
www.allitebooks.com

http://www.allitebooks.org


Praise for the First Edition

“I sure wish I had this book ten years ago. Some might think that I don’t need 

any Java books, but I need this one.”

—James Gosling, fellow and vice president, Sun Microsystems, Inc., and

inventor of the Java programming language

“An excellent book, crammed with good advice on using the Java program-

ming language and object-oriented programming in general.”

—Gilad Bracha, distinguished engineer, Cadence Design Systems,

and coauthor of The Java™ Language Specification,

Third Edition (Addison-Wesley, 2005)

“10/10—anyone aspiring to write good Java code that others will appreciate 

reading and maintaining should be required to own a copy of this book. This 

is one of those rare books where the information won’t become obsolete with 

subsequent releases of the JDK library.”

—Peter Tran, bartender, JavaRanch.com

“The best Java book yet written.... Really great; very readable and eminently 

useful. I can’t say enough good things about this book. At JavaOne 2001, 

James Gosling said, ‘Go buy this book!’ I’m glad I did, and I couldn’t agree 

more.”

—Keith Edwards, senior member of research staff,

Computer Science Lab at the Palo Alto Research Center (PARC),

and author of Core JINI (Prentice Hall, 2000)

“This is a truly excellent book done by the guy who designed several of the 

better recent Java platform APIs (including the Collections API).”

—James Clark, technical lead of the XML Working Group

during the creation of the XML 1.0 Recommendation;

editor of the XPath and XSLT Recommendations
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“Great content. Analogous to Scott Meyers’s classic Effective C++. If you know 

the basics of Java, this has to be your next book.”

—Gary K. Evans, OO mentor and consultant, Evanetics, Inc.

“Josh Bloch gives great insight into best practices that really can only be discov-

ered after years of study and experience.”

—Mark Mascolino, software engineer

“This is a superb book. It clearly covers many of the language/platform subtleties 

and trickery you need to learn to become a real Java master.”

—Victor Wiewiorowski, vice president development and code quality manager,

ValueCommerce Co., Tokyo, Japan

“I like books that under-promise in their titles and over-deliver in their contents. 

This book has 57 items of programming advice that are well chosen. Each item 

reveals a clear, deep grasp of the language. Each one illustrates in simple, practical 

terms the limits of programming on intuition alone, or taking the most direct path 

to a solution without fully understanding what the language offers.”

—Michael Ernest, Inkling Research, Inc.

“I don’t find many programming books that make me want to read every page—

this is one of them.”

—Matt Tucker, chief technical officer, Jive Software

“Great how-to resource for the experienced developer.”

—John Zukowski, author of numerous Java books

“I picked this book up two weeks ago and can safely say I learned more about the 

Java language in three days of reading than I did in three months of study! An 

excellent book and a welcome addition to my Java library.”

—Jane Griscti, I/T advisory specialist
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Foreword

IF a colleague were to say to you, “Spouse of me this night today manufactures the

unusual meal in a home. You will join?” three things would likely cross your mind:

third, that you had been invited to dinner; second, that English was not your col-

league’s first language; and first, a good deal of puzzlement.

If you have ever studied a second language yourself and then tried to use it

outside the classroom, you know that there are three things you must master: how

the language is structured (grammar), how to name things you want to talk about

(vocabulary), and the customary and effective ways to say everyday things

(usage). Too often only the first two are covered in the classroom, and you find

native speakers constantly suppressing their laughter as you try to make yourself

understood.

It is much the same with a programming language. You need to understand the

core language: is it algorithmic, functional, object-oriented? You need to know the

vocabulary: what data structures, operations, and facilities are provided by the

standard libraries? And you need to be familiar with the customary and effective

ways to structure your code. Books about programming languages often cover

only the first two, or discuss usage only spottily. Maybe that’s because the first

two are in some ways easier to write about. Grammar and vocabulary are proper-

ties of the language alone, but usage is characteristic of a community that uses it.

The Java programming language, for example, is object-oriented with single

inheritance and supports an imperative (statement-oriented) coding style within

each method. The libraries address graphic display support, networking, distrib-

uted computing, and security. But how is the language best put to use in practice?

There is another point. Programs, unlike spoken sentences and unlike most

books and magazines, are likely to be changed over time. It’s typically not enough

to produce code that operates effectively and is readily understood by other per-

sons; one must also organize the code so that it is easy to modify. There may be

ten ways to write code for some task T. Of those ten ways, seven will be awkward,

inefficient, or puzzling. Of the other three, which is most likely to be similar to the

code needed for the task T' in next year’s software release?
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There are numerous books from which you can learn the grammar of the Java

Programming Language, including The Java™ Programming Language by Arnold,

Gosling, and Holmes [Arnold05] or The Java™ Language Specification by Gos-

ling, Joy, yours truly, and Bracha [JLS]. Likewise, there are dozens of books on

the libraries and APIs associated with the Java programming language.

This book addresses your third need: customary and effective usage. Joshua

Bloch has spent years extending, implementing, and using the Java programming

language at Sun Microsystems; he has also read a lot of other people’s code,

including mine. Here he offers good advice, systematically organized, on how to

structure your code so that it works well, so that other people can understand it, so

that future modifications and improvements are less likely to cause headaches—

perhaps, even, so that your programs will be pleasant, elegant, and graceful.

Guy L. Steele Jr.

Burlington, Massachusetts

April 2001
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Preface

Preface to the Second Edition

A lot has happened to the Java platform since I wrote the first edition of this book

in 2001, and it’s high time for a second edition. The most significant set of changes

was the addition of generics, enum types, annotations, autoboxing, and the for-each

loop in Java 5. A close second was the addition of the new concurrency library,

java.util.concurrent, also released in Java 5. With Gilad Bracha, I had the good

fortune to lead the teams that designed the new language features. I also had the

good fortune to serve on the team that designed and developed the concurrency

library, which was led by Doug Lea.

The other big change in the platform is the widespread adoption of modern

Integrated Development Environments (IDEs), such as Eclipse, IntelliJ IDEA, and

NetBeans, and of static analysis tools, such as FindBugs. While I have not been

involved in these efforts, I’ve benefited from them immensely and learned how

they affect the Java development experience. 

In 2004, I moved from Sun to Google, but I’ve continued my involvement in

the development of the Java platform over the past four years, contributing to the

concurrency and collections APIs through the good offices of Google and the Java

Community Process. I’ve also had the pleasure of using the Java platform to

develop libraries for use within Google. Now I know what it feels like to be a user.

As was the case in 2001 when I wrote the first edition, my primary goal is to

share my experience with you so that you can imitate my successes while avoiding

my failures. The new material continues to make liberal use of real-world exam-

ples from the Java platform libraries.

The first edition succeeded beyond my wildest expectations, and I’ve done my

best to stay true to its spirit while covering all of the new material that was

required to bring the book up to date. It was inevitable that the book would grow,

and grow it did, from fifty-seven items to seventy-eight. Not only did I add

twenty-three items, but I thoroughly revised all the original material and retired a
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few items whose better days had passed. In the Appendix, you can see how the

material in this edition relates to the material in the first edition.

In the Preface to the First Edition, I wrote that the Java programming language

and its libraries were immensely conducive to quality and productivity, and a joy

to work with. The changes in releases 5 and 6 have taken a good thing and made it

better. The platform is much bigger now than it was in 2001 and more complex,

but once you learn the patterns and idioms for using the new features, they make

your programs better and your life easier. I hope this edition captures my contin-

ued enthusiasm for the platform and helps make your use of the platform and its

new features more effective and enjoyable.

San Jose, California

April 2008

Preface to the First Edition

In 1996 I pulled up stakes and headed west to work for JavaSoft, as it was then

known, because it was clear that that was where the action was. In the intervening

five years I’ve served as Java platform libraries architect. I’ve designed, imple-

mented, and maintained many of the libraries and served as a consultant for many

others. Presiding over these libraries as the Java platform matured was a once-in-a-

lifetime opportunity. It is no exaggeration to say that I had the privilege to work with

some of the great software engineers of our generation. In the process, I learned a lot

about the Java programming language—what works, what doesn’t, and how to use

the language and its libraries to best effect.

This book is my attempt to share my experience with you so that you can imi-

tate my successes while avoiding my failures. I borrowed the format from Scott

Meyers’s Effective C++ [Meyers98], which consists of fifty items, each convey-

ing one specific rule for improving your programs and designs. I found the format

to be singularly effective, and I hope you do too.

In many cases, I took the liberty of illustrating the items with real-world

examples from the Java platform libraries. When describing something that could

have been done better, I tried to pick on code that I wrote myself, but occasionally

I pick on something written by a colleague. I sincerely apologize if, despite my

best efforts, I’ve offended anyone. Negative examples are cited not to cast blame
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but in the spirit of cooperation, so that all of us can benefit from the experience of

those who’ve gone before.

While this book is not targeted solely at developers of reusable components, it

is inevitably colored by my experience writing such components over the past two

decades. I naturally think in terms of exported APIs (Application Programming

Interfaces), and I encourage you to do likewise. Even if you aren’t developing

reusable components, thinking in these terms tends to improve the quality of the

software you write. Furthermore, it’s not uncommon to write a reusable compo-

nent without knowing it: You write something useful, share it with your buddy

across the hall, and before long you have half a dozen users. At this point, you no

longer have the flexibility to change the API at will and are thankful for all the

effort that you put into designing the API when you first wrote the software.

My focus on API design may seem a bit unnatural to devotees of the new

lightweight software development methodologies, such as Extreme Programming

[Beck99]. These methodologies emphasize writing the simplest program that

could possibly work. If you’re using one of these methodologies, you’ll find that a

focus on API design serves you well in the refactoring process. The fundamental

goals of refactoring are the improvement of system structure and the avoidance of

code duplication. These goals are impossible to achieve in the absence of well-

designed APIs for the components of the system.

No language is perfect, but some are excellent. I have found the Java

programming language and its libraries to be immensely conducive to quality and

productivity, and a joy to work with. I hope this book captures my enthusiasm and

helps make your use of the language more effective and enjoyable.

Cupertino, California

April 2001
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C H A P T E R 1
Introduction

THIS book is designed to help you make the most effective use of the Java™

programming language and its fundamental libraries, java.lang, java.util,

and, to a lesser extent, java.util.concurrent and java.io. The book discusses

other libraries from time to time, but it does not cover graphical user interface

programming, enterprise APIs, or mobile devices.

This book consists of seventy-eight items, each of which conveys one rule.

The rules capture practices generally held to be beneficial by the best and most

experienced programmers. The items are loosely grouped into ten chapters, each

concerning one broad aspect of software design. The book is not intended to be

read from cover to cover: each item stands on its own, more or less. The items are

heavily cross-referenced so you can easily plot your own course through the book.

Many new features were added to the platform in Java 5 (release 1.5). Most of

the items in this book use these features in some way. The following table shows

you where to go for primary coverage of these features:

Feature Chapter or Item

Generics  Chapter 5

Enums  Items 30–34

Annotations  Items 35–37

For-each loop  Item 46

Autoboxing  Items 40, 49

Varargs  Item 42

Static import  Item 19

java.util.concurrent  Items 68, 69
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Most items are illustrated with program examples. A key feature of this book

is that it contains code examples illustrating many design patterns and idioms.

Where appropriate, they are cross-referenced to the standard reference work in

this area [Gamma95].

Many items contain one or more program examples illustrating some practice

to be avoided. Such examples, sometimes known as antipatterns, are clearly

labeled with a comment such as “// Never do this!” In each case, the item

explains why the example is bad and suggests an alternative approach.

This book is not for beginners: it assumes that you are already comfortable

with the Java programming language. If you are not, consider one of the many fine

introductory texts [Arnold05, Sestoft05]. While the book is designed to be acces-

sible to anyone with a working knowledge of the language, it should provide food

for thought even for advanced programmers.

Most of the rules in this book derive from a few fundamental principles. Clar-

ity and simplicity are of paramount importance. The user of a module should

never be surprised by its behavior. Modules should be as small as possible but no

smaller. (As used in this book, the term module refers to any reusable software

component, from an individual method to a complex system consisting of multiple

packages.) Code should be reused rather than copied. The dependencies between

modules should be kept to a minimum. Errors should be detected as soon as possi-

ble after they are made, ideally at compile time.

While the rules in this book do not apply 100 percent of the time, they do

characterize best programming practices in the great majority of cases. You

should not slavishly follow these rules, but violate them only occasionally and

with good reason. Learning the art of programming, like most other disciplines,

consists of first learning the rules and then learning when to break them.

For the most part, this book is not about performance. It is about writing pro-

grams that are clear, correct, usable, robust, flexible, and maintainable. If you can

do that, it’s usually a relatively simple matter to get the performance you need

(Item 55). Some items do discuss performance concerns, and a few of these items

provide performance numbers. These numbers, which are introduced with the

phrase “On my machine,” should be regarded as approximate at best.

For what it’s worth, my machine is an aging homebuilt 2.2 GHz dual-core

AMD Opteron™ 170 with 2 gigabytes of RAM, running Sun’s 1.6_05 release of

the Java SE Development Kit (JDK) atop Microsoft Windows® XP Professional

SP2. This JDK has two virtual machines, the Java HotSpot™ Client and Server

VMs. Performance numbers were measured on the Server VM.
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When discussing features of the Java programming language and its libraries,

it is sometimes necessary to refer to specific releases. For brevity, this book uses

“engineering version numbers” in preference to official release names. This table

shows the mapping between release names and engineering version numbers.

The examples are reasonably complete, but they favor readability over com-

pleteness. They freely use classes from the packages java.util and java.io. In

order to compile the examples, you may have to add one or more of these import

statements:

import java.util.*;
import java.util.concurrent.*;
import java.io.*;

Other boilerplate is similarly omitted. The book’s Web site, http://

java.sun.com/docs/books/effective, contains an expanded version of each

example, which you can compile and run.

For the most part, this book uses technical terms as they are defined in The

Java Language Specification, Third Edition [JLS]. A few terms deserve special

mention. The language supports four kinds of types: interfaces (including annota-

tions), classes (including enums), arrays, and primitives. The first three are known

as reference types. Class instances and arrays are objects; primitive values are not.

A class’s members consist of its fields, methods, member classes, and member

interfaces. A method’s signature consists of its name and the types of its formal

parameters; the signature does not include the method’s return type.

This book uses a few terms differently from the The Java Language Specifica-

tion. Unlike The Java Language Specification, this book uses inheritance as a syn-

onym for subclassing. Instead of using the term inheritance for interfaces, this

Official Release Name Engineering Version Number

JDK 1.1.x / JRE 1.1.x 1.1

Java 2 Platform, Standard Edition, v 1.2 1.2

Java 2 Platform, Standard Edition, v 1.3 1.3

Java 2 Platform, Standard Edition, v 1.4 1.4

Java 2 Platform, Standard Edition, v 5.0 1.5

Java Platform, Standard Edition 6 1.6

http://java.sun.com/docs/books/effective
http://java.sun.com/docs/books/effective
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book simply states that a class implements an interface or that one interface

extends another. To describe the access level that applies when none is specified,

this book uses the descriptive term package-private instead of the technically cor-

rect term default access [JLS, 6.6.1].

This book uses a few technical terms that are not defined in The Java Lan-

guage Specification. The term exported API, or simply API, refers to the classes,

interfaces, constructors, members, and serialized forms by which a programmer

accesses a class, interface, or package. (The term API, which is short for applica-

tion programming interface, is used in preference to the otherwise preferable term

interface to avoid confusion with the language construct of that name.) A pro-

grammer who writes a program that uses an API is referred to as a user of the API.

A class whose implementation uses an API is a client of the API.

Classes, interfaces, constructors, members, and serialized forms are collec-

tively known as API elements. An exported API consists of the API elements that

are accessible outside of the package that defines the API. These are the API ele-

ments that any client can use and the author of the API commits to support. Not

coincidentally, they are also the elements for which the Javadoc utility generates

documentation in its default mode of operation. Loosely speaking, the exported

API of a package consists of the public and protected members and constructors

of every public class or interface in the package.
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C H A P T E R 2
Creating and Destroying Objects

THIS chapter concerns creating and destroying objects: when and how to create

them, when and how to avoid creating them, how to ensure they are destroyed in a

timely manner, and how to manage any cleanup actions that must precede their

destruction.

Item 1: Consider static factory methods instead of constructors

The normal way for a class to allow a client to obtain an instance of itself is to pro-

vide a public constructor. There is another technique that should be a part of every

programmer’s toolkit. A class can provide a public static factory method, which is

simply a static method that returns an instance of the class. Here’s a simple exam-

ple from Boolean (the boxed primitive class for the primitive type boolean). This

method translates a boolean primitive value into a Boolean object reference:

public static Boolean valueOf(boolean b) {
return b ? Boolean.TRUE : Boolean.FALSE;

}

Note that a static factory method is not the same as the Factory Method pattern

from Design Patterns [Gamma95, p. 107]. The static factory method described in

this item has no direct equivalent in Design Patterns.

A class can provide its clients with static factory methods instead of, or in

addition to, constructors. Providing a static factory method instead of a public

constructor has both advantages and disadvantages.

One advantage of static factory methods is that, unlike constructors, they

have names. If the parameters to a constructor do not, in and of themselves,

describe the object being returned, a static factory with a well-chosen name is eas-

ier to use and the resulting client code easier to read. For example, the constructor
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BigInteger(int, int, Random), which returns a BigInteger that is probably

prime, would have been better expressed as a static factory method named BigIn-

teger.probablePrime. (This method was eventually added in the 1.4 release.)

A class can have only a single constructor with a given signature. Program-

mers have been known to get around this restriction by providing two constructors

whose parameter lists differ only in the order of their parameter types. This is a

really bad idea. The user of such an API will never be able to remember which

constructor is which and will end up calling the wrong one by mistake. People

reading code that uses these constructors will not know what the code does with-

out referring to the class documentation.

Because they have names, static factory methods don’t share the restriction

discussed in the previous paragraph. In cases where a class seems to require multi-

ple constructors with the same signature, replace the constructors with static fac-

tory methods and carefully chosen names to highlight their differences.

A second advantage of static factory methods is that, unlike constructors,

they are not required to create a new object each time they’re invoked. This

allows immutable classes (Item 15) to use preconstructed instances, or to cache

instances as they’re constructed, and dispense them repeatedly to avoid creating

unnecessary duplicate objects. The Boolean.valueOf(boolean) method illus-

trates this technique: it never creates an object. This technique is similar to the

Flyweight pattern [Gamma95, p. 195]. It can greatly improve performance if

equivalent objects are requested often, especially if they are expensive to create.

The ability of static factory methods to return the same object from repeated

invocations allows classes to maintain strict control over what instances exist at

any time. Classes that do this are said to be instance-controlled. There are several

reasons to write instance-controlled classes. Instance control allows a class to

guarantee that it is a singleton (Item 3) or noninstantiable (Item 4). Also, it allows

an immutable class (Item 15) to make the guarantee that no two equal instances

exist: a.equals(b) if and only if a==b. If a class makes this guarantee, then its cli-

ents can use the == operator instead of the equals(Object) method, which may

result in improved performance. Enum types (Item 30) provide this guarantee.

A third advantage of static factory methods is that, unlike constructors,

they can return an object of any subtype of their return type. This gives you

great flexibility in choosing the class of the returned object. 

One application of this flexibility is that an API can return objects without

making their classes public. Hiding implementation classes in this fashion leads to

a very compact API. This technique lends itself to interface-based frameworks

(Item 18), where interfaces provide natural return types for static factory methods.
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Interfaces can’t have static methods, so by convention, static factory methods for

an interface named Type are put in a noninstantiable class (Item 4) named Types.

For example, the Java Collections Framework has thirty-two convenience

implementations of its collection interfaces, providing unmodifiable collections,

synchronized collections, and the like. Nearly all of these implementations are

exported via static factory methods in one noninstantiable class (java.util.Col-

lections). The classes of the returned objects are all nonpublic.

The Collections Framework API is much smaller than it would have been had

it exported thirty-two separate public classes, one for each convenience imple-

mentation. It is not just the bulk of the API that is reduced, but the conceptual

weight. The user knows that the returned object has precisely the API specified by

its interface, so there is no need to read additional class documentation for the

implementation classes. Furthermore, using such a static factory method requires

the client to refer to the returned object by its interface rather than its implementa-

tion class, which is generally good practice (Item 52).

Not only can the class of an object returned by a public static factory method

be nonpublic, but the class can vary from invocation to invocation depending on

the values of the parameters to the static factory. Any class that is a subtype of the

declared return type is permissible. The class of the returned object can also vary

from release to release for enhanced software maintainability and performance.

The class java.util.EnumSet (Item 32), introduced in release 1.5, has no

public constructors, only static factories. They return one of two implementations,

depending on the size of the underlying enum type: if it has sixty-four or fewer

elements, as most enum types do, the static factories return a RegularEnumSet

instance, which is backed by a single long; if the enum type has sixty-five or more

elements, the factories return a JumboEnumSet instance, backed by a long array. 

The existence of these two implementation classes is invisible to clients. If

RegularEnumSet ceased to offer performance advantages for small enum types, it

could be eliminated from a future release with no ill effects. Similarly, a future

release could add a third or fourth implementation of EnumSet if it proved benefi-

cial for performance. Clients neither know nor care about the class of the object

they get back from the factory; they care only that it is some subclass of EnumSet.

The class of the object returned by a static factory method need not even exist

at the time the class containing the method is written. Such flexible static factory

methods form the basis of service provider frameworks, such as the Java Database

Connectivity API (JDBC). A service provider framework is a system in which

multiple service providers implement a service, and the system makes the imple-

mentations available to its clients, decoupling them from the implementations.

www.allitebooks.com

http://www.allitebooks.org
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There are three essential components of a service provider framework: a ser-

vice interface, which providers implement; a provider registration API, which the

system uses to register implementations, giving clients access to them; and a ser-

vice access API, which clients use to obtain an instance of the service. The service

access API typically allows but does not require the client to specify some criteria

for choosing a provider. In the absence of such a specification, the API returns an

instance of a default implementation. The service access API is the “flexible static

factory” that forms the basis of the service provider framework.

An optional fourth component of a service provider framework is a service

provider interface, which providers implement to create instances of their service

implementation. In the absence of a service provider interface, implementations

are registered by class name and instantiated reflectively (Item 53). In the case of

JDBC, Connection plays the part of the service interface, DriverManager.reg-

isterDriver is the provider registration API, DriverManager.getConnection is

the service access API, and Driver is the service provider interface.

There are numerous variants of the service provider framework pattern. For

example, the service access API can return a richer service interface than the one

required of the provider, using the Adapter pattern [Gamma95, p. 139]. Here is a

simple implementation with a service provider interface and a default provider:

// Service provider framework sketch

// Service interface
public interface Service {

... // Service-specific methods go here
}

// Service provider interface
public interface Provider {

Service newService();
}

// Noninstantiable class for service registration and access
public class Services {

private Services() { } // Prevents instantiation (Item 4)

// Maps service names to services
private static final Map<String, Provider> providers =

new ConcurrentHashMap<String, Provider>();
public static final String DEFAULT_PROVIDER_NAME = "<def>";
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// Provider registration API
public static void registerDefaultProvider(Provider p) {

registerProvider(DEFAULT_PROVIDER_NAME, p);
}
public static void registerProvider(String name, Provider p){

providers.put(name, p);
}

// Service access API
public static Service newInstance() {

return newInstance(DEFAULT_PROVIDER_NAME);
}
public static Service newInstance(String name) {

Provider p = providers.get(name);
if (p == null)

throw new IllegalArgumentException(
"No provider registered with name: " + name);

return p.newService();
}

}

A fourth advantage of static factory methods is that they reduce the ver-

bosity of creating parameterized type instances. Unfortunately, you must spec-

ify the type parameters when you invoke the constructor of a parameterized class

even if they’re obvious from context. This typically requires you to provide the

type parameters twice in quick succession:

Map<String, List<String>> m = 
new HashMap<String, List<String>>();

This redundant specification quickly becomes painful as the length and complex-

ity of the type parameters increase. With static factories, however, the compiler

can figure out the type parameters for you. This is known as type inference. For

example, suppose that HashMap provided this static factory:

public static <K, V> HashMap<K, V> newInstance() {
return new HashMap<K, V>();

}

Then you could replace the wordy declaration above with this succinct alternative:

Map<String, List<String>> m = HashMap.newInstance();

Someday the language may perform this sort of type inference on constructor

invocations as well as method invocations, but as of release 1.6, it does not.
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Unfortunately, the standard collection implementations such as HashMap do

not have factory methods as of release 1.6, but you can put these methods in your

own utility class. More importantly, you can provide such static factories in your

own parameterized classes.

The main disadvantage of providing only static factory methods is that

classes without public or protected constructors cannot be subclassed. The

same is true for nonpublic classes returned by public static factories. For example,

it is impossible to subclass any of the convenience implementation classes in the

Collections Framework. Arguably this can be a blessing in disguise, as it encour-

ages programmers to use composition instead of inheritance (Item 16).

A second disadvantage of static factory methods is that they are not

readily distinguishable from other static methods. They do not stand out in API

documentation in the way that constructors do, so it can be difficult to figure out

how to instantiate a class that provides static factory methods instead of construc-

tors. The Javadoc tool may someday draw attention to static factory methods. In

the meantime, you can reduce this disadvantage by drawing attention to static fac-

tories in class or interface comments, and by adhering to common naming conven-

tions. Here are some common names for static factory methods:

• valueOf—Returns an instance that has, loosely speaking, the same value as its

parameters. Such static factories are effectively type-conversion methods.

• of—A concise alternative to valueOf, popularized by EnumSet (Item 32).

• getInstance—Returns an instance that is described by the parameters but

cannot be said to have the same value. In the case of a singleton, getInstance

takes no parameters and returns the sole instance.

• newInstance—Like getInstance, except that newInstance guarantees that

each instance returned is distinct from all others.

• getType—Like getInstance, but used when the factory method is in a differ-

ent class. Type indicates the type of object returned by the factory method.

• newType—Like newInstance, but used when the factory method is in a differ-

ent class. Type indicates the type of object returned by the factory method.

In summary, static factory methods and public constructors both have their

uses, and it pays to understand their relative merits. Often static factories are pref-

erable, so avoid the reflex to provide public constructors without first considering

static factories.
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Item 2: Consider a builder when faced with many constructor 

parameters

Static factories and constructors share a limitation: they do not scale well to large

numbers of optional parameters. Consider the case of a class representing the

Nutrition Facts label that appears on packaged foods. These labels have a few

required fields—serving size, servings per container, and calories per serving—

and over twenty optional fields—total fat, saturated fat, trans fat, cholesterol,

sodium, and so on. Most products have nonzero values for only a few of these

optional fields.

What sort of constructors or static factories should you write for such a class?

Traditionally, programmers have used the telescoping constructor pattern, in

which you provide a constructor with only the required parameters, another with a

single optional parameter, a third with two optional parameters, and so on, culmi-

nating in a constructor with all the optional parameters. Here’s how it looks in

practice. For brevity’s sake, only four optional fields are shown:

// Telescoping constructor pattern - does not scale well!
public class NutritionFacts {

private final int servingSize; // (mL) required
private final int servings; // (per container) required
private final int calories; // optional
private final int fat; // (g) optional
private final int sodium; // (mg) optional
private final int carbohydrate; // (g)  optional

public NutritionFacts(int servingSize, int servings) {
this(servingSize, servings, 0);

}

public NutritionFacts(int servingSize, int servings,
int calories) {

this(servingSize, servings, calories, 0);
}

public NutritionFacts(int servingSize, int servings,
int calories, int fat) {

this(servingSize, servings, calories, fat, 0);
}

public NutritionFacts(int servingSize, int servings,
int calories, int fat, int sodium) {

this(servingSize, servings, calories, fat, sodium, 0);
}
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public NutritionFacts(int servingSize, int servings,
int calories, int fat, int sodium, int carbohydrate) {

this.servingSize  = servingSize;
this.servings     = servings;
this.calories     = calories;
this.fat          = fat;
this.sodium       = sodium;
this.carbohydrate = carbohydrate;

}
}

When you want to create an instance, you use the constructor with the shortest

parameter list containing all the parameters you want to set:

NutritionFacts cocaCola =
new NutritionFacts(240, 8, 100, 0, 35, 27);

Typically this constructor invocation will require many parameters that you don’t

want to set, but you’re forced to pass a value for them anyway. In this case, we

passed a value of 0 for fat. With “only” six parameters this may not seem so bad,

but it quickly gets out of hand as the number of parameters increases. 

In short, the telescoping constructor pattern works, but it is hard to write

client code when there are many parameters, and harder still to read it. The

reader is left wondering what all those values mean and must carefully count

parameters to find out. Long sequences of identically typed parameters can cause

subtle bugs. If the client accidentally reverses two such parameters, the compiler

won’t complain, but the program will misbehave at runtime (Item 40).

A second alternative when you are faced with many constructor parameters is

the JavaBeans pattern, in which you call a parameterless constructor to create the

object and then call setter methods to set each required parameter and each

optional parameter of interest:

// JavaBeans Pattern - allows inconsistency, mandates mutability
public class NutritionFacts {

// Parameters initialized to default values (if any)
private int servingSize = -1;  // Required; no default value
private int servings     = -1;  //     "     "     "      "
private int calories     = 0;
private int fat          = 0;
private int sodium       = 0;
private int carbohydrate = 0;

public NutritionFacts() { }
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// Setters
public void setServingSize(int val) { servingSize = val; }
public void setServings(int val) { servings = val; }
public void setCalories(int val) { calories = val; }
public void setFat(int val) { fat = val; }
public void setSodium(int val) { sodium = val; }
public void setCarbohydrate(int val) { carbohydrate = val; }

}

This pattern has none of the disadvantages of the telescoping constructor pattern.

It is easy, if a bit wordy, to create instances, and easy to read the resulting code:

NutritionFacts cocaCola = new NutritionFacts();
cocaCola.setServingSize(240);
cocaCola.setServings(8);
cocaCola.setCalories(100);
cocaCola.setSodium(35);
cocaCola.setCarbohydrate(27);

Unfortunately, the JavaBeans pattern has serious disadvantages of its own.

Because construction is split across multiple calls, a JavaBean may be in an

inconsistent state partway through its construction. The class does not have

the option of enforcing consistency merely by checking the validity of the con-

structor parameters. Attempting to use an object when it’s in an inconsistent state

may cause failures that are far removed from the code containing the bug, hence

difficult to debug. A related disadvantage is that the JavaBeans pattern pre-

cludes the possibility of making a class immutable (Item 15), and requires

added effort on the part of the programmer to ensure thread safety.

It is possible to reduce these disadvantages by manually “freezing” the object

when its construction is complete and not allowing it to be used until frozen, but

this variant is unwieldy and rarely used in practice. Moreover, it can cause errors

at runtime, as the compiler cannot ensure that the programmer calls the freeze

method on an object before using it.

Luckily, there is a third alternative that combines the safety of the telescoping

constructor pattern with the readability of the JavaBeans pattern. It is a form of the

Builder pattern [Gamma95, p. 97]. Instead of making the desired object directly,

the client calls a constructor (or static factory) with all of the required parameters

and gets a builder object. Then the client calls setter-like methods on the builder

object to set each optional parameter of interest. Finally, the client calls a parame-

terless build method to generate the object, which is immutable. The builder is a

static member class (Item 22) of the class it builds. Here’s how it looks in practice:
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// Builder Pattern
public class NutritionFacts {

private final int servingSize;
private final int servings;
private final int calories;
private final int fat;
private final int sodium;
private final int carbohydrate;

public static class Builder {
// Required parameters
private final int servingSize;
private final int servings;

// Optional parameters - initialized to default values
private int calories = 0;
private int fat = 0;
private int carbohydrate = 0;
private int sodium = 0;

public Builder(int servingSize, int servings) {
this.servingSize = servingSize;
this.servings    = servings;

}

public Builder calories(int val)
{ calories = val; return this; }

public Builder fat(int val)
{ fat = val; return this; }

public Builder carbohydrate(int val)
{ carbohydrate = val; return this; }

public Builder sodium(int val)
{ sodium = val; return this; }

public NutritionFacts build() {
return new NutritionFacts(this);

}
}

private NutritionFacts(Builder builder) {
servingSize = builder.servingSize;
servings = builder.servings;
calories = builder.calories;
fat = builder.fat;
sodium = builder.sodium;
carbohydrate = builder.carbohydrate;

}
}
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Note that NutritionFacts is immutable, and that all parameter default values

are in a single location. The builder’s setter methods return the builder itself so

that invocations can be chained. Here’s how the client code looks:

NutritionFacts cocaCola = new NutritionFacts.Builder(240, 8).
calories(100).sodium(35).carbohydrate(27).build();

This client code is easy to write and, more importantly, to read. The Builder pat-

tern simulates named optional parameters as found in Ada and Python.

Like a constructor, a builder can impose invariants on its parameters. The

build method can check these invariants. It is critical that they be checked after

copying the parameters from the builder to the object, and that they be checked on

the object fields rather than the builder fields (Item 39). If any invariants are vio-

lated, the build method should throw an IllegalStateException (Item 60). The

exception’s detail method should indicate which invariant is violated (Item 63).

Another way to impose invariants involving multiple parameters is to have

setter methods take entire groups of parameters on which some invariant must

hold. If the invariant isn’t satisfied, the setter method throws an IllegalArgu-

mentException. This has the advantage of detecting the invariant failure as soon

as the invalid parameters are passed, instead of waiting for build to be invoked.

A minor advantage of builders over constructors is that builders can have mul-

tiple varargs parameters. Constructors, like methods, can have only one varargs

parameter. Because builders use separate methods to set each parameter, they can

have as many varargs parameters as you like, up to one per setter method.

The Builder pattern is flexible. A single builder can be used to build multiple

objects. The parameters of the builder can be tweaked between object creations to

vary the objects. The builder can fill in some fields automatically, such as a serial

number that automatically increases each time an object is created.

A builder whose parameters have been set makes a fine Abstract Factory

[Gamma95, p. 87]. In other words, a client can pass such a builder to a method to

enable the method to create one or more objects for the client. To enable this

usage, you need a type to represent the builder. If you are using release 1.5 or a

later release, a single generic type (Item 26) suffices for all builders, no matter

what type of object they’re building:

// A builder for objects of type T
public interface Builder<T> {

public T build();
}
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Note that our NutritionFacts.Builder class could be declared to implement

Builder<NutritionFacts>.

Methods that take a Builder instance would typically constrain the builder’s

type parameter using a bounded wildcard type (Item 28). For example, here is a

method that builds a tree using a client-provided Builder instance to build each

node:

Tree buildTree(Builder<? extends Node> nodeBuilder) { ... }

The traditional Abstract Factory implementation in Java has been the Class

object, with the newInstance method playing the part of the build method. This

usage is fraught with problems. The newInstance method always attempts to

invoke the class’s parameterless constructor, which may not even exist. You don’t

get a compile-time error if the class has no accessible parameterless constructor.

Instead, the client code must cope with InstantiationException or IllegalAc-

cessException at runtime, which is ugly and inconvenient. Also, the newIn-

stance method propagates any exceptions thrown by the parameterless

constructor, even though newInstance lacks the corresponding throws clauses. In

other words, Class.newInstance breaks compile-time exception checking. The

Builder interface, shown above, corrects these deficiencies.

The Builder pattern does have disadvantages of its own. In order to create an

object, you must first create its builder. While the cost of creating the builder is

unlikely to be noticeable in practice, it could be a problem in some performance-

critical situations. Also, the Builder pattern is more verbose than the telescoping

constructor pattern, so it should be used only if there are enough parameters, say,

four or more. But keep in mind that you may want to add parameters in the future.

If you start out with constructors or static factories, and add a builder when the

class evolves to the point where the number of parameters starts to get out of hand,

the obsolete constructors or static factories will stick out like a sore thumb. There-

fore, it’s often better to start with a builder in the first place.

In summary, the Builder pattern is a good choice when designing classes

whose constructors or static factories would have more than a handful of

parameters, especially if most of those parameters are optional. Client code is

much easier to read and write with builders than with the traditional telescoping

constructor pattern, and builders are much safer than JavaBeans.
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Item 3: Enforce the singleton property with a private 

constructor or an enum type 

A singleton is simply a class that is instantiated exactly once [Gamma95, p. 127].

Singletons typically represent a system component that is intrinsically unique,

such as the window manager or file system. Making a class a singleton can

make it difficult to test its clients, as it’s impossible to substitute a mock imple-

mentation for a singleton unless it implements an interface that serves as its type.

Before release 1.5, there were two ways to implement singletons. Both are

based on keeping the constructor private and exporting a public static member to

provide access to the sole instance. In one approach, the member is a final field:

// Singleton with public final field
public class Elvis {

public static final Elvis INSTANCE = new Elvis();
private Elvis() { ... }

public void leaveTheBuilding() { ... }
}

The private constructor is called only once, to initialize the public static final field

Elvis.INSTANCE. The lack of a public or protected constructor guarantees a

“monoelvistic” universe: exactly one Elvis instance will exist once the Elvis

class is initialized—no more, no less. Nothing that a client does can change this,

with one caveat: a privileged client can invoke the private constructor reflectively

(Item 53) with the aid of the AccessibleObject.setAccessible method. If you

need to defend against this attack, modify the constructor to make it throw an

exception if it’s asked to create a second instance.

In the second approach to implementing singletons, the public member is a

static factory method:

// Singleton with static factory
public class Elvis {

private static final Elvis INSTANCE = new Elvis();
private Elvis() { ... }
public static Elvis getInstance() { return INSTANCE; }

public void leaveTheBuilding() { ... }
}

All calls to Elvis.getInstance return the same object reference, and no other

Elvis instance will ever be created (with the same caveat mentioned above).
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The main advantage of the public field approach is that the declarations make

it clear that the class is a singleton: the public static field is final, so it will always

contain the same object reference. There is no longer any performance advantage

to the public field approach: modern Java virtual machine (JVM) implementations

are almost certain to inline the call to the static factory method.

One advantage of the factory-method approach is that it gives you the flexibil-

ity to change your mind about whether the class should be a singleton without

changing its API. The factory method returns the sole instance but could easily be

modified to return, say, a unique instance for each thread that invokes it. A second

advantage, concerning generic types, is discussed in Item 27. Often neither of

these advantages is relevant, and the final-field approach is simpler.

To make a singleton class that is implemented using either of the previous

approaches serializable (Chapter 11), it is not sufficient merely to add imple-

ments Serializable to its declaration. To maintain the singleton guarantee, you

have to declare all instance fields transient and provide a readResolve method

(Item 77). Otherwise, each time a serialized instance is deserialized, a new

instance will be created, leading, in the case of our example, to spurious Elvis

sightings. To prevent this, add this readResolve method to the Elvis class:

// readResolve method to preserve singleton property
private Object readResolve() {

// Return the one true Elvis and let the garbage collector
// take care of the Elvis impersonator.
return INSTANCE;

}

As of release 1.5, there is a third approach to implementing singletons. Simply

make an enum type with one element:

// Enum singleton - the preferred approach
public enum Elvis {

INSTANCE;

public void leaveTheBuilding() { ... }
}

This approach is functionally equivalent to the public field approach, except that it

is more concise, provides the serialization machinery for free, and provides an

ironclad guarantee against multiple instantiation, even in the face of sophisticated

serialization or reflection attacks. While this approach has yet to be widely

adopted, a single-element enum type is the best way to implement a singleton.
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Item 4: Enforce noninstantiability with a private constructor

Occasionally you’ll want to write a class that is just a grouping of static methods

and static fields. Such classes have acquired a bad reputation because some people

abuse them to avoid thinking in terms of objects, but they do have valid uses. They

can be used to group related methods on primitive values or arrays, in the manner

of java.lang.Math or java.util.Arrays. They can also be used to group static

methods, including factory methods (Item 1), for objects that implement a particu-

lar interface, in the manner of java.util.Collections. Lastly, they can be used

to group methods on a final class, instead of extending the class.

Such utility classes were not designed to be instantiated: an instance would be

nonsensical. In the absence of explicit constructors, however, the compiler pro-

vides a public, parameterless default constructor. To a user, this constructor is

indistinguishable from any other. It is not uncommon to see unintentionally

instantiable classes in published APIs.

Attempting to enforce noninstantiability by making a class abstract does

not work. The class can be subclassed and the subclass instantiated. Furthermore,

it misleads the user into thinking the class was designed for inheritance (Item 17).

There is, however, a simple idiom to ensure noninstantiability. A default construc-

tor is generated only if a class contains no explicit constructors, so a class can be

made noninstantiable by including a private constructor:

// Noninstantiable utility class
public class UtilityClass {

// Suppress default constructor for noninstantiability
private UtilityClass() {

throw new AssertionError();
}
... // Remainder omitted

}

Because the explicit constructor is private, it is inaccessible outside of the

class. The AssertionError isn’t strictly required, but it provides insurance in

case the constructor is accidentally invoked from within the class. It guarantees

that the class will never be instantiated under any circumstances. This idiom is

mildly counterintuitive, as the constructor is provided expressly so that it cannot

be invoked. It is therefore wise to include a comment, as shown above.

As a side effect, this idiom also prevents the class from being subclassed. All

constructors must invoke a superclass constructor, explicitly or implicitly, and a

subclass would have no accessible superclass constructor to invoke.
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Item 5: Avoid creating unnecessary objects

It is often appropriate to reuse a single object instead of creating a new function-

ally equivalent object each time it is needed. Reuse can be both faster and more

stylish. An object can always be reused if it is immutable (Item 15).

As an extreme example of what not to do, consider this statement:

String s = new String("stringette");  // DON'T DO THIS!

The statement creates a new String instance each time it is executed, and

none of those object creations is necessary. The argument to the String construc-

tor ("stringette") is itself a String instance, functionally identical to all of the

objects created by the constructor. If this usage occurs in a loop or in a frequently

invoked method, millions of String instances can be created needlessly.

The improved version is simply the following:

 String s = "stringette";

This version uses a single String instance, rather than creating a new one

each time it is executed. Furthermore, it is guaranteed that the object will be

reused by any other code running in the same virtual machine that happens to con-

tain the same string literal [JLS, 3.10.5].

You can often avoid creating unnecessary objects by using static factory meth-

ods (Item 1) in preference to constructors on immutable classes that provide both.

For example, the static factory method Boolean.valueOf(String) is almost

always preferable to the constructor Boolean(String). The constructor creates a

new object each time it’s called, while the static factory method is never required

to do so and won’t in practice.

In addition to reusing immutable objects, you can also reuse mutable objects

if you know they won’t be modified. Here is a slightly more subtle, and much

more common, example of what not to do. It involves mutable Date objects that

are never modified once their values have been computed. This class models a

person and has an isBabyBoomer method that tells whether the person is a “baby

boomer,” in other words, whether the person was born between 1946 and 1964:

public class Person {
private final Date birthDate;

// Other fields, methods, and constructor omitted
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// DON'T DO THIS!
public boolean isBabyBoomer() {

// Unnecessary allocation of expensive object
Calendar gmtCal =

Calendar.getInstance(TimeZone.getTimeZone("GMT"));
gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0);
Date boomStart = gmtCal.getTime();
gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0);
Date boomEnd = gmtCal.getTime();
return birthDate.compareTo(boomStart) >= 0 &&

birthDate.compareTo(boomEnd)   <  0;
}

}

The isBabyBoomer method unnecessarily creates a new Calendar, TimeZone,

and two Date instances each time it is invoked. The version that follows avoids

this inefficiency with a static initializer:

class Person {
private final Date birthDate;
// Other fields, methods, and constructor omitted

/**
* The starting and ending dates of the baby boom.
*/
private static final Date BOOM_START;
private static final Date BOOM_END;

static {
Calendar gmtCal =

Calendar.getInstance(TimeZone.getTimeZone("GMT"));
gmtCal.set(1946, Calendar.JANUARY, 1, 0, 0, 0);
BOOM_START = gmtCal.getTime();
gmtCal.set(1965, Calendar.JANUARY, 1, 0, 0, 0);
BOOM_END = gmtCal.getTime();

}

public boolean isBabyBoomer() {
return birthDate.compareTo(BOOM_START) >= 0 &&

birthDate.compareTo(BOOM_END)   <  0;
}

}

The improved version of the Person class creates Calendar, TimeZone, and

Date instances only once, when it is initialized, instead of creating them every

time isBabyBoomer is invoked. This results in significant performance gains if the
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method is invoked frequently. On my machine, the original version takes 32,000

ms for 10 million invocations, while the improved version takes 130 ms, which is

about 250 times faster. Not only is performance improved, but so is clarity.

Changing boomStart and boomEnd from local variables to static final fields makes

it clear that these dates are treated as constants, making the code more understand-

able. In the interest of full disclosure, the savings from this sort of optimization

will not always be this dramatic, as Calendar instances are particularly expensive

to create.

If the improved version of the Person class is initialized but its isBabyBoomer

method is never invoked, the BOOM_START and BOOM_END fields will be initialized

unnecessarily. It would be possible to eliminate the unnecessary initializations by

lazily initializing these fields (Item 71) the first time the isBabyBoomer method is

invoked, but it is not recommended. As is often the case with lazy initialization, it

would complicate the implementation and would be unlikely to result in a notice-

able performance improvement beyond what we’ve already achieved (Item 55).

In the previous examples in this item, it was obvious that the objects in ques-

tion could be reused because they were not modified after initialization. There are

other situations where it is less obvious. Consider the case of adapters [Gamma95,

p. 139], also known as views. An adapter is an object that delegates to a backing

object, providing an alternative interface to the backing object. Because an adapter

has no state beyond that of its backing object, there’s no need to create more than

one instance of a given adapter to a given object.

For example, the keySet method of the Map interface returns a Set view of the

Map object, consisting of all the keys in the map. Naively, it would seem that every

call to keySet would have to create a new Set instance, but every call to keySet

on a given Map object may return the same Set instance. Although the returned

Set instance is typically mutable, all of the returned objects are functionally iden-

tical: when one of the returned objects changes, so do all the others because

they’re all backed by the same Map instance. While it is harmless to create multiple

instances of the keySet view object, it is also unnecessary.

There’s a new way to create unnecessary objects in release 1.5. It is called

autoboxing, and it allows the programmer to mix primitive and boxed primitive

types, boxing and unboxing automatically as needed. Autoboxing blurs but does

not erase the distinction between primitive and boxed primitive types. There are

subtle semantic distinctions, and not-so-subtle performance differences (Item 49).

Consider the following program, which calculates the sum of all the positive int
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values. To do this, the program has to use long arithmetic, because an int is not

big enough to hold the sum of all the positive int values:

// Hideously slow program! Can you spot the object creation?
public static void main(String[] args) {

Long sum = 0L;
for (long i = 0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

}

This program gets the right answer, but it is much slower than it should be,

due to a one-character typographical error. The variable sum is declared as a Long

instead of a long, which means that the program constructs about 231 unnecessary

Long instances (roughly one for each time the long i is added to the Long sum).

Changing the declaration of sum from Long to long reduces the runtime from 43

seconds to 6.8 seconds on my machine. The lesson is clear: prefer primitives to

boxed primitives, and watch out for unintentional autoboxing.

This item should not be misconstrued to imply that object creation is expen-

sive and should be avoided. On the contrary, the creation and reclamation of small

objects whose constructors do little explicit work is cheap, especially on modern

JVM implementations. Creating additional objects to enhance the clarity, simplic-

ity, or power of a program is generally a good thing. 

Conversely, avoiding object creation by maintaining your own object pool is a

bad idea unless the objects in the pool are extremely heavyweight. The classic

example of an object that does justify an object pool is a database connection. The

cost of establishing the connection is sufficiently high that it makes sense to reuse

these objects. Also, your database license may limit you to a fixed number of con-

nections. Generally speaking, however, maintaining your own object pools clut-

ters your code, increases memory footprint, and harms performance. Modern

JVM implementations have highly optimized garbage collectors that easily out-

perform such object pools on lightweight objects.

The counterpoint to this item is Item 39 on defensive copying. Item 5 says,

“Don’t create a new object when you should reuse an existing one,” while Item 39

says, “Don’t reuse an existing object when you should create a new one.” Note

that the penalty for reusing an object when defensive copying is called for is far

greater than the penalty for needlessly creating a duplicate object. Failing to make

defensive copies where required can lead to insidious bugs and security holes; cre-

ating objects unnecessarily merely affects style and performance.
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Item 6: Eliminate obsolete object references

When you switch from a language with manual memory management, such as C

or C++, to a garbage-collected language, your job as a programmer is made much

easier by the fact that your objects are automatically reclaimed when you’re

through with them. It seems almost like magic when you first experience it. It can

easily lead to the impression that you don’t have to think about memory manage-

ment, but this isn’t quite true.

Consider the following simple stack implementation:

// Can you spot the "memory leak"?
public class Stack {

private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
return elements[--size];

}

/**
* Ensure space for at least one more element, roughly
* doubling the capacity each time the array needs to grow.
*/
private void ensureCapacity() {

if (elements.length == size)
elements = Arrays.copyOf(elements, 2 * size + 1);

}
}

There’s nothing obviously wrong with this program (but see Item 26 for a

generic version). You could test it exhaustively, and it would pass every test with

flying colors, but there’s a problem lurking. Loosely speaking, the program has a

“memory leak,” which can silently manifest itself as reduced performance due to
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increased garbage collector activity or increased memory footprint. In extreme

cases, such memory leaks can cause disk paging and even program failure with an

OutOfMemoryError, but such failures are relatively rare.

So where is the memory leak? If a stack grows and then shrinks, the objects

that were popped off the stack will not be garbage collected, even if the program

using the stack has no more references to them. This is because the stack main-

tains obsolete references to these objects. An obsolete reference is simply a refer-

ence that will never be dereferenced again. In this case, any references outside of

the “active portion” of the element array are obsolete. The active portion consists

of the elements whose index is less than size.

Memory leaks in garbage-collected languages (more properly known as unin-

tentional object retentions) are insidious. If an object reference is unintentionally

retained, not only is that object excluded from garbage collection, but so too are

any objects referenced by that object, and so on. Even if only a few object refer-

ences are unintentionally retained, many, many objects may be prevented from

being garbage collected, with potentially large effects on performance.

The fix for this sort of problem is simple: null out references once they

become obsolete. In the case of our Stack class, the reference to an item becomes

obsolete as soon as it’s popped off the stack. The corrected version of the pop

method looks like this:

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

An added benefit of nulling out obsolete references is that, if they are subse-

quently dereferenced by mistake, the program will immediately fail with a

NullPointerException, rather than quietly doing the wrong thing. It is always

beneficial to detect programming errors as quickly as possible.

When programmers are first stung by this problem, they may overcompensate

by nulling out every object reference as soon as the program is finished using it.

This is neither necessary nor desirable, as it clutters up the program unnecessarily.

Nulling out object references should be the exception rather than the norm.

The best way to eliminate an obsolete reference is to let the variable that contained

the reference fall out of scope. This occurs naturally if you define each variable in

the narrowest possible scope (Item 45).
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So when should you null out a reference? What aspect of the Stack class

makes it susceptible to memory leaks? Simply put, it manages its own memory.

The storage pool consists of the elements of the elements array (the object refer-

ence cells, not the objects themselves). The elements in the active portion of the

array (as defined earlier) are allocated, and those in the remainder of the array are

free. The garbage collector has no way of knowing this; to the garbage collector,

all of the object references in the elements array are equally valid. Only the pro-

grammer knows that the inactive portion of the array is unimportant. The pro-

grammer effectively communicates this fact to the garbage collector by manually

nulling out array elements as soon as they become part of the inactive portion.

Generally speaking, whenever a class manages its own memory, the pro-

grammer should be alert for memory leaks. Whenever an element is freed, any

object references contained in the element should be nulled out.

Another common source of memory leaks is caches. Once you put an

object reference into a cache, it’s easy to forget that it’s there and leave it in the

cache long after it becomes irrelevant. There are several solutions to this problem.

If you’re lucky enough to implement a cache for which an entry is relevant exactly

so long as there are references to its key outside of the cache, represent the cache

as a WeakHashMap; entries will be removed automatically after they become obso-

lete. Remember that WeakHashMap is useful only if the desired lifetime of cache

entries is determined by external references to the key, not the value.

More commonly, the useful lifetime of a cache entry is less well defined, with

entries becoming less valuable over time. Under these circumstances, the cache

should occasionally be cleansed of entries that have fallen into disuse. This can be

done by a background thread (perhaps a Timer or ScheduledThreadPoolExecu-

tor) or as a side effect of adding new entries to the cache. The LinkedHashMap

class facilitates the latter approach with its removeEldestEntry method. For

more sophisticated caches, you may need to use java.lang.ref directly.

A third common source of memory leaks is listeners and other callbacks.

If you implement an API where clients register callbacks but don’t deregister them

explicitly, they will accumulate unless you take some action. The best way to

ensure that callbacks are garbage collected promptly is to store only weak refer-

ences to them, for instance, by storing them only as keys in a WeakHashMap.

Because memory leaks typically do not manifest themselves as obvious fail-

ures, they may remain present in a system for years. They are typically discovered

only as a result of careful code inspection or with the aid of a debugging tool

known as a heap profiler. Therefore, it is very desirable to learn to anticipate prob-

lems like this before they occur and prevent them from happening.
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Item 7: Avoid finalizers

Finalizers are unpredictable, often dangerous, and generally unnecessary.

Their use can cause erratic behavior, poor performance, and portability problems.

Finalizers have a few valid uses, which we’ll cover later in this item, but as a rule

of thumb, you should avoid finalizers.

C++ programmers are cautioned not to think of finalizers as Java’s analog of

C++ destructors. In C++, destructors are the normal way to reclaim the resources

associated with an object, a necessary counterpart to constructors. In Java, the gar-

bage collector reclaims the storage associated with an object when it becomes

unreachable, requiring no special effort on the part of the programmer. C++

destructors are also used to reclaim other nonmemory resources. In Java, the try-

finally block is generally used for this purpose.

One shortcoming of finalizers is that there is no guarantee they’ll be executed

promptly [JLS, 12.6]. It can take arbitrarily long between the time that an object

becomes unreachable and the time that its finalizer is executed. This means that

you should never do anything time-critical in a finalizer. For example, it is a

grave error to depend on a finalizer to close files, because open file descriptors are

a limited resource. If many files are left open because the JVM is tardy in execut-

ing finalizers, a program may fail because it can no longer open files.

The promptness with which finalizers are executed is primarily a function of

the garbage collection algorithm, which varies widely from JVM implementation

to JVM implementation. The behavior of a program that depends on the prompt-

ness of finalizer execution may likewise vary. It is entirely possible that such a

program will run perfectly on the JVM on which you test it and then fail miserably

on the JVM favored by your most important customer.

Tardy finalization is not just a theoretical problem. Providing a finalizer for a

class can, under rare conditions, arbitrarily delay reclamation of its instances. A

colleague debugged a long-running GUI application that was mysteriously dying

with an OutOfMemoryError. Analysis revealed that at the time of its death, the

application had thousands of graphics objects on its finalizer queue just waiting to

be finalized and reclaimed. Unfortunately, the finalizer thread was running at a

lower priority than another application thread, so objects weren’t getting finalized

at the rate they became eligible for finalization. The language specification makes

no guarantees as to which thread will execute finalizers, so there is no portable

way to prevent this sort of problem other than to refrain from using finalizers.

Not only does the language specification provide no guarantee that finalizers

will get executed promptly; it provides no guarantee that they’ll get executed at
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all. It is entirely possible, even likely, that a program terminates without executing

finalizers on some objects that are no longer reachable. As a consequence, you

should never depend on a finalizer to update critical persistent state. For

example, depending on a finalizer to release a persistent lock on a shared resource

such as a database is a good way to bring your entire distributed system to a

grinding halt.

Don’t be seduced by the methods System.gc and System.runFinalization.

They may increase the odds of finalizers getting executed, but they don’t guaran-

tee it. The only methods that claim to guarantee finalization are System.runFi-

nalizersOnExit and its evil twin, Runtime.runFinalizersOnExit. These

methods are fatally flawed and have been deprecated [ThreadStop].

In case you are not yet convinced that finalizers should be avoided, here’s

another tidbit worth considering: if an uncaught exception is thrown during final-

ization, the exception is ignored, and finalization of that object terminates [JLS,

12.6]. Uncaught exceptions can leave objects in a corrupt state. If another thread

attempts to use such a corrupted object, arbitrary nondeterministic behavior may

result. Normally, an uncaught exception will terminate the thread and print a stack

trace, but not if it occurs in a finalizer—it won’t even print a warning.

Oh, and one more thing: there is a severe performance penalty for using

finalizers. On my machine, the time to create and destroy a simple object is about

5.6 ns. Adding a finalizer increases the time to 2,400 ns. In other words, it is about

430 times slower to create and destroy objects with finalizers.

So what should you do instead of writing a finalizer for a class whose objects

encapsulate resources that require termination, such as files or threads? Just pro-

vide an explicit termination method, and require clients of the class to invoke this

method on each instance when it is no longer needed. One detail worth mention-

ing is that the instance must keep track of whether it has been terminated: the

explicit termination method must record in a private field that the object is no

longer valid, and other methods must check this field and throw an Illegal-

StateException if they are called after the object has been terminated.

Typical examples of explicit termination methods are the close methods on

InputStream, OutputStream, and java.sql.Connection. Another example is

the cancel method on java.util.Timer, which performs the necessary state

change to cause the thread associated with a Timer instance to terminate itself

gently. Examples from java.awt include Graphics.dispose and Window.dis-

pose. These methods are often overlooked, with predictably dire performance

consequences. A related method is Image.flush, which deallocates all the
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resources associated with an Image instance but leaves it in a state where it can

still be used, reallocating the resources if necessary.

Explicit termination methods are typically used in combination with the

try-finally construct to ensure termination. Invoking the explicit termination

method inside the finally clause ensures that it will get executed even if an

exception is thrown while the object is being used:

// try-finally block guarantees execution of termination method
Foo foo = new Foo(...);
try {

// Do what must be done with foo
...

} finally {
foo.terminate();  // Explicit termination method

}

So what, if anything, are finalizers good for? There are perhaps two legitimate

uses. One is to act as a “safety net” in case the owner of an object forgets to call its

explicit termination method. While there’s no guarantee that the finalizer will be

invoked promptly, it may be better to free the resource late than never, in those

(hopefully rare) cases when the client fails to call the explicit termination method.

But the finalizer should log a warning if it finds that the resource has not been

terminated, as this indicates a bug in the client code, which should be fixed. If

you are considering writing such a safety-net finalizer, think long and hard about

whether the extra protection is worth the extra cost.

The four classes cited as examples of the explicit termination method pattern

(FileInputStream, FileOutputStream, Timer, and Connection) have finalizers

that serve as safety nets in case their termination methods aren’t called. Unfortu-

nately these finalizers do not log warnings. Such warnings generally can’t be

added after an API is published, as it would appear to break existing clients.

A second legitimate use of finalizers concerns objects with native peers. A

native peer is a native object to which a normal object delegates via native meth-

ods. Because a native peer is not a normal object, the garbage collector doesn’t

know about it and can’t reclaim it when its Java peer is reclaimed. A finalizer is an

appropriate vehicle for performing this task, assuming the native peer holds no

critical resources. If the native peer holds resources that must be terminated

promptly, the class should have an explicit termination method, as described

above. The termination method should do whatever is required to free the critical

resource. The termination method can be a native method, or it can invoke one.
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It is important to note that “finalizer chaining” is not performed automatically.

If a class (other than Object) has a finalizer and a subclass overrides it, the sub-

class finalizer must invoke the superclass finalizer manually. You should finalize

the subclass in a try block and invoke the superclass finalizer in the correspond-

ing finally block. This ensures that the superclass finalizer gets executed even if

the subclass finalization throws an exception and vice versa. Here’s how it looks.

Note that this example uses the Override annotation (@Override), which was

added to the platform in release 1.5. You can ignore Override annotations for

now, or see Item 36 to find out what they mean:

// Manual finalizer chaining
@Override protected void finalize() throws Throwable {

try {
... // Finalize subclass state

} finally {
super.finalize();

}
}

If a subclass implementor overrides a superclass finalizer but forgets to invoke

it, the superclass finalizer will never be invoked. It is possible to defend against

such a careless or malicious subclass at the cost of creating an additional object

for every object to be finalized. Instead of putting the finalizer on the class

requiring finalization, put the finalizer on an anonymous class (Item 22) whose

sole purpose is to finalize its enclosing instance. A single instance of the

anonymous class, called a finalizer guardian, is created for each instance of the

enclosing class. The enclosing instance stores the sole reference to its finalizer

guardian in a private instance field so the finalizer guardian becomes eligible for

finalization at the same time as the enclosing instance. When the guardian is

finalized, it performs the finalization activity desired for the enclosing instance,

just as if its finalizer were a method on the enclosing class:

// Finalizer Guardian idiom
public class Foo {

// Sole purpose of this object is to finalize outer Foo object
private final Object finalizerGuardian = new Object() {

@Override protected void finalize() throws Throwable {
... // Finalize outer Foo object

}
};
... // Remainder omitted

}
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Note that the public class, Foo, has no finalizer (other than the trivial one it

inherits from Object), so it doesn’t matter whether a subclass finalizer calls

super.finalize or not. This technique should be considered for every nonfinal

public class that has a finalizer.

In summary, don’t use finalizers except as a safety net or to terminate

noncritical native resources. In those rare instances where you do use a finalizer,

remember to invoke super.finalize. If you use a finalizer as a safety net,

remember to log the invalid usage from the finalizer. Lastly, if you need to

associate a finalizer with a public, nonfinal class, consider using a finalizer

guardian, so finalization can take place even if a subclass finalizer fails to invoke

super.finalize.
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C H A P T E R 3
Methods Common to All Objects

ALTHOUGH Object is a concrete class, it is designed primarily for extension.

All of its nonfinal methods (equals, hashCode, toString, clone, and finalize)

have explicit general contracts because they are designed to be overridden. It is

the responsibility of any class overriding these methods to obey their general con-

tracts; failure to do so will prevent other classes that depend on the contracts (such

as HashMap and HashSet) from functioning properly in conjunction with the class.

This chapter tells you when and how to override the nonfinal Object methods.

The finalize method is omitted from this chapter because it was discussed in

Item 7. While not an Object method, Comparable.compareTo is discussed in this

chapter because it has a similar character.

Item 8: Obey the general contract when overriding equals

Overriding the equals method seems simple, but there are many ways to get it

wrong, and consequences can be dire. The easiest way to avoid problems is not to

override the equals method, in which case each instance of the class is equal only

to itself. This is the right thing to do if any of the following conditions apply:

• Each instance of the class is inherently unique. This is true for classes such

as Thread that represent active entities rather than values. The equals imple-

mentation provided by Object has exactly the right behavior for these classes.

• You don’t care whether the class provides a “logical equality” test. For

example, java.util.Random could have overridden equals to check whether

two Random instances would produce the same sequence of random numbers

going forward, but the designers didn’t think that clients would need or want

this functionality. Under these circumstances, the equals implementation

inherited from Object is adequate.



CHAPTER 3 METHODS COMMON TO ALL OBJECTS34

• A superclass has already overridden equals, and the superclass behavior

is appropriate for this class. For example, most Set implementations inherit

their equals implementation from AbstractSet, List implementations from

AbstractList, and Map implementations from AbstractMap.

• The class is private or package-private, and you are certain that its equals

method will never be invoked. Arguably, the equals method should be over-

ridden under these circumstances, in case it is accidentally invoked:

@Override public boolean equals(Object o) {
throw new AssertionError(); // Method is never called

}

So when is it appropriate to override Object.equals? When a class has a

notion of logical equality that differs from mere object identity, and a superclass

has not already overridden equals to implement the desired behavior. This is gen-

erally the case for value classes. A value class is simply a class that represents a

value, such as Integer or Date. A programmer who compares references to value

objects using the equals method expects to find out whether they are logically

equivalent, not whether they refer to the same object. Not only is overriding the

equals method necessary to satisfy programmer expectations; it enables instances

to serve as map keys or set elements with predictable, desirable behavior.

One kind of value class that does not require the equals method to be overrid-

den is a class that uses instance control (Item 1) to ensure that at most one object

exists with each value. Enum types (Item 30) fall into this category. For these

classes, logical equality is the same as object identity, so Object’s equals method

functions as a logical equals method.

When you override the equals method, you must adhere to its general con-

tract. Here is the contract, copied from the specification for Object [JavaSE6]:

The equals method implements an equivalence relation. It is:

• Reflexive: For any non-null reference value x, x.equals(x) must return true.

• Symmetric: For any non-null reference values x and y, x.equals(y) must re-
turn true if and only if y.equals(x) returns true.

• Transitive: For any non-null reference values x, y, z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) must return true.

• Consistent: For any non-null reference values x and y, multiple invocations
of x.equals(y) consistently return true or consistently return false, pro-
vided no information used in equals comparisons on the objects is modified.

• For any non-null reference value x, x.equals(null) must return false.
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Unless you are mathematically inclined, this might look a bit scary, but do not

ignore it! If you violate it, you may well find that your program behaves errati-

cally or crashes, and it can be very difficult to pin down the source of the failure.

To paraphrase John Donne, no class is an island. Instances of one class are fre-

quently passed to another. Many classes, including all collections classes, depend

on the objects passed to them obeying the equals contract.

Now that you are aware of the dangers of violating the equals contract, let’s

go over the contract in detail. The good news is that, appearances notwithstand-

ing, the contract really isn’t very complicated. Once you understand it, it’s not

hard to adhere to it. Let’s examine the five requirements in turn:

Reflexivity—The first requirement says merely that an object must be equal

to itself. It is hard to imagine violating this requirement unintentionally. If you

were to violate it and then add an instance of your class to a collection, the collec-

tion’s contains method might well say that the collection didn’t contain the

instance that you just added.

Symmetry—The second requirement says that any two objects must agree on

whether they are equal. Unlike the first requirement, it’s not hard to imagine vio-

lating this one unintentionally. For example, consider the following class, which

implements a case-insensitive string. The case of the string is preserved by

toString but ignored in comparisons:

// Broken - violates symmetry!
public final class CaseInsensitiveString {

private final String s;

public CaseInsensitiveString(String s) {
if (s == null)

throw new NullPointerException();
this.s = s;

}

// Broken - violates symmetry!
@Override public boolean equals(Object o) {

if (o instanceof CaseInsensitiveString)
return s.equalsIgnoreCase(

((CaseInsensitiveString) o).s);
if (o instanceof String)  // One-way interoperability!

return s.equalsIgnoreCase((String) o);
return false;

}
... // Remainder omitted

}
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The well-intentioned equals method in this class naively attempts to interop-

erate with ordinary strings. Let’s suppose that we have one case-insensitive string

and one ordinary one:

CaseInsensitiveString cis = new CaseInsensitiveString("Polish");
String s = "polish";

As expected, cis.equals(s) returns true. The problem is that while the

equals method in CaseInsensitiveString knows about ordinary strings, the

equals method in String is oblivious to case-insensitive strings. Therefore

s.equals(cis) returns false, a clear violation of symmetry. Suppose you put a

case-insensitive string into a collection:

List<CaseInsensitiveString> list =
new ArrayList<CaseInsensitiveString>();

list.add(cis);

What does list.contains(s) return at this point? Who knows? In Sun’s cur-

rent implementation, it happens to return false, but that’s just an implementation

artifact. In another implementation, it could just as easily return true or throw a

runtime exception. Once you’ve violated the equals contract, you simply don’t

know how other objects will behave when confronted with your object.

To eliminate the problem, merely remove the ill-conceived attempt to interop-

erate with String from the equals method. Once you do this, you can refactor the

method to give it a single return:

@Override public boolean equals(Object o) {
return o instanceof CaseInsensitiveString &&

((CaseInsensitiveString) o).s.equalsIgnoreCase(s);
}

Transitivity—The third requirement of the equals contract says that if one

object is equal to a second and the second object is equal to a third, then the first

object must be equal to the third. Again, it’s not hard to imagine violating this

requirement unintentionally. Consider the case of a subclass that adds a new value

component to its superclass. In other words, the subclass adds a piece of informa-



ITEM 8: OBEY THE GENERAL CONTRACT WHEN OVERRIDING EQUALS 37

tion that affects equals comparisons. Let’s start with a simple immutable two-

dimensional integer point class:

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {

this.x = x;
this.y = y;

}

@Override public boolean equals(Object o) {
if (!(o instanceof Point))

return false;
Point p = (Point)o;
return p.x == x && p.y == y;

}

... // Remainder omitted
}

Suppose you want to extend this class, adding the notion of color to a point:

public class ColorPoint extends Point {
private final Color color;

public ColorPoint(int x, int y, Color color) {
super(x, y);
this.color = color;

}

... // Remainder omitted
}

How should the equals method look? If you leave it out entirely, the imple-

mentation is inherited from Point and color information is ignored in equals

comparisons. While this does not violate the equals contract, it is clearly unac-

ceptable. Suppose you write an equals method that returns true only if its argu-

ment is another color point with the same position and color:

// Broken - violates symmetry!
@Override public boolean equals(Object o) {

if (!(o instanceof ColorPoint))
return false;

return super.equals(o) && ((ColorPoint) o).color == color;
}
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The problem with this method is that you might get different results when

comparing a point to a color point and vice versa. The former comparison ignores

color, while the latter comparison always returns false because the type of the

argument is incorrect. To make this concrete, let’s create one point and one color

point:

Point p = new Point(1, 2);
ColorPoint cp = new ColorPoint(1, 2, Color.RED);

Then p.equals(cp) returns true, while cp.equals(p) returns false. You

might try to fix the problem by having ColorPoint.equals ignore color when

doing “mixed comparisons”:

// Broken - violates transitivity!
@Override public boolean equals(Object o) {

if (!(o instanceof Point))
return false;

// If o is a normal Point, do a color-blind comparison
if (!(o instanceof ColorPoint))

return o.equals(this);

// o is a ColorPoint; do a full comparison
return super.equals(o) && ((ColorPoint)o).color == color;

}

This approach does provide symmetry, but at the expense of transitivity:

ColorPoint p1 = new ColorPoint(1, 2, Color.RED);
Point p2 = new Point(1, 2);
ColorPoint p3 = new ColorPoint(1, 2, Color.BLUE);

Now p1.equals(p2) and p2.equals(p3) return true, while p1.equals(p3)

returns false, a clear violation of transitivity. The first two comparisons are

“color-blind,” while the third takes color into account.

So what’s the solution? It turns out that this is a fundamental problem of

equivalence relations in object-oriented languages. There is no way to extend an

instantiable class and add a value component while preserving the equals

contract, unless you are willing to forgo the benefits of object-oriented abstrac-

tion.
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You may hear it said that you can extend an instantiable class and add a value

component while preserving the equals contract by using a getClass test in

place of the instanceof test in the equals method:

// Broken - violates Liskov substitution principle (page 40)
@Override public boolean equals(Object o) {

if (o == null || o.getClass() != getClass())
return false;

Point p = (Point) o;
return p.x == x && p.y == y;

}

This has the effect of equating objects only if they have the same implementation

class. While this may not seem so bad, the consequences are unacceptable.

Let’s suppose we want to write a method to tell whether an integer point is on

the unit circle. Here is one way we could do it:

// Initialize UnitCircle to contain all Points on the unit circle
private static final Set<Point> unitCircle;
static {

unitCircle = new HashSet<Point>();
unitCircle.add(new Point( 1,  0));
unitCircle.add(new Point( 0,  1));
unitCircle.add(new Point(-1,  0));
unitCircle.add(new Point( 0, -1));

}

public static boolean onUnitCircle(Point p) {
    return unitCircle.contains(p);
}

While this may not be the fastest way to implement the functionality, it works fine.

