
Drools JBoss Rules 5.0
Developer's Guide

Develop rules-based business logic using the
Drools platform

Michal Bali

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Drools JBoss Rules 5.0 Developer's Guide

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2009

Production Reference: 1060709

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-64-7

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Michal Bali

Reviewers
James Taylor

Sammy Larbi

Acquisition Editor
Sarah Cullington

Development Editor
Siddharth Mangarole

Technical Editors
Aanchal Kumar

Conrad Sardinha

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinator
Zainab Bagasrawala

Proofreader
Claire Lane

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Foreword

Open Source Decision Management
Companies of every size are realizing that smart, simple, agile processes require
that operational decisions should be managed, automated, and improved.
These high volume transactional decisions must be made to keep data flowing
through processes, to empower customers to self-serve, to make systems act more
intelligently. As Neil Raden and I discussed in Smart (Enough) Systems, these
decisions commonly have distinct characteristics. These decisions are high volume,
low latency, and necessary for both straight through processing and unattended
operation so they must be automated. Yet they must also change in response to
external variability, demonstrate compliance, manage risk, and be personalized
so traditional approaches to automation are problematic. Coding decisions in Java
makes it hard to show those decisions to a regulator to prove compliance and hard
to change the decision making approach quickly and cheaply. It makes it hard for
business users to truly collaborate on how these decisions should be made, limiting
the ability to bring risk management and personalization to these decisions.

Fortunately, there exists a technology and an approach to deal with these
challenges. Instead of using traditional approaches companies attacking the
decisions as a separate problem and managing those decisions explicitly. Decision
management externalizes these decisions as decision services so they can reused and
systematically improved. Decision management replaces traditional procedural code
with business rules—declarative, atomic, manageable fragments of business logic.
Business rules allow business users to participate in writing business logic.

With Drools 5, JBoss and the open source community have delivered a true business
rules management system for the first time. Using Drools, organizations can take
control of the logic that drives their operational decisions. They can build simpler,
smarter, and more agile business processes and systems.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

Michal introduces business rules and JBoss Drools to programmers in this book,
walking them through all the major features of the product. Extensive code extracts
and worked examples illustrate all the major, and many of the minor, features in the
new release. Whether you are new to Drools or used to a previous version, Michal's
book will help you navigate the new release. With Drools 5 you can take control of
the logic in your systems and manage your decisions for better business results and
greater agility, and this book will show you how.

It's time to change the way you build system, time to manage operational decisions,
time to put business rules to work.

James Taylor
CEO, Decision Management Solutions
Author, with Neil Raden, of Smart (Enough) Systems (Prentice Hall, 2007)
blog: jtonedm.com, twitter: jamet123

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michal Bali is a senior software developer at DeCare Systems, Ireland. He has
four years experience working with Drools and has extensive knowledge of Java,
JEE. Michal designed and implemented several systems for a major dental insurance
company. Michal is an active member of the Drools community and can be contacted
at michalbali@gmail.com.

I thank Drools lead Mark Proctor and his team that consists of Edson
Tirelli, Michael Neale, Kris Verlaenen, Toni Rikkola, and other
contributors for giving me something to write about. They were of
great help while I was writing the book. Edson and Mark reviewed
the book and helped me to correct various inaccuracies.

I'd like to thank all reviewers and the whole editorial team for their
patience and help while I was writing this book. In particular, Sarah
Cullington, Siddharth Mangarole, Aanchal Kumar, Conrad Sardinha,
James Taylor, Sammy Larbi, Zainab Bagasrawala, Shilpa Dube, Lata
Basantani, and other anonymous reviewers.

I thank James Taylor for writing the foreword and reviewing the
book. I am honored that he chose to participate in this project.

Finally, I thank my fiancée Michala for supporting me and putting
up with me while I wrote.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

About the Reviewers

James Taylor is CEO of Decision Management Solutions and one of the leading
experts in decision management. James works with clients to develop effective
technology solutions to improve business performance. He has over 20 years
experience in developing software and is the foremost thinker and writer on
decision management. James was previously a Vice President at Fair Isaac
Corporation where he developed and refined the concept of enterprise decision
management. The best known proponent of the approach, James is a passionate
advocate of decision management.

James has experience in all aspects of the design, development, marketing, and use
of advanced technologies including CASE tools, project planning, and methodology
tools as well as platform development in PeopleSoft's R&D team and management
consulting with Ernst and Young. He develops approaches, tools, and platforms that
others can use to build more effective information systems.

James is the lead author of Smart (Enough) Systems: How to Deliver Competitive
Advantage by Automating Hidden Decisions (Prentice Hall, 2007) and he has
contributed chapters to The Decision Model (forthcoming), The Business Rules
Revolution: Doing Business The Right Way, and Business Intelligence Implementation:
Issues and Perspectives. James writes several blogs and his articles appear in industry
magazines and on leading industry and technical web sites.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sammy Larbi works as a programmer for desktop, web, console, and service
applications using a diverse range of technologies, including Ruby, .NET,
ColdFusion, Java, C/C++, and Perl. In addition to typical and atypical business
domains, he also works in the field of bioinformatics and has a keen interest in
artificial intelligence.

After many long years and sleepless nights since learning to program in his youth,
he graduated with degrees in Computer Science and Political Science in 2004, and
finished a master's degree in Computer Science in 2008.

Sam shares his thoughts about programming and software development online at his
weblog, www.codeodor.com.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Table of Contents
Preface	 1
Chapter 1: Introduction	 7

Problems with traditional approaches	 7
The solution	 9

Advantages	 10
Disadvantages	 12

When not to use a rule engine	 13
Drools	 13
Alternatives to Drools	 15
Summary	 15

Chapter 2: Basic Rules	 17
Rule basics	 17

Executing rules	 19
Rule syntax	 23

Rule concepts	 23
Variables in rules	 23
Types	 24
Comments	 24

Package	 25
Imports	 25
Global variables	 25
Functions	 26
Dialect	 27

Rule condition	 28
And	 28
Or	 29
Not	 29
Exists	 30
Eval	 30
Return value restriction	 30
Inline eval	 30

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Table of Contents

[ii]

This	 32
Working with collections	 32

Rule consequence	 33
Rule attributes	 34

salience (priority)	 35
No-loop	 35
Dialect	 35

Summary	 35
Chapter 3: Validation	 37

Banking domain model	 37
Problem definition	 38
Analysis	 39
Design	 39
Validation package	 41

Object required type rules	 44
Testing	 45
Minimal account balance rule	 49
Student account rule	 50
Unique account number rule	 52

Implementation	 53
Validation service	 56
Summary	 58

Chapter 4: Data Transformation	 59
Process overview	 59
Getting the data	 60

Loading facts into the knowledge session	 61
Writing transformation rules	 63

Testing	 64
Address normalization	 67
Testing the findAddress rule	 68
Unknown country	 69
Currency conversion	 70
One account allowed	 72

Transformation results	 74
Implementation of the data loading	 76

Database setup	 76
Project setup	 77
iBatis configuration	 78
Running iBatis	 79
Alternative data loading	 80

Summary	 80

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Table of Contents

[iii]

Chapter 5: Human-readable Rules	 81
Domain Specific Language	 81

DSL as an interface	 84
DSL for validation rules	 84
File formats	 86

DSL file format	 86
DRL file format	 87
DSLR file format	 88

DSL for multiple constraints in a condition	 88
Named capture groups	 89
DSL for data transformation rules	 90

Decision tables	 92
Advantages of a decision table	 95
Disadvantages of a decision table	 96
Calculating the interest rate	 96

Project setup	 98
Testing	 98
Comma Separated values	 100

Rule Templates	 101
Drools Flow	 101

Drools Agenda	 101
Methods for managing rule execution order	 102
Ruleflow	 103

Start	 104
End	 104
Action	 104
RuleFlowGroup	 104
Split	 105
Join	 106

Example	 106
Rules	 107
KnowledgeBase setup	 107
Tests	 108

Summary	 110
Chapter 6: Stateful Session	 111

Introduction to stateful session	 111
Validation using stateful session	 112

Design overview	 113
Stateful validation service	 113
Integration testing	 118
Logical assertions	 121
Keeping the validation report up-to-date	 123

Collect conditional element	 124

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Table of Contents

[iv]

Serialization	 126
Knowledge session re-creation	 126
Testing	 128
Session serialization	 129
Full session serialization	 130

Summary	 132
Chapter 7: Complex Event Processing	 133

CEP and ESP	 133
Drools Fusion	 134
Fraud detection	 134

Problem description	 135
Design and modeling	 135
Fraud detection rules	 138

Notification	 139
Monitoring—averageBalanceQuery	 143
Two large withdrawals	 144
Sequence of increasing withdrawals	 148
High activity	 158

Summary	 160
Chapter 8: Drools Flow	 161

Loan approval service	 161
Model	 162

Loan approval ruleflow	 162
Invalid loan application form	 163

Email work item	 163
Fault node	 165

The size of the loan	 168
Test for a small loan	 169

Rating Calculation	 169
Subflow	 170
Subflow diagram	 170
Rating calculation subflow test	 173

Decisions on rating	 174
Testing the 'Rating?' node	 175

Transfer Funds work item	 175
Work item definition	 177
Work item registration	 178
Work item handler	 178
Work item handler registration	 180
Testing the transfer work item	 180

Human task	 181
Test for the human task	 183

Final Approval	 186
Test for the 'Approve Event' node	 186

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Table of Contents

[�]

Banking service	 187
Disadvantages of a ruleflow	 188

Summary	 188
Chapter 9: Sample Application	 189

Users	 189
Architecture	 189
Technologies used	 190

Additional Drools projects used	 191
Libraries used	 191

Business logic	 191
Design	 192
Configuration	 192

JPA annotations for domain objects	 193
JPA configuration	 194
Spring Framework configuration	 195
Web application setup	 197

Tag library	 199
Tomcat setup	 199
Deployment	 200

Repositories	 200
Validation	 201

Services	 203
Transactions	 204
Presentation layer	 206

Localized messages	 208
Customer save form controller	 208

Complex Event Processing service	 211
Loan approval	 211

Loan request form	 212
Process persistence	 213
Task list	 220
Working on a task	 222
Loan approval event	 225

Summary	 227
Chapter 10: Testing	 229

How to write unit tests for rules	 229
Rule integration testing	 230
Rule acceptance testing	 230

Creating a test scenario	 232
Running a test scenario	 234
Running all test scenarios	 235

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Table of Contents

[vi]

Static analysis of rules	 236
Troubleshooting techniques	 237

Event listeners	 238
Debugging	 239
Source of generated classes	 241
mvel tricks	 241

Summary	 242
Chapter 11: Integration	 243

Dynamic KnowledgeBase loading	 243
KnowledgeAgent	 244

External artifact building	 246
Building with Ant	 246

Drools execution server	 248
Interest rate calculation example	 249

The server	 249
The client	 251

Spring Framework integration	 252
KnowledgeBaseFactoryBean	 253

Standards	 255
JSR94 Java Rule Engine API	 255

Summary	 256
Chapter 12: Performance	 257

Rete algorithm	 257
Node types	 259

Rete node	 260
EntryPointNode	 260
ObjectTypeNode	 261
AlphaNode	 261
LeftInputAdapterNode	 261
TerminalNode	 262
BetaNode	 262
More complex example	 264
EvalNode and FromNode	 266

Retracting or modifying a fact	 266
Initial fact	 266

Node sharing	 267
Example	 268

Node indexing	 269
AlphaNode indexing	 269

Computation complexity	 270
BetaNode indexing	 271

Example	 271

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Table of Contents

[vii]

KnowledgeBase partitioning	 273
Parallel execution	 274

Summary	 275
Appendix A: Development Environment Setup	 277

Environment setup	 277
Dependencies and their licenses	 279

Appendix B: Custom Operator	 281
Summary	 287

Appendix C: Dependencies of Sample Application	 289
Index	 293

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface
Business rules and processes can help your business by providing a level of agility
and flexibility. As a developer, you will be largely responsible for implementing
these business rules and processes effectively, but implementing them systematically
can often be difficult due to their complexity. Drools, or JBoss Rules, makes
the process of implementing these rules and processes quicker and handles the
complexity, making your life a lot easier!

This book guides you through various features of Drools, such as rules, ruleflows,
decision tables, complex event processing, Drools Rete implementation with various
optimizations, and others. It will help you to set up the Drools platform and start
creating your own business. It's easy to start developing with Drools if you follow
our real-world examples that are intended to make your life easier.

Starting with an introduction to the basic syntax that is essential for writing rules,
the book will guide you through validation and human-readable rules that define,
maintain, and support your business agility. As a developer, you will be expected
to represent policies, procedures, and constraints regarding how an enterprise
conducts its business; this book makes it easier by showing you the ways in which
it can be done.

A real-life example of a banking domain allows you to see how the internal workings
of the rules engine operate. A loan approval process example shows the use of the
Drools Flow module. Parts of a banking fraud detection system are implemented
with Drools Fusion module, which is the Complex Event Processing part of Drools.
This in turn, will help developers to work on preventing fraudulent users from
accessing systems in an illegal way.

Finally, more technical details are shown on the inner workings of Drools, the
implementation of the ReteOO algorithm, indexing, node sharing, and partitioning.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

[�]

What this book covers
Chapter 1: This chapter introduces the reader to the domain of business rules and
business processes. It talks about why the standard solutions fail at implementing
complex business logic. It shows a possible solution in the form of a declarative
programming model. The chapter talks about advantages and disadvantages of
Drools. A brief history of Drools is also mentioned.

Chapter 2: This chapter shows us the basics of working with the Drools rule
engine—Drools Expert. It starts with a simple example that is explained step-by-step.
It begins with the development environment setup, writing a simple rule, and then
executing it. The chapter goes through some necessary keywords and concepts that
are needed for more complex examples.

Chapter 3: This chapter introduces the reader to a banking domain that will
be the basis for examples later in this book. The chapter then goes through an
implementation of a decision service for validating this banking domain.
A reporting model is designed that holds reports generated by this service.

Chapter 4: This chapter shows how Drools can be used for carrying out complex data
transformation tasks. It starts with writing some rules to load the data, continues
with the implementation of various transformation rules, and finally puts together
the results of this transformation. The chapter shows how we can work with a
generic data structure such as a map in Drools.

Chapter 5: The focus of this chapter is on rules that are easy to read and change.
Starting with domain specific languages, the chapter shows how to create a data
transformation specific language. Next, it focuses on decision tables as another
more user-friendly way of representing business rules. An interest rate calculation
example is shown. Finally, the chapter introduces the reader to Drools Flow module
as a way of managing the rule execution order.

Chapter 6: This chapter talks about executing the validation decision service in a
stateful manner. The validation results are accumulated between service calls. This
shows another way of interacting with a rule engine. Logical assertions are used
to keep the report up-to-date. Various ways of serializing a stateful session
are discussed.

Chapter 7: This chapter talks about Drools Fusion—another cornerstone of the
Drools platform is about writing rules that react to various events. The power of
Drools Fusion is shown through a banking fraud detection system. The chapter
goes through various features such as events, type declarations, temporal operators,
sliding windows, and others.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

[�]

Chapter 8: This chapter goes into more detail about the workflow aspect of the Drools
platform. It is showed through a loan approval service that demonstrates the use of
various nodes in a flow. Among other things, the chapter talks about implementing
a custom work item, human task, or a sub-flow.

Chapter 9: The purpose of this chapter is to show you how to integrate Drools in a
real web application. We'll go through design and implementation of persistence,
business logic, and presentation layers. All of the examples written so far will be
integrated into this application.

Chapter 10: The focus of this chapter is to give you an idea about the various
ways of testing your business logic. Starting with unit testing, integration testing
through acceptance testing that will be shown with the help of the Business Rules
Management Server—Guvnor, this chapter provides useful advice on various
troubleshooting techniques.

Chapter 11: This chapter shows integration with the Spring Framework. It describes
how we can make changes to rules and processes while the application runs. It
shows how to use an external build tool such as Ant to compile rules and processes.
It talks about the rule execution server that allows us to execute rules remotely. It
briefly mentions support of various standards.

Chapter 12: This chapter goes under the hood of the Drools rule engine. By
understanding how the technology works, you'll be able to write more efficient rules
and processes. It talks about the ReteOO algorithm, node sharing, node indexing,
and rule partitioning for parallel execution.

Appendix A: It lists various steps required to get you up and running with Drools.

Appendix B: It shows an implementation of a custom operator that can be used to
simplify our rules.

Appendix C: It lists various dependencies used by the sample web application.

What you need for this book
In order to learn Drools and run the examples in this book, you'll need a computer
with any Operating System (Windows, Mac, or Linux), Java Development Kit (JDK)
version 1.5 or later, Drools binary distribution, some IDE—preferably Eclipse IDE
for Java EE developers, Drools plugin for Eclipse, and some third-party libraries that
will be specified per chapter. All of the mentioned software is freely available on the
Internet under a business friendly license.

You can download some additional support material from
http://code.google.com/p/droolsbook/.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

[�]

Who this book is for
The book is for Java developers who want to create rules-based business logic using
the Drools platform. Basic knowledge of Java is essential.

Readers are requested to note that they should follow the text
carefully. Some additions to the code are required in order to
run the examples successfully.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Drools keywords are rule, when, then,
and end."

A block of code will be set as follows:

package droolsbook;

rule "basic rule"
 when
 Account(balance < 100) // condition
 then
 System.out.println("Account balance is " +
 "less than 100"); // consequence
end

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "After it
finishes execution, Action is executed, the flow continues to another ruleflow group
called Group 2, and finally it finishes at an End node".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

[�]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/5647_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Introduction
The need to build more and more complex systems is increasing. We're trying
to automate all kinds of business processes and implement complex business
decisions. However, these processes and decisions are not very well represented
using traditional programming languages such as Java or C#. Instead, we should
use specialized technology such as the Drools platform.

In this chapter, we'll look at why there is a need for the Drools platform, what
advantages and disadvantages it brings, and when (not) to use it. We'll briefly look
at its history and what modules it consists of. We'll also see some commercial and
open source alternatives.

Problems with traditional approaches
Enterprise systems usually have multiple layers. From top to bottom they are:
presentation layer, business logic layer, and persistence layer. The middle
layer—business logic represents the core of the application where all of the
business processes and decisions take place.

The requirements for the business logic layer tend to change more often than the
requirements for the rest of the application. We might be lucky when we get a
complete specification, but that happens rarely. Even then, the requirements usually
evolve over time and are often re-worked. As this happens, a standard solution using
imperative style language (imperative programs are a sequence of commands for the
computer to perform; for example, languages such as Java and C#) would quickly
end up with so-called spaghetti code—lots of nested if-else statements.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Introduction

[�]

It is often a good idea to document the following separately:
Business processes: Represent what the business does
Business rules: Represent decisions that the business does
Requirements: Represent how the system supports the business,
defines goals

These areas change at different schedules, have a different
degree of business user involvement, and none the less they
are implemented differently.
I am referring to these three areas simply as requirements.

•
•
•

There is no well defined way of representing the business logic in Java or C#. What
usually happens is that every application represents business logic differently.

For example, consider the following code that does some checking on customer level,
customer accounts, and account balance:

if (customer.getLevel() == Level.Gold) {
 //do something for Gold customer
} else if (customer.getLevel() == Level.Silver) {
 if (customer.getAccounts() == null) {
 //do something else for Silver customer with no accounts
 } else {
 for (Account account : customer.getAccounts()) {
 if (account.getBalance < 0) {
 //do something for Silver Customer that has
 //account with negative balance
 }
 }
 }
}

Code listing 1: Code written in standard Java (or any imperative style language).

Readers are requested to note that they should follow the
text carefully. Some additions to the code are required in
order to run the examples successfully.

First, the code checks if the customer is a Gold level customer and does something,
then it checks if the customer is a Silver level customer, and if so, it checks if this
customer has no accounts and does something in this case. If the customer has
accounts, the code performs some logic for each account that has negative balance.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 1

[�]

The point of this Java 'spaghetti code' is to give you an idea what we are trying to
prevent. You may think that it doesn't look that bad. However, after a couple of
changes in requirements and developers that are maintaining the code, it can get much
worse. It is usually the case that if you fix one bug, you are more likely to introduce
five new bugs. A lot of requirements are literally packed into a few lines of code. This
code is hard to maintain or change in order to accommodate new requirements.

As more conditions are added, the performance of this system will degrade.
Moreover, when we want to change the behavior of the application, we'll have
to re-compile and re-deploy the whole application.

It is not only difficult to represent business logic in a imperative programming style
language, but also hard to differentiate between code that represents the business
logic and the infrastructure code that supports it.

For developers, it is hard to change the business logic. For domain experts, it is
impossible to verify the business logic and even harder to change it.

There is a need for a different paradigm for representing the business logic.

The solution
The problem is that with an imperative style language, we are implementing
both, what needs to be done (business requirements) and how it needs to be done
(algorithm). Let's look at declarative style programming, such as SQL, in relational
databases (other declarative style languages include, for example, Prolog or XSLT).
SQL describes what we want to search, it doesn't say anything about how the database
should find the data. This is exactly what we need for our business requirements.

A rule engine provides an alternative computational model. We declare rules in
pretty much the same way as the business analyst does the requirements—as a group
of if-then statements. The rule engine can then take these rules and execute them
over our data in the most efficient way. Rules, which have all of their conditions true,
have their then part evaluated. This is different from imperative style programming
languages where the developer has to specify how it needs to be done explicitly
(with a sequence of conditionals and loops).

If we rewrite the code from code listing 1 in a declarative manner, it might look like
the following:

if Customer(level == Level.Gold)
then do something else for Gold customer

if Customer(level == Level.Silver)
and no Account()

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Introduction

[10]

then do something for Silver customer who has no accounts

if Customer(level == Level.Silver)
and Account(balance < 0, customer.accounts contains account)
then do something for Silver Customer that has account with negative
balance

Code listing 2: Rules from code listing 1 written using declarative style.

Each rule represents one requirement. This is more readable and maps to business
requirements more naturally.

Advantages
The following is a summary of various advantages of a declarative style solution that
Drools brings:

Easier to understand: Rules are easier to understand for a business analyst
or a new developer than a program written in Java or other imperative style
languages. It is more likely for a technically skilled business analyst to verify
or change rules than a Java program.
Improved maintainability: As rules are easier to understand, a developer
can spend more time solving the actual problem. We don't care about how
to implement a solution. We only care about what needs to be done to solve
a problem.
Deals with evolving complexity: It is much easier to add new rules, modify
or remove existing rules than to change, for example, a Java program. The
impact this has on other rules is minimal in comparison with an imperative
style implementation.
Flexibility: It deals with changes to the requirements or changes to the data
model in a much better way. Changing or rewriting an application is never
an easy task. However, thanks to formalism that rules bring, it is much easier
to change rules than to change a Java program.
Reasonable performance: Thanks to the Rete algorithm that is behind
Drools, in theory, the performance of the system doesn't depend on the
number of rules. Because a rule engine is essentially a generic if-then
statement executor, there are numerous performance optimizations that
can be applied independently of the rules. With every release of Drools, the
performance of the engine is getting better, by adding various optimizations
such as Rete node sharing, node indexing, parallel execution.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 1

[11]

Requirements can be naturally translated into rules: The representation of
business rules is consistent. For example, let's take some business rule and
implement it in Java. Developers, depending on their experience, tend to use
different ways to solve a problem. We'll find out that the possible solutions
will wary greatly. Whereas with rules, this diversification becomes less
apparent. It is simply because we are expressing 'what' instead of 'how'.
As a result, the code is much easier to read even by new developers.
Ability to apply enterprise management to our rules: This builds on the
previous advantage of consistent representation. If we have consistent
representation, it is much easier to introduce new features that apply across
all of our rules (for example, auditing, logging, reporting, or performance
optimizations).
Reusability: Rules are kept in one place (separation of business logic from
the rest of the system), which means easier reusability (for example, imagine
you've written some validation rules for your application and later on there
is a need to do some batch imports of data; you could simply reuse the
validation rules in you batch import application)
Rules model the application invariants more closely: Imperative style
solutions tend to impose arbitrary and often unnecessary ordering on
operations depending on the algorithm chosen. This then hides the original
invariants of the application.
The Drools platform brings unification of rules and processes: It is easy to
call rules from a process or vice-versa.
Independent Lifecycle: Rules and processes tend to change far more often
than anything else in the application. With Drools, the rules and processes
can be authored, deployed, versioned, managed, and so on, independently
from the rest of the application.
Embedability: Drools can be easily embedded into existing applications in
order to implement just a section of a system.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Introduction

[12]

Disadvantages
On the other hand, don't think of Drools as the silver bullet. Writing systems that
make complex decisions is never an easy task. Drools just helps to make it a bit easier.
You'll have to invest in training developers. Failing to do so can result in inefficient
rules and seemingly unpredictable results. The developers need to adopt a different
way of thinking in order to write business rules declaratively. It may look difficult at
first but once we master this, the rules will be much easier and faster to write. If we
look again at the SQL/Database analogy—SQL queries require developer training
in order to be efficiently written, in the same way as rules do. Also, the quality of the
data model is directly proportional to the easiness of writing SQL queries and their
efficiency, in the exact same way that the quality of the domain model is directly
proportional to the easiness of writing rules and their efficiency

We don't specify how the business rules should be implemented, and instead we
just specify what needs to happen. Therefore, we don't know how it happened, and
hence it may be difficult to troubleshoot. This is a valid point and to resolve this
Drools comes with a variety of tools that greatly help you with troubleshooting.
Thanks to these tools, troubleshooting becomes a piece of cake.

When you are debugging a program written in Java, you can easily step through
the program flow and find out what is going on. Debugging of rules can be more
difficult without an understanding of how the underlying system works. Rule
engines have many advantages, but on the other side they can be dangerous if
you don't know exactly what's going on. In this book, you'll learn just that.

Another disadvantage of a rule engine is its memory consumption. This is the price
rule engines have to pay for being efficient. A lot of calculations are being cached to
avoid processing them again. However, this is no longer a problem as memory is so
cheap nowadays.

Interaction of rules can be quite complex, especially, when some rules modify data
that other rules depend on—it can easily cause recursion. The Drools platform
provides many ways to prevent this from happening. This is where Drools Flow
module comes in action. It can provide a well defined flow of program execution and
can separate rules into groups that can be sequentially executed. Integration testing
can also help here.

However, it should be stated that the requirements are to blame for this recursion
most of the time. A well written rule does only what the business requirements
specify. If the requirements are ambiguous, then the resulting rules will be
ambiguous as well, potentially causing painful debugging.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 1

[13]

When not to use a rule engine
You probably don't need a rule engine:

If your project is small, possibly with less than 20 rules, then a rule engine
would probably be an overkill. However, think twice before making a
decision because many systems start small but as more requirements are
implemented, they suddenly become unmanageable.
If your business logic is well defined/static and doesn't change often, you
don't need to change rules at run-time.
If your rules are simple, self-contained, and usually spanning only a single
object (for example, a check that user's age is less than 21). If in pseudo-code
you don't have more than two nested if-then statements. Again, consider
this carefully because every system grows in complexity over time.
If performance is your primary concern. Are you implementing some
algorithm where you want to have precise control over its execution? For
example, it is not a good idea to write video code in a rule engine. Do you
have a memory constrained environment?
If your project is a one-shot effort and it will never be used again or
maintained over time.
If you don't have the time and money to train your developers to use a rule
engine. If developers have no prior experience with logical programming,
you need to include it in your time planning. It can take a few weeks to
get used to the syntax and start writing rules. It is always good if a more
experienced Drools developer reviews the code. The use of a rule engine
requires investment at the start; however, in the long term, it brings all of
the benefits that we've discussed.

If you answered yes to any of these questions, you probably shouldn't use a
rule engine.

Drools
Drools is a Business Logic integration Platform (BLiP). It is written in Java. It is an
open source project that is backed by JBoss and Red Hat, Inc. It is licensed under
the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-
2.0.html). This book will focus on version 5.0 of this platform that was released in
May 2009.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Introduction

[14]

Work on Drools (the rule engine) began in 2001. From its beginning, Drools
underwent many changes. Drools 1.0 started with a brute force linear search. It
was then rewritten in version 2.0, which was based on the Rete algorithm. The Rete
algorithm boosted Drools performance. Rules were written mainly in XML. The next
version (3.0) introduced a new .drl format. This is a specific language specially
crafted for writing rules. It proved to be a great success and it became the main
format for writing rules. Version 4.0 of the rule engine had some major performance
improvements together with the first release of a Business Rules Management
System (BRMS). This formed the base for the next big release (5.0) where Drools
became a Business Logic integration Platform. The platform consists of four
main modules:

1.	 Drools Expert: The rule engine itself.
2.	 Drools Fusion: Complex Event Processing (CEP) module. It will be covered

in Chapter 7, Complex Event Processing.
3.	 Drools Flow: Workflow—combines rules and processes together. It will be

introduced at the end of Chapter 6, Stateful Session and then fully covered by
chapter 8, Drools Flow.

4.	 Drools Guvnor: A Business Rules Management System (BRMS).
It won't be covered in this book except for testing and rule analysis
in Chapter 10, Testing.

5.	 Drools Solver: This is an optional module. It's a search algorithm built on top
of the Drools rule engine to solve planning problems (for example, creating
timetables). It won't be covered in this book.

Another very important part of Drools is its Eclipse plugin. It greatly helps with
writing and debugging rules and processes. It checks for syntax errors, offers auto
completion, and has lots of other useful features.

Drools has a very active and friendly community. It is growing every year.
You can get in touch with this community by visiting the Drools blog, wiki,
or the mailing lists. For more information, please visit Drools web site at
http://www.jboss.org/drools/.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 1

[15]

Alternatives to Drools
For completeness, we'll also mention alternative rule engines/expert systems.
These include commercial products such as ILOG (now IBM)—JRules, Fair
Isaac—Blaze Advisor, Corticon's BRMS, Haley (now Oracle) Business Rules Engine,
Pegasystems—PegaRules, Production Systems Technologies—OPSJ, Innovations
Software. Some products for the .NET platform are: Microsoft BizTalk Server, InRule
for Windows Workflow Foundation, ILOG, and Fair Isaac. Alternative open source
products include CLIPS and products with dual licenses such as OpenRules or Jess.

Alternatively, you can build a rule engine yourself. It may be appropriate in some
specific scenario, but most of the time you'll only be re-inventing the wheel. More
importantly, your solution probably won't be as efficient as an existing mature
product such as Drools.

Summary
We've learned why there is a need for a BLiP such as Drools, what problems it is
trying to solve, and in what way it is trying to solve them. We've seen the advantages
and disadvantages of this solution.

Drools provides a different computational model for business process and rule
execution. It is a generic algorithm with generic optimizations to provide 'good
enough' performance while giving us lots of benefits such as flexibility and
declarative programming.

We know that this platform consists of multiple modules and in the following
chapters we're going to look at them in more detail, starting with the core rule
engine itself—Drools Expert.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules
In this chapter, we'll start writing our first set of rules in Drools. We'll go through
some basics needed to write and execute rules. We'll learn the necessary keywords
of the Drools rule language.

But before all this, we'll have to set up our development environment. If you haven't
already done so, please refer to Appendix A on development environment setup.

Rule basics
We'll now write our first Drools rule. Let's say that we have an Account bean that
has one property called balance. For every Account bean, in which the balance is
less than 100, we'll write a message to the standard output as follows:

package droolsbook;

rule "basic rule"
 when
 Account(balance < 100) // condition
 then
 System.out.println("Account balance is " +
 "less than 100"); // consequence
end

Code listing 1: Basic rule file—basic.drl.

The basic rule file (basic.drl) shown in the preceding code starts with a package
name. Package acts as a name space for rules. Rule names within a package must be
unique. This concept is similar to Java's packages (classes within a Java package must
have different names). After the package definition comes the rule definition. It starts
with the rule name; the condition and consequence sections follow. Drools keywords
are rule, when, then, and end. This rule is triggered for every bean instance of type
Account, whose balance is less than 100. The rule prints a message to System.out.
As we're used to in Java, // denotes a comment.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[18]

Very simply said, the condition section defines the patterns that the rule matches
with. Consequence is a block of code that is executed when all of the patterns within
the condition are matched. Note that the condition is sometimes referred to as LHS
(Left Hand Side), and consequence as RHS (Right Hand Side).

Most of the time, the code listings in this book won't contain Java
import statements. Use the auto import feature of your favorite editor
to import the correct Java type. We'll be using classes from the standard
Java library. In case of a third party library, the correct package will
be explicitly mentioned. Drools has some classes with same names in
different packages. Luckily, they are located in separate modules. Always
prefer classes from the drools-api module.

Account bean/POJO (Plain Old Java Object) is straightforward. It has one field
with a get and a set method as shown in the following code:

package droolsbook;

import org.apache.commons.lang.builder.EqualsBuilder;
import org.apache.commons.lang.builder.HashCodeBuilder;
import org.apache.commons.lang.builder.ToStringBuilder;

public class Account {
 private long balance;

 public long getBalance() {
 return balance;
 }

 public void setBalance(long balance) {
 this.balance = balance;
 }

 @Override
 public boolean equals(final Object other) {
 if (this == other)
 return true;
 if (!(other instanceof Account))
 return false;
 Account castOther = (Account) other;
 return new EqualsBuilder().append(balance,
 castOther.balance).isEquals();
 }

 @Override
 public int hashCode() {
 return new HashCodeBuilder(1450207409, -1692382659)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[19]

 .append(balance).toHashCode();
 }

 @Override
 public String toString() {
 return new ToStringBuilder(this)
 .append("balance", balance).toString();
 }
}

Code listing 2: Account bean/POJO.

Drools accesses the balance property through the get method, getBalance().
Please note that the rule and the Account bean are in the same package. This
means that we don't have to import anything in our rule file.

The Account bean overrides equals, hashCode, and toString methods. They
must be implemented correctly. Drools needs to know when two different objects
are logically equal (whether they represent the same thing). Apache Commons
Lang library is used to simplify the implementation of these methods. It follows
the rules laid out in Effective Java by Joshua Bloch. This library can be downloaded
from http://commons.apache.org/downloads/download_lang.cgi. If we didn't
override these methods, they would inherit the default implementation from Object
class. The equals method by default returns true if the input parameter is the same
object instance/reference. By default, the hashCode method returns different values
for different object instances. This is not the logical equality check that we're after.

Executing rules
We have written a rule and a POJO. Now, we'll write an application to execute our
rule. The application will create a session and will insert one instance of the Account
POJO into the session and execute the rule. The session represents our interaction
with the Drools engine.

public class BasicRulesApp {
 public static final void main(String[] args) {
 KnowledgeBase knowledgeBase = createKnowledgeBase();
 StatefulKnowledgeSession session = knowledgeBase
 .newStatefulKnowledgeSession();

 try {
 Account account = new Account();
 account.setBalance(50);
 session.insert(account);
 session.fireAllRules();

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[20]

 }
 finally {
 session.dispose();
 }
 }
}

Code listing 3: The first part of a simple application for executing Drools.

The first part of this code shows the creation of a KnowledgeBase. It is created by
calling createKnowledgeBase method.

org.drools.KnowledgeBase
It is an interface that manages a collection of rules, processes, and internal
types. In Drools, these are commonly referred to as knowledge definitions
or knowledge. Knowledge definitions are grouped into knowledge
packages. Knowledge definitions can be added or removed. The main
purpose of KnowledgeBase is to store and reuse them because their
creation is expensive. KnowledgeBase provides methods for creating
knowledge sessions. Their creation is very lightweight. By default,
KnowledgeBase maintains a reference to all of the created knowledge
sessions. This is to accommodate updates to KnowledgeBase at runtime.
Drools has one implementation of this interface. This implementation
is serializable. We can reuse the serialized KnowledgeBase instead of
creating a new one every time. This implementation is based on the Rete
(usually pronounced as reet, ree-tee, or re-tay) algorithm.

KnowledgeBase is then in turn used to create a stateful knowledge session. For now,
we won't mind that it is stateful.

org.drools.runtime.StatefulKnowledgeSession
It is the main interface for interacting with the Drools engine.
It has methods for inserting, updating, and retracting facts.
StatefulKnowledgeSession is also used to set the session's
global variables. It also has a transient reference to parent
KnowledgeBase. Probably, the most interesting part of its API
is the fireAllRules method, which is used to execute all rules.
Event handlers can be registered on KnowledgeBase for auditing,
debugging, or other purposes. When you finish working with
StatefulKnowledgeSession, do not forget to call the dispose
method, otherwise this object can't be garbage collected.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[21]

A new Account instance is then created and its balance is set to 50. This instance is
inserted into the session.

If we want to reason over an object, we'll have to insert it into the
session. The object is sometimes referred to as a fact.

Finally, we call fireAllRules method to execute our basic rule and dispose method
to release resources. At this point, we're done with the main method.

We'll continue with the implementation of the createKnowledgeBase method.

private static KnowledgeBase createKnowledgeBase() {
 KnowledgeBuilder builder = KnowledgeBuilderFactory
 .newKnowledgeBuilder();
 builder.add(ResourceFactory
 .newClassPathResource("basicRule.drl"),
 ResourceType.DRL);

 if (builder.hasErrors()) {
 throw new RuntimeException(builder.getErrors()
 .toString());
 }

 KnowledgeBase knowledgeBase = KnowledgeBaseFactory
 .newKnowledgeBase();
 knowledgeBase.addKnowledgePackages(builder
 .getKnowledgePackages());
 return knowledgeBase;
 }
}

Code listing 4: The second part of an application for executing Drools with a method
for creating a KnowledgeBase.

A new KnowledgeBuilder is created and our rule file is passed into its
add method. The rule file is read from the classpath and translated to a
Resource—ResourceFactory.newClassPathResource("basicRule.drl").
Alternatively, the rule file can be loaded from an ordinary URL, a byte array,
java.io.InputStream, java.io.Reader (allows to specify encoding), or from
the file system as java.io.File.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[22]

org.drools.builder.KnowledgeBuilder
This interface is responsible for building KnowledgePackage from
knowledge definitions (rules, processes, types). The knowledge
definitions can be in various formats. If there are any problems with
building, KnowledgeBuilder will report errors through these two
methods: hasErrors and getError. As we've learned already, one
or many KnowledgePackage instances forms KnowledgeBase.

After the package is built, it is added to a newly created KnowledgeBase. It can then
be used to create knowledge sessions. This whole process of creating a knowledge
session is shown in the following figure:

KnowledgeBuilderFactory

.drl
creates

creates creates

creates

feeded into

feeded into

KnowledgeBuilder

KnowledgePackage

KnowledgeBaseFactory

KnowledgeBase

StatelessKnowledgeSession

StatefulKnowledgeSession

When we run the application the following message should be displayed in
the console:

Account balance is less than 100

This means that the rule was successfully executed. Now, we change the rule's
condition to Account(balance > 100) so that it matches an Account in which
the balance is greater than 100. If we run the application again, we won't see the
message. This means that the rule's consequence hasn't been executed this time,
which is expected.

You may be wondering what's actually happening? In a nutshell, Drools tries to
match every fact in the knowledge session with every rule condition to see if all of
the rule's conditions can be satisfied. This is sometimes called "pattern matching".
The condition represents the pattern that the facts are matched against. If all of the
conditions within a rule are satisfied, the rule's consequence may be executed. In our
case it is and we can see it from the console output. If we have multiple rules and
multiple facts, it would be a bit more complicated—we'll get to that shortly.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[23]

Rule syntax
The following section will provide more details on rule (.drl) syntax. It will form
the basis for later examples.

Rule concepts
A rule can contain many conditions/patterns. For example:

Account(balance == 200)
Customer(name == "John")

Code listing 5: Two rule conditions, one for type Account and one for
type Customer.

Drools will then try to match every Account in the session in which the balance is
equal to 200 with every Customer whose name is John. If we have three Account
objects that meet this criteria and two that don't, and five Customer objects that meet
this criteria and three that don't, it would create (3+2)*(5+3)=40 possible matches.
However, only 3*5=15 of them would be valid. This means that a rule with these
two conditions will be executed exactly 15 times.

Variables in rules
Rules can declare variables as follows:

$account : Account($type : type)

Code listing 6: A simple condition. It matches every Account and creates a rule
variable with name $type, which is bound to a field type.

In this example, we declared $account variable of type Account. The variable name
starts with a $ symbol. It's a common naming practice. $type is another variable that
is mapped to a field of the Account bean. Variables can be declared up front for later
use. For example:

$account : Account()
Customer(account == $account)

Code listing 7: Conditions with a join. It matches every Customer with
his/her Account.

Please note that the order of fields in a condition is important. It will be incorrect to
write Customer($account == account). Drools would try to find the Customer.
get$account() method, which probably doesn't exist.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[24]

Types
Drools can work with all native Java types and more. Examples of various types that
can be used in rule condition are as follows:

String:
	 Customer(name == "John")

Code listing 8: String—Matches every Customer with name.
Regular expression:

	 Customer(name matches "[A-Z][a-z]+")

Code listing 9: Regular expression—Matches every Customer with a name
that starts with an uppercase letter followed by one or more lowercase letters.
The matches operator supports any valid Java Regular Expression as defined
by java.util.regexp API. It simply delegates to String.matches method.
(Regular expressions are also supported in the mvel dialect, which will be
covered later).
Date:

	 Account(dateCreated > "01-Jan-2008")

Code listing 10: Date—Matches every Account that was created after a speci-
fied date.
The default date format is "dd-mmm-yyyy". This can be customized by
changing the java.lang.System property—drools.dateformat.
Boolean:

	 Transaction(isApproved == true)

Code listing 11: Boolean—Matches every approved Account.
Enum:

	 Account(type == Account.Type.SAVINGS)

Code listing 12: Enum—Matches every savings Account.

Comments
Comments are very useful in any programming language—this goes for rules as
well. Ideally, every complex rule should be commented. It can greatly reduce the
time needed to understand a rule. The declarative nature of rules helps a great deal
in readability, but a comment is always helpful. Comments are of the following
two types:

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[25]

Single line:
	 #single line comment, that can be placed anywhere in the file
 //another single line comment

Multi line:
	 /* multi-line comment,
	 another line */

Package
As we already know, package is a group of related rules. We'll now go through the
configuration that can be applied at the package level.

Imports
Rule imports have the same purpose as standard Java imports. They allow us to use
types from different Java packages by using just their simple name, which consists of
a single identifier (for example, ArrayList). Otherwise, a fully qualified name would
be required (for example, java.util.ArrayList). An example of using import
within a rule file is as follows:

import com.mycompany.mypackage.MyClass;
import com.mycompany.anotherPackage.*;

Code listing 13: An example of using import within a rule file.

For every rule package, Drools automatically imports all types from the Java package
with the same name. java.lang package is included automatically.

Global variables
Global variables are variables assigned to a session. They can be used for various
reasons as follows:

For input parameters (for example, constant values that can be customized
from session to session)
For output parameters (for example, reporting—a rule could write some
message to a global report variable)
Entry points for services such as logging, which can be used within rules

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[26]

Steps needed to use global variables are as follows:

1.	 Declare the global variable (with name accountService) in the rule file
as follows:

	 import com.mycompany.services.AccountService;
	 global AccountService accountService;

Code listing 14: Global variable declaration in which the name is
accountService.
Firstly, the AccountService class is imported into the package, and then the
global variable is declared. It takes the type and an identifier. In this case,
it is a global variable of type AccountService, accessible under the name
accountService.

2.	 Set the global variable into the rule session. A good practice is to do it before
inserting any objects/facts.

	 AccountService accountService = //..
	 StatefulKnowledgeSession session =
	 knowledgeBase.newStatefulKnowledgeSession();
	 session.setGlobal("accountService", accountService);

Code listing 15: Setting of global variable accountService into the
knowledge session.

3.	 Use the global variable in a rule condition or a consequence. If used in a
condition, they must return a time-constant value while the rule session is
active. Otherwise, the results will be unpredictable. An important point to
remember is that the rule engine doesn't track changes to global objects.

	 accountService.saveAccount($account);

Code listing 16: Use of global variable in a rule consequence.

The use of global variables is generally discouraged in most of the programming
languages. However, global variables in Drools are different because they are
scoped to a session. Hence, in this sense they are not truly global. Care should also
be taken not to overuse them. Generally speaking, if you need to reason over an
object (use it in a condition) then you must insert it into the session rather than
have it as a global variable.

Functions
Functions are a convenience feature. They can be used in conditions and
consequences. Functions represent an alternative to the utility/helper classes.
Their most common use is to remove duplicated code.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[27]

function double calculateSquare(double value) {
 return value * value;
}

Code listing 17: An example of a function definition in a rule file.

long square = calculateSquare(123);

Code listing 18: Calling a function from a rule consequence.

Dialect
Dialect specifies the syntax used in any code expression that is in a condition or a
consequence. This includes return values, evals, inline evals, predicates,
salience expressions, consequences, and so on. The default value is Java. Drools
currently supports one more dialect called mvel. The default dialect can be specified
at the package level as follows:

package org.mycompany.somePackage
dialect "mvel"

Code listing 19: Specifying a default mvel dialect for every rule in a package.

mvel
mvel is an expression language for Java-based applications. mvel supports field
and method/getter access. It is based on Java syntax. More information about
this language can be found at http://mvel.codehaus.org/. Some of its
features include:

Simple property expressions:
($customer.name == "John") && (balance > 100)
Property navigation:

Bean properties: $customer.address.postalCode.
For example, in a rule consequence instead of writing
$customer.getAddress().setPostalCode("12345"), one
can just write $customer.address.postalCode = "12345".
List access: $customer.accounts[3]
Map access: $customer.
mapOfAccountNoToAccounts["000123456"]

•

•

°

°

°

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[28]

Inline list, maps, and arrays:
Maps: For example, to create map of string to account beans, use:

	 [
	 "0001" : new Account("0001"),
	 "0002" : new Account("0002")
].

Lists: For example, list of strings—["0001", "0002", "0003"]
Arrays: For example, array of strings—{ "0001", "0002", "0003" }

Projections: It allows us to inspect complex object models inside collections.
For example, if we want to get a list of post codes across all customer's
addresses (a customer has only one address)—listOfPostCodes = (
address.postCode in $customers);
Projections can be nested. For example, if the customer had many addresses:

	 listOfPostCodes = (postCode in (addresses in $customers));
Coercion: Let's say we have the following array—array = { 1, 2, 3 }; and
a Java method that takes int[]. If we call this method using mvel, it will
correctly coerce our array to the needed type. Internally, mvel uses untyped
arrays such as Object[].
Return values: mvel expressions use the "last value out" principle. For
example, the value of the expression a = 10; b = 20; a; will be 10. For
better clarity, the return keyword is supported as well.

Further, mvel supports method invocations, control flows, assignments,
dynamic typing, and so on. Please use mvel with caution. It has very good
performance, but it is still interpreted (as opposed to standard Java code that
is compiled), and hence, it has performance costs.
Some core features in Drools are implemented using mvel (for example,
nested accessors).

Rule condition
We'll look at the additional Drools keywords used in conditions. Each of these will
be demonstrated with an example.

And
and can be implicitly used within conditions (here it is called Constraint Connective).

Customer(name == "John", age < 26)

Code listing 20: Condition with multiple field constraints joined by implicit and.

•
°

°
°

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[29]

Another use of and is between conditions, as we've seen in code listing 5 (here it is
called Conditional Element). Both of these uses are implicit.

Or
or can also be used within conditions (here it is called Constraint Connective).

Customer(name == "John" || age < 26)

Code listing 21: Condition with multiple field constraints joined by or.

A more concise form can be used if matching is performed on a single field:
Customer(age < 26 || > 70)

Code listing 22: Condition with multiple field constraints joined by or in more
concise form.

More advanced conditions are as follows:
$customer :
Customer((name == "John" && age < 26) ||
 (name == "Peter" && age < 30))

Code listing 23: Condition with more complex constraints.
$customer : (
 Customer(name == "John", age < 26) or
 Customer(name == "Peter", age < 30)
)

Code listing 24: Another condition with more complex constraints.

Each condition matches a Customer with name John and age less than 26 or a
Customer with name Peter and age less than 30.

As you can see, and and or are used between patterns as they are conditional
elements, while && and || are used inside patterns between constraints as they
are constraint connectives.

Not
not matches the non existence of a fact in the session. For example, the following
condition will be true only if there is no Savings account in the session:

not Account(type == Account.Type.SAVINGS)

Code listing 25: Condition with negation.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[30]

Exists
Exists is the inverse to not. It evaluates to true only if the rule session contains at
least one instance of the given type.

exists Account(type == Account.Type.SAVINGS)

Code listing 26: Condition that tests the existence of savings account in rule session.

Eval
eval is a catch-all solution. It allows execution of any Java/MVEL code (according
to the selected dialect) that returns true or false. It should be used only as a last
resort when all other options have failed. This is because the rule engine cannot
optimize eval. The expression is evaluated every time there is a change in the
current rule's condition (a fact is added, modified, or removed). They don't have
to return time-constant values. Writing eval as the last condition in a rule is a
good practice.

$account : Account()
eval(accountService.isUniqueAccountNumber($account))

Code listing 27: An example with eval that calls custom service method.

Return value restriction
An example of a return value restriction is as follows:

$customer1 : Customer()
Customer(age == ($customer1.getAge() + 10))

Code listing 28: Condition with a return value restriction.

Age is being compared to the return value of the expression, $customer1.getAge()
+ 10. Please note that a return value restriction requires brackets around the
expression. The expression must return time-constant results while the session is
active, otherwise the outcome will be unpredictable. Also note that the getAge()
method is being called explicitly in this case.

Inline eval
The previous example can be rewritten using inline eval as follows:

$customer1 : Customer()
Customer(eval(age == $customer1.getAge() + 10))

Code listing 29: Condition with an inline eval.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[31]

When comparing inline eval with standard eval, we can see that they both must
return true or false. However, inline eval must be a time-constant expression.
It is evaluated only once and then it is cached by Drools.

Testing object identities/equalities
$customer1 : Customer()

$customer2 : Customer(this != $customer1)

Code listing 30: Comparing two Customer instances using Customer.
equals method.
$customer1 : Customer()
$customer2 : Customer(eval(customer$2 != $customer1))

Code listing 31: Comparing two Customer instances using their object
identity (object references).
In the second example, the variable $customer2 was used instead of
this because this cannot be used within an eval code block.

Nested accessors
Nested accessors are internally rewritten by the rule engine as mvel dialect inline
eval. This allows us to use the mvel property navigation.

$customer : Customer()
Account(this == $customer.accounts[0])

Code listing 32: An example of nested accessors. Matches customer and first account
from his/her account list.

Nested accessors must be a time-constant expression (as we already know it is a
requirement of all inline eval).

If we change a value of a nested property (for example, changing the
balance of a customer's first account), we should use a modify block
(will be explained later) to notify Drools about this change (modify
($customer){...}). Drools will then automatically update itself. Nested
accessors can be used on either side of the operation symbol. For example,
Account(this.uuid == $cusotmer.accounts[0].uuid).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[32]

This
Sometimes, we need to refer to the current fact inside a pattern. The this keyword is
exactly for that purpose:

$customer1 : Customer()
$customer2 : Customer(this != $customer1)

Code listing 33: Conditions that match two different customers.

We have to include the constraint this != $customer1; otherwise, the same
Customer fact could match both conditions and that is probably not what we want.

Working with collections
Drools provides various ways to work with collections of objects. We'll now go
through some of them.

(Not) contains
The contains operator tests whether a collection has an element. Let's imagine that
a customer can have multiple bank accounts. We have multiple customers with their
accounts in the rule session.

$account : Account()
Customer(accounts contains $account)

Code listing 34: Condition that matches Customer with his/her Account.

$account : Account()
Customer(accounts not contains $account)

Code listing 35: Condition that matches Customer and an Account that does not
belong to him/her.

(Not) memberOf
The memberOf operator tests whether an element is in a collection. It is
complementary to contains. Conditions in code listing 33 can be rewritten as:

$customer : Customer($accounts : account)
Account(this memberOf $accounts)

Code listing 36: Condition that matches Customer and his/her Account.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[33]

Or more concisely as:

$customer : Customer()
Account(this memberOf $customer.accounts)

Code listing 37: Condition that matches Customer and his/her Account.

Similar to contains, memberOf can also be used with not.

From
Another very useful keyword is from. We can simplify our rules, especially if we use
complex hierarchical models. from can reason over objects from nested collections.
For example:

$customer : Customer()
Account() from $customer.accounts

Code listing 38: Condition that matches Customer and his/her Account.

The advantage is that we don't have to insert the Account objects into the rule session.
from accepts any mvel expression that returns a single object or a collection of objects.
It can reason over facts and global objects. Any service method can be called.

Rule consequence
When all of the conditions in a rule are met, the rule gets activated. After all of the
rules are evaluated, some of them are activated. The rule engine will then pick one
activated rule and execute its consequence. Then we say that a rule has fired. The
activated rule is chosen based on a conflict resolution strategy. The conflict resolution
strategy uses multiple criteria to decide which rule to fire. After the rule has fired,
the engine re-evaluates any changes that have been made by the previous rule's
consequence execution. This may activate or deactivate other rules. This process
repeats again until there is no activated rule.

Rule consequence represents the actions that will be executed once the rule fires. It
can contain any valid Java code. We should try to minimize the amount of code.

It is considered very bad practice to have conditional logic
(if statements) within rule consequence. Most of the time,
a new rule should be created.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Basic Rules

[34]

Rule condition should contain simple actions. The facts can be modified, which may
cause other rules to fire. Drools comes with these convenience methods for working
with current KnowledgeSession, which are as follows:

modify: For updating existing facts in the session. For example, a rule that
adds interest for deposited money:

	 rule "interest calculation"
	 no-loop
	 when
	 $account : Account()
	 then
	 modify($account) {
 setBalance((long)($account.getBalance() * 1.03))
 };
	 end

Code listing 39: Rule that adds interest for an account.
The modify block can contain many expressions. These expressions must
be separated by a comma (,). Note that Drools also supports an update
method; however, its use is discouraged and the modify block should be
used instead.
insert: For inserting new facts into the session (for example,
insert(new Account());).
retract: For removing existing facts from the session.

When a fact is inserted/modified/retracted the rule engine works with a new set of
facts; rules may be activated/deactivated.

Rule attributes
Rule attributes are used to modify/enhance the standard rule behavior. All attributes
are defined between the rule and when keywords. For example:

rule "rule attributes"
salience 100
dialect "mvel"
no-loop
 when
 //conditions
 then
 //consequence
end

Code listing 40: An example of a rule structure with three attributes.

Rule attributes shown in the preceding code are described in the following sections.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 2

[35]

salience (priority)
salience is used by the conflict resolution strategy to decide which rule to fire first.
By default, it is the main criterion. We can use salience to define the order of firing
rules. salience has one attribute, which takes any expression that returns a number
of type int (positive as well as negative numbers are valid). The higher the value,
the more likely a rule will be picked up by the conflict resolution strategy to fire.

salience ($account.balance * 5)

Code listing 41: An example of a dynamic salience expression. It can reference any
bound or global variables.

The default salience value is 0. We should keep this in mind when assigning
salience values to some rules only.

No-loop
This attribute informs the rule engine that a rule should be activated only once per
matched facts. For example, the rule in code listing 39 will be activated only once
per Account instance. If it doesn't have the no-loop attribute, it will cause an infinite
loop because the consequence is updating the $account fact.

Dialect
We've already seen that dialect can be specified on package level in code listing 19.
This can be overridden by specifying it on rule level (as seen in code listing 40).

Summary
In this chapter, we've learned some basics about the Drools rule engine. We've
also learned to write and execute simple rules. We've covered some package and
rule components. We've touched upon what happens when Drools executes. For
more information, please look into the Drools documentation, which can be found
at http://www.jboss.org/drools/documentation.html.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation
In this chapter, we'll look at building a decision service for validating a domain
model. By writing a set of rules, we'll be separating the validation logic from the rest
of the system. This set of rules can be then reused in other systems. For example, it
may not only be used as part of the service layer in a web application, but also as a
part of high performance batch application for processing large volumes of data.

