131–135
network failures 141–142

O

offset 215
open circuits 146
openshift profile 97
openshift-it profile 97
OpenShift, Kafka on 219–221
operations

idempotent 48
in CRUD 27

Order Bounded Context 16

P

PaaS (Platform as a Service) 85
Pact 75
partitions 215
Payment microservice 49–53, 119, 196–202
PaymentServiceResource class 159
persisted records 215
Platform as a Service (PaaS) 85
pods 92–93, 221
@POST annotation 32
Postman 133
presentation layer 28
private cloud model 88
Product Bounded Context 16
product over project 14
profiles, Jave EE 38–39
public cloud model 88
pull approach, Kafka 221
push approach, Kafka 221

Q

@QueryParam annotation 48

R

reactive 148
ReactJS 26
readersBooks() method 241

file 230ReadingListApplication.java
file 230ReadingListApplicationTests.java

realms, Keycloak 171
records 214–215
repository interface 239

request caching 152–153
@RequestMapping annotation 54, 241
@ResourceGroup annotation 137
response times, weighted 124
RESTEasy client 113–116

Hystrix with 158–161
service lookup with 135–137

RESTful microservices 35
Cayambe monolith 23–25
new administration site 25–35

architecture of application 28–29
creating endpoints with JAX-RS 30–33
running 33–35
use cases 27

Ribbon client, Hystrix with 161–163
Richardson Maturity Model 30
Round Robin 120, 124
@RunAsClient annotation 68
runtimes 11, 58–59
@RunWith annotation 68

S

SaaS (Software as a Service) 84–85
scaling 84
securing microservices 187

aspects of 167–168
capturing user authentication 180–187

configuring Keycloak 180–181
securing category deletion 182
testing new UI and service 186–187

importance of 165–166
overview of 164–168
Stripe microservice 172–179

authenticating in Payment resource 176–178
configuring Keycloak 173–175
securing Stripe resource 175–176
testing secured microservice 178–179

with Keycloak 168–172
features of 168–169
setting up 169–172

security 42
SEMAPHORE 150
server-sent events (SSEs) 127, 155
service catalog 86
service discovery 137

benefits of 120
importance of 118
Netflix Ribbon 123–124
overview of 119–120
stateless vs. stateful 123

service models, for cloud 84–86
service registry 119

INDEX252

services
language-independent 13
location-independent 12
undeploying 94

single-node cluster, Kubernetes 87
Software as a Service (SaaS) 84–85
Spring Boot 229–246

developing application 237–243
application functionality 237
creating web interface 240–243
defining domain 237–239
defining repository interface 239

overview of 53–56
parts of project 229–233

bootstrapping 230–231
configuring application properties 233
examining initialized project 229–230
testing Spring Boot applications 232

starter dependencies 233–237
overriding starter transitive

dependencies 235–237
specifying facet-based dependencies 234–235
using 233–234

testing 243–246
spring-boot-starter-data-jpa dependency 53
SpringApplication.run() method 231
@SpringApplicationConfiguration

annotation 232
@SpringBootApplication annotation 55, 230
SSEs (server-sent events) 127, 155
standaloneSetup() method 243
starter dependencies 233–237

overriding starter transitive dependencies
235–237

specifying facet-based dependencies 234–235
using 233–234

starters, Spring Boot 53
stateful vs. stateless microservices 123
static method 102
StockCommand class 147, 150
StockObservableCommand class 148, 152
Strangler pattern 18
Stripe microservice, securing 172–179

authenticating in Payment resource 176–178
configuring Keycloak 173–175
resource 175–176
testing secured microservice 178–179

StripeApplication class 128
StripeCommand class 158
StripeResource 175
StripeServiceFallbackHandler 162
stubs 62
SubmitOrderAction class 199

@Suspended annotation 107
swarm.port.offset property 104

T

@TemplateName annotation 131
TestCategoryObject class 64
testing

in cloud 94–97
microservices 82

consumer-driven contract testing 74–82
exercises for 82
immutability 64–66
integration testing 66–74
resources for 82
types of 61
unit testing 62–64

secured microservice 178–179
Spring Boot 232, 243–246
types of 61
UI and service 186–187

TestNG 62
Thorntail 56–58

consuming registered microservices with
131–137
service lookup with Netflix Ribbon 131–135
service lookup with RESTEasy client 135–137

overview of 33, 47
registering microservices with 125–130

thread pools 150
Thymeleaf 233, 235
topics, in Apache Kafka 215–216
topologies, Thorntail 125–130

@advertise 129–130
Topology.lookup() method 130

topology-webapp dependency 127, 134
Topology.lookup() method 130

U

uber jars 11
unit testing 62–64
upgrades 42
user authentication 180–187

authenticating user in UI 183–186
configuring Keycloak 180–181
securing category deletion 182
testing new UI and service 186–187