But suppose you extend Point in some trivial way that doesn’t add a value com-

ponent, say, by having its constructor keep track of how many instances have been

created:

public class CounterPoint extends Point {
private static final AtomicInteger counter =

new AtomicInteger();

public CounterPoint(int x, int y) {
super(x, y);
counter.incrementAndGet();

}
public int numberCreated() { return counter.get(); }

}
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The Liskov substitution principle says that any important property of a type

should also hold for its subtypes, so that any method written for the type should

work equally well on its subtypes [Liskov87]. But suppose we pass a Counter-

Point instance to the onUnitCircle method. If the Point class uses a getClass-

based equals method, the onUnitCircle method will return false regardless of

the CounterPoint instance’s x and y values. This is so because collections, such

as the HashSet used by the onUnitCircle method, use the equals method to test

for containment, and no CounterPoint instance is equal to any Point. If, how-

ever, you use a proper instanceof-based equals method on Point, the same

onUnitCircle method will work fine when presented with a CounterPoint.

While there is no satisfactory way to extend an instantiable class and add a

value component, there is a fine workaround. Follow the advice of Item 16, “Favor

composition over inheritance.” Instead of having ColorPoint extend Point, give

ColorPoint a private Point field and a public view method (Item 5) that returns

the point at the same position as this color point:

// Adds a value component without violating the equals contract
public class ColorPoint {

private final Point point;
private final Color color;

public ColorPoint(int x, int y, Color color) {
if (color == null)

throw new NullPointerException();
point = new Point(x, y);
this.color = color;

}

/**
* Returns the point-view of this color point.
*/

public Point asPoint() {
return point;

}

@Override public boolean equals(Object o) {
if (!(o instanceof ColorPoint))

return false;
ColorPoint cp = (ColorPoint) o;
return cp.point.equals(point) && cp.color.equals(color);

}

... // Remainder omitted
}
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There are some classes in the Java platform libraries that do extend an instan-

tiable class and add a value component. For example, java.sql.Timestamp

extends java.util.Date and adds a nanoseconds field. The equals implementa-

tion for Timestamp does violate symmetry and can cause erratic behavior if

Timestamp and Date objects are used in the same collection or are otherwise inter-

mixed. The Timestamp class has a disclaimer cautioning programmers against

mixing dates and timestamps. While you won’t get into trouble as long as you

keep them separate, there’s nothing to prevent you from mixing them, and the

resulting errors can be hard to debug. This behavior of the Timestamp class was a

mistake and should not be emulated.

Note that you can add a value component to a subclass of an abstract class

without violating the equals contract. This is important for the sort of class hier-

archies that you get by following the advice in Item 20, “Prefer class hierarchies to

tagged classes.” For example, you could have an abstract class Shape with no

value components, a subclass Circle that adds a radius field, and a subclass

Rectangle that adds length and width fields. Problems of the sort shown above

won’t occur so long as it is impossible to create a superclass instance directly.

Consistency—The fourth requirement of the equals contract says that if two

objects are equal, they must remain equal for all time unless one (or both) of them

is modified. In other words, mutable objects can be equal to different objects at

different times while immutable objects can’t. When you write a class, think hard

about whether it should be immutable (Item 15). If you conclude that it should,

make sure that your equals method enforces the restriction that equal objects

remain equal and unequal objects remain unequal for all time.

Whether or not a class is immutable, do not write an equals method that

depends on unreliable resources. It’s extremely difficult to satisfy the consis-

tency requirement if you violate this prohibition. For example, java.net.URL’s

equals method relies on comparison of the IP addresses of the hosts associated

with the URLs. Translating a host name to an IP address can require network

access, and it isn’t guaranteed to yield the same results over time. This can cause

the URL equals method to violate the equals contract and has caused problems in

practice. (Unfortunately, this behavior cannot be changed due to compatibility

requirements.) With very few exceptions, equals methods should perform deter-

ministic computations on memory-resident objects.

“Non-nullity”—The final requirement, which in the absence of a name I have

taken the liberty of calling “non-nullity,” says that all objects must be unequal to

null. While it is hard to imagine accidentally returning true in response to the

invocation o.equals(null), it isn’t hard to imagine accidentally throwing a
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NullPointerException. The general contract does not allow this. Many classes

have equals methods that guard against this with an explicit test for null:

@Override public boolean equals(Object o) {
if (o == null)

return false;
...

}

This test is unnecessary. To test its argument for equality, the equals method must

first cast its argument to an appropriate type so its accessors may be invoked or its

fields accessed. Before doing the cast, the method must use the instanceof oper-

ator to check that its argument is of the correct type:

@Override public boolean equals(Object o) {
if (!(o instanceof MyType))

return false;
MyType mt = (MyType) o;
...

}

If this type check were missing and the equals method were passed an argument

of the wrong type, the equals method would throw a ClassCastException,

which violates the equals contract. But the instanceof operator is specified to

return false if its first operand is null, regardless of what type appears in the sec-

ond operand [JLS, 15.20.2]. Therefore the type check will return false if null is

passed in, so you don’t need a separate null check. 

Putting it all together, here’s a recipe for a high-quality equals method:

1. Use the == operator to check if the argument is a reference to this object.

If so, return true. This is just a performance optimization, but one that is worth

doing if the comparison is potentially expensive.

2. Use the instanceof operator to check if the argument has the correct type.

If not, return false. Typically, the correct type is the class in which the method

occurs. Occasionally, it is some interface implemented by this class. Use an in-

terface if the class implements an interface that refines the equals contract to

permit comparisons across classes that implement the interface. Collection in-

terfaces such as Set, List, Map, and Map.Entry have this property.

3. Cast the argument to the correct type. Because this cast was preceded by an

instanceof test, it is guaranteed to succeed.
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4. For each “significant” field in the class, check if that field of the argument

matches the corresponding field of this object. If all these tests succeed, re-

turn true; otherwise, return false. If the type in step 2 is an interface, you

must access the argument’s fields via interface methods; if the type is a class,

you may be able to access the fields directly, depending on their accessibility. 

For primitive fields whose type is not float or double, use the == operator for

comparisons; for object reference fields, invoke the equals method recursive-

ly; for float fields, use the Float.compare method; and for double fields, use

Double.compare. The special treatment of float and double fields is made

necessary by the existence of Float.NaN, -0.0f and the analogous double

constants; see the Float.equals documentation for details. For array fields,

apply these guidelines to each element. If every element in an array field is sig-

nificant, you can use one of the Arrays.equals methods added in release 1.5.

Some object reference fields may legitimately contain null. To avoid the pos-

sibility of a NullPointerException, use this idiom to compare such fields:

(field == null ? o.field == null : field.equals(o.field))

This alternative may be faster if field and o.field are often identical:

(field == o.field || (field != null && field.equals(o.field)))

For some classes, such as CaseInsensitiveString above, field comparisons

are more complex than simple equality tests. If this is the case, you may want

to store a canonical form of the field, so the equals method can do cheap exact

comparisons on these canonical forms rather than more costly inexact compar-

isons. This technique is most appropriate for immutable classes (Item 15); if

the object can change, you must keep the canonical form up to date.

The performance of the equals method may be affected by the order in which

fields are compared. For best performance, you should first compare fields that

are more likely to differ, less expensive to compare, or, ideally, both. You must

not compare fields that are not part of an object’s logical state, such as Lock

fields used to synchronize operations. You need not compare redundant fields,

which can be calculated from “significant fields,” but doing so may improve

the performance of the equals method. If a redundant field amounts to a sum-

mary description of the entire object, comparing this field will save you the ex-

pense of comparing the actual data if the comparison fails. For example,

suppose you have a Polygon class, and you cache the area. If two polygons

have unequal areas, you needn’t bother comparing their edges and vertices.
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5. When you are finished writing your equals method, ask yourself three

questions: Is it symmetric? Is it transitive? Is it consistent? And don’t just

ask yourself; write unit tests to check that these properties hold! If they don’t,

figure out why not, and modify the equals method accordingly. Of course

your equals method also has to satisfy the other two properties (reflexivity and

“non-nullity”), but these two usually take care of themselves.

For a concrete example of an equals method constructed according to the

above recipe, see PhoneNumber.equals in Item 9. Here are a few final caveats:

• Always override hashCode when you override equals (Item 9).

• Don’t try to be too clever. If you simply test fields for equality, it’s not hard

to adhere to the equals contract. If you are overly aggressive in searching for

equivalence, it’s easy to get into trouble. It is generally a bad idea to take any

form of aliasing into account. For example, the File class shouldn’t attempt to

equate symbolic links referring to the same file. Thankfully, it doesn’t.

• Don’t substitute another type for Object in the equals declaration. It is not

uncommon for a programmer to write an equals method that looks like this,

and then spend hours puzzling over why it doesn’t work properly:

public boolean equals(MyClass o) {
...

}

The problem is that this method does not override Object.equals, whose ar-

gument is of type Object, but overloads it instead (Item 41). It is acceptable to

provide such a “strongly typed” equals method in addition to the normal one

as long as the two methods return the same result, but there is no compelling

reason to do so. It may provide minor performance gains under certain circum-

stances, but it isn’t worth the added complexity (Item 55). 

Consistent use of the @Override annotation, as illustrated throughout this item,

will prevent you from making this mistake (Item 36). This equals method

won’t compile and the error message will tell you exactly what is wrong:

@Override public boolean equals(MyClass o) {
...

}
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Item 9: Always override hashCode when you override equals

A common source of bugs is the failure to override the hashCode method. You

must override hashCode in every class that overrides equals. Failure to do so

will result in a violation of the general contract for Object.hashCode, which will

prevent your class from functioning properly in conjunction with all hash-based

collections, including HashMap, HashSet, and Hashtable.

Here is the contract, copied from the Object specification [JavaSE6]:

• Whenever it is invoked on the same object more than once during an execu-
tion of an application, the hashCode method must consistently return the
same integer, provided no information used in equals comparisons on the
object is modified. This integer need not remain consistent from one execu-
tion of an application to another execution of the same application.

• If two objects are equal according to the equals(Object) method, then call-
ing the hashCode method on each of the two objects must produce the same
integer result. 

• It is not required that if two objects are unequal according to the equals(Ob-
ject) method, then calling the hashCode method on each of the two objects
must produce distinct integer results. However, the programmer should be
aware that producing distinct integer results for unequal objects may improve
the performance of hash tables.

The key provision that is violated when you fail to override hashCode is

the second one: equal objects must have equal hash codes. Two distinct

instances may be logically equal according to a class’s equals method, but to

Object’s hashCode method, they’re just two objects with nothing much in com-

mon. Therefore Object’s hashCode method returns two seemingly random num-

bers instead of two equal numbers as required by the contract.

For example, consider the following simplistic PhoneNumber class, whose

equals method is constructed according to the recipe in Item 8:

public final class PhoneNumber {
private final short areaCode;
private final short prefix;
private final short lineNumber;

public PhoneNumber(int areaCode, int prefix,
int lineNumber) {

rangeCheck(areaCode, 999, "area code");
rangeCheck(prefix, 999, "prefix");
rangeCheck(lineNumber, 9999, "line number");



CHAPTER 3 METHODS COMMON TO ALL OBJECTS46

this.areaCode  = (short) areaCode;
this.prefix  = (short) prefix;
this.lineNumber = (short) lineNumber;

}

private static void rangeCheck(int arg, int max,
String name) {

if (arg < 0 || arg > max)
throw new IllegalArgumentException(name +": " + arg);

}

@Override public boolean equals(Object o) {
if (o == this)

return true;
if (!(o instanceof PhoneNumber))

return false;
PhoneNumber pn = (PhoneNumber)o;
return pn.lineNumber == lineNumber

&& pn.prefix  == prefix
&& pn.areaCode  == areaCode;

}

// Broken - no hashCode method!

... // Remainder omitted
}

Suppose you attempt to use this class with a HashMap:

Map<PhoneNumber, String> m
= new HashMap<PhoneNumber, String>();

m.put(new PhoneNumber(707, 867, 5309), "Jenny");

At this point, you might expect m.get(new PhoneNumber(707, 867, 5309)) to

return "Jenny", but it returns null. Notice that two PhoneNumber instances are

involved: one is used for insertion into the HashMap, and a second, equal, instance

is used for (attempted) retrieval. The PhoneNumber class’s failure to override

hashCode causes the two equal instances to have unequal hash codes, in violation

of the hashCode contract. Therefore the get method is likely to look for the phone

number in a different hash bucket from the one in which it was stored by the put

method. Even if the two instances happen to hash to the same bucket, the get

method will almost certainly return null, as HashMap has an optimization that

caches the hash code associated with each entry and doesn’t bother checking for

object equality if the hash codes don’t match.
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Fixing this problem is as simple as providing a proper hashCode method for

the PhoneNumber class. So what should a hashCode method look like? It’s trivial

to write one that is legal but not good. This one, for example, is always legal but

should never be used:

// The worst possible legal hash function - never use!
@Override public int hashCode() { return 42; }

It’s legal because it ensures that equal objects have the same hash code. It’s

atrocious because it ensures that every object has the same hash code. Therefore,

every object hashes to the same bucket, and hash tables degenerate to linked lists.

Programs that should run in linear time instead run in quadratic time. For large

hash tables, this is the difference between working and not working.

A good hash function tends to produce unequal hash codes for unequal

objects. This is exactly what is meant by the third provision of the hashCode con-

tract. Ideally, a hash function should distribute any reasonable collection of

unequal instances uniformly across all possible hash values. Achieving this ideal

can be difficult. Luckily it’s not too difficult to achieve a fair approximation. Here

is a simple recipe:

1. Store some constant nonzero value, say, 17, in an int variable called result.

2. For each significant field f in your object (each field taken into account by the

equals method, that is), do the following:

a. Compute an int hash code c for the field:

i. If the field is a boolean, compute (f ? 1 : 0).

ii. If the field is a byte, char, short, or int, compute (int) f.

iii. If the field is a long, compute (int) (f ^ (f >>> 32)).

iv. If the field is a float, compute Float.floatToIntBits(f).

v. If the field is a double, compute Double.doubleToLongBits(f), and

then hash the resulting long as in step 2.a.iii.

vi. If the field is an object reference and this class’s equals method

compares the field by recursively invoking equals, recursively

invoke hashCode on the field. If a more complex comparison is

required, compute a “canonical representation” for this field and

invoke hashCode on the canonical representation. If the value of the

field is null, return 0 (or some other constant, but 0 is traditional).

www.allitebooks.com
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vii. If the field is an array, treat it as if each element were a separate field.

That is, compute a hash code for each significant element by applying

these rules recursively, and combine these values per step 2.b. If every

element in an array field is significant, you can use one of the

Arrays.hashCode methods added in release 1.5.

b. Combine the hash code c computed in step 2.a into result as follows:

        result = 31 * result + c;

3. Return result.

4. When you are finished writing the hashCode method, ask yourself whether

equal instances have equal hash codes. Write unit tests to verify your intuition!

If equal instances have unequal hash codes, figure out why and fix the problem.

You may exclude redundant fields from the hash code computation. In other

words, you may ignore any field whose value can be computed from fields included

in the computation. You must exclude any fields that are not used in equals com-

parisons, or you risk violating the second provision of the hashCode contract.

A nonzero initial value is used in step 1 so the hash value will be affected by

initial fields whose hash value, as computed in step 2.a, is zero. If zero were used

as the initial value in step 1, the overall hash value would be unaffected by any

such initial fields, which could increase collisions. The value 17 is arbitrary.

The multiplication in step 2.b makes the result depend on the order of the

fields, yielding a much better hash function if the class has multiple similar fields.

For example, if the multiplication were omitted from a String hash function, all

anagrams would have identical hash codes. The value 31 was chosen because it is

an odd prime. If it were even and the multiplication overflowed, information

would be lost, as multiplication by 2 is equivalent to shifting. The advantage of

using a prime is less clear, but it is traditional. A nice property of 31 is that the

multiplication can be replaced by a shift and a subtraction for better performance:

31 * i == (i << 5) - i. Modern VMs do this sort of optimization automatically.

Let’s apply the above recipe to the PhoneNumber class. There are three signif-

icant fields, all of type short:

@Override public int hashCode() {
int result = 17;
result = 31 * result + areaCode;
result = 31 * result + prefix;
result = 31 * result + lineNumber;
return result;

}
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Because this method returns the result of a simple deterministic computation

whose only inputs are the three significant fields in a PhoneNumber instance, it is

clear that equal PhoneNumber instances have equal hash codes. This method is, in

fact, a perfectly good hashCode implementation for PhoneNumber, on a par with

those in the Java platform libraries. It is simple, reasonably fast, and does a rea-

sonable job of dispersing unequal phone numbers into different hash buckets.

If a class is immutable and the cost of computing the hash code is significant,

you might consider caching the hash code in the object rather than recalculating it

each time it is requested. If you believe that most objects of this type will be used

as hash keys, then you should calculate the hash code when the instance is created.

Otherwise, you might choose to lazily initialize it the first time hashCode is

invoked (Item 71). It is not clear that our PhoneNumber class merits this treatment,

but just to show you how it’s done:

// Lazily initialized, cached hashCode
private volatile int hashCode; // (See Item 71)

@Override public int hashCode() {
int result = hashCode;
if (result == 0) {

result = 17;
result = 31 * result + areaCode;
result = 31 * result + prefix;
result = 31 * result + lineNumber;
hashCode = result;

}
return result;

}

While the recipe in this item yields reasonably good hash functions, it does

not yield state-of-the-art hash functions, nor do the Java platform libraries provide

such hash functions as of release 1.6. Writing such hash functions is a research

topic, best left to mathematicians and theoretical computer scientists. Perhaps a

later release of the platform will provide state-of-the-art hash functions for its

classes and utility methods to allow average programmers to construct such hash

functions. In the meantime, the techniques described in this item should be ade-

quate for most applications.

Do not be tempted to exclude significant parts of an object from the hash

code computation to improve performance. While the resulting hash function

may run faster, its poor quality may degrade hash tables’ performance to the point

where they become unusably slow. In particular, the hash function may, in prac-
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tice, be confronted with a large collection of instances that differ largely in the

regions that you’ve chosen to ignore. If this happens, the hash function will map

all the instances to a very few hash codes, and hash-based collections will display

quadratic performance. This is not just a theoretical problem. The String hash

function implemented in all releases prior to 1.2 examined at most sixteen charac-

ters, evenly spaced throughout the string, starting with the first character. For large

collections of hierarchical names, such as URLs, this hash function displayed

exactly the pathological behavior noted here. 

Many classes in the Java platform libraries, such as String, Integer, and

Date, include in their specifications the exact value returned by their hashCode

method as a function of the instance value. This is generally not a good idea, as it

severely limits your ability to improve the hash function in future releases. If you

leave the details of a hash function unspecified and a flaw is found or a better hash

function discovered, you can change the hash function in a subsequent release,

confident that no clients depend on the exact values returned by the hash function.
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Item 10: Always override toString

While java.lang.Object provides an implementation of the toString method,

the string that it returns is generally not what the user of your class wants to see. It

consists of the class name followed by an “at” sign (@) and the unsigned hexadeci-

mal representation of the hash code, for example, “PhoneNumber@163b91.” The

general contract for toString says that the returned string should be “a concise

but informative representation that is easy for a person to read” [JavaSE6]. While

it could be argued that “PhoneNumber@163b91” is concise and easy to read, it isn’t

very informative when compared to “(707) 867-5309.” The toString contract

goes on to say, “It is recommended that all subclasses override this method.” Good

advice, indeed!

While it isn’t as important as obeying the equals and hashCode contracts

(Item 8, Item 9), providing a good toString implementation makes your class

much more pleasant to use. The toString method is automatically invoked

when an object is passed to println, printf, the string concatenation operator, or

assert, or printed by a debugger. (The printf method was added to the platform

in release 1.5, as were related methods including String.format, which is

roughly equivalent to C’s sprintf.)

If you’ve provided a good toString method for PhoneNumber, generating a

useful diagnostic message is as easy as this:

System.out.println("Failed to connect: " + phoneNumber);

Programmers will generate diagnostic messages in this fashion whether or not

you override toString, but the messages won’t be useful unless you do. The ben-

efits of providing a good toString method extend beyond instances of the class to

objects containing references to these instances, especially collections. Which

would you rather see when printing a map, “{Jenny=PhoneNumber@163b91}” or

“{Jenny=(707) 867-5309}”?

When practical, the toString method should return all of the interesting

information contained in the object, as in the phone number example just

shown. It is impractical if the object is large or if it contains state that is not condu-

cive to string representation. Under these circumstances, toString should return a

summary such as “Manhattan white pages (1487536 listings)” or

“Thread[main,5,main]”. Ideally, the string should be self-explanatory. (The

Thread example flunks this test.)
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One important decision you’ll have to make when implementing a toString

method is whether to specify the format of the return value in the documentation.

It is recommended that you do this for value classes, such as phone numbers or

matrices. The advantage of specifying the format is that it serves as a standard,

unambiguous, human-readable representation of the object. This representation

can be used for input and output and in persistent human-readable data objects,

such as XML documents. If you specify the format, it’s usually a good idea to pro-

vide a matching static factory or constructor so programmers can easily translate

back and forth between the object and its string representation. This approach is

taken by many value classes in the Java platform libraries, including BigInteger,

BigDecimal, and most of the boxed primitive classes.

The disadvantage of specifying the format of the toString return value is that

once you’ve specified it, you’re stuck with it for life, assuming your class is

widely used. Programmers will write code to parse the representation, to generate

it, and to embed it into persistent data. If you change the representation in a future

release, you’ll break their code and data, and they will yowl. By failing to specify

a format, you preserve the flexibility to add information or improve the format in

a subsequent release.

Whether or not you decide to specify the format, you should clearly docu-

ment your intentions. If you specify the format, you should do so precisely. For

example, here’s a toString method to go with the PhoneNumber class in Item 9:

/**
 * Returns the string representation of this phone number.
 * The string consists of fourteen characters whose format
 * is "(XXX) YYY-ZZZZ", where XXX is the area code, YYY is
 * the prefix, and ZZZZ is the line number.  (Each of the
 * capital letters represents a single decimal digit.)
 *
 * If any of the three parts of this phone number is too small
 * to fill up its field, the field is padded with leading zeros.
 * For example, if the value of the line number is 123, the last
 * four characters of the string representation will be "0123".
 *
 * Note that there is a single space separating the closing
 * parenthesis after the area code from the first digit of the
 * prefix.
 */
@Override public String toString() {

return String.format("(%03d) %03d-%04d",
areaCode, prefix, lineNumber);

}
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If you decide not to specify a format, the documentation comment should read

something like this:

/**
* Returns a brief description of this potion. The exact details
* of the representation are unspecified and subject to change,
* but the following may be regarded as typical:
*
* "[Potion #9: type=love, smell=turpentine, look=india ink]"
*/
@Override public String toString() { ... }

After reading this comment, programmers who produce code or persistent

data that depends on the details of the format will have no one but themselves to

blame when the format is changed.

Whether or not you specify the format, provide programmatic access to all

of the information contained in the value returned by toString. For example,

the PhoneNumber class should contain accessors for the area code, prefix, and line

number. If you fail to do this, you force programmers who need this information

to parse the string. Besides reducing performance and making unnecessary work

for programmers, this process is error-prone and results in fragile systems that

break if you change the format. By failing to provide accessors, you turn the string

format into a de facto API, even if you’ve specified that it’s subject to change.
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Item 11: Override clone judiciously

The Cloneable interface was intended as a mixin interface (Item 18) for objects to

advertise that they permit cloning. Unfortunately, it fails to serve this purpose. Its

primary flaw is that it lacks a clone method, and Object’s clone method is pro-

tected. You cannot, without resorting to reflection (Item 53), invoke the clone

method on an object merely because it implements Cloneable. Even a reflective

invocation may fail, as there is no guarantee that the object has an accessible

clone method. Despite this flaw and others, the facility is in wide use so it pays to

understand it. This item tells you how to implement a well-behaved clone

method, discusses when it is appropriate to do so, and presents alternatives.

So what does Cloneable do, given that it contains no methods? It determines

the behavior of Object’s protected clone implementation: if a class implements

Cloneable, Object’s clone method returns a field-by-field copy of the object;

otherwise it throws CloneNotSupportedException. This is a highly atypical use

of interfaces and not one to be emulated. Normally, implementing an interface

says something about what a class can do for its clients. In the case of Cloneable,

it modifies the behavior of a protected method on a superclass.

If implementing the Cloneable interface is to have any effect on a class, the

class and all of its superclasses must obey a fairly complex, unenforceable, and

thinly documented protocol. The resulting mechanism is extralinguistic: it creates

an object without calling a constructor.

The general contract for the clone method is weak. Here it is, copied from the

specification for java.lang.Object [JavaSE6]:

Creates and returns a copy of this object. The precise meaning of “copy” may

depend on the class of the object. The general intent is that, for any object x,

the expression

x.clone() != x

will be true, and the expression

x.clone().getClass() == x.getClass()

will be true, but these are not absolute requirements. While it is typically the

case that

x.clone().equals(x)

will be true, this is not an absolute requirement. Copying an object will typi-

cally entail creating a new instance of its class, but it may require copying of

internal data structures as well. No constructors are called.
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There are a number of problems with this contract. The provision that “no

constructors are called” is too strong. A well-behaved clone method can call con-

structors to create objects internal to the clone under construction. If the class is

final, clone can even return an object created by a constructor.

The provision that x.clone().getClass() should generally be identical to

x.getClass(), however, is too weak. In practice, programmers assume that if

they extend a class and invoke super.clone from the subclass, the returned object

will be an instance of the subclass. The only way a superclass can provide this

functionality is to return an object obtained by calling super.clone. If a clone

method returns an object created by a constructor, it will have the wrong class.

Therefore, if you override the clone method in a nonfinal class, you should

return an object obtained by invoking super.clone. If all of a class’s super-

classes obey this rule, then invoking super.clone will eventually invoke

Object’s clone method, creating an instance of the right class. This mechanism is

vaguely similar to automatic constructor chaining, except that it isn’t enforced.

The Cloneable interface does not, as of release 1.6, spell out in detail the

responsibilities that a class takes on when it implements this interface. In prac-

tice, a class that implements Cloneable is expected to provide a properly

functioning public clone method. It is not, in general, possible to do so unless

all of the class’s superclasses provide a well-behaved clone implementation,

whether public or protected.

Suppose you want to implement Cloneable in a class whose superclasses pro-

vide well-behaved clone methods. The object you get from super.clone() may

or may not be close to what you’ll eventually return, depending on the nature of

the class. This object will be, from the standpoint of each superclass, a fully func-

tional clone of the original object. The fields declared in your class (if any) will

have values identical to those of the object being cloned. If every field contains a

primitive value or a reference to an immutable object, the returned object may be

exactly what you need, in which case no further processing is necessary. This is

the case, for example, for the PhoneNumber class in Item 9. In this case, all you

need do in addition to declaring that you implement Cloneable is to provide pub-

lic access to Object’s protected clone method:

@Override public PhoneNumber clone() {
try {

return (PhoneNumber) super.clone();
} catch(CloneNotSupportedException e) {

throw new AssertionError();  // Can't happen
}

}
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Note that the above clone method returns PhoneNumber, not Object. As of

release 1.5, it is legal and desirable to do this, because covariant return types were

introduced in release 1.5 as part of generics. In other words, it is now legal for an

overriding method’s return type to be a subclass of the overridden method’s return

type. This allows the overriding method to provide more information about the

returned object and eliminates the need for casting in the client. Because

Object.clone returns Object, PhoneNumber.clone must cast the result of

super.clone() before returning it, but this is far preferable to requiring every

caller of PhoneNumber.clone to cast the result. The general principle at play here

is never make the client do anything the library can do for the client.

If an object contains fields that refer to mutable objects, using the simple

clone implementation shown above can be disastrous. For example, consider the

Stack class in Item 6:

public class Stack {
private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
this.elements = new Object[DEFAULT_INITIAL_CAPACITY];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

// Ensure space for at least one more element.
private void ensureCapacity() {

if (elements.length == size)
elements = Arrays.copyOf(elements, 2 * size + 1);

}
}

Suppose you want to make this class cloneable. If its clone method merely

returns super.clone(), the resulting Stack instance will have the correct value in
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its size field, but its elements field will refer to the same array as the original

Stack instance. Modifying the original will destroy the invariants in the clone and

vice versa. You will quickly find that your program produces nonsensical results

or throws a NullPointerException.

This situation could never occur as a result of calling the sole constructor in

the Stack class. In effect, the clone method functions as another constructor;

you must ensure that it does no harm to the original object and that it prop-

erly establishes invariants on the clone. In order for the clone method on Stack

to work properly, it must copy the internals of the stack. The easiest way to do this

is to call clone recursively on the elements array:

@Override public Stack clone() {
try {

Stack result = (Stack) super.clone();
result.elements = elements.clone();
return result;

} catch (CloneNotSupportedException e) {
throw new AssertionError();

}
}

Note that we do not have to cast the result of elements.clone() to Object[].

As of release 1.5, calling clone on an array returns an array whose compile-time

type is the same as that of the array being cloned.

Note also that the above solution would not work if the elements field were

final, because clone would be prohibited from assigning a new value to the field.

This is a fundamental problem: the clone architecture is incompatible with

normal use of final fields referring to mutable objects, except in cases where

the mutable objects may be safely shared between an object and its clone. In order

to make a class cloneable, it may be necessary to remove final modifiers from

some fields.

It is not always sufficient to call clone recursively. For example, suppose you

are writing a clone method for a hash table whose internals consist of an array of

buckets, each of which references the first entry in a linked list of key-value pairs

or is null if the bucket is empty. For performance, the class implements its own

lightweight singly linked list instead of using java.util.LinkedList internally:

public class HashTable implements Cloneable {
private Entry[] buckets = ...;
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private static class Entry {
final Object key;
Object value;
Entry  next;

Entry(Object key, Object value, Entry next) {
this.key   = key;
this.value = value;
this.next  = next;  

}
}

... // Remainder omitted
}

Suppose you merely clone the bucket array recursively, as we did for Stack:

// Broken - results in shared internal state!
@Override public HashTable clone() {

try {
HashTable result = (HashTable) super.clone();
result.buckets = buckets.clone();
return result;

} catch (CloneNotSupportedException e) {
throw new AssertionError();

}
}

Though the clone has its own bucket array, this array references the same

linked lists as the original, which can easily cause nondeterministic behavior in

both the clone and the original. To fix this problem, you’ll have to copy the linked

list that comprises each bucket individually. Here is one common approach:

public class HashTable implements Cloneable {
private Entry[] buckets = ...;

private static class Entry {
final Object key;
Object value;
Entry  next;

Entry(Object key, Object value, Entry next) {
this.key   = key;
this.value = value;
this.next  = next;  

}
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// Recursively copy the linked list headed by this Entry
Entry deepCopy() {

return new Entry(key, value,
next == null ? null : next.deepCopy());

}
} 

@Override public HashTable clone() {
try {

HashTable result = (HashTable) super.clone();
result.buckets = new Entry[buckets.length];
for (int i = 0; i < buckets.length; i++)

if (buckets[i] != null)
result.buckets[i] = buckets[i].deepCopy();

return result;
} catch (CloneNotSupportedException e) {

throw new AssertionError();
}

}
... // Remainder omitted

}

The private class HashTable.Entry has been augmented to support a “deep

copy” method. The clone method on HashTable allocates a new buckets array of

the proper size and iterates over the original buckets array, deep-copying each

nonempty bucket. The deep-copy method on Entry invokes itself recursively to

copy the entire linked list headed by the entry. While this technique is cute and

works fine if the buckets aren’t too long, it is not a good way to clone a linked list

because it consumes one stack frame for each element in the list. If the list is long,

this could easily cause a stack overflow. To prevent this from happening, you can

replace the recursion in deepCopy with iteration:

// Iteratively copy the linked list headed by this Entry
Entry deepCopy() {

Entry result = new Entry(key, value, next);

for (Entry p = result; p.next != null; p = p.next)
p.next = new Entry(p.next.key, p.next.value, p.next.next);

return result;
}

A final approach to cloning complex objects is to call super.clone, set all of

the fields in the resulting object to their virgin state, and then call higher-level

methods to regenerate the state of the object. In the case of our HashTable exam-
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ple, the buckets field would be initialized to a new bucket array, and the

put(key, value) method (not shown) would be invoked for each key-value map-

ping in the hash table being cloned. This approach typically yields a simple, rea-

sonably elegant clone method that generally doesn’t run quite as fast as one that

directly manipulates the innards of the object and its clone.

Like a constructor, a clone method should not invoke any nonfinal methods

on the clone under construction (Item 17). If clone invokes an overridden method,

this method will execute before the subclass in which it is defined has had a

chance to fix its state in the clone, quite possibly leading to corruption in the clone

and the original. Therefore the put(key, value) method discussed in the previ-

ous paragraph should be either final or private. (If it is private, it is presumably the

“helper method” for a nonfinal public method.)

Object’s clone method is declared to throw CloneNotSupportedException,

but overriding clone methods can omit this declaration. Public clone methods

should omit it because methods that don’t throw checked exceptions are easier to

use (Item 59). If a class that is designed for inheritance (Item 17) overrides clone,

the overriding method should mimic the behavior of Object.clone: it should be

declared protected, it should be declared to throw CloneNotSupportedExcep-

tion, and the class should not implement Cloneable. This gives subclasses the

freedom to implement Cloneable or not, just as if they extended Object directly.

One more detail bears noting. If you decide to make a thread-safe class imple-

ment Cloneable, remember that its clone method must be properly synchronized

just like any other method (Item 66). Object’s clone method is not synchronized,

so even if it is otherwise satisfactory, you may have to write a synchronized clone

method that invokes super.clone().

To recap, all classes that implement Cloneable should override clone with a

public method whose return type is the class itself. This method should first call

super.clone and then fix any fields that need to be fixed. Typically, this means

copying any mutable objects that comprise the internal “deep structure” of the

object being cloned, and replacing the clone’s references to these objects with ref-

erences to the copies. While these internal copies can generally be made by call-

ing clone recursively, this is not always the best approach. If the class contains

only primitive fields or references to immutable objects, then it is probably the

case that no fields need to be fixed. There are exceptions to this rule. For example,

a field representing a serial number or other unique ID or a field representing the

object’s creation time will need to be fixed, even if it is primitive or immutable.

Is all this complexity really necessary? Rarely. If you extend a class that

implements Cloneable, you have little choice but to implement a well-behaved
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clone method. Otherwise, you are better off providing an alternative means of

object copying, or simply not providing the capability. For example, it doesn’t

make sense for immutable classes to support object copying, because copies

would be virtually indistinguishable from the original.

A fine approach to object copying is to provide a copy constructor or copy

factory. A copy constructor is simply a constructor that takes a single argument

whose type is the class containing the constructor, for example,

public Yum(Yum yum);

A copy factory is the static factory analog of a copy constructor:

public static Yum newInstance(Yum yum);

The copy constructor approach and its static factory variant have many

advantages over Cloneable/clone: they don’t rely on a risk-prone extralinguistic

object creation mechanism; they don’t demand unenforceable adherence to thinly

documented conventions; they don’t conflict with the proper use of final fields;

they don’t throw unnecessary checked exceptions; and they don’t require casts.

While it is impossible to put a copy constructor or factory in an interface,

Cloneable fails to function as an interface because it lacks a public clone

method. Therefore you aren’t giving up interface functionality by using a copy

constructor or factory in preference to a clone method.

Furthermore, a copy constructor or factory can take an argument whose type

is an interface implemented by the class. For example, by convention all general-

purpose collection implementations provide a constructor whose argument is of

type Collection or Map. Interface-based copy constructors and factories, more

properly known as conversion constructors and conversion factories, allow the

client to choose the implementation type of the copy rather than forcing the client

to accept the implementation type of the original. Suppose you have a HashSet s,

and you want to copy it as a TreeSet. The clone method can’t offer this function-

ality, but it’s easy with a conversion constructor: new TreeSet(s).

Given all of the problems associated with Cloneable, it’s safe to say that

other interfaces should not extend it, and that classes designed for inheritance

(Item 17) should not implement it. Because of its many shortcomings, some

expert programmers simply choose never to override the clone method and never

to invoke it except, perhaps, to copy arrays. If you design a class for inheritance,

be aware that if you choose not to provide a well-behaved protected clone

method, it will be impossible for subclasses to implement Cloneable.



CHAPTER 3 METHODS COMMON TO ALL OBJECTS62

Item 12: Consider implementing Comparable

Unlike the other methods discussed in this chapter, the compareTo method is not

declared in Object. Rather, it is the sole method in the Comparable interface. It is

similar in character to Object’s equals method, except that it permits order com-

parisons in addition to simple equality comparisons, and it is generic. By imple-

menting Comparable, a class indicates that its instances have a natural ordering.

Sorting an array of objects that implement Comparable is as simple as this:

Arrays.sort(a);

It is similarly easy to search, compute extreme values, and maintain automati-

cally sorted collections of Comparable objects. For example, the following pro-

gram, which relies on the fact that String implements Comparable, prints an

alphabetized list of its command-line arguments with duplicates eliminated:

public class WordList {
public static void main(String[] args) {

Set<String> s = new TreeSet<String>();
Collections.addAll(s, args);
System.out.println(s);

}
}

By implementing Comparable, you allow your class to interoperate with all of

the many generic algorithms and collection implementations that depend on this

interface. You gain a tremendous amount of power for a small amount of effort.

Virtually all of the value classes in the Java platform libraries implement Compa-

rable. If you are writing a value class with an obvious natural ordering, such as

alphabetical order, numerical order, or chronological order, you should strongly

consider implementing the interface:

public interface Comparable<T> {
int compareTo(T t);

}

The general contract of the compareTo method is similar to that of equals:

Compares this object with the specified object for order. Returns a negative in-

teger, zero, or a positive integer as this object is less than, equal to, or greater

than the specified object. Throws ClassCastException if the specified ob-

ject’s type prevents it from being compared to this object. 
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In the following description, the notation sgn(expression) designates the math-

ematical signum function, which is defined to return -1, 0, or 1, according to

whether the value of expression is negative, zero, or positive.

• The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compare-
To(x)) for all x and y. (This implies that x.compareTo(y) must throw an ex-
ception if and only if y.compareTo(x) throws an exception.)

• The implementor must also ensure that the relation is transitive: (x.com-
pareTo(y) > 0 && y.compareTo(z) > 0) implies x.compareTo(z) > 0.

• Finally, the implementor must ensure that x.compareTo(y) == 0 implies that
sgn(x.compareTo(z)) == sgn(y.compareTo(z)), for all z.

• It is strongly recommended, but not strictly required, that (x.compareTo(y)
== 0) == (x.equals(y)). Generally speaking, any class that implements the
Comparable interface and violates this condition should clearly indicate this
fact. The recommended language is “Note: This class has a natural ordering
that is inconsistent with equals.”

Don’t be put off by the mathematical nature of this contract. Like the equals

contract (Item 8), this contract isn’t as complicated as it looks. Within a class, any

reasonable ordering will satisfy it. Across classes, compareTo, unlike equals,

doesn’t have to work: it is permitted to throw ClassCastException if two object

references being compared refer to objects of different classes. Usually, that is

exactly what compareTo should do, and what it will do if the class is properly

parameterized. While the contract doesn’t preclude interclass comparisons, there

are, as of release 1.6, no classes in the Java platform libraries that support them.

Just as a class that violates the hashCode contract can break other classes that

depend on hashing, a class that violates the compareTo contract can break other

classes that depend on comparison. Classes that depend on comparison include

the sorted collections TreeSet and TreeMap, and the utility classes Collections

and Arrays, which contain searching and sorting algorithms.

Let’s go over the provisions of the compareTo contract. The first provision

says that if you reverse the direction of a comparison between two object refer-

ences, the expected thing happens: if the first object is less than the second, then

the second must be greater than the first; if the first object is equal to the second,

then the second must be equal to the first; and if the first object is greater than the

second, then the second must be less than the first. The second provision says that

if one object is greater than a second, and the second is greater than a third, then

the first must be greater than the third. The final provision says that all objects that

compare as equal must yield the same results when compared to any other object.
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One consequence of these three provisions is that the equality test imposed by

a compareTo method must obey the same restrictions imposed by the equals con-

tract: reflexivity, symmetry, and transitivity. Therefore the same caveat applies:

there is no way to extend an instantiable class with a new value component while

preserving the compareTo contract, unless you are willing to forgo the benefits of

object-oriented abstraction (Item 8). The same workaround applies, too. If you

want to add a value component to a class that implements Comparable, don’t

extend it; write an unrelated class containing an instance of the first class. Then

provide a “view” method that returns this instance. This frees you to implement

whatever compareTo method you like on the second class, while allowing its cli-

ent to view an instance of the second class as an instance of the first class when

needed.

The final paragraph of the compareTo contract, which is a strong suggestion

rather than a true provision, simply states that the equality test imposed by the

compareTo method should generally return the same results as the equals

method. If this provision is obeyed, the ordering imposed by the compareTo

method is said to be consistent with equals. If it’s violated, the ordering is said to

be inconsistent with equals. A class whose compareTo method imposes an order

that is inconsistent with equals will still work, but sorted collections containing

elements of the class may not obey the general contract of the appropriate collec-

tion interfaces (Collection, Set, or Map). This is because the general contracts

for these interfaces are defined in terms of the equals method, but sorted collec-

tions use the equality test imposed by compareTo in place of equals. It is not a

catastrophe if this happens, but it’s something to be aware of.

For example, consider the BigDecimal class, whose compareTo method is

inconsistent with equals. If you create a HashSet instance and add new

BigDecimal("1.0") and new BigDecimal("1.00"), the set will contain two

elements because the two BigDecimal instances added to the set are unequal

when compared using the equals method. If, however, you perform the same

procedure using a TreeSet instead of a HashSet, the set will contain only one

element because the two BigDecimal instances are equal when compared using

the compareTo method. (See the BigDecimal documentation for details.)

Writing a compareTo method is similar to writing an equals method, but

there are a few key differences. Because the Comparable interface is parameter-

ized, the compareTo method is statically typed, so you don’t need to type check or

cast its argument. If the argument is of the wrong type, the invocation won’t even

compile. If the argument is null, the invocation should throw a NullPointerEx-

ception, and it will, as soon as the method attempts to access its members.
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The field comparisons in a compareTo method are order comparisons rather

than equality comparisons. Compare object reference fields by invoking the

compareTo method recursively. If a field does not implement Comparable, or you

need to use a nonstandard ordering, you can use an explicit Comparator instead.

Either write your own, or use a preexisting one as in this compareTo method for

the CaseInsensitiveString class in Item 8.

public final class CaseInsensitiveString
implements Comparable<CaseInsensitiveString> {

public int compareTo(CaseInsensitiveString cis) {
return String.CASE_INSENSITIVE_ORDER.compare(s, cis.s);

}
... // Remainder omitted

}

Note that the CaseInsensitiveString class implements Compara-

ble<CaseInsensitiveString>. This means that a CaseInsensitiveString ref-

erence can be compared only to other CaseInsensitiveString references. It is

the normal pattern to follow when declaring a class to implement Comparable.

Note also that the parameter of the compareTo method is a CaseInsensitive-

String, not an Object. This is required by the aforementioned class declaration.

Compare integral primitive fields using the relational operators < and >. For

floating-point fields, use Double.compare or Float.compare in place of the

relational operators, which do not obey the general contract for compareTo when

applied to floating point values. For array fields, apply these guidelines to each

element.

If a class has multiple significant fields, the order in which you compare them

is critical. You must start with the most significant field and work your way down.

If a comparison results in anything other than zero (which represents equality),

you’re done; just return the result. If the most significant fields are equal, go on to

compare the next-most-significant fields, and so on. If all fields are equal, the

objects are equal; return zero. The technique is demonstrated by this compareTo

method for the PhoneNumber class in Item 9:

public int compareTo(PhoneNumber pn) {
// Compare area codes
if (areaCode < pn.areaCode)

return -1;
if (areaCode > pn.areaCode)

return  1;



CHAPTER 3 METHODS COMMON TO ALL OBJECTS66

// Area codes are equal, compare prefixes
if (prefix < pn.prefix)

return -1;
if (prefix > pn.prefix)

return  1;

// Area codes and prefixes are equal, compare line numbers
if (lineNumber < pn.lineNumber)

return -1;
if (lineNumber > pn.lineNumber)

return  1;

return 0; // All fields are equal
}

While this method works, it can be improved. Recall that the contract for com-

pareTo does not specify the magnitude of the return value, only the sign. You can

take advantage of this to simplify the code and probably make it run a bit faster:

public int compareTo(PhoneNumber pn) {
// Compare area codes
int areaCodeDiff = areaCode - pn.areaCode;
if (areaCodeDiff != 0)

return areaCodeDiff;

// Area codes are equal, compare prefixes
int prefixDiff = prefix - pn.prefix;
if (prefixDiff != 0)

return prefixDiff;

// Area codes and prefixes are equal, compare line numbers
return lineNumber - pn.lineNumber;

}

This trick works fine here but should be used with extreme caution. Don’t use

it unless you’re certain the fields in question are non-negative or, more generally,

that the difference between the lowest and highest possible field values is less than

or equal to Integer.MAX_VALUE (231-1). The reason this trick doesn’t always work

is that a signed 32-bit integer isn’t big enough to hold the difference between two

arbitrary signed 32-bit integers. If i is a large positive int and j is a large negative

int, (i - j) will overflow and return a negative value. The resulting compareTo

method will return incorrect results for some arguments and violate the first and

second provisions of the compareTo contract. This is not a purely theoretical prob-

lem: it has caused failures in real systems. These failures can be difficult to debug,

as the broken compareTo method works properly for most input values.
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C H A P T E R 4
Classes and Interfaces

CLASSES and interfaces lie at the heart of the Java programming language.

They are its basic units of abstraction. The language provides many powerful ele-

ments that you can use to design classes and interfaces. This chapter contains

guidelines to help you make the best use of these elements so that your classes and

interfaces are usable, robust, and flexible.

Item 13: Minimize the accessibility of classes and members

The single most important factor that distinguishes a well-designed module from a

poorly designed one is the degree to which the module hides its internal data and

other implementation details from other modules. A well-designed module hides

all of its implementation details, cleanly separating its API from its implementa-

tion. Modules then communicate only through their APIs and are oblivious to

each others’ inner workings. This concept, known as information hiding or encap-

sulation, is one of the fundamental tenets of software design [Parnas72].

Information hiding is important for many reasons, most of which stem from

the fact that it decouples the modules that comprise a system, allowing them to be

developed, tested, optimized, used, understood, and modified in isolation. This

speeds up system development because modules can be developed in parallel. It

eases the burden of maintenance because modules can be understood more

quickly and debugged with little fear of harming other modules. While informa-

tion hiding does not, in and of itself, cause good performance, it enables effective

performance tuning: once a system is complete and profiling has determined

which modules are causing performance problems (Item 55), those modules can

be optimized without affecting the correctness of other modules. Information hid-

ing increases software reuse because modules that aren’t tightly coupled often

prove useful in other contexts besides the ones for which they were developed.
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Finally, information hiding decreases the risk in building large systems, because

individual modules may prove successful even if the system does not.

Java has many facilities to aid in information hiding. The access control mecha-

nism [JLS, 6.6] specifies the accessibility of classes, interfaces, and members. The

accessibility of an entity is determined by the location of its declaration and by

which, if any, of the access modifiers (private, protected, and public) is present

on the declaration. Proper use of these modifiers is essential to information hiding.

The rule of thumb is simple: make each class or member as inaccessible as

possible. In other words, use the lowest possible access level consistent with the

proper functioning of the software that you are writing. 

For top-level (non-nested) classes and interfaces, there are only two possible

access levels: package-private and public. If you declare a top-level class or inter-

face with the public modifier, it will be public; otherwise, it will be package-pri-

vate. If a top-level class or interface can be made package-private, it should be. By

making it package-private, you make it part of the implementation rather than the

exported API, and you can modify it, replace it, or eliminate it in a subsequent

release without fear of harming existing clients. If you make it public, you are

obligated to support it forever to maintain compatibility.

If a package-private top-level class (or interface) is used by only one class,

consider making the top-level class a private nested class of the sole class that uses

it (Item 22). This reduces its accessibility from all the classes in its package to the

one class that uses it. But it is far more important to reduce the accessibility of a

gratuitously public class than of a package-private top-level class: the public class

is part of the package’s API, while the package-private top-level class is already

part of its implementation.

For members (fields, methods, nested classes, and nested interfaces), there are

four possible access levels, listed here in order of increasing accessibility:

• private—The member is accessible only from the top-level class where it is

declared.

• package-private—The member is accessible from any class in the package

where it is declared. Technically known as default access, this is the access lev-

el you get if no access modifier is specified.

• protected—The member is accessible from subclasses of the class where it is

declared (subject to a few restrictions [JLS, 6.6.2]) and from any class in the

package where it is declared.

• public—The member is accessible from anywhere.
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After carefully designing your class’s public API, your reflex should be to

make all other members private. Only if another class in the same package really

needs to access a member should you remove the private modifier, making the

member package-private. If you find yourself doing this often, you should reex-

amine the design of your system to see if another decomposition might yield

classes that are better decoupled from one another. That said, both private and

package-private members are part of a class’s implementation and do not normally

impact its exported API. These fields can, however, “leak” into the exported API

if the class implements Serializable (Item 74, Item 75).

For members of public classes, a huge increase in accessibility occurs when

the access level goes from package-private to protected. A protected member is

part of the class’s exported API and must be supported forever. Also, a protected

member of an exported class represents a public commitment to an implementa-

tion detail (Item 17). The need for protected members should be relatively rare.

There is one rule that restricts your ability to reduce the accessibility of meth-

ods. If a method overrides a superclass method, it is not permitted to have a lower

access level in the subclass than it does in the superclass [JLS, 8.4.8.3]. This is

necessary to ensure that an instance of the subclass is usable anywhere that an

instance of the superclass is usable. If you violate this rule, the compiler will gen-

erate an error message when you try to compile the subclass. A special case of this

rule is that if a class implements an interface, all of the class methods that are also

present in the interface must be declared public. This is so because all members of

an interface are implicitly public [JLS, 9.1.5].

To facilitate testing, you may be tempted to make a class, interface, or mem-

ber more accessible. This is fine up to a point. It is acceptable to make a private

member of a public class package-private in order to test it, but it is not acceptable

to raise the accessibility any higher than that. In other words, it is not acceptable to

make a class, interface, or member a part of a package’s exported API to facilitate

testing. Luckily, it isn’t necessary either, as tests can be made to run as part of the

package being tested, thus gaining access to its package-private elements.

Instance fields should never be public (Item 14). If an instance field is non-

final, or is a final reference to a mutable object, then by making the field public,

you give up the ability to limit the values that can be stored in the field. This

means you also give up the ability to enforce invariants involving the field. Also,

you give up the ability to take any action when the field is modified, so classes

with public mutable fields are not thread-safe. Even if a field is final and refers

to an immutable object, by making the field public you give up the flexibility to

switch to a new internal data representation in which the field does not exist.
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The same advice applies to static fields, with the one exception. You can

expose constants via public static final fields, assuming the constants form an inte-

gral part of the abstraction provided by the class. By convention, such fields have

names consisting of capital letters, with words separated by underscores (Item

56). It is critical that these fields contain either primitive values or references to

immutable objects (Item 15). A final field containing a reference to a mutable

object has all the disadvantages of a nonfinal field. While the reference cannot be

modified, the referenced object can be modified—with disastrous results.

Note that a nonzero-length array is always mutable, so it is wrong for a class

to have a public static final array field, or an accessor that returns such a

field. If a class has such a field or accessor, clients will be able to modify the con-

tents of the array. This is a frequent source of security holes:

// Potential security hole!
public static final Thing[] VALUES =  { ... };

Beware of the fact that many IDEs generate accessors that return references to pri-

vate array fields, resulting in exactly this problem. There are two ways to fix the

problem. You can make the public array private and add a public immutable list:

private static final Thing[] PRIVATE_VALUES = { ... };
public static final List<Thing> VALUES =
    Collections.unmodifiableList(Arrays.asList(PRIVATE_VALUES));

Alternatively, you can make the array private and add a public method that

returns a copy of a private array:

private static final Thing[] PRIVATE_VALUES = { ... };
public static final Thing[] values() {

return PRIVATE_VALUES.clone();
}

To choose between these alternatives, think about what the client is likely to do

with the result. Which return type will be more convenient? Which will give bet-

ter performance?

To summarize, you should always reduce accessibility as much as possible.

After carefully designing a minimal public API, you should prevent any stray

classes, interfaces, or members from becoming a part of the API. With the excep-

tion of public static final fields, public classes should have no public fields.

Ensure that objects referenced by public static final fields are immutable.
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Item 14: In public classes, use accessor methods, not public fields

Occasionally, you may be tempted to write degenerate classes that serve no pur-

pose other than to group instance fields:

// Degenerate classes like this should not be public!
class Point {

public double x;
public double y;

}

Because the data fields of such classes are accessed directly, these classes do

not offer the benefits of encapsulation (Item 13). You can’t change the representa-

tion without changing the API, you can’t enforce invariants, and you can’t take

auxiliary action when a field is accessed. Hard-line object-oriented programmers

feel that such classes are anathema and should always be replaced by classes with

private fields and public accessor methods (getters) and, for mutable classes,

mutators (setters):

// Encapsulation of data by accessor methods and mutators
class Point {

private double x;
private double y;

public Point(double x, double y) {
this.x = x;
this.y = y;

}

public double getX() { return x; }
public double getY() { return y; }

public void setX(double x) { this.x = x; }
public void setY(double y) { this.y = y; }

}

Certainly, the hard-liners are correct when it comes to public classes: if a class

is accessible outside its package, provide accessor methods, to preserve the

flexibility to change the class’s internal representation. If a public class exposes its

data fields, all hope of changing its representation is lost, as client code can be dis-

tributed far and wide.

However, if a class is package-private or is a private nested class, there is

nothing inherently wrong with exposing its data fields—assuming they do an
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adequate job of describing the abstraction provided by the class. This approach

generates less visual clutter than the accessor-method approach, both in the class

definition and in the client code that uses it. While the client code is tied to the

class’s internal representation, this code is confined to the package containing the

class. If a change in representation becomes desirable, you can make the change

without touching any code outside the package. In the case of a private nested

class, the scope of the change is further restricted to the enclosing class.

Several classes in the Java platform libraries violate the advice that public

classes should not expose fields directly. Prominent examples include the Point

and Dimension classes in the java.awt package. Rather than examples to be emu-

lated, these classes should be regarded as cautionary tales. As described in Item

55, the decision to expose the internals of the Dimension class resulted in a seri-

ous performance problem that is still with us today.

While it’s never a good idea for a public class to expose fields directly, it is

less harmful if the fields are immutable. You can’t change the representation of

such a class without changing its API, and you can’t take auxiliary actions when a

field is read, but you can enforce invariants. For example, this class guarantees

that each instance represents a valid time:

// Public class with exposed immutable fields - questionable
public final class Time {

private static final int HOURS_PER_DAY    = 24;
private static final int MINUTES_PER_HOUR = 60;

public final int hour;
public final int minute;

public Time(int hour, int minute) {
if (hour < 0 || hour >= HOURS_PER_DAY)

throw new IllegalArgumentException("Hour: " + hour);
if (minute < 0 || minute >= MINUTES_PER_HOUR)

throw new IllegalArgumentException("Min: " + minute);
this.hour = hour;
this.minute = minute;

}
... // Remainder omitted

}

In summary, public classes should never expose mutable fields. It is less

harmful, though still questionable, for public classes to expose immutable fields.

It is, however, sometimes desirable for package-private or private nested classes to

expose fields, whether mutable or immutable.
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Item 15: Minimize mutability

An immutable class is simply a class whose instances cannot be modified. All of

the information contained in each instance is provided when it is created and is

fixed for the lifetime of the object. The Java platform libraries contain many

immutable classes, including String, the boxed primitive classes, and BigInte-

ger and BigDecimal. There are many good reasons for this: Immutable classes

are easier to design, implement, and use than mutable classes. They are less prone

to error and are more secure.

To make a class immutable, follow these five rules:

1. Don’t provide any methods that modify the object’s state (known as muta-

tors).

2. Ensure that the class can’t be extended. This prevents careless or malicious

subclasses from compromising the immutable behavior of the class by behav-

ing as if the object’s state has changed. Preventing subclassing is generally ac-

complished by making the class final, but there is an alternative that we’ll

discuss later.

3. Make all fields final. This clearly expresses your intent in a manner that is en-

forced by the system. Also, it is necessary to ensure correct behavior if a refer-

ence to a newly created instance is passed from one thread to another without

synchronization, as spelled out in the memory model [JLS, 17.5; Goetz06 16].

4. Make all fields private. This prevents clients from obtaining access to muta-

ble objects referred to by fields and modifying these objects directly. While it

is technically permissible for immutable classes to have public final fields con-

taining primitive values or references to immutable objects, it is not recom-

mended because it precludes changing the internal representation in a later

release (Item 13).

5. Ensure exclusive access to any mutable components. If your class has any

fields that refer to mutable objects, ensure that clients of the class cannot obtain

references to these objects. Never initialize such a field to a client-provided ob-

ject reference or return the object reference from an accessor. Make defensive

copies (Item 39) in constructors, accessors, and readObject methods (Item

76).
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Many of the example classes in previous items are immutable. One such class

is PhoneNumber in Item 9, which has accessors for each attribute but no corre-

sponding mutators. Here is a slightly more complex example:

public final class Complex {
private final double re;
private final double im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

// Accessors with no corresponding mutators
public double realPart()      { return re; }
public double imaginaryPart() { return im; }

public Complex add(Complex c) {
return new Complex(re + c.re, im + c.im);

}

public Complex subtract(Complex c) {
return new Complex(re - c.re, im - c.im);

}

public Complex multiply(Complex c) {
return new Complex(re * c.re - im * c.im,

re * c.im + im * c.re);
}

public Complex divide(Complex c) {
double tmp = c.re * c.re + c.im * c.im;
return new Complex((re * c.re + im * c.im) / tmp,

(im * c.re - re * c.im) / tmp);
}

@Override public boolean equals(Object o) {
if (o == this)

return true;
if (!(o instanceof Complex))

return false;
Complex c = (Complex) o;

// See page 43 to find out why we use compare instead of ==
return Double.compare(re, c.re) == 0 &&

Double.compare(im, c.im) == 0;
}
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@Override public int hashCode() {
int result = 17 + hashDouble(re);
result = 31 * result + hashDouble(im);
return result;

}

private int hashDouble(double val) {
long longBits = Double.doubleToLongBits(re);
return (int) (longBits ^ (longBits >>> 32));

}

@Override public String toString() {
return "(" + re + " + " + im + "i)";

}
}

This class represents a complex number (a number with both real and imagi-

nary parts). In addition to the standard Object methods, it provides accessors for

the real and imaginary parts and provides the four basic arithmetic operations:

addition, subtraction, multiplication, and division. Notice how the arithmetic

operations create and return a new Complex instance rather than modifying this

instance. This pattern is used in most nontrivial immutable classes. It is known as

the functional approach because methods return the result of applying a function

to their operand without modifying it. Contrast this to the more common proce-

dural or imperative approach in which methods apply a procedure to their oper-

and, causing its state to change.

The functional approach may appear unnatural if you’re not familiar with it,

but it enables immutability, which has many advantages. Immutable objects are

simple. An immutable object can be in exactly one state, the state in which it was

created. If you make sure that all constructors establish class invariants, then it is

guaranteed that these invariants will remain true for all time, with no further effort

on your part or on the part of the programmer who uses the class. Mutable objects,

on the other hand, can have arbitrarily complex state spaces. If the documentation

does not provide a precise description of the state transitions performed by muta-

tor methods, it can be difficult or impossible to use a mutable class reliably.

Immutable objects are inherently thread-safe; they require no synchroni-

zation. They cannot be corrupted by multiple threads accessing them concur-

rently. This is far and away the easiest approach to achieving thread safety. In fact,

no thread can ever observe any effect of another thread on an immutable object.

Therefore, immutable objects can be shared freely. Immutable classes should

take advantage of this by encouraging clients to reuse existing instances wherever
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possible. One easy way to do this is to provide public static final constants for fre-

quently used values. For example, the Complex class might provide these con-

stants:

public static final Complex ZERO = new Complex(0, 0);
public static final Complex ONE = new Complex(1, 0);
public static final Complex I = new Complex(0, 1);

This approach can be taken one step further. An immutable class can provide

static factories (Item 1) that cache frequently requested instances to avoid creating

new instances when existing ones would do. All the boxed primitive classes and

BigInteger do this. Using such static factories causes clients to share instances

instead of creating new ones, reducing memory footprint and garbage collection

costs. Opting for static factories in place of public constructors when designing a

new class gives you the flexibility to add caching later, without modifying clients.

A consequence of the fact that immutable objects can be shared freely is that

you never have to make defensive copies (Item 39). In fact, you never have to

make any copies at all because the copies would be forever equivalent to the orig-

inals. Therefore, you need not and should not provide a clone method or copy

constructor (Item 11) on an immutable class. This was not well understood in the

early days of the Java platform, so the String class does have a copy constructor,

but it should rarely, if ever, be used (Item 5).

Not only can you share immutable objects, but you can share their inter-

nals. For example, the BigInteger class uses a sign-magnitude representation

internally. The sign is represented by an int, and the magnitude is represented by

an int array. The negate method produces a new BigInteger of like magnitude

and opposite sign. It does not need to copy the array; the newly created BigInte-

ger points to the same internal array as the original.

Immutable objects make great building blocks for other objects, whether

mutable or immutable. It’s much easier to maintain the invariants of a complex

object if you know that its component objects will not change underneath it. A

special case of this principle is that immutable objects make great map keys and

set elements: you don’t have to worry about their values changing once they’re in

the map or set, which would destroy the map or set’s invariants.

The only real disadvantage of immutable classes is that they require a

separate object for each distinct value. Creating these objects can be costly,

especially if they are large. For example, suppose that you have a million-bit Big-

Integer and you want to change its low-order bit:
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BigInteger moby = ...;
moby = moby.flipBit(0);

The flipBit method creates a new BigInteger instance, also a million bits long,

that differs from the original in only one bit. The operation requires time and

space proportional to the size of the BigInteger. Contrast this to

java.util.BitSet. Like BigInteger, BitSet represents an arbitrarily long

sequence of bits, but unlike BigInteger, BitSet is mutable. The BitSet class

provides a method that allows you to change the state of a single bit of a million-

bit instance in constant time. 

The performance problem is magnified if you perform a multistep operation

that generates a new object at every step, eventually discarding all objects except

the final result. There are two approaches to coping with this problem. The first is

to guess which multistep operations will be commonly required and provide them

as primitives. If a multistep operation is provided as a primitive, the immutable

class does not have to create a separate object at each step. Internally, the immuta-

ble class can be arbitrarily clever. For example, BigInteger has a package-private

mutable “companion class” that it uses to speed up multistep operations such as

modular exponentiation. It is much harder to use the mutable companion class

than to use BigInteger for all of the reasons outlined earlier, but luckily you

don’t have to: the implementors of BigInteger did the hard work for you.

The package-private mutable companion class approach works fine if you can

accurately predict which complex multistage operations clients will want to

perform on your immutable class. If not, then your best bet is to provide a public

mutable companion class. The main example of this approach in the Java platform

libraries is the String class, whose mutable companion is StringBuilder (and

the largely obsolete StringBuffer). Arguably, BitSet plays the role of mutable

companion to BigInteger under certain circumstances.

Now that you know how to make an immutable class and you understand the

pros and cons of immutability, let’s discuss a few design alternatives. Recall that

to guarantee immutability, a class must not permit itself to be subclassed.

Typically this is done by making the class final, but there is another, more flexible

way to do it. The alternative to making an immutable class final is to make all of

its constructors private or package-private, and to add public static factories in

place of the public constructors (Item 1). 



CHAPTER 4 CLASSES AND INTERFACES78

To make this concrete, here’s how Complex would look if you took this

approach:

// Immutable class with static factories instead of constructors
public class Complex {

private final double re;
private final double im;

private Complex(double re, double im) {
this.re = re;
this.im = im;

}

public static Complex valueOf(double re, double im) {
return new Complex(re, im);

}

... // Remainder unchanged
}

While this approach is not commonly used, it is often the best alternative. It is

the most flexible because it allows the use of multiple package-private implemen-

tation classes. To its clients that reside outside its package, the immutable class is

effectively final because it is impossible to extend a class that comes from another

package and that lacks a public or protected constructor. Besides allowing the

flexibility of multiple implementation classes, this approach makes it possible to

tune the performance of the class in subsequent releases by improving the object-

caching capabilities of the static factories.

Static factories have many other advantages over constructors, as discussed in

Item 1. For example, suppose that you want to provide a means of creating a com-

plex number based on its polar coordinates. This would be very messy using con-

structors because the natural constructor would have the same signature that we

already used: Complex(double, double). With static factories it’s easy. Just add

a second static factory with a name that clearly identifies its function:

public static Complex valueOfPolar(double r, double theta) {
return new Complex(r * Math.cos(theta),

r * Math.sin(theta));
}

It was not widely understood that immutable classes had to be effectively final

when BigInteger and BigDecimal were written, so all of their methods may be
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overridden. Unfortunately, this could not be corrected after the fact while preserv-

ing backward compatibility. If you write a class whose security depends on the

immutability of a BigInteger or BigDecimal argument from an untrusted client,

you must check to see that the argument is a “real” BigInteger or BigDecimal,

rather than an instance of an untrusted subclass. If it is the latter, you must defen-

sively copy it under the assumption that it might be mutable (Item 39):

public static BigInteger safeInstance(BigInteger val) {
if (val.getClass() != BigInteger.class)

return new BigInteger(val.toByteArray());
return val;

}

The list of rules for immutable classes at the beginning of this item says that

no methods may modify the object and that all its fields must be final. In fact these

rules are a bit stronger than necessary and can be relaxed to improve performance.

In truth, no method may produce an externally visible change in the object’s state.

However, some immutable classes have one or more nonfinal fields in which they

cache the results of expensive computations the first time they are needed. If the

same value is requested again, the cached value is returned, saving the cost of

recalculation. This trick works precisely because the object is immutable, which

guarantees that the computation would yield the same result if it were repeated.

For example, PhoneNumber’s hashCode method (Item 9, page 49) computes

the hash code the first time it’s invoked and caches it in case it’s invoked again.

This technique, an example of lazy initialization (Item 71), is also used by

String.

One caveat should be added concerning serializability. If you choose to have

your immutable class implement Serializable and it contains one or more fields

that refer to mutable objects, you must provide an explicit readObject or

readResolve method, or use the ObjectOutputStream.writeUnshared and

ObjectInputStream.readUnshared methods, even if the default serialized form

is acceptable. Otherwise an attacker could create a mutable instance of your not-

quite-immutable class. This topic is covered in detail in Item 76.

To summarize, resist the urge to write a set method for every get method.

Classes should be immutable unless there’s a very good reason to make them

mutable. Immutable classes provide many advantages, and their only disadvan-

tage is the potential for performance problems under certain circumstances. You

should always make small value objects, such as PhoneNumber and Complex,

immutable. (There are several classes in the Java platform libraries, such as
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java.util.Date and java.awt.Point, that should have been immutable but

aren’t.) You should seriously consider making larger value objects, such as

String and BigInteger, immutable as well. You should provide a public mutable

companion class for your immutable class only once you’ve confirmed that it’s

necessary to achieve satisfactory performance (Item 55).

There are some classes for which immutability is impractical. If a class can-

not be made immutable, limit its mutability as much as possible. Reducing the

number of states in which an object can exist makes it easier to reason about the

object and reduces the likelihood of errors. Therefore, make every field final

unless there is a compelling reason to make it nonfinal.

Constructors should create fully initialized objects with all of their invariants

established. Don’t provide a public initialization method separate from the con-

structor or static factory unless there is a compelling reason to do so. Similarly,

don’t provide a “reinitialize” method that enables an object to be reused as if it

had been constructed with a different initial state. Such methods generally provide

little if any performance benefit at the expense of increased complexity.

The TimerTask class exemplifies these principles. It is mutable, but its state

space is kept intentionally small. You create an instance, schedule it for execution,

and optionally cancel it. Once a timer task has run to completion or has been can-

celed, you may not reschedule it.

A final note should be added concerning the Complex class in this item. This

example was meant only to illustrate immutability. It is not an industrial-strength

complex number implementation. It uses the standard formulas for complex

multiplication and division, which are not correctly rounded and provide poor

semantics for complex NaNs and infinities [Kahan91, Smith62, Thomas94].



ITEM 16: FAVOR COMPOSITION OVER INHERITANCE 81

Item 16: Favor composition over inheritance

Inheritance is a powerful way to achieve code reuse, but it is not always the best

tool for the job. Used inappropriately, it leads to fragile software. It is safe to use

inheritance within a package, where the subclass and the superclass implementa-

tions are under the control of the same programmers. It is also safe to use inherit-

ance when extending classes specifically designed and documented for extension

(Item 17). Inheriting from ordinary concrete classes across package boundaries,

however, is dangerous. As a reminder, this book uses the word “inheritance” to

mean implementation inheritance (when one class extends another). The problems

discussed in this item do not apply to interface inheritance (when a class imple-

ments an interface or where one interface extends another).

Unlike method invocation, inheritance violates encapsulation [Snyder86].

In other words, a subclass depends on the implementation details of its superclass

for its proper function. The superclass’s implementation may change from release

to release, and if it does, the subclass may break, even though its code has not

been touched. As a consequence, a subclass must evolve in tandem with its super-

class, unless the superclass’s authors have designed and documented it specifi-

cally for the purpose of being extended.

To make this concrete, let’s suppose we have a program that uses a HashSet.

To tune the performance of our program, we need to query the HashSet as to how

many elements have been added since it was created (not to be confused with its

current size, which goes down when an element is removed). To provide this func-

tionality, we write a HashSet variant that keeps count of the number of attempted

element insertions and exports an accessor for this count. The HashSet class con-

tains two methods capable of adding elements, add and addAll, so we override

both of these methods: 

// Broken - Inappropriate use of inheritance!
public class InstrumentedHashSet<E> extends HashSet<E> {

// The number of attempted element insertions
private int addCount = 0;

public InstrumentedHashSet() {
}

public InstrumentedHashSet(int initCap, float loadFactor) {
super(initCap, loadFactor);

}
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@Override public boolean add(E e) {
addCount++;
return super.add(e);

}
@Override public boolean addAll(Collection<? extends E> c) {

addCount += c.size();
return super.addAll(c);

}
public int getAddCount() {

return addCount;
}

}

This class looks reasonable, but it doesn’t work. Suppose we create an

instance and add three elements using the addAll method:

InstrumentedHashSet<String> s =
new InstrumentedHashSet<String>();

s.addAll(Arrays.asList("Snap", "Crackle", "Pop"));

We would expect the getAddCount method to return three at this point, but it

returns six. What went wrong? Internally, HashSet’s addAll method is imple-

mented on top of its add method, although HashSet, quite reasonably, does not

document this implementation detail. The addAll method in InstrumentedHash-

Set added three to addCount and then invoked HashSet’s addAll implementation

using super.addAll. This in turn invoked the add method, as overridden in

InstrumentedHashSet, once for each element. Each of these three invocations

added one more to addCount, for a total increase of six: each element added with

the addAll method is double-counted.

We could “fix” the subclass by eliminating its override of the addAll method.

While the resulting class would work, it would depend for its proper function on

the fact that HashSet’s addAll method is implemented on top of its add method.

This “self-use” is an implementation detail, not guaranteed to hold in all imple-

mentations of the Java platform and subject to change from release to release.