Before we start with validation, we'll define a simple banking domain model that
will be used in examples throughout this book.

Banking domain model
The following figure shows the UML diagram of a simple banking system. It defines
four entities: Customer, Address, Account, and Transaction.

has

has
from

to

firstName
lastName
dateOfBirth
uuid
email
address : Address
accounts

Customer

accountFrom : Account
accountTo : Account
status
amount
description
currency
date
uuid

Transaction

addressLine1
addressLine2
postCode
city
country
uuid

Address

number
name
balance
currency
startDate
endDate
type
interestRate
uuid
status
owner : Customer

Account

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[38]

Every bank needs a customer. The customer information that is stored is the name,
date of birth, and address. For every address, the model stores two address lines,
postal code, city, and country. The customer can have zero or many accounts. Each
account has a number, name, actual balance, and currency. Account can be of specific
type; the following types are considered:

•	 Transactional—for day-to-day banking, usually with very little rate of interest.

•	 Savings—account for saving money. Start date represents the date when the
money was lodged into this account and end date represents the date when it
was withdrawn.

•	 Student—designed specifically for younger customers who are price
sensitive; however, they don't need more advanced services.

A bank would be useless without the ability to make transactions. Every transaction
has an accountFrom property, which represents the source account where a sum is
subtracted and an accountTo property, which represents the destination account
where the sum is added. Status of a transaction can have the following values:
pending, completed, canceled, or refused. Transaction takes place on a certain
date; it has a description, amount of money that is involved, and the currency used.

Every object in this model has a Universally Unique Identifier (UUID) property.
It helps us to easily identify an instance of an object.

This model will be enhanced as we get into more complex Drools features.

The implementation of this model won't be shown in this book. All objects are
simple POJOs as described in Chapter 2, Basic Rules, where we've implemented
an Account POJO.

Problem definition
Imagine that we have the following subset of requirements for validating a banking
domain from a business analyst:

Customer's phone number is required
If customer doesn't provide an address, a warning message should
be displayed
Account number must be unique
Account balance should be at least 100, otherwise a warning message should
be displayed
Only customers below 27 years of age can open a student account

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[39]

We'll be validating our banking domain model and the result of this process should
be a report informing us of all the problems with the input data.

Analysis
After reading the above problem definition, it seems that each line from the list
represents a single rule. The rules are simple—few conditions and a consequence.
The consequence will report a customer that failed a validation rule. Two types of
messages will be used—error and warning.

We'll now define a report model that will store this information. The model might
look like the following figure:

DefaultMessage BankingValidationServiceImplDefaultValidationReport

<<interface>>

Message

<<interface>>

BankingValidationService

<<interface>>

ValidationReport

As it can be seen in the above figure, we have a Message interface and
a ValidationReport interface. This validation report is then used by a
BankingValidationService, which represents some service that will run the
validation rules and will act upon the validation report. The diagram also shows
the default implementation of these interfaces.

Design
We'll now define each interface. Their implementations will be presented at the
end of this chapter. Let's start with Message that encapsulates one report message.
Every Message will have a type that can be error or warning, a key and a context
as shown in the following code:

/**
 * represents one error/warning validation message
 */
public interface Message {
 public enum Type {
 ERROR, WARNING

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[40]

 }

 /**
 * @return type of this message
 */
 Type getType();

 /**
 * @return key of this message
 */
 String getMessageKey();

 /**
 * objects in the context must be ordered from the least
 * specific to most specific
 * @return list of objects in this message's context
 */
 List<Object> getContextOrdered();
}

Code listing 1: Message interface.

The key is used for localized message lookups. Message also defines a context,
which is of type List and can contain various objects. Objects should be ordered
from least specific (to the Message) to most specific. This may be useful for localized
messages that have parameters. For example, instead of just saying "Account has
negative balance" we can be more specific and say which account has the negative
balance by having the account part of the context.

Next is the ValidationReport interface (shown in the following code) that holds
all of the messages generated during validation. It will allow us to get all of the
messages or to get messages by type—only warnings or errors. Message can be
added into the ValidationReport. It will have a convenient method for checking
if a message exists for a particular key.

/**
 * represents the result of the validation process
 */
public interface ValidationReport {
 /**
 * @return all messages in this report
 */
 Set<Message> getMessages();

 /**
 * @return all messages of specified type in this report

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[41]

 */
 Set<Message> getMessagesByType(Message.Type type);
 /**
 * @return true if this report contains message with
 * specified key, false otherwise
 */
 boolean contains(String messageKey);

 /**
 * adds specified message to this report
 */
 boolean addMessage(Message message);
}

Code listing 2: ValidationReport interface.

As best practice, we'll create a factory that will manage object creation for Message
and ValidationReport classes:

public interface ReportFactory {
 ValidationReport createValidationReport();

 Message createMessage(Message.Type type, String messageKey,
 Object... context);
}

Code listing 3: ReportFactory interface.

Note that the createMessage accepts an array of objects as the
context—Object... context.

Validation package
Before writing our first validation rule, the domain model must be imported.
The following three global objects will be used:

1.	 Report for storing messages.
2.	 Factory for creating messages.
3.	 Banking inquiry service for information lookup. It contains one method for

testing if an account number is unique—boolean isAccountNumberUnique
(Account account) (We won't define and implement this service in
this book).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[42]

This information goes into validation.drl (rules will be gradually added into this
file as we'll be implementing them).

package droolsbook.validation;

import org.drools.runtime.rule.RuleContext;

import droolsbook.bank.model.*;
import droolsbook.bank.service.*;

global ValidationReport validationReport;
global ReportFactory reportFactory;
global BankingInquiryService inquiryService;

import function droolsbook.bank.service.ValidationHelper.error;
import function droolsbook.bank.service.ValidationHelper.warning;

Code listing 4: Rule declarations in validation.drl file.

As it can be seen in the code above, we're defining a droolsbook.validation
package, importing some classes and functions, and defining already mentioned
global variables.

We've decided to use validationReport as a global variable.
Individual rules will use this global variable in their consequences and
they'll add error/warning messages into this validation report.
Alternatively, instead of using validationReport as a global variable,
it could be inserted into the rule session like any other fact. We could
be writing rules reasoning over this report. For example, checking if
the number of error messages in the report has crossed some threshold
value, and in that case stopping the validation process. The same could be
applied for individual report messages. If we need to reason over them,
they can be added into the knowledge session as well.

The last two methods in code listing 4 are used for actual reporting (they create
a message object and add it to the global report). They are imported from a
ValidationHelper utility class. Please note that the method must be declared as
public static. (Internally, Drools uses a feature in Java 5 called static import to
import these methods). Both the methods can be imported in one go by using the
following form:

import function droolsbook.bank.service.ValidationHelper.*;

Code listing 5: Importing multiple functions at once.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[43]

The actual implementation of the error method is shown in the following code:

public class ValidationHelper {
 /**
 * adds an error message to the global validation report
 * @param kcontext RuleContext that is accessible from
 * rule condition
 * @param context for the message
 */
 public static void error(RuleContext kcontext,
 Object... context) {
 KnowledgeRuntime knowledgeRuntime = kcontext
 .getKnowledgeRuntime();
 ValidationReport validationReport = (ValidationReport)
 knowledgeRuntime.getGlobal(“validationReport”);
 ReportFactory reportFactory = (ReportFactory)
 knowledgeRuntime.getGlobal(“reportFactory”);
 validationReport.addMessage(reportFactory.createMessage(
 Message.Type.ERROR, kcontext.getRule().getName(),
 context));
 }
...

Code listing 6: Error reporting function that comes from a utility
class—ValidationHelper.

Normally, you would expect the error method to take the message key and the
context as parameters. However, instead of a message key, the method takes
RuleContext. We'll use the current rule name as the message key and
RuleContext can be used to retrieve the current rule name.

org.drools.runtime.rule.RuleContext
An instance of this class is accessible from each rule consequence. It is
injected into rule consequence at runtime and can be accessed under the
identifier kcontext. It has various convenience methods for interaction
with the knowledge session, that is, for inserting/updating/retracting
objects, retrieval of various objects (such as current rule, propagation
context, activation, knowledge runtime, and others).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[44]

In the methods in the preceding code, RuleContext is also used to retrieve two
global variables. Because global variables are normally not accessible inside
functions, this is a simple workaround. Alternatively we could simply pass the
global variables into the function. By passing in the RuleContext we're minimizing
the amount of duplicated code as we'll see later on.

reportFactory is used to create a new Message and then this message is added
into the validation report. The code kcontext.getRule().getName() will return
the current rule name, which is used as a message key. This is why we don't need the
message key as an argument for the function. Most, if not all validation rules, will
create only one message. However, this is a shortcut that we should be aware of. It
saves us time to think about a unique message key and also time to maintain this
key. If the rule name gets changed, the message key will have to be changed too.

Object required type rules
Now that all infrastructure is in place, let's write some validation rules—starting
with the simple ones that check an object for missing fields:

rule "addressRequired"
 when
 Customer(address == null)
 then
 warning(kcontext);
end

rule "phoneNumberRequired"
 when
 Customer(phoneNumber == null || == "")
 then
 error(kcontext);
end

rule "accountOwnerRequired"
 when
 $account : Account(owner == null)
 then
 error(kcontext, $account);
end

Code listing 7: Simple object/property required type validation rules in the
validation.drl file.

The addressRequired rule will be activated for each customer with no address.
Similarly, the phoneNumberRequired rule will be activated for each customer with
null or blank phone number. In each case, the rule consequence simply calls the
appropriate error/warning function and passes RuleContext object with optional
context. The first two rules have passed no context to the error/warning function.
However, the last rule passes the $account fact as the context.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[45]

For execution of these validation rules, we'll use a stateless knowledge session. It
is enough to evaluate each rule only once and there is no need to keep the state
between session invocations.

org.drools.runtime.StatelessKnowledgeSession
This is a type of knowledge session that doesn't keep any state
between invocations (an invocation is a call of the execute method).
From the rules perspective, a stateless session is no different than
a stateful session—the rules look exactly the same. The benefit that
statelessness brings is that the rule engine can do more optimizations.
StatelessKnowledgeSession as well as stateful session support
a command interface (command design pattern). There is no need to
dispose a stateless session after it has been used.

Testing
Every rule that will be written needs to be unit tested. Ideally we should test all
possible cases or at least the most important ones. Use your common sense as to
how high code/rule coverage you need. JUnit version 4 will be used for this
purpose. More information about JUnit can be found at the project's homepage,
http://junit.sourceforge.net/. Make sure that you have this library on the
classpath. Eclipse provides an environment for running these tests.

The following code sets up a JUnit test class for testing validation rules. Each rule
will be tested by at least one test method. The validation test class will define one
setup method—setupClass that will run only once (we'll use the @BeforeClass
JUnit4 annotation) per test class. It will create KnowledgeBase that will be in turn
used to create StatelessKnowledgeSession. This session will then be reused for
each test method. By doing this, we'll avoid creating KnowledgeBase for every test
method execution because it is an expensive object to create. We can push this even
further by caching the session because it is stateless. We can also cache some global
variables needed by our rules—BankingInquiryService and ReportFactory.
These objects are stateless as well. The only thing we cannot reuse is the validation
report that will be generated. We'll worry about it, shortly. The ValidationTest
class is as follows:

public class ValidationTest {
 static StatelessKnowledgeSession session;
 static ReportFactory reportFactory;

 @BeforeClass
 public static void setUpClass() throws Exception {
 KnowledgeBuilder builder = KnowledgeBuilderFactory

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[46]

 .newKnowledgeBuilder();
 builder.add(ResourceFactory.newClassPathResource(
 "validation.drl"), ResourceType.DRL);
 if (builder.hasErrors()) {
 throw new RuntimeException(builder.getErrors()
 .toString());
 }

 KnowledgeBaseConfiguration configuration =
 KnowledgeBaseFactory.newKnowledgeBaseConfiguration();
 configuration.setOption(SequentialOption.YES);

 KnowledgeBase knowledgeBase = KnowledgeBaseFactory
 .newKnowledgeBase(configuration);
 knowledgeBase.addKnowledgePackages(builder
 .getKnowledgePackages());

 BankingInquiryService inquiryService =
 new BankingInquiryServiceImpl();
 reportFactory = new DefaultReportFactory();

 session = knowledgeBase.newStatelessKnowledgeSession();
 session.setGlobal("reportFactory", reportFactory);
 session.setGlobal("inquiryService", inquiryService);
 }
...

Code listing 8: JUnit4 ValidationTest set up method.

Please note that KnowledgeBase creation process is little bit different than we've
seen in Chapter 2, Basic Rules. We're using KnowledgeBaseConfiguration to create
a sequential KnowledgeBase.

In a sequential KnowledgeBase, all of the rules are matched and executed
sequentially one by one (the ones that have satisfied all of the conditions).
It is a fast, optimized single pass process. From a rules perspective, it is
more or less the same. However, as we'll be writing those rules, we should
remember this. Every rule will be fired at most, once.
A KnowledgeBase factory takes KnowledgeBaseConfiguration that
can contain various configuration options for the knowledge base. In this
case, we're setting SequentialOption.YES.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[47]

As it can be seen at the bottom of the preceding code, two global objects are inserted
into the session with a setGlobal method. These global variables are scoped to the
session, which means that they will be shared by all of the test methods as well. We
can do this because they are immutable. The only global object that is not immutable
is the validation report itself. We'll need to scope it to the session execution call, which
will be done soon.

Also note that the setupClass method is static as needed by JUnit4.

Now that the test class has been set up, let's write a test for the addressRequired
rule. We'll validate a customer that has no address and another customer that has an
address. In the first case, we're expecting to see a warning message in the report and
in the second case, the report should be empty:

 @Test
 public void addressRequired() throws Exception {
 Customer customer = createCustomerBasic();
 assertNull(customer.getAddress());
 assertReportContains(Message.Type.WARNING,
 "addressRequired", customer);

 customer.setAddress(new Address());
 assertNotReportContains(Message.Type.WARNING,
 "addressRequired", customer);
 }

Code listing 9: Test for the addressRequired rule.

We've used some static Junit4 methods such as assertNull that have to
be imported by using: import static org.junit.Assert.*;. Simply
add it to the import statements section of this file.

The addressRequired test method creates a basic customer by using the
createCustomerBasic method, which creates an empty customer object with one
empty account. The test then assumes that the customer's address is null, calls the
assertReportContains method, which runs the validation, and asserts that the
report contains addressRequired warning message.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[48]

We'll use a different way of executing the validation rules. As we already know, the
knowledge session supports a command interface. Two commands will be created.
One will insert a new validation report. (Remember? It needs to be scoped to the
execution call by setting the global object this way—we'll achieve just that). The second
command will insert all of our facts into the session. Both the commands will then be
run and the report will be populated with messages. This assertReportContains
method is implemented in the following code:

 void assertReportContains(Message.Type type,
 String messageKey,Customer customer,Object... context) {
 ValidationReport report =
 reportFactory.createValidationReport();
 List<Command> commands = new ArrayList<Command>();
 commands.add(CommandFactory.newSetGlobal(
 "validationReport", report));
 commands.add(CommandFactory
 .newInsertElements(getFacts(customer)));
 session.execute(CommandFactory
 .newBatchExecution(commands));

 assertTrue("Report doesn't contain message [" + messageKey
 + "]", report.contains(messageKey));
 Message message = getMessage(report, messageKey);
 assertEquals(Arrays.asList(context),
 message.getContextOrdered());
 }

 private Collection<Object> getFacts(Customer customer) {
 ArrayList<Object> facts = new ArrayList<Object>();
 facts.add(customer);
 facts.add(customer.getAddress());
 facts.addAll(customer.getAccounts());
 return facts;
 }

Code listing 10: Re-usable method for running validation, and asserting that the
report contains specified objects.

The command for inserting facts, CommandFactory.newInsertElements
(getFacts(customer)), gets passed in all of the facts as returned by a
getFacts method. We're inserting all of the objects that we want to reason
with into the session. It's the customer, customer's address, and all the accounts.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[49]

Next, the assertReportContains method verifies that the message is in the report,
assertTrue(...). The message is then retrieved from the report by the getMessage
method. It takes messageKey as an argument and simply iterates over all of the
messages inside the report, and if it finds a message with such messageKey, it returns
it. Finally, the assertReportContains method verifies that the message has the
expected context.

If we run the addressRequired test, it should pass successfully.

Minimal account balance rule
The next rule that will be implemented checks the account balance. According to our
original requirements, the account balance should be at least 100. As a good practice
from Test Driven Development (TDD), this time we'll start with a test first. More
information about TDD can be found at http://en.wikipedia.org/wiki/Test-
driven_development.

 @Test
 public void accountBalanceAtLeast() throws Exception {
 Customer customer = createCustomerBasic();
 Account account =customer.getAccounts().iterator().next();
 assertEquals(BigDecimal.ZERO, account.getBalance());
 assertReportContains(Message.Type.WARNING,
 "accountBalanceAtLeast", customer, account);

 account.setBalance(new BigDecimal("54.00"));
 assertReportContains(Message.Type.WARNING,
 "accountBalanceAtLeast", customer, account);

 account.setBalance(new BigDecimal("122.34"));
 assertNotReportContains(Message.Type.WARNING,
 "accountBalanceAtLeast", customer);
 }

Code listing 11: Test that checks the account balance.

The test verifies that for account balance of zero and 54, a warning is generated
(the first two paragraphs of the code above). The account balance is then increased
to 122.34 (the last/third paragraph of the code above), which doesn't generate the
warning. We can now run this test and see that it fails—like in true TDD. Let's fix it
by implementing the rule. The rule is as follows:

rule "accountBalanceAtLeast"
 when
 $account : Account(balance < 100)
 then
 warning(kcontext, $account);
end

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[50]

Code listing 12: Rule that operates over the java.math.BigDecimal object in the
validation.drl file.

The rule is straightforward. Please note that the balance is of type java.math.
BigDecimal. When Drools evaluates this rule, it takes our hard-coded value 100 and
correctly creates a BigDecimal instance. Then the compareTo method of BigDecimal
is used to make the actual comparison.

Student account rule
The next business rule will add an error message to the report if a customer (who is
27 years old or more) has a student account. Let's write the test first:

 @Test
 public void studentAccountCustomerAgeLessThan()
 throws Exception {
 DateMidnight NOW = new DateMidnight();
 Customer customer = createCustomerBasic();
 Account account =customer.getAccounts().iterator().next();
 customer.setDateOfBirth(NOW.minusYears(40).toDate());
 assertEquals(Account.Type.TRANSACTIONAL,
 account.getType());
 assertNotReportContains(Message.Type.ERROR,
 "studentAccountCustomerAgeLessThan", customer);

 account.setType(Account.Type.STUDENT);
 assertReportContains(Message.Type.ERROR,
 "studentAccountCustomerAgeLessThan",customer,account);

 customer.setDateOfBirth(NOW.minusYears(20).toDate());
 assertNotReportContains(Message.Type.ERROR,
 "studentAccountCustomerAgeLessThan", customer);
 }

Code listing 13: Test for the studentAccountCustomerAgeLessThan rule.

The test creates a customer, sets his age to 40 years (that is, his date of birth is set to
current time minus 40 years), and verifies that he has a CURRENT account and that
there is no validation error. It is similar for the rest of the cases.

The org.joda.time.DateMidnight type comes from the Joda-Time library (this
library can be found at http://joda-time.sourceforge.net/). It is a very
useful library for working with dates, times, periods, and so on. This library is also
recommended by the Drools team when working with dates. After downloading the
library from the project homepage, add the joda-time-1.6.jar file to the classpath
(just like we've added the Drools libraries in Appendix A—the development
environment setup). Please note that the version number may be different.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[51]

Depending on your circumstances, you may need to explicitly specify the
time zone as well. By default, most of the date manipulation libraries use
local time zone when working with dates. For example, if your system
will be deployed in multiple time zones and there is a potential of sharing
some data between them, you should specify the time zone as well.

Implementation of the studentAccountCustomerAgeLessThan rule might look like
the following code:

rule "studentAccountCustomerAgeLessThan"
 when
 Customer(eval (yearsPassedSince(dateOfBirth) >= 27))
 $account : Account(type == Account.Type.STUDENT)
 then
 error(kcontext, $account);
end

Code listing 14: Rule for testing a student's age in the validation.drl file.

The rule in code listing 14 matches any Customer and Account objects in the rule
session that satisfy the specified constraints.

Care should be taken when doing this. It will only work if we have one
customer in the rule session at a time. In case of multiple customers, an
additional check should be added that ties the Customer to the Account
that is, Account(owner == $customer) or Customer (accounts
contains $account).

Let's have a closer look at the customer's age condition. yearsPassedSince is a
function that is defined as follows:

 /**
 * @return number of years between today and specified date
 */
 public static int yearsPassedSince(Date date) {
 return Years.yearsBetween(new DateMidnight(date),
 new DateMidnight()).getYears();
 }

Code listing 15: Imported function that calculates number of years that have passed
since a date.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[52]

The main work is done by the Joda-Time library (the Years class is from this library
as well). This static function can be added to the ValidationHelper class that was
shown in the code listing 6. It can then be imported as was shown in the code
listing 4.

Unique account number rule
The last requirement states that "Account number must be unique". To check the
uniqueness of an account number, we'll use BankingInquiryService. For testing
purposes, we'll write a mock implementation, or you can use any mocking library
for this purpose as well. The test is as follows:

 @Test
 public void accountNumberUnique() throws Exception {
 Customer customer = createCustomerBasic();
 Account account = customer.getAccounts().iterator()
 .next();
 session.setGlobal("inquiryService",
 new BankingInquiryServiceImpl() {
 @Override
 public boolean isAccountNumberUnique(
 Account account) {
 return false;
 }
 });
 assertReportContains(Message.Type.ERROR,
 "accountNumberUnique", customer, account);
 }

Code listing 16: Test for accountNumberUnique rule.

The test creates a customer and a new mock implementation of
BankingInquiryService with isAccountNumberUnique method that always
returns false. The inquiryService global variable is set. Rules are executed and
the test verifies that there is an error in the report. The real test should also include
an option where the account number is unique (the service method returns true).

The following is the implementation of the rule that checks the uniqueness of an
account number:

rule "accountNumberUnique"
 when
 $account : Account(eval(
 !inquiryService.isAccountNumberUnique($account)))
 then
 error(kcontext, $account);
end

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[53]

Code listing 17: Rule for checking account number uniqueness in the
validation.drl file.

The accountNumberUnique rule demonstrates the usage of a service method in a
rule. The method is being called through an inline eval. An inline eval can evaluate
any code block that returns true or false. The results must be constant during the
session execution (if we evaluate the code block multiple times, we must get the
same result). The code also shows that we can use any bound variable inside the
code block (in this case, it is the $account variable).

Implementation
In this section, we'll define the implementation for various interfaces that
we've defined in this chapter. You can skip this section if you like. It is here
for completeness.

First, let's look at an implementation of the Message interface, which is shown in
the following code. The message is essentially another POJO, so it will basically
have get and set methods, and it will also override the equals, hashCode, and
toString methods.

import org.apache.commons.lang.builder.EqualsBuilder;
import org.apache.commons.lang.builder.HashCodeBuilder;
import org.apache.commons.lang.builder.ToStringBuilder;
//... other imports

public class DefaultMessage implements Message, Serializable {
 private Message.Type type;
 private String messageKey;
 private List<Object> context;

 public DefaultMessage(Message.Type type, String messageKey,
 List<Object> context) {
 if (type == null || messageKey == null) {
 throw new IllegalArgumentException(
 "Type and messageKey cannot be null");
 }
 this.type = type;
 this.messageKey = messageKey;
 this.context = context;
 }

 public String getMessageKey() {
 return messageKey;
 }

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[54]

 public Message.Type getType() {
 return type;
 }

 public List<Object> getContextOrdered() {
 return context;
 }

 @Override
 public boolean equals(final Object other) {
 if (this == other)
 return true;
 if (!(other instanceof DefaultMessage))
 return false;
 DefaultMessage castOther = (DefaultMessage) other;
 return new EqualsBuilder().append(type, castOther.type)
 .append(messageKey, castOther.messageKey).append(
 context, castOther.context).isEquals();
 }

 @Override
 public int hashCode() {
 return new HashCodeBuilder(98587969, 810426655).append(
 type).append(messageKey).append(context).toHashCode();
 }

 @Override
 public String toString() {
 return new ToStringBuilder(this).append("type", type)
 .append("messageKey", messageKey).append("context",
 context).toString();
 }
}

Code listing 18: Implementation of the Message interface.

DefaultMessage has a constructor that takes the Message.Type and key. It
guarantees that these two properties will be always set (not null); the context
is optional.

Next, we'll look at the implementation of the ValidationReport interface. It will
store all of the messages in a map. The key of this map will be the message type and
the value will be a set of messages. A "set" because we're not interested in the order
of messages. We're interested only in unique messages (in the DefaultMessage.
equals method sense). The declaration will look like this: Map<Message.Type,
Set<Message>> messagesMap. Then, we only need a bunch of methods that will
work on this map. The implementation of this interface, DefaultValidationReport,
is as follows:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[55]

public class DefaultValidationReport implements
 ValidationReport, Serializable {
 protected Map<Message.Type, Set<Message>> messagesMap =
 new HashMap<Message.Type, Set<Message>>();

 public Set<Message> getMessages() {
 Set<Message> messagesAll = new HashSet<Message>();
 for (Collection<Message> messages : messagesMap.values()){
 messagesAll.addAll(messages);
 }
 return messagesAll;
 }

 public Set<Message> getMessagesByType(Message.Type type) {
 if (type == null)
 return Collections.emptySet();
 Set<Message> messages = messagesMap.get(type);
 if (messages == null)
 return Collections.emptySet();
 else
 return messages;
 }

 public boolean contains(String messageKey) {
 for (Message message : getMessages()) {
 if (messageKey.equals(message.getMessageKey())) {
 return true;
 }
 }
 return false;
 }

 public boolean addMessage(Message message) {
 if (message == null)
 return false;
 Set<Message> messages =messagesMap.get(message.getType());
 if (messages == null) {
 messages = new HashSet<Message>();
 messagesMap.put(message.getType(), messages);
 }
 return messages.add(message);
 }
}

Code listing 19: Implementation of ValidationReport interface.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[56]

Please note that the code above doesn't show the implementation of equals,
hashCode, and toString methods. All of them operate only on the message map.

Next, we'll look at the implementation of the ReportFactory interface. It simply
creates a new instance of a DefaultMessage or a DefaultValidationReport object.

public class DefaultReportFactory implements ReportFactory {
 public Message createMessage(Message.Type type,
 String messageKey, Object... context) {
 return new DefaultMessage(type, messageKey, Arrays
 .asList(context));
 }

 public ValidationReport createValidationReport() {
 return new DefaultValidationReport();
 }
}

Code listing 20: Implementation of ReportFactory.

Validation service
All of the rules are implemented as unit tests, and we can write a validation service
that our clients can access. It will define one method for validating a customer. The
following code shows the BankingValidationService interface:

/**
 * service for validating the banking domain
 */
public interface BankingValidationService {
 /**
 * validates given customer and returns validation report
 */
 ValidationReport validate(Customer customer);
}

Code listing 21: BankingValidationService interface.

The interface defines one method that validates a Customer object and returns
ValidationReport. As all of the objects in our domain model are accessible
(traversable) from the Customer object, it is sufficient to just pass this class as
the method parameter. The implementation is more interesting:

public class BankingValidationServiceImpl implements
 BankingValidationService {

 private KnowledgeBase knowledgeBase;
 private ReportFactory reportFactory;
 private BankingInquiryService bankingInquiryService;

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 3

[57]

 /**
 * validates provided customer and returns validation report
 */
 public ValidationReport validate(Customer customer) {
 ValidationReport report = reportFactory
 .createValidationReport();
 StatelessKnowledgeSession session = knowledgeBase
 .newStatelessKnowledgeSession();
 session.setGlobal("validationReport", report);
 session.setGlobal("reportFactory", reportFactory);
 session
 .setGlobal("inquiryService", bankingInquiryService);
 session.execute(getFacts(customer));
 return report;
 }

 /**
 * @return facts that the rules will reason upon
 */
 private Collection<Object> getFacts(Customer customer) {
 ArrayList<Object> facts = new ArrayList<Object>();
 facts.add(customer);
 facts.add(customer.getAddress());
 facts.addAll(customer.getAccounts());
 return facts;
 }
...

Code listing 22: Section of banking validation service implementation.

This implementation needs to have set ruleBase, reportFactory, and
bankingInquiryService. The setters for these properties are not shown; they are
straightforward. The validation method creates a report that will be returned and
a stateless rule session, sets three global objects, and finally calls the execute method
with all of the facts grouped into one collection. As a stateless session is used, all of
the facts need to be passed in one go.

Note the different style of using a stateless session. In this case, we set all three
global variables through the setGlobal method. By setting them this way, the global
objects are scoped to the session. Hence, we cannot reuse this session across multiple
validate method invocations (across multiple threads). This is why the session
variable is scoped to the validate method and not the class as was the case with
our unit tests. This is just to show you a different way of working with the session
without using commands.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Validation

[58]

Summary
Let's look at what we've achieved in this chapter. By separating the validation rules
from the rest of the application, we've made it easier for the others to identify and
understand them. Because of the declarative nature of rules, they can be maintained
and re-factored more easily. We can easily change rules or add new ones without
increasing the overall complexity.

A simple extensible reporting model has been defined and later used in the
customer validation rules. Throughout this chapter, a stateless session has been
used, which is ideal for these types of decision rules. Remember that it is stateless
only because it doesn't hold a state between invocations. A special feature of the
stateless session is that it can be executed in a sequential mode, which has big
performance benefits. We've learned about RuleContext, which is present in every
rule consequence. We've discussed the use of validation report as a global variable
versus being inserted into the session as an ordinary fact. We've also discussed use
of BigDecimal as a type for floating point numbers, and Joda-Time as the date-time
manipulation library.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation
Almost any rewrite of an existing legacy system needs to do some kind of data
transformation with the old legacy data before they can be used in the new system.
It needs to load the data, transform it so that it meets the requirements of the new
system, and finally store it. This is just one example of where data transformation
is needed.

Drools can help us with this data transformation task as well. Depending on our
requirements, it might be a good idea to isolate this transformation process in the
form of rules. The rules can be reused later, maybe when our business will expand
and we'll be converting data from a different third-party system. Of course other
advantages of using rules apply.

If performance is the most important requirement (for example, if all of the data has
to be converted within a specified time-frame), rules may not be the ideal approach.
Probably the biggest disadvantage of using rules is that they need the legacy data in
memory, so they are best suited to more complex data transformation tasks. However,
consider it carefully if you think your data transformation will grow in complexity
as more requirements are added.

When writing these transformation rules, care should be taken not to confuse them
with validation rules. In a nutshell, if a rule can be written working just with the
domain model, it is most likely a validation rule. If it uses concepts that cannot be
represented with our domain model, it is probably a transformation rule.

Process overview
Let's demonstrate this data transformation through an example. Imagine that we
need to convert some legacy customer data into our new system.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[60]

As not all of the legacy data is perfect, we'll need a way to report the data that,
for some reason, we've failed to transfer. For example, our system allows only
one address per customer. Legacy customers with more than one address will
be reported. We'll reuse the reporting component from the validation chapter.

In this section we'll:

1.	 Load the customer data from the legacy system. The data will include
address and account information.

2.	 Run the transformation rules over this data and build an execution report.
3.	 Populate the domain model with transformed data, run the validation rules

(from previous section), and save it into our system.

Getting the data
As a good practice, we'll define an interface for interacting with the other system.
We'll introduce a LegacyBankService interface for this purpose. It will make it
easier to change the way we communicate with the legacy system. Another nice
side effect is that the tests will be easier to write.

package droolsbook.transform.service;

import java.util.List;
import java.util.Map;

public interface LegacyBankService {

 /**
 * @return all customers
 */
 List<Map<String, Object>> findAllCustomers();

 /**
 * @return addresses for specified customer id
 */
 List<Map<String, Object>> findAddressByCustomerId(
 Long customerId);

 /**
 * @return accounts for specified customer id
 */
 List<Map<String, Object>> findAccountByCustomerId(
 Long customerId);

}

Code listing 1: Interface that abstracts the legacy system interactions.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[61]

The interface defines three methods. The first one can retrieve a list of all customers,
the second and third retrieve a list of addresses and accounts for a specific customer.
Each list contains zero or many maps. One map represents one object in the legacy
system. The keys of this map are object property names (for example, addressLine1)
and the values are the actual properties.

We've chosen a map because it is a generic data type that can store almost
any data which is ideal for a data transformation task. However, it has a big
disadvantage—the rules will be a bit harder to write in it.

The implementation of this interface will be defined at the end of this chapter.

Loading facts into the knowledge session
Before writing some transformation rules, the data needs to be loaded into the
knowledge session. This can be done by writing a specialized rule just for this purpose:

package droolsbook.transform;

import java.util.*;

import droolsbook.transform.service.LegacyBankService;
import droolsbook.bank.model.Address;
import droolsbook.bank.model.Address.Country;

global LegacyBankService legacyService;

rule findAllCustomers
dialect "mvel"
 when
 $customerMap : Map()
 from legacyService.findAllCustomers()
 then
 $customerMap["_type_"] = "Customer"
 insert($customerMap)
end

Code listing 2: Rule that loads all Customer facts into the knowledge session
(dataTransformation.drl file).

The findAllCustomers rule, shown in the code above, matches on a Map instance
that is obtained from our legacyService. It adds the type in the consequence part
(so that we can recognize that this map represents a customer) and inserts this map
into the session. There are few things to be noted here:

A mvel dialect is used which helps readability of the consequence
part (otherwise, we'd have to write $customerMap.put("_type_",
"Customer");).

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[62]

A rule is being used to insert objects into the knowledge session; this just
shows a different way of loading objects into the knowledge session.
Every customer returned from the findAllCustomers method is being
inserted into the session. This is reasonable only if there is a small amount
of customers. If it is not the case, we can paginate, that is, process only
N customers at once, then start over with next N customers, and so on.
Alternatively, the findAllCustomers rule can be removed and customers
can be inserted into the knowledge session at session creation time. We'll now
focus on this latter approach (for example, only one Customer instance is in the
knowledge session at any given time); it will make the reporting easier.
A type of the map is being added to the map. This is a disadvantage of
using HashMap for every type (Customer, Address, and so on)—the type
information is lost. It can be seen in the following rule that finds addresses
for a customer:

	 rule findAddress
	 dialect "mvel"
	 when
	 $customerMap : Map(this["_type_"] == "Customer")
	 $addressMap : Map()
	 from legacyService.findAddressByCustomerId(
	 $customerMap["customer_id"])
	 then
	 $addressMap["_type_"] = "Address"
	 insert($addressMap)
	 end

Code listing 3: Rule that loads all Address instances for a Customer into the
rule session (dataTransformation.drl file).

Let's focus on the first condition line. It matches customerMap. It has to test if this
Map contains customer's data by executing this["_type_"] == "Customer". To
avoid carrying out these type checks in every condition, a new custom map type
can be created for example, LegacyCustomerHashMap. The rule might look like
as follows:

$customerMap : LegacyCustomerHashMap()

Code listing 4: Matching on customer map without doing the type check.

We'll continue with the second part of the condition. It matches an addressMap that
comes from our legacyService as well. The from keyword supports parameterized
service calls. customer_id is passed into the findAddressByCustomerId method.
Another nice thing about this is that we don't have to cast the parameter to
java.lang.Long—it is done automatically.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[63]

The consequence part of this rule just sets the type and inserts addressMap into
the knowledge session. Please note that only addresses for loaded customers are
loaded into the session. This saves memory but it could also cause lot of "chattiness"
with the LegacyBankService interface if there are many child objects. It can be
fixed by pre-loading those objects. The implementation of this interface is the
right place for this.

Similar data loading rules can be written for other types for example, Account.

Writing transformation rules
Now that all of the objects are in the knowledge session, we can start writing
some transformation rules. Let's imagine that in the legacy system, there are
many duplicate addresses. We can write a rule that removes such duplication:

rule twoEqualAddressesDifferentInstance
 when
 $addressMap1 : Map(this["_type_"] == "Address")
 $addressMap2 : Map(this["_type_"] == "Address",
 eval($addressMap1 != $addressMap2),
 this == $addressMap1)
 then
 retract($addressMap2);
 validationReport.addMessage(
 reportFactory.createMessage(Message.Type.WARNING,
 kcontext.getRule().getName(), $addressMap2));
end

Code listing 5: Rule that removes redundant address (dataTransformation.drl file).

The rule matches two addresses. It checks that they don't have the same object
identities by calling eval($addressMap1 != $addressMap2). Otherwise, the
rule could match single address instance. The next part, this == $addressMap1,
translates to $addressMap1.equal($addressMap2) behind the scenes. If this
equal check is true, it means that one of the addresses is redundant and can be
removed from the session. The address map that is removed is added to the
report as a warning message.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[64]

Testing
Before we continue with the rest of the rules, we'll set up unit tests. The test
initialization method is similar to the one from the validation chapter. We'll
still use a stateless session:

 session = knowledgeBase.newStatelessKnowledgeSession();
 session.setGlobal("legacyService",
 new MockLegacyBankService());

Code listing 6: Section of the test setUpClass method
(DataTransformationTest file).

The legacyService global variable is set to new instance of MockLegacyBankService.
It is a dummy implementation that simply returns null from all of the methods. In
most of the tests, we'll insert objects directly into the knowledge session (and not
through the legacyService).

We'll now write a helper method for inserting objects into the knowledge session and
running the rules. The helper method will create a list of commands, it will execute
these commands and the resulting object—ExecutionResults—will be returned
back to the caller. The following commands will be created:

•	 One for setting the global variable, validationReport; a new validation
report will be created.

•	 One for inserting all of the objects into the session.

•	 One for firing only rules with specified name. This will be done through an
AgendaFilter interface. It will help us to isolate the rule that we'll be testing.

•	 One for getting back all of the objects in a knowledge session that are of
certain type. These objects will be returned from the helper method as part
of the results object.

org.drools.runtime.rule.AgendaFilter
When a rule is activated, AgendaFilter
determines if this rule can be fired or not. The
AgendaFilter interface has one accept method
that returns true or false. We'll create our own
RuleNameEqualsAgendaFilter that fires only rules
with specific name.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[65]

The helper method is as follows:

 /**
 * creates multiple commands, calls session.execute and
 * returns results back
 */
 protected ExecutionResults execute(Iterable objects,
 String ruleName, final String filterType,
 String filterOut) {
 ValidationReport validationReport = reportFactory
 .createValidationReport();
 List<Command<?>> commands = new ArrayList<Command<?>>();
 commands.add(CommandFactory.newSetGlobal(
 "validationReport", validationReport, true));
 commands.add(CommandFactory.newInsertElements(objects));
 commands.add(new FireAllRulesCommand(
 new RuleNameEqualsAgendaFilter(ruleName)));
 if (filterType != null && filterOut != null) {
 GetObjectsCommand getObjectsCommand =
 new GetObjectsCommand(new ObjectFilter() {
 public boolean accept(Object object) {
 return object instanceof Map
 && ((Map) object).get("_type_").equals(
 filterType);
 }
 });
 getObjectsCommand.setOutIdentifier(filterOut);
 commands.add(getObjectsCommand);
 }
 ExecutionResults results = session
 .execute(CommandFactory.newBatchExecution(commands));
 return results;
 }

Code listing 7: Test helper method for executing the transformation rules
(DataTransformationTest file).

To write a test for the redundant address rule, two address maps will be created.
Both will have their street set to Barrack Street. After we execute rules, only
one address map should be in the knowledge session. The test looks like the
following code:

 @Test
 public void twoEqualAddressesDifferentInstance()
 throws Exception {
 Map addressMap1 = new HashMap();

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[66]

 addressMap1.put("_type_", "Address");
 addressMap1.put("street", "Barrack Street");

 Map addressMap2 = new HashMap();
 addressMap2.put("_type_", "Address");
 addressMap2.put("street", "Barrack Street");
 assertEquals(addressMap1, addressMap2);

 ExecutionResults results = execute(Arrays.asList(
 addressMap1, addressMap2),
 "twoEqualAddressesDifferentInstance", "Address",
 "addresses");

 Iterator<?> addressIterator = ((List<?>) results
 .getValue("addresses")).iterator();
 Map addressMapWinner = (Map) addressIterator.next();
 assertEquals(addressMap1, addressMapWinner);
 assertFalse(addressIterator.hasNext());
 reportContextContains(results,
 "twoEqualAddressesDifferentInstance",
 addressMapWinner == addressMap1 ? addressMap2
 : addressMap1);
 }

Code listing 8: Test for the redundant address rule.

The execute method is called with the two address maps, the agenda filter
rule name is set to twoEqualAddressesDifferentInstance (only this rule
will be allowed to fire), and after the rules are executed, all of the maps of the
type Address are returned as a part of the result. We can access them by
results.getValue("addresses"). The test verifies that there is only one
such map.

Another test helper method—reportContextContains—verifies that
validationReport contains expected data. The implementation of the
reportContextContains method is as follows:

 /**
 * asserts that the report contains one message with
 * expected context (input parameter)
 */
 void reportContextContains(ExecutionResults results,
 String messgeKey, Object object) {
 ValidationReport validationReport = (ValidationReport)
 results.getValue("validationReport");
 assertEquals(1, validationReport.getMessages().size());
 Message message = validationReport.getMessages()
 .iterator().next();

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[67]

 List<Object> messageContext = message.getContextOrdered();
 assertEquals(1, messageContext.size());
 assertSame(object, messageContext.iterator().next());
 }

Code listing 9: Helper method, which verifies that report contains supplied object.

Address normalization
Our next rule will be a type conversion rule. It will take a String representation
of country and convert it into Address.Country enum. We'll start with the
following test:

 @Test
 public void addressNormalizationUSA() throws Exception {
 Map addressMap = new HashMap();
 addressMap.put("_type_", "Address");
 addressMap.put("country", "U.S.A");

 execute(Arrays.asList(addressMap),
 "addressNormalizationUSA", null, null);

 assertEquals(Address.Country.USA, addressMap
 .get("country"));
 }

Code listing 10: Test for the country type conversion rule.

The test creates an address map with the country set to U.S.A. It then calls
the execute method passing in the addressMap and allowing only the rule
addressNormalizationUSA to fire (no filter is used in this case). Finally, the test
verifies that address map has the correct country value. Next, we'll write the rule:

rule addressNormalizationUSA
dialect "mvel"
 when
 $addressMap : Map(this["_type_"] == "Address",
 this["country"] in ("US", "U.S.", "USA", "U.S.A"))
 then
 modify($addressMap) {
 put("country", Country.USA)
 }
end

Code listing 11: Rule that converts String representation of country into enum
representation (dataTransformation.drl file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[68]

The rule matches an address map. The in operator is used to capture various
country representations. Let's look at rule's consequence in more detail. By calling
$addressMap.put("country", Country.USA), we change the address map identity
(if we look at the implementation of HashMap equals or hashCode methods, they
take into account every element in the map). The code that updates addressMap
needs to be executed inside a modify block as we've done code listing 11.

As we already know, the modify construct takes an argument and—a block of code.
Before executing the block of code, it retracts the argument from the knowledge
session, then it executes the block of code, and finally the object is inserted back into
the knowledge session. This way even though the object's identity is changed, the
rule engine remains consistent.

Fact's identity
As a general rule, do not change the object's identity while it is in the
knowledge session. Otherwise, the rule engine behavior will be undefined.
(Same as changing an object while it is in java.util.HashMap)

Testing the findAddress rule
Before continuing, let's write a test for the findAddress rule from code listing 3. The
test will use special LegacyBankService mock implementation that will return the
provided addressMap:

 public class StaticMockLegacyBankService extends
 MockLegacyBankService {
 private Map addressMap;
 public StaticMockLegacyBankService(Map addressMap) {
 this.addressMap = addressMap;
 }
 public List findAddressByCustomerId(Long customerId) {
 return Arrays.asList(addressMap);
 }
 }

Code listing 12: StaticMockLegacyBankService which returns the
provided addressMap.

StaticMockLegacyBankService extends MockLegacyBankService and overrides
the findAddressByCustomerId method. The findAddress test looks as follows:

 @Test
 public void findAddress() throws Exception {
 final Map customerMap = new HashMap();
 customerMap.put("_type_", "Customer");

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[69]

 customerMap.put("customer_id", new Long(111));

 final Map addressMap = new HashMap();
 LegacyBankService service =
 new StaticMockLegacyBankService(addressMap);
 session.setGlobal("legacyService", service);

 ExecutionResults results = execute(Arrays
 .asList(customerMap), "findAddress", "Address",
 "objects");

 assertEquals("Address", addressMap.get("_type_"));
 Iterator<?> addressIterator = ((List<?>) results
 .getValue("objects")).iterator();
 assertEquals(addressMap, addressIterator.next());
 assertFalse(addressIterator.hasNext());

 // clean-up
 session.setGlobal("legacyService",
 new MockLegacyBankService());
 }

Code listing 13: Test for the findAddress rule.

The test then verifies that address map is really in the knowledge session, that it has
the _type_ key set, and that there is no other address map.

Unknown country
The next rule will create an error message if the country isn't recognizable by our
domain model. The test creates address map with some unknown country, executes
rules, and verifies that the report contains an error.

 @Test
 public void unknownCountry() throws Exception {
 Map addressMap = new HashMap();
 addressMap.put("_type_", "Address");
 addressMap.put("country", "no country");

 ExecutionResults results = execute(Arrays
 .asList(addressMap), "unknownCountry", null, null);

 ValidationReport report = (ValidationReport) results
 .getValue("validationReport");
 reportContextContains(results, "unknownCountry",
 addressMap);
 }

Code listing 14: Test for the unknownCountry rule.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[70]

The rule implementation will test if the country value from the addressMap is of the
type Address.Country. If it isn't, an error is added to the report. This rule should be
executed after all address normalization rules:

rule unknownCountry
salience -10 //should fire after address normalizations
 when
 $addressMap : Map(this["_type_"] == "Address",
 eval(!($addressMap.get("country") instanceof
 Address.Country)))
 then
 validationReport.addMessage(
 reportFactory.createMessage(Message.Type.ERROR,
 kcontext.getRule().getName(), $addressMap));
end

Code listing 15: Rule that reports unknown countries
(dataTransformation.drl file).

The type checking is done with instanceof operator of mvel.

Currency conversion
As a given requirement, the data transformation process should convert all of the
accounts to EUR currency. The test for this rule might look like this:

 @Test
 public void currencyConversionToEUR() throws Exception {
 Map accountMap = new HashMap();
 accountMap.put("_type_", "Account");
 accountMap.put("currency", "USD");
 accountMap.put("balance", "1000");

 execute(Arrays.asList(accountMap),
 "currencyConversionToEUR", null, null);

 assertEquals("EUR", accountMap.get("currency"));
 assertEquals(new BigDecimal("670.000"), accountMap
 .get("balance"));
 }

Code listing 16: Test for the EUR conversion rule.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[71]

At the end of the code snippet above, the test verified that currency and balance were
correct. Exchange rate of 0.670 was used. The rule implementation is as follows:

rule currencyConversionToEUR
 when
 $accountMap : Map(this["_type_"] == "Account",
 this["currency"] != null && != "EUR")
 $conversionAmount : String() from
 getConversionToEurFrom($accountMap["currency"])
 then
 modify($accountMap) {
 put("currency", "EUR"),
 put("balance", new BigDecimal(
 $conversionAmount).multiply(new BigDecimal(
 (String)$accountMap.get("balance"))))
 }
end

Code listing 17: Rule that converts account balance and currency to EUR
(dataTransformation.drl file).

The rule uses the default Java dialect. It matches on an account map and retrieves
conversion amount using the from conditional element. In this case, it is a simple
function that returns hard coded values. However, it can be easily replaced with
a service method that could, for example, call some web service in a real bank.

function String getConversionToEurFrom(String currencyFrom) {
 String conversion = null;
 if ("USD".equals(currencyFrom)) {
 conversion = "0.670";
 } else if ("SKK".equals(currencyFrom)) {
 conversion = "0.033";
 }
 return conversion;
}

Code listing 18: Dummy function for calculating the exchange rate
(dataTransformation.drl file).

Note the way in which we're calling the function. Instead of calling it directly in
the consequence, it is called from a condition. This way, our rule will fire only if
the function returns some non-null result.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[72]

The rule then sets the currency to EUR and multiplies the balance with
the exchange rate. This rule doesn't cover the currencies for which the
getConversionToEurFrom function returns null. We have to write another
rule that will report unknown currencies:

rule unknownCurrency
 when
 $accountMap : Map(this["_type_"] == "Account",
 this["currency"] != null && != "EUR")
 not(String() from
 getConversionToEurFrom($accountMap["currency"]))
 then
 validationReport.addMessage(
 reportFactory.createMessage(Message.Type.ERROR,
 kcontext.getRule().getName(), $accountMap));
end

Code listing 19: Rule that adds an error message to the report if there is no
conversion for a currency (dataTransformation.drl file).

Note that in this case, the getConversionToEurFrom function is called from within
the not construct.

One account allowed
Imagine that we have a business requirement where only one account from the
legacy system can be imported into the new system. Our next rule will remove
redundant accounts while aggregating their balances.

The test inserts two accounts of the same customer into the knowledge session and
verifies that one of them was removed and the balance was transferred:

 @Test
 public void reduceLegacyAccounts() throws Exception {
 Map accountMap1 = new HashMap();
 accountMap1.put("_type_", "Account");
 accountMap1.put("customer_id", "00123");
 accountMap1.put("balance", new BigDecimal("100.00"));

 Map accountMap2 = new HashMap();
 accountMap2.put("_type_", "Account");
 accountMap2.put("customer_id", "00123");
 accountMap2.put("balance", new BigDecimal("300.00"));

 ExecutionResults results = execute(Arrays.asList(
 accountMap1, accountMap2), "reduceLegacyAccounts",

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[73]

 "Account", "accounts");

 Iterator<?> accountIterator = ((List<?>) results
 .getValue("accounts")).iterator();
 Map accountMap = (Map) accountIterator.next();
 assertEquals(new BigDecimal("400.00"), accountMap
 .get("balance"));
 assertFalse(accountIterator.hasNext());
 }

Code listing 20: Test for the reduceLegacyAccounts rule.

The rule should fire after all currency conversion rules. The account balance must be
of the type BigDecimal. This is partially (non EUR accounts) done by the currency
conversion rules. For the EUR accounts, a new rule can be written that simply
converts the type to BigDecimal (we can even update the unknownCurrency rule
to handle this situation).

rule reduceLegacyAccounts
 when
 $accountMap1 : Map(this["_type_"] == "Account")
 $accountMap2 : Map(this["_type_"] == "Account",
 eval($accountMap1 != $accountMap2),
 this["customer_id"] ==$accountMap1["customer_id"],
 this["currency"] == $accountMap1["currency"])
 then
 modify($accountMap1) {
 put("balance", (
 (BigDecimal)$accountMap1.get("balance")).add(
 (BigDecimal)$accountMap2.get("balance")))
 }
 retract($accountMap2);
end

Code listing 21: Rule that removes redundant accounts and accumulates their
balances (dataTransformation.drl file).

The rule above matches two accountMap facts. It ensures that they represent two
different instances (eval($accountMap1 != $accountMap2)), they both belong to
the same customer (this["customer_id"] ==$accountMap1["customer_id"]), and
have the same currency (this["currency"] == $accountMap1["currency"]). The
consequence sums up the two balances and retracts the second accountMap.

We are creating dependencies between rules (because this rule should fire after all
currency conversion rules). In this case it is tolerable as only a few rules are involved.
However, with more complex dependencies, we'll have to introduce a ruleflow.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[74]

Transformation results
Now, that we've written all transformation rules, the data from the legacy system is
in good shape for our model—we can start with populating it. To extract data from
the knowledge session, we'll use Drools queries.

Query
Drools query looks like a normal rule without the then part. It can
be executed directly from a stateful knowledge session for example,
session.getQueryResults("getAllCustomers") or by using
QueryCommand. It returns a QueryResults object that can contain
multiple QueryResultsRow objects. Every QueryResultsRow
instance represents one match of the query. Individual objects/facts can
be retrieved from QueryResultsRow. Drools queries are a convenient
way of retrieving objects/facts from the knowledge session that match
conditions specified by the query. Queries can be parameterized. In a
KnowledgeBase, all of the queries share the same namespace.

Lets implement queries for retrieving transformed data.

query getCustomer
 $customerMap : Map(this["_type_"] == "Customer")
end

query getAccountByCustomerId (Map customerMap)
 $accountMap : Map(this["_type_"] == "Account",
 this["customer_id"] == customerMap["customer_id"])
end

Code listing 22: Queries for retrieving customer and accounts
(dataTransformation.drl file).

The getCustomer query matches any customer map. The second query,
getAccountByCustomerId, takes one parameter: customerMap. The customer
map parameter is then used to match only accounts that belong to this customer.

We have the ability to extract data from the knowledge session. Let's write the
transformation service. It will have only one method for starting the transformation
process. This method calls a processCustomer method for every customer map that
comes from legacyService.findAllCustomers. Body of the processCustomer
method is as follows:

 /**
 * transforms customerMap, creates and stores new customer
 */
 protected void processCustomer(Map customerMap) {

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[75]

 ValidationReport validationReport = reportFactory
 .createValidationReport();

 List<Command<?>> commands = new ArrayList<Command<?>>();
 commands.add(CommandFactory.newSetGlobal(
 "validationReport", validationReport));
 commands.add(CommandFactory.newInsert(customerMap));
 commands.add(new FireAllRulesCommand(
 new RuleNameEqualsAgendaFilter("findAllCustomers")));
 commands.add(CommandFactory.newQuery(
 "address", "getAddressByCustomerId",
 new Object[] { customerMap }));
 commands.add(CommandFactory.newQuery(
 "accounts", "getAccountByCustomerId",
 new Object[] { customerMap }));
 ExecutionResults results = session.execute(
 CommandFactory.newBatchExecution(commands));

 if (!validationReport.getMessagesByType(Type.ERROR)
 .isEmpty()) {
 logError(validationReport
 .getMessagesByType(Type.ERROR));
 logWarning(validationReport
 .getMessagesByType(Type.WARNING));
 } else {
 logWarning(validationReport
 .getMessagesByType(Type.WARNING));
 Customer customer = buildCustomer(customerMap,
 results);
 bankingService.add(customer); // runs validation
 }
 }

Code listing 23: Executing the transformation rules and retrieving transformed
customer data (DataTransformationServiceImpl file).

A new validationReport is created, rules are executed in a stateless session,
and the customer map is passed in. If the validation report contains any errors,
all of the messages are logged and this method terminates. In case there is no error,
only warnings are logged, and the customer is built and added to the system. The
buildCustomer method takes ExecutionResults, that contains the results of our
queries, as argument. The add service call validates the customer (represented in
our domain model in this case) before saving.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[76]

An excerpt from the buildCustomer method can be seen below. It creates all
accounts for the customer. The accounts are retrieved from the knowledge session
with the getAccountByCustomerId query.

 QueryResults accountQueryResults = (QueryResults)
 results.getValue("accounts");
 for (QueryResultsRow accountQueryResult :
 accountQueryResults) {
 Map accountMap = (Map) accountQueryResult
 .get("$accountMap");

 Account account = new Account();
 account.setNumber((Long) accountMap.get("number"));
 account.setBalance((BigDecimal) accountMap
 .get("balance"));
 //..
 customer.addAccount(account);

Code listing 24.: Execution of the parameterized query
(DataTransformationServiceImpl file).

Note that the query command bound all of the account maps under name
accounts (from code listing 23: CommandFactory.newQuery("accounts",
"getAccountByCustomerId", new Object[] { customerMap })).

The method retrieves collection of account maps (results.getValue("accounts")),
and for each accountMap, creates a new Account object. These accounts are then
added to the Customer object (customer.addAccount(account)).

Implementation of the data loading
In this section, we'll look closer at getting the data from the legacy system. If you're
not interested in trying out this example, you can skip this section.