V

vendor support 21
VM (virtual machine) 203

INDEX 253

W

@WebAppConfiguration annotation 243
webAppContextSetup() method 243–244
WebApplicationContext 243
weighted response time 124
well-designed microservices 11
WildFly setup 33, 191–193

X

@XmlRootElement annotation 54, 58

Z

zero latency 140
ZooKeeper 220

RELATED MANNING TITLES

The Tao of Microservices
by Richard Rodger

ISBN: 9781617293146
328 pages, $49.99
December 2017

Microservices Patterns
With examples in Java
by Chris Richardson

ISBN: 9781617294549
477 pages, $49.99
October 2018

Spring Microservices in Action
by John Carnell

ISBN: 9781617293986
384 pages, $49.99
June 2017

Microservices in .NET Core
with examples in Nancy
by Christian Horsdal Gammelgaard

ISBN: 9781617293375
344 pages, $49.99
January 2017
For ordering information go to www.manning.com

https://www.manning.com/books/microservices-patterns
https://www.manning.com/books/spring-microservices-in-action
https://www.manning.com/books/microservices-in-net-core
https://www.manning.com/books/the-tao-of-microservices

Ken Finnigan

L
arge applications are easier to develop and maintain when
you build them from small, simple components. Java
developers now enjoy a wide range of tools that support

microservices application development, including right-sized
app servers, open source frameworks, and well-defi ned
patterns. Best of all, you can build microservices applications
using your existing Java skills.

Enterprise Java Microservices teaches you to design and build
JVM-based microservices applications. You’ll start by learning
how microservices designs compare to traditional Java EE
applications. Always practical, author Ken Finnigan intro-
duces big-picture concepts along with the tools and techniques
you’ll need to implement them. You’ll discover ecosystem
components like Netfl ix Hystrix for fault tolerance and master
the Just enough Application Server (JeAS) approach. To ensure
smooth operations, you’ll also examine monitoring, security,
testing, and deploying to the cloud.

What’s Inside
● The microservices mental model
● Cloud-native development
● Strategies for fault tolerance and monitoring
● Securing your fi nished applications

This book is for Java developers familiar with Java EE.

Ken Finnigan leads the Thorntail project at Red Hat, which
seeks to make developing microservices for the cloud with
Java and Java EE as easy as possible.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/enterprise-java-microservices

$49.99 / Can $65.99 [INCLUDING eBOOK]

Enterprise Java Microservices

JAVA

M A N N I N G

“Frameworks, patterns, and
concepts that Java developers

need to be successful in a
microservices world.”
—Andrew Block, Red Hat

“A complete overview of
how to implement micro-

services in a company
environment, with different

solutions to the same problem
given and explained.”

—Damián Mazzini, UBA Argentina

“Covers everything a
developer must know before
stepping from monolith to

 microservices architecture.”—Kelum Prabath Senanayake
Equinix

“A great guide through the
world of Java enterprise

microservices with cool use
 cases and code examples.”

—Alexandros Koufoudakis
Red Hat

See first page

	Enterprise Java Microservices
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	Book forum

	about the author
	about the cover illustration
	Part 1: Microservices basics
	Chapter 1: Enterprise Java microservices
	1.1 Enterprise Java—a short history
	1.1.1 What is Enterprise Java?
	1.1.2 Typical Enterprise Java architecture
	1.1.3 What is a monolith?
	1.1.4 What are the problems associated with monoliths?

	1.2 Microservices and distributed architecture
	1.2.1 Do one thing well
	1.2.2 What is a distributed architecture?
	1.2.3 Why should you care about being distributed?
	1.2.4 What can be done to assist in developing microservices?
	1.2.5 Product over project
	1.2.6 Continuous integration and delivery

	1.3 Patterns for migration to microservices
	1.3.1 Domain-Driven Design
	1.3.2 Big Bang pattern
	1.3.3 Strangler pattern
	1.3.4 Hybrid pattern

	1.4 What are Enterprise Java microservices?
	1.4.1 Why Enterprise Java is a good fit for microservices

	Chapter 2: Developing a simple RESTful microservice
	2.1 Cayambe monolith
	2.2 New administration site
	2.2.1 Use cases
	2.2.2 Architecture of the application
	2.2.3 Creating RESTful endpoints with JAX-RS
	2.2.4 Running it

	Chapter 3: Just enough Application Server for microservices
	3.1 Just enough Application Server
	3.1.1 What does JeAS mean?
	3.1.2 What are the benefits?
	3.1.3 Eclipse MicroProfile

	3.2 Choosing Just enough Application Server
	3.2.1 Beach Vacation example application
	3.2.2 Dropwizard—the original opinionated Microservice runtime
	3.2.3 Payara Micro—slimmed Java EE app server in a JAR
	3.2.4 Spring Boot—opinionated Spring microservices
	3.2.5 Thorntail—the most flexible JeAS runtime
	3.2.6 How do they compare?