Therefore, the resulting InstrumentedHashSet class would be fragile.

It would be slightly better to override the addAll method to iterate over the

specified collection, calling the add method once for each element. This would

guarantee the correct result whether or not HashSet’s addAll method were

implemented atop its add method, because HashSet’s addAll implementation

would no longer be invoked. This technique, however, does not solve all our

problems. It amounts to reimplementing superclass methods that may or may not
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result in self-use, which is difficult, time-consuming, and error-prone.

Additionally, it isn’t always possible, as some methods cannot be implemented

without access to private fields inaccessible to the subclass.

A related cause of fragility in subclasses is that their superclass can acquire

new methods in subsequent releases. Suppose a program depends for its security

on the fact that all elements inserted into some collection satisfy some predicate.

This can be guaranteed by subclassing the collection and overriding each method

capable of adding an element to ensure that the predicate is satisfied before adding

the element. This works fine until a new method capable of inserting an element is

added to the superclass in a subsequent release. Once this happens, it becomes

possible to add an “illegal” element merely by invoking the new method, which is

not overridden in the subclass. This is not a purely theoretical problem. Several

security holes of this nature had to be fixed when Hashtable and Vector were ret-

rofitted to participate in the Collections Framework.

Both of the above problems stem from overriding methods. You might think

that it is safe to extend a class if you merely add new methods and refrain from

overriding existing methods. While this sort of extension is much safer, it is not

without risk. If the superclass acquires a new method in a subsequent release and

you have the bad luck to have given the subclass a method with the same signature

and a different return type, your subclass will no longer compile [JLS, 8.4.8.3]. If

you’ve given the subclass a method with the same signature and return type as the

new superclass method, then you’re now overriding it, so you’re subject to the two

problems described above. Furthermore, it is doubtful that your method will fulfill

the contract of the new superclass method, as that contract had not yet been writ-

ten when you wrote the subclass method.

Luckily, there is a way to avoid all of the problems described earlier. Instead

of extending an existing class, give your new class a private field that references

an instance of the existing class. This design is called composition because the

existing class becomes a component of the new one. Each instance method in the

new class invokes the corresponding method on the contained instance of the

existing class and returns the results. This is known as forwarding, and the meth-

ods in the new class are known as forwarding methods. The resulting class will be

rock solid, with no dependencies on the implementation details of the existing

class. Even adding new methods to the existing class will have no impact on the

new class. To make this concrete, here’s a replacement for InstrumentedHashSet

that uses the composition-and-forwarding approach. Note that the implementation

is broken into two pieces, the class itself and a reusable forwarding class, which

contains all of the forwarding methods and nothing else:
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// Wrapper class - uses composition in place of inheritance
public class InstrumentedSet<E> extends ForwardingSet<E> {
    private int addCount = 0;

    public InstrumentedSet(Set<E> s) {
        super(s);
    }

    @Override public boolean add(E e) {
        addCount++;
        return super.add(e);
    }
    @Override public boolean addAll(Collection<? extends E> c) {
        addCount += c.size();
        return super.addAll(c);
    }
    public int getAddCount() {
        return addCount;
    }
}

// Reusable forwarding class
public class ForwardingSet<E> implements Set<E> {
    private final Set<E> s;
    public ForwardingSet(Set<E> s) { this.s = s; }

    public void clear()               { s.clear();            }
    public boolean contains(Object o) { return s.contains(o); }
    public boolean isEmpty()          { return s.isEmpty();   }
    public int size()                 { return s.size();      }
    public Iterator<E> iterator()     { return s.iterator();  }
    public boolean add(E e)           { return s.add(e);      }
    public boolean remove(Object o)   { return s.remove(o);   }
    public boolean containsAll(Collection<?> c)
                                   { return s.containsAll(c); }
    public boolean addAll(Collection<? extends E> c)
                                   { return s.addAll(c);      }
    public boolean removeAll(Collection<?> c)
                                   { return s.removeAll(c);   }
    public boolean retainAll(Collection<?> c)
                                   { return s.retainAll(c);   }
    public Object[] toArray()          { return s.toArray();  }
    public <T> T[] toArray(T[] a)      { return s.toArray(a); }
    @Override public boolean equals(Object o)
                                       { return s.equals(o);  }
    @Override public int hashCode()    { return s.hashCode(); }
    @Override public String toString() { return s.toString(); }
}
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The design of the InstrumentedSet class is enabled by the existence of the

Set interface, which captures the functionality of the HashSet class. Besides

being robust, this design is extremely flexible. The InstrumentedSet class imple-

ments the Set interface and has a single constructor whose argument is also of

type Set. In essence, the class transforms one Set into another, adding the instru-

mentation functionality. Unlike the inheritance-based approach, which works only

for a single concrete class and requires a separate constructor for each supported

constructor in the superclass, the wrapper class can be used to instrument any Set

implementation and will work in conjunction with any preexisting constructor:

Set<Date> s = new InstrumentedSet<Date>(new TreeSet<Date>(cmp));
Set<E> s2 = new InstrumentedSet<E>(new HashSet<E>(capacity));

The InstrumentedSet class can even be used to temporarily instrument a set

instance that has already been used without instrumentation:

static void walk(Set<Dog> dogs) {
InstrumentedSet<Dog> iDogs = new InstrumentedSet<Dog>(dogs);
... // Within this method use iDogs instead of dogs

}

The InstrumentedSet class is known as a wrapper class because each

InstrumentedSet instance contains (“wraps”) another Set instance. This is also

known as the Decorator pattern [Gamma95, p. 175], because the Instrumented-

Set class “decorates” a set by adding instrumentation. Sometimes the combina-

tion of composition and forwarding is loosely referred to as delegation.

Technically it’s not delegation unless the wrapper object passes itself to the

wrapped object [Lieberman86; Gamma95, p. 20].

The disadvantages of wrapper classes are few. One caveat is that wrapper

classes are not suited for use in callback frameworks, wherein objects pass self-

references to other objects for subsequent invocations (“callbacks”). Because a

wrapped object doesn’t know of its wrapper, it passes a reference to itself (this)

and callbacks elude the wrapper. This is known as the SELF problem

[Lieberman86]. Some people worry about the performance impact of forwarding

method invocations or the memory footprint impact of wrapper objects. Neither

turn out to have much impact in practice. It’s tedious to write forwarding methods,

but you have to write the forwarding class for each interface only once, and for-

warding classes may be provided for you by the package containing the interface.

Inheritance is appropriate only in circumstances where the subclass really is a

subtype of the superclass. In other words, a class B should extend a class A only if
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an “is-a” relationship exists between the two classes. If you are tempted to have a

class B extend a class A, ask yourself the question: Is every B really an A? If you

cannot truthfully answer yes to this question, B should not extend A. If the answer

is no, it is often the case that B should contain a private instance of A and expose a

smaller and simpler API: A is not an essential part of B, merely a detail of its

implementation.

There are a number of obvious violations of this principle in the Java platform

libraries. For example, a stack is not a vector, so Stack should not extend Vector.

Similarly, a property list is not a hash table, so Properties should not extend

Hashtable. In both cases, composition would have been preferable.

If you use inheritance where composition is appropriate, you needlessly

expose implementation details. The resulting API ties you to the original imple-

mentation, forever limiting the performance of your class. More seriously, by

exposing the internals you let the client access them directly. At the very least, this

can lead to confusing semantics. For example, if p refers to a Properties

instance, then p.getProperty(key) may yield different results from

p.get(key): the former method takes defaults into account, while the latter

method, which is inherited from Hashtable, does not. Most seriously, the client

may be able to corrupt invariants of the subclass by modifying the superclass

directly. In the case of Properties, the designers intended that only strings be

allowed as keys and values, but direct access to the underlying Hashtable allows

this invariant to be violated. Once this invariant is violated, it is no longer possible

to use other parts of the Properties API (load and store). By the time this prob-

lem was discovered, it was too late to correct it because clients depended on the

use of nonstring keys and values.

There is one last set of questions you should ask yourself before deciding to

use inheritance in place of composition. Does the class that you contemplate

extending have any flaws in its API? If so, are you comfortable propagating those

flaws into your class’s API? Inheritance propagates any flaws in the superclass’s

API, while composition lets you design a new API that hides these flaws.

To summarize, inheritance is powerful, but it is problematic because it

violates encapsulation. It is appropriate only when a genuine subtype relationship

exists between the subclass and the superclass. Even then, inheritance may lead to

fragility if the subclass is in a different package from the superclass and the

superclass is not designed for inheritance. To avoid this fragility, use composition

and forwarding instead of inheritance, especially if an appropriate interface to

implement a wrapper class exists. Not only are wrapper classes more robust than

subclasses, they are also more powerful.
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Item 17: Design and document for inheritance or else prohibit it

Item 16 alerted you to the dangers of subclassing a “foreign” class that was not

designed and documented for inheritance. So what does it mean for a class to be

designed and documented for inheritance?

First, the class must document precisely the effects of overriding any method.

In other words, the class must document its self-use of overridable methods.

For each public or protected method or constructor, the documentation must

indicate which overridable methods the method or constructor invokes, in what

sequence, and how the results of each invocation affect subsequent processing.

(By overridable, we mean nonfinal and either public or protected.) More

generally, a class must document any circumstances under which it might invoke

an overridable method. For example, invocations might come from background

threads or static initializers.

By convention, a method that invokes overridable methods contains a descrip-

tion of these invocations at the end of its documentation comment. The descrip-

tion begins with the phrase “This implementation.” This phrase should not be

taken to indicate that the behavior may change from release to release. It connotes

that the description concerns the inner workings of the method. Here’s an exam-

ple, copied from the specification for java.util.AbstractCollection:

public boolean remove(Object o)

Removes a single instance of the specified element from this collection, if it
is present (optional operation). More formally, removes an element e such
that (o==null ? e==null : o.equals(e)), if the collection contains one or
more such elements. Returns true if the collection contained the specified
element (or equivalently, if the collection changed as a result of the call).

This implementation iterates over the collection looking for the specified el-
ement. If it finds the element, it removes the element from the collection us-
ing the iterator’s remove method. Note that this implementation throws an
UnsupportedOperationException if the iterator returned by this collec-
tion’s iterator method does not implement the remove method.

This documentation leaves no doubt that overriding the iterator method will

affect the behavior of the remove method. Furthermore, it describes exactly how

the behavior of the Iterator returned by the iterator method will affect the

behavior of the remove method. Contrast this to the situation in Item 16, where the
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programmer subclassing HashSet simply could not say whether overriding the

add method would affect the behavior of the addAll method.

But doesn’t this violate the dictum that good API documentation should

describe what a given method does and not how it does it? Yes, it does! This is an

unfortunate consequence of the fact that inheritance violates encapsulation. To

document a class so that it can be safely subclassed, you must describe implemen-

tation details that should otherwise be left unspecified. 

Design for inheritance involves more than just documenting patterns of self-

use. To allow programmers to write efficient subclasses without undue pain, a

class may have to provide hooks into its internal workings in the form of judi-

ciously chosen protected methods or, in rare instances, protected fields. For

example, consider the removeRange method from java.util.AbstractList:

protected void removeRange(int fromIndex, int toIndex)

Removes from this list all of the elements whose index is between
fromIndex, inclusive, and toIndex, exclusive. Shifts any succeeding
elements to the left (reduces their index). This call shortens the ArrayList
by (toIndex - fromIndex) elements. (If toIndex == fromIndex, this
operation has no effect.)

This method is called by the clear operation on this list and its sublists.
Overriding this method to take advantage of the internals of the list imple-
mentation can substantially improve the performance of the clear operation
on this list and its sublists.

This implementation gets a list iterator positioned before fromIndex and re-
peatedly calls ListIterator.next followed by ListIterator.remove, un-
til the entire range has been removed. Note: If ListIterator.remove
requires linear time, this implementation requires quadratic time.

Parameters:

fromIndex index of first element to be removed.

toIndex index after last element to be removed.

This method is of no interest to end users of a List implementation. It is

provided solely to make it easy for subclasses to provide a fast clear method on

sublists. In the absence of the removeRange method, subclasses would have to

make do with quadratic performance when the clear method was invoked on

sublists or rewrite the entire subList mechanism from scratch—not an easy task!
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So how do you decide what protected members to expose when you design a

class for inheritance? Unfortunately, there is no magic bullet. The best you can do

is to think hard, take your best guess, and then test it by writing subclasses. You

should expose as few protected members as possible, because each one represents

a commitment to an implementation detail. On the other hand, you must not

expose too few, as a missing protected member can render a class practically

unusable for inheritance.

The only way to test a class designed for inheritance is to write subclasses.

If you omit a crucial protected member, trying to write a subclass will make the

omission painfully obvious. Conversely, if several subclasses are written and none

uses a protected member, you should probably make it private. Experience shows

that three subclasses are usually sufficient to test an extendable class. One or more

of these subclasses should be written by someone other than the superclass author.

When you design for inheritance a class that is likely to achieve wide use,

realize that you are committing forever to the self-use patterns that you document

and to the implementation decisions implicit in its protected methods and fields.

These commitments can make it difficult or impossible to improve the perfor-

mance or functionality of the class in a subsequent release. Therefore, you must

test your class by writing subclasses before you release it.

Also, note that the special documentation required for inheritance clutters up

normal documentation, which is designed for programmers who create instances

of your class and invoke methods on them. As of this writing, there is little in the

way of tools or commenting conventions to separate ordinary API documentation

from information of interest only to programmers implementing subclasses.

There are a few more restrictions that a class must obey to allow inheritance.

Constructors must not invoke overridable methods, directly or indirectly. If

you violate this rule, program failure will result. The superclass constructor runs

before the subclass constructor, so the overriding method in the subclass will get

invoked before the subclass constructor has run. If the overriding method depends

on any initialization performed by the subclass constructor, the method will not

behave as expected. To make this concrete, here’s a class that violates this rule:

public class Super {
// Broken - constructor invokes an overridable method
public Super() {

overrideMe();
}
public void overrideMe() {
}

}
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Here’s a subclass that overrides the overrideMe, method which is erroneously

invoked by Super’s sole constructor:

public final class Sub extends Super {
private final Date date; // Blank final, set by constructor

Sub() {
date = new Date();

}

// Overriding method invoked by superclass constructor
@Override public void overrideMe() {

System.out.println(date);
}

public static void main(String[] args) {
Sub sub = new Sub();
sub.overrideMe();

}
}

You might expect this program to print out the date twice, but it prints out null

the first time, because the overrideMe method is invoked by the Super construc-

tor before the Sub constructor has a chance to initialize the date field. Note that

this program observes a final field in two different states! Note also that if over-

rideMe had invoked any method on date, the invocation would have thrown a

NullPointerException when the Super constructor invoked overrideMe. The

only reason this program doesn’t throw a NullPointerException as it stands is

that the println method has special provisions for dealing with a null argument.

The Cloneable and Serializable interfaces present special difficulties

when designing for inheritance. It is generally not a good idea for a class designed

for inheritance to implement either of these interfaces, as they place a substantial

burden on programmers who extend the class. There are, however, special actions

that you can take to allow subclasses to implement these interfaces without man-

dating that they do so. These actions are described in Item 11 and Item 74.

If you do decide to implement Cloneable or Serializable in a class

designed for inheritance, you should be aware that because the clone and

readObject methods behave a lot like constructors, a similar restriction applies:

neither clone nor readObject may invoke an overridable method, directly or

indirectly. In the case of the readObject method, the overriding method will run

before the subclass’s state has been deserialized. In the case of the clone method,

the overriding method will run before the subclass’s clone method has a chance to
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fix the clone’s state. In either case, a program failure is likely to follow. In the case

of clone, the failure can damage the original object as well as the clone. This can

happen, for example, if the overriding method assumes it is modifying the clone’s

copy of the object’s deep structure, but the copy hasn’t been made yet.

Finally, if you decide to implement Serializable in a class designed for

inheritance and the class has a readResolve or writeReplace method, you must

make the readResolve or writeReplace method protected rather than private. If

these methods are private, they will be silently ignored by subclasses. This is one

more case where an implementation detail becomes part of a class’s API to permit

inheritance.

By now it should be apparent that designing a class for inheritance places

substantial limitations on the class. This is not a decision to be undertaken

lightly. There are some situations where it is clearly the right thing to do, such as

abstract classes, including skeletal implementations of interfaces (Item 18). There

are other situations where it is clearly the wrong thing to do, such as immutable

classes (Item 15).

But what about ordinary concrete classes? Traditionally, they are neither final

nor designed and documented for subclassing, but this state of affairs is danger-

ous. Each time a change is made in such a class, there is a chance that client

classes that extend the class will break. This is not just a theoretical problem. It is

not uncommon to receive subclassing-related bug reports after modifying the

internals of a nonfinal concrete class that was not designed and documented for

inheritance.

The best solution to this problem is to prohibit subclassing in classes that

are not designed and documented to be safely subclassed. There are two ways

to prohibit subclassing. The easier of the two is to declare the class final. The

alternative is to make all the constructors private or package-private and to add

public static factories in place of the constructors. This alternative, which pro-

vides the flexibility to use subclasses internally, is discussed in Item 15. Either

approach is acceptable.

This advice may be somewhat controversial, as many programmers have

grown accustomed to subclassing ordinary concrete classes to add facilities such

as instrumentation, notification, and synchronization or to limit functionality. If a

class implements some interface that captures its essence, such as Set, List, or

Map, then you should feel no compunction about prohibiting subclassing. The

wrapper class pattern, described in Item 16, provides a superior alternative to

inheritance for augmenting the functionality.
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If a concrete class does not implement a standard interface, then you may

inconvenience some programmers by prohibiting inheritance. If you feel that you

must allow inheritance from such a class, one reasonable approach is to ensure

that the class never invokes any of its overridable methods and to document this

fact. In other words, eliminate the class’s self-use of overridable methods entirely.

In doing so, you’ll create a class that is reasonably safe to subclass. Overriding a

method will never affect the behavior of any other method.

You can eliminate a class’s self-use of overridable methods mechanically,

without changing its behavior. Move the body of each overridable method to a pri-

vate “helper method” and have each overridable method invoke its private helper

method. Then replace each self-use of an overridable method with a direct invoca-

tion of the overridable method’s private helper method. 
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Item 18: Prefer interfaces to abstract classes

The Java programming language provides two mechanisms for defining a type

that permits multiple implementations: interfaces and abstract classes. The most

obvious difference between the two mechanisms is that abstract classes are per-

mitted to contain implementations for some methods while interfaces are not. A

more important difference is that to implement the type defined by an abstract

class, a class must be a subclass of the abstract class. Any class that defines all of

the required methods and obeys the general contract is permitted to implement an

interface, regardless of where the class resides in the class hierarchy. Because Java

permits only single inheritance, this restriction on abstract classes severely con-

strains their use as type definitions.

Existing classes can be easily retrofitted to implement a new interface. All

you have to do is add the required methods if they don’t yet exist and add an

implements clause to the class declaration. For example, many existing classes

were retrofitted to implement the Comparable interface when it was introduced

into the platform. Existing classes cannot, in general, be retrofitted to extend a

new abstract class. If you want to have two classes extend the same abstract class,

you have to place the abstract class high up in the type hierarchy where it

subclasses an ancestor of both classes. Unfortunately, this causes great collateral

damage to the type hierarchy, forcing all descendants of the common ancestor to

extend the new abstract class whether or not it is appropriate for them to do so.

Interfaces are ideal for defining mixins. Loosely speaking, a mixin is a type

that a class can implement in addition to its “primary type” to declare that it pro-

vides some optional behavior. For example, Comparable is a mixin interface that

allows a class to declare that its instances are ordered with respect to other mutu-

ally comparable objects. Such an interface is called a mixin because it allows the

optional functionality to be “mixed in” to the type’s primary functionality.

Abstract classes can’t be used to define mixins for the same reason that they can’t

be retrofitted onto existing classes: a class cannot have more than one parent, and

there is no reasonable place in the class hierarchy to insert a mixin.

Interfaces allow the construction of nonhierarchical type frameworks.

Type hierarchies are great for organizing some things, but other things don’t fall

neatly into a rigid hierarchy. For example, suppose we have an interface represent-

ing a singer and another representing a songwriter:

public interface Singer {
AudioClip sing(Song s);

}
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public interface Songwriter {
Song compose(boolean hit);

}

In real life, some singers are also songwriters. Because we used interfaces

rather than abstract classes to define these types, it is perfectly permissible for a

single class to implement both Singer and Songwriter. In fact, we can define a

third interface that extends both Singer and Songwriter and adds new methods

that are appropriate to the combination:

public interface SingerSongwriter extends Singer, Songwriter {
AudioClip strum();
void actSensitive();

}

You don’t always need this level of flexibility, but when you do, interfaces are

a lifesaver. The alternative is a bloated class hierarchy containing a separate class

for every supported combination of attributes. If there are n attributes in the type

system, there are 2n possible combinations that you might have to support. This is

what’s known as a combinatorial explosion. Bloated class hierarchies can lead to

bloated classes containing many methods that differ only in the type of their argu-

ments, as there are no types in the class hierarchy to capture common behaviors.

Interfaces enable safe, powerful functionality enhancements via the wrap-

per class idiom, described in Item 16. If you use abstract classes to define types,

you leave the programmer who wants to add functionality with no alternative but

to use inheritance. The resulting classes are less powerful and more fragile than

wrapper classes.

While interfaces are not permitted to contain method implementations, using

interfaces to define types does not prevent you from providing implementation

assistance to programmers. You can combine the virtues of interfaces and

abstract classes by providing an abstract skeletal implementation class to go

with each nontrivial interface that you export. The interface still defines the

type, but the skeletal implementation takes all of the work out of implementing it. 

By convention, skeletal implementations are called AbstractInterface, where

Interface is the name of the interface they implement. For example, the Collec-

tions Framework provides a skeletal implementation to go along with each main

collection interface: AbstractCollection, AbstractSet, AbstractList, and

AbstractMap. Arguably it would have made sense to call them SkeletalCollec-

tion, SkeletalSet, SkeletalList, and SkeletalMap, but the Abstract conven-

tion is now firmly established.
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When properly designed, skeletal implementations can make it very easy for

programmers to provide their own implementations of your interfaces. For exam-

ple, here’s a static factory method containing a complete, fully functional List

implementation:

// Concrete implementation built atop skeletal implementation
static List<Integer> intArrayAsList(final int[] a) {

if (a == null)
throw new NullPointerException();

return new AbstractList<Integer>() {
public Integer get(int i) {

return a[i]; // Autoboxing (Item 5)
}

@Override public Integer set(int i, Integer val) {
int oldVal = a[i];
a[i] = val; // Auto-unboxing
return oldVal; // Autoboxing

}

public int size() {
return a.length;

}
};

}

When you consider all that a List implementation does for you, this example

is an impressive demonstration of the power of skeletal implementations. Inciden-

tally, the example is an Adapter [Gamma95, p. 139] that allows an int array to be

viewed as a list of Integer instances. Because of all the translation back and forth

between int values and Integer instances (boxing and unboxing), its perfor-

mance is not terribly good. Note that a static factory is provided and that the class

is an inaccessible anonymous class (Item 22) hidden inside the static factory.

The beauty of skeletal implementations is that they provide the implementa-

tion assistance of abstract classes without imposing the severe constraints that

abstract classes impose when they serve as type definitions. For most implemen-

tors of an interface, extending the skeletal implementation is the obvious choice,

but it is strictly optional. If a preexisting class cannot be made to extend the skele-

tal implementation, the class can always implement the interface manually. Fur-

thermore, the skeletal implementation can still aid the implementor’s task. The

class implementing the interface can forward invocations of interface methods to a

contained instance of a private inner class that extends the skeletal implementa-
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tion. This technique, known as simulated multiple inheritance, is closely related to

the wrapper class idiom discussed in Item 16. It provides most of the benefits of

multiple inheritance, while avoiding the pitfalls.

Writing a skeletal implementation is a relatively simple, if somewhat tedious,

process. First you must study the interface and decide which methods are the

primitives in terms of which the others can be implemented. These primitives will

be the abstract methods in your skeletal implementation. Then you must provide

concrete implementations of all the other methods in the interface. For example,

here’s a skeletal implementation of the Map.Entry interface:

// Skeletal Implementation
public abstract class AbstractMapEntry<K,V>

implements Map.Entry<K,V> {
// Primitive operations
public abstract K getKey();
public abstract V getValue();

// Entries in modifiable maps must override this method
public V setValue(V value) {

throw new UnsupportedOperationException();
}

// Implements the general contract of Map.Entry.equals
@Override public boolean equals(Object o) {

if (o == this)
return true;

if (! (o instanceof Map.Entry))
return false;

Map.Entry<?,?> arg = (Map.Entry) o;
return equals(getKey(),   arg.getKey()) &&

equals(getValue(), arg.getValue());
}
private static boolean equals(Object o1, Object o2) {

return o1 == null ? o2 == null : o1.equals(o2);
}

// Implements the general contract of Map.Entry.hashCode
@Override public int hashCode() {

return hashCode(getKey()) ^ hashCode(getValue());
}
private static int hashCode(Object obj) {

return obj == null ? 0 : obj.hashCode();
}

}



ITEM 18: PREFER INTERFACES TO ABSTRACT CLASSES 97

Because skeletal implementations are designed for inheritance, you should

follow all of the design and documentation guidelines in Item 17. For brevity’s

sake, the documentation comments were omitted from the previous example, but

good documentation is absolutely essential for skeletal implementations.

A minor variant on the skeletal implementation is the simple implementation,

exemplified by AbstractMap.SimpleEntry. A simple implementation is like a

skeletal implementation in that it implements an interface and is designed for

inheritance, but it differs in that it isn’t abstract: it is the simplest possible working

implementation. You can use it as it stands or subclass it as circumstances warrant.

Using abstract classes to define types that permit multiple implementations

has one great advantage over using interfaces: It is far easier to evolve an

abstract class than an interface. If, in a subsequent release, you want to add a

new method to an abstract class, you can always add a concrete method containing

a reasonable default implementation. All existing implementations of the abstract

class will then provide the new method. This does not work for interfaces.

It is, generally speaking, impossible to add a method to a public interface

without breaking all existing classes that implement the interface. Classes that

previously implemented the interface will be missing the new method and won’t

compile anymore. You could limit the damage somewhat by adding the new

method to the skeletal implementation at the same time as you add it to the inter-

face, but this really wouldn’t solve the problem. Any implementation that didn’t

inherit from the skeletal implementation would still be broken.

Public interfaces, therefore, must be designed carefully. Once an interface is

released and widely implemented, it is almost impossible to change. You really

must get it right the first time. If an interface contains a minor flaw, it will irritate

you and its users forever. If an interface is severely deficient, it can doom an API.

The best thing to do when releasing a new interface is to have as many program-

mers as possible implement the interface in as many ways as possible before the

interface is frozen. This will allow you to discover flaws while you can still cor-

rect them.

To summarize, an interface is generally the best way to define a type that

permits multiple implementations. An exception to this rule is the case where ease

of evolution is deemed more important than flexibility and power. Under these

circumstances, you should use an abstract class to define the type, but only if you

understand and can accept the limitations. If you export a nontrivial interface, you

should strongly consider providing a skeletal implementation to go with it.

Finally, you should design all of your public interfaces with the utmost care and

test them thoroughly by writing multiple implementations.
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Item 19: Use interfaces only to define types

When a class implements an interface, the interface serves as a type that can

be used to refer to instances of the class. That a class implements an interface

should therefore say something about what a client can do with instances of the

class. It is inappropriate to define an interface for any other purpose.

One kind of interface that fails this test is the so-called constant interface.

Such an interface contains no methods; it consists solely of static final fields, each

exporting a constant. Classes using these constants implement the interface to

avoid the need to qualify constant names with a class name. Here is an example:

 // Constant interface antipattern - do not use!
public interface PhysicalConstants {

// Avogadro's number (1/mol)
static final double AVOGADROS_NUMBER   = 6.02214199e23;

// Boltzmann constant (J/K)
static final double BOLTZMANN_CONSTANT = 1.3806503e-23;

// Mass of the electron (kg)
static final double ELECTRON_MASS      = 9.10938188e-31;

}

The constant interface pattern is a poor use of interfaces. That a class uses

some constants internally is an implementation detail. Implementing a constant

interface causes this implementation detail to leak into the class’s exported API. It

is of no consequence to the users of a class that the class implements a constant

interface. In fact, it may even confuse them. Worse, it represents a commitment: if

in a future release the class is modified so that it no longer needs to use the con-

stants, it still must implement the interface to ensure binary compatibility. If a

nonfinal class implements a constant interface, all of its subclasses will have their

namespaces polluted by the constants in the interface. 

There are several constant interfaces in the Java platform libraries, such as

java.io.ObjectStreamConstants. These interfaces should be regarded as

anomalies and should not be emulated.

If you want to export constants, there are several reasonable choices. If the

constants are strongly tied to an existing class or interface, you should add them to

the class or interface. For example, all of the boxed numerical primitive classes,

such as Integer and Double, export MIN_VALUE and MAX_VALUE constants. If the

constants are best viewed as members of an enumerated type, you should export
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them with an enum type (Item 30). Otherwise, you should export the constants

with a noninstantiable utility class (Item 4). Here is a utility class version of the

PhysicalConstants example above:

// Constant utility class
package com.effectivejava.science;

public class PhysicalConstants {
private PhysicalConstants() { }  // Prevents instantiation

public static final double AVOGADROS_NUMBER   = 6.02214199e23;
public static final double BOLTZMANN_CONSTANT = 1.3806503e-23;
public static final double ELECTRON_MASS      = 9.10938188e-31;

}

Normally a utility class requires clients to qualify constant names with a class

name, for example, PhysicalConstants.AVOGADROS_NUMBER. If you make heavy

use of the constants exported by a utility class, you can avoid the need for qualify-

ing the constants with the class name by making use of the static import facility,

introduced in release 1.5:

// Use of static import to avoid qualifying constants
import static com.effectivejava.science.PhysicalConstants.*;

public class Test {
double atoms(double mols) {

return AVOGADROS_NUMBER * mols;
}
...
// Many more uses of PhysicalConstants justify static import

}

In summary, interfaces should be used only to define types. They should not

be used to export constants.
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Item 20: Prefer class hierarchies to tagged classes

Occasionally you may run across a class whose instances come in two or

more flavors and contain a tag field indicating the flavor of the instance. For

example, consider this class, which is capable of representing a circle or a

rectangle:

// Tagged class - vastly inferior to a class hierarchy!
class Figure {

enum Shape { RECTANGLE, CIRCLE };

// Tag field - the shape of this figure
final Shape shape;

// These fields are used only if shape is RECTANGLE
double length;
double width;

// This field is used only if shape is CIRCLE
double radius;

// Constructor for circle
Figure(double radius) {

shape = Shape.CIRCLE;
this.radius = radius;

}

// Constructor for rectangle
Figure(double length, double width) {

shape = Shape.RECTANGLE;
this.length = length;
this.width = width;

}

double area() {
switch(shape) {

case RECTANGLE:
return length * width;

case CIRCLE:
return Math.PI * (radius * radius);

default:
throw new AssertionError();

}
}

}
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Such tagged classes have numerous shortcomings. They are cluttered with

boilerplate, including enum declarations, tag fields, and switch statements. Read-

ability is further harmed because multiple implementations are jumbled together

in a single class. Memory footprint is increased because instances are burdened

with irrelevant fields belonging to other flavors. Fields can’t be made final unless

constructors initialize irrelevant fields, resulting in more boilerplate. Constructors

must set the tag field and initialize the right data fields with no help from the com-

piler: if you initialize the wrong fields, the program will fail at runtime. You can’t

add a flavor to a tagged class unless you can modify its source file. If you do add a

flavor, you must remember to add a case to every switch statement, or the class

will fail at runtime. Finally, the data type of an instance gives no clue as to its fla-

vor. In short, tagged classes are verbose, error-prone, and inefficient.

Luckily, object-oriented languages such as Java offer a far better alternative

for defining a single data type capable of representing objects of multiple flavors:

subtyping. A tagged class is just a pallid imitation of a class hierarchy.

To transform a tagged class into a class hierarchy, first define an abstract class

containing an abstract method for each method in the tagged class whose behavior

depends on the tag value. In the Figure class, there is only one such method,

which is area. This abstract class is the root of the class hierarchy. If there are any

methods whose behavior does not depend on the value of the tag, put them in this

class. Similarly, if there are any data fields used by all the flavors, put them in this

class. There are no such flavor-independent methods or fields in the Figure class.

Next, define a concrete subclass of the root class for each flavor of the original

tagged class. In our example, there are two: circle and rectangle. Include in each

subclass the data fields particular to its flavor. In our example, radius is particular

to circle, and length and width are particular to rectangle. Also include in each

subclass the appropriate implementation of each abstract method in the root class.

Here is the class hierarchy corresponding to the original Figure class:

// Class hierarchy replacement for a tagged class
abstract class Figure {

abstract double area();
}

class Circle extends Figure {
final double radius;

Circle(double radius) { this.radius = radius; }

double area() { return Math.PI * (radius * radius); }
}
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class Rectangle extends Figure {
final double length;
final double width;

Rectangle(double length, double width) {
this.length = length;
this.width  = width;

}
double area() { return length * width; }

}

This class hierarchy corrects every shortcoming of tagged classes noted previ-

ously. The code is simple and clear, containing none of the boilerplate found in the

original. The implementation of each flavor is allotted its own class, and none of

these classes are encumbered by irrelevant data fields. All fields are final. The

compiler ensures that each class’s constructor initializes its data fields, and that

each class has an implementation for every abstract method declared in the root

class. This eliminates the possibility of a runtime failure due to a missing switch

case. Multiple programmers can extend the hierarchy independently and interop-

erably without access to the source for the root class. There is a separate data type

associated with each flavor, allowing programmers to indicate the flavor of a vari-

able and to restrict variables and input parameters to a particular flavor.

Another advantage of class hierarchies is that they can be made to reflect nat-

ural hierarchical relationships among types, allowing for increased flexibility and

better compile-time type checking. Suppose the tagged class in the original exam-

ple also allowed for squares. The class hierarchy could be made to reflect the fact

that a square is a special kind of rectangle (assuming both are immutable):

class Square extends Rectangle {
Square(double side) {

super(side, side);
}

}

Note that the fields in the above hierarchy are accessed directly rather than by

accessor methods. This was done for brevity and would be unacceptable if the

hierarchy were public (Item 14).

In summary, tagged classes are seldom appropriate. If you’re tempted to write

a class with an explicit tag field, think about whether the tag could be eliminated

and the class replaced by a hierarchy. When you encounter an existing class with a

tag field, consider refactoring it into a hierarchy.
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Item 21: Use function objects to represent strategies

Some languages support function pointers, delegates, lambda expressions, or sim-

ilar facilities that allow programs to store and transmit the ability to invoke a par-

ticular function. Such facilities are typically used to allow the caller of a function

to specialize its behavior by passing in a second function. For example, the qsort

function in C’s standard library takes a pointer to a comparator function, which

qsort uses to compare the elements to be sorted. The comparator function takes

two parameters, each of which is a pointer to an element. It returns a negative inte-

ger if the element indicated by the first parameter is less than the one indicated by

the second, zero if the two elements are equal, and a positive integer if the element

indicated by the first parameter is greater than the one indicated by the second.

Different sort orders can be obtained by passing in different comparator functions.

This is an example of the Strategy pattern [Gamma95, p. 315]; the comparator

function represents a strategy for sorting elements.

Java does not provide function pointers, but object references can be used to

achieve a similar effect. Invoking a method on an object typically performs some

operation on that object. However, it is possible to define an object whose meth-

ods perform operations on other objects, passed explicitly to the methods. An

instance of a class that exports exactly one such method is effectively a pointer to

that method. Such instances are known as function objects. For example, consider

the following class:

class StringLengthComparator {
public int compare(String s1, String s2) {

return s1.length() - s2.length();
}

}

This class exports a single method that takes two strings and returns a negative

integer if the first string is shorter than the second, zero if the two strings are of

equal length, and a positive integer if the first string is longer. This method is a

comparator that orders strings based on their length instead of the more typical

lexicographic ordering. A reference to a StringLengthComparator object serves

as a “function pointer” to this comparator, allowing it to be invoked on arbitrary

pairs of strings. In other words, a StringLengthComparator instance is a con-

crete strategy for string comparison.

As is typical for concrete strategy classes, the StringLengthComparator

class is stateless: it has no fields, hence all instances of the class are functionally
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equivalent. Thus it should be a singleton to save on unnecessary object creation

costs (Item 3, Item 5):

class StringLengthComparator {
private StringLengthComparator() { }
public static final StringLengthComparator

INSTANCE = new StringLengthComparator();
public int compare(String s1, String s2) {

return s1.length() - s2.length();
}

}

To pass a StringLengthComparator instance to a method, we need an

appropriate type for the parameter. It would do no good to use

StringLengthComparator because clients would be unable to pass any other

comparison strategy. Instead, we need to define a Comparator interface and

modify StringLengthComparator to implement this interface. In other words, we

need to define a strategy interface to go with the concrete strategy class. Here it is:

// Strategy interface
public interface Comparator<T> {

public int compare(T t1, T t2);
}

This definition of the Comparator interface happens to come from the

java.util package, but there’s nothing magic about it: you could just as well

have written it yourself. The Comparator interface is generic (Item 26) so that it is

applicable to comparators for objects other than strings. Its compare method takes

two parameters of type T (its formal type parameter) rather than String. The

StringLengthComparator class shown above can be made to implement Compar-

ator<String> merely by declaring it to do so:

class StringLengthComparator implements Comparator<String> {
... // class body is identical to the one shown above

}

Concrete strategy classes are often declared using anonymous classes (Item

22). The following statement sorts an array of strings according to length:

Arrays.sort(stringArray, new Comparator<String>() {
public int compare(String s1, String s2) {

return s1.length() - s2.length();
}

});
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But note that using an anonymous class in this way will create a new instance each

time the call is executed. If it is to be executed repeatedly, consider storing the

function object in a private static final field and reusing it. Another advantage of

doing this is that you can give the field a descriptive name for the function object.

Because the strategy interface serves as a type for all of its concrete strategy

instances, a concrete strategy class needn’t be made public to export a concrete

strategy. Instead, a “host class” can export a public static field (or static factory

method) whose type is the strategy interface, and the concrete strategy class can

be a private nested class of the host. In the example that follows, a static member

class is used in preference to an anonymous class to allow the concrete strategy

class to implement a second interface, Serializable:

// Exporting a concrete strategy
class Host {

private static class StrLenCmp
implements Comparator<String>, Serializable {

public int compare(String s1, String s2) {
return s1.length() - s2.length();

}
}

// Returned comparator is serializable
public static final Comparator<String>

STRING_LENGTH_COMPARATOR = new StrLenCmp();

... // Bulk of class omitted
}

The String class uses this pattern to export a case-independent string com-

parator via its CASE_INSENSITIVE_ORDER field.

To summarize, a primary use of function pointers is to implement the Strategy

pattern. To implement this pattern in Java, declare an interface to represent the

strategy, and a class that implements this interface for each concrete strategy.

When a concrete strategy is used only once, it is typically declared and instanti-

ated as an anonymous class. When a concrete strategy is designed for repeated

use, it is generally implemented as a private static member class and exported in a

public static final field whose type is the strategy interface.
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Item 22: Favor static member classes over nonstatic

A nested class is a class defined within another class. A nested class should exist

only to serve its enclosing class. If a nested class would be useful in some other

context, then it should be a top-level class. There are four kinds of nested classes:

static member classes, nonstatic member classes, anonymous classes, and local

classes. All but the first kind are known as inner classes. This item tells you when

to use which kind of nested class and why.

A static member class is the simplest kind of nested class. It is best thought of

as an ordinary class that happens to be declared inside another class and has

access to all of the enclosing class’s members, even those declared private. A

static member class is a static member of its enclosing class and obeys the same

accessibility rules as other static members. If it is declared private, it is accessible

only within the enclosing class, and so forth.

One common use of a static member class is as a public helper class, useful

only in conjunction with its outer class. For example, consider an enum describing

the operations supported by a calculator (Item 30). The Operation enum should

be a public static member class of the Calculator class. Clients of Calculator

could then refer to operations using names like Calculator.Operation.PLUS and

Calculator.Operation.MINUS.

Syntactically, the only difference between static and nonstatic member classes

is that static member classes have the modifier static in their declarations.

Despite the syntactic similarity, these two kinds of nested classes are very differ-

ent. Each instance of a nonstatic member class is implicitly associated with an

enclosing instance of its containing class. Within instance methods of a nonstatic

member class, you can invoke methods on the enclosing instance or obtain a refer-

ence to the enclosing instance using the qualified this construct [JLS, 15.8.4]. If an

instance of a nested class can exist in isolation from an instance of its enclosing

class, then the nested class must be a static member class: it is impossible to create

an instance of a nonstatic member class without an enclosing instance.

The association between a nonstatic member class instance and its enclosing

instance is established when the former is created; it cannot be modified

thereafter. Normally, the association is established automatically by invoking a

nonstatic member class constructor from within an instance method of the

enclosing class. It is possible, although rare, to establish the association manually

using the expression enclosingInstance.new MemberClass(args). As you

would expect, the association takes up space in the nonstatic member class

instance and adds time to its construction.
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One common use of a nonstatic member class is to define an Adapter

[Gamma95, p. 139] that allows an instance of the outer class to be viewed as an

instance of some unrelated class. For example, implementations of the Map inter-

face typically use nonstatic member classes to implement their collection views,

which are returned by Map’s keySet, entrySet, and values methods. Similarly,

implementations of the collection interfaces, such as Set and List, typically use

nonstatic member classes to implement their iterators:

// Typical use of a nonstatic member class
public class MySet<E> extends AbstractSet<E> {

... // Bulk of the class omitted

public Iterator<E> iterator() {
return new MyIterator();

}

private class MyIterator implements Iterator<E> {
...

}
}

If you declare a member class that does not require access to an enclosing

instance, always put the static modifier in its declaration, making it a static

rather than a nonstatic member class. If you omit this modifier, each instance will

have an extraneous reference to its enclosing instance. Storing this reference costs

time and space, and can result in the enclosing instance being retained when it

would otherwise be eligible for garbage collection (Item 6). And should you ever

need to allocate an instance without an enclosing instance, you’ll be unable to do

so, as nonstatic member class instances are required to have an enclosing instance.

A common use of private static member classes is to represent components of

the object represented by their enclosing class. For example, consider a Map

instance, which associates keys with values. Many Map implementations have an

internal Entry object for each key-value pair in the map. While each entry is asso-

ciated with a map, the methods on an entry (getKey, getValue, and setValue) do

not need access to the map. Therefore, it would be wasteful to use a nonstatic

member class to represent entries: a private static member class is best. If you

accidentally omit the static modifier in the entry declaration, the map will still

work, but each entry will contain a superfluous reference to the map, which wastes

space and time.

It is doubly important to choose correctly between a static and a nonstatic

member class if the class in question is a public or protected member of an
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exported class. In this case, the member class is an exported API element and can-

not be changed from a nonstatic to a static member class in a subsequent release

without violating binary compatibility.

Anonymous classes are unlike anything else in the Java programming lan-

guage. As you would expect, an anonymous class has no name. It is not a member

of its enclosing class. Rather than being declared along with other members, it is

simultaneously declared and instantiated at the point of use. Anonymous classes

are permitted at any point in the code where an expression is legal. Anonymous

classes have enclosing instances if and only if they occur in a nonstatic context.

But even if they occur in a static context, they cannot have any static members.

There are many limitations on the applicability of anonymous classes. You

can’t instantiate them except at the point they’re declared. You can’t perform

instanceof tests or do anything else that requires you to name the class. You

can’t declare an anonymous class to implement multiple interfaces, or to extend a

class and implement an interface at the same time. Clients of an anonymous class

can’t invoke any members except those it inherits from its supertype. Because

anonymous classes occur in the midst of expressions, they must be kept short—

about ten lines or fewer—or readability will suffer.

One common use of anonymous classes is to create function objects (Item 21)

on the fly. For example, the sort method invocation on page 104 sorts an array of

strings according to their length using an anonymous Comparator instance.

Another common use of anonymous classes is to create process objects, such as

Runnable, Thread, or TimerTask instances. A third common use is within static

factory methods (see the intArrayAsList method in Item 18). 

Local classes are the least frequently used of the four kinds of nested classes. A

local class can be declared anywhere a local variable can be declared and obeys the

same scoping rules. Local classes have attributes in common with each of the other

kinds of nested classes. Like member classes, they have names and can be used

repeatedly. Like anonymous classes, they have enclosing instances only if they are

defined in a nonstatic context, and they cannot contain static members. And like

anonymous classes, they should be kept short so as not to harm readability.

To recap, there are four different kinds of nested classes, and each has its

place. If a nested class needs to be visible outside of a single method or is too long

to fit comfortably inside a method, use a member class. If each instance of the

member class needs a reference to its enclosing instance, make it nonstatic; other-

wise, make it static. Assuming the class belongs inside a method, if you need to

create instances from only one location and there is a preexisting type that charac-

terizes the class, make it an anonymous class; otherwise, make it a local class.
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C H A P T E R 5
Generics

IN release 1.5, generics were added to Java. Before generics, you had to cast

every object you read from a collection. If someone accidentally inserted an object

of the wrong type, casts could fail at runtime. With generics, you tell the compiler

what types of objects are permitted in each collection. The compiler inserts casts

for you automatically and tells you at compile time if you try to insert an object of

the wrong type. This results in programs that are both safer and clearer, but these

benefits come with complications. This chapter tells you how to maximize the

benefits and minimize the complications. For a more detailed treatment of this

material, see Langer’s tutorial [Langer08] or Naftalin and Wadler’s book

[Naftalin07].

Item 23: Don’t use raw types in new code

First, a few terms. A class or interface whose declaration has one or more type

parameters is a generic class or interface [JLS, 8.1.2, 9.1.2]. For example, as of

release 1.5, the List interface has a single type parameter, E, representing the ele-

ment type of the list. Technically the name of the interface is now List<E> (read

“list of E”), but people often call it List for short. Generic classes and interfaces

are collectively known as generic types.

Each generic type defines a set of parameterized types, which consist of the

class or interface name followed by an angle-bracketed list of actual type parame-

ters corresponding to the generic type’s formal type parameters [JLS, 4.4, 4.5].

For example, List<String> (read “list of string”) is a parameterized type repre-

senting a list whose elements are of type String. (String is the actual type

parameter corresponding to the formal type parameter E.)

Finally, each generic type defines a raw type, which is the name of the generic

type used without any accompanying actual type parameters [JLS, 4.8]. For exam-
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ple, the raw type corresponding to List<E> is List. Raw types behave as if all of

the generic type information were erased from the type declaration. For all practi-

cal purposes, the raw type List behaves the same way as the interface type List

did before generics were added to the platform.

Before release 1.5, this would have been an exemplary collection declaration:

// Now a raw collection type - don't do this!

/**
* My stamp collection. Contains only Stamp instances.
*/
private final Collection stamps = ... ;

If you accidentally put a coin into your stamp collection, the erroneous insertion

compiles and runs without error:

// Erroneous insertion of coin into stamp collection
stamps.add(new Coin( ... ));

You don’t get an error until you retrieve the coin from the stamp collection:

// Now a raw iterator type - don't do this!
for (Iterator i = stamps.iterator(); i.hasNext(); ) {

Stamp s = (Stamp) i.next(); // Throws ClassCastException
... // Do something with the stamp

}

As mentioned throughout this book, it pays to discover errors as soon as pos-

sible after they are made, ideally at compile time. In this case, you don’t discover

the error till runtime, long after it has happened, and in code that is far removed

from the code containing the error. Once you see the ClassCastException, you

have to search through the code base looking for the method invocation that put

the coin into the stamp collection. The compiler can’t help you, because it can’t

understand the comment that says, “Contains only Stamp instances.”

With generics, you replace the comment with an improved type declaration

for the collection that tells the compiler the information that was previously hid-

den in the comment:

// Parameterized collection type - typesafe
private final Collection<Stamp> stamps = ... ;
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From this declaration the compiler knows that stamps should contain only Stamp

instances and guarantees this to be the case, assuming your entire code base is

compiled with a compiler from release 1.5 or later and all the code compiles with-

out emitting (or suppressing; see Item 24) any warnings. When stamps is declared

with a parameterized type, the erroneous insertion generates a compile-time error

message that tells you exactly what is wrong:

Test.java:9: add(Stamp) in Collection<Stamp> cannot be applied
to (Coin)

stamps.add(new Coin());
                   ^

As an added benefit, you no longer have to cast manually when removing ele-

ments from collections. The compiler inserts invisible casts for you and guaran-

tees that they won’t fail (assuming, again, that all of your code was compiled with

a generics-aware compiler and did not produce or suppress any warnings). This is

true whether you use a for-each loop (Item 46):

// for-each loop over a parameterized collection - typesafe
for (Stamp s : stamps) { // No cast

... // Do something with the stamp
}

or a traditional for loop:

// for loop with parameterized iterator declaration - typesafe
for (Iterator<Stamp> i = stamps.iterator(); i.hasNext(); ) {

Stamp s = i.next(); // No cast necessary
... // Do something with the stamp

}

While the prospect of accidentally inserting a coin into a stamp collection

may appear far-fetched, the problem is real. For example, it is easy to imagine

someone putting a java.util.Date instance into a collection that is supposed to

contain only java.sql.Date instances.

As noted above, it is still legal to use collection types and other generic types

without supplying type parameters, but you should not do it. If you use raw

types, you lose all the safety and expressiveness benefits of generics. Given that

you shouldn’t use raw types, why did the language designers allow them? To pro-

vide compatibility. The Java platform was about to enter its second decade when

generics were introduced, and there was an enormous amount of Java code in
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existence that did not use generics. It was deemed critical that all of this code

remain legal and interoperable with new code that does use generics. It had to be

legal to pass instances of parameterized types to methods that were designed for

use with ordinary types, and vice versa. This requirement, known as migration

compatibility, drove the decision to support raw types.

While you shouldn’t use raw types such as List in new code, it is fine to use

types that are parameterized to allow insertion of arbitrary objects, such as

List<Object>. Just what is the difference between the raw type List and the

parameterized type List<Object>? Loosely speaking, the former has opted out of

generic type checking, while the latter has explicitly told the compiler that it is

capable of holding objects of any type. While you can pass a List<String> to a

parameter of type List, you can’t pass it to a parameter of type List<Object>.

There are subtyping rules for generics, and List<String> is a subtype of the raw

type List, but not of the parameterized type List<Object> (Item 25). As a conse-

quence, you lose type safety if you use a raw type like List, but not if you use

a parameterized type like List<Object>.

To make this concrete, consider the following program:

// Uses raw type (List) - fails at runtime!
public static void main(String[] args) {

List<String> strings = new ArrayList<String>();
unsafeAdd(strings, new Integer(42));
String s = strings.get(0); // Compiler-generated cast

}

private static void unsafeAdd(List list, Object o) {
list.add(o);

}

This program compiles, but because it uses the raw type List, you get a warning:

Test.java:10: warning: unchecked call to add(E) in raw type List
list.add(o);

^

And indeed, if you run the program, you get a ClassCastException when the

program tries to cast the result of the invocation strings.get(0) to a String.

This is a compiler-generated cast, so it’s normally guaranteed to succeed, but in

this case we ignored a compiler warning and paid the price.
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If you replace the raw type List with the parameterized type List<Object>

in the unsafeAdd declaration and try to recompile the program, you’ll find that it

no longer compiles. Here is the error message:

Test.java:5: unsafeAdd(List<Object>,Object) cannot be applied 
to (List<String>,Integer)

unsafeAdd(strings, new Integer(42));
^

You might be tempted to use a raw type for a collection whose element type is

unknown and doesn’t matter. For example, suppose you want to write a method

that takes two sets and returns the number of elements they have in common.

Here’s how you might write such a method if you were new to generics:

// Use of raw type for unknown element type - don't do this!
static int numElementsInCommon(Set s1, Set s2) {

int result = 0;
for (Object o1 : s1)

if (s2.contains(o1))
result++;

return result;
}

This method works but it uses raw types, which are dangerous. Since release

1.5, Java has provided a safe alternative known as unbounded wildcard types. If

you want to use a generic type but you don’t know or care what the actual type

parameter is, you can use a question mark instead. For example, the unbounded

wildcard type for the generic type Set<E> is Set<?> (read “set of some type”). It

is the most general parameterized Set type, capable of holding any set. Here is

how the numElementsInCommon method looks with unbounded wildcard types:

// Unbounded wildcard type - typesafe and flexible
static int numElementsInCommon(Set<?> s1, Set<?> s2) {

int result = 0;
for (Object o1 : s1)

if (s2.contains(o1))
result++;

return result;
}

What is the difference between the unbounded wildcard type Set<?> and the

raw type Set? Do the question marks really buy you anything? Not to belabor the

point, but the wildcard type is safe and the raw type isn’t. You can put any element
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into a collection with a raw type, easily corrupting the collection’s type invariant

(as demonstrated by the unsafeAdd method on page 112); you can’t put any ele-

ment (other than null) into a Collection<?>. Attempting to do so will gener-

ate a compile-time error message like this:

WildCard.java:13: cannot find symbol
symbol  : method add(String)
location: interface Collection<capture#825 of ?>

c.add("verboten");
^

Admittedly this error message leaves something to be desired, but the com-

piler has done its job, preventing you from corrupting the collection’s type invari-

ant. Not only can’t you put any element (other than null) into a Collection<?>,

but you can’t assume anything about the type of the objects that you get out. If

these restrictions are unacceptable, you can use generic methods (Item 27) or

bounded wildcard types (Item 28).

There are two minor exceptions to the rule that you should not use raw types

in new code, both of which stem from the fact that generic type information is

erased at runtime (Item 25). You must use raw types in class literals. The speci-

fication does not permit the use of parameterized types (though it does permit

array types and primitive types) [JLS, 15.8.2]. In other words, List.class,

String[].class, and int.class are all legal, but List<String>.class and

List<?>.class are not.

The second exception to the rule concerns the instanceof operator. Because

generic type information is erased at runtime, it is illegal to use the instanceof

operator on parameterized types other than unbounded wildcard types. The use of

unbounded wildcard types in place of raw types does not affect the behavior of the

instanceof operator in any way. In this case, the angle brackets and question

marks are just noise. This is the preferred way to use the instanceof operator

with generic types:

// Legitimate use of raw type - instanceof operator
if (o instanceof Set) { // Raw type

Set<?> m = (Set<?>) o; // Wildcard type
...

}

Note that once you’ve determined that o is a Set, you must cast it to the wildcard

type Set<?>, not the raw type Set. This is a checked cast, so it will not cause a

compiler warning.
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In summary, using raw types can lead to exceptions at runtime, so don’t use

them in new code. They are provided only for compatibility and interoperability

with legacy code that predates the introduction of generics. As a quick review,

Set<Object> is a parameterized type representing a set that can contain objects of

any type, Set<?> is a wildcard type representing a set that can contain only

objects of some unknown type, and Set is a raw type, which opts out of the

generic type system. The first two are safe and the last is not.

For quick reference, the terms introduced in this item (and a few introduced

elsewhere in this chapter) are summarized in the following table:

Term Example Item

Parameterized type List<String> Item 23

Actual type parameter String Item 23

Generic type List<E> Items 23, 26

Formal type parameter E Item 23

Unbounded wildcard type List<?> Item 23

Raw type List Item 23

Bounded type parameter <E extends Number> Item 26

Recursive type bound <T extends Comparable<T>> Item 27

Bounded wildcard type List<? extends Number> Item 28

Generic method static <E> List<E> asList(E[] a) Item 27

Type token String.class Item 29
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Item 24: Eliminate unchecked warnings

When you program with generics, you will see many compiler warnings:

unchecked cast warnings, unchecked method invocation warnings, unchecked

generic array creation warnings, and unchecked conversion warnings. The more

experience you acquire with generics, the fewer warnings you’ll get, but don’t

expect newly written code that uses generics to compile cleanly.

Many unchecked warnings are easy to eliminate. For example, suppose you

accidentally write this declaration:

Set<Lark> exaltation = new HashSet();

The compiler will gently remind you what you did wrong:

Venery.java:4: warning: [unchecked] unchecked conversion
found : HashSet, required: Set<Lark>

Set<Lark> exaltation = new HashSet();
^

You can then make the indicated correction, causing the warning to disappear:

Set<Lark> exaltation = new HashSet<Lark>();

Some warnings will be much more difficult to eliminate. This chapter is filled

with examples of such warnings. When you get warnings that require some

thought, persevere! Eliminate every unchecked warning that you can. If you

eliminate all warnings, you are assured that your code is typesafe, which is a very

good thing. It means that you won’t get a ClassCastException at runtime, and it

increases your confidence that your program is behaving as you intended.

If you can’t eliminate a warning, and you can prove that the code that

provoked the warning is typesafe, then (and only then) suppress the warning

with an @SuppressWarnings("unchecked") annotation. If you suppress warn-

ings without first proving that the code is typesafe, you are only giving yourself a

false sense of security. The code may compile without emitting any warnings, but

it can still throw a ClassCastException at runtime. If, however, you ignore

unchecked warnings that you know to be safe (instead of suppressing them), you

won’t notice when a new warning crops up that represents a real problem. The

new warning will get lost amidst all the false alarms that you didn’t silence.
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The SuppressWarnings annotation can be used at any granularity, from an

individual local variable declaration to an entire class. Always use the Suppress-

Warnings annotation on the smallest scope possible. Typically this will be a

variable declaration or a very short method or constructor. Never use Suppress-

Warnings on an entire class. Doing so could mask critical warnings.

If you find yourself using the SuppressWarnings annotation on a method or

constructor that’s more than one line long, you may be able to move it onto a local

variable declaration. You may have to declare a new local variable, but it’s worth

it. For example, consider this toArray method, which comes from ArrayList:

public <T> T[] toArray(T[] a) {

if (a.length < size)
return (T[]) Arrays.copyOf(elements, size, a.getClass());

System.arraycopy(elements, 0, a, 0, size);
if (a.length > size)

a[size] = null;
return a;

}

If you compile ArrayList, the method generates this warning:

ArrayList.java:305: warning: [unchecked] unchecked cast
found : Object[], required: T[]

return (T[]) Arrays.copyOf(elements, size, a.getClass());
^

It is illegal to put a SuppressWarnings annotation on the return statement,

because it isn’t a declaration [JLS, 9.7]. You might be tempted to put the annota-

tion on the entire method, but don’t. Instead, declare a local variable to hold the

return value and annotate its declaration, like so:

// Adding local variable to reduce scope of @SuppressWarnings
public <T> T[] toArray(T[] a) {

if (a.length < size) {
// This cast is correct because the array we're creating
// is of the same type as the one passed in, which is T[].
@SuppressWarnings("unchecked") T[] result =

(T[]) Arrays.copyOf(elements, size, a.getClass());
return result;

}
System.arraycopy(elements, 0, a, 0, size);
if (a.length > size)

a[size] = null;
return a;

}
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This method compiles cleanly and minimizes the scope in which unchecked warn-

ings are suppressed.

Every time you use an @SuppressWarnings("unchecked") annotation,

add a comment saying why it’s safe to do so. This will help others understand

the code, and more importantly, it will decrease the odds that someone will mod-

ify the code so as to make the computation unsafe. If you find it hard to write such

a comment, keep thinking. You may end up figuring out that the unchecked opera-

tion isn’t safe after all.

In summary, unchecked warnings are important. Don’t ignore them. Every

unchecked warning represents the potential for a ClassCastException at run-

time. Do your best to eliminate these warnings. If you can’t eliminate an

unchecked warning and you can prove that the code that provoked it is typesafe,

suppress the warning with an @SuppressWarnings("unchecked") annotation in

the narrowest possible scope. Record the rationale for your decision to suppress

the warning in a comment.
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Item 25: Prefer lists to arrays

Arrays differ from generic types in two important ways. First, arrays are covariant.

This scary-sounding word means simply that if Sub is a subtype of Super, then the

array type Sub[] is a subtype of Super[]. Generics, by contrast, are invariant: for

any two distinct types Type1 and Type2, List<Type1> is neither a subtype nor a

supertype of List<Type2> [JLS, 4.10; Naftalin07, 2.5]. You might think this

means that generics are deficient, but arguably it is arrays that are deficient. 

This code fragment is legal:

// Fails at runtime!
Object[] objectArray = new Long[1];
objectArray[0] = "I don't fit in"; // Throws ArrayStoreException

but this one is not:

// Won't compile!
List<Object> ol = new ArrayList<Long>(); // Incompatible types
ol.add("I don't fit in");

Either way you can’t put a String into a Long container, but with an array you

find out that you’ve made a mistake at runtime; with a list, you find out at compile

time. Of course you’d rather find out at compile time.

The second major difference between arrays and generics is that arrays are

reified [JLS, 4.7]. This means that arrays know and enforce their element types at

runtime. As noted above, if you try to store a String into an array of Long, you’ll

get an ArrayStoreException. Generics, by contrast, are implemented by erasure

[JLS, 4.6]. This means that they enforce their type constraints only at compile

time and discard (or erase) their element type information at runtime. Erasure is

what allows generic types to interoperate freely with legacy code that does not use

generics (Item 23).

Because of these fundamental differences, arrays and generics do not mix

well. For example, it is illegal to create an array of a generic type, a parameterized

type, or a type parameter. None of these array creation expressions are legal: new

List<E>[], new List<String>[], new E[]. All will result in generic array cre-

ation errors at compile time.

Why is it illegal to create a generic array? Because it isn’t typesafe. If it were

legal, casts generated by the compiler in an otherwise correct program could fail at

runtime with a ClassCastException. This would violate the fundamental guaran-

tee provided by the generic type system. 
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To make this more concrete, consider the following code fragment:

// Why generic array creation is illegal - won't compile!
List<String>[] stringLists = new List<String>[1]; // (1)
List<Integer> intList = Arrays.asList(42); // (2)
Object[] objects = stringLists; // (3)
objects[0] = intList; // (4)
String s = stringLists[0].get(0); // (5)

Let’s pretend that line 1, which creates a generic array, is legal. Line 2 creates and

initializes a List<Integer> containing a single element. Line 3 stores the

List<String> array into an Object array variable, which is legal because arrays

are covariant. Line 4 stores the List<Integer> into the sole element of the

Object array, which succeeds because generics are implemented by erasure: the

runtime type of a List<Integer> instance is simply List, and the runtime type of

a List<String>[] instance is List[], so this assignment doesn’t generate an

ArrayStoreException. Now we’re in trouble. We’ve stored a List<Integer>

instance into an array that is declared to hold only List<String> instances. In

line 5, we retrieve the sole element from the sole list in this array. The compiler

automatically casts the retrieved element to String, but it’s an Integer, so we get

a ClassCastException at runtime. In order to prevent this from happening, line 1

(which creates a generic array) generates a compile-time error.

Types such as E, List<E>, and List<String> are technically known as non-

reifiable types [JLS, 4.7]. Intuitively speaking, a non-reifiable type is one whose

runtime representation contains less information than its compile-time representa-

tion. The only parameterized types that are reifiable are unbounded wildcard types

such as List<?> and Map<?,?> (Item 23). It is legal, though infrequently useful, to

create arrays of unbounded wildcard types.

The prohibition on generic array creation can be annoying. It means, for exam-

ple, that it’s not generally possible for a generic type to return an array of its ele-

ment type (but see Item 29 for a partial solution). It also means that you can get

confusing warnings when using varargs methods (Item 42) in combination with

generic types. This is because every time you invoke a varargs method, an array is

created to hold the varargs parameters. If the element type of this array is not reifi-

able, you get a warning. There is little you can do about these warnings other than

to suppress them (Item 24), and to avoid mixing generics and varargs in your APIs.

When you get a generic array creation error, the best solution is often to use

the collection type List<E> in preference to the array type E[]. You might sacri-

fice some performance or conciseness, but in exchange you get better type safety

and interoperability.
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For example, suppose you have a synchronized list (of the sort returned by

Collections.synchronizedList) and a function that takes two values of the

type held by the list and returns a third. Now suppose you want to write a method

to “reduce” the list by applying the function across it. If the list contains integers

and the function adds two integer values, the reduce method returns the sum of all

the values in the list. If the function multiplies two integer values, the method

returns the product of the values in the list. If the list contains strings and the func-

tion concatenates two strings, the method returns a string consisting of all the

strings in the list in sequence. In addition to a list and a function, the reduce

method takes an initial value for the reduction, which is returned if the list is

empty. (The initial value is typically the identity element for the function, which is

0 for addition, 1 for multiplication, and "" for string concatenation.) Here’s how

the code might have looked without generics:

// Reduction without generics, and with concurrency flaw!
static Object reduce(List list, Function f, Object initVal) {

synchronized(list) {
Object result = initVal;
for (Object o : list)

result = f.apply(result, o);
return result;

}
}

interface Function {
Object apply(Object arg1, Object arg2);

}

Now, suppose you’ve read Item 67, which tells you not to call “alien methods”

from a synchronized region. So, you modify the reduce method to copy the con-

tents of the list while holding the lock, which allows you to perform the reduction

on the copy. Prior to release 1.5, the natural way to do this would have been using

List’s toArray method (which locks the list internally):

// Reduction without generics or concurrency flaw
static Object reduce(List list, Function f, Object initVal) {

Object[] snapshot = list.toArray(); // Locks list internally
Object result = initVal;
for (Object o : list)

result = f.apply(result, o);
return result;

}
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If you try to do this with generics you’ll get into trouble of the sort that we

discussed above. Here’s a generic version of the Function interface:

interface Function<T> {
T apply(T arg1, T arg2);

}

And here’s a naive attempt to apply generics to the revised version of the reduce

method. This is a generic method (Item 27). Don’t worry if you don’t understand

the declaration. For the purposes of this item, you should concentrate on the

method body:

// Naive generic version of reduction - won't compile!
static <E> E reduce(List<E> list, Function<E> f, E initVal) {

E[] snapshot = list.toArray(); // Locks list
E result = initVal;
for (E e : snapshot)

result = f.apply(result, e);
return result;

}

If you try to compile this method, you’ll get the following error:

Reduce.java:12: incompatible types
found : Object[], required: E[]

E[] snapshot = list.toArray(); // Locks list
^

No big deal, you say, I’ll cast the Object array to an E array:

E[] snapshot = (E[]) list.toArray();

That gets rid of the error, but now you get a warning:

Reduce.java:12: warning: [unchecked] unchecked cast
found : Object[], required: E[]

E[] snapshot = (E[]) list.toArray(); // Locks list
^

The compiler is telling you that it can’t check the safety of the cast at runtime

because it doesn’t know what E is at runtime—remember, element type informa-

tion is erased from generics at runtime. Will this program work? Yes, it turns out

that it will, but it isn’t safe. With minor modifications, you could get it to throw a
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ClassCastException on a line that doesn’t contain an explicit cast. The compile-

time type of snapshot is E[] which could be String[], Integer[], or any other

kind of array. The runtime type is Object[], and that’s dangerous. Casts to arrays

of non-reifiable types should be used only under special circumstances (Item 26).

So what should you do? Use a list instead of an array. Here is a version of the

reduce method that compiles without error or warning:

// List-based generic reduction
static <E> E reduce(List<E> list, Function<E> f, E initVal) {

List<E> snapshot;
synchronized(list) {

snapshot = new ArrayList<E>(list);
}
E result = initVal;
for (E e : snapshot)

result = f.apply(result, e);
return result;

}

This version is a tad more verbose than the array version, but it’s worth it for the

peace of mind that comes from knowing you won’t get a ClassCastException at

runtime.

In summary, arrays and generics have very different type rules. Arrays are

covariant and reified; generics are invariant and erased. As a consequence, arrays

provide runtime type safety but not compile-time type safety and vice versa for

generics. Generally speaking, arrays and generics don’t mix well. If you find

yourself mixing them and getting compile-time errors or warnings, your first

impulse should be to replace the arrays with lists.
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Item 26: Favor generic types

It is generally not too difficult to parameterize your collection declarations and

make use of the generic types and methods provided by the JDK. Writing your

own generic types is a bit more difficult, but it’s worth the effort to learn how.

Consider the simple stack implementation from Item 6:

// Object-based collection - a prime candidate for generics
public class Stack {

private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];

}

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

}

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

public boolean isEmpty() {
return size == 0;

}

private void ensureCapacity() {
if (elements.length == size)

elements = Arrays.copyOf(elements, 2 * size + 1);
}

}

This class is a prime candidate for generification, in other words, for being com-

patibly enhanced to take advantage of generic types. As it stands, you have to cast

objects that are popped off the stack, and those casts might fail at runtime. The

first step in generifying a class is to add one or more type parameters to its decla-
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ration. In this case there is one type parameter, representing the element type of

the stack, and the conventional name for this parameter is E (Item 44). 

The next step is to replace all the uses of the type Object with the appropriate

type parameter, and then try to compile the resulting program:

// Initial attempt to generify Stack = won’t compile!
public class Stack<E> {

private E[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new E[DEFAULT_INITIAL_CAPACITY];

}

public void push(E e) {
ensureCapacity();
elements[size++] = e;

}

public E pop() {
if (size==0)

throw new EmptyStackException();
E result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}
... // no changes in isEmpty or ensureCapacity

}

You’ll generally get at least one error or warning, and this class is no exception.

Luckily, this class generates only one error:

Stack.java:8: generic array creation
elements = new E[DEFAULT_INITIAL_CAPACITY];

^

As explained in Item 25, you can’t create an array of a non-reifiable type, such

as E. This problem arises every time you write a generic type that is backed by an

array. There are two ways to solve it. The first solution directly circumvents the

prohibition on generic array creation: create an array of Object and cast it to the
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generic array type. Now in place of an error, the compiler will emit a warning.

This usage is legal, but it’s not (in general) typesafe:

Stack.java:8: warning: [unchecked] unchecked cast
found : Object[], required: E[]

elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
^

The compiler may not be able to prove that your program is typesafe, but you

can. You must convince yourself that the unchecked cast will not compromise the

type safety of the program. The array in question (elements) is stored in a private

field and never returned to the client or passed to any other method. The only ele-

ments stored in the array are those passed to the push method, which are of type E,

so the unchecked cast can do no harm.

Once you’ve proved that an unchecked cast is safe, suppress the warning in as

narrow a scope as possible (Item 24). In this case, the constructor contains only the

unchecked array creation, so it’s appropriate to suppress the warning in the entire

constructor. With the addition of an annotation to do this, Stack compiles cleanly

and you can use it without explicit casts or fear of a ClassCastException:

// The elements array will contain only E instances from push(E).
// This is sufficient to ensure type safety, but the runtime
// type of the array won't be E[]; it will always be Object[]!
@SuppressWarnings("unchecked") 
public Stack() {

elements = (E[]) new Object[DEFAULT_INITIAL_CAPACITY];
}

The second way to eliminate the generic array creation error in Stack is to

change the type of the field elements from E[] to Object[]. If you do this, you’ll

get a different error:

Stack.java:19: incompatible types
found : Object, required: E

E result = elements[--size];
                           ^

You can change this error into a warning by casting the element retrieved from the

array from Object to E:

Stack.java:19: warning: [unchecked] unchecked cast
found : Object, required: E

E result = (E) elements[--size];
                               ^
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Because E is a non-reifiable type, there’s no way the compiler can check the

cast at runtime. Again, you can easily prove to yourself that the unchecked cast is

safe, so it’s appropriate to suppress the warning. In line with the advice of Item 24,

we suppress the warning only on the assignment that contains the unchecked cast,

not on the entire pop method:

// Appropriate suppression of unchecked warning
public E pop() {

if (size==0)
throw new EmptyStackException();

// push requires elements to be of type E, so cast is correct
@SuppressWarnings("unchecked") E result = 

(E) elements[--size];

elements[size] = null; // Eliminate obsolete reference
return result;

}

Which of the two techniques you choose for dealing with the generic array

creation error is largely a matter of taste. All other things being equal, it is riskier

to suppress an unchecked cast to an array type than to a scalar type, which would

suggest the second solution. But in a more realistic generic class than Stack, you

would probably be reading from the array at many points in the code, so choosing

the second solution would require many casts to E rather than a single cast to E[],

which is why the first solution is used more commonly [Naftalin07, 6.7].