Database setup
The data can come from various sources – database, XML, CSV, and so on. Our
application will pull data from a database, however it shouldn't be a problem to
work with any other data source. The table structure looks as follows:

CREATE TABLE 'droolsBook'.'customer' (
 'customer_id' bigint(20) NOT NULL,
 'first_name' varchar(255) NOT NULL,
 'last_name' varchar(255) NOT NULL,
 email' varchar(255) NOT NULL,
 PRIMARY KEY ('customer_id')
)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[77]

Code listing 25: Table structure for legacy customers in a MySQL Database.

CREATE TABLE 'droolsBook'.'address' (
 'address_id' bigint(20) NOT NULL default '0',
 'parent_id' bigint(20) NOT NULL,
 'street' varchar(255) NOT NULL,
 'area' varchar(255) NOT NULL,
 'town' varchar(255) NOT NULL,
 'country' varchar(255) NOT NULL,
 PRIMARY KEY ('address_id')
)

Code listing 26: Table structure for legacy addresses in a MySQL Database.

The column parent_id from the code listing above represents a foreign key to
the customer's primary key. The same applies for the customer_id column in the
following code:

CREATE TABLE 'droolsBook'.'account' (
 'account_id' bigint(20) NOT NULL,
 'name' varchar(255) NOT NULL,
 'currency' varchar(100) NOT NULL,
 'balance' varchar(255) NOT NULL,
 'customer_id' bigint(20) NOT NULL,
 PRIMARY KEY ('account_id')
)

Code listing 27: Table structure for legacy account in a MySQL Database.

As can be seen from the table structures, there is a one-to-many relationship between
customer and addresses/accounts. Note that the table column names are different
than the property names used in our domain model.

You need to set up a database, create the tables from above, and populate them with
some sample data.

Project setup
For loading data from database we'll use iBatis. (More information about the project
iBatis can be found at http://ibatis.apache.org/). It is an easy to use data
mapper framework. iBatis has rich set of functionalities; we'll use it only for a simple
task—to load the data from the database as java.util.Map objects. Our rules will
then reason over these objects.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[78]

We'll need additional libraries on the classpath. They are:

•	 ibatis-2.3.3.720.jar—binary distribution of iBatis.

•	 JDBC driver for your database; in case of MySQL it is mysql-connector-
java-5.1.6-bin.jar (MySQL database driver for Java can be downloaded
from http://dev.mysql.com/downloads/connector/j/).

iBatis configuration
Before any data can be loaded, iBatis needs to be configured. It needs to know
about the database and its structure. This is configured in the SqlMapConfig.xml
file as follows:.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMapConfig
 PUBLIC "-//ibatis.apache.org//DTD SQL Map Config 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-config-2.dtd">
<sqlMapConfig>
 <transactionManager type="JDBC" commitRequired="false">
 <dataSource type="SIMPLE">
 <property name="JDBC.Driver"
 value="com.mysql.jdbc.Driver" />
 <property name="JDBC.ConnectionURL"
 value="jdbc:mysql://localhost/droolsBook?createDat
 abaseIfNotExist=true&useUnicode=true&
 ;characterEncoding=utf-8" />
 <property name="JDBC.Username" value="root" />
 <property name="JDBC.Password" value="" />
 </dataSource>
 </transactionManager>
 <sqlMap resource="Banking.xml" />
</sqlMapConfig>

Code listing 28: iBatis main configuration file—SqlMapConfig.xml.

The configuration is straightforward. JDBC driver, connection URL, username, and
password are given. Further down the configuration, the sqlMap element refers to
external file (Banking.xml) that specifies the table structure.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMap
 PUBLIC "-//ibatis.apache.org//DTD SQL Map 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-2.dtd">
<sqlMap namespace="Banking">
 <select id="findAllCustomers"
 resultClass="java.util.HashMap">

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 4

[79]

 select * from customer
 </select>
 <select id="findAddressByCustomerId" parameterClass="long"
 resultClass="java.util.HashMap" >
 select * from address where parent_id = #id#
 </select>
 <select id="findAccountByCustomerId" parameterClass="long"
 resultClass="java.util.HashMap" >
 select * from account where customer_id = #id#
 </select>
</sqlMap>

Code listing 29: iBatis configuration file—Banking.xml.

The sqlMap element defines three select statements: one for loading all customers,
one for loading customer's addresses, and one for customer's accounts. All of
the select statements specify java.util.HashMap as the result class. When
select executes, it creates and populates this map. Each row in a table will be
represented by one HashMap instance. Table column names are mapped to the
map's keys and values to the map's values. The two other select elements,
findAddressByCustomerId and findAccountByCustomerId, take one parameter
of type, long. This parameter is used in the where clause of select. It represents the
foreign key to the customer table.

Running iBatis
The main interface that will be used to interact with iBatis is com.ibatis.sqlmap.
client.SqlMapClient. An instance of this class can be obtained as follows:

 Reader reader = Resources
 .getResourceAsReader("SqlMapConfig.xml");
 SqlMapClient sqlMapClient = SqlMapClientBuilder
 .buildSqlMapClient(reader);
 reader.close();

Code listing 30: iBatis set up—building the SqlMapClient instance.

After we have the SqlMapClient instance, it can be used to load data from the
database as follows:

 List customers = sqlMapClient
 .queryForList("findAllCustomers");

 List addresses = sqlMapClient.queryForList(
 "findAddressByCustomerId", new Long(654258));

Code listing 31: Running iBatis queries.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Data Transformation

[80]

The second query shows how we can pass parameters to iBatis. The returned object
is in both cases of type java.util.List. The list contains zero or many HashMap
instances. Remember? Each map represents one database record.

We can now write the implementation of the LegacyBankService interface from
code listing 1. The implementation is straightforward. It simply delegates to
sqlMapClient as we've seen for example in code listing 30 and code listing 31.

Alternative data loading
Drools supports various data loaders—Smooks (http://milyn.codehaus.org/
Smooks), JAXB (https://jaxb.dev.java.net/), and so on. They can be used
as alternatives to iBatis. For example, Smooks can load data from various
sources—XML, CSV, Java, and others. It is itself a powerful ETL (Extract
Transform Load) tool. However, we can use it to do just the data loading part,
probably with some minor transformations.

Summary
In this chapter, we saw how to use rules to perform more complex data
transformation tasks. These rules are easy to read and can be expanded without
increasing the overall complexity. However, it should be noted that Drools is
probably not the best option if we want to carry out high throughput/high
performance data transformations.

We saw how to write rules over a generic data type such as a java.util.Map. You
should try to avoid using this kind of generic data type. However, it is not always
possible, especially when you are doing data transformation and you don't know
much about the data.

Some testing approaches were shown. Use of AgendaFilter as a way to isolate the
individual rule tests was also demonstrated. Please note that upon execution, all of
the rules are matched and placed onto the agenda. However, only those that pass
this filter are executed. ObjectFilter was used to filter facts from the knowledge
session when we were verifying test assertions.

Finally, some examples were given on how to use Drools queries. They represent
very convenient way of accessing facts in the knowledge session.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules
Business rules implementations presented so far were aimed mostly at developers.
However, it is sometimes needed that these rules are readable and understandable
by the business analysts. Ideally, they should be able to change the rules or even
write new ones. An important aspect of business rules is their readability and user
friendliness. Looking at a rule, you should immediately have an idea of what it is
about. In this chapter, we'll look at Domain Specific Languages (DSLs), decision
tables, and rule flows to create human-readable rules.

Domain Specific Language
The domain in this sense represents the business area (for example, life insurance
or billing). Rules are expressed with the terminology of the problem domain. This
means that domain experts can understand, validate, and modify these rules
more easily.

You can think of DSL as a translator. It defines how to translate sentences from the
problem-specific terminology into rules. The translation process is defined in a .dsl
file. The sentences themselves are stored in a .dslr file. The result of this process
must be a valid .drl file.

Building a simple DSL might look like:

[condition][]There is a Customer with firstName
{name}=$customer : Customer(firstName == {name})
[consequence][]Greet Customer=System.out.println("Hello " +
$customer.getFirstName());

Code listing 1: Simple DSL file simple.dsl.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[82]

The code listing above contains only two lines (each begins with [).
However, because the lines are too long, they are wrapped effectively
creating four lines. This will be the case in most of the code listings.
When you are using the Drools Eclipse plugin to write this DSL, enter the
text before the first equal sign into the field called Language expression,
the text after equal sign into Rule mapping, leave the object field blank
and select the correct scope.

The previous DSL defines two DSL mappings. They map a DSLR sentence to a DRL
rule. The first one translates to a condition that matches a Customer object with
the specified first name. The first name is captured into a variable called name. This
variable is then used in the rule condition. The second line translates to a greeting
message that is printed on the console. The following .dslr file can be written based
on the previous DSL:

package droolsbook.dsl;
import droolsbook.bank.model.*;
expander simple.dsl
rule "hello rule"
 when
 There is a Customer with firstName "David"
 then
 Greet Customer
end

Code listing 2: Simple .dslr file (simple.dslr) with rule that greets a customer with
name David.

As can be seen, the structure of a .dslr file is the same as the structure of a .drl
file. Only the rule conditions and consequences are different. Another thing to note
is the line containing expander simple.dsl. It informs Drools how to translate
sentences in this file into valid rules. Drools reads the simple.dslr file and tries to
translate/expand each line by applying all mappings from the simple.dsl file (it does it in
a single pass process, line-by-line from top to bottom). The order of lines is important
in a .dsl file. Please note that one condition/consequence must be written on one
line, otherwise the expansion won't work (for example, the condition after the when
clause, from the rule above, must be on one line).

When you are writing .dslr files, consider using the Drools Eclipse plugin. It
provides a special editor for .dslr files that has an editing mode and a read-only
mode for viewing the resulting .drl file. A simple DSL editor is provided as well.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[83]

The result of the translation process will look like the following screenshot:

This translation process happens in memory and no .drl file is physically stored.
We can now run this example. First of all, a knowledge base must be created from
the simple.dsl and simple.dslr files. The process of creating a package using a
DSL is as follows (only the package creation is shown, the rest is the same as we've
seen in Chapter 2, Basic Rules):

.dsl

.dslr

feeded into

feeded into

feeded into
KnowledgeBuilder

creates
...

KnowledgePackage

KnowledgeBuilder acts as the translator. It takes the .dslr file, and based on the
.dsl file, creates the DRL. This DRL is then used as normal (we don't see it; it's
internal to KnowledgeBuilder). The implementation is as follows:

 private KnowledgeBase createKnowledgeBaseFromDSL()
 throws Exception {
 KnowledgeBuilder builder =
 KnowledgeBuilderFactory.newKnowledgeBuilder();
 builder.add(ResourceFactory.newClassPathResource(
 "simple.dsl"), ResourceType.DSL);
 builder.add(ResourceFactory.newClassPathResource(
 "simple.dslr"), ResourceType.DSLR);
 if (builder.hasErrors()) {
 throw new RuntimeException(builder.getErrors()
 .toString());
 }

 KnowledgeBase knowledgeBase = KnowledgeBaseFactory

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[84]

 .newKnowledgeBase();
 knowledgeBase.addKnowledgePackages(
 builder.getKnowledgePackages());
 return knowledgeBase;
 }

Code listing 3: Creating knowledge base from .dsl and .dslr files.

The .dsl and subsequently the .dslr files are passed into KnowledgeBuilder. The
rest is similar to what we've seen before.

DSL as an interface
DSLs can be also looked at as another level of indirection between your .drl files
and business requirements. It works as shown in the following figure:

Business Rules requirements

DSL rules (DSLR)

interface
Domain Specific Language (DSL)

legend: dependency

rule implementation (e.g. DRL) Domain Model

The figure above shows DSL as an interface (dependency diagram). At the top are
the business requirements as defined by the business analyst. These requirements
are represented as DSL sentences (.dslr file). The DSL then represents the interface
between DSL sentences and rule implementation (.drl file) and the domain model.
For example, we can change the transformation to make the resulting rules more
efficient without changing the language. Further, we can change the language, for
example, to make it more user friendly, without changing the rules. All this can be
done just by changing the .dsl file.

DSL for validation rules
The first three implemented object/field required rules from Chapter 2, Basic Rules,
can be rewritten as:

If the Customer does not have an address, then Display warning message
If the Customer does not have a phone number or it is blank, then Display
error message

•
•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[85]

If the Account does not have an owner, then Display error message
for Account

We can clearly see that all of them operate on some object (Customer/Account),
test its property (address/phone/owner), and display a message (warning/error)
possibly with some context (account). Our validation.dslr file might look like the
following code:

expander validation.dsl

rule "address is required"
 when
 The Customer does not have address
 then
 Display warning	
end

rule "phone number is required"
 when
 The Customer does not have phone number or it is blank
 then
 Display error
end

rule "account owner is required"
 when
 The Account does not have owner
 then
 Display error for Account
end

Code listing 4: First DSL approach at defining the required object/field rules
(validation.dslr file).

The conditions could be mapped like this:

[condition][]The {object} does not have {field}=${object} : {object}(
{field} == null)

Code listing 5: validation.dsl.

This covers the address and account conditions completely. For the phone
number rule, we have to add the following mapping at the beginning of the
validation.dsl file:

[condition][] or it is blank = == "" ||

Code listing 6: Mapping that checks for a blank phone number.

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[86]

As it stands, the phone number condition will be expanded to:

$Customer : Customer(phone number == "" || == null)

Code listing 7: Unfinished phone number condition.

To correct it, phone number has to be mapped to phoneNumber. This can be done by
adding the following at the end of the validation.dsl file:

[condition][]phone number=phoneNumber

Code listing 8: Phone number mapping.

The conditions are working. Now, let's focus on the consequences. The following
mapping will do the job:

[consequence][]Display {message_type} for {object}={message_type}(
 kcontext, ${object});
[consequence][]Display {message_type}={message_type}(kcontext);

Code listing 9: Consequence mappings.

The three validation rules are now being expanded to the same .drl representation
as we've seen in Chapter 2.

File formats
Before we go further, we'll examine each file format in more detail.

DSL file format
A line in a .dsl file has the following format:

[<scope>][<Type>]<language expression>=<rule mapping>

Code listing 10: The format of one line in a .dsl file.

As we've already seen, an example of a line in DSL file might look like this:

[condition][droolsbook.bank.model.Customer]The Customer does not have
address=Customer(address == null)

Code listing 11: Sample line from DSL file (note that it is just one line that has
been wrapped).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[87]

The scope can have the following values:

condition: Specifies that this mapping can be used in the condition part of
a rule.
consequence: Specifies that this mapping can be used in the consequence
part of a rule.
*: Specifies that this mapping can be used in both the condition and the
consequence part of a rule.
keyword: This mapping is applied to the whole file (not just the condition
or the consequence part). Used mainly when writing DSLs in languages
other than English or to hide the package/import/global statements at the
beginning of the file behind a business friendly sentence.

Type can be used to further limit the scope of the mapping. Scope and Type are used
by the Drools Eclipse plugin to provide auto-completion when writing .dslr files
(when pressing Ctrl + Space, only relevant choices are offered). This is especially
useful with the multiple constraints feature (refer to the section, DSL for multiple
constraints in a condition).

DSL supports comments by starting the line with the hash character, #. For example:
#this is a comment in a .dsl file

DRL file format
As a side note, in a .drl file, it is valid to write the whole rule on a single line. This
allows us to write more complex DSLs because one sentence in .dslr file can be
translated into multiple conditions—even the whole rule. For example, these are
valid rules on a single line:

rule "addressRequired" when Customer(address == null) then
warning(kcontext); end

Code listing 12: addressRequired rule on one line.

Make sure that you add spaces between Drools keywords. Another more complex
example of a rule on one line:

rule "studentAccountCustomerAgeLessThan" when Customer(eval (year
sPassedSince(dateOfBirth) >= 27)) and $account : Account(type ==
Account.Type.STUDENT) then error(kcontext, $account); System.out.
println("another statement"); end

Code listing 13: studentAccountCustomerAgeLessThan rule on one line.

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[88]

The preceding rule contains two conditions and two Java statements in the
consequence block. There is also an optional and keyword between the conditions
to make it more readable.

DSLR file format
A .dslr file contains the sentences written using the DSL. The .dslr file is very
similar to the .drl file. One thing to note is that by prepending a line with a '>', we
can turn off the expander for the line. This allows us to write a hybrid .dslr file that
contains traditional DRL rules and DSL rules. For example, if we are not yet sure
how to map some complex rule, we can leave it in its original .drl file format.

DSL for multiple constraints in a condition
We'll go through more complex DSLs. Let's look at a standard condition for example:

Account(owner != null, balance > 100, currency == "EUR")

Code listing 14: Condition that matches some account.

It is difficult to write DSL that will allow us to create conditions with any subset
of constraints from the code listing above (without writing down all possible
permutations). The '-' feature comes to the rescue:

[condition][]There is an Account that=$account : Account()
[condition][]-has owner=owner != null
[condition][]-has balance greater than {amount}=balance > {amount}
[condition][]-has currency equal to {currency}=currency == {currency}

Code listing 15: DSL using the '-' feature. This can create seven combinations of
the constraints.

When the DSL condition starts with '-', the DSL parser knows that this constraint
should be added to the last condition (in a .dslr file). With the preceding DSL, the
following condition can be created:

There is an Account that
−	 has currency equal to "USD"
"has balance greater than 2000"

Code listing 16: Condition using the '-' feature (in a .dslr file).

The '-' feature increases the flexibility of the resulting language. It works just fine
for simple cases involving only one pair of brackets. In case of multiple brackets in
the condition, Drools always adds the constraint to the last pair of brackets. This may
not always be what we want. We have to find a different way of specifying multiple
constraints in a condition. We can also write our DSL in the following manner:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[89]

[condition][]There is an Account that {constraints} = Account(
{constraints})
[condition][]has {field} equal to {value}={field} == {value}
[condition][]and has {field} equal to {value}=, {field} == {value}

Code listing 17: Flexible DSL that can be expanded to a condition with two
field constraints.

With this DSL, the following DSLR can be written:

There is an Account that has owner equal to null and has balance equal
to 100

Code listing 18: DSLR that describes an account with two constraints.

If we want to have more conditions, we can simply duplicate the last line in the DSL.
Remember? Translation is a single pass process.

Named capture groups
Sometimes, when a more complex DSL is needed, we need to be more precise at
specifying what a valid match is. We can use named capture groups with regular
expressions to give us the needed precision. For example:

{name:[a-zA-Z]+}

Code listing 19: Name that matches only characters.

Regular expressions (java.util.regex.Pattern) can be used not
only for capturing variables but also within the DSL. For example, in
order to carry out case insensitive matching. If we look at the DSL from
code listing 15, the users should be allowed to type Account, account,
ACCOUNT, or even aCcount in their .dslr files. This can be done by
enabling the embedded case insensitive flag expression—(?i):
[condition][]There is an (?i:account) that

Another useful example is sentences that are sensitive to
gender—(s)?he to support "he" and "she", and so on.
In order to make the sentences space insensitive, Drools automatically
replaces all spaces with \s+. Each \s+ matches one or more spaces. For
example, the following line in a .dslr file will be successfully expanded
by the DSL from code listing 15:
There is an Account that

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[90]

DSL for data transformation rules
We'll now implement DSL for the data transformation rules from Chapter 4, Data
Transformation. We'll reuse our rule unit tests to verify that we don't change the
functionality of the rules but only their representation. The unit test class will be
extended and the method for creating KnowledgeBase will be overridden to use the
.dsl file and .dslr file as inputs. Rule names will stay the same. Let's start with the
twoEqualAddressesDifferentInstance rule:

rule twoEqualAddressesDifferentInstance
 when
 There is legacy Address-1
 There is legacy Address-2
 - same as legacy Address-1
 then
 remove legacy Address-2
 Display WARNING for legacy Address-2
end

Code listing 20: Rule for removing redundant addresses
(dataTransformation.dslr file).

The conditions can be implemented with the following DSL:

[condition][] legacy {object}-{id} = {object}-{id}
[condition][] There is {object}-{id} = ${object}{id} : Map(this["_
type_"] == "{object}")
[condition][]- same as {object}-{id} = this == ${object}{id}, eval(
${object}1 != ${object}2)

Code listing 21: DSL for conditions (dataTransformation.dsl file).

The first mapping is a simple translation rule, where we remove the word legacy.
The next mapping captures a map with its type. The last mapping includes the
equality test with the object identity test. Mapping for consequences is as follows:

[consequence][] legacy {object}-{id} = ${object}{id}
[consequence][]Display {message_type_enum} for {object}=validationRepo
rt.addMessage(reportFactory.createMessage(Message.Type.{message_type_
enum}, kcontext.getRule().getName(), {object}));
[consequence][]remove {object} = retract({object});

Code listing 22: DSL for consequences.

The first mapping just removes the word legacy. The second mapping
adds a message to validationReport. Finally, the last mapping
removes an object from the knowledge session. This is all we need for the
twoEqualAddressesDifferentInstance rule.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[91]

As you can see, we started with the sentence in the domain specific language
(code listing 1) and then we've written the transformation to reflect the rules (from
Chapter 4). In reality, this is an iterative process. You'll modify the .dslr and .dsl
files until you are happy with the results. It is also a good idea to write your rules in
standard .drl first and only then try to write a DSL for them.

We'll move to the next rule, addressNormalizationUSA:

rule addressNormalizationUSA
 when
 There is legacy Address-1
 - country is one of "US", "U.S.", "USA", "U.S.A"		
 then
 for legacy Address-1 set country to USA
end

Code listing 23: DSLR rule for normalizing address country field.

The rule just needs another constraint type:

[condition][]- country is one of {country_list} = this["country"] in
({country_list})

Code listing 24: Another condition mapping.

The consequence is defined with two mappings. The first one will translate the
country to an enum and the second will then perform the assignment.

[consequence][]set country to {country}=set country to Address.
Country.{country}
[consequence][]for {object}set {field} to {value} = modify({object})
\{ put("{field}", {value}) \}

Code listing 25: Consequence mapping for the country normalization rule.

Please note that the curly brackets are escaped. Moreover, the original rule used mvel
dialect. It is a good idea to write your rules using the same dialect. It makes the DSL
easier. Otherwise, the DSL will have to be "dialect aware".

The other country normalization rule can be written without modifying the DSL.
We'll now continue with unknownCountry rule:

rule unknownCountry
Apply after address normalizations
 when
 There is legacy Address-1
 - country is not normalized

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[92]

 then
 Display ERROR for legacy Address-1
end

Code listing 26: DSLR representation of the unknownCountry rule.

The whole sentence Apply after address normalizations is mapped as a
keyword mapping:

[keyword][] Apply after address normalizations = salience -10

Code listing 27: salience keyword mapping.

Now, we can use the other rule attributes to achieve the same goal just by changing
the DSL.

Additional mapping that is needed:

[condition][]- country is not normalized = eval(!($Address1.
get("country") instanceof Address.Country))

Code listing 28: Another condition mapping.

In the condition mapping, the $Address1 is hard-coded. This is fine for the rules that
we have.

As you can imagine, the rest of the rules follow similar principles.

What we have achieved by writing this DSL is better readability. A business analyst
can verify the correctness of these rules more easily. We could push this further by
defining a complete DSL that can represent any concept from the problem domain.
The business analyst will then be able to express any business requirement just by
editing the .dslr file.

Decision tables
Decision tables are another form of human-readable rules that are useful when there
are lots of similar rules with different values. Rules that share the same conditions
with different parameters can be captured in a decision table. Decision tables can be
represented in an Excel spreadsheet (.xls file) or a comma separated values (.csv
file) format. Starting from version 5.0, Drools supports web-based decision tables as
well. They won't be discussed in this book; however, they are very similar. Let's have
a look at a simple decision table in .xls format.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[93]

The preceding screenshot shows a decision table in validation.xls opened with
OpenOffice Calc editor. It shows one decision table for validating a customer. Line 10
shows four columns. The first one defines rule name, the next two define conditions,
and the last one is for defining actions/consequences. The next three lines (11-13)
represent the individual rules—one line per rule. Each cell defines parameters for
conditions/consequences. If a cell doesn't have a value, that condition/action is
ignored. Some rows in the spreadsheet are grouped and hidden (see the two plus
(+) signs in the left). This makes the decision tables more user-friendly, especially for
business users. Please note that tables don't have to start on the first column. The full
validation.xls file is as follows:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[94]

Every file for defining decision tables start with a global configuration section.
The configuration consists of name-value pairs. As can be seen from the
screenshot above:

RuleSet defines the package
Import specifies the classes used, including static imported functions
Variables is used for global variables
Notes can be any text

Further:

Functions can be used to write local functions as in .drl format
Worksheet specifies the sheet to be used; by default only the first sheet is
checked for rules

The RuleTable then denotes the start of the decision table. It has no specific purpose.
It is used only to group rules that operate on the same objects and share conditions.
The next line defines column types. The following column types are available:

CONDITION—defines a single rule condition or constraint, the following row
can contain type for this condition, if it doesn't, then the next row must define
full condition (with a type, not just a constraint as in the preceding case).
ACTION—rule action. Similar to condition, the next line can contain any
global or bound variable. Drools will then assume that the next line is a
method that should be called on this global or bound variable.
PRIORITY—for defining rule salience.
NAME—by default rule names are auto generated, NAME can be used to
explicitly specify the name.
No-loop or Unloop—specifies the rule no-loop attribute.
XOR-GROUP—specifies rule activation-group (this will be discussed in the
upcoming section, Drools Flow).

For full configuration options, please consult the Drools manual
(http://www.jboss.org/drools/documentation.html).

The next line from the preceding screenshot looks similar to what we see in a .drl
file. It is a simple condition that matches any Customer object and exposes this object
as the $customer variable. The only difference is that there are no brackets. They
will be added automatically by Drools at parsing time. Please note that this line
contains only two columns. The first two columns are merged into one column.
This is because they operate on the same type (Customer). If we don't merge the
two columns, they'll match two separate objects (which may or may not be the
same instance).

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[95]

The next line then defines individual constraints (in case of conditions) or code
blocks (in case of actions). Special parameters can be used as $param or $1, $2,
$3, and so on. The first one is used if our constraint needs only one parameter;
otherwise, the $n format should be used.

The following line (corresponds to line 10 in the preceding screenshot showing a
decision table in validation.xls file) is for pure informational purposes. It should
contain some meaningful description of the column/action so that we don't have to
always look at how it is implemented (by expanding/collapsing rows).

Finally, the actual values follow in subsequent rows. Each line represents one rule. For
example, the first line gets translated behind the scenes to the following .drl rule:

#From row number: 11
rule "addressRequired"
 when
 $customer : Customer(address == null)
 then
 warning(kcontext);
end

Code listing 29: Generated rule from a decision table.

The .drl rule is exactly the same as we've implemented in Chapter 3, Validation.
We can even reuse the same unit test to test this rule.

Advantages of a decision table
Here are the advantages of a decision table:

It is easy to read and understand.
Refactoring is quicker because we just have to change a column definition to
change a group of related rules (that is, it is easy to change conditions across
group of rules).
Isolation is similar to DSL; decision tables can hide the rule
implementation details.
Provides separation between the rules and data (they are still in one file
but separated).
Any formatting available in a spreadsheet editor can be applied to present
these data in a more readable manner (for example, using a drop-down for
a list of values. It can reduce errors from mistyping a value into a cell by
allowing only valid values).
Eclipse Drools plugin can also validate a spreadsheet. This is very useful
when writing rules. The Problems view in Eclipse shows what exactly is
wrong with the generated .drl file.

•
•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[96]

Disadvantages of a decision table
It can be awkward to debug/write these rules. Sometimes it helps to convert
the spreadsheet to a .drl file, save this file, and fix it, as we're used to.
Decision tables shouldn't be used if the rules don't share many conditions.
Further, the order of conditions is important. In a decision table, the order
of a condition is given by the order of a column. Care should be taken if you
want to convert the existing DRL rules into decision tables, as the order of
conditions may change (to take advantage of the reuse).
XLS is a binary format which makes version management more difficult.

Calculating the interest rate
As an example, we'll calculate the interest rate based on the account balance,
currency, duration, and type. This calculation is ideal for a decision table because
we have a lot of constraints that are reused across rules with different data. The
decision table looks as follows:

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[97]

Please note that the Account object is used in every condition so the CONDITION
columns are merged. We can see the use of parameters $1 and $2. The first line can
be read as: For every transactional account with currency EUR, set its interest rate to 0.01
percent (regardless of the balance). Another line can be read as: For every savings account
whose balance is between 100 EUR and 1000 EUR that is opened for one to three months, set
its interest rate to 3 percent. The following rule will be generated:

#From row number: 16
rule "Interest Calculation_16"	
 when
 $a:Account(type == Account.Type.SAVINGS,
 currency == "EUR", balance >= 100 && < 1000,
 monthsBetweenStartAndEndDate >= 1 && < 3)
 then
 $a.setInterestRate(new BigDecimal("3.00"));
end

Code listing 30: Generated rule for calculating the interest rate.

If we had not used a decision table, we would have to write such rules by hand.
Please note that the second condition column in the decision table above doesn't
have any operator or operand. It simply says currency. It is a special feature and
this is automatically translated to currency == $param.

The last condition column uses getMonthsBetweenStartAndEndDate method of the
Account class.

 private DateMidnight startDate;
 private DateMidnight endDate;

 /**
 * @return number of months between start and end date
 */
 public int getMonthsBetweenStartAndEndDate() {
 if (startDate == null || endDate == null) {
 return 0;
 }
 return Months.monthsBetween(startDate, endDate)
 .getMonths();
 }

Code listing 31: Implementation of getMonthsBetweenStartAndEndDate method
of Account.

The implementation uses the Joda-Time library to do the calculation.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[98]

Project setup
The following libraries are needed on the classpath:

•	 drools-decisiontables-5.0.1.jar: used for compiling spreadsheets into
.drl file format; it knows how to handle .xls and .csv formats.

•	 jxl-2.4.2.jar XLS API: used for parsing .xls spreadsheets.

Testing
For testing the interest calculation rules, we'll use a stateless knowledge session, an
account, and a date object. All tests will reuse the stateless session. The test can be set
up as follows:

 static StatelessKnowledgeSession session;
 Account account;
 static DateMidnight DATE;

 @BeforeClass
 public static void setUpClass() throws Exception {
 KnowledgeBase knowledgeBase =
 createKnowledgeBaseFromSpreadsheet();
 session = knowledgeBase.newStatelessKnowledgeSession();
 DATE = new DateMidnight(2008, 1, 1);
 }

 @Before
 public void setUp() throws Exception {
 account = new Account();
 }

Code listing 32: Setup of the decision table test.

The date will be used to set deposit durations. An account is created for every test
method. The createKnowledgeBaseFromSpreadsheet method is implemented
as follows:

 private static KnowledgeBase createKnowledgeBaseFromSpreadsheet()
 throws Exception {
 DecisionTableConfiguration dtconf =KnowledgeBuilderFactory
 .newDecisionTableConfiguration();
 dtconf.setInputType(DecisionTableInputType.XLS);
 //dtconf.setInputType(DecisionTableInputType.CSV);
 KnowledgeBuilder knowledgeBuilder =
 KnowledgeBuilderFactory.newKnowledgeBuilder();
 knowledgeBuilder.add(ResourceFactory.newClassPathResource(

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[99]

 "interest calculation.xls"), ResourceType.DTABLE,
 dtconf);
 //knowledgeBuilder.add(ResourceFactory
 // .newClassPathResource("interest calculation.csv"),
 // ResourceType.DTABLE, dtconf);

 if (knowledgeBuilder.hasErrors()) {
 throw new RuntimeException(knowledgeBuilder.getErrors()
 .toString());
 }

 KnowledgeBase knowledgeBase = KnowledgeBaseFactory
 .newKnowledgeBase();
 knowledgeBase.addKnowledgePackages(
 knowledgeBuilder.getKnowledgePackages());
 return knowledgeBase;
 }

Code listing 33: Creating a knowledgeBase from a spreadsheet.

As opposed to the other knowledge definitions, the decision table needs a special
configuration that is encapsulated in DecisionTableConfiguration class. This
configuration specifies the type of decision table and it is then passed on to the
knowledge builder. The commented lines show how to create a knowledge base
from a .csv format. The rest should be familiar.

Note if you want to see the generated .drl source, you can get it like this:

 String drlString = DecisionTableFactory
 .loadFromInputStream(ResourceFactory
 .newClassPathResource("interest calculation.xls")
 .getInputStream(), dtconf);

Code listing 34: Getting the .drl representation of the decision table.

It is stored in a drlString string variable; it can be printed to the console and used
for debugging purposes.

We'll now write a test for depositing 125 EUR for 40 days:

 @Test
 public void deposit125EURfor40Days() throws Exception {
 account.setType(Account.Type.SAVINGS);
 account.setBalance(new BigDecimal("125.00"));
 account.setCurrency("EUR");
 account.setStartDate(DATE.minusDays(40));
 account.setEndDate(DATE);

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[100]

 session.execute(account);

 assertEquals(new BigDecimal("3.00"), account
 .getInterestRate());
 }

Code listing 35: Test for depositing 125 EUR for 40 days.

The preceding test verifies that the correct interest rate is set on the account.

And one test for default transactional account rate:

 @Test
 public void defaultTransactionalRate() throws Exception {
 account.setType(Account.Type.TRANSACTIONAL);
 account.setCurrency("EUR");

 session.execute(account);

 assertEquals(new BigDecimal("0.01"), account
 .getInterestRate());
 }

Code listing 36: Test for the default transactional account rate.

The test above, again, verifies that the correct interest rate is set.

Comma Separated values
The XLS spreadsheet can be easily converted into CSV format. Just select Save
as CSV in your spreadsheet editor. However, there is one caveat—CSV format
doesn't support merging of columns by default. For overcoming this, Drools has the
following workaround: if we add three dots at the end of type declarations, they will
be merged into one. It can be seen in the last line of the following CSV excerpt:

"RuleTable Interest Calculation",,,,
"CONDITION","CONDITION","CONDITION","CONDITION","ACTION"
"$a:Account...","$a:Account...","$a:Account...","$a:Account...",

Code listing 37: Excerpt from the interest calculation.csv file.

It is the only change that needs to be done. Tests should pass for CSV format as well.

CSV is a text format as opposed to XLS, which is a binary format. Binary format
makes version management harder. For example, it is very difficult to merge changes
between two binary files. CSV doesn't have these problems. On the other hand, the
presentation suffers.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[101]

Rule Templates
If you like the concept of decision tables, you may want to look at Drools Rule
Templates. They are similar to the decision tables but more powerful. With Rule
Templates, the data is fully separated from the rule (for example, it can come from
a database and have different templates over the same data). You have more power
in defining the resulting rule. The data can define any part of rule (for example,
condition operator, class, or property name). For more information, refer to the Rule
Templates section of the Drools Experts User Guide (available at http://www.jboss.
org/drools/documentation.html).

Drools Flow
Drools Flow (or ruleflow in short) is another way we can have human readable rules.
It is not a substitute to rules as was the case with DSLs and decision tables. It is a
way of defining the execution flow between complex rules. The rules are then easier
to understand.

Drools Flow can externalize the execution order from the rules. The execution order can be
then managed externally. Potentially, you may define more execution orders for one
KnowledgeBase.

Drools Flow can be even used as a workflow engine replacement. It can execute
arbitrary actions or user-defined work items at specific points within the flow. It
can be even persisted as we'll see in Chapter 8, Drools Flow, which shows a bigger
example of using ruleflows.

Drools Agenda
Before we talk about how to manage rule execution order, we have to understand
Drools Agenda. When an object is inserted into the knowledge session, Drools tries
to match this object with all of the possible rules. If a rule has all of its conditions
met, its consequence can be executed. We say that a rule is activated. Drools records
this event by placing this rule onto its agenda (it is a collection of activated rules).
As you may imagine, many rules can be activated, and also deactivated, depending
on what objects are in the rule session. After the fireAllRules method call, Drools
picks one rule from the agenda and executes its consequence. It may or may not cause
further activations or deactivations. This continues until the Drools Agenda is empty.

The purpose of the agenda is to manage the execution order of rules.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[102]

Methods for managing rule execution order
The following are the methods for managing the rule execution order (from the
user's perspective). They can be viewed as alternatives to ruleflow. All of them are
defined as rule attributes.

salience: This is the most basic one. Every rule has a salience value. By
default it is set to 0. Rules with higher salience value will fire first. The
problem with this approach is that it is hard to maintain. If we want to add
new rule with some priority, we may have to shift the priorities of existing
rules. It is often hard to figure out why a rule has certain salience, so we
have to comment every salience value. It creates an invisible dependency
on other rules.
activation-group: This used to be called xor-group. When two or more
rules with the same activation group are on the agenda, Drools will fire just
one of them.
agenda-group: Every rule has an agenda group. By default it is MAIN.
However, it can be overridden. This allows us to partition Drools Agenda
into multiple groups that can be executed separately.

rule
matching

Drools agenda

rule
execution

MAIN

agenda/ruleflow groups activated
rules

The figure above shows partitioned Agenda with activated rules. The
matched rules are coming from left and going into Agenda. One rule is
chosen from the Agenda at a time and then executed/fired.
At runtime we can programmatically set the active Agenda group (through
the getAgenda().getAgendaGroup(String agendaGroup).setFocus()
method of KnowledgeRuntime), or declaratively, by setting the rule attribute
auto-focus to true. When a rule is activated and has this attribute set to
true, the active agenda group is automatically changed to rule's agenda
group. Drools maintains a stack of agenda groups. Whenever the focus is set
to a different agenda group, Drools adds this group onto this stack. When
there are no rules to fire in the current agenda group, Drools pops from the
stack and sets the agenda group to the next one. Agenda groups are similar
to ruleflow groups with the exception that ruleflow groups are not stacked.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[103]

Note that only one instance of each of these attributes is allowed per rule
(for example, a rule can only be in one ruleflow-group; however, it can also
define a salience within that group).

Ruleflow
As we've already said, ruleflow can externalize the execution order from the rule
definitions. Rules just define a ruleflow-group attribute, which is similar to
agenda-group. It is then used to define the execution order. A simple ruleflow
(in the example.rf file) is shown in the following screenshot:

The preceding screenshot shows a ruleflow opened with the Drools Eclipse plugin.
On the lefthand side are the components that can be used when building a ruleflow.
On the righthand side is the ruleflow itself. It has a Start node which goes to ruleflow
group called Group 1. After it finishes execution, an Action is executed, then the
flow continues to another ruleflow group called Group 2, and finally it finishes at
an End node.

Ruleflow definitions are stored in a file with the .rf extension. This file has an XML
format and defines the structure and layout for presentational purposes.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[104]

Another useful rule attribute for managing which rules can be activated
is lock-on-active. It is a special form of the no-loop attribute. It can
be used in combination with ruleflow-group or agenda-group. If it
is set to true, and an agenda/ruleflow group becomes active/focused,
it discards any further activations for the rule until a different group
becomes active. Please note that activations that are already on the
agenda will be fired.

A ruleflow consists of various nodes. Each node has a name, type, and other
specific attributes. You can see and change these attributes by opening the standard
Properties view in Eclipse while editing the ruleflow file. The basic node types are
as follows:

Start
End
Action
RuleFlowGroup
Split
Join

They are discussed in the following sections.

Start
It is the initial node. The flow begins here. Each ruleflow needs one start node.
This node has no incoming connection—just one outgoing connection.

End
It is a terminal node. When execution reaches this node, the whole ruleflow is
terminated (all of the active nodes are canceled). This node has one incoming
connection and no outgoing connections.

Action
Used to execute some arbitrary block of code. It is similar to the rule consequence—it
can reference global variables and can specify dialect.

RuleFlowGroup
This node will activate a ruleflow-group, as specified by its RuleFlowGroup attribute.
It should match the value in ruleflow-group rule attribute.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[105]

Split
This node splits the execution flow into one or many branches. It has two
properties—name and type. Name is just for display purposes. Type can have
three values: AND, OR, and XOR:

AND: The execution continues through all of the branches.
OR: Each branch has a condition. The condition is basically same as a rule
condition. If the condition is true, the ruleflow continues through this branch.
There must be at least one condition that is true; otherwise, an exception will
be thrown.
XOR: Similar to OR type, each branch has a condition, but in this case, with
a priority. The ruleflow continues through just one branch, whose condition
is true and it has the lowest value in the priority field. There must be at least
one condition that is true; otherwise, an exception will be thrown.

The dialog for defining OR and XOR split types looks like the following screenshot:

The screenshot above shows Drools Eclipse plugin ruleflow constraint editor. It is
accessible from the standard Eclipse Properties view.

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[106]

Join
It joins multiple branches into one. It has two properties—name and a type. Name
is for display purposes. Type decides when the execution will continue. It can have
following values:

AND: Join waits for all the incoming branches. The execution then continues.
XOR: Join node waits for one incoming branch.

Please consult the Drools manual for further node types.

Example
If you look at data transformation rule in Chapter 4, Data Transformation, you'll see
that in some rules we've used salience to define rule execution order. For example,
all of the addresses needed to be normalized (that is, converted to enum) before we
could report the unknown countries. The unknown country rule used salience
of -10, which meant that it would fire only after all address normalization rules.
We'll now extract this execution order logic into a ruleflow to demonstrate how it
works. The ruleflow might look like the following screenshot:

Split

address normalization default

unknown country

Join

Start

End

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[107]

When the execution starts, it goes through the Start node straight into the Split node.
In this case, it is an and type split node. It basically creates two parallel branches that
will be executed concurrently (note that this doesn't mean multiple threads). We
can see that the flow is explicitly specified. address normalization happens before
unknown country reporting. Parallel to this branch is a default ruleflow group.
It contains the other rules. Finally, a join node of type and is used to block until all
branches complete and then the flow continues to the terminal node. We had to use
the Join node (instead of going straight to the End node), because as soon as some
branch in a ruleflow reaches the End node, it terminates the whole ruleflow (that is,
our branches may be canceled before competition, which is not what we want).

The process ID is set to dataTransformation. Click on the canvas in the ruleflow
editor and then in the Properties view (Eclipse Properties plugin), set the ID to
this value.

Rules
Next we create copy of dataTransformation.drl file from Chapter 4 and we'll
name it dataTransformation-ruleflow.drl. We'll make the following changes:

Each rule gets new attribute: ruleflow-group "default"
Except the address normalization rules for example:

	 rule addressNormalizationUSA
	 ruleflow-group "address normalization"

Code listing 37: Top part of the USA address normalization rule.
Unknown country rule gets the "unknown country" ruleflow group.

KnowledgeBase setup
We can now create a knowledge base out of the ruleflow file and the .drl file.

 static KnowledgeBase createKnowledgeBaseFromRuleFlow()
 throws Exception {
 KnowledgeBuilder builder = KnowledgeBuilderFactory
 .newKnowledgeBuilder();
 builder.add(ResourceFactory.newClassPathResource(
 "dataTransformation-ruleflow.drl"), ResourceType.DRL);
 builder.add(ResourceFactory.newClassPathResource(
 "dataTransformation.rf"), ResourceType.DRF);
 if (builder.hasErrors()) {
 throw new RuntimeException(builder.getErrors()
 .toString());
 }

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[108]

 KnowledgeBase knowledgeBase = KnowledgeBaseFactory
 .newKnowledgeBase();
 knowledgeBase.addKnowledgePackages(builder
 .getKnowledgePackages());
 return knowledgeBase;
 }

Code listing 38: Method that creates KnoweldgeBase with a ruleflow.

A knowledge base is created from both files .drl and .rf. To achieve
true isolation of unit tests, consider constructing the knowledge base only
from the .drl file or .rf file. That way, the unit tests can focus only on
the relevant part.

Tests
The test setup needs to be changed as well. Ruleflows are fully supported only for
stateful sessions. Stateful sessions can't be shared across tests because they maintain
state. We need to create a new stateful session for each test. We'll move the session
initialization logic from the setUpClass method that is called once per test class into
the intialize method that will be called once per test method:

 static KnowledgeBase knowledgeBase;
 StatefulKnowledgeSession session;

 @BeforeClass
 public static void setUpClass() throws Exception {
 knowledgeBase = createKnowledgeBaseFromRuleFlow();
 }

 @Before
 public void initialize() throws Exception {
 session = knowledgeBase.newStatefulKnowledgeSession();

Code listing 39: Excerpt from the unit test initialization.

Once the stateful session is initialized, we can use it.

We'll write a test that will create a new address map with an unknown country. This
address map will be inserted into the session. We'll start the ruleflow and execute all
of the rules. The test will verify that the unknownCountry rule has been fired:

 @Test
 public void unknownCountryUnknown() throws Exception {
 Map addressMap = new HashMap();
 addressMap.put("_type_", "Address");

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 5

[109]

 addressMap.put("country", "no country");

 session.insert(addressMap);
 session.startProcess("dataTransformation");
 session.fireAllRules();

 assertTrue(validationReport.contains("unknownCountry"));
 }

Code listing 40: Test for the unknown country rule with an unknown country.

Note that the order of the three session methods is important. All of the facts need
to be in the session before the ruleflow can be started and rules can be executed.

Please note that in order to test this scenario, we didn't use any agenda filter.
This test is more like an integration test where we need to test more rules
cooperating together.

Another test verifies that the ruleflow works with a known country:

 @Test
 public void unknownCountryKnown() throws Exception {
 Map addressMap = new HashMap();
 addressMap.put("_type_", "Address");
 addressMap.put("country", "Ireland");

 session.startProcess("dataTransformation");
 session.insert(addressMap);
 session.fireAllRules();

 assertFalse(validationReport.contains("unknownCountry"));
 }

Code listing 41: Test for the unknown country rule with a known country.

As a stateful session is being used, every test should call the dispose method on the
session after it finishes. It can be done in the following manner:

 @After
 public void terminate() {
 session.dispose();
 }

Code listing 42: Calling the session.dispose method after every test.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Human-readable Rules

[110]

Summary
In this chapter we've learned about writing more user-friendly rules using
DSLs, decision tables, and ruleflows. You can mix and match these approaches. It
makes sense to write some rules using DSL, some using decision tables, and more
complex rules using pure .drl file format. KnowledgeBase can be created from
multiple sources.

DSLs are very useful if there is a need for the business analyst to read and
understand the existing rules and even write new rules. The resulting language
uses businesses terminologies making it more natural for the business analyst. DSL
provides an abstraction layer that hides complicated rule implementations. The
Eclipse editor brings auto competition so that the rules are easier to write.

Decision tables, on the other hand, are useful when we have a lot of similar rules that
use different values as was the case in the interest rate calculation example. It makes
it easy to change such rules because the rule implementation is decoupled from the
values they use. Spreadsheet format is also more concise. We can fit more rules into
one screen, which makes it easier to understand the overall picture.

In the last section, we've learned about Drools Flow, Agenda, and various ways of
managing rule execution order. Drools Flow managed the execution order in a nice
human-readable graphical representation.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session
In this chapter, we'll look at using a stateful knowledge session for executing
validation rules from Chapter 3, Validation. We'll discuss the advantages and
disadvantages that this brings. As a stateful session maintains a state, we'll go
through various serialization modes that are supported. We'll also cover logical
assertions, fact handles, and a new rule conditional element called collect.

Introduction to stateful session
Drools supports two kinds of knowledge sessions for executing rules: stateful and
stateless. The names might be a bit misleading at first, because both the sessions
maintain a state. The difference is that a stateful session also maintains its state
between session invocations (calls to the fireAllRules method). This is useful when we
need to call rules multiple times over a period of time while making iterative changes
to its state.

Another use case is if we need to execute the same set of rules over the same facts
that don't change very often over time. It would be a waste of computer resources to
insert all facts over and over again. Instead, we should use a stateful session and tell
it about the facts that have been changed since the last execution.

The disadvantage is that this session is not thread safe because it maintains a state.
Working with this session is more complex because we have to take into account
its state unlike a stateless session where a new state is formed with each session
invocation. A stateful session needs to be destroyed when we finish working with it.
Only then can the garbage collector reclaim the resources it holds.

Generally speaking, if a task can be done just with a stateless session, this should be
preferred. It is in line with the Keep it Short and Simple (KISS) principle.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[112]

org.drools.runtime.StatefulKnowledgeSession
StatefulKnowledgeSession is the interface for all Drools
stateful sessions. A stateful knowledge session keeps state
between session invocations. It can be created by calling the
newStatefulKnowledgeSession method on KnowledgeBase. By
default, KnowledgeBase keeps a transient reference to all the stateful
sessions. By keeping the references, the sessions can be updated when
a new rule is added or an existing rule is removed. In case a new rule is
added to the knowledge base, it notifies all of the existing sessions, and
all of the objects/facts are automatically matched with rule's conditions
as if the rule was always there. If an existing rule is removed from the
knowledge base, it is removed from each knowledge session as well. If
we've finished working with the session, the engine should be notified by
calling the dispose() method on the StatefulKnowledgeSession.
The rule engine can then disassociate this session from KnowledgeBase,
free all of the session's memories and remove attached event listeners so
that the session can be garbage collected. If a lot of stateful sessions were
created and we forgot to call the dispose method, the program may
soon run out of memory.
StatefulKnowledgeSession implements the BatchExecutor
interface in a similar manner as StatelessKnowledgeSession
does. It allows us to execute commands that implement the Command
interface. The only difference in StatelessKnowledgeSession is
that stateless session automatically executes FireAllRulesCommand
if we haven't done it explicitly. Note that there is a special command—
CommandFactory.newBatchExecution—that allows us to execute
multiple commands at once.

It should be noted that from the rules perspective, it makes no difference if we use
a stateful or stateless session. We can switch from stateless to stateful and vice versa
without changing the rules.

Validation using stateful session
Our implementation of validation service from Chapter 3, Validation, is working
seamlessly, but it is doing more work than needed. The state of the session isn't kept,
and so, all of the rules have to be processed every time. Imagine a web application
where a user logs into his/her bank account and wants to do a couple of changes.
Every change needs to leave the system in a consistent state. The validation must
run as a part of every request. However, with the validation implementation that
we have, all of the objects will have to be inserted into a new stateless knowledge

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[113]

session over and over again which is unnecessary. With a stateful session, we just
need to insert all of the objects once and then simply update only those that changed.
This can save us computing time, especially if we have lots of facts that need to be
inserted. Of course, one needs to know which objects did change, but this shouldn't
be a problem. If, for example, a customer is changing his/her demographic data,
only the Customer and Address objects need to be updated. The client of this service
API can make these decisions and update only Customer and Address objects.

Design overview
If we think about the implementation, there are at least two approaches to stateful
sessions. The first one is to have the stateful session in the domain model itself. The
advantage is that you'll get a rich model that knows how to validate itself. Domain
objects can even be intelligent enough to know if they've been changed, and only
then call session.update, removing the burden from the user of this API. Every
domain object will have a FactHandle, which is a handle to its representation in
the knowledge session. FactHandle is needed for external (that is, not from within
a DRL file) interactions with the knowledge session. The disadvantage is that the
model will depend on the Drools API or at least some abstraction of it. Moreover,
each object will need to have access to the knowledge session probably through its
parent. This is not ideal from the point of domain modeling.

The second option is to separate this logic completely from the domain model by
having a separate stateful service. The disadvantage of this approach is that we'll
get a more anemic domain model (where business logic is implemented outside
of domain model). The stateful service will have to maintain a map of fact to
FactHandle. Alternatively, it could use such an existing map that Drools maintains
internally—that is, delegate to session's getFactHandle method for retrieval of
FactHandle. By default, it retrieves FactHandle by fact identity. It works fine as
long as the identities don't change. If they do, then we have to re-populate
the session.

Stateful validation service
We'll implement the second option (note that both of the options are valid and it
shouldn't be much different to perform the first option). Let's start with a stateful
service interface. Firstly, the service needs to know about our domain objects probably
through some register method. Then it needs to be notified when an object has been
changed. Finally, it needs to generate a validation report. The interface is as follows:

public interface StatefulService {
 /**
 * registers new objects with this service or notifies this
 * service that an object has been modified

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[114]

 */
 void insertOrUpdate(Object object);

 /**
 * same as insertOrUpdate(Object object); plus this method
 * calls insertOrUpdate on child objects
 */
 void insertOrUpdateRecursive(Customer customer);

 /**
 * executes validation rules and returns report
 */
 ValidationReport executeRules();

 /**
 * releases all resources held by this service
 */
 void terminate();
}

Code listing 1: Stateful validation service interface (StatefulService.java file).

The stateful service works in a similar manner as a stateful session. New objects can
be inserted into the stateful service and existing objects can be updated. The first
two methods of this service are exactly for this purpose. The second method is a
convenience method that will traverse the tree of objects starting with the Customer
(argument of the method). We can use this approach because all of our domain
objects are traversable or reachable from the Customer object.

After all of the needed objects have been inserted/updated, the executeRules
method can be called. It will execute all the rules and return a validation report. If the
validation fails, this report can be displayed to the user. The user can make changes,
which translates to inserting new or updating an existing object by using the two
methods mentioned earlier. Then the rules are executed again and the process may
continue until the user is happy with the validation result (for example, validation
report has no errors). When we've finished working with the stateful service, we
should call its terminate method to properly release all of the resources it holds.
The following is a graphical representation of this whole process (state diagram of
StatefulService).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[115]

begin

insertOrUpdate
insertOrUpdate

setup

executeRules
execution

terminate

end

Let's now start implementing this service. It will use some classes that we should be
familiar with from Chapter 3, Validation:

public class StatefulServiceImpl implements StatefulService,
 Serializable {
 private transient KnowledgeBase knowledgeBase;
 private transient StatefulKnowledgeSession statefulSession;
 private transient ReportFactory reportFactory;

 public StatefulServiceImpl(KnowledgeBase knowledgeBase,
 ReportFactory reportFactory,
 BankingInquiryService inquiryService) {
 this.reportFactory = reportFactory;
 this.knowledgeBase = knowledgeBase;
 statefulSession = createKnowledgeSession(inquiryService);
 }

Code listing 2: Service constructor and properties (StatefulServiceImpl.java file).

The service implements StatefulService interface and also the java.
io.Serializable interface. It has three properties: knowledgeBase, the session
itself, and reportFactory. They are all declared as transient, which means they
won't be serialized by default. We'll talk about serialization later in this chapter. The
constructor sets the properties and delegates the creation of the stateful knowledge
session to the createKnowledgeSession method. This method is as follows:

 private StatefulKnowledgeSession createKnowledgeSession(
 BankingInquiryService inquiryService) {
 StatefulKnowledgeSession session = knowledgeBase
 .newStatefulKnowledgeSession();
 session.setGlobal("reportFactory", reportFactory);
 session.setGlobal("inquiryService", inquiryService);
 return session;
 }

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[116]

Code listing 3: Method for creating and setting up the stateful knowledge session
(StatefulServiceImpl.java file).

The createKnowledgeSession method also sets the global variables as
required by the validation rules. knowledgeBase will be created from the
same file—validation.drl.

The following code listing shows the implementation of the two setup methods:

 public void insertOrUpdate(Object fact) {
 if (fact == null) {
 return;
 }

 FactHandle factHandle = statefulSession
 .getFactHandle(fact);

 if (factHandle == null) {
 statefulSession.insert(fact);
 } else {
 statefulSession.update(factHandle, fact);
 }
 }

 public void insertOrUpdateRecursive(Customer customer) {
 insertOrUpdate(customer);
 insertOrUpdate(customer.getAddress());
 if (customer.getAccounts() != null) {
 for (Account account : customer.getAccounts()) {
 insertOrUpdate(account);
 }
 }
 }

Code listing 4: Two stateful service setup methods (StatefulServiceImpl.java file).