	Chapter 4: Microser vices testing
	4.1 What type of testing do you need?
	4.2 Unit testing
	4.3 What is immutability?
	4.4 Integration testing
	4.5 Consumer-driven contract testing
	4.6 Additional reading
	4.7 Additional exercises

	Chapter 5: Cloud native development
	5.1 What is the cloud anyway?
	5.2 Service models
	5.3 Cloud native development
	5.4 Deploying to the cloud
	5.5 Starting Minishift
	5.6 Microservice cloud deployment
	5.7 Testing in the cloud
	5.8 Additional exercises

	Part 2: Implementing Enterprise Java microservices
	Chapter 6: Consuming microser vices
	6.1 Consuming a microservice with a Java client library
	6.1.1 java.net
	6.1.2 Apache HttpClient

	6.2 Consuming a microservice with a JAX-RS client library
	6.2.1 JAX-RS client
	6.2.2 RESTEasy client

	Chapter 7: Discovering microser vices for consumption
	7.1 Why does a microservice need to be discovered?
	7.1.1 What is service discovery?
	7.1.2 What are the benefits of service discovery and a registry?
	7.1.3 Stateless vs. stateful microservices
	7.1.4 What is Netflix Ribbon?

	7.2 Registering a microservice with Thorntail
	7.2.1 Thorntail’s topologies
	7.2.2 Registering a microservice with a topology

	7.3 Consuming a registered microservice with Thorntail
	7.3.1 Service lookup with Netflix Ribbon
	7.3.2 Service lookup with the RESTEasy client

	Chapter 8: Strategies for fault tolerance and monitoring
	8.1 Microservice failures in a distributed architecture
	8.2 Network failures
	8.3 Mitigating against failures
	8.3.1 What is Hystrix?
	8.3.2 Circuit breakers
	8.3.3 Bulkheads
	8.3.4 Fallbacks
	8.3.5 Request caching
	8.3.6 Putting it all together
	8.3.7 Hystrix Dashboard

	8.4 Adding Hystrix to your Payment microservice
	8.4.1 Hystrix with the RESTEasy client
	8.4.2 Hystrix with the Ribbon client

	Chapter 9: Securing a microser vice
	9.1 The importance of securing your microservice
	9.1.1 Why is security important?
	9.1.2 What problems does security need to solve?

	9.2 Working with Keycloak
	9.2.1 Understanding Keycloak’s features
	9.2.2 Setting up Keycloak

	9.3 Securing the Stripe microservice
	9.3.1 Configuring Keycloak
	9.3.2 Securing the Stripe resource
	9.3.3 Authenticating in the Payment resource
	9.3.4 Testing your secured microservice

	9.4 Capturing user authentication
	9.4.1 Configuring Keycloak
	9.4.2 Securing category deletion
	9.4.3 Authenticating the user in a UI
	9.4.4 Testing that the new UI and service all work

	Chapter 10: Architecting a microser vice hybrid
	10.1 The Cayambe monolith
	10.2 Running the Cayambe monolith
	10.2.1 Database setup
	10.2.2 WildFly setup
	10.2.3 Running Cayambe

	10.3 Cayambe hybrid—monolith with microservices
	10.3.1 Integrating the Payment microservice
	10.3.2 Integrating the Admin microservice
	10.3.3 New administration UI
	10.3.4 Cayambe hybrid summary

	10.4 Deploying everything to a hybrid cloud
	10.4.1 Database
	10.4.2 Security
	10.4.3 Microservices
	10.4.4 Cayambe hybrid
	10.4.5 Cayambe EAR
	10.4.6 Admin UI

	Chapter 11: Data streaming with Apache Kaf ka
	11.1 What can Apache Kafka do for you?
	11.1.1 Data streaming
	11.1.2 Apache Kafka

	11.2 Simplifying your monolith architecture with streaming
	11.3 Deploying and using Kafka for data streaming
	11.3.1 Kafka on OpenShift
	11.3.2 Admin microservice
	11.3.3 Kafka consumer

	11.4 Additional exercises

	Appendix: Spring Boot microser vices
	Anatomy of a Spring Boot project
	Examining a newly initialized Spring Boot project
	Bootstrapping Spring
	Testing Spring Boot applications
	Configuring application properties

	Spring Boot starter dependencies
	Using starter dependencies
	Specifying facet-based dependencies
	Overriding starter transitive dependencies

	Developing a Spring Boot application
	Focusing on application functionality
	Defining the domain
	Defining the repository interface
	Creating the web interface

	Spring Boot testing
	Mocking Spring MVC

	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