The following program demonstrates the use of our generic Stack class. The

program prints its command line arguments in reverse order and converted to

uppercase. No explicit cast is necessary to invoke String’s toUpperCase method

on the elements popped from the stack, and the automatically generated cast is

guaranteed to succeed:

// Little program to exercise our generic Stack
public static void main(String[] args) {

Stack<String> stack = new Stack<String>();
for (String arg : args)

stack.push(arg);
while (!stack.isEmpty())

System.out.println(stack.pop().toUpperCase());
}
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The foregoing example may appear to contradict Item 25, which encourages

the use of lists in preference to arrays. It is not always possible or desirable to use

lists inside your generic types. Java doesn’t support lists natively, so some generic

types, such as ArrayList, must be implemented atop arrays. Other generic types,

such as HashMap, are implemented atop arrays for performance.

The great majority of generic types are like our Stack example in that their

type parameters have no restrictions: you can create a Stack<Object>,

Stack<int[]>, Stack<List<String>>, or a Stack of any other object reference

type. Note that you can’t create a Stack of a primitive type: trying to create a

Stack<int> or Stack<double> will result in a compile-time error. This is a fun-

damental limitation of Java’s generic type system. You can work around this

restriction by using boxed primitive types (Item 49).

There are some generic types that restrict the permissible values of their type

parameters. For example, consider java.util.concurrent.DelayQueue, whose

declaration looks like this:

class DelayQueue<E extends Delayed> implements BlockingQueue<E>;

The type parameter list (<E extends Delayed>) requires that the actual type

parameter E must be a subtype of java.util.concurrent.Delayed. This allows

the DelayQueue implementation and its clients to take advantage of Delayed

methods on the elements of a DelayQueue, without the need for explicit casting or

the risk of a ClassCastException. The type parameter E is known as a bounded

type parameter. Note that the subtype relation is defined so that every type is a

subtype of itself [JLS, 4.10], so it is legal to create a DelayQueue<Delayed>.

In summary, generic types are safer and easier to use than types that require

casts in client code. When you design new types, make sure that they can be used

without such casts. This will often mean making the types generic. Generify your

existing types as time permits. This will make life easier for new users of these

types without breaking existing clients (Item 23).
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Item 27: Favor generic methods

Just as classes can benefit from generification, so can methods. Static utility meth-

ods are particularly good candidates for generification. All of the “algorithm”

methods in Collections (such as binarySearch and sort) have been generified.

Writing generic methods is similar to writing generic types. Consider this

method, which returns the union of two sets:

// Uses raw types - unacceptable! (Item 23)
public static Set union(Set s1, Set s2) {

Set result = new HashSet(s1);
result.addAll(s2);
return result;

}

This method compiles, but with two warnings:

Union.java:5: warning: [unchecked] unchecked call to
HashSet(Collection<? extends E>) as a member of raw type HashSet

Set result = new HashSet(s1);
^

Union.java:6: warning: [unchecked] unchecked call to
addAll(Collection<? extends E>) as a member of raw type Set

result.addAll(s2);
^

To fix these warnings and make the method typesafe, modify the method dec-

laration to declare a type parameter representing the element type for the three sets

(two arguments and the return value) and use the type parameter in the method.

The type parameter list, which declares the type parameter, goes between the

method’s modifiers and its return type. In this example, the type parameter list

is <E> and the return type is Set<E>. The naming conventions for type parameters

are the same for generic methods as for generic types (Items 26, 44):

// Generic method
public static <E> Set<E> union(Set<E> s1, Set<E> s2) {

Set<E> result = new HashSet<E>(s1);
result.addAll(s2);
return result;

}

At least for simple generic methods, that’s all there is to it. Now the method

compiles without generating any warnings and provides type safety as well as ease
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of use. Here’s a simple program to exercise our method. The program contains no

casts and compiles without errors or warnings:

// Simple program to exercise generic method
public static void main(String[] args) {

Set<String> guys = new HashSet<String>(
Arrays.asList("Tom", "Dick", "Harry"));

Set<String> stooges = new HashSet<String>(
Arrays.asList("Larry", "Moe", "Curly"));

Set<String> aflCio = union(guys, stooges);
System.out.println(aflCio);

}

When you run the program, it prints [Moe, Harry, Tom, Curly, Larry, Dick].

The order of the elements is implementation-dependent.

A limitation of the union method is that the types of all three sets (both input

parameters and the return value) have to be the same. You can make the method

more flexible by using bounded wildcard types (Item 28).

One noteworthy feature of generic methods is that you needn’t specify the

value of the type parameter explicitly as you must when invoking generic con-

structors. The compiler figures out the value of the type parameters by examining

the types of the method arguments. In the case of the program above, the compiler

sees that both arguments to union are of type Set<String>, so it knows that the

type parameter E must be String. This process is called type inference.

As discussed in Item 1, you can exploit the type inference provided by generic

method invocation to ease the process of creating parameterized type instances. To

refresh your memory, the need to pass the values of type parameters explicitly

when invoking generic constructors can be annoying. The type parameters appear

redundantly on the left- and right-hand sides of variable declarations:

// Parameterized type instance creation with constructor
Map<String, List<String>> anagrams =

new HashMap<String, List<String>>();

To eliminate this redundancy, write a generic static factory method corre-

sponding to each constructor that you want to use. For example, here is a generic

static factory method corresponding to the parameterless HashMap constructor:

// Generic static factory method
public static <K,V> HashMap<K,V> newHashMap() {

return new HashMap<K,V>();
}
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With this generic static factory method, you can replace the repetitious declaration

above with this concise one:

// Parameterized type instance creation with static factory
Map<String, List<String>> anagrams = newHashMap();

It would be nice if the language did the same kind of type inference when

invoking constructors on generic types as it does when invoking generic methods.

Someday it might, but as of release 1.6, it does not.

A related pattern is the generic singleton factory. On occasion, you will need

to create an object that is immutable but applicable to many different types.

Because generics are implemented by erasure (Item 25), you can use a single

object for all required type parameterizations, but you need to write a static fac-

tory method to repeatedly dole out the object for each requested type parameter-

ization. This pattern is most frequently used for function objects (Item 21) such as

Collections.reverseOrder, but it is also used for collections such as Collec-

tions.emptySet.

Suppose you have an interface that describes a function that accepts and

returns a value of some type T:

public interface UnaryFunction<T> {
T apply(T arg);

}

Now suppose that you want to provide an identity function. It would be wasteful

to create a new one each time it’s required, as it’s stateless. If generics were rei-

fied, you would need one identity function per type, but since they’re erased you

need only a generic singleton. Here’s how it looks:

// Generic singleton factory pattern
private static UnaryFunction<Object> IDENTITY_FUNCTION =

new UnaryFunction<Object>() {
public Object apply(Object arg) { return arg; }

};

// IDENTITY_FUNCTION is stateless and its type parameter is
// unbounded so it's safe to share one instance across all types.
@SuppressWarnings("unchecked")
public static <T> UnaryFunction<T> identityFunction() {

return (UnaryFunction<T>) IDENTITY_FUNCTION;
}
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The cast of IDENTITY_FUNCTION to (UnaryFunction<T>) generates an

unchecked cast warning, as UnaryFunction<Object> is not a UnaryFunction<T>

for every T. But the identity function is special: it returns its argument unmodified,

so we know that it is typesafe to use it as a UnaryFunction<T> whatever the value

of T. Therefore, we can confidently suppress the unchecked cast warning that is

generated by this cast. Once we’ve done this, the code compiles without error or

warning.

Here is a sample program that uses our generic singleton as a UnaryFunc-

tion<String> and a UnaryFunction<Number>. As usual, it contains no casts and

compiles without errors or warnings:

// Sample program to exercise generic singleton
public static void main(String[] args) {

String[] strings = { "jute", "hemp", "nylon" };
UnaryFunction<String> sameString = identityFunction();
for (String s : strings)

System.out.println(sameString.apply(s));

Number[] numbers = { 1, 2.0, 3L };
UnaryFunction<Number> sameNumber = identityFunction();
for (Number n : numbers)

System.out.println(sameNumber.apply(n));
}

It is permissible, though relatively rare, for a type parameter to be bounded by

some expression involving that type parameter itself. This is what’s known as a

recursive type bound. The most common use of recursive type bounds is in con-

nection with the Comparable interface, which defines a type’s natural ordering:

public interface Comparable<T> {
int compareTo(T o);

}

The type parameter T defines the type to which elements of the type implementing

Comparable<T> can be compared. In practice, nearly all types can be compared

only to elements of their own type. So, for example, String implements Compa-

rable<String>, Integer implements Comparable<Integer>, and so on.

There are many methods that take a list of elements that implement Compara-

ble, in order to sort the list, search within it, calculate its minimum or maximum,

and the like. To do any of these things, it is required that every element in the list
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be comparable to every other element in the list, in other words, that the elements

of the list be mutually comparable. Here is how to express that constraint:

// Using a recursive type bound to express mutual comparability
public static <T extends Comparable<T>> T max(List<T> list) {...}

The type bound <T extends Comparable<T>> may be read as “for every type T

that can be compared to itself,” which corresponds more or less exactly to the

notion of mutual comparability. 

Here is a method to go with the declaration above. It calculates the maximum

value of a list according to its elements’ natural order, and it compiles without

errors or warnings:

// Returns the maximum value in a list - uses recursive type bound
public static <T extends Comparable<T>> T max(List<T> list) {

Iterator<T> i = list.iterator();
T result = i.next();
while (i.hasNext()) {

T t = i.next();
if (t.compareTo(result) > 0)

result = t;
}
return result;

}

Recursive type bounds can get much more complex than this, but luckily it

doesn’t happen too often. If you understand this idiom, and its wildcard variant

(Item 28), you’ll be able to deal with many of the recursive type bounds that you

see in practice.

In summary, generic methods, like generic types, are safer and easier to use

than methods that require their clients to cast input parameters and return values.

Like types, you should make sure that your new methods can be used without

casts, which will often mean making them generic. And like types, you should

generify your existing methods to make life easier for new users without breaking

existing clients (Item 23).
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Item 28: Use bounded wildcards to increase API flexibility

As noted in Item 25, parameterized types are invariant. In other words, for any

two distinct types Type1 and Type2, List<Type1> is neither a subtype nor a

supertype of List<Type2>. While it is counterintuitive that List<String> is not a

subtype of List<Object>, it really does make sense. You can put any object into a

List<Object>, but you can put only strings into a List<String>.

Sometimes you need more flexibility than invariant typing can provide. Con-

sider the stack from Item 26. To refresh your memory, here is its public API:

public class Stack<E> {
public Stack();
public void push(E e);
public E pop();
public boolean isEmpty();

}

Suppose we want to add a method that takes a sequence of elements and

pushes them all onto the stack. Here’s a first attempt:

// pushAll method without wildcard type - deficient!
public void pushAll(Iterable<E> src) {

for (E e : src)
push(e);

}

This method compiles cleanly, but it isn’t entirely satisfactory. If the element type

of the Iterable src exactly matches that of the stack, it works fine. But suppose

you have a Stack<Number> and you invoke push(intVal), where intVal is of

type Integer. This works, because Integer is a subtype of Number. So logically,

it seems that this should work, too:

Stack<Number> numberStack = new Stack<Number>();
Iterable<Integer> integers = ... ;
numberStack.pushAll(integers);

If you try it, however, you’ll get this error message because, as noted above,

parameterized types are invariant:

StackTest.java:7: pushAll(Iterable<Number>) in Stack<Number>
cannot be applied to (Iterable<Integer>)

numberStack.pushAll(integers);
^
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Luckily, there’s a way out. The language provides a special kind of parameter-

ized type call a bounded wildcard type to deal with situations like this. The type of

the input parameter to pushAll should not be “Iterable of E” but “Iterable of

some subtype of E,” and there is a wildcard type that means precisely that: Iter-

able<? extends E>. (The use of the keyword extends is slightly misleading:

recall from Item 26 that subtype is defined so that every type is a subtype of itself,

even though it does not extend itself.) Let’s modify pushAll to use this type:

// Wildcard type for parameter that serves as an E producer
public void pushAll(Iterable<? extends E> src) {

for (E e : src)
push(e);

}

With this change, not only does Stack compile cleanly, but so does the client code

that wouldn’t compile with the original pushAll declaration. Because Stack and

its client compile cleanly, you know that everything is typesafe.

Now suppose you want to write a popAll method to go with pushAll. The

popAll method pops each element off the stack and adds the elements to the given

collection. Here’s how a first attempt at writing the popAll method might look:

// popAll method without wildcard type - deficient!
public void popAll(Collection<E> dst) {

while (!isEmpty())
dst.add(pop());

}

Again, this compiles cleanly and works fine if the element type of the destination

collection exactly matches that of the stack. But again, it doesn’t seem entirely

satisfactory. Suppose you have a Stack<Number> and variable of type Object. If

you pop an element from the stack and store it in the variable, it compiles and runs

without error. So shouldn’t you be able to do this, too?

Stack<Number> numberStack = new Stack<Number>();
Collection<Object> objects = ... ;
numberStack.popAll(objects);

If you try to compile this client code against the version of popAll above, you’ll

get an error very similar to the one that we got with our first version of pushAll:

Collection<Object> is not a subtype of Collection<Number>. Once again,

wildcard types provide a way out. The type of the input parameter to popAll
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should not be “collection of E” but “collection of some supertype of E” (where

supertype is defined such that E is a supertype of itself [JLS, 4.10]). Again, there is

a wildcard type that means precisely that: Collection<? super E>. Let’s modify

popAll to use it:

// Wildcard type for parameter that serves as an E consumer
public void popAll(Collection<? super E> dst) {

while (!isEmpty())
dst.add(pop());

}

With this change, both Stack and the client code compile cleanly.

The lesson is clear. For maximum flexibility, use wildcard types on input

parameters that represent producers or consumers. If an input parameter is

both a producer and a consumer, then wildcard types will do you no good: you

need an exact type match, which is what you get without any wildcards. 

Here is a mnemonic to help you remember which wildcard type to use:

PECS stands for producer-extends, consumer-super.

In other words, if a parameterized type represents a T producer, use <? extends T>;

if it represents a T consumer, use <? super T>. In our Stack example, pushAll’s

src parameter produces E instances for use by the Stack, so the appropriate type

for src is Iterable<? extends E>; popAll’s dst parameter consumes E instances

from the Stack, so the appropriate type for dst is Collection<? super E>. The

PECS mnemonic captures the fundamental principle that guides the use of wild-

card types. Naftalin and Wadler call it the Get and Put Principle [Naftalin07, 2.4].

With this mnemonic in mind, let’s take a look at some method declarations

from previous items. The reduce method in Item 25 has this declaration:

static <E> E reduce(List<E> list, Function<E> f, E initVal)

Although lists can both consume and produce values, the reduce method uses its

list parameter only as an E producer, so its declaration should use a wildcard

type that extends E. The parameter f represents a function that both consumes

and produces E instances, so a wildcard type would be inappropriate for it. Here’s

the resulting method declaration:

// Wildcard type for parameter that serves as an E producer
static <E> E reduce(List<? extends E> list, Function<E> f,

E initVal)
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And would this change make any difference in practice? As it turns out, it

would. Suppose you have a List<Integer>, and you want to reduce it with a

Function<Number>. This would not compile with the original declaration, but it

does once you add the bounded wildcard type.

Now let’s look at the union method from Item 27. Here is the declaration:

public static <E> Set<E> union(Set<E> s1, Set<E> s2)

Both parameters, s1 and s2, are E producers, so the PECS mnemonic tells us that

the declaration should be:

public static <E> Set<E> union(Set<? extends E> s1,
Set<? extends E> s2)

Note that the return type is still Set<E>. Do not use wildcard types as return

types. Rather than providing additional flexibility for your users, it would force

them to use wildcard types in client code. 

Properly used, wildcard types are nearly invisible to users of a class. They

cause methods to accept the parameters they should accept and reject those they

should reject. If the user of a class has to think about wildcard types, there is

probably something wrong with the class’s API.

Unfortunately, the type inference rules are quite complex. They take up six-

teen pages in the language specification [JLS, 15.12.2.7–8], and they don’t always

do what you want them to. Looking at the revised declaration for union, you

might think that you could do this:

Set<Integer> integers = ... ;
Set<Double> doubles = ... ;
Set<Number> numbers = union(integers, doubles);

If you try it you’ll get this error message:

Union.java:14: incompatible types
found : Set<Number & Comparable<? extends Number & 

Comparable<?>>>
required: Set<Number>

Set<Number> numbers = union(integers, doubles);
                                   ^

Luckily there is a way to deal with this sort of error. If the compiler doesn’t

infer the type that you wish it had, you can tell it what type to use with an explicit
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type parameter. This is not something that you have to do very often, which is a

good thing, as explicit type parameters aren’t very pretty. With the addition of this

explicit type parameter, the program compiles cleanly:

Set<Number> numbers = Union.<Number>union(integers, doubles);

Next let’s turn our attention to the max method from Item 27. Here is the orig-

inal declaration:

public static <T extends Comparable<T>> T max(List<T> list)

Here is a revised declaration that uses wildcard types:

public static <T extends Comparable<? super T>> T max(
List<? extends T> list)

To get the revised declaration from the original one, we apply the PECS trans-

formation twice. The straightforward application is to the parameter list. It pro-

duces T instances, so we change the type from List<T> to List<? extends T>.

The tricky application is to the type parameter T. This is the first time we’ve seen a

wildcard applied to a type parameter. T was originally specified to extend Compa-

rable<T>, but a comparable of T consumes T instances (and produces integers

indicating order relations). Therefore the parameterized type Comparable<T> is

replaced by the bounded wildcard type Comparable<? super T>. Comparables are

always consumers, so you should always use Comparable<? super T> in prefer-

ence to Comparable<T>. The same is true of comparators, so you should always

use Comparator<? super T> in preference to Comparator<T>.

The revised max declaration is probably the most complex method declaration

in the entire book. Does the added complexity really buy you anything? Yes, it

does. Here is a simple example of a list that would be excluded by the original

declaration but is permitted by the revised one:

List<ScheduledFuture<?>> scheduledFutures = ... ;

The reason that you can’t apply the original method declaration to this list is

that java.util.concurrent.ScheduledFuture does not implement Compara-

ble<ScheduledFuture>. Instead, it is a subinterface of Delayed, which extends

Comparable<Delayed>. In other words, a ScheduledFuture instance isn’t merely

comparable to other ScheduledFuture instances; it’s comparable to any Delayed

instance, and that’s enough to cause the original declaration to reject it.
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There is one slight problem with the revised declaration for max: it prevents

the method from compiling. Here is the method with the revised declaration:

// Won’t compile - wildcards can require change in method body!
public static <T extends Comparable<? super T>> T max(

List<? extends T> list) {
Iterator<T> i = list.iterator();
T result = i.next();
while (i.hasNext()) {

T t = i.next();
if (t.compareTo(result) > 0)

result = t;
}
return result;

}

Here’s what happens when you try to compile it:

Max.java:7: incompatible types
found : Iterator<capture#591 of ? extends T>
required: Iterator<T>

Iterator<T> i = list.iterator();
                                     ^

What does this error message mean, and how do we fix the problem? It means

that list is not a List<T>, so its iterator method doesn’t return Iterator<T>.

It returns an iterator of some subtype of T, so we replace the iterator declaration

with this one, which uses a bounded wildcard type:

Iterator<? extends T> i = list.iterator();

That is the only change that we have to make to the body of the method. The ele-

ments returned by the iterator’s next method are of some subtype of T, so they can

be safely stored in a variable of type T.

There is one more wildcard-related topic that bears discussing. There is a

duality between type parameters and wildcards, and many methods can be

declared using one or the other. For example, here are two possible declarations

for a static method to swap two indexed items in a list. The first uses an

unbounded type parameter (Item 27) and the second an unbounded wildcard:

// Two possible declarations for the swap method
public static <E> void swap(List<E> list, int i, int j);
public static void swap(List<?> list, int i, int j);
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Which of these two declarations is preferable, and why? In a public API, the

second is better because it’s simpler. You pass in a list—any list—and the method

swaps the indexed elements. There is no type parameter to worry about. As a rule,

if a type parameter appears only once in a method declaration, replace it with

a wildcard. If it’s an unbounded type parameter, replace it with an unbounded

wildcard; if it’s a bounded type parameter, replace it with a bounded wildcard.

There’s one problem with the second declaration for swap, which uses a wild-

card in preference to a type parameter: the straightforward implementation won’t

compile:

public static void swap(List<?> list, int i, int j) {
list.set(i, list.set(j, list.get(i)));

}

Trying to compile it produces this less-than-helpful error message:

Swap.java:5: set(int,capture#282 of ?) in List<capture#282 of ?>
cannot be applied to (int,Object)

list.set(i, list.set(j, list.get(i)));
                        ^

It doesn’t seem right that we can’t put an element back into the list that we just

took it out of. The problem is that the type of list is List<?>, and you can’t put

any value except null into a List<?>. Fortunately, there is a way to implement

this method without resorting to an unsafe cast or a raw type. The idea is to write a

private helper method to capture the wildcard type. The helper method must be a

generic method in order to capture the type. Here’s how it looks:

public static void swap(List<?> list, int i, int j) {
swapHelper(list, i, j);

}

// Private helper method for wildcard capture
private static <E> void swapHelper(List<E> list, int i, int j) {

list.set(i, list.set(j, list.get(i)));
}

The swapHelper method knows that list is a List<E>. Therefore, it knows

that any value it gets out of this list is of type E, and that it’s safe to put any value

of type E into the list. This slightly convoluted implementation of swap compiles

cleanly. It allows us to export the nice wildcard-based declaration of swap, while

taking advantage of the more complex generic method internally. Clients of the
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swap method don’t have to confront the more complex swapHelper declaration,

but they do benefit from it

In summary, using wildcard types in your APIs, while tricky, makes the APIs

far more flexible. If you write a library that will be widely used, the proper use of

wildcard types should be considered mandatory. Remember the basic rule: pro-

ducer-extends, consumer-super (PECS). And remember that all comparables

and comparators are consumers.
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Item 29: Consider typesafe heterogeneous containers

The most common use of generics is for collections, such as Set and Map, and sin-

gle-element containers, such as ThreadLocal and AtomicReference. In all of

these uses, it is the container that is parameterized. This limits you to a fixed num-

ber of type parameters per container. Normally that is exactly what you want. A

Set has a single type parameter, representing its element type; a Map has two, rep-

resenting its key and value types; and so forth.

Sometimes, however, you need more flexibility. For example, a database row

can have arbitrarily many columns, and it would be nice to be able to access all of

them in a typesafe manner. Luckily, there is an easy way to achieve this effect. The

idea is to parameterize the key instead of the container. Then present the parame-

terized key to the container to insert or retrieve a value. The generic type system is

used to guarantee that the type of the value agrees with its key.

As a simple example of this approach, consider a Favorites class that allows

its clients to store and retrieve a “favorite” instance of arbitrarily many other

classes. The Class object will play the part of the parameterized key. The reason

this works is that class Class was generified in release 1.5. The type of a class lit-

eral is no longer simply Class, but Class<T>. For example, String.class is of

type Class<String>, and Integer.class is of type Class<Integer>. When a

class literal is passed among methods to communicate both compile-time and

runtime type information, it is called a type token [Bracha04].

The API for the Favorites class is simple. It looks just like a simple map,

except that the key is parameterized instead of the map. The client presents a

Class object when setting and getting favorites. Here is the API:

// Typesafe heterogeneous container pattern - API
public class Favorites {

public <T> void putFavorite(Class<T> type, T instance);
public <T> T getFavorite(Class<T> type);

}

Here is a sample program that exercises the Favorites class, storing, retriev-

ing, and printing a favorite String, Integer, and Class instance:

// Typesafe heterogeneous container pattern - client
public static void main(String[] args) {

Favorites f = new Favorites();
f.putFavorite(String.class, "Java");
f.putFavorite(Integer.class, 0xcafebabe);
f.putFavorite(Class.class, Favorites.class);
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String favoriteString = f.getFavorite(String.class);
int favoriteInteger = f.getFavorite(Integer.class);
Class<?> favoriteClass = f.getFavorite(Class.class);
System.out.printf("%s %x %s%n", favoriteString,

favoriteInteger, favoriteClass.getName());
}

As you might expect, this program prints Java cafebabe Favorites.

A Favorites instance is typesafe: it will never return an Integer when you

ask it for a String. It is also heterogeneous: unlike an ordinary map, all the keys

are of different types. Therefore, we call Favorites a typesafe heterogeneous

container.

The implementation of Favorites is surprisingly tiny. Here it is, in its entirety:

// Typesafe heterogeneous container pattern - implementation
public class Favorites {

private Map<Class<?>, Object> favorites = 
new HashMap<Class<?>, Object>();

public <T> void putFavorite(Class<T> type, T instance) {
if (type == null)

throw new NullPointerException("Type is null");
favorites.put(type, instance);

}

public <T> T getFavorite(Class<T> type) {
return type.cast(favorites.get(type));

}
}

There are a few subtle things going on here. Each Favorites instance is

backed by a private Map<Class<?>, Object> called favorites. You might think

that you couldn’t put anything into this Map because of the unbounded wildcard

type, but the truth is quite the opposite. The thing to notice is that the wildcard

type is nested: it’s not the type of the Map that’s a wildcard type but the type of its

key. This means that every key can have a different parameterized type: one can be

Class<String>, the next Class<Integer>, and so on. That’s where the heteroge-

neity comes from.

The next thing to notice is that the value type of the favorites Map is simply

Object. In other words, the Map does not guarantee the type relationship between

keys and values, which is that every value is of the type represented by its key. In

fact, Java’s type system is not powerful enough to express this. But we know that

it’s true, and we take advantage of it when it comes time to retrieve a favorite.
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The putFavorite implementation is trivial: it simply puts into favorites a

mapping from the given Class object to the given favorite instance. As noted, this

discards the “type linkage” between the key and the value; it loses the knowledge

that the value is an instance of the key. But that’s OK, because the getFavorites

method can and does reestablish this linkage.

The implementation of the getFavorite method is trickier than that of put-

Favorite. First it gets from the favorites map the value corresponding to the

given Class object. This is the correct object reference to return, but it has the

wrong compile-time type. Its type is simply Object (the value type of the favor-

ites map) and we need to return a T. So, the getFavorite implementation

dynamically casts the object reference to the type represented by the Class object,

using Class’s cast method. 

The cast method is the dynamic analog of Java’s cast operator. It simply

checks that its argument is an instance of the type represented by the Class object.

If so, it returns the argument; otherwise it throws a ClassCastException. We

know that the cast invocation in getFavorite will never throw ClassCastExcep-

tion, assuming the client code compiled cleanly. That is to say, we know that the

values in the favorites map always match the types of the keys.

So what does the cast method do for us, given that it simply returns its argu-

ment? The signature of the cast method takes full advantage of the fact that class

Class has been generified. Its return type is the type parameter of the Class

object:

public class Class<T> {
T cast(Object obj);

}

This is precisely what’s needed by the getFavorite method. It is what allows us

to make Favorites typesafe without resorting to an unchecked cast to T.

There are two limitations to the Favorites class that are worth noting. First, a

malicious client could easily corrupt the type safety of a Favorites instance, sim-

ply by using a Class object in its raw form. But the resulting client code would

generate an unchecked warning when it was compiled. This is no different from

the normal collection implementations such as HashSet and HashMap. You can

easily put a String into a HashSet<Integer> by using the raw type HashSet

(Item 23). That said, you can have runtime type safety if you’re willing to pay for

it. The way to ensure that Favorites never violates its type invariant is to have the
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putFavorite method check that instance is indeed an instance of the type repre-

sented by type. And we already know how to do this. Just use a dynamic cast:

// Achieving runtime type safety with a dynamic cast
public <T> void putFavorite(Class<T> type, T instance) {

favorites.put(type, type.cast(instance));
}

There are collection wrappers in java.util.Collections that play the same

trick. They are called checkedSet, checkedList, checkedMap, and so forth. Their

static factories take a Class object (or two) in addition to a collection (or map).

The static factories are generic methods, ensuring that the compile-time types of

the Class object and the collection match. The wrappers add reification to the col-

lections they wrap. For example, the wrapper throws a ClassCastException at

runtime if someone tries to put Coin into your Collection<Stamp>. These wrap-

pers are useful for tracking down who adds an incorrectly typed element to a col-

lection in an application that mixes generic and legacy code.

The second limitation of the Favorites class is that it cannot be used on a

non-reifiable type (Item 25). In other words, you can store your favorite String or

String[], but not your favorite List<String>. If you try to store your favorite

List<String>, your program won’t compile. The reason is that you can’t get a

Class object for List<String>: List<String>.class is a syntax error, and it’s a

good thing, too. List<String> and List<Integer> share a single Class object,

which is List.class. It would wreak havoc with the internals of a Favorites

object if the “type literals” List<String>.class and List<Integer>.class

were legal and returned the same object reference.

There is no entirely satisfactory workaround for the second limitation. There

is a technique called super type tokens that goes a long way toward addressing the

limitation, but this technique has limitations of its own [Gafter07].

The type tokens used by Favorites are unbounded: getFavorite and put-

Favorite accept any Class object. Sometimes you may need to limit the types

that can be passed to a method. This can be achieved with a bounded type token,

which is simply a type token that places a bound on what type can be represented,

using a bounded type parameter (Item 27) or a bounded wildcard (Item 28).

The annotations API (Item 35) makes extensive use of bounded type tokens.

For example, here is the method to read an annotation at runtime. This method
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comes from the AnnotatedElement interface, which is implemented by the reflec-

tive types that represent classes, methods, fields, and other program elements:

public <T extends Annotation>
T getAnnotation(Class<T> annotationType);

The argument annotationType is a bounded type token representing an annota-

tion type. The method returns the element’s annotation of that type, if it has one,

or null, if it doesn’t. In essence, an annotated element is a typesafe heterogeneous

container whose keys are annotation types.

Suppose you have an object of type Class<?> and you want to pass it to a

method that requires a bounded type token, such as getAnnotation. You could

cast the object to Class<? extends Annotation>, but this cast is unchecked, so it

would generate a compile-time warning (Item 24). Luckily, class Class provides

an instance method that performs this sort of cast safely (and dynamically). The

method is called asSubclass, and it casts the Class object on which it’s called to

represent a subclass of the class represented by its argument. If the cast succeeds,

the method returns its argument; if it fails, it throws a ClassCastException.

Here’s how you use the asSubclass method to read an annotation whose type

is unknown at compile time. This method compiles without error or warning:

// Use of asSubclass to safely cast to a bounded type token
static Annotation getAnnotation(AnnotatedElement element,
                                String annotationTypeName) {

Class<?> annotationType = null; // Unbounded type token
try {

annotationType = Class.forName(annotationTypeName);
} catch (Exception ex) {

throw new IllegalArgumentException(ex);
}
return element.getAnnotation(

annotationType.asSubclass(Annotation.class));
}

In summary, the normal use of generics, exemplified by the collections APIs,

restricts you to a fixed number of type parameters per container. You can get

around this restriction by placing the type parameter on the key rather than the

container. You can use Class objects as keys for such typesafe heterogeneous

containers. A Class object used in this fashion is called a type token. You can also

use a custom key type. For example, you could have a DatabaseRow type repre-

senting a database row (the container), and a generic type Column<T> as its key.
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C H A P T E R 6
Enums and Annotations

IN release 1.5, two families of reference types were added to the language: a new

kind of class called an enum type, and a new kind of interface called an annotation

type. This chapter discusses best practices for using these new type families.

Item 30: Use enums instead of int constants

An enumerated type is a type whose legal values consist of a fixed set of con-

stants, such as the seasons of the year, the planets in the solar system, or the suits

in a deck of playing cards. Before enum types were added to the language, a com-

mon pattern for representing enumerated types was to declare a group of named

int constants, one for each member of the type:

// The int enum pattern - severely deficient!
public static final int APPLE_FUJI = 0;
public static final int APPLE_PIPPIN = 1;
public static final int APPLE_GRANNY_SMITH = 2;

public static final int ORANGE_NAVEL = 0;
public static final int ORANGE_TEMPLE = 1;
public static final int ORANGE_BLOOD = 2;

This technique, known as the int enum pattern, has many shortcomings. It

provides nothing in the way of type safety and little in the way of convenience.

The compiler won’t complain if you pass an apple to a method that expects an

orange, compare apples to oranges with the == operator, or worse:

// Tasty citrus flavored applesauce!
int i = (APPLE_FUJI - ORANGE_TEMPLE) / APPLE_PIPPIN;
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Note that the name of each apple constant is prefixed with APPLE_ and the

name of each orange constant is prefixed with ORANGE_. This is because Java

doesn’t provide namespaces for int enum groups. Prefixes prevent name clashes

when two int enum groups have identically named constants.

Programs that use the int enum pattern are brittle. Because int enums are

compile-time constants, they are compiled into the clients that use them. If the int

associated with an enum constant is changed, its clients must be recompiled. If

they aren’t, they will still run, but their behavior will be undefined.

There is no easy way to translate int enum constants into printable strings. If

you print such a constant or display it from a debugger, all you see is a number,

which isn’t very helpful. There is no reliable way to iterate over all the int enum

constants in a group, or even to obtain the size of an int enum group.

You may encounter a variant of this pattern in which String constants are

used in place of int constants. This variant, known as the String enum pattern, is

even less desirable. While it does provide printable strings for its constants, it can

lead to performance problems because it relies on string comparisons. Worse, it

can lead naive users to hard-code string constants into client code instead of using

field names. If such a hard-coded string constant contains a typographical error, it

will escape detection at compile time and result in bugs at runtime.

Luckily, as of release 1.5, the language provides an alternative that avoids the

shortcomings of the int and string enum patterns and provides many added ben-

efits. It is the (JLS, 8.9). Here’s how it looks in its simplest form:

public enum Apple { FUJI, PIPPIN, GRANNY_SMITH }
public enum Orange { NAVEL, TEMPLE, BLOOD }

On the surface, these enum types may appear similar to those of other languages,

such as C, C++, and C#, but appearances are deceiving. Java’s enum types are

full-fledged classes, far more powerful than their counterparts in these other lan-

guages, where enums are essentially int values.

The basic idea behind Java’s enum types is simple: they are classes that export

one instance for each enumeration constant via a public static final field. Enum

types are effectively final, by virtue of having no accessible constructors. Because

clients can neither create instances of an enum type nor extend it, there can be no

instances but the declared enum constants. In other words, enum types are

instance-controlled (page 6). They are a generalization of singletons (Item 3),

which are essentially single-element enums. For readers familiar with the first edi-

tion of this book, enum types provide linguistic support for the typesafe enum pat-

tern [Bloch01, Item 21].
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Enums provide compile-time type safety. If you declare a parameter to be of

type Apple, you are guaranteed that any non-null object reference passed to the

parameter is one of the three valid Apple values. Attempts to pass values of the

wrong type will result in compile-time errors, as will attempts to assign an expres-

sion of one enum type to a variable of another, or to use the == operator to com-

pare values of different enum types. 

Enum types with identically named constants coexist peacefully because each

type has its own namespace. You can add or reorder constants in an enum type

without recompiling its clients because the fields that export the constants provide

a layer of insulation between an enum type and its clients: the constant values are

not compiled into the clients as they are in the int enum pattern. Finally, you can

translate enums into printable strings by calling their toString method.

In addition to rectifying the deficiencies of int enums, enum types let you add

arbitrary methods and fields and implement arbitrary interfaces. They provide

high-quality implementations of all the Object methods (Chapter 3), they imple-

ment Comparable (Item 12) and Serializable (Chapter 11), and their serialized

form is designed to withstand most changes to the enum type.

So why would you want to add methods or fields to an enum type? For start-

ers, you might want to associate data with its constants. Our Apple and Orange

types, for example, might benefit from a method that returns the color of the fruit,

or one that returns an image of it. You can augment an enum type with any method

that seems appropriate. An enum type can start life as a simple collection of enum

constants and evolve over time into a full-featured abstraction.

For a nice example of a rich enum type, consider the eight planets of our solar

system. Each planet has a mass and a radius, and from these two attributes you can

compute its surface gravity. This in turn lets you compute the weight of an object

on the planet’s surface, given the mass of the object. Here’s how this enum looks.

The numbers in parentheses after each enum constant are parameters that are

passed to its constructor. In this case, they are the planet’s mass and radius:

// Enum type with data and behavior
public enum Planet {

MERCURY(3.302e+23, 2.439e6),
VENUS (4.869e+24, 6.052e6),
EARTH (5.975e+24, 6.378e6),
MARS (6.419e+23, 3.393e6),
JUPITER(1.899e+27, 7.149e7),
SATURN (5.685e+26, 6.027e7),
URANUS (8.683e+25, 2.556e7),
NEPTUNE(1.024e+26, 2.477e7);
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private final double mass;           // In kilograms
private final double radius;         // In meters
private final double surfaceGravity; // In m / s^2

// Universal gravitational constant in m^3 / kg s^2
private static final double G = 6.67300E-11;

// Constructor
Planet(double mass, double radius) {

this.mass = mass;
this.radius = radius;
surfaceGravity = G * mass / (radius * radius);

}

public double mass()           { return mass; }
public double radius()         { return radius; }
public double surfaceGravity() { return surfaceGravity; }

public double surfaceWeight(double mass) {
return mass * surfaceGravity; // F = ma

}
}

It is easy to write a rich enum type such as Planet. To associate data with

enum constants, declare instance fields and write a constructor that takes the

data and stores it in the fields. Enums are by their nature immutable, so all fields

should be final (Item 15). They can be public, but it is better to make them private

and provide public accessors (Item 14). In the case of Planet, the constructor also

computes and stores the surface gravity, but this is just an optimization. The grav-

ity could be recomputed from the mass and radius each time it was used by the

surfaceWeight method, which takes an object’s mass and returns its weight on

the planet represented by the constant. 

While the Planet enum is simple, it is surprisingly powerful. Here is a short

program that takes the earth-weight of an object (in any unit) and prints a nice

table of the object’s weight on all eight planets (in the same unit):

public class WeightTable {
public static void main(String[] args) {

double earthWeight = Double.parseDouble(args[0]);
double mass = earthWeight / Planet.EARTH.surfaceGravity();
for (Planet p : Planet.values())

System.out.printf("Weight on %s is %f%n",
p, p.surfaceWeight(mass));

}
}
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Note that Planet, like all enums, has a static values method that returns an array

of its values in the order they were declared. Note also that the toString method

returns the declared name of each enum value, enabling easy printing by println

and printf. If you’re dissatisfied with this string representation, you can change it

by overriding the toString method. Here is the result of running our little

WeightTable program with the command line argument 175:

Weight on MERCURY is 66.133672
Weight on VENUS is 158.383926
Weight on EARTH is 175.000000
Weight on MARS is 66.430699
Weight on JUPITER is 442.693902
Weight on SATURN is 186.464970
Weight on URANUS is 158.349709
Weight on NEPTUNE is 198.846116

If this is the first time you’ve seen Java’s printf method in action, note that it

differs from C’s in that you use %n where you’d use \n in C.

Some behaviors associated with enum constants may need to be used only

from within the class or package in which the enum is defined. Such behaviors are

best implemented as private or package-private methods. Each constant then car-

ries with it a hidden collection of behaviors that allows the class or package con-

taining the enum to react appropriately when presented with the constant. Just as

with other classes, unless you have a compelling reason to expose an enum

method to its clients, declare it private or, if need be, package-private (Item 13).

If an enum is generally useful, it should be a top-level class; if its use is tied to

a specific top-level class, it should be a member class of that top-level class (Item

22). For example, the java.math.RoundingMode enum represents a rounding

mode for decimal fractions. These rounding modes are used by the BigDecimal

class, but they provide a useful abstraction that is not fundamentally tied to Big-

Decimal. By making RoundingMode a top-level enum, the library designers

encourage any programmer who needs rounding modes to reuse this enum, lead-

ing to increased consistency across APIs.

The techniques demonstrated in the Planet example are sufficient for most

enum types, but sometimes you need more. There is different data associated with

each Planet constant, but sometimes you need to associate fundamentally differ-

ent behavior with each constant. For example, suppose you are writing an enum

type to represent the operations on a basic four-function calculator, and you want
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to provide a method to perform the arithmetic operation represented by each con-

stant. One way to achieve this is to switch on the value of the enum:

// Enum type that switches on its own value - questionable
public enum Operation {

PLUS, MINUS, TIMES, DIVIDE;

// Do the arithmetic op represented by this constant
double apply(double x, double y) {

switch(this) {
case PLUS:   return x + y;
case MINUS:  return x - y;
case TIMES:  return x * y;
case DIVIDE: return x / y;

}
throw new AssertionError("Unknown op: " + this);

}
}

This code works, but is isn’t very pretty. It won’t compile without the throw

statement because the end of the method is technically reachable, even though it

will never be reached [JLS, 14.2.1]. Worse, the code is fragile. If you add a new

enum constant but forget to add a corresponding case to the switch, the enum will

still compile, but it will fail at runtime when you try to apply the new operation. 

Luckily, there is a better way to associate a different behavior with each enum

constant: declare an abstract apply method in the enum type, and override it with

a concrete method for each constant in a constant-specific class body. Such meth-

ods are knows as constant-specific method implementations:

// Enum type with constant-specific method implementations
public enum Operation {

PLUS   { double apply(double x, double y){return x + y;} },
MINUS  { double apply(double x, double y){return x - y;} },
TIMES  { double apply(double x, double y){return x * y;} },
DIVIDE { double apply(double x, double y){return x / y;} };

abstract double apply(double x, double y);
}

If you add a new constant to the second version of Operation, it is unlikely

that you’ll forget to provide an apply method, as the method immediately follows

each constant declaration. In the unlikely event that you do forget, the compiler

will remind you, as abstract methods in an enum type must be overridden with

concrete methods in all of its constants.
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Constant-specific method implementations can be combined with constant-

specific data. For example, here is a version of Operation that overrides the

toString method to return the symbol commonly associated with the operation:

// Enum type with constant-specific class bodies and data
public enum Operation {

PLUS("+") {
double apply(double x, double y) { return x + y; }

},
MINUS("-") {

double apply(double x, double y) { return x - y; }
},
TIMES("*") {

double apply(double x, double y) { return x * y; }
},
DIVIDE("/") {

double apply(double x, double y) { return x / y; }
};
private final String symbol;
Operation(String symbol) { this.symbol = symbol; }
@Override public String toString() { return symbol; }

abstract double apply(double x, double y);
}

In some cases, overriding toString in an enum is very useful. For example,

the toString implementation above makes it easy to print arithmetic expressions,

as demonstrated by this little program:

public static void main(String[] args) {
double x = Double.parseDouble(args[0]);
double y = Double.parseDouble(args[1]);
for (Operation op : Operation.values())

System.out.printf("%f %s %f = %f%n",
x, op, y, op.apply(x, y));

}

Running this program with 2 and 4 as command line arguments produces the

following output:

2.000000 + 4.000000 = 6.000000
2.000000 - 4.000000 = -2.000000
2.000000 * 4.000000 = 8.000000
2.000000 / 4.000000 = 0.500000
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Enum types have an automatically generated valueOf(String) method that

translates a constant’s name into the constant itself. If you override the toString

method in an enum type, consider writing a fromString method to translate the

custom string representation back to the corresponding enum. The following code

(with the type name changed appropriately) will do the trick for any enum, so long

as each constant has a unique string representation:

// Implementing a fromString method on an enum type
private static final Map<String, Operation> stringToEnum

= new HashMap<String, Operation>();
static { // Initialize map from constant name to enum constant

for (Operation op : values())
stringToEnum.put(op.toString(), op);

}
// Returns Operation for string, or null if string is invalid
public static Operation fromString(String symbol) {

return stringToEnum.get(symbol);
}

Note that the Operation constants are put into the stringToEnum map from a

static block that runs after the constants have been created. Trying to make each

constant put itself into the map from its own constructor would cause a compila-

tion error. This is a good thing, because it would cause a NullPointerException

if it were legal. Enum constructors aren’t permitted to access the enum’s static

fields, except for compile-time constant fields. This restriction is necessary

because these static fields have not yet been initialized when the constructors run.

A disadvantage of constant-specific method implementations is that they

make it harder to share code among enum constants. For example, consider an

enum representing the days of the week in a payroll package. This enum has a

method that calculates a worker’s pay for that day given the worker’s base salary

(per hour) and the number of hours worked on that day. On the five weekdays, any

time worked in excess of a normal shift generates overtime pay; on the two week-

end days, all work generates overtime pay. With a switch statement, it’s easy to

do this calculation by applying multiple case labels to each of two code fragments.

For brevity’s sake, the code in this example uses double, but note that double is

not an appropriate data type for a payroll application (Item 48):

// Enum that switches on its value to share code - questionable
enum PayrollDay {

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY;
private static final int HOURS_PER_SHIFT = 8;
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double pay(double hoursWorked, double payRate) {
double basePay = hoursWorked * payRate;

double overtimePay; // Calculate overtime pay
switch(this) {

case SATURDAY: case SUNDAY:
overtimePay = hoursWorked * payRate / 2;

default: // Weekdays
overtimePay = hoursWorked <= HOURS_PER_SHIFT ?
0 : (hoursWorked - HOURS_PER_SHIFT) * payRate / 2;

break;
}

return basePay + overtimePay;
}

}

This code is undeniably concise, but it is dangerous from a maintenance per-

spective. Suppose you add an element to the enum, perhaps a special value to rep-

resent a vacation day, but forget to add a corresponding case to the switch

statement. The program will still compile, but the pay method will silently pay the

worker the same amount for a vacation day as for an ordinary weekday.

To perform the pay calculation safely with constant-specific method imple-

mentations, you would have to duplicate the overtime pay computation for each

constant, or move the computation into two helper methods (one for weekdays

and one for weekend days) and invoke the appropriate helper method from each

constant. Either approach would result in a fair amount of boilerplate code, sub-

stantially reducing readability and increasing the opportunity for error. 

The boilerplate could be reduced by replacing the abstract overtimePay

method on PayrollDay with a concrete method that performs the overtime calcu-

lation for weekdays. Then only the weekend days would have to override the

method. But this would have the same disadvantage as the switch statement: if

you added another day without overriding the overtimePay method, you would

silently inherit the weekday calculation.

What you really want is to be forced to choose an overtime pay strategy each

time you add an enum constant. Luckily, there is a nice way to achieve this. The

idea is to move the overtime pay computation into a private nested enum, and to

pass an instance of this strategy enum to the constructor for the PayrollDay enum.

The PayrollDay enum then delegates the overtime pay calculation to the strategy

enum, eliminating the need for a switch statement or constant-specific method
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implementation in PayrollDay. While this pattern is less concise than the switch

statement, it is safer and more flexible:

// The strategy enum pattern
enum PayrollDay {

MONDAY(PayType.WEEKDAY), TUESDAY(PayType.WEEKDAY),
WEDNESDAY(PayType.WEEKDAY), THURSDAY(PayType.WEEKDAY),
FRIDAY(PayType.WEEKDAY),
SATURDAY(PayType.WEEKEND), SUNDAY(PayType.WEEKEND);

private final PayType payType;
PayrollDay(PayType payType) { this.payType = payType; }

double pay(double hoursWorked, double payRate) {
return payType.pay(hoursWorked, payRate);

}
// The strategy enum type
private enum PayType {

WEEKDAY {
double overtimePay(double hours, double payRate) {

return hours <= HOURS_PER_SHIFT ? 0 :
(hours - HOURS_PER_SHIFT) * payRate / 2;

}
},
WEEKEND {

double overtimePay(double hours, double payRate) {
return hours * payRate / 2;

}
};
private static final int HOURS_PER_SHIFT = 8;

abstract double overtimePay(double hrs, double payRate);

double pay(double hoursWorked, double payRate) {
double basePay = hoursWorked * payRate;
return basePay + overtimePay(hoursWorked, payRate);

}
}

}

If switch statements on enums are not a good choice for implementing con-

stant-specific behavior on enums, what are they good for? Switches on enums

are good for augmenting external enum types with constant-specific behavior.

For example, suppose the Operation enum is not under your control, and you



ITEM 30: USE ENUMS INSTEAD OF INT CONSTANTS 157

wish it had an instance method to return the inverse of each operation. You can

simulate the effect with the following static method:

// Switch on an enum to simulate a missing method
public static Operation inverse(Operation op) {

switch(op) {
case PLUS:   return Operation.MINUS;
case MINUS:  return Operation.PLUS;
case TIMES:  return Operation.DIVIDE;
case DIVIDE: return Operation.TIMES;
default: throw new AssertionError("Unknown op: " + op);

}
}

Enums are, generally speaking, comparable in performance to int constants.

A minor performance disadvantage of enums over int constants is that there is a

space and time cost to load and initialize enum types. Except on resource-con-

strained devices, such as cell phones and toasters, this is unlikely to be noticeable

in practice.

So when should you use enums? Anytime you need a fixed set of constants.

Of course, this includes “natural enumerated types,” such as the planets, the days

of the week, and the chess pieces. But it also includes other sets for which you

know all the possible values at compile time, such as choices on a menu, operation

codes, and command line flags. It is not necessary that the set of constants in an

enum type stay fixed for all time. The enum feature was specifically designed to

allow for binary compatible evolution of enum types. 

In summary, the advantages of enum types over int constants are compelling.

Enums are far more readable, safer, and more powerful. Many enums require no

explicit constructors or members, but many others benefit from associating data

with each constant and providing methods whose behavior is affected by this data.

Far fewer enums benefit from associating multiple behaviors with a single

method. In this relatively rare case, prefer constant-specific methods to enums that

switch on their own values. Consider the strategy enum pattern if multiple enum

constants share common behaviors.
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Item 31: Use instance fields instead of ordinals

Many enums are naturally associated with a single int value. All enums have an

ordinal method, which returns the numerical position of each enum constant in

its type. You may be tempted to derive an associated int value from the ordinal:

// Abuse of ordinal to derive an associated value - DON'T DO THIS
public enum Ensemble {

SOLO,   DUET,   TRIO, QUARTET, QUINTET,
SEXTET, SEPTET, OCTET, NONET,  DECTET;

public int numberOfMusicians() { return ordinal() + 1; }
}

While this enum works, it is a maintenance nightmare. If the constants are

reordered, the numberOfMusicians method will break. If you want to add a sec-

ond enum constant associated with an int value that you’ve already used, you’re

out of luck. For example, it might be nice to add a constant for double quartet,

which, like an octet, consists of eight musicians, but there is no way to do it.

Also, you can’t add a constant for an int value without adding constants for

all intervening int values. For example, suppose you want to add a constant rep-

resenting a triple quartet, which consists of twelve musicians. There is no stan-

dard term for an ensemble consisting of eleven musicians, so you are forced to

add a dummy constant for the unused int value (11). At best, this is ugly. If many

int values are unused, it’s impractical.

Luckily, there is a simple solution to these problems. Never derive a value

associated with an enum from its ordinal; store it in an instance field instead:

public enum Ensemble {
SOLO(1), DUET(2), TRIO(3), QUARTET(4), QUINTET(5),
SEXTET(6), SEPTET(7), OCTET(8), DOUBLE_QUARTET(8),
NONET(9), DECTET(10), TRIPLE_QUARTET(12);

private final int numberOfMusicians;
Ensemble(int size) { this.numberOfMusicians = size; }
public int numberOfMusicians() { return numberOfMusicians; }

}

The Enum specification has this to say about ordinal: “Most programmers

will have no use for this method. It is designed for use by general-purpose enum-

based data structures such as EnumSet and EnumMap.” Unless you are writing such

a data structure, you are best off avoiding the ordinal method entirely.
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Item 32: Use EnumSet instead of bit fields

If the elements of an enumerated type are used primarily in sets, it is traditional to

use the int enum pattern (Item 30), assigning a different power of 2 to each con-

stant:

// Bit field enumeration constants - OBSOLETE!
public class Text {

public static final int STYLE_BOLD          = 1 << 0; // 1
public static final int STYLE_ITALIC        = 1 << 1; // 2
public static final int STYLE_UNDERLINE     = 1 << 2; // 4
public static final int STYLE_STRIKETHROUGH = 1 << 3; // 8

// Parameter is bitwise OR of zero or more STYLE_ constants
public void applyStyles(int styles) { ... }

}

This representation lets you use the bitwise OR operation to combine several con-

stants into a set, known as a bit field:

text.applyStyles(STYLE_BOLD | STYLE_ITALIC);

The bit field representation also lets you perform set operations such as union

and intersection efficiently using bitwise arithmetic. But bit fields have all the dis-

advantages of int enum constants and more. It is even harder to interpret a bit

field than a simple int enum constant when it is printed as a number. Also, there

is no easy way to iterate over all of the elements represented by a bit field.

Some programmers who use enums in preference to int constants still cling

to the use of bit fields when they need to pass around sets of constants. There is no

reason to do this; a better alternative exists. The java.util package provides the

EnumSet class to efficiently represent sets of values drawn from a single enum

type. This class implements the Set interface, providing all of the richness, type

safety, and interoperability you get with any other Set implementation. But inter-

nally, each EnumSet is represented as a bit vector. If the underlying enum type has

sixty-four or fewer elements—and most do—the entire EnumSet is represented

with a single long (page 7), so its performance is comparable to that of a bit field.

Bulk operations, such as removeAll and retainAll, are implemented using bit-

wise arithmetic, just as you’d do manually for bit fields. But you are insulated

from the ugliness and error-proneness of manual bit twiddling: the EnumSet does

the hard work for you. 
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Here is how the previous example looks when modified to use enums instead

of bit fields. It is shorter, clearer, and safer:

// EnumSet - a modern replacement for bit fields
public class Text {

public enum Style { BOLD, ITALIC, UNDERLINE, STRIKETHROUGH }

// Any Set could be passed in, but EnumSet is clearly best
public void applyStyles(Set<Style> styles) { ... }

}

Here is client code that passes an EnumSet instance to the applyStyles method.

EnumSet provides a rich set of static factories for easy set creation, one of which is

illustrated in this code:

text.applyStyles(EnumSet.of(Style.BOLD, Style.ITALIC));

Note that the applyStyles method takes a Set<Style> rather than an Enum-

Set<Style>. While it seems likely that all clients would pass an EnumSet to the

method, it is good practice to accept the interface type rather than the implementa-

tion type. This allows for the possibility of an unusual client to pass in some other

Set implementation and has no disadvantages to speak of (page 190).

In summary, just because an enumerated type will be used in sets, there is

no reason to represent it with bit fields. The EnumSet class combines the con-

ciseness and performance of bit fields with all the many advantages of enum types

described in Item 30. The one real disadvantage of EnumSet is that it is not, as of

release 1.6, possible to create an immutable EnumSet, but this will likely be reme-

died in an upcoming release. In the meantime, you can wrap an EnumSet with

Collections.unmodifiableSet, but conciseness and performance will suffer.
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Item 33: Use EnumMap instead of ordinal indexing

Occasionally you may see code that uses the ordinal method (Item 31) to index

into an array. For example, consider this simplistic class meant to represent a culi-

nary herb:

public class Herb {
public enum Type { ANNUAL, PERENNIAL, BIENNIAL }

private final String name;
private final Type type;

    
Herb(String name, Type type) {

this.name = name;
this.type = type;

}

@Override public String toString() {
return name;

}
}

Now suppose you have an array of herbs representing the plants in a garden,

and you want to list these plants organized by type (annual, perennial, or biennial).

To do this, you construct three sets, one for each type, and iterate through the gar-

den, placing each herb in the appropriate set. Some programmers would do this by

putting the sets into an array indexed by the type’s ordinal:

// Using ordinal() to index an array - DON'T DO THIS!
Herb[] garden = ... ;

Set<Herb>[] herbsByType = // Indexed by Herb.Type.ordinal()
(Set<Herb>[]) new Set[Herb.Type.values().length];

for (int i = 0; i < herbsByType.length; i++)
herbsByType[i] = new HashSet<Herb>();

for (Herb h : garden)
herbsByType[h.type.ordinal()].add(h);

// Print the results
for (int i = 0; i < herbsByType.length; i++) {

System.out.printf("%s: %s%n",
Herb.Type.values()[i], herbsByType[i]);

}
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This technique works, but it is fraught with problems. Because arrays are not

compatible with generics (Item 25), the program requires an unchecked cast and

will not compile cleanly. Because the array does not know what its index repre-

sents, you have to label the output manually. But the most serious problem with

this technique is that when you access an array that is indexed by an enum’s ordi-

nal, it is your responsibility to use the correct int value; ints do not provide the

type safety of enums. If you use the wrong value, the program will silently do the

wrong thing or—if you’re lucky—throw an ArrayIndexOutOfBoundsException.

Luckily, there is a much better way to achieve the same effect. The array is

effectively serving as a map from the enum to a value, so you might as well use a

Map. More specifically, there is a very fast Map implementation designed for use

with enum keys, known as java.util.EnumMap. Here is how the program looks

when it is rewritten to use EnumMap:

// Using an EnumMap to associate data with an enum
Map<Herb.Type, Set<Herb>> herbsByType =

new EnumMap<Herb.Type, Set<Herb>>(Herb.Type.class);
for (Herb.Type t : Herb.Type.values())

herbsByType.put(t, new HashSet<Herb>());
for (Herb h : garden)

herbsByType.get(h.type).add(h);
System.out.println(herbsByType);

This program is shorter, clearer, safer, and comparable in speed to the original

version. There is no unsafe cast; no need to label the output manually, as the map

keys are enums that know how to translate themselves to printable strings; and no

possibility for error in computing array indices. The reason that EnumMap is com-

parable in speed to an ordinal-indexed array is that EnumMap uses such an array

internally. But it hides this implementation detail from the programmer, combin-

ing the richness and type safety of a Map with the speed of an array. Note that the

EnumMap constructor takes the Class object of the key type: this is a bounded type

token, which provides runtime generic type information (Item 29).

You may see an array of arrays indexed (twice!) by ordinals used to represent

a mapping from two enum values. For example, this program uses such an array to

map two phases to a phase transition (liquid to solid is freezing, liquid to gas is

boiling, and so forth):

// Using ordinal() to index array of arrays - DON'T DO THIS!
public enum Phase { SOLID, LIQUID, GAS;

public enum Transition {
MELT, FREEZE, BOIL, CONDENSE, SUBLIME, DEPOSIT;
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// Rows indexed by src-ordinal, cols by dst-ordinal
private static final Transition[][] TRANSITIONS = {

{ null,    MELT,     SUBLIME },
{ FREEZE,  null,     BOIL    },
{ DEPOSIT, CONDENSE, null    }

};

// Returns the phase transition from one phase to another
public static Transition from(Phase src, Phase dst) {

return TRANSITIONS[src.ordinal()][dst.ordinal()];
}

}
}

This program works and may even appear elegant, but appearances can be

deceiving. Like the simpler herb garden example above, the compiler has no way

of knowing the relationship between ordinals and array indices. If you make a

mistake in the transition table, or forget to update it when you modify the Phase or

Phase.Transition enum type, your program will fail at runtime. The failure may

take the form of an ArrayIndexOutOfBoundsException, a NullPointerExcep-

tion, or (worse) silent erroneous behavior. And the size of the table is quadratic in

the number of phases, even if the number of non-null entries is smaller.

Again, you can do much better with EnumMap. Because each phase transition

is indexed by a pair of phase enums, you are best off representing the relationship

as a map from one enum (the source phase) to a map from the second enum (the

destination phase) to the result (the phase transition). The two phases associated

with a phase transition are best captured by associating data with the phase transi-

tion enum, which is then used to initialize the nested EnumMap:

// Using a nested EnumMap to associate data with enum pairs
public enum Phase {

SOLID, LIQUID, GAS;

public enum Transition {
MELT(SOLID, LIQUID), FREEZE(LIQUID, SOLID),
BOIL(LIQUID, GAS),   CONDENSE(GAS, LIQUID),
SUBLIME(SOLID, GAS), DEPOSIT(GAS, SOLID);

final Phase src;
final Phase dst;

        
Transition(Phase src, Phase dst) {

this.src = src;
this.dst = dst;

}
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// Initialize the phase transition map
private static final Map<Phase, Map<Phase,Transition>> m =
new EnumMap<Phase, Map<Phase,Transition>>(Phase.class);

static {
for (Phase p : Phase.values())

m.put(p,new EnumMap<Phase,Transition>(Phase.class));
for (Transition trans : Transition.values())

m.get(trans.src).put(trans.dst, trans);
}

public static Transition from(Phase src, Phase dst) {
return m.get(src).get(dst);

}
}

}

The code to initialize the phase transition map may look a bit complicated but

it isn’t too bad. The type of the map is Map<Phase, Map<Phase, Transition>>,

which means “map from (source) phase to map from (destination) phase to transi-

tion.” The first loop in the static initializer block initializes the outer map to con-

tain the three empty inner maps. The second loop in the block initializes the inner

maps using the source and destination information provided by each state transi-

tion constant.

Now suppose you want to add a new phase to the system: the plasma, or ion-

ized gas. There are only two transitions associated with this phase: ionization,

which takes a gas to a plasma; and deionization, which takes a plasma to a gas. To

update the array-based program, you would have to add one new constant to

Phase and two to Phase.Transition, and replace the original nine-element array

of arrays with a new sixteen-element version. If you add too many or too few ele-

ments to the array, or place an element out of order, you are out of luck: the pro-

gram will compile, but it will fail at runtime. To update the EnumMap-based

version, all you have to do is add PLASMA to the list of phases, and IONIZE(GAS,

PLASMA) and DEIONIZE(PLASMA, GAS) to the list of phase transitions. The pro-

gram takes care of everything else, and you have virtually no opportunity for error.

Internally, the map of maps is implemented as an array of arrays, so you pay little

in space or time cost for the added clarity, safety, and ease of maintenance.

In summary, it is rarely appropriate to use ordinals to index arrays: use

EnumMap instead. If the relationship that you are representing is multidimensional,

use EnumMap<..., EnumMap<...>>. This is a special case of the general principle

that application programmers should rarely, if ever, use Enum.ordinal (Item 31).
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Item 34: Emulate extensible enums with interfaces

In almost all respects, enum types are superior to the typesafe enum pattern

described in the first edition of this book [Bloch01]. On the face of it, one excep-

tion concerns extensibility, which was possible under the original pattern but is

not supported by the language construct. In other words, using the pattern, it was

possible to have one enumerated type extend another; using the language feature,

it is not. This is no accident. For the most part, extensibility of enums turns out to

be a bad idea. It is confusing that elements of an extension type are instances of

the base type and not vice versa. There is no good way to enumerate over all of the

elements of a base type and its extension. Finally, extensibility would complicate

many aspects of the design and implementation.

That said, there is at least one compelling use case for extensible enumerated

types, which is operation codes, also known as opcodes. An opcode is an enumer-

ated type whose elements represent operations on some machine, such as the

Operation type in Item 30, which represents the functions on a simple calculator.

Sometimes it is desirable to let the users of an API provide their own operations,

effectively extending the set of operations provided by the API.

Luckily, there is a nice way to achieve this effect using enum types. The basic

idea is to take advantage of the fact that enum types can implement arbitrary inter-

faces by defining an interface for the opcode type and an enum that is the standard

implementation of the interface. For example, here is an extensible version of

Operation type from Item 30:

// Emulated extensible enum using an interface
public interface Operation {

double apply(double x, double y);
}

public enum BasicOperation  implements Operation {
PLUS("+") {

public double apply(double x, double y) { return x + y; }
},
MINUS("-") {

public double apply(double x, double y) { return x - y; }
},
TIMES("*") {

public double apply(double x, double y) { return x * y; }
},
DIVIDE("/") {

public double apply(double x, double y) { return x / y; }
};
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private final String symbol;
BasicOperation(String symbol) {

this.symbol = symbol;
}
@Override public String toString() {

return symbol;
}

}

While the enum type (BasicOperation) is not extensible, the interface type

(Operation) is, and it is the interface type that is used to represent operations in

APIs. You can define another enum type that implements this interface and use

instances of this new type in place of the base type. For example, suppose you

want to define an extension to the operation type above, consisting of the expo-

nentiation and remainder operations. All you have to do is write an enum type that

implements the Operation interface:

// Emulated extension enum
public enum ExtendedOperation implements Operation {
    EXP("^") {
        public double apply(double x, double y) {
            return Math.pow(x, y);
        }
    },
    REMAINDER("%") {
        public double apply(double x, double y) {
            return x % y;
        }
    };

    private final String symbol;
    ExtendedOperation(String symbol) {
        this.symbol = symbol;
    }
    @Override public String toString() {
        return symbol;
    }
}

You can use your new operations anywhere you could use the basic opera-

tions, provided that APIs are written to take the interface type (Operation), not

the implementation (BasicOperation). Note that you don’t have to declare the

abstract apply method in the enum as you do in a nonextensible enum with

instance-specific method implementations (page 152). This is because the abstract

method (apply) is a member of the interface (Operation).
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Not only is it possible to pass a single instance of an “extension enum” any-

where a “base enum” is expected; it is possible to pass in an entire extension enum

type and use its elements in addition to or instead of those of the base type. For

example, here is a version of the test program on page 153 that exercises all of the

extended operations defined above:

public static void main(String[] args) {
double x = Double.parseDouble(args[0]);
double y = Double.parseDouble(args[1]);
test(ExtendedOperation.class, x, y);

}
private static <T extends Enum<T> & Operation> void test(

Class<T> opSet, double x, double y) {
for (Operation op : opSet.getEnumConstants())

System.out.printf("%f %s %f = %f%n",
x, op, y, op.apply(x, y));

}

Note that the class literal for the extended operation type (ExtendedOpera-

tion.class) is passed from main to test to describe the set of extended opera-

tions. The class literal serves as a bounded type token (Item 29). The admittedly

complex declaration for the opSet parameter ((<T extends Enum<T> & Opera-

tion> Class<T>) ensures that the Class object represents both an enum and a

subtype of Operation, which is exactly what is required to iterate over the ele-

ments and perform the operation associated with each one.

A second alternative is to use Collection<? extends Operation>, which is a

bounded wildcard type (Item 28), as the type for the opSet parameter:

public static void main(String[] args) {
double x = Double.parseDouble(args[0]);
double y = Double.parseDouble(args[1]);
test(Arrays.asList(ExtendedOperation.values()), x, y);

}

private static void test(Collection<? extends Operation> opSet,
double x, double y) {

for (Operation op : opSet)
System.out.printf("%f %s %f = %f%n",

x, op, y, op.apply(x, y));
}

The resulting code is a bit less complex, and the test method is a bit more flexi-

ble: it allows the caller to combine operations from multiple implementation
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types. On the other hand, you forgo the ability to use EnumSet (Item 32) and

EnumMap (Item 33) on the specified operations, so you are probably better off with

the bounded type token unless you need the flexibility to combine operations of

multiple implementation types.

Both programs above will produce this output when run with command line

arguments 2 and 4:

4.000000 ^ 2.000000 = 16.000000
4.000000 % 2.000000 = 0.000000

A minor disadvantage of the use of interfaces to emulate extensible enums is

that implementations cannot be inherited from one enum type to another. In the

case of our Operation example, the logic to store and retrieve the symbol associ-

ated with an operation is duplicated in BasicOperation and ExtendedOperation.

In this case it doesn’t matter because very little code is duplicated. If there were a

larger amount of shared functionality, you could encapsulate it in a helper class or

a static helper method to eliminate the code duplication.

In summary, while you cannot write an extensible enum type, you can

emulate it by writing an interface to go with a basic enum type that imple-

ments the interface. This allows clients to write their own enums that implement

the interface. These enums can then be used wherever the basic enum type can be

used, assuming APIs are written in terms of the interface.
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Item 35: Prefer annotations to naming patterns

Prior to release 1.5, it was common to use naming patterns to indicate that some

program elements demanded special treatment by a tool or framework. For exam-

ple, the JUnit testing framework originally required its users to designate test

methods by beginning their names with the characters test [Beck04]. This tech-

nique works, but it has several big disadvantages. First, typographical errors may

result in silent failures. For example, suppose you accidentally name a test method

tsetSafetyOverride instead of testSafetyOverride. JUnit will not complain,

but it will not execute the test either, leading to a false sense of security.

A second disadvantage of naming patterns is that there is no way to ensure

that they are used only on appropriate program elements. For example, suppose

you call a class testSafetyMechanisms in hopes that JUnit will automatically

test all of its methods, regardless of their names. Again, JUnit won’t complain, but

it won’t execute the tests either.

A third disadvantage of naming patterns is that they provide no good way to

associate parameter values with program elements. For example, suppose you

want to support a category of test that succeeds only if it throws a particular

exception. The exception type is essentially a parameter of the test. You could

encode the exception type name into the test method name using some elaborate

naming pattern, but this would be ugly and fragile (Item 50). The compiler would

have no way of knowing to check that the string that was supposed to name an

exception actually did. If the named class didn’t exist or wasn’t an exception, you

wouldn’t find out until you tried to run the test.

Annotations [JLS, 9.7] solve all of these problems nicely. Suppose you want

to define an annotation type to designate simple tests that are run automatically

and fail if they throw an exception. Here’s how such an annotation type, named

Test, might look:

// Marker annotation type declaration
import java.lang.annotation.*;

/**
 * Indicates that the annotated method is a test method.
 * Use only on parameterless static methods.
 */
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface Test {
}
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The declaration for the Test annotation type is itself annotated with Reten-

tion and Target annotations. Such annotations on annotation type declarations

are known as meta-annotations. The @Retention(RetentionPolicy.RUNTIME)

meta-annotation indicates that Test annotations should be retained at runtime.

Without it, Test annotations would be invisible to the test tool. The @Tar-

get(ElementType.METHOD) meta-annotation indicates that the Test annotation is

legal only on method declarations: it cannot be applied to class declarations, field

declarations, or other program elements.

Note the comment above the Test annotation declaration that says, “Use only

on parameterless static methods.” It would be nice if the compiler could enforce

this restriction, but it can’t. There are limits to how much error checking the com-

piler can do for you even with annotations. If you put a Test annotation on the

declaration of an instance method or a method with one or more parameters, the

test program will still compile, leaving it to the testing tool to deal with the prob-

lem at runtime.

Here is how the Test annotation looks in practice. It is called a marker anno-

tation, because it has no parameters but simply “marks” the annotated element. If

the programmer were to misspell Test, or to apply the Test annotation to a pro-

gram element other than a method declaration, the program wouldn’t compile:

// Program containing marker annotations
public class Sample {

@Test public static void m1() { }  // Test should pass
public static void m2() { }
@Test public static void m3() {    // Test Should fail

throw new RuntimeException("Boom");
}
public static void m4() { }
@Test public void m5() { } // INVALID USE: nonstatic method
public static void m6() { }
@Test public static void m7() {    // Test should fail

throw new RuntimeException("Crash");
}
public static void m8() { }

}

The Sample class has eight static methods, four of which are annotated as

tests. Two of these, m3 and m7, throw exceptions and two, m1 and m5, do not. But

one of the annotated methods that does not throw an exception, m5, is an instance

method, so it is not a valid use of the annotation. In sum, Sample contains four

tests: one will pass, two will fail, and one is invalid. The four methods that are not

annotated with the Test annotation will be ignored by the testing tool. 
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The Test annotations have no direct effect on the semantics of the Sample

class. They serve only to provide information for use by interested programs.