The insertOrUpdate generic method takes a fact and checks if this fact already
exists in the knowledge session. If it exists, it updates this fact, and if it doesn't exist,
it inserts this fact into the session. The statefulSession.getFactHandle method is
used to check the fact existence. It takes the fact and returns FactHandle.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[117]

org.drools.runtime.rule.FactHandle
As the name suggests, it is a handle to an already inserted fact in the
knowledge session. When a fact is inserted, the insert method returns
FactHandle. An object inside the knowledge session can be modified
only through its FactHandle. The session's modify/update method
actually takes two parameters: FactHandle and the updated object. You
may be wondering why the modify/update method worked in the rule
consequences that we've written so far. It is because behind the
scenes, Drools provides FactHandle for us, as it is known in the
rule consequence.
Drools supports two fact insertion modes: equality and identity. They
can be set at KnowledgeBase creation time in the org.drools.
KnowledgeBaseConfiguration. Identity mode means that no two
objects with the same JVM object reference can be inserted into the
knowledge session. Equality mode works based on the equals method.
The default is identity. Changing the insertion mode also changes the
way how session.getFactHandle method behaves (if it is changed
to equality mode, it will retrieve facts based on the equals method).
The rule engine needs FactHandle to correctly identify the fact we're
referring to. Let's say that the insertion mode is set to identity and we
want to change the value of some immutable object (for example,
java.math.BigDecimal). The only way to change it is to create a new
instance. Then, if the session.update method is called, by passing in
the FactHandle together with the object, the engine can correctly update
itself. Another example is if the insertion mode is set to equality and
we're changing the object state that is part of the equals contract. Only
through the FactHandle will the engine recognize the object.
Note that FactHandle is not serializable out of the box.

The insertOrUpdateRecursive method takes Customer and simply calls the
insertOrUpdate method for the Customer object and all its descending objects.

The method that represents the second state of the stateful service (execution of
validation rules) is as follows:

 public ValidationReport executeRules() {
 ValidationReport validationReport =
 reportFactory.createValidationReport();
 statefulSession.setGlobal("validationReport",
 validationReport);
 statefulSession.fireAllRules();
 return validationReport;
 }

Code listing 5: Method for rule execution (StatefulServiceImpl.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[118]

It creates a validation report, sets it as a global variable, fires all rules, and returns
this validation report. A new validation report is created for every rule execution.

Finally, the method that handles the termination of this service is as follows:

 public void terminate() {
 statefulSession.dispose();
 }

Code listing 6: Method for terminating the service (StatefulServiceImpl.java file).

It calls the session's dispose method, which releases all of the resources held by
this session.

Integration testing
If we run the tests implemented in the validation Chapter 2, Basic Rules, they would
run just fine. However, the purpose of this section is to test the interactions that
include multiple user requests. The test will cover the following scenario: the user
logs in, performs multiple operations, and then logs out.

The setup of StatefulServiceIntegrationTest is similar to what we've
done before:

public class StatefulServiceIntegrationTest {
 StatefulServiceImpl statefulService;
 static KnowledgeBase knowledgeBase;

 @BeforeClass
 public static void setUpClass() throws Exception {
 knowledgeBase = DroolsHelper.createKnowledgeBase(
 "validation-stateful.drl");
 }

 @Before
 public void initialize() throws Exception {
 ReportFactory reportFactory = new DefaultReportFactory();
 BankingInquiryService inquiryService =
 new BankingInquiryServiceImpl();

 statefulService = new StatefulServiceImpl(knowledgeBase,
 reportFactory, inquiryService);
 }

 @After
 public void terminate() {
 statefulService.terminate();
 }

Code listing 7: StatefulServiceIntegrationTest setup.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[119]

In the setUpClass method, the knowledgeBase is created from the file validation-
stateful.drl. This file is, for now, a pure copy of the validation.drl file.
The initialize method will run before every test method and it will create
statefulService that we'll test. After each test method, statefulService
will be discarded by calling the terminate method.

Before writing the test, a helper method for creating a valid customer will be needed:

 private Customer createValidCustomer() {
 Customer customer = new Customer();
 customer.setPhoneNumber("123 456 789");
 customer.setAddress(new Address());

 statefulService.insertOrUpdateRecursive(customer);
 ValidationReport report = statefulService.executeRules();
 assertEquals(0, report.getMessages().size());
 return customer;
 }

Code listing 8: Helper method for creating a valid customer
(StatefulServiceIntegrationTest.java file).

This method creates a new valid Customer and sets the required fields. This
customer is then passed into the insertOrUpdateRecursive method which, behind
the scenes, inserts the customer and address object into a stateful session. As this is a
valid customer, the method verifies that the validation report has no messages.

Let's write a test method. It will use the previous method to create a valid Customer.
Since we'll be testing a full user session interaction, the test method will be split
into three sections. The first part is shown in the following code listing. It will
blank the customer phone number, notify the service, and verify that it contains
the correct report.

 @Test
 public void statefulValidation() throws Exception {
 Customer customer = createValidCustomer();

 customer.setPhoneNumber("");
 statefulService.insertOrUpdate(customer);
 ValidationReport report = statefulService.executeRules();
 assertEquals(1, report.getMessages().size());
 assertTrue(report.contains("phoneNumberRequired"));

Code listing 9: First part of statefulValidation test method
(StatefulServiceIntegrationTest.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[120]

As we've modified the customer object, statefulService is notified about this
by calling the insertOrUpdate method and passing in the customer object. After
executing the rules, the test verifies that there is one message in the validation report.

Let's imagine that the user now creates a new account. The next part tests this scenario:

 Account account = new Account();
 account.setOwner(customer);
 customer.addAccount(account);
 statefulService.insertOrUpdate(customer);
 statefulService.insertOrUpdate(account);
 report = statefulService.executeRules();
 assertEquals(3, report.getMessages().size());
 assertTrue(report.contains("accountNumberUnique"));
 assertTrue(report.contains("accountBalanceAtLeast"));
 assertTrue(report.contains("phoneNumberRequired"));

Code listing 10: Second part of statefulValidation test method
(StatefulServiceIntegrationTest.java file).

After creating the new Account object and setting its properties, statefulService is
notified. Please note that the notification is done not only for the new Account object,
but also for the Customer object, because it has changed.

Our expectation is that there will be three messages in the report. The balance hasn't
been set. The customer's phone number is still missing. The accountNumberUnique
rule should fire because our stub implementation of bankingInquiryService.
isAccountNumberUnique method simply always returns false.

If we run this, everything else works as expected. Let's continue with the last part of
this test method. It will set the account owner to null and expect one more message
in the validation report (accountOwnerRequired).

 account.setOwner(null);
 statefulService.insertOrUpdate(account);
 report = statefulService.executeRules();
 assertEquals(4, report.getMessages().size());
 assertTrue(report.contains("accountNumberUnique"));
 assertTrue(report.contains("accountOwnerRequired"));
 assertTrue(report.contains("accountBalanceAtLeast"));
 assertTrue(report.contains("phoneNumberRequired"));
 }

Code listing 11: Third and last part of statefulValidation test method
(StatefulServiceIntegrationTest.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[121]

Again, the statefulService is notified that the account fact has been changed.
Please note that only the account object has changed this time. Our expectation is
that there will be four messages in the report (four validation rules are violated).
However, after running the test, only three account validation messages are in the
report. The phoneNumberRequired message is missing. If we look at the rule, we'll
see that it has only one condition: Customer(phoneNumber == null || == ""). As we
had not updated the Customer object, the rule didn't fire.

The problem is that a new report is created every time the executeRules method
is called. It contains only messages from rules that fired during the last execution.
You may ask "Why do we create a new report with each rule execution?" If we had
a report for the whole duration of the statefulService, we wouldn't know when
an error had been corrected (for example, in this case, the customer's phone number
has been set). There are no rules that remove messages from the report. Logical
assertions provide a nice solution to this problem.

Logical assertions
Similar to standard assertions (we're previously referring to them as inserts), a
logical assertion adds facts into the knowledge session. If the same fact is logically
inserted by more rules, only one equal instance will be physically present in the session.
Furthermore, a logically inserted fact will be automatically retracted when the
conditions of all rules that inserted it are no longer true. Enough of theory, let's
explain this with the help of an example.

Imagine that we have couple of rules for checking fraudulent transactions. We'll
create a special type—SuspiciousTransaction—to mark that the transaction
is suspicious.

rule notification
 when
 $transaction : Transaction()
 Notification(transaction == $transaction)
 then
 insertLogical(new SuspiciousTransaction($transaction))
end

Code listing 12: Rule that triggers on user notifications and adds
SuspiciousTransaction logical assertion (fraudulent-transactions.drl file).

The Notification above may, for example, represent a customer service
department receiving a notification of some sort. The rule consequence inserts
the logical fact, SuspiciousTransaction.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[122]

There can be many of such rules that insert SuspiciousTransaction. For example:

rule unusualLocation
 when
 $transaction : Transaction()
 RiskFactor(unusualLocation > 10,
 transaction == $transaction)
 then
 insertLogical(new SuspiciousTransaction($transaction))
end

Code listing 13: Rule that adds SuspiciousTransaction logical assertion based on
unusual location risk factor (fraudulent-transactions.drl file).

This rule will fire if a risk factor is greater than a certain value (in this case, 10). This
RiskFactor fact can be calculated and updated by many other rules.

Each logically inserted fact has a counter, which is incremented every time an
equal fact is inserted (our suspicious transaction facts are 'equal' if they refer to the
same transaction). If the conditions of this rule are no longer true—for example, the
unusualLocation value of RiskFactor is changed to 5 and the RiskFactor fact is
updated—the counter for this logically inserted fact will be decremented. If the value
reaches zero, the fact will be automatically retracted. The transaction is no longer
considered suspicious if the risk factor is small.

Next, we may have a different set of rules with very low priority firing at the end
that react to the presence of a SuspiciousTransaction fact. If there is a suspicious
transaction, the account will be put on hold.

rule freezeAccount
salience -1000
 when
 $from : Account()
 $transaction : Transaction(from == $from)
 SuspiciousTransaction(transaction == $transaction)
 then
 $from.setStatus(Account.Status.ON_HOLD);
end

Code listing 14: Rule that puts an account on hold if there is a suspicious transaction
originating from it (fraudulent-transactions.drl file).

The introduction of the SuspiciousTransaction fact provides a level of insulation
between two set of rules—rules that identify a threat and rules that react to it.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[123]

If we logically insert a fact, we can override it with a standard insert. It then becomes
an ordinary fact that was inserted using the standard insert method. For more
information about logical assertions, please see the Drools documentation
(Drools Expert—section, Truth Maintenance with Logical Objects).

Keeping the validation report up-to-����date
Let's now move back to our validation example. Logical assertions can be used to
keep the report up-to-date. Instead of adding messages to a global validation report,
we can insert them into the session just as another fact. A logical insert will be used
so that messages that are no longer valid will be automatically retracted. A query can
be used to fetch all of the messages and create the validation report.

In Chapter 3, Validation, all of the messages were created and added to the validation
report in the ValidationHelper utility class by error and warning methods. We'll
now create another version of ValidationHelper that will insert all the messages
into the knowledge session by calling the insertLogical method. The error
method of the utility class is as follows:

public class ValidationHelper {
 /**
 * inserts new logical assertion - a message
 * @param drools KnowledgeHelper that is accessible from
 * rule condition
 * @param context for the message
 */
 public static void error(KnowledgeHelper drools,
 Object... context) {
 KnowledgeRuntime knowledgeRuntime = drools
 .getKnowledgeRuntime();
 ReportFactory reportFactory = (ReportFactory)
 knowledgeRuntime.getGlobal("reportFactory");

 drools.insertLogical(reportFactory.createMessage(
 Message.Type.ERROR, drools.getRule().getName(),
 context));
 }

Code listing 15: ValidationHelper utility class that uses logical assertions.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[124]

Instead of using RuleContext, we're using its old
deprecated counterpart—KnowledgeHelper. We need to use
KnowledgeHelper because RuleContext doesn't support logical
assertions, yet (they will be supported in Drools 5.1+). As part of
this change, we have to replace all occurrences of kcontext with
drools in the validation-stateful.drl file.

Modify the validation-stateful.drl file to import these two helper functions
instead of the old ones. Next, add the following query for message retrieval to the
.drl file:

query getAllMessages
 $message : Message()
end

Code listing 16: Query for retrieving all the messages
(validation-stateful.drl file).

The global variable validationReport can be removed completely from this file.
The validation report will be created inside the stateful service. Just modify the
executeRules method to call fireAllRules, then create a blank validation report
and populate it with the messages fetched by the query above. Finally, the report is
returned. The test should now pass without any error. The "phone number required"
message will still be present in the knowledge session even though the stateful
service hasn't been notified to update the customer object.

Collect conditional element
With the solution above, the report creation has been moved outside the rule engine,
which is acceptable. However, with a new collect conditional element, we can
put it back into the rule engine. collect can gather multiple objects, in a stateful or
stateless session, into one collection. One can use it to gather all the messages in the
knowledge session and then put them into the validation report. Only one validation
report will be used throughout the lifetime of the stateful knowledge session (even
service). This report will be created in the service's constructor. We also need a way
to clear this validation report between executeRules calls.

 /**
 * clears this report
 */
 public void reset() {
 messagesMap.clear();
 }

Code listing 17: Method of ValidationReport that clears the report.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[125]

Add the method above to the service implementation (and interface).The global
variable validationReport needs to be put back into the validation-stateful.
drl file. A new rule for creating the validation report will be added as shown in the
following code:

rule createValidationReport
salience -1000 //should be the last rule to fire
 when
 $messages : ArrayList() from collect(Message())
 then
 validationReport.reset();
 for(Message message : (List<Message>) $messages) {
 validationReport.addMessage(message);
 }
end

Code listing 18: Rule that collects all messages in the knowledge session and updates
the report (validation-stateful.drl file).

The condition of this rule is interesting. It matches on $messages collection, which is
created by collecting all of the facts of type Message. The collection is then traversed
inside the rule consequence and all of the messages are added into already cleared
validation report. The rule has a negative salience, which ensures that it will be the
last one to fire. It only makes sense to create the report after all of the validation rules
fired. Please note that the java.util.ArrayList and java.util.List types need to
be imported in the .drl file.

The executeRules method of stateful service will then simply call
statefulSession.fireAllRules and will return the validationReport local
property. Our tests should pass as before.

Collect
As we've seen in Code listing 18, collect can be used together with from to group
facts that meet the given constraints. The result can be any object that implements the
java.util.Collection interface and provides a public no argument constructor.
In our example, we were collecting any Message, but we could have easily collected
only warning by adding the following type constraint:

$messages : ArrayList(size >= 2) from collect(Message(type ==
Message.Type.WARNING))

Code listing 19: Condition that matches on a collection of at least two
warning messages.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[126]

Variables bound in conditions before collect are visible inside the collect pattern.
Collect can accept nested from, collect, and accumulate elements, for example:

$destinationAccount : Account()
$transactions : LinkedList() from collect (Transaction(
 to == $destinationAccount, $currency : currency)
 from bankService.getTransactions())

Code listing 20: Nested from conditional element which groups all of the transactions
that have the specified destination Account from a service.

However, any variables bound inside the collect conditional element are not
visible outside it, for example, in this case, $currency. It is quite logical.

Serialization
Imagine that we have a web application. The stateful service is stored within the
HTTP session. The user makes multiple HTTP requests throughout the lifetime of
the stateful service. This is all perfect as long as it all happens within one server.
However, as soon as we begin talking about scalability and fault tolerance, we need
to think about serialization. For example, we may need to serialize all of the objects
in the HTTP session and transfer this session to another server. As it is currently,
StatefulService fails to serialize. Let's fix it.

Of course this implies that the rule engine will run in the presentation tier. If you
don't like this approach, the stateful service can reside within the service tier,
alternatively. However, with this approach, we would have to maintain its life cycle
(creation and termination). An identifier can be passed from the presentation tier to
identify the instance of the stateful service. The service tier would then maintain a
map of identifiers and their associated stateful services.

Also, as stateful service is not thread safe, only single threaded access is possible.
This is something to keep in mind when designing the application. If an object
is inside the HTTP session, there is the potential that two threads may access it
at the same time. You could, for example, declare all of the service methods as
synchronized. (There will still be a possibility of a single user doing multiple
requests at the same time which may cause the validation results to interleave.)

Knowledge session re-creation
Our first approach will simply re-create the knowledge session upon stateful service
de-serialization. This approach is fine for sessions with a small number of facts
where the facts can be easily re-inserted.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[127]

The stateful service already implements the java.io.Serializable marker
interface. All that needs to be done is to implement the readObject and
writeObject methods. The following implementation will serialize just
KnowledgeBase as that is the only state we want to maintain.

 private void writeObject(ObjectOutputStream out)
 throws IOException {
 out.defaultWriteObject();

 DroolsObjectOutputStream droolsOut =
 new DroolsObjectOutputStream((OutputStream) out);
 droolsOut.writeObject(knowledgeBase);
 }

Code listing 21: writeObject method for serializing the stateful service
(StatefulServiceImpl.java file).

As good practice, the defaultWriteObject is called first. A special type of
ObjectOutputStream – DroolsObjectOutputStream is needed to serialize the
KnowledgeBase. It acts as a wrapper around the ObjectOutputStream.

The following is the readObject method which is mirroring the writeObject method:

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.defaultReadObject();

 DroolsObjectInputStream droolsIn =
 new DroolsObjectInputStream((InputStream) in);
 this.knowledgeBase = (KnowledgeBase)droolsIn.readObject();

 this.reportFactory = new DefaultReportFactory();
 statefulSession = createKnowledgeSession(
 new BankingInquiryServiceImpl());
 }

Code listing 22: readObject method for de-serializing the stateful service
(StatefulServiceImpl.java file).

The readObject method de-serializes KnowledgeBase, and creates a new report
factory and a banking inquiry service. A better solution would be to use some static
service locator to locate them as they are singletons. These objects are used by the
createKnowledgeSession method to create and initialize a new stateful knowledge
session. The createKnowledgeSession method also sets a new validation report.
Note that the report and the session are empty.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[128]

Testing
The following test will demonstrate that the serialization of the stateful service works:

 @Test
 public void testSerialization() throws Exception {
 Customer customer = createValidCustomer();
 statefulService.insertOrUpdateRecursive(customer);

 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 ObjectOutputStream out = new ObjectOutputStream(baos);
 out.writeObject(statefulService);
 out.close();

 byte[] bArray = baos.toByteArray();
 ObjectInputStream in = new ObjectInputStream(
 new ByteArrayInputStream(bArray));
 statefulService = (StatefulServiceImpl) in.readObject();
 in.close();
 statefulService.insertOrUpdateRecursive(customer);

 ValidationReport report = statefulService.executeRules();
 assertEquals(0, report.getMessages().size());

 customer.setPhoneNumber(null);
 statefulService.insertOrUpdate(customer);
 report = statefulService.executeRules();
 assertEquals(1, report.getMessages().size());
 assertTrue(report.contains("phoneNumberRequired"));
 }

Code listing 23: Test method that exercises serialization of stateful service
(StatefulServiceIntegrationTest.java file).

The test above creates a valid customer, and adds this customer and all his
dependent objects into the stateful service. The stateful service is then serialized into
an array of bytes. These bytes can be transferred, for example, to a remote machine.
The stateful service is then de-serialized from this array. An important thing to note
is that after de-serializing the statefulService, it needs to be re-populated by
calling the insertOrUpdateRecursive method and passing in the customer. Rules
are executed and the test verifies that there are no messages. The customer is then
invalidated by clearing his phone number. After updating the stateful session and
running the rules, the test verifies that there is exactly one message about the missing
phone number.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[129]

Session serialization
This section will discuss a complete stateful session serialization (full state including
internal memories, agenda, ruleflow instances and so on.). A stateful session
cannot be serialized out of the box (for example, you cannot just pass it to java.
io.ObjectOutputStream). Drools currently supports two modes of stateful session
serialization. Each mode is an implementation of the interface—org.drools.
marshalling.ObjectMarshallingStrategy. It defines methods for writing and
reading object to/from java.io.ObjectOutputStream/ObjectInputStream.
An accept method, which returns a boolean value, can be used to make more
complex decisions about which objects to serialize with which strategy. Both the
implementations of this interface take ObjectMarshallingStrategyAcceptor as
a constructor argument and simply delegate to its accept method to do the accept
logic. Marshaller then takes an array of marshaling strategies and can serialize the
stateful session.

A class diagram of the Drools serialization is as follows:

ObjectMarshallingStrategyAcceptor

uses

uses

creates

creates

creates MarshallerFactory

ObjectMarshallingStrategy

Marshaller

The following strategies are supported:

Identity mode: It is implemented by the
IdentityPlaceholderResolverStrategy class. This is a stateful mode,
which means that exactly the same instance of this strategy is needed at
both serialization and de-serialization time. Each fact is assigned an ID.
These IDs are stored together with their associated facts in a map. It is a
map of type Map<Integer, Object>. This map is the actual state of this
ObjectMarshallingStrategy implementation. None of the facts are
serialized—only the IDs are. This means that when reconstructing the
stateful session from the serialized stream of data, all of the objects need to
be present in memory (that is, the session must be de-serialized in the same
JVM). This strategy can be used for the so-called session templates where you
pre-populate session with immutable facts, serialize it, and then simply
de-serialize it as many times as you want. The session may then be used as
usual. This is especially useful if you are creating a lot of session with the
same immutable facts and you're experiencing long fact insertion times
(due to a lot of facts, rules, and so on).

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[130]

Full serialization mode: It is implemented by the
SerializablePlaceholderResolverStrategy class. Everything is
serialized, including facts. This strategy can be used for backup, and session
pause/resume when moving the session to another server. Please keep in
mind that upon de-serialization of a knowledge session, all of the facts will
have a new identity. Alternatively, you could serialize the fact together with
the session in one ObjectOutputStream. This way, the object references
will be preserved. This is, for example, the case when a HTTP session
is serialized.

In both cases, the stateful session's agenda, action queue, process instances, work
items, and timers are serialized. Global variables are not serialized, so we need to
take care of them.

Full session serialization
We'll now look at serializing the stateful session using the full serialization mode.
We'll implement the standard writeObject and readObject methods. Let's start
with the writeObject method:

 private void writeObject(ObjectOutputStream out)
 throws IOException {
 out.defaultWriteObject();

 DroolsObjectOutputStream droolsOut =
 new DroolsObjectOutputStream((OutputStream) out);
 droolsOut.writeObject(knowledgeBase);

 Marshaller marshaller = createSerializableMarshaller(
 knowledgeBase);
 marshaller.marshall(droolsOut, statefulSession);
 }

Code listing 24: Implementation of the writeObject method of the stateful service
(StatefulServiceImpl.java file).

Firstly, the default object state is serialized followed by knowledgeBase. A new
Marshaller is created by the createSerializableMarshaller method. It is then
used to serialize the stateful knowledge session into the same output stream.

Please note that currently the stateful serialization mode changes identities of objects
even though they are saved to the same output stream. This should be fixed in future
versions of Drools (see https://jira.jboss.org/jira/browse/JBRULES-2048 for
more details).

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 6

[131]

The marshaller will use only one serializable marshaller strategy that will accept
all objects, *.*. The first star represents the package name and the second start
represents the class name. The createSerializableMarshaller method is
as follows:

 private Marshaller createSerializableMarshaller(
 KnowledgeBase knowledgeBase) {
 ObjectMarshallingStrategyAcceptor acceptor =
 MarshallerFactory.newClassFilterAcceptor(
 new String[] { "*.*" });
 ObjectMarshallingStrategy strategy = MarshallerFactory
 .newSerializeMarshallingStrategy(acceptor);
 Marshaller marshaller = MarshallerFactory.newMarshaller(
 knowledgeBase, new ObjectMarshallingStrategy[] {
 strategy });
 return marshaller;
 }

Code listing 25: A method for creating a full serialization marshaller
(StatefulServiceImpl.java file).

Note that in the example above, we're using only one pattern for our strategy
acceptor; however, many can be defined, if needed.

The method that takes care of the de-serialization process (readObject) is shown
in the following code. It will create a marshaller and will use it to de-serialize the
stateful knowledge session. Further, it will initialize its global variables.

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.defaultReadObject();

 DroolsObjectInputStream droolsIn =
 new DroolsObjectInputStream((InputStream) in);
 this.knowledgeBase = (KnowledgeBase)droolsIn.readObject();

 Marshaller marshaller = createSerializableMarshaller(
 knowledgeBase);
 statefulSession = marshaller.unmarshall(droolsIn);

 this.reportFactory = new DefaultReportFactory();
 statefulSession.setGlobal("reportFactory", reportFactory);
 statefulSession.setGlobal("inquiryService",
 new BankingInquiryServiceImpl());
 }

Code listing 26: Implementation of the readObject method of the stateful service for
de‑serialization (StatefulServiceImpl.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Stateful Session

[132]

Note that if we had used the identity mode serialization, the same marshaller
instance would have to be used for both serialization and de-serialization, as the
identity marshaller is stateful.

Summary
In this chapter, we've learned about stateful sessions, what are they used for, and
how they keep their state between session invocations. This is especially useful in
long iterative interaction scenarios, for example, in a web application where a user
logs into the system, makes couple of changes in multiple HTTP requests, and logs
out of the system.

Logical assertions were discussed. We saw that they are automatically retracted
when none of the conditions that inserted them are true. This was useful as it kept
the validation report updated all the time.

Finally, the serialization section discussed two options of serializing a stateful
session—Identity and Serialized. An example was given of how to serialize the
stateful service which contained a stateful session.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing
Rules usually operate on a more or less static set of data (facts). However, for some
systems, it is necessary to define the relationships between facts over the time. This
is often called Complex Event Processing (CEP) or Event Stream Processing (ESP).
Drools, more specifically Drools Fusion, starting with version 5.0, provides this
support together with sliding windows, temporal operators, and type declarations.

In this chapter, we'll look at implementing a banking fraud detection system. It is an
ideal candidate for CEP. The volume of events in a banking system is huge and we
need to be able to do complex decisions based on these events.

CEP and ESP
CEP and ESP are styles of processing in an Event Driven Architecture
(General introduction to Event Driven Architecture can be found at: http://
elementallinks.typepad.com/bmichelson/2006/02/eventdriven_arc.html).
One of the core benefits of such an architecture is that it provides loose coupling
of its components. A component simply publishes events about actions that it is
executing and other components can subscribe/listen to these events. The producer
and the subscriber are completely unaware of each other. A subscriber listens for
events and doesn't care where they come from. Similarly, a publisher generates
events and doesn't know anything about who is listening to those events. Some
orchestration layer then deals with the actual wiring of subscribers to publishers.

An event represents a significant change of state. It usually consists of a header and
a body. The header contains meta information such as its name, time of occurrence,
duration, and so on. The body describes what happened. For example, if a transaction
has been processed, the event body would contain the transaction ID, the amount
transferred, source account number, destination account number, and so on.

CEP deals with complex events. A complex event is a set of simple events. For
example, a sequence of large withdrawals may raise a suspicious transaction event.
The simple events are considered to infer that a complex event has occurred.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[134]

ESP is more about real-time processing of huge volume of events. For example,
calculating the real-time average transaction volume over time.

More information about CEP and ESP can be found on the web site,
http://complexevents.com/ or in a book written by Prof. David Luckham,
The Power of Events. This book is considered the milestone for the modern research
and development of CEP.

There are many existing pure CEP/ESP engines, both commercial and open source.
Drools Fusion enhances the rule based programming with event support. It makes
use of its Rete algorithm and provides an alternative to existing engines.

Drools Fusion
Drools Fusion is a Drools module that is a part of the Business Logic Integration
Platform. It is the Drools event processing engine covering both CEP and ESP
(these terms will be used interchangeably in this book). Each event has a type, a
time of occurrence, and possibly, a duration. Both point in time (zero duration) and
interval-based events are supported. Events can also contain other data like any
other facts—properties with a name and type. All events are facts but not all facts are
events. An event's state should not be changed. However, it is valid to populate the
unpopulated values. Events have clear life cycle windows and may be transparently
garbage collected after the life cycle window expires (for example, we may be
interested only in transactions that happened in the last 24 hours). Rules can
deal with time relationships between events.

Fraud detection
It will be easier to explain these concepts by using an example—a fraud detection
system. Fraud in banking systems is becoming a major concern. The amount of
online transactions is increasing every day. An automatic system for fraud detection
is needed. The system should analyze various events happening in a bank and, based
on a set of rules, raise an appropriate alarm.

This problem cannot be solved by the standard Drools rule engine. The volume of
events is huge and it happens asynchronously. If we simply inserted them into the
knowledge session, we would soon run out of memory. While the Rete algorithm
behind Drools doesn't have any theoretical limitation on number of objects in the
session, we could use the processing power more wisely. Drools Fusion is the right
candidate for this kind of task.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[135]

Problem description
Let's consider the following set of business requirements for the fraud
detection system:

1.	 If a notification is received from a customer about a stolen card, block this
account and any withdrawals from this account.

2.	 Check each transaction against a blacklist of account numbers. If the
transaction is transferring money from/to such an account, then flag this
transaction as suspicious with the maximum severity.

3.	 If there are two large debit transactions from the same account within a
ninety second period and each transaction is withdrawing more than 300%
of the average monthly (30 days) withdrawal amount, flag these transactions
as suspicious with minor severity.

4.	 If there is a sequence of three consecutive, increasing, debit transactions
originating from a same account within a three minute period and these
transactions are together withdrawing more than 90% of the account's
average balance over 30 days, then flag those transactions as suspicious
with major severity and suspend the account.

5.	 If the number of withdrawals over a day is 500% higher than the average
number of withdrawals over a 30 day period and the account is left with less
than 10% of the average balance over a month (30 days), then flag the account
as suspicious with minor severity.

6.	 Duplicate transactions check—if two transactions occur in a time window
of 15 seconds that have the same source/destination account number, are
of the same amount, and just differ in the transaction ID, then flag those
transactions as duplicates.

Monitoring:
1.	 Monitor the average withdrawal amount over all of the accounts for 30 days.
2.	 Monitor the average balance across all of the accounts.

Design and modeling
Looking at the requirements, we'll need a way of flagging a transaction as suspicious.
This state can be added to an existing Transaction type, or we can externalize
this state to a new event type. We'll do the latter. The following new events will
be defined:

TransactionCreatedEvent—An event that is triggered when a new
transaction is created. It contains a transaction identifier, source account
number, destination account number, and the actual amount transferred.

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[136]

TransactionCompletedEvent—An event that is triggered when an
existing transaction has been processed. It contains the same fields as
the TransactionCreatedEvent class.
AccountUpdatedEvent—An event that is triggered when an account has
been updated. It contains the account number, current balance, and the
transaction identifier of a transaction that initiated this update.
SuspiciousAccount—An event triggered when there is some sort of a
suspicion around the account. It contains the account number and severity
of the suspicion. It is an enumeration that can have two values MINOR and
MAJOR. This event's implementation is shown in the following code.
SuspiciousTransaction—Similar to SuspiciousAccount, this is an event
that flags a transaction as suspicious. It contains a transaction identifier and
severity level.
LostCardEvent—An event indicating that a card was lost. It contains an
account number.

One of events described—SuspiciousAccount—is shown in the following code. It
also defines SuspiciousAccountSeverity enumeration that encapsulates various
severity levels that the event can represent. The event will define two properties.
One of them is already mentioned severity and the other one will identify the
account—accountNumber.

/**
 * marks an account as suspicious
 */
public class SuspiciousAccount implements Serializable {
 public enum SuspiciousAccountSeverity {
 MINOR, MAJOR
 }

 private final Long accountNumber;
 private final SuspiciousAccountSeverity severity;

 public SuspiciousAccount(Long accountNumber,
 SuspiciousAccountSeverity severity) {
 this.accountNumber = accountNumber;
 this.severity = severity;
 }

 private transient String toString;

 @Override
 public String toString() {
 if (toString == null) {
 toString = new ToStringBuilder(this).appendSuper(

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[137]

 super.toString()).append("accountNumber",
 accountNumber).append("severity", severity)
 .toString();
 }
 return toString;
 }

Code listing 1: Implementation of SuspiciousAccount event.

Please note that the equals and hashCode methods in SuspiciousAccount from
the preceding code listing are not overridden. This is because an event represents
an active entity, which means that each instance is unique. The toString method is
implemented using org.apache.commons.lang.builder.ToStringBuilder. All
of these event classes are lightweight, and they have no references to other domain
classes (no object reference; only a number—accountNumber—in this case). They are
also implementing the Serializable interface. This makes them easier to transfer
between JVMs. As best practice, this event is immutable. The two properties above
(accountNumber and severity) are marked as final. They can be set only through
a constructor (there are no set methods—only two get methods). The get methods
were excluded from this code listing.

The events themselves don't carry a time of occurrence—a time stamp (they easily
could, if we needed it; we'll see how in the next set of code listings). When the
event is inserted into the knowledge session, the rule engine assigns such a time
stamp to FactHandle that is returned. (Remember? session.insert(..) returns
a FactHandle). In fact, there is a special implementation of FactHandle called
EventFactHandle. It extends the DefaultFactHandle (which is used for normal
facts) and adds few additional fields, for example—startTimestamp and duration.
Both contain millisecond values and are of type long.

Ok, we now have the event classes and we know that there is a special
FactHandle for events. However, we still don't know how to tell Drools that
our class represents an event. Drools type declarations provide this missing link.
It can define new types and enhance existing types. For example, to specify that
the class TransactionCreatedEvent is an event, we have to write:

declare TransactionCreatedEvent
 @role(event)
end

Code listing 2: Event role declaration (cep.drl file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[138]

This code can reside inside a normal .drl file. If our event had a time stamp
property or a duration property, we could map it into startTimestamp or
duration properties of EventFactHandle by using the following mapping:

 @duration(durationProperty)

Code listing 3: Duration property mapping.

The name in brackets is the actual name of the property of our event that will be
mapped to the duration property of EventFactHandle. This can be done similarly
for startTimestamp property.

As an event's state should not be changed (only unpopulated values
can be populated), think twice before declaring existing beans as events.
Modification to a property may result in an unpredictable behavior.

In the following examples, we'll also see how to define a new type declaration
(as shown in code listing 16).

Fraud detection rules
Let's imagine that the system processes thousands of transactions at any given time.
It is clear that this is challenging in terms of time and memory consumption. It is
simply not possible to keep all of the data (transactions, accounts, and so on) in
memory. A possible solution would be to keep all of the accounts in memory as there
won't be that many of them (in comparison to transactions) and keep only transactions
for a certain period. With Drools Fusion, we can do this very easily by declaring that a
Transaction is an event.

The transaction will then be inserted into the knowledge session through an
entry-point. Each entry point defines a partition in the input data storage, reducing
the match space and allowing patterns to target specific partitions. Matching data
from a partition requires explicit reference at the pattern declaration. This makes
sense, especially if there are large quantities of data and only some rules are
interested in them. We'll look at entry points in the following example.

If you are still concerned about the volume of objects in memory, this solution
can be easily partitioned, for example, by account number. There might be more
servers, each processing only a subset of accounts (simple routing strategy might
be: accountNumber module totalNumberOfServersInCluster). Then each server
would receive only appropriate events.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[139]

Notification
The requirement we're going to implement here is essentially to block an account
whenever a LostCardEvent is received. This rule will match two facts: one of type
Account and one of type LostCardEvent. The rule will then set the the status
of this account to blocked. The implementation of the rule is as follows:

rule notification
 when
 $account : Account(status != Account.Status.BLOCKED)
 LostCardEvent(accountNumber == $account.number)
 from entry-point LostCardStream
 then
 modify($account) {
 setStatus(Account.Status.BLOCKED)
 };

end

Code listing 4: Notification rule that blocks an account (cep.drl file).

As we already know, Account is an ordinary fact from the knowledge session.
The second fact—LostCardEvent—is an event from an entry point called
LostCardStream. Whenever a new event is created and goes through the entry
point, LostCardStream, this rule tries to match (checks if its conditions can be
satisfied). If there is an Account in the knowledge session that didn't match with this
event yet, and all conditions are met, the rule is activated. The consequence sets the
status of the account to blocked in a modify block.

As we're updating the account in the consequence and also matching on it in the
condition, we have to add a constraint that matches only the non-blocked accounts
to prevent looping (see above: status != Account.Status.BLOCKED).

Test configuration setup
Following the best practice that every code/rule needs to be tested, we'll now
set up a class for writing unit tests. All of the rules will be written in a file called
cep.drl. When creating this file, just make sure it is on the classpath. The creation of
knowledgeBase won't be shown. It is similar to the previous tests that we've written.
We just need to change the default knowledge base configuration slightly:

 KnowledgeBaseConfiguration config = KnowledgeBaseFactory
 .newKnowledgeBaseConfiguration();
 config.setOption(EventProcessingOption.STREAM);

Code listing 5: Enabling STREAM event processing mode on knowledge
base configuration.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[140]

This will enable the STREAM event processing mode. KnowledgeBaseConfiguration
from the preceding code is then used when creating the knowledge
base—KnowledgeBaseFactory.newKnowledgeBase(config).

Part of the setup is also clock initialization. We already know that every event has
a time stamp. This time stamp comes from a clock which is inside the knowledge
session. Drools supports several clock types, for example, a real-time clock or a pseudo
clock. The real-time clock is the default and should be used in normal circumstances.
The pseudo clock is especially useful for testing as we have complete control over
the time. The following initialize method sets up a pseudo clock. This is done by
setting the clock type on KnowledgeSessionConfiguration and passing this object
to the newStatefulKnowledgeSession method of knowledgeBase. The initialize
method then makes this clock available as a test instance variable called clock when
calling session.getSessionClock(), as we can see in the following code:

public class CepTest {
 static KnowledgeBase knowledgeBase;
 StatefulKnowledgeSession session;
 Account account;
 FactHandle accountHandle;
 SessionPseudoClock clock;
 TrackingAgendaEventListener trackingAgendaEventListener;
 WorkingMemoryEntryPoint entry;

 @Before
 public void initialize() throws Exception {
 KnowledgeSessionConfiguration conf =
 KnowledgeBaseFactory.newKnowledgeSessionConfiguration();
 conf.setOption(ClockTypeOption.get("pseudo"));
 session = knowledgeBase.newStatefulKnowledgeSession(conf,
 null);
 clock = (SessionPseudoClock) session.getSessionClock();

 trackingAgendaEventListener =
 new TrackingAgendaEventListener();
 session.addEventListener(trackingAgendaEventListener);

 account = new Account();
 account.setNumber(123456l);
 account.setBalance(BigDecimal.valueOf(1000.00));
 accountHandle = session.insert(account);

Code listing 6: Unit tests setup (CepTest.java file).

The preceding initialize method also creates an event listener and passes it into
the session. The event listener is called TrackingAgendaEventListener. It simply
tracks all of the rule executions. It is useful for unit testing to verify whether a rule
fired or not. Its implementation is as follows:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[141]

public class TrackingAgendaEventListener extends
 DefaultAgendaEventListener {
 List<String> rulesFiredList = new ArrayList<String>();

 @Override
 public void afterActivationFired(
 AfterActivationFiredEvent event) {
 rulesFiredList.add(event.getActivation().getRule()
 .getName());
 }

 public boolean isRuleFired(String ruleName) {
 for (String firedRuleName : rulesFiredList) {
 if (firedRuleName.equals(ruleName)) {
 return true;
 }
 }
 return false;
 }

 public void reset() {
 rulesFiredList.clear();
 }
}

Code listing 7: Agenda event listener that tracks all rules that have been fired.

DefaultAgendaEventListener comes from the org.drools.
event.rule package that is part of drools-api.jar file as opposed
to the org.drools.event package that is part of the old API in
drools-core.jar.

All of the Drools agenda event listeners must implement the AgendaEventListener
interface. TrackingAgendaEventListener in the preceding code extends
DefaultAgendaEventListener so that we don't have to implement all of the
methods defined in the AgendaEventListener interface. Our listener just overrides
the afterActivationFired method that will be called by Drools every time a rule's
consequence has been executed. Our implementation of this method adds the fired
rule name into a list of fired rules—rulesFiredList. Then the convenience method
isRuleFired takes a ruleName as a parameter and checks if this rule has been
executed/fired. The reset method is useful for clearing out the state of this listener,
for example, after session.fireAllRules is called.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[142]

Now, back to the test configuration setup. The last part of the initialize method
from code listing 6 is account object creation (account = new Account(); ...). This is
for convenience purposes so that every test does not have to create one. The account
balance is set to 1000. The account is inserted into the knowledge session and its
FactHandle is stored so that the account object can be easily updated.

Testing the notification rule
The test infrastructure is now fully set up and we can write a test for the
notification rule from code listing 4 as follows:

 @Test
 public void notification() throws Exception {
 session.fireAllRules();
 assertNotSame(Account.Status.BLOCKED,account.getStatus());

 entry = session
 .getWorkingMemoryEntryPoint("LostCardStream");
 entry.insert(new LostCardEvent(account.getNumber()));
 session.fireAllRules();
 assertSame(Account.Status.BLOCKED, account.getStatus());
 }

Code listing 8: Notification rule's unit test (CepTest.java file).

The test verifies that the account is not blocked by accident first. Then it gets the
LostCardStream entry point from the session by calling: session.getWorkingMem
oryEntryPoint("LostCardStream"). Then the code listing demonstrates how an
event can be inserted into the knowledge session through an entry-point—entry.
insert(new LostCardEvent(...)).

In a real application, you'll probably want to use Drools Pipeline for
inserting events into the knowledge session. It can be easily connected to
an existing ESB (Enterprise Service Bus) or a JMS topic or queue.
Drools entry points are thread-safe. Each entry point can be used by
a different thread; however, no two threads can concurrently use the
same entry point. In this case, it makes sense to start the engine in
fireUntilHalt mode in a separate thread like this:

new Thread(new Runnable() {
 public void run() {
 session.fireUntilHalt();
 }
}).start();

Code listing 9: Continuous execution of rules.
The engine will then continuously execute activations until the session.
halt() method is called.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[143]

The test then verifies that the status of the account is blocked. If we simply executed
session.insert(new LostCardEvent(..)); the test would fail because the rule
wouldn't see the event.

Monitoring—averageBalanceQuery
In this section, we'll look at how to write some monitoring rules/queries over the
data that is in the knowledge session. Let's say that we want to know what is the
average balance across all accounts. As all of them are in the knowledge session, we
could use collect (that was introduced in Chapter 6, Stateful Session) to collect all
of the accounts into a collection and then iterate over this collection, sum up all of
the balances, and then divide it by the number of accounts. Another, more preferred
solution is to use neighbor of collect—accumulate. The following is a query that
calculates the average balance across all accounts:

query averageBalanceQuery
 Number($averageBalance : doubleValue) from accumulate(
 $account : Account($balance : balance), average($balance))
end

Code listing 10: Query for calculating the average balance over all accounts
(cep.drl file).

accumulate has two forms. This is a simple one. Similar to collect, it iterates
over objects in the knowledge session that meet the given criteria; however, in case
of accumulate, it performs some action on each of the individual objects before
returning the result. In our example, the action is: average($balance). Finally, the
result is returned as $averageBalance variable. The average balance is updated
whenever there is a new account or an existing account is updated or retracted
from the knowledge session. Similar to collect, you can think of it as a continuous
query. Other useful functions that can be used within accumulate are:

count—for counting objects
min/max—for finding the minimum/maximum value
sum—for calculating the sum of all the values and others

Some of them will be shown in the following examples. We'll also define a new one.

The accumulate function can take any code block (written in the
current dialect). This means that it is, for example, valid to write:
sum($account.getBalance().multiply($account.
getInterestRate()))

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[144]

Testing the averageBalanceQuery
The test for this averageBalanceQuery query is shown in the following code. First, it
will use the default setup, which includes one account in the knowledge session that
has balance of 1000. Then, it will add another account into the knowledge session
and verify that the average balance is correct.

 @Test
 public void averageBalanceQuery() throws Exception {
 session.fireAllRules();
 assertEquals(account.getBalance(), getAverageBalance());

 Account account2 = new Account();
 account2.setBalance(BigDecimal.valueOf(1400));
 session.insert(account2);
 session.fireAllRules();
 assertEquals(BigDecimal.valueOf(1200.00),
 getAverageBalance());
 }

 BigDecimal getAverageBalance() {
 QueryResults queryResults = session
 .getQueryResults("averageBalanceQuery");
 return BigDecimal.valueOf((Double) queryResults
 .iterator().next().get("$averageBalance"));
 }

Code listing 11: Test for the averageBalanceQuery (CepTest.java file).

The getAverageBalance method gets the query results and extracts the
$averageBalance variable.

Two large withdrawals
We'll now look at the next rule. A rule that will flag two transactions as suspicious
if they are withdrawing more than 300% of the average withdrawn amount over 30
days. The problem is how to find out the average withdrawn amount for an account
over 30 days. This is when sliding time windows or sliding length windows come in
handy. They allow us to match only those events that originated within the window.
In case of time windows, the session clock's time minus event's time stamp must be
within the window time. In case of length windows, only the N most recent events
are taken into account. Time/Length windows also have another very important
reason. When running in STREAM mode, Drools can automatically retract events that
are no longer needed—those that are outside the window. (This applies to all of the
events that were inserted into the knowledge session).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[145]

The average withdrawn amount can be calculated by averaging the amount of
TransactionCompletedEvent. We are only interested in transactions that have
already been successfully completed. We can now match only those transactions
that happened within the last 30 days: over window:time(30d) from entry-point
TransactionStream. If we, for example, wanted 10 most recent events, we'd write
over window:length(10) from entry-point TransactionStream.

We know how to calculate the average withdrawn amount. All that remains now is
to find two transactions happening over ninety seconds that are withdrawing 300%
or more. TransactionCreatedEvent can be used to find those transactions. The
implementation is as follows:

rule twoLargeWithdrawals
dialect "mvel"
 when
 $account : Account()
 Number($averageAmount : doubleValue) from accumulate(
 TransactionCompletedEvent(fromAccountNumber ==
 $account.number, $amount : amount)
 over window:time(30d) from entry-point
 TransactionStream, average($amount))
 $t1 : TransactionCreatedEvent(fromAccountNumber ==
 $account.number, amount > ($averageAmount * 3.00)) over
 window:time(90s) from entry-point TransactionStream
 $t2 : TransactionCreatedEvent(this != $t1,
 fromAccountNumber == $account.number,
 amount > ($averageAmount * 3.00)) over
 window:time(90s) from entry-point TransactionStream
 then
 insert(new SuspiciousAccount($account.number,
 SuspiciousAccountSeverity.MINOR));
 insert(new SuspiciousTransaction($t1.transactionUuid,
 SuspiciousTransactionSeverity.MINOR));
 insert(new SuspiciousTransaction($t2.transactionUuid,
 SuspiciousTransactionSeverity.MINOR));
end

Code listing 12: Implementation of the twoLargeWithdrawals rule (cep.drl file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[146]

The rule is matching an Account, calculating $averageAmount for this account,
and finally matching two different TransactionCreatedEvents (we make sure
that they are different by executing this != $t1). These events represent transactions
from this account which have an amount 300% larger than $averageAmount. This
is enforced with the constraint: amount > ($averageAmount * 3.00). These events
must occur in a time window of 90 seconds as can be seen above—over window:
time(90s) from entry-point TransactionStream. The consequence then inserts
three new events into the knowledge session. They flag the account and transactions
as suspicious with severity, MINOR.

As you may have noticed, in this rule, we've used one stream—TransactionStream—
for getting two types of events. This is completely valid. Note that performance is
directly proportional to the number of partial matches. Drools is capable of handling
heterogeneous streams with extreme performance. You will see no performance
difference between homogeneous and heterogeneous streams.

If you are using a real-time clock, think twice about the length of the
time window. Under a heavy load, the CPU might be so busy, that the
event won't be processed in the expected time window. In that case, the
sliding length window makes more sense.

Testing the twoLargeWithdrawals rule
As usual, our unit test will exercise some of the corner cases where the rule is most
likely to break. It will follow the sequence of events presented in the following time
line diagram:

rule should firenot over - 1500€

5d 11d 30s 91s 30s

not within 90secavg. -500€

TransactionCreatedEvent
TransactionCompletedEvent

-400€ -600€ -100€ -1600€ -2100€ -1700€

t

Each event is represented by an arrow pointing down. At the base of the
arrow is the amount that is being withdrawn. The first two events are of type
TransactionCompletedEvent and their task is to build the average amount
that was withdrawn. The average will be 500. The following events are of type

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[147]

TransactionCreatedEvent and they are the ones we want to keep an eye on.
The first two of them meet the time constraint of 90 seconds, but the first isn't three
times greater than the average. Therefore, our rule won't be activated. The next
event comes after 91 seconds, which doesn't meet the time window constraint.
Finally, the last two events meet all of the constraints and we can verify that the
rule fired, and that the account and transactions were marked as suspicious. The
test implementation is as follows:

 @Test
 public void twoLargeWithdrawals() throws Exception {
 entry = session
 .getWorkingMemoryEntryPoint("TransactionStream");
 transactionCompletedEvent(400);
 clock.advanceTime(5, TimeUnit.DAYS);
 transactionCompletedEvent(600);
 clock.advanceTime(11, TimeUnit.DAYS);

 transactionCreatedEvent(100);
 clock.advanceTime(30, TimeUnit.SECONDS);
 transactionCreatedEvent(1600);
 assertNotFired("twoLargeWithdrawals");

 clock.advanceTime(91, TimeUnit.SECONDS);
 transactionCreatedEvent(2100);
 assertNotFired("twoLargeWithdrawals");

 clock.advanceTime(30, TimeUnit.SECONDS);
 transactionCreatedEvent(1700);
 assertFired("twoLargeWithdrawals");
 }

Code listing 13: Test for the twoLargeWithdrawals rule (file CepTest.java).

For brevity, commonly used code snippets have been re-factored into
helper methods. For example, the creation of TransactionCompletedEvent
and its insertion into the session has been re-factored into the following
method—transactionCompletedEvent—as follows:

 private void transactionCompletedEvent(
 double amountTransferred) {
 entry.insert(new TransactionCompletedEvent(BigDecimal
 .valueOf(amountTransferred), account.getNumber()));
 }

Code listing 14: Helper method that creates TransactionCompletedEvent and
inserts it into the knowledge session (CepTest.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[148]

The event is initialized with the transferred amount and source account number.
As you may imagine, the transactionCreatedEvent method from code listing 13
is similar.

Another helper method—assertFired—takes a rule name as an argument,
fires rule that matches this name, and verifies that the rule fired using
trackingAgendaEventListener:

 private void assertFired(String ruleName) {
 session.fireAllRules(new RuleNameEqualsAgendaFilter(
 ruleName));
 assertTrue(trackingAgendaEventListener
 .isRuleFired(ruleName));
 }

Code listing 15: Helper method for verifying that a rule with specified name has fired
(CepTest.java file).

The Agenda filter—RuleNameEqualsAgendaFilter—was already used in
Chapter 4, Data Transformation. Do not use the deprecated org.drools.base.
RuleNameEqualsAgendaFilter, otherwise, you'll get compilation errors. The
logic is the same; however, the deprecated Agenda filter doesn't use the new API.

As you may imagine, the assertNotFired method is similar to assertFired
method. If we now run the twoLargeWithdrawals test, everything should pass
as expected.

Sequence of increasing withdrawals
We'll now focus on the next requirement from the list. Among other things, it talks
about an account's average balance over 30 days. We shouldn't have any problem in
calculating this. Thinking about the implementation of the rule, it seems that more
rules are calculating these averages. We should be able to separate this logic into
another rule that will calculate this information and store it into some common
data structure. Other rules will just match on this data structure and use the
calculated averages. We have a plan! Now, let's define this data structure. Drools
type declarations can be used for this purpose. The declaration may look as follows:

declare AccountInfo
 number : Long
 averageBalance : BigDecimal
 averageAmount : BigDecimal
end

Code listing 16: AccountInfo type declaration (cep.drl file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[149]

Please note that in this use of the declare keyword, we're not modifying the
existing type (as was the case in code listing 2) but adding a completely new one.
AccountInfo is a simple POJO that resides in the same package as the .drl file
package that it is declared in. equals/hashCode of AccountInfo are inherited from
the java.lang.Object class. If we'd like to add some fields to the equals/hashCode
contract, we can declare it with @key() metadata, for example: number : Long @key.

The common data structure is there, we can write the rule that will populate it. Our
rule will match an Account object, calculate its average balance over 30 days, and
will set this calculated amount into the AccountInfo object.

rule averageBalanceOver30Days
no-loop true
 when
 $account : Account()
 $averageBalance : BigDecimal() from accumulate(
 AccountUpdatedEvent(accountNumber == $account.number,
 $balance : balance) over window:time(30d)
 from entry-point AccountStream, average($balance))
 $accountInfo : AccountInfo(number == $account.number)
 then
 modify($accountInfo) {
 setAverageBalance($averageBalance)
 };

end

Code listing 17: Rule that calculates average balance for an account over 30 days
(cep.drl file).

The averageBalanceOver30Days rule accumulates AccountUpdateEvents in
order to calculate the average balance over 30 days. Finally, the consequence sets
calculated $averageBalance into $accountInfo.

Average balance test
The AccountInfo object needs to be added into the knowledge session before the
averagebalanceover30days rule is activated. As it is an internal type, we cannot
simply make a new instance of this class (for example, to call new AccountInfo()).
This type will only be created at runtime, when the knowledge package is
compiled. The Drools team thought about this and they have added a method to
KnowledgeBase called getFactType, which returns an object implementing the
org.drools.definition.type.FactType interface. This interface encapsulates the
type information about an internal type. It allows us to create new instances, get list
of fields, set/get their properties, and even get a map of field-value pairs and set the
values from such map.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[150]

The AccountInfo bean may be used by many rules, so we'll add it into our unit test
initialize method that is called before every test method execution. First, let's add
types to our test class that will be needed:

 FactType accountInfoFactType;
 Object accountInfo;
 FactHandle accountInfoHandle;

Code listing 18: CepTest unit test class properties (CepTest.java file).

Now, the following AccountInfo setup logic can be added at the end of the
initialize method. The following code listing will demonstrate how a new
instance of an internal type can be created and its properties can be set:

 accountInfoFactType = knowledgeBase.getFactType(
 "droolsbook.cep", "AccountInfo");
 accountInfo = accountInfoFactType.newInstance();
 accountInfoFactType.set(accountInfo, "number",
 account.getNumber());
 accountInfoFactType.set(accountInfo, "averageBalance",
 BigDecimal.ZERO);
 accountInfoFactType.set(accountInfo, "averageAmount",
 BigDecimal.ZERO);
 accountInfoHandle = session.insert(accountInfo);

Code listing 19: AccountInfo internal type setup (CepTest.java file).

The first line gets the fact type from the knowledge session. The getFactType method
takes the .drl file package name and name of the fact type. Then a new instance is
created—accountInfoFactType.newInstance(). accountInfoFactType is then
used to set properties on the accountInfo instance. Finally, accountInfo is inserted
into the session and its fact handle is kept.

Similarly, AccountInfo's initialization code might be needed in a real application.
When the application starts up, AccountInfo should be pre-initialized with some
reasonable data.

The unit test of averagebalanceover30days follows. It will create some
AccountUpdatedEvent events and verify that they are used to calculate the
correct average balance.

 @Test
 public void averageBalanceOver30Days() throws Exception {
 entry = session
 .getWorkingMemoryEntryPoint("AccountStream");

 accountUpdatedEvent(account.getNumber(), 1000.50,1000.50);
 accountUpdatedEvent(account.getNumber(), -700.40, 300.10);
 accountUpdatedEvent(account.getNumber(), 500, 800);

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[151]

 accountUpdatedEvent(11223344l, 700, 1300);

 assertFired("averageBalanceOver30Days");
 assertEquals(BigDecimal.valueOf(700.20).setScale(2),
 accountInfoFactType.get(accountInfo,"averageBalance"));
 }

Code listing 20: Unit test for the averageBalanceOver30Days rule
(CepTest.java file).

The test first obtains the AccountStream entry point for inserting the events. It uses
accountUpdateEvent helper method to create AccountUpdatedEvents. This method
takes the account number, amount transferred, and balance. These parameters are
passed directly into the event's constructor as was the case in the previous unit test.
The test also creates one unrelated AccountUpdatedEvent=���������������������������� ��������������������������� to verify that it won't be
included in the calculation. Finally, the test verifies that the rule has been fired and the
average is of expected value 700.20 ((1000.50 + 300.10 + 800)/3 = 2100.60 / 3 = 700.20).

However, when we run the test, it fails as soon as fireAllRules method is
called with the error:� org.drools.spi.ConsequenceException: java.lang.
ClassCastException: java.lang.Double cannot be cast to java.math.
BigDecimal

Drools is informing us that there is a problem with the invocation of the rule's
consequence. The consequence uses $averageBalance that was calculated by
accumulate. Luckily, Drools is open source so we can look under the hood. As
was mentioned in the preceding sections, accumulate supports pluggable functions
(average, sum, count, and so on). These functions are implementations of the
org.drools.runtime.rule.AccumulateFunction interface.

If we look at the average function's implementation in class
AverageAccumulateFunction,��� we'll notice that its state consists of two fields;
count of type int ����and total of type� double. Here lies the problem. Our domain
model uses BigDecimal, as best practice when working with floating point numbers.
However, average casts all of the numbers to primitive double. We will now write
our own implementation of AccumulateFunction that knows how to work with
BigDecimal. This function will be called bigDecimalAverage and will
be used as follows (note the last line):

 $averageBalance : BigDecimal() from accumulate(
 AccountUpdatedEvent(accountNumber == $account.number,
 $balance : balance) over window:time(30d) from
 entry-point AccountStream, bigDecimalAverage($balance))

Code listing 21: Part of averageBalanceOver30Days rule, that calculates the average
balance using the new bigDecimalAverage accumulate function (cep.drl file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[152]

The knowledge base setup needs to be modified, so that Drools knows about our new
accumulate function implementation. A new KnowledgeBuilderConfiguration will
hold this information.

KnowledgeBuilderConfiguration builderConf =
 KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
builderConf.setOption(AccumulateFunctionOption.get(
 "bigDecimalAverage",
 new BigDecimalAverageAccumulateFunction()));

Code listing 22: Section of unit test's setupClass method (CepTest.java file).

AccumulateFunctionOption is set with the new accumulate function—
BigDecimalAverageAccumulateFunction—on the knowledge builder
configuration. This configuration can be passed to the KnowledgeBuilderFactory.
newKnowledgeBuilder(builderConf) �� factory method that is used to create the
knowledge base.

Another way to configure our accumulate function is to use a
configuration file—META-INF/drools.packagebuilder.conf—with
the following contents (all on one line):

drools.accumulate.function.
bigDecimalAverage = droolsbook.accumulate.
BigDecimalAverageAccumulateFunction

Make sure this file is on the classpath. This configuration works not only
for Drools, but also for the Drools Eclipse plugin. The Eclipse plugin will
acknowledge the existence of the accumulate function and will not raise
errors in the IDE.

Let's move to the implementation of the accumulate function. We'll first need some
value holder for count and total fields. This value holder will encapsulate all of
the information that the accumulate function invocation needs. The function itself
must be stateless.

 /**
 * value holder that stores the total amount and how many
 * numbers were aggregated
 */
 public static class AverageData implements Externalizable {
 public int count = 0;
 public BigDecimal total = BigDecimal.ZERO;

 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {
 count = in.readInt();

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[153]

 total = (BigDecimal) in.readObject();
 }

 public void writeExternal(ObjectOutput out)
 throws IOException {
 out.writeInt(count);
 out.writeObject(total);
 }

 }

Code listing 23: AverageData value holder
(BigDecimalAverageAccumulateFunction.java file).

Note that AverageData holder is a static member class of
BigDecimalAverageAccumulateFunction.��������������������������������� �������������������������������� The value holder implements the
Externalizable interface so that it can be serialized. Finally, its the implementation
of the BigDecimalAverageAccumulateFunction that defines the behavior of our
custom function:

public class BigDecimalAverageAccumulateFunction implements
 AccumulateFunction {

 /**
 * creates and returns a context object
 */
 public Serializable createContext() {
 return new AverageData();
 }

 /**
 * initializes this accumulator
 */
 public void init(Serializable context) throws Exception {
 AverageData data = (AverageData) context;
 data.count = 0;
 data.total = BigDecimal.ZERO;
 }

 /**
 * @return true if this accumulator supports reverse
 */
 public boolean supportsReverse() {
 return true;
 }

 /**
 * accumulate the given value, increases count
 */

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[154]

 public void accumulate(Serializable context, Object value) {
 AverageData data = (AverageData) context;
 data.count++;
 data.total = data.total.add((BigDecimal) value);
 }

 /**
 * retracts accumulated amount, decreases count
 */
 public void reverse(Serializable context, Object value)
 throws Exception {
 AverageData data = (AverageData) context;
 data.count++;
 data.total = data.total.subtract((BigDecimal) value);
 }

 /**
 * @return currently calculated value
 */
 public Object getResult(Serializable context)
 throws Exception {
 AverageData data = (AverageData) context;
 return data.count == 0 ? BigDecimal.ZERO : data.total
 .divide(BigDecimal.valueOf(data.count),
 RoundingMode.HALF_UP);
 }

Code listing 24: Custom accumulate function—
BigDecimalAverageAccumulateFunction.

The createContext method (at the beginning of the preceding code listing)
creates a new instance of the AverageData value holder. The init method initializes
the accumulate function. supportsReverse informs the rule engine whether
this accumulate function supports the retracting of objects. (when a fact is being
removed from the knowledge session—session.retract(..) or an existing fact is

modified—session.update(..)) If it doesn't, the rule engine will have to do more
work if an object is being retracted and the calculation will have to start over. The
accumulate/reverse methods are there to execute/reverse the accumulate action
(in this case, the calculation of count and total). The getResult method calculates
the result. Our implementation uses hard-coded rounding mode of type HALF_UP.
This can be easily customized if needed.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[155]

Most, if not all, Drools pluggable components implement the Externalizable
interface. This is also the case with the AccumulateFunction interface.
We have to implement the two methods that this interface defines. As
BigDecimalAverageAccumulateFunction is stateless, its readExternal and
writeExternal methods are empty (they are not shown in the code listing).

If we now run the test for the averageBalanceOver30Days rule, it should pass
without any errors.

Instead of defining a custom accumulate function, we could have used
the full (enhanced) version of accumulate. Please look into the Drools
documentation for more information.

After a little side trip, we can now continue with writing the
sequenceOfIncreasingWithdrawals rule. To refresh our memory: it is about three
consecutive increasing debit transactions. With the arsenal of Drools keywords that
we've learned so far, it should not be a problem to implement this rule. To make it
even easier, we'll use temporal operators. Temporal operator (see in the following code
listing—after and before) is a special type of operator that knows how to work
with events (their time stamp and duration properties). In our case, we'll simply
match three transactions that happened one after another (with no transactions
in between).

rule sequenceOfIncreasingWithdrawals
 when
 $account:Account($number : number)
 $t1:TransactionCreatedEvent(fromAccountNumber == $number)
 from entry-point TransactionStream
 $t2:TransactionCreatedEvent(amount > $t1.amount,
 fromAccountNumber == $number, this after[0, 3m] $t1)
 from entry-point TransactionStream
 not (TransactionCreatedEvent(fromAccountNumber == $number,
 this after $t1, this before $t2)
 from entry-point TransactionStream)
 $t3:TransactionCreatedEvent(amount > $t2.amount,
 fromAccountNumber == $number, this after[0, 3m] $t2)
 from entry-point TransactionStream
 not (TransactionCreatedEvent(fromAccountNumber == $number,
 this after $t2, this before $t3)
 from entry-point TransactionStream)
 $ai : AccountInfo(number == $number, eval($t1.amount.add(
 $t2.amount).add($t3.amount).compareTo(BigDecimal.
 valueOf(0.90).multiply(averageBalance)) > 0))
 then

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[156]

 insert(new SuspiciousAccount($number,
 SuspiciousAccountSeverity.MAJOR));
 insert(new SuspiciousTransaction($t1.transactionUuid,
 SuspiciousTransactionSeverity.MAJOR));
 insert(new SuspiciousTransaction($t2.transactionUuid,
 SuspiciousTransactionSeverity.MAJOR));
 insert(new SuspiciousTransaction($t3.transactionUuid,
 SuspiciousTransactionSeverity.MAJOR));
end

Code listing 25: Implementation of the sequenceOfIncreasingWithdrawals rule
(cep.drl file).

For example, as shown in the code above, $t2 is a TransactionCreatedEvent
that is withdrawing more than $t1, they are from the same account and
temporal operator—after (this after[0, 3m] $t1)—ensures that the event
$t2 occurred after event $t1 but within three minutes. The next line—not
(TransactionCreatedEvent(this after $t1, this before $t2) from ...)
is making sure that no event occurred between events $t1 and $t2.

Instead of using sliding time windows to check that two events
happened within three minutes (over window:time(3m)), we're using
temporal operators (this after[0, 3m] $t1). They are much cheaper
in terms of the resources used. Also note that the example above tried to
demonstrate several Drools features; however, if we want to reason over
a sequence of N events, a more efficient way would be to use a "length"
sliding window.

Operators in Drools are pluggable. This means that the temporal operators we've
seen above are simply one of many implementations of the org.drools.runtime.
rule.EvaluatorDefinition interface. Others are, for example, soundslike,
matches, coincides, meets, metby, overlaps, overlappedby, during, includes,
starts, startedby, finishes, or finishedby. Please see the appendix for defining
a custom operator.

As we've seen, operators support parameters that can be specified within the square
brackets. Each operator can interpret these parameters differently. It may also
depend on the event's time stamp and duration (events we've used in our examples
are so-called point in time events; they don't have any duration). For example, this
before[1m30s, 2m] $event2 means that the time when this event finished and
$event2 started is between 1m30s and 2m. Please consult the documentation of
Drools Fusion for more details on each operator.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[157]

The last line of the sequenceOfIncreasingWithdrawals rule's condition tests whether
the three matched transactions are withdrawing more than 90% of the average balance.
The rule's consequence marks these transactions and account as suspicious.

Testing the sequenceOfIncreasingWithdrawals rule
The unit test for the sequenceOfIncreasingWithdrawals rule will follow this
sequence of events:

rule should fire

not consecutive

not over 90%

10s 10s10s 10s

-400€

t

-290€ -50€ -300€ -350€

All withdrawals fit into the time window of three minutes. The first three
withdrawals are not increasing and their sum is not over 90% of the average balance.
The first, third, and fourth events meet all constraints (they are increasing and they
are over 90%) except one (they are not consecutive). The second, third, and fourth
events are not over 90%. Finally, the last three events meet all constraints and the
rule should fire. The test method implementation is as follows:

 @Test
 public void sequenceOfIncreasingWithdrawals()
 throws Exception {
 entry = session
 .getWorkingMemoryEntryPoint("TransactionStream");
 accountInfoFactType.set(accountInfo, "averageBalance",
 BigDecimal.valueOf(1000));
 session.update(accountInfoHandle, accountInfo);

 transactionCreatedEvent(290);
 clock.advanceTime(10, TimeUnit.SECONDS);
 transactionCreatedEvent(50);
 clock.advanceTime(10, TimeUnit.SECONDS);
 transactionCreatedEvent(300);
 assertNotFired("sequenceOfIncreasingWithdrawals");

 clock.advanceTime(10, TimeUnit.SECONDS);
 transactionCreatedEvent(350);
 assertNotFired("sequenceOfIncreasingWithdrawals");

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[158]

 clock.advanceTime(10, TimeUnit.SECONDS);
 transactionCreatedEvent(400);
 clock.advanceTime(1, TimeUnit.MICROSECONDS);
 assertFired("sequenceOfIncreasingWithdrawals");
 }

Code listing 26: Unit test for the sequenceOfIncreasingWithdrawals rule
(CepTest.java file).

At the beginning of the averageBalance test, the property of accountInfo is set to
1000. The knowledge session is updated. The test executes successfully.

High activity
The next rule should catch fraudulent activities involving lots of small transactions.
For example, the number of transactions over a day is more than 500% of the
average number of transactions and the account's balance is less than 10% of the
average balance. Let's pretend that the AccountInfo has all the averages that we
need already calculated and ready to be used in other rules. We'll be able to use just
AccountInfo to see if the conditions are met for an Account.

rule highActivity
 when
 $account : Account()
 $accountInfo : AccountInfo(number == $account.number,
 numberOfTransactions1Day > (averageNumberOfTransactions.
 multiply(BigDecimal.valueOf(5.00))), averageBalance >
 ($account.getBalance().multiply(
 BigDecimal.valueOf(10.00))))
 then
 insert(new SuspiciousAccount($account.getNumber(),
 SuspiciousAccountSeverity.MINOR));
end

Code listing 27: Implementation of the highActivity rule (cep.drl file).

Thanks to decomposition, the rule looks simple. It will fire if
numberOfTransactions1Day > averageNumberOfTransactions*500%
(the number of transactions per one day is greater than 500% of the average number
of transactions per one day over 30 days) and if averageBalance*10% > account's
balance (10% of the average balance over 30 days is greater than account's balance).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 7

[159]

Testing the highActivity rule
The test for the highActivity rule is divided into four parts. The first one tests
the cases with a low number of transactions and a low average balance. The
second part tests cases with a low number of transactions, the third part tests cases
with a low average balance, and the fourth part tests the successful execution
of the rule. The account's balance is set to 1000 by the initialize method.
averageNumberOfTransactions of AccountInfo is set to 10. That means, for a
successful rule execution, averageBalance of accountInfo needs to be over 10000
and numberOfTransactions1Day needs to be over 50.

 @Test
 public void highActivity() throws Exception {
 accountInfoFactType.set(accountInfo,
 "averageNumberOfTransactions",BigDecimal.valueOf(10));
 accountInfoFactType.set(accountInfo,
 "numberOfTransactions1Day", 40l);
 accountInfoFactType.set(accountInfo, "averageBalance",
 BigDecimal.valueOf(9000));
 session.update(accountInfoHandle, accountInfo);
 assertNotFired("highActivity");

 accountInfoFactType.set(accountInfo, "averageBalance",
 BigDecimal.valueOf(11000));
 session.update(accountInfoHandle, accountInfo);
 assertNotFired("highActivity");

 accountInfoFactType.set(accountInfo,
 "numberOfTransactions1Day", 60l);
 accountInfoFactType.set(accountInfo, "averageBalance",
 BigDecimal.valueOf(6000));
 session.update(accountInfoHandle, accountInfo);
 assertNotFired("highActivity");

 accountInfoFactType.set(accountInfo, "averageBalance",
 BigDecimal.valueOf(11000));
 session.update(accountInfoHandle, accountInfo);
 assertFired("highActivity");
 }

Code listing 28: Unit test for the highActivity rule (CepTest.java file).

This concludes rule implementations for the fraud detection system. We haven't
implemented all of the rules specified in the requirements section, but they shouldn't
be hard to do. I am sure that you can now implement a lot more sophisticated rules.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Complex Event Processing

[160]

Summary
In this chapter, we've learned about Drools stream mode for Complex Event
Processing. Events in Drools are immutable objects with strong time-related
relationships. CEP has a great value, especially, if we need to make complex
decisions over a high number of events. The engine automatically detects when
an event is no longer needed and makes sure that it can be garbage collected.
We've seen the use of time/length sliding windows and temporal operators.

This chapter also discussed the Drools type declarations which can define metadata
on top of the existing types or define new types. As was demonstrated, new types
are useful for rule decomposition.

Various examples of rules from a fictive fraud detection system were presented.

Drools is a very extensible tool. The development team tries to make almost every
feature pluggable and customizable. Custom operators and custom accumulate
functions are just a few examples of this plugability. The usage of some of the
temporal operators was demonstrated.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow
Every non-trivial business process needs to make complex decisions. A rule engine
is the ideal place for these decisions to happen. However, it is impractical to invoke
a rule engine from a standard workflow engine. Instead, if we take a rule engine
and add workflow capabilities, we have an ideal tool to model complex business
processes—Drools Flow.

The basics of Drools Flow were already covered in Chapter 5, Human-readable Rules
(section, Drools Flow). We've learned about methods for managing rules execution
order. Basic components/nodes of a ruleflow—start, end, action, ruleflow group,
split, and join.

In this chapter, we'll look at Drools flow in more detail. We'll build a loan approval
process and cover the following advanced concepts of a ruleflow: work items, human
tasks, faults, subflows, events, and others.

Loan approval service
Loan approval is a complex process starting with customer requesting a loan. This
request comes with information such as amount to be borrowed, duration of the
loan, and destination account where the borrowed amount will be transferred. Only
the existing customers can apply for a loan. The process starts with validating the
request. Upon successful validation, a customer rating is calculated. Only customers
with a certain rating are allowed to have loans. The loan is processed by a bank
employee. As soon as an approved event is received from a supervisor, the loan is
approved and money can be transferred to the destination account. An email is sent
to inform the customer about the outcome.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[162]

Model
If we look at this process from the domain modeling perspective, in addition to
model that we already have, we'll need a Loan class. An instance of this class will
be a part of the context of this process.

attributes
amount
destinationAccount
durationYears

Loan

The screenshot above shows Java Bean, Loan, for holding loan-related information.
The Loan bean defines three properties. amount (which is of type BigDecimal),
destinationAccount (which is of type Account; if the loan is approved, the amount
will be transferred to this account), and durationYears (which represents a period
for which the customer will be repaying this loan).

Loan approval ruleflow
We'll now represent this process as a ruleflow. It is shown in the following figure.
Try to remember this figure because we'll be referring back to it throughout
this chapter.

Validate Loan

Validated?

no errors
otherwise

otherwise

otherwise

Amount to borrow?

Rating?
low

accept

AND

XOR

Start

End

Email

Email

Email

Not Valid

Low Rating

Rating Calculation

Process LoanApprove Event

Transfer Funds

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[163]

The preceding figure shows the loan approval process—loanApproval.rf file. You
can use the Ruleflow Editor that comes with the Drools Eclipse plugin to create this
ruleflow. The rest of the chapter will be a walk through this ruleflow explaining
each node in more detail.

The process starts with Validate Loan ruleflow group. Rules in this group will check
the loan for missing required values and do other more complex validation. Similar
to what we've done before, each validation rule simply inserts Message into the
knowledge session. The next node called Validated? is an XOR type split node. The
ruleflow will continue through the no errors branch if there are no error or warning
messages in the knowledge session—the split node constraint for this branch says:

not Message()

Code listing 1: Validated? split node no errors branch constraint
(loanApproval.rf file).

For this to work, we need to import the Message type into the ruleflow. This can
be done from the Constraint editor, just click on the Imports... button. The import
statements are common for the whole ruleflow. Whenever we use a new type in the
ruleflow (constraints, actions, and so on), it needs to be imported.

The otherwise branch is a "catch all" type branch (it is set to 'always true').
It has higher priority number, which means that it will be checked after the
no errors branch.

The .rf files are pure XML files that conform with a well
formed XSD schema. They can be edited with any XML editor.

Invalid loan application form
If the validation didn't pass, an email is sent to the customer and the loan approval
process finishes as Not Valid. This can be seen in the otherwise branch. There are
two nodes—Email and Not Valid. Email is a special ruleflow node called work item.

Email work item
Work item is a node that encapsulates some piece of work. This can be an interaction
with other system or some logic that is easier to write using standard Java. Each
work item represents a piece of logic that can be reused in many systems. We can
also look at work items as a ruleflow alternative to DSLs.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[164]

By default, Drools Flow comes with various generic work items, for example,
Email (for sending emails), Log (for logging messages), Finder (for finding files
on a file system), Archive (for archiving files), and Exec (for executing programs/
system commands).

In a real application, you'd probably want to use different work item than
a generic one for sending an email. For example, a custom work item that
inserts a record into your loan repository. Later on we'll see how to define
a custom work item.

Each work item can take multiple parameters. In case of email, these are: From, To,
Subject, Text, and others. Values for these parameters can be specified at ruleflow
creation time or at runtime. By double-clicking on the Email node in the ruleflow,
Custom Work Editor is opened (see the following screenshot). Please note that not
all work items have a custom editor.

In the first tab (not visible), we can specify recipients and the source email address.
In the second tab (visible), we can specify email's subject and body. If you look closer
at the body of the email, you'll notice two placeholders. They have the following
syntax: #{placeholder}. A placeholder can contain any mvel code and has access
to all of the ruleflow variables (we'll learn more about ruleflow variables later in this
chapter). This allows us to customize the work item parameters based on runtime
conditions. As can be seen from the screenshot above, we use two placeholders:
customer.firstName and errorList. customer and errorList are ruleflow
variables. The first one represents the current Customer object and the second one
is ValidationReport. When the ruleflow execution reaches this email work item,
these placeholders are evaluated and replaced with the actual values (by calling the
toString method on the result).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[165]

Fault node
The second node in the otherwise branch in the loan approval process ruleflow is a
fault node. Fault node is similar to an end node. It accepts one incoming connection
and has no outgoing connections. When the execution reaches this node, a fault is
thrown with given name. We could, for example, register a fault handler that will
generate a record in our reporting database. However, we won't register a fault
handler, and in that case, it will simply indicate that this ruleflow finished with
an error.

Test setup
We'll now write a test for the otherwise branch. First, let's set up the test environment.

Similar to what was done in Chapter 5, Human-readable Rules—a knowledge base
needs to be created from multiple files. For now, they are: loanApproval.drl and
loanApproval.rf, and later on we'll add two more: ratingCalculation.drl and
ratingCalculation.rf.

Then a new session is created in the setup method along with some test data. A valid
Customer with one Account is requesting a Loan. The setup method will create a
valid loan configuration and the individual tests can then change this configuration
in order to test various exceptional cases.

 @Before
 public void setUp() throws Exception {
 session = knowledgeBase.newStatefulKnowledgeSession();

 trackingProcessEventListener =
 new TrackingProcessEventListener();
 session.addEventListener(trackingProcessEventListener);
 session.getWorkItemManager().registerWorkItemHandler(
 "Email", new SystemOutWorkItemHandler());

 loanSourceAccount = new Account();

 customer = new Customer();
 customer.setFirstName("Bob");
 customer.setLastName("Green");
 customer.setEmail("bob.green@mail.com");
 Account account = new Account();
 account.setNumber(123456789l);
 customer.addAccount(account);
 account.setOwner(customer);

 loan = new Loan();
 loan.setDestinationAccount(account);
 loan.setAmount(BigDecimal.valueOf(4000.0));
 loan.setDurationYears(2);

Code listing 2: Test setup method called before every test execution
(DefaulLoanApprovalServiceTest.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[166]

A tracking ruleflow event listener is created and added to the knowledge session.
Similar to TrackingAgendaEventListener that was used in the previous chapter,
this event listener will record the execution path of a ruleflow—store all of the
executed ruleflow nodes in a list. TrackingProcessEventListener overrides the
beforeNodeTriggered method and gets the node to be executed by calling
event.getNodeInstance().

loanSourceAccount represents the bank's account for sourcing loans.

The setup method also registers an Email work item handler. A work item handler is
responsible for execution of the work item (in this case, connecting to the mail server
and sending out emails). However, the SystemOutWorkItemHandler implementation
that we've used is only a dummy implementation that writes some information to
the console. It is useful for our testing purposes.

Testing the 'otherwise' branch of 'Validated?' node
We'll now test the otherwise branch, which sends an email informing the applicant
about missing data and ends with a fault. Our test (the following code) will set up
a loan request that will fail the validation. It will then verify that the fault node was
executed and that the ruleflow process was aborted.

 @Test
 public void notValid() {
 session.insert(new DefaultMessage());
 startProcess();

 assertTrue(trackingProcessEventListener.isNodeTriggered(
 PROCESS_LOAN_APPROVAL, NODE_FAULT_NOT_VALID));
 assertEquals(ProcessInstance.STATE_ABORTED,
 processInstance.getState());
 }

Code listing 3: Test method for testing Validated? node's otherwise branch
(DefaultLoanApprovalServiceTest.java file).

By inserting a message into the session, we're simulating a validation error.
The ruleflow should end up in the otherwise branch.

Next, the test above calls the startProcess method . Its implementation is
as follows:

 private void startProcess() {
 Map<String, Object> parameterMap =
 new HashMap<String, Object>();
 parameterMap.put("loanSourceAccount", loanSourceAccount);
 parameterMap.put("customer", customer);
 parameterMap.put("loan", loan);

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[167]

 processInstance = session.startProcess(
 PROCESS_LOAN_APPROVAL, parameterMap);
 session.insert(processInstance);
 session.fireAllRules();
 }

Code listing 4: Utility method for starting the ruleflow
(DefaultLoanApprovalServiceTest.java file).

The startProcess method starts the loan approval process. It also sets
loanSourceAccount, loan, and customer as ruleflow variables. The resulting
process instance is, in turn, inserted into the knowledge session. This will enable
our rules to make more sophisticated decisions based on the state of current process
instance. Finally, all of the rules are fired.

We're already supplying three variables to the ruleflow; however, we haven't
declared them yet. Let's fix this. Ruleflow variables can be added through the
Eclipse's Properties editor as can be seen in the following screenshot (just click
on the ruleflow canvas, this should give the focus to the ruleflow itself). Each
variable needs a name type and, optionally, a value.

The preceding screenshot shows how to set the loan ruleflow variable. Its Type is
set to Object and ClassName is set to the full type name droolsbook.bank.model.
Loan. The other two variables are set in a similar manner.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[168]

Now back to the test�� from code listing 3. It verifies that the correct nodes were
triggered and that the process ended in aborted state. ����The isNodeTriggered method
takes the process ID, which is stored in a constant called PROCESS_LOAN_APPROVAL.
The method also takes the node ID as second argument. This node ID can be found
in the properties view after clicking on the fault node. The node ID—NODE_FAULT_
NOT_VALID—is a constant of type long defined as a property of this test class.

 static final long NODE_FAULT_NOT_VALID = 21;
 static final long NODE_SPLIT_VALIDATED = 20;

Code listing 5: Constants that holds fault and Validated? node's IDs
(DefaultLoanApprovalServiceTest.java file).

By using the node ID, we can change node's name and other properties without
breaking this test (node ID is least likely to change). Also, if we're doing bigger
re-factorings involving node id changes, we have only one place to update—the
test's constants.

Ruleflow unit testing
Drools Flow support for unit testing isn't the best. With every test, we
have to run the full process from start to the end. We'll make it easier with
some helper methods that will set up a state that will utilize different
parts of the flow. For example, a loan with high amount to borrow or a
customer with low rating.
Ideally we should be able to test each node in isolation. Simply start the
ruleflow in a particular node. Just set the necessary parameters needed for
a particular test and verify that the node executed as expected.
Drools support for snapshots may resolve some of these issues; however,
we'd have to first create all snapshots that we need before executing the
individual test methods. Another alternative is to dig deeper into Drools
internal API, but this is not recommended. The internal API can change in
the next release without any notice.

The size of the loan
All valid loans continue through the no errors branch to Amount to borrow? split
node. It is again a XOR type split node. It works based on amount property of Loan.
If it is less than 5000, it continues through the low branch, otherwise, it takes the
otherwise branch. ����The otherwise branch is again a 'catch all' type of branch. Put the
following constraint into the split node:

Loan(amount <= 5000)

Code listing 6: Amount to borrow? split node's low branch constraint
(loanApproval.rf file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[169]

For all loans that are bigger, a customer rating needs to be calculated.

Test for a small loan
The following method runs a loan with a small amount to borrow through our
ruleflow. As can be seen in the following code, the first line of this test sets up a
loan with low amount. Next, the process is started and the test verifies that the
flow continued through the correct branch.

 @Test
 public void amountToBorrowLow() {
 setUpLowAmount();
 startProcess();

 assertTrue(trackingProcessEventListener.isNodeTriggered(
 PROCESS_LOAN_APPROVAL, NODE_JOIN_RATING));
 assertFalse(trackingProcessEventListener
 .isNodeTriggered(PROCESS_LOAN_APPROVAL,
 NODE_SUBFLOW_RATING_CALCULATION));
 }

Code listing 7: Test for the Amount to borrow? node's low branch
(DefaultLoanApprovalServiceTest.java file).

The test expects the next XOR node on the low branch to be executed and it also
expects that the next node on the otherwise branch—Rating Calculation—isn't
executed.

The setupLowAmount method inserts a loan with low amount to borrow into the
knowledge session. You could argue that loan could be a global variable instead of
a fact. The advantage of having loan as a fact makes it possible to update it later on.
Remember? Global variables shouldn't change when we want to reason over them.

Rating Calculation
The first node arising from the Amount to borrow? node's otherwise branch is a
subflow node called Rating Calculation. This node will calculate the rating of this
customer. It will then be used to decide if a loan should be granted or not.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[170]

Subflow
First, some general subflow information. Subflow is a normal ruleflow that can be
called from another ruleflow. A subflow is effectively a ruleflow inside a ruleflow.
The following are the benefits of doing this:

A complex flow can be logically separated into multiple simple flows.
The problem can be decomposed into sub problems. As the basic principle
says—divide and conquer.
The new subflow can be also reused in different contexts. For example, this
rating calculation might be used in mortgage loan approval process. With the
help of on-entry/on-exit actions and parameter mappings, the parent flow
can supply information to the subflow and then possibly act on the result.
The subflow remains independent.
This subflow can be executed in parallel with the parent flow. This means
that after reaching the subflow node, the execution continues in both the
parent flow and the subflow (note that this doesn't mean multiple threads).
However, this has a disadvantage—we won't be able to use any results from
this subflow in our parent flow.

The subflow is executed in the same knowledge session as the parent ruleflow.
This means that the subflow can access facts just as its parent ruleflow. The
StatefulKnowledgeSession.getProcessInstances() method can be used to
return collection of all the process instances associated with a knowledge session.

Further, the subflow (and also some other ruleflow nodes) can define in/out
parameter mappings and on-entry/on-exit actions. The parent flow will wait on a
subflow if the Wait For Completion flag is set to true. Only in this case, it makes sense
to use the out parameter mappings. Another flag that can be set is independent. With
this flag set to true, the subflow will continue executing even if the parent ruleflow
finished executing (it is completed or aborted); otherwise, it would be aborted.

Subflow diagram
The following subflow represents the rating calculation flow. After it starts, the
execution continues through a split node. This split node is of type AND, meaning
that the execution will continue in all node's outgoing branches. On the left side
there is Calculate Incomes ruleflow group, and on the right side there are Calculate
Monthly Repayments and Calculate Expenses ruleflow groups. These ruleflow
groups contain rules for accumulating knowledge about customer incomes such as
salaries of the customer and his/her spouse, type of occupation they have, for how
long they have been employed, for how long they were unemployed, how much
funds they have in their accounts, and information about their properties or other

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[171]

asserts. The Calculate Monthly Repayments ruleflow group calculates how much
will this loan cost by month. The Calculate Expenses ruleflow group takes into
account expenses such as the size of the family, rent, other loans, mortgages,
and obligations.

Finally, these two branches are joined together by an AND type join node. This
means that the flow won't continue until all of its incoming connections are
triggered. The next node is a Calculate Rating ruleflow group. This is where all of
the acquired information is translated by a set of rules into one number—rating.
This ruleflow is as follows:

Calculate Incomes

Calculate Monthly Repayments

Calculate Expenses

Calculate Rating

Start

End

AND

AND

Please note that we've named the split and join nodes as AND and AND. This may
be a good practice to follow. The naming makes their type explicit. We no longer
have to examine the node to see its type. The disadvantage is that you have to make
sure that both the node's type and its name are updated at the same time. We've also
used this naming convention in the parent ruleflow.

One important thing to remember when designing the ruleflow is to make it simple.
The ruleflow should describe the core business process. It shouldn't contain every
little detail of the process. The rules are ideal for this. They can then fine-tune the
business process.

If we take the ruleflow from the preceding figure as an example, we can see that it
logically separates the individual calculations in a very nice manner. By looking at
this ruleflow diagram, you should immediately get a feeling of what is it trying
to achieve.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[172]

Now, we know that the subflow uses rules to calculate a rating. This rating is a
'fact' inside the knowledge session. We also know that this rating will somehow
be propagated to the parent flow through on exit action.

'On entry'/'On exit' Actions can be defined on various ruleflow nodes—subflow,
work item, and human task. As we've seen already in Chapter 5 (the Ruleflow
section), ruleflow also supports Action as a standalone node. An action is
simply a block of dialect-specific code. Action's code can access a context
variable—org.drools.runtime.process. ProcessContext.

org.drools.runtime.process.ProcessContext
ProcessContext has various methods for working with the current
ruleflow context. getProcessInstance() returns the current ruleflow
instance. As our action is inside subflow, this method will return the
subflow process instance.
In general, when a process starts, a new ProcessInstance is created
that represents the runtime state of a process. Drools Flow is based on
the PVM model (Process Virtual Machine—more information can be
found at http://docs.jboss.com/jbpm/pvm/article/).
The getNodeInstance()method of ProcessContext returns the
runtime instance of a currently executing node. The process context can
also be used for setting and getting ruleflow variables getVariable
/ setVariable. The getKnowledgeRuntime()method returns
KnowledgeRuntime that can be used for interaction with the
knowledge session.

Nodes that define both entry/exit actions and also in/out parameter
mappings use the following order to evaluate them:

On-entry actions
Input parameter mappings
The node itself
Output parameter mappings
On-exit actions.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[173]

We'll define an on-exit action with the following body:

Rating rating = (Rating)context.getKnowledgeRuntime() 	
.getObjects(new ClassObjectFilter(Rating.class))
 .iterator().next();
context.setVariable("customerLoanRating", rating.getRating());
update(context.getProcessInstance());

Code listing 8: Subflow node's onExit action body (loanApproval.rf file).

First of all, the action retrieves the calculated rating from the knowledge session.
It simply iterates over all of the objects in the knowledge session and filters out all
of the objects that are not of type Rating. Rating is a bean that has one property of
type Integer called rating. The code is expecting to find just one Rating fact in the
knowledge session as can be seen when we call the next method.

Next, we set the customerLoanRating variable using the context.setVariable
method, which correctly sets it on the main ruleflow context. Finally, we shouldn't
forget to update the processInstance because we've modified it.

Rating calculation subflow test
We'll now write a test which verifies that our subflow is being called and the variable
is being set.

 @Test
 public void amountToBorrowHighRatingCalculation() {
 setUpHighAmount();
 startProcess();
 assertTrue(trackingProcessEventListener
 .isNodeTriggered(PROCESS_LOAN_APPROVAL,
 NODE_SUBFLOW_RATING_CALCULATION));
 assertTrue(trackingProcessEventListener.isNodeTriggered(
 PROCESS_RATING_CALCULATION,
 NODE_GROUP_CALCULATE_RATING));
 WorkflowProcessInstance process =
 (WorkflowProcessInstance) processInstance;
 assertEquals(1500,
 process.getVariable("customerLoanRating"));
 }

Code listing 9: Test for the subflow node
(DefaultLoanApprovalServiceTest.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[174]

The test sets up loan request with high amount by calling the setUpHighAmount
method. This method inserts a loan (with amount set to 19000) into the knowledge
session. Next, the process is started with default parameters, which involve
customerLoanRating ruleflow variable set to zero. Next, the test verifies that the
subflow node has been executed along with one node from the subflow—Calculate
Rating. Finally, the test verifies that customerLoanRating variable has been set to
1500—it is a customer loan rating calculated for our test loan. The last couple of lines
of the test method also show us how to get variables from the process instance.

The rules for calculating the rating have been left out. However, for
testing purposes you could easily write a rule that inserts a Rating fact
into the session with its rating property set to 1500.

Another test for the rating calculation ruleflow may check that all of its nodes are
executed, as the flow contains only and type split and join nodes.

Decisions on rating
After we've calculated rating and set it as ruleflow variable, the next ruleflow
node—Rating?—checks if the customer's loan rating is high enough. It is an XOR
type split node with the following 'accept' branch constraint:

((Integer)customerLoanRating) >= 1000

Code listing 10: Rating? node's accept branch constraint—code type
(loanApproval.rf file).

Set the type of this constraint to code and dialect to mvel. Code constraints have
access to all of the ruleflow variables. As can be seen, we're directly referring to the
customerLoanRating ruleflow variable and checking if it is greater or equal than
1000. If it is, the loan application can continue to the next step of loan approval
process. Note that the variable needs to be cast to Integer;������������������������� otherwise, an exception
will be thrown.

If we need to take more complex decisions, we could use a rule type constraint like
we did before:

processInstance : WorkflowProcessInstance(
 eval(((Integer)processInstance.getVariable(
 "customerLoanRating")) >= 1000))

Code listing 11: Rating? node's accept branch constraint—rule type
(loanApproval.rf file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[175]

The condition uses a special variable name called processInstance of type
WorkflowProcessInstance. It is special because Drools will match only on the
current executing ruleflow instance even if there were multiple instances in the
knowledge session. Through processInstance,����������������������������������� we can access all of the ruleflow
variables. Note that we need to insert the ruleflow instance into the knowledge
session as we've done in code listing 4.

Testing the 'Rating?' node
The test will create a loan request for high amount and for a customer that has high
rating. It will then execute the ruleflow and verify that the ruleflow execution went
through the Rating? node through the accept branch to the XOR join node.

 @Test
 public void ratingSplitNodeAccept() {
 setUpHighAmount();
 setUpHighRating();
 startProcess();

 assertTrue(trackingProcessEventListener.isNodeTriggered(
 PROCESS_LOAN_APPROVAL, NODE_SPLIT_RATING));
 assertTrue(trackingProcessEventListener.isNodeTriggered(
 PROCESS_LOAN_APPROVAL, NODE_JOIN_RATING));
 }

Code listing 12: Rating? node's accept branch constraint
(DefaultLoanApprovalServiceTest.java file).

The test executes successfully.

Transfer Funds work item
We'll now jump almost to the end of our process. After a loan is approved, we need
a way of transferring the specified sum of money to customer's account. This can be
done with rules, or even better, with pure Java as this task is procedural in nature.
We'll create a custom work item so that we can easily reuse this functionality in other
ruleflows. Note that if it was a once-off task, it would probably be better suited to an
action node.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[176]

The Transfer Funds node in the loan approval process is a custom work item. A new
custom work item can be defined using the following four steps (later on we'll see
how they are accomplished):

1.	 Create a work item definition. This will be used by the eclipse ruleflow editor
and by the ruleflow engine to set and get parameters. For example, the
following is an extract from the default WorkDefinitions.conf file that
comes with Drools. It describes 'Email' work definition. The configuration
is written in MVEL. MVEL allows one to construct complex object graphs in
a very concise format. This file contains a list of maps—List<Map<String,
Object>>. Each map defines properties of one work definition. The
properties are: name, parameters (that this work item works with),
displayName, icon, and customEditor (these last three are used when
displaying the work item in the Eclipse ruleflow editor). A custom editor is
opened after double-clicking on the ruleflow node.

	 import org.drools.process.core.datatype.impl.type.StringDataType;
	 [
	 [
	 "name" : "Email",
	 "parameters" : [
	 	 "From" : new StringDataType(),
	 	 "To" : new StringDataType(),
	 	 "Subject" : new StringDataType(),
	 	 "Body" : new StringDataType()
],
	 "displayName" : "Email",
	 "icon" : "icons/import_statement.gif",
	 "customEditor" : "org.drools.eclipse.flow.common.editor.
 editpart.work.EmailCustomEditor"
]
]

Code listing 13: Excerpt from the default WorkDefinitions.conf file.
Work item's parameters property is a map of parameterName and
its value wrappers. The value wrapper must implement interface
org.drools.process.core.datatype.DataType.

2.	 Register the work definitions with the knowledge base configuration. This will be
shown in the next section.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[177]

3.	 Create a work item handler. This handler represents the actual behavior of a
work item. It will be invoked whenever the ruleflow execution reaches this
work item node. All of the handlers must extend the org.drools.runtime.
process.WorkItemHandler interface. It defines two methods. One for
executing the work item and another for aborting the work item. Drools
comes with some default work item handler implementations, for example,
a handler for sending emails: org.drools.process.workitem.email.
EmailWorkItemHandler. This handler needs a working SMTP server. It must
be set through the setConnection method before registering the work item
handler with the work item manager (next step). Another default work item
handler was shown in Code listing 2 - a SystemOutWorkItemHandler.

4.	 Register the work item handler with the work item manager.

After reading this you may ask, why doesn't the work item definition also specify the
handler? It is because a work item can have one or more work item handlers that can
be used interchangeably. For example, in a test case, we may want to use different
work item handler than in production environment.

We'll now follow this four-step process and create a Transfer Funds custom
work item.

Work item definition
Our transfer funds work item will have three input parameters: source account,
destination account, and the amount to transfer. Its definition is as follows:

import org.drools.process.core.datatype.impl.type.ObjectDataType;
[
 [
 "name" : "Transfer Funds",
 "parameters" : [
 	 "Source Account" : new ObjectDataType("droolsbook.bank.
 model.Account"),
 	 "Destination Account" : new ObjectDataType("droolsbook.bank.
 model.Account"),
 	 "Amount" : new ObjectDataType("java.math.BigDecimal")
],
 "displayName" : "Transfer Funds",
 "icon" : "icons/transfer.gif"
]
]

Code listing 14: Work item definition from the BankingWorkDefinitions.conf file.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[178]

The Transfer Funds work item definition from code above declares the usual
properties. It doesn't have a custom editor as was the case with email work item. All
of the parameters are of the ObjectDataType type. This is a wrapper that can wrap
any type. In our case, we are wrapping Account and BigDecimal ������������������ types. We've also
specified an icon that will be displayed in the ruleflow's editor palette and in the
ruleflow itself. The icon should be of the size 16x16 pixels.

Work item registration
First make sure that the BankingWorkDefinitions.conf file is on your classpath.
We now have to tell Drools about our new work item. This can be done by creating
a drools.rulebase.conf file with the following contents:

drools.workDefinitions = WorkDefinitions.conf BankingWorkDefinitions.
conf

Code listing 15: Work item definition from the BankingWorkDefinitions.conf file
(all in one one line).

When Drools starts up, it scans the classpath for configuration files. Configuration
specified in the drools.rulebase.conf file will override the default configuration.
In this case, only the drools.workDefinitions setting is being overridden. We
already know that the WorkDefinitions.conf ������������������������������� file contains the default work
items such as email and log. We want to keep those and just add ours. As can be
seen from the code listing above, drools.workDefinitions settings accept list
of configurations. They must be separated by a space. When we now open the
ruleflow editor in Eclipse, the ruleflow palette should contain our new Transfer
Funds work item.

If you want to know more about the file based configuration resolution process, you
can look into the org.drools.util.ChainedProperties class.

Work item handler
Next, we'll implement the work item handler. It must implement the org.
drools.runtime.process.WorkItemHandler interface that defines two methods:
executeWorkItem ����and abortWorkItem. The implementation is as follows:

/**
 * work item handler responsible for transferring amount from
 * one account to another using bankingService.transfer method
 * input parameters: 'Source Account', 'Destination Account'
 * and 'Amount'
 */
public class TransferWorkItemHandler implements

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[179]

 WorkItemHandler {
 BankingService bankingService;

 public void executeWorkItem(WorkItem workItem,
 WorkItemManager manager) {
 Account sourceAccount = (Account) workItem
 .getParameter("Source Account");
 Account destinationAccount = (Account) workItem
 .getParameter("Destination Account");
 BigDecimal sum = (BigDecimal) workItem
 .getParameter("Amount");

 try {
 bankingService.transfer(sourceAccount,
 destinationAccount, sum);
 manager.completeWorkItem(workItem.getId(), null);
 } catch (Exception e) {
 e.printStackTrace();
 manager.abortWorkItem(workItem.getId());
 }
 }

 /**
 * does nothing as this work item cannot be aborted
 */
 public void abortWorkItem(WorkItem workItem,
 WorkItemManager manager) {
 }

Code listing 16: Work item handler (TransferWorkItemHandler.java file).

The executeWorkItem method retrieves the three declared parameters and calls
the bankingService.transfer method (the implementation of this method won't
be shown). If all went OK, the manager is notified that this work item has been
completed. It needs the ID of the work item and optionally a result parameter map.
In our case, it is set to null. If an exception happens during the transfer, the manager
is told to abort this work item.

The abortWorkItem method on our handler doesn't do anything because this work
item cannot be aborted.

Please note that the work item handler must be thread-safe. Many ruleflow instances
may reuse the same work item instance.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[180]

Work item handler registration
The transfer work item handler can be registered with a WorkItemManager as follows:

 TransferWorkItemHandler transferHandler =
 new TransferWorkItemHandler();
 transferHandler.setBankingService(bankingService);
 session.getWorkItemManager().registerWorkItemHandler(
 "Transfer Funds", transferHandler);

Code listing 17: TransferWorkItemHandler registration
(DefaultLoanApprovalServiceTest.java file).

A new instance of this handler is created and the banking service is set. Then it is
registered with WorkItemManager in a session.

Next, we need to 'connect' this work item into our ruleflow. This means set its
parameters once it is executed. We need to set the source/destination account and
the amount to be transferred. We'll use the in-parameter mappings of Transfer
Funds to set these parameters.�

As we can see the Source Account is mapped to the loanSourceAccount ruleflow
variable. The Destination Account ruleflow variable is set to the destination account
of the loan and the Amount ruleflow variable is set to loan's amount.

Testing the transfer work item
This test will verify that the Transfer Funds work item is correctly executed with all
of the parameters set and that it calls the bankingService.transfer method with
correct parameters. For this test the bankingService service will be mocked with
jMock library (jMock is a lightweight Mock object library for Java. More information
can be found at http://www.jmock.org/). First we need to set up the banking
service mock object in the following manner:

mockery = new JUnit4Mockery();
bankingService = mockery.mock(BankingService.class);

Code listing 18: jMock setup of bankingService mock object
(DefaultLoanApprovalServiceTest.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[181]

Next, we can write our test. We are expecting one invocation of the transfer
method with loanSourceAccount and loan's destination and amount properties.
Then the test will set up the transfer work item as in code listing 17, start the
process, and approve the loan (more about this is discussed in the next section).
The test also verifies that the Transfer Funds node has been executed. Test method's
implementation is as follows:

 @Test
 public void transferFunds() {
 mockery.checking(new Expectations() {
 {
 one(bankingService).transfer(loanSourceAccount,
 loan.getDestinationAccount(), loan.getAmount());
 }
 });

 setUpTransferWorkItem();
 setUpLowAmount();
 startProcess();
 approveLoan();

 assertTrue(trackingProcessEventListener.isNodeTriggered(
 PROCESS_LOAN_APPROVAL, NODE_WORK_ITEM_TRANSFER));
 }

Code listing 19: Test for the 'Transfer Funds' work item
(DefaultLoanApprovalServiceTest.java file).

The test should execute successfully.

Human task
Let's go back to the loan approval ruleflow. We've finished after the Rating? node.
Our next step is to implement the Process Loan node. This is where the human
actors will be involved. We've done what we could with our automated process,
now is the time for tasks that a computer can't or shouldn't do.

Drools supports human tasks though Web Services Human Task specification
(The WS-HumanTask is an OASIS specification and can be downloaded from
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/WS-HumanTask_v1.pdf). With this specification, we can define
human tasks that will be automatically created when the ruleflow reaches this
ruleflow node. After they are created, they will appear on the 'task list screen' of
designated users than can

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[182]

'claim' these tasks and start working on them until they are completed. They can also
suspend or abort these tasks. Once the task reaches the final state (complete/abort),
the ruleflow continues execution. Please note that this is very simplified view; the
WS-HumanTask specification defines a more complex life cycle of a task.

From the ruleflow perspective, WS-HumanTask is just a special case of work item.
Once it is triggered, the ruleflow simply waits for the end result, be it success or
failure. Drools comes with a simple work item handler implementation for human
task called WSHumanTaskHandler it is far from implementing all features of
WS-HumanTask specification, but it gives us a starting point and a direction.

Human task support is part of the drools-process-task module.

The human task ruleflow node allows us to specify actorId, which is the ID
of a person/group that will have the role of potentialOwner as defined by
WS-HumanTask. Also some comment can be specified, which will become the
'subject' and 'description' of a human task. Priority and option if a task can be
skipped can be also defined.

The WSHumanTaskHandler provides no support for some WS-HumanTask user
roles such as task initiators, excluded owners, task stakeholders, business
administrators or recipients. Nor does it support attachments, multiple comments,
task delegations, start/end deadlines with their escalations, notifications, and user
reassignments. If needed, the WSHumanTaskHandler can be extended to provide
the features we need. For the purpose of our loan approval example, we'll use this
WSHumanTaskHandler unchanged.

The core part of the WS-HumanTask specification is the server that receives the tasks
and manages them. WSHumanTaskHandler is kept lightweight. It is a simple client
that creates a task based on properties set in the ruleflow and registers this task with
the server together with a callback. As has been said earlier, it then waits for success
or failure of the task. It can take some time for a human task to finish; therefore, a
more advanced implementation could, for example, persist the ruleflow to some
permanent storage in order to free up the resources.

On the other side, the server is a more or less complete implementation of the
WS-HumanTask specification. It goes even further by giving us the ability to send
standard iCalendar VEVENT notifications (iCalendar is a RFC 2445 standard for
calendar exchange. More information about iCalendar VEVENTs can be found at
http://en.wikipedia.org/wiki/Icalendar#Events_.28VEVENT.29).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[183]

Test for the human task
So far it was only theory—a test will hopefully make it clearer. In order to write
some tests for the Process Loan human task, we'll need a server that will receive
these tasks. Other clients will then connect to this server and work on these tasks
and when they are completed our ruleflow will be able to continue.

Due to its size, the test will be divided into three parts—server setup, client setup,
and client 'working on the task'.

We'll start with the server setup (see the following code listing). It will initialize the
server, register a human task work item handler, and start the loan approval process.

 @Test
 public void processLoan() throws Exception {
 EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("org.drools.task");

 TaskService taskService = new TaskService(emf,
 SystemEventListenerFactory.getSystemEventListener());
 MockUserInfo userInfo = new MockUserInfo();
 taskService.setUserinfo(userInfo);

 TaskServiceSession taskSession = taskService
 .createSession();
 taskSession.addUser(new User("Administrator"));
 taskSession.addUser(new User("123"));
 taskSession.addUser(new User("456"));
 taskSession.addUser(new User("789"));

 MinaTaskServer server = new MinaTaskServer(taskService);
 Thread thread = new Thread(server);
 thread.start();
 Thread.sleep(500);

 WorkItemHandler htHandler = new WSHumanTaskHandler();
 session.getWorkItemManager().registerWorkItemHandler(
 "Human Task", htHandler);
 setUpLowAmount();
 startProcess();

Code listing 20: Test for the Process Loan node—setup of server and process start-up
(DefaultLoanApprovalServiceTest.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[184]

As part of the server setup, the test creates a JPA EntityManagerFactory
(JPA stands for Java Persistence API. More information can be found at
http://en.wikipedia.org/wiki/Java_Persistence_API) from a persistence
unit named org.drools.task (the configuration for this persistence unit is inside
drools-process-task.jar module in /META-INF/persistence.xml. By default
it uses an in-memory database). It is used for persisting human tasks that are
not currently needed. There may be thousands of human task instances running
concurrently and each can take minutes, hours, days, or even months to finish.
Persisting them will save us resources. In the next chapter, we'll also see how to
persist the whole ruleflow.

Next, TaskService is created. It takes the EntityManagerFactory and a
SystemEventListener.

org.drools.SystemEventListener
The SystemEventListener provides callback style logging of
various Drools system events. The listener can be set through
the SystemEventListenerFactory. The default listener prints
everything to the console.

The TaskService represents the main server process. A UserInfo object is set to
the taskService. It has methods for retrieving various information about users and
groups of users in our organisation that the taskService needs (it is, for example,
used when sending the iCalendar notifications). For testing purposes, we're using
only a mock implementation—MockUserInfo.

The TaskService can be accessed by multiple threads. Next the
TaskServiceSession represents one session of this service. This session can be
accessed by only one thread at a time. We use this session to create some test users.
Our Process Loan task is initially assigned to actorIds: 123, 456 and 789. This is
defined in the Process Loan ruleflow node's properties. Next, the server thread is
started wrapped in a MinaTaskServer. It is a lightweight server implementation that
listens on a port for clients requests. It is based on Apache MINA.������������������� (More information
about Apache MINA can be found at http://mina.apache.org/).

The current thread then sleeps for 500ms, so that the server thread has some time
to initialize. Then a default Drools WSHumanTaskHandler is registered, a new
loan application with low amount is created, and the ruleflow is started. The
ruleflow will execute all the way down to Process Loan human task where the
WSHumanTaskHandler takes over. It creates a task from the information specified
in the Process Loan node and registers this task with the server. It knows how to
connect to the server. The ruleflow then waits for the completion of this task.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[185]

The next part of this test represents a client (bank employee) that is viewing
his/her task list and getting one task. First the client must connect to the server.

Because all of the communication between the client and the server is asynchronous
and we want to test it in one test method, we will use some blocking response
handlers that will simply block until the response is available. These response
handlers are from the drools-process-task module.

Next the client.getTasksAssignedAsPotentialOwner method is called and we
wait for a list of tasks that the client can start working on. The test verifies that the
list contains one task and that the status of this task is Ready.

 MinaTaskClient client = new MinaTaskClient("client 1",
 new TaskClientHandler(
 SystemEventListenerFactory.getSystemEventListener()));
 NioSocketConnector connector = new NioSocketConnector();
 SocketAddress address = new InetSocketAddress("127.0.0.1",
 9123);
 client.connect(connector, address);

 BlockingTaskSummaryResponseHandler summaryHandler =
 new BlockingTaskSummaryResponseHandler();
 client.getTasksAssignedAsPotentialOwner("123", "en-UK",
 summaryHandler);
 List<TaskSummary> tasks = summaryHandler.getResults();
 assertEquals(1, tasks.size());
 TaskSummary task = tasks.get(0);
 assertEquals("Process Loan", task.getName());
 assertEquals(3, task.getPriority());
 assertEquals(Status.Ready, task.getStatus());

Code listing 21: Test for the Process Loan node—setup of a client and task list
retrieval (DefaultLoanApprovalServiceTest.java file).

The final part of this test represents a client (bank employee) that 'claims' one of the
task from the task list, then 'starts' this task, and finally 'completes' this task.

 BlockingTaskOperationResponseHandler operationHandler =
 new BlockingTaskOperationResponseHandler();
 client.claim(task.getId(), "123", operationHandler);
 operationHandler.waitTillDone(10000);

 operationHandler =
 new BlockingTaskOperationResponseHandler();
 client.start(task.getId(), "123", operationHandler);
 operationHandler.waitTillDone(10000);

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[186]

 operationHandler =
 new BlockingTaskOperationResponseHandler();
 client.complete(task.getId(), "123", null,
 operationHandler);
 operationHandler.waitTillDone(10000);

 assertTrue(trackingProcessEventListener.isNodeTriggered(
 PROCESS_LOAN_APPROVAL, NODE_JOIN_PROCESS_LOAN));
 }

Code listing 22: Test for the Process Loan node—client is claiming, starting, and
completing a task (DefaultLoanApprovalServiceTest.java file).

After the task is completed, the test verifies that the ruleflow continues execution
through the next join node.

Final Approval
As you may imagine, before any money is paid out to the loan requester, a final
check is needed from a supervisor. This is represented in the ruleflow by the
Approve Event node. It is an event node from the ruleflow palette. It allows a
process to respond to the external events. This node has no incoming connection; in
fact, the events can be created/signaled through the process instance's signalEvent
method. The method needs event type and the event value itself.

Parameters of the Event node include event type and variable name that hold this
event. The variable must be itself declared as a ruleflow variable.

Test for the 'Approve Event' node
A test will show us how all this works. We'll setup a valid loan request. The dummy
SystemOutWorkItemHandler will be used to get through the Transfer Funds and
Process Loan work items. The execution should then wait for the approve event.
Then we'll signal the event using the processInstance.signalEvent("LoanApprov
edEvent", null) method and verify that the ruleflow finished successfully.