More generally, annotations never change the semantics of the annotated code, but

enable it for special treatment by tools such as this simple test runner:

// Program to process marker annotations
import java.lang.reflect.*;

public class RunTests {
public static void main(String[] args) throws Exception {

int tests = 0;
int passed = 0;
Class testClass = Class.forName(args[0]);
for (Method m : testClass.getDeclaredMethods()) {

if (m.isAnnotationPresent(Test.class)) {
tests++;
try {

m.invoke(null);
passed++;

} catch (InvocationTargetException wrappedExc) {
Throwable exc = wrappedExc.getCause();
System.out.println(m + " failed: " + exc);

} catch (Exception exc) {
System.out.println("INVALID @Test: " + m);

}
}

}
System.out.printf("Passed: %d, Failed: %d%n",

passed, tests - passed);
}

}

The test runner tool takes a fully qualified class name on the command line

and runs all of the class’s Test-annotated methods reflectively, by calling

Method.invoke. The isAnnotationPresent method tells the tool which methods

to run. If a test method throws an exception, the reflection facility wraps it in an

InvocationTargetException. The tool catches this exception and prints a fail-

ure report containing the original exception thrown by the test method, which is

extracted from the InvocationTargetException with the getCause method. 

If an attempt to invoke a test method by reflection throws any exception other

than InvocationTargetException, it indicates an invalid use of the Test annota-

tion that was not caught at compile time. Such uses include annotation of an

instance method, of a method with one or more parameters, or of an inaccessible

method. The second catch block in the test runner catches these Test usage errors
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and prints an appropriate error message. Here is the output that is printed if Run-

Tests is run on Sample:

public static void Sample.m3() failed: RuntimeException: Boom
INVALID @Test: public void Sample.m5()
public static void Sample.m7() failed: RuntimeException: Crash
Passed: 1, Failed: 3

Now let’s add support for tests that succeed only if they throw a particular

exception. We’ll need a new annotation type for this:

// Annotation type with a parameter
import java.lang.annotation.*;
/**
 * Indicates that the annotated method is a test method that
 * must throw the designated exception to succeed.
 */
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface ExceptionTest {

Class<? extends Exception> value();
}

The type of the parameter for this annotation is Class<? extends Excep-

tion>. This wildcard type is, admittedly, a mouthful. In English, it means “the

Class object for some class that extends Exception,” and it allows the user of the

annotation to specify any exception type. This usage is an example of a bounded

type token (Item 29). Here’s how the annotation looks in practice. Note that class

literals are used as the values for the annotation parameter:

// Program containing annotations with a parameter
public class Sample2 {

@ExceptionTest(ArithmeticException.class)
public static void m1() {  // Test should pass

int i = 0;
i = i / i;

}
@ExceptionTest(ArithmeticException.class)
public static void m2() {  // Should fail (wrong exception)

int[] a = new int[0];
int i = a[1];

}
@ExceptionTest(ArithmeticException.class)
public static void m3() { }  // Should fail (no exception)

}
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Now let’s modify the test runner tool to process the new annotation. Doing so

consists of adding the following code to the main method:

if (m.isAnnotationPresent(ExceptionTest.class)) {
tests++;
try {

m.invoke(null);
System.out.printf("Test %s failed: no exception%n", m);

} catch (InvocationTargetException wrappedEx) {
Throwable exc = wrappedEx.getCause();
Class<? extends Exception> excType =

m.getAnnotation(ExceptionTest.class).value();
if (excType.isInstance(exc)) {

passed++;
} else {

System.out.printf(
"Test %s failed: expected %s, got %s%n",
m, excType.getName(), exc);

}
} catch (Exception exc) {

System.out.println("INVALID @Test: " + m);
}

}

This code is similar to the code we used to process Test annotations, with one

exception: this code extracts the value of the annotation parameter and uses it to

check if the exception thrown by the test is of the right type. There are no explicit

casts, hence no danger of a ClassCastException. That the test program compiled

guarantees that its annotation parameters represent valid exception types, with one

caveat: it is possible that the annotation parameters were valid at compile time but

a class file representing a specified exception type is no longer present at runtime.

In this hopefully rare case, the test runner will throw TypeNotPresentException.

Taking our exception testing example one step further, it is possible to envi-

sion a test that passes if it throws any one of several specified exceptions. The

annotation mechanism has a facility that makes it easy to support this usage. Sup-

pose we change the parameter type of the ExceptionTest annotation to be an

array of Class objects:

// Annotation type with an array parameter
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface ExceptionTest {

Class<? extends Exception>[] value();
}
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The syntax for array parameters in annotations is flexible. It is optimized for

single-element arrays. All of the previous ExceptionTest annotations are still

valid with the new array-parameter version of ExceptionTest and result in sin-

gle-element arrays. To specify a multiple-element array, surround the elements

with curly braces and separate them with commas:

// Code containing an annotation with an array parameter
@ExceptionTest({ IndexOutOfBoundsException.class,

NullPointerException.class })
public static void doublyBad() {

List<String> list = new ArrayList<String>();

// The spec permits this method to throw either
// IndexOutOfBoundsException or NullPointerException
list.addAll(5, null);

}

It is reasonably straightforward to modify the test runner tool to process the

new version of ExceptionTest. This code replaces the original version:

if (m.isAnnotationPresent(ExceptionTest.class)) {
tests++;
try {

m.invoke(null);
System.out.printf("Test %s failed: no exception%n", m);

} catch (Throwable wrappedExc) {
Throwable exc = wrappedExc.getCause();
Class<? extends Exception>[] excTypes =

m.getAnnotation(ExceptionTest.class).value();
int oldPassed = passed;
for (Class<? extends Exception> excType : excTypes) {

if (excType.isInstance(exc)) {
passed++;
break;

}
}
if (passed == oldPassed)

System.out.printf("Test %s failed: %s %n", m, exc);
}

}

The testing framework developed in this item is just a toy, but it clearly dem-

onstrates the superiority of annotations over naming patterns. And it only

scratches the surface of what you can do with annotations. If you write a tool that

requires programmers to add information to source files, define an appropriate set
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of annotation types. There is simply no reason to use naming patterns now that

we have annotations.

That said, with the exception of toolsmiths, most programmers will have no

need to define annotation types. All programmers should, however, use the pre-

defined annotation types provided by the Java platform (Items 36 and Item

24). Also, consider using any annotations provided by your IDE or static analysis

tools. Such annotations can improve the quality of the diagnostic information pro-

vided by these tools. Note, however, that these annotations have yet to be stan-

dardized, so you will have some work to do if you switch tools, or if a standard

emerges.
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Item 36: Consistently use the Override annotation

When annotations were added to the language in release 1.5, several annotation

types were added to the libraries [JLS, 9.6.1]. For the typical programmer, the

most important of these is Override. This annotation can be used only on method

declarations, and it indicates that the annotated method declaration overrides a

declaration in a supertype. If you consistently use this annotation, it will protect

you from a large class of nefarious bugs. Consider this program, in which the class

Bigram represents a bigram, or ordered pair of letters:

// Can you spot the bug?
public class Bigram {

private final char first;
private final char second;
public Bigram(char first, char second) {

this.first  = first;
this.second = second;

}
public boolean equals(Bigram b) {

return b.first == first && b.second == second;
}
public int hashCode() {

return 31 * first + second;
}

public static void main(String[] args) {
Set<Bigram> s = new HashSet<Bigram>();
for (int i = 0; i < 10; i++)

for (char ch = 'a'; ch <= 'z'; ch++)
s.add(new Bigram(ch, ch));

System.out.println(s.size());
}

}

The main program repeatedly adds twenty-six bigrams, each consisting of two

identical lowercase letters, to a set. Then it prints the size of the set. You might

expect the program to print 26, as sets cannot contain duplicates. If you try run-

ning the program, you’ll find that it prints not 26 but 260. What is wrong with it?

Clearly, the author of the Bigram class intended to override the equals

method (Item 8) and even remembered to override hashCode in tandem (Item 9).

Unfortunately, our hapless programmer failed to override equals, overloading it

instead (Item 41). To override Object.equals, you must define an equals

method whose parameter is of type Object, but the parameter of Bigram’s equals
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method is not of type Object, so Bigram inherits the equals method from

Object. This equals method tests for object identity, just like the == operator.

Each of the ten copies of each bigram is distinct from the other nine, so they are

deemed unequal by Object.equals, which explains why the program prints 260.

Luckily, the compiler can help you find this error, but only if you help the

compiler by telling it that you intend to override Object.equals. To do this,

annotate Bigram.equals with @Override, as shown below:

@Override public boolean equals(Bigram b) {
return b.first == first && b.second == second;

}

If you insert this annotation and try to recompile the program, the compiler

will generate an error message like this:

Bigram.java:10: method does not override or implement a method 
from a supertype

@Override public boolean equals(Bigram b) {
^

You will immediately realize what you did wrong, slap yourself on the forehead,

and replace the broken equals implementation with a correct one (Item 8):

@Override public boolean equals(Object o) {
if (!(o instanceof Bigram))

return false;
Bigram b = (Bigram) o;
return b.first == first && b.second == second;

}

Therefore, you should use the Override annotation on every method decla-

ration that you believe to override a superclass declaration. There is one minor

exception to this rule. If you are writing a class that is not labeled abstract, and

you believe that it overrides an abstract method, you needn’t bother putting the

Override annotation on that method. In a class that is not declared abstract, the

compiler will emit an error message if you fail to override an abstract superclass

method. However, you might wish to draw attention to all of the methods in your

class that override superclass methods, in which case you should feel free to anno-

tate these methods too.

Modern IDEs provide another reason to use the Override annotation consis-

tently. Such IDEs have automated checks known as code inspections. If you
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enable the appropriate code inspection, the IDE will generate a warning if you

have a method that doesn’t have an Override annotation but does override a

superclass method. If you use the Override annotation consistently, these warn-

ings will alert you to unintentional overriding. These warnings complement the

compiler’s error messages, which alert you to unintentional failure to override.

Between the IDE and the compiler, you can be sure that you’re overriding meth-

ods everywhere you want to override them and nowhere else.

If you are using release 1.6 or a later release, the Override annotation pro-

vides even more help in finding bugs. In release 1.6, it became legal to use the

Override annotation on method declarations that override declarations from inter-

faces as well as classes. In a concrete class that is declared to implement an inter-

face, you needn’t annotate methods that you believe to override interface methods,

because the compiler will emit an error message if your class fails to implement

every interface method. Again, you may choose to include these annotations sim-

ply to draw attention to interface methods, but it isn’t strictly necessary.

In an abstract class or an interface, however, it is worth annotating all methods

that you believe to override superclass or superinterface methods, whether con-

crete or abstract. For example, the Set interface adds no new methods to the Col-

lection interface, so it should include Override annotations on all of its method

declarations, to ensure that it does not accidentally add any new methods to the

Collection interface.

In summary, the compiler can protect you from a great many errors if you use

the Override annotation on every method declaration that you believe to override

a supertype declaration, with one exception. In concrete classes, you need not

annotate methods that you believe to override abstract method declarations

(though it is not harmful to do so).
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Item 37: Use marker interfaces to define types

A marker interface is an interface that contains no method declarations, but

merely designates (or “marks”) a class that implements the interface as having

some property. For example, consider the Serializable interface (Chapter 11).

By implementing this interface, a class indicates that its instances can be written

to an ObjectOutputStream (or “serialized”).

You may hear it said that marker annotations (Item 35) make marker inter-

faces obsolete. This assertion is incorrect. Marker interfaces have two advantages

over marker annotations. First and foremost, marker interfaces define a type

that is implemented by instances of the marked class; marker annotations do

not. The existence of this type allows you to catch errors at compile time that you

couldn’t catch until runtime if you used a marker annotation.

In the case of the Serializable marker interface, the ObjectOutput-

Stream.write(Object) method will fail if its argument does not implement the

interface. Inexplicably, the authors of the ObjectOutputStream API did not take

advantage of the Serializable interface in declaring the write method. The

method’s argument type should have been Serializable rather than Object. As

it stands, an attempt to call ObjectOutputStream.write on an object that doesn’t

implement Serializable will fail only at runtime, but it didn’t have to be that

way.

Another advantage of marker interfaces over marker annotations is that they

can be targeted more precisely. If an annotation type is declared with target Ele-

mentType.TYPE, it can be applied to any class or interface. Suppose you have a

marker that is applicable only to implementations of a particular interface. If you

define it as a marker interface, you can have it extend the sole interface to which it

is applicable, guaranteeing that all marked types are also subtypes of the sole

interface to which it is applicable.

Arguably, the Set interface is just such a restricted marker interface. It is

applicable only to Collection subtypes, but it adds no methods beyond those

defined by Collection. It is not generally considered to be a marker interface

because it refines the contracts of several Collection methods, including add,

equals, and hashCode. But it is easy to imagine a marker interface that is applica-

ble only to subtypes of some particular interface and does not refine the contracts

of any of the interface’s methods as such. Such a marker interface might describe

some invariant of the entire object or indicate that instances are eligible for pro-

cessing by a method of some other class (in the way that the Serializable inter-

face indicates that instances are eligible for processing by ObjectOutputStream).
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The chief advantage of marker annotations over marker interfaces is that it is

possible to add more information to an annotation type after it is already in use, by

adding one or more annotation type elements with defaults [JLS, 9.6]. What starts

life as a mere marker annotation type can evolve into a richer annotation type over

time. Such evolution is not possible with marker interfaces, as it is not generally

possible to add methods to an interface after it has been implemented (Item 18).

Another advantage of marker annotations is that they are part of the larger

annotation facility. Therefore, marker annotations allow for consistency in frame-

works that permit annotation of a variety of program elements.

So when should you use a marker annotation and when should you use a

marker interface? Clearly you must use an annotation if the marker applies to any

program element other than a class or interface, as only classes and interfaces can

be made to implement or extend an interface. If the marker applies only to classes

and interfaces, ask yourself the question, Might I want to write one or more meth-

ods that accept only objects that have this marking? If so, you should use a marker

interface in preference to an annotation. This will make it possible for you to use

the interface as a parameter type for the methods in question, which will result in

the very real benefit of compile-time type checking.

If you answered no to the first question, ask yourself one more: Do I want to

limit the use of this marker to elements of a particular interface, forever? If so, it

makes sense to define the marker as a subinterface of that interface. If you

answered no to both questions, you should probably use a marker annotation.

In summary, marker interfaces and marker annotations both have their uses. If

you want to define a type that does not have any new methods associated with it, a

marker interface is the way to go. If you want to mark program elements other

than classes and interfaces, to allow for the possibility of adding more information

to the marker in the future, or to fit the marker into a framework that already

makes heavy use of annotation types, then a marker annotation is the correct

choice. If you find yourself writing a marker annotation type whose target is

ElementType.TYPE, take the time to figure out whether it really should be an

annotation type, or whether a marker interface would be more appropriate.

In a sense, this item is the inverse of Item 19, which says, “If you don’t want

to define a type, don’t use an interface.” To a first approximation, this item says,

“If you do want to define a type, do use an interface.”
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C H A P T E R 7
Methods

THIS chapter discusses several aspects of method design: how to treat

parameters and return values, how to design method signatures, and how to

document methods. Much of the material in this chapter applies to constructors as

well as to methods. Like Chapter 5, this chapter focuses on usability, robustness,

and flexibility.

Item 38: Check parameters for validity

Most methods and constructors have some restrictions on what values may be

passed into their parameters. For example, it is not uncommon that index values

must be non-negative and object references must be non-null. You should clearly

document all such restrictions and enforce them with checks at the beginning of

the method body. This is a special case of the general principle that you should

attempt to detect errors as soon as possible after they occur. Failing to do so makes

it less likely that an error will be detected and makes it harder to determine the

source of an error once it has been detected.

If an invalid parameter value is passed to a method and the method checks its

parameters before execution, it will fail quickly and cleanly with an appropriate

exception. If the method fails to check its parameters, several things could happen.

The method could fail with a confusing exception in the midst of processing.

Worse, the method could return normally but silently compute the wrong result.

Worst of all, the method could return normally but leave some object in a compro-

mised state, causing an error at some unrelated point in the code at some undeter-

mined time in the future.

For public methods, use the Javadoc @throws tag to document the exception

that will be thrown if a restriction on parameter values is violated (Item 62). Typi-

cally the exception will be IllegalArgumentException, IndexOutOfBounds-



CHAPTER 7 METHODS182

Exception, or NullPointerException (Item 60). Once you’ve documented the

restrictions on a method’s parameters and you’ve documented the exceptions that

will be thrown if these restrictions are violated, it is a simple matter to enforce the

restrictions. Here’s a typical example:

/**
* Returns a BigInteger whose value is (this mod m).  This method
* differs from the remainder method in that it always returns a
* non-negative BigInteger.
*
* @param  m the modulus, which must be positive
* @return this mod m
* @throws ArithmeticException if m is less than or equal to 0
*/
public BigInteger mod(BigInteger m) {

if (m.signum() <= 0)
throw new ArithmeticException("Modulus <= 0: " + m);

... // Do the computation
}

For an unexported method, you as the package author control the circum-

stances under which the method is called, so you can and should ensure that only

valid parameter values are ever passed in. Therefore, nonpublic methods should

generally check their parameters using assertions, as shown below:

// Private helper function for a recursive sort
private static void sort(long a[], int offset, int length) {

assert a != null;
assert offset >= 0 && offset <= a.length;
assert length >= 0 && length <= a.length - offset;
... // Do the computation

}

In essence, these assertions are claims that the asserted condition will be true,

regardless of how the enclosing package is used by its clients. Unlike normal

validity checks, assertions throw AssertionError if they fail. And unlike normal

validity checks, they have no effect and essentially no cost unless you enable

them, which you do by passing the -ea (or -enableassertions) flag to the java

interpreter. For more information on assertions, see Sun’s tutorial [Asserts].

It is particularly important to check the validity of parameters that are not

used by a method but are stored away for later use. For example, consider the

static factory method on page 95, which takes an int array and returns a List

view of the array. If a client of this method were to pass in null, the method
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would throw a NullPointerException because the method contains an explicit

check. Had the check been omitted, the method would return a reference to a

newly created List instance that would throw a NullPointerException as soon

as a client attempted to use it. By that time, the origin of the List instance might

be difficult to determine, which could greatly complicate the task of debugging.

Constructors represent a special case of the principle that you should check

the validity of parameters that are to be stored away for later use. It is critical to

check the validity of constructor parameters to prevent the construction of an

object that violates its class invariants.

There are exceptions to the rule that you should check a method’s parameters

before performing its computation. An important exception is the case in which

the validity check would be expensive or impractical and the validity check is per-

formed implicitly in the process of doing the computation. For example, consider

a method that sorts a list of objects, such as Collections.sort(List). All of the

objects in the list must be mutually comparable. In the process of sorting the list,

every object in the list will be compared to some other object in the list. If the

objects aren’t mutually comparable, one of these comparisons will throw a Class-

CastException, which is exactly what the sort method should do. Therefore,

there would be little point in checking ahead of time that the elements in the list

were mutually comparable. Note, however, that indiscriminate reliance on implicit

validity checks can result in a loss of failure atomicity (Item 64).

Occasionally, a computation implicitly performs a required validity check but

throws the wrong exception if the check fails. In other words, the exception that

the computation would naturally throw as the result of an invalid parameter value

doesn’t match the exception that the method is documented to throw. Under these

circumstances, you should use the exception translation idiom, described in Item

61, to translate the natural exception into the correct one.

Do not infer from this item that arbitrary restrictions on parameters are a good

thing. On the contrary, you should design methods to be as general as it is practi-

cal to make them. The fewer restrictions that you place on parameters, the better,

assuming the method can do something reasonable with all of the parameter val-

ues that it accepts. Often, however, some restrictions are intrinsic to the abstrac-

tion being implemented.

To summarize, each time you write a method or constructor, you should think

about what restrictions exist on its parameters. You should document these restric-

tions and enforce them with explicit checks at the beginning of the method body.

It is important to get into the habit of doing this. The modest work that it entails

will be paid back with interest the first time a validity check fails.
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Item 39: Make defensive copies when needed

One thing that makes Java such a pleasure to use is that it is a safe language. This

means that in the absence of native methods it is immune to buffer overruns, array

overruns, wild pointers, and other memory corruption errors that plague unsafe

languages such as C and C++. In a safe language, it is possible to write classes and

to know with certainty that their invariants will remain true, no matter what

happens in any other part of the system. This is not possible in languages that treat

all of memory as one giant array.

Even in a safe language, you aren’t insulated from other classes without some

effort on your part. You must program defensively, with the assumption that

clients of your class will do their best to destroy its invariants. This may actu-

ally be true if someone tries to break the security of your system, but more likely

your class will have to cope with unexpected behavior resulting from honest mis-

takes on the part of programmers using your API. Either way, it is worth taking

the time to write classes that are robust in the face of ill-behaved clients.

While it is impossible for another class to modify an object’s internal state

without some assistance from the object, it is surprisingly easy to provide such

assistance without meaning to do so. For example, consider the following class,

which purports to represent an immutable time period:

// Broken "immutable" time period class
public final class Period {

private final Date start;
private final Date end;

/**
* @param  start the beginning of the period
* @param  end the end of the period; must not precede start
* @throws IllegalArgumentException if start is after end
* @throws NullPointerException if start or end is null
*/
public Period(Date start, Date end) {

if (start.compareTo(end) > 0)
throw new IllegalArgumentException(

start + " after " + end);
this.start = start;
this.end   = end;

}

public Date start() {
return start;

}
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public Date end() {
return end;

}

... // Remainder omitted
}

At first glance, this class may appear to be immutable and to enforce the

invariant that the start of a period does not follow its end. It is, however, easy to

violate this invariant by exploiting the fact that Date is mutable:

// Attack the internals of a Period instance
Date start = new Date();
Date end = new Date();
Period p = new Period(start, end);
end.setYear(78);  // Modifies internals of p!

To protect the internals of a Period instance from this sort of attack, it is

essential to make a defensive copy of each mutable parameter to the construc-

tor and to use the copies as components of the Period instance in place of the

originals:

// Repaired constructor - makes defensive copies of parameters
public Period(Date start, Date end) {

this.start = new Date(start.getTime());
this.end   = new Date(end.getTime());

if (this.start.compareTo(this.end) > 0)
throw new IllegalArgumentException(start +" after "+ end);

}

With the new constructor in place, the previous attack will have no effect on

the Period instance. Note that defensive copies are made before checking the

validity of the parameters (Item 38), and the validity check is performed on

the copies rather than on the originals. While this may seem unnatural, it is nec-

essary. It protects the class against changes to the parameters from another thread

during the “window of vulnerability” between the time the parameters are checked

and the time they are copied. (In the computer security community, this is known

as a time-of-check/time-of-use or TOCTOU attack [Viega01].)

Note also that we did not use Date’s clone method to make the defensive cop-

ies. Because Date is nonfinal, the clone method is not guaranteed to return an

object whose class is java.util.Date: it could return an instance of an untrusted
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subclass specifically designed for malicious mischief. Such a subclass could, for

example, record a reference to each instance in a private static list at the time of its

creation and allow the attacker to access this list. This would give the attacker free

reign over all instances. To prevent this sort of attack, do not use the clone

method to make a defensive copy of a parameter whose type is subclassable

by untrusted parties.

While the replacement constructor above successfully defends against the pre-

vious attack, it is still possible to mutate a Period instance, because its accessors

offer access to its mutable internals:

// Second attack on the internals of a Period instance
Date start = new Date();
Date end = new Date();
Period p = new Period(start, end);
p.end().setYear(78);  // Modifies internals of p!

To defend against the second attack, merely modify the accessors to return

defensive copies of mutable internal fields:

// Repaired accessors - make defensive copies of internal fields
public Date start() {

return new Date(start.getTime());
}

public Date end() {
return new Date(end.getTime());

}

With the new constructor and the new accessors in place, Period is truly

immutable. No matter how malicious or incompetent a programmer, there is sim-

ply no way to violate the invariant that the start of a period does not follow its end.

This is true because there is no way for any class other than Period itself to gain

access to either of the mutable fields in a Period instance. These fields are truly

encapsulated within the object.

In the accessors, unlike the constructor, it would be permissible to use the

clone method to make the defensive copies. This is so because we know that the

class of Period’s internal Date objects is java.util.Date, and not some poten-

tially untrusted subclass. That said, you are generally better off using a constructor

or static factory, for reasons outlined in Item 11.

Defensive copying of parameters is not just for immutable classes. Anytime

you write a method or constructor that enters a client-provided object into an
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internal data structure, think about whether the client-provided object is poten-

tially mutable. If it is, think about whether your class could tolerate a change in

the object after it was entered into the data structure. If the answer is no, you must

defensively copy the object and enter the copy into the data structure in place of

the original. For example, if you are considering using a client-provided object

reference as an element in an internal Set instance or as a key in an internal Map

instance, you should be aware that the invariants of the set or map would be

destroyed if the object were modified after it is inserted.

The same is true for defensive copying of internal components prior to return-

ing them to clients. Whether or not your class is immutable, you should think

twice before returning a reference to an internal component that is mutable.

Chances are, you should return a defensive copy. Remember that nonzero-length

arrays are always mutable. Therefore, you should always make a defensive copy

of an internal array before returning it to a client. Alternatively, you could return

an immutable view of the array. Both of these techniques are shown in Item 13.

Arguably, the real lesson in all of this is that you should, where possible, use

immutable objects as components of your objects, so that you that don’t have to

worry about defensive copying (Item 15). In the case of our Period example, it is

worth pointing out that experienced programmers often use the primitive long

returned by Date.getTime() as an internal time representation instead of using a

Date reference. They do this primarily because Date is mutable.

Defensive copying can have a performance penalty associated with it and isn’t

always justified. If a class trusts its caller not to modify an internal component,

perhaps because the class and its client are both part of the same package, then it

may be appropriate to dispense with defensive copying. Under these circum-

stances, the class documentation must make it clear that the caller must not mod-

ify the affected parameters or return values.

Even across package boundaries, it is not always appropriate to make a defen-

sive copy of a mutable parameter before integrating it into an object. There are

some methods and constructors whose invocation indicates an explicit handoff of

the object referenced by a parameter. When invoking such a method, the client

promises that it will no longer modify the object directly. A method or constructor

that expects to take ownership of a client-provided mutable object must make this

clear in its documentation.

Classes containing methods or constructors whose invocation indicates a

transfer of control cannot defend themselves against malicious clients. Such

classes are acceptable only when there is mutual trust between the class and its cli-

ent or when damage to the class’s invariants would harm no one but the client. An
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example of the latter situation is the wrapper class pattern (Item 16). Depending

on the nature of the wrapper class, the client could destroy the class’s invariants by

directly accessing an object after it has been wrapped, but this typically would

harm only the client.

In summary, if a class has mutable components that it gets from or returns to

its clients, the class must defensively copy these components. If the cost of the

copy would be prohibitive and the class trusts its clients not to modify the compo-

nents inappropriately, then the defensive copy may be replaced by documentation

outlining the client’s responsibility not to modify the affected components.
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Item 40: Design method signatures carefully

This item is a grab bag of API design hints that don’t quite deserve items of their

own. Taken together, they’ll help make your API easier to learn and use and less

prone to errors.

Choose method names carefully. Names should always obey the standard

naming conventions (Item 56). Your primary goal should be to choose names that

are understandable and consistent with other names in the same package. Your

secondary goal should be to choose names consistent with the broader consensus,

where it exists. When in doubt, look to the Java library APIs for guidance. While

there are plenty of inconsistencies—inevitable, given the size and scope of these

libraries—there is also a fair amount of consensus.

Don’t go overboard in providing convenience methods. Every method

should “pull its weight.” Too many methods make a class difficult to learn, use,

document, test, and maintain. This is doubly true for interfaces, where too many

methods complicate life for implementors as well as users. For each action sup-

ported by your class or interface, provide a fully functional method. Consider pro-

viding a “shorthand” only if it will be used often. When in doubt, leave it out.

Avoid long parameter lists. Aim for four parameters or fewer. Most pro-

grammers can’t remember longer parameter lists. If many of your methods exceed

this limit, your API won’t be usable without constant reference to its documenta-

tion. Modern IDEs help, but you’re still much better off with short parameter lists.

Long sequences of identically typed parameters are especially harmful. Not

only won’t users be able to remember the order of the parameters, but when they

transpose parameters accidentally, their programs will still compile and run. They

just won’t do what their authors intended.

There are three techniques for shortening overly long parameter lists. One is

to break the method up into multiple methods, each of which requires only a sub-

set of the parameters. If done carelessly, this can lead to too many methods, but it

can also help reduce the method count by increasing orthogonality. For example,

consider the java.util.List interface. It does not provide methods to find the

first or last index of an element in a sublist, both of which would require three

parameters. Instead it provides the subList method, which takes two parameters

and returns a view of a sublist. This method can be combined with the indexOf or

lastIndexOf methods, each of which has a single parameter, to yield the desired

functionality. Moreover, the subList method can be combined with any method

that operates on a List instance to perform arbitrary computations on sublists.

The resulting API has a very high power-to-weight ratio.
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A second technique for shortening long parameter lists is to create helper

classes to hold groups of parameters. Typically these helper classes are static

member classes (Item 22). This technique is recommended if a frequently occur-

ring sequence of parameters is seen to represent some distinct entity. For example,

suppose you are writing a class representing a card game, and you find yourself

constantly passing a sequence of two parameters representing a card’s rank and its

suit. Your API, as well as the internals of your class, would probably benefit if you

added a helper class to represent a card and replaced every occurrence of the

parameter sequence with a single parameter of the helper class.

A third technique that combines aspects of the first two is to adapt the Builder

pattern (Item 2) from object construction to method invocation. If you have a

method with many parameters, especially if some of them are optional, it can be

beneficial to define an object that represents all of the parameters, and to allow the

client to make multiple “setter” calls on this object, each of which sets a single

parameter or a small, related group. Once the desired parameters have been set,

the client invokes the object’s “execute” method, which does any final validity

checks on the parameters and performs the actual computation.

For parameter types, favor interfaces over classes (Item 52). If there is an

appropriate interface to define a parameter, use it in favor of a class that imple-

ments the interface. For example, there is no reason ever to write a method that

takes HashMap on input—use Map instead. This lets you pass in a Hashtable, a

HashMap, a TreeMap, a submap of a TreeMap, or any Map implementation yet to be

written. By using a class instead of an interface, you restrict your client to a partic-

ular implementation and force an unnecessary and potentially expensive copy

operation if the input data happens to exist in some other form.

Prefer two-element enum types to boolean parameters. It makes your code

easier to read and to write, especially if you’re using an IDE that supports autocom-

pletion. Also, it makes it easy to add more options later. For example, you might

have a Thermometer type with a static factory that takes a value of this enum:

public enum TemperatureScale { FAHRENHEIT, CELSIUS }

Not only does Thermometer.newInstance(TemperatureScale.CELSIUS)

make a lot more sense than Thermometer.newInstance(true), but you can add

KELVIN to TemperatureScale in a future release without having to add a new

static factory to Thermometer. Also, you can refactor temperature-scale dependen-

cies into methods on the enum constants (Item 30). For example, each scale con-

stant could have a method that took a double value and normalized it to Celsius.
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Item 41: Use overloading judiciously

The following program is a well-intentioned attempt to classify collections

according to whether they are sets, lists, or some other kind of collection:

// Broken! - What does this program print?
public class CollectionClassifier {

public static String classify(Set<?> s) {
return "Set";

}

public static String classify(List<?> lst) {
return "List";

}

public static String classify(Collection<?> c) {
return "Unknown Collection";

}

public static void main(String[] args) {
Collection<?>[] collections = {

new HashSet<String>(),
new ArrayList<BigInteger>(),
new HashMap<String, String>().values()

};

for (Collection<?> c : collections)
System.out.println(classify(c));

    }
}

You might expect this program to print Set, followed by List and Unknown

Collection, but it doesn’t. It prints Unknown Collection three times. Why does

this happen? Because the classify method is overloaded, and the choice of

which overloading to invoke is made at compile time. For all three iterations of

the loop, the compile-time type of the parameter is the same: Collection<?>. The

runtime type is different in each iteration, but this does not affect the choice of

overloading. Because the compile-time type of the parameter is Collection<?>,

the only applicable overloading is the third one, classify(Collection<?>), and

this overloading is invoked in each iteration of the loop.

The behavior of this program is counterintuitive because selection among

overloaded methods is static, while selection among overridden methods is

dynamic. The correct version of an overridden method is chosen at runtime,
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based on the runtime type of the object on which the method is invoked. As a

reminder, a method is overridden when a subclass contains a method declaration

with the same signature as a method declaration in an ancestor. If an instance

method is overridden in a subclass and this method is invoked on an instance of

the subclass, the subclass’s overriding method executes, regardless of the compile-

time type of the subclass instance. To make this concrete, consider the following

program:

class Wine {
String name() { return "wine"; }

}

class SparklingWine extends Wine {
@Override String name() { return "sparkling wine"; }

}

class Champagne extends SparklingWine {
@Override String name() { return "champagne"; }

}

public class Overriding {
public static void main(String[] args) {

Wine[] wines = {
new Wine(), new SparklingWine(), new Champagne()

};
for (Wine wine : wines)

System.out.println(wine.name());
}

}

The name method is declared in class Wine and overridden in classes Spar-

klingWine and Champagne. As you would expect, this program prints out wine,

sparkling wine, and champagne, even though the compile-time type of the

instance is Wine in each iteration of the loop. The compile-time type of an object

has no effect on which method is executed when an overridden method is invoked;

the “most specific” overriding method always gets executed. Compare this to

overloading, where the runtime type of an object has no effect on which overload-

ing is executed; the selection is made at compile time, based entirely on the com-

pile-time types of the parameters.

In the CollectionClassifier example, the intent of the program was to dis-

cern the type of the parameter by dispatching automatically to the appropriate

method overloading based on the runtime type of the parameter, just as the name

method did in the Wine example. Method overloading simply does not provide this
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functionality. Assuming a static method is required, the best way to fix the pro-

gram is to replace all three overloadings of classify with a single method that

does an explicit instanceof test:

public static String classify(Collection<?> c) {
return c instanceof Set ? "Set" :

c instanceof List ? "List" : "Unknown Collection";
}

Because overriding is the norm and overloading is the exception, overriding

sets people’s expectations for the behavior of method invocation. As demonstrated

by the CollectionClassifier example, overloading can easily confound these

expectations. It is bad practice to write code whose behavior is likely to confuse

programmers. This is especially true for APIs. If the typical user of an API does

not know which of several method overloadings will get invoked for a given set of

parameters, use of the API is likely to result in errors. These errors will likely

manifest themselves as erratic behavior at runtime, and many programmers will

be unable to diagnose them. Therefore you should avoid confusing uses of over-

loading.

Exactly what constitutes a confusing use of overloading is open to some

debate. A safe, conservative policy is never to export two overloadings with

the same number of parameters. If a method uses varargs, a conservative policy

is not to overload it at all, except as described in Item 42. If you adhere to these

restrictions, programmers will never be in doubt as to which overloading applies

to any set of actual parameters. The restrictions are not terribly onerous because

you can always give methods different names instead of overloading them.

For example, consider the class ObjectOutputStream. It has a variant of its

write method for every primitive type and for several reference types. Rather than

overloading the write method, these variants have signatures like writeBool-

ean(boolean), writeInt(int), and writeLong(long). An added benefit of this

naming pattern, when compared to overloading, is that it is possible to provide

read methods with corresponding names, for example, readBoolean(), read-

Int(), and readLong(). The ObjectInputStream class does, in fact, provide

such read methods.

For constructors, you don’t have the option of using different names: multiple

constructors for a class are always overloaded. You do, in many cases, have the

option of exporting static factories instead of constructors (Item 1). Also, with

constructors you don’t have to worry about interactions between overloading and

overriding, because constructors can’t be overridden. You will probably have
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occasion to export multiple constructors with the same number of parameters, so

it pays to know how to do it safely.

Exporting multiple overloadings with the same number of parameters is

unlikely to confuse programmers if it is always clear which overloading will apply

to any given set of actual parameters. This is the case when at least one corre-

sponding formal parameter in each pair of overloadings has a “radically different”

type in the two overloadings. Two types are radically different if it is clearly

impossible to cast an instance of either type to the other. Under these circum-

stances, which overloading applies to a given set of actual parameters is fully

determined by the runtime types of the parameters and cannot be affected by their

compile-time types, so the major source of confusion goes away. For example,

ArrayList has one constructor that takes an int and a second constructor that

takes a Collection. It is hard to imagine any confusion over which of these two

constructors will be invoked under any circumstances. 

Prior to release 1.5, all primitive types were radically different from all refer-

ence types, but this is no longer true in the presence of autoboxing, and it has

caused real trouble. Consider the following program:

public class SetList {
    public static void main(String[] args) {
        Set<Integer> set = new TreeSet<Integer>();
        List<Integer> list = new ArrayList<Integer>();
        
        for (int i = -3; i < 3; i++) {
            set.add(i);
            list.add(i);
        }
        for (int i = 0; i < 3; i++) {
            set.remove(i);
            list.remove(i);
        }
        System.out.println(set + " " + list);
    }
}

The program adds the integers from -3 through 2 to a sorted set and to a list, and

then makes three identical calls to remove on both the set and the list. If you’re

like most people you’d expect the program to remove the non-negative values (0,

1, and 2) from the set and the list, and to print [-3, -2, -1] [-3, -2, -1]. In fact,

the program removes the non-negative values from the set and the odd values from

the list and prints [-3, -2, -1] [-2, 0, 2]. It is an understatement to call this

behavior confusing.
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Here’s what’s happening: The call to set.remove(i) selects the overloading

remove(E), where E is the element type of the set (Integer), and autoboxes i

from int to Integer. This is the behavior you’d expect, so the program ends up

removing the positive values from the set. The call to list.remove(i), on the

other hand, selects the overloading remove(int i), which removes the element at

the specified position from a list. If you start with the list [-3, -2, -1, 0, 1, 2]

and remove the zeroth element, then the first, and then the second, you’re left with

[-2, 0, 2], and the mystery is solved. To fix the problem, cast list.remove’s

argument to Integer, forcing the correct overloading to be selected. Alternatively,

you could invoke Integer.valueOf on i and pass the result to list.remove.

Either way, the program prints [-3, -2, -1] [-3, -2, -1], as expected:

for (int i = 0; i < 3; i++) {
set.remove(i);
list.remove((Integer) i); // or remove(Integer.valueOf(i))

}

The confusing behavior demonstrated by the previous example came about

because the List<E> interface has two overloadings of the remove method:

remove(E) and remove(int). Prior to release 1.5 when it was “generified,” the

List interface had a remove(Object) method in place of remove(E), and the cor-

responding parameter types, Object and int, were radically different. But in the

presence of generics and autoboxing, the two parameter types are no longer radi-

cally different. In other words, adding generics and autoboxing to the language

damaged the List interface. Luckily, few if any other APIs in the Java libraries

were similarly damaged, but this tale makes it clear that it is even more important

to overload with care now that autoboxing and generics are part of the language.

Array types and classes other than Object are radically different. Also, array

types and interfaces other than Serializable and Cloneable are radically differ-

ent. Two distinct classes are said to be unrelated if neither class is a descendant of

the other [JLS, 5.5]. For example, String and Throwable are unrelated. It is

impossible for any object to be an instance of two unrelated classes, so unrelated

classes are radically different.

There are other pairs of types that can’t be converted in either direction [JLS,

5.1.12], but once you go beyond the simple cases described above, it becomes very

difficult for most programmers to discern which, if any, overloading applies to a

set of actual parameters. The rules that determine which overloading is selected

are extremely complex. They take up thirty-three pages in the language specifica-

tion [JLS, 15.12.1-3], and few programmers understand all of their subtleties.
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There may be times when you feel the need to violate the guidelines in this

item, especially when evolving existing classes. For example, the String class has

had a contentEquals(StringBuffer) method since release 1.4. In release 1.5, a

new interface called CharSequence was added to provide a common interface for

StringBuffer, StringBuilder, String, CharBuffer, and other similar types, all

of which were retrofitted to implement this interface. At the same time that

CharSequence was added to the platform, String was outfitted with an overload-

ing of the contentEquals method that takes a CharSequence.

While the resulting overloading clearly violates the guidelines in this item, it

causes no harm as long as both overloaded methods always do exactly the same

thing when they are invoked on the same object reference. The programmer may

not know which overloading will be invoked, but it is of no consequence so long

as they behave identically. The standard way to ensure this behavior is to have the

more specific overloading forward to the more general:

public boolean contentEquals(StringBuffer sb) {
    return contentEquals((CharSequence) sb);
}

While the Java platform libraries largely adhere to the spirit of the advice in

this item, there are a number of classes that violate it. For example, the String

class exports two overloaded static factory methods, valueOf(char[]) and val-

ueOf(Object), that do completely different things when passed the same object

reference. There is no real justification for this, and it should be regarded as an

anomaly with the potential for real confusion.

To summarize, just because you can overload methods doesn’t mean you

should. You should generally refrain from overloading methods with multiple sig-

natures that have the same number of parameters. In some cases, especially where

constructors are involved, it may be impossible to follow this advice. In that case,

you should at least avoid situations where the same set of parameters can be

passed to different overloadings by the addition of casts. If such a situation cannot

be avoided, for example, because you are retrofitting an existing class to imple-

ment a new interface, you should ensure that all overloadings behave identically

when passed the same parameters. If you fail to do this, programmers will be hard

pressed to make effective use of the overloaded method or constructor, and they

won’t understand why it doesn’t work.
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Item 42: Use varargs judiciously

In release 1.5, varargs methods, formally known as variable arity methods [JLS,

8.4.1], were added to the language. Varargs methods accept zero or more

arguments of a specified type. The varargs facility works by first creating an array

whose size is the number of arguments passed at the call site, then putting the

argument values into the array, and finally passing the array to the method. 

For example, here is a varargs method that takes a sequence of int arguments

and returns their sum. As you would expect, the value of sum(1, 2, 3) is 6, and

the value of sum() is 0:

// Simple use of varargs
static int sum(int... args) {

int sum = 0;
for (int arg : args)

sum += arg;
return sum;

}

Sometimes it’s appropriate to write a method that requires one or more argu-

ments of some type, rather than zero or more. For example, suppose you want to

compute the minimum of a number of int arguments. This function is not well

defined if the client passes no arguments. You could check the array length at runt-

ime:

// The WRONG way to use varargs to pass one or more arguments!
static int min(int... args) {

if (args.length == 0)
throw new IllegalArgumentException("Too few arguments");

int min = args[0];
for (int i = 1; i < args.length; i++)

if (args[i] < min)
min = args[i];

return min;
}

This solution has several problems. The most serious is that if the client

invokes this method with no arguments, it fails at runtime rather than compile

time. Another problem is that it is ugly. You have to include an explicit validity

check on args, and you can’t use a for-each loop unless you initialize min to

Integer.MAX_VALUE, which is also ugly. 
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Luckily there’s a much better way to achieve the desired effect. Declare the

method to take two parameters, one normal parameter of the specified type and

one varargs parameter of this type. This solution corrects all the deficiencies of the

previous one:

// The right way to use varargs to pass one or more arguments
static int min(int firstArg, int... remainingArgs) {

int min = firstArg;
for (int arg : remainingArgs)

if (arg < min)
min = arg;

return min;
}

As you can see from this example, varargs are effective in circumstances

where you really do want a method with a variable number of arguments. Varargs

were designed for printf, which was added to the platform in release 1.5, and for

the core reflection facility (Item 53), which was retrofitted to take advantage of

varargs in that release. Both printf and reflection benefit enormously from

varargs.

You can retrofit an existing method that takes an array as its final parameter to

take a varargs parameter instead with no effect on existing clients. But just

because you can doesn’t mean that you should! Consider the case of

Arrays.asList. This method was never designed to gather multiple arguments

into a list, but it seemed like a good idea to retrofit it to do so when varargs were

added to the platform. As a result, it became possible to do things like this:

List<String> homophones = Arrays.asList("to", "too", "two");

This usage works, but it was a big mistake to enable it. Prior to release 1.5,

this was a common idiom to print the contents of an array:

// Obsolete idiom to print an array!
System.out.println(Arrays.asList(myArray));

The idiom was necessary because arrays inherit their toString implementation

from Object, so calling toString directly on an array produces a useless string

such as [Ljava.lang.Integer;@3e25a5. The idiom worked only on arrays of
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object reference types, but if you accidentally tried it on an array of primitives, the

program wouldn’t compile. For example, this program:

public static void main(String[] args) {
int[] digits = { 3, 1, 4, 1, 5, 9, 2, 6, 5, 4 };
System.out.println(Arrays.asList(digits));

}

would generate this error message in release 1.4:

Va.java:6: asList(Object[]) in Arrays can't be applied to (int[])
System.out.println(Arrays.asList(digits));

                                 ^

Because of the unfortunate decision to retrofit Arrays.asList as a varargs

method in release 1.5, this program now compiles without error or warning. Run-

ning the program, however, produces output that is both unintended and useless:

[[I@3e25a5]. The Arrays.asList method, now “enhanced” to use varargs, gath-

ers up the object reference to the int array digits into a one-element array of

arrays and dutifully wraps it into a List<int[]> instance. Printing this list causes

toString to be invoked on the list, which in turn causes toString to be invoked

on its sole element, the int array, with the unfortunate result described above.

On the bright side, the Arrays.asList idiom for translating arrays to strings

is now obsolete, and the current idiom is far more robust. Also in release 1.5, the

Arrays class was given a full complement of Arrays.toString methods (not

varargs methods!) designed specifically to translate arrays of any type into strings.

If you use Arrays.toString in place of Arrays.asList, the program produces

the intended result:

// The right way to print an array
System.out.println(Arrays.toString(myArray));

Instead of retrofitting Arrays.asList, it would have been better to add a new

method to Collections specifically for the purpose of gathering its arguments

into a list:

public static <T> List<T> gather(T... args) {
return Arrays.asList(args);

}
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Such a method would have provided the capability to gather without

compromising the type-checking of the existing Arrays.asList method.

The lesson is clear. Don’t retrofit every method that has a final array

parameter; use varargs only when a call really operates on a variable-length

sequence of values.

Two method signatures are particularly suspect:

ReturnType1 suspect1(Object... args) { }
<T> ReturnType2 suspect2(T... args) { }

Methods with either of these signatures will accept any parameter list. Any

compile-time type-checking that you had prior to the retrofit will be lost, as

demonstrated by what happened to Arrays.asList.

Exercise care when using the varargs facility in performance-critical situa-

tions. Every invocation of a varargs method causes an array allocation and initial-

ization. If you have determined empirically that you can’t afford this cost but you

need the flexibility of varargs, there is a pattern that lets you have your cake and

eat it too. Suppose you’ve determined that 95 percent of the calls to a method have

three or fewer parameters. Then declare five overloadings of the method, one each

with zero through three ordinary parameters, and a single varargs method for use

when the number of arguments exceeds three:

public void foo() { }
public void foo(int a1) { }
public void foo(int a1, int a2) { }
public void foo(int a1, int a2, int a3) { }
public void foo(int a1, int a2, int a3, int... rest) { }

Now you know that you’ll pay the cost of the array creation only in the 5 percent

of all invocations where the number of parameters exceeds three. Like most

performance optimizations, this technique usually isn’t appropriate, but when it is,

it’s a lifesaver.

The EnumSet class uses this technique for its static factories to reduce the cost

of creating enum sets to a bare minimum. It was appropriate to do this because it

was critical that enum sets provide performance-competitive replacements for bit

fields (Item 32).

In summary, varargs methods are a convenient way to define methods that

require a variable number of arguments, but they should not be overused. They

can produce confusing results if used inappropriately.
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Item 43: Return empty arrays or collections, not nulls

It is not uncommon to see methods that look something like this:

private final List<Cheese> cheesesInStock = ...;

/**
 * @return an array containing all of the cheeses in the shop,
 * or null if no cheeses are available for purchase.
 */
public Cheese[] getCheeses() {

if (cheesesInStock.size() == 0)
return null;

...
}

There is no reason to make a special case for the situation where no cheeses

are available for purchase. Doing so requires extra code in the client to handle the

null return value, for example:

Cheese[] cheeses = shop.getCheeses();
if (cheeses != null &&

Arrays.asList(cheeses).contains(Cheese.STILTON))
System.out.println("Jolly good, just the thing.");

instead of:

if (Arrays.asList(shop.getCheeses()).contains(Cheese.STILTON))
System.out.println("Jolly good, just the thing.");

This sort of circumlocution is required in nearly every use of a method that

returns null in place of an empty (zero-length) array or collection. It is error-

prone, because the programmer writing the client might forget to write the special-

case code to handle a null return. Such an error may go unnoticed for years, as

such methods usually return one or more objects. Less significant, but still worthy

of note, returning null in place of an empty array also complicates the method

that returns the array or collection.

It is sometimes argued that a null return value is preferable to an empty array

because it avoids the expense of allocating the array. This argument fails on two

counts. First, it is inadvisable to worry about performance at this level unless pro-

filing has shown that the method in question is a real contributor to performance

problems (Item 55). Second, it is possible to return the same zero-length array
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from every invocation that returns no items because zero-length arrays are immu-

table and immutable objects may be shared freely (Item 15). In fact, this is exactly

what happens when you use the standard idiom for dumping items from a collec-

tion into a typed array:

// The right way to return an array from a collection
private final List<Cheese> cheesesInStock = ...;

private static final Cheese[] EMPTY_CHEESE_ARRAY = new Cheese[0];

/**
* @return an array containing all of the cheeses in the shop.
*/
public Cheese[] getCheeses() {

return cheesesInStock.toArray(EMPTY_CHEESE_ARRAY);
}

In this idiom, an empty-array constant is passed to the toArray method to

indicate the desired return type. Normally the toArray method allocates the

returned array, but if the collection is empty, it fits in the zero-length input array,

and the specification for Collection.toArray(T[]) guarantees that the input

array will be returned if it is large enough to hold the collection. Therefore the

idiom never allocates an empty array.

In similar fashion, a collection-valued method can be made to return the same

immutable empty collection every time it needs to return an empty collection. The

Collections.emptySet, emptyList, and emptyMap methods provide exactly

what you need, as shown below:

// The right way to return a copy of a collection
public List<Cheese> getCheeseList() {
  if (cheesesInStock.isEmpty())
    return Collections.emptyList(); // Always returns same list
  else
    return new ArrayList<Cheese>(cheesesInStock);
}

In summary, there is no reason ever to return null from an array- or

collection-valued method instead of returning an empty array or collection.

The null-return idiom is likely a holdover from the C programming language, in

which array lengths are returned separately from actual arrays. In C, there is no

advantage to allocating an array if zero is returned as the length.



ITEM 44: WRITE DOC COMMENTS FOR ALL EXPOSED API ELEMENTS 203

Item 44: Write doc comments for all exposed API elements

If an API is to be usable, it must be documented. Traditionally API documentation

was generated manually, and keeping it in sync with code was a chore. The Java

programming environment eases this task with the Javadoc utility. Javadoc

generates API documentation automatically from source code with specially

formatted documentation comments, more commonly known as doc comments.

If you are not familiar with the doc comment conventions, you should learn

them. While these conventions are not officially part of the language, they consti-

tute a de facto API that every programmer should know. These conventions are

described on Sun’s How to Write Doc Comments Web page [Javadoc-guide].

While this page has not been updated since release 1.4, it is still an invaluable

resource. Two important Javadoc tags were added to Javadoc in release 1.5,

{@literal} and {@code} [Javadoc-5.0]. These tags are discussed in this item.

To document your API properly, you must precede every exported class,

interface, constructor, method, and field declaration with a doc comment. If a

class is serializable, you should also document its serialized form (Item 75). In the

absence of a doc comment, the best that Javadoc can do is to reproduce the decla-

ration as the sole documentation for the affected API element. It is frustrating and

error-prone to use an API with missing documentation comments. To write main-

tainable code, you should also write doc comments for most unexported classes,

interfaces, constructors, methods, and fields.

The doc comment for a method should describe succinctly the contract

between the method and its client. With the exception of methods in classes

designed for inheritance (Item 17), the contract should say what the method does

rather than how it does its job. The doc comment should enumerate all of the

method’s preconditions, which are the things that have to be true in order for a cli-

ent to invoke it, and its postconditions, which are the things that will be true after

the invocation has completed successfully. Typically, preconditions are described

implicitly by the @throws tags for unchecked exceptions; each unchecked excep-

tion corresponds to a precondition violation. Also, preconditions can be specified

along with the affected parameters in their @param tags.

In addition to preconditions and postconditions, methods should document

any side effects. A side effect is an observable change in the state of the system

that is not obviously required in order to achieve the postcondition. For example,

if a method starts a background thread, the documentation should make note of it.

Finally, documentation comments should describe the thread safety of a class or

method, as discussed in Item 70.
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To describe a method’s contract fully, the doc comment should have an

@param tag for every parameter, an @return tag unless the method has a void

return type, and an @throws tag for every exception thrown by the method,

whether checked or unchecked (Item 62). By convention, the text following an

@param tag or @return tag should be a noun phrase describing the value repre-

sented by the parameter or return value. The text following an @throws tag

should consist of the word “if,” followed by a clause describing the conditions

under which the exception is thrown. Occasionally, arithmetic expressions are

used in place of noun phrases. By convention, the phrase or clause following an

@param, @return, or @throws tag is not terminated by a period. All of these con-

ventions are illustrated by the following short doc comment:

/**
* Returns the element at the specified position in this list.
*
* <p>This method is <i>not</i> guaranteed to run in constant
* time. In some implementations it may run in time proportional
* to the element position.
*
* @param index index of element to return; must be
* non-negative and less than the size of this list
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= this.size()})
*/
E get(int index);

Notice the use of HTML tags in this doc comment (<p> and <i>). The Javadoc

utility translates doc comments into HTML, and arbitrary HTML elements in doc

comments end up in the resulting HTML document. Occasionally, programmers

go so far as to embed HTML tables in their doc comments, although this is rare.

Also notice the use of the Javadoc {@code} tag around the code fragment in

the @throws clause. This serves two purposes: it causes the code fragment to be

rendered in code font, and it suppresses processing of HTML markup and nested

Javadoc tags in the code fragment. The latter property is what allows us to use the

less-than sign (<) in the code fragment even though it’s an HTML metacharacter.

Prior to release 1.5, code fragments were included in doc comments by using

HTML tags and HTML escapes. It is no longer necessary to use the HTML

<code> or <tt> tags in doc comments: the Javadoc {@code} tag is preferable

because it eliminates the need to escape HTML metacharacters. To include a

multiline code example in a doc comment, use a Javadoc {@code} tag wrapped
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inside an HTML <pre> tag. In other words, precede the multiline code example

with the characters <pre>{@code and follow it with the characters }</pre>.

Finally, notice the use of the word “this” in the doc comment. By convention,

the word “this” always refers to the object on which the method is invoked when it

is used in the doc comment for an instance method.

Don’t forget that you must take special action to generate documentation con-

taining HTML metacharacters, such as the less-than sign (<), the greater-than sign

(>), and the ampersand (&). The best way to get these characters into documenta-

tion is to surround them with the {@literal} tag, which suppress processing of

HTML markup and nested Javadoc tags. It is like the {@code} tag, except that it

doesn’t render the text in code font. For example, this Javadoc fragment:

* The triangle inequality is {@literal |x + y| < |x| + |y|}.

produces the documentation: “The triangle inequality is |x + y| < |x| + |y|.” The

{@literal} tag could have been placed around just the less-than sign rather than

the entire inequality with the same resulting documentation, but the doc comment

would have been less readable in the source code. This illustrates the general

principle that doc comments should be readable in both the source code and in the

generated documentation. If you can’t achieve both, generated documentation

readability trumps source code readability.

The first “sentence” of each doc comment (as defined below) becomes the

summary description of the element to which the comment pertains. For example,

the summary description in the doc comment on page 204 is “Returns the element

at the specified position in this list.” The summary description must stand on its

own to describe the functionality of the element it summarizes. To avoid confu-

sion, no two members or constructors in a class or interface should have the

same summary description. Pay particular attention to overloadings, for which it

is often natural to use the same first sentence in a prose description (but unaccept-

able in doc comments).

Be careful if the intended summary description contains a period, because the

period can prematurely terminate the description. For example, a doc comment

that begins with the phrase “A college degree, such as B.S., M.S. or Ph.D.”

will result in the summary description “A college degree, such as B.S., M.S.” The

problem is that the summary description ends at the first period that is followed by

a space, tab, or line terminator (or at the first block tag) [Javadoc-ref]. In this case,

the second period in the abbreviation “M.S.” is followed by a space. The best solu-

tion is to surround the offending period and any associated text with a {@literal}

tag, so the period is no longer followed by a space in the source code:
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/**
 * A college degree, such as B.S., {@literal M.S.} or Ph.D.
 * College is a fountain of knowledge where many go to drink.
 */
public class Degree { ... }

It is somewhat misleading to say that the summary description is the first sen-

tence in a doc comment. Convention dictates that it should seldom be a complete

sentence. For methods and constructors, the summary description should be a full

verb phrase (including any object) describing the action performed by the method.

For example,

• ArrayList(int initialCapacity)—Constructs an empty list with the spec-

ified initial capacity.

• Collection.size()—Returns the number of elements in this collection.

For classes, interfaces, and fields, the summary description should be a noun

phrase describing the thing represented by an instance of the class or interface or

by the field itself. For example,

• TimerTask—A task that can be scheduled for one-time or repeated execution

by a Timer.

• Math.PI—The double value that is closer than any other to pi, the ratio of the

circumference of a circle to its diameter.

Three features added to the language in release 1.5 require special care in doc

comments: generics, enums, and annotations. When documenting a generic type

or method, be sure to document all type parameters:

/**
 * An object that maps keys to values.  A map cannot contain
 * duplicate keys; each key can map to at most one value.
 *
 * (Remainder omitted)
 *
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 */
public interface Map<K, V> {
    ... // Remainder omitted
}
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When documenting an enum type, be sure to document the constants as

well as the type and any public methods. Note that you can put an entire doc com-

ment on one line if it’s short:

/**
 * An instrument section of a symphony orchestra.
 */
public enum OrchestraSection {
    /** Woodwinds, such as flute, clarinet, and oboe. */
    WOODWIND,

    /** Brass instruments, such as french horn and trumpet. */
    BRASS,

    /** Percussion instruments, such as timpani and cymbals */
    PERCUSSION,

    /** Stringed instruments, such as violin and cello. */
    STRING;
}

When documenting an annotation type, be sure to document any mem-

bers as well as the type itself. Document members with noun phrases, as if they

were fields. For the summary description of the type, use a verb phrase that says

what it means when a program element has an annotation of this type:

/**
 * Indicates that the annotated method is a test method that
 * must throw the designated exception to succeed.
 */
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface ExceptionTest {
    /**
     * The exception that the annotated test method must throw
     * in order to pass. (The test is permitted to throw any
     * subtype of the type described by this class object.)
     */
    Class<? extends Exception> value();
}

As of release 1.5, package-level doc comments should be placed in a file

called package-info.java instead of package.html. In addition to package-

level doc comments, package-info.java can (but is not required to) contain a

package declaration and package annotations.
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Two aspects of a class’s exported API that are often neglected are thread-

safety and serializability. Whether or not a class is thread-safe, you should docu-

ment its thread-safety level, as described in Item 70. If a class is serializable, you

should document its serialized form, as described in Item 75.

Javadoc has the ability to “inherit” method comments. If an API element does

not have a doc comment, Javadoc searches for the most specific applicable doc

comment, giving preference to interfaces over superclasses. The details of the

search algorithm can be found in The Javadoc Reference Guide [Javadoc-ref]. You

can also inherit parts of doc comments from supertypes using the {@inheritDoc}

tag. This means, among other things, that classes can reuse doc comments from

interfaces they implement, rather than copying these comments. This facility has

the potential to reduce the burden of maintaining multiple sets of nearly identical

doc comments, but it is tricky to use and has some limitations. The details are

beyond the scope of this book.

A simple way to reduce the likelihood of errors in documentation comments is

to run the HTML files generated by Javadoc through an HTML validity checker.

This will detect many incorrect uses of HTML tags, as well as HTML metacharac-

ters that should have been escaped. Several HTML validity checkers are available

for download and you can validate HTML online [W3C-validator].

One caveat should be added concerning documentation comments. While it is

necessary to provide documentation comments for all exported API elements, it is

not always sufficient. For complex APIs consisting of multiple interrelated

classes, it is often necessary to supplement the documentation comments with an

external document describing the overall architecture of the API. If such a docu-

ment exists, the relevant class or package documentation comments should

include a link to it.

The conventions described in this item cover the basics. The definitive guide

to writing doc comments is Sun’s How to Write Doc Comments [Javadoc-guide].

There are IDE plug-ins that check for adherence to many of these rules [Burn01].

To summarize, documentation comments are the best, most effective way to

document your API. Their use should be considered mandatory for all exported

API elements. Adopt a consistent style that adheres to standard conventions.

Remember that arbitrary HTML is permissible within documentation comments

and that HTML metacharacters must be escaped.
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C H A P T E R 8
General Programming

THIS chapter is largely devoted to the nuts and bolts of the language. It dis-

cusses the treatment of local variables, control structures, the use of libraries, the

use of various data types, and the use of two extralinguistic facilities: reflection

and native methods. Finally, it discusses optimization and naming conventions.

Item 45: Minimize the scope of local variables

This item is similar in nature to Item 13, “Minimize the accessibility of classes

and members.” By minimizing the scope of local variables, you increase the read-

ability and maintainability of your code and reduce the likelihood of error.

Older programming languages, such as C, mandated that local variables must

be declared at the head of a block, and some programmers continue to do this out

of habit. It’s a habit worth breaking. As a gentle reminder, Java lets you declare

variables anywhere a statement is legal.

The most powerful technique for minimizing the scope of a local variable

is to declare it where it is first used. If a variable is declared before it is used, it’s

just clutter—one more thing to distract the reader who is trying to figure out what

the program does. By the time the variable is used, the reader might not remember

the variable’s type or initial value.

Declaring a local variable prematurely can cause its scope not only to extend

too early, but also to end too late. The scope of a local variable extends from the

point where it is declared to the end of the enclosing block. If a variable is

declared outside of the block in which it is used, it remains visible after the pro-

gram exits that block. If a variable is used accidentally before or after its region of

intended use, the consequences can be disastrous.

Nearly every local variable declaration should contain an initializer. If

you don’t yet have enough information to initialize a variable sensibly, you should



CHAPTER 8 GENERAL PROGRAMMING210

postpone the declaration until you do. One exception to this rule concerns try-

catch statements. If a variable is initialized by a method that throws a checked

exception, it must be initialized inside a try block. If the value must be used

outside of the try block, then it must be declared before the try block, where it

cannot yet be “sensibly initialized.” For example, see page 231.

Loops present a special opportunity to minimize the scope of variables. The

for loop, in both its traditional and for-each forms, allows you to declare loop

variables, limiting their scope to the exact region where they’re needed. (This

region consists of the body of the loop as well as the initialization, test, and update

preceding the body.) Therefore, prefer for loops to while loops, assuming the

contents of the loop variable aren’t needed after the loop terminates.

For example, here is the preferred idiom for iterating over a collection (Item 46):

// Preferred idiom for iterating over a collection
for (Element e : c) {

doSomething(e);
}

Before release 1.5, this was the preferred idiom (and it still has valid uses):

// No for-each loop or generics before release 1.5
for (Iterator i = c.iterator(); i.hasNext(); ) {

doSomething((Element) i.next());
}

To see why these for loops are preferable to a while loop, consider the following

code fragment, which contains two while loops and one bug:

Iterator<Element> i = c.iterator();
while (i.hasNext()) {

doSomething(i.next());
}
...

Iterator<Element> i2 = c2.iterator();
while (i.hasNext()) { // BUG!

doSomethingElse(i2.next());
}

The second loop contains a cut-and-paste error: it initializes a new loop variable,

i2, but uses the old one, i, which is, unfortunately, still in scope. The resulting

code compiles without error and runs without throwing an exception, but it does

the wrong thing. Instead of iterating over c2, the second loop terminates immedi-
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ately, giving the false impression that c2 is empty. Because the program errs

silently, the error can remain undetected for a long time.

If a similar cut-and-paste error were made in conjunction with either of the

for loops (for-each or traditional), the resulting code wouldn’t even compile. The

element (or iterator) variable from the first loop would not be in scope at the point

where the second loop occurred. Here’s how it looks for the traditional for loop:

for (Iterator<Element> i = c.iterator(); i.hasNext(); ) {
doSomething(i.next());

}
    ...

// Compile-time error - cannot find symbol i
for (Iterator<Element> i2 = c2.iterator(); i.hasNext(); ) {

doSomething(i2.next());
}

Moreover, if you use a for loop, it’s much less likely that you’ll make the cut-

and-paste error, as there’s no incentive to use different variable names in the two

loops. The loops are completely independent, so there’s no harm in reusing the

element (or iterator) variable name. In fact, it’s often stylish to do so. 

The for loop has one more advantage over the while loop: it is shorter, which

enhances readability.

Here is another loop idiom that minimizes the scope of local variables:

for (int i = 0, n = expensiveComputation(); i < n; i++) {
doSomething(i);

}

The important thing to notice about this idiom is that it has two loop variables, i

and n, both of which have exactly the right scope. The second variable, n, is used

to store the limit of the first, thus avoiding the cost of a redundant computation on

every iteration. As a rule, you should use this idiom if the loop test involves a

method invocation that is guaranteed to return the same result on each iteration.

A final technique to minimize the scope of local variables is to keep methods

small and focused. If you combine two activities in the same method, local vari-

ables relevant to one activity may be in the scope of the code performing the other

activity. To prevent this from happening, simply separate the method into two: one

for each activity.
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Item 46: Prefer for-each loops to traditional for loops

Prior to release 1.5, this was the preferred idiom for iterating over a collection:

// No longer the preferred idiom to iterate over a collection!
for (Iterator i = c.iterator(); i.hasNext(); ) {

doSomething((Element) i.next()); // (No generics before 1.5)
}

This was the preferred idiom for iterating over an array:

// No longer the preferred idiom to iterate over an array!
for (int i = 0; i < a.length; i++) {

doSomething(a[i]);
}

These idioms are better than while loops (Item 45), but they aren’t perfect. The

iterator and the index variables are both just clutter. Furthermore, they represent

opportunities for error. The iterator and the index variable occur three times in

each loop, which gives you two chances to get them wrong. If you do, there is no

guarantee that the compiler will catch the problem.

The for-each loop, introduced in release 1.5, gets rid of the clutter and the

opportunity for error by hiding the iterator or index variable completely. The

resulting idiom applies equally to collections and arrays:

// The preferred idiom for iterating over collections and arrays
for (Element e : elements) {

doSomething(e);
}

When you see the colon (:), read it as “in.” Thus, the loop above reads as “for

each element e in elements.” Note that there is no performance penalty for using

the for-each loop, even for arrays. In fact, it may offer a slight performance advan-

tage over an ordinary for loop in some circumstances, as it computes the limit of

the array index only once. While you can do this by hand (Item 45), programmers

don’t always do so.

The advantages of the for-each loop over the traditional for loop are even

greater when it comes to nested iteration over multiple collections. Here is a com-

mon mistake that people make when they try to do nested iteration over two col-

lections:
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// Can you spot the bug?
enum Suit { CLUB, DIAMOND, HEART, SPADE }
enum Rank { ACE, DEUCE, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,
            NINE, TEN, JACK, QUEEN, KING }
...
Collection<Suit> suits = Arrays.asList(Suit.values());
Collection<Rank> ranks = Arrays.asList(Rank.values());

List<Card> deck = new ArrayList<Card>();
for (Iterator<Suit> i = suits.iterator(); i.hasNext(); )

for (Iterator<Rank> j = ranks.iterator(); j.hasNext(); )
deck.add(new Card(i.next(), j.next()));

Don’t feel bad if you didn’t spot the bug. Many expert programmers have

made this mistake at one time or another. The problem is that the next method is

called too many times on the iterator for the outer collection (suits). It should be

called from the outer loop, so that it is called once per suit, but instead it is called

from the inner loop, so it is called once per card. After you run out of suits, the

loop throws a NoSuchElementException.

If you’re really unlucky and the size of the outer collection is a multiple of the

size of the inner collection—perhaps because they’re the same collection—the

loop will terminate normally, but it won’t do what you want. For example, con-

sider this ill-conceived attempt to print all of the possible rolls of a pair of dice:

// Same bug, different symptom!
enum Face { ONE, TWO, THREE, FOUR, FIVE, SIX }
...
Collection<Face> faces = Arrays.asList(Face.values());

for (Iterator<Face> i = faces.iterator(); i.hasNext(); )
for (Iterator<Face> j = faces.iterator(); j.hasNext(); )

System.out.println(i.next() + " " + j.next());

This program doesn’t throw an exception but it prints only the six “doubles” (from

“ONE ONE” to “SIX SIX”), instead of the expected thirty-six combinations.

To fix the bugs in these examples, you must add a variable in the scope of the

outer loop to hold the outer element:

// Fixed, but ugly - you can do better!
for (Iterator<Suit> i = suits.iterator(); i.hasNext(); ) {

Suit suit = i.next();
for (Iterator<Rank> j = ranks.iterator(); j.hasNext(); )

deck.add(new Card(suit, j.next()));
}
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If instead you use a nested for-each loop, the problem simply disappears. The

resulting code is as succinct as you could wish for:

// Preferred idiom for nested iteration on collections and arrays
for (Suit suit : suits)

for (Rank rank : ranks)
deck.add(new Card(suit, rank));

Not only does the for-each loop let you iterate over collections and arrays, it

lets you iterate over any object that implements the Iterable interface. This sim-

ple interface, which consists of a single method, was added to the platform at the

same time as the for-each loop. Here is how it looks:

public interface Iterable<E> {
// Returns an iterator over the elements in this iterable
Iterator<E> iterator();

}

It is not hard to implement the Iterable interface. If you are writing a type

that represents a group of elements, have it implement Iterable even if you

choose not to have it implement Collection. This will allow your users to iterate

over your type using the for-each loop, and they will be forever grateful.

In summary, the for-each loop provides compelling advantages over the tradi-

tional for loop in clarity and bug prevention, with no performance penalty. You

should use it wherever you can. Unfortunately, there are three common situations

where you can’t use a for-each loop:

1. Filtering—If you need to traverse a collection and remove selected elements,

then you need to use an explicit iterator so that you can call its remove method.

2. Transforming—If you need to traverse a list or array and replace some or all

of the values of its elements, then you need the list iterator or array index in

order to set the value of an element.

3. Parallel iteration—If you need to traverse multiple collections in parallel,

then you need explicit control over the iterator or index variable, so that all it-

erators or index variables can be advanced in lockstep (as demonstrated unin-

tentionally in the buggy card and dice examples above).

If you find yourself in any of these situations, use an ordinary for loop, be wary of

the traps mentioned in this item, and know that you’re doing the best you can.
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Item 47: Know and use the libraries

Suppose you want to generate random integers between zero and some upper

bound. Faced with this common task, many programmers would write a little

method that looks something like this:

private static final Random rnd = new Random();

// Common but deeply flawed!
static int random(int n) {

return Math.abs(rnd.nextInt()) % n;
}

This method may look good, but it has three flaws. The first is that if n is a

small power of two, the sequence of random numbers it generates will repeat itself

after a fairly short period. The second flaw is that if n is not a power of two, some

numbers will, on average, be returned more frequently than others. If n is large,

this effect can be quite pronounced. This is graphically demonstrated by the fol-

lowing program, which generates a million random numbers in a carefully chosen

range and then prints out how many of the numbers fell in the lower half of the

range:

public static void main(String[] args) {
int n = 2 * (Integer.MAX_VALUE / 3);
int low = 0;
for (int i = 0; i < 1000000; i++)

if (random(n) < n/2)
low++;

System.out.println(low);
}

If the random method worked properly, the program would print a number

close to half a million, but if you run it, you’ll find that it prints a number close to

666,666. Two-thirds of the numbers generated by the random method fall in the

lower half of its range!

The third flaw in the random method is that it can, on rare occasions, fail cata-

strophically, returning a number outside the specified range. This is so because the

method attempts to map the value returned by rnd.nextInt() to a non-negative

int by calling Math.abs. If nextInt() returns Integer.MIN_VALUE, Math.abs

will also return Integer.MIN_VALUE, and the remainder operator (%) will return a
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negative number, assuming n is not a power of two. This will almost certainly

cause your program to fail, and the failure may be difficult to reproduce.

To write a version of the random method that corrects these three flaws, you’d

have to know a fair amount about pseudorandom number generators, number the-

ory, and two’s complement arithmetic. Luckily, you don’t have to do this—it’s

been done for you. It’s called Random.nextInt(int), and it has been a part of the

Java platform since release 1.2.

You don’t have to concern yourself with the details of how nextInt(int)

does its job (although you can study the documentation or the source code if

you’re curious). A senior engineer with a background in algorithms spent a good

deal of time designing, implementing, and testing this method and then showed it

to several experts in the field to make sure it was right. Then the library was beta

tested, released, and used extensively by millions of programmers for the better

part of a decade. No flaws have yet been found in the method, but if a flaw were to

be discovered, it would be fixed in the next release. By using a standard library,

you take advantage of the knowledge of the experts who wrote it and the

experience of those who used it before you.

A second advantage of using the libraries is that you don’t have to waste your

time writing ad hoc solutions to problems that are only marginally related to your

work. If you are like most programmers, you’d rather spend your time working on

your application than on the underlying plumbing.

A third advantage of using standard libraries is that their performance tends to

improve over time, with no effort on your part. Because many people use them

and because they’re used in industry-standard benchmarks, the organizations that

supply these libraries have a strong incentive to make them run faster. Many of the

Java platform libraries have been rewritten over the years, sometimes repeatedly,

resulting in dramatic performance improvements.

Libraries also tend to gain new functionality over time. If a library is missing

something, the developer community will make it known, and the missing func-

tionality may get added to a subsequent release. The Java platform has always

been developed with substantial input from the community.

A final advantage of using the standard libraries is that you place your code in

the mainstream. Such code is more easily readable, maintainable, and reusable by

the multitude of developers. 

Given all these advantages, it seems only logical to use library facilities in

preference to ad hoc implementations, yet a significant fraction of programmers

don’t. Why? Perhaps they don’t know the library facilities exist. Numerous fea-

tures are added to the libraries in every major release, and it pays to keep
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abreast of these additions. Each time there is a major release of the Java plat-

form, Sun publishes a Web page describing its new features. These pages are well

worth reading [Java5-feat, Java6-feat]. The libraries are too big to study all the

documentation [JavaSE6], but every programmer should be familiar with the

contents of java.lang, java.util, and, to a lesser extent, java.io. Knowledge

of other libraries can be acquired on an as-needed basis.

It is beyond the scope of this item to summarize the facilities in the libraries,

but two bear special mention. In the 1.2 release, a Collections Framework was

added to the java.util package. It should be part of every programmer’s basic

toolkit. The Collections Framework is a unified architecture for representing and

manipulating collections, allowing them to be manipulated independently of the

details of their representation. It reduces programming effort while increasing per-

formance. It allows for interoperability among unrelated APIs, reduces effort in

designing and learning new APIs, and fosters software reuse. If you want to know

more, see the documentation on Sun’s Web site [Collections], or read the tutorial

[Bloch06].

In release 1.5, a set of concurrency utilities was added, in the package

java.util.concurrent. This package contains both high-level concurrency utili-

ties to simplify the task of multithreaded programming and low-level concurrency

primitives to allow experts to write their own higher-level concurrent abstractions.

The high-level parts of java.util.concurrent should also be part of every pro-

grammer’s basic toolkit (Item 68, Item 69).

Occasionally, a library facility can fail to meet your needs. The more special-

ized your needs, the more likely this is to happen. While your first impulse should

be to use the libraries, if you’ve looked at what they have to offer in some area and

it doesn’t meet your needs, then use an alternate implementation. There will

always be holes in the functionality provided by any finite set of libraries. If the

functionality that you need is missing, you may have no choice but to implement it

yourself.

To summarize, don’t reinvent the wheel. If you need to do something that

seems like it should be reasonably common, there may already be a class in the

libraries that does what you want. If there is, use it; if you don’t know, check. Gen-

erally speaking, library code is likely to be better than code that you’d write your-

self and is likely to improve over time. This is no reflection on your abilities as a

programmer. Economies of scale dictate that library code receives far more atten-

tion than most developers could afford to devote to the same functionality.
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Item 48: Avoid float and double if exact answers are required

The float and double types are designed primarily for scientific and engineering

calculations. They perform binary floating-point arithmetic, which was carefully

designed to furnish accurate approximations quickly over a broad range of magni-

tudes. They do not, however, provide exact results and should not be used where

exact results are required. The float and double types are particularly ill-

suited for monetary calculations because it is impossible to represent 0.1 (or any

other negative power of ten) as a float or double exactly.

For example, suppose you have $1.03 in your pocket, and you spend 42¢.

How much money do you have left? Here’s a naive program fragment that

attempts to answer this question:

System.out.println(1.03 - .42);

Unfortunately, it prints out 0.6100000000000001. This is not an isolated case.

Suppose you have a dollar in your pocket, and you buy nine washers priced at ten

cents each. How much change do you get?

System.out.println(1.00 - 9 * .10);

According to this program fragment, you get $0.09999999999999998.

You might think that the problem could be solved merely by rounding results

prior to printing, but unfortunately this does not always work. For example, sup-

pose you have a dollar in your pocket, and you see a shelf with a row of delicious

candies priced at 10¢, 20¢, 30¢, and so forth, up to a dollar. You buy one of each

candy, starting with the one that costs 10¢, until you can’t afford to buy the next

candy on the shelf. How many candies do you buy, and how much change do you

get? Here’s a naive program designed to solve this problem:

// Broken - uses floating point for monetary calculation!
public static void main(String[] args) {

double funds = 1.00;
int itemsBought = 0;
for (double price = .10; funds >= price; price += .10) {

funds -= price;
itemsBought++;

}
System.out.println(itemsBought + " items bought.");
System.out.println("Change: $" + funds);

}
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If you run the program, you’ll find that you can afford three pieces of candy, and

you have $0.3999999999999999 left. This is the wrong answer! The right way to

solve this problem is to use BigDecimal, int, or long for monetary calculations.

Here’s a straightforward transformation of the previous program to use the

BigDecimal type in place of double:

public static void main(String[] args) {
final BigDecimal TEN_CENTS = new BigDecimal( ".10");

int itemsBought = 0;
BigDecimal funds = new BigDecimal("1.00");
for (BigDecimal price = TEN_CENTS;

funds.compareTo(price) >= 0;
price = price.add(TEN_CENTS)) {

itemsBought++;
funds = funds.subtract(price);

}
System.out.println(itemsBought + " items bought.");
System.out.println("Money left over: $" + funds);

}

If you run the revised program, you’ll find that you can afford four pieces of

candy, with $0.00 left over. This is the correct answer.

There are, however, two disadvantages to using BigDecimal: it’s less conve-

nient than using a primitive arithmetic type, and it’s slower. The latter disadvan-

tage is irrelevant if you’re solving a single short problem, but the former may

annoy you.

An alternative to using BigDecimal is to use int or long, depending on the

amounts involved, and to keep track of the decimal point yourself. In this exam-

ple, the obvious approach is to do all computation in cents instead of dollars.

Here’s a straightforward transformation of the program just shown that takes this

approach:

public static void main(String[] args) {
int itemsBought = 0;
int funds = 100;
for (int price = 10; funds >= price; price += 10) {

itemsBought++;
funds -= price;

}
System.out.println(itemsBought + " items bought.");
System.out.println("Money left over: "+ funds + " cents");

}
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In summary, don’t use float or double for any calculations that require an

exact answer. Use BigDecimal if you want the system to keep track of the decimal

point and you don’t mind the inconvenience and cost of not using a primitive type.

Using BigDecimal has the added advantage that it gives you full control over

rounding, letting you select from eight rounding modes whenever an operation

that entails rounding is performed. This comes in handy if you’re performing

business calculations with legally mandated rounding behavior. If performance is

of the essence, you don’t mind keeping track of the decimal point yourself, and

the quantities aren’t too big, use int or long. If the quantities don’t exceed nine

decimal digits, you can use int; if they don’t exceed eighteen digits, you can use

long. If the quantities might exceed eighteen digits, you must use BigDecimal.



ITEM 49: PREFER PRIMITIVE TYPES TO BOXED PRIMITIVES 221

Item 49: Prefer primitive types to boxed primitives

Java has a two-part type system, consisting of primitives, such as int, double, and

boolean, and reference types, such as String and List. Every primitive type has

a corresponding reference type, called a boxed primitive. The boxed primitives

corresponding to int, double, and boolean are Integer, Double, and Boolean.

In release 1.5, autoboxing and auto-unboxing were added to the language. As

mentioned in Item 5, these features blur but do not erase the distinction between

the primitive and boxed primitive types. There are real differences between the

two, and it’s important that you remain aware of which you are using, and that you

choose carefully between them.

There are three major differences between primitives and boxed primitives.

First, primitives have only their values, whereas boxed primitives have identities

distinct from their values. In other words, two boxed primitive instances can have

the same value and different identities. Second, primitive types have only fully

functional values, whereas each boxed primitive type has one nonfunctional value,

which is null, in addition to all of the functional values of its corresponding prim-

itive type. Last, primitives are generally more time- and space-efficient than boxed

primitives. All three of these differences can get you into real trouble if you aren’t

careful.

Consider the following comparator, which is designed to represent ascending

numerical order on Integer values. (Recall that a comparator’s compare method

returns a number that is negative, zero, or positive, depending on whether its first

argument is less than, equal to, or greater than its second.) You would not need to

write this comparator in practice, as it implements the natural ordering on Inte-

ger, which you get without a comparator, but it makes for an interesting example:

// Broken comparator - can you spot the flaw?
Comparator<Integer> naturalOrder = new Comparator<Integer>() {

public int compare(Integer first, Integer second) {
return first < second ? -1 : (first == second ? 0 : 1);

}
};

This comparator looks good on the face of it, and it will pass many tests. For

example, it can be used with Collections.sort to correctly sort a million-ele-

ment list, whether or not the list contains duplicate elements. But this comparator

is deeply flawed. To convince yourself of this, merely print the value of natural-

Order.compare(new Integer(42), new Integer(42)). Both Integer instances
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represent the same value (42), so the value of this expression should be 0, but it’s

1, which indicates that the first Integer value is greater than the second.

So what’s the problem? The first test in naturalOrder works fine. Evaluating

the expression first < second causes the Integer instances referred to by first

and second to be auto-unboxed; that is, it extracts their primitive values. The eval-

uation proceeds to check if the first of the resulting int values is less than the sec-

ond. But suppose it is not. Then the next test evaluates the expression

first == second, which performs an identity comparison on the two object refer-

ences. If first and second refer to distinct Integer instances that represent the

same int value, this comparison will return false, and the comparator will incor-

rectly return 1, indicating that the first Integer value is greater than the second.

Applying the == operator to boxed primitives is almost always wrong.

The clearest way to fix the problem is to add two local variables, to store the

primitive int values corresponding to first and second, and to perform all of the

comparisons on these variables. This avoids the erroneous identity comparison:

Comparator<Integer> naturalOrder = new Comparator<Integer>() {
public int compare(Integer first, Integer second) {

int f = first; // Auto-unboxing
int s = second; // Auto-unboxing
return f < s ? -1 : (f == s ? 0 : 1); // No unboxing

}
};

Next, consider this little program:

public class Unbelievable {
static Integer i;

 
public static void main(String[] args) {

if (i == 42)
System.out.println("Unbelievable");

}
}

No, it doesn’t print Unbelievable—but what it does is almost as strange. It

throws a NullPointerException when evaluating the expression (i == 42). The

problem is that i is an Integer, not an int, and like all object reference fields, its

initial value is null. When the program evaluates the expression (i == 42), it is

comparing an Integer to an int. In nearly every case when you mix primitives

and boxed primitives in a single operation, the boxed primitive is auto-
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unboxed, and this case is no exception. If a null object reference is auto-unboxed,

you get a NullPointerException. As this program demonstrates, it can happen

almost anywhere. Fixing the program is as simple as declaring i to be an int

instead of an Integer.

Finally, consider the program from page 23 (Item 5):

// Hideously slow program! Can you spot the object creation?
public static void main(String[] args) {

Long sum = 0L;
for (long i = 0; i < Integer.MAX_VALUE; i++) {

sum += i;
}
System.out.println(sum);

}

This program is much slower than it should be because it accidentally declares a

local variable (sum) to be of the boxed primitive type Long instead of the primitive

type long. The program compiles without error or warning, and the variable is

repeatedly boxed and unboxed, causing the observed performance degradation.

In all three of the programs discussed in this item, the problem was the same:

the programmer ignored the distinction between primitives and boxed primitives

and suffered the consequences. In the first two programs, the consequences were

outright failure; in the third, severe performance problems.

So when should you use boxed primitives? They have several legitimate uses.

The first is as elements, keys, and values in collections. You can’t put primitives in

collections, so you’re forced to use boxed primitives. This is a special case of a

more general one. You must use boxed primitives as type parameters in parame-

terized types (Chapter 5), because the language does not permit you to use primi-

tives. For example, you cannot declare a variable to be of type Thread-

Local<int>, so you must use ThreadLocal<Integer> instead. Finally, you must

use boxed primitives when making reflective method invocations (Item 53).

In summary, use primitives in preference to boxed primitives whenever you

have the choice. Primitive types are simpler and faster. If you must use boxed

primitives, be careful! Autoboxing reduces the verbosity, but not the danger, of

using boxed primitives. When your program compares two boxed primitives

with the == operator, it does an identity comparison, which is almost certainly not

what you want. When your program does mixed-type computations involving

boxed and unboxed primitives, it does unboxing, and when your program does

unboxing, it can throw a NullPointerException. Finally, when your program

boxes primitive values, it can result in costly and unnecessary object creations.
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Item 50: Avoid strings where other types are more appropriate

Strings are designed to represent text, and they do a fine job of it. Because strings

are so common and so well supported by the language, there is a natural tendency

to use strings for purposes other than those for which they were designed. This

item discusses a few things that you shouldn’t do with strings.

Strings are poor substitutes for other value types. When a piece of data

comes into a program from a file, from the network, or from keyboard input, it is

often in string form. There is a natural tendency to leave it that way, but this ten-

dency is justified only if the data really is textual in nature. If it’s numeric, it

should be translated into the appropriate numeric type, such as int, float, or

BigInteger. If it’s the answer to a yes-or-no question, it should be translated into

a boolean. More generally, if there’s an appropriate value type, whether primitive

or object reference, you should use it; if there isn’t, you should write one. While

this advice may seem obvious, it is often violated.

Strings are poor substitutes for enum types. As discussed in Item 30,

enums make far better enumerated type constants than strings.

Strings are poor substitutes for aggregate types. If an entity has multiple

components, it is usually a bad idea to represent it as a single string. For example,

here’s a line of code that comes from a real system—identifier names have been

changed to protect the guilty:

// Inappropriate use of string as aggregate type
String compoundKey = className + "#" + i.next();

This approach has many disadvantages. If the character used to separate fields

occurs in one of the fields, chaos may result. To access individual fields, you have

to parse the string, which is slow, tedious, and error-prone. You can’t provide

equals, toString, or compareTo methods but are forced to accept the behavior

that String provides. A better approach is simply to write a class to represent the

aggregate, often a private static member class (Item 22).

Strings are poor substitutes for capabilities. Occasionally, strings are used

to grant access to some functionality. For example, consider the design of a

thread-local variable facility. Such a facility provides variables for which each

thread has its own value. The Java libraries have had a thread-local variable facil-

ity since release 1.2, but prior to that, programmers had to roll their own. When

confronted with the task of designing such a facility many years ago, several peo-
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ple independently came up with the same design in which client-provided string

keys are used to identify each thread-local variable:

// Broken - inappropriate use of string as capability!
public class ThreadLocal {

private ThreadLocal() { } // Noninstantiable

// Sets the current thread's value for the named variable.
public static void set(String key, Object value);

// Returns the current thread's value for the named variable.
public static Object get(String key);

}

The problem with this approach is that the string keys represent a shared glo-

bal namespace for thread-local variables. In order for the approach to work, the

client-provided string keys have to be unique: if two clients independently decide

to use the same name for their thread-local variable, they unintentionally share a

single variable, which will generally cause both clients to fail. Also, the security is

poor. A malicious client could intentionally use the same string key as another cli-

ent to gain illicit access to the other client’s data.

This API can be fixed by replacing the string with an unforgeable key (some-

times called a capability):

public class ThreadLocal {
private ThreadLocal() { } // Noninstantiable

public static class Key { // (Capability)
Key() { }

}

// Generates a unique, unforgeable key
public static Key getKey() {

return new Key();
}

public static void set(Key key, Object value);
public static Object get(Key key);

}

While this solves both of the problems with the string-based API, you can do

much better. You don’t really need the static methods anymore. They can instead

become instance methods on the key, at which point the key is no longer a key for

a thread-local variable: it is a thread-local variable. At this point, the noninstantia-
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ble top-level class isn’t doing anything for you anymore, so you might as well get

rid of it and rename the nested class to ThreadLocal:

public final class ThreadLocal {
public ThreadLocal() { }
public void set(Object value);
public Object get();

}

This API isn’t typesafe, because you have to cast the value from Object to its

actual type when you retrieve it from a thread-local variable. It is impossible to

make the original String-based API typesafe and difficult to make the Key-based

API typesafe, but it is a simple matter to make this API typesafe by generifying

the ThreadLocal class (Item 26):

public final class ThreadLocal<T> {
public ThreadLocal() { }
public void set(T value);
public T get();

}

This is, roughly speaking, the API that java.lang.ThreadLocal provides. In

addition to solving the problems with the string-based API, it is faster and more

elegant than either of the key-based APIs.

To summarize, avoid the natural tendency to represent objects as strings when

better data types exist or can be written. Used inappropriately, strings are more

cumbersome, less flexible, slower, and more error-prone than other types. Types

for which strings are commonly misused include primitive types, enums, and

aggregate types.
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Item 51: Beware the performance of string concatenation

The string concatenation operator (+) is a convenient way to combine a few strings

into one. It is fine for generating a single line of output or for constructing the string

representation of a small, fixed-size object, but it does not scale. Using the string

concatenation operator repeatedly to concatenate n strings requires time qua-

dratic in n. It is an unfortunate consequence of the fact that strings are immutable

(Item 15). When two strings are concatenated, the contents of both are copied.

For example, consider the following method that constructs a string represen-

tation of a billing statement by repeatedly concatenating a line for each item:

// Inappropriate use of string concatenation - Performs horribly!
public String statement() {

String result = "";
for (int i = 0; i < numItems(); i++)

result += lineForItem(i); // String concatenation
return result;

}

This method performs abysmally if the number of items is large. To achieve

acceptable performance, use a StringBuilder in place of a String to store the

statement under construction. (The StringBuilder class, added in release 1.5, is

an unsynchronized replacement for StringBuffer, which is now obsolete.)

public String statement() {
StringBuilder b = new StringBuilder(numItems() * LINE_WIDTH);
for (int i = 0; i < numItems(); i++)

b.append(lineForItem(i));
return b.toString();

}

The difference in performance is dramatic. If numItems returns 100 and

lineForItem returns a constant 80-character string, the second method is eighty-

five times faster than the first on my machine. Because the first method is

quadratic in the number of items and the second is linear, the performance

difference is even more dramatic for larger numbers of items. Note that the second

method preallocates a StringBuilder large enough to hold the result. Even if it is

detuned to use a default-sized StringBuilder, it is still fifty times faster.

The moral is simple: don’t use the string concatenation operator to combine

more than a few strings unless performance is irrelevant. Use StringBuilder’s

append method instead. Alternatively, use a character array, or process the strings

one at a time instead of combining them.
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Item 52: Refer to objects by their interfaces

Item 40 contains the advice that you should use interfaces rather than classes as

parameter types. More generally, you should favor the use of interfaces rather than

classes to refer to objects. If appropriate interface types exist, then parame-

ters, return values, variables, and fields should all be declared using interface

types. The only time you really need to refer to an object’s class is when you’re

creating it with a constructor. To make this concrete, consider the case of Vector,

which is an implementation of the List interface. Get in the habit of typing this:

// Good - uses interface as type
List<Subscriber> subscribers = new Vector<Subscriber>();

rather than this:

// Bad - uses class as type!
Vector<Subscriber> subscribers = new Vector<Subscriber>();

If you get into the habit of using interfaces as types, your program will be

much more flexible. If you decide that you want to switch implementations, all

you have to do is change the class name in the constructor (or use a different static

factory). For example, the first declaration could be changed to read

List<Subscriber> subscribers = new ArrayList<Subscriber>();

and all of the surrounding code would continue to work. The surrounding code was

unaware of the old implementation type, so it would be oblivious to the change. 

There is one caveat: if the original implementation offered some special func-

tionality not required by the general contract of the interface and the code

depended on that functionality, then it is critical that the new implementation pro-

vide the same functionality. For example, if the code surrounding the first declara-

tion depended on Vector’s synchronization policy, then it would be incorrect to

substitute ArrayList for Vector in the declaration. If you depend on any special

properties of an implementation, document these requirements where you declare

the variable.

So why would you want to change implementations? Because the new imple-

mentation offers better performance or because it offers desirable extra functional-

ity. A real-world example concerns the ThreadLocal class. Internally, this class

uses a package-private map field in Thread to associate per-thread values with
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ThreadLocal instances. In the 1.3 release, this field was initialized to a HashMap

instance. In the 1.4 release, a new, special-purpose Map implementation, called

IdentityHashMap, was added to the platform. By changing a single line of code

to initialize the field to an IdentityHashMap instead of a HashMap, the ThreadLo-

cal facility was made faster. The ThreadLocal implementation has since evolved

to use a highly optimized store that does not implement the Map interface, but this

does nothing to diminish the point.

Had the field been declared as a HashMap instead of a Map, there is no guaran-

tee that a single-line change would have been sufficient. If the client code had

used HashMap operations that were not present on the Map interface or passed the

map to a method that demanded a HashMap, the code would no longer compile if

the field were changed to an IdentityHashMap. Declaring the field with the inter-

face type “keeps you honest.”

It is entirely appropriate to refer to an object by a class rather than an

interface if no appropriate interface exists. For example, consider value

classes, such as String and BigInteger. Value classes are rarely written with

multiple implementations in mind. They are often final and rarely have corre-

sponding interfaces. It is perfectly appropriate to use such a value class as a

parameter, variable, field, or return type. More generally, if a concrete class has no

associated interface, then you have no choice but to refer to it by its class whether

or not it represents a value. The Random class falls into this category.

A second case in which there is no appropriate interface type is that of objects

belonging to a framework whose fundamental types are classes rather than

interfaces. If an object belongs to such a class-based framework, it is preferable to

refer to it by the relevant base class, which is typically abstract, rather than by its

implementation class. The java.util.TimerTask class falls into this category.

A final case in which there is no appropriate interface type is that of classes

that implement an interface but provide extra methods not found in the interface—

for example, LinkedHashMap. Such a class should be used to refer to its instances

only if the program relies on the extra methods. It should rarely be used as a

parameter type (Item 40).

These cases are not meant to be exhaustive but merely to convey the flavor of

situations where it is appropriate to refer to an object by its class. In practice, it

should be apparent whether a given object has an appropriate interface. If it does,

your program will be more flexible if you use the interface to refer to the object; if

not, just use the least specific class in the class hierarchy that provides the required

functionality.
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Item 53: Prefer interfaces to reflection

The core reflection facility, java.lang.reflect, offers programmatic access to

information about loaded classes. Given a Class object, you can obtain Construc-

tor, Method, and Field instances representing the constructors, methods, and fields

of the class represented by the Class instance. These objects provide programmatic

access to the class’s member names, field types, method signatures, and so on.

Moreover, Constructor, Method, and Field instances let you manipulate

their underlying counterparts reflectively: you can construct instances, invoke

methods, and access fields of the underlying class by invoking methods on the

Constructor, Method, and Field instances. For example, Method.invoke lets

you invoke any method on any object of any class (subject to the usual security

constraints). Reflection allows one class to use another, even if the latter class did

not exist when the former was compiled. This power, however, comes at a price:

• You lose all the benefits of compile-time type checking, including exception

checking. If a program attempts to invoke a nonexistent or inaccessible method

reflectively, it will fail at runtime unless you’ve taken special precautions.

• The code required to perform reflective access is clumsy and verbose. It is

tedious to write and difficult to read.

• Performance suffers. Reflective method invocation is much slower than

normal method invocation. Exactly how much slower is hard to say, because

there are so many factors at work. On my machine, the speed difference can be

as small as a factor of two or as large as a factor of fifty.

The core reflection facility was originally designed for component-based

application builder tools. Such tools generally load classes on demand and use

reflection to find out what methods and constructors they support. The tools let

their users interactively construct applications that access these classes, but the

generated applications access the classes normally, not reflectively. Reflection is

used only at design time. As a rule, objects should not be accessed reflectively

in normal applications at runtime.

There are a few sophisticated applications that require reflection. Examples

include class browsers, object inspectors, code analysis tools, and interpretive

embedded systems. Reflection is also appropriate for use in remote procedure call

(RPC) systems to eliminate the need for stub compilers. If you have any doubts as

to whether your application falls into one of these categories, it probably doesn’t.
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You can obtain many of the benefits of reflection while incurring few of

its costs by using it only in a very limited form. For many programs that must

use a class that is unavailable at compile time, there exists at compile time an

appropriate interface or superclass by which to refer to the class (Item 52). If this

is the case, you can create instances reflectively and access them normally via

their interface or superclass. If the appropriate constructor has no parameters,

then you don’t even need to use java.lang.reflect; the Class.newInstance

method provides the required functionality.

For example, here’s a program that creates a Set<String> instance whose

class is specified by the first command line argument. The program inserts the

remaining command line arguments into the set and prints it. Regardless of the

first argument, the program prints the remaining arguments with duplicates elimi-

nated. The order in which these arguments are printed, however, depends on the

class specified in the first argument. If you specify java.util.HashSet, they’re

printed in apparently random order; if you specify java.util.TreeSet, they’re

printed in alphabetical order, as the elements in a TreeSet are sorted:

// Reflective instantiation with interface access
public static void main(String[] args) {

// Translate the class name into a Class object
Class<?> cl = null;
try {

cl = Class.forName(args[0]);
    } catch(ClassNotFoundException e) {

System.err.println("Class not found.");
System.exit(1);

    }

// Instantiate the class
Set<String> s = null;
try {

s = (Set<String>) cl.newInstance();
} catch(IllegalAccessException e) {

System.err.println("Class not accessible.");
System.exit(1);

} catch(InstantiationException e) {
System.err.println("Class not instantiable.");
System.exit(1);

}

// Exercise the set
s.addAll(Arrays.asList(args).subList(1, args.length));
System.out.println(s);

}
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While this program is just a toy, the technique it demonstrates is very power-

ful. The toy program could easily be turned into a generic set tester that validates

the specified Set implementation by aggressively manipulating one or more

instances and checking that they obey the Set contract. Similarly, it could be

turned into a generic set performance analysis tool. In fact, the technique is suffi-

ciently powerful to implement a full-blown service provider framework (Item 1).

Most of the time, this technique is all that you need in the way of reflection.

This example demonstrates two disadvantages of reflection. First, the example

can generate three runtime errors, all of which would have been compile-time

errors if reflective instantiation were not used. Second, it takes twenty lines of

tedious code to generate an instance of the class from its name, whereas a con-

structor invocation would fit neatly on a single line. These disadvantages are,

however, restricted to the part of the program that instantiates the object. Once

instantiated, it is indistinguishable from any other Set instance. In a real program,

the great bulk of the code is thus unaffected by this limited use of reflection.

If you try compiling the program, you’ll get the following error message:

Note: SetEx.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

This warning concerns the program’s use of generic types, but it does not indicate

a real problem. To learn the best way to suppress the warning, see Item 24.

Another tangential issue that deserves note is this program’s use of Sys-

tem.exit. It is rarely appropriate to call this method, which terminates the entire

VM. It is, however, appropriate for abnormal termination of a command line utility.

A legitimate, if rare, use of reflection is to manage a class’s dependencies on

other classes, methods, or fields that may be absent at runtime. This can be useful

if you are writing a package that must run against multiple versions of some other

package. The technique is to compile your package against the minimal environ-

ment required to support it, typically the oldest version, and to access any newer

classes or methods reflectively. To make this work, you have to take appropriate

action if a newer class or method that you are attempting to access does not exist

at runtime. Appropriate action might consist of using some alternate means to

accomplish the same goal or operating with reduced functionality.

In summary, reflection is a powerful facility that is required for certain sophis-

ticated system programming tasks, but it has many disadvantages. If you are writ-

ing a program that has to work with classes unknown at compile time, you should,

if at all possible, use reflection only to instantiate objects, and access the objects

using some interface or superclass that is known at compile time.



ITEM 54: USE NATIVE METHODS JUDICIOUSLY 233

Item 54: Use native methods judiciously 

The Java Native Interface (JNI) allows Java applications to call native methods,

which are special methods written in native programming languages such as C or

C++. Native methods can perform arbitrary computation in native languages

before returning to the Java programming language.

Historically, native methods have had three main uses. They provided access

to platform-specific facilities such as registries and file locks. They provided

access to libraries of legacy code, which could in turn provide access to legacy

data. Finally, native methods were used to write performance-critical parts of

applications in native languages for improved performance. 

It is legitimate to use native methods to access platform-specific facilities, but

as the Java platform matures, it provides more and more features previously found

only in host platforms. For example, java.util.prefs, added in release 1.4,

offers the functionality of a registry, and java.awt.SystemTray, added in release

1.6, offers access to the desktop system tray area. It is also legitimate to use native

methods to access legacy code.

It is rarely advisable to use native methods for improved performance. In

early releases (prior to 1.3), it was often necessary, but JVM implementations have

gotten much faster. For most tasks, it is now possible to obtain comparable perfor-

mance without resorting to native methods. For example, when java.math was

added to the platform in release 1.1, BigInteger was implemented atop a fast

multiprecision arithmetic library written in C. At the time, this was necessary for

adequate performance. In release 1.3, BigInteger was rewritten entirely in Java

and carefully tuned. Even then, the new version was faster than the original, and

VMs have become much faster in the intervening years.

The use of native methods has serious disadvantages. Because native lan-

guages are not safe (Item 39), applications using native methods are no longer

immune to memory corruption errors. Because native languages are platform

dependent, applications using native methods are far less portable. Applications

using native code are far more difficult to debug. There is a fixed cost associated

with going into and out of native code, so native methods can decrease perfor-

mance if they do only a small amount of work. Finally, native methods require

“glue code” that is difficult to read and tedious to write.

In summary, think twice before using native methods. Rarely, if ever, use them

for improved performance. If you must use native methods to access low-level

resources or legacy libraries, use as little native code as possible and test it thor-

oughly. A single bug in the native code can corrupt your entire application.
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Item 55: Optimize judiciously

There are three aphorisms concerning optimization that everyone should know.

They are perhaps beginning to suffer from overexposure, but in case you aren’t yet

familiar with them, here they are: 

More computing sins are committed in the name of efficiency (without neces-
sarily achieving it) than for any other single reason—including blind stupidity.

—William A. Wulf [Wulf72]

We should forget about small efficiencies, say about 97% of the time: prema-

ture optimization is the root of all evil.

—Donald E. Knuth [Knuth74]

We follow two rules in the matter of optimization:

Rule 1. Don’t do it.

Rule 2 (for experts only). Don’t do it yet—that is, not until you have a

perfectly clear and unoptimized solution.

—M. A. Jackson [Jackson75]

All of these aphorisms predate the Java programming language by two

decades. They tell a deep truth about optimization: it is easy to do more harm than

good, especially if you optimize prematurely. In the process, you may produce

software that is neither fast nor correct and cannot easily be fixed.

Don’t sacrifice sound architectural principles for performance. Strive to write

good programs rather than fast ones. If a good program is not fast enough, its

architecture will allow it to be optimized. Good programs embody the principle of

information hiding: where possible, they localize design decisions within individ-

ual modules, so individual decisions can be changed without affecting the remain-

der of the system (Item 13).

This does not mean that you can ignore performance concerns until your pro-

gram is complete. Implementation problems can be fixed by later optimization,

but pervasive architectural flaws that limit performance can be impossible to fix

without rewriting the system. Changing a fundamental facet of your design after

the fact can result in an ill-structured system that is difficult to maintain and

evolve. Therefore you must think about performance during the design process.

Strive to avoid design decisions that limit performance. The components

of a design that are most difficult to change after the fact are those specifying

interactions between modules and with the outside world. Chief among these
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design components are APIs, wire-level protocols, and persistent data formats.

Not only are these design components difficult or impossible to change after the

fact, but all of them can place significant limitations on the performance that a

system can ever achieve.

Consider the performance consequences of your API design decisions.

Making a public type mutable may require a lot of needless defensive copying

(Item 39). Similarly, using inheritance in a public class where composition would

have been appropriate ties the class forever to its superclass, which can place arti-

ficial limits on the performance of the subclass (Item 16). As a final example,

using an implementation type rather than an interface in an API ties you to a spe-

cific implementation, even though faster implementations may be written in the

future (Item 52). 

The effects of API design on performance are very real. Consider the getSize

method in the java.awt.Component class. The decision that this performance-

critical method was to return a Dimension instance, coupled with the decision that

Dimension instances are mutable, forces any implementation of this method to

allocate a new Dimension instance on every invocation. Even though allocating

small objects is inexpensive on a modern VM, allocating millions of objects

needlessly can do real harm to performance. 

In this case, several alternatives existed. Ideally, Dimension should have been

immutable (Item 15); alternatively, the getSize method could have been replaced

by two methods returning the individual primitive components of a Dimension

object. In fact, two such methods were added to the Component API in the 1.2

release for performance reasons. Preexisting client code, however, still uses the

getSize method and still suffers the performance consequences of the original

API design decisions.

Luckily, it is generally the case that good API design is consistent with good

performance. It is a very bad idea to warp an API to achieve good perfor-

mance. The performance issue that caused you to warp the API may go away in a

future release of the platform or other underlying software, but the warped API

and the support headaches that come with it will be with you for life.

Once you’ve carefully designed your program and produced a clear, concise,

and well-structured implementation, then it may be time to consider optimization,

assuming you’re not already satisfied with the performance of the program. 

Recall that Jackson’s two rules of optimization were “Don’t do it,” and “(for

experts only). Don’t do it yet.” He could have added one more: measure perfor-

mance before and after each attempted optimization. You may be surprised by

what you find. Often, attempted optimizations have no measurable effect on per-
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formance; sometimes, they make it worse. The main reason is that it’s difficult to

guess where your program is spending its time. The part of the program that you

think is slow may not be at fault, in which case you’d be wasting your time trying

to optimize it. Common wisdom says that programs spend 80 percent of their time

in 20 percent of their code.

Profiling tools can help you decide where to focus your optimization efforts.

Such tools give you runtime information, such as roughly how much time each

method is consuming and how many times it is invoked. In addition to focusing

your tuning efforts, this can alert you to the need for algorithmic changes. If a qua-

dratic (or worse) algorithm lurks inside your program, no amount of tuning will

fix the problem. You must replace the algorithm with one that is more efficient.

The more code in the system, the more important it is to use a profiler. It’s like

looking for a needle in a haystack: the bigger the haystack, the more useful it is to

have a metal detector. The JDK comes with a simple profiler and modern IDEs

provide more sophisticated profiling tools.

The need to measure the effects of attempted optimization is even greater on

the Java platform than on more traditional platforms, because the Java program-

ming language does not have a strong performance model. The relative costs of

the various primitive operations are not well defined. The “semantic gap” between

what the programmer writes and what the CPU executes is far greater than in tra-

ditional statically compiled languages, which makes it very difficult to reliably

predict the performance consequences of any optimization. There are plenty of

performance myths floating around that turn out to be half-truths or outright lies.

Not only is Java’s performance model ill-defined, but it varies from JVM

implementation to JVM implementation, from release to release, and from proces-

sor to processor. If you will be running your program on multiple JVM implemen-

tations or multiple hardware platforms, it is important that you measure the effects

of your optimization on each. Occasionally you may be forced to make trade-offs

between performance on different JVM implementations or hardware platforms. 

To summarize, do not strive to write fast programs—strive to write good ones;

speed will follow. Do think about performance issues while you’re designing sys-

tems and especially while you’re designing APIs, wire-level protocols, and persis-

tent data formats. When you’ve finished building the system, measure its

performance. If it’s fast enough, you’re done. If not, locate the source of the prob-

lems with the aid of a profiler, and go to work optimizing the relevant parts of the

system. The first step is to examine your choice of algorithms: no amount of low-

level optimization can make up for a poor choice of algorithm. Repeat this process

as necessary, measuring the performance after every change, until you’re satisfied.
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Item 56: Adhere to generally accepted naming conventions 

The Java platform has a well-established set of naming conventions, many of which

are contained in The Java Language Specification [JLS, 6.8]. Loosely speaking,

naming conventions fall into two categories: typographical and grammatical. 

There are only a handful of typographical naming conventions, covering

packages, classes, interfaces, methods, fields, and type variables. You should

rarely violate them and never without a very good reason. If an API violates these

conventions, it may be difficult to use. If an implementation violates them, it may

be difficult to maintain. In both cases, violations have the potential to confuse and

irritate other programmers who work with the code and can cause faulty assump-

tions that lead to errors. The conventions are summarized in this item.

Package names should be hierarchical with the components separated by peri-

ods. Components should consist of lowercase alphabetic characters and, rarely,

digits. The name of any package that will be used outside your organization

should begin with your organization’s Internet domain name with the top-level

domain first, for example, edu.cmu, com.sun, gov.nsa. The standard libraries and

optional packages, whose names begin with java and javax, are exceptions to

this rule. Users must not create packages whose names begin with java or javax.

Detailed rules for converting Internet domain names to package name prefixes can

be found in The Java Language Specification [JLS, 7.7].

The remainder of a package name should consist of one or more components

describing the package. Components should be short, generally eight or fewer

characters. Meaningful abbreviations are encouraged, for example, util rather

than utilities. Acronyms are acceptable, for example, awt. Components should

generally consist of a single word or abbreviation. 

Many packages have names with just one component in addition to the

Internet domain name. Additional components are appropriate for large facilities

whose size demands that they be broken up into an informal hierarchy. For

example, the javax.swing package has a rich hierarchy of packages with names

such as javax.swing.plaf.metal. Such packages are known as subpackages,

although there is no linguistic support for package hierarchies.

Class and interface names, including enum and annotation type names, should

consist of one or more words, with the first letter of each word capitalized, for

example, Timer or FutureTask. Abbreviations are to be avoided, except for acro-

nyms and certain common abbreviations like max and min. There is little consen-

sus as to whether acronyms should be uppercase or have only their first letter

capitalized. While uppercase may be more common, a strong argument can be
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made in favor of capitalizing only the first letter: even if multiple acronyms occur

back-to-back, you can still tell where one word starts and the next word ends.

Which class name would you rather see, HTTPURL or HttpUrl?

Method and field names follow the same typographical conventions as class

and interface names, except that the first letter of a method or field name should

be lowercase, for example, remove or ensureCapacity. If an acronym occurs as

the first word of a method or field name, it should be lowercase.

The sole exception to the previous rule concerns “constant fields,” whose

names should consist of one or more uppercase words separated by the underscore

character, for example, VALUES or NEGATIVE_INFINITY. A constant field is a static

final field whose value is immutable. If a static final field has a primitive type or

an immutable reference type (Item 15), then it is a constant field. For example,

enum constants are constant fields. If a static final field has a mutable reference

type, it can still be a constant field if the referenced object is immutable. Note that

constant fields constitute the only recommended use of underscores.

Local variable names have similar typographical naming conventions to mem-

ber names, except that abbreviations are permitted, as are individual characters

and short sequences of characters whose meaning depends on the context in which

the local variable occurs, for example, i, xref, houseNumber.

Type parameter names usually consist of a single letter. Most commonly it is

one of these five: T for an arbitrary type, E for the element type of a collection, K

and V for the key and value types of a map, and X for an exception. A sequence of

arbitrary types can be T, U, V or T1, T2, T3.

For quick reference, the following table shows examples of typographical

conventions.

Identifier Type Examples

Package com.google.inject, org.joda.time.format

Class or Interface Timer, FutureTask, LinkedHashMap, HttpServlet

Method or Field remove, ensureCapacity, getCrc

Constant Field MIN_VALUE, NEGATIVE_INFINITY

Local Variable i, xref, houseNumber

Type Parameter T, E, K, V, X, T1, T2
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Grammatical naming conventions are more flexible and more controversial

than typographical conventions. There are no grammatical naming conventions to

speak of for packages. Classes, including enum types, are generally named with a

singular noun or noun phrase, for example, Timer, BufferedWriter, or Chess-

Piece. Interfaces are named like classes, for example, Collection or Compara-

tor, or with an adjective ending in able or ible, for example, Runnable,

Iterable, or Accessible. Because annotation types have so many uses, no part

of speech predominates. Nouns, verbs, prepositions, and adjectives are all com-

mon, for example, BindingAnnotation, Inject, ImplementedBy, or Singleton.

Methods that perform some action are generally named with a verb or verb

phrase (including object), for example, append or drawImage. Methods that return

a boolean value usually have names that begin with the word is or, less com-

monly, has, followed by a noun, noun phrase, or any word or phrase that functions

as an adjective, for example, isDigit, isProbablePrime, isEmpty, isEnabled,

or hasSiblings.

Methods that return a non-boolean function or attribute of the object on

which they’re invoked are usually named with a noun, a noun phrase, or a verb

phrase beginning with the verb get, for example, size, hashCode, or getTime.

There is a vocal contingent that claims that only the third form (beginning with

get) is acceptable, but there is little basis for this claim. The first two forms usu-

ally lead to more readable code, for example:

if (car.speed() > 2 * SPEED_LIMIT)
generateAudibleAlert("Watch out for cops!");

The form beginning with get is mandatory if the class containing the method is a

Bean [JavaBeans], and it’s advisable if you’re considering turning the class into a

Bean at a later time. Also, there is strong precedent for this form if the class con-

tains a method to set the same attribute. In this case, the two methods should be

named getAttribute and setAttribute.

A few method names deserve special mention. Methods that convert the type

of an object, returning an independent object of a different type, are often called

toType, for example, toString, toArray. Methods that return a view (Item 5)

whose type differs from that of the receiving object are often called asType, for

example, asList. Methods that return a primitive with the same value as the

object on which they’re invoked are often called typeValue, for example,

intValue. Common names for static factories are valueOf, of, getInstance,

newInstance, getType, and newType (Item 1, page 10).
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Grammatical conventions for field names are less well established and less

important than those for class, interface, and method names, as well-designed

APIs contain few if any exposed fields. Fields of type boolean are often named

like boolean accessor methods with the initial is omitted, for example, initial-

ized, composite. Fields of other types are usually named with nouns or noun

phrases, such as height, digits, or bodyStyle. Grammatical conventions for

local variables are similar to those for fields, but even weaker.

To summarize, internalize the standard naming conventions and learn to use

them as second nature. The typographical conventions are straightforward and

largely unambiguous; the grammatical conventions are more complex and looser.

To quote from The Java Language Specification [JLS, 6.8], “These conventions

should not be followed slavishly if long-held conventional usage dictates other-

wise.” Use common sense.
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C H A P T E R 9
Exceptions

WHEN used to best advantage, exceptions can improve a program’s readability,

reliability, and maintainability. When used improperly, they can have the opposite

effect. This chapter provides guidelines for using exceptions effectively.

Item 57: Use exceptions only for exceptional conditions

Someday, if you are unlucky, you may stumble across a piece of code that looks

something like this:

// Horrible abuse of exceptions. Don't ever do this!
try {

int i = 0;
while(true)

range[i++].climb();
} catch(ArrayIndexOutOfBoundsException e) {
}

What does this code do? It’s not at all obvious from inspection, and that’s rea-

son enough not to use it (Item 55). It turns out to be a horribly ill-conceived idiom

for looping through the elements of an array. The infinite loop terminates by

throwing, catching, and ignoring an ArrayIndexOutOfBoundsException when it

attempts to access the first array element outside the bounds of the array. It’s sup-

posed to be equivalent to the standard idiom for looping through an array, which is

instantly recognizable to any Java programmer:

for (Mountain m : range)
m.climb();

So why would anyone use the exception-based loop in preference to the tried

and true? It’s a misguided attempt to improve performance based on the faulty rea-
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soning that, since the VM checks the bounds of all array accesses, the normal loop

termination test—hidden by the compiler but still present in the for-each loop—is

redundant and should be avoided. There are three things wrong with this reasoning:

• Because exceptions are designed for exceptional circumstances, there is little

incentive for JVM implementors to make them as fast as explicit tests.

• Placing code inside a try-catch block inhibits certain optimizations that mod-

ern JVM implementations might otherwise perform.

• The standard idiom for looping through an array doesn’t necessarily result in

redundant checks. Modern JVM implementations optimize them away.

In fact, the exception-based idiom is far slower than the standard one on mod-

ern JVM implementations. On my machine, the exception-based idiom is more

than twice as slow as the standard one for arrays of one hundred elements.

Not only does the exception-based loop obfuscate the purpose of the code and

reduce its performance, but it’s not guaranteed to work! In the presence of an

unrelated bug, the loop can fail silently and mask the bug, greatly complicating the

debugging process. Suppose the computation in the body of the loop invokes a

method that performs an out-of-bounds access to some unrelated array. If a rea-

sonable loop idiom were used, the bug would generate an uncaught exception,

resulting in immediate thread termination with a full stack trace. If the misguided

exception-based loop were used, the bug-related exception would be caught and

misinterpreted as a normal loop termination.

The moral of this story is simple: exceptions are, as their name implies, to

be used only for exceptional conditions; they should never be used for ordi-

nary control flow. More generally, you should use standard, easily recognizable

idioms in preference to overly clever techniques that purport to offer better perfor-

mance. Even if the performance advantage is real, it may not remain in the face of

steadily improving platform implementations. The subtle bugs and maintenance

headaches that come from overly clever techniques, however, are sure to remain. 

This principle also has implications for API design. A well-designed API

must not force its clients to use exceptions for ordinary control flow. A class

with a “state-dependent” method that can be invoked only under certain unpredict-

able conditions should generally have a separate “state-testing” method indicating

whether it is appropriate to invoke the state-dependent method. For example, the

Iterator interface has the state-dependent method next and the corresponding

state-testing method hasNext. This enables the standard idiom for iterating over a
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collection with a traditional for loop (as well as the for-each loop, where the has-

Next method is used internally):

for (Iterator<Foo> i = collection.iterator(); i.hasNext(); ) {
Foo foo = i.next();
...

}

If Iterator lacked the hasNext method, clients would be forced to do this instead:

// Do not use this hideous code for iteration over a collection!
try {

Iterator<Foo> i = collection.iterator();
while(true) {

Foo foo = i.next();
...

}
} catch (NoSuchElementException e) {
}

This should look very familiar after the array iteration example that began this item.

In addition to being wordy and misleading, the exception-based loop is likely to per-

form poorly and can mask bugs in unrelated parts of the system.

An alternative to providing a separate state-testing method is to have the state-

dependent method return a distinguished value such as null if it is invoked with

the object in an inappropriate state. This technique would not be appropriate for

Iterator, as null is a legitimate return value for the next method. 

Here are some guidelines to help you choose between a state-testing method

and a distinguished return value. If an object is to be accessed concurrently without

external synchronization or is subject to externally induced state transitions, you

must use a distinguished return value, as the object’s state could change in the

interval between the invocation of a state-testing method and its state-dependent

method. Performance concerns may dictate that a distinguished return value be

used if a separate state-testing method would duplicate the work of the state-

dependent method. All other things being equal, a state-testing method is mildly

preferable to a distinguished return value. It offers slightly better readability, and

incorrect use may be easier to detect: if you forget to call a state-testing method,

the state-dependent method will throw an exception, making the bug obvious; if

you forget to check for a distinguished return value, the bug may be subtle.

In summary, exceptions are designed for use in exceptional conditions. Don’t

use them for ordinary control flow, and don’t write APIs that force others to do so.



CHAPTER 9 EXCEPTIONS244

Item 58: Use checked exceptions for recoverable conditions and

runtime exceptions for programming errors

The Java programming language provides three kinds of throwables: checked excep-

tions, runtime exceptions, and errors. There is some confusion among programmers

as to when it is appropriate to use each kind of throwable. While the decision is not

always clear-cut, there are some general rules that provide strong guidance.

The cardinal rule in deciding whether to use a checked or an unchecked

exception is this: use checked exceptions for conditions from which the caller

can reasonably be expected to recover. By throwing a checked exception, you

force the caller to handle the exception in a catch clause or to propagate it out-

ward. Each checked exception that a method is declared to throw is therefore a

potent indication to the API user that the associated condition is a possible out-

come of invoking the method.

By confronting the API user with a checked exception, the API designer pre-

sents a mandate to recover from the condition. The user can disregard the mandate

by catching the exception and ignoring it, but this is usually a bad idea (Item 65).

There are two kinds of unchecked throwables: runtime exceptions and errors.

They are identical in their behavior: both are throwables that needn’t, and gener-

ally shouldn’t, be caught. If a program throws an unchecked exception or an error,

it is generally the case that recovery is impossible and continued execution would

do more harm than good. If a program does not catch such a throwable, it will

cause the current thread to halt with an appropriate error message.

Use runtime exceptions to indicate programming errors. The great major-

ity of runtime exceptions indicate precondition violations. A precondition viola-

tion is simply a failure by the client of an API to adhere to the contract established

by the API specification. For example, the contract for array access specifies that

the array index must be between zero and the array length minus one. ArrayIn-

dexOutOfBoundsException indicates that this precondition was violated.

While the Java Language Specification does not require it, there is a strong

convention that errors are reserved for use by the JVM to indicate resource defi-

ciencies, invariant failures, or other conditions that make it impossible to continue

execution. Given the almost universal acceptance of this convention, it’s best not

to implement any new Error subclasses. Therefore, all of the unchecked throw-

ables you implement should subclass RuntimeException (directly or indi-

rectly).

It is possible to define a throwable that is not a subclass of Exception, Run-

timeException, or Error. The JLS does not address such throwables directly but
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specifies implicitly that they are behaviorally identical to ordinary checked excep-

tions (which are subclasses of Exception but not RuntimeException). So when

should you use such a beast? In a word, never. It has no benefits over an ordinary

checked exception and would merely serve to confuse the user of your API.

To summarize, use checked exceptions for recoverable conditions and runtime

exceptions for programming errors. Of course, the situation is not always black

and white. For example, consider the case of resource exhaustion, which can be

caused by a programming error such as allocating an unreasonably large array or

by a genuine shortage of resources. If resource exhaustion is caused by a tempo-

rary shortage or by temporarily heightened demand, the condition may well be

recoverable. It is a matter of judgment on the part of the API designer whether a

given instance of resource exhaustion is likely to allow for recovery. If you believe

a condition is likely to allow for recovery, use a checked exception; if not, use a

runtime exception. If it isn’t clear whether recovery is possible, you’re probably

better off using an unchecked exception, for reasons discussed in Item 59.

API designers often forget that exceptions are full-fledged objects on which

arbitrary methods can be defined. The primary use of such methods is to provide

the code that catches the exception with additional information concerning the

condition that caused the exception to be thrown. In the absence of such methods,

programmers have been known to parse the string representation of an exception

to ferret out additional information. This is extremely bad practice (Item 10).

Classes seldom specify the details of their string representations, so string

representations can differ from implementation to implementation and release to

release. Therefore, code that parses the string representation of an exception is

likely to be nonportable and fragile.

Because checked exceptions generally indicate recoverable conditions, it’s

especially important for such exceptions to provide methods that furnish informa-

tion that could help the caller to recover. For example, suppose a checked excep-

tion is thrown when an attempt to make a purchase with a gift card fails because

the card doesn’t have enough money left on it. The exception should provide an

accessor method to query the amount of the shortfall, so the amount can be

relayed to the shopper.
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Item 59: Avoid unnecessary use of checked exceptions

Checked exceptions are a wonderful feature of the Java programming language.

Unlike return codes, they force the programmer to deal with exceptional conditions,

greatly enhancing reliability. That said, overuse of checked exceptions can make an

API far less pleasant to use. If a method throws one or more checked exceptions, the

code that invokes the method must handle the exceptions in one or more catch

blocks, or it must declare that it throws the exceptions and let them propagate out-

ward. Either way, it places a nontrivial burden on the programmer.

The burden is justified if the exceptional condition cannot be prevented by

proper use of the API and the programmer using the API can take some useful

action once confronted with the exception. Unless both of these conditions hold,

an unchecked exception is more appropriate. As a litmus test, ask yourself how the

programmer will handle the exception. Is this the best that can be done?

} catch(TheCheckedException e) {
throw new AssertionError(); // Can't happen!

}

How about this?

} catch(TheCheckedException e) {
e.printStackTrace();   // Oh well, we lose.
System.exit(1);

}

If the programmer using the API can do no better, an unchecked exception

would be more appropriate. One example of an exception that fails this test is

CloneNotSupportedException. It is thrown by Object.clone, which should be

invoked only on objects that implement Cloneable (Item 11). In practice, the

catch block almost always has the character of an assertion failure. The checked

nature of the exception provides no benefit to the programmer, but it requires

effort and complicates programs.

The additional burden on the programmer caused by a checked exception is

substantially higher if it is the sole checked exception thrown by a method. If there

are others, the method must already appear in a try block, and this exception

merely requires another catch block. If a method throws a single checked excep-

tion, this exception alone is responsible for the fact that the method must appear in

a try block. Under these circumstances, it pays to ask yourself whether there isn’t

some way to avoid the checked exception.
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One technique for turning a checked exception into an unchecked exception is

to break the method that throws the exception into two methods, the first of which

returns a boolean that indicates whether the exception would be thrown. This API

refactoring transforms the calling sequence from this:

// Invocation with checked exception
try {

obj.action(args);
} catch(TheCheckedException e) {

// Handle exceptional condition
...

}

to this:

// Invocation with state-testing method and unchecked exception
if (obj.actionPermitted(args)) {

obj.action(args);
} else {

// Handle exceptional condition
...

}

This refactoring is not always appropriate, but where it is appropriate, it can

make an API more pleasant to use. While the latter calling sequence is no prettier

than the former, the resulting API is more flexible. In cases where the programmer

knows the call will succeed or is content to let the thread terminate if the call fails,

the refactoring also allows this simple calling sequence:

obj.action(args);

If you suspect that the simple calling sequence will be the norm, then this API

refactoring may be appropriate. The API resulting from this refactoring is essen-

tially identical to the state-testing method API in Item 57 and the same caveats

apply: if an object is to be accessed concurrently without external synchronization

or it is subject to externally induced state transitions, this refactoring is inappropri-

ate, as the object’s state may change between the invocations of actionPermit-

ted and action. If a separate actionPermitted method would, of necessity,

duplicate the work of the action method, the refactoring may be ruled out by per-

formance concerns.
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Item 60: Favor the use of standard exceptions

One of the attributes that most strongly distinguishes expert programmers from less

experienced ones is that experts strive for and usually achieve a high degree of code

reuse. Exceptions are no exception to the general rule that code reuse is good. The

Java platform libraries provide a basic set of unchecked exceptions that cover a large

fraction of the exception-throwing needs of most APIs. In this item, we’ll discuss

these commonly reused exceptions.

Reusing preexisting exceptions has several benefits. Chief among these, it

makes your API easier to learn and use because it matches established conven-

tions with which programmers are already familiar. A close second is that pro-

grams using your API are easier to read because they aren’t cluttered with

unfamiliar exceptions. Last (and least), fewer exception classes mean a smaller

memory footprint and less time spent loading classes.

The most commonly reused exception is IllegalArgumentException. This

is generally the exception to throw when the caller passes in an argument whose

value is inappropriate. For example, this would be the exception to throw if the

caller passed a negative number in a parameter representing the number of times

some action was to be repeated.

Another commonly reused exception is IllegalStateException. This is

generally the exception to throw if the invocation is illegal because of the state of

the receiving object. For example, this would be the exception to throw if the

caller attempted to use some object before it had been properly initialized.

Arguably, all erroneous method invocations boil down to an illegal argument

or illegal state, but other exceptions are standardly used for certain kinds of illegal

arguments and states. If a caller passes null in some parameter for which null val-

ues are prohibited, convention dictates that NullPointerException be thrown

rather than IllegalArgumentException. Similarly, if a caller passes an out-of-

range value in a parameter representing an index into a sequence, IndexOutOf-

BoundsException should be thrown rather than IllegalArgumentException.

Another general-purpose exception worth knowing about is ConcurrentMod-

ificationException. This exception should be thrown if an object that was

designed for use by a single thread or with external synchronization detects that it

is being (or has been) concurrently modified.

A last general-purpose exception worthy of note is UnsupportedOperation-

Exception. This is the exception to throw if an object does not support an

attempted operation. Its use is rare compared to the other exceptions discussed in

this item, as most objects support all the methods they implement. This exception
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is used by implementations that fail to implement one or more optional operations

defined by an interface. For example, an append-only List implementation would

throw this exception if someone tried to delete an element from the list.

This table summarizes the most commonly reused exceptions:

While these are by far the most commonly reused exceptions in the Java plat-

form libraries, other exceptions may be reused where circumstances warrant. For

example, it would be appropriate to reuse ArithmeticException and Number-

FormatException if you were implementing arithmetic objects such as complex

numbers or rational numbers. If an exception fits your needs, go ahead and use it,

but only if the conditions under which you would throw it are consistent with the

exception’s documentation. Reuse must be based on semantics, not just on name.

Also, feel free to subclass an existing exception if you want to add a bit more fail-

ure-capture information (Item 63).

Finally, be aware that choosing which exception to reuse is not always an

exact science, as the occasions for use in the table above are not mutually

exclusive. Consider, for example, the case of an object representing a deck of

cards. Suppose there were a method to deal a hand from the deck that took as an

argument the size of the hand. Suppose the caller passed in this parameter a value

that was larger than the number of cards remaining in the deck. This could be

construed as an IllegalArgumentException (the handSize parameter value is

too high) or an IllegalStateException (the deck object contains too few cards

for the request). In this case the IllegalArgumentException feels right, but there

are no hard-and-fast rules.

Exception Occasion for Use

IllegalArgumentException Non-null parameter value is inappropriate

IllegalStateException Object state is inappropriate for method 
invocation

NullPointerException Parameter value is null where prohibited

IndexOutOfBoundsException Index parameter value is out of range

ConcurrentModificationException Concurrent modification of an object has 
been detected where it is prohibited

UnsupportedOperationException Object does not support method
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Item 61: Throw exceptions appropriate to the abstraction

It is disconcerting when a method throws an exception that has no apparent connec-

tion to the task that it performs. This often happens when a method propagates an

exception thrown by a lower-level abstraction. Not only is this disconcerting, but it

pollutes the API of the higher layer with implementation details. If the implementa-

tion of the higher layer changes in a subsequent release, the exceptions that it throws

will change too, potentially breaking existing client programs.

To avoid this problem, higher layers should catch lower-level exceptions

and, in their place, throw exceptions that can be explained in terms of the

higher-level abstraction. This idiom is known as exception translation:

// Exception Translation
try {

// Use lower-level abstraction to do our bidding
...

} catch(LowerLevelException e) {
throw new HigherLevelException(...);

}

Here is an example of exception translation taken from the

AbstractSequentialList class, which is a skeletal implementation (Item 18) of

the List interface. In this example, exception translation is mandated by the

specification of the get method in the List<E> interface:

/**
* Returns the element at the specified position in this list.
* @throws IndexOutOfBoundsException if the index is out of range
*         ({@code index < 0 || index >= size()}).
*/
public E get(int index) {

ListIterator<E> i = listIterator(index);
try {

return i.next();
} catch(NoSuchElementException e) {

throw new IndexOutOfBoundsException("Index: " + index);
}

}

A special form of exception translation called exception chaining is appropri-

ate in cases where the lower-level exception might be helpful to someone debug-

ging the problem that caused the higher-level exception. The lower-level



ITEM 61: THROW EXCEPTIONS APPROPRIATE TO THE ABSTRACTION 251

exception (the cause) is passed to the higher-level exception, which provides an

accessor method (Throwable.getCause) to retrieve the lower-level exception:

// Exception Chaining
try {

... // Use lower-level abstraction to do our bidding
} catch (LowerLevelException cause) {

throw new HigherLevelException(cause);
}

The higher-level exception’s constructor passes the cause to a chaining-aware

superclass constructor, so it is ultimately passed to one of Throwable’s chaining-

aware constructors, such as Throwable(Throwable):

// Exception with chaining-aware constructor
class HigherLevelException extends Exception {

HigherLevelException(Throwable cause) {
super(cause);

}
}

Most standard exceptions have chaining-aware constructors. For exceptions that

don’t, you can set the cause using Throwable’s initCause method. Not only does

exception chaining let you access the cause programmatically (with getCause), but

it integrates the cause’s stack trace into that of the higher-level exception.

While exception translation is superior to mindless propagation of excep-

tions from lower layers, it should not be overused. Where possible, the best

way to deal with exceptions from lower layers is to avoid them, by ensuring that

lower-level methods succeed. Sometimes you can do this by checking the validity

of the higher-level method’s parameters before passing them on to lower layers.

If it is impossible to prevent exceptions from lower layers, the next best thing

is to have the higher layer silently work around these exceptions, insulating the

caller of the higher-level method from lower-level problems. Under these circum-

stances, it may be appropriate to log the exception using some appropriate logging

facility such as java.util.logging. This allows an administrator to investigate

the problem, while insulating the client code and the end user from it. 

In summary, if it isn’t feasible to prevent or to handle exceptions from lower

layers, use exception translation, unless the lower-level method happens to guar-

antee that all of its exceptions are appropriate to the higher level. Chaining pro-

vides the best of both worlds: it allows you to throw an appropriate higher-level

exception, while capturing the underlying cause for failure analysis (Item 63).
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Item 62: Document all exceptions thrown by each method

A description of the exceptions thrown by a method is an important part of the doc-

umentation required to use the method properly. Therefore, it is critically important

that you take the time to carefully document all of the exceptions thrown by each

method.

Always declare checked exceptions individually, and document precisely

the conditions under which each one is thrown using the Javadoc @throws

tag. Don’t take the shortcut of declaring that a method throws some superclass of

multiple exception classes that it can throw. As an extreme example, never declare

that a method “throws Exception” or, worse yet, “throws Throwable.” In addi-

tion to denying any guidance to the method’s user concerning the exceptions that

it is capable of throwing, such a declaration greatly hinders the use of the method,

as it effectively obscures any other exception that may be thrown in the same con-

text.

While the language does not require programmers to declare the unchecked

exceptions that a method is capable of throwing, it is wise to document them as

carefully as the checked exceptions. Unchecked exceptions generally represent

programming errors (Item 58), and familiarizing programmers with all of the

errors they can make helps them avoid making these errors. A well-documented

list of the unchecked exceptions that a method can throw effectively describes the

preconditions for its successful execution. It is essential that each method’s docu-

mentation describe its preconditions, and documenting its unchecked exceptions

is the best way to satisfy this requirement.

It is particularly important that methods in interfaces document the unchecked

exceptions they may throw. This documentation forms a part of the interface’s

general contract and enables common behavior among multiple implementations

of the interface.

Use the Javadoc @throws tag to document each unchecked exception that

a method can throw, but do not use the throws keyword to include unchecked

exceptions in the method declaration. It is important that the programmers

using your API be aware of which exceptions are checked and which are

unchecked, as their responsibilities differ in these two cases. The documentation

generated by the Javadoc @throws tag in the absence of the method header gener-

ated by the throws declaration provides a strong visual cue to help the program-

mer distinguish checked exceptions from unchecked.
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It should be noted that documenting all of the unchecked exceptions that each

method can throw is an ideal, not always achievable in the real world. When a

class undergoes revision, it is not a violation of source or binary compatibility if

an exported method is modified to throw additional unchecked exceptions.

Suppose a class invokes a method from another, independently written class. The

authors of the former class may carefully document all of the unchecked

exceptions that each method throws, but if the latter class is revised to throw

additional unchecked exceptions, it is quite likely that the former class (which has

not undergone revision) will propagate the new unchecked exceptions even

though it does not declare them.

If an exception is thrown by many methods in a class for the same reason,

it is acceptable to document the exception in the class’s documentation com-

ment rather than documenting it individually for each method. A common exam-

ple is NullPointerException. It is fine for a class’s documentation comment to

say, “All methods in this class throw a NullPointerException if a null object ref-

erence is passed in any parameter,” or words to that effect.

In summary, document every exception that can be thrown by each method

that you write. This is true for unchecked as well as checked exceptions, and for

abstract as well as concrete methods. Provide individual throws clauses for each

checked exception and do not provide throws clauses for unchecked exceptions.

If you fail to document the exceptions that your methods can throw, it will be dif-

ficult or impossible for others to make effective use of your classes and interfaces.
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Item 63: Include failure-capture information in detail messages

When a program fails due to an uncaught exception, the system automatically prints

out the exception’s stack trace. The stack trace contains the exception’s string repre-

sentation, the result of invoking its toString method. This typically consists of the

exception’s class name followed by its detail message. Frequently this is the only

information that programmers or field service personnel will have when investigat-

ing a software failure. If the failure is not easily reproducible, it may be difficult or

impossible to get any more information. Therefore, it is critically important that the

exception’s toString method return as much information as possible concerning

the cause of the failure. In other words, the detail message of an exception should

capture the failure for subsequent analysis.

To capture the failure, the detail message of an exception should contain

the values of all parameters and fields that “contributed to the exception.”

For example, the detail message of an IndexOutOfBoundsException should con-

tain the lower bound, the upper bound, and the index value that failed to lie

between the bounds. This information tells a lot about the failure. Any or all of the

three values could be wrong. The actual index could be one less than the lower

bound or equal to the upper bound (a “fencepost error”), or it could be a wild

value, far too low or high. The lower bound could be greater than the upper bound

(a serious internal invariant failure). Each of these situations points to a different

problem, and it greatly aids in the diagnosis if the programmer knows what sort of

error to look for.

While it is critical to include all of the pertinent “hard data” in the detail mes-

sage of an exception, it is generally unimportant to include a lot of prose. The

stack trace is intended to be analyzed in conjunction with the source files and gen-

erally contains the exact file and line number from which the exception was

thrown, as well as the files and line numbers of all other method invocations on

the stack. Lengthy prose descriptions of the failure are generally superfluous; the

information can be gleaned by reading the source code.

The detail message of an exception should not be confused with a user-level

error message, which must be intelligible to end users. Unlike a user-level error

message, it is primarily for the benefit of programmers or field service personnel

for use when analyzing a failure. Therefore, information content is far more

important than intelligibility.

One way to ensure that exceptions contain adequate failure-capture informa-

tion in their detail messages is to require this information in their constructors

instead of a string detail message. The detail message can then be generated auto-
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matically to include the information. For example, instead of a String construc-

tor, IndexOutOfBoundsException could have had a constructor that looks like

this:

/**
* Construct an IndexOutOfBoundsException.
*
* @param lowerBound the lowest legal index value.
* @param upperBound the highest legal index value plus one.
* @param index      the actual index value.
*/
public IndexOutOfBoundsException(int lowerBound, int upperBound,

int index) {
// Generate a detail message that captures the failure
super("Lower bound: " + lowerBound +

", Upper bound: " + upperBound +
", Index: " + index);

// Save failure information for programmatic access
this.lowerBound = lowerBound;
this.upperBound = upperBound;
this.index = index;

}

Unfortunately, the Java platform libraries do not make heavy use of this

idiom, but it is highly recommended. It makes it easy for the programmer throw-

ing an exception to capture the failure. In fact, it makes it hard for the programmer

not to capture the failure! In effect, the idiom centralizes the code to generate a

high-quality detail message for an exception in the exception class itself, rather

than requiring each user of the class to generate the detail message redundantly.

As suggested in Item 58, it may be appropriate for an exception to provide

accessor methods for its failure-capture information (lowerBound, upperBound,

and index in the above example). It is more important to provide such accessor

methods on checked exceptions than on unchecked exceptions, because the fail-

ure-capture information could be useful in recovering from the failure. It is rare

(although not inconceivable) that a programmer might want programmatic access

to the details of an unchecked exception. Even for unchecked exceptions, how-

ever, it seems advisable to provide these accessors on general principle (Item 10,

page 53).
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Item 64: Strive for failure atomicity

After an object throws an exception, it is generally desirable that the object still be in

a well-defined, usable state, even if the failure occurred in the midst of performing

an operation. This is especially true for checked exceptions, from which the caller is

expected to recover. Generally speaking, a failed method invocation should leave

the object in the state that it was in prior to the invocation. A method with this

property is said to be failure atomic.

There are several ways to achieve this effect. The simplest is to design immu-

table objects (Item 15). If an object is immutable, failure atomicity is free. If an

operation fails, it may prevent a new object from getting created, but it will never

leave an existing object in an inconsistent state, because the state of each object is

consistent when it is created and can’t be modified thereafter.

For methods that operate on mutable objects, the most common way to

achieve failure atomicity is to check parameters for validity before performing the

operation (Item 38). This causes any exception to get thrown before object modifi-

cation commences. For example, consider the Stack.pop method in Item 6: 

public Object pop() {
if (size == 0)

throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

If the initial size check were eliminated, the method would still throw an

exception when it attempted to pop an element from an empty stack. It would,

however, leave the size field in an inconsistent (negative) state, causing any future

method invocations on the object to fail. Additionally, the exception thrown by the

pop method would be inappropriate to the abstraction (Item 61).

A closely related approach to achieving failure atomicity is to order the com-

putation so that any part that may fail takes place before any part that modifies the

object. This approach is a natural extension of the previous one when arguments

cannot be checked without performing a part of the computation. For example,

consider the case of TreeMap, whose elements are sorted according to some order-

ing. In order to add an element to a TreeMap, the element must be of a type that

can be compared using the TreeMap’s ordering. Attempting to add an incorrectly

typed element will naturally fail with a ClassCastException as a result of

searching for the element in the tree, before the tree has been modified in any way.
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A third and far less common approach to achieving failure atomicity is to

write recovery code that intercepts a failure that occurs in the midst of an opera-

tion and causes the object to roll back its state to the point before the operation

began. This approach is used mainly for durable (disk-based) data structures.

A final approach to achieving failure atomicity is to perform the operation on

a temporary copy of the object and to replace the contents of the object with the

temporary copy once the operation is complete. This approach occurs naturally

when the computation can be performed more quickly once the data has been

stored in a temporary data structure. For example, Collections.sort dumps its

input list into an array prior to sorting to reduce the cost of accessing elements in

the inner loop of the sort. This is done for performance, but as an added benefit, it

ensures that the input list will be untouched if the sort fails.