 @Test
 public void approveEventJoin() {
 setUpLowAmount();
 startProcess();
 assertEquals(ProcessInstance.STATE_ACTIVE, processInstance
 .getState());
 assertFalse(trackingProcessEventListener.isNodeTriggered(
 PROCESS_LOAN_APPROVAL, NODE_WORK_ITEM_TRANSFER));
 approveLoan();
 assertTrue(trackingProcessEventListener.isNodeTriggered(
 PROCESS_LOAN_APPROVAL, NODE_WORK_ITEM_TRANSFER));

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 8

[187]

 assertEquals(ProcessInstance.STATE_COMPLETED,
 processInstance.getState());
 }

Code listing 23: Test for the Approve Event node
(DefaultLoanApprovalServiceTest.java file).

Before sending the approved event, we've verified that the process is in active state
and that the Transfer Funds work item hasn't been called yet.

After sending the approved event, the test verifies that ����the Transfer Funds work
item was actually executed and the ruleflow reached its final COMPLETED state.

Banking service
The final step is to implement the approveLoan service that represents the interface
to our loan approval process. It ties everything that we've done together. The
approveLoan method takes a Loan and a Customer, which is requesting the loan.

 KnowledgeBase knowledgeBase;
 Account loanSourceAccount;

 /**
 * runs the loan approval process for a specified
 * customer's loan
 */
 public void approveLoan(Loan loan, Customer customer) {
 StatefulKnowledgeSession session = knowledgeBase
 .newStatefulKnowledgeSession();
 try {
 //TODO: register workitem/human task handlers
 Map<String, Object> parameterMap =
 new HashMap<String, Object>();
 parameterMap.put("loanSourceAccount",loanSourceAccount);
 parameterMap.put("customer", customer);
 parameterMap.put("loan", loan);
 session.insert(loan);
 session.insert(customer);
 ProcessInstance processInstance =
 session.startProcess("loanApproval", parameterMap);
 session.insert(processInstance);
 session.fireAllRules();
 } finally {
 session.dispose();
 }
 }

Code listing 24: approveLoan service method of BankingService
(DefaultLoanApprovalService.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Drools Flow

[188]

The service creates a new session. It should then set-up and register all of the work
item handlers that we've implemented. This part is left out. Normally it would
involve setting up configuration parameters such as the IP address of an SMTP
server for the email work item handler and so on.

Next, the loan and the customer are inserted into the session, the ruleflow is
started, and the rules are fired. When the ruleflow completes, the session is disposed.
(Please be aware that with this solution, the knowledge session is held in memory
from the time when the ruleflow starts up to the time when it finishes. In the next
chapter, we'll see how to persist this ruleflow.)

Disadvantages of a ruleflow
A ruleflow may potentially do more work than it should do. This is a direct
consequence of how the algorithm behind Drools works. All of the rule constraints
are evaluated at fact insertion time. For example, if we have a ruleflow with many
nodes and 80% of the time the ruleflow finishes at the second node, most of the
computation is wasted. This will be clearer when we get to Chapter 12, Performance.

Another disadvantage is that the business logic is now spread across at least two
places. The rules are still in the .drl file; however, the ruleflow is in the .rf file. The
ruleflow file also contains split node conditions and actions. If somebody wants to
get the full understanding of a process, he/she has to look back and forth between
these files. This may be fixed in future by having better integration in the Drools
Eclipse plugin between the .drl file editor and the .rf file editor (for example, it
would be nice to see the rules that belong to a selected ruleflow group).

Summary
In this chapter, we've learned about various Drools Flow features. It represents an
interesting approach to business process representation. The vision of Drools Flow is
to unify rules and processes into one product. This is a very powerful idea, especially
with business processes involving complex decisions because these complexities can
be implemented within rules which are ideal for this.

We've designed a loan approval service that involves validation of the loan request,
customer rating calculation, approval events from a supervisor, and finally, custom
domain specific work item for transferring money between accounts.

We've seen Drools Flow support of human tasks through the WS-HumanTask
specification. This allows for greater interoperability between systems from
different vendors.

All in all, Drools Flow represents an interesting approach to rules and processes.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application
This chapter will focus on the usage of Drools in a real application. It connects to the
previous chapters and will give an overall picture of how it all comes together. We'll
look at how Drools can be used in a sample JEE web application covering layered
design, persistence, transactions, and others.

This chapter assumes that you have some basic understanding of JPA
(Java Persistence API. More information can be found at http://java.sun.com/
javaee/technologies/persistence.jsp) and the Spring Framework.

We'll now look at the various aspects of the sample application.

Users
Our application will have three sets of users—normal bank employees, supervisors,
and bank customers. Normal bank employees will be able to create new customers.
Customers will be able to request loans. Bank employees will then work on these
loans. Supervisors will issue final loan approvals.

Architecture
This sample application will consist of three layers. From bottom to top—persistence,
service, and presentation. It can be seen in the following diagram. The persistence
layer is responsible for storing objects into a database. Transactions guarantee
consistency of the database and provide isolation between concurrent requests.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[190]

The service layer represents the business logic of this application. It consists of
validation service, Complex Event Processing (CEP) service, and loan approval
service. Finally, the presentation layer uses these services to provide functionality
to users in a user-friendly fashion. The sample application architecture diagram is
as follows:

Database

user user

HTTP HTTP

Presentation

Services

Persistence

TCP WS-HumanTask
server

JDBC JDBC

Please note that with some minor configuration changes, the service layer
and presentation layer may be deployed on different physical servers and can
communicate over the network. With some more configuration changes, it is even
possible to have multiple service or presentation layer deployments. However, it
won't be covered in this book.

Technologies used
The persistence layer will be implemented using JPA with Hibernate as
the persistence provider. JPA is a standard that makes it easier to switch
persistence providers. JPA annotations will be used to map our domain objects
into persistent entities (for example, database tables). JTA (Java Transaction API)
will be used for managing database transactions with BTM (Bitronix transaction
manager—http://docs.codehaus.org/display/BTM/Home) as the transaction
manager implementation.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[191]

The presentation layer will use Spring MVC framework to define the behavior of the
screens. Spring MVC was chosen because of its simplicity. The actual screens will be
implemented as traditional JSP (Java Server Pages). Tomcat servlet container version
6.X will host our application.

All three layers will be configured with Spring Framework.

Our application won't use any special features of any technology/framework, so it's
easy to use any other technologies/frameworks to do the same job.

Additional Drools projects used
We'll use drools-process-task module (as described in Chapter 8, Drools Flow)
and drools-persistence-jpa module that will provide persistence services for our
loan approval ruleflow.

Libraries used
Please refer to Appendix C, Dependencies of Sample Application for other third party
libraries needed. It contains a list of libraries and their versions.

Business logic
We'll use our previously implemented services. Created customers will be validated
(described in Chapters 3, Validation and Chapter 6, Stateful Session) before they
are persisted. New loans will go through the loan approval process (described in
Chapter 8, Drools Flow) and if they meet all criteria, a new 'process loan' human task
will be created. Bank employees will see this task on their task lists and will be able
to claim a task, start working on it, and when they are done with this task, they will
be able to complete it. A supervisor will be able to approve a loan. After approval,
the process will finish. Various events will be generated and feeded into the CEP
service (described in Chapter 7, Complex Event Processing) running in the background.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[192]

Design
Let's now look in more detail at the individual layers. The following diagram also
gives us an overview of what we'll be implementing in this chapter. Again, from
bottom to top, we'll have two repositories—one for persisting customers and one
for accounts. The services layer will have our three already defined services—
validation, loan approval, and CEP service. These services will be hidden behind
a public BankingService, which will act as a mediator between these services.
The presentation tier will use this public service to do all of its tasks. There will
be various controllers—each responsible for some unit of work (for example,
CustomerSaveFormController for saving a customer). The presentation tier will also
contain a WS-HumanTask client that will be responsible for all communication with
the WS-HumanTask server. The sample application design diagram is as follows:

TaskClaim/Start/CompleteController WS-HumanTask
client

LoanRequestFormController TaskListController

CustomerSaveFormController ApproveEventController

BankingService

presentation

services

ValidationService LoanApprovalService CEPService

CustomerRepository AccountRepository
persistence

WS-HumanTask
serverDatabase

In the persistence layer, only the CustomerRepository will be normally used. It will
persist the whole object graph (customer object, including address and customer's
accounts). AccountRepository is also shown. It can be used to persist accounts that
have no customers (we won't use this repository in our examples).

Configuration
In the following sections, we'll go through some configuration of the various layers.
This is necessary before we can write some presentation code and deploy the
web application.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[193]

JPA annotations for domain objects
We'll start with the persistence layer. All of the objects that are going to be persisted
need to be mapped. This includes the Customer, Address, Account, and Loan
objects. The validation message objects don't need to be mapped because they are not
going to be persisted. Most of the time, the default mapping settings will be used.
The @Entity annotation will be used to declare that a class should be persistable and
we'll also explicitly specify the table name. Every entity needs an ID. A uuid field
of type String will be added to every entity. The @Id annotation will declare that
this uuid field is the ID of an entity. Customer's accounts will be mapped with a @
OneToMany annotation, which declares that one customer can have many accounts.
Let's now look at a mapping of the Customer class:

@Entity
@Table(name = "app_customer")
public class Customer implements Serializable {
 @Id private String uuid;
 private String firstName;
 private String lastName;
 private Date dateOfBirth;
 private Address address;

 @OneToMany(mappedBy="owner") private Set<Account> accounts;
 private String phoneNumber;

Code listing 1: Code extract from the Customer class (Customer.java file).

Please consult the Hibernate manual for advanced mapping (http://www.
hibernate.org/hib_docs/reference/en/html/index.html).

We're using uuid as IDs, because they are much easier to work with. We can assign
them at object creation time instead of object persistence time as is the case with
database assigned IDs. The standard java.util.UUID class will be used to generate
uuid instances. We can define a factory for creating our domain objects that will
automatically assign uuid to every new object as follows:

public class DefaultBankingFactory implements BankingFactory {
 @Override
 public Customer createCustomer() {
 Customer customer = new Customer();
 customer.setUuid(UUID.randomUUID().toString());
 Set<Account> accounts = new HashSet<Account>();
 customer.setAccounts(accounts);
 return customer;
 }

Code listing 2: DefaultBankingFactory class that follows the factory design pattern
(DefaultBankingFactory.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[194]

Our factory implements the BankingFactory interface which contains all of the
factory methods such as createCustomer, createAddress, and createAccount.
These methods make sure that all of the created objects have their references
correctly set—for example, createAccount method takes a customer as an
argument, adds the newly created account to the collection of customer's accounts,
and also sets this customer as the owner of this account. This keeps the referential
integrity intact. We can even declare domain object's constructors as package
private so that new instances can be created only through this factory.

JPA configuration
Next, we'll work on the JPA provider configuration. This configuration also defines
the classes that should be made persistable. All of this information will be contained
in a so-called persistence-unit. This configuration is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence version="1.0"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="droolsbook.persistence"
 transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/testDS1</jta-data-source>
 <class>droolsbook.bank.model.Customer</class>
 <class>droolsbook.bank.model.Address</class>
 <class>droolsbook.bank.model.Account</class>
 <class>droolsbook.bank.model.LoanApprovalHolder</class>
 </persistence-unit>
</persistence>

Code listing 3: JPA configuration (persistence.xml file).

The preceding code is stored in a file called persistence.xml. This file should
be stored on the classpath under META-INF/ folder. The name of our persistence
unit is droolsbook.persistence. The transaction type we're using is JTA, which
means that our transactions can span one or many local/remote resources. This
gives us more possibilities at the cost of performance. Later on, we'll discuss how
to avoid JTA transactions by using a simple RESOURCE_LOCAL transaction type.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[195]

The <provider> element specifies the actual provider—in our case, it's org.
hibernate.ejb.HibernatePersistence. Next, we'll tell the provider to look into
Customer, Address, Account, and LoanApprovalHolder classes for JPA annotations.
These classes are declared to be persistable.

The jta-data-source element specifies the location and name of our data
source. Note that there is no data source defined, yet. The data source and the
transaction manager will be managed outside our application by the application
server—Tomcat.

Spring Framework configuration
Now, we'll configure Spring. This can be done in various ways. XML is the most
commonly used language. The configuration will reside in three XML files. We'll
start with a file called applicationContext.xml that will hold configuration
related to service layer (persistence, transactions, knowledge base configuration, and
individual services configurations).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.
springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/tx http://www.
springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/aop http://www.
springframework.org/schema/aop/spring-aop-2.5.xsd">

Code listing 4: Extract from the Spring configuration
(applicationContext.xml file).

The various Spring configuration files will use more or less the same 'header' (as
shown in the preceding code). They will differ only in the XSD name spaces used. The
previous file declares three name spaces that will be used—beans as the default one
and aop, and tx. For more information, please consult Spring documentation (http://
static.springframework.org/spring/docs/2.5.x/reference/index.htm).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[196]

We've already defined the persistence configuration in persistence.xml file.
These were just the very basics. We'll now enhance this configuration in Spring.
Spring configuration files will be the ultimate place where everything is configured.
The following code is the definition of an entityManagerFactory that will be
responsible for creating EntityManager instances, which will store our objects into
the persistent store. entityManagerFactory references the persistence-unit
configuration named droolsbook.persistence, which was defined earlier. It also
specifies a bunch of properties that will be simply passed to the persistence provider.

<bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.
LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitName"
 value="droolsbook.persistence" />
 <property name="jpaPropertyMap" ref="jpaPropertyMap" />
</bean>

<bean id="jpaPropertyMap" class="org.springframework.beans.factory.
config.MapFactoryBean">
 <property name="sourceMap">
 <map>
 <entry key="hibernate.dialect"
 value="org.hibernate.dialect.H2Dialect" />
 <entry key="hibernate.show_sql" value="true" />
 <entry key="hibernate.format_sql" value="true" />
 <entry key="hibernate.use_sql_comments" value="true"/>
 <entry key="hibernate.hbm2ddl.auto"
 value="create-drop" />
 <entry key="hibernate.transaction.manager_lookup_class"
 value="org.hibernate.transaction.
 BTMTransactionManagerLookup" />
 </map>
 </property>
</bean>

Code listing 5: Extract from the Spring configuration (applicationContext.xml
file), entityManagerFactory bean definition.

entityManagerFactory is an instance of
LocalContainerEntityManagerFactoryBean. It will read contents of the
persistence.xml file and based on them and value-pairs in jpaPropertyMap, it will
create entityManagerFactory. jpaPropertyMap is declared as a separate bean so
that it can be easily reused later on.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[197]

The first JPA property—hibernate.dialect specifies a class that represents
the dialect of our database. As you can see, we'll use H2 database (http://www.
h2database.com). It can run entirely in memory which is ideal for our purposes.
The next few properties are self explanatory. The hibernate.hbm2ddl.auto
property, whose value is set to create-drop, specifies that we want to recreate
the database (structure and data) every time we start the application. Note that
Hibernate also needs to know the location of our transaction manager. It is specified
by the last property, ...manager_lookup_class. Hibernate needs to integrate with
the transaction manager to control the life cycle of its sessions and caches.

The applicationContext.xml file will also define some beans that we'll use later.

<bean name="bankingFactory"
 class="droolsbook.bank.model.DefaultBankingFactory" />
<bean name="reportFactory"
 class="droolsbook.bank.service.impl.DefaultReportFactory" />

<bean class="org.springframework.orm.jpa.support.
PersistenceAnnotationBeanPostProcessor" />
<bean name="customerRepository"
 class="droolsbook.sampleApplication.repository.jpa.
JPACustomerRepository" />

Code listing 6: Extract from the Spring configuration (applicationContext.xml
file), various bean definitions.

The first two are factories. We've already seen DefaultBankingFactory
in code listing 2 and DefaultReportFactory was described in Chapter 3,
Validation. The next two beans configure a customer repository. We'll see how
PersistenceAnnotationBeanPostProcessor is responsible for injecting
EntityManagers into repositories in the next few sections.

Web application setup
The core components of the persistence and service layers are there. We can start
working on the presentation layer. We'll start with the web application configuration
file, web.xml. It is a standard web-app configuration file, which defines the basics of a
web application such as the name, welcome file list, and some initialization servlets.
The initialization servlets will be called when we start the application in a server.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/
 javaee/web-app_2_5.xsd"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[198]

 id="sampleApplication" version="2.5">
 <display-name>sampleApplication</display-name>
 <servlet>
 <servlet-name>sampleApplication</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>sampleApplication</servlet-name>
 <url-pattern>*.htm</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Code listing 7: Web application configuration (web.xml file).

As can be seen from code listing 7, Spring's DispatcherServlet is loaded at
startup. This servlet by default looks for sampleApplication-servlet.xml
configuration file. We'll soon define this file. Just make sure that it is placed in the
webRoot/WEB-INF/ directory. The configuration also defines a servlet mapping
for all resources ending with .htm to this DispatcherServlet. The welcome
file is set to index.jsp. This file has to be present in the webRoot/ directory. For
testing purposes, index.jsp will contain a listing of various entry points into the
application (list all customers, add customer, request loan, and so on).

As promised, the sampleApplication-servlet.xml Spring configuration
file follows. It will import the already defined configuration
file—applicationContext.xml.

Further, the configuration file will define a standard 'view resolver'. This view
resolver will be set to look for 'views' in webRoot/WEB-INF/jsp/ directory ('view'
as in MVC. MVC stands for model-view-controller—http://en.wikipedia.org/
wiki/Model-view-controller). This will help us to separate our controllers from
the view implementations. We'll see how it works in a few sections.

<import resource="classpath:applicationContext.xml" />
<context:annotation-config />
<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
 InternalResourceViewResolver">
 <property name="viewClass"

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[199]

 value="org.springframework.web.servlet.view.JstlView" />
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
</bean>

Code listing 8: Extract from the Spring configuration
(sampleApplication-servlet.xml file), initial configuration.

The import resource elements are simply importing the contents of the resource
into one big Spring application context. The <context:annotation-config />
element activates Spring's annotation support for easier configuration of controllers.
For the interface layer, we'll use full Spring annotation auto wiring because the
presentation layer changes more frequently. Whereas, in the persistence and service
layers, reliability is the most important. Hence, we define the wiring ourselves
(we also don't want to depend on Spring API).

Tag library
We'll be using some Spring MVC tags in our JSPs. We have to copy the tag library
descriptor called spring-form.tld into webRoot/WEB-INF/tld/ directory. This file
can be obtained from the standard Spring distribution (http://www.springsource.
com/download/community?project=Spring%20Framework). Download and unzip
the distribution and the file will be located in the /dist/resources/ directory.

Tomcat setup
We'll now setup the transaction manager and data sources in Tomcat. Please refer to
http://docs.codehaus.org/display/BTM/Tomcat13 for doing so.

The resources.properties file in Tomcat's conf directory should contain:

resource.ds1.className=bitronix.tm.resource.jdbc.lrc.LrcXADataSource
resource.ds1.uniqueName=jdbc/testDS1
resource.ds1.minPoolSize=0
resource.ds1.maxPoolSize=5
resource.ds1.driverProperties.driverClassName=org.h2.Driver
resource.ds1.driverProperties.url=jdbc:h2:mem:testDS1
resource.ds1.allowLocalTransactions=true

Code listing 9: Tomcat's data source configuration (resources.properties file).

Note that we're allowing local transactions. This is needed for automatic schema
creation (remember hibernate.hbm2ddl.auto was set to create-drop).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[200]

After this step, the data sources and the transaction manager should be accessible
from Tomcat's JNDI tree.

Deployment
The deployment involves copying the contents of the webRoot directory into
Tomcat's webapps directory and renaming it to sampleApplication. Then create
a new lib directory under webapps/sampleApplication/WEB-INF/ and copy
all of the libraries that are on the classpath into this directory (all except those
libraries that you've already put into Tomcat's lib directory). All of the other
resources on the classpath should go to webapps/sampleApplication/WEB-INF/
classes directory. That is all in terms of deployment. Tomcat can be started and
we can access the application with the following URL: http://localhost:8080/
sampleApplication/. The index.jsp welcome page should be displayed.

The deployment can be even easier if you have installed the Eclipse plugin
called WTP (Web Tools Platform). You can then create a 'Dynamic Web Project',
setup a server (Tomcat), and the WTP plugin will do the deployment for you. Note
that the WTP plugin is a standard part of 'Eclipse IDE for Java EE Developers'
(http://www.eclipse.org/downloads/).

Repositories
The infrastructure for the persistence layer is almost set up (only the transaction setup
is missing). We can implement the repositories that will be responsible for persistence
and lookup of the domain objects. Let's start with JPACustomerRepository.
JPACustomerRepository uses EntityManager to find a customer by customerUuid
or firstName and lastName. It is also used to add a new customer or update an
existing one.

@Repository
public class JPACustomerRepository implements
 CustomerRepository {

 @PersistenceContext(unitName="entityManagerFactory")
 private EntityManager em;

 public Customer findCustomerByUuid(String customerUuid) {
 return em.find(Customer.class, customerUuid);
 }

 public List<Customer> findCustomerByName(String firstName,
 String lastName) {
 return em
 .createQuery(

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[201]

 "from Customer as c where c.firstName = :first" +
 " and c.lastName = :last")
 .setParameter("first", firstName).setParameter("last",
 lastName).getResultList();
 }

 /**
 * stores new customer
 */
 public void addCustomer(Customer customer) {
 em.persist(customer);
 }

 /**
 * stores existing customer
 */
 public Customer updateCustomer(Customer customer) {
 return em.merge(customer);
 }

Code listing 10: JPA customer repository implementation
(JPACustomerRepository.java file).

The first thing to note after looking at code listing 10 is that JPACustomerRepository
has the @Repository annotation. This annotation clarifies the role of this class.
Next, the EntityManager property is declared with the @PersistenceContext
annotation. Thanks to this annotation, EntityManager will be automatically injected
by Spring. We neither have to write a set method for this property nor do we have
to set EntityManager as a required property in applicationContext.xml (see last
two lines of code listing 6). Note that we explicitly specify the name of the bean by
using unitName="entityManagerFactory". This guarantees that the correct entity
manager factory will be used even if there are multiple factories defined.

The methods from code listing 10 should be clear; they show a standard usage of
the JPA.

Please note that we won't be writing any unit or integration tests in this chapter.
Normally, every piece of code should be tested. Refer to the BTM web site on how
to configure the transaction manager in a local environment.

Validation
In this section, we'll describe the 'validation slice' of this application (from bottom to
top). That includes the definition of validation knowledge base, validation service,
and the user interface.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[202]

We already have the validation service implementation. We'll now configure it with
Spring. The first step is to build the validation knowledge base that will be used
by the validation service. It will be managed by Spring like any other bean. The
configuration goes into the applicationContext.xml file.

Unfortunately, Drools, as of version 5.0, doesn't integrate with Spring out of
the box. This means that we'll have to create our own Spring 'factory bean' that
knows how to build a knowledge base. The implementation of such a factory bean
(KnowledgeBaseFactoryBean) will be shown in Chapter 11, Integration. Now, the
actual validation knowledge base bean definition is as follows:

<bean name="validationKnowledge"
 class="droolsbook.integration.spring.KnowledgeBaseFactoryBean">
 <description>validation knowledge base factory bean </description>
 <constructor-arg>
 <map>
 <entry key="classpath:validation.drl" value="DRL" />
 </map>
 </constructor-arg>
</bean>

Code listing 11: Extract from the Spring configuration (applicationContext.xml
file), validation knowledge base configuration.

The validation knowledge base is created by KnowledgeBaseFactoryBean. It takes
a map of ResourceType instances (as map values) and their locations (as map
keys). Based on this map, it builds the validation knowledge base. Note that the
validation.drl file needs to be on the classpath.

Next, we can define the validation service itself. The implementation comes
from Chapter 3, Validation (for simplicity, we'll use stateless validation
service)—BankingValidationServiceImpl. The service has two dependencies—
validationKnowledgeBase and reportFactory, which were defined earlier.

<bean name="validationService"
 class="droolsbook.bank.service.impl.
 BankingValidationServiceImpl">
 <property name="reportFactory" ref="reportFactory" />
 <property name="knowledgeBase" ref="validationKnowledge"/>
</bean>

Code listing 12: Extract from the Spring configuration (applicationContext.xml
file), validationService bean definition.

The validationService bean definition is straightforward—one bean with two
properties. This service is now ready to be used.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[203]

Services
Now that we have defined repositories and ValidationService, we can implement
the first part of BankingService from the sample application design diagram, and
more specifically, the methods for adding a new customer and saving an existing
customer. These methods will validate the customer with the validation service and
if everything goes well, the customer will be persisted with the repository.

/**
 * validates and stores a new customer
*/
public void add(Customer customer) {
 validate(customer);
 customerRepository.addCustomer(customer);
}

/**
 * validates and stores an existing customer
*/
public void save(Customer customer) {
 validate(customer);
 customerRepository.updateCustomer(customer);
}

/**
 * validates customer,
 * @throws ValidationException if there are any errors
*/
private void validate(Customer customer) {
 ValidationReport report = validationService.validate(customer);
 if (!report.getMessagesByType(Type.ERROR).isEmpty()) {
 throw new ValidationException(report);
 }
}

Code listing 13: Code extract from the BankingServiceImpl.java.

As can be seen in code listing 13, both add and save methods use a
validate helper method. This method calls validationService and if the
returned ValidationReport contains some messages of type ERROR, then
ValidationException is thrown. Use of exceptions in this case allows us to
deal only with the normal flow of execution and worry about the exceptional
cases in some exception handler.

If the validation passes, the customer is added/updated with customerRepository.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[204]

Before being able to use this service in the presentation layer, we have to define
it as a Spring bean. bankingService will have several dependencies. We already
know that we need customerRepository and validationService. For additional
functionality, we'll also need loanApprovalService and cepService.

<bean name="bankingService"
 class="droolsbook.bank.service.impl.BankingServiceImpl">
 <property name="customerRepository"
 ref="customerRepository" />
 <property name="validationService"
 ref="validationService" />
 <property name="loanApprovalService"
 ref="loanApprovalService" />
 <property name="cepService" ref="cepService" />
</bean>

Code listing 14: Extract from the Spring configuration (applicationContext.xml
file), bankingService bean definition.

Simply add this bean definition to the applicationContext.xml file.

Transactions
The persistence of a valid customer is almost complete. The final missing pieces
from the service layer perspective are transactions. We have to make sure that the
system remains consistent under all circumstances (for example, if the server
crashes while saving the customer record to the database, the database might
be only partially updated).

Luckily, with Spring this can be implemented very easily and it's just a matter
of configuration.

We'll now add the transaction configuration into the applicationContext.xml file.
It consists of three parts as follows:

1.	 Transaction manager: It manages the transactional resources (in our case,
the database).

2.	 Aspect-oriented configuration: It specifies the boundaries of the transaction.
3.	 Transaction advice: It configures various attributes of a transaction.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[205]

More information can be found in the Spring documentation.

<bean id="transactionManager"
 class="org.springframework.transaction.jta.
 JtaTransactionManager" />

<aop:config>
 <aop:pointcut id="bankingServiceMethods"
 expression="execution(*droolsbook.bank.service.
 BankingService.*(..))" />
 <aop:advisor advice-ref="transactionAdvice"
 pointcut-ref="bankingServiceMethods" />
 </aop:config>

<tx:advice id="transactionAdvice"
 transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="*" rollback-for="Exception" />
 </tx:attributes>
</tx:advice>

Code listing 15: Extract from the Spring configuration (applicationContext.xml
file), transaction configuration.

We've chosen JtaTransactionManager as our transaction manager implementation.
It will simply delegate to the already configured transaction manager in Tomcat. The
transactions will automatically begin whenever any method on BankingService is
executed—execution(* droolsbook.bank.service.BankingService.*(..)).
Note that we're referring to BankingService interface rather than implementation
(this is needed for Spring to create a transactional proxy correctly).

By default, the transaction propagation is set to REQUIRED. This means that an
existing transaction must be running or a new transaction will be created. The
configuration specifies that all of the methods will run under a transaction.
Whenever an exception is thrown by banking service methods, the transaction
will be rolled back automatically.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[206]

The following JTA transaction setup diagram shows how it will all work:

Tomcat

bind

bind

SQL

jdbc/testDS1

BTM

web application

Spring
JTA TM

delegates

synchronize Entity
Manager
Factory

JNDI
tree

DB

lookup

lookup

We've already defined the BTM transaction manager and the data source in Tomcat.
When Tomcat starts, it will register these two resources in its JNDI tree (see the two
'bind' arrows). Next, when our application starts, it can lookup these resources (see
the two 'lookup' calls). When we execute a method on the banking service, the Spring
JTA platform transaction manager detects it and tells BTM to start a new transaction.
We can then use the Entity Manager Factory to insert/update records in the
database and when we return from the banking service, Spring will automatically
tell BTM to commit or rollback the transaction.

Presentation layer
We'll now write a web form for adding new customers into the system. For
simplicity, our customers can define just their first name, last name, and a phone
number. This form will be stored in a file called customerSave.jsp within the
webRoot/WEB-INF/jsp/ folder. This JSP will also be capable of displaying any errors
and warnings that occurred while the new customer was saved into the system.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt"%>
<%@ taglib prefix="form" uri="http://www.springframework.org/tags/
form"%>
<html>
 <head>
 <title><fmt:message key="title" /></title>
 <style>
 .error {

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[207]

 color: red;
 }
 </style>
 </head>
 <body>
 <h1><fmt:message key="customerSave.heading" /></h1>
 <form:form method="post" commandName="customerSave">
 <table width="100%" bgcolor="f8f8ff" border="0"
 cellspacing="0"	 cellpadding="5">
 <c:forEach items="${errors}" var="error">
 <c:out value="${error.type}"/>:
 <c:out value="${error.messageKey}"/>

 </c:forEach>
 <c:forEach items="${warnings}" var="warning">
 <c:out value="${warning.type}"/>
 <c:out value="${warning.messageKey}"/>

 </c:forEach>
 <tr>
 <td align="right">First name:</td>
 <td><form:input path="firstName" /></td>
 </tr>
 <tr>
 <td align="right">Last name:</td>
 <td><form:input path="lastName" /></td>
 </tr>
 <tr>
 <td align="right">Phone number:</td>
 <td><form:input path="phoneNumber" /></td>
 </tr>
 </table>

 <input type="submit" align="center" value="Execute">
 </form:form>
 <a href="<c:url value="index.jsp"/>">Home
 </body>
</html>

Code listing 16: Customer save form (customerSave.jsp file).

The first few lines of this JSP declare the tag libraries that will be used. It is the
standard core library, fmt library, and the Spring form tag library.

Next, customerSave.jsp defines the form—<form:form method="post" comman
dName="customerSave">. Please notice commandName as we'll use it when we'll be
wiring this form to its controller. Thanks to this attribute, Spring will know which
controller is responsible for handling this form. The next two forEach elements
display error and warning messages. Next, we can see the three input fields
firstName, lastName, and phoneNumber. They contain the form body that will
be sent when the form is submitted.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[208]

Localized messages
The JSP uses localized messages that are displayed by the standard <fmt:message
key="someKeyName" /> tag. someKeyName must be present in a properties file that
we'll call messages.properties, which must be on the classpath. Our file might
look like the following code:

title=SampleApplication
customerSave.heading=Save Customer

Code listing 17: Localized messages (messages.properties file).

We have to tell Spring about this file. This can be done with the following
bean configuration. It'll define a messageSource bean that will be of type
ResourceBundleMessageSource. It's baseName property will be set to
messages—the name of our localized messages file.

<bean id="messageSource"
 class="org.springframework.context.support.
 ResourceBundleMessageSource">
 <property name="basename" value="messages" />
</bean>

Code listing 18: Extract from the Spring configuration (sampleApplication-
servlet.xml file), messageSource bean definition.

Customer save form controller
We'll now write a controller for this form. Lets start with Spring definitions. In this
case, the bean name will be set to /customerSave.htm. This is also a part of the URL
under which this form will be accessible.

<bean name="/customerSave.htm"
 class="droolsbook.sampleApplication.
 web.CustomerSaveFormController">
 <property name="sessionForm" value="true" />
 <property name="commandName" value="customerSave" />
 <property name="commandClass"
	 value="droolsbook.bank.model.Customer" />
 <property name="formView" value="customerSave" />
 <property name="successView" value="index.jsp" />
 </bean>

Code listing 19: Extract from the Spring configuration (sampleApplication-
servlet.xml file), CustomerSaveFormController bean definition.

Note that the sessionForm is set to true, which means this form will be stored in the
HTTP session instead of HTTP request. This ensures that a new form is not created
every time between validation attempts.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[209]

When the user enters the /customerSave.htm URL, Spring will automatically
forward the user to formView, which is, in this case, set to customerSave. After
the view translation, this becomes webRoot/WEB-INF/jsp/customerSave.
jsp. Similarly, successView specifies the name of the view that the user will be
forwarded to upon successful form submission. It's set to index.jsp (in this case,
it's the full name of a JSP page).

All of the submitted customer forms will be processed by
CustomerSaveFormController. This controller will extend the Spring MVC
SimpleFormController. It will overwrite an onSubmit method, which will be
executed every time a customer form is submitted. It will use the bankingService
and bankingFactory beans to create a new customer and add this customer into
the system. After a successful request, the user will be redirected to the success view.

public class CustomerSaveFormController extends
 SimpleFormController {
 @Autowired
 private BankingService bankingService;
 @Autowired
 private BankingFactory bankingFactory;

 public ModelAndView onSubmit(Object command,
 BindException errors) throws ServletException {
 Customer customer = (Customer) command;
 try {
 bankingService.add(customer);
 return new ModelAndView(new RedirectView(
 getSuccessView()));
 } catch (ValidationException e) {
 ValidationReport report = e.getValidationReport();
 Map model = errors.getModel();
 model.put("errors", report.getMessagesByType(
 Message.Type.ERROR));
 model.put("warnings", report
 .getMessagesByType(Message.Type.WARNING));
 return new ModelAndView(getFormView(), model);
 }
 }

 protected Object formBackingObject(HttpServletRequest request)
 throws ServletException {
 Customer customer = bankingFactory.createCustomer();
 return customer;
 }
}

Code listing 20: Controller for processing the new customer form
(CustomerSaveFormController.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[210]

Please note that the bankingService and bankingFactory beans are declared with
the @Autowired annotations. This means that Spring will automatically set these
properties when this controller is created. We also don't have to create set methods
for these properties.

If the Customer object is not valid, then ValidationException is thrown
by bankingService. CustomerSaveFormController handles this case with a
try/catch block. The validation report is extracted from the exception and the
'model' (as in MVC) is updated with ERROR and WARNING messages from the
report. The control flow is then forwarded back to the form view using
return new ModelAndView(getFormView(), model);.

The formBackingObject method will be called when a user displays the customer
save form. In our case, it creates the Customer object itself. This is a shortcut and in
a real application, we'd create something like a CustomerForm data transfer object
(DTO), which will hold all of the data needed by the view and then, in the controller,
we'd create a normal Customer object from this CustomerForm.

We can now deploy the application and access it by the following URL:
http://localhost:8080/sampleApplication/customerSave.htm. After
entering a First name, a Last name, and leaving the Phone number field blank,
we should get the following response:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[211]

The Save Customer form with validation messages screen is shown in the preceding
screenshot. It informs us that the Phone number is missing (ERROR) and that the
address is required (WARNING). As we're not dealing with addresses, the warning
message is expected. After entering the Phone number, the customer will be
successfully stored in the database and we'll be redirected to index.jsp page.

As you can see from the previous screenshot, the screen doesn't actually display the
messages themselves but only the message key names. This key can now be mapped
to the real message and the message can even be localized based on the user's
preferred language. To do this, we'll now replace the standard output tag—<c:out
value="${error.messageKey}"/> (in code listing 16) with its localized version:
<fmt:message key="${error.messageKey}"/>. We can do this for both error and
warning messages. Then, it is a matter of defining these messages. Add the following
to messages.properties file:

phoneNumberRequired=Customer phone number is required.
addressRequired=Customer address is required.

Code listing 21: Extract from the file—messages.properties.

If we now reload the screen, full localized messages should be displayed.

Complex Event Processing service
We'll now integrate the CEP service into the banking service. The CEP service
basically needs all kind of events so that it can make complex decisions. One
such event is a customer created event or a customer updated event. The CEP
service has one notify method that takes an event. The add and save methods
of bankingService can be modified to create these events and send them to
cepService. By adding cepService.notify(new CustomerCreatedEvent(cus
tomer)); at the end of these methods, an event referencing the current customer
is created. (This is for the add method, the save method will create a new instance
of CustomerUpdatedEvent instead). The CEP service contains a rule session that is
maintained throughout the lifetime of this service as we've discussed in Chapter 7,
Complex Event Processing.

Loan approval
We'll now create screens for the loan approval process (another vertical slice of the
application). This consists of loan request form, task list screen, task manipulation
(claim a task, start a task, complete a task, and so on), and final supervisor's
approval. In this case, we'll follow a top-down approach starting with the
presentation layer.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[212]

Loan request form
The Loan Request form screenshot is as follows:

Let's start with the implementation of loanRequest.jsp, which will display the
Loan Request form. We can copy the customerSave.jsp file and just replace the
form section with the following:

<form:form method="post" commandName="loanRequest">
 <table width="100%" bgcolor="f8f8ff" border="0"
 cellspacing="0" cellpadding="5">
 <tr>
 <td align="right">Amount:</td>
 <td><form:input path="amount" /></td>			
 </tr>
 <tr>
 <td align="right">Duration:</td>
 <td><form:input path="durationYears" /> years</td>
 </tr>
 </table>

 <input type="submit" align="center" value="Execute">
</form:form>

Code listing 22: Extract from the loan request form (loanRequest.jsp file).

This form is very similar to our earlier form. In this case, the form body contains loan
amount and loan duration.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[213]

Upon submission, LoanRequestFormController will be responsible for starting the
loan approval process. This controller can be defined as follows:

<bean name="/loanRequest.htm"
 class="droolsbook.sampleApplication.web.
 LoanRequestFormController">
 <property name="sessionForm" value="true" />
 <property name="commandName" value="loanRequest" />
 <property name="commandClass"
 value="droolsbook.bank.model.Loan" />
 <property name="formView" value="loanRequest" />
 <property name="successView" value="index.jsp" />
</bean>

Code listing 23: Extract from the Spring configuration (sampleApplication-
servlet.xml file), LoanRequestFormController bean definition.

commandClass is set to the Loan class. This mapping is very similar to what
we've done for the customerSave controller. Again, the form is stored in the
session—sessionForm is set to true.

Similar to CustomerSaveFormController, LoanRequestController will overwrite
the onSubmit method and will call bankingService as follows:

bankingService.requestLoan(loan, customer);
return new ModelAndView(new RedirectView(getSuccessView()));

Code listing 24: Extract from the onSubmit method of LoanRequestController.

The loan object shown in code listing 24 is pre-populated with values entered by the
user. The customer represents the currently logged-in user. We won't go into detail
about how to get this user. The user is then redirected to the success view, which is
set to index.jsp.

The bankingService.requestLoan method is shown in code listing 25. It simply
delegates to the loadApprovalService method.

@Override
public void requestLoan(Loan loan, Customer customer) {
 loanApprovalService.requestLoan(loan, customer);

Code listing 25: Method for requesting a loan (BankingServiceImpl.java file)

Process persistence
As we already know, the loan approval process can take hours, days, or even months
to finish. It is, therefore, important to persist the loan approval processes rather than
keeping them in memory all the time.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[214]

We'll use a special persistable knowledge session implementation called
CommandBasedStatefulKnowledgeSession. It acts like a standard
StatefulKnowledgeSession. However, with each method call, it persists its state.
We just have to remember sessionId and we can recreate the session at any stage.

This implementation comes form drools-persistence-jpa module. If we
look under the hood of this session implementation, we'd see that each of its
methods creates a command and executes it with a command service called
SingleSessionCommandService.

org.drools.persistence.session.SingleSessionCommandService
A command service implementation that uses JPA to persist the session's
state. It has two constructors—one that is used to create a new knowledge
session and one for loading existing persisted knowledge session by
sessionId. It's execute method then takes a command and executes
it on the knowledge session.
This command service needs EntityManagerFactory. The name of the
JPA persistence unit is org.drools.persistence.jpa.
This service uses JTA to programmatically manage transactions. The two
constructors always create a new transaction and the execute method
can also join existing transactions or create a new one if no transaction
is running.
Please note that when using SingleSessionCommandService, the
default implementations of processInstanceManagerFactory,
workItemManagerFactory, and processSignalManagerFactory
need to be overwritten with their 'persistence aware' counterparts (for
example, JPAWorkItemManagerFactory). For example, imagine a
situation when workItemManager is notified that workItem has been
completed. As this workItemManager might be different than the one
that created this workItem, workItem may not be in memory and must
be loaded first from the persistent storage.

We can now create JPA persistence unit in Spring. The configuration will look
exactly the same as our earlier persistence unit except for persistenceUnitName:

<bean id="droolsEntityManagerFactory"
 class="org.springframework.orm.jpa.
 LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitName"
 value="org.drools.persistence.jpa" />
 <property name="jpaPropertyMap" ref="jpaPropertyMap" />
</bean>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[215]

Code listing 26: Drools persistence entity manager factory
(applicationContext.xml file).

The next step would be to include the loan approval service that we've written in
Chapter 8, Drools Flow, unchanged. However, it is unfortunate that the command
service programmatically manages transactions and creates a new transaction
whenever a new instance of SingleSessionCommandService is created. As we're
already using Spring to manage our transactions, we'll create a simple workaround.
We'll define a new JPAKnowledgeSessionLookup class that will deal only with
creating new persistable sessions. We'll then call this class outside our Spring
transaction. Our transaction will suspend and the persistent session will be able to
create its own transaction. The interface for this JPAKnowledgeSessionLookup class
is as follows:

/**
 * knows how to create a new or lookup existing knowledge
 * session
 */
public interface KnowledgeSessionLookup {
 /**
 * creates a new session
 */
 StatefulKnowledgeSession newSession();

 /**
 * loads an existing session
 */
 StatefulKnowledgeSession loadSession(int sessionId);
}

Code listing 27: KnowledgeSessionLookup interface.

We can now modify our transaction setup in applicationContext.xml. Simply add
the following code to the aop:config section:

<aop:pointcut id="knowledgeSessionLookupMethods"
 expression="execution(* droolsbook.org.drools.
 persistence.KnowledgeSessionLookup.*(..))" />

<aop:advisor pointcut-ref="knowledgeSessionLookupMethods"
 advice-ref="noTransactionAdvice" />

Code listing 28: Extract from the aop:config section
(applicationContext.xml file).

We've declared pointcut that captures all of the method executions on the
KnowledgeSessionLookup interface.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[216]

Note that the order is important. Put pointcut after our first pointcut and advisor
after our first advisor.

advice will then suspend any currently running transaction:

<tx:advice id="noTransactionAdvice">
 <tx:attributes>
 <tx:method name="*" propagation="NOT_SUPPORTED"/>
 </tx:attributes>
</tx:advice>

Code listing 29: Not supported transaction advice (applicationContext.xml file).

After this aop configuration, SingleSessionCommandService will be able to begin
its own programmatic transaction freely.

The implementation of the JPAKnowledgeSessionLookup class is as follows:

/**
 * works with persistable knowledge sessions
 */
public class JPAKnowledgeSessionLookup implements
 KnowledgeSessionLookup {

 @PersistenceUnit(unitName="droolsEntityManagerFactory")
 private EntityManagerFactory emf;

 private KnowledgeBase knowledgeBase;
 private Environment environment;

 private WorkItemHandler emailHandler;
 private WorkItemHandler transferFundsHandler;
 private WorkItemHandler humanTaskHandler;

 public void init() {
 environment = EnvironmentFactory.newEnvironment();
 environment.set(EnvironmentName.ENTITY_MANAGER_FACTORY,
 emf);
 environment.set(
 EnvironmentName.OBJECT_MARSHALLING_STRATEGIES,
 new ObjectMarshallingStrategy[] { MarshallerFactory
 .newSerializeMarshallingStrategy() });
 }

 public StatefulKnowledgeSession newSession() {
 StatefulKnowledgeSession session = JPAKnowledgeService
 .newStatefulKnowledgeSession(knowledgeBase, null,
 environment);
 registerWorkItemHandlers(session);

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[217]

 return session;
 }

 public StatefulKnowledgeSession loadSession(int sessionId) {
 StatefulKnowledgeSession session = JPAKnowledgeService
 .loadStatefulKnowledgeSession(sessionId,
 knowledgeBase, null, environment);
 registerWorkItemHandlers(session);
 return session;
 }

 /**
 * helper method for registering work item handlers
 * (they are not persisted)
 */
 private void registerWorkItemHandlers(
 StatefulKnowledgeSession session) {
 WorkItemManager manager = session.getWorkItemManager();
 manager.registerWorkItemHandler("Human Task",
 humanTaskHandler);
 manager.registerWorkItemHandler("Email", emailHandler);
 manager.registerWorkItemHandler("Transfer Funds",
 transferFundsHandler);
 }

Code listing 30: Class for initializing persistent StatefulKnowledgeSession
(JPAKnowledgeSessionLookup.java file).

The knowledge sessions (CommandBasedStatefulKnowledgeSession) are
created through the JPAKnowledgeService factory class that has two methods:
newStatefulKnowledgeSession and loadStatefulKnowledgeSession. They both
take the knowledge base, knowledge session configuration (null in our case), and
environment. The latter method also takes sessionId.

As we can see, environment is initialized in the init method with
droolsEntityManagerFactory and also a 'serialize' marshalling strategy.
We want to carry out full session serialization.

Please note that both the newSession and loadSession methods call
registerWorkItemHandlers method, which registers all of the work item handlers
used in our process. This is necessary because work item handlers are not persisted.
Hence, we need to set them for each new knowledge session.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[218]

This JPAKnowledgeSessionLookup class can be defined in Spring as follows:

<bean id="knowledgeSessionLookup" init-method="init"
 class="droolsbook.org.drools.persistence.
 JPAKnowledgeSessionLookup" >
 <property name="knowledgeBase"
 ref="loanApprovalKnowledge" />
 <property name="emailHandler" ref="emailWorkItemHandler"/>
 <property name="humanTaskHandler"
 ref="approveLoanWorkItemHandler"/>
 <property name="transferFundsHandler"
 ref="transferFundsWorkItemHandler"/>
</bean>

Code listing 31: knowledgeSessionLookup Spring bean definition
(applicationContext.xml file).

With this setup done, we can now implement the loanApproval service, which will
be a slightly modified version of what we've done in Chapter 8, Drools Flow. We'll
use the session lookup to create the knowledge session and LoanApprovalHolder
to keep a track of current requests. The holder class will contain the customer
requesting the loan, sessionId, and processInstanceId. processInstanceId
will be needed for sending the final loan approval event.

public LoanApprovalHolder requestLoan(final Loan loan,
 final Customer customer) {
 LoanApprovalHolder holder = new LoanApprovalHolder();
 StatefulKnowledgeSession session = sessionLookup
 .newSession();
 try {
 Map<String, Object> parameterMap =
 new HashMap<String, Object>();
 parameterMap.put("loanSourceAccount",loanSourceAccount);
 parameterMap.put("customer", customer);
 parameterMap.put("loan", loan);
 session.insert(loan);
 session.insert(customer);
 ProcessInstance processInstance = session.startProcess(
 "loanApproval", parameterMap);

 holder.setCustomer(customer);
 holder.setSessionId(session.getId());
 holder.setProcessInstanceId(processInstance.getId());
 em.persist(holder);

 session.insert(processInstance);
 session.fireAllRules();

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[219]

 } finally {
 session.dispose();
 }
 return holder;
}

Code listing 32: Implementation of the requestLoan method
(LoanApprovalServiceImpl.java file).

A new persistable session is created, loan and the customer instances are inserted
into the session, the process is started, the sessionId and processInstanceId
values are set, rules are fired, and that's it for the requestLoan method.

At the time of writing this book, I had to comment out the line where
processInstance is inserted into the session; otherwise, the session
wouldn't serialize properly. It meant that I could request only loans with
an amount less than 5,000.

What we've achieved so far is that the loan approval service is transactional. A new
transaction will be started when a user calls bankingService.requestLoan method
and the call will be delegated to loanApprovalService.requestLoan method. From
this method, we'll call sessionLookup.newSession method. Upon entering this
method, the transaction suspends and SingleSessionCommandService can begin
its own transaction that creates a new knowledge session and persists it. When the
newSession method returns, our transaction will resume. The only disadvantage of
this approach is that when our transaction rolls back at a later stage, the knowledge
session will remain as an orphan record in the database.

As an alternative to creating KnowledgeSessionLookup and
suspending the running transaction, consider using your own
implementation of CommandService; one that will use declarative
transactions, as opposed to programmatic transactions. It has lots of other
benefits that declarative transactions do have (for example, we can avoid
expensive JTA transactions and use cheap local resource transactions).
If you look under the hood of JPAKnowledgeService, you'll notice that
it is only a convenience implementation that sets up some predefined
values for KnowledgeSessionConfiguration. For example, the
command service used.

Note that if you want to test this application so far, you have to start the
WS-HumanTask server as we've seen in Chapter 8, Drools Flow.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[220]

To provide even further reliability, our transactions should span to the
WS-HumanTask server. This won't be shown. However, it is a matter
of configuration.

Task list
Once the loan is successfully requested, the bank employees can start working on
the created task. We'll now create a screen that will list all of the available tasks.
The Task List screen is shown in the following screenshot:

The Task List screen displays a table of all the available tasks for a user (bank
employee). We can see two tasks in the preceding screenshot. Some important
properties of the tasks are displayed, such as the task id, its priority, status, and
name. One task is InProgress and the other task is Ready. The user can Claim,
Start, or Complete a task.

Possible improvement: Once the user claims a task, the Claim link
should be disabled or, ideally, not shown (this won't be implemented).

This Task List screen will be implemented in the taskList.jsp file. Code listing
33 shows the core of this page—a task list table. This JSP will operate on collection
of TaskSummary objects, which will be accessible under the model.tasks bean.
TaskSummary is the description of a task as returned from the WS-HumanTask
server. Let's now look at the JSP itself:

<table width="100%" bgcolor="f8f8ff" border="0"
 cellspacing="0"	 cellpadding="5">
 <tr>
 <td>id</td><td>priority</td><td>status</td><td>name</td>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[221]

 </tr>
 <c:forEach items="${model.tasks}" var="task">
 <tr>
 <td><c:out value="${task.id}"/></td>
 <td><c:out value="${task.priority}"/></td>
 <td><c:out value="${task.status}"/> </td>
 <td><c:out value="${task.name}"/></td>
 <td>
 <a href="<c:url value="taskClaim.htm">
 <c:param name="taskId" value="${task.id}"/></c:url>">
 Claim

 <a href="<c:url value="taskStart.htm">
 <c:param name="taskId"value="${task.id}"/></c:url>">
 Start

 <a href="<c:url value="taskComplete.htm">
 <c:param name="taskId" value="${task.id}"/></c:url>">
 Complete

 </td>
 </tr>
 </c:forEach>
</table>

Code listing 33: Extract from the task list JSP (taskList.jsp file).

As we've discussed, taskList.jsp iterates over tasks in the ${model.tasks}
collection and displays some important information for a task. It is worth noting
that the three commands are using taskId as an argument. The controllers that
these commands will map to will need this ID to identify a task.

A controller can be defined as follows:

<bean name="/taskList.htm"
 class="droolsbook.sampleApplication.web.TaskListController">
</bean>

Code listing 34: Extract from the Spring configuration (sampleApplication-
servlet.xml file), TaskListController bean definition.

The task list doesn't involve any web form, so the Spring definition is much
more simple.

The controller implementation is as follows:

public class TaskListController extends AbstractController {
 @Autowired
 private MinaTaskClient client;

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[222]

 @Autowired
 private WebSessionUtils webSessionUtils;
 @Override
 protected ModelAndView handleRequestInternal(
 HttpServletRequest request,HttpServletResponse response)
 throws Exception {
 BlockingTaskSummaryResponseHandler responseHandler =
 new BlockingTaskSummaryResponseHandler();
 User user = webSessionUtils.getUser();
 client.getTasksAssignedAsPotentialOwner(user.getUserId(),
 user.getLanguage(), responseHandler);
 List<TaskSummary> tasks = responseHandler.getResults();

 Map<String, Object> model = new HashMap<String, Object>();
 model.put("tasks", tasks);

 return new ModelAndView("taskList", "model", model);
 }
}

Code listing 35: Controller for displaying a task list
(TaskListController.java file).

This controller extends AbstractController. It requires two
properties—MinaTaskClient and WebSessionUtils. The first one is a
client that we've already seen in Chapter 8, Drools Flow. This is its re-usable version.
This client connects to the WS-HumanTask server at the web server startup time. It
is then shared between various controllers dealing with WS-HumanTasks. The next
property—webSessionUtils is a utility class that contains various convenience
methods (for example, method for getting the current authenticated user).
Implementation of this utility class is out of scope of this book. We'll use user's ID
and locale for getting the task list. All of the controller's logic is contained within
the handleRequestInternal method. It uses client to get all of the available
tasks by calling the getTasksAssignedAsPotentialOwner method. As this call is
asynchronous, the controller uses BlockingTaskSummaryResponseHandler to wait
for the response. Finally, a model is created that contains these tasks and the user is
forwarded to the taskList view.

Working on a task
By clicking on the claim/start/complete link, a user can claim/start/complete a task.
(Please note that we're not implementing other actions such as suspend or skip). Let's
look at the claim action in more detail. Its controller can be defined as follows:

<bean name="/taskClaim.htm"
 class="droolsbook.sampleApplication.web.TaskClaimController">
</bean>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[223]

Code listing 36: Extract from the Spring configuration (sampleApplication-
servlet.xml file), TaskClaimController bean definition.

The handleRequestInternal method's implementation of TaskClaimController
follows. This controller also uses client and webSessionUtils 'auto wired' Spring
beans. This controller will read taskId as a parameter from the request and will use
the client to claim the task with this ID for the current user—client.claim(taskId,
user.getUserId(), ..).

/**
 * claims specified task for the current user
 */
@Override
protected ModelAndView handleRequestInternal(
 HttpServletRequest request,HttpServletResponse response)
 throws Exception {
 long taskId = Long.parseLong(request.getParameter("taskId"));
 User user = webSessionUtils.getUser();
 BlockingTaskOperationResponseHandler
 operationResponseHandler =
 new BlockingTaskOperationResponseHandler();
 client.claim(taskId, user.getUserId(),
 operationResponseHandler);
 operationResponseHandler.waitTillDone(5000);

 return new ModelAndView("redirect:taskList.htm");
}

Code listing 37: handleRequestInternal method of a controller for claiming a task
(TaskClaimController.java file).

Similar to task list controller, this controller uses
BlockingTaskOperationResponseHandler to wait for the result.

After we've implemented all of the three controllers (start, claim, and complete),
we can deploy and run this application. However, if we do it, as soon as we
complete the human task, it will fail with the following exception: java.lang.
IllegalArgumentException: Removing a detached instance org.drools.
persistence.processinstance.WorkItemInfo#1.

Hibernate is informing us that we're deleting an entity outside the transaction
(there is no active entity manager). It is because the WS-HumanTask handler listens
for completed tasks and if it sees that a task has been completed, it notifies its work
item manager, which in turn, cleans up resources that are no longer needed. In this
case, the work item manager tried to delete a WorkItemInfo entity.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[224]

The WS-HumanTask handler is called asynchronously outside our transaction.
Remember? Our transaction is only around BankingService methods.

In order to fix this, we'll have to modify the WS-HumanTask handler implementation
to perform some of its operations in a transaction. This is mainly notifying its
manager that a task has been completed or aborted.

Our implementation of the WS-HumanTask handler will also need to know the
session ID in order to load the correct persisted session. sessionId can be passed in
many ways. We could set it as a process parameter and then set it on the human task
work item. Or we could maintain a synchronized map of processInstanceId to
sessionId mappings. (You can get the current processInstanceId from workItem
that is accessible within the handler), The loanApprovalService.requestLoan
method would have to insert this session to this map whenever a new loan is
requested. We'll use the latter.