While failure atomicity is generally desirable, it is not always achievable. For

example, if two threads attempt to modify the same object concurrently without

proper synchronization, the object may be left in an inconsistent state. It would

therefore be wrong to assume that an object was still usable after catching a Con-

currentModificationException. As a rule, errors (as opposed to exceptions)

are unrecoverable, and methods need not even attempt to preserve failure atomic-

ity when throwing errors.

Even where failure atomicity is possible, it is not always desirable. For some

operations, it would significantly increase the cost or complexity. That said, it is

often both free and easy to achieve failure atomicity once you’re aware of the

issue.

As a rule, any generated exception that is part of a method’s specification

should leave the object in the same state it was in prior to the method invocation.

Where this rule is violated, the API documentation should clearly indicate what

state the object will be left in. Unfortunately, plenty of existing API documenta-

tion fails to live up to this ideal.
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Item 65: Don’t ignore exceptions

While this advice may seem obvious, it is violated often enough that it bears repeat-

ing. When the designers of an API declare a method to throw an exception, they are

trying to tell you something. Don’t ignore it! It is easy to ignore exceptions by sur-

rounding a method invocation with a try statement with an empty catch block:

// Empty catch block ignores exception - Highly suspect!
try {

...
} catch (SomeException e) {
}

An empty catch block defeats the purpose of exceptions, which is to force

you to handle exceptional conditions. Ignoring an exception is analogous to ignor-

ing a fire alarm—and turning it off so no one else gets a chance to see if there’s a

real fire. You may get away with it, or the results may be disastrous. Whenever

you see an empty catch block, alarm bells should go off in your head. At the very

least, the catch block should contain a comment explaining why it is appro-

priate to ignore the exception.

An example of the sort of situation where it might be appropriate to ignore an

exception is when closing a FileInputStream. You haven’t changed the state of

the file, so there’s no need to perform any recovery action, and you’ve already

read the information that you need from the file, so there’s no reason to abort the

operation in progress. Even in this case, it is wise to log the exception, so that you

can investigate the matter if these exceptions happen often.

The advice in this item applies equally to checked and unchecked exceptions.

Whether an exception represents a predictable exceptional condition or a pro-

gramming error, ignoring it with an empty catch block will result in a program

that continues silently in the face of error. The program might then fail at an arbi-

trary time in the future, at a point in the code that bears no apparent relation to the

source of the problem. Properly handling an exception can avert failure entirely.

Merely letting an exception propagate outward can at least cause the program to

fail swiftly, preserving information to aid in debugging the failure.
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C H A P T E R 10
Concurrency

THREADS allow multiple activities to proceed concurrently. Concurrent pro-

gramming is harder than single-threaded programming, because more things can go

wrong, and failures can be hard to reproduce. But you can’t avoid concurrency. It is

inherent in much of what we do, and a requirement if you are to obtain good perfor-

mance from multicore processors, which are now commonplace. This chapter con-

tains advice to help you write clear, correct, well-documented concurrent programs.

Item 66: Synchronize access to shared mutable data

The synchronized keyword ensures that only a single thread can execute a method

or block at one time. Many programmers think of synchronization solely as a

means of mutual exclusion, to prevent an object from being observed in an incon-

sistent state while it’s being modified by another thread. In this view, an object is

created in a consistent state (Item 15) and locked by the methods that access it.

These methods observe the state and optionally cause a state transition, transform-

ing the object from one consistent state to another. Proper use of synchronization

guarantees that no method will ever observe the object in an inconsistent state. 

This view is correct, but it’s only half the story. Without synchronization, one

thread’s changes might not be visible to other threads. Not only does synchroniza-

tion prevent a thread from observing an object in an inconsistent state, but it

ensures that each thread entering a synchronized method or block sees the effects

of all previous modifications that were guarded by the same lock.

The language specification guarantees that reading or writing a variable is

atomic unless the variable is of type long or double [JLS, 17.4.7]. In other words,

reading a variable other than a long or double is guaranteed to return a value that

was stored into that variable by some thread, even if multiple threads modify the

variable concurrently and without synchronization.
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You may hear it said that to improve performance, you should avoid synchro-

nization when reading or writing atomic data. This advice is dangerously wrong.

While the language specification guarantees that a thread will not see an arbitrary

value when reading a field, it does not guarantee that a value written by one thread

will be visible to another. Synchronization is required for reliable communica-

tion between threads as well as for mutual exclusion. This is due to a part of the

language specification known as the memory model, which specifies when and

how changes made by one thread become visible to others [JLS, 17, Goetz06 16].

The consequences of failing to synchronize access to shared mutable data can

be dire even if the data is atomically readable and writable. Consider the task of

stopping one thread from another. The libraries provide the Thread.stop method,

but this method was deprecated long ago because it is inherently unsafe—its use

can result in data corruption. Do not use Thread.stop. A recommended way to

stop one thread from another is to have the first thread poll a boolean field that is

initially false but can be set to true by the second thread to indicate that the first

thread is to stop itself. Because reading and writing a boolean field is atomic,

some programmers dispense with synchronization when accessing the field: 

// Broken! - How long would you expect this program to run?
public class StopThread {

private static boolean stopRequested;

public static void main(String[] args)
throws InterruptedException {

Thread backgroundThread = new Thread(new Runnable() {
public void run() {

int i = 0;
while (!stopRequested)

i++;
}

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
}

You might expect this program to run for about a second, after which the main

thread sets stopRequested to true, causing the background thread’s loop to ter-

minate. On my machine, however, the program never terminates: the background

thread loops forever!
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The problem is that in the absence of synchronization, there is no guarantee as

to when, if ever, the background thread will see the change in the value of stop-

Requested that was made by the main thread. In the absence of synchronization,

it’s quite acceptable for the virtual machine to transform this code:

while (!done)
i++;

into this code:

if (!done)
while (true)

i++;

This optimization is known as hoisting, and it is precisely what the HotSpot server

VM does. The result is a liveness failure: the program fails to make progress. One

way to fix the problem is to synchronize access to the stopRequested field. This

program terminates in about one second, as expected:

// Properly synchronized cooperative thread termination
public class StopThread {

private static boolean stopRequested;
private static synchronized void requestStop() {

stopRequested = true;
}
private static synchronized boolean stopRequested() {

return stopRequested;
}

public static void main(String[] args)
throws InterruptedException {

Thread backgroundThread = new Thread(new Runnable() {
public void run() {

int i = 0;
while (!stopRequested())

i++;
}

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

}
} 
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Note that both the write method (requestStop) and the read method (stop-

Requested) are synchronized. It is not sufficient to synchronize only the write

method! In fact, synchronization has no effect unless both read and write

operations are synchronized.

The actions of the synchronized methods in StopThread would be atomic

even without synchronization. In other words, the synchronization on these meth-

ods is used solely for its communication effects, not for mutual exclusion. While

the cost of synchronizing on each iteration of the loop is small, there is a correct

alternative that is less verbose and whose performance is likely to be better. The

locking in the second version of StopThread can be omitted if stopRequested is

declared volatile. While the volatile modifier performs no mutual exclusion, it

guarantees that any thread that reads the field will see the most recently written

value:

// Cooperative thread termination with a volatile field
public class StopThread {

private static volatile boolean stopRequested;

public static void main(String[] args)
throws InterruptedException {

Thread backgroundThread = new Thread(new Runnable() {
public void run() {

int i = 0;
while (!stopRequested)

i++;
}

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
}

You do have to be careful when using volatile. Consider the following

method, which is supposed to generate serial numbers: 

// Broken - requires synchronization!
private static volatile int nextSerialNumber = 0;

public static int generateSerialNumber() {
return nextSerialNumber++;

} 
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The intent of the method is to guarantee that every invocation returns a differ-

ent value (so long as there are no more than 232 invocations). The method’s state

consists of a single atomically accessible field, nextSerialNumber, and all possi-

ble values of this field are legal. Therefore, no synchronization is necessary to pro-

tect its invariants. Still, the method won’t work properly without synchronization.

The problem is that the increment operator (++) is not atomic. It performs two

operations on the nextSerialNumber field: first it reads the value, then it writes

back a new value, equal to the old value plus one. If a second thread reads the field

between the time a thread reads the old value and writes back a new one, the sec-

ond thread will see the same value as the first and return the same serial number.

This is a safety failure: the program computes the wrong results.

One way to fix the generateSerialNumber method is to add the synchro-

nized modifier to its declaration. This ensures that multiple invocations won’t be

interleaved, and that each invocation will see the effects of all previous invoca-

tions. Once you’ve done that, you can and should remove the volatile modifier

from nextSerialNumber. To bulletproof the method, use long instead of int, or

throw an exception if nextSerialNumber is about to wrap.

Better still, follow the advice in Item 47 and use the class AtomicLong, which

is part of java.util.concurrent.atomic. It does exactly what you want and is

likely to perform better than the synchronized version of generateSerialNumber:

private static final AtomicLong nextSerialNum = new AtomicLong();

public static long generateSerialNumber() {
return nextSerialNum.getAndIncrement();

}

The best way to avoid the problems discussed in this item is not to share muta-

ble data. Either share immutable data (Item 15), or don’t share at all. In other

words, confine mutable data to a single thread. If you adopt this policy, it is

important to document it, so that it is maintained as your program evolves. It is

also important to have a deep understanding of the frameworks and libraries

you’re using, as they may introduce threads that you are unaware of.

It is acceptable for one thread to modify a data object for a while and then to

share it with other threads, synchronizing only the act of sharing the object refer-

ence. Other threads can then read the object without further synchronization, so

long as it isn’t modified again. Such objects are said to be effectively immutable

[Goetz06 3.5.4]. Transferring such an object reference from one thread to others is

called safe publication [Goetz06 3.5.3]. There are many ways to safely publish an

object reference: you can store it in a static field as part of class initialization; you



CHAPTER 10 CONCURRENCY264

can store it in a volatile field, a final field, or a field that is accessed with normal

locking; or you can put it into a concurrent collection (Item 69).

In summary, when multiple threads share mutable data, each thread that

reads or writes the data must perform synchronization. Without synchroniza-

tion, there is no guarantee that one thread’s changes will be visible to another. The

penalties for failing to synchronize shared mutable data are liveness and safety

failures. These failures are among the most difficult to debug. They can be inter-

mittent and timing-dependent, and program behavior can vary radically from one

VM to another. If you need only inter-thread communication, and not mutual

exclusion, the volatile modifier is an acceptable form of synchronization, but it

can be tricky to use correctly.
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Item 67: Avoid excessive synchronization

Item 66 warns of the dangers of insufficient synchronization. This item concerns

the opposite problem. Depending on the situation, excessive synchronization can

cause reduced performance, deadlock, or even nondeterministic behavior.

To avoid liveness and safety failures, never cede control to the client

within a synchronized method or block. In other words, inside a synchronized

region, do not invoke a method that is designed to be overridden, or one provided

by a client in the form of a function object (Item 21). From the perspective of the

class with the synchronized region, such methods are alien. The class has no

knowledge of what the method does and has no control over it. Depending on

what an alien method does, calling it from a synchronized region can cause excep-

tions, deadlocks, or data corruption.

To make this concrete, consider the following class, which implements an

observable set wrapper. It allows clients to subscribe to notifications when ele-

ments are added to the set. This is the Observer pattern [Gamma95, p. 293]. For

brevity’s sake, the class does not provide notifications when elements are removed

from the set, but it would be a simple matter to provide them. This class is imple-

mented atop the reusable ForwardingSet from Item 16 (page 84):

// Broken - invokes alien method from synchronized block!
public class ObservableSet<E> extends ForwardingSet<E> {

public ObservableSet(Set<E> set) { super(set); }

private final List<SetObserver<E>> observers = 
new ArrayList<SetObserver<E>>();

public void addObserver(SetObserver<E> observer) {
synchronized(observers) {

observers.add(observer);
}

}
public boolean removeObserver(SetObserver<E> observer) {

synchronized(observers) {
return observers.remove(observer);

}
    }

private void notifyElementAdded(E element) {
synchronized(observers) {

for (SetObserver<E> observer : observers)
observer.added(this, element);

}
}
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@Override public boolean add(E element) {
boolean added = super.add(element);
if (added)

notifyElementAdded(element);
return added;

}

@Override public boolean addAll(Collection<? extends E> c) {
boolean result = false;
for (E element : c)

result |= add(element); // calls notifyElementAdded
return result;

}
}

Observers subscribe to notifications by invoking the addObserver method

and unsubscribe by invoking the removeObserver method. In both cases, an

instance of this callback interface is passed to the method:

public interface SetObserver<E> {
// Invoked when an element is added to the observable set
void added(ObservableSet<E> set, E element);

}

On cursory inspection, ObservableSet appears to work. For example, the fol-

lowing program prints the numbers from 0 through 99:

public static void main(String[] args) {
ObservableSet<Integer> set =

new ObservableSet<Integer>(new HashSet<Integer>());

set.addObserver(new SetObserver<Integer>() {
public void added(ObservableSet<Integer> s, Integer e) {

System.out.println(e);
}

});

for (int i = 0; i < 100; i++)
set.add(i);

}

Now let’s try something a bit fancier. Suppose we replace the addObserver

call with one that passes an observer that prints the Integer value that was added

to the set and removes itself if the value is 23:
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set.addObserver(new SetObserver<Integer>() {
public void added(ObservableSet<Integer> s, Integer e) {

System.out.println(e);
if (e == 23) s.removeObserver(this);

}
});

You might expect the program to print the numbers 0 through 23, after which the

observer would unsubscribe and the program complete its work silently. What

actually happens is that it prints the numbers 0 through 23, and then throws a Con-

currentModificationException. The problem is that notifyElementAdded is

in the process of iterating over the observers list when it invokes the observer’s

added method. The added method calls the observable set’s removeObserver

method, which in turn calls observers.remove. Now we are in trouble. We are

trying to remove an element from a list in the midst of iterating over it, which is

illegal. The iteration in the notifyElementAdded method is in a synchronized

block to prevent concurrent modification, but it doesn’t prevent the iterating thread

itself from calling back into the observable set and modifying its observers list.

Now let’s try something odd: let’s write an observer that attempts to unsub-

scribe, but instead of calling removeObserver directly, it engages the services of

another thread to do the deed. This observer uses an executor service (Item 68):

// Observer that uses a background thread needlessly
set.addObserver(new SetObserver<Integer>() {

public void added(final ObservableSet<Integer> s, Integer e) {
System.out.println(e);
if (e == 23) {

ExecutorService executor =
Executors.newSingleThreadExecutor();

final SetObserver<Integer> observer = this;
try {

executor.submit(new Runnable() {
public void run() {

s.removeObserver(observer);
}

}).get(); 
} catch (ExecutionException ex) {

throw new AssertionError(ex.getCause());
} catch (InterruptedException ex) {

throw new AssertionError(ex.getCause());
} finally {

executor.shutdown();
}

}
}

});
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This time we don’t get an exception; we get a deadlock. The background thread

calls s.removeObserver, which attempts to lock observers, but it can’t acquire

the lock, because the main thread already has the lock. All the while, the main

thread is waiting for the background thread to finish removing the observer, which

explains the deadlock.

This example is contrived because there is no reason for the observer to use a

background thread, but the problem is real. Invoking alien methods from synchro-

nized regions has caused many deadlocks in real systems, such as GUI toolkits.

In both of the previous examples (the exception and the deadlock) we were

lucky. The resource that was guarded by the synchronized region (observers)

was in a consistent state when the alien method (added) was invoked. Suppose

you were to invoke an alien method from within a synchronized region while the

invariant protected by the synchronized region was temporarily invalid. Because

locks in the Java programming language are reentrant, such calls won’t deadlock.

As in the first example, which resulted in an exception, the calling thread already

holds the lock, so the thread will succeed when it tries to reacquire the lock, even

though another conceptually unrelated operation is in progress on the data

guarded by the lock. The consequences of such a failure can be catastrophic. In

essence, the lock has failed to do its job. Reentrant locks simplify the construction

of multithreaded object-oriented programs, but they can turn liveness failures into

safety failures.

Luckily, it is usually not too hard to fix this sort of problem by moving alien

method invocations out of synchronized blocks. For the notifyElementAdded

method, this involves taking a “snapshot” of the observers list that can then be

safely traversed without a lock. With this change, both of the previous examples

run without exception or deadlock:

// Alien method moved outside of synchronized block - open calls
private void notifyElementAdded(E element) {

List<SetObserver<E>> snapshot = null;
synchronized(observers) {

snapshot = new ArrayList<SetObserver<E>>(observers);
}
for (SetObserver<E> observer : snapshot)

observer.added(this, element);
}

In fact, there’s a better way to move the alien method invocations out of the

synchronized block. Since release 1.5, the Java libraries have provided a concur-

rent collection (Item 69) known as CopyOnWriteArrayList, which is tailor-made



ITEM 67: AVOID EXCESSIVE SYNCHRONIZATION 269

for this purpose. It is a variant of ArrayList in which all write operations are

implemented by making a fresh copy of the entire underlying array. Because the

internal array is never modified, iteration requires no locking and is very fast. For

most uses, the performance of CopyOnWriteArrayList would be atrocious, but

it’s perfect for observer lists, which are rarely modified and often traversed.

The add and addAll methods of ObservableSet need not be changed if the

list is modified to use CopyOnWriteArrayList. Here is how the remainder of the

class looks. Notice that there is no explicit synchronization whatsoever:

// Thread-safe observable set with CopyOnWriteArrayList
private final List<SetObserver<E>> observers = 

new CopyOnWriteArrayList<SetObserver<E>>();

public void addObserver(SetObserver<E> observer) {
observers.add(observer);

}
public boolean removeObserver(SetObserver<E> observer) {

return observers.remove(observer);
}
private void notifyElementAdded(E element) {

for (SetObserver<E> observer : observers)
observer.added(this, element);

}

An alien method invoked outside of a synchronized region is known as an

open call [Lea00 2.4.1.3]. Besides preventing failures, open calls can greatly

increase concurrency. An alien method might run for an arbitrarily long period. If

the alien method were invoked from a synchronized region, other threads would

be denied access to the protected resource unnecessarily.

As a rule, you should do as little work as possible inside synchronized

regions. Obtain the lock, examine the shared data, transform it as necessary, and

drop the lock. If you must perform some time-consuming activity, find a way to

move the activity out of the synchronized region without violating the guidelines

in Item 66.

The first part of this item was about correctness. Now let’s take a brief look at

performance. While the cost of synchronization has plummeted since the early

days of Java, it is more important than ever not to oversynchronize. In a multicore

world, the real cost of excessive synchronization is not the CPU time spent obtain-

ing locks; it is the lost opportunities for parallelism and the delays imposed by the

need to ensure that every core has a consistent view of memory. Another hidden
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cost of oversynchronization is that it can limit the VM’s ability to optimize code

execution.

You should make a mutable class thread-safe (Item 70) if it is intended for

concurrent use and you can achieve significantly higher concurrency by synchro-

nizing internally than you could by locking the entire object externally. Otherwise,

don’t synchronize internally. Let the client synchronize externally where it is

appropriate. In the early days of the Java platform, many classes violated these

guidelines. For example, StringBuffer instances are almost always used by a

single thread, yet they perform internal synchronization. It is for this reason that

StringBuffer was essentially replaced by StringBuilder, which is an unsyn-

chronized StringBuffer, in release 1.5. When in doubt, do not synchronize your

class, but document that it is not thread-safe (Item 70).

If you do synchronize your class internally, you can use various techniques to

achieve high concurrency, such as lock splitting, lock striping, and nonblocking

concurrency control. These techniques are beyond the scope of this book, but they

are discussed elsewhere [Goetz06, Lea00].

If a method modifies a static field, you must synchronize access to this field,

even if the method is typically used only by a single thread. It is not possible for

clients to perform external synchronization on such a method because there can be

no guarantee that unrelated clients will do likewise. The generateSerialNumber

method on page 263 exemplifies this situation.

In summary, to avoid deadlock and data corruption, never call an alien method

from within a synchronized region. More generally, try to limit the amount of

work that you do from within synchronized regions. When you are designing a

mutable class, think about whether it should do its own synchronization. In the

modern multicore era, it is more important than ever not to synchronize exces-

sively. Synchronize your class internally only if there is a good reason to do so,

and document your decision clearly (Item 70).
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Item 68: Prefer executors and tasks to threads

The first edition of this book contained code for a simple work queue [Bloch01,

Item 50]. This class allowed clients to enqueue work items for asynchronous pro-

cessing by a background thread. When the work queue was no longer needed, the

client could invoke a method to ask the background thread to terminate itself

gracefully after completing any work that was already on the queue. The imple-

mentation was little more than a toy, but even so, it required a full page of subtle,

delicate code, of the sort that is prone to safety and liveness failures if you don’t

get it just right. Luckily, there is no reason to write this sort of code anymore.

In release 1.5, java.util.concurrent was added to the Java platform. This

package contains an Executor Framework, which is a flexible interface-based task

execution facility. Creating a work queue that is better in every way than the one

in the first edition of this book requires but a single line of code:

ExecutorService executor = Executors.newSingleThreadExecutor();

Here is how to submit a runnable for execution:

executor.execute(runnable);

And here is how to tell the executor to terminate gracefully (if you fail to do this, it

is likely that your VM will not exit):

executor.shutdown();

You can do many more things with an executor service. For example, you can

wait for a particular task to complete (as in the “background thread SetObserver”

in Item 67, page 267), you can wait for any or all of a collection of tasks to com-

plete (using the invokeAny or invokeAll methods), you can wait for the executor

service’s graceful termination to complete (using the awaitTermination

method), you can retrieve the results of tasks one by one as they complete (using

an ExecutorCompletionService), and so on. 

If you want more than one thread to process requests from the queue, simply

call a different static factory that creates a different kind of executor service called

a thread pool. You can create a thread pool with a fixed or variable number of

threads. The java.util.concurrent.Executors class contains static factories

that provide most of the executors you’ll ever need. If, however, you want some-



CHAPTER 10 CONCURRENCY272

thing out of the ordinary, you can use the ThreadPoolExecutor class directly.

This class lets you control nearly every aspect of a thread pool’s operation.

Choosing the executor service for a particular application can be tricky. If

you’re writing a small program, or a lightly loaded server, using Executors.new-

CachedThreadPool is generally a good choice, as it demands no configuration

and generally “does the right thing.” But a cached thread pool is not a good choice

for a heavily loaded production server! In a cached thread pool, submitted tasks

are not queued but immediately handed off to a thread for execution. If no threads

are available, a new one is created. If a server is so heavily loaded that all of its

CPUs are fully utilized, and more tasks arrive, more threads will be created, which

will only make matters worse. Therefore, in a heavily loaded production server,

you are much better off using Executors.newFixedThreadPool, which gives you

a pool with a fixed number of threads, or using the ThreadPoolExecutor class

directly, for maximum control.

Not only should you refrain from writing your own work queues, but you

should generally refrain from working directly with threads. The key abstraction

is no longer Thread, which served as both the unit of work and the mechanism for

executing it. Now the unit of work and mechanism are separate. The key abstrac-

tion is the unit of work, which is called a task. There are two kinds of tasks: Run-

nable and its close cousin, Callable (which is like Runnable, except that it

returns a value). The general mechanism for executing tasks is the executor ser-

vice. If you think in terms of tasks and let an executor service execute them for

you, you gain great flexibility in terms of selecting appropriate execution policies.

In essence, the Executor Framework does for execution what the Collections

Framework did for aggregation.

The Executor Framework also has a replacement for java.util.Timer,

which is ScheduledThreadPoolExecutor. While it is easier to use a timer, a

scheduled thread pool executor is much more flexible. A timer uses only a single

thread for task execution, which can hurt timing accuracy in the presence of long-

running tasks. If a timer’s sole thread throws an uncaught exception, the timer

ceases to operate. A scheduled thread pool executor supports multiple threads and

recovers gracefully from tasks that throw unchecked exceptions.

A complete treatment of the Executor Framework is beyond the scope of this

book, but the interested reader is directed to Java Concurrency in Practice

[Goetz06].
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Item 69: Prefer concurrency utilities to wait and notify

The first edition of this book devoted an item to the correct use of wait and

notify (Bloch01, Item 50). Its advice is still valid and is summarized at end of this

item, but this advice is far less important than it once was. This is because there is

far less reason to use wait and notify. As of release 1.5, the Java platform pro-

vides higher-level concurrency utilities that do the sorts of things you formerly had

to hand-code atop wait and notify. Given the difficulty of using wait and

notify correctly, you should use the higher-level concurrency utilities instead.

The higher-level utilities in java.util.concurrent fall into three categories:

the Executor Framework, which was covered only briefly in Item 68; concurrent

collections; and synchronizers. Concurrent collections and synchronizers are cov-

ered briefly in this item.

The concurrent collections provide high-performance concurrent implementa-

tions of standard collection interfaces such as List, Queue, and Map. To provide

high concurrency, these implementations manage their own synchronization inter-

nally (Item 67). Therefore, it is impossible to exclude concurrent activity from

a concurrent collection; locking it will have no effect but to slow the program. 

This means that clients can’t atomically compose method invocations on con-

current collections. Some of the collection interfaces have therefore been extended

with state-dependent modify operations, which combine several primitives into a

single atomic operation. For example, ConcurrentMap extends Map and adds sev-

eral methods, including putIfAbsent(key, value), which inserts a mapping for

a key if none was present and returns the previous value associated with the key,

or null if there was none. This makes it easy to implement thread-safe canonical-

izing maps. For example, this method simulates the behavior of String.intern:

// Concurrent canonicalizing map atop ConcurrentMap - not optimal
private static final ConcurrentMap<String, String> map = 

new ConcurrentHashMap<String, String>();

public static String intern(String s) {
String previousValue = map.putIfAbsent(s, s);
return previousValue == null ? s : previousValue;

}

In fact, you can do even better. ConcurrentHashMap is optimized for retrieval

operations, such as get. Therefore, it is worth invoking get initially and calling

putIfAbsent only if get indicates that it is necessary:
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// Concurrent canonicalizing map atop ConcurrentMap - faster!
public static String intern(String s) {

String result = map.get(s);
if (result == null) {

result = map.putIfAbsent(s, s);
if (result == null)

result = s;
}
return result;

}

Besides offering excellent concurrency, ConcurrentHashMap is very fast. On my

machine the optimized intern method above is over six times faster than

String.intern (but keep in mind that String.intern must use some sort of weak

reference to keep from leaking memory over time). Unless you have a compelling reason

to do otherwise, use ConcurrentHashMap in preference to Collections.synchro-

nizedMap or Hashtable. Simply replacing old-style synchronized maps with concurrent

maps can dramatically increase the performance of concurrent applications. More gener-

ally, use concurrent collections in preference to externally synchronized collections.

Some of the collection interfaces have been extended with blocking opera-

tions, which wait (or block) until they can be successfully performed. For exam-

ple, BlockingQueue extends Queue and adds several methods, including take,

which removes and returns the head element from the queue, waiting if the queue

is empty. This allows blocking queues to be used for work queues (also known as

producer-consumer queues), to which one or more producer threads enqueue

work items and from which one or more consumer threads dequeue and process

items as they become available. As you’d expect, most ExecutorService imple-

mentations, including ThreadPoolExecutor, use a BlockingQueue (Item 68).

Synchronizers are objects that enable threads to wait for one another, allowing

them to coordinate their activities. The most commonly used synchronizers are

CountDownLatch and Semaphore. Less commonly used are CyclicBarrier and

Exchanger.

Countdown latches are single-use barriers that allow one or more threads to

wait for one or more other threads to do something. The sole constructor for

CountDownLatch takes an int that is the number of times the countDown method

must be invoked on the latch before all waiting threads are allowed to proceed. 

It is surprisingly easy to build useful things atop this simple primitive. For

example, suppose you want to build a simple framework for timing the concurrent

execution of an action. This framework consists of a single method that takes an

executor to execute the action, a concurrency level representing the number of
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actions to be executed concurrently, and a runnable representing the action. All of

the worker threads ready themselves to run the action before the timer thread

starts the clock (this is necessary to get an accurate timing). When the last worker

thread is ready to run the action, the timer thread “fires the starting gun,” allowing

the worker threads to perform the action. As soon as the last worker thread fin-

ishes performing the action, the timer thread stops the clock. Implementing this

logic directly on top of wait and notify would be messy to say the least, but it is

surprisingly straightforward on top of CountDownLatch:

// Simple framework for timing concurrent execution
public static long time(Executor executor, int concurrency,

final Runnable action) throws InterruptedException {
final CountDownLatch ready = new CountDownLatch(concurrency);
final CountDownLatch start = new CountDownLatch(1);
final CountDownLatch done = new CountDownLatch(concurrency);
for (int i = 0; i < concurrency; i++) {

executor.execute(new Runnable() {
public void run() {

ready.countDown(); // Tell timer we're ready
try {

start.await(); // Wait till peers are ready
action.run();

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

} finally {
done.countDown();  // Tell timer we're done

}
}

});
}
ready.await();     // Wait for all workers to be ready
long startNanos = System.nanoTime();
start.countDown(); // And they're off!
done.await();      // Wait for all workers to finish
return System.nanoTime() - startNanos;

}

Note that the method uses three countdown latches. The first, ready, is used

by worker threads to tell the timer thread when they’re ready. The worker threads

then wait on the second latch, which is start. When the last worker thread

invokes ready.countDown, the timer thread records the start time and invokes

start.countDown, allowing all of the worker threads to proceed. Then the timer

thread waits on the third latch, done, until the last of the worker threads finishes

running the action and calls done.countDown. As soon as this happens, the timer

thread awakens and records the end time.
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A few more details bear noting. The executor that is passed to the time

method must allow for the creation of at least as many threads as the given concur-

rency level, or the test will never complete. This is known as a thread starvation

deadlock [Goetz06 8.1.1]. If a worker thread catches an InterruptedException,

it reasserts the interrupt using the idiom Thread.currentThread().interrupt()

and returns from its run method. This allows the executor to deal with the inter-

rupt as it sees fit, which is as it should be. Finally, note that System.nanoTime is

used to time the activity rather than System.currentTimeMillis. For interval

timing, always use System.nanoTime in preference to System.currentTime-

Millis. System.nanoTime is both more accurate and more precise, and it is not

affected by adjustments to the system’s real-time clock.

This item only scratches the surface of the concurrency utilities. For example,

the three countdown latches in the previous example can be replaced by a single

cyclic barrier. The resulting code is even more concise, but it is more difficult to

understand. For more information, see Java Concurrency in Practice [Goetz06]. 

While you should always use the concurrency utilities in preference to wait

and notify, you might have to maintain legacy code that uses wait and notify.

The wait method is used to make a thread wait for some condition. It must be

invoked inside a synchronized region that locks the object on which it is invoked.

Here is the standard idiom for using the wait method:

// The standard idiom for using the wait method
synchronized (obj) {

while (<condition does not hold>)
obj.wait(); // (Releases lock, and reacquires on wakeup)

... // Perform action appropriate to condition
}

Always use the wait loop idiom to invoke the wait method; never invoke it

outside of a loop. The loop serves to test the condition before and after waiting.

Testing the condition before waiting and skipping the wait if the condition

already holds are necessary to ensure liveness. If the condition already holds and

the notify (or notifyAll) method has already been invoked before a thread

waits, there is no guarantee that the thread will ever wake from the wait.

Testing the condition after waiting and waiting again if the condition does not

hold are necessary to ensure safety. If the thread proceeds with the action when

the condition does not hold, it can destroy the invariant guarded by the lock. There

are several reasons a thread might wake up when the condition does not hold:
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• Another thread could have obtained the lock and changed the guarded state be-

tween the time a thread invoked notify and the time the waiting thread woke.

• Another thread could have invoked notify accidentally or maliciously when

the condition did not hold. Classes expose themselves to this sort of mischief

by waiting on publicly accessible objects. Any wait contained in a synchro-

nized method of a publicly accessible object is susceptible to this problem.

• The notifying thread could be overly “generous” in waking waiting threads.

For example, the notifying thread might invoke notifyAll even if only some

of the waiting threads have their condition satisfied.

• The waiting thread could (rarely) wake up in the absence of a notify. This is

known as a spurious wakeup [Posix, 11.4.3.6.1; JavaSE6].

A related issue is whether you should use notify or notifyAll to wake wait-

ing threads. (Recall that notify wakes a single waiting thread, assuming such a

thread exists, and notifyAll wakes all waiting threads.) It is often said that you

should always use notifyAll. This is reasonable, conservative advice. It will

always yield correct results because it guarantees that you’ll wake the threads that

need to be awakened. You may wake some other threads, too, but this won’t affect

the correctness of your program. These threads will check the condition for which

they’re waiting and, finding it false, will continue waiting.

As an optimization, you may choose to invoke notify instead of notifyAll

if all threads that could be in the wait-set are waiting for the same condition and

only one thread at a time can benefit from the condition becoming true. 

Even if these conditions appear true, there may be cause to use notifyAll in

place of notify. Just as placing the wait invocation in a loop protects against

accidental or malicious notifications on a publicly accessible object, using noti-

fyAll in place of notify protects against accidental or malicious waits by an

unrelated thread. Such waits could otherwise “swallow” a critical notification,

leaving its intended recipient waiting indefinitely.

In summary, using wait and notify directly is like programming in “concur-

rency assembly language,” as compared to the higher-level language provided by

java.util.concurrent. There is seldom, if ever, a reason to use wait and

notify in new code. If you maintain code that uses wait and notify, make sure

that it always invokes wait from within a while loop using the standard idiom.

The notifyAll method should generally be used in preference to notify. If

notify is used, great care must be taken to ensure liveness.



CHAPTER 10 CONCURRENCY278

Item 70: Document thread safety

How a class behaves when its instances or static methods are subjected to concur-

rent use is an important part of the contract the class makes with its clients. If you

don’t document this facet of a class’s behavior, programmers who use the class

will be forced to make assumptions. If those assumptions are wrong, the resulting

program may perform insufficient synchronization (Item 66) or excessive syn-

chronization (Item 67). In either case, serious errors can result.

You might hear it said that you can tell if a method is thread-safe by looking

for the synchronized modifier in its documentation. This is wrong on several

counts. In normal operation, Javadoc does not include the synchronized modifier

in its output, and with good reason. The presence of the synchronized modifier

in a method declaration is an implementation detail, not a part of its exported

API. It does not reliably indicate that a method is thread-safe.

Moreover, the claim that the presence of the synchronized modifier is suffi-

cient to document thread safety embodies the misconception that thread safety is

an all-or-nothing property. In fact, there are several levels of thread safety. To

enable safe concurrent use, a class must clearly document what level of

thread safety it supports.

The following list summarizes levels of thread safety. It is not exhaustive but

covers the common cases:

• immutable—Instances of this class appear constant. No external synchroniza-

tion is necessary. Examples include String, Long, and BigInteger (Item 15).

• unconditionally thread-safe—Instances of this class are mutable, but the

class has sufficient internal synchronization that its instances can be used

concurrently without the need for any external synchronization. Examples

include Random and ConcurrentHashMap.

• conditionally thread-safe—Like unconditionally thread-safe, except that

some methods require external synchronization for safe concurrent use.

Examples include the collections returned by the Collections.synchronized

wrappers, whose iterators require external synchronization.

• not thread-safe—Instances of this class are mutable. To use them concurrent-

ly, clients must surround each method invocation (or invocation sequence)

with external synchronization of the clients’ choosing. Examples include the
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general-purpose collection implementations, such as ArrayList and HashMap.

• thread-hostile—This class is not safe for concurrent use even if all method in-

vocations are surrounded by external synchronization. Thread hostility usually

results from modifying static data without synchronization. No one writes a

thread-hostile class on purpose; such classes result from the failure to consider

concurrency. Luckily, there are very few thread-hostile classes or methods in

the Java libraries. The System.runFinalizersOnExit method is thread-hos-

tile and has been deprecated.

These categories (apart from thread-hostile) correspond roughly to the thread

safety annotations in Java Concurrency in Practice, which are Immutable,

ThreadSafe, and NotThreadSafe [Goetz06, Appendix A]. The unconditionally

and conditionally thread-safe categories in the above taxonomy are both covered

under the ThreadSafe annotation.

Documenting a conditionally thread-safe class requires care. You must indi-

cate which invocation sequences require external synchronization, and which lock

(or in rare cases, which locks) must be acquired to execute these sequences. Typi-

cally it is the lock on the instance itself, but there are exceptions. If an object rep-

resents a view on some other object, the client generally must synchronize on the

backing object, so as to prevent its direct modification. For example, the docu-

mentation for Collections.synchronizedMap says this:

It is imperative that the user manually synchronize on the returned map when

iterating over any of its collection views:

Map<K, V> m = Collections.synchronizedMap(new HashMap<K, V>());
...

Set<K> s = m.keySet();  // Needn't be in synchronized block
...

synchronized(m) {  // Synchronizing on m, not s!
for (K key : s)

key.f();
}

Failure to follow this advice may result in non-deterministic behavior.

The description of a class’s thread safety generally belongs in its documenta-

tion comment, but methods with special thread safety properties should describe

these properties in their own documentation comments. It is not necessary to doc-

ument the immutability of enum types. Unless it is obvious from the return type,
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static factories must document the thread safety of the returned object, as demon-

strated by Collections.synchronizedMap (above).

When a class commits to using a publicly accessible lock, it enables clients to

execute a sequence of method invocations atomically, but this flexibility comes at

a price. It is incompatible with high-performance internal concurrency control, of

the sort used by concurrent collections such as ConcurrentHashMap and Concur-

rentLinkedQueue. Also, a client can mount a denial-of-service attack by holding

the publicly accessible lock for a prolonged period. This can be done accidentally

or intentionally.

To prevent this denial-of-service attack, you can use a private lock object

instead of using synchronized methods (which imply a publicly accessible lock):

// Private lock object idiom - thwarts denial-of-service attack
private final Object lock = new Object();

public void foo() {
synchronized(lock) {

...
}

}

Because the private lock object is inaccessible to clients of the class, it is impossi-

ble for them to interfere with the object’s synchronization. In effect, we are apply-

ing the advice of Item 13 by encapsulating the lock object within the object it

synchronizes.

Note that the lock field is declared final. This prevents you from inadvert-

ently changing its contents, which could result in catastrophic unsynchronized

access to the containing object (Item 66). We are applying the advice of Item 15,

by minimizing the mutability of the lock field.

To reiterate, the private lock object idiom can be used only on unconditionally

thread-safe classes. Conditionally thread-safe classes can’t use this idiom because

they must document which lock their clients are to acquire when performing cer-

tain method invocation sequences.

The private lock object idiom is particularly well-suited to classes designed

for inheritance (Item 17). If such a class were to use its instances for locking, a

subclass could easily and unintentionally interfere with the operation of the base

class, or vice versa. By using the same lock for different purposes, the subclass

and the base class could end up “stepping on each other’s toes.” This is not just a

theoretical problem. For example, it happened with the Thread class [Bloch05,

Puzzle 77].
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To summarize, every class should clearly document its thread safety proper-

ties with a carefully worded prose description or a thread safety annotation. The

synchronized modifier plays no part in this documentation. Conditionally

thread-safe classes must document which method invocation sequences require

external synchronization, and which lock to acquire when executing these

sequences. If you write an unconditionally thread-safe class, consider using a pri-

vate lock object in place of synchronized methods. This protects you against syn-

chronization interference by clients and subclasses and gives you the flexibility to

adopt a more sophisticated approach to concurrency control in a later release.
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Item 71: Use lazy initialization judiciously

Lazy initialization is the act of delaying the initialization of a field until its

value is needed. If the value is never needed, the field is never initialized. This

technique is applicable to both static and instance fields. While lazy initialization

is primarily an optimization, it can also be used to break harmful circularities in

class and instance initialization [Bloch05, Puzzle 51].

As is the case for most optimizations, the best advice for lazy initialization is

“don’t do it unless you need to” (Item 55). Lazy initialization is a double-edged

sword. It decreases the cost of initializing a class or creating an instance, at the

expense of increasing the cost of accessing the lazily initialized field. Depending

on what fraction of lazily initialized fields eventually require initialization, how

expensive it is to initialize them, and how often each field is accessed, lazy initial-

ization can (like many “optimizations”) actually harm performance.

That said, lazy initialization has its uses. If a field is accessed only on a frac-

tion of the instances of a class and it is costly to initialize the field, then lazy ini-

tialization may be worthwhile. The only way to know for sure is to measure the

performance of the class with and without lazy initialization. 

In the presence of multiple threads, lazy initialization is tricky. If two or more

threads share a lazily initialized field, it is critical that some form of synchroniza-

tion be employed, or severe bugs can result (Item 66). All of the initialization

techniques discussed in this item are thread-safe.

Under most circumstances, normal initialization is preferable to lazy ini-

tialization. Here is a typical declaration for a normally initialized instance field.

Note the use of the final modifier (Item 15):

// Normal initialization of an instance field
private final FieldType field = computeFieldValue();

If you use lazy initialization to break an initialization circularity, use a

synchronized accessor, as it is the simplest, clearest alternative:

// Lazy initialization of instance field - synchronized accessor
private FieldType field;

synchronized FieldType getField() {
if (field == null)

field = computeFieldValue();
return field;

}
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Both of these idioms (normal initialization and lazy initialization with a syn-

chronized accessor) are unchanged when applied to static fields, except that you

add the static modifier to the field and accessor declarations.

If you need to use lazy initialization for performance on a static field, use

the lazy initialization holder class idiom. This idiom (also known as the initialize-

on-demand holder class idiom) exploits the guarantee that a class will not be ini-

tialized until it is used [JLS, 12.4.1]. Here’s how it looks:

// Lazy initialization holder class idiom for static fields
private static class FieldHolder {

static final FieldType field = computeFieldValue();
}
static FieldType getField() { return FieldHolder.field; }

When the getField method is invoked for the first time, it reads Field-

Holder.field for the first time, causing the FieldHolder class to get initialized.

The beauty of this idiom is that the getField method is not synchronized and per-

forms only a field access, so lazy initialization adds practically nothing to the cost

of access. A modern VM will synchronize field access only to initialize the class.

Once the class is initialized, the VM will patch the code so that subsequent access

to the field does not involve any testing or synchronization.

If you need to use lazy initialization for performance on an instance field,

use the double-check idiom. This idiom avoids the cost of locking when access-

ing the field after it has been initialized (Item 67). The idea behind the idiom is to

check the value of the field twice (hence the name double-check): once without

locking, and then, if the field appears to be uninitialized, a second time with lock-

ing. Only if the second check indicates that the field is uninitialized does the call

initialize the field. Because there is no locking if the field is already initialized, it

is critical that the field be declared volatile (Item 66). Here is the idiom:

// Double-check idiom for lazy initialization of instance fields
private volatile FieldType field;
FieldType getField() {

FieldType result = field;
if (result == null) { // First check (no locking)

synchronized(this) {
result = field;
if (result == null) // Second check (with locking)

field = result = computeFieldValue();
}

}
return result;

}
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This code may appear a bit convoluted. In particular, the need for the local

variable result may be unclear. What this variable does is to ensure that field is

read only once in the common case where it’s already initialized. While not

strictly necessary, this may improve performance and is more elegant by the stan-

dards applied to low-level concurrent programming. On my machine, the method

above is about 25 percent faster than the obvious version without a local variable.

Prior to release 1.5, the double-check idiom did not work reliably because the

semantics of the volatile modifier were not strong enough to support it

[Pugh01]. The memory model introduced in release 1.5 fixed this problem [JLS,

17, Goetz06 16]. Today, the double-check idiom is the technique of choice for

lazily initializing an instance field. While you can apply the double-check idiom

to static fields as well, there is no reason to do so: the lazy initialization holder

class idiom is a better choice.

Two variants of the double-check idiom bear noting. Occasionally, you may

need to lazily initialize an instance field that can tolerate repeated initialization. If

you find yourself in this situation, you can use a variant of the double-check idiom

that dispenses with the second check. It is, not surprisingly, known as the single-

check idiom. Here is how it looks. Note that field is still declared volatile:

// Single-check idiom - can cause repeated initialization!
private volatile FieldType field;

private FieldType getField() {
FieldType result = field;
if (result == null) 

field = result = computeFieldValue();
return result;

}

All of the initialization techniques discussed in this item apply to primitive

fields as well as object reference fields. When the double-check or single-check

idiom is applied to a numerical primitive field, the field’s value is checked against

0 (the default value for numerical primitive variables) rather than null.

If you don’t care whether every thread recalculates the value of a field, and the

type of the field is a primitive other than long or double, then you may choose to

remove the volatile modifier from the field declaration in the single-check

idiom. This variant is known as the racy single-check idiom. It speeds up field

access on some architectures, at the expense of additional initializations (up to one

per thread that accesses the field). This is definitely an exotic technique, not for

everyday use. It is, however, used by String instances to cache their hash codes.
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In summary, you should initialize most fields normally, not lazily. If you must

initialize a field lazily in order to achieve your performance goals, or to break a

harmful initialization circularity, then use the appropriate lazy initialization tech-

nique. For instance fields, it is the double-check idiom; for static fields, the lazy

initialization holder class idiom. For instance fields that can tolerate repeated ini-

tialization, you may also consider the single-check idiom.
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Item 72: Don’t depend on the thread scheduler

When many threads are runnable, the thread scheduler determines which ones get

to run, and for how long. Any reasonable operating system will try to make this

determination fairly, but the policy can vary. Therefore, well-written programs

shouldn’t depend on the details of this policy. Any program that relies on the

thread scheduler for correctness or performance is likely to be nonportable.

The best way to write a robust, responsive, portable program is to ensure that

the average number of runnable threads is not significantly greater than the num-

ber of processors. This leaves the thread scheduler with little choice: it simply

runs the runnable threads till they’re no longer runnable. The program’s behavior

doesn’t vary too much, even under radically different thread-scheduling policies.

Note that the number of runnable threads isn’t the same as the total number of

threads, which can be much higher. Threads that are waiting are not runnable. 

The main technique for keeping the number of runnable threads down is to

have each thread do some useful work and then wait for more. Threads should

not run if they aren’t doing useful work. In terms of the Executor Framework

(Item 68), this means sizing your thread pools appropriately [Goetz06 8.2], and

keeping tasks reasonably small and independent of one another. Tasks shouldn’t

be too small, or dispatching overhead will harm performance.

Threads should not busy-wait, repeatedly checking a shared object waiting for

something to happen. Besides making the program vulnerable to the vagaries of

the scheduler, busy-waiting greatly increases the load on the processor, reducing

the amount of useful work that others can accomplish. As an extreme example of

what not to do, consider this perverse reimplementation of CountDownLatch:

// Awful CountDownLatch implementation - busy-waits incessantly!
public class SlowCountDownLatch {

private int count;
public SlowCountDownLatch(int count) {

if (count < 0)
throw new IllegalArgumentException(count + " < 0");

this.count = count;
}

public void await() {
while (true) {

synchronized(this) {
if (count == 0) return;

}
}

}
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public synchronized void countDown() {
if (count != 0)

count--;
}

}

On my machine, SlowCountDownLatch is about 2,000 times slower than

CountDownLatch when 1,000 threads wait on a latch. While this example may

seem a bit far-fetched, it’s not uncommon to see systems with one or more threads

that are unnecessarily runnable. The results may not be as dramatic as Slow-

CountDownLatch, but performance and portability are likely to suffer.

When faced with a program that barely works because some threads aren’t

getting enough CPU time relative to others, resist the temptation to “fix” the

program by putting in calls to Thread.yield. You may succeed in getting the

program to work after a fashion, but it will not be portable. The same yield invo-

cations that improve performance on one JVM implementation might make it

worse on a second and have no effect on a third. Thread.yield has no testable

semantics. A better course of action is to restructure the application to reduce the

number of concurrently runnable threads.

A related technique, to which similar caveats apply, is adjusting thread priori-

ties. Thread priorities are among the least portable features of the Java plat-

form. It is not unreasonable to tune the responsiveness of an application by

tweaking a few thread priorities, but it is rarely necessary and is not portable. It is

unreasonable to solve a serious liveness problem by adjusting thread priorities.

The problem is likely to return until you find and fix the underlying cause.

In the first edition of this book, it was said that the only use most program-

mers would ever have for Thread.yield was to artificially increase the concur-

rency for testing. The idea was to shake out bugs by exploring a larger fraction of

the program’s statespace. This technique was once quite effective, but it was never

guaranteed to work. It is within specification for Thread.yield to do nothing at

all, simply returning control to its caller. Some modern VMs actually do this.

Therefore, you should use Thread.sleep(1) instead of Thread.yield for con-

currency testing. Do not use Thread.sleep(0), which can return immediately.

In summary, do not depend on the thread scheduler for the correctness of your

program. The resulting program will be neither robust nor portable. As a corollary,

do not rely on Thread.yield or thread priorities. These facilities are merely hints

to the scheduler. Thread priorities may be used sparingly to improve the quality of

service of an already working program, but they should never be used to “fix” a

program that barely works.
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Item 73: Avoid thread groups

Along with threads, locks, and monitors, a basic abstraction offered by the thread-

ing system is thread groups. Thread groups were originally envisioned as a mech-

anism for isolating applets for security purposes. They never really fulfilled this

promise, and their security importance has waned to the extent that they aren’t

even mentioned in the standard work on the Java security model [Gong03].

Given that thread groups don’t provide any security functionality to speak of,

what functionality do they provide? Not much. They allow you to apply certain

Thread primitives to a bunch of threads at once. Several of these primitives have

been deprecated, and the remainder are infrequently used.

In an ironic twist, the ThreadGroup API is weak from a thread safety

standpoint. To get a list of the active threads in a thread group, you must invoke

the enumerate method, which takes as a parameter an array large enough to hold

all the active threads. The activeCount method returns the number of active

threads in a thread group, but there is no guarantee that this count will still be

accurate once an array has been allocated and passed to the enumerate method. If

the thread count has increased and the array is too small, the enumerate method

silently ignores any threads for which there is no room in the array.

The API that lists the subgroups of a thread group is similarly flawed. While

these problems could have been fixed with the addition of new methods, they

haven’t, because there is no real need: thread groups are obsolete.

Prior to release 1.5, there was one small piece of functionality that was avail-

able only with the ThreadGroup API: the ThreadGroup.uncaughtException

method was the only way to gain control when a thread threw an uncaught excep-

tion. This functionality is useful, for example, to direct stack traces to an applica-

tion-specific log. As of release 1.5, however, the same functionality is available

with Thread’s setUncaughtExceptionHandler method. 

To summarize, thread groups don’t provide much in the way of useful func-

tionality, and much of the functionality they do provide is flawed. Thread groups

are best viewed as an unsuccessful experiment, and you should simply ignore their

existence. If you design a class that deals with logical groups of threads, you

should probably use thread pool executors (Item 68).
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C H A P T E R 11
Serialization

THIS chapter concerns the object serialization API, which provides a frame-

work for encoding objects as byte streams and reconstructing objects from their

byte-stream encodings. Encoding an object as a byte stream is known as serializ-

ing the object; the reverse process is known as deserializing it. Once an object has

been serialized, its encoding can be transmitted from one running virtual machine

to another or stored on disk for later deserialization. Serialization provides the

standard wire-level object representation for remote communication, and the stan-

dard persistent data format for the JavaBeans component architecture. A notable

feature of this chapter is the serialization proxy pattern (Item 78), which can help

you avoid many of the pitfalls of object serialization.

Item 74: Implement Serializable judiciously

Allowing a class’s instances to be serialized can be as simple as adding the words

“implements Serializable” to its declaration. Because this is so easy to do,

there is a common misconception that serialization requires little effort on the part

of the programmer. The truth is far more complex. While the immediate cost to

make a class serializable can be negligible, the long-term costs are often substantial.

A major cost of implementing Serializable is that it decreases the flexi-

bility to change a class’s implementation once it has been released. When a

class implements Serializable, its byte-stream encoding (or serialized form)

becomes part of its exported API. Once you distribute a class widely, you are gen-

erally required to support the serialized form forever, just as you are required to

support all other parts of the exported API. If you do not make the effort to design

a custom serialized form, but merely accept the default, the serialized form will

forever be tied to the class’s original internal representation. In other words, if you

accept the default serialized form, the class’s private and package-private instance
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fields become part of its exported API, and the practice of minimizing access to

fields (Item 13) loses its effectiveness as a tool for information hiding.

If you accept the default serialized form and later change the class’s internal

representation, an incompatible change in the serialized form might result. Clients

attempting to serialize an instance using an old version of the class and deserialize

it using the new version will experience program failures. It is possible to change

the internal representation while maintaining the original serialized form (using

ObjectOutputStream.putFields and ObjectInputStream.readFields), but it

can be difficult and leaves visible warts in the source code. Therefore, you should

carefully design a high-quality serialized form that you are willing to live with for

the long haul (Items 75, 78). Doing so will add to the initial cost of development,

but it is worth the effort. Even a well-designed serialized form places constraints

on the evolution of a class; an ill-designed serialized form can be crippling.

A simple example of the constraints on evolution that accompany serializabil-

ity concerns stream unique identifiers, more commonly known as serial version

UIDs. Every serializable class has a unique identification number associated with

it. If you do not specify this number explicitly by declaring a static final long field

named serialVersionUID, the system automatically generates it at runtime by

applying a complex procedure to the class. The automatically generated value is

affected by the class’s name, the names of the interfaces it implements, and all of

its public and protected members. If you change any of these things in any way,

for example, by adding a trivial convenience method, the automatically generated

serial version UID changes. If you fail to declare an explicit serial version UID,

compatibility will be broken, resulting in an InvalidClassException at runtime.

A second cost of implementing Serializable is that it increases the likeli-

hood of bugs and security holes. Normally, objects are created using construc-

tors; serialization is an extralinguistic mechanism for creating objects. Whether

you accept the default behavior or override it, deserialization is a “hidden con-

structor” with all of the same issues as other constructors. Because there is no

explicit constructor associated with deserialization, it is easy to forget that you

must ensure that it guarantees all of the invariants established by the constructors

and that it does not allow an attacker to gain access to the internals of the object

under construction. Relying on the default deserialization mechanism can easily

leave objects open to invariant corruption and illegal access (Item 76).

A third cost of implementing Serializable is that it increases the testing

burden associated with releasing a new version of a class. When a serializable

class is revised, it is important to check that it is possible to serialize an instance in

the new release and deserialize it in old releases, and vice versa. The amount of
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testing required is thus proportional to the product of the number of serializable

classes and the number of releases, which can be large. These tests cannot be con-

structed automatically because, in addition to binary compatibility, you must test

for semantic compatibility. In other words, you must ensure both that the serializa-

tion-deserialization process succeeds and that it results in a faithful replica of the

original object. The greater the change to a serializable class, the greater the need

for testing. The need is reduced if a custom serialized form is carefully designed

when the class is first written (Items 75, 78), but it does not vanish entirely.

Implementing the Serializable interface is not a decision to be under-

taken lightly. It offers real benefits. It is essential if a class is to participate in a

framework that relies on serialization for object transmission or persistence. Also,

it greatly eases the use of a class as a component in another class that must imple-

ment Serializable. There are, however, many real costs associated with imple-

menting Serializable. Each time you design a class, weigh the costs against the

benefits. As a rule of thumb, value classes such as Date and BigInteger should

implement Serializable, as should most collection classes. Classes representing

active entities, such as thread pools, should rarely implement Serializable.

Classes designed for inheritance (Item 17) should rarely implement

Serializable, and interfaces should rarely extend it. Violating this rule places

a significant burden on anyone who extends the class or implements the interface.

There are times when it is appropriate to violate the rule. For example, if a class or

interface exists primarily to participate in a framework that requires all

participants to implement Serializable, then it makes perfect sense for the class

or interface to implement or extend Serializable.

Classes designed for inheritance that do implement Serializable include

Throwable, Component, and HttpServlet. Throwable implements Serializable

so exceptions from remote method invocation (RMI) can be passed from server to

client. Component implements Serializable so GUIs can be sent, saved, and

restored. HttpServlet implements Serializable so session state can be cached.

If you implement a class with instance fields that is serializable and extend-

able, there is a caution you should be aware of. If the class has invariants that

would be violated if its instance fields were initialized to their default values (zero

for integral types, false for boolean, and null for object reference types), you

must add this readObjectNoData method to the class:

// readObjectNoData for stateful extendable serializable classes
private void readObjectNoData() throws InvalidObjectException {
    throw new InvalidObjectException("Stream data required");
}
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In case you’re curious, the readObjectNoData method was added in release

1.4 to cover a corner case involving the addition of a serializable superclass to an

existing serializable class. Details can be found in the serialization specification

[Serialization, 3.5].

There is one caveat regarding the decision not to implement Serializable. If

a class that is designed for inheritance is not serializable, it may be impossible to

write a serializable subclass. Specifically, it will be impossible if the superclass

does not provide an accessible parameterless constructor. Therefore, you should

consider providing a parameterless constructor on nonserializable classes

designed for inheritance. Often this requires no effort because many classes

designed for inheritance have no state, but this is not always the case.

It is best to create objects with their invariants already established (Item 15). If

client-provided data is required to establish these invariants, this precludes the use

of a parameterless constructor. Naively adding a parameterless constructor and a

separate initialization method to a class whose remaining constructors establish its

invariants would complicate the state space, increasing the likelihood of error. 

Here is a way to add a parameterless constructor to a nonserializable extend-

able class that avoids these deficiencies. Suppose the class has one constructor:

public AbstractFoo(int x, int y) { ... }

The following transformation adds a protected parameterless constructor and an ini-

tialization method. The initialization method has the same parameters as the normal

constructor and establishes the same invariants. Note that the variables that store the

object’s state (x and y) can’t be final, as they are set by the initialize method:

// Nonserializable stateful class allowing serializable subclass
public abstract class AbstractFoo {

private int x, y; // Our state

// This enum and field are used to track initialization
private enum State { NEW, INITIALIZING, INITIALIZED };
private final AtomicReference<State> init =

new AtomicReference<State>(State.NEW);

public AbstractFoo(int x, int y) { initialize(x, y); }

// This constructor and the following method allow
// subclass's readObject method to initialize our state.
protected AbstractFoo() { }
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protected final void initialize(int x, int y) {
if (!init.compareAndSet(State.NEW, State.INITIALIZING))

throw new IllegalStateException(
"Already initialized");

this.x = x;
this.y = y;
... // Do anything else the original constructor did
init.set(State.INITIALIZED);

}

// These methods provide access to internal state so it can
// be manually serialized by subclass's writeObject method.
protected final int getX() { checkInit(); return x; }
protected final int getY() { checkInit(); return y; }
// Must call from all public and protected instance methods
private void checkInit() {

if (init.get() != State.INITIALIZED)
throw new IllegalStateException("Uninitialized");

}
... // Remainder omitted

}

All public and protected instance methods in AbstractFoo must invoke

checkInit before doing anything else. This ensures that method invocations fail

quickly and cleanly if a poorly written subclass fails to initialize an instance. Note

that the initialized field is an atomic reference (java.util.concur-

rent.atomic.AtomicReference). This is necessary to ensure object integrity in

the face of a determined adversary. In the absence of this precaution, if one thread

were to invoke initialize on an instance while a second thread attempted to use

it, the second thread might see the instance in an inconsistent state. With this

mechanism in place, it is reasonably straightforward to implement a serializable

subclass:

// Serializable subclass of nonserializable stateful class
public class Foo extends AbstractFoo implements Serializable {

private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {

s.defaultReadObject();

// Manually deserialize and initialize superclass state
int x = s.readInt();
int y = s.readInt();
initialize(x, y);

}
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private void writeObject(ObjectOutputStream s)
throws IOException {

s.defaultWriteObject();

// Manually serialize superclass state
s.writeInt(getX());
s.writeInt(getY());

}

// Constructor does not use the fancy mechanism
public Foo(int x, int y) { super(x, y); }

private static final long serialVersionUID = 1856835860954L;
}

Inner classes (Item 22) should not implement Serializable. They use

compiler-generated synthetic fields to store references to enclosing instances and

to store values of local variables from enclosing scopes. How these fields corre-

spond to the class definition is unspecified, as are the names of anonymous and

local classes. Therefore, the default serialized form of an inner class is ill-

defined. A static member class can, however, implement Serializable.

To summarize, the ease of implementing Serializable is specious. Unless a

class is to be thrown away after a short period of use, implementing Serializ-

able is a serious commitment that should be made with care. Extra caution is war-

ranted if a class is designed for inheritance. For such classes, an intermediate

design point between implementing Serializable and prohibiting it in sub-

classes is to provide an accessible parameterless constructor. This design point

permits, but does not require, subclasses to implement Serializable.
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Item 75: Consider using a custom serialized form

When you are producing a class under time pressure, it is generally appropriate to

concentrate your efforts on designing the best API. Sometimes this means releas-

ing a “throwaway” implementation that you know you’ll replace in a future

release. Normally this is not a problem, but if the class implements Serializable

and uses the default serialized form, you’ll never be able to escape completely

from the throwaway implementation. It will dictate the serialized form forever.

This is not just a theoretical problem. It happened to several classes in the Java

platform libraries, including BigInteger.

Do not accept the default serialized form without first considering

whether it is appropriate. Accepting the default serialized form should be a con-

scious decision that this encoding is reasonable from the standpoint of flexibility,

performance, and correctness. Generally speaking, you should accept the default

serialized form only if it is largely identical to the encoding that you would choose

if you were designing a custom serialized form.

The default serialized form of an object is a reasonably efficient encoding of

the physical representation of the object graph rooted at the object. In other words,

it describes the data contained in the object and in every object that is reachable

from this object. It also describes the topology by which all of these objects are

interlinked. The ideal serialized form of an object contains only the logical data

represented by the object. It is independent of the physical representation.

The default serialized form is likely to be appropriate if an object’s phys-

ical representation is identical to its logical content. For example, the default

serialized form would be reasonable for the following class, which simplistically

represents a person’s name:

// Good candidate for default serialized form
public class Name implements Serializable {

/**
* Last name. Must be non-null.
* @serial
*/
private final String lastName;

/**
* First name. Must be non-null.
* @serial
*/
private final String firstName;
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/**
* Middle name, or null if there is none.
* @serial
*/
private final String middleName;

... // Remainder omitted
}

Logically speaking, a name consists of three strings that represent a last name,

a first name, and a middle name. The instance fields in Name precisely mirror this

logical content. 

Even if you decide that the default serialized form is appropriate, you

often must provide a readObject method to ensure invariants and security. In

the case of Name, the readObject method must ensure that lastName and first-

Name are non-null. This issue is discussed at length in Items 76 and 78.

Note that there are documentation comments on the lastName, firstName,

and middleName fields, even though they are private. That is because these private

fields define a public API, which is the serialized form of the class, and this public

API must be documented. The presence of the @serial tag tells the Javadoc util-

ity to place this documentation on a special page that documents serialized forms.

Near the opposite end of the spectrum from Name, consider the following

class, which represents a list of strings (ignoring for the moment that you’d be bet-

ter off using one of the standard List implementations):

// Awful candidate for default serialized form
public final class StringList implements Serializable {

private int size = 0;
private Entry head = null;

private static class Entry implements Serializable {
String data;
Entry  next;
Entry  previous;

}

... // Remainder omitted
}

Logically speaking, this class represents a sequence of strings. Physically, it

represents the sequence as a doubly linked list. If you accept the default serialized

form, the serialized form will painstakingly mirror every entry in the linked list

and all the links between the entries, in both directions. 
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Using the default serialized form when an object’s physical representa-

tion differs substantially from its logical data content has four disadvantages:

• It permanently ties the exported API to the current internal representa-

tion. In the above example, the private StringList.Entry class becomes part

of the public API. If the representation is changed in a future release, the

StringList class will still need to accept the linked list representation on input

and generate it on output. The class will never be rid of all the code dealing

with linked list entries, even if it doesn’t use them anymore.

• It can consume excessive space. In the above example, the serialized form un-

necessarily represents each entry in the linked list and all the links. These en-

tries and links are mere implementation details, not worthy of inclusion in the

serialized form. Because the serialized form is excessively large, writing it to

disk or sending it across the network will be excessively slow.

• It can consume excessive time. The serialization logic has no knowledge of

the topology of the object graph, so it must go through an expensive graph

traversal. In the example above, it would be sufficient simply to follow the

next references.

• It can cause stack overflows. The default serialization procedure performs a

recursive traversal of the object graph, which can cause stack overflows even

for moderately sized object graphs. Serializing a StringList instance with

1,258 elements causes the stack to overflow on my machine. The number of

elements required to cause this problem may vary depending on the JVM im-

plementation and command line flags; some implementations may not have

this problem at all.

A reasonable serialized form for StringList is simply the number of strings

in the list, followed by the strings themselves. This constitutes the logical data

represented by a StringList, stripped of the details of its physical representation.

Here is a revised version of StringList containing writeObject and readOb-

ject methods implementing this serialized form. As a reminder, the transient

modifier indicates that an instance field is to be omitted from a class’s default seri-

alized form:
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// StringList with a reasonable custom serialized form
public final class StringList implements Serializable {

private transient int size   = 0;
private transient Entry head = null;

// No longer Serializable!
private static class Entry {

String data;
Entry  next;
Entry  previous;

}

// Appends the specified string to the list
public final void add(String s) { ... }

/**
* Serialize this {@code StringList} instance.
*
* @serialData The size of the list (the number of strings
* it contains) is emitted ({@code int}), followed by all of
* its elements (each a {@code String}), in the proper
* sequence.
*/
private void writeObject(ObjectOutputStream s)

throws IOException {
s.defaultWriteObject();
s.writeInt(size);

// Write out all elements in the proper order.
for (Entry e = head; e != null; e = e.next)

s.writeObject(e.data);
}

private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException {

s.defaultReadObject();
int numElements = s.readInt();

// Read in all elements and insert them in list
for (int i = 0; i < numElements; i++)

add((String) s.readObject());
}

... // Remainder omitted
}
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Note that the first thing writeObject does is to invoke defaultWriteObject,

and the first thing readObject does is to invoke defaultReadObject, even though

all of StringList’s fields are transient. If all instance fields are transient, it is

technically permissible to dispense with invoking defaultWriteObject and

defaultReadObject, but it is not recommended. Even if all instance fields are

transient, invoking defaultWriteObject affects the serialized form, resulting in

greatly enhanced flexibility. The resulting serialized form makes it possible to add

nontransient instance fields in a later release while preserving backward and

forward compatibility. If an instance is serialized in a later version and deserialized

in an earlier version, the added fields will be ignored. Had the earlier version’s

readObject method failed to invoke defaultReadObject, the deserialization

would fail with a StreamCorruptedException.

Note that there is a documentation comment on the writeObject method,

even though it is private. This is analogous to the documentation comment on the

private fields in the Name class. This private method defines a public API, which is

the serialized form, and that public API should be documented. Like the @serial

tag for fields, the @serialData tag for methods tells the Javadoc utility to place

this documentation on the serialized forms page.

To lend some sense of scale to the earlier performance discussion, if the aver-

age string length is ten characters, the serialized form of the revised version of

StringList occupies about half as much space as the serialized form of the origi-

nal. On my machine, serializing the revised version of StringList is over twice

as fast as serializing the original version, again with a string length of ten. Finally,

there is no stack overflow problem in the revised form, hence no practical upper

limit to the size of a StringList that can be serialized.

While the default serialized form would be bad for StringList, there are

classes for which it would be far worse. For StringList, the default serialized

form is inflexible and performs badly, but it is correct in the sense that serializing

and deserializing a StringList instance yields a faithful copy of the original

object with all of its invariants intact. This is not the case for any object whose

invariants are tied to implementation-specific details.

For example, consider the case of a hash table. The physical representation is

a sequence of hash buckets containing key-value entries. The bucket that an entry

resides in is a function of the hash code of its key, which is not, in general, guaran-

teed to be the same from JVM implementation to JVM implementation. In fact, it

isn’t even guaranteed to be the same from run to run. Therefore, accepting the

default serialized form for a hash table would constitute a serious bug. Serializing
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and deserializing the hash table could yield an object whose invariants were seri-

ously corrupt.

Whether or not you use the default serialized form, every instance field that is

not labeled transient will be serialized when the defaultWriteObject method

is invoked. Therefore, every instance field that can be made transient should be

made so. This includes redundant fields, whose values can be computed from “pri-

mary data fields,” such as a cached hash value. It also includes fields whose values

are tied to one particular run of the JVM, such as a long field representing a

pointer to a native data structure. Before deciding to make a field nontransient,

convince yourself that its value is part of the logical state of the object. If you

use a custom serialized form, most or all of the instance fields should be labeled

transient, as in the StringList example shown above.

If you are using the default serialized form and you have labeled one or more

fields transient, remember that these fields will be initialized to their default

values when an instance is deserialized: null for object reference fields, zero for

numeric primitive fields, and false for boolean fields [JLS, 4.12.5]. If these val-

ues are unacceptable for any transient fields, you must provide a readObject

method that invokes the defaultReadObject method and then restores transient

fields to acceptable values (Item 76). Alternatively, these fields can be lazily ini-

tialized the first time they are used (Item 71).

Whether or not you use the default serialized form, you must impose any

synchronization on object serialization that you would impose on any other

method that reads the entire state of the object. So, for example, if you have a

thread-safe object (Item 70) that achieves its thread safety by synchronizing every

method, and you elect to use the default serialized form, use the following writ-

eObject method:

// writeObject for synchronized class with default serialized form
private synchronized void writeObject(ObjectOutputStream s)

throws IOException {
s.defaultWriteObject();

}

If you put synchronization in the writeObject method, you must ensure that it

adheres to the same lock-ordering constraints as other activity, or you risk a

resource-ordering deadlock [Goetz06, 10.1.5].

Regardless of what serialized form you choose, declare an explicit serial

version UID in every serializable class you write. This eliminates the serial ver-

sion UID as a potential source of incompatibility (Item 74). There is also a small
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performance benefit. If no serial version UID is provided, an expensive computa-

tion is required to generate one at runtime.

Declaring a serial version UID is simple. Just add this line to your class:

private static final long serialVersionUID = randomLongValue ;

If you write a new class, it doesn’t matter what value you choose for

randomLongValue. You can generate the value by running the serialver utility

on the class, but it’s also fine to pick a number out of thin air. If you modify an

existing class that lacks a serial version UID, and you want the new version to

accept existing serialized instances, you must use the value that was automatically

generated for the old version. You can get this number by running the serialver

utility on the old version of the class—the one for which serialized instances exist.

If you ever want to make a new version of a class that is incompatible with

existing versions, merely change the value in the serial version UID declaration.

This will cause attempts to deserialize serialized instances of previous versions to

fail with an InvalidClassException.

To summarize, when you have decided that a class should be serializable

(Item 74), think hard about what the serialized form should be. Use the default

serialized form only if it is a reasonable description of the logical state of the

object; otherwise design a custom serialized form that aptly describes the object.

You should allocate as much time to designing the serialized form of a class as

you allocate to designing its exported methods (Item 40). Just as you cannot elim-

inate exported methods from future versions, you cannot eliminate fields from the

serialized form; they must be preserved forever to ensure serialization compatibil-

ity. Choosing the wrong serialized form can have a permanent, negative impact on

the complexity and performance of a class.