Make a copy of the default WSHumanTaskHandler and replace each
manager.completeWorkItem call with the following:

handler.getTransactionTemplate().execute(new TransactionCallback() {
 public Object doInTransaction(TransactionStatus status) {
 Integer sessionId = handler.getProcessIdToSessionIdMap()
 .get(workItem.getProcessInstanceId());
 StatefulKnowledgeSession session = handler
 .getKnowledgeSessionLookup().loadSession(sessionId);
 try {
 session.getWorkItemManager().completeWorkItem(
 workItemId, results);
 }
 finally {
 session.dispose();
 }
 return null;
 }
});

Code listing 38: Completing work item in a human task handler
(JPAWSHumanTaskHandler.java file).

Note that in this implementation we're using the synchronized
processIdToSessionIdMap to lookup sessionId. Also note that our handler uses
the same KnowledgeSessionLookup class as the loan approval service. Further, it
uses Spring transactional template to execute this code within a transaction. This
human task work item handler can be defined in Spring as follows:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[225]

<bean name="approveLoanWorkItemHandler"
 class="droolsbook.sampleApplication.drools.persistence.
 JPAWSHumanTaskHandler" >
 <property name="transactionTemplate"
 ref="transactionTemplate" />
 <property name="knowledgeSessionLookup"
 ref="knowledgeSessionLookup" />
</bean>

<bean id="transactionTemplate"
 class="org.springframework.transaction.support.
 TransactionTemplate">
 <property name="transactionManager"
 ref="transactionManager" />
</bean>

Code listing 39: Human task work item handler Spring bean
(applicationContext.xml file).

Loan approval event
For a successful loan approval, a supervisor must send an 'approved' event.
Normally, we'd create a 'loans waiting for approval' screen where the supervisor
would pick the loan for approval. This screen would be driven by the persisted
LoanApprovalHolder instances. We won't be creating this screen and instead let's
pretend that the supervisor knows sessionId of the process that needs the approval.

Loan approval event will be handled by an ApproveEventController:

<bean name="/approveEvent.htm"
 class="droolsbook.sampleApplication.web.ApproveEventController">
</bean>

Code listing 40: Extract from the Spring configuration (sampleApplication-
servlet.xml file), ApproveEventController bean definition.

Our controller will use sessionId to send the event to the correct session. First, we'll
search for LoanApprovalHolder by sessionId (note that it is the primary key). Then,
we'll call bankingService.approveLoan method.

/**
 * sends 'loan approved' event to specific process
*/
@PersistenceContext(unitName="entityManagerFactory")
EntityManager em;

@Override
protected ModelAndView handleRequestInternal(
 HttpServletRequest request,HttpServletResponse response)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Sample Application

[226]

 throws Exception {
 String sessionId = request.getParameter("sessionId");
 LoanApprovalHolder pendingLoanApprovalHolder = em.find(
 LoanApprovalHolder.class, Integer.valueOf(sessionId));
 bankingService.approveLoan(pendingLoanApprovalHolder);
 return new ModelAndView("redirect:index.jsp");
}

Code listing 41: handleRequestInternal method of a controller for sending an
approval event (ApproveEventController.java file).

The user is redirected to the index.jsp page (note redirect:index.jsp).

As an alternative to LoanApprovalHolder, we could use the persisted
process data and search for all processes that are waiting for approval.
However, in Drools 5.0, the process data is stored as an array of bytes,
which makes it impossible to search through the data. This will be
improved in future versions of Drools.

bankingService delegates to the approveLoan method of the loanApproval service
as follows:

public void approveLoan(LoanApprovalHolder holder) {
 StatefulKnowledgeSession session =
 sessionLookup.loadSession(holder.getSessionId());
 try {
 SignalEventCommand command = new SignalEventCommand();
 command.setProcessInstanceId(
 holder.getProcessInstanceId());
 command.setEventType("LoanApprovedEvent");
 command.setEvent(true);
 session.execute(command);
 } finally {
 session.dispose();
 }
}

Code listing 42: approveLoan method of the loan approval service
(LoanApprovalServiceImpl.java file).

The method looks up the knowledge session using sessionId. A new
SignalEventCommand is created, processInstanceId is set together with the event
type and event's value. The command is then executed.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 9

[227]

After the bank employee completes the loan task process and the supervisor sends
the approve event, the loan approval process will successfully finish, the money will
be transferred, and the customer will be informed with an email.

Summary
In this chapter, we've learned how to write a basic web application. The application
brought together some of the services we've defined in the previous chapters.

The application has layered architecture. The entire configuration was carried
out with Spring Framework (data sources, repositories, transactions, knowledge
bases, services, view controllers, and others). Spring makes it easy to change the
configuration without recompiling the code.

We've learned how to integrate transactions with our services. For example, all new
customers are validated, persisted, and all of this happens within a transaction.
Further, the complex event processing service is notified about all of the important
events within the application.

The loan approval process shows how to deal with a long running rule session.
Sessions have to be persisted during the user's 'think time'; otherwise, they will
consume resources that could have been used in a much better way. As this is the
first release of drools-process-task and drools-persistence-jpa modules,
the persistence support had minor glitches and we had to do some workarounds.
However, this should be fixed in future versions of Drools.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Testing
Testing is an important part of the development life cycle. In the earlier chapters,
we've learned how to write unit and integration tests. This chapter will provide some
additional information about testing and troubleshooting rules. It will focus on how
to write good unit tests, integration tests, and acceptance tests. It will look at testing
support in Guvnor (the BRMS) including some support for static analysis of rules,
and finally some useful advice for rule debugging will be given.

How to write unit tests for rules
By definition a 'unit' in a unit test is the smallest testable part of an application—in
our case, a rule. Writing a unit test for every rule is expensive. It effectively doubles
the cost of writing a rule. However, it is well worth the effort. To minimize this
cost, we should focus on each rule in isolation. For the purpose of isolating all of the
external factors such as calls to services, repositories, and so on, any mocking library
can be used.

A mocking library can create a dummy implementation (a mock) of a
service that we can use for testing the rules. The mock can record methods
that have been called and return predefined values. We can verify that
the correct method was executed the expected amount of times with the
correct set of arguments. In Chapter 8, Drools Flow, jMock was used, but
easyMock is another good alternative.

By isolating all of the external factors, our unit tests will work even if they change.
For example, the implementation of global objects can change, but as the rules use
their mocked version, the changes in rule unit tests will be minimal.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Testing

[230]

Each condition in a rule should be covered in a unit test. When we change a
condition, ideally, one test should break. This will give us confidence when
refactoring rules that the functionality hasn't been changed. This also applies
when a new functionality is being added or an existing functionality is being
removed. The test should account for cases where there is no fact, there is one fact, or
many facts present in the knowledge session. However, as with everything, always
use your common sense when writing tests. For example, it probably doesn't make
sense to test every possible scenario in a decision table.

A ruleflow test can be usually divided into two parts: testing of the ruleflow
definition and rules.

When testing the ruleflow definition, note that the knowledge
base can be created just from a .rf file.

A ruleflow definition unit test should test every ruleflow node to make sure that
every branch of a ruleflow works as expected—especially, ruleflow nodes with some
conditions/actions.

Further, unit tests are a sort of living documentation. They are usually updated
immediately with the code/rules. Through a unit test, others can understand its
API, how this unit works, and how to use it.

Rule integration testing
An integration test is a higher level test for the whole knowledge base. It tests rule
interactions. Instead of mock objects, it uses fully setup objects (services, repositories,
and so on). A ruleflow integration test should test the whole ruleflow—definition
and rules together.

An integration test involving rules is no different from a standard integration test.
We'll now look at rule acceptance testing.

Rule acceptance testing
By definition, acceptance testing is a black-box testing performed on a system
prior to its delivery. Acceptance testing is often preformed by the user. There are
various tools for implementing acceptance testing. FIT is one of them (FIT stands
for Framework for Integrated Test. More information can be found at http://fit.
c2.com/). The FIT tests consist of initial configuration setup, setup of input data,
and setup of expectations. All this is stored in a human readable document (.doc or
.rtf). It can even be a part of the system requirements (for example, a table within a
document that contains input data and expectations).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 10

[231]

Drools adopted FIT style acceptance testing early on with the FIT for Rules project
(More information about FIT for Rules can be found at http://fit-for-rules.
sourceforge.net/). This has been later enhanced in Guvnor.

Guvnor is a BRMS—a web application for managing rules. It can create,
edit, build, and test rules. For more information about Guvnor, please
look into Drools documentation. In this book, we'll only cover Guvnor's
testing support and static analysis of rules.
Download, install, and start Guvnor. Open your web browser and
navigate to http://localhost:8080/drools-guvnor. You can login
using any credentials.

We'll now look at testing support in Guvnor. It can be considered as kind of
rules acceptance testing. Its biggest benefit is that it can be preformed by a more
technically skilled business user. We can define expectation and verify that they were
met. When the acceptance test runs, it creates facts from the given input data inserts
them into the knowledge session, fires all rules, and then verifies expectations. All of
the violations are reported.

Guvnor's testing support can be found in the main menu under heading QA. It
provides support for running tests and static analysis of rules under the following
two subsections: Test Scenarios in packages and Analysis. In this chapter, we'll
cover both.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Testing

[232]

By expanding Test Scenarios in packages on the left, we can see all of the configured
packages in Guvnor. The already defined tests are listed on the right side of the
preceding screenshot. Please ignore them for now.

Let's assume that we've defined rules for calculating interest rates in droolsbook.
decisiontables package in Guvnor (again, please consult the Drools documentation
about how to do this. A quick solution would be to use our existing .xls file from
Chapter 5, Calculating the interest rate section, converting this file to .drl by using
DecisionTableFactory, and importing the resulting .drl file into Guvnor. Please
note that the model and referencing libraries need to be imported as well). After
the package in Guvnor successfully builds, we can start with writing some rule
acceptance tests.

Creating a test scenario
Before we can run the tests, we have to define them. This is done in the Knowledge
Bases navigation section. Select Knowledge Bases and then Create New | New
Test Scenario. Give it a name, for example, we can use the same name as we've
used for our Java tests—deposit125EURfor40Days. A scenario is essentially
one JUnit test method. Set the correct package (the one with interest rating
calculation—droolsbook.decisiontables). Then a new screen for entering
the test data should be displayed. Add input data and expectations as shown
in the following screenshot:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 10

[233]

The GIVEN section defines facts that will be inserted into the knowledge session.
In the preceding screenshot, we're inserting one fact of type Account. This fact is
bound under variable name account. The five lines shown in this screenshot set the
account's properties. currency is of type String, so the value can be simply set. The
other four properties: balance, type, startDate, and endDate are more complex
objects and must be set as mvel expressions. Each value that starts with the 'equal to'
(=) symbol is considered as a mvel expression and properly evaluated.

The balance property is of BigDecimal type. The full value of balance field is =new
java.math.BigDecimal("125.00"). In this case, we're creating a new instance of
an object using mvel expression. The type field is set to =droolsbook.bank.model.
Account$Type.SAVINGS. Please note that we're referring to the internal enum type
as Account$Type instead of Account.Type as is the case in .drl files. startDate is
set to =new org.joda.time.DateMidnight(2008, 1, 1).minusDays(40) and the
endDate is set to =new org.joda.time.DateMidnight(2008, 1, 1). The duration of
the interval defined by startDate and endDate is exactly 40 days. By selecting the
GIVEN button, we can add more facts.

The next section, EXPECT, defines expectations. Its first line is used for setting the
SessionClock (its purpose was described in Chapter 7, Complex Event Processing),
which is mainly used when working with CEP. The scenario has one expectation
on a fact field. It expects that an account's interestRate property will be equal to
3.00, which is written as =new java.math.BigDecimal("3.00"). We can add as
many expectations such as this as we want. Another supported expectation type can
verify which rules were fired and how many times.

By clicking on the More... button, more input and expectations can be defined. It is
something like a round two within this test scenario. The knowledge session will
be reused.

A scenario can be further configured to limit the rules that are allowed to fire. This is
very useful if we have rules that have side effects and should be omitted from testing
(for example, if they are accessing an external service). Further, simple global objects
can be defined. It is similar to defining a fact.

Globals
Our rules often interact with external services that are accessible
through global variables. Similar to what we did in rule unit tests,
in order to test these rules, a mocked version of services could be
defined. The test could then verify that the service was called n times
with expected parameters.

At the bottom of the preceding screenshot is a description of the test scenario. This
helps with understanding the purpose of this test.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Testing

[234]

Running a test scenario
After defining a test scenario, it can be executed by clicking on the Run scenario
button in the top left corner of the preceding screenshot. Guvnor then executes
this scenario and displays the results in the top part of the screen as shown in the
following screenshot:

Results consists of a bar graph representing the success rate of this test scenario. In
our case, it is 100%—one test out of one passed. The Summary section summarizes
which expectations were met (green tick icon) and which were not met (yellow
exclamation point). The actual values are also shown. In the following example,
account's fact interestRate field was set to 3.00, which was expected. If the
expectations aren't met, that is, if the actual value is different from the expected one,
both values would be shown and the expected value would be also displayed in the
EXPECT section with a red rectangle around it as shown in the following screenshot:

The Audit log in the preceding screenshot gives us a detailed view of what
happened during the test execution. We can see that an Account object has been
inserted. Its values can be seen (as represented by the toString method of Account).
The next line shows a FIRING rule event, which means that a rule has been executed
just after the Account fact was inserted. The rule name is Interest Calculation_16.
The facts that activate this rule are shown as well. (Note that these rules come from
a .xls spreadsheet, the rule names were auto generated, hence, the unusual name
Interest Calculation_16).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 10

[235]

The test can be now saved by clicking on the Save changes button in the top part
of the screen just below the tabs section. More tests can be defined in the similar
manner. We can take all tests that were written for interest rate calculation and
rewrite them in Guvnor.

As you can see, this interface is targeted more towards technically skilled business
users. They can easily write and maintain these tests. However, for developers, it
probably makes more sense to use the IDE and Java for writing these tests as we've
done in Chapter 5, Human-readable Rules.

Running all test scenarios
After all of the tests are written, they can be run all at once like a JUnit test suite.
In the QA navigation section, click on the droolsbook.decisiontables package.
All of the tests within this package can be run by clicking on the Run all scenarios
button. The results are shown in the following screenshot:

As we can see, the overall result is SUCCESS, which means that all of the tests
within this package have successfully passed. There were zero failures out of 16
expectations. The next yellow bar shows the test coverage—what percentage of the
rules were exercised by the tests. Only 86% of the rules in this package were tested.
The rules that were not tested are shown in the Uncovered rules list box. In a real
scenario, most of the rules should have at least one to three tests.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Testing

[236]

The next section displays each executed test scenario in more detail. By clicking on
the Open button, we can get to the test scenario in question.

These tests can also be called externally through a URL. It is especially
useful if we have a continuous integration server that can run these
tests every time a package is changed. This URL can be found in the
Knowledge Bases navigation section. Click on the package you want to
test and the URL will be displayed in the bottom of the screen, on the
right. For example, URL for running tests: http://localhost:8080/drools-
guvnor/org.drools.guvnor.Guvnor/package/droolsbook.decisiontables/
LATEST/SCENARIOS.

Static analysis of rules
Testing is useful but it can be very time consuming. We have to write the test and then
maintain it. It would be nice if we had an automatic way of testing.

Static analysis is what we're looking for. It is another powerful technique that
can be used anytime for achieving high quality rules. The rules are analyzed by a
specialized program without actually running them. It can be applied to any rules
without any initial investments.

Drools comes with a module called drools-verifier that uses rules to analyze
rules. This module can be used standalone (through API or as an ant task) or it is
also included in Guvnor under the QA | Analysis navigation section. Analysis
can be started by clicking on the Run analysis button. The results are shown in
the following screenshot:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 10

[237]

Drools-verifier analyzes rules in a package and creates a report with Errors,
Warnings, and Notes. Further, it provides various other information about rules
(for example, field usages by fact type and so on). The Errors represent significant
problems often resulting in the rules not being able to compile. Warnings and Notes
highlight potential problems with rules (for example, a redundant rule—a rule that
is already covered by another rule). The dools-verifier module is relatively new.
New rules for analyzing rules are being constantly added.

Troubleshooting techniques
If we have trouble writing a new rule or fixing a broken rule, we should first
isolate this rule from others. This can be done by commenting out other rules or by
extracting the rule to a new file and working there.

The Drools Eclipse plugin has a 'Rete Tree' view. The Rete Tree view is accessible as
the second tab of the .drl editor. It shows the graphical representation of the Rete
network (more about it has been discussed in Chapter 12, Performance). Behind the
scenes, it compiles the .drl file and so it can be used to quickly check if the .drl file
is valid. If not, an error is displayed.

If the rule compiles, but it still isn't doing what we want. We can use a debug event
listener to see if the expected facts were inserted into the knowledge session, if the
rule was actually activated, and if it fired.

If the rule hasn't been activated, there might be an issue with rule's conditions. In
this case, it helps to comment out some conditions and try to make the rule fire
without them. This will help us to narrow down the specific rule's condition that is
preventing this rule from firing (later in this chapter, we'll also see how to use mvel
do to some low level debugging of rule conditions).

If the rule fired but it didn't do what was expected, there is probably an issue with
the rule's consequence. Rule's consequence is essentially a block of Java code. We can
simply put some System.out statements, for example, to print out some variables.
If this isn't enough, inside the drl editor, we can put breakpoints into the rule's
consequence. As we already know, Drools, behind the scenes, creates a class
from/for each consequence. We can review the source of this class to see any
potential problems.

In the following sections, we'll look at some of these techniques in more detail.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Testing

[238]

Event listeners
Event listeners, or in other words, callback handlers, have a large variety of uses.
They can be used for audit purposes, debugging, and also for externalizing some
functionality from rules. For example, if we look at the validation example in
Chapter 3, Validation, each rule's consequence is creating a message and adding this
message to a report, this can be easily done in an afterActivationFired method
of AgendaEventListener. This way, we're abstracting the reporting aspect from the
rules. We can easily change the reporting code without touching every rule. Further,
more event listeners can be applied at the same time.

Drools supports four types of event listeners. We'll now look at their interfaces:

1.	 org.drools.event.rule.WorkingMemoryEventListener: Listens to the
events on a knowledge session. Fact inserted/updated/retracted events.

2.	 org.drools.event.rule.AgendaEventListener: Listens to the events
on the knowledge session's agenda. Activation created/cancelled events,
before/after activation fired events, and agenda group popped/pushed
events.

3.	 org.drools.event.knowledgebase.KnowledgeBaseEventListener:
Listens to the events on the knowledge base. Additions/Removals of
packages, rules, and functions. Lock/Unlock events on the knowledge base.

4.	 org.drools.event.process.ProcessEventListener: Listens to events
on a process instance. Before/After process started/completed events and
process node left/triggered events.

Drools provides various implementations for these listeners. Worth
noting is DebugXXXEventListener (for example, org.drools.event.
rule.DebugWorkingMemoryEventListener), which prints everything to
the console. Similar to 'debug' type, there is a 'default' type (for example
DefaultWorkingMemoryEventListener), which is designed for extensibility.
All of its methods are empty so that it can be easily extended and only necessary
methods are overwritten.

Use only event listeners from the drools-api module. Event listeners
from the drools-code module won't work with the new Drools API
and will be removed in a future version of Drools.

Sample Java code for adding an event listener to a knowledge session is below:

session.addEventListener(new DebugWorkingMemoryEventListener());

Code listing 1: Setting a debugging knowledge session event listener that prints all
events to the console.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 10

[239]

By default the DebugXXXEventListeners print out very
limited information. You'll probably want to extend them and
print out more specific information. For example, in case of the
beforeActivationFired method of AgendaEventListener, you
could print out the rule name and facts that caused the activation event.

Debugging
Drools Eclipse plugin provides a powerful environment for debugging rules
(please refer to the Drools documentation for instructions to install this plugin—
http://www.jboss.org/drools/documentation.html). Open a .drl file in
Eclipse and double-click to the left of the line in the rule consequence, where you
want to place a breakpoint.

The breakpoint will be triggered when the rule fires next. The application needs to be
started through a special Drools launcher. The same applies when we want to debug
JUnit tests. Right-click on the Main class/JUnit test class and from the context menu
select Debug As | Drools Application/Drools JUnit Test. (At the time of writing this
book, Drools supported only debugging of JUnit tests version 3.X. We're using JUnit
version 4 in this book). As with standard Java debugging, we can see the current stack
trace, access global, and local variables or even execute custom expressions.

When debugging the applications that were started with the Drools launcher,
various Drools Eclipse Views become available. For example, the Agenda (can be
used to explore activated rules that are placed on the agenda), Global Data (used to
explore values of global variables), Working Memory (used to explore facts in current
knowledge session), and Audit (can show all events that happened during the rule
engine execution, similarly to what we've seen when running test scenarios in Guvnor).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Testing

[240]

The Audit view only works 'offline'. It can open a pre-recorded knowledge session
from a log file. The following code listing shows how to create such log file:

KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory.
 newFileLogger(session, "log_file_name");
...
logger.close();

Code listing 2: Audit logger for logging all events in a knowledge session.

Please note that the newFileLogger method takes a knowledge session as an
argument. The logger should be created right after the session and before any
objects are inserted into the session or any rules are fired. The output file (in this
case called log_file_name.log) will be stored in the current JVM working
directory. This log file can then be stored for future analysis. After we finish
working with the session, the logger should be closed by calling logger.close().

Ruleflow
The Eclipse plugin provides additional views for debugging ruleflows. These views
are: Process Instances (show all of the currently running process instances; each
process instance is shown in a tree-like structure and its properties can be examined)
and Process Instance (shows a graphical representation of a process instance with
the currently active nodes highlighted).

In order to activate these views, a breakpoint can be inserted into the
beforeNodeTriggered method of ProcessEventListener or rule consequence as
we've done before. When this breakpoint is triggered, the Process Instances view
will be populated with the current process instance. After double-clicking on this
process instance, we can switch to the Process Instance view to see the graphical
representation of this process with currently active nodes highlighted.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 10

[241]

The preceding screenshot shows a breakpoint that has been triggered in a process
event listener's beforeNodeTriggered method. The Process Instances view shows
currently running process and Process Instance view shows currently active
ruleflow groups.

Source of generated classes
When the Drools compiler compiles a rule file, it also generates various Java classes
to represent rule consequences and semantic blocks of code (for example, 'evals',
'inline evals', and 'return values'). For performance reasons, these classes are kept
only in the memory; they are never stored on disk. However, we can force Drools to
dump the source code of these classes to some folder on the disk. There are two ways
how to accomplish this:

1.	 From the command line, we can start the application as normal, just add
the following:
-Ddrools.dump.dir="target/dumpDir"

Code listing 3: Specifying the dump directory from the command line.
2.	 Through the API:

KnowledgeBuilderConfiguration configuration =
 KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
configuration.setOption(DumpDirOption.get(
 new File("target/dumpDir")));

Code listing 4: Specifying the dump directory through the API.
KnowledgeBuilderConfiguration can then be used to create the
KnowledgeBuilder that is used in the knowledge session creation process.

Please note that in both cases, the target directory (in our case target/dumpDir)
must exist.

This can be useful for understanding the Drools internals in depth and it can also
help while troubleshooting to find out exactly what code is being executed.

mvel tricks
As mvel is an expression language, it allows us to do more work where just one
statement is expected. This can be especially useful for low-level debugging. For
example, instead of writing:

dialect "mvel"
when
 Account(balance > 1)

Code listing 5: Some rule condition.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Testing

[242]

It is allowed to write:

dialect "mvel"
when
 Account(eval(System.out.println("matched"); balance > 1))

Code listing 6: Rule condition with multiple expressions inside single inline eval.

We've inserted a System.out.println("matched"); statement into the inline eval.
Every time the rule engine evaluates this inline eval, matched message is printed on
the console.

Use this with caution; it is only meant for debugging.

Summary
We've learned some principles on how to write rule unit tests, integration tests, and
acceptance tests. Unit tests should test each rule in isolation while mocking all of the
other components. Integration tests should test a knowledge base as a whole. The
acceptance tests are geared towards more technically skilled business users. With a
nice web interface provided by Guvnor, a user can test the rules by setting up input
data with expectations. Guvnor then executes these tests and reports the results back.

Static Analysis of rules was shown as a very cheap way of testing rules. Currently it
provides very limited value but as the Drools-verifies module evolves, it may be a
powerful tool in the future.

We've seen some techniques for rule troubleshooting. Starting with listeners that
have a lot of other uses, debugging in Eclipse, and to get deeper understanding
of the inner workings of a rule engine, we've learned how to view the source of
generated classes and how to get advantage of powerful expression language—mvel.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Integration
The focus of this chapter is on various integration points of the Drools engine with
other systems.

We'll start with discussion of having Drools artifacts (rules and processes) change on
their own life cycle that is independent from the application. We'll see how to build
and dynamically load Drools artifacts.

We'll look at how to run rules remotely from a lightweight client. A simple client that
can talk to a Drools execution server will be written in Ruby.

Finally, we'll cover integration with the Spring Framework and some rule standards
will be discussed.

Dynamic KnowledgeBase loading
In almost all examples in this book, the Drools artifacts were packaged together
with the application. However, rules, processes, and other Drools artifacts often
have different life cycles than the applications that use them. These artifacts tend to
change more often than the rest of the application. It would be more beneficial if we
could build, release, and deploy them separately. In order to achieve this:

We need to build KnowledgeBase independently from the application
The application should be able to dynamically (re)load this KnowledgeBase
at runtime

Guvnor (the Business Rules Management Server) meets our first requirement. It can
build, release KnowledgePackage, and make it available through a URL. Later on
in this chapter, we'll also show how we can use a general build tool such as Ant for
this task.

For the second requirement, we'll now look at KnowledgeAgent.

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Integration

[244]

KnowledgeAgent
KnowledgeAgent allows us to load Drools artifacts dynamically as they change. It is
designed to support both poll and push models. However, only the polling model is
implemented in Drools.

In future, the Drools team plans to add implementation for the push
model as well. As a result, the interfaces are subject to change.

It periodically scans if a resource has been changed. The following diagram shows
how it works in more detail:

ChangeSet

triggers

ResourceChangeMonitor ResourceChangeNotifier

notifiesmonitors

extends

Resource

ResourceChangeListener

ResourceChangeScanner

A resource can represent a single .drl file (see org.drools.builder.ResourceType
enum for all supported resources) or a directory (it can contain multiple resources).
ResourceChangeMonitor monitors these resources for changes. When a change
is detected, ChangeSet is created that holds all of the information about this
change. ChangeSet holds resources that were added, modified, and removed.
ResourceChangeScanner extends ResourceChangeMonitor to provide 'poll type'
monitoring. It can be configured to scan for changes in pre-defined intervals.

When the monitor detects a change, it triggers ResourceChangeNotifier, which is
responsible for sending notifications to listeners. All of the listeners must implement
the ResourceChangeListener interface.

KnowledgeAgent is a type of listener that caches one knowledge base. The
knowledge base can be accessed through the getKnowledgeBase method. The agent
keeps this knowledge base up-to-date as the resources change (currently it can only
create a new KnowledgeBase instance. In future, it will be able to update existing
KnowledgeBase as well). The following code listing shows how to use it:

ResourceFactory.getResourceChangeScannerService().start();
ResourceFactory.getResourceChangeNotifierService().start();

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 11

[245]

KnowledgeAgentConfiguration conf = KnowledgeAgentFactory
 .newKnowledgeAgentConfiguration();
conf.setProperty("drools.agent.scanDirectories", "true");

final KnowledgeAgent agent = KnowledgeAgentFactory
 .newKnowledgeAgent("validation agent", knowledgeBase, conf);

Code listing 1: KnowledgeAgent usage.

The first two lines start the monitor and notifier services. They must be
started explicitly.

Next, KnowledgeAgentConfiguration is created that provides some configuration
options for the knowledge agent. It can specify whether the agent should scan
resources or directories, or whether this agent should listen for ChangeSet
events. Code listing 1 shows how to enable the scanDirectories setting—conf.
setProperty("drools.agent.scanDirectories", "true");.

KnowledgeAgentFactory is then used to create an instance of KnowledgeAgent
using our configuration conf. The factory method also takes knowledgeBase as an
argument. We can create this knowledge base as we normally do.

The knowledge base retains the locations of its resources. This is possible
only when it is created from a file, URL, or a resource on the classpath
(as can be seen in the following example). The location information is lost
when the knowledge base is created from a byte array, InpuStream, or
Reader resource.

The agent subscribes for notifications to all of the resources that this knowledge base
contains. When a resource is changed, the agent recreates the knowledge base. In
our application, we have to get this knowledge base by calling KnowledgeAgent.
getKnowledgeBase() before every stateless/stateful session creation.

In the previous chapter, we've mentioned that Drools Guvnor can also build artifacts.
Artifacts are grouped into packages. Packages can be built and then accessed
through a URL. Our application can then use this URL for creating KnowledgeBase.
If we'd like to load the validation KnowledgeBase from Guvnor, we could add it to
KnowledgeBuilder as follows:

kbuilder.add(ResourceFactory.newUrlResource(
"http://localhost:8080/"+
"drools-guvnor/package/droolsbook.validation/LATEST"),
ResourceType.PKG);

Code listing 2: Adding a validation package built by Guvnor.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Integration

[246]

We're specifying the URL where the package is accessible. The package name is
droolsbook.validation and we're using the LATEST snapshot of this package.
With this configuration change, we don't need the drools-compiler library
on the classpath because the package is already compiled. KnowledgeAgent
will periodically poll this URL for changes and will update its locally cached
KnowledgeBase.

External artifact building
We already know that we can use Guvnor to build packages externally. In this
section, we'll look at how to do it with a build tool called Ant. We can then easily
add artifact compilation steps into our existing build process.

Building with Ant
Apache Ant is a general purpose building tool. More information about Ant can be
found at http://ant.apache.org/. Module drools-ant, from the standard Drools
binary distribution, contains an Ant task for building Drools artifacts. We'll build
validation knowledge base from Chapter 3, Validation, using this Ant task.

All of the information required by Ant will be stored in a file called build.xml. We'll
now go through this file step-by-step. It starts with a project definition as follows:

<project default="compileArtifacts">
 <property name="projectPath" value="" />
 <property name="droolsPath" value="drools_lib" />

Code listing 3: build.xml file—project definition—part 1/4.

As it is usual with Ant build files, the project definition contains a default Ant
target that will be called when no target is specified. This default target is called
compileArtifacts. The next two lines define two properties: projectPath and
droolsPath. The first property is a path to the current project and the second is a
path to Drools libraries.

The following code listing defines Drools libraries that will be needed:

<path id="drools.classpath">
 <pathelement location="${droolsPath}/drools-ant.jar" />
 <pathelement location="${droolsPath}/drools-api.jar" />
 <pathelement location="${droolsPath}/drools-core.jar" />
 <pathelement location="${droolsPath}/drools-compiler.jar" />
 <pathelement location="${droolsPath}/antlr-runtime.jar" />
 <pathelement location="${droolsPath}/mvel2.jar" />

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 11

[247]

 <pathelement location="${droolsPath}/org.eclipse.jdt.core_3.4.2.v_
 883_R34x.jar" />
</path>

Code listing 4: build.xml file—Drools classpath definition—part 2/4.

Note that the libraries in code listing 4 don't have versions. It has been removed to
make this code listing more concise. For example, if you're using version 5.0.1 of
Drools, drools -ant.jar will be drools-ant-5.0.1.jar.

drools.classpath references Drools artifacts that are required by validation
rules (including their dependencies). You can add more Drools artifacts to this list
depending on the features you're using (for example, if you use decision tables,
add drools-decisiontables.jar and so on). Please note the use of droolsPath
variable to locate all of the Drools libraries.

drools-ant.jar contains the Drools Ant task. We'll now use drools.classpath to
tell Ant about the Ant task.

<taskdef name="compiler" classpathref="drools.classpath"
 classname="org.drools.contrib.DroolsCompilerAntTask" />

Code listing 5: build.xml file—Drools compiler definition—part 3/4.

The taskdef element defines a compiler Ant task. It is implemented by the
DroolsCompilerAntTask class.

Now, we can use this Ant task to compile the validation rules.

<path id="model.classpath">
 <pathelement location="${projectPath}lib/banking-model.jar" />
 <pathelement location="${projectPath}lib/joda-time.jar" />
</path>

<target name="compileArtifacts">
 <compiler srcdir="${projectPath}src/main/resources"
 tofile="${projectPath}target/validation.pkg"
 binformat="package" bintype="knowledge"
 classpathref="model.classpath">
 <include name="validation.drl" />
 </compiler>
</target>
</project>

Code listing 6: build.xml file—Target for building validation rules—part 4/4.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Integration

[248]

First, another classpath called model.classpath is defined. It contains all of the
model libraries. In our case, they are: banking-model.jar file and joda-time.jar
library. The first JAR file contains all of the classes used in the model. The second
JAR file is a library that our model references.

Finally, the compileArtifacts target gathers all of the information together in
order to compile the validation rules. Target's body consists of a compiler target.
It defines:

srcdir: It points to the directory with our validation rules.
tofile: It specifies the destination file. In our case, it is validation.pkg.
binformat: It specifies that we want to build only a package. If we didn't
specify this, the whole knowledge base would be built.
bintype: It is here just for compatibility purposes. It should always be set to
knowledge.
classpathref: It is a reference to our model classpath.

The body of the compiler element is a collection of files that should be compiled. In
our case, it is only one file called validation.drl. Other valid options are artifacts
ending with .brl, .xml, .dslr, or .xls. More files can be imported at once using
wild cards (for example, all of the rule files with *.drl).

You can try this 'build file' from a command line. Just navigate to the directory
where it resides and type ant. Ant will execute the default target, which is set to
compileArtifacts in our case. After a few seconds, you should see a BUILD
SUCCESSFUL message and the validation.pkg file should exist. This package
can now be used to create a knowledge base.

Drools doesn't support Maven by default. As a workaround, it is
possible to call an Ant task from within a Maven build.

Drools execution server
The Drools execution server is a web application that allows us to execute rules
remotely. The server is accessible through a REST-like interface (REST stands
for Representational State Transfer—http://en.wikipedia.org/wiki/
Representational_State_Transfer). Thanks to REST, we can build very
lightweight clients that don't need any Drools libraries for rule execution
(not even a JVM). To demonstrate this, we'll build a client using Ruby language.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 11

[249]

Drools server can be found in the standard Drools binary distribution within the web
application module drools-server.war. The Drools web server application needs
to be deployed to an application server and started. It uses multiple knowledge
agents to cache KnowledgeBase instances. Configuration for these knowledge
agents is provided during startup through property files.

After the startup, the server waits for requests from clients. When it receives a
request, it creates StatelessKnowledgeSession for rule execution (the Drools team
might add stateful support in the future). After creating the session, it sets global
variables, inserts facts, and executes rules. When rules finish firing, the results are
returned back to the client.

The server can communicate with the client using XML or JSON formats. JSON is a
lightweight data-interchange format—http://www.json.org/.

The client can access the server through the following URL: http://localhost:
8080/drools-server/knowledgebase/interestcalculation. The last
part—interestcalculation—identifies the knowledge agent configuration
that should be used. In this case, the server will search for the file called
interestcalculation.properties on the classpath.

Interest rate calculation example
To see how all of this works, we'll:

Deploy a Drools server with interest rate calculation knowledge base that
we've defined in Chapter 5, Human-Readable Rules
Create a client that will issue a request using JSON protocol to this server and
display a response

The server
We have to modify drools-server.war to know about our interest rate calculation
knowledge base. Create a file named interestcalculation.properties with the
following contents:

newInstance=true
file="/some/absolute/filesystem/path/interest calculation.xls"

Code listing 7: Agent configuration file—interestcalculation.properties.

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Integration

[250]

It specifies that we want to create a knowledge base from a decision table—interest
calculation.xls—that contains our rules. The newInstance=true part specifies
that we want to create a new knowledge base whenever the decision table changes
(this setting needs to be set to true). Please change the path to the decision
table appropriately.

Add the properties file to the WEB-INF/classes directory of drools-server.
war. Next, add libraries to the WEB-INF/lib folder. The following ones are needed:
drools-decisiontables.jar, drools-templates.jar, jxl.jar, commons-lang.
jar, and joda-time.jar. These libraries come with the standard Drools binary
distribution. Most importantly, add the domain model classes that are also packaged
in a jar file—interest_calculation.jar.

drools-server.war can be deployed and started. We can verify that everything is
running correctly by going to http://localhost:8080/drools-server/ (note that
the port number varies depending on the application server used). We should see
a page with the title, Execution server is running, with some usage information as
shown in the following screenshot:

The server implementation is very lightweight. It consists of a single
servlet and a few additional value holder classes. It is easily embeddable
in the existing web applications.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 11

[251]

The client
Our client will query for an interest rate on a student account with balance 1,000
EUR. Since this client will be very lightweight, a dynamic and interpreted language
such as Ruby is ideal for this kind of a task. For more information about Ruby, please
refer to http://www.ruby-lang.org/en/. Please consult Ruby's manual about how
to install this interpreter. We'll also require an additional library for Ruby called
json, which will allow us to communicate using JSON protocol.

The full client source code is displayed as follows:

require 'net/http'
require 'json'
http = Net::HTTP.new('localhost', 8080)
path = "/drools-server/knowledgebase/interestcalculation"
headers = {
 "Content-Type" => "application/json"
}
post_data = {"knowledgebase-request" => {
 :inOutFacts => {
 "named-fact" => [{ :id => "account", :fact => {
 "@class"=>"droolsbook.decisiontables.bank.model.Account",
 "type" => "STUDENT", "balance" => "1000",
 "currency" => "EUR" } }]
 }
}}
resp, data = http.post(path, post_data.to_json, headers)
answer = JSON.parse(data)
puts answer["knowledgebase-response"]["inOutFacts"]\
 ["named-fact"][0]["fact"]["interestRate"]

Code listing 8: Ruby client (interest_request.rb file).

The first few lines until post_data ... are straightforward. We'll be connecting to
the server with a specified URL and sending data using the JSON format. The
post_data hash data structure holds all information we'll be sending. It is one fact
named as account of the droolsbook.decisiontables.bank.model.Account
class. It's type property is set to STUDENT, balance to 1000, and currency to
EUR. Please note that Account.currency is of type String. The type property
is enum and balance is BigDecimal.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Integration

[252]

The next line with .. http.post .. sends this request to the server and waits for
the response. Note that the data within the post_data variable is converted to JSON
format by calling post_data.to_json. The response is stored within the data
variable. Since it is in a JSON format, we have to convert it into a Ruby structure by
using JSON.parse(data). Finally, the client displays calculated interestRate by
using: puts answer["knowledgebase-response"]["inOutFacts"]["named-fact
"][0]["fact"]["interestRate"]. The response has exactly the same structure as
the request because our request contains only inOutFacts, which means that all of
the facts it contains will be a part of both, the input and the output message.

The request can have four parts. In our example, we've used only one—inOutFacts.
The client can send a list of global objects, input facts, input/output facts, and a
list of queries that should be executed. The response can have three parts—global
objects, input/output facts, and output facts. Further, we can name these facts for
easier accessibility. Please refer to the Drools documentation for more information.

We can run this client with the following command: ruby -rubygems interest_
request.rb. The output should be 1.00, which is the correct interest rate for this
account. (Note that you may need to install rubygems, which manages third party
libraries for Ruby—http://rubygems.org/read/chapter/3, and also install
json library by running gem install json).

When the server receives the request, it must create facts/global objects from it that
can be inserted into the knowledge session. After the rules are executed, it needs to
convert these facts/global objects into JSON/XML format. The Drools server uses
XStream library to perform this marshaling/un-marshaling. As we've seen, it has
no problem with types such as String, enum, or BigDecimal. This library can even
deal with much more complex custom data structures. Please consult its manual for
more information—http://xstream.codehaus.org/. For example, if we'd like to
set startDate and endDate that are of type DateMidnight for our account fact,
we'd have to map them as complex objects together and specify their type. I've found
XStream's ability to convert ordinary objects to JSON or XML and print the result
out to be quite useful. It'll give you an idea about how to represent even more
complex objects.

Spring Framework integration
Drools, as of version 5.0 doesn't provide out of the box integration with the Spring
Framework. It is planned to be included in version 5.1+.

In this section, we'll perform our own integration.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 11

[253]

KnowledgeBaseFactoryBean
We'll define the Spring FactoryBean for creating KnowledgeBase. The bean will be
called KnowledgeBaseFactoryBean. It will take a list of Spring resources and will
build a knowledge base out of them. We've already seen the usage of this bean in
Chapter 9, Sample Application where we created the validation knowledge base.
To refresh our memory, here is another example that creates a loan approval
knowledge base:

<bean name="loanApprovalKnowledge"
 class="droolsbook.integration.spring.KnowledgeBaseFactoryBean">
 <description>loan approval knowledge base factory bean
 </description>
 <constructor-arg>
 <map>
 <entry key="classpath:loanApproval.drl" value="DRL" />
 <entry key="classpath:loanApproval.rf" value="DRF" />
 <entry key="classpath:ratingCalculation.drl"
 value="DRL" />
 <entry key="classpath:ratingCalculation.rf"
 value="DRF" />
 </map>
 </constructor-arg>
</bean>

Code listing 9: loanApprovalKnowledge Spring bean declaration
(applicationContext.xml file).

As we can see, the constructor of KnowledgeBaseFactoryBean takes a map. The
keys of this map are resource locations and the values are actual resource types.
KnowledgeBase is created out of four files—two .drl files and two .rf files.
All of the files are on the classpath.

Now, let's look at the implementation of KnowledgeBaseFactoryBean. The
implementation will take advantage of Spring's property editors. The keys
that we saw in code listing 9 will be automatically converted to Spring's
org.springframework.core.io.Resource type and the values will be
automatically converted to org.drools.builder.ResourceType as required by
KnowledgeBuilder. Our implementation will then simply iterate over the Spring
resources and will build them with KnowledgeBuilder.

public class KnowledgeBaseFactoryBean implements FactoryBean {

 private KnowledgeBase knowledgeBase;

 /**
 * builds the knowledge base and caches it

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Integration

[254]

 * @param resourceMap source resources (DRL, RF files ...)
 * @throws IOException in case of problems while reading
 * resources
 */
 public KnowledgeBaseFactoryBean(
 Map<Resource, ResourceType> resourceMap)
 throws IOException {
 KnowledgeBuilder builder = KnowledgeBuilderFactory
 .newKnowledgeBuilder();
 for (Entry<Resource, ResourceType> entry : resourceMap
 .entrySet()) {
 builder.add(ResourceFactory.newInputStreamResource(entry
 .getKey().getInputStream()), entry.getValue());
 }

 if (builder.hasErrors()) {
 throw new RuntimeException(builder.getErrors()
 .toString());
 }

 knowledgeBase = KnowledgeBaseFactory.newKnowledgeBase();
 knowledgeBase.addKnowledgePackages(builder
 .getKnowledgePackages());
 }

 /**
 * returns cached knowledge base
 */
 @Override
 public Object getObject() throws Exception {
 return this.knowledgeBase;
 }

 /**
 * returns the KnowledgeBase class
 */
 @Override
 public Class<KnowledgeBase> getObjectType() {
 return KnowledgeBase.class;
 }

 /**
 * returns true since the knowledge base is a singleton
 */
 @Override
 public boolean isSingleton() {
 return true;
 }
}

Code listing 10: Spring FactoryBean for building KnowledgeBase
(KnowledgeBaseFactoryBean.java file).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 11

[255]

Note that the factory bean doesn't support some resources such as decision
tables that require an advanced configuration. The factory uses the default
knowledge builder configuration and knowledge base configuration. This can
be easily extended.

Similarly, Spring factory bean can be defined for KnowledgeAgent.

Standards
The idea behind standards is to provide better interoperability between rule engines
and to reduce the time required to learn how to use a new rule engine. We should be
able to change the rule engine provider without modifying the application.

JSR94 (Java Rule Engine API) provides guidelines for rule engine administration
and runtime. It is supported by Drools and we'll look at it in the following section.
Standards for unifying the rule language are, for example, RuleML (the Rule
Markup Language is a markup language developed to express rules in XML) or
RIF (Rule Interchange Format). They are not supported by Drools, so we won't
cover them.

JSR94 Java Rule Engine API
This API is for accessing a rule engine from the Java platform. It defines APIs to
parse rules, register and unregister rules, inspect rule meta data, execute rules,
and retrieve and filter results. However, it doesn't standardize the language used
to describe rules, the rule engine itself, nor the execution flow or deployment
mechanism. This means it has quite limited value, especially since Drools version 5,
when Drools not only became rule orientated, but also process orientated. Rules and
processes are treated equally. However, this API covers only rules, which means that
we have to use Drools native API for process interactions anyway.

Drools supports this API through the drools-jsr94 module. For more examples,
please see the Drools documentation or drools-jsr94 module's source code.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Integration

[256]

Summary
In this chapter, we've learned about various integration points available in Drools.
The Drools server allows us to build very lightweight, platform agnostic, and quick
to write clients that can execute rules remotely. It can be provided as a service for our
customers who require more fine grained integration with our rules; for example, to
provide the service with a different UI or add their own services on top of it. Another
use case might be that we don't want to share our rules with our customers; we just
want to give them the ability to execute them.

We've learned that it is better to give the rules/processes a different life cycle than
the rest of the application. Rules and processes tend to change more often. We know
how to build KnowledgeBase externally and how to (re)load it dynamically while the
application is running.

We've seen some standardization efforts to make rule engines more interchangeable.
The 'rule' side of Drools supports the JSR94; however, to work with the 'process' side,
we still have to work with Drools native API.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance
Performance is an important requirement in most of the applications. To get the
best out of any technology, we need to understand how it works. We can then make
better decisions about how to use it, and what and where to optimize.

However, performance shouldn't be the most important factor when considering a rule
engine. After all, a rule engine is a general purpose if-then statement executor. It will
never achieve the performance of a custom built system. You may also find that with
a custom build system, its performance is excellent at the start but it degrades as the
system grows with complexity. If we don't rewrite it over and over, we'll eventually
end up with the so-called spaghetti code. The performance of a rule engine is relatively
constant and it has the benefits of declarative programming: maintainability, flexibility,
and code readability that comes with reasonable performance.

In this chapter, we'll look at the Rete algorithm that is behind Drools in more detail.
We'll also get a better understanding of what is possible with Drools and what is not.
For example, we'll learn that it doesn't make sense to measure the execution time of
a single rule but only the execution time of all rules as a whole. It may clear some
questions about rules execution; for example, why are rules evaluated during the
insert stage and not fireAllRules stage.

Rete algorithm
If you had to implement a rule engine, you'd probably start with a simple iteration
over all of the rules and checking one by one if their conditions are true. The Rete
algorithm improves this by several orders of magnitude.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[258]

From Wikipedia:
The Rete algorithm is an efficient pattern matching algorithm for
implementing productions systems. The Rete algorithm was designed
by Dr Charles L. Forgy of Carnegie Mellon University, first published in
a working paper in 1974.

Pattern matching is the act of checking rules against known facts to determine which
rules can be executed.

The advantage that this algorithm brings is efficiency; however, it comes at cost
of higher memory usage. The algorithm uses a lot of caching to avoid evaluating
conditions multiple times.

The word 'Rete' is taken from Latin where it represents a 'net'. It is generally
pronounced as ri ti or ree-tee. This algorithm generates a network from rule
conditions. Each single rule condition is a node in the Rete network. For example:

Customer(name != null)

Code listing 1: Single rule condition that maps to one node in the Rete network.

The Rete network is a rooted, acyclic, and directed graph. You can think of it as a tree
that has some branches joined. In Drools, it is represented by the KnowledgeBase
class. The network is created when we add knowledge packages into the knowledge
base. Rules, from a package, are sequentially added to the network, and the network
is updated as needed. A sample Rete network is shown in the following diagram:

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[259]

The preceding figure shows a sample Rete network generated by the Drools Eclipse
plugin for rules in the validation.drl file in Chapter 2, Basic Rules. The network
consists of various node types. Each node type has a different color. Please note
that for real life .drl files with hundreds of rules, the network is much bigger. It is
usually very wide with the shape of a 'flying saucer'. Don't be surprised if you see
it—it is normal.

The performance of the Rete algorithm is theoretically independent of the number of
rules in the knowledge base. If you are curious and want to see some benchmarks,
you can find them in the drools-examples module that is downloadable from the
Drools web site. There are also some web sites that regularly publish benchmarks
of various rule engines solving well-known mathematical problems (usually
'Miss Manners' test and the 'Waltz'), for example, http://illation.com.au/
benchmarks/. Performance of Drools is comparable to other open source or even
commercial engines.

Drools uses an enhanced version or the Rete algorithm
called ReteOO.

Node types
We'll now describe each node within the Rete network in more detail. Each node
can have one or many input connections depending on its type and many output
connections. Let's imagine that we have the following simple rule:

rule "accountBalanceAtLeast"
 when
 $account : Account(balance < 100)
 then
 warning(drools, $account);
end

Code listing 2: Rule that has constraint on one fact.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[260]

This rule alone translates into the following Rete network. You can see this network
from within the Drools Eclipse .drl file editor. Just switch the tab to Rete Tree in the
bottom left corner of the editor's screen.

Rete Node

EntryPointNode

ObjectTypeNode
(for type Account)

AlphaNode
(balance < 100)

LeftInputAdaperNode

TerminalNode
(for rule
accountBalanceAtLeast)

The figure above shows a Rete network for the accountBalanceAtLeast rule from
code listing 2. At the top is the Rete node.

Rete node
This node is the default entry point into the network. When we insert a fact into the
knowledge session (by calling the session.insert(fact) method), it enters the
Rete network through this node.

In Eclipse, if you open the Properties view and then click on a node
in the Rete network, you'll see some useful information about a node;
for example, its name, type, and depending on node type, various
other information.

EntryPointNode
Next node that follows is the EntryPointNode. This node corresponds to an
entry point. As we've seen in Chapter 7, Complex Event Processing, we can have
many named entry points. In this chapter, we'll be dealing only with the default
EntryPointNode (our diagrams will start at this node).

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[261]

ObjectTypeNode
The inserted fact then continues to a node called ObjectTypeNode (the next node).
This node acts as a fact type filter. It passes only through the facts with matching
type. In our case, only objects of type Account are allowed to continue. All of the
nodes that descend from this node will deal with constraints on Account type. It is
also the case with the next node shown in the previous figure.

Each branch descending from the EntryPointNode must start with one
ObjectTypeNode.

AlphaNode
Alpha nodes represent the first level of matching. AlphaNode is responsible for
evaluating constraints on single facts. Examples of such tests/constraints are literal
(for example, property1=="someValue"), variable (for example, property1 ==
property2), inline eval (for example, eval(someList.isEmpty())), return value
(for example, property1 == (property2 + 2)), and or. In our case, this constraint
is balance < 100. If we'd have multiple constraints on the same fact, they will be
handled by one AlphaNode each. For example, this constraint: balance < 100,
currency == "EUR" would create two AlphaNode nodes one after the other.

The order of constraints in a condition is important. In the given
example, the first AlphaNode will check balance < 100 and the second
AlphaNode will check currency == "EUR". This affects the re-usability
of the Rete network as we'll see later on.
Moreover, we should put most restrictive constraints first. Which
constraints are the most restrictive, depends on our data. The sooner the
fact propagation stops, the less work the engine needs to do.

The flow in the preceding figure continues to the next node.

LeftInputAdapterNode
This node acts as an entry point to the second level of matching—beta nodes. It
simply creates a tuple out of a single fact. In our case, it will be a tuple of size 1 that
will contain the Account fact. The tuple then propagates to the next node in the
preceding figure. This is the TerminalNode.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[262]

TerminalNode
As the name suggests, this is the leaf node of the network. It represents the actual
rule consequence that should be placed on the Agenda. (Remember? All of the rules
with satisfied conditions are placed on the agenda for later execution). Every rule has
at least one TerminalNode.

Example 1—inserting a fact
At this point, we've described all of the nodes that are required to represent our
rule from code listing 2. To summarize, if we insert an Account fact that has
balance of 50 into the knowledge session, it would enter the Rete network at the
Rete node and immediately propagate to EntryPointNode. It will then continue
through all outgoing connections to ObjectTypeNode nodes (in our case only one).
ObjectTypeNode will check that the propagated fact is of type Account and our
fact will continue to the next node. AlphaNode will evaluate its constraint. As our
fact doesn't satisfy the constraint, the execution will stop at this point (the session.
insert(..) method would return). However, if we insert an Account fact with
balance of 150, it will successfully satisfy the constraint of the AlphaNode and it
will continue to the next node. LeftInputAdapterNode will wrap our fact into a
tuple and it will pass it on to the next node. TerminalNode will place a rule that it
represents—accountBalanceAtLeast—on the agenda.

As we can see, most of the work that a rule engine has to do happens
during session.insert time instead of session.fireAllRules
time. The latter only executes consequences of rules that were previously
activated and 'placed on the agenda'. This is important to keep in mind
because it is not something that you'd normally expect.

Another node type that is very common in the Rete network is BetaNode.

BetaNode
It's a node that evaluates constrains on two or more facts. This node has two inputs:
left and right. The left input is for tuples and the right input is for facts. Each input
has an associated memory where it stores partial matches.

Let's add another rule to our accountBalanceAtLeast rule:

rule studentWithLowAccountBalance
 when
 $account : Account(balance < 100,
 type == Account.Type.STUDENT)
 $customer : Customer(accounts contains $account)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[263]

 then
 System.out.println("Customer " + $customer +
 " has student account with low balance");
end

Code listing 3: Rule that has a constraint on one/multiple facts.

The modified Rete network will look like the following figure:

EntryPointNode

ObjectTypeNode
(for type Customer)

AlphaNode
(type == Account.Type.STUDENT)

JoinNode
(accounts contains $account)

TerminalNode
(for rule
studentWithLowAccountBalance)

ObjectTypeNode
(for type Account)

AlphaNode
(balance < 100)

LeftInputAdapterNode

TerminalNode
(for rule

accountBalanceAtLeast)

The figure above shows a Rete network for the
studentAccountCustomerAgeLessThan rule from code listing 3. We can see that
our first network (the Rete network for the accountBalanceAtLeast rule) is still
there (the leftmost line from top to bottom). New nodes were added and some of the
existing nodes were reused. ObjectTypeNode for type Account and AlphaNode that
check the balance property were reused. You can try to change the order of Account
constraints by executing, $account : Account(balance < 100, type == Account.
Type.STUDENT) and you'll see that only ObjectTypeNode will be reused. We'll look
at node sharing later.

The new node (green node) in the preceding figure is a special type of BetaNode
called JoinNode. As the name suggests, the purpose of this node is to join the tuple
with the fact. The result is then tested if it satisfies constraints of this node. In our case,
accounts contains $account. $account comes from the left input and represents
the tuple, and $customer is the fact that comes from the right input. If all of the
constraints are satisfied, a new tuple is created from the input tuple and input
fact. In our case, that will be a tuple of size two that contains the $account and
$customer facts.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[264]

Example—inserting a fact
To see how this works, we'll go step-by-step through inserting an Account fact
followed by a Cutomer fact. The Account fact will enter the network through
EntryPointNode. It will then propagate through ObjectTypeNode for type Account
to AlphaNode that tests the balance property. Let's say the test is successful. As we
already know, this is the last node that both rules share. The fact then propagates
down to two branches, LeftInputAdapterNode (where it ends up activating our
first rule) and to another AlphaNode. This second AlphaNode contains the following
constraint: type == Account.Type.STUDENT. If our fact satisfies this constraint, it
continues to another LeftInputAdapterNode where it is wrapped into a tuple. This
tuple then enters JoinNode. The tuple is added to the left memory of JoinNode.
JoinNode then looks into its right memory if it can create a match. As the right
memory is empty, no match is created and the propagation finishes.

We'll now insert a Customer fact into the knowledge session. The fact enters
the network and continues through ObjectTypeNode for type Customer. It then
propagates to JoinNode. The customer fact is added to the right memory. JoinNode
then looks into its left memory if it can create a match. It finds the Account fact that
has been added previously. JoinNode then evaluates its constraint over this possible
match—accounts contains $account. If this constraint is satisfied, the JoinNode
creates a tuple of size two that contains both the Account fact and Customer
fact. This tuple is then propagated to the next node, which is TerminalNode. The
studentWithLowAccountBalance rule is activated.

There are various types of BetaNodes. We've already seen the JoinNode. Others
include: NotNode, AccumulateNode, CollectNode, and ExistsNode. Their names are
self explanatory. Each node represents one rule construct, for example, the NotNode
represents the not construct.

More complex example
For some more complex rules, we also need a node that takes two tuples on its input.
For example, imagine we have the following single rule in our knowledge base. This
rule will fire if there is no customer with low account balance living at a particular
address. To implement this rule, we'll need not with nested and because we need to
test the non‑existence of customers with specific accounts. The rule is as follows:

rule noCustomerWithLowAccountBalance
 when
 $address : Address(addressLine1 == "Rossa Avenue")
 not (
 $account : Account(balance < 100) and
 Customer(accounts contains $account)
)

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[265]

 then
 System.out.println("No customers with low balance in "+
 "their accounts live at Rossa Avenue");
end

Code listing 4: Rule with a complex 'not' constraint.

Please note that both Account and Customer facts are inside one single not
construct. If we look at the resulting Rete network of this single rule, we'll see
the following figure:

EntryPointNode ObjectTypeNode
(for type Account)

ObjectTypeNode
(for type Customer)

AlphaNode
(balance < 100)

JoinNode with no constraint

JoinNode
(accounts contains $account)

RightInputAdapterNode

ObjectTypeNode
(for type Address)

LeftInputAdapterNode

NotNode

TerminalNode
(for rule

noCustomerWithLowAccountBalance)

AlphaNode
(addressLine1 == "Rossa

Avenue")

The figure above shows a Rete network for the noCustomerWithLowAccountBalance
rule from code listing 4. Note that NotNode, in this case, takes two tuples on
both of its inputs. One comes from LeftInputAdapterNode, which contains the
Address fact. The other tuple consists of the Customer and Account facts. As we
already know, NotNode expects a simple fact on its right input. To make this work,
RightInputAdapterNode is added to the network.

RightInputAdapterNode makes the tuple behave like a single
fact. This allows us to build more complex networks.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[266]

EvalNode and FromNode
Similar to TerminalNode, these nodes have only one tuple input. EvalNode
implements the eval construct (not the inline eval). It evaluates its constraints using
the propagated tuple as the context. FromNode implements the from construct. This
node takes facts outside of the Rete network and adds them into the tuple.

Retracting or modifying a fact
We've already seen two examples of what happens when we insert a new fact into
the knowledge session. It enters the network through the entry node and propagates
down the network to the terminal node. We'll now look at what happens when we
retract or modify/update a fact. Because modify/update is implemented as half-way
retract and then insert, we can focus only on the retract step.

When we insert a fact into the network and it propagates down. It maintains a linked
list of tuples it is a part of. Each tuple knows which node created it. When we retract
this fact, the list of tuples is iterated and the tuple is retracted from the nodes that
created it.

This is called asymmetrical Rete because insert is different from retract. In symmetrical
Rete (pre Drools 5.0,) retract would behave exactly similar as insert. It was done in
this manner because retract needs to go through the same propagation path as insert
did. However, instead of creating new tuples and adding them into node memories,
they would be removed. (For this to work, the facts couldn't change. In order to
follow the same propagation path, the state of the fact had to stay unchanged.
This wasn't always possible and so various attempts such as shadow facts were
implemented. They didn't solve this problem fully and so version 5.0 of Drools uses
asymmetrical Rete that has none of these problems.)

Performance tip: Facts that are modified often should go at the end
of rule condition section. For example, in the rule from code listing 3,
if we modify an Account fact, both AlphaNode and JoinNode need
to be re-evaluated. However, if we modify a Customer fact, then only
JoinNode needs to be re-evaluated.

Initial fact
Imagine we have a rule that checks if there are no customers in the knowledge
session. The rule might look like this:

rule noCustomer
 when

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[267]

 not Customer()
 then
 System.out.println("No customers");
end

Code listing 5: A Rule with a not constraint as its first condition.

As we already know, a not construct is implemented by NotNode. This node is a type
of BetaNode, which means it needs two inputs: right fact input and left tuple input.
The right input is, in our case, a Customer fact. However, as the not Customer()
condition is the first in our rule (and also the only one), there is no tuple source to
connect the left input to. Let's look at the resulting network:

EntryPointNode

ObjectTypeNode
(for type Customer)

ObjectTypeNode
(for type

org.drools.InitialFact)

LeftInputAdapterNode NotNode

TerminalNode
(for rule

noCustomer)

The figure above shows a Rete network for the noCustomer rule from code listing
5. As we can see, there is another ObjectType node for a mysterious fact called
InitialFact. Its purpose is just for these situations where there is no tuple source to
connect with. InitialFact is automatically inserted into the session as the first fact.

Similar to NotNode, the other nodes that sometimes need this InitialFact are
ExistsNode, AccumulateNode, CollectNode, and EvalNode (please note that
EvalNode needs only one tuple input).

Node sharing
We've already touched upon node sharing when we've gone through the rule from
code listing 3. Node sharing is one of the techniques used to minimize the size of
the Rete network. The more nodes two rules share the better. We already know that
the order of conditions within a rule and even order of constraints within a single
condition affects the order of nodes within the Rete network and hence, affects the
sharing of nodes.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[268]

The node sharing takes place when the network is built, that is, when we're creating
a knowledge base out of knowledge packages. The node sharing is implemented
very simply by using the equals method of the standard Object. When a new rule is
added into an existing network, new nodes are created as if the network was empty.
These nodes are then inserted into the existing network. When this happens, the
algorithm checks if such a node already exists by using the equals method. Only the
appropriate nodes are being examined at the current 'level' within the network. If a
node is found that is equal to the new node, the found node is used instead and the
new node is simply discarded.

Example
This may be best shown with the help of an example. We'll build on
examples we've seen so far. Let's say that our knowledge base already has
the accountBalanceAtLeast rule from code listing 2 and we want to add the
studentWithLowAccountBalance rule from code listing 3. We should end
up with a network as depicted in previous figure of the Rete network for the
studentAccountCustomerAgeLessThan rule.

The studentWithLowAccountBalance rule contains two conditions that are joined
by an implicit and. The first condition is on a single fact—Account. It can be handled
by two AlphaNodes. First, we need to create an EntryPointNode; however, as the
network already has such EntryPointNode, the existing node is reused instead.
Next node that is needed is ObjectTypeNode for the Account type. Continuing
from EntryPointNode, such ObjectTypeNode already exists and so it is reused.
Next, we continue from this ObjectTypeNode. We create an AlphaNode with
constraint: balance < 100. As there is already such a node, we can reuse it.

Sharing of nodes with the accountBalanceAtLeast rule ends here. We create an
AlphaNode with constraint: type == Account.Type.STUDENT. From our current
position in the Rete network, we can see that the current node has only one
child—LeftInputAdapterNode. We cannot reuse this node; instead, we'll add our
AlphaNode to the current node's list of children nodes. As this is the last AlphaNode,
we'll add LeftInputAdapterNode. At this stage, we have a tuple that contains the
Account fact. The first condition of our rule is implemented. We'll now remember
our current position in the network.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[269]

The process continues with the second condition of the
studentWithLowAccountBalance rule. This condition is on the Customer fact. The
Customer fact must similarly go through EntryPointNode that can be reused. It
then continues to ObjectTypeNode for the Customer type, which must be added
because there is none present. Next, we need JoinNode because we already have
a tuple that we have to join with and we also have to implement the constraint:
accounts contains $account. JoinNode is created that takes the tuple on its left
input and the Customer fact on its right input. As before, a check is made if an
equal node, descending from the remembered position, already exists. There is no
such node. Hence, our new JoinNode is simply added to the network. Again, we'll
remember the current position in the network. This is the last condition for this rule,
so TerminalNode is added and the process finishes.

Node indexing
As the facts propagate through the Rete network, another optimization technique is
to index fact values. We can then evaluate each test more quickly.

AlphaNode indexing
When a fact meets the constraints specified by a node, it is propagated to all of its
descending child nodes. This usually means iterating over all of the child nodes
and propagating the fact. This takes some time, especially if there are many child
nodes. Luckily, we can index AlphaNode—AlphaNode with 'equals' constraints
(literal constraints) to be more specific. By default, Drools creates an index (a hash
table) if we are testing a property for more than three different values. The object is
propagated only to nodes, where it makes sense (the test will succeed). This means
that we don't have to iterate over those nodes.

Imagine we have the following types of rules that fire for specific currencies:

rule accountEUR
 when
 $account : Account(currency == "EUR")
 then
 //..
end

Code listing 6: A Rule with one literal constraint.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[270]

Let's say there is one rule for different currencies (EUR, USD, GBP, and AUD). Then we
may also have one rule that checks if the currency is different from EUR: currency
!= "EUR" and one that checks some different property of Account, for example, type
== Account.Type.SAVINGS. These rules will generate the following network (only a
part of it is shown):

ObjectTypeNode for Account

Hash Table:

1 2 3 4 5 6

Alpha Nodes

currency
!=

"EUR"

currency
=

"EUR"

currency
=

"USD"

currency
=

"GBP"

currency
=

"AUD"

type
==

SAVINGS

currency alpha node #

EUR
USD
GBP
AUD

2
3
4
5

The figure above shows AlphaNode indexing. When a fact propagates through
ObjectTypeNode from above. Let's say that this account has currency set to "USD",
this fact will propagate to nodes 1, 3, and 6 completely avoiding nodes 2, 4, and 5.

Computation complexity
We are going to compare this with imperative style programming. Let's say we have
the following code:

if (account.getCurrency().equals("EUR")) {}
else if (account.getCurrency().equals("USD")) {}
else if (account.getCurrency().equals("GBP")) {}
...

Code listing 7: Imperative style implementation.

If we have an Account fact where currency was set to "GPB", the program would
have to evaluate all of the three conditions until it finds the correct branch. The
complexity is O(n), where n is the number of if branches.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[271]

However, if we use index this effectively translates to a lookup in a hash table:
hashtable.get(account.getCurrency()), which returns correct 'branch'/node.
This includes calculating the hash code of account.getCurrency() (hash code of
string "GBP") and a lookup in the hash table (a quick operation). The complexity
is O(1).

BetaNode indexing
As was the case with AlphaNode, only 'equal' constraints are indexed. BetaNode
has 2 types of input. Left input for tuples and right input for the ordinary facts. By
default, BetaNode has a left and right memory. Each memory can be indexed. Drools
can index up to three constraints (with 'equals' tests).

As we already know:

1.	 When a tuple enters a BetaNode, it is added to the left memory of
BetaNode. Then a match is attempted. Without an index we have to
iterate over all of the facts in the right memory and if they match then
a new tuple is propagated.

2.	 This is similar to when a fact enters BetaNode. It is added to the right
memory of BetaNode. Then we iterate over all of the tuples in the left
memory, and if a match is found, a new tuple is propagated.

By using an index, we don't have to iterate over all of the facts/tuples in the
opposite memory. We will be iterating only over facts/tuples that meet the indexed
constraints. For each object found, we have to test the rest of the constraints (the ones
that weren't indexed).

Example
Let's consider the following single rule that matches a customer with his/her account:

rule accountWithCustomerLastName
 when
 Customer($lastName : lastName)
 $account : Account(name == $lastName)
 then
 //..
end

Code listing 8: A Rule that matches on two facts that are joined on Account.name ==
Customer.lastName.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[272]

This rule will be represented by a network of one Rete node, one EntryPointNode,
two ObjectTypeNode instances, one LeftInputAdapterNode (for Customer), one
JoinNode, and finally one TerminalNode.

Next, we'll insert the following objects:

1.	 new Customer(..) with lastName set to Edwards. This fact will be added to
left memory (as a tuple of size 1).

2.	 new Customer(..) with lastName set to Parker. This fact will be added to
left memory (as a tuple of size 1).

3.	 new Customer(..) with lastName set to Douglas. This fact will be added to
left memory (as a tuple of size 1).

4.	 new Customer(..) with lastName set again to Douglas. This fact will be
added to left memory (as a tuple of size 1).

5.	 new Account(..) with name set to Morris. This fact will be added to
the right memory and a match will be attempted. As leftMemory.
get("Morris") == null, it won't succeed. No tuple will be propagated.

6.	 new Account(..) with name set to Parker. This fact will be added to
the right memory and a match will be attempted. However, this time
leftMemory.get("Parker") returns one object (id=2). As our BetaNode has
only one constraint, there is no need to do further tests. The new tuple that
will be propagated will be of size 2, consisting of objects 2 and 6.

This result is illustrated in the following figure. Please note the contents of the two
indexes/hash tables.

left memory
(tuples n)

[..., Customer]

right memory
(facts/objects)

Account

Beta Node

tuple n+1

name
=

$lastName

value
Morris
Parker

object id
5
6

value object id
Edwards
Parker

Douglas

1
2
3, 4

The figure above shows JoinNode with its memories. Many of the options described
in this section are configurable through KnowledgeBaseConfiguration or in the
drools.default.rulebase.conf file, which can be found in the drools-core.
jar/META-INF directory.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[273]

KnowledgeBase partitioning
Drools supports parallel execution mode. One session can be executed by
multiple threads.

The Rete network is split into multiple partitions. Each partition is handled by
PartitionTaskManager. It manages a list of suspended propagations and makes
sure that only one of them is being executed at a time over this partition. When a fact
is propagated through the network, it may go through one or more partitions. Once
a propagation reaches the boundary between two partitions, the other partition's
PartitionTaskManager is notified and the current propagation is transferred to its
list of propagations. The suspended propagation then waits in this list until the other
partition manager is ready to take it further.

Each knowledge session has a unique set of its own
PartitionTaskManager instances.

How are partitions formed? When we have an empty network and we want
to add a new rule, first we have to add the Rete node, EntryPoinNode, and an
ObjectTypeNode. These types of nodes are always within the partition called
MAIN. The other nodes that are added for our rule form a new partition called 0.
We now have a network representing one rule that has two partitions. If this rule
was the accountBalanceAtLeast rule from code listing 2, the partitions would look
as follows:

Partition
MAIN

Partition
0

EntryPointNode

ObjectTypeNode
(for type Account)

AlphaNode
(balance < 100)

LeftInputAdapter Node

TerminalNode
(for rule
accountBalanceAtLeast)

The figure above shows the Rete network for the accountBalanceAtLeast rule from
code listing 2 with partitions. If we now continue to add more rules into this network,
they may reuse the existing nodes as we've learned in the section about node sharing.
If a node is reused, its partition is reused as well. If not, a new partition is created and
all of the remaining nodes for this rule are added to this new partition.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Performance

[274]

After adding the noCustomerWithLowAccountBalance rule from code listing 3, the
partitions will look as follows:

Partition
MAIN

Partition
0

Partition
1

EntryPointNode

ObjectTypeNode
(for type Account)

AlphaNode
(balance < 100)

LeftInputAdapter Node

TerminalNode
(for rule
accountBalanceAtLeast)

ObjectTypeNode
(for type Customer)

AlphaNode
(type == Account.Type.STUDENT)

JoinNode
(accounts contains $account)

TerminalNode
(for rule
studentWithLowAccountBalance)

The figure above shows a Rete network for the
studentAccountCustomerAgeLessThan rule from code listing 3 with partitions.
If we want to add more rules this process repeats until we've added all of the rules.

Only the fact propagations are executed in parallel. Rule consequences
are still executed sequentially when you call fireAllRules.
If you start the session in the fireUntilHalt mode, the rule
consequences will be executed immediately (as soon as the rule
becomes activated).

Parallel execution
The following code snippet shows how to configure Drools for parallel
execution. It is done through KnowledgeBaseConfiguration. It provides two
options—MultithreadEvaluationOption that simply turns this feature on
(it is disabled by default), and MaxThreadsOption that sets the maximum
number of threads across all of the partitions.

KnowledgeBaseConfiguration configuration = KnowledgeBaseFactory
 .newKnowledgeBaseConfiguration();
configuration.setOption(MultithreadEvaluationOption.YES);
configuration.setOption(MaxThreadsOption.get(2));
KnowledgeBase kbase = KnowledgeBaseFactory
 .newKnowledgeBase(configuration);

Code listing 9: Enabling multi-thread evaluation.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Chapter 12

[275]

This knowledge base can be then used as normal. If we don't specify the maximum
number of threads, it will be defaulted to the number of partitions we have.

Summary
In this chapter, we've learned about the Rete algorithm, how it works, and that it
uses the Rete network to represent our rules. We've explored various types of nodes
that are within the Rete network: Alpha nodes (that can apply a constraint on a
single fact) and Beta nodes (that can apply a constraint on multiple facts). We've
seen various rules and their corresponding Rete networks.

We've learned about various optimizations used within Drools. One of them was
node sharing. By sharing the nodes, we can greatly reduce the amount of work
a computer must do in order to execute our rules. After all, there is no point in
evaluating the same conditions multiple times.

We've seen that the order of the conditions within a rule and even the order of the
constraints within a condition are crucial when it comes to node sharing. Drools
currently doesn't implement any node rearranging strategy to achieve the best
node sharing possible. When designing your rules, try to put the most restrictive
conditions and constraints first. Try to keep the same order for them. By doing this,
the advantage that you can get from node sharing will be maximized.

The Rete node indexing section described how the alpha and beta node indexing
works. Keep in mind that it applies only to constraints with equal operator.
However, there are also plans to extend this support for relational operators
(greater than, less than, and so on).

Finally, we've learned about knowledge base partitioning, that allows us to execute
our rules in multiple threads.

This chapter showed the power of declarative programming. We just declared
what had to be done and the engine could then decide how to do it, as effectively
as possible depending on the runtime conditions.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Development Environment
Setup

This section describes the setup of the local development environment needed for
working with Drools.

Environment setup
Java version 1.5 and higher is required to run the examples in this book. Drools can
be downloaded from http://www.jboss.org/drools/downloads.html. You'll need
the Binaries and IDE downloads. The latter is the Drools Eclipse plugin. It helps with
writing rules. The Drools 'new project' wizard in Eclipse can create a simple Drools
project that is ready to run. When setting up a new project, you need to tell it the
location of the 'Drools Runtime' (where you extracted the Drools binaries).

If for some reason the Eclipse plugin is not an option, Drools can be set up by maven
or manually. When using maven add the following dependencies to your project's
pom.xml file:

<dependencies>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-api</artifactId>
 <version>${drools.version}</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>
 <version>${drools.version}</version>
 </dependency>
 <dependency>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Development Environment Setup

[278]

 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>${drools.version}</version>
 </dependency>
</dependencies>
<properties>
 <drools.version>5.0.1</drools.version>
</properties>

Code listing 1: Drools dependencies in a maven's pom.xml file.

By adding these dependencies into your project's pom file, we're declaring that
our project depends on three libraries: drools-api, drools-code, and drools-
compiler. Depending on the features used, we may need to add or remove some
Drools libraries. Please note the drools.version property, which is set to version
5.0.1. You may need to change it depending on the latest available release.

We also have to tell maven where to get these libraries. They can be downloaded
from the official JBoss maven repository which is located at http://repository.
jboss.com/maven2/. The following code snippet does the trick:

<repositories>
 <repository>
 <id>JBoss Repository</id>
 <url>http://repository.jboss.com/maven2/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
</repositories>

Code listing 2: JBoss maven repository in a maven's pom.xml file.

Note that the latest snapshot releases can be downloaded from http://snapshots.
jboss.org/maven2/.

Let's now look at the libraries that are needed in more detail.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix A

[279]

Dependencies and their licenses
JBoss Rules/Drools is licensed under Apache License, Version 2.0 (ASL is a free
software license that allows us to develop free, open source as well as proprietary
software. Its contents can be found at http://www.apache.org/licenses/
LICENSE-2.0.html). In order to run the examples in this book, at least the following
libraries will be needed on the Java classpath:

antlr-runtime-3.1.1.jar: A parser generator—helps with parsing rule
files (licensed under ANTLR 3 License, which is based on The BSD License).
core-3.4.2v_883_R34x.jar: Generic Eclipse Java compiler—it's a part
of Eclipse Java Development Tools (licensed under the Eclipse Public
License v1.0).
drools-api-5.0.1.jar: Drools user API or also known as the public
API—most of the classes we'll be dealing with are located here (licensed
under ASL).
drools-compiler-5.0.1.jar: Knowledge compiler—understands rule
syntax and compiles rules into Java classes (licensed under ASL).
mvel-2.0.10.jar: mvel is the property extraction and expression language
for Java. Some core Drools features are implemented using mvel and it is
also used as a dialect in the rule language (licensed under ASL).
drools-core-5.0.1.jar: The Drools engine itself (licensed under ASL).

These libraries are valid for Drools version 5.0.1. Please note that you may need
different versions of these libraries depending on your version of Drools. After
downloading the binary distribution of Drools (for example, drools-5.0-bin.zip
file) and extracting it, the file README_DEPENDENCIES.txt provides more details
on what libraries are actually needed for specific features. Note that all third party
libraries are stored under the lib folder.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Custom Operator
We've already seen various operators that can be used within rule conditions. These
include, for example, ==, !=, relational operators such as >, <, >= , temporal operators
such as after, during, finishes, or others such as matches, which perform regular
expression matching. In this section, we'll define our own custom operator.

The == operator uses Object.equals/hashCode methods for comparing objects.
However, sometimes we need to test if two objects are actually referring to the
same instance. This is slightly faster than Object.equals/hashCode comparison
(only slightly faster because the hash code is calculated once for object and then it
is cached).

Imagine that we have a rule which matches on an Account fact and a Customer
fact. We want to test if the Account owner property contains the same instance of
Customer fact as the Customer fact that was matched. The rule is as follows:

rule accountHasCustomer
 when
 $customer : Customer()
 Account(owner instanceEquals $customer)
 then
 //
end

Code listing 1: Rule with instanceEquals custom operator in
custom_operator.drl file.

From the rule in code listing 1, we can see the use of the instanceEquals custom
operator . Most, if not all Drools operators support a negated version with not:

Account(owner not instanceEquals $customer)

Code listing 2: Condition that uses the negated version of the custom operator.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Custom Operator

[282]

This condition will match Account fact, whose owner property is of different instance
than the fact bound under $customer binding.

Some operators support parameters. They can be passed within the angle brackets as
we've already seen in Chapter 7, Complex Event Processing when we were discussing
temporal operators (for example, this after[0, 3m] $event2).

Based on our requirements, we can now write this following unit test for our new
instanceEquals operator:

 @Test
 public void instancesEqualsBeta() throws Exception {
 Customer customer = new Customer();
 Account account = new Account();

 session.execute(Arrays.asList(customer, account));
 assertNotFired("accountHasCustomer");

 account.setOwner(new Customer());
 session.execute(Arrays.asList(customer, account));
 assertNotFired("accountHasCustomer");

 account.setOwner(customer);
 session.execute(Arrays.asList(customer, account));
 assertFired("accountHasCustomer");
 }

Code listing 3: Unit test for the accountHasCustomer rule.

It tests three use cases. The first one is an account with no customer. The test verifies
that the rule didn't fire. In the second use case, Account owner is set to a different
customer than what is in the rule session. The rule isn't fired, either. Finally, in the
last use case, Account owner is set to the right Customer object and the rule fires.

Before we can successfully execute this test, we have to implement our operator and
tell Drools about it. We can tell Drools through KnowledgeBuilderConfiguration.
This configuration is fed into the familiar KnowledgeBuilder. The following code
listing, which is in fact the unit test setup method shows how to do it:

@BeforeClass
public static void setUpClass() throws Exception {
 KnowledgeBuilderConfiguration builderConf =
 KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
 builderConf.setOption(EvaluatorOption.get("instanceEquals",
 new InstanceEqualsEvaluatorDefinition()));

 knowledgeBase = DroolsHelper.createKnowledgeBase(null,builderConf,
 "custom_operator.drl");
}

Code listing 4: Unit test setup for custom operator test.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

[283]

A new instance of the KnowledgeBuilderConfiguration is created and
a new evaluator definition is added. It represents our new instanceEquals
operator—InstanceEqualsEvaluatorDefinition. This configuration is then
used to create a KnowledgeBase.

We can now implement our operator. This will be done it two steps:

1.	 Create EvaluatorDefinition, which will be responsible for creating
evaluators based on actual rules.

2.	 Create the actual Evaluator (please note that the implementation should
be stateless).

The evaluator definition will be used at rule compile time and the evaluator at
rule runtime.

All evaluator definitions must implement the org.drools.base.
evaluators.EvaluatorDefinition interface. It contains all methods
that Drools needs in order to work with our operator. We'll now look at
InstanceEqualsEvaluatorDefinition. The contents of this class are as follows:

public class InstanceEqualsEvaluatorDefinition implements
 EvaluatorDefinition {
 public static final Operator INSTANCE_EQUALS = Operator
 .addOperatorToRegistry("instanceEquals", false);
 public static final Operator NOT_INSTANCE_EQUALS = Operator
 .addOperatorToRegistry("instanceEquals", true);

 private static final String[] SUPPORTED_IDS = {
 INSTANCE_EQUALS.getOperatorString() };

 private Evaluator[] evaluator;

 @Override
 public Evaluator getEvaluator(ValueType type,
 Operator operator) {
 return this.getEvaluator(type, operator
 .getOperatorString(), operator.isNegated(), null);
 }

 @Override
 public Evaluator getEvaluator(ValueType type,
 Operator operator, String parameterText) {
 return this.getEvaluator(type, operator
 .getOperatorString(), operator.isNegated(),
 parameterText);
 }

 @Override

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Custom Operator

[284]

 public Evaluator getEvaluator(ValueType type,
 String operatorId, boolean isNegated,
 String parameterText) {
 return getEvaluator(type, operatorId, isNegated,
 parameterText, Target.FACT, Target.FACT);
 }

 @Override
 public Evaluator getEvaluator(ValueType type,
 String operatorId, boolean isNegated,
 String parameterText, Target leftTarget,
 Target rightTarget) {
 if (evaluator == null) {
 evaluator = new Evaluator[2];
 }
 int index = isNegated ? 0 : 1;
 if (evaluator[index] == null) {
 evaluator[index] = new InstanceEqualsEvaluator(type,
 isNegated);
 }
 return evaluator[index];
 }

 @Override
 public String[] getEvaluatorIds() {
 return SUPPORTED_IDS;
 }

 @Override
 public boolean isNegatable() {
 return true;
 }

 @Override
 public Target getTarget() {
 return Target.FACT;
 }

 @Override
 public boolean supportsType(ValueType type) {
 return true;
 }

 @Override
 public void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException {

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

[285]

 evaluator = (Evaluator[]) in.readObject();
 }

 @Override
 public void writeExternal(ObjectOutput out)
 throws IOException {
 out.writeObject(evaluator);
 }

Code listing 5: Implementation of custom EvaluatorDefinition.

The InstanceEqualsEvaluatorDefinition class contains various information that
Drools requires—the operator's ID, whether this operator can be negated and what
types it supports.

At the beginning, two operators are registered using the Operator.
addOperatorToRegistry static method. This method takes two arguments:
operatorId and a flag indicating whether this operator can be negated.

Then there are few getEvaluator methods. Drools will call these methods during
the rule compilation step. The last getEvaluator method gets passed in the
following arguments:

type: It is the type of operator's operands.
operatorId: It is the identifier of the operator (one evaluator definition can
handle multiple IDs).
isNegated: It is specified if this operator can be used with not.
parameterText: It is essentially the text in angle brackets. The evaluator
definition is responsible for parsing this text. In our case, it is simply ignored.
leftTarget and rightTarget: It specifies if this operator operates on facts,
fact handles, or both.

Then the method lazily initializes two implementations of the operator
itself—InstanceEqualsEvaluator. As our operator will operate only on facts and
we don't care about the parameter text, we need to cater to only two cases—for
non-negated operations and for negated operations. These evaluators are then
cached for another use.

It is worth noting that the supportsType method always returns true, as we want to
compare any facts regardless of their type.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Custom Operator

[286]

All Drools evaluators must extend the org.drools.spi.Evaluator interface
(Note that this is the old API that will be replaced with org.drools.runtime.rule.
Evaluator interface in the future). Drools provides an abstract BaseEvaluator
that we can extend in order to simplify our implementation. Now, we have to
implement a few evaluate methods for executing the operator under various
circumstances—using the operator with a literal (for example, Account(owner
instanceEquals "some literal value")) or a variable (for example, Account(
owner instanceEquals $customer)). The InstanceEqualsEvaluator operator's
implementation is as follows (please note that it is implemented as a static
inner class):

 public static class InstanceEqualsEvaluator extends
 BaseEvaluator {

 public InstanceEqualsEvaluator(final ValueType type,
 final boolean isNegated) {
 super(type, isNegated ? NOT_INSTANCE_EQUALS
 : INSTANCE_EQUALS);
 }

 @Override
 public boolean evaluate(
 InternalWorkingMemory workingMemory,
 InternalReadAccessor extractor, Object object,
 FieldValue value) {
 final Object objectValue = extractor.getValue(
 workingMemory, object);
 return this.getOperator().isNegated()
 ^ (objectValue == value.getValue());
 }

 @Override
 public boolean evaluate(
 InternalWorkingMemory workingMemory,
 InternalReadAccessor leftExtractor, Object left,
 InternalReadAccessor rightExtractor, Object right) {
 final Object value1 = leftExtractor.getValue(
 workingMemory, left);
 final Object value2 = rightExtractor.getValue(
 workingMemory, right);
 return this.getOperator().isNegated()
 ^ (value1 == value2);
 }

 @Override
 public boolean evaluateCachedLeft(
 InternalWorkingMemory workingMemory,
 VariableContextEntry context, Object right) {
 return this.getOperator().isNegated()

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix B

[287]

 ^ (right == ((ObjectVariableContextEntry)
 context).left);
 }

 @Override
 public boolean evaluateCachedRight(
 InternalWorkingMemory workingMemory,
 VariableContextEntry context, Object left) {
 return this.getOperator().isNegated()
 ^ (left == ((ObjectVariableContextEntry)
 context).right);
 }

 @Override
 public String toString() {
 return "InstanceEquals instanceEquals";
 }
 }

Code listing 6: Implementation of custom Evaluator.

Operator's implementation just defines various versions of the evaluate method.
The first one is executed when evaluating alpha nodes with literal constraints.
extractor is used to extract the field from a fact and the value represents the
actual literal. ^ is a standard 'bitwise exclusive or' Java operator.

The second evaluate method is used when evaluating alpha nodes with
variable bindings. In this case, the input parameters include left/rightExtractor
and left/right fact (please note that the left and right facts represent the same
fact instance).

The third method (evaluateCachedLeft) and fourth method
(evaluateCachedRight) will be executed when evaluating beta node constraints.

For more information, please refer to the API and parent class—org.drools.base.
BaseEvaluator.

Both the evaluator definition and the evaluator should be serializable.

Summary
This shows us the power of Drools expressiveness. Custom operators can be useful
in various situations. For example, if we find ourselves repeating same conditions
over and over again or if we want to get rid of some ugly looking inline eval—it can
be done by writing a custom domain specific operator. The rule then becomes much
easier to read and write.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Dependencies of
Sample Application

The following is a listing of dependencies and their versions as needed by the
sample application, which was implemented in Chapter 9, Sample Application. The
dependencies are given in a maven POM format (Maven is a build tool. For more
information, please visit http://maven.apache.org/).

 <dependency>
 <groupId>commons-lang</groupId>
 <artifactId>commons-lang</artifactId>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-process-task</artifactId>
 <version>5.0.1</version>
 <exclusions>
 <exclusion>
 <groupId>javax.el</groupId>
 <artifactId>el-api</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-persistence-jpa</artifactId>
 <version>5.0.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.mina</groupId>
 <artifactId>mina-core</artifactId>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Dependencies of Sample Application

[290]

 <version>2.0.0-M3</version>
 </dependency>

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>1.5.2</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.5.2</version>
 </dependency>

 <!-- Spring (everything)-->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.5.6</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc</artifactId>
 <version>2.5.6</version>
 </dependency>
 <dependency>
 <groupId>aspectj</groupId>
 <artifactId>aspectjrt</artifactId>
 <version>1.5.4</version>
 </dependency>
 <dependency>
 <groupId>aspectj</groupId>
 <artifactId>aspectjweaver</artifactId>
 <version>1.5.4</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-test</artifactId>
 <version>2.5.6</version>
 <scope>test</scope>
 </dependency>

 <!-- Hibernate -->
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Appendix C

[291]

 <version>3.4.0.GA</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-annotations</artifactId>
 <version>3.4.0.GA</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-commons-annotations</artifactId>
 <version>3.1.0.GA</version>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>3.3.0.SP1</version>
 </dependency>

 <!-- Transaction manager -->
 <dependency>
 <groupId>org.codehaus.btm</groupId>
 <artifactId>btm</artifactId>
 <version>1.3.2</version>
 </dependency>

 <!-- HSQLDB -->
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.0.77</version>
 </dependency>

 <dependency>
 <groupId>javax.persistence</groupId>
 <artifactId>persistence-api</artifactId>
 <version>1.0</version>
 </dependency>

 <!-- Web -->
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.5</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Dependencies of Sample Application

[292]

 <version>1.2</version>
 </dependency>
 <dependency>
 <groupId>taglibs</groupId>
 <artifactId>standard</artifactId>
 <version>1.1.2</version>
 </dependency>

Code listing 1: Extract from the sample application pom.xml file.

Please note the exclusion defined for the drools-process-task dependency. It is
necessary in order to deploy to Tomcat.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Index
Symbols
!= operator 281
$account variable 23
$type variable 23
== operator

about 281
Object.equals/hashCode method used 281

A
accountHasCustomer rule 282
AccountUpdatedEvent 136
AgendaFilter interface 64
Ant

using, to bulid packages 246, 247
antlr-runtime-3.1.1.jar library 279
attributes, rule syntax

defining 34
no-loop 35
salience 35

B
balance property 233
banking domain model

analysing 39
customer 38
defining 38
entities 37
savings account 38
student account 38
Transactional account 38
UUID (Universally Unique Identifier)

property 38
validating, requirements 38

BankingValidationService interface 56, 57
BLiP

problems 7-9
solutions, to problems 9

BRMS 14
buildCustomer method 75
Business Logic integration Platform.

See BLiP
business rules

advantage 81
Business Rules Management System.

See BRMS

C
CEP 133
compileArtifacts target

binformat, defining 248
bintype, defining 248
classpathref, defining 248
srcdir, defining 248
tofiler, defining 248

Complex Event Processing. See CEP
conditions, rule syntax

and 28
collection, working with 32, 33
contains operator 32
eval 30
exists 30
from operator 33
inline eval 30
inline eval, Nested accessors 31
memberOf operator 33
not 29
or 29
return 30

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

[294]

this 32
custom Evaluator

implementations 287
custom EvaluatorDefinition

implementing 285

D
data loading

about 60
alternatives 80
database, setting up 76, 77
iBatis, configuring 78
iBatis, running 79
implementing 76
interface methods, defining 61
into rule session 61, 62
into rule session, mvel dialect used 61
project, setting up 77

data transformation
demonstrating, example 59, 60
need for 59
results 74-76
rules, disadvantage 59
rules, writing 63

data transformation rules, writing
about 63
address normalization 67, 68
currency, converting 70, 71
execute method 66
findAddress rule, testing 68, 69
helper method 65
redundant accounts, removing 72, 73
testing 64-66
unknownCountry rule 69, 70

decision table
about 92-95
ACTION column type 94
advantages 95
CONDITION column type 94
disadvantage 96
functions 94
Import 94
interest rate, calculating 96, 97
name column type 94
no-loop column type 94
notes 94

PRIORITY column type 94
RuleSet 94
Rules Template 101
RuleTable 94
unloop column type 94
variables 94
worksheet 94
XOR-GROUP column type 94

declarative style solution
about 9
advantages 10
application modeling 11
disadvantages 12
easy understandability 10
enterprise management to our rules,

applying 11
flexibility 10
maintainability 10
reasonable performance 10
requirements, translating into rules 11
reusability 11
rule engine, not using 13
rules unification 11

development environment, setting up
dependencies, adding in pom.xml file

277, 278
dialect, package

java 27
mvel 27

Domain Specific Language. See DSL
downloading

Drools 277
Drools

about 13, 279
alternatives 15
balance property, accessing 19
basic rule file 17
collection of objects, working with 32
data loader alternatives 80
data transformation 59
DebugXXXEventListener 238, 239
development environment, setting up 277
downloading 277
drools-verifier 236
Drools Expert 14
Drools Flow 14
Drools Fusion 14, 134

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

[295]

Drools Guvnor 14
Drools Solver 14
Eclipse plugin 14, 277
event listeners 238
execution server 248
first rule, writing 17-19
FIT 231
insert method 34
integration 243
keywords 17, 28
LHS (Left Hand Side) consequences 18
libraries 279
POJO (Plain Old Java Object) 18
query 74
ReteOO 259
retract method 34
RHS (Right Hand Side) consequences 18
rule, executing 19
Rules Template 101
sample application 189
setting up, maven used 277
update method 34
version 1.0 14
version 2.0 14
version 3.0 14

drools-api-5.0.0.jar library 279
drools-compiler-5.0.0.jar library 279
drools-core-5.0.0.jar library 279
Drools Flow

about 101
action node 104
demonstrating 103
Drools Agenda 101
end node 104
example 106, 107
join node 106
join node, AND value 106
join node, XOR value 106
knowledgeBase setup, creating 107
loan approval service 161
nodes 104-106
rule execution order managing methods

102
rule flow 103
ruleflowgroup node 104
rules 107, 108
split node 105

split node. AND value 105
split node.ORvalue 105
split node.XORvalue 105
start node 104
tests, conducting 108, 109
unit testing 168

Drools Fusion 134
DSL

- feature 88
about 81
as an interface 84
building 81
data transformation rules 90, 92
file formats 86
implementing 83
KnowledgeBuilder 83
mappings, defining 82
names capture groups 89
package, creating 83
rules, validating 84, 85
simple .dslr file 82
using, for multiple constraints in condition

88, 89

E
easyMock 229
error message 39
ESP 133, 134
ETL (Extract Transform Load) tool 80
evaluateCachedLeft method 287
evaluateCachedRight method 287
event

body 133
header 133

Event Driven Architecture
benefits 133

event listeners, troubleshooting techniques
org.drools.event.knowledgebase.Knowl-

edgeBaseEventListener 238
org.drools.event.process.ProcessEventLis-

tener 238
org.drools.event.rule.AgendaEventListener

238
org.drools.event.rule.WorkingMemo-

ryEventListener 238
using 238

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

[296]

Event Stream Processing. See ESP
execution server, Drools

accessing 249
interest rate calculation example 249

F
fault node, loan approval ruleflow

test environment, setting up 165, 166
Validated? node’s otherwise branch, testing

166-168
file formats, DSL

DRL format 87
DSL format 86
DSLR format 88

findAllCustomers method 61, 62
fireAllRules method 111
FIT

components 230
Framework for Integrated Test. See FIT
fraud detection system

about 134
AccountUpdatedEvent 136
business requirements 135
entry point 138
events, defining 135-138
LostCardEvent 136
monitoring 135
rules 138
SuspiciousAccount event 136
SuspiciousAccount event, implementing

137
SuspiciousTransaction 136
TransactionCompletedEvent 136
TransactionCreatedEvent 135

fraud detection system, rules
averageBalanceOver30Days rule, testing

154, 155
high activity rule 158, 159
high activity rule, testing 159
monitoring rule 143
notification rule 139
notification rule, test configuration setup

139-142
notification rule, testing 142, 143
sequenceOfIncreasingWithdrawals rule 148
two large withdrawal rule 144

two large withdrawal rule, implementing
146

two large withdrawal rule, testing 146-148

G
getConversionToEurFrom function 72
getEvaluator method

about 285
isNegated 285
leftTarget 285
operatorId 285
parameterText 285
rightTarget 285
type 285

Guvnor
about 231
using 243

I
iBatis

about 77
configuring 78
running 79

instanceEquals custom operator 281
InstanceEqualsEvaluatorDefinition class

contents 283-285
InstanceEqualsEvaluator operator

implementations 286, 287
instanceEquals operator 282
interest rate, decision table

calculating 96, 97
comma separated values 100
createKnowledgeBaseFromSpreadsheet

method , implementing 99
knowledgeBase, creating 99
project setup, libraries 98
testing 98-100

interest rate calculation example, execution
server

client, creating 251, 252
deploying 249-251

invalid loan application form, loan approval
ruleflow

email node 163
email node, parameters 164

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

[297]

H
header, event 133
helper method, data transformation rules 65
high activity rule, fraud detection system

about 158, 159
testing 159

human task, loan approval ruleflow
about 181, 182
client setup 185
server setup 183
testing 183-185

J
Java Persistence API (JPA) 184
JBoss Rules

stateful session 111
stateless session 111

JBoss Rules/Drools. See Drools
jMock 229
Joda-Time library 50
JSR94 (Java Rule Engine API), standards

255

K
KISS (Keep it Short and Simple) principle

111
knowledgeBase loading

about 243
KnowledgeAgent 244-246
KnowledgeAgent, accessing 244
KnowledgeAgent, working 244

KnowledgeBase partitioning
about 273, 274
parallel execution 274, 275

L
layers, configuring

deployment 200
JPA annotations, for domain objects

193, 194
JPA provider configuration, working with

194, 195
persistence layer 193
Spring, configuring 195-197

Tomcat, setting up 199
web application, setting up 197, 198
web application, tag library 199

LegacyBankService interface
about 60, 63
methods, defining 61

loan approval
about 161
approved event 225, 226
loan request form 212, 213
model 162
process, persisting 213-219
ruleflow 162
tasks, listing 220-222
tasks, working on 222-225

loan approval ruleflow
Approve Event node 186
Approve Event node, parameters 186
Approve Event node, testing 186
approveLoan service, implementing 187,

188
diagramatic representation 163
disadvantages 188
fault node 165
human task 181, 182
human task, client setup 185
human task, server setup 183
human task, testing 183-185
invalid loan application form 163
loans’size, determining 168
Rating? node 174
Rating Calculation node 170
Rating node?, testing 175
small loan, testing 169
Transfer Funds node 175

LostCardEvent 136

M
Maven 289
Message interface

defining 40
implementation 53, 54

monitoring rule, fraud detection system
accumulate 143
averageBalanceQuery 143
averageBalanceQuery, testing 144

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

[298]

collect 143
continuous query 143
count function 143
min/max function 143
sum function 143

mvel, dialect
about 27, 241
arrays 28
coercion 28
lists 28
maps 28
projections 28
Property navigation feature 27
return values 28
Simple property expressions feature 27

mvel-2.0-8.jar library 279

N
node, Rete algorithm

Alpha node 261
BetaNode 262, 263
BetaNode, AccumulateNode 264
BetaNode, CollectNode 264
BetaNode, complex examples 264, 265
BetaNode, example 264
BetaNode, ExistsNode 264
BetaNode, JoinNode 264
BetaNode, NotNode 264
BetaNode, RightInputAdapterNode 266
EntryPointNode 260
EvalNode 266
FromNode 266
indexing 269
LeftInputAdapterNode 262
node sharing 267, 268
ObjectTypeNode 261
Rete node 260
TerminalNode 262
TerminalNode, example 262

node indexing
AlphaNode indexing 269, 270
AlphaNode indexing, complexity 271
BetaNode indexing 271
BetaNode indexing, example 271-273

node sharing
example 268, 269
implementing 268

O
ore-3.4.2v_883_R34x.jar library 279
org.drools.builder.KnowledgeBuilder 22
org.drools.FactHandle 117
org.drools.KnowledgeBase 20
org.drools.persistence.session.SingleSes-

sionCommandService
about 214
tasks, listing 221

org.drools.runtime.process.ProcessContext
172

org.drools.runtime.rule.AgendaFilter 64
org.drools.runtime.StatefulKnowledgeSes-

sion 20, 112
org.drools.runtime.StatelessKnowledgeSes-

sion 45
org.drools.spi.KnowledgeHelper 43

P
package, rule syntax

dialect 27
functions 26
global variables, setting 26
global variables, using 26
rule import 25

performance
overview 257
reasonable performance 257

presentation layer, validation
customer save form controller, writing

208-211
localized message, using 208
web form, writing 206, 207

Process Virtual Machine 172
publisher 133

Q
query

about 74
customer and accounts, retrieving 74, 75
getCustomer query 74
implementing 74

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

[299]

R
Rating Calculation node, loan approval

ruleflow
on-exit action, defining 173
subflow 170
subflow, benefits 170
subflow, diagram 170-172
subflow, executing 170
subflow test 173, 174

reduceLegacyAccounts rule 73
relational operator

< 281
> 281
>= 281

ReportFactory interface
defining 41
implementation 56

report model
defining 39
Message interface 39
ValidationReport interface 39

repositories
JPACustomerRepository 200, 201

ResourceChangeListener interface 244
Rete algorithm

advantage 258
defining 258
fact, modifying 266
fact, retracting 266
Initial fact 266, 267
node, types 259
PartitionTaskManager 273
performance 259
Rete network 258, 259

ReteOO 259
Rete Tree view 237
rule

createKnowledgeBase method 20
executing 19-22
first rule, writing 17-19
knowledge session, creating 22

rule acceptance test
all test scenario, running 235
DecisionTableFactory, using 232
defining 230
implementing tools 230

in Guvnor 231, 232
test scenario, creating 232, 233
test scenario, running 234, 235

rule execution order managing methods,
Drools Flow

about 102
activation-group 102
agenda-group 102
salience 102

ruleflow. See Drools Flow
rule integration test

writing 230
rule syntax

$account variable 23
$type variable 23
about 23
Account condition 23
attributes 34
boolen type 24
comments 24
conditions 28
consequences 33
createKnowledgeBase method 21
Customer condition 23
date type 24
Enum type 24
multi line comment 25
package 25
regular expression type 24
Single line comment 25
String type 24
types 24
variables, declaring 23

rule unit tests
writing 229, 230

S
sample application

architecture 189, 190
business logic 192
dependies 289-292
design diagram 192
layers, configuring 192
persistence layer 189, 192
presentation layer 189, 190
presentation layer, implementing 190

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

[300]

repositories 200
service layer 189
technology, using 190
users 189

sequenceOfIncreasingWithdrawals rule,
fraud detection system

AccountInfo type declaration 149
averageBalanceOver30Days rule 149
averageBalanceOver30Days rule, unit test

150-153
implementing 156
testing 157, 158
writing 155

sequential KnowledgeBase 46
serialization

about 126
full serialization mode 130
full session serialization 130, 131
identity mode 129
knowledge session, re-creating 126, 127
stateful session serialization 129
testing 128

spaghetti code 7, 257
Spring Framework integration

KnowledgeBaseFactoryBean 253
KnowledgeBaseFactoryBean, implementing

253, 254
standards

JSR94 (Java Rule Engine API) 255
purpose 255
RIF (Rule Interchange Format) 255
RuleML (Rule Markup Language) 255

stateful session
advantage 111
disadvantage 111

stateful session used, validation
collect conditional element 124, 125
containing, in domain model 113
integration, testing 118-121
logical assertions 121, 122
report, keeping up-to-date 123
separating,from domain model 113
serialization 126
stateful validation service 113
stateful validation service, implementing

115-118

stateful validation service, interface 114
Static analysis 236, 237
subscriber 133
supportsType method 285
SuspiciousAccount event 136
SuspiciousTransaction event 136

T
technology, sample application

BTM (Bitronix transaction manager) 190
drools-process-task module 191
JPA with Hibernate 190
JTA (Java Transaction API) 190
Spring MVC 191
Tomcat servlet container 191
using 190

temporal operator
after 281
during 281
finishes 281
matches 281

Test Driven Development (TDD) 49
testing

advantage 236
troubleshooting techniques 237

TransactionCompletedEvent 136
TransactionCreatedEvent 135
Transfer Funds node, loan approval

ruleflow
defining 176
testing 180, 181
work item definition 176, 177
work item handler, creating 177
work item handler, implementing 178, 179
work item handler, registering 177, 180
work item registration 177, 178

troubleshooting techniques
about 237
debugging, in Eclipse 239, 240
debugging, ruleflows 240, 241
event listeners 238
generated class source, viewing 241
mvel 241

twoEqualAddressesDifferentInstance rule
91

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

[301]

U
UUID (Universally Unique Identifier)

property 38

V
validation

about 202
Aspect-oriented configuration 204
BankingService, implementing 203, 204
complex event processing service (CEP),

integrating 211
configuring, with Spring 202
JTA transaction setup diagram 206
knowledge base definition 202
presentation layer 206
 stateful session, using 112
transaction advice 204
transaction configuration, adding 204, 205,

206
transaction manager 204
validationservice, defining 202

ValidationReport interface
defining 40, 41
implementation 54, 56

validation rules, writing
account balance rule 49

addressRequired test method 47
assertReportContains method 48, 49
compareTo method 50
createCustomerBasic method 47
error method, implementing 43
executing, ways 48
global objects 41
KnowledgeHelper, using 44
object required type rules 44
setGlobal method 47
setupClass method 47
students account rule 50, 52
Test Driven Development (TDD), starting

with 49
unique account number rule 52
unit testing 45, 46
validationReport, using 42

W
warning message 39
Web Services Human Task (WS-Human

Task) 181

X
XOR-GROUP column type, decision table

94

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

Thank you for buying
Drools JBoss Rules 5.0
Developer’s Guide

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Drupal 6 Site Builder Solutions, Packt will have given some
of the money received to the Drools project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

JBoss Drools Business Rules
ISBN: 978-1-847196-06-4 Paperback: 304 pages

Capture, automate, and reuse your business
processes in a clear English language that your
computer can understand

1.	 An easy-to-understand JBoss Drools business
rules tutorial for non-programmers

2.	 Automate your business processes such as
order processing, supply management, staff
activity, and more

3.	 Prototype, test, and implement workflows
by themselves using business rules that
are simple statements written in an
English-like language

JBoss Tools 3 Developer's Guide
ISBN: 978-1-847196-14-9 Paperback: 408 pages

Develop JSF, Struts, Seam, Hibernate, jBPM, ESB,
web services, and portal applications faster than
ever using JBoss Tools for Eclipse and the JBoss
Application Server

1.	 Develop complete JSF, Struts, Seam,
Hibernate, jBPM, ESB, web service, and portlet
applications using JBoss Tools

2.	 Tools covered in separate chapters so you can
dive into the one you want to learn

3.	 Manage JBoss Application Server through JBoss
AS Tools

4.	 Explore Hibernate Tools including reverse
engineering and code generation techniques

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Mauricio Esquenazi on 21st July 2009

10 Kenmare St. #4, , New York, , 10012

	Cover
	Table of Contents
	Preface
	Chapter 1: Introduction
	Problems with traditional approaches
	The solution
	Advantages
	Disadvantages
	When not to use a rule engine

	Drools
	Alternatives to Drools
	Summary

	Chapter 2: Basic Rules
	Rule basics
	Executing rules

	Rule syntax
	Rule concepts
	Variables in rules
	Types
	Comments

	Package
	Imports
	Global variables
	Functions
	Dialect

	Rule condition
	And
	Or
	Not
	Exists
	Eval
	Return value restriction
	Inline eval
	This
	Working with collections

	Rule consequence
	Rule attributes
	salience (priority)
	No-loop
	Dialect

	Summary

	Chapter 3: Validation
	Banking domain model
	Problem definition
	Analysis
	Design
	Validation package
	Object required type rules
	Testing
	Minimal account balance rule
	Student account rule
	Unique account number rule

	Implementation
	Validation service
	Summary

	Chapter 4: Data Transformation
	Process overview
	Getting the data
	Loading facts into the knowledge session

	Writing transformation rules
	Testing
	Address normalization
	Testing the findAddress rule
	Unknown country
	Currency conversion
	One account allowed

	Transformation results
	Implementation of the data loading
	Database setup
	Project setup
	iBatis configuration
	Running iBatis
	Alternative data loading

	Summary

	Chapter 5: Human-readable Rules
	Domain Specific Language
	DSL as an interface
	DSL for validation rules
	File formats
	DSL file format
	DRL file format
	DSLR file format

	DSL for multiple constraints in a condition
	Named capture groups
	DSL for data transformation rules

	Decision tables
	Advantages of a decision table
	Disadvantages of a decision table
	Calculating the interest rate
	Project setup
	Testing
	Comma Separated values

	Rule Templates

	Drools Flow
	Drools Agenda
	Methods for managing rule execution order
	Ruleflow
	Start
	End
	Action
	RuleFlowGroup
	Split
	Join

	Example
	Rules
	KnowledgeBase setup
	Tests

	Summary

	Chapter 6: Stateful Session
	Introduction to stateful session
	Validation using stateful session
	Design overview
	Stateful validation service
	Integration testing
	Logical assertions
	Keeping the validation report up-to-date
	Collect conditional element

	Serialization
	Knowledge session re-creation
	Testing
	Session serialization
	Full session serialization

	Summary

	Chapter 7: Complex Event Processing
	CEP and ESP
	Drools Fusion
	Fraud detection
	Problem description
	Design and modeling
	Fraud detection rules
	Notification
	Monitoring—averageBalanceQuery
	Two large withdrawals
	Sequence of increasing withdrawals
	High activity

	Summary

	Chapter 8: Drools Flow
	Loan approval service
	Model

	Loan approval ruleflow
	Invalid loan application form
	Email work item
	Fault node

	The size of the loan
	Test for a small loan

	Rating Calculation
	Subflow
	Subflow diagram
	Rating calculation subflow test

	Decisions on rating
	Testing the 'Rating?' node

	Transfer Funds work item
	Work item definition
	Work item registration
	Work item handler
	Work item handler registration
	Testing the transfer work item

	Human task
	Test for the human task

	Final Approval
	Test for the 'Approve Event' node

	Banking service
	Disadvantages of a ruleflow

	Summary

	Chapter 9: Sample Application
	Users
	Architecture
	Technologies used
	Additional Drools projects used
	Libraries used

	Business logic
	Design
	Configuration
	JPA annotations for domain objects
	JPA configuration
	Spring Framework configuration
	Web application setup
	Tag library

	Tomcat setup
	Deployment

	Repositories
	Validation
	Services
	Transactions
	Presentation layer
	Localized messages
	Customer save form controller

	Complex Event Processing service

	Loan approval
	Loan request form
	Process persistence
	Task list
	Working on a task
	Loan approval event

	Summary

	Chapter 10: Testing
	How to write unit tests for rules
	Rule integration testing
	Rule acceptance testing
	Creating a test scenario
	Running a test scenario
	Running all test scenarios

	Static analysis of rules
	Troubleshooting techniques
	Event listeners
	Debugging
	Source of generated classes
	mvel tricks

	Summary

	Chapter 11: Integration
	Dynamic KnowledgeBase loading
	KnowledgeAgent

	External artifact building
	Building with Ant

	Drools execution server
	Interest rate calculation example
	The server
	The client

	Spring Framework integration
	KnowledgeBaseFactoryBean

	Standards
	JSR94 Java Rule Engine API

	Summary

	Chapter 12: Performance
	Rete algorithm
	Node Types
	Rete node
	EntryPointNode
	ObjectTypeNode
	AlphaNode
	LeftInputAdapterNode
	TerminalNode
	BetaNode
	More complex example
	EvalNode and FromNode

	Retracting or modifying a fact
	Initial fact

	Node sharing
	Example

	Node indexing
	AlphaNode indexing
	Computation complexity

	BetaNode indexing
	Example

	KnowledgeBase partitioning
	Parallel execution

	Summary

	Appendix A: Development Environment Setup
	Environment setup
	Dependencies and their licenses

	Appendix B: Custom Operator
	Summary

	Appendix C: Dependencies of Sample Application
	Index