CHAPTER 11 SERIALIZATION302

Item 76: Write readObject methods defensively

Item 39 contains an immutable date-range class containing mutable private Date

fields. The class goes to great lengths to preserve its invariants and its immutabil-

ity by defensively copying Date objects in its constructor and accessors. Here is

the class:

// Immutable class that uses defensive copying
public final class Period {

private final Date start;
private final Date end;

/**
* @param  start the beginning of the period
* @param  end the end of the period; must not precede start
* @throws IllegalArgumentException if start is after end
* @throws NullPointerException if start or end is null
*/
public Period(Date start, Date end) {

this.start = new Date(start.getTime());
this.end   = new Date(end.getTime());
if (this.start.compareTo(this.end) > 0)

throw new IllegalArgumentException(
start + " after " + end);

}

public Date start () { return new Date(start.getTime()); }

public Date end () { return new Date(end.getTime()); }

public String toString() { return start + " - " + end; }

... // Remainder omitted
}

Suppose you decide that you want this class to be serializable. Because the

physical representation of a Period object exactly mirrors its logical data content,

it is not unreasonable to use the default serialized form (Item 75). Therefore, it

might seem that all you have to do to make the class serializable is to add the

words “implements Serializable” to the class declaration. If you did so, how-

ever, the class would no longer guarantee its critical invariants.

The problem is that the readObject method is effectively another public con-

structor, and it demands all of the same care as any other constructor. Just as a

constructor must check its arguments for validity (Item 38) and make defensive
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copies of parameters where appropriate (Item 39), so must a readObject method.

If a readObject method fails to do either of these things, it is a relatively simple

matter for an attacker to violate the class’s invariants.

Loosely speaking, readObject is a constructor that takes a byte stream as its

sole parameter. In normal use, the byte stream is generated by serializing a nor-

mally constructed instance. The problem arises when readObject is presented

with a byte stream that is artificially constructed to generate an object that violates

the invariants of its class. Assume that we simply added implements Serializ-

able to the class declaration for Period. This ugly program would then generate a

Period instance whose end precedes its start:

public class BogusPeriod {
// Byte stream could not have come from real Period instance!
private static final byte[] serializedForm = new byte[] {
(byte)0xac, (byte)0xed, 0x00, 0x05, 0x73, 0x72, 0x00, 0x06,
0x50, 0x65, 0x72, 0x69, 0x6f, 0x64, 0x40, 0x7e, (byte)0xf8,
0x2b, 0x4f, 0x46, (byte)0xc0, (byte)0xf4, 0x02, 0x00, 0x02,
0x4c, 0x00, 0x03, 0x65, 0x6e, 0x64, 0x74, 0x00, 0x10, 0x4c,
0x6a, 0x61, 0x76, 0x61, 0x2f, 0x75, 0x74, 0x69, 0x6c, 0x2f,
0x44, 0x61, 0x74, 0x65, 0x3b, 0x4c, 0x00, 0x05, 0x73, 0x74,
0x61, 0x72, 0x74, 0x71, 0x00, 0x7e, 0x00, 0x01, 0x78, 0x70,
0x73, 0x72, 0x00, 0x0e, 0x6a, 0x61, 0x76, 0x61, 0x2e, 0x75,
0x74, 0x69, 0x6c, 0x2e, 0x44, 0x61, 0x74, 0x65, 0x68, 0x6a,
(byte)0x81, 0x01, 0x4b, 0x59, 0x74, 0x19, 0x03, 0x00, 0x00,
0x78, 0x70, 0x77, 0x08, 0x00, 0x00, 0x00, 0x66, (byte)0xdf,
0x6e, 0x1e, 0x00, 0x78, 0x73, 0x71, 0x00, 0x7e, 0x00, 0x03,
0x77, 0x08, 0x00, 0x00, 0x00, (byte)0xd5, 0x17, 0x69, 0x22,
0x00, 0x78 };

public static void main(String[] args) {
Period p = (Period) deserialize(serializedForm);
System.out.println(p);

}

// Returns the object with the specified serialized form
private static Object deserialize(byte[] sf) {

try {
InputStream is = new ByteArrayInputStream(sf);
ObjectInputStream ois = new ObjectInputStream(is);
return ois.readObject();

} catch (Exception e) {
throw new IllegalArgumentException(e);

}
}

}
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The byte array literal used to initialize serializedForm was generated by

serializing a normal Period instance and hand-editing the resulting byte stream.

The details of the stream are unimportant to the example, but if you’re curious, the

serialization byte-stream format is described in the Java™ Object Serialization

Specification [Serialization, 6]. If you run this program, it prints “Fri Jan 01

12:00:00 PST 1999 - Sun Jan 01 12:00:00 PST 1984.” Simply declaring Period

serializable enabled us to create an object that violates its class invariants.

To fix this problem, provide a readObject method for Period that calls

defaultReadObject and then checks the validity of the deserialized object. If the

validity check fails, the readObject method throws an InvalidObjectExcep-

tion, preventing the deserialization from completing:

// readObject method with validity checking
private void readObject(ObjectInputStream s)

throws IOException, ClassNotFoundException {
s.defaultReadObject();

// Check that our invariants are satisfied
if (start.compareTo(end) > 0)

throw new InvalidObjectException(start +" after "+ end);
}

While this fix prevents an attacker from creating an invalid Period instance,

there is a more subtle problem still lurking. It is possible to create a mutable

Period instance by fabricating a byte stream that begins with a valid Period

instance and then appends extra references to the private Date fields internal to the

Period instance. The attacker reads the Period instance from the ObjectInput-

Stream and then reads the “rogue object references” that were appended to the

stream. These references give the attacker access to the objects referenced by the

private Date fields within the Period object. By mutating these Date instances,

the attacker can mutate the Period instance. The following class demonstrates this

attack:

public class MutablePeriod {
// A period instance
public final Period period;

// period's start field, to which we shouldn't have access
public final Date start;

// period's end field, to which we shouldn't have access
public final Date end;
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public MutablePeriod() {
try {

ByteArrayOutputStream bos =
new ByteArrayOutputStream();

ObjectOutputStream out =
new ObjectOutputStream(bos);

// Serialize a valid Period instance
out.writeObject(new Period(new Date(), new Date()));

/*
* Append rogue "previous object refs" for internal
* Date fields in Period. For details, see "Java 
* Object Serialization Specification," Section 6.4.
*/
byte[] ref = { 0x71, 0, 0x7e, 0, 5 }; // Ref #5
bos.write(ref); // The start field
ref[4] = 4; // Ref # 4
bos.write(ref); // The end field

// Deserialize Period and "stolen" Date references
ObjectInputStream in = new ObjectInputStream(
new ByteArrayInputStream(bos.toByteArray()));
period = (Period) in.readObject();
start  = (Date)   in.readObject();
end    = (Date)   in.readObject();

} catch (Exception e) {
throw new AssertionError(e);

}
}

}

To see the attack in action, run the following program:

public static void main(String[] args) {
MutablePeriod mp = new MutablePeriod();
Period p = mp.period;
Date pEnd = mp.end;

// Let's turn back the clock
pEnd.setYear(78);
System.out.println(p);

// Bring back the 60s!
pEnd.setYear(69);
System.out.println(p);

}



CHAPTER 11 SERIALIZATION306

Running this program produces the following output:

Wed Apr 02 11:04:26 PDT 2008 - Sun Apr 02 11:04:26 PST 1978
Wed Apr 02 11:04:26 PDT 2008 - Wed Apr 02 11:04:26 PST 1969

While the Period instance is created with its invariants intact, it is possible to

modify its internal components at will. Once in possession of a mutable Period

instance, an attacker might cause great harm by passing the instance on to a class

that depends on Period’s immutability for its security. This is not so far-fetched:

there are classes that depend on String’s immutability for their security. 

The source of the problem is that Period’s readObject method is not doing

enough defensive copying. When an object is deserialized, it is critical to

defensively copy any field containing an object reference that a client must

not possess. Therefore, every serializable immutable class containing private

mutable components must defensively copy these components in its readObject

method. The following readObject method suffices to ensure Period’s invariants

and to maintain its immutability:

// readObject method with defensive copying and validity checking
private void readObject(ObjectInputStream s)

throws IOException, ClassNotFoundException {
s.defaultReadObject();

// Defensively copy our mutable components
start = new Date(start.getTime());
end   = new Date(end.getTime());

// Check that our invariants are satisfied
if (start.compareTo(end) > 0)

throw new InvalidObjectException(start +" after "+ end);
}

Note that the defensive copy is performed prior to the validity check and that

we did not use Date’s clone method to perform the defensive copy. Both of these

details are required to protect Period against attack (Item 39). Note also that

defensive copying is not possible for final fields. To use the readObject method,

we must make the start and end fields nonfinal. This is unfortunate, but it is the

lesser of two evils. With the new readObject method in place and the final mod-

ifier removed from the start and end fields, the MutablePeriod class is rendered

ineffective. The above attack program now generates this output:

Wed Apr 02 11:05:47 PDT 2008 - Wed Apr 02 11:05:47 PDT 2008
Wed Apr 02 11:05:47 PDT 2008 - Wed Apr 02 11:05:47 PDT 2008
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In release 1.4, the writeUnshared and readUnshared methods were added to

ObjectOutputStream with the goal of thwarting rogue object reference attacks

without the cost of defensive copying [Serialization]. Unfortunately, these meth-

ods are vulnerable to sophisticated attacks similar in nature to the ElvisStealer

attack described in Item 77. Do not use the writeUnshared and readUnshared

methods. They are typically faster than defensive copying, but they don’t provide

the necessary safety guarantee.

Here is a simple litmus test for deciding whether the default readObject

method is acceptable for a class: would you feel comfortable adding a public con-

structor that took as parameters the values for each nontransient field in the object

and stored the values in the fields with no validation whatsoever? If not, you must

provide a readObject method, and it must perform all the validity checking and

defensive copying that would be required of a constructor. Alternatively, you can

use the serialization proxy pattern (Item 78).

There is one other similarity between readObject methods and constructors,

concerning nonfinal serializable classes. A readObject method must not invoke

an overridable method, directly or indirectly (Item 17). If this rule is violated and

the method is overridden, the overriding method will run before the subclass’s

state has been deserialized. A program failure is likely to result [Bloch05, Puzzle

91].

To summarize, anytime you write a readObject method, adopt the mind-set

that you are writing a public constructor that must produce a valid instance regard-

less of what byte stream it is given. Do not assume that the byte stream represents

an actual serialized instance. While the examples in this item concern a class that

uses the default serialized form, all of the issues that were raised apply equally to

classes with custom serialized forms. Here, in summary form, are the guidelines

for writing a bulletproof readObject method:

• For classes with object reference fields that must remain private, defensively

copy each object in such a field. Mutable components of immutable classes fall

into this category.

• Check any invariants and throw an InvalidObjectException if a check fails.

The checks should follow any defensive copying. 

• If an entire object graph must be validated after it is deserialized, use the

ObjectInputValidation interface [JavaSE6, Serialization].

• Do not invoke any overridable methods in the class, directly or indirectly.



CHAPTER 11 SERIALIZATION308

Item 77: For instance control, prefer enum types to readResolve

Item 3 describes the Singleton pattern and gives the following example of a single-

ton class. This class restricts access to its constructor to ensure that only a single

instance is ever created:

public class Elvis {
public static final Elvis INSTANCE = new Elvis();
private Elvis() { ... }

public void leaveTheBuilding() { ... }
}

As noted in Item 3, this class would no longer be a singleton if the words

“implements Serializable” were added to its declaration. It doesn’t matter

whether the class uses the default serialized form or a custom serialized form

(Item 75), nor does it matter whether the class provides an explicit readObject

method (Item 76). Any readObject method, whether explicit or default, returns a

newly created instance, which will not be the same instance that was created at

class initialization time. 

The readResolve feature allows you to substitute another instance for the one

created by readObject [Serialization, 3.7]. If the class of an object being deserial-

ized defines a readResolve method with the proper declaration, this method is

invoked on the newly created object after it is deserialized. The object reference

returned by this method is then returned in place of the newly created object. In

most uses of this feature, no reference to the newly created object is retained, so it

immediately becomes eligible for garbage collection.

If the Elvis class is made to implement Serializable, the following

readResolve method suffices to guarantee the singleton property:

// readResolve for instance control - you can do better!
private Object readResolve() {

// Return the one true Elvis and let the garbage collector
// take care of the Elvis impersonator.
return INSTANCE;

}

This method ignores the deserialized object, returning the distinguished Elvis

instance that was created when the class was initialized. Therefore, the serialized

form of an Elvis instance need not contain any real data; all instance fields should

be declared transient. In fact, if you depend on readResolve for instance
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control, all instance fields with object reference types must be declared

transient. Otherwise, it is possible for a determined attacker to secure a

reference to the deserialized object before its readResolve method is run, using a

technique that is vaguely similar to the MutablePeriod attack in Item 76.

The attack is a bit complicated, but the underlying idea is simple. If a

singleton contains a nontransient object reference field, the contents of this field

will be deserialized before the singleton’s readResolve method is run. This

allows a carefully crafted stream to “steal” a reference to the originally

deserialized singleton at the time the contents of the object reference field are

deserialized.

Here’s how it works in more detail. First, write a “stealer” class that has both a

readResolve method and an instance field that refers to the serialized singleton in

which the stealer “hides.” In the serialization stream, replace the singleton’s

nontransient field with an instance of the stealer. You now have a circularity: the

singleton contains the stealer and the stealer refers to the singleton.

Because the singleton contains the stealer, the stealer’s readResolve method

runs first when the singleton is deserialized. As a result, when the stealer’s

readResolve method runs, its instance field still refers to the partially

deserialized (and as yet unresolved) singleton.

The stealer’s readResolve method copies the reference from its instance field

into a static field, so that the reference can be accessed after the readResolve

method runs. The method then returns a value of the correct type for the field in

which it’s hiding. If it didn’t do this, the VM would throw a ClassCastException

when the serialization system tried to store the stealer reference into this field.

To make this concrete, consider the following broken singleton:

// Broken singleton - has nontransient object reference field!
public class Elvis implements Serializable {

public static final Elvis INSTANCE = new Elvis();
private Elvis() { }

private String[] favoriteSongs =
{ "Hound Dog", "Heartbreak Hotel" };

public void printFavorites() {
System.out.println(Arrays.toString(favoriteSongs));

}

private Object readResolve() throws ObjectStreamException {
return INSTANCE;

}
}
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Here is a “stealer” class, constructed as per the description above:

public class ElvisStealer implements Serializable {
static Elvis impersonator;
private Elvis payload;

private Object readResolve() {
// Save a reference to the "unresolved" Elvis instance
impersonator = payload;

// Return an object of correct type for favorites field
return new String[] { "A Fool Such as I" };

    }
private static final long serialVersionUID = 0;

}

Finally, here is an ugly program that deserializes a handcrafted stream to produce

two distinct instances of the flawed singleton. The deserialize method is omitted

from this program because it’s identical to the one on page 303:

public class ElvisImpersonator {
// Byte stream could not have come from real Elvis instance!
private static final byte[] serializedForm = new byte[] {
(byte)0xac, (byte)0xed, 0x00, 0x05, 0x73, 0x72, 0x00, 0x05,
0x45, 0x6c, 0x76, 0x69, 0x73, (byte)0x84, (byte)0xe6,
(byte)0x93, 0x33, (byte)0xc3, (byte)0xf4, (byte)0x8b,
0x32, 0x02, 0x00, 0x01, 0x4c, 0x00, 0x0d, 0x66, 0x61, 0x76,
0x6f, 0x72, 0x69, 0x74, 0x65, 0x53, 0x6f, 0x6e, 0x67, 0x73,
0x74, 0x00, 0x12, 0x4c, 0x6a, 0x61, 0x76, 0x61, 0x2f, 0x6c,
0x61, 0x6e, 0x67, 0x2f, 0x4f, 0x62, 0x6a, 0x65, 0x63, 0x74,
0x3b, 0x78, 0x70, 0x73, 0x72, 0x00, 0x0c, 0x45, 0x6c, 0x76,
0x69, 0x73, 0x53, 0x74, 0x65, 0x61, 0x6c, 0x65, 0x72, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01,
0x4c, 0x00, 0x07, 0x70, 0x61, 0x79, 0x6c, 0x6f, 0x61, 0x64,
0x74, 0x00, 0x07, 0x4c, 0x45, 0x6c, 0x76, 0x69, 0x73, 0x3b,
0x78, 0x70, 0x71, 0x00, 0x7e, 0x00, 0x02
};
public static void main(String[] args) {

// Initializes ElvisStealer.impersonator and returns
// the real Elvis (which is Elvis.INSTANCE)
Elvis elvis = (Elvis) deserialize(serializedForm);
Elvis impersonator = ElvisStealer.impersonator;

elvis.printFavorites();
impersonator.printFavorites();

}
}
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Running this program produces the following output, conclusively proving that

it’s possible to create two distinct Elvis instances (with different tastes in music):

[Hound Dog, Heartbreak Hotel]
[A Fool Such as I]

You could fix the problem by declaring the favorites field transient, but

you’re better off fixing it by making Elvis a single-element enum type (Item 3).

Historically, the readResolve method was used for all serializable instance-con-

trolled classes. As of release 1.5, this is no longer the best way to maintain

instance control in a serializable class. As demonstrated by the ElvisStealer

attack, this technique is fragile and demands great care. 

If instead you write your serializable instance-controlled class as an enum,

you get an ironclad guarantee that there can be no instances besides the declared

constants. The JVM makes this guarantee, and you can depend on it. It requires no

special care on your part. Here’s how our Elvis example looks as an enum:

// Enum singleton - the preferred approach
public enum Elvis {

INSTANCE;
private String[] favoriteSongs =

{ "Hound Dog", "Heartbreak Hotel" };
public void printFavorites() {

System.out.println(Arrays.toString(favoriteSongs));
}

}

The use of readResolve for instance control is not obsolete. If you have to

write a serializable instance-controlled class whose instances are not known at

compile time, you will not be able to represent the class as an enum type.

The accessibility of readResolve is significant. If you place a readResolve

method on a final class, it should be private. If you place a readResolve method

on a nonfinal class, you must carefully consider its accessibility. If it is private, it

will not apply to any subclasses. If it is package-private, it will apply only to sub-

classes in the same package. If it is protected or public, it will apply to all sub-

classes that do not override it. If a readResolve method is protected or public and

a subclass does not override it, deserializing a serialized subclass instance will

produce a superclass instance, which is likely to cause a ClassCastException.

To summarize, you should use enum types to enforce instance control invari-

ants wherever possible. If this is not possible and you need a class to be both seri-

alizable and instance-controlled, you must provide a readResolve method and

ensure that all of the class’s instance fields are either primitive or transient.
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Item 78: Consider serialization proxies instead of serialized 

instances

As mentioned in Item 74 and discussed throughout this chapter, the decision to

implement Serializable increases the likelihood of bugs and security problems,

because it causes instances to be created using an extralinguistic mechanism in

place of ordinary constructors. There is, however, a technique that greatly reduces

these risks. This technique is known as the serialization proxy pattern.

The serialization proxy pattern is reasonably straightforward. First, design a

private static nested class of the serializable class that concisely represents the log-

ical state of an instance of the enclosing class. This nested class, known as the

serialization proxy, should have a single constructor, whose parameter type is the

enclosing class. This constructor merely copies the data from its argument: it need

not do any consistency checking or defensive copying. By design, the default seri-

alized form of the serialization proxy is the perfect serialized form of the enclos-

ing class. Both the enclosing class and its serialization proxy must be declared to

implement Serializable.

For example, consider the immutable Period class written in Item 39 and

made serializable in Item 76. Here is a serialization proxy for this class. Period is

so simple that its serialization proxy has exactly the same fields as the class:

// Serialization proxy for Period class 
private static class SerializationProxy implements Serializable {
    private final Date start;
    private final Date end;

    SerializationProxy(Period p) {
        this.start = p.start;
        this.end = p.end;
    }

    private static final long serialVersionUID = 
        234098243823485285L; // Any number will do (Item 75)
}

Next, add the following writeReplace method to the enclosing class. This

method can be copied verbatim into any class with a serialization proxy:

// writeReplace method for the serialization proxy pattern
private Object writeReplace() {
    return new SerializationProxy(this);
}
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The presence of this method causes the serialization system to emit a Serializa-

tionProxy instance instead of an instance of the enclosing class. In other words,

the writeReplace method translates an instance of the enclosing class to its seri-

alization proxy prior to serialization.

With this writeReplace method in place, the serialization system will never

generate a serialized instance of the enclosing class, but an attacker might fabri-

cate one in an attempt to violate the class’s invariants. To guarantee that such an

attack would fail, merely add this readObject method to the enclosing class:

// readObject method for the serialization proxy pattern
private void readObject(ObjectInputStream stream) 
        throws InvalidObjectException {
    throw new InvalidObjectException("Proxy required");
}

Finally, provide a readResolve method on the SerializationProxy class

that returns a logically equivalent instance of the enclosing class. The presence of

this method causes the serialization system to translate the serialization proxy back

into an instance of the enclosing class upon deserialization. 

This readResolve method creates an instance of the enclosing class using

only its public API, and therein lies the beauty of the pattern. It largely eliminates

the extralinguistic character of serialization, because the deserialized instance is

created using the same constructors, static factories, and methods as any other

instance. This frees you from having to separately ensure that deserialized

instances obey the class’s invariants. If the class’s static factories or constructors

establish these invariants, and its instance methods maintain them, you’ve ensured

that the invariants will be maintained by serialization as well. 

Here is the readResolve method for Period.SerializationProxy above:

// readResolve method for Period.SerializationProxy
private Object readResolve() {

return new Period(start, end); // Uses public constructor
}

Like the defensive copying approach (page 306), the serialization proxy

approach stops the bogus byte-stream attack (page 303) and the internal field theft

attack (page 305) dead in their tracks. Unlike the two previous approaches, this

one allows the fields of Period to be final, which is required in order for the

Period class to be truly immutable (Item 15). And unlike the two previous

approaches, this one doesn’t involve a great deal of thought. You don’t have to fig-
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ure out which fields might be compromised by devious serialization attacks, nor

do you have to explicitly perform validity checking as part of deserialization.

There is another way in which the serialization proxy pattern is more powerful

than defensive copying. The serialization proxy pattern allows the deserialized

instance to have a different class from the originally serialized instance. You

might not think that this would be useful in practice, but it is.

Consider the case of EnumSet (Item 32). This class has no public constructors,

only static factories. From the client’s perspective, they return EnumSet instances,

but in fact, they return one of two subclasses, depending on the size of the under-

lying enum type (Item 1, page 7). If the underlying enum type has sixty-four or

fewer elements, the static factories return a RegularEnumSet; otherwise, they

return a JumboEnumSet. Now consider what happens if you serialize an enum set

whose enum type has sixty elements, then add five more elements to the enum

type, and then deserialize the enum set. It was a RegularEnumSet instance when it

was serialized, but it had better be a JumboEnumSet instance once it is deserial-

ized. In fact that’s exactly what happens, because EnumSet uses the serialization

proxy pattern. In case you’re curious, here is EnumSet’s serialization proxy. It

really is this simple:

// EnumSet's serialization proxy
private static class SerializationProxy <E extends Enum<E>>

implements Serializable {
// The element type of this enum set.
private final Class<E> elementType;

// The elements contained in this enum set.
private final Enum[] elements;

SerializationProxy(EnumSet<E> set) {
elementType = set.elementType;
elements = set.toArray(EMPTY_ENUM_ARRAY); // (Item 43)

}

private Object readResolve() {
EnumSet<E> result = EnumSet.noneOf(elementType);
for (Enum e : elements)

result.add((E)e);
return result;

}
private static final long serialVersionUID =

362491234563181265L;
}
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The serialization proxy pattern has two limitations. It is not compatible with

classes that are extendable by their clients (Item 17). Also, it is not compatible

with some classes whose object graphs contain circularities: if you attempt to

invoke a method on an object from within its serialization proxy’s readResolve

method, you’ll get a ClassCastException, as you don’t have the object yet, only

its serialization proxy.

Finally, the added power and safety of the serialization proxy pattern are not

free. On my machine, it is 14 percent more expensive to serialize and deserialize

Period instances with serialization proxies than it is with defensive copying.

In summary, consider the serialization proxy pattern whenever you find your-

self having to write a readObject or writeObject method on a class that is not

extendable by its clients. This pattern is perhaps the easiest way to robustly serial-

ize objects with nontrivial invariants.
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A P P E N D I X

Items Corresponding to First Edition

First Edition

Item Number

Second Edition

Item Number, Title

1 1, Consider static factory methods instead of constructors

2 3, Enforce the singleton property with a private constructor or an 
enum type

3 4, Enforce noninstantiability with a private constructor

4 5, Avoid creating unnecessary objects

5 6, Eliminate obsolete object references

6 7, Avoid finalizers

7 8, Obey the general contract when overriding equals

8 9, Always override hashCode when you override equals

9 10, Always override toString

10 11, Override clone judiciously

11 12, Consider implementing Comparable

12 13, Minimize the accessibility of classes and members

13 15, Minimize mutability

14 16, Favor composition over inheritance

15 17, Design and document for inheritance or else prohibit it

16 18, Prefer interfaces to abstract classes

17 19, Use interfaces only to define types
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18 22, Favor static member classes over nonstatic

19 14, In public classes, use accessor methods, not public fields

20 20, Prefer class hierarchies to tagged classes

21 30, Use enums instead of int constants

22 21, Use function objects to represent strategies

23 38, Check parameters for validity

24 39, Make defensive copies when needed

25 40, Design method signatures carefully

26 41, Use overloading judiciously

27 43, Return empty arrays or collections, not nulls

28 44, Write doc comments for all exposed API elements

29 45, Minimize the scope of local variables

30 47, Know and use the libraries

31 48, Avoid float and double if exact answers are required

32 50, Avoid strings where other types are more appropriate

33 51, Beware the performance of string concatenation

34 52, Refer to objects by their interfaces

35 53, Prefer interfaces to reflection

36 54, Use native methods judiciously

37 55, Optimize judiciously

38 56, Adhere to generally accepted naming conventions

39 57, Use exceptions only for exceptional conditions

40 58, Use checked exceptions for recoverable conditions and runtime 
exceptions for programming errors

41 59, Avoid unnecessary use of checked exceptions

First Edition

Item Number

Second Edition

Item Number, Title
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42 60, Favor the use of standard exceptions

43 61, Throw exceptions appropriate to the abstraction

44 62, Document all exceptions thrown by each method

45 63, Include failure-capture information in detail messages

46 64, Strive for failure atomicity

47 65, Don’t ignore exceptions

48 66, Synchronize access to shared mutable data

49 67, Avoid excessive synchronization

50 69, Prefer concurrency utilities to wait and notify

51 72, Don’t depend on the thread scheduler

52 70, Document thread safety

53 73, Avoid thread groups

54 74, Implement Serializable judiciously

55 75, Consider using a custom serialized form

56 76, Write readObject methods defensively

57 77, For instance control, prefer enum types to readResolve
78, Consider serialization proxies instead of serialized instances

First Edition

Item Number

Second Edition

Item Number, Title
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Index

Symbols
% remainder operator, 215

%n newline specifier for printf, 151

& HTML metacharacter, 205

+ string concatenation operator, 227

++ increment operator, 263

: for-each iterator, 212

< > generic type parameters, 109

< HTML metacharacter, 204–205

< relational operator, 65, 222

<?> unbounded wildcard type, 113

== operator, 6, 42–43, 147, 149, 177, 222–223

> HTML metacharacter, 205

> relational operator, 65

| OR operator, 159

A
abstract class

adding value components to, 41
designing for inheritance, 91
evolution of, vs. interfaces, 97
example

skeletal implementation, 96
tagged class replacement, 101

vs. interfaces, 93–97
noninstantiability and, 19
for skeletal implementations, 91, 94
from tagged class, 101

Abstract Factory pattern, 15

AbstractList, 34, 88, 94

AbstractMap, 34, 94

AbstractSequentialList, 250

AbstractSet, 34, 94

access level, 67–70
default, 4
of readResolve, 311

rules of thumb for, 68–69
of static member classes, 106

AccessibleObject.setAccessible, 17

accessor methods, 71
defensive copies and, 73, 186
example

defensive copies, 186
immutability, 74

for failure-capture data, 245, 255
immutability and, 73
naming conventions for, 239–240
for toString data, 53
vs. public fields, 71–72, 102

actual type parameter, 109, 115

Adapter pattern, 8, 22, 95, 107

aggregate types vs. strings, 224

alien method, 121, 265, 268

AnnotatedElement, 146

annotation
Immutable, 279
NotThreadSafe, 279
Override, 30, 34–44, 176–178
Retention, 169–170, 172–173, 207
SuppressWarnings, 116–118
Target, 169–170, 172–173, 207
ThreadSafe, 279

annotations, 147–180
API, 169–175

bounded type tokens and, 145
example, 171, 173–174
as typesafe heterogeneous container, 146

array parameters, 174
bounded type tokens and, 145
code semantics and, 171
documenting, 207
meta, 170
parameters, 172
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annotations (contd.)

types, 169
vs. naming patterns, 169–175
See also marker annotations

anonymous class, 106–108
in adapters, 95
as concrete strategy class, 104
example, 30, 95
finalizer guardian and, 30
uses and limitations, 108

antipattern, 2
busy wait, 286
constant interface, 98
empty catch block, 258
exceptions for flow control, 241
excessive string concatenation, 227
floating point for monetary calculation, 218
int enum, 147
null return for empty array, 201–202
ordinal abuse, 158, 161
serializable inner class, 294
string overuse, 224
tagged class, 100, 102
unsynchronized concurrent access, 259–264
wildcard types as return types, 137

API, 4
Collections Framework, 7
documenting, 203–208
Java Database Connectivity (JDBC), 7
object serialization, 289
provider registration, 8
service access, 8
toString return values as defacto, 53
unintentionally instantiable class in, 19
See also exported API

API design
access levels and, 68
bounded wildcard types and, 134–141
callbacks and, 26
constant interface pattern and, 98
constructors vs. static factories, 6
documentation comments and, 208
exceptions and, 242, 244–245
information hiding and, 234
inheritance and, 87–92
member class and, 108
orthogonality in, 189
vs. performance, 234

performance consequences of, 235
serialization and, 69, 289–290
static factories and, 18
synchronized modifier and, 278

API elements, 4

ArithmeticException, 249

ArrayIndexOutOfBoundsException, 162–
163, 241

ArrayList, 117, 194

Arrays, 19, 43, 48, 198–200

arrays
covariant, 119
defensive copying of, 70, 187
empty, 201

and immutability, 202
vs. null as return value, 201–202

generic creation errors, 119–120
to implement generics, 125–127
vs. lists, 119–123
nonempty and mutability, 70, 187
processing elements of, 241
in public fields, 70
reified, 119
safe access, 70

ArrayStoreException, 119–120

AssertionError, 19, 34, 152, 182, 246

assertions, 182

asSubclass, 146

atomic reference, 292–293

atomicity, 259
concurrent collections and, 273
failure, 183, 256–257
increment operator and, 263
public locks and, 280
synchronization and, 260–262

AtomicLong, 263

AtomicReference, 142, 293

autoboxing, 22, 221
method overloading and, 194
performance and, 22, 223

B
backward compatibility, 79, 299

See also compatibility

base class, 229

BigDecimal, 52, 64, 73, 78–79, 219–220
compareTo inconsistent with equals, 64
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for monetary calculations, 218–220
performance and, 219

BigInteger, 52, 73, 76–79, 295
constructor, 6
documentation, 182, 278

binary compatibility, 98, 108, 253, 291
See also compatibility

binary floating-point arithmetic, 218

bit fields vs. enum sets, 159–160

BitSet, 77

blocking operation, 274

BlockingQueue, 274

bogus byte stream attack, 303, 313

Boolean, 5–6, 20

boolean, 5
vs. enum types, 190

Boolean.valueOf, 6

bounded type parameter, 115, 128, 145

bounded type token, 145, 162, 167, 172

bounded wildcard type, 16, 114–115, 130, 
135–136, 139, 145, 167
increasing API flexibility, 134–141

boxed primitive, 5
vs. primitive type, 221–223

breaking initialization circularities, 282

Builder, 15

Builder pattern, 11–16, 190

busy wait, 286

C
caches, 26

Calendar, 21–22

Callable, 272

callback, 85, 266

callback framework, 85

canonical form, 43

capabilities vs. strings, 224–225

CaseInsensitiveString, 43

casts
asSubclass, 146
automatic, 109
Class.cast, 144
compiler generated, 109, 112, 120
dynamic, 144, 146
generics and, 109
invisible, 111

manual, 111
unchecked warnings, 116–118, 127, 132, 

144, 161–162

catch block, empy, 258

chaining-aware exceptions, 251

CharBuffer, 196

CharSequence, 196

checked exceptions, 244
accessor methods in, 245, 255
avoiding, 246–247
documenting, 252
failure atomicity and, 256
ignoring, 258
making unchecked, 247

checkedList, 145

checkedMap, 145

checkedSet, 145

circularities
initialization, 282
object graph, and serialization, 315
serialization attacks and, 309

Class, 16, 67–108, 142–146, 167, 230–231

class literals, 114, 172

Class.asSubclass, 146

Class.cast, 144

Class.class, 167

Class.newInstance, 16, 231

class-based framework, 229

ClassCastException, 42, 256
annotations and, 173
Comparable and, 62–63, 183
generics and, 110–112, 116–120, 123, 126–

128
serialization and, 309, 311, 315
typesafe heterogeneous containers and, 144–

146

classes
access levels of, 68
anonymous

See anonymous class
base, 229
composition, 10, 81–86
designing for inheritance, 87–92
documenting, 203, 206

for inheritance, 87–88
thread safety of, 278–281

evolution of, 290
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classes (contd.)

generic, 109
helper, for shortening parameter lists, 190
hierarchy of, 93, 101–102

combinatorial explosion in, 94
immutable

See immutability
inheritance, 81–86
instances of, 3
levels of thread safety, 278–279
members, 3
minimizing accessibility of, 67–70
naming conventions, 237–239
nested

See nested classes
noninstantiable, 7
nonserializable, with serializable subclass, 

292
singletons

See singletons
stateful, 292
stateless, 103
SuppressWarnings annotation and, 117
tagged, 100–102
unintentionally instantiable, 19
unrelated, 64, 107, 195
utility

See utility classes
See also individual class names

clients, 4

clone, 33, 54–61
as a constructor, 57, 90
defensive copies and, 70, 185–186, 306
example

defensive copies, 70
implementing, 55, 57–59

extralinguistic mechanisms, 54, 61
general contract, 54–55
immutable objects and, 76
incompatibility with final fields, 57
nonfinal methods and, 60, 90
references to mutable objects and, 56–60
vs. copy constructor, 61

Cloneable, 54–61, 90, 195, 246
alternatives to, 61
behavior of, 54
designing for inheritance and, 90
example, 57–58

extralinguistic mechanisms, 54, 61
implementing, 60
purpose of, 54

CloneNotSupportedException, 54, 60, 
246

@code tag, 204

Collection

compareTo and, 64
conversion constructors and, 61
empty array from, 202
equals and, 42
wildcard types and, 114, 135–136

Collections, 7, 19, 145
immutable, 131, 160, 202
synchronization and, 274, 279–280

collections
change to typed arrays, 202
empty, vs. null, 202

Collections Framework API, 7

combinatorial explosion, 94

companion class, mutable, 77

Comparable, 62–66, 93, 132
as consumers in PECS, 138
mutual comparability and, 133
recursive type bounds and, 132
See also compareTo

Comparator, 65
anonymous class and, 108
autoboxing and, 221–222
in implementing Comparable, 65
example, 74, 103–105
instance, 108
overriding equals and, 43

compare

See Comparator

compareTo

consistent with equals, 64
differences from equals, 63
example, 65–66, 304

using, 21, 184–185, 219, 306
general contract for, 62–64
instructions for writing, 64–66
See also Comparable

compatibility, 41, 68, 98, 111, 290, 301
backward, 79, 299
binary, 98, 108, 253, 291
forward, 299
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migration, 112
semantic, 291
source, 253

compiler-generated casts, 109, 111–112, 120

compilers, generics-aware, 111

compile-time exception checking, 16

compile-time type checking, 110, 119, 230

compile-time type safety, 123, 126

Component, 235

composition, 10, 83
vs. inheritance, 81–86

computation ordering, 256

concrete strategy, 103

concurrency, 259–288
documenting method behavior for, 278–281
internal synchronization and, 270
non-blocking control, 270
utilities, 217, 273–277

concurrent collections, 268

ConcurrentHashMap, 273–274, 278, 280

ConcurrentLinkedQueue, 280

ConcurrentMap, 273–274

ConcurrentModificationException,
248–249, 257, 267

conditionally thread-safe classes, 278
denial-of-service attack and, 280
documenting, 279, 281

Connection, 8, 28–29

consistency requirement
in equals contract, 34, 41
in hashCode contract, 45
in compareTo contract, 63

consistency, data
See data consistency

consistent with equals, 64

constant interface, 98

constant utility class, 99

constants, 70
enum types instead of, 147–157
in interfaces, 98–99
naming conventions for, 238
string, vs. enum types, 148

constant-specific class bodies, 152

constant-specific method implementations, 
152–154

constructors, 4, 20

API design and, 6
BigInteger, 6
calling overridable methods in, 89, 307
checking parameters of, 183, 302
clone as a, 57
conversion, 61
copy, 61, 76
default, 19
defensive copying and, 185
deserialization as, 290
documenting self-use, 87
enforcing noninstantiability with, 19
enforcing singleton property with, 17–18
establishing invariants, 75, 80
example

enforcing noninstantiability, 19
in singletons, 17, 308
use of overridable methods in, 89
in immutable class, 184–185

overloading, 193
parameterless, 19, 292
private

enforcing noninstantiability with, 19
enforcing singletons with, 17–18

readObject as a, 302
reflection and, 230
replacing with static factory, 5–10
for serialization proxies, 312
signature of, 6
example

in singletons, 17
SuppressWarnings annotation and, 117

consumer threads, 274

convenience methods, 189

conversion constructors and factories, 61

cooperative thread termination, 261

copy constructors and factories, 61, 76

CopyOnWriteArrayList, 268–269

corrupted objects, 28, 257, 260

CountDownLatch, 274–275

covariant arrays, 119

covariant return types, 56

creating objects, 5–31
performance and, 21

custom serialized forms, 289, 295–301
example, 298

CyclicBarrier, 274
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D
data consistency

in builder pattern, 13
maintaining in face of failure, 256–257
synchronization, 259–264
unreliable resources and, 41

data corruption, 28, 233, 257, 260

Date, 20–21, 41, 184–186, 302, 304

deadlock, 265–270
resource ordering, 300
thread starvation, 276

Decorator pattern, 85

default access
See package-private

default constructors, 19

default serialized forms
criteria for, 295
disadvantages of, 297
initial values of transient fields and,300
transient modifier and, 297

defaultReadObject, 299–300, 304
example, 293, 298, 304, 306

defaultWriteObject, 299–300
example, 294, 298, 300

defensive copies, 184–188, 307, 312
of arrays, 187
clone and, 185–186, 306
deserialization and, 302–303, 306
immutable objects and, 76
of mutable input parameters, 185–186
of mutable internal fields, 186
vs. object reuse, 23
performance and, 187
readObject and, 302–303, 306

degenerate class, 71

DelayQueue, 128

delegation, 85

denial-of-service attacks, 280

deserialization, 289–315
as a constructor, 290
flexible return class for, 314
garbage collection and, 308
overridable methods and, 90
preventing completion of, 304
singletons and, 18, 308–311

destroying objects, 24–31
detail messages, 254

Dimension, 72, 235

distinguished return values, 243

doc comments, 203

documenting, 203–208
annotation types, 207
conditional thread safety, 279
enum types, 207, 279
exceptions, 252–253
generics, 206
for inheritance, 87–88
lock objects, 281
methods, 203
multiline code examples, 205
object state, 257
parameter restrictions, 181
postconditions, 203
preconditions, 203, 252
required locks, 279–280
return value of toString, 52
self-use of overridable methods, 87, 92
serialized fields, 296
side effects, 203
static factories, 10
SuppressWarnings annotation and, 118
synchronized modifier and, 278
thread safety, 203, 278–281
transfer of ownership, 187
writeObject for serialization, 299
See also Javadoc

Double, 43, 47, 65

double, when to avoid, 218–220

double-check idiom, 283–285

Driver, 8

DriverManager, 8

dynamic casts, 144, 146

E
effectively immutable objects, 263

eliminating self-use, 92

eliminating unchecked warnings, 116–118

empty arrays
immutability of, 202
vs. null as return value, 201–202

empty catch block, 258

emptyList, 202

emptyMap, 202

emptySet, 202
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EmptyStackException, 256

encapsulation, 67, 234
broken by inheritance, 81, 88
broken by serialization, 290
of data fields, 71

enclosing instances, 106
anonymous class and, 108
finalizer guardian and, 30
local class and, 108
nonstatic member class and, 106
serialization and, 294

enum maps vs. ordinals, 161–164

enum sets
immutability and, 160
vs. bit fields, 159–160

enum types, 147–180
adding behaviors to, 149–151
collection view of, 107
constant-specific class body and, 152
constant-specific method implementations 

and, 152
documenting, 207, 279
enforcing singletons with, 17–18
equals and, 34
immutability of, 150
iterating over, 107
as member class, 151
for Strategy, 155
switch statements and, 154, 156
as top-level class, 151
toString and, 151–154
vs. booleans, 190
vs. int constants, 147–157
vs. readResolve, 308–311
vs. string constants, 148, 224

enumerated types, 147

EnumSet, 7, 159–160, 200, 314

equals, 6, 33–44
accidental overloading of, 44, 176–177
canonical forms and, 43
enum types and, 34
example

accidental overloading, 44
general contract and, 42
general contract of, 36, 40, 42, 96
violation of general contract, 35, 37–38

extending an abstract class and, 41
extending an instantiable class and, 38

general contract for, 34–42
how to write, 42
Override annotation and, 176–177
overriding hashCode and, 44–50
unreliable resources and, 41
when to override, 33–34

equivalence relations, 34

erasure, 119

Error, 244

errors, 244
generic array creation, 119–120
See also individual error names

example class
AbstractFoo, 292
AbstractMapEntry, 96
BasicOperation, 165
Bigram, 176
BogusPeriod, 303
CaseInsensitiveString, 35, 43, 65
Champagne, 192
Circle, 101
CollectionClassifier, 191
ColorPoint, 37, 40
Comparator, 104
Complex, 74, 78
CounterPoint, 39
Degree, 206
Elvis, 17–18, 308–309, 311
ElvisImpersonator, 310
ElvisStealer, 310
Ensemble, 158
Entry, 58, 296, 298
ExtendedOperation, 166
Favorites, 142–143
FieldHolder, 283
Figure, 100
Foo, 30, 293
ForwardingSet, 84, 265
Function, 122
HashTable, 57–58
Herb, 161
HigherLevelException, 251
Host, 105
InstrumentedHashSet, 81
InstrumentedSet, 84
Key, 225
MutablePeriod, 304
MyIterator, 107
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example class (contd.)

MySet, 107
Name, 295
NutritionFacts, 11–12, 14
NutritionFacts.Builder, 15–16
ObservableSet, 265
Operation, 152–153, 157, 165
OrchestraSection, 207
PayrollDay, 154, 156
Period, 184, 302
Person, 20–21
Phase, 162–163
PhoneNumber, 45
PhysicalConstants, 98–99
Planet, 149
Point, 37, 71
Provider, 8
Rectangle, 102
RunTests, 171
Sample, 170
Sample2, 172
SerializationProxy, 312, 314
Service, 8
Services, 8–9
SetObserver, 266
Shape, 101
SingerSongwriter, 94
SlowCountDownLatch, 286
SparklingWine, 192
Square, 102
Stack, 24–26, 56, 124–125, 134
StopThread, 260–262
StringLengthComparator, 103–104
StringList, 296, 298
StrLenCmp, 105
Sub, 90
Super, 89
TemperatureScale, 190
Text, 159–160
ThreadLocal, 225–226
UnaryFunction, 131
Unbelievable, 222
UtilityClass, 19
WeightTable, 150
Wine, 192
WordList, 62

Exception, 172, 244–245, 250–252

exceptions, 241–258
API design and, 242, 244–245
avoiding, 251
avoiding checked, 246–247
chaining, 250
chaining aware, 251
checked into unchecked, 247
checked vs. unchecked, 244–245
checking, 16
commonly used, 181
compile-time checking, 16
control flow and, 242
defining methods on, 245, 255
detail messages for, 254–255
documenting, 252–253

as part of method documentation, 203–204
for validity checking, 182

failure-capture information and, 254
favor standard, 248–249
from threads, 288
ignoring, 258
performance and, 241
purpose of, 244
string representations of, 254
translation, 183, 250
uncaught, 28
uses for, 241–243
See also individual exception names

Exchanger, 274

Executor Framework, 271–272

executor services, 267, 272

ExecutorCompletionService, 271

Executors, 267, 271–272

ExecutorService, 267, 271, 274

explicit termination methods, 28–29

explicit type parameter, 137–138

exported APIs
See API design; APIs

extending classes, 81, 91
appropriateness of, 86
clone and, 55
Cloneable and, 90
compareTo and, 64
equals and, 38
private constructors and, 78
Serializable and, 90, 291
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skeletal implementations, 95
See also inheritance

extending interfaces, 94
Serializable and, 291

extends, 4

extensible enums, emulating, 165–168

extralinguistic mechanisms, 61
cloning, 54, 61
elimination of, 313
native methods, 209, 233
reflection, 209, 230
serialization, 290, 312–313

F
Factory Method pattern, 5

failure atomicity, 183, 256–257

failure-capture, 254–255

fields
access levels of, 68
clone and, 56
compareTo and, 65
constant, 70
constant interface pattern and, 98
default values of, 300
defensive copies of, 186
documenting, 203, 206, 296
equals and, 43
exposing, 70–71
final

See final fields
hashCode and, 47
immutability and, 73
information hiding and, 71
interface types for, 228
naming conventions for, 238, 240
protected, 88
public, 69
redundant, 43, 48
reflection and, 230
serialization and, 301
stateless classes and, 103
synthetic, 294
thread safety and, 69
transient

See transient fields

File, 44

FileInputStream, 29, 258

FileOutputStream, 29

final fields
constant interface pattern and, 98
constants and, 70, 238
defensive copies and, 306
to implement singletons, 17
incompatibility with clone, 57
incompatibility with serialization, 

306
readObject and, 306
references to mutable objects and, 70

finalize, 31, 33

finalizer chaining, 30

finalizer guardian, 30

finalizers, 27–31
and garbage collection, 27
execution promptness, 27
logging in, 29
performance of, 28
persistent state and, 28
uses for, 29
vs. explicit termination methods, 28–29

Float, 43, 47, 65

float, inappropriate use of, 218–220

Flyweight pattern, 6

footprint
See space consumption

for loops
vs. for-each loops, 212–214
vs. while loops, 210

for-each loops, 212–214

formal type parameters, 109, 115

forward compatibility, 299
See also compatibility

forwarding, 83–85, 95

frameworks
callback, 85
class-based, 229
Collections, 217
interface-based, 6
nonhierarchical type, 93
object serialization, 289
service provider, 7

function objects, 103–105, 108

functional programming, 75

fundamental principles, 2
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G
garbage collection

finalizers and, 27
immutable objects and, 76
member classes and, 107
memory leaks and, 25
readResolve and, 308
See also space consumption

general contract, 33, 252
clone, 54
compareTo, 62
equals, 34
hashCode, 45
implementing interfaces and, 93
toString, 51

generic
array creation errors, 119–120
classes, 109
interface, 109
methods, 114–115, 122, 129–133
singleton factories, 131
static factory methods, 130
types, 109, 115, 124–128

Abstract Factory pattern and, 15

generics, 109–146
covariant return types, 56
documenting, 206
erasure and, 119
implementing atop arrays, 125–127
incompatibility with primitive types, 128
invariance of, 119
method overloading and, 195
static utility methods and, 129
subtyping rules for, 112
varargs and, 120

generics-aware compilers, 111

generification, 124

get and put principle, 136

getCause, 171, 251

grammatical naming conventions, 239–240

Graphics, 28

H
handoffs, of objects, 187

hashCode, 33, 44–50
general contract for, 45
how to write, 47

immutable objects and, 49
lazy initialization and, 49, 79
overriding equals and, 45

HashMap, 33, 45, 130, 190, 229, 279

HashSet, 33, 45, 81–82, 88, 144, 231

Hashtable, 45, 83, 86, 274

heap profiler, 26

helper classes, 106, 190

hidden constructors, 57, 90, 290, 302
See also extralinguistic mechanisms

hoisting, 261

HTML
metacharacters, 205
validity checking, 208

I
identities vs. values, 221

IllegalAccessException, 16

IllegalArgumentException, 15, 181, 
248–249

IllegalStateException, 15, 28, 248–249

Image, 28–29

immutability, 73–80
advantages of, 75
annotation for, 279
canonical forms and, 43
constants and, 70, 238
copying and, 61
defensive copies and, 184, 186
disadvantage of, 76
effective, 263
empty arrays and, 202
enum sets and, 160
enum types and, 150
example, 74, 78, 184, 302
failure atomicity and, 256
functional approach and, 75
generic types and, 131
hashCode and, 49
JavaBeans and, 13
object reuse and, 20
readObject and, 302–306
rules for, 73
serialization and, 79, 302–307
static factory methods and, 77
thread safety and, 278

Immutable annotation, 279
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immutable, level of thread safety, 278

implementation details, 67, 81, 83, 86, 88, 
250, 289–290, 295, 297

implementation inheritance, 81

implements, 4

implicit parameter checking, 183

inconsistent data, 28, 233, 257, 260, 293

inconsistent with equals, 64

IndexOutOfBoundsException, 248–249, 
254–255

information hiding
See encapsulation

inheritance, 3
designing for, 88–92
of doc comments, 208
documenting for, 87–88
example, 81
fragility and, 83
hooks to facilitate, 88
implementation vs. interface, 3, 81
information hiding and, 81
locking and, 280
multiple, simulated, 96
overridable methods and, 89
prohibiting, 91
self-use of overridable methods and, 92
serialization and, 291
uses of, 85
vs. composition, 81–86
See also extending classes

@inheritDoc tag, 208

initCause, 251

initialization
to allow serializable subclasses, 292
circularities, breaking, 282
defensive copying and, 73
example, 21, 49, 210, 283, 293
of fields on deserialization, 300
incomplete, 13, 90
lazy, 22, 49, 79, 282–285
of local variables, 209
normal, 283
at object creation, 80
static, 21

initialize-on-demand holder class, 283

inner classes, 106
and serialization, 294

extending skeletal implementations with, 95

InputStream, 28

instance fields
initializing, 282–283
vs. ordinals, 158

instance-controlled classes, 6
enum types and, 17–18, 147–157
readResolve and, 308–311
singletons, 17–18
utility classes, 19

instanceof operator, 42, 114

InstantiationException, 16

int

constants, vs. enum types, 147–157
enum pattern, 147, 159
for monetary calculations, 218–220

Integer, 66, 98, 132, 195, 221–223

interface inheritance, 81

interface marker, 179–180

interface-based frameworks, 6, 93–97

interfaces, 67–108
vs. abstract classes, 93–97
access levels, 68
constant, 98–99
for defining mixins, 93
for defining types, 98–99, 179–180
documenting, 203, 206, 252
emulating extensible enums with, 165–168
enabling functionality enhancements, 94
evolving, 97
extending Serializable, 291
generic, 109
marker

See marker interfaces
mixin, 54, 93
naming conventions for, 237–239
for nonhierarchical type frameworks, 93
as parameter types, 160, 190
purpose of, 54, 98–99
referring to objects by, 228–229
vs. reflection, 230–232
restricted marker, 179
skeletal implementations and, 94–97
static methods and, 7
strategy, 104
See also individual interface names

internal field theft attack, 304–305, 313
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internal representation
See implementation details

internal synchronization, 270

InterruptedException, 275–276

InvalidClassException, 290, 301

InvalidObjectException, 291, 304, 307, 
313

invariant (generics), 119, 134

invariants, 302–307
builders and, 15
class, 75, 86
clone and, 57
concurrency and, 263, 268, 276
constructors and, 80, 183, 292
defensive copying and, 184–188
enum types and, 311
of objects and members, 69, 71–72, 76
serialization and, 290, 292, 295–301, 313

InvocationTargetException, 171

Iterable, 214

iteration
See loops

iterators, 107, 212

J
Java Database Connectivity API, 7

Java Native Interface, 233

JavaBeans, 12–13
immutability and, 13
method-naming conventions, 239
serialization and, 289

Javadoc, 203
class comments, 253
HTML metacharacters in, 205
HTML tags in, 204
inheritance of doc comments, 208
links to architecture documents from, 208
package-level comments, 207
summary description, 205

Javadoc tags
@code, 204
@inheritDoc, 208
@literal, 205
@param, 203–204
@return, 204
@serial, 296
@serialData, 299

@throws, 181, 203–204, 252

JDBC API, 7

JNI, 233

JumboEnumSet, 7, 314

K
keySet, 22

L
lazy initialization, 22, 49, 79, 282–285

double-check idiom for, 283

lazy initialization holder class idiom, 
283

libraries, 215–217

LinkedHashMap, 26, 229

LinkedList, 57

Liskov substitution principle, 40

List, 34, 42, 265, 268–269

lists vs. arrays, 119–123

@literal tag, 205

liveness
ensuring, 265–270, 276, 287
failures, 261

local classes, 106–108

local variables, 209
minimizing scope of, 209–211
naming conventions for, 238, 240

lock splitting, 270

lock striping, 270

locks
documenting, 280
finalizers and, 28
in multithreaded programs, 259–264
reentrant, 268
using private objects for, 280

logging, 29, 251

logical data representation vs. physical, 
295–301

logical equality, 34

long, for monetary calculations, 218–220

loop variables, 210–212

loops
for invoking wait, 276–277
minimizing scope of variables and, 210
nested, 212–214
See also for loops; for-each loops
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M
Map, 34, 42, 64

defensive copies and, 187
member classes and, 107
views and, 22, 107
vs. ordinal indexing, 162

Map.Entry, 42

Map.SimpleEntry, 97

marker annotations, 170, 179

marker interfaces, 179–180

Math, 19, 206, 215

member classes, 106–108
See also static member classes

members, 3
minimizing accessibility of, 67–70

memory footprint
See space consumption

memory leaks, 24–26
See also space consumption

memory model, 73, 260, 284

meta-annotation
Documented, 169–170, 172–173, 207

meta-annotations, 170

Method, 171, 230

method overloading, 191–196
autoboxing and, 194
generics and, 195
parameters of, 193
rules for, 195
static selection among, 191

method overriding, 191–192
dynamic selection among, 191
self-use and, 92
serialization and, 307

methods, 181–208
access levels of, 68–69
accessor, vs. public fields, 71–72
adding to exception classes, 245
alien

See alien methods
checking parameters for validity, 181–183
common to all objects, 33–66
constant-specific for enum-types, 152
convenience, 189
defensive copying before parameter 

checking, 185
designing signatures of, 189–190

documenting, 203–205
exceptions thrown by, 252–253
overridable, 87
thread safety of, 278–281

explicit termination, 28–29
failure atomicity and, 256–257
forwarding

See forwarding methods
generic, 114–115, 122, 129–133
invocation, reflection and, 230
naming, 10, 189, 238–239
native, 29, 233
overloading

See method overloading
overriding

See method overriding
parameter lists for, 189
private, to capture wildcard types, 140
retrofitting varargs to, 198
size, 211
state-testing, vs. distinguished return value, 

243
static factory

See static factory methods
static utility, 129
SuppressWarnings annotation and, 117
varargs, 197–200
See also individual method names

migration compatibility, 112

mixin interface, 54, 93

mixing primitives and boxed primitives, 222

modify operations, state-dependent, 273

modules, 2

monetary calculations, 218

Monty Python reference, subtle, 20, 201

multiline code examples, in doc comments, 
205

multiple inheritance, simulated, 96

multithreaded programming, 217

mutable companion classes, 77

mutators, 71

mutual exclusion, 259

mutually comparable, 133

N
naming conventions, 10, 129, 148, 237–240

naming patterns vs. annotations, 169–175
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NaN constant, 43

native methods, 29, 233

native peers, 29

natural ordering, consistent with equals, 64

nested classes, 68, 106–108
access levels of, 68
as concrete strategy classes, 105
in serialization proxy pattern, 307, 312

non-blocking concurrency control, 270

nonhierarchical type frameworks, 93

noninstantiable classes, 7, 19

non-nullity in equals contract, 41

nonreifiable types, 120, 125, 127

nonserializable class, with serializable 
subclass, 292

nonstatic member classes, 106–108

normal initialization, 283

notify vs. notifyAll, 276–277

NotThreadSafe annotation, 279

NullPointerException, 25, 42–43, 
248–249
autoboxing and, 222–223
compareTo and, 64
equals and, 42–43
memory management and, 25
in object construction, 57, 90, 154
with ordinal indexing, 163
validity checking and, 182–183

NumberFormatException, 249

O
Object, 33

object pools, 23

object serialization API, 289

ObjectInputStream, 79, 193, 290

ObjectInputValidation, 307

ObjectOutputStream, 79, 179, 193, 290, 
307

objects, 3
avoiding reflective access, 231–232
base classes and, 229
corruption of, 28, 257
creating and destroying, 5–31
creation and performance, 21
deserializing, 289–315
effectively immutable, 263

eliminating obsolete references, 24–26
function, 108
handing off, 187
immutable

See immutability
inconsistent states of, 293
methods common to all, 33–66
process, 108
reflective access, 230
reuse, 20–23
safe publication of, 263
serializing, 289–315
string representations of, 51–53
using interfaces to refer to, 228–229
viewing in partially initialized state, 13, 90

ObjectStreamConstants, 98

Observer pattern, 265

obsolete object references, 24–26, 56, 256

open call, 269

optimizations, 234–236
== instead of equals, 42
lazy initialization, 22, 282–285
notify vs. notifyAll, 277
object reuse, 20–23
static initialization, 21–22
StringBuffer and, 227

ordinals
vs. enum maps, 161–164
vs. instance fields, 158

orthogonality in APIs, 189

OutOfMemoryError, 25, 27

OutputStream, 28

overloading
See method overloading

Override annotations, 30, 34–44, 176–178

overriding
See method overriding

P
package-private

access level, 4, 68
constructors, 77, 91

packages, naming conventions for, 237–238

@param tag, 203–204

parameter lists
of builders, 15
of constructors, 6
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long, 189–190
varargs and, 197–200

parameterized types, 109, 115
instanceof operator and, 114
reifiable, 120

parameterless constructors, 19, 292

parameters
checking for validity, 181–183, 302
interface types for, 228
type

See type parameters

PECS mnemonic, 136

performance, 234–236
autoboxing and, 22, 223
BigDecimal and, 219
defensive copying and, 187
enum types, 157, 160, 162
finalizers and, 27–28
for-each loops and, 212
immutable classes and, 76–77
internal concurrency control and, 280
libraries and, 216
measuring, 235
memory leaks and, 25
object creation and, 21
public locks and, 280
reflection and, 230
serialization and, 297
serialization proxy pattern and, 315
static factories and, 6
varargs and, 200
See also optimizations

performance model, 236

physical representation vs. logical content, 
295–301

platform-specific facilities, using, 233

portability
of native methods, 233
thread scheduler and, 286

postconditions, 203

preconditions, 203, 252
violating, 244

primitive types, 221
vs. boxed primitives, 221–223
compareTo and, 65
equals and, 43
hashCode and, 47

incompatibility with generic types, 128
See also individual primitive types

private constructors
enforcing noninstantiability with, 19
enforcing singletons with, 17–18

private lock object, 280

process object, 108

producer-consumer queue, 274

profiling tools, 236

programming principles, 2

promptness of finalization, 27

Properties, 86

protected, 69

provider framework, 8

Q
Queue, 274

R
racy single check idiom, 284

radically different types, 194

Random, 33, 215–216, 229, 278

raw types, 109–115
class literals and, 114
instanceof operator and, 114

readObject, 296, 302–307
default serialized form and, 300
guidelines for, 307
for immutable objects, 73, 79
incompatibility with singletons, 308
overridable methods and, 90, 307
serialization proxy pattern and, 313, 315
transient fields and, 297, 299–300

readObjectNoData, 291–292

readResolve

access levels of, 91, 311
vs. enum types, 308–311
example, 308
garbage collection and, 308
for immutable objects, 79
for instance-controlled classes, 311
serialization proxy and, 313–315
for singletons, 18, 308

readUnshared, 79, 307

recipes
clone, 60
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recipes (contd.)

compareTo, 64–66
equals, 42
finalizer guardian, 30
generifying a class, 124–126
hashCode, 47
implementing generics atop arrays, 125–127
invoking wait, 276
noninstantiable classes, 19
readObject, 307
serialization proxies, 312–313
singletons, 17
static factory methods, 5
tagged classes to class hierarchies, 101–102
using builders, 13
See also rules

recovery code, 257

recursive type bounds, 115, 132–133

redundant fields, 43, 48

reentrant lock, 268

reference types, 3, 221

reflection, 230–232
clone methods and, 54
performance of, 230
service provider frameworks and, 232

reflective instantiation with interface access, 
231

reflexivity
of compareTo, 64
of equals, 34–35

RegularEnumSet, 7, 314

reified, 119

remote procedure calls, reflection and, 230

resource-ordering deadlock, 300

resources
insufficient, 244–245
locked, and finalizers, 28
releasing, 29

restricted marker interface, 179

@return tag, 204

return statements, SuppressWarnings
annotation and, 117

return types, wildcard types and, 137

return values, interface types for, 228

rogue object reference attack, 304, 307

RoundingMode, 151

RPCs, reflection and, 230

rules
accessibility, 68–69, 106
choosing exception type, 244–245
choosing wildcard types, 136
immutability, 73
mapping domains to package names, 237
method overloading, 195
optimization, 234
subtyping, for generics, 112
type inference, 137
writing doc comments, 203–208

Runnable, 108, 272

runnable threads, number of, 286

Runtime, 28

runtime exceptions
See unchecked exceptions

runtime type safety, 112, 123

S
safe array access, 70

safe languages, 184, 233

safe publication, 263

safety
ensuring data, 259–264
failures, 263
wait and, 276

ScheduledFuture, 138

ScheduledThreadPoolExecutor, 26, 272

scope
local variables, 209–211
loop variables, 210
SuppressWarnings annotations, 117
variables, obsolete references and, 25

security, 79, 83, 296
attacks on, 185, 303, 305, 313
defensive copying and, 23, 184
holes, causes of, 70, 83, 225, 290
thread groups and, 288

self-use
documenting, for inheritance, 87
eliminating, for inheritance, 92

semantic compatibility, 291

Semaphore, 274

@serial tag, 296

serial version UIDs, 290, 300–301
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@serialData tag, 299

Serializable, 195, 289–294
as marker interface, 179
See also serialization
See also serialized form, 295

serialization, 289–315
API design and, 69
compatibility, 301
costs of, 289–291
defensive copying in, 307
documenting for, 296, 299
effect on exported APIs, 289
extralinguistic mechanisms, 290, 312–313
flexible return classes for, 314
garbage collection and, 308
immutability and, 79, 302
implementation details and, 297
inheritance and, 90–91, 291
inner classes and, 294
interface extension and, 291
JavaBeans and, 289
performance and, 297
proxy pattern, 312–315
singletons and, 18
space consumption and, 297
stack overflows in, 297
Strategy pattern and, 105
synchronization and, 300
testing and, 290
validity checking in, 304, 306–307, 314

serialization proxy pattern, 312–315

serialized forms
as part of exported APIs, 289
custom

See custom serialized form; default 
serialized form

defaultWriteObject and, 299
documenting, 296
of inner classes, 294
of singletons, 308

serialver utility, 301

service access API, 8

service provider frameworks, 7–9
reflection and, 232

Set, 85
compareTo and, 64
defensive copies and, 187
enum types and, 159–160

equals and, 34, 42
as restricted marker interface, 179
views and, 22

signature, 3, 189–190

simple implementation, 97

SimpleEntry, 97

simulated multiple inheritance, 96

single-check idiom, 284

singletons, 17
deserialization and, 18
enforcing with an enum type, 17–18
enforcing with private constructors, 17–18
readObject and, 308
readResolve and, 18, 308
serialized form of, 308
as single-element enum types, 18, 308–311

skeletal implementations, 94, 250

source compatibility, 253
See also compatibility

space consumption
enum types, 157, 160, 164
immutable objects and, 76–77
of serialized forms, 297

splitting locks, 270

spurious wake-ups, 277

stack overflows
cloning and, 59
serialization and, 297

state transitions, 75, 259

state-dependent modify operations, 273

state-testing methods, 242–243, 247

static factory methods, 5, 18, 20
and immutable objects, 76
anonymous classes within, 108
API design and, 6
vs. cloning, 61
compactness of, 9
vs. constructors, 5–10
copy factory, 61
flexibility of, 6
generic, 130
generic singleton, 131
for immutable objects, 77
for instance-controlled classes, 6
naming conventions for, 10, 239
performance and, 6
for service provider frameworks, 7
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static factory methods (contd.)

for singletons, 17
strategy pattern and, 105

static fields
immutable objects and, 18
initialization of, 283
strategy pattern and, 105
synchronization of mutable, 270

static import, 99

static initializer, 21

static member classes, 106
as builders, 13
common uses of, 106–107
for enum types, 151
to implement strategy pattern, 105
vs. nonstatic, 106–108
for representing aggregates, 224
serialization and, 294
for shortening parameter lists, 190

static utility methods, 129

storage pool, 26

strategy interface, 104

Strategy pattern, 103–105

stream unique identifiers, 290
See also serial version UIDs

StreamCorruptedException, 299

String, 20

string constants vs. enum types, 148

string enum pattern, 148

string representations, 51–53, 254

StringBuffer, 77, 196, 227, 270

StringBuilder, 77, 196, 227, 270

strings
concatenating, 227
as substitutes for other types, 224–226

subclasses
access levels of methods and, 69
equals and, 36, 41

subclassing, 3
prohibiting, 10, 19, 91
of RuntimeException vs. Error, 244
See also inheritance

subtype relation, 128, 135

subtyping rules, for generics, 112

summary description, 205

super type tokens, 145

supertype relation, 136

SuppressWarnings annotation, 116–118
example, 117, 126–127

switch statements, enum types and, 154, 
156

symmetry
compareTo and, 64
equals and, 34–35

synchronization
of atomic data, 260, 262
excessive, 265–270
internal, 270
for mutual exclusion, 259
performance and, 265, 269
serialization and, 300
for shared mutable data, 259–264
for thread communication, 260–285

synchronized modifier, 259
documenting, 278
as implementation detail, 278

synchronizers, 273–277

synthetic fields, 294

System, 28, 231–232, 276, 279

System.currentTimeMillis, 276

System.exit, 232

System.gc, 28

System.nanoTime, 276

System.runFinalization, 28

System.runFinalizersOnExit, 28, 279

T
tag fields, 100

tagged classes vs. class hierarchies, 100–102

tardy finalization, 27

tasks, 272

telescoping constructor, 11, 13, 16

this, in doc comments, 205

Thread, 260, 276, 287

thread groups, 288

thread pools, 271

thread priorities, 287

thread safety, 75, 281
annotations, 279
documenting, 278–281
immutable objects and, 75
levels of, 278–279
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public mutable fields and, 69
ThreadGroup API and, 288

thread scheduler, 286–287

thread starvation deadlock, 276

thread termination, 261

Thread.currentThread, 276

Thread.sleep, 287

Thread.stop, 260

Thread.yield, 287

ThreadGroup, 288

ThreadLocal, 142, 225–226, 228–229

ThreadPoolExecutor, 272, 274

threads, 259–288
busy-waiting, 286
number of runnable, 286

ThreadSafe annotation, 279

thread-safety annotations, 279

Throwable, 171, 251–252, 291

@throws tag, 181, 203–204, 252

throws keyword, 252–253

time-of-check⁄time-of-use attack, 185

Timer, 26, 28–29, 272

TimerTask, 80, 108, 229

Timestamp, 41

TimeZone, 21

TOCTOU attack, 185

toString, 33, 51–53
enum types and, 151–154
exceptions and, 254
general contract for, 51
return value as a de facto API, 53
varargs and, 198–199

transient fields, 297, 299–300
custom serialized form and, 300
deserialization and, 300
logical state of an object and, 300
in serializable singletons, 18, 308

transitivity
of compareTo, 64
of equals, 34, 36

TreeSet, 61, 63, 231

try-finally, 27, 29

type bounds, 115, 128, 145
recursive, 115, 132–133

type casting
See casts, 109

type inference, 9, 130
rules for, 137

type literals, 145

type parameter lists, 129

type parameters, 109
actual, 109, 115
and wildcards, choosing between, 139–140
bounded, 115, 128, 145
formal, 109, 115
in method declarations, 129
naming conventions for, 129
prohibition of primitive types, 128
recursively bounded, 115, 132–133

type parameters, naming conventions for, 238

type safety, 112, 120, 123, 126

type tokens, 115, 142

type variables
See type parameters

typed arrays, from collections, 202

TypeNotPresentException, 173

types
bounded wildcard, 114–115, 135–136, 

139, 145
compile-time checking, 110, 230
conversion methods, naming conventions 

for, 239
generic, 109, 115, 124–128
interfaces for defining, 98–99, 179–180
nonreifiable, 120, 125, 127
parameterized, 109, 115
radically different, 194
raw, 109–110, 115
unbounded wildcard, 113, 115

nested, 143
wildcard, and return, 137
wildcard, private method to capture, 140

typesafe enum pattern, 148

typesafe heterogeneous container pattern, 
142–146
annotation APIs and, 146
incompatibility with nonreifiable types, 145

U
unbounded wildcard types, 113, 115
instanceof operator and, 114
nested, 143
reifiable, 120
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uncaught exceptions, 28

unchecked exceptions, 246
accessor methods in, 255
vs. checked exceptions, 244–245
documenting, 203, 252
ignoring, 258
making from checked, 247
standard, 248
visual cue for, 252

unchecked warnings, 116–118, 132
arrays, generics, and, 127, 161–162
Class.cast and, 144

unconditionally thread-safe, 278

unintentional object retention
See memory leaks

unintentionally instantiable classes, 19

unsafe languages, 233

UnsupportedOperationException, 87, 
248–249

unsynchronized concurrent access, 259–264

URL, 41

user, 4

utility classes, 19
in Collections Framework, 63
vs. constant interfaces, 99

V
validity checking

HTML, 208
parameters, 181–183, 190, 251

defensive copying and, 185
failure atomicity and, 256
JavaBeans pattern and, 13
readObject and, 302–307
serialization proxy pattern and, 312, 314
varargs and, 197

value types vs. strings, 224

values vs. identities, 221

values, for enum types, 107

varargs, 197–200
builders and, 15
generics and, 120
performance, 200
retrofitting methods for, 198

variable arity methods, 197

variables
atomic operations on, 259

interface types for, 228
local

See local variables
loop, 210
naming conventions for, 238
type

See type parameters

Vector, 83, 228

views
to avoid subclassing, 40, 64
locking for, 279
to maintain immutability, 187
naming conventions for, 239
nonstatic member classes for, 107
object reuse and, 22

volatile modifier, 262, 283–284

W
wait loop, 276–277

warnings, unchecked, 116–118, 132
arrays, generics, and, 127, 161–162
Class.cast and, 144

weak references, 26, 274

WeakHashMap, 26

while loop vs. for loop, 210

wildcard types
bounded, 115, 145

for Abstract Factories, 16
API flexibility and, 130, 139
class literal as, 167
PECS mnemonic and, 135–136
vs. unbounded, 114

nested, 143
private method to capture, 140
for producers and consumers, 136
as return types, 137
unbounded, 113, 115
usage mnemonic, 136

Window, 28

window of vulnerability, 185

work queues, 271, 274

wrapper classes, 83–85
vs. subclassing, 91, 94

writeObject, 297, 299–300, 315

writeReplace, 91, 312–313

writeUnshared, 79, 307
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